
Introduction to

Operating System Design and Implementation:
The OSP 2 Approach

Michael Kifer and Scott A. Smolka

Department of Computer Science

Stony Brook University

Stony Brook, NY 11794-4400

{kifer,sas}@cs.stonybrook.edu

Contents

1 Organization of OSP 2 5

1.1 Operating System Basics . 5

1.2 OSP 2 Organization . 9

1.3 Simulated Hardware in OSP 2 . 10

1.4 Utilities . 13

1.5 OSP 2 Events . 18

1.6 OSP 2 Daemons . 20

1.7 Compiling and Running Projects . 21

1.8 General Rules of Engagement . 27

1.8.1 A Day in the Life of an OSP 2 Thread 27

1.8.2 Convention for Calling Student Methods 28

1.8.3 Static vs. Instance Methods . 30

1.8.4 Obfuscation of Method and Class Names 30

1.8.5 Possible Hanging After Errors . 31

1.8.6 General Advice: How to Figure it Out 31

1.9 System Log, Snapshots, and Statistics . 32

1.10 Debugging . 33

1.11 Project Submission . 37

2 Tasks: Management of Tasks (a.k.a. Processes) 39

2.1 Class TaskCB . 40

i

ii CONTENTS

2.2 Methods Exported by the Tasks Package 46

3 Threads: Management and Scheduling of Threads 49

3.1 Overview of Threads . 49

3.2 The Class ThreadCB . 53

3.3 The Class TimerInterruptHandler . 62

3.4 Methods Exported by the Threads Package 63

4 Memory: Virtual Memory Management 65

4.1 Overview of Memory Management . 65

4.2 Class FrameTableEntry . 71

4.3 Class PageTableEntry . 73

4.4 Class PageTable . 76

4.5 Class MMU . 77

4.6 Class PageFaultHandler . 81

4.7 Methods Exported by Package Memory . 86

5 Devices: Scheduling of Disk Requests 89

5.1 Overview of I/O Handling . 89

5.2 Class IORB . 90

5.3 Class Device . 91

5.4 Class DiskInterruptHandler . 97

6 FileSys: The File System 101

6.1 Overview of the OSP 2 File System . 101

6.2 Class MountTable . 103

6.3 Class INode . 105

6.4 Class DirectoryEntry . 107

6.5 Class OpenFile . 108

6.6 Class FileSys . 113

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

CONTENTS iii

6.7 Methods Exported by the FileSys Package 118

7 Ports: Interprocess Communication 119

7.1 The Message Class . 120

7.2 The PortCB Class . 120

7.3 Summary of the Ports Package . 125

8 Resources: Resource Management 127

8.1 Overview of Resource Management . 127

8.2 Class ResourceTable . 128

8.3 Class RRB . 128

8.4 Class ResourceCB . 131

8.5 Methods Exported by the Resources Package 136

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

CONTENTS 1

Preface

OSP 2 is both an implementation of a modern operating system, and a flexible environment

for generating implementation projects appropriate for an introductory course in operating

system design. It is intended to complement the use of an introductory textbook on operating

systems and contains enough projects for up to three semesters. These projects expose

students to many essential features of operating systems, while at the same time isolating

them from low-level machine-dependent concerns. Thus, even in one semester, students

can learn about page replacement strategies in virtual memory management, cpu scheduling

strategies, disk seek time optimization, and other issues in operating system design.

OSP 2 is written in the Java programming language and students program their OSP 2

projects in Java as well. Therefore as prerequisites for using OSP 2 , students are expected to

have solid Java programming skills; be well-versed in object-oriented programming concepts

such as classes, objects, methods, and inheritance; to have taken an undergraduate Computer

Science course in data structures; and to have working knowledge of a Java programming

environment, i.e. javac, java, make, emacs or vi, etc. OSP 2 is the successor to the original

OSP software, which was released in 1990 and programmed in C.

OSP 2 consists of a number of modules, each of which performs a basic operating sys-

tems service, such as device scheduling, cpu scheduling, interrupt handling, file manage-

ment, memory management, process management, resource management, and interprocess

communication. The OSP 2 distribution comes with a reference Java implementation of

each module. By selectively omitting any one of these modules, the system can generate a

project in which the students are to implement the missing parts. This process is completely

automated by the OSP 2 Project Generator, included in the distribution. Projects can be

organized in any desired order so as to progress in a manner consistent with the lecture

material.

Each OSP 2 project has a well-defined API, and students must use the specification of

this API to implement the project. Thus, among other things, OSP 2 teaches students to

work with open environments where programming must be done to satisfy concrete sets of

requirements and where a particular API must be used to interface to other subsystems.

The OSP 2 Project Generator generates a “partial load module” of standard OSP 2 mod-

ules to which the students link their implementation of the assigned modules. The result is a

new and complete operating system, partially implemented by the student. Additionally, the

project generator automatically creates “*.java” files containing class and method headings

for each of the assigned modules. These files are given as part of a project assignment in

which the students are to fill in the procedure bodies. This ensures a consistent interface

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

2 CONTENTS

to OSP 2 and eliminates much of the routine typing, both by the instructor and by the

students.

The heart of OSP 2 is a simulator that gives the illusion of a computer system with

a dynamically evolving collection of user processes to be multiprogrammed. All the other

modules of OSP 2 are built to respond appropriately to the simulator-generated events that

drive the operating system. The simulator “understands” its interaction with the other

modules in that it can often detect an erroneous response by a module to a simulated event.

In such cases, the simulator will gracefully terminate execution of the program by delivering

a meaningful error message to the user, indicating where the error might be found. This

facility serves both as a debugging tool for the student and as teaching tool for the instructor,

as it ensures that student programs acceptable to the simulator are virtually bug-free.

The difficulty of the job streams generated by the simulator can be dynamically adjusted

by manipulating the simulation parameters . This yields a simple and effective way of testing

the quality of student programs. There are also facilities that allow the students to debug

their programs. The main tools here are the detailed log of events and the various hooks into

the system. Also, a graphical user interface (GUI) is available that provides a convenient

way for students to enter simulation parameters and to view various statistics concerning

the execution of OSP 2 .

The underlying model in OSP 2 is not a clone of any specific operating system. Rather

it is an abstraction of the common features of several systems (although a bias towards Unix

and the Mach operating systems can be seen, at times). Moreover, the OSP 2 modules were

designed to hide a number of low-level concerns, yet still encompass the most salient aspects

of their real-life counterparts in modern systems. Their implementation is well-suited as the

project component of an introductory course in operating systems.

Acknowledgements

We would like to gratefully acknowledge the past members of the OSP 2 development team,

including Sanford Barr, who produced the original design and implementation of the event

engine; William Ries, Adam Sah and Tomek Retelewski, who, along with Sanford, designed

and implemented an earlier version of OSP 2 that was written in C++; Fang Yang, who was

responsible for porting the event engine and several other modules from the C++ version

to Java; Kevin McDonnell and Peter Litskevitch, for designing, implementing and docu-

menting most of the modules in the current version; Jingjing Wei, for implementing the

latest configurable version of the GUI; Eric Nuzzi, who devised a systematic testing protocol

for the OSP 2 code; Martin Bruggink, for implementing the Ports module; Xiaohua Wu,

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

CONTENTS 3

for implementing the Resources module; and David McManamon, for implementing the

software that allows students to submit their solutions to OSP 2 assignments electronically.

Some parts of OSP 2 rely on third party software. In particular, we thank Retrologic for

developing their excellent Java obfuscator and releasing it under LGPL.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4 CONTENTS

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

Chapter 1

Organization of OSP 2

1.1 Operating System Basics

As explained in the Preface to this book, OSP 2 is organized as a collection of modules, each

corresponding to a class of resource that OSP 2 is intended to manage. For your OSP 2

programming assignments, your instructor will assign you one or more of these modules to

implement, plug back into the rest of the system, and run via a simulation to ensure that

your code is working correctly and efficiently. This chapter describes in some detail this

division of OSP 2 into modules and also provides you with other helpful information you

will need to carry out your assignments. First, though, we shall step back and ask ourselves

the questions: What is an operating system, and what kind of operating system is OSP 2?

What is an Operating System? In order to understand exactly what OSP 2 is and how

it is organized, it is useful to first consider the basic question: What is an operating system?

Two generally held views are that an OS is an extended machine, and an OS is a resource

manager. According to the first view, the function of an operating system is to present

the user with the equivalent of an “extended machine” or “virtual machine” that is easier

to program than the underlying hardware [3]. This is accomplished through the operating

system’s system call interface: the collection of system calls that application programs may

invoke to obtain one kind of service or another. For example, there are system calls to read

and write files and to set the value of timers. Moreover, it is much easier to invoke these

system calls to obtain system service as opposed to mucking around with hardware-specific

instructions and machine registers, which one would be forced to do if there was no OS

present.

5

6 CHAPTER 1. ORGANIZATION OF OSP 2

Two well known examples of system call interfaces are the Win32 API (application pro-

gramming interface) for various flavors of Microsoft Windows (Windows 95/98/Me/NT/2000),

and POSIX for Unix-flavor operating systems such as System V, BSD, and Linux. OSP 2 has

its own system call interface, and you will be introduced to the system calls (Java methods)

that constitute this interface in the subsequent chapters of this book.

According to the second view, an operating system is responsible for efficiently and

fairly managing the resources of a computer system. These include processors (CPUs);

memory (physical and virtual); devices such as disks; files and directories; and network

connections (ports). By efficient, we mean that the OS should aim to maximize resource

utilization whenever possible. By fair, we mean that users programs should be granted

equitable allocation of resources during their execution. Note that most of the example

resources we have listed are physical ones. One exception is files and directories. The part

of the OS responsible for these “logical resources” is often called the file system.

As we will make clear later in this chapter, the view of an operating system as a resource

manager is well suited to OSP 2 , as OSP 2 ’s system call interface is organized in terms of

the various resources OSP 2 is intended to manage. More specifically, OSP 2 is organized

into a number of modules—Java packages to be precise—and there is one such module for

each type of resource OSP 2 is asked to manage. For example, there is an OSP 2 module for

each of memory, devices, ports, etc., and each module exports (defines) a number of Java

methods relevant to that module. Collectively, these methods make up OSP 2 ’s system call

interface.

Different Flavors of Operating Systems. To better understand OSP 2 , it is also useful

to realize that there are different flavors of operating systems available for the choosing. Some

of those that immediately come to mind, and which you have probably heard of, are Unix,

Linux, Windows, and MacOS. These systems differ mainly in the way they are structured

and, of course, in their system call interfaces. Systems like Windows 2000, Solaris (a version

of Unix from SUN Microsystems), and Mach (an OS developed at Carnegie Mellon University

in the 1980’s and which later influenced a number of commercial operating systems) can be

viewed as object-oriented: basic system resources are represented as objects and there exist

well defined message-passing interfaces between objects. Although OSP 2 is not modeled

after any particular OS, a bias towards Unix and Mach can be seen in some parts of its

architecture. On the other hand, OSP 2 is object-oriented (after all, it is written in Java!),

so in this regard it bears a likeness to Windows and Mach.

Another way in which operating systems differ, and which in some sense distinguishes

older operating systems from newer ones, is whether or not they support threads. In older

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.1. OPERATING SYSTEM BASICS 7

systems like Unix, executing programs are organized as processes: the OS is responsible for

scheduling processes on the CPU and switching the CPU from one process to another for

the purposes of multiprogramming. Multiprogramming is a technique aimed at increasing

resource utilization. The basic idea is to have more than one process memory-resident at

a time, and to switch the CPU from a process that has become blocked waiting for some

event, say, the completion of an I/O operation, to a process that is ready to execute. In

this way, the CPU is kept busy doing useful work most of the time, just the kind of thing a

resource manager should strive for.

To conclude our brief look at multiprogramming, we should consider a little more carefully

what it means to switch the CPU from one process to another, an operation commonly

referred to as a context switch. Several steps are involved. First, the currently executing

process must be removed from the CPU and placed on a queue associated with the event on

which it is waiting. Then the process the OS has decided to schedule next for execution must

be dispatched on to the CPU. This involves resetting a number of machine registers (such

as the program counter, general-purpose registers, memory-management registers, etc.) to

values associated with the newly dispatched process when it was last running. The execution

of this process can now resume. This is an admittedly simplified view of what’s behind a

context switch; the subject is treated more thoroughly in Chapter 3.

In newer systems like Mac, Solaris, and Windows 2000, the schedulable and dispatchable

units of execution are no longer processes but rather threads; a process simply serves as a

container for one or more threads. Processes of this kind are usually referred to as tasks,

and that shall be the convention adopted in this book. So what does it mean for a task

to be a “container” for threads? It means that the constituent threads of a task share the

resources allocated to the task, including memory, files, and communication ports. As a

result, switching the CPU from one thread to another is a lot simpler than switching the

CPU from one process to another process as required in an OS that does not support threads.

As we shall see, OSP 2 supports tasks and threads.

Operating Systems are Event-Driven. Operating systems are a perfect example of so-

called event-driven systems. As the name applies, an event-driven system goes into action

in response to the occurrence of some event that it is familiar with. For example, a GUI

(graphical user interface) program is an event-driven system that responds to clicks of the

mouse made by the user; the precise piece of code that gets executed depends on what widget

(tool-bar item, button, radio dial, etc.) gets clicked. In the case of operating systems, the

events that an OS responds to include system calls made by user (or even system) programs,

hardware interrupts, and machine errors. Event-driven systems are typically structured as

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

8 CHAPTER 1. ORGANIZATION OF OSP 2

one large case-statement contained in a while-loop that “catches” the various events the

system is intended to respond to. When an event is caught, the case in the case-statement

corresponding to that event is executed.

This kind of event-loop structure is indeed present in operating systems. Consider, for

example, how a system call gets executed in a typical OS [3]. The calling program first

pushes the parameters of the system call on the system stack. The system call number is

placed in a register and a trap instruction is executed to switch from user mode to kernel

mode. The kernel examines the system call number and branches to the correct system call

handler, usually via a table of pointers to system call handlers indexed on the system call

number. At that point, the system call handler runs and, when finished, control may be

returned to the calling procedure at the instruction following the trap instruction.

Hardware interrupts are handled in a similar event-driven way by an OS. In this case, a

portion of system memory is set aside for the interrupt vector. Using the device number of

the device that caused the interrupt, the interrupt vector may be indexed into to find the

address of the interrupt handler for this device.

OSP 2 is also event-driven, not surprising given that, after all, it is an operating system.

However, OSP 2 responds to simulated events. That is, at the core of OSP 2 is a simu-

lator called the event engine (see Figure 1.1) that randomly generates events of the kinds

discussed above (system calls, hardware interrupts, etc.). In response to such an event, the

appropriate Java method is called. For example, suppose the event engine generates an

event corresponding to an instance of the system call for opening a file. Then the method

open() in class FileSys will be called. Moreover, if your instructor has assigned module

FileSys to you as a project, then it is the code that you wrote for method open() that will

be executed in response to the event. This is actually a somewhat simplified view of how

things work in OSP 2 . Section 1.8 explains this in greater detail.

What this all means is that in OSP 2 , there are no user programs per se that are being

executed; all such programs are simulated by the event engine in the form of a stream

of events that OSP 2 responds to. There are several advantages to this simulation-based

approach. First, events are filtered through a so-called interface layer (IFL) of OSP 2 that

sits between the event engine and the various OSP 2 modules in which the code for the system

calls resides (see, again, Figure 1.1). The IFL therefore has the opportunity to monitor the

execution of system call methods, making sure that the actions taken by these methods are

semantically correct. Should an error be detected in a student implementation of a system

call method, the IFL can return a meaningful error message to the student. These messages

can be a great help to you in debugging your code.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.2. OSP 2 ORGANIZATION 9

The IFL performs another useful role as far as students (and instructors!) are concerned:

it gathers statistic about the system’s performance as the event stream is processed. Example

statistics collected by the IFL include cpu utilization, number of page faults, and number

of tracks worth of disk arm movement. These statistics are very helpful in gauging the

performance of your cpu scheduling algorithm, page replacement scheme, disk scheduling

algorithm, etc.

Another advantage of the simulation-based approach is that to debug the OS modules

that the student writes there is no need to write and run user-level test programs (as would

be the case if you were working with a real OS)—the simulator provides the event stream

for testing. Moreover, the make-up and intensity of this event stream generated by the event

engine can be adjusted dynamically by manipulating the simulation parameters. For exam-

ple, if the instructor has assigned module FileSys as a project, he can set the simulation

parameters so that the event stream will contain a high percentage of file-system related

events. This yields a simple and effective way of testing the quality of student programs.

User programs are not the only thing simulated in OSP 2 . The underlying hardware is

simulated as well and includes a CPU, disk, system clock, hardware timer, and interrupt

vector. The simulated hardware of OSP 2 is described fully in Section 1.3.

1.2 OSP 2 Organization

OSP 2 comprises a number of projects that may be assigned to students as programming

assignments. Each project involves the implementation of a separate Java package consisting

of one or more Java classes and their associated methods. Because of their role as potential

programming assignments, we shall often refer to these packages as student packages or

student projects. It should be understood, however, that reference implementations of

these packages are part of the standard OSP 2 distribution and must be in place for the

system to function normally (unless the reference implementation of a package has been

replaced by a student implementation). Each student package is responsible for managing

its own class of system resources, as described in the following:

Devices: Handles I/O requests for secondary storage devices such as disk drives.

FileSys: Implements the file system including basic file operations and directory structures.

Memory: Manages physical and virtual memory using techniques such as paging and seg-

mentation.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

10 CHAPTER 1. ORGANIZATION OF OSP 2

Resources: Manages abstract resources of the system using deadlock detection and dead-

lock avoidance algorithms.

Tasks: Controls the creation and deletion of tasks, each of which is a container for a set of

threads and their associated resources.

Threads: Responsible for creating, killing, dispatching, suspending, and resuming threads,

the fundamental units of execution in OSP 2 .

Ports: Implements an interprocess communication facility that allows threads to send mes-

sages to each other.

To illustrate how student projects are organized, consider the Memory module of OSP 2 .

This module corresponds to the Java package osp.Memory and contains the classes PageFault-

Handler, PageTableEntry, and FrameTableEntry, among others. Each of these classes is

kept in its own .java file: PageFaultHandler.java, PageTableEntry.java, FrameTable-

Entry.java, etc. For the Memory project, students are expected to implement the various

classes associated with these files.

At the heart of OSP 2 is the Event Engine, the event-based simulator that drives the

execution of the student packages. The events generated by the event engine are calls to

methods in student packages, representing system calls (e.g. create a task, write a file) or

hardware interrupts (e.g. disk interrupt, page fault). Collectively, they simulate the behavior

of a stream of executing programs in a multiprogramming operating-system environment.

There is also a layer that sits between the event engine and the student layer, the so-called

Interface Layer or IFL. The IFL monitors the execution of the student packages for the

purpose of catching semantic errors in student code (and subsequently producing intelligible

error or warning messages), and for gathering performance statistics. Thus, the IFL can

be viewed as a protective “wrapper” around the student packages. The logical structure of

OSP 2 is depicted in Figure 1.1.

1.3 Simulated Hardware in OSP 2

The Hardware and the Interrupts packages of OSP 2 model the hardware-oriented aspects

of the simulated multiprogramming operating system. Hardware consists of four Java classes,

which we now describe.

CPU: This class models the CPU of the simulated machine. It defines one method, interrupt(),

which is used to generate an interrupt with the given type (e.g. disk interrupt, page

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.3. SIMULATED HARDWARE IN OSP 2 11

Figure 1.1: The logical structure of OSP 2 .

fault). The interrupt vector supported by the Interrupts package is described later

in this section.

Disk: This class represents a hard disk attached to the system and is declared as follows:

public class Disk extends Device;

It implements methods that provide access to the physical characteristics of the disk

and its current state of operation. The methods in this class are:

• final public int getPlatters()

Returns the number of platters.

• final public int getTracksPerPlatter()

Returns the number of tracks per platter.

• final public int getSectorsPerTrack()

Returns the number of sectors per track.

• final public int getBytesPerSector()

Returns the number of bytes per sector.

• final public int getRevsPerTick()

Returns the number of revolutions per tick.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

12 CHAPTER 1. ORGANIZATION OF OSP 2

• final public int getSeekTimePerTrack()

Returns the average time it takes to move the head to the adjacent track.

• final final public int getHeadPosition(int track)

Returns the position of the disk head, i.e., the cylinder where the head is parked.

These methods might be used for implementing I/O schedulers; see Scheduling of Disk

Requests, Chapter 5, for more information about OSP 2 devices.

HClock: This class represents the hardware clock. It can be used to access the current

simulation time using the following method:

• public final static long get()

Returns current simulation time.

HTimer: This class represents the hardware timer. If set to a positive integer, a timer

interrupt will occur after that many (simulated) clock ticks. This class provides the

following methods:

• public final static void set(int time)

Sets timer. Time is relative to the current time. If time is zero or negative, timer

interrupts are disabled.

• public final static long get()

Returns time left until the timer interrupt. Returns a negative number if timer

interrupts are disabled.

The Interrupts package of OSP 2 consists of one Java class, which is important for

several student projects.

InterruptVector: This class represents the hardware register called the interrupt vector.

It contains information about the interrupt that just occurred. Interrupt handlers check

the interrupt vector for the information about the interrupt so that they can properly

handle the interrupt. Not all parts of the interrupt vector are relevant to every kind of

interrupt. For instance, for timer interrupts, only the type of the interrupt (i.e., that

it came from the timer device) is important. On the other hand, for a disk interrupt,

the relevant information also includes the IORB that caused the interrupt. For a

page fault, the relevant information includes the thread and the page that caused the

interrupt, etc. The student is supposed to set and query the appropriate parameters

of the interrupt vector depending on the type of interrupt. The methods provided by

this class are:

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.4. UTILITIES 13

• final static public void setInterruptType(int newInterruptType)

Sets the type of the interrupt: PageFault, DiskInterrupt, or TimerInterrupt;

see GlobalVariables for more details.

• final static public int getInterruptType()

Returns the type of the interrupt.

• final static public ThreadCB getThread()

Returns the thread that caused the interrupt.

• final static public void setThread(ThreadCB thread)

Sets the thread that is about to cause the interrupt. In this way, other modules

can query the interrupt vector to find out which thread caused the interrupt.

• final static public PageTableEntry getPage()

Returns the page that caused the interrupt (pagefault).

• final static public void setPage(PageTableEntry newPage)

Sets the page that caused the interrupt. In this way, other modules can query

the interrupt vector to find out which page has cause the page fault.

• final static public void setReferenceType(int referenceType)

Sets the reference type of a memory interrupt, i.e., MemoryRead, MemoryWrite,

or MemoryLock; see GlobalVariables.

• final static public int getReferenceType()

Returns the type of memory reference that caused the interrupt.

• final static public Event getEvent()

Returns the event that caused the interrupt.

• final static public void setEvent(Event newEvent)

Sets the event that is about to cause the interrupt.

The hardware components listed above are provided by the OSP 2 system and are not to

be implemented by the student. In contrast, OSP 2 also has hardware, notably the memory

management unit (or MMU), that is part of a student package, module Memory. OSP 2

memory management is discussed in Chapter 4.

1.4 Utilities

The utilities package contains a number of classes that are needed purely for simulation

support. It also provides a class, GlobalVariables, that is required by the student packages,

and several other “utility” classes that assist students in implementing their projects.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

14 CHAPTER 1. ORGANIZATION OF OSP 2

The class GlobalVariables comprises a number of variables that define the nature

of a memory reference (e.g. MemoryWrite), interrupt types (e.g. TimerInterrupt), and

method return status (e.g. SUCCESS and FAILURE). It also defines constants such as NONE

and SwapDeviceID. The former represents a common return value used for integer objects

(e.g. the value returned when a free frame is not found) and the latter is the device number

of the swap device.

All of these constants are integers and must be referred to using their symbolic names.

For debugging, however, it is often useful to know what the corresponding numeric values

are. This is accomplished with the help of the following methods:

• final static public String printableStatus(int status)

Returns the printable representation of the following constants:

– ThreadReady – status of a ready-to-run thread.

– ThreadRunning – status of a running thread.

– ThreadWaiting – status of a waiting thread. (There are multiple levels of waiting,

so this status is printed as ThreadWaitingX, where X is the waiting level. See

Chapter 3 for details.)

– ThreadKill – status of a killed thread.

– TaskLive – status of a live task.

– TaskTerm – status of a killed task.

– PortLive – status of a live communication port.

– PortDestroyed – status of a destroyed communication port.

This method is useful for debugging. For instance, if you need to find out the status

of a thread, you might want to display that status on the screen. But status is an

integer, which does not hold much information for a human reader. The method

printableStatus()will convert such an integer into, say, ThreadReady (a string).

• final static public String printableRequest(int request)

Returns human-readable representations of request constants, which are:

– MemoryRead – Memory read request (in refer()).

– MemoryWrite – Memory write request (in refer()).

– MemoryLock – Memory lock request (in lock()).

– FileRead – File read request (in read()).

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.4. UTILITIES 15

– FileWrite – File write request (in write()).

• final static public String printableDevice(int device)

Returns human-readable representations for devices, which are:

– SwapDeviceID – the number of the swap device.

– Disk1, Disk2, Disk3, Disk4 – the disk devices.

• final static public String printableInterrupt(int interrupt)

Returns human-readable representations for interrupts, which are:

– PageFault – Pagefault interrupt.

– DiskInterrupt – Disk interrupt.

– TimerInterrupt – Timer interrupt.

• final static public String printableRetCode(int retcode)

Returns human-readable representations of method return-codes. The supported return-

codes are:

– SUCCESS – successful completion.

– FAILURE – unsuccessful completion.

– NotEnoughMemory – returned by the page-fault handler when it cannot find a

frame to satisfy a page fault.

• static public String userOption

This variable is set using the command line option -userOption. It can be used to

pass a parameter to the student program when OSP 2 is invoked from command line.

This variable is not used internally by the simulator and its use is solely up to the

student’s discretion.

Other useful classes in the Utilities package include:

MyOut: The methods in this class can be used to insert messages into the OSP 2 system

log for debugging purposes. The system log tracks system events as they occur and

messages inserted into the log by students are inserted in chronological order with other

system events. The following methods are provided:

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

16 CHAPTER 1. ORGANIZATION OF OSP 2

• final public synchronized static void print(Object where, String msg)

Prints a message to the system log. The argument where must be an object from

which the package and the class from where print is called can be derived. If

print() is called from a non-static method, then the where argument should be

this (the Java keyword that denotes the context object); otherwise, if print()

is invoked from within a static method, then the where argument should be a

string-object of the form "osp.packageName.className". For instance,

MyOut.print("osp.Tasks.TaskCB", "Hello World!");

• final public synchronized static void error(Object where, String msg)

Prints an error message to the system log and terminates OSP 2 . The format of

the where argument is the same as before. This method can be used to halt

execution of OSP 2 when a bug is discovered; further execution of OSP 2 under

these circumstance is probably not useful under the circumstances. The error()

method also causes a stack trace and the current OSP 2 snapshot to be included

in the log for debugging purposes.

• final public synchronized static void checkCondition(boolean condition,

Object where, String msg)

Similar to error() except that the error message is printed and OSP 2 is termi-

nated only if the boolean condition is false.

• final public synchronized static void warning(Object where, String msg)

Similar to print() except that a warning message is printed to the log. Unlike

error() and checkCondition() (but like print()), the execution of OSP 2 can

proceed after this method is called. Like method error(), a snapshot and a stack

trace are included in the system log. This method can be used by the student

to check conditions that are not necessarily fatal to the execution, but are still

undesirable and must be fixed.

• final public synchronized static void snapshot()

Although error(), warning(), and checkCondition() can be used to obtain

the current OSP 2 snapshot, the snapshot() method can be used to insert a

snapshot into the system log at any time, not necessarily when a warning or an

error condition is detected.

GenericList: This class provides the following methods for maintaining doubly linked lists

of objects:

• public GenericList() implements GenericQueueInterface

A constructor that creates an empty list.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.4. UTILITIES 17

• public GenericList(Object obj)

A constructor that creates a list and initializes it with a given object.

• public final int length()

Returns the length of the list.

• public final boolean isEmpty()

Returns true if the list is empty, false otherwise.

• public final synchronized void insert(Object obj)

Inserts an object at the beginning of the list.

• public final synchronized void append(Object obj)

Appends an object to the end of the list.

• public final synchronized Object remove(Object obj)

Removes the specified object from the list and returns the object. Null, if the

object is not found.

• public final synchronized boolean contains(Object obj)

Returns true if the specified object is in the list, false otherwise.

• public final synchronized Object removeHead()

Removes the object at the head of the list and returns the object. Null, if the

list is empty.

• public final synchronized Object removeTail()

Removes the object at the tail of the list and returns the object. Null, if the list

is empty.

• public final synchronized Object getHead()

Returns the object at the head of the list without removing the object.

• public final synchronized Object getTail()

Returns the object at the tail of the list without removing the object.

• public final synchronized Enumeration forwardIterator()

An iterator is a general Java mechanism for dealing with collections such as sets

and lists. A forward iterator returns an object of class Enumeration (a standard

Java class), which can then be used to conveniently traverse the list. For instance,

GenericList list;

.....

Enumeration enum = list.forwardIterator();

while(enum.hasMoreElements()) {

Object obj = enum.nextElement();

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

18 CHAPTER 1. ORGANIZATION OF OSP 2

}

• public final synchronized Enumeration forwardIterator(Object first)

Works like forwardIterator() but starts the iteration from the specified object

in the list.

• public final synchronized Enumeration backwardIterator()

Similar to forwardIterator() but traverses the list backwards.

• public final synchronized Enumeration backwardIterator(Object first)

Like forwardIterator(Object first) but traverses the list backwards.

GenericQueueInterface: The GenericQueueInterface that GenericList implements con-

tains the following methods:

• public int length();

Returns the number of elements in the queue.

• public boolean isEmpty();

Returns true if the queue is empty, false otherwise.

• public boolean contains(Object obj);

Returns true if the queue contains object obj, false otherwise.

This interface mandates only the methods that OSP 2 itself uses internally. For classes

that use this interface you might need to define additional methods, such as insertion

into the queue and deletion of queue members.

1.5 OSP 2 Events

Like any other operating system, OSP 2 is event-driven. When a thread executes an I/O

operation, it blocks until the I/O completes. When one threads needs to communicate with

another, it sends a message and might decide to block itself until a response arrives. When

a thread blocks, we say that it is waiting for an event to occur (like the completion of an

I/O operation or message delivery) so that the thread may continue its execution.

In a typical operating system, events are represented by some kind of event data struc-

ture. A thread that wishes to block itself, or, more generally, to be notified about the

completion of an event, executes a suspend() operation on that event, which places the

thread on the event’s waiting queue. The event “happens” when some other thread (a

user or a system thread, depending on the type of the event) announces that the event has

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.5. OSP 2 EVENTS 19

taken place. For example, in the case of an I/O operation, a disk interrupt will cause the

disk-interrupt handler to execute and the handler eventually will announce the completion

of the I/O event. In OSP 2 , an event is an object and such an announcement is made by exe-

cuting the notifyThreads() method associated with the event. As a result, threads waiting

on the event are unblocked by the operating system and can continue their execution.

In OSP 2 , events are represented by the Event class. A basic event has an id, which serves

to distinguish this event from other events and a waiting queue. Thus, an event provides

the means for suspending threads when they have to wait, and subsequently locating them

when they are to be resumed.

A basic OSP 2 event is almost never used as is. In most cases, a thread is suspended

because it has to wait for an I/O operation to complete or a page to be swapped in, or

because it is suspended on a communication port until a message arrives. Thus, OSP 2

treats memory pages, I/O request blocks (IORBs), and communication ports as events in

the sense that all these classes extend the class Event.

The Event class provides the methods necessary for maintaining the waiting queue, and

these methods can be used on pages, ports, and IORB’s when these are used in their capacity

as events. The methods provided by class Event are as follows:

• public void addThread(ThreadCB thread)

Add the specified thread to the waiting queue of the event. No checks are performed

to ensure that the thread is not already on the queue.

• public void removeThread(ThreadCB thread)

Remove the specified thread from the queue. If the thread is not found, return silently.

• public boolean contains(ThreadCB thread)

Return true if the thread is on the waiting queue for this event, false otherwise.

• public int getNumberOfThreadsWaiting()

Returns the length of the waiting queue.

• public GenericList getThreadList()

Returns the waiting queue itself.

• public ThreadCB getHead()

Returns the thread at the head of the waiting queue or the null object.

• public void notifyThreads()

Resumes all threads on the waiting queue (i.e., executes resume() on each one of them)

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

20 CHAPTER 1. ORGANIZATION OF OSP 2

and empties the queue. It is quite possible that some threads on the waiting queue

have been destroyed while waiting. In this case, notifyThreads() simply removes the

destroyed threads from the queue as executing resume() on such a thread would be

an error.

Several projects in OSP 2 make extensive use of events and we will refer back to this section

when necessary.

1.6 OSP 2 Daemons

The implementation of certain functions of an OS can be facilitated through the use of

daemons: special system threads that run periodically and perform “work” specified by the

user. In OSP 2 , such work might include proactive swapping out of dirty memory pages, as

required by some memory-management algorithms, and deadlock detection.

Daemon support inOSP 2 is provided by the Daemon class and the interface DaemonInterface.

To use a daemon, one creates an object in a class that implements DaemonInterface and

then registers this object with the system. The following statements declare a class of dae-

mons whose only job is to insert a notice in the system log:

class MyDaemon implements DaemonInterface

{

public void unleash(ThreadCB thread)

{

MyOut.print(this, "My daemon executed at time: " + HClock.get());

}

}

The only mandatory method in this class is unleash, which should contain the code you

want the daemon to execute. For instance, in case of a deadlock-detection daemon, a method

should be provided that executes the appropriate deadlock-detection algorithm. This method

is called by OSP 2 when it wakes up the daemon.

Defining a daemon is your responsibility. You also need to register it with the system

and provide three things: the name of the daemon (for easy identification of the daemon in

a system trace), a concrete daemon object to call, and the amount of time that should pass

between invocations of the daemon. This is typically done when OSP 2 begins executing,

inside the init() method that exists in the main class of each student package. Here is an

example of registering a daemon:

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.7. COMPILING AND RUNNING PROJECTS 21

Daemon.create("My own daemon", new MyDaemon(), 20000);

The first argument can be an arbitrary string. The second is an object of the daemon class

defined earlier. The third argument tells OSP 2 that the daemon should be periodically

woken up after every 20000 ticks.1 You can create several daemons if several periodic jobs

need to be performed by the module that you are implementing. Typically the requirement

to use daemons would be part of the assignment given out by your instructor, but you might

also decide to use them on your own, based on your understanding of the problem.

1.7 Compiling and Running Projects

A student project assignment consists of several files:

1. Demo.jar, which contains a demo version of OSP 2 . It can be used to get a general idea

of how OSP 2 works, to familiarize yourself with the graphical interface and command-

line options of the system, and to create configuration files for running OSP 2 with

different parameters.

2. Template files, each of which contains the necessary import statements, the class header

of the public class to be implemented, and the headers of the public methods that must

be implemented by the student. For instance, for the Threads project, the template

files would be

(a) ThreadCB.java

(b) TimerInterruptHandler.java

3. OSP.jar, which contains the compiled classes of the OSP 2 simulator that drive the

execution of the classes in the student project. When your implementation of the classes

in the project is complete, they should be compiled and linked with the OSP.jar file.

4. A Makefile that simplifies the compilation process under Unix-based systems (Solaris,

Linux, Free BSD, etc.).

5. The Misc subdirectory, which includes two files:

(a) params.osp

1 OSP 2 does not guarantee that it will wake up the daemon exactly after the specified number of ticks,
but it will try to wake it up as soon as possible after the specified interval.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

22 CHAPTER 1. ORGANIZATION OF OSP 2

Figure 1.2: Panel for changing OSP 2 simulation parameters.

(b) wgui.rdl

The first file contains the parameters that will drive the simulation and the second file

is a configuration file for the GUI. You should not edit either of these files manually.

In fact, there is no reason to touch wgui.rdl at all, unless you are not satisfied with

the overall look of the graphical interface :-). However, you might want to run OSP 2

with different parameters and create a new configuration file derived from params.osp.

The only recommended way of doing this is to change the parameters through the GUI

of the demo version of OSP 2 and then save the new parameters in a new file. A GUI

panel that lets the user change the simulation parameters is shown in Figure 1.2.

Java settings. To run and compile OSP 2 you must first make sure that Java is properly

set up on your machine and that your personal configuration files are set appropriately. For

JDK 1.2 and newer versions, this simply means that the environment variable PATH is set

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.7. COMPILING AND RUNNING PROJECTS 23

appropriately. For Windows, this variable should be set in the autoexec.bat file (Windows

95/98/ME) or through the control panel (Windows NT/2000) as follows:

set PATH=%PATH%;C:\jdk\bin

The second component in this setting should, of course, point to the place where the Java

executables are installed and our choice of C:\jdk\bin is merely an example.

For Unix-based systems, the setting depends on the type of the shell used. We show the

settings for the two most popular shells: bash and csh. Settings for other shells (such as

ksh, sh, tcsh) would be similar to either bash or csh the only difference being the name of

the configuration file.

To set the PATH variable for bash, place the following in the .bashrc file in your home

directory:

PATH=/usr/local/bin/jdk:$PATH

export PATH

As before, /usr/local/jdk/bin is just an example. The actual location of the Java exe-

cutables can vary.

For csh, the PATH variable should be set in the file .cshrc in your home directory:

setenv PATH /usr/local/bin/jdk:$PATH

Running the demo program. To run the demo version of OSP 2 under JDK 1.2 and

later versions, simply type:

java -classpath .:Demo.jar osp.OSP

(use .;Demo.jar on Windows).

Some installations of JDK might require that you set the CLASSPATH environment variable

(this requirement would then be part of the Java installation instructions). In this case, you

might need to run OSP 2 as follows:

java -classpath .:Demo.jar:${CLASSPATH} osp.OSP

for Unix-based systems and

java -classpath .;Demo.jar;%CLASSPATH% osp.OSP

for Windows.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

24 CHAPTER 1. ORGANIZATION OF OSP 2

Compiling and running the project. Once your implementation of the project is fin-

ished, you are ready to compile and run the system. Here is how to do this.

On Unix-based systems, simply type make, and the project will be compiled. To run

it without the GUI, type make run; with the GUI, type make gui; and to run with the

debugger type make debug. Sometimes make clean; make can be helpful if you need to

get rid of stale .class files and force recompilation of the entire project. That’s all! The

only caveat is that this must be a version of GNU make, which is available on most Unix

systems, albeit sometimes under different names, such as gnumake or gmake. To find out it

your make-program is a GNU make, type

make --version

If it does not say that this is GNU make or if it does not understand the --version argument,

then it is not GNU make, and you should ask the system administrator if this version of the

make-program is installed (and under which name). If you cannot locate the appropriate

make-program, read on.

Figure 1.3 shows what you can expect when running OSP 2 with a GUI and Figure 1.4

shows a run without the GUI.

The following commands can be used to compile and run OSP 2 under Unix for JDK 1.2

and later:

javac -g -classpath .:OSP.jar: -d . *.java

java -classpath .:OSP.jar:. osp.OSP

jdb -classpath .:OSP.jar:. osp.OSP

The only difference under Windows is that one has to replace “:” with “;”. The first

command compiles the project, the second runs it, and the third runs it under the Java

debugger.2 Running OSP 2 with the Java debugger can be excruciatingly slow, so you

should try this only if you need to trace the execution of your program or examine it in some

other way that the debugger provides.

Again, some installations of JDK might insists that you set the CLASSPATH environment

variable and attach it to the -classpath argument as explained earlier.

2 Some Java distributions for Linux have problems with running the debugger due to broken shell scripts.
When run, the debugger will complain that it cannot load certain libraries. To fix this, you must set the
environment variable LD LIBRARY PATH to something like /usr/local/jdk/lib/i386:$LD LIBRARY PATH.
You might have to do some experimentation to find out the exact path.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.7. COMPILING AND RUNNING PROJECTS 25

Figure 1.3: An OSP 2 run with a graphical interface.

Figure 1.4: An OSP 2 run without the GUI.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

26 CHAPTER 1. ORGANIZATION OF OSP 2

OSP 2 command-line options. You can run OSP 2 with certain command-line options.

Here is the full list of options:

-help - lists all command-line options

-noGUI - runs the simulator without the GUI

-paramFile - tells OSP to use the next argument as the parameter file

-guiFile - tells OSP to use the next argument as GUI configuration file

-userOption - tells OSP to use the next argument to set the global

variable userOption

-debugOn - includes debugging messages in the OSP system log

Among these, only -userOption, -noGUI, and -paramFile are useful for student projects.

The first option, -userOption, allows you to pass a string argument to the student pro-

gram from the command line. As a result, the string argument specified on the command

line becomes the value of the global variable userOption. This can be used, for example,

when experimenting with different project implementations, based, perhaps, on different

algorithms, and a command-line option is needed to indicate which algorithm to execute.

This option can also be used to invoke debugging code that is normally hidden. The second

option, -noGUI, runs OSP 2 without the GUI, which saves time. OSP 2 ’s GUI is very useful

as a tool for setting the simulation parameters, but apart from that it is just a very fancy

progress bar and, as such, is intended to distract serious people from doing work.

The second useful option, -paramFile, can be used to run OSP 2 with alternative pa-

rameter files, which can be helpful for debugging. The use of -debugOn option is not rec-

ommended for student projects. It is mainly a tool for debugging OSP 2 itself, and the

messages it produces can be confusing to someone who is not familiar with the source code

of the system. Apart from that, with this option turned on, the OSP system log can be in

excess of 30M, which might be a problem on shared file systems.

Here is an example of how to specify command-line arguments to the make command

under Unix:

make run OPTS="-paramFile my-other-param-file.osp -noGUI"

For Windows and for those Unix users who do not trust make-files, the same effect can be

achieved as follows:

java -classpath .:OSP.jar osp.OSP -paramFile my-other-param-file -noGUI

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.8. GENERAL RULES OF ENGAGEMENT 27

1.8 General Rules of Engagement

This section describes important general conventions about writing code for student projects.

1.8.1 A Day in the Life of an OSP 2 Thread

The key to understanding the idea behind OSP projects is the notion of an OSP thread. An

OSP simulation consists of a number of OSP threads that are born and die, and in-between

try to behave as real applications. A typical OSP 2 thread is somewhat like a drawing by

Escher: it begins in a simulated world of the event engine, then it emerges into the “real

world” of Java threads by attaching itself to one of them. It then crosses into the Wonderland

of simulation again. This transition between the real and non-real worlds can occur many

times until the thread eventually terminates.

In a typical computing environment, an application performs some useful work for a user.

To do so, the application must request services from the operating system, such as memory

allocation, the use of the CPU, management of files, etc. The user sees the results of the

work performed by the application, but the services requested from the operating system are

normally hidden from the user.

In OSP 2 you have to take the opposite view: your concern is the operating system itself,

and the user applications are faceless programs that you know nothing about. The only time

you become aware of these programs is when they request services from you: the operating

system. The aim of each of student project is to implement a group of services that might

be requested by a typical application. When a simulated OSP thread requests a service from

the OS, it suddenly becomes “real”: a call is made to one of the methods in your project

and the simulated computation becomes live computation of one of the methods that you

implemented.

OSP 2 has a modular, object-oriented design with clear interfaces. Every student project

implements a well-defined service, such as memory or thread management. The implementa-

tion of the classes needed to complete each project are under the student’s control. For each

class, the student is required to implement certain methods and in doing so can augment

the class with any number of auxiliary methods or variables. The student is also provided

with a set of methods to operate on the “built-in” data structures of the class (which are

represented as private fields in the IFL layer). In some cases, it becomes necessary to obtain

services from other parts of the system, which is also done through the published interfaces.

It is important to keep in mind that if you are assigned, say, the memory-management

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

28 CHAPTER 1. ORGANIZATION OF OSP 2

project, Memory, then you are responsible for implementing all the necessary functionality

as defined by the project description. OSP 2 will not attempt to provide any memory-related

service, leaving everything to you. However, like a Big Brother, it is watching and is very

keen on reporting errors.

When implementing a project, only the interfaces described in that project’s description

can be used. Method calls and classes that you might find in the description of other projects

will not work and are likely to result in a compilation error. This is the result of the method-

name obfuscation mentioned in Section 1.8.4, which is performed to prevent corruption of

the internal system state.

1.8.2 Convention for Calling Student Methods

One of the most important tasks of the OSP 2 simulator is to verify the actions performed

by student code for semantic correctness and to provide meaningful error messages and

warnings. This error checking is performed by the interface layer of OSP 2 (or IFL). The

IFL contains wrapper methods that validate the state of the system before and after student

code is executed. Because of these wrappers, a special convention for naming and invoking

methods must be followed when implementing an OSP 2 project. To make the discussion

concrete, consider the Threads package, which is responsible for thread-management tasks

such as thread creation. There is both a Java class for threads in the IFL, called IflThreadCB

(the CB stands for “control block”), and a Java class for threads in the student package,

simply named ThreadCB (i.e. without the Ifl prefix). Moreover, ThreadCB is a subclass

of IflThreadCB and both of these classes implement methods for thread creation (among

others), with the IFL method serving as a protective “wrapper” for the student-layer method.

To distinguish these thread-creation methods, the one defined in the superclass is simply

called create(), while the one in the subclass is called do create(), i.e. the corresponding

method name in the student package is prepended with the prefix do_. In general, we have

the following naming convention.

Methods in the OSP 2 API that are to be implemented by the student have the

naming schema do_name, where name is the name of the wrapper in the IFL.

There is an exception to this rule, namely the methods atError() and atWarning(), which

are introduced below.

This convention has several ramifications that the student must be aware of when im-

plementing a project, which are best understood by considering the flow of execution in

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.8. GENERAL RULES OF ENGAGEMENT 29

Figure 1.5: Execution flow for handling an event.

OSP 2 when an event is generated by the event engine and subsequently “handled” by the

appropriate classes in the IFL layer and student package. Five main points of control can

be identified within this execution flow; see also Figure 1.5.

1. The event engine selects the event at the head of the “event queue” for execution.

The event is actually a call to one of the student methods although control must go

through the IFL. Assume, for the sake of discussion, that the selected event is a call

to the create() thread method. In this case, the event engine calls create() in the

IFL.

2. The IFL performs some bookkeeping for the purpose of detecting possible errors in,

and for monitoring the performance of, the student’s implementation of create() and

then calls do create() in the student layer.

3. The student implementation of do create() performs the requested action.

4. Control returns to create(), which verifies that the actions taken by the student code

were correct. If the student code executed incorrectly, an error message is written to

the simulation log and simulation halts.

5. Assuming the student code executed correctly, simulation proceeds to the next sched-

uled event on the event queue.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

30 CHAPTER 1. ORGANIZATION OF OSP 2

Students should therefore adhere to the following additional naming convention:

When calling a method named name in this or another package, call the method

name, i.e. without the “do ” prefix.

In contrast, as noted above, when implementing a method named name, students will actually

implement the method do_name.

Note also that the student implementation should never directly refer to the classes defined

in the IFL layer. For instance, even though the method dispatch() is defined in the class

IflThreadCB, it is inherited by ThreadCB and it should be called as ThreadCB.dispatch()

rather than IflThreadCB.dispatch().

1.8.3 Static vs. Instance Methods

When you receive a project assignment that contains the templates of the methods to be

implemented, you will notice that some methods are static (i.e., they apply to class-objects)

and some methods (those that do not have the static keyword attached) work on instance

objects.

This division of the project methods into static and instance methods comes from the

differences in their function. For example, the method do dispatch() is static in class

ThreadCB, because it makes no sense to call it on any particular thread: the thread to be

dispatched is not known at the time of the call and, in fact, it is the job of the do dispatch()

method to find such a thread and give it control of the CPU, as described in Chapter 3.

On the other hand, methods do resume() and do suspend() in ThreadCB are not static:

they are called on specific thread objects, because the job of these methods is to resume or

suspend the threads on which the methods are called. As usual in Java, the context object

of a non-static method is accessible through the variable this.

Therefore, when reading the description of each method in the project, it is important

to be aware of whether this method is static or an instance method.

1.8.4 Obfuscation of Method and Class Names

Chapters 2 through 7 describe the classes and methods that comprise the various student

projects. For each project, the student implementation may require services implemented

in other parts of OSP 2 and must call the appropriate methods to obtain these services.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.8. GENERAL RULES OF ENGAGEMENT 31

Methods needed for one project, however, are not necessarily needed for another. In some

cases, incorrect use of methods that belong to other packages might even corrupt the internal

state of the system.

To prevent the student implementation from incorrectly using public methods that are not

required for the given project, the names of these methods are changed in that project by a

special “obfuscater” program. For example, the method isFree() of class FrameTableEntry

is available in project Memory, but it is obfuscated away and will cause a compilation error

if it is used by methods in project Threads.

1.8.5 Possible Hanging After Errors

When OSP 2 detects an error in a student program, it prints information about the error

and then tries to terminate. Graceful termination, however, is not always possible because

OSP 2 is a multi-threaded application and termination of some of the active threads might

depend on student code (whose behavior cannot be predicted). It is therefore possible that,

after printing an error message, OSP 2 may hang; in this case the system must be terminated

by the user.

1.8.6 General Advice: How to Figure it Out

When you begin an OSP 2 project, it is important to understand the specifications of the

various student projects contained in the following chapters, and how your implementation

fits into the big picture. Perhaps, it is best to state what this manual is not :

1. It is not intended to replace the textbook.

2. It is not intended to teach you the basic concepts in operating systems.

3. It is not intended to guide you every step of the way to the completion of your project.

Instead, the description of a student project provides a complete description of the API that

you can use to implement the project and a description of the functionality of each method in

the project. The manual does not explain how to put the pieces of the puzzle together—this

is for you to figure out based on your understanding of the subject.

The best advice is: think logically. In these projects you are implementing parts of

an operating system, which is probably very different from the kind of programming you

have done in the past. If you are in doubt about whether or not it is appropriate for your

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

32 CHAPTER 1. ORGANIZATION OF OSP 2

implementation to take a certain action, consider whether you would like it if the OS on your

desktop behaved this way. For example, suppose you are implementing a thread scheduler

and at certain point in the program you have to deal with the situation where no threads are

left to schedule. Should you leave the CPU idle or create and run a dummy thread, thereby

wasting computing resources? The answer should become obvious if you just ask yourself

the simple question: “Would I want my home computer to behave this way?”

1.9 System Log, Snapshots, and Statistics

During a run, OSP 2 prints messages in the system log. Each message describes a specific

event that occurred during execution. Messages that come from the simulator are pre-

fixed with Sim:; those that come from student packages other than the project-assignment

module(s) are prefixed with Mod:; and those that come from the project you are currently

implementing are prefixed with My:.

Periodically OSP 2 dumps snapshots of the system state into the log file. These snap-

shots are primarily intended for performance checking and debugging. A snapshot contains

a complete dump of main memory, the status of all page tables, the status of all threads,

including the queues they are in, and the status of all communication ports.

In addition, the snapshot provides statistics such as CPU utilization, average service

time (also known as average turnaround time) of an I/O request and a thread, the aver-

age number of tracks swept on each device per I/O request, and the average normalized

service time. The last of these describes the average relative delay suffered by each thread,

and is determined by the following formula:

Σi
CPU time used(threadi)
turnaround time(threadi)

total number of threads

where the sum is over all threads (dead or alive). This is a better measure of performance

than the average turnaround time, and this statistic should be kept as high as possible (but,

of course, it cannot exceed 1).

It should be noted that some entries in the system log can have fairly long lines, so to view

the log it may be necessary to use a viewer with horizontal scroll capability. For example, if

you are running OSP 2 with a parameter file that specifies long page tables (say, more than

64 pages), then you can expect to need to use a scrollable viewer. Most text editors provide

this capability.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.10. DEBUGGING 33

1.10 Debugging

There is no special-purpose debugger for OSP 2 , but there are a few things that can help.

Generally, errors in student code can be divided in two categories:

1. Errors that cause Java exceptions.

2. Semantic errors, such as an incorrect action taken in response to a simulator re-

quest. Examples include the failure to maintain the correct status of a thread (e.g.,

ThreadWaiting instead of ThreadRunning) or replacing a dirty page without first

swapping it out to the swap device.

Errors of the first kind are much easier to fix since they can be identified with the help

of a Java debugger, such as jdb. For example, a Java debugger can be used to determine

where the exception NullPointerException has occurred. In all likelihood, Java exceptions

are due to errors in student code. If an exception takes place in OSP 2 code, it does not

necessarily mean that the student code is correct; rather, it likely means that OSP 2 has

failed to catch the problem early enough to generate a meaningful error message to guide

you to the real problem.

Apart from tracking down exceptions, Java debuggers are not very useful for debugging

OSP 2 projects, especially for finding semantic mistakes in student code. This is because

such an error might be detected by OSP 2 thousands of instructions after the erroneous

action was performed by the student program and using the debugger trace facility to track

down the source of the error might wear you down before the first signs of a problem begin to

show up. Therefore, the following procedure is recommended for finding and fixing semantic

problems.

System log. When OSP 2 detects a semantic error, it tries to come up with as clear an

explanation as possible. When an error or a warning is issued, the log file (OSP.log, unless

specified differently in the configuration file) will contain a message of the form <<Error>>,

<<Assertion>>, or <<Warning>>, which are easy to find with an editor. When OSP 2 termi-

nates, it tells you if one of these conditions was encountered or if it terminated successfully.

In case of a problem, the best way to understand what might have happened is to trace

back the messages in the system log. For instance, if an error message says that you are

trying to dispatch a thread that is waiting on some event that has not occurred yet, you

should trace back and see when the thread was suspended on that event and what was the

sequence of events that happened since. You might discover, for example, that your program

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

34 CHAPTER 1. ORGANIZATION OF OSP 2

is placing threads on the ready queue that, in reality, are not ready to execute. Likewise, if

OSP 2 complains that there is a discrepancy between what it perceives to be the dirty/clean

status of a page and the value of the dirty bit set for this page by the student program,

tracing the system log might reveal that, say, this page has just been swapped in but your

program did not reset the dirty bit to false.

OSP 2 generates a log by default, unless tracing is turned off. However, the log messages

thus generated are typically not sufficient by themselves to debug errors in your code. This is

because OSP 2 cannot know what is actually happening inside student code and it is therefore

necessary to put the execution of your program in the context of the overall execution of

OSP 2 . This can be achieved with the help of the methods in the class MyOut, which were

discussed earlier. Moreover, it is useful to keep in mind that the toString() method of all

major classes in OSP 2 is set up in a printer-friendly manner. For example, executing

MyOut.print(this, "The " + thread + " is suspended on " + event)

where thread is an object of class ThreadCB and event is an object of class Event will

produce output that looks like this:

My: 2534.5533 [Threads.ThreadCB] The Thread(15:32/RU) is suspended on Event(3)

Thus, no special care is needed to produce a readable representation of OSP 2 objects. The

header of the OSP 2 system log provides a brief explanation of the printable representation of

various objects. For instance, in the above representation for a thread, Thread(15:32/RU),

the first number (15) is the thread id, the second (32) is the Id of the task the thread belongs

to, and RU is the code that represents the current status of the thread (ThreadRunning in

this case).

Error and warning hooks. In addition to MyOut, the main class of every student project

has the following pair of methods:

• public static void atError()

• public static void atWarning()

The first method is called when an error or a condition violation is detected by OSP 2 ,

and the second is called right after OSP 2 issues a warning message. Normally, the bodies

of these methods are empty, and this is how you should leave them when you submit your

program. However, during debugging you can put arbitrary code there. Most useful would be

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.10. DEBUGGING 35

code that prints the status of the relevant variables in your program. Note that whenever a

condition violation, error, or warning occurs, OSP 2 prints the full stack trace that indicates

the sequence of method calls that led to the problem.

System snapshot. OSP 2 also produces a system snapshot when a condition violation

or error occurs. The snapshot conveys the status of memory allocation, the status of each

task and thread in the system, etc. This information can be compared with the status of the

system per your implementation and the system log can be consulted to determine where

the discrepancy arises. When OSP 2 prints out a warning, no snapshot is added to the

log by default. This is because warnings tend to come in large numbers and this can lead

to an unmanageably large number of snapshots in the log. However, you can include the

snapshot() method of class MyOut in the body of the atWarning() method of the main

class of your project and produce a snapshot in this way. (It is recommended to print a

snapshot only on the first warning, since subsequent snapshots are not likely to shed any

more light on the problem.)

Execution stack trace. Another important resource for debugging OSP 2 projects is the

execution stack trace provided by the Java virtual machine when a Java exception occurs.

Here is an example of such a trace:

java.lang.NullPointerException

at osp.Threads.ThreadCB.do_kill(ThreadCB.java:195)

at osp.IFLModules.IflThreadCB.kill(IflThreadCB.java:634)

at osp.IFLModules.IflThreadCB.killOldThreads(IflThreadCB.java, Compiled Code)

at osp.IFLModules.CallbackThreadKill.voidCallback(IflThreadCB.java, Compiled Code)

at osp.EventEngine.EventCallback.Activate(EventCallback.java, Compiled Code)

at osp.EventEngine.EventEngObj.ActivateChildren(EventEngObj.java, Compiled Code)

at osp.EventEngine.EventEngObj.Activate(EventEngObj.java, Compiled Code)

at osp.EventEngine.EventDriver.go(EventDriver.java:114)

at osp.EventEngine.EngineThread.run(EngineThread.java:61)

The trace says that a NullPointerException has occurred in method do kill() of class

ThreadCB at source code line 195. Going down the trace, we can see the sequence of method

calls that led to the error: do kill() was called by kill() of IflThreadCB, etc. The most

important information here is the line number where the error occurred.3

OSP 2 prints a similar trace in the system log when an error or a warning is issued. For

instance,

3 Line-number information is not always provided, unless you run the system using the debugger.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

36 CHAPTER 1. ORGANIZATION OF OSP 2

Sys: 36360 <<Warning!>> [Threads.ThreadCB]

After do_kill(Thread(36:1/KL)): CPU is idle, but there are ready threads

ready queue = (89:3,115:2,130:2,141:3,142:5)

at osp.IFLModules.IflThreadCB.idleCPUwarning(IflThreadCB.java, Compiled Code)

at osp.IFLModules.IflThreadCB.kill(IflThreadCB.java, Compiled Code)

at osp.Tasks.TaskCB.do_kill(TaskCB.java, Compiled Code)

at osp.IFLModules.IflTaskCB.kill(IflTaskCB.java, Compiled Code)

at osp.IFLModules.IflTaskCB.killOldTasks(IflTaskCB.java, Compiled Code)

at osp.IFLModules.CallbackTaskKill.voidCallback(IflTaskCB.java, Compiled Code)

at osp.EventEngine.EventCallback.Activate(EventCallback.java, Compiled Code)

at osp.EventEngine.EventEngObj.ActivateChildren(EventEngObj.java, Compiled Code)

at osp.EventEngine.EventEngObj.Activate(EventEngObj.java, Compiled Code)

at osp.EventEngine.EventDriver.go(EventDriver.java:114)

at osp.EventEngine.EngineThread.run(EngineThread.java:61)

The trace appears after the warning message. In this case, we must look deeper in the

trace to find out what happened. The top line of the trace says that the warning was

issued by method idleCPUwarning() of class IflThreadCB, which was called by kill(),

the system wrapper for the do kill() method, which is part of a student project (refer

back to Section 1.8.2 for the information about the naming conventions for methods that

are implemented as part of student projects). The trace further says that the method

IflThreadCB.kill() was in turn called by the method do kill() of class TaskCB, which

was called by IflTaskCB.kill(). It takes a little bit of analysis and understanding of the

functionality of the different system calls to realize what happened: The task Task(1/L)

has been destroyed by the system call TaskCB.kill(), which caused the destruction of all

the threads that belong to that task. In particular, just after thread Thread(36:1/KL) was

killed, the system detected that the CPU was idle even though some ready-to-run threads

were present in the system. Thus, the cause of the warning is most probably the failure of

the student implementation to call the dispatch() method at the end of do kill().

Unfortunately, the obfuscation that OSP 2 employs to prevent inappropriate calls to

certain methods diminishes the value of execution stack traces, because the names of some

method calls listed in a trace might be unintelligible. However, even with name obfuscation,

the trace often contains enough information to be useful.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

1.11. PROJECT SUBMISSION 37

1.11 Project Submission

The manner by which you submit your OSP 2 projects is determined by the instructor.

The following instructions apply if your instructor chooses to use the automatic project

submission system of OSP 2 .

First, you will have to supply your email address to the instructor, who will prepare an

account for you. The email address identifies you to the system. You must use the same

address in all your interactions with the submission system.

The submission system provides three functions, which are available as links from the

project submission page. The URL of this page will be supplied to you by your instructor.

The functions are as follows:

1. Change of password.

Clicking on this link will let you change your password. Your initial password will be

mailed to you when the instructor sets up your account.

After you change your password and then try to submit a project, you might see the

“authorization has failed” dialog box. This happens when the browser tries to use your

old password. It is not a problem, however, because clicking “OK” in the dialog box

lets you reenter the correct password.

2. Password reminder.

If you forget your password or if you did not receive the initial password for some

reason, you should click on this link. First, you will get email with a link to a servlet.

Clicking on this link will have the following effect:

• Your password will be changed to some random string.

• You will get your new password by email.

If the new password is hard to remember, you can use the “Change of password”

function to change your password.

If you do not click on the aforesaid servlet link, your password will not be changed. It

should be noted that the password-reminder function can be used only within intervals

of at least four hours.

3. Project submission.

When you are ready to submit your project assignment, click on the “Submit assign-

ment” link on the project submission page. After authentication, you will be presented

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

38 CHAPTER 1. ORGANIZATION OF OSP 2

with a form where you are required to enter the project name and the *.java files that

comprise your program. The system then copies the sources over to the server and com-

piles them. If successful, the sources stay on the server (so that they can be checked

by the instructor and his or her TAs) and the compiled class files are sent back to your

browser as an applet. Next, you will have to run this applet (by clicking on appropri-

ate buttons). If you are happy with the results, click on the submission button. The

simulation run will then be sent to the server (again, so that the instructor can check

it for errors).

Note that some browsers do not give a warning when a non-existing file is being sent to

the server. In some cases (e.g. when the file is actually a directory name) the browser

might even hang. Therefore, it is important to make sure that you send correct the

*.java files to the server.

You should keep in mind that the instructor might set up the submission process in

such a way that your project would have to be run with several parameter files. When

the first run is finished, you should press the Submit button and then the Next button.

If there are more parameter files to be considered, a new applet will start. When this is

finished, submit the output and hit Next again. When your project has been run with

all the parameter files, you will receive a confirmation and the main project-submission

page will be displayed.

Finally, we should note that some browsers might issue a security exception when you

try to run the submission applet. You will see this exception in the Java console of

the browser (we recommend that you always run the submission applet with the Java

console open). If this happens, you should place the file .java.policy in your home

directory. This file should contain the entry

grant {

permission java.security.AllPermission;

};

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

Chapter 2

Tasks: Management of Tasks (a.k.a.

Processes)

The goal of this project is to implement a singe class, TaskCB, which is described below.

TaskCB stands for Task Control Block, the OSP 2 object used to represent tasks. Like other

modern operating systems, OSP 2 distinguishes between program execution and resource

ownership. The former is captured through the concept of a thread, which represents a

running program, and the latter is captured using the concept of a task. In older operating

systems, like traditional Unix, the process filled both of these roles; actually, we sometimes

use the term “process” as a synonym for task. In OSP 2 , a task serves as a “container” for one

or more threads, all executing the same code and sharing the same memory address space.

Also associated with a task is a swap file containing an image of the task’s address space,

other files opened by the task’s constituent threads, and the communication ports created

by these threads. We say that these resources (memory, ports, files, etc.) are owned by the

task and shared by the task’s threads; this explains how the issue of resource ownership is

organized around the concept of a task.

Threads are the scheduable and dispatchable units of execution in OSP 2 . They are

sometimes referred to as “lightweight processes” for it is much easier in a multiprogram-

ming OS to switch the CPU from one thread to another than from one process to another,

due to above-explained separation of program execution and resource ownership in an OS

supporting the task/thread doctrine. We will have more to say about threads in the next

chapter.

A task can be created or destroyed, newly created threads can be added to a task, and

threads are deleted from the owner task’s thread list after they are destroyed. There is also a

system-wide notion of the current task, which is the task that owns the currently running

39

40 CHAPTER 2. TASKS: MANAGEMENT OF TASKS (A.K.A. PROCESSES)

thread. This thread is known as the current thread of the task.

2.1 Class TaskCB

Tasks are represented by the class TaskCB, which is the only class to be implemented in the

Tasks project. It is defined as follows:

• public class TaskCB extends IflTaskCB

The following methods are to be implemented as part of this project:

• public static void init()

This method is called at the very beginning of simulation and can be used to initialize

static variables of the class, if necessary.

• public static TaskCB do create()

This method creates a new task object and then initializes it properly.

In OSP 2 , creation of a task involves the creation of a task object, allocation of

resources to the task, and various initializations. The task object is created us-

ing the default task constructor TaskCB(). First, a page table must be created us-

ing the PageTable() constructor, and associated with the task using the method

setPageTable(). Second, a task must keep track of its threads (objects of type

ThreadCB), communication ports (objects of type PortCB), and files (objects of type

OpenFile), which means that the appropriate structures have to be created. OSP 2

does not have any specific requirements for these data structures, except that they

must correctly maintain the inventory of threads, ports, and files attached to the task.

Lists or variable-size arrays are good candidates.

Next, the task-creation time should be set equal to the current simulation time (avail-

able through the class HClock), the status should be set to TaskLive, and the task

priority should be set to some integer value. OSP 2 does not prescribe what this value

should be; it is determined by the requirements of the project and might be specified by

the instructor (if, for example, the scheduling strategy implemented in the Threads

project uses task priorities).

The next important step is the creation of the swap file for the task. A swap file contains

the image of the task’s virtual memory space and thus is equal to the maximal number

of bytes in the virtual address space of the task. In OSP 2 this number is determined by

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

2.1. CLASS TASKCB 41

the number of bits needed to specify an address in the virtual address space of a task,

and is obtained using the following method: MMU.getVirtualAddressBits(). The

name of the swap file is, by convention, the same as the task ID number, and the file

itself resides in the directory specified by the global constant SwapDeviceMountPoint.

To create the swap file, you should use the static method create() of class FileSys.

Then the file has to be opened using the static method open() of OpenFile. The

open() method takes a string that represents a full path name of a file and returns

a run-time file handle that is used in the read, write, and close file operations. The

resulting open-file handle should be saved in the task data structure using the method

setSwapFile().

An open() operation can fail due to lack of space on the swap device. In this case the

do create() method of TaskCB should dispatch a new thread and return null.

A task in OSP 2 must have at least one live thread, so you need to create the first thread

for the task using the static method create() of class ThreadCB. Finally, the TaskCB

object created and initialized by your do create() method should be returned.1

• public void do kill()

This method is called to destroy a task. First, it should iterate through the list of

all live threads of the task and kill() them. (Recall that maintenance of this list

is entirely the responsibility of your implementation.) Each time a thread is killed,

the do removeThread() method is called by the Threads package. The do kill()

method should then iterate over the ports attached to the task and destroy() them as

well. Each request to destroy a port will eventually result in a call to your do removePort()

method. The status of the task should be set to TaskTerm (terminated task) and the

memory previously allocated to the task should be released. The latter is accomplished

by invoking the method deallocateMemory() of class PageTable on the page table of

the task.

The last resource left to be released by the task is the set of files opened by the various

threads of the task and the swap file of the task. The open files table of a task

is a data structure that should be maintained as part of the implementation of class

TaskCB and should include all files opened by the threads of the task (which are objects

of class OpenFile); OSP 2 does not prescribe how this should be done. To free up this

resource, you must close() every file in the open files table.

1 There is no need to invoke the dispatch() method of ThreadCB in order to schedule a thread to run
after the do create() system call is complete. Since a new thread is created as part of the process of task
creation, dispatch() will be called by the create() method of ThreadCB. However, calling dispatch()

before leaving do create() is harmless.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

42 CHAPTER 2. TASKS: MANAGEMENT OF TASKS (A.K.A. PROCESSES)

You should keep in mind that each call to close() eventually results in a call to your

method do removeFile(). However, this might not happen immediately. When you

close a file that is the target of an active I/O operation, i.e., an operation that is

currently being processed by an external device such as a disk, the file is not closed

immediately. Rather, the system will remember that the file needs to be closed and

will re-issue the close() command when the I/O operation completes. Because of this

possible delay, some files of the task can remain open for a period of time even after

you perform the close() operation on every open file. This means, of course, that

calls to your method do removeFile() might be similarly delayed.

Finally, the swap file of the task must be destroyed using method delete() of FileSys.2

The argument to this method is the name of the swap file (see the discussion of

do create()).

• public int do getThreadCount()

This method must return a correct thread count, which must be maintained as part of

the implementation of the do create() and do kill() methods.

• public int do addThread(ThreadCB thread)

This method is called by other parts of OSP 2 whenever a new thread is created. The

purpose of these calls is to notify TaskCB of the creation of a new thread so that the

inventory of threads owned by the task can be properly updated. SUCCESS is to be

returned unless the maximum number of threads for this task has been reached, in

which case, FAILURE should be returned.

• public int do removeThread(ThreadCB thread)

This method is called when a thread is destroyed. The thread should be removed from

the list of threads owned by the task. SUCCESS should be returned if the thread belongs

to the task and FAILURE otherwise.

• public int do getPortCount()

Returns the number of ports owned by the task.

• public int do addPort(PortCB newPort)

This method is called when a new communication port is created by one of the task’s

constituent threads. It enables TaskCB to maintain the inventory of ports that belong

2 Closing a file does not deallocate the space; it merely removes the file handle and flushes the data on
disk. Deleting a file removes a hard link to the file, and when the number of such links becomes zero, the
file space is freed.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

2.1. CLASS TASKCB 43

to the task. If the maximum number of ports for this task has been reached, FAILURE

should be returned. Otherwise, SUCCESS is returned.

• public int do removePort(PortCB oldPort)

This method is called when one of the task’s communication ports is destroyed. The

method should remove the port from the list of ports maintained by TaskCB. SUCCESS

is to be returned if the port belongs to the task; FAILURE otherwise.

• public void do addFile(OpenFile file)

Adds file to the table of open files of the task. The implementation of the table is

entirely up to the student. This method is typically called by the method open() of

class OpenFile (indirectly, through the wrapper addFile()).

• public int do removeFile(OpenFile file)

Removes file from the table of open files of the task. This method is typically called

by the method close() of class OpenFile. It returns SUCCESS if the file belongs to

the task; FAILURE otherwise.

Relevant methods and fields defined in other packages. The following public meth-

ods and fields of other classes are useful for implementing the methods of the Tasks project.

• public final static float get() HClock

Returns the current simulation time.

• static public int MaxThreadsPerTask ThreadCB

Maximum allowed number of threads per task.

• final static public void dispatch() ThreadCB

Dispatches a new thread.

• public static int MaxPortsPerTask PortCB

Maximum allowed number of ports per task.

• final public int destroy() PortCB

Destroys the port on which it is called.

• static public int getVirtualAddressBits() MMU

Returns the number of bits needed to specify a virtual address.

Can be used to determine the size of the swap file.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

44 CHAPTER 2. TASKS: MANAGEMENT OF TASKS (A.K.A. PROCESSES)

• final public PageTable getPageTable() TaskCB

Returns the page table of the task.

• final public void deallocateMemory() PageTable

Deallocates (frees) the memory used by the task. Called when

a task is terminated. Is invoked on the task’s page table.

• public PageTable(TaskCB ownerTask) PageTable

Page table constructor (should be used with the new operator).

Used to create a page table object for a newly created task.

This object must then be associated with the task using the

setPageTable() method.

• public final static String SwapDeviceMountPoint GlobalVariables

The mount point for the swap device in the file system. It is the

name of the directory where all swap files live, and is terminated

with a slash or a backslash. The name of the task’s swap file is

SwapDeviceMountPoint concatenated with the task ID.

• final public static int create(String name, int size) FileSys

Here name is the full path name of the file and size is the de-

sired initial size in bytes. The size of a file is assumed to al-

ways be a multiple of the disk block size (which is identical

to the virtual memory page/frame size). This method returns

SUCCESS if the file is successfully created and FAILURE otherwise.

A create() operation can fail if, for example, the device does

not have enough space.

• final public static void delete(String name) FileSys

Deletes the file. (See the description of class FileSys for more

details about this method.)

• final public static OpenFile open(String name,TaskCB task) OpenFile

Opens the file name and returns a file handle for use at run time

to read and write the file.

• final public int close() OpenFile

When invoked on an open file handle, closes the file. Returns

SUCCESS if the file is successfully closed and FAILURE otherwise.

A close() operation might fail, for example, if the file has out-

standing I/O operations.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

2.1. CLASS TASKCB 45

• final static public ThreadCB create(TaskCB task) ThreadCB

Creates an active thread for the task supplied as an argument.

Returns the created thread.

• final public void kill() ThreadCB

Destroys the thread. Notice that this method calls your im-

plementation of do removeThread() to disassociate the thread

from the task.

Summary of Class TaskCB

The following table summarizes the attributes of class TaskCB and the methods for manip-

ulating them. These attributes and methods are provided by the class IflTaskCB and are

inherited. The methods appearing in the table are more fully described in Section 2.2.

Identity: The identity of a task is set by the system, but it can be queried with the method

getID().

Page table: The page table of a task is set with the method setPageTable() and can be

retrieved using getPageTable().

Status: The status of a task is handled using the methods setStatus() and getStatus().

Priority: The status of a task is handled using the methods setPriority() and getPriority().

Current thread: Indicates which thread of a task is currently running. The methods to

handle this attribute are getCurrentThread() and setCurrentThread().

Creation time: The creation time of a task is handled using the methods getCreationTime()

and setCreationTime().

Swap file: A task’s swap file is set and retrieved using the methods getSwapFile() and

setSwapFile().

Table of open files: Keeps track of all of the open files of a task, which are instances of

class OpenFile. OSP 2 does not impose any requirements to how this table is to be

maintained as long as it properly keeps inventory of a task’s open files. Two methods

are used in conjunction with this table: addFile() and removeFile(). Calls to these

methods made by other packages are intended to notify a task as to which files it owns.

In addition, when a task is destroyed, all its files must be closed. This is performed as

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

46 CHAPTER 2. TASKS: MANAGEMENT OF TASKS (A.K.A. PROCESSES)

part of the do kill() method, which must iterate through this table and close all the

files in it. The do -versions of the addFile() and removeFile() methods are part of

the Tasks project.

Table of ports: Keeps tract of all of the communication ports owned by a task. OSP 2

does not define a specific variable by which to refer to this table, and the internal

data structure used to implement it is entirely up to the student. However, the follow-

ing methods are defined to manipulate this table: getPortCount(), addPort(), and

removePort(). The first indicates how many open ports the task has; the second is

used to attach a new port to the task; and the last is used to remove destroyed ports.

The do -versions of these methods are part of the Tasks project.

Table of live threads: Like with ports, OSP 2 does not prescribe how this table is to be

implemented. However, the following methods are defined to manipulate this table:

getThreadCount(), addThread(), and removeThread() . The first method counts the

number of live threads owned by the task, the second adds newly created threads to

tasks, and the third method removes killed threads. The do -versions of these methods

are implemented by the student.

2.2 Methods Exported by the Tasks Package

The following is a summary of the public methods defined in the classes of the Tasks package

or in its superclasses. These methods can be used in the implementation of this or other

student packages. To the right of each method we list the class of the objects to which

the method applies. In the case of the Tasks package, all exported methods belong to a

single class, TaskCB, which inherits them from the superclass IflTaskCB. In general, the

public methods exported by a student package may belong to more than one class; see, for

example, package Memory (Section 4.7).

• final public void setPageTable(PageTable table) TaskCB

Sets the page table of the task.

• final public PageTable getPageTable() TaskCB

Returns the page table of the task.

• final public int getStatus() TaskCB

Returns the status of the task. Allowed values are TaskLive,

for live tasks, and TaskTerm, for terminated tasks.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

2.2. METHODS EXPORTED BY THE TASKS PACKAGE 47

• final public void setStatus(int s) TaskCB

Sets the status of the task.

• final public int getPriority() TaskCB

Returns the priority of the task.

• final public void setPriority(int p) TaskCB

Sets the priority of the task.

• public ThreadCB getCurrentThread() TaskCB

Returns the current thread of the task. The current thread is

the thread that will run when the task is made current by the

dispatcher.

• public void setCurrentThread(ThreadCB t) TaskCB

Sets the current thread of the task.

• final public int getID() TaskCB

Returns the ID of the task.

• final public double getCreationTime() TaskCB

Returns the task creation time.

• final public void setCreationTime(double time) TaskCB

Sets the task creation time to time.

• public final OpenFile getSwapFile() TaskCB

Returns the swap file of the task.

• public final void setSwapFile(OpenFile file) TaskCB

Sets the swap file of task to file.

• final public int addThread(ThreadCB thread) TaskCB

Adds the specified thread to the list of threads of the given task.

• final public int removeThread(ThreadCB thread) TaskCB

Removes the specified thread from the list of threads of the given task.

• final public int getThreadCount() TaskCB

Returns the number of threads in the task.

• public final void addFile(OpenFile file) TaskCB

Adds file to the table of open files of the task. The implemen-

tation of the table is entirely up to the student.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

48 CHAPTER 2. TASKS: MANAGEMENT OF TASKS (A.K.A. PROCESSES)

• public final void removeFile(OpenFile file) TaskCB

Removes file from the table of open files of the task.

• final public int addPort(PortCB newPort) TaskCB

Adds newPort to the list of ports associated with the task.

• final public int removePort(PortCB oldPort) TaskCB

Removes oldPort from the list of ports owned by the task.

• final public int getPortCount() TaskCB

Returns the number of ports owned by the task.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

Chapter 3

Threads: Management and

Scheduling of Threads

This chapter describes the OSP 2 project dealing with threads. Threads are the schedu-

lable and dispatchable units of execution in OSP 2 . The Threads project consists of the

implementation of two public classes: ThreadCB and TimerInterruptHandler. The former

implements the most common operations on a thread, while the latter is a timer inter-

rupt handler that can be used to implement time-quantum-based scheduling algorithms for

threads. We begin this chapter with an overview of thread basics.

3.1 Overview of Threads

Multithreading refers to the ability of an OS to support multiple threads of execution within

a single task. There are at least four reason why it is desirable to structure applications as

multithreaded ones [1]:

Parallel Processing: A multithreaded application can process one batch of data while

another is being input from a device. On a multiprocessor architecture, threads may

be able to execute in parallel, leading to more work getting done in less time.

Program Structuring: Threads represent a modular means of structuring an application

that needs to perform multiple, independent activities.

Foreground vs. Background Activity: In an interactive application, one thread can be

used to carry out the current command while, at the same time, another thread prompts

49

50 CHAPTER 3. THREADS: MANAGEMENT AND SCHEDULING OF THREADS

the user for the next command. This pipelining affect can lead to a perceived increase

in the speed of the application.

Asynchronous Activity: A thread can be created whose sole job is to schedule itself to

perform periodic backups in support of the main thread of control in a given applica-

tion.

We thus see that there is considerable incentive from an application programming perspective

for an OS to support multithreading.

Threads as Independent Entities. As explained in Chapter 2, the resources available

to a thread, such as memory, open files and communication ports, are those belonging to the

task to which the thread is affiliated. That is, a task is a container for one or more threads

and each of these threads has shared access to the resources owned by the task. There is,

however, certain information associated with a thread that allows it to execute as a more or

less independent entity [2]:

• A thread execution state (Running, Ready, Blocked, etc.).

• A saved thread context when not running. This context includes the contents of the

machine registers when it was last running; in particular, every thread has its own,

independent program counter.

• An execution stack.

• A certain amount of per-thread static storage for local variables.

• Access to the memory and resources of its container task; it shares these resources with

the other threads in that task.

It is worth taking time to emphasize the implications of this last item. All the threads of a

given task reside in the same address space and have access to the same data. Consequently,

when one thread modifies a piece of data, the effect of this change is visible to the other

threads should they subsequently decide to read this data item. If one thread opens a file

with read access, the other threads in the same task will also be able to read from this file.

It is thus imperative that when programming a multithreaded application, the actions of the

threads be carefully coordinated; otherwise conflicts could easily arise that could hinder the

threads from performing their desired computation.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

3.1. OVERVIEW OF THREADS 51

Scheduling Algorithms for Threads. As previously noted, threads are the scheduable

units of execution in OSP 2 and any other OS that supports threads. This represents a

shift from older operating systems like traditional Unix in which processes played this role.1

Thread scheduling is an integral part of multiprogramming: when the currently executing

thread becomes blocked waiting for some event to occur, this represents a golden opportunity

for the OS to perform a context switch so that a ready-to-run thread can be given control

of the CPU. In this way, the CPU is kept busy most of the time, thereby increasing its

utilization.

So what are the kinds of events that threads may block on? These include I/O interrupts

and software signals. It should be noted, however, that an OS can decide to perform a context

switch any time it is convenient, again for the purpose of improving system performance.

Convenient in this case means any time control resides within the OS, and include occasions

such as timer interrupts and system call invocations.

The question we must now ask ourselves is which thread should the OS schedule next

when a context switch is to take place? The decision taken here is critical; it can significantly

impact a variety of performance-related measures, such as:

CPU utilization: the percentage of time the CPU is kept busy (not idle).

Throughput: the number of jobs or tasks processed per unit of time.

Response time: the amount of time needed to process an interactive command. Typically

one is interested in the average response time over all commands.

Turnaround time: The amount of time needed to process a given task. Includes actual

execution time plus time spent waiting for resources, including the CPU.

The answer to the question as to which thread to schedule next lies in the CPU schedul-

ing algorithm the OS implements. There have been a variety of scheduling algorithms

proposed in the literature and they can be classified along the following lines:

Emphasis on response time vs. CPU utilization. Algorithms of the former kind can

be thought of as user-oriented and those of the latter kind as system-oriented [2].

Preemptive vs. nonpreemptive. A preemptive algorithm may interrupt a thread and

move it to the ready-to-run queue, while in the nonpreemptive case, a thread continues

to execute until it terminates or blocks on some event. Several preemptive algorithms

preempt a thread after it has finished up its “slice” or quantum of CPU time.

1 Modern Unix implementations, like SUN’s Solaris, IBM’s AIX, and Linux, do, of course, support threads.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

52 CHAPTER 3. THREADS: MANAGEMENT AND SCHEDULING OF THREADS

Fair vs. unfair. In a fair algorithm, every thread that requires access to the CPU eventu-

ally gets time on the CPU. In the absence of fairness, starvation is possible and the

algorithm is said to be unfair in this case.

Choice of selection function. The selection function determines which thread, among

the ready-to-run threads, is selected next for execution. The choice can be base on

priority, resource requirements, or execution characteristics of the thread such as the

amount of elapsed time since the thread last got to execute on the CPU.

We now briefly describe some of the more common scheduling algorithms that have been

proposed. In describing these algorithms, we assume the existence of a ready queue where

ready-to-run threads lie in wait for the CPU.

First-Come-First-Served (FCFS) As the name indicates, threads are serviced in the

order they entered the ready queue. This is probably the simplest scheduling algorithm

that has been proposed and has the tendency to favor long, CPU-intensive threads over

short, I/O-bound threads.

Round Robin. Like FCFS but each thread gets to execute for a length of time known

as the time slice or time quantum before it is preempted and placed back on the

ready queue. Time slicing can be used to allow short-lived threads, corresponding

to interactive commands, to get through the system quickly, thereby improving the

system’s response time.

Shortest Thread Next (STN). This is a nonpreemptive policy in which the thread with

the shortest expected processing time is selected next. Like round robin, it tends to

favor I/O-bound threads. The scheduler must have an estimate of processing time to

perform the selection function.

Shortest Remaining Time (SRT). This is a preemptive version of STN in which the

thread with the shortest expected remaining processing time is selected next. SRT

tends to yield superior turnaround time performance compared to STN.

Highest Response Ratio Next (HRRN). A nonpreemptive algorithm that chooses the

thread with the highest value of the ratio of R = w+s
s

, where R is called the response

ration, w is the time spent waiting for the CPU, and s is the expected service time.

Favors short threads but also gives priority to aging threads with high values for w.

Feedback. This algorithm, sometimes referred to as “multi-level round robin” utilizes a

series of queues, each with their own time quantum. Threads enter the system at the

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

3.2. THE CLASS THREADCB 53

top-level queue. If a thread gains control of the CPU and exhausts its time quantum,

it is demoted to the next lower queue. The lowest queue implements pure round robin.

The selection function choose the thread at head of the highest non-empty queue. Thus

this algorithm penalizes long-running threads since each time they use up their time

quantum, they are demoted to the next lower queue.

3.2 The Class ThreadCB

ThreadCB stands for thread control block; it is a class that contains all the structures

necessary for maintaining the information about each particular thread. This class is defined

as follows:

• public class ThreadCB extends IflThreadCB

Like other classes that belong to student projects, this class defines methods that start

with do_ and that are wrapped with similarly named methods in class IflThreadCB. Before

discussing the required functionality of the methods in ThreadCB we need to look deeper

into the nature of OSP 2 threads.

State transitions. Thread management is concerned with two main issues: The life cycle

of a thread (i.e., creation and destruction of threads) and with maintaining thread status

and moving threads between different queues and CPU (suspension, resumption, and

dispatching). Therefore, to understand thread management in OSP 2 it is important to

understand the different states a thread can be in and how state transitions take place.

Figure 3.1 illustrates this issue.

When a thread is first created, it enters the ready state (ThreadReady), which means it

must be placed on the queue of ready-to-run threads. OSP 2 does not prescribe how this

queue is supposed to be organized and it is entirely up to the student implementation, unless

the instructor has specific requirements.

From then on, two things can happen: A ready-to-run thread can be scheduled to run

(and dispatched) and gain control of the CPU (and thus change its status to ThreadRunning)

or it can be destroyed (or killed), and change its status to ThreadKill.

A thread can be dispatched only if it has the status ThreadReady, but a live thread (i.e.,

one that has status other than ThreadKill) can be killed in any state, not only in the ready

state. One sad thing about OSP 2 threads is that they never die of natural causes: They

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

54 CHAPTER 3. THREADS: MANAGEMENT AND SCHEDULING OF THREADS

Figure 3.1: The State Transition Diagram for OSP 2 Threads

either get destroyed by somebody else or self-destroy. In other words, there is no separate

system call to terminate a thread normally and there is no special state to denote normal

thread termination.

A running thread can be preempted and placed back into the ready queue or it can

be suspended to the waiting state. The latter can happen due to a pagefault or when

the thread executes a blocking system call, such as an I/O operation or a communication

(sending or receiving a message). OSP 2 does not place any restrictions on the way the

ready queue is implemented, so you should use your own design. However, your instructor

can have specific requirements to how scheduling is to be done. In this case, some designs

might be much better than others.

An OSP 2 thread can be at several levels of waiting. When a running thread enters the

pagefault handler or when it executes a blocking system call (e.g., write()), it enters the

level 0 waiting state represented by the integer constant ThreadWaiting. Level 1 waiting

state is represented by the constant ThreadWaiting+1, etc.

A thread is not always blocked when it enters a waiting state. For instance, when a thread

causes a pagefault or executes a write() operation on a file, its waiting state signifies that in

order to continue execution of the user program the thread needs to wait until the pagefault

or the system call is finished. In other words, the thread switches hats: it leaves the user

program and becomes a system thread. A system thread might do some work needed to

process the request and then it might execute another system call. At this point, it would

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

3.2. THE CLASS THREADCB 55

enter the waiting state at level 1, which signifies that the original thread has to wait for

two system calls to complete. If the second system call is blocking (e.g., involves I/O),

the execution of the thread will block until the appropriate event happens (e.g., the I/O

completes).

To illustrate this process, consider processing of a pagefault (Chapter 4). When a page-

fault occurs, the thread enters the level 0 waiting state, executes a page replacement algo-

rithm and then makes a system call to write(). When the write() call starts execution,

the thread’s waiting level is bumped up to 1. After assembling a proper I/O request to

the swap device, the thread will suspend itself on a blocking event, to wait for the I/O.

At this point, the thread will be in state ThreadWaiting+2. When the I/O is finished, the

resume() method is executed on the thread and it drops into the level 1 waiting state.

When the write() system call is about to exit, another resume() is executed and the

thread’s wait level drops to 0 (i.e., its state becomes ThreadWaiting again). Next, while

still in the pagefault handler, the thread would execute the read() system call and go into

the waiting state at levels 1 and 2, similar to the write() call. When the read() opera-

tion is finished, the ensuing resume() operations will drop the thread to level 0 again. At

this point, the pagefault handler performs some record-keeping operations (see Chapter 4),

executes a resume() operation and exits. This causes the thread to change its status from

ThreadWaiting to ThreadReady.

In sum, an OSP 2 thread can be suspended to several levels of depth by executing a

sequence of nested suspend() operations. When all the corresponding events happen, the

resume() method is called on the thread, which decreases the wait level by 1. When all the

events on which the thread is suspended occur, the thread goes back into the ThreadReady

state.

Context switching. Passing control of the CPU from one thread to another is called

context switching. This has two distinct phases: preempting the currently running

thread and dispatching another thread. Preempting a thread involves the following steps:

1. Changing of the state of the currently running thread from ThreadRunning to whatever

is appropriate in the particular case. For instance, if a thread looses control of the CPU

because it has to wait for I/O, then its status might become ThreadWaiting. If the

thread has used up its time quantum, then the new status should become ThreadReady.

Changing the status is done using the method setStatus() described later.

This step requires knowing the currently running thread. The call MMU.getPTBR()

(described below) lets you find the page table of the currently scheduled task. The

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

56 CHAPTER 3. THREADS: MANAGEMENT AND SCHEDULING OF THREADS

task itself can be obtained by applying the method getTask() to this page table. The

currently running thread is then determined using the method getCurrentThread().

2. Setting the page table base register (PTBR) to null. PTBR is a register of the

memory management unit (a piece of hardware that controls memory access), or MMU,

which always points to the page table of the running thread. This is how MMU knows

which page table to use for address translation. In OSP 2 , PTBR can be accessed

using the static methods getPTBR() and setPTBR() of class MMU.

3. Changing the current thread of the previously running task to null. The current

thread of a task can be set using the method setCurrentThread().

When a thread, t, is selected to run, it must be given control of the CPU. This is called

dispatching a thread and involves a sequence of steps similar to the steps for preempting

threads:

1. The status of t is changed from ThreadReady to ThreadRunning.

2. PTBR is set to point to the page table of the task that owns t. The page table of a

task can be obtained via the method getPageTable(), and the PTBR is set using the

method setPTBR() of class MMU.

3. The current thread of the above task must be set to t using the method setCurrentThread().

In practice, context switch is performed as part of the dispatch() operation, and steps 2

and 3 in the first list above can be combined with steps 2 and 3 of the second list.

In the degenerate case, when the running thread, t, is suspended and no other thread

takes control of the CPU, consider it as a context switch from t to the imaginary “null

thread.” Likewise, if no process is running and the dispatcher chooses some ready-to-run

thread for execution, we can view it as a context switch from the null thread to t.

Events. Before going on you must revisit Section 1.5, which describes the Event class.

The state transition diagram shows that to a large extent thread management is driven

by two operations: suspend() and resume(). The suspend operation places a thread into

a waiting queue of the event passed as an argument (and increases the wait level) and the

resume operation decreases the wait level and, if appropriate, places it into the queue of ready

to run threads (in which all threads are in the ThreadReady state). All this is accomplished

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

3.2. THE CLASS THREADCB 57

using the Event class discussed in Section 1.5. Note that, as described earlier, a thread

can execute several suspend operations on different events, so it might find itself in different

waiting queues. The thread will be notified about the completion of these events in the order

opposite to that in which the suspend() operations were performed. After all the relevant

events have occurred, the thread is free to execute again and is placed on the ready queue.

Only the first method in class Event, addThread(), is really necessary for the Threads

project, but other methods might be useful for debugging (and, of course, they are necessary

for other OSP 2 projects).

Methods of class ThreadCB. These are the methods that have to be implemented as part

of the project. Their implementation requires support from other parts of OSP in the form

of the methods that can be called from within ThreadCB to accomplish a specific objective.

We discuss these methods as part of the required functionality and then give a summary of

these methods in a separate section.

• public static void init()

This method is called once at the beginning of the simulation. You can use it to set

up static variables that are used in your implementation, if necessary. If you find no

use for this feature, leave the body of the method empty.

• public static ThreadCB do create(TaskCB task)

The job of this method is to create a thread object using the default constructor

ThreadCB() and associate this newly created thread with a task (provided as an

argument to the do create() method). To link a thread to its task, the method

addThread() of class IflTaskCB should be used and the thread’s task must be set

using the method setTask() of IflThreadCB.

There is a global constant (in IflThreadCB), called MaxThreadsPerTask. If this num-

ber of threads per task is exceeded, no new thread should be created for that task,

and null should be returned. null should also be returned if addThread() returns

FAILURE. You can find out the number of threads a task currently has by calling the

method getThreadCount() on that task.

If priority scheduling needs to be implemented, the do create() method must cor-

rectly assign the thread’s initial priority. The actual value of the priority depends

on the particular scheduling policy used. OSP 2 provides methods for setting and

querying the priority of both tasks and threads. The methods are setPriority() and

getPriority() in classes TaskCB and ThreadCB, respectively.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

58 CHAPTER 3. THREADS: MANAGEMENT AND SCHEDULING OF THREADS

Finally, the status of the new thread should be set to ThreadReady and it should be

placed in the ready queue.

If all is well, the thread object created by this method should be returned.

It is important to keep in mind that each time control is transferred to the operating

system, it is seen as an opportunity to schedule a thread to run. Therefore, regardless

of whether the new thread was created successfully, the dispatcher must be called (or

else a warning will be issued).

• public void do kill()

This method destroys threads. To destroy a thread, its status must be set to ThreadKill

and a number of other actions must be performed depending on the current status of

the thread. (The status of a thread can be obtained via the method getStatus().)

If the thread is ready, then it must be removed from the ready queue. If a running

thread is being destroyed, then it must be removed from controlling the CPU, as

described earlier.

There is nothing special to do if the killed thread has status ThreadWaiting (at any

level). However, we are not done yet. First, the thread being destroyed might have

initiated an I/O operation and thus is suspended on the corresponding IORB. The I/O

request might have been enqueued to some device and has not been processed because

the device may be busy with other work. What should now happen to the IORB?

Should we just let the device work on a request that came from a dead thread?

The answer is that we should cancel the I/O request by removing the corresponding

IORB from its device queue. This can be done by scanning all devices in the device

table and executing the method cancelPendingIO() on each device. The device table

is an array of size Device.getTableSize() (starting with device 0), where device i

can be obtained with a call to Device.get().

When they run, threads acquire and release shared resources that are needed for their

execution. When a thread is killed, those resources must be released into the common

pool so that other threads could use them. This is done using the static method

giveupResources() of class ResourceCB, which accepts the thread be killed as a

parameter.

Two things remain to be done now. First, we must dispatch a new thread, since we

should use every interrupt or a system call as an opportunity to optimize CPU usage.

Second, since we have just killed a thread, we must check if the corresponding task still

has any threads left. A task with no threads is considered dead and must be destroyed

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

3.2. THE CLASS THREADCB 59

with the kill() method of class TaskCB. To find out the number of threads a task

has, use the method getThreadCount() of TaskCB.

• public void do suspend(Event event)

To suspend a thread, we must first figure out which state to suspend it to. As can

be seen from Figure 3.1, there are two candidates: If the thread is running, then it is

suspended to ThreadWaiting. If it is already waiting, then the status is incremented

by 1. For instance, if the current status of the thread is ThreadWaiting then it should

become ThreadWaiting+1. We now must set the new thread status using the method

setStatus() and place it on the waiting queue to the event.

If suspend() is called to suspend the running thread, then the thread must loose

control of the CPU. Switching control of the CPU can also be done in the dispatcher

(as part of the context switch), but it has to be done somewhere to avert an error.

Finally, a new thread must be dispatched using a call to dispatch().

• public void do resume()

A waiting thread can be resumed to a waiting state at a lower level (e.g., ThreadWaiting+2

to ThreadWaiting+1 to ThreadWaiting or from ThreadWaiting to the status ThreadReady).

If the thread becomes ready, it should be placed on the ready queue for future schedul-

ing. Finally, a new thread should be dispatched.

Note that there is no need to take the resumed thread out of the waiting queue to

any event. A typical sequence of actions that leads to a call to resume() is as follows:

When an event happens, the method notifyThreads() is invoked on the appropriate

Event object. This method examines the waiting queue of the event, removes the

threads blocked on this event one by one, and calls resume() on each such thread.

So, by the time do resume() is called, the corresponding thread is no longer on the

waiting queue of the event.

• public static int do dispatch()

This method is where thread scheduling takes place. Scheduling can be as simple

as plain round-robin or as complex as multi-queue scheduling with feedback. OSP 2

does not impose any restrictions on how scheduling is to be done, provided that the

following conventions are followed.

First, some thread should be chosen from the ready queue (or the currently running

thread can be allowed to continue). If a new thread is chosen, context switch must be

performed, as described earlier, and SUCCESS returned. If no ready-to-run thread can

be found, FAILURE must be returned.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

60 CHAPTER 3. THREADS: MANAGEMENT AND SCHEDULING OF THREADS

Relevant methods defined in other packages. Apart from the methods of the Event

class listed above, the following methods of other classes should or can be used to implement

the methods in class ThreadCB as described above:

• final public int getDeviceID() IORB

Returns the device Id number that this I/O request is for.

• final static public Device getDevice(int deviceID) Device

Returns the device object corresponding to the given Id number.

• final static public int getTableSize() Device

Tells how many devices there are. The number is specified in the

parameter file and can vary from one simulation run to another.

• final static public Device get(int deviceID) Device

Returns the device object with the given Id. In conjunction with

getTableSize() his method can be used in a loop to examine

each device in turn. Note that all devices are mounted by OSP 2

at the beginning of the simulation and no devices are added

or removed during a simulation run. Therefore the number of

devices remains constant and the device table has no “holes.”

• public void cancelPendingIO(ThreadCB th) Device

The context for this method is a device object, and the method

cancels pending IORBs of the thread Th on that device. This is

done when Th is killed to prevent the servicing of pending I/O’s

requested by killed threads. However, this method does not

cancel the IORB that is currently being serviced by the device.

The device is just allowed to finish.

• final static public PageTable getPTBR() MMU

This method returns the value of the page table base register

(PTBR) of the MMU. PTBR holds a reference to the page table

of the currently running task.

• static public void setPTBR(PageTable table) MMU

This method allows to set the value of PTBR. When no thread

is running, the value should be null; otherwise, it must be the

page table of the task that owns the currently running thread.

• public final TaskCB getTask() PageTable

Returns the task that owns the page table.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

3.2. THE CLASS THREADCB 61

• public void kill() TaskCB

Kills the task on which this method is invoked.

• public int getThreadCount() TaskCB

Tells how many threads the task has.

• public int addThread(ThreadCB thread) TaskCB

Attaches a newly created thread to task. Returns SUCCESS or FAILURE.

• public int removeThread(ThreadCB thread) TaskCB

Removes killed thread to task.

• public ThreadCB getCurrentThread() TaskCB

Returns the current thread object of the task.

• public void setCurrentThread(ThreadCB t) TaskCB

Sets the current thread of the task to the given thread.

• final public int getPriority() TaskCB

Tells the priority of the task.

• final public void setPriority(int p) TaskCB

Sets the priority of the task. The

setPriority()/getPriority() methods are provided for

convenience, in case priority scheduling is used and dispatching

takes into account the priority of both the task and the thread.

• final public PageTable getPageTable() TaskCB

Returns the page table of the task.

• final public int getStatus() TaskCB

Returns the task’s status.

• set() and get() HTimer

These classes can be used to set and query the hardware timer.

See Section 1.3 for details.

• get() HClock

This method is described in Section 1.3; it is used to query the

hardware clock of the simulated machine.

• public static void giveupResources(ThreadCB thread) ResourceCB

Releases all abstract shared resources held by the thread. Note:

these resources do not include concrete resources such as mem-

ory or CPU.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

62 CHAPTER 3. THREADS: MANAGEMENT AND SCHEDULING OF THREADS

Summary of the Properties of Class ThreadCB

This section summarizes the main properties of threads defined in class ThreadCB and the

methods for manipulating those properties. These methods are more fully defined in the

following section.

Task: The task that owns the thread. This property can be set and queried via the methods

setTask() and getTask().

Identity: The identity of a thread can be obtained using the method getID(). This prop-

erty is set by the system.

Status: The status of the thread. The relevant methods are setStatus() and getStatus().

Priority: The priority of the thread. The corresponding methods are setPriority() and

getPriority().

Creation time: This property can be queried using the method getCreationTime().

CPU time used: The total CPU time used by the thread can be obtained via the method

getTimeOnCPU().

3.3 The Class TimerInterruptHandler

This class is much simpler than ThreadCB. It is defined as

• public class TimerInterruptHandler extends IflTimerInterruptHandler

and contains only one method:

• public void do handleInterrupt()

This method is called by the general interrupt handler when the system timer expires.

The timer interrupt handler is the simplest of all interrupt handlers in OSP 2 . Its main

purpose is to schedule the next thread to run and, possibly, to set the timer to cause

an interrupt again after a certain time interval. Resetting the times can also be done

in the dispatch() method of ThreadCB instead, because the dispatcher might want

to have full control over CPU time slices allocated to threads.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

3.4. METHODS EXPORTED BY THE THREADS PACKAGE 63

Relevant methods defined in other packages. The following is a list of methods that

belong to other classes and might be useful for implementing do handleInterrupt():

• final static public void set(int time) HTimer

Sets the hardware timer to time ticks from now. Cancels the

previously set timer, if any.

• final static public int get() HTimer

Returns the time left to the next timer interrupt.

3.4 Methods Exported by the Threads Package

The following is a summary of the public methods defined in the classes of the Threads

package or in the corresponding superclasses, which can be used to implement this and other

student packages. To the right of each method we list the class of the objects to which the

method applies (in the present table all exported methods belong to class ThreadCB, but

this is not the case with all projects).

• final public static ThreadCB create() ThreadCB

This method is a wrapper around the method do create() de-

scribed in this chapter. It is provided by IflThreadCB and is

inherited by ThreadCB. Returns the created thread.

• final public static void dispatch() ThreadCB

This is a wrapper around the method do dispatch() described

in this chapter. This method is provided by IflThreadCB and

is inherited by ThreadCB.

• final public void suspend(Event event) ThreadCB

This is a wrapper around the method do suspend() described

in this chapter. This method is provided by IflThreadCB and

is inherited by ThreadCB.

• final public void resume() ThreadCB

This is a wrapper around the method do resume() described in

this chapter. This method is defined in IflThreadCB, but it is

inherited by ThreadCB.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

64 CHAPTER 3. THREADS: MANAGEMENT AND SCHEDULING OF THREADS

• final public void kill() ThreadCB

This is a wrapper around the method do kill() described in

this chapter. This method is defined in IflThreadCB, but it is

inherited by ThreadCB.

• final public TaskCB getTask() ThreadCB

Returns the task this thread belongs to.

• final public void setTask(TaskCB t) ThreadCB

Sets the task of the thread.

• final public int getStatus() ThreadCB

Returns the status of this thread.

• final public void setStatus(int s) ThreadCB

Sets the status of this thread.

• public double getTimeOnCPU() ThreadCB

Tells the total time the thread has been using CPU.

• final public long getCreationTime() ThreadCB

Returns the creation time of the thread.

• final public int getPriority() ThreadCB

Tells the priority of this thread.

• final public void setPriority(int p) ThreadCB

Sets the priority. The setPriority and getPriority methods

are provided for convenience, in case the assignment calls for

priority scheduling. OSP 2 does not actually care how priority

is used, if at all.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

Chapter 4

Memory: Virtual Memory

Management

The Memory project consists of the implementation of five public classes. The main class,

MMU, implements the memory management unit — a piece of hardware that is responsible to

memory access in a computer. The other classes are FrameTableEntry, PageFaultHandler,

PageTableEntry, and PageTable. We describe each class in its own subsection.

4.1 Overview of Memory Management

The purpose of this project is to learn the basics of a typical memory management module

in an operating system. In a modern computer, the part of circuitry called the memory

management unit (abbr., MMU) is responsible for providing access the main memory.

In OSP 2 , memory access is simulated by calling the method refer() of the class MMU and

which is one of the key methods to be implemented in this project. The primary mechanisms

used for memory addressing are the page table base register (abbr., PTBR) and the page

table. The MMU uses PTBR to find the location of the page table and it uses the page

table to supply the mapping between the logical memory of the processes represented by page

numbers and the main memory of the computer represented by the physical page frames.

The overall schema is depicted in Figure 4.1.

The simple memory addressing mechanism just described works well as long as the frames

corresponding to the pages of the process are all in main memory. However, as seen from

Figure 4.1, some entries in a page table do not necessarily have to have frames assigned to

them. In fact, a page table can have more entries than the number of physical page frames,

65

66 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

Figure 4.1: Main Memory Addressing Using Page Tables

so a 1-1 assignment of frames to pages might not be possible.

Pagefaults. Each page table entry has a validity bit, which indicates whether the page

has a main memory frame assigned to it. This bit is checked by the MMU hardware and

whenever a running thread makes a reference to a page whose validity bit is zero, a pagefault

occurs — a special kind of interrupt that is used to notify the operating system of references

to frame-less pages. The intended response from the OS is to assign a suitable frame to

the page. The module responsible for this action is called the pagefault handler. The

following is involved in handling a pagefault.

First, let us look more carefully at frame-less pages and their relationship to other re-

sources owned by processes. If no frame is assigned to a page, where is the program code or

data that the running thread is supposedly referencing? The answer is that a copy of the

entire process space is kept in secondary storage on a swap device. In high performance

systems, a swap device can be a separate disk, but typically it is just a partition occupying

part of a physical disk. Nevertheless, the operating system assigns a logical device to each

such partition and at that level the swap device can be viewed as a separate device with its

own characteristics and device number. In particular, in OSP 2 , a swap device is viewed as

a real device with a special device number, SwapDeviceID. Thus, every process (i.e., OSP

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4.1. OVERVIEW OF MEMORY MANAGEMENT 67

task) has a corresponding swap file on the swap device, which contains the exact image of

the process memory.

When a pagefault on page P of task T occurs, the pagefault handler has to do several

things:

1. Suspend the thread that caused the interrupt until the situation that caused the page-

fault is rectified. This is done by creating a new event, pfEvent, of type SystemEvent

and then executing suspend() on the thread using pfEvent as a parameter. A new

system event is created using the constructor SystemEvent() of class SystemEvent.

This event must be kept around until the end of pagefault processing, because it is

needed in order to resume the thread before returning from the pagefault handler.

2. Find a suitable frame to assign to page P .

An obvious choice would be a free frame, i.e., a frame that is not assigned to any

other page (of this or other task), but there might be no such a frame at the moment

(remember that there are fewer frames than pages!). In this case, page replacement

must be performed, as described below. The result of a successful page replacement

action is that a free frame becomes available and is assigned to page P .

3. Perform a swap-in.

Once a frame is assigned to the faulty page, we need to make sure that it contains

the exact image of the page, which is available in the task’s swap file. To do this, the

pagefault handler must initiate a swap-in — a file read operation that would bring the

requisite page from the swap device and store it in the frame.

4. Suspend the pagefault handler.

An I/O operation takes time, so the pagefault handler must suspend itself until it

is waken up by the disk interrupt coming from the swap device.1 Suspension of the

pagefault handler actually happens as part of the file read operation that swaps the

page in — you do not need to do this explicitly.

5. Finish up.

Once the image of the right page is copied into the frame, the pagefault handler should

update the page table to make sure that the page entry is pointing to the right frame,

and to set the validity bit of the page appropriately. Next, the thread that caused

the pagefault should be resumed and placed on the queue of the ready-to-run threads.

1 Handling disk interrupts is part of another project, the module Devices. In the present project, one
should assume that the disk interrupt handler functions according to the specifications given below.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

68 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

This is done by executing the method notifyThreads() on the event pfEvent, which

was created in Step 1. Finally, as with any other interrupt handler, the dispatcher

should be called to give control of the CPU to some ready-to-run thread.

Page replacement. In describing the actions of the pagefault handler, we deliberately

omitted a saga of its own: What to do if, in Step 2, the pagefault handler cannot find a free

frame. In such a case, it becomes necessary to choose a frame, F ′, occupied by some other

page, P ′, and use F ′ to satisfy the pagefault. The page P ′ is often called a victim page

and it is said that the page replacement algorithm evicts this page from its frame.

The actual algorithm for choosing such a frame is beyond the scope of this manual.

Several such algorithms are described in the textbook. Here we discuss only the issues

pertaining the overall workings of a typical pagefault handler. As far as the OS is concerned,

the only requirement to a page replacement algorithm is that there should be no “undesirable

side effects.” One side effect arises due to the nature of the I/O subsystem. Suppose

that a page replacement algorithm chooses a frame, F ′, that is involved in an active I/O

operation. In some cases, a device that started an I/O cannot be stopped. So if we reuse

the corresponding frame for some other purpose then the data in the frame may become

corrupted (in case of a file-read operation) or, in case of a write operation, the data being

written out might become corrupted if we change the content of the frame before the I/O

is finished. Even if the device can be stopped immediately, it might still not be a good idea

because stopping the device now might mean that the same I/O operation would have to be

re-issued later.

How can an OS protect the frames associated with active I/O operations? A typical

mechanism is to keep, for each frame, the count of active or outstanding I/O operations

that involve that frame. There is a variety of ways to maintain such a count. Here is an

explanation of how it is done in OSP 2 . When an I/O operation is to be performed, an I/O

request block (abbr., IORB) is enqueued to the device. An IORB does not refer to frames

directly. Instead, it references the page that is involved in the I/O. The thread that requested

the I/O must perform the lock() operation (which is a method of class PageTableEntry) on

the page involved. If no frame is assigned to the page, a pagefault occurs, and the IORB will

not be enqueued to the device until the pagefault processing is over. The lock() operation

increments the lock count of the frame associated with the page and the unlock() operation

decrements it. A page is considered to be locked in a frame if the lock count of the associated

frame is a positive number.

Thus, by the time the IORB makes it to the device queue, the page involved is locked

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4.1. OVERVIEW OF MEMORY MANAGEMENT 69

and has an associated frame. The page replacement mechanism is prohibited from taking

frames that have positive lock counts.

Note that a page involved in an I/O is locked into a frame when the corresponding IORB

is enqueued to the device (a device may be busy and might have a queue of outstanding

I/O’s) — not when the IORB is selected for processing by the device. The reason should

be obvious: To perform an I/O, the page referenced by the IORB must be in some frame in

main memory. If not, it would have to be swapped in. But this requires another I/O and

takes time. So, the selected IORB cannot be processed and the device would remain idle.

In contrast, if pages are locked just before the IORB is enqueued, the corresponding frames

would remain protected for the entire period while the IORB remains on the device queue

(and until the device finishes the corresponding I/O). If the page being locked is frame-less,

a pagefault occurs and the page is brought in before the IORB is selected for processing.

Locking is not the only constraint that a page replacement mechanism must abide by.

Another issue has to do with so called dirty frames. A dirty frame is one whose contents

has been changed since the last time a page was swapped into the frame. If such a frame

is chosen for replacement, the current contents of the frame must be saved in the swap file

of the task that owns the page that currently occupies the frame. Otherwise, all changes

made to the page will be lost. Thus, each frame needs another bit, the dirty bit, which

indicates whether the contents of the frame has been changed. The actions that change the

contents of a frame are the memory write (MemoryWrite) and the I/O operation read(),

which transfers data from a file to main memory.

Thus, we see that finding a victim page and evicting it is no simple matter: It may require

an extra I/O operation to swap-out the victim page and synchronize its contents with the

contents of that page in the swap file.

The information about the physical main memory frames is kept in the frame table —

an array that has one entry per frame. Each entry is an object of the class FrameTableEntry.

In fact, OSP 2 frame table contains more information than that. For instance, each frame

entry contains a back reference to the page that occupies that frame (or null). Every

frame entry also has the so-called reference bit, which indicates whether the frame has

been referenced (as a result of executing refer() or due to I/O to or out of the frame). A

reference bit is often used in page replacement algorithms.

In real computers, the reference and the dirty bits are set in hardware but they are unset

by software using special instructions. In contrast the lock count and the page reference in

the frame table are done entirely in software. Of course, in OSP 2 we have to set and unset

all these items in software. In this sense, part of what you will do to implement the aforesaid

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

70 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

refer() method is really a simulation of various hardware functions. This includes setting

the dirty and the reference bits, and also causing the pagefault interrupt itself. We describe

these issues in more detail in Section 4.5.

Reserved frames. In OSP 2 , frames have yet another bit, the reserved bit. Like the

lock count, a reserved bit protects frames from the page replacement mechanism, but it is

used for a different reason. Suppose a thread Th causes a pagefault on page P and control

is transfered to the pagefault handler after blocking Th. The pagefault handler may go

through several distinct phases:

1. Finding a suitable frame, F . Suppose F is dirty and is currently occupied by page P ′.

2. Evicting P ′ by issuing an I/O operation that swaps P ′ out.

3. Waiting for the I/O to finish.

4. Initiating the I/O to swap page P into frame F .

5. Waiting for the I/O to finish.

6. Putting Th on the ready queue and quitting.

The problem is that while locking will prevent F from being grabbed by other threads during

phases 3 and 5, nothing prevents it from being grabbed to satisfy other pagefaults between

phase 1 and 2, between 3 and 5, and after phase 5. Thus, it might well happen that after

trying so hard to assign a suitable frame to page P , the pagefault handler will find the

frame stolen from under its nose before it gets a chance to assign F to P . To prevent this

kind of unproductive behavior, the pagefault handler must reserve frame F in phase 1 and

un-reserve it in phase 6.

Prepaging. Some pagefault handling algorithms require prepaging, i.e., swapping in

invalid pages that did not cause the pagefault. These algorithms are trying to guess which

pages might be referenced by the thread in the near future and swap them in proactively. To

implement prepaging, the pagefault handler can issue additional read() operations (which

might require write() operations to swap some other pages out).

Prepaging a page is similar to bringing a page in as part of the regular pagefault process-

ing. However, selecting a frame for prepaging should be done with caution. In particular,

make sure that it is not the frame that was selected for the original faulty page. Otherwise,

you will end up evicting the page that the pagefault handler was supposed to make valid!

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4.2. CLASS FRAMETABLEENTRY 71

Since prepaging involves I/O, it is possible that the thread that initiated the pagefault

will be killed by the time prepaging is finished. When this happens, prepaging should stop.

One special case arises when prepaging is done from within the pagefault handler. The

question then is what should be the return code for do handlePageFault(): SUCCESS or

FAILURE? OSP 2 expects FAILURE in this case. In particular, if the page that caused the

pagefault became valid before the thread was killed, the page should be made invalid again

prior to returning from the pagefault handler. However, you should realize that a more

optimized operating system might make a different decision and keep such a page valid,

because it might be used by other threads of the same task.

Proactive page cleaning. Some memory management algorithms perform proactive page

cleaning by periodically swapping them out on disk (but not invalidating them). The idea

is to utilize the times when the swap device is idle and reduce the time needed to handle

pagefaults by increasing the supply of clean pages.

Technically, this is done by setting up daemons — special system threads that are set

to wake up periodically, perform job assigned to them, and go back to sleep. We discussed

the OSP 2 support for daemons in Section 1.6.

In order to set up a cleaning daemon, one creates a class that implements DaemonInterface

(see page 20). The required method unleash() can then be made to execute the proactive

cleaning algorithm. An essential part of this algorithm is a series of write() operations that

write dirty frames out to the swap device (but keeps these pages valid). This daemon must

be registered with the system at startup, as explained in Section 1.6.

Having surveyed the major issues involved in pagefault handling, we are now ready to

discuss the actual OSP 2 classes and methods that constitute the Memory module.

4.2 Class FrameTableEntry

This class implements the entries in the frame table — the main repository of information

about the status of the main memory frames. It is defined as follows:

• public class FrameTableEntry extends IflFrameTableEntry

Except for the class constructor, this class has no other methods that need to be implemented

as part of the project:

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

72 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

• public FrameTableEntry(int frameID)

Calls super(frameID) and might do other initializations, if the student implementation

defines additional fields in this class.

However, this class inherits a number of methods from its superclasses, and these methods

are used by other classes in this project:

• public final int getLockCount()

Returns the lock count of the frame.

• final public void incrementLockCount()

Increments the lock count of the frame by 1.

• final public void decrementLockCount()

Decrements the lock count of the frame by 1.

Properties of Class FrameTableEntry

The following summarizes the properties of the class FrameTableEntry and the methods

for setting and querying these properties. These methods are all inherited from class

IflFrameTableEntry and they are described in more detail in Section 4.7.

Reserved flag: This property tells if a thread has reserved this frame. The corresponding

methods are isReserved(), getReserved(), setReserved(), and setUnreserved().

Dirty flag: The methods for manipulating the dirtiness of a frame are isDirty() and

setDirty().

Reference flag: This flag tells if the frame has been referenced. The methods that handle

this property are getreferenced() and setreferenced().

Lock count: This property represents the number of times the frame has been locked minus

the number of unlock operations performed on the frame. This property is accessed us-

ing the methods getLockCount(), incrementLockCount(), and decrementLockCount().

Identity: The identity of a frame is its sequence number in the system-wide array of all

main memory frames. The identity can be queried using the method getID().

Page: This is the page that occupies the frame (null, if the frame is free). This property

can be set using setPage() and retrieved using getPage().

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4.3. CLASS PAGETABLEENTRY 73

It should be noted that some information (such as page information and identity) in the

OSP 2 frame table entries is redundant and is not present in a typical frame table in the OS.

In fact, OSP 2 frame table can be seen as a cross between a normal frame table and what is

known as inverted page table.

4.3 Class PageTableEntry

This class implements the data structure that describes each entry in the page table. It is

defined as follows:

• public class PageTableEntry extends IflPageTableEntry

In this project, the student is implementing the following methods of this class:

• public int do lock(IORB iorb)

The ultimate goal of this method is to increment the lock count of the frame associated

with the page. However, the details are not as simple as it might seem because the

page might be invalid at the time the lock operation is performed.

Thus, this method must first check if the page is in main memory by testing the validity

bit of the page (the method isValid()). If the page is invalid, a pagefault must be

initiated.

To initiate a pagefault, the do lock() method calls the static method handlePageFault()

of class PageFaultHandler, i.e., it calls the pagefault handler directly, without initi-

ating an interrupt. Note that page locking is done as part of an I/O request, when the

CPU is already with the kernel mode, so there is no need to cause an interrupt.

We already see that page locking is considerably more than simply incrementing the

lock count. However, there is still much more to do. Consider the following situation.

Suppose thread Th1 of task T makes a reference to page P either via the refer()

operation or through locking. If the page is invalid, a pagefault is initiated. Suppose

now that thread Th2 of the same task comes along and also wants to lock the same page

P . Should this cause a pagefault as well? The answer, of course, is no. The pagefault

handler must already have found a suitable frame for P and the corresponding I/O

requests must already be in the pipe. Another pagefault would only confuse the system.

To help identify the pages that are involved in a pagefault, OSP 2 provides the method

getValidatingThread(). When applied to a page, this method returns the thread that

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

74 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

caused a pagefault on that page (or null, if the page is not involved in a pagefault). In

our case, this method would return Th1.

The proper action for Th2 depends on whether Th2 = T1. If Th2 = Th1, then the

proper action is to return right after incrementing the lock count.2

If Th2 6= Th1, then the proper action is to wait until P becomes valid. This is easy to

accomplish because the class PageTableEntry happens to be a subclass of Event (see

Chapter 3.2 for the description of this class). Thus, we can execute the suspend()

method on Th2 and pass page P as a parameter.

When the page becomes valid (or if the pagefault handler fails to make the page valid,

say, because the original thread, Th1, that caused the pagefault was killed during the

wait), the threads waiting on that page will be unblocked by the pagefault handler

(which is another class in this project) and will be able to continue. When such

threads become unblocked inside the do lock() method, control falls through the call

to suspend()) and the do lock() method must exit and return the appropriate value:

SUCCESS if the page became valid as a result of the pagefault and FAILURE otherwise.

do lock() returns SUCCESS if the page was locked successfully or FAILURE, if it was

not. The latter can happen if either the pagefault (which might occur due to locking)

fails or if the thread that created iorb was killed while waiting for the lock operation

to complete.

Finally, in case of successful return, we should remember to increment the lock count of

the frame associated with the page i.e., to do the actual locking. (Note that the previ-

ous discussion was focusing on ensuring that the page is associated with a frame.) In-

crementing the lock count of a frame is done using the method incrementLockCount()

of class FrameTableEntry.

• public void do unlock()

Unlocking is, fortunately, much simpler than locking. All that is needed is to decrement

the lock count via a call to decrementLockCount() of class FrameTableEntry. Make

sure that the lock count does not become negative — it is a sign of a problem.

Relevant methods defined in other classes. The following methods from other classes

can be useful for implementing the methods of class PageTableEntry:

2 You might be wondering how a thread that caused a pagefault can come back and request a lock on
the page. The answer is simple: The lock can be requested by the swap-in I/O operation that must be
performed as part of pagefault handling. This swap-in operation is performed on behalf of the same thread
that caused the pagefault, so the locking thread and the validating thread would be one.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4.3. CLASS PAGETABLEENTRY 75

• public final int getLockCount() FrameTableEntry

Returns the lock count of the frame.

• final public void incrementLockCount() FrameTableEntry

Increments the lock count of the frame by 1.

• final public void decrementLockCount() FrameTableEntry

Decrements the lock count of the frame by 1.

• final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page, i.e., the thread that

caused the pagefault on this page. If the page is not in pagefault

or its validating thread was killed before the page became valid,

then this method returns null.

This method is inherited from a superclasses of

PageTableEntry.

• final public void suspend(Event event) ThreadCB

Suspends the thread on which this method is called and puts

the thread on the waiting queue of event.

• final public int getStatus() TaskCB

Returns the task’s status.

• final public int getStatus() ThreadCB

Returns the status of this thread.

• public final boolean isValid() PageTableEntry

Tells if the page is valid by checking the validity bit.

• public final boolean isReserved() FrameTableEntry

Tests is the frame is reserved.

Properties of Class PageTableEntry

The following is a summary of the main properties of class PageTableEntry and of the

methods for manipulating those properties. See Section 4.7 for the description of these

methods.

Validity flag: The validity flag is handled by the methods isValid() and setValid().

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

76 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

Frame: If the page is valid, there must be a frame associated with it, which is described by

this property. The corresponding methods are getFrame() and setFrame().

Identity: The identity of a page is its sequence number in the corresponding page table. It

is set automatically by the system and can be queried using getID().

Owner task: This property points to the task that owns the page. This property is queried

using the method getTask() of PageTableEntry. This property is not really stored

with the page; it is rather a property of the table to which the page belongs. Thus,

this method simply queries the corresponding property of the page table.

Validating thread: If the page is currently in pagefault processing, this is the thread that

caused the pagefault. This thread can be obtained using the method getValidatingThread(),

and it is set using setValidatingThread().

4.4 Class PageTable

The class PageTable represents page tables and is defined as follows:

• public class PageTable extends IflPageTable

The only mandatory method to be implemented here is the class constructor:

• public PageTable(TaskCB ownerTask)

This constructor gets the task for which the table is to be created. The constructor first

calls super(ownerTask) as all OSP 2 constructors must do, and then it constructs the

page table. The page table is assumed to be an array of the size equal the maximum

number of pages allowed, and it is accessible through the variable pages inherited from

the superclass IflPageTable. This maximal number of pages is calculated using the

method MMU.getPageAddressBits(), which represents the number of bits dedicated

to representing a page number out of the total number of bits in an address.

After calling super(), the variable pages must be initialized to a new array of PageTableEntry

whose size is determined as described above. Then each page must be initialized with

a suitable PageTableEntry object using the constructor of that class. Make sure that

you use correct page id numbers and the correct page table in the PageTableEntry

constructor when creating these page objects.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4.5. CLASS MMU 77

• public void do deallocateMemory()

This method is typically invoked by a terminating task on its page table object to unset

the various flags for the frames allocated to the task. Specifically, it uses setPage(),

to nullify the page field that points to the page that occupies the frame (thereby

freeing the frame), setDirty(), to clean the page, and setReferenced() to unset the

reference bit. It also un-reserves each reserved frame that belongs to the task. To find

out which task a frame belongs to, the method getTask() of class PageTableEntry

can be used.

Note that this method does not need to (and should not) set the frame attribute of

the deallocated pages to null. It is possible that some of these pages are being used

by the currently ongoing I/O operations that pump data to or out of the frames that

are currently allocated to the killed task. The disk interrupt handler (which will be

called each time an I/O is finished) needs to know both the frame and the page objects

involved in the finished operation, and it gets the former from the latter.

Note that if a page of a killed task is locked, it can be unlocked only by the de-

vice interrupt handler. Unlocking inside the memory management module can lead

to inconsistencies. Try to analyze what might happen in this case in order to and

understand why this is dangerous.

Properties of Class PageTable

Here is a summary of the properties and methods of class PageTable. All these properties

are provided by class IflPageTable and are inherited from there.

Page table: This is an array referenced by the variable pages. This array is created in the

PageTable() constructor.

Owner task: This property describes the task to which the page table belongs. This task

can be obtained via the method getTask().

4.5 Class MMU

This class represents the memory management unit of the simulated computer. If defines

three methods: the initialization method that exist in every student module, a utility method

do deallocateMemory(), which frees up memory held by a task, and do refer(), which

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

78 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

represents memory references made by the CPU while executing computer instructions. A

detailed explanation is given below.

• public static void init()

This method is called once, at the beginning, to initialize the data structures. Typically,

it is be used to initialize the frame table.

Since the total number of frames is known (MMU.getFrameTableSize()), each frame

in the frame table can be initialized in a for-loop. In the beginning, all entries in

the frame table are just null-objects and they must be set to real frame table objects

using the FrameTableEntry() constructor. To set a frame entry, use the method

setFrame() in class MMU.

Another use of the init() method is for the initialization of private static variables

defined in other classes of the Memory package. For instance, one can define an

init() method in class PageFaultHandler, which would be able to access any variable

defined in that class. Then MMU.init() can call PageFaultHandler.init(). Since

MMU.init() is called at the very beginning of the simulation, PageFaultHandler.init()

is also going to be called at the beginning of the simulation.

• public PageTableEntry do refer(int memoryAddress,int referenceType,ThreadCB

thread)

This method receives an address of a byte in main memory, a type of the mem-

ory reference (MemoryRead, MemoryWrite, or MemoryLock) and a thread that made

the reference. The method then needs to determine the page of the thread’s logical

memory to which the reference was made. The methods getVirtualAddressBits()

and getPageAddressBits(), both inherited from the superclass IflMMU, can be used

to determine the number of bits allocated to represent the offset within the page.

This number can then be used to compute the page size and then the page to which

memoryAddress belongs.

Next, the method must check if the page is valid (the method isValid()). If so, we

only need to appropriately set the referenced and the dirty bits of the page, and quit.

If the page is invalid, things are more interesting. As with page locking, there are two

possibilities:

1. Some other thread of the same task has already caused a pagefault and the page

is already on its way to main memory.

2. No other thread caused a pagefault on this invalid page.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4.5. CLASS MMU 79

As before, we can tell one case from the other using the method getValidatingThread().

In the first case, the thread should simply suspend itself on the page and wait until

the page becomes valid. When the page eventually becomes valid, the method should

set the referenced and dirty bits appropriately and quit. A thread is suspended by

an invocation of the method suspend() in class ThreadCB. When the page becomes

valid, execution continues past the suspend() statement. Keep in mind that since

long time may pass between the initial pagefault and the time the faulty page becomes

valid, the simulator might decide to destroy the waiting thread. In this case, the dirty

and referenced bit settings must not be changed. Thus, always use the getStatus()

method to verify that the thread does not have status ThreadKill.

In the second case, the method must initiate a pagefault. Unlike in the do lock()

method, a pagefault interrupt must be caused — it is not enough to just invoke the

method handlePagefault(). This is because at the time when the thread executes

refer(), the machine is in the user mode, because it is executing a user thread. In

contrast, when pagefault is caused by the lock() operation, the machine must already

be in the monitor mode, since lock() is called by the operating system itself.

To cause an interrupt, one must suitably set the various static fields of the class

InterruptVector. This is done using the static methods setPage(), setReferenceType(),

and setThread(). Then one must call the interrupt() method of class CPU and pass

it the code that represents the type of the interrupt (i.e., PageFault). Eventually, this

will invoke the method do handlePageFault() in class PageFaultHandler. Thus,

when the interrupt() method returns, the page will be in the main memory and the

thread would be in the ready queue.

Before exiting, do refer() must set the reference and the dirty bits.

In both cases, it must be kept in mind that any thread might get killed while waiting

for completion of I/O. Such is the wicked nature of the simulator. If a thread is killed,

neither the dirty nor the reference bits should be changed. OSP 2 is checking these

conditions vigilantly. The method getStatus() should be used to determine the status

of a thread.

On exit, do refer() must return the referenced page.

Relevant methods defined in other classes. Here is a summary of the methods defined

in other classes, which might be used in the implementation of the methods of class MMU:

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

80 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

• final static public void setInterruptType(int inter) InterruptVector

Sets the type of the interrupt in the interrupt vector. The valid

values are PageFault, DiskInterrupt, and TimerInterrupt.

• final static public int getInterruptType() InterruptVector

Extracts the interrupt type from the interrupt vector.

• final static public void setThread(ThreadCB thread) InterruptVector

Sets the thread field in the interrupt vector so that pagefault

handlers could find out who has caused the interrupt.

• final static public ThreadCB getThread() InterruptVector

Tells which thread has caused the interrupt.

• final static public void setReferenceType(int ref) InterruptVector

Sets the memory reference type in the interrupt vector. The

valid types are MemoryRead, MemoryWrite, and MemoryLock.

Applicable to pagefaults only.

• final static public int getReferenceType() InterruptVector

Tells what was the reference type that caused the interrupt.

Applicable to pagefaults only.

• final public void suspend(Event event) ThreadCB

Suspends the thread on which this method is called and puts

the thread on the waiting queue of event.

• final static public FrameTableEntry getFrame(int frameNumber) MMU

Returns the frame entry with the given frame number. This

method is defined in the superclass of MMU, and is inherited.

• final static public void setFrame(int indx, FrameTableEntry entry) MMU

Sets the frame with the given index to a non-null

FrameTableEntry-object. This method is defined in the super-

class of MMU, and is inherited.

• final static public int getFrameTableSize() MMU

Returns the number of frames in the simulated machine. This

method is defined in the superclass of MMU, and is inherited.

• final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page.

• final public void setValidatingThread(ThreadCB thread) PageTableEntry

Sets the validating thread of the page.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4.6. CLASS PAGEFAULTHANDLER 81

Summary of the Properties of Class MMU

The memory management unit defines the hardware characteristics of the simulated com-

puter. These characteristics and their access methods are described below.

Frame table: The table whose entries describe the individual main memory frames in

OSP 2 . The methods provided for accessing this table are: getFrame(), which re-

turns a frame object at a given index in the frame table; setFrame(), which sets

a frame table entry with the given index; getFrameTableSize(), which returns the

number of entries in the frame table (i.e., the number of main memory frames in the

system). These methods can be used to traverse the frame table in a for-loop.

Number of bits in a virtual address: The number of bits determines the maximal ad-

dressable space in the simulated computer. For instance, 16 bits yield 216 bytes of ad-

dressable space (64Kb). The method to find out this value is getVirtualAddressBits().

Number of bits used to represent the offset within pages: This property directly af-

fects the size of the pages (and frames) in the computer. For instance, 10 bits lead to

1Kb pages, while 12 bits mean that the pages are 4Kb large. The method to find out

this value is getPageAddressBits().

Page table base register: This register points to the page table of the running task. It is

available through the methods getPTBR() and setPTBR().

4.6 Class PageFaultHandler

This class contains only one method that is part of the project. However, you might want

to define additional methods to make the implementation more modular.

• public static int do handlePageFault(ThreadCB thread, int referenceType,

PageTableEntry page)

This is the actual pagefault handler. The thread and the page arguments are the

thread and the page that caused the pagefault. The referenceType argument can be

MemoryRead, MemoryWrite, or MemoryLock; it represents the type of memory reference

that caused the pagefault. Knowing the type of memory reference is needed in order to

set the dirty bit correctly. If the pagefault was caused by locking (in method do lock()

of PageTableEntry), the reference type must be MemoryLock. Note that locking does

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

82 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

not modify the contents of a page, so the page should not be marked dirty due to this

type of memory reference.

The implementation of this method follows the general outline of pagefault processing

described earlier. However, it is also necessary to check several exception conditions.

First, the pagefault handler might be called incorrectly by the other methods in this

project. So, always check if the page that is passed as a parameter is valid and return

FAILURE if it is. Second, it is possible that all frames are either locked or reserved

and so it is not possible to find a victim page to evict and free up a frame. Return

NotEnoughMemory if this is the case. Third, the thread that caused the pagefault can

be killed by the simulator at any moment after the thread goes to sleep waiting for the

swap-out or swap-in to complete. FAILURE should be returned in these cases.

The first two exceptional conditions must be checked at the beginning of pagefault

processing, and the tests for destroyed threads must be done right after each swap-

out and swap-in. In any case, before exiting, all threads that might be waiting on

the page (see the explanations for lock() and refer()) must be notified using the

notifyThreads() method of class Event. Finally, dispatch() must be called.

The normal processing of a pagefault goes as follows. First, the thread must be sus-

pended on a SystemEvent object created with the help of the SystemEvent() construc-

tor. This event object must be saved in a variable, because when pagefault handling

is finished we must resume the thread by executing notifyThreads() on that event.

Next, a suitable frame must be found and reserved to protect it from theft by other

invocations of the pagefault handler (on behalf of other threads). If the frame is free,

the page’s frame attribute can be updated and a swap-in operation can be performed

right away. If the frame contains a clean page, the frame should be freed (explained

below) and then a swap-in operation should be performed. If the frame contains a

dirty page, then swap-out must be performed, followed by freeing the frame, followed

by a swap-in. If all is well and the thread was not killed while waiting for the two

I/O operations, we update the page table to indicate that page is now valid and the

frame table to indicate that the newly freed frame is now occupied by page. Finally,

the following actions must be performed:

– the frame used to satisfy the pagefault should be un-reserved

– the threads that might be waiting on page should be notified using notifyThreads()

– the thread that caused the pagefault must be resumed by executing notifyThreads()

on the system event that we used to suspend the thread just after the entry into

the pagefault handler

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4.6. CLASS PAGEFAULTHANDLER 83

– dispatch() must be called

– SUCCESS should be returned.

Freeing frames : To free a frame, one should indicate that the frame does not hold

any page (i.e., it holds null page) using the setPage() method. The dirty and the

reference bits should be set to false.

Updating a page table: To indicate that a page, P is no longer valid, one must set its

frame to null (using the setFrame() method) and the validity bit to false (using

the setValid() method). To indicate that the page P has become valid and is now

occupying a main memory frame F , we do the following:

– use setFrame() to set the frame of P to F .

– use setPage() to set F ’s page to P .

– set the P ’s validity flag correctly.

– set the dirty and reference flags in F appropriately.

Performing a swap-in: This is done by issuing a read command on the swap file of the

task that owns the page.

Performing a swap-out : This is done with the write command on the swap file of the

task that owns the page.3

read() is a method of class OpenFile that is invoked on an OpenFile-object (which

in our case is an open file handle of a swap file) and takes three arguments: The block

number in the file that is to be read, the page into which the file block is to be placed,

and the thread that initiated the I/O. All these parameters can be obtained using the

methods listed below. The only peculiarity is that a swap file contains an exact image

of the task’s memory, so there is a 1-1 correspondence between the pages and the blocks

in the swap file. In other words, the block number should be equal to the page id.

write() is also a method in class OpenFile that is invoked on an open file handle and

takes the same arguments as read().

Both read() and write() are blocking operations, i.e., they block the execution of

the current thread until the I/O is finished.

Earlier we mentioned the method getValidatingThread(), which can be used to find

out if a particular page is in the middle of a pagefault. It should be emphasized, however,

3 Note: It must be the task of the page, not of the thread. Indeed, in case of a swap out, the thread and
the page might belong to different tasks. Think why.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

84 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

that it is the responsibility of the pagefault handler (i.e., your implementation) to maintain

the validating threads correctly. In particular, when a pagefault occurs you must set the

validating thread to be the thread that caused the pagefault and set it to null when the

pagefault is over. All this is done with the help of the method setValidatingThread() of

the class PageTableEntry. It should also be mentioned that OSP 2 monitors the validating

thread field in every page and issues error messages when it is incorrect. In particular, if a

pagefault must occur and the validating thread of a page stays null, it might complain that

your implementation missed the interrupt.

Relevant methods defined in other classes. In addition to the relevant methods listed

earlier, the following methods are used in handling pagefaults:

• public final boolean isReserved() FrameTableEntry

Tests is the frame is reserved.

• public final boolean isDirty() FrameTableEntry

Tells if the frame is dirty by checking the “dirty” bit of the frame.

• public final void isReferenced() FrameTableEntry

Checks the reference bit and tells if the frame has been referenced.

• public final OpenFile getSwapFile() TaskCB

Returns the open swap file of the task. This swap file is then used

in the read() and write() statements to perform the swap-in

and swap-out operations. The swap file is represented by the

OpenFile class, which is a handle that contains information

about the disk blocks used by the file and some runtime in-

formation about the current status of the file. This operation

blocks the current thread until the I/O operation is finished.

• final public void read(int blockNumber,

PageTableEntry memoryPage,ThreadCB thread) OpenFile

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4.6. CLASS PAGEFAULTHANDLER 85

This method is invoked on an open file handle (which is an in-

stance of class OpenFile). It reads block blockNumber from the

file (specified by an open file handle) into page memoryPage on

behalf of thread. The open file handle mentioned above is an

object of class OpenFile. In our concrete case, it would be a

handle of a swap file. Since here read() is used for swapping

pages into the memory, blocks in the swap file must directly cor-

respond to pages in the main memory. Therefore blockNumber

is determined by the ID of memoryPage. This operation blocks

the current thread until the I/O operation is finished.

• final public void write(int blockNumber,

PageTableEntry memoryPage,ThreadCB thread) OpenFile

This method is invoked on an open file handle (which is an

instance of class OpenFile). It writes page memoryPage to block

blockNumber of the file on behalf of thread. As in the case of

read(), blockNumber is determined by the ID of memoryPage.

• public void notifyThreads() Event

Resumes all threads that might be waiting on the event. In

pagefault handling, these are the threads that might be waiting

on the page that has caused a pagefault and is being swapped

in.

• final public void suspend(Event event) ThreadCB

Suspends the thread on which this method is called and puts

the thread on the waiting queue of event.

• final static public void dispatch() ThreadCB

Dispatches a thread.

• final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page.

• final public void setValidatingThread(ThreadCB thread) PageTableEntry

Sets the validating thread of the page. Note that you have to

make sure that the validating thread of a page is set correctly by

the pagefault handler. In other words, you must set the page’s

validating thread using setValidatingThread() when a pagefault

happens and you must set it back to null when the pagefault is

over.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

86 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

• final public static int handlePageFault PageFaultHandler

(ThreadCB thread, int referenceType, PageTableEntry page)

Invokes the pagefault handler. Returns SUCCESS, if the pagefault

has been handled successfully. Otherwise (for instance, it there

is not enough memory) returns FAILURE.

• public SystemEvent(String name) SystemEvent

Constructor for system events. Used to create an event on which

to suspend the thread at the beginning of pagefault processing.

The argument, name, is a string that will appear in the sys-

tem log and can help distinguish this event from other types of

SystemEvent.

• static public void create(String name,

DaemonInterface work, int interval) Daemon

Used to register a daemon with the system. See Section 1.6 for details.

In addition most of the methods in class FrameTableEntry (such as getPage(), setReserved(),

etc.) are required for the implementation of the OSP 2 pagefault handler.

4.7 Methods Exported by Package Memory

The following public methods are defined in the classes of the Memory package. They are

useful for implementing other student modules and are also used to implement the methods

that are part of the current project. To the right of each method we list the class of the

objects to which the method applies.

• static public PageTable getPTBR() MMU

This method returns the page table base register of the MMU,

which is supposed to point to the page table of the currently

running thread; or it is null if no thread is running.

• static public void setPTBR(PageTable table) MMU

This method changes the value of the page table base register.

• static public int getVirtualAddressBits() MMU

Returns the number of bits used to represent an address. This

method is defined in IflMMU and is inherited.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

4.7. METHODS EXPORTED BY PACKAGE MEMORY 87

• static public int getPageAddressBits() MMU

Returns the number of bits used to represent the page number

part in an address. This method is defined in IflMMU and is

inherited.

• public final boolean isValid() PageTableEntry

Tells if the page is valid by checking the validity bit.

• public final void setValid(boolean flag) PageTableEntry

Sets the validity bit of the page to flag.

Notice that there is a difference between setting the valid flag and setting the frame

of a page (using setFrame()). The frame is set just before the swap-in operation so

that the I/O subsystem will know which frame to load the page into. The method

setValid() is used only after this operation is complete.

• public final FrameTableEntry getFrame() PageTableEntry

Returns the frame of the page (or null).

• public final void setFrame(FrameTableEntry frame) PageTableEntry

Sets the frame of the page to frame. If the page is being evicted,

then frame is null.

setFrame() must be called before swapping in a page and after

the page becomes invalid. In the former case, we need to set the

frame of the page to tell the I/O subsystem where to put the

page. The validity bit of the page should be set only after the

page is loaded.

• public final int getID() PageTableEntry

Returns the ID of the page.

• public final TaskCB getTask() PageTableEntry

Returns the task that owns the page.

• final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page.

• final public void setValidatingThread(ThreadCB thread) PageTableEntry

Sets the validating thread of the page.

• public final void isReferenced() FrameTableEntry

Checks the reference bit and tells if the frame has been referenced.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

88 CHAPTER 4. MEMORY: VIRTUAL MEMORY MANAGEMENT

• public final void setReferenced(boolean flag) FrameTableEntry

Sets the reference bit to the value of flag.

• public final boolean isDirty() FrameTableEntry

Tells if the frame is dirty by checking the “dirty” bit of the frame.

• public final void setReserved(TaskCB t) FrameTableEntry

Set frame as reserved by task t.

• public final TaskCB getReserved() FrameTableEntry

Return the task that has reserved this frame or null.

• public final void setUnreserved(TaskCB t) FrameTableEntry

Un-reserve the frame previously reserved by task t; error, if the frame is not reserved

by t.

• public final void setDirty(boolean flag) FrameTableEntry

Sets the dirty bit to flag.

• public PageTableEntry pages[] PageTable

This is the array that represents the page table. It must be

initialized by the page table constructor described in Section 4.4.

• public final TaskCB getTask() PageTable

Returns the owner task of the page table.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

Chapter 5

Devices: Scheduling of Disk Requests

The Devices project implements certain functions of the device driver and of the basic I/O

supervisor. It consists of three public classes: Device, IORB, and DiskInterruptHandler.

The class Device deals with scheduling of I/O requests, DiskInterruptHandler implements

the interrupt handler for I/O devices, and IORB implements the input/output request block.

5.1 Overview of I/O Handling

When the user thread issues a read() or write() system call, the OS assembles an in-

put/output request block (or IORB) and passes this request to the basic I/O supervi-

sor. The IORB includes information about the thread that issued the call, the buffer page

in main memory (which contains the data to be written out or into which the data is to be

copied from the secondary storage), the disk block (to which the buffer data is to be written

out or which contains the data to be read in), and the I/O device. The supervisor examines

the IORB and places it on the waiting queue to the appropriate device.

When the device finished servicing an I/O request, a device interrupt occurs, which is a

way by which external devices notify the CPU about completion of I/O. The eventual result

of an I/O interrupt is that the appropriate device interrupt handler is called. In OSP 2 the

only external devices are disks, so the only device interrupt handler is the disk interrupt

handler. A disk interrupt performs a variety of functions, which we will describe in detail

in Section 5.4. One of these functions is to invoke the I/O scheduler to choose the IORB to

process next. A variety of strategies can be used: shortest seek time first (SSTF), C-SCAN,

C-LOOK, priority scheduling, etc. (OSP 2 disks do not support the command that moves

the reading head to a specified cylinder without starting an I/O — the head moves only when

89

90 CHAPTER 5. DEVICES: SCHEDULING OF DISK REQUESTS

the startIO() command is issued. Therefore, it is not possible to implement the strategies,

such as SCAN and LOOK, which require the head to be moved to the first and last cylinders

even when there are no outstanding I/O requests to these cylinders.)

Once an IORB has been selected, it is dequeued from the device queue and the device is

instructed to process the request. If the queue is empty, the device idles.

5.2 Class IORB

Before discussing the functions of the I/O supervisor, we need to look closer at the structure

of an IORB. This class is defined as follows:

• public class IORB extends IflIORB

and the only mandatory method it has is a 6-argument constructor:

• public IORB(ThreadCB thread, PageTableEntry page, int blockNumber,

int deviceID, int ioType, OpenFile openFile)

As usual for OSP 2 class constructors, the first thing this class does is calling super()

with the same set of arguments. The rest depends on your implementation. For

instance, if you define additional fields in this class, you can initialize them in the

constructor.

As follows from the argument list, an IORB keeps information about the thread which issued

the request, the buffer page involved, the device and the device’s block that contains the

data to be read in or on which the page is to be written out, the type of I/O operation

(which can be either MemoryRead or MemoryWrite — two predefined constants defined by

OSP 2), and the open file handle. The latter will be defined in more detail in Chapter 6.

For now it suffices to know that an open file handle contains runtime information, such as

the file size and the list of blocks allocated to the file, which the OS needs in order to process

I/O operations on that file. This handle comes from one of the parameters of the read() or

write() system call that created the IORB in question.

It is important to keep in mind that IORB is also a subclass of Event so threads can wait

on it and be notified. See Section 1.5 to refresh your memory about OSP 2 events.

The following is the API you can use to query an IORB. All these methods apply to an

IORB object and they return the components of that IORB as described below.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

5.3. CLASS DEVICE 91

• final public int getID()

Provides the Id of the IORB.

• final public OpenFile getOpenFile()

Returns the open file handle associated with the IORB.

• final public PageTableEntry getPage()

Returns the buffer page in main memory, which is the source (in case of write()) or

the target (in case of read()) of the I/O operation in question.

• final public int getDeviceID()

Returns the device involved in the I/O operation.

• final public int getIOType()

The I/O type represented by the IORB. OSP 2 supports two types: FileRead and

FileWrite.

• final public ThreadCB getThread()

Returns the thread that requested the I/O.

• final public int getBlockNumber()

Returns the block number of the device, which is the source (in case of read()) or the

target (in case of write()) of the I/O.

• public final void setCylinder(int cylinder)

Sets the cylinder of the IORB to cylinder. This is done in do enqueueIORB() in

Device. This method is used by OSP 2 to make sure that both it and the student

module calculate the cylinders associated with IORBs the same way.

• public final int getCylinder()

Returns the cylinder previously set by setCylinder(). Since the IORB cylinder is set

in do enqueueIORB(), getCylinder() can be used only in do dequeueIORB().

5.3 Class Device

This class implements the I/O scheduler and performs other functions, such as starting

I/O operations on devices. The following methods are part of the project and must be

implemented by the student.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

92 CHAPTER 5. DEVICES: SCHEDULING OF DISK REQUESTS

• public static void init()

This method is called at the very beginning of the simulation and can be used to

initialize static variables that might exist in the student program.

• public Device(int id, int numberOfBlocks)

This is the class constructor. It must call super(id,numberOfBlocks) and then initial-

ize the device object. One thing that requires initialization is the variable iorbQueue

described later in this section.

• public int do enqueueIORB(IORB iorb)

This method is executed on a device object and puts iorb on the waiting queue of

that device.

Before this, however, we must perform several tasks. First, we need to lock the page

associated with the iorb using the lock() method of class PageTableEntry. This is

done in order to ensure that the page will not be swapped out from now till the end

of the I/O operation. (If this page is not currently in main memory, lock() will cause

a pagefault, which will eventually bring that page in main memory.)

Second, we need to increment the IORB count of the open file handle associated with

iorb. This is done using the method incrementIORBCount() of class OpenFile. Be-

cause different threads can issue concurrent I/O operations on the same file, OSP 2

needs to maintain the count of IORBs that are active for each open file handle. Know-

ing the count allows it to ensure that files cannot be closed before all the outstanding

I/O operations have finished. (Closing a file deallocates its file handle, which can cause

havoc since outstanding IORBs for this file reference that handle.)

Third, we must set the iorb’s cylinder, using the method setCylinder(), to the

cylinder that contains the disk block mentioned in the IORB.

We are now ready for action but not before we check that the thread that requested the

I/O is still alive (using the getStatus() method of class ThreadCB), i.e., its status is

not ThreadKill. If the thread has died, the method do enqueueIORB() should return

FAILURE.

If the thread is alive and the device is idle (we can check for idleness by executing the

method isBusy() on the device), we can start the I/O operation immediately using

the method startIO() on the device object and passing it the iorb as a parameter.

The method do enqueueIORB() should then return SUCCESS and exit.

If the device is busy, then put the iorb on the device queue and exit by returning

SUCCESS. The device queue is represented by the variable iorbQueue that can take any

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

5.3. CLASS DEVICE 93

object that implements of type GenericQueueInterface (page 18), as described later

in this section.

Disk I/O scheduling is typically implemented as part of this method because the dif-

ferent scheduling strategies work best with differently structured device queues. For

instance, for the C-SCAN strategy, the IORBs in the queue might need to be ordered

according to the cylinder numbers that contain the requested disk blocks. In this case,

sorting would be best done when IORBs are enqueued.

• public IORB do dequeueIORB()

This method selects an IORB from the device queue according to some scheduling

strategy, deletes it from the queue, and returns the selected IORB. If the queue is

empty, null is returned.

I/O scheduling strategy (or parts of it) can also be implemented in this method, because

ultimately it is this method that chooses the requests to be serviced. OSP 2 does not

mandate any particular way of implementing scheduling.

Note that here you should not unlock the page used by the dequeued IORB. This is

because the device has not finished servicing that IORB, so the page must stay locked.

It will eventually be unlocked when the device finishes servicing the request and the

device interrupt occurs.

• public void do cancelPendingIO(ThreadCB thread)

The purpose of this method is to go over the device queue and remove all IORBs

initiated by thread. The need to do this arises when a thread is killed. This prevents

the device from servicing requests that nobody wants any more.

For each IORB associated with thread found in the queue, we must unlock the buffer

page used by that IORB. Indeed, when the IORB was enqueued, the corresponding

page was locked. Normally it would be unlocked in the device interrupt handler after

the request is serviced. However, since we are removing the IORB from the device

queue, this request will never be serviced, so we must unlock the page here.

In addition, we must decrement the IORB count of the open file handle associated with

the IORB. Again, normally this is done in the device interrupt handler, but because

the IORB in question will never be serviced, we must decrement the count here.

Finally, we should try to close the open file handle associated with the IORB. To

understand why, let us consider what happens when a thread is trying to issue a

close() system call on a file handle. If the handle does not have associated IORBs,

the file is closed and the handle is deleted. However, if there are outstanding IORBs

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

94 CHAPTER 5. DEVICES: SCHEDULING OF DISK REQUESTS

for the handle, the system sets the closePending flag for that handle, but does not

close the file in order to allow the outstanding I/O requests to execute.1 When all such

requests are finished, the file is closed. One of the places where closePending flag

should be checked is the do cancelPendingIO() method. Indeed, if the file was not

closed due to outstanding I/Os and now we are canceling all the outstanding IORBs

that belong to thread, it is possible that the file handle has no remaining IORBs, so

it can be closed. In other words, when removing an IORB associated with thread we

must check the closePending flag of the open file handle of the IORB. If it is set to

true and the count of IORBs for this handle has become 0, the file handle must be

closed with the close() method of OpenFile. To check the current count of pending

IORBs for a file handle use the method getIORBCount() of class OpenFile.

How to compute a cylinder from a block. Many scheduling strategies require you to

compute a cylinder from a given block number. To do this, you first need to compute the

number of blocks in a track.

A track consists of a number of blocks, which in turn consists of a number of sec-

tors. To find the block size, you can use the functions getVirtualAddressBits() and

getPageAddressBits(), since the size of a disk block equals the size of a main memory

page. This together with the sector size (getBytesPerSector()) gives the number of sec-

tors a block holds.

The number of blocks per track can be used to compute the track that holds the given

block. To compute the cylinder number corresponding to the block we need to know the

number of tracks per cylinder. In OSP 2 we assume that each disk platter is one sided, so

the number of tracks in a cylinder equals the number of platters in the disk. The latter is

obtained using the method getPlatters().

Relevant methods defined in other classes. The following methods defined in other

modules are used by the methods in class Device.

• public final int lock(IORB iorb) PageTableEntry

When executed on a page object, this methods locks that page

in main memory, so it cannot be swapped out.

1 You may have been facing this issue while implementing the kill() method of TaskCB, which destroys
a task. One job that this method is tasked with is closing all the open files owned by the task. You may have
experienced the unexpected effect of the close() system call where some open file handles stayed around
after being closed. The reason for this was the presence of outstanding IORBs.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

5.3. CLASS DEVICE 95

• public final void unlock() PageTableEntry

Unlocks the page that was previously locked by the lock() method.

• final public void incrementIORBCount() OpenFile

Increments the count of IORBs active for the given file handle.

• final public void decrementIORBCount() OpenFile

Decrements the IORB count for the given file handle.

• final public int getIORBCount() OpenFile

Returns the current IORB count for the open file handle.

• final public void close() OpenFile

Closes the open file handle.

• final public int getStatus() ThreadCB

Returns the status of a thread. In our case we need to know

when a thread is killed. The status of a killed thread is

ThreadKill.

• static final public int getVirtualAddressBits() MMU

The number of bits used to specify a virtual address.

• static final public int getPageAddressBits() MMU

The number of bits used to specify a page address. From this

and the number of bits in a virtual address one can compute the

size of a memory page (and of a disk block).

• public final void setCylinder(int cylinder) IORB

Sets the cylinder of the IORB to cylinder.

• public final int getCylinder() IORB

Returns the cylinder previously set by setCylinder(). Since

the IORB cylinder is set in do enqueueIORB(), getCylinder()

can be used only in do dequeueIORB().

In addition, the following methods, implemented in class Disk, are available. These

methods can be useful in order to implement certain I/O scheduling strategies. Note that

Disk is a subclass of Device. Since the devices we are dealing with in this project are disks,

all these methods are applicable to the Device objects that occur in this project.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

96 CHAPTER 5. DEVICES: SCHEDULING OF DISK REQUESTS

• final public int getHeadPosition()

Returns the head position (the cylinder number where the reading head is parked).

Cylinders are counted from 0.

• final public int getPlatters()

Returns the number of platters in the disk.

• final public int getTracksPerPlatter()

Tells how many tracks a platter has (or, equivalently, the number of cylinders on the

disk).

• final public int getSectorsPerTrack()

Tells the number of sectors per track.

• final public int getBytesPerSector()

Returns the number of bytes per sector.

• final public int getRevsPerTick()

The number of revolutions of the disk per tick.

• final public int getSeekTimePerCylinder()

How long it takes to seek to the next cylinder.

Summary of Properties of Class Device

The following API provided by class Device (implemented in its superclasses) can be used

to obtain information about OSP 2 devices. All the methods and variables, below, apply to

Device objects.

• protected GenericQueueInterface iorbQueue

This variable holds the device queue. It is manipulated by the methods do enqueueIORB()

and do dequeueIORB(). The implementation of the device queue is up to the student

module. The only requirement is that the class of the queue object must implement the

interface GenericQueueInterface. This interface mandates the methods length(),

isEmpty(), and contains(), as described on page 18. Note that the interface de-

fines only the methods OSP 2 itself uses internally. For your purposes, your queue

class would need additional methods, such as insertion and deletion of members of the

queue. Note that since these methods are not defined in GenericQueueInterface you

would need to use the cast operator to invoke them on iorbQueue.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

5.4. CLASS DISKINTERRUPTHANDLER 97

• final public boolean isBusy()

Tests if the device is busy.

• final public void setBusy(boolean flag)

Sets the device busy or idle depending on the value of flag.

• final static public Device get(int deviceID)

Returns the device object with the given device Id.

• final public int getID()

Returns the Id of the device.

• final public void startIO(IORB iorb)

Starts the device and instructs it to perform the I/O operation specified in iorb.

As part of this operation the device becomes busy, so you do not need to set it busy

explicitly.

• final public String ospDeviceQueue()

This method returns a string that contains the OSP version of the waiting queue to

the device. You can print it out and use for debugging.

5.4 Class DiskInterruptHandler

This class is declared as follows:

public class DiskInterruptHandler extends IflDiskInterruptHandler

It has only one method, do handleInterrupt(), which implements the device interrupt

handler. The method has the following signature:

public void do handleInterrupt()

The following actions need to be performed as part of the handler:

1. Obtain information about the interrupt from the interrupt vector, class InterruptVector,

described on page 12. The main piece of information is the IORB that caused the inter-

rupt. It is obtained using the method getEvent() of class InterruptVector (since the

IORB is the event that “caused” the interrupt). The other necessary pieces of infor-

mation, the thread, page, open file handle, etc., are obtained using the API described

in Section 5.2.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

98 CHAPTER 5. DEVICES: SCHEDULING OF DISK REQUESTS

2. The IORB count of the open file handle associated with the IORB must be decremented

using decrementIORBCount() as described earlier.

3. If the open file has the closePending flag set and the IORB count is 0, the file

might need to be closed. The IORB count of a file handle can be obtained via the

method getIORBCount(). See the relevant part of the description of the method

do cancelPendingIO().

4. The page associated with the IORB must be unlocked, because the I/O operation (due

to which the page was locked) is over.

5. If the I/O operation is not a page swap-in or swap-out, then, unless the thread that

created the IORB is dead, we need to set the frame associated with the IORB’s page

as referenced using the method setReferenced() of FrameTableEntry. In addition if

it was a read operation (I/O type FileRead) then the frame must be set dirty (using

the method setDirty() of FrameTableEntry). Of course, this can only be done if

the task associated with the thread is still alive, because otherwise the memory of

the task will be deallocated anyway. The thread’s task is obtained using the method

getTask() and its status is checked using the method getStatus(). A live task has

status TaskLive; otherwise, the status is TaskTerm.

To find out whether an I/O is a swap-in or swap-out from/to the swap device, one

should compare the device Id of the IORB (getDeviceID()) with SwapDeviceID — a

constant defined in OSP 2 .

6. If the I/O was directed to the swap device and the task that owns the thread and the

IORB is alive, we should mark the frame as clean (setDirty(false)).

7. If the task that owns the IORB is dead (status TaskTerm) and the frame associated

with the IORB was reserved by that task (verifies using getReserved()), we must

unreserve the frame using setUnreserved().

8. The threads waiting on the IORB must be waken up by a call to notifyThreads().

9. The device must be set to idle using the method setBusy() with the appropriate flag.

10. The device must be told to service a new I/O request. This IORB is picked up using the

method dequeueIORB(). If it returns a non-null object, the device should be restarted

with that IORB using the method startIO().

11. Finally, a new thread must be dispatched using the method dispatch() of ThreadCB.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

5.4. CLASS DISKINTERRUPTHANDLER 99

Relevant methods defined in other classes. The following methods defined in other

modules can be used to implement the disk interrupt handler.

• final static public Event getEvent() InterruptVector

Extracts the event that caused the interrupt (e.g., a page, an

IORB).

• final static public ThreadCB getThread() InterruptVector

Returns the thread that caused the interrupt.

• final public void decrementIORBCount() OpenFile

Decrements the count of active IORBs associated with the open

file handle.

• final public int getIORBCount() OpenFile

Returns the current IORB count for the open file handle.

• public final void setReferenced(boolean flag) FrameTableEntry

Marks frame as referenced.

• public final void setDirty(boolean flag) FrameTableEntry

Marks frame as dirty.

• public final TaskCB getReserved() FrameTableEntry

Marks frame as reserved.

• public final void setUnreserved(TaskCB t) FrameTableEntry

Unreserves frame.

• final public int getDeviceID() IORB

Returns the device associated with the IORB.

• final public ThreadCB getThread() IORB

Returns the thread that issued the I/O request.

• final public PageTableEntry getPage() IORB

Returns the buffer page in main memory that is the source or

the target of the I/O.

• public void notifyThreads() Event

Wakes up threads that are waiting on the event.

• final public void setBusy(boolean flag) Device

If flag is true, marks the device as busy. Otherwise, marks it as idle.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

100 CHAPTER 5. DEVICES: SCHEDULING OF DISK REQUESTS

• final public IORB dequeueIORB() Device

Takes an IORB off the device queue and Returns that IORB object.

• final static public void startIO(IORB iorb) Device

Tells the device to start working on iorb.

• final static public void dispatch() ThreadCB

Dispatches a thread to run.

• final public TaskCB getTask() ThreadCB

Returns the task that owns the thread.

• final public int getStatus() ThreadCB

Tells the status of the thread. See GlobalVariables, Section 1.4

for the list of legal status codes for a thread.

• final public int getStatus() TaskCB

Tells the status of the task. See GlobalVariables, Section 1.4

for the list of legal status codes for a task.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

Chapter 6

FileSys: The File System

This project deals with the logical layer of I/O infrastructure in an operating system. The

project includes five classes: MountTable, which maps files to physical devices; INode, which

keeps track of space allocation to files; DirectoryEntry, which defines the directory struc-

tures; OpenFile, which provides the methods to manipulate open file handles (including the

read() and write() operations); and FileSys, which provides a set of operations, such as

create() and delete(), on non-open files. We will discuss these classes in detail later.

6.1 Overview of the OSP 2 File System

The OSP 2 file system is a node-labeled tree. The nodes of the tree represent files. The root

node of the tree is labeled with the 1-character constant string, FileSys.DirSeparator,

which can be “/” or “\”. In the examples, we are going to use “/”, but this should not be

assumed in the student programs. The rest of the labels are strings of arbitrary characters

except FileSys.DirSeparator. The labels are called names of files. A full name (or a

pathname) of a file (or directory) associated with the current node is obtained by concate-

nating all the labels on the branch from the root to that node while separating the different

names with FileSys.DirSeparator.

A file can be a plain file or a directory. A directory is a special file that contains infor-

mation about other files. These other files are members of the directory; they correspond

to the nodes that are children of the directory node in the tree. Thus, intermediate nodes

of the file tree can only be directories. The leaves of the tree can be either plain files or

directories. A directory that appears as a leaf is said to be empty.

Note that directory names that differ only in DirSeparator at the end are considered

101

102 CHAPTER 6. FILESYS: THE FILE SYSTEM

the same, i.e., if DirSeparator is “/” and /foo is a directory then /foo/ is considered to

be the same directory. Also, multiple occurrences of the separator character can be replaced

by just one occurrence. For instance, /foo/bar and ///foo//bar refer to the same file.

A file (or a directory) can be created and deleted. To work with a file, a user thread must

first open it and obtain an open file handle. This handle contains run-time information

about the file. The read and write operations are performed on the open file handle rather

than on the name of a file. When a thread is done working with a file, it can close the

file handle and thus destroy it. An open file handle is the locus of the run-time information

about the file. In a typical operating system it includes (among others) the inode of the file,

the task, and the current position in the file. OSP 2 does not keep the current position, but

it does maintain the rest of the information.

A pathname identifies the file uniquely, but a file can have any number of names. In fact,

a file is represented by its inode (index node), which contains information about the blocks

allocated to the file. Pathnames are associated with inodes through directory entries, but

inodes themselves contain no information about the names of the corresponding files. To

associate another name with a given file, a thread can create a hard link to a file, which

creates another association between a pathname and an inode.

Deleting a file does not necessarily destroy the inode. Instead, it destroys the directory

entry that associates the inode with a particular pathname that was used as a parameter to

the delete() operation. Each inode keeps a hard link count — the number of hard links to

it (which is the number of distinct names the file has). When a delete operation is executed

on a pathname associated with a particular inode, the hard link count is decremented. The

inode is deleted only when both the hard link count and the open count (described below)

becomes zero.

The inode keeps track not only of the number of hard links, but also of the number of

times the file open — the open count. The same inode can be open multiple times because

the open() operation can be executed on different names associated with the file (and, in

fact, even on the same pathname). When this happens, a new open file handle is allocated,

and the same file can be accessed through different handles. Threads of the same task share

the open file handles, so typically they do not need to open the same file multiple times.

However, different tasks might want to access the same file concurrently in which case they

need separate file handles. When a file is open through one of its pathnames, the open count

is incremented. Closing a file handle (with the close() operation) decrements the open

count.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

6.2. CLASS MOUNTTABLE 103

Directory name Device ID

/foo 0

/swap 2

/foo/bar 3

/ 1

Figure 6.1: A Mount Table

6.2 Class MountTable

Mount tables associate files with devices. For instance, in Windows, a file named C:\foo\bar
is said to be residing on device C and a file named D:\abc\cde is on device D. A mount table

will then associate the letters C and D with particular physical devices.1

In Unix systems the association between devices and files is more flexible, but also more

complex. First, Unix does not use letters to represent devices. Instead, devices are associated

with directories. A mount table then is a relation that consists of a list of pairs of the form

〈dirname, deviceID〉. The directory part of such an entry is called a mountpoint. An

example of a mount table is depicted in Figure 6.1.

In the figure we see four directories associated with four physical devices. The first

question is: how does the system decide on which device any given file should reside? For

instance, consider the file /foo/bar/abc/cde. Since this file is a descendant of the root

directory, /, and this directory is a mountpoint residing on device 0, one might think that

this is where the file should live. However, this file is also in a subdirectory of the mountpoint

/foo, which lives on device 0. Looking more closely, we see that our file is also a descendant

of the mountpoint /foo/bar, which is on device 3. Which device is right?

The actual mapping of files to devices works as follows. Given a full file name, f ,

the system finds the longest name of a mountpoint, d, that matches f , where “matches”

means that d is a prefix of f and f is a descendant of d in the file tree hierarchy. For

instance, the longest mountpoint in the table of Figure 6.1 that matches /foo/bar/abc/cde

is /foo/bar and thus the file /foo/bar/abc/cde resides on device 3. Note that if the mount

table had a pair 〈/foo/bar/ab, 4〉 then the mountpoint /foo/bar/ab would not match

/foo/bar/abc/cde because the latter file is not residing in a subdirectory of /foo/bar/ab

1 Typically a physical device is further subdivided into partitions and the drive letters (as well as
directories in Unix — see below) are associated with partitions. In other words, partitions represent an
intermediate layer between files and the actual devices they reside on. This intermediate layer does not exist
in OSP 2 , and we will ignore it here.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

104 CHAPTER 6. FILESYS: THE FILE SYSTEM

(but rather in /foo/bar/abc).2

The MountTable class in OSP 2 is required to provide the correct mapping of files to

devices. The mount table itself is encapsulated in a superclass of MountTable. What is

visible, however, is the static method getMountPoint(), which takes a device number and

returns the corresponding mount point. Another method, getTableSize(), tells the number

of available physical devices (this number can be different for different parameter files). The

device numbers range from 0 to getTableSize()-1. Thus, together these methods make it

possible to access all mount points. To provide the file-to-device mapping, the student needs

to implement the following methods of the class MountTable:

• public static boolean do isMountPoint(String dirname)

This method tells if dirname is a mountpoint of one of the devices. It uses the method

getMountPoint() internally.

• public static int do getDeviceID(String pathname)

This method checks the mount table and returns the Id of the device that hosts the

file with the given pathname. The method for determining the device was described

earlier.

Relevant methods from other classes. The implementation of these methods might

need to use the following methods:

• public static String getMountPoint(int deviceID) MountTable

Returns the mountpoint associated with device deviceID. This

method is an OSP 2 built-in.

• public static int getDeviceID(String pathname) MountTable

Returns the device Id that hosts pathname. Note that

this method eventually calls your method do getDeviceID()

described above. You have to use it here instead of

do getDeviceID() because of the convention explained in Sec-

tion 1.8.2, which prohibits student modules from calling the do

methods.

2 Another way to describe the matching criterion is to standardize all file names. A standardized file
name is a full file name such that multiple occurrences of DirSeparator are replaced with one and if the
file is a directory then DirSeparator is added at the end of the name. Given a file name, f , the matching
mountpoint is the one whose standardized name is the longest prefix of f .

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

6.3. CLASS INODE 105

• final static public int getTableSize() Device

Tells how many devices there are. The number is specified in the

parameter file and can vary from one simulation run to another.

• final static public Device get(int deviceID) Device

Returns the device object with the given Id. In conjunction

with getTableSize() his method can be used in a loop to ex-

amine each device in turn, because device IDs range from 0

to getTableSize()-1. Note that all devices are mounted by

OSP 2 at the beginning of the simulation and no devices are

added or removed during a simulation run. Therefore the num-

ber of devices remains constant and the device table has no

“holes.”

6.3 Class INode

An OSP 2 inode represents a concrete file. It keeps the information about the device where

the file lives, the blocks occupied by the file, the hard link count, and the open count.

The most important information here is the set of blocks occupied by the file. The actual

data structure to be used for this is up to the student implementation (the course instructor

may have specific requirements for this data structure).

The following methods are to be implemented as part of the project:

• public INode(int deviceID)

The constructor. It should call super(deviceID) and then initialize the instance

variables of the inode (if necessary).

• public static boolean do isFreeBlock(int block, int deviceID)

Tells whether block on device with Id deviceId is free.3

• public int do allocateFreeBlock()

When applied to an inode object, allocates a free block to that inode and returns the

block number of that block. Marks the block as used. Make sure that the INode block

count is set correctly (see the method setBlockCount()). Returns NONE if the device

has no free blocks.

3 Note that from the point of the object-oriented design this method better fits in class Device. However,
space management is not a function of the basic I/O supervisor that Device implements. This is an example
of the tension between the layered architecture of an OS and the object-oriented design.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

106 CHAPTER 6. FILESYS: THE FILE SYSTEM

• public void do releaseBlocks()

Releases all disk blocks occupied by the inode. Make sure that the INode block count

is set correctly (setBlockCount()).

It is clear from the above that you have to keep track of the free space on the device. For

some representations, such as bitmaps, it is useful to know the size of each device in blocks.

This size can be obtained using the method getNumberOfBlocks() of the class Device.

Since you have to keep track of the valid inodes, you might also need to implement the

file allocation table (or a master file table) thats hold these inodes.

Relevant methods defined in other classes.

• final public int getNumberOfBlocks() Device

Returns the total number of blocks on the device.

• final static public int getTableSize() Device

Returns the total number of devices in the device table (i.e., in

the current simulation of the OSP 2 system).

• public final int getBlockCount() INode

Returns the number of blocks allocated to this i-node. This

method is inherited from a superclass of INode.

• public final void setBlockCount(int blockCount) INode

Sets the number of blocks allocated to this i-node. This method

is inherited from a superclass.

• public final int getDeviceID() INode

Returns the device ID of this i-node.

• public static String getMountPoint(int deviceID) MountTable

Returns the mount point of the given device.

Summary of Properties of INodes.

The INode class has methods (implemented as built-ins) and variables which provide access

to the various components of that class, as listed below:

openCount: The count of active open file handles associated with the inode. It is obtained

using getOpenCount() and changed via incrementOpenCount() and decrementOpenCount().

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

6.4. CLASS DIRECTORYENTRY 107

hardLinkCount: The number of pathnames associated with the inode. This count is ob-

tained via getLinkCount() and changed using the methods incrementLinkCount()

and decrementLinkCount().

blockCount: The number of blocks allocated to the file (the file size). This item is obtained

using getBlockCount() and set using setBlockCount().

device ID: The device Id of the inode. It is obtained via the method getDeviceID().

6.4 Class DirectoryEntry

If you were wondering how pathnames are associated with inodes, the suspense is over: this

is done through directory entries defined by the class DirectoryEntry. A directory entry

includes a pathname, an inode, and a type (FileEntry or DirEntry). The type tells whether

the particular directory entry represents a plain file or a directory.

The methods to be implemented as part of this project are listed below.

• public DirectoryEntry(String pathname, int type, INode inode)

The class constructor. Calls super(), as usual, and initializes instance variables, if

necessary.

• public static INode do getINodeOf(String pathname)

Given a pathname, returns the corresponding inode. In order to make this possible,

the class DirectoryEntry must maintain the collection of all directory entries.

In addition, you need to implement a number of supporting methods that other classes

in your package might need to use to insert directory entries into the directories, delete the

entries, etc.

Summary of Properties of Class DirectoryEntry.

This class does not provide any methods, but there are several variables:

pathname: This property is accessible through the method

final public String getPathname()

This is the pathname represented by this directory entry.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

108 CHAPTER 6. FILESYS: THE FILE SYSTEM

INode: This property is accessible through the method

final public INode getINode()

It is the inode that this directory entry associates with a pathname. A related method

in this class is getINodeOf(), which takes a path name parameter and returns the

corresponding INode:

final public static INode getINodeOf(String pathname)

Unlike getINode(), this method is static.

type: This property is accessible through the method

final public int getType()

It specifies the type of the directory entry, i.e., whether it represents a regular file

(FileEntry) or a directory (DirEntry).

6.5 Class OpenFile

This class provides methods to create open file handles, access their components, and use

them for performing I/O operations.

• public OpenFile(INode inode, TaskCB task)

This is a constructor for open file handles. It must call super() with the same set

of parameters and then, possibly, initialize the various variables that you might have

added to the class.

• static public OpenFile do open(String filename, TaskCB task)

This method creates open file handles. It receives a file name (which must be a previ-

ously created file) and a task object, creates an open file handle for the file, and adds

the handle to the table of open files of the task. (Recall from Section 2 that open files

table is one of the resources owned by a task.)

First, the file must already exist before it can be open. Existence should be checked

using a method provided by the class FileSys. Since this class is implemented by

you and is not wrapped by the OSP 2 IFL layer. Therefore, the implementation and

name are completely up to you. Second, a mountpoint cannot be open, so you must

check that the argument is not a mount point (the method isMountPoint() of class

MountTable can be used to check this).

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

6.5. CLASS OPENFILE 109

Once we pass these checks, a new open file handle can be created. The OpenFile()

constructor takes an inode and a task as a parameter, so we must obtain the inode

corresponding to filename (using the method getINodeOf() discussed earlier). After

constructing the handle, we should add it to the task with the method addFile()

of class TaskCB. Finally, the count of open files for the inode should be incremented

(incrementOpenCount()) and the newly created file handle returned.

• public int do close()

A file is closed when its open file handle is no longer needed. However, closing a file is

trickier than it might seem.

First, the file might still have outstanding (unprocessed) IORBs. As discussed in

Chapter 5, such a file cannot be closed right away. Instead, we should mark the file as

needing to be closed and leave it alone. Marking is done by setting the closePending

flag to true. (closePending is a field of the context OpenFile object, which is set

directly, through an assignment.) The disk interrupt handle will close that file after

the last outstanding IORB is gone.

If the handle cannot be closed due to outstanding IORBs, do close() should return

FAILURE. If the file can be closed immediately, then we should proceed adjusting the

relevant structures. One thing that needs to be done here is to decrement the open

file count of the inode associated with our file handle. The inode is obtained using the

getINode() method and the count is changed using decrementOpenCount() of class

INode.

Next, we should check if we can destroy the inode associated with the file handle

and release the disk blocks owned by that inode. As discussed earlier, an inode can

be deleted when both its open file count (getOpenCount()) and its hard link count

(getLinkCount()) are zero. The inode’s disk blocks are released with the method

releaseBlocks() of class INode. The method to remove an inode from the disk master

file table should reside in class INode and its name (and, of course, its implementation)

are left for you to decide.

Finally, the closePending field is reset to false, the file handle is removed from the

open files table of the task associated with that handle, and SUCCESS is returned.

• public int do read(int fileBlockNumber, PageTableEntry memoryPage,

ThreadCB thread)

The do read() method is executed on a file handle object. It creates a read request to

the device associated with the file handle, enqueues the request to the device and waits

until the I/O is complete — I/O operations in OSP 2 are synchronous at the thread

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

110 CHAPTER 6. FILESYS: THE FILE SYSTEM

level. That is, the thread that issues an I/O operation is eventually blocked until the

operation is finished.4

It is recommended to make sure that the parameters passed to open() are consistent.

For example, the fileBlockNumber parameter must be within the appropriate range

(non-negative and not exceed the file size). If it is not, FAILURE should be returned.

Likewise, it is wise to check if memoryPage and thread are not nulls.

In the next step, a new system event is created using the constructor SystemEvent()

and the current thread is suspended on that event. At this point it is recommended to

refresh your memory and read about thread suspension and resumption in Section 3.2.

A thread that is suspended on a system event is not really blocked, but instead can be

thought of as having changed status from user thread to system thread. When the read

operation is complete, the event will “happen” and the thread will be resumed. To be

able to resume the thread after the I/O is complete, you should save the SystemEvent

object in a variable.

We are now ready to construct an IORB for the request. The inode and device Id can

be extracted from the open file handle using the appropriate methods. The I/O type

(one of the parameters in the IORB constructor) is, naturally, FileRead. The only

thing that requires care is the disk block number parameter to the constructor.

Note that the fileBlockNumber parameter to do read() is the number of the logical

block within a file. It must be mapped to the physical block of the disk. Information

about the disk blocks allocated to the file is stored in the inode, which is implemented

in your INode class. It is recommended that you implement a method in INode that,

when applied to an inode with a logical file block number as a parameter, returns the

corresponding physical block.

After collecting all the needed components, we use the IORB() constructor to create

an IORB for the read request.

Next, we must enqueue the request to the appropriate device using the method enqueueIORB()

of class Device. Note that enqueueIORB() locks the target memory buffer page, which

can cause some swapping activity, and the thread must wait until swapping is finished.

As usual in OSP 2 , a waiting thread might get killed, so it is necessary to ascertain

that the thread is still alive after enqueueIORB() returns. If the thread was killed,

do read() should return FAILURE.

4 However, I/O is asynchronous at the task level: a thread that does not wish to wait for I/O can spawn
another thread that would perform the I/O. Meanwhile, the first thread can go about its business while the
second thread would wait. When the I/O is done, the two threads can merge.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

6.5. CLASS OPENFILE 111

If enqueueIORB() finished successfully, thread must be suspended on iorb. When

this I/O completes, thread will be notified and control will get past the suspend()

operation. At this point, again, we must check if the thread is still alive. If it is dead,

FAILURE is returned; if it is alive, we execute notifyThreads() on the previously

created SystemEvent object and return SUCCESS.5

• public int do write(int fileBlockNumber, PageTableEntry memoryPage,

ThreadCB thread)

Writing is similar to reading in many respects. One important difference (in OSP 2 ,

anyway) is that a file block is considered out of range only if it is negative. If

fileBlockNumber is higher than the number of blocks in the file, the file is extended

with the necessary number of blocks. For instance, if the current size of the file is 2

blocks and fileBlockNumber is 5, then 4 new blocks must be allocated to the file.

(Note that blocks are counted from 0, so 5 refers to the 6th block of the file.) Addi-

tional disk blocks are allocated to an inode as a result of the allocateFreeBlock()

system call.

Another important difference is that the device might not have enough free space to

accommodate the file expansion. In this case, FAILURE should be returned. Note that

free disk space management is done in class INode and is student’s responsibility.

Relevant methods defined in other classes.

• public static boolean isMountPoint(String dir) MountTable

Tells if dir is a mountpoint.

• final public void addFile(OpenFile file) TaskCB

Adds file to the open files table of the task.

• final public void removeFile(OpenFile file) TaskCB

Removes the file handle from the task’s open files table.

• final public void suspend(Event event) ThreadCB

Suspends thread on event.

• public void notifyThreads() Event

Notifies threads that are waiting on event.

5 Note: the logic of your implementation should be such that each suspend() is matched by a
notifyThreads() system call.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

112 CHAPTER 6. FILESYS: THE FILE SYSTEM

• final public int getIORBCount() OpenFile

Returns the IORB count of the open file handle.

• final public void incrementIORBCount() OpenFile

Increments the IORB count of the open file handle by 1.

• final public void decrementIORBCount() OpenFile

Decrements the IORB count of the open file handle by 1.

• final public INode getINode() OpenFile

Returns the inode of the open file handle.

• final public void setINode(INode inode) OpenFile

Sets the inode of the open file handle.

• final public TaskCB getTask() OpenFile

Returns the task of the open file handle.

• public final int getOpenCount() INode

Returns the open file count of inode.

• public final void incrementOpenCount() INode

Increments the open file count of inode by 1.

• public final void decrementOpenCount() INode

Decrements the open file count of inode by 1.

• final public void releaseBlocks() INode

Frees up disk blocks held by the inode.

• public SystemEvent(String type) SystemEvent

The constructor for system events. The type parameter is used

to provide a tag with which the event will be displayed in the log

file. This tag can be useful for debugging when you need to trace

the execution of your project. When a thread is suspended on

a SystemEvent, it can be thought of as having changed status

from the user thread to the system thread. See Chapter 3.2 for

more details on suspension and resumption of threads.

• public IORB(ThreadCB thread, PageTableEntry page,

int blockNumber, int deviceID,

int ioType, OpenFile openFile)

Creates an IORB with the given parameters.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

6.6. CLASS FILESYS 113

• final public int enqueueIORB(IORB iorb) Device

Enqueues iorb to its associated device. This operation is block-

ing and can cause a pagefault (and the ensuing swapping) be-

cause enqueueIORB() needs to lock the target memory page in

order to shield it from page replacement. See Chapters 4 and 5

for a more thorough explanation of page locking. This method

returns SUCCESS if iorb has been successfully enqueued. A fail-

ure is returned when enqueuing fails (for example, if the original

thread has died).

• final public int allocateFreeBlock() INode

Allocates a free block to inode. The block becomes occupied.

Summary of the Properties of Open File Handles

IORB count: The number of outstanding IORBs for the handle. Obtained using getIORBCount()

and changed using incrementIORBCount() and decrementIORBCount().

INode: The INode of the open file handle. Obtained using getINode() and set using

setINode().

Task: The task that owns the open file handle. Obtained using the getTask() method.

closePending: This field is set to true by do close() is the OpenFile object has outstand-

ing IORBs and cannot be closed immediately. When the last IORB for this OpenFile

object is processed, do close() will close the file.

6.6 Class FileSys

• public static void init()

As usual in OSP 2 , this method is called at the beginning of every simulation run.

It can be used to initialize static variables that your implementation might use (for

instance, the variables used in the implementation of the mount table, in the open file

table, in the list of free blocks on the various devices, etc.).

• final static public int do create(String pathname, int size)

This method creates a file with a given pathname and size (in bytes). In one sentence,

this means making the necessary checks and then creating the corresponding inode and

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

114 CHAPTER 6. FILESYS: THE FILE SYSTEM

the directory entry that relates pathname with that inode. The devil is in the details,

however, and this is what we will be discussing next.

First, you have to check if the file with the same name already exists. If so, FAILURE

is to be returned. Then check if pathname refers to a directory, a plain file, or a

mountpoint. A pathname refers to a mountpoint if it is listed in the mount table. It

refers to a directory if it ends with the filename separator, DirSeparator, but is not a

mountpoint. It refers to a plain file otherwise.

Note however, that the convention that a directory name ends with DirSeparator is

used in the create() call only (just in order to avoid introducing yet another sys-

tem call). In all other contexts, pathnames such as /foo/bar and /foo/bar/ refer

to the same directory. Also, if a plain file by the name /foo/bar already exists and

do create() is called with /foo/bar/ as a parameter, the call should fail and FAILURE

should be returned. Likewise, if do create("/foo/bar/",...) was earlier called to

create a directory then a subsequent call do create("/foo/bar",...) should fail.

Thus, it is a good idea to normalize file names before doing any filename comparisons.

A normalized pathname is a full pathname such that it does not have repeated oc-

currences of DirSeparator (pathnames /foo///bar// and /foo/bar/ are considered

the same, but only the latter is normalized) and pathnames that represent directories

have DirSeparator at the end (while plain files do not).

If the file is a mountpoint, things are easy: mountpoints are not created by a regular

create() call (but rather by a special system call; in OSP 2 they just exist), so we

just return FAILURE.

Next, we must check if the caller intended to create a file or a directory by checking

the last character of pathname. The appropriate file type indicator (FileEntry or

DirEntry) will later go into the directory entry for the file. Also, for plain files, the

size parameter indicates the size of the file in bytes. However, for directories this

parameter is ignored, since directories are assumed to occupy exactly one disk block.

The correct size parameter should be used when constructing the corresponding inode.

It is common in programming to attempt to create a file in a non-existent directory with

the intent that the system would create all the intermediate subdirectories automati-

cally. For instance, suppose that the directory /foo exists, but /foo/bar does not. In

OSP 2 , do create("/foo/bar/moo/abc.html",...) should then create the interme-

diate directories, /foo/bar and /foo/bar/moo, before creating /foo/bar/moo/abc.html.

Note that this means that while creating the intermediate relations do create() will

call create() (its OSP wrapper), which in turn will call do create() recursively.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

6.6. CLASS FILESYS 115

Next we should check the mount table to determine the device where the file is to be

created. Recall from Section 6.2 that determining the device is the job of the method

getDeviceID() in class MountTable. We need to make sure that the device has enough

free space. Recall that space management is the job of the INode class. You might want

to implement a method in that class which returns the number of free blocks. If this

number is less than the number of blocks needed to accommodate our file, FAILURE

should be returned. It is therefore important to correctly calculate the number of

blocks needed to accommodate a file creation request. Recall that do create() gets

the size of the file in bytes, and this has to be converted into disk blocks. A block size

equals the size of a virtual memory page, which can be obtained using the two methods

provided by the class MMU: getVirtualAddressBits() and getPageAddressBits().6

Note, however, that OSP 2 assumes that directories occupy exactly one block and the

file size parameter in do create() should be ignored in this case.

After all these checks, nothing (but a computer crash) can stop us from creating the

file. We can use the constructor for the class INode to create a new inode. Next, we

should use the methods incrementLinkCount() and allocateFreeBlock() of INode

to update the count of hard links to the inode and to allocate the right number of disk

blocks to it. The inode should be also inserted into the device file allocation table for

safekeeping.

To complete the process, we must create a directory entry for pathname and insert it

into the appropriate directory. This is done using the constructor of DirectoryEntry

and other methods that depend on your implementation of directories.

When all is done, SUCCESS is returned.

• final static public int do link(String pathname, String linkname)

This method creates a new hard link, with the name linkname, to the inode associated

with pathname. The process is similar to creating a file: you need to check if a directory

entry for linkname already exists and return FAILURE if it does. Otherwise (if there

is no file named linkname), you must create an appropriate directory entry. However,

there also are significant differences between linking and creating files.

First, no new inode needs to be created. Instead, the inode associated with pathname

is used. Therefore, no additional space needs to be allocated. Second, hard links to

directories are not allowed (as in Unix). Third, unlike the case of file creation, no

6 Note that a file creation request might specify size 0, in which case the request must succeed even if the
device has no room.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

116 CHAPTER 6. FILESYS: THE FILE SYSTEM

intermediate directories are created. So, if the directory /foo exists but /foo/bar

does not, then creation of a hard link /foo/bar/abc.html to another file should fail.

Other than that, creation of a new directory entry to associate linkname with the

inode of pathname proceeds as in the case of do create(). In particular, do not forget

to increment the hard link count.

Note one interesting thing: after a hard link to an inode is created, linkname and

pathname become virtually indistinguishable. That is, linkname is as much of a “file

name” for the corresponding inode as pathname is. The inode itself does not contain

any filename information and all the naming takes place in directory entries.

• final static public int do delete(String pathname)

Destroying a file is not simple as it might seem. First, you must check if a file with

the name pathname exists. Note that you cannot always tell from the name whether it

refers to a plain file or a directory, so you must use normalized names to do the checks.

Also, non-empty directories cannot be deleted and, of course, deletion of mountpoints

is not allowed. In all these cases, FAILURE should be returned.

Once you get past these checks, you must remember that pathname is just one of

the several possible hard links to the inode associated with a file. If after deleting the

directory entry for pathname and decrementing the hard link count the number of hard

links for the inode (obtained via getLinkCount()) is non-zero, do not delete the inode.

Recall that inodes also have open count, in addition to hard link count, which counts

the number of open file handles for the inode. If this count is positive, the inode must

not be deleted. In both cases, however, the directory entry for pathname must still be

deleted. If the hard link count as well as the open count are zero, both the inode and

the directory entry must be deleted. In case the inode is deleted, all its blocks must

be freed up (using releaseBlocks()). Finally, SUCCESS should be returned.

• final static public Vector do dir(String dirname)

This method returns a vector of normalized file names that reside in directory dirname.

If dirname does not exist or is not a directory, null is returned.

Relevant methods from other classes. The following methods might be required to

implement class FileSys.

• public static boolean isMountPoint(String dir) MountTable

Tells if a given pathname is a mountpoint.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

6.6. CLASS FILESYS 117

• static final public int getVirtualAddressBits() MMU

Tells how many bits are used to represent a virtual address.

This and the next method can tell how many bits are needed to

represent an address within a page, from where page/block size

can be computed.

• static final public int getPageAddressBits() MMU

Tells the number of bits used to represent a page address.

• public final int getLinkCount() INode

Returns the number of hard links to inode.

• public final void decrementLinkCount() INode

Decrements the hard link count for inode.

• public final void incrementLinkCount() INode

Increments the hard link count for inode.

• public final int getOpenCount() INode

Returns the count of open file handles for inode.

• final public int allocateFreeBlock() INode

Allocates a free block to inode. The block becomes occupied.

• final public void releaseBlocks() INode

Releases all the blocks held by inode.

• public final int getDeviceID() INode

Tells the device Id of the inode.

• final public static int create(String name, int size) FileSys

The OSP 2 wrapper for do create()

• final public static INode getINodeOf(String pathname) DirectoryEntry

Returns the inode associated with pathname. If no directory

entry for pathname exists, returns null.

• final public static void showDirectory(String dirname) DirectoryEntry

Prints the directory listing for dirname to the log file. This

method can be useful for debugging, since it shows what OSP 2

believes the correct listing is supposed to be.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

118 CHAPTER 6. FILESYS: THE FILE SYSTEM

6.7 Methods Exported by the FileSys Package

• final public static int create(String name, int size) FileSys

Creates a file with the specified name and size.

• final public static void delete(String name) FileSys

Deletes the directory entry for the specified file.

• final public static OpenFile open(String filename, TaskCB task) OpenFile

Opens the specified file, filename, by task and returns the

newly created open file handle (or null, if the operation fails).

• final public int close() OpenFile

Closes the file handle on which this operation is invoked.

• final public void read(int fileBlockNumber, OpenFile

PageTableEntry memoryPage,

ThreadCB thread)

Performs the read I/O operation on the given open file handle.

Reads data from the logical file block fileBlockNumber into

memoryPage on behalf of thread.

• final public void write(int fileBlockNumber, OpenFile

PageTableEntry memoryPage,

ThreadCB thread)

Performs the write I/O operation on the given open file han-

dle. Writes data to the logical file block fileBlockNumber from

memoryPage on behalf of thread.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

Chapter 7

Ports: Interprocess Communication

Interprocess communication in OSP 2 is based on the abstraction of a port and is modeled

after the Mach micro-kernel. A port is like your home mailbox. A task can create a port

to serve as a mailbox to which threads from other tasks can send messages.1 Only threads

of the owner task can read from the ports of that task; other threads only write to that

port. In OSP 2 , reading from a port is done using the receive() operation and writing is

performed via the send() operation.

The OSP 2 model of communication is based on reliable message delivery, i.e., correctly

formed messages never get lost. When threads communicate, they exchange discrete entities,

called messages. A message has length and Id. When a thread sends a message to a

port, the message is delivered to the destination port and is placed in that port’s message

buffer. Port buffers are assumed to have finite byte size specified in a global constant

PortBufferLength. If the message is bigger than this amount, the send() operation fails

and the message is not delivered. If the message is smaller than PortBufferLength, it

is considered well-formed and deliverable. However, the destination port might not have

enough room due to other messages that might have been delivered to that port but not

yet consumed. In this case, the send() operation suspends the sender thread until room

becomes available.

When a thread wants to receive a message, it invokes the receive() method on a port. If

a message is available, it is removed from the port message buffer and the operation succeeds.

If, however, the port is empty, then the receiver thread is suspended until a message arrives.

It is thus clear that a mechanism is needed for threads to suspend themselves and to be

1 Note that threads of the same task do not need to communicate this way, since they share virtual
address space and thus can communicate much more efficiently, through shared variables.

119

120 CHAPTER 7. PORTS: INTERPROCESS COMMUNICATION

notified. In OSP 2 , this is accomplished through the familiar Event class. More precisely,

PortCB is a subclass of Event, and threads can suspend themselves on a port when necessary.

Likewise, when appropriate conditions arise (e.g., port buffer gets more room or a message

arrives at an empty port), threads that are waiting on the port can be notified. (Note that

several threads can be waiting on the same port at the same time.)

The Ports package consists of just two classes: Message, which describes what OSP 2

messages look like, and PortCB, which implements the main communication primitives, such

as send() and receive(). We now describe these classes in detail.

7.1 The Message Class

The Message class has only one required method — the class constructor, which takes a

length argument and creates a message with a unique Id.

• public Message(int length)

The message constructor. Must call super(length) as its first statement. Your

implementation might also add other fields and methods to this class.

In addition, your implementation of class PortCB can use a number of methods defined in

class Message provided by OSP 2 :

• public int getID()

Returns the Id of the message.

• public int getLength()

Returns the length of the message in bytes.

7.2 The PortCB Class

The methods of PortCB to be implemented as part of the student project include the class

constructor, the initialization method, the methods for creating/destroying ports and for

sending/receiving messages.

A port has an Id, the owner task, a status (PortLive or PortDestroyed) and a message

buffer. OSP 2 provides methods for manipulating the message buffer of a port (appendMessage(),

removeMessage(), isEmpty()), but the student implementation must keep track of the free

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

7.2. THE PORTCB CLASS 121

space left in the buffer in order to be able to correctly decide when a message can be sent

to the port.

• public PortCB()

This is a class constructor whose only required statement is super() — the usual call

to the corresponding constructor in the superclass.

• public static void init()

This is the usual initialization method, which is called at the very beginning of the

simulation run. It is a place where your implementation can initialize static variables.

• public static PortCB do create()

This method creates and returns a new port. After a new PortCB object is created, it

needs to be assigned to the current task, i.e., the task that owns the currently running

thread. Recall from Section 4 that PTBR, the page table base register, always points to

the page table of the current task. Thus, the current task can be retrieved using the

following idiom: MMU.getPTBR().getTask().

To assign the port to the task, use the method addPort() of TaskCB. However, keep

in mind that there is a limit of how many ports a task can have, which is defined

by the global constant MaxPortsPerTask. If the task already has that many ports,

addPort() will return FAILURE and do create() should then return the null object.

If all is well, the owner task of the port should be set (using setTask()), and the status

set to PortLive using the method setStatus() of class PortCB, which is provided by

OSP 2 . In addition, you have to initialize the variables that you might have introduced

to keep track of the state of the message buffer. Finally, the newly created PortCB

object is returned.

• public void do destroy()

Ports are destroyed by the owner task when they are no longer needed for the task’s

operation or when the task itself is killed. To destroy a port, the port’s status should be

set to PortDestroyed, and the port should be removed from the task’s table of active

ports. The latter is accomplished using the method removePort() of TaskCB. Next,

the port’s owner task should be set to null using the method setTask() of PortCB.

You must also notify the threads that might be waiting for an event associated with

this port. As usual, this is accomplished using the method notifyThreads() applied

to the appropriate event.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

122 CHAPTER 7. PORTS: INTERPROCESS COMMUNICATION

• public int do send(Message msg)

Prior to sending a message, we must first check that the message is well-formed. In

OSP 2 , this means that the parameter, msg, is not null and that the message length

is not greater than the length of the port message buffer. If the message is not well-

formed, FAILURE should be returned.

In the next step, a new system event must be created using the constructor SystemEvent()

and the current thread must be suspended on that event. We already saw how to find

the current task from the page table base register. The current thread is obtained

using the method getCurrentThread() of that task.

At this point it is recommended to refresh your memory and read about thread sus-

pension and resumption in Section 3.2. A thread that is suspended on a system event

is not really blocked, but instead can be thought of as having changed status from

user thread to system thread. When the send operation is complete, the event will

“happen” and the thread will be resumed. To be able to resume the thread before

leaving do send(), you should save the SystemEvent object in a variable.

Now we are ready to attempt to send the message. Recall that if the destination port

(i.e., the port on which the send() method is executed) does not have enough room in

the message buffer, the sender thread must be suspended on that port. (Recall that you

have saved the information about that thread before suspending it on a SystemEvent.)

A thread, T, suspended on a port can be waken up when the port gets more room in it

buffer. This happens when one of the threads that owns the port executes a receive()

operation on that port. However, the sending thread T might discover that the port

still does not have enough room for the message because either too little space was

freed up or because some other thread managed to send a message to our port before

T had a chance. In this case, T has to be suspended again (on the same port).

Another possibility is that the waken up thread was killed while waiting to send the

message. FAILURE should be returned in this case. The third possibility is that the

thread might have been waken up because the owner task has decided to destroy the

port on which the thread was suspended (or, maybe, the task itself was killed). Again,

FAILURE should be returned. In addition, we should notify the threads that were

suspended on the SystemEvent associated with the current send operation. (Recall

that the current thread was suspended on this event at the beginning of the do send()

method.)

If none of the above problems are detected, we know that send should succeed. Thus,

we should update the message buffer of the port (using appendMessage()) and, if the

buffer was previously empty, notify the threads that may be waiting on that port in the

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

7.2. THE PORTCB CLASS 123

receive mode.2 Finally, we should execute notifyThreads() on the previously created

SystemEvent object and return SUCCESS.

• public Message do receive()

First, we must check that the receive operation is permitted, i.e., that the receiving

thread’s task owns the port on which do receive() has been invoked. If this is not

the case, null should be returned. Second, when a thread, T, executes a receive()

operation on a port, P, we must create a SystemEvent object and suspend T on that

event. As explained earlier, this corresponds to T changing the status from being a

user thread to a system thread. Note that the receiving thread, T, is the currently

executing thread, which can be obtained using PTBR.

Next, recall that the receiving thread must be suspended, if the message buffer of the

port contains no messages. This thread can be waken up when some other thread

sends a message to that port. However, keep in mind that altough a port can have

several threads suspended in the receive mode, only one waken up thread will succeed

at getting a message. All other threads would have to be suspended again.

There is a possibility that a waken up thread was killed or that the port was destroyed.

In both cases, do receive must return a null object. If none of the above bad things

happen, the do receive() method succeeds. In this case, the method should “con-

sume” a message from the port message buffer (using removeMessage()) and notify

threads waiting on the port. (This is needed because consuming a message will prob-

ably free up space in the message buffer of the port and, as a result, some previously

suspended send operation might be able to proceed.) Finally, the message consumed

by this receive operation should be returned.

In all cases (whether the receive operation ended successfully or not), prior to exiting

we must execute notifyThreads() on the previously created SystemEvent object for

this receive operation.

Relevant methods from other classes. A typical implementation of the methods in

class PortCB uses the following methods defined in other classes or methods of PortCB

provided by OSP 2 :

• final public int addPort(PortCB newPort) TaskCB

Adds a new port to task

2 Note that other threads may have been waiting to receive a message from this port only if its message
buffer was empty.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

124 CHAPTER 7. PORTS: INTERPROCESS COMMUNICATION

• public int removePort(PortCB oldPort)

Removes oldPort from the task.

• public ThreadCB getCurrentThread() TaskCB

Returns the currently running thread of the task. Null, if the

task itself is not current.

• static public PageTable getPTBR() MMU

Returns the value of PTBR.

• public final TaskCB getTask() PageTable

Returns the owner task for the page table.

• final public int getStatus() ThreadCB

Tells the status of the thread.

• final public void suspend(Event event) ThreadCB

Suspends the thread on event.

• final public int getStatus() PortCB

Tells the status of the port.

• final public void setStatus() PortCB

Sets the status of the port.

• final public void setTask(TaskCB owner) PortCB

Sets the port owner.

• final public TaskCB getTask() PortCB

Tells who owns the port.

• final public Message removeMessage() PortCB

Removes a message from the port’s message buffer.

• final public void appendMessage(Message msg) PortCB

Appends a new message to the port’s message buffer.

• final public boolean isEmpty() PortCB

Checks if the port’s message buffer is empty.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

7.3. SUMMARY OF THE PORTS PACKAGE 125

7.3 Summary of the Ports Package

The main attributes of a port are

Owner: This is the task that owns the port. This attribute is manipulated using the

methods getTask() and setTask().

Status: PortLive or PortDestroyed. This attribute is manipulated using the methods

getStatus() and setStatus().

Message buffer: This buffer is manipulated using the methods appendMessage(), removeMessage(),

and isEmpty() of class PortCB, which are provided by OSP 2 . However, the student

implementation must keep track of the free space left in the message buffer.

The Ports package exports the following methods that are used by other packages in the

system:

• final static public void create()

Creates a new port.

• final public void destroy()

Destroys an existing port.

• final public void send(Message msg)

Sends a message, msg, to the port on which this method is invoked.

• final public Message receive()

Receives a message from the port on which this method is invoked.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

126 CHAPTER 7. PORTS: INTERPROCESS COMMUNICATION

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

Chapter 8

Resources: Resource Management

The OSP 2 package Resources contains three classes to be implemented by the student:

ResourceCB, RRB, and ResourceTable. The main purpose of this project is to expose stu-

dents to the concept of shared resources in a concurrent system, and to provide an environ-

ment in which they can implement various deadlock-handling techniques. OSP 2 simulation

supports two approaches to handling deadlock in an operating system: deadlock avoidance

and deadlock detection.

8.1 Overview of Resource Management

The class ResourceCB does the bulk of the work. It represents resource control blocks —

the locus of much of the information about the resources available in the system. Resources

are divided into resource types, where each resource type can have several resource

instances. Each resource type is represented by a distinct resource control block.

A thread might issue a request to acquire a given number of instances of a particular

resource type, but it does not care which particular resource instances are given to it as long

as the instances are of the requested type. When such a request arrives, the operating system

(which is part of the student code in class ResourceCB) must decide whether to grant the

request, abort (kill) the requesting thread, or block the thread until its request is granted at

some future time. This decision depends on the current state of resource allocation and on

the deadlock-handling method (detection or avoidance) in use.

The class RRB represents resource request blocks. An RRB contains information about

one outstanding request for one particular resource type issued by a particular thread. An

RRB object is also an Event object (Section 1.5). When a thread issues a request that cannot

127

128 CHAPTER 8. RESOURCES: RESOURCE MANAGEMENT

be granted, the thread is suspended on the RRB associated with this request. Subsequently,

when the needed resources become available, a notifyThreads() operation issued on that

RRB will eventually wake up the thread.

The resource table is represented by the class ResourceTable; it is an array of ResourceCB

objects that lists all resource types available in the system. In OSP 2 , all resource types

are created at the beginning of the simulation and no new resources are added or deleted

afterwards. The total number of instances of each resource type remains constant as well.

Resource types are identified by a resource ID, a number between 0 and the resource

table size, which is determined using the static method getSize() of class ResourceTable.

8.2 Class ResourceTable

This class is the simplest of them all: Only a constructor is required. You can add other

methods and variables to support your implementation of the project, but these would be

specific to your particular design.

• public ResourceTable()

Calls super() and might do additional initialization, if the student implementation

defines additional fields in this class.

This class (actually its superclass) also provides important methods that you will use to

implement other classes in this project:

• public static final ResourceCB getResourceCB(int resourceID)

Since resource types are identified using their numeric IDs, this method lets you visit,

in a loop, the resource control block of every resource type in the system.

• public static final void setSize(int size)

Returns the size of the resource table, which is also the number of resource types

available in the system.

8.3 Class RRB

This class represents the resource request block, which threads use to specify their requests

to the system. It is declared as follows:

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

8.3. CLASS RRB 129

• public class RRB extends IflRRB

Note that IflRRB extends class Event, which makes it possible to treat RRB objects as

events. In particular, threads can be suspended on an RRB object and later resumed.

An RRB object includes the following information:

• The ID, which can be obtained with the help of the method getID().

• The thread that issued the request; it can be obtained using the method getThread().

• The resource type involved in the request. Its control block can be obtained using the

method getResource(). Only one resource type can be requested using an RRB.

• The quantity of the requested resource; obtained using the method getQuantity().

• The status of the RRB. The status can be one of these constants defined by OSP 2 :

Denied, Suspended, Granted. The status is Denied when the system denies the request

(because, for instance, the thread wants more resource instances than the total that

the system has); it is Suspended, if the system decides that the resource request cannot

or should not be granted now, but can be in the future; when the request is granted,

the status is set to Granted. Two methods are used to manipulate the status of an

RRB: getStatus() and setStatus().

The class RRB contains only two methods that need to be implemented by the student:

• public RRB(ThreadCB thread,ResourceCB resource,int quantity)

This is the class constructor. Its first statement must be super(thread,resource,

quantity), but the rest depends on your program design.

• public void do grant()

This method is used to grant the RRB on which it is invoked. Note that do grant()

does not make any decision on whether to grant or not. This decision is made elsewhere,

as described later in this chapter. Thus, this method does book-keeping only. In

particular, it decrements the number of available instances of the requested resource

by the requested quantity and increments the number of allocated instances of this

resource by that same quantity. The current number of available instances of a resource

is given by the method getAvailable() and is set by the method setAvailable().

Similarly, the number of allocated resources is obtained and changed using the methods

getAllocated() and setAllocated(), respectively.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

130 CHAPTER 8. RESOURCES: RESOURCE MANAGEMENT

To finish granting the request, the status of the RRB must be set to Granted and

the thread that was waiting on this RRB should be resumed. The latter is done by

invoking the method notifyThreads() of class Event (recall that a RRB is also an

Event object).

Relevant methods defined in other classes. The implementation of the methods in

the RRB class relies on the following methods provided by other classes (or inherited from

the superclasses of RRB):

• final public int getStatus() RRB

Returns the status of the RRB: Denied, Suspended, or Granted.

• final public void setStatus(int value) RRB

Sets the status of the RRB: Denied, Suspended, or Granted.

• final public int getID() RRB

Returns the ID of the RRB.

• final public int getQuantity() RRB

Returns the quantity of the resource requested by the thread

that issued the request.

• final public ThreadCB getThread() RRB

The thread that issued the request.

• final public ResourceCB getResource() RRB

The resource for which the request was issued.

• public final int getAvailable() ResourceCB

Returns the number of free instances of this resource type.

• public final void setAvailable(int value) ResourceCB

Sets the number of free instances of this resource type.

• public final int getAllocated(ThreadCB thread) ResourceCB

Returns the number of allocated instances of this resource type.

• public final void setAllocated(ThreadCB thread,int value) ResourceCB

Sets the number of allocated instances of this resource type.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

8.4. CLASS RESOURCECB 131

8.4 Class ResourceCB

This class does most of the work. In particular, this is where the deadlock detection and

avoidance algorithms are implemented. The deadlock-avoidance algorithm is invoked by

the do acquire() method, while deadlock detection is the responsibility of the method

deadlockDetection(), which is invoked periodically by OSP 2 . The ResourceCB class is

declared as follows:

• public class ResourceCB extends IflResourceCB

Most textbooks describe deadlock avoidance and detection algorithms in terms of the

various resource allocation and resource request matrices, which are used for keeping track of

the current state of system resources. This all looks simple enough, except for one important

point: textbook algorithms all assume that all the threads and resource types are known

in advance, so they represent the matrices as two-dimensional arrays. In a real system,

neither resources, nor threads are static: they come and go and their total number cannot

be assumed to be bounded by a known constant. Therefore, matrices used by the real-life

deadlock handling algorithms cannot be represented as two-dimensional arrays.

In OSP 2 , the number of resource types is fixed, which simplifies things a bit. However,

the number of threads that can potentially request resources is not known and cannot be es-

timated. Thus, using two-dimensional arrays for representing resource allocation and request

matrices is also out of question: you must come up with another suitable data structure.

Since most operations in deadlock detection and avoidance algorithms reference the matrix

elements via a specific resource and/or thread, your data structure must provide efficient

access to the matrix elements using either of these keys. For instance, if you have to scan

arrays and compare their entries to a particular thread ID or resource, it is a sure sign that

you have chosen a bad data structure.

One good data structure in this case would be an array of hash tables, where each hash

table represents all requests made by the various threads for a particular resource type.

Since Java hash tables are dynamic, they provide exactly what the doctor ordered for this

particular problem.

• public ResourceCB(int qty)

This is a required class constructor. It must have super(qty) as its first statement,

but the rest depends on your program design.

• public static void init()

As in other student modules, this method is called by the simulator at the beginning

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

132 CHAPTER 8. RESOURCES: RESOURCE MANAGEMENT

of simulation. It can be used to initialize the static variables and structures that you

might use in your implementation.

• public RRB do acquire(int quantity)

This method is typically invoked by an OSP 2 thread on a given resource type (repre-

sented by a ResourceCB object) in order to obtain quantity instances of that resource

type. To determine which OSP 2 thread has issued the request, the following method

can be used. First, the current task can be found from the page table base register, or

PTBR; see Section 4.1 for more information on this subject. The value of the PTBR

is the page table of the currently running task. In OSP 2 , the value of the PTBR is

obtained using the static method getPTBR() of class MMU, and the current task can be

obtained from a page table via the method getTask().

Next, we have to create an RRB that describes the request. What follows next depends

on whether the simulator is in deadlock avoidance or deadlock detection mode (which is

determined by an input simulation parameter that you might have spotted in the GUI

window). To find out which mode is in effect, use the method getDeadlockMethod().

If the deadlock-handling method is Detection, we have three possibilities. If the

system has enough available instances of the requested resource, the request is granted

immediately by executing the method grant() on the RRB. If the requested number of

instances cannot be granted under any circumstances (e.g., because the total number

of instances of the requested resource type that are either held or requested by the

given thread exceeds what the system has), then null is returned. If the requested

number of instances cannot be granted immediately (but might be in the future, if all

other threads release their resources) then the requesting thread must be suspended

on the RRB and the RRB’s status should be set to Suspended. The RRB status is

set using the method setStatus(), while threads are suspended using the suspend()

method of class ThreadCB. Recall that an RRB is an Event object as well, so in order to

suspend a thread on an RRB, the RRB must be passed as a parameter to suspend().

Read more about thread suspension and resumption in Section 3.2.

If the deadlock-handling method is Avoidance, then you must use a deadlock-avoidance

algorithm, such as the Banker’s algorithm. If this algorithm says that it is safe to grant

the request, the RRB is granted. Otherwise, the thread is suspended and the RRB

status is set to Suspended as well.

When a thread is suspended inside do acquire(), its execution is paused until the

request is granted (possibly as a result of a release() operation on the same resource

or of giveupResources() operation, which is invoked when a thread is killed), and

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

8.4. CLASS RESOURCECB 133

the thread is resumed. Whether the RRB is granted immediately or the thread is sus-

pended, do acquire() returns the RRB that was created earlier in order to represent

the request.

• public void do release(int quantity)

This method might be invoked by an OSP 2 thread on a given resource type (repre-

sented by a ResourceCB object) in order to release quantity instances of that resource

type.

As with do acquire(), we first must find the thread that issued the release() re-

quest. Then the state of the resource allocation should be updated appropriately

in order to reflect the new number of free resources and the new allocation of the

given resource to the thread. Note that the thread might release some, but not all,

instances held for this resource type. The exact details depend on your represen-

tation of the resource-allocation state, but this would typically involve the methods

setAllocated(), setAvailable(), getAvailable(), etc.

This is not all, however. Since new resources became available after the release opera-

tion, it is possible that some of the previously suspended requests can now be granted.

In order to be able to determine whether this is the case, one needs to keep track of

the RRBs that were previously suspended in do acquire(). Once a grantable RRB

is found, it should be granted (using the grant() method) and the thread waiting on

that RRB is resumed (resumption is done by method grant()).

• public static Vector do deadlockDetection()

If the simulation method is Detection, this method will be periodically called by

OSP 2 in order to test your implementation of the deadlock-detection algorithm. This

method should first check if a deadlock exists and, if so, remove it. Your instructor

might have imposed specific requirements on your implementation of deadlock detec-

tion and recovery, and OSP 2 adds its own.

First, there should be no deadlocks left after do deadlockDetection() returns. The

result returned by this method should be a vector of ThreadCB objects that were found

to be involved in a deadlock. OSP 2 will compare this list with its own and will issue

an error if the two lists differ. If no deadlock exists, null should be returned.

You can use any textbook deadlock-detection algorithm that can detect deadlocks in

the presence of multiple instances per resource type. (For instance, cycle detection in

a wait-for graph would not be a suitable algorithm for this purpose.)

Deadlock recovery is done by killing some or all of the threads involved in the deadlock.

However, OSP 2 insists that threads must not be killed unnecessarily. This means that

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

134 CHAPTER 8. RESOURCES: RESOURCE MANAGEMENT

no thread should be killed unless it is deadlocked and, in addition, if the deadlock is

gone after killing of some deadlocked threads, then no further thread destruction should

occur.1

Threads are killed using the kill() method of class ThreadCB. Note that when a

thread is killed, it releases its resources by calling do giveupResources() (described

next). As in the case of the do release() method, this creates an opportunity for

granting a previously suspended RRB and resuming the associated thread. See the

description of do release() to learn how to do this.

• public static void do giveupResources(ThreadCB thread)

This method is called when a thread is terminated in order to release all resources

previously allocated to this thread. In other words, you will never call this method in

this project. Instead, your implementation of this method is provided to other OSP 2

modules. This method should go over the resources allocated to the given thread

and update the number of the available instances of such resources accordingly. The

number of resources allocated to the thread should also be adjusted (to 0).

Since the thread releases its resources, the system might have enough free resources

to unblock some suspended RRBs. Therefore, as in the case of do release(), it is

necessary to check the suspended RRBs and grant those that are grantable.

Relevant methods defined in other classes. The following methods and fields, which

are defined in other classes or are provided by the superclasses of ResourceCB, might be

used in the implementation of the class ResourceCB.

• public final int getID() ResourceCB

Returns the ID of the resource.

• public final int getTotal() ResourceCB

Returns the total number of instances (free plus allocated) for

this resource type.

• public final int getAllocated(ThreadCB thread) ResourceCB

Returns the number of allocated instances of this resource type.

• public final void setAllocated(ThreadCB thread,int value) ResourceCB

Sets the number of allocated instances for this resource type.

1 Note that if N threads are involved in the deadlock, then killing any N − 1 of them will eliminate the
deadlock. But often the deadlock can be eliminated by killing fewer than N − 1 threads.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

8.4. CLASS RESOURCECB 135

• public final int getAvailable() ResourceCB

Returns the number of free instances of this resource type.

• public final void setAvailable(int value) ResourceCB

Sets the number of free instances for this resource type.

• public final int getMaxClaim(ThreadCB thread) ResourceCB

Returns the maximal number of instances of this resource type

that can ever be acquired by the given thread. Used for deadlock

avoidance only.

• public final static int getDeadlockMethod() ResourceCB

Returns the deadlock-handling method currently in effect:

Avoidance or Detection.

• public final static int getSize() ResourceTable

Returns the size of the resource table. This value is also equal

to the number of different resource types in OSP 2 .

• public static final ResourceCB getResourceCB(int resourceID)

Given an index into the resource table, returns the ResourceCB

object in that table cell. This method makes it possible to visit

the resource control block of each resource type in a loop.

• static public PageTable getPTBR() MMU

Returns the value of the page table base register, which is either

null or the page table of the currently running task.

• public final TaskCB getTask() PageTable

Indicates which task owns the given page table. In Resources,

this method is used to determine the thread that issued the

request.

• public ThreadCB getCurrentThread() TaskCB

Returns the running thread of the currently running task.

• public RRB(ThreadCB thread, ResourceCB resource, int quantity) RRB

A constructor for creating resource request blocks with the given

parameters.

• public final void grant() RRB

Grants the request represented by this RRB.

• final public void setStatus(int value) RRB

Sets the status of the RRB: Denied, Suspended, or Granted.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

136 CHAPTER 8. RESOURCES: RESOURCE MANAGEMENT

• final public ThreadCB getThread() RRB

The thread that issued the request represented by this RRB.

• final public ResourceCB getResource() RRB

The resource for which the request was issued.

• final public int getQuantity() RRB

Returns the quantity of the resource requested by the thread

that issued the request.

• final public void suspend(Event event) ThreadCB

Suspends the thread on which this method is called and puts

the thread on the waiting queue of event.

• final public void kill() ThreadCB

Kills this thread. Note that this will cause the thread to re-

lease its resources, which in turn might make some previously

suspended RRBs grantable.

• final public int getStatus() ThreadCB

Returns the status of the thread. See Section 3.2 for more infor-

mation on the different states of a thread. In this project you

might need to know that killed threads have status ThreadKill.

If such a thread shows up in a resource-allocation matrix or else-

where, you might want to delete or skip it in your algorithms.

• public void notifyThreads() Event

Resumes all threads that might be waiting on this event. In

the case of package Resources, the event would be an RRB

and the resumed thread would be the thread that issued the

corresponding request.

8.5 Methods Exported by the Resources Package

Only one method defined in this package is used by other modules:

• public static void do giveupResources(ThreadCB thread) ResourceCB

It is called by terminating threads in order to release the abstract shared resources held by

that thread.

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

Bibliography

[1] G. Letwin.

[2] William Stallings. Operating Systems. Prentice Hall, Upper Saddle River, New Jersey,

2002.

[3] Andrew S. Tannenbaum. Modern Operating Systems. Prentice Hall, Upper Saddle River,

New Jersey, 2001.

137

Index

CPU, 10

Disk, 11

FrameTableEntry, 65

HClock, 12

HTimer, 12

MMU, 65

Message, 120

MyOut, 34

OpenFile, 41, 45

PageFaultHandler, 65

PageTable, 65, 88

PageTableEntry, 65

ThreadCB, 53

TimerInterruptHandler, 62

acquiring resource, 127

addFile(), 46, 111

in TaskCB, 45

addPort(), 45

addThread(), 45

in Event, 19

in TaskCB, 61

append()

in GenericList, 17

appendMessage(), 120, 122, 124

atError(), 34

atWarning(), 34

average normalized service time, 32

average service time, 32

average turnaround time, 32

backwardIterator()

in GenericList, 18

blockCount, 107

cancelPendingIO(), 60

CLASSPATH environment variable, 23

close(), 43, 118

closePending, 109, 113

closing a file, 102

command line options

in OSP 2 , 24

condition check, 33

contains()

in Event, 19

in GenericList, 17

context switching, 55

CPU scheduling algorithm, 51

create()

in Daemon, 20, 86

in FileSys, 43, 118

in ThreadCB, 43, 63

creation

of threads, 53

current task, 39

current thread, 39

Daemon, 20, 71

deadlock avoidance, 127

deadlock detection, 127

Deadlocked

as status of RRB, 129

deallocateMemory()

in PageTable, 43

138

INDEX 139

debugging, 33

decrementIORBCount(), 112

decrementLinkCount(), 107

decrementLockCount(), 72, 75

decrementOpenCount(), 106, 112

delete()

in FileSys, 43, 118

deleting a file, 102

Demo.jar, 21

Denied

as status of RRB, 129

destroy(), 43

destruction

of threads, 53

directory, 101

directory entry, 102, 107

DirEntry, 107

DirSeparator, 101

dirty bit, 69

dirty frame, 69

Disk1, 15

Disk2, 15

Disk3, 15

Disk4, 15

DiskInterrupt, 15

dispatch(), 63, 85

dispatching, 55

of threads, 53

do , 28

do acquire(), 132

do addFile

in TaskCB, 40

do addPort

in TaskCB, 40

do addThread()

in TaskCB, 40

do create()

in PortCB, 121

in TaskCB, 40

in ThreadCB, 57

do deadlockDetection(), 133

do destroy(), 121

do dispatch(), 59

do getPortCount(), 40

do getThreadCount(), 40

do giveupResources(), 134, 136

do grant(), 129

do handleInterrupt()

in DiskInterruptHandler, 97

in TimerInterruptHandler, 62

do kill()

in TaskCB, 40

in ThreadCB, 58

do receive(), 123

do release(), 133

do removeFile

in TaskCB, 40

do removePort

in TaskCB, 40

do removeThread()

in TaskCB, 40

do resume(), 59

do send(), 122

do suspend(), 59

environment variable

CLASSPATH, 23

PATH, 22

error, 33

error handling, 33

event, 18, 56

Event class, 19

event engine, 10

event ID, 18

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

140 INDEX

FAILURE, 15

file allocation table, 106

file name, 102

FileEntry, 107

FileRead, 14

FileWrite, 14

forwardIterator()

in GenericList, 17, 18

frame

dirty, 69

free, 83

modified, 69

referenced, 69

reserved, 70

frame table, 69

GenericQueueInterface, 18

get()

in Device, 60, 97, 105

in HClock, 12, 43, 61

in HTimer, 12, 61, 63

getAllocated(), 130, 134

getAvailable(), 130, 135

getBlockCount(), 106, 107

getBytesPerSector(), 11, 96

getCreationTime()

in TaskCB, 45, 46

in ThreadCB, 62

getCurrentThread(), 46, 61

in TaskCB, 45

getDeadlockMethod(), 132, 135

getDevice()

in IORB, 60

getDeviceID(), 104, 106, 107

in IORB, 60

getEvent()

in InterruptVector, 13

getFrame()

in class MMU, 80

getFrameTableSize(), 80

getHead()

in Event, 19

in GenericList, 17

getHeadPosition(), 12, 96

getID()

in Device, 97

in PageTableEntry, 87

in RRB, 130

in TaskCB, 45, 46

in ThreadCB, 62

getId()

in ResourceCB, 134

in class Message, 120

getINode(), 112

in DirectoryEntry, 108

getINodeOf()

in DirectoryEntry, 108

getInterruptType(), 13

getIORBCount(), 112

getLength()

in class Message, 120

getLinkCount(), 107

getLockCount(), 72, 75

getMaxClaim(), 135

getMountPoint(), 104, 106

getNumberOfBlocks(), 106

getOpenCount(), 106, 112

getPage()

in InterruptVector, 13

getPageAddressBits(), 87

getPageTable(), 45, 46, 61

getPathname()

in DirectoryEntry, 107

getPlatters(), 11, 96

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

INDEX 141

getPortCount(), 45

getPriority()

in TaskCB, 61

in ThreadCB, 62, 64

getPTBR(), 56, 60, 86

getQuantity()

in RRB, 130

getReferenceType()

in InterruptVector, 13

getReserved(), 88

getResource()

in RRB, 130

getResourceCB(), 128, 135

getRevsPerTick(), 11, 96

getSectorsPerTrack(), 11, 96

getSeekTimePerCylinder(), 96

getSeekTimePerTrack(), 12

getSize(), 128

getStatus()

in PortCB, 124

in RRB, 130

in TaskCB, 45, 46, 61, 75

in ThreadCB, 62, 64, 75

getSwapFile(), 45, 46, 84

getTableSize(), 104, 106

in Device, 60, 105

getTail()

in GenericList, 17

getTask(), 112

in PageTable, 60, 88

in PageTableEntry, 87

in PortCB, 124

in ThreadCB, 62, 64

getThread()

in InterruptVector, 13

in RRB, 130

getThreadCount(), 45, 61

getThreadList()

in Event, 19

getTimeOnCPU()

in ThreadCB, 62, 64

getTotal()

in ResourceCB, 134

getTracksPerPlatter(), 11, 96

getType()

in DirectoryEntry, 108

getValidatingThread(), 75, 80, 85, 87

getVirtualAddressBits(), 86

in MMU, 43

giveupResources(), 61

GNU make, 24

Granted

as status of RRB, 129

handlePageFault, 86

hard link count, 102

hardLinkCount, 107

I/O request block, 19

IFL, 10, 28

incrementIORBCount(), 112

incrementLinkCount(), 107

incrementLockCount(), 72, 75

incrementOpenCount(), 106, 112

init

in TaskCB, 40

init()

in ThreadCB, 57

inode, 102

insert()

in GenericList, 17

interface layer, 10, 28

interrupt, 10

interrupt vector, 12

InterruptVector, 12

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

142 INDEX

io-overview, 89

IORB, 19, 68, 90

enqueueing of, 69

IORB() constructor, 112

iorbQueue, 96

isBusy(), 97

isDirty(), 84, 88

isEmpty()

in PortCB, 120, 124

in GenericList, 17

isMountPoint(), 111

isReferenced(), 84, 87

isReserved(), 75, 84

isValid(), 75, 87

kill()

in TaskCB, 61

in ThreadCB, 43, 64

length()

in GenericList, 17

locking

of a page, 68

logical device, 66

make, 24

Makefile, 21

master file table, 106

MaxPortsPerTask, 43, 121

MaxThreadsPerTask, 43

memory management unit, 13, 65

MemoryLock, 14, 78, 80, 81

MemoryRead, 14, 78, 80, 81

MemoryWrite, 14, 78, 80, 81

message, 119

message buffer

of a port, 119

Misc directory, 21

MMU, 13, 65

Mount table, 103

mountpoint, 103

normalized pathname, 114

notifyThreads(), 19, 85, 111, 136

obfuscation, 30

open count, 102

open file handle, 102

open files table, 41

open(), 43, 118

openCount, 106

opening a file, 102

OSP.jar, 21

ospDeviceQueue(), 97

page replacement, 68

page table, 65

inverted, 73

page table base register, 56, 65

PageFault, 15

pagefault, 66

pagefault handler, 66

params.osp, 21

PATH environment variable, 22

pathname, 101

plain file, 101

port, 119

as an event, 119

PortBufferLength, 119

PortDestroyed, 14

PortLive, 14

preempting, 55

prepaging, 70

printableDevice(), 15

printableInterrupt(), 15

printableRequest(), 14

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

INDEX 143

printableRetCode(), 15

printableStatus(), 14

proactive page cleaning, 71

process, 39

PTBR, 56, 65

read(), 83, 85, 118

ready queue, 54

reference bit, 69

remove()

in GenericList, 17

removeFile(), 46, 111

in TaskCB, 45

removeHead()

in GenericList, 17

removeMessage(), 120, 123, 124

removePort(), 45

removeTail()

in GenericList, 17

removeThread(), 45

in Event, 19

in TaskCB, 61

reserved bit, 70

resource, 127

resource control block, 127

resource instance, 127

resource request block, 127, 128

resource table, 127

resource type, 127

ResourceCB(), 131

resume(), 63

resumption

of threads, 53

RRB, 128

RRB status

Deadlocked, 129

Denied, 129

Granted, 129

Suspended, 129

scheduling

of threads, 53

set()

in HTimer, 12, 63

setAllocated(), 130, 134

setBlockCount(), 106, 107

setBusy(), 97

setCreationTime()

in TaskCB, 45, 46

in ThreadCB, 62, 64

setCurrentThread(), 56, 61

in TaskCB, 45

setDirty(), 88

setEvent()

in InterruptVector, 13

setFrame(), 87

in class MMU, 80

setINode(), 112

setInterruptType(), 13

setPage()

in InterruptVector, 13

setPageTable(), 45, 46

setPriority()

in TaskCB, 45, 61

in ThreadCB, 62, 64

setPTBR(), 56, 60, 86

setReferenced(), 88

setReferenceType()

in InterruptVector, 13

setReserved(), 88

setStatus()

in PortCB, 124

in RRB, 130

in TaskCB, 45, 46

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

144 INDEX

in ThreadCB, 62, 64

setSwapFile(), 45, 46

setTask(), 64

in PortCB, 124

in ThreadCB, 62

setThread()

in InterruptVector, 13

setUnreserved(), 88

setValid(), 87

setValidatingThread(), 80, 85, 87

showDirectory(), 117

snapshot, 32, 33, 35

stack trace, 35

startIO(), 97

starvation, 52

student project, 9

SUCCESS, 15

suspend(), 63, 111

Suspended

as status of RRB, 129

suspension

of threads, 53

swap device, 66

swap file, 66

swap-in, 67, 83

swap-out, 69, 83

SwapDeviceID, 15, 66

SwapDeviceMountPoint, 43

system log, 15, 32, 33

SystemEvent class, 67, 82, 86

SystemEvent() constructor, 67, 82, 86, 112

task, 39

TaskCB() constructor, 40

TaskLive, 14, 40, 46

TaskTerm, 14, 41, 46

thread, 39

thread control block, 53

ThreadCB() constructor, 57

ThreadKill, 14, 53

ThreadReady, 14, 53

ThreadRunning, 14, 53

ThreadWaiting, 14, 54

time quantum, 52

time slice, 52

TimerInterrupt, 15

unlocking

of a page, 68

userOption, 15

validity bit, 66

victim page, 68

waiting queue

of event, 18

warning, 33

wgui.rdl, 21

wrapper, 28

write(), 83, 85, 118

Copyright (C) 2000, 2001, 2002 by M. Kifer and S.A. Smolka

	Organization of OSP2
	Operating System Basics
	OSP2 Organization
	Simulated Hardware in OSP2
	Utilities
	OSP2 Events
	OSP2 Daemons
	Compiling and Running Projects
	General Rules of Engagement
	A Day in the Life of an OSP2 Thread
	Convention for Calling Student Methods
	Static vs. Instance Methods
	Obfuscation of Method and Class Names
	Possible Hanging After Errors
	General Advice: How to Figure it Out

	System Log, Snapshots, and Statistics
	Debugging
	Project Submission

	Tasks: Management of Tasks (a.k.a. Processes)
	Class TaskCB
	Methods Exported by the Tasks Package

	Threads: Management and Scheduling of Threads
	Overview of Threads
	The Class ThreadCB
	The Class TimerInterruptHandler
	Methods Exported by the Threads Package

	Memory: Virtual Memory Management
	Overview of Memory Management
	Class FrameTableEntry
	Class PageTableEntry
	Class PageTable
	Class MMU
	Class PageFaultHandler
	Methods Exported by Package Memory

	Devices: Scheduling of Disk Requests
	Overview of I/O Handling
	Class IORB
	Class Device
	Class DiskInterruptHandler

	FileSys: The File System
	Overview of the OSP2 File System
	Class MountTable
	Class INode
	Class DirectoryEntry
	Class OpenFile
	Class FileSys
	Methods Exported by the FileSys Package

	Ports: Interprocess Communication
	The Message Class
	The PortCB Class
	Summary of the Ports Package

	Resources: Resource Management
	Overview of Resource Management
	Class ResourceTable
	Class RRB
	Class ResourceCB
	Methods Exported by the Resources Package

