DigitalPersona, Inc.

One Touch® for Windows® SDK
C/C++ Edition

Version 1.6

Developer Guide

O
—

digitalPersona.

DigitalPersona, Inc.
© 1996-2010 DigitalPersona, Inc. All Rights Reserved.

All intellectual property rights in the DigitalPersona software, firmware, hardware, and documentation included with or
described in this guide are owned by DigitalPersona or its suppliers and are protected by United States copyright laws,
other applicable copyright laws, and international treaty provisions. DigitalPersona and its suppliers retain all rights not
expressly granted.

DigitalPersona, U.are.U, and One Touch are trademarks of DigitalPersona, Inc., registered in the United States and other
countries. Adobe and Adobe Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States and/or other countries. Microsoft, Visual C++, Visual Studio, Windows, Windows Server, and Windows Vista
are registered trademarks of Microsoft Corporation in the United States and other countries.

This guide and the software it describes are furnished under license as set forth in the “License Agreement” that is shown
during the installation process.

Except as permitted by such license or by the terms of this guide, no part of this document may be reproduced, stored,
transmitted, and translated, in any form and by any means, without the prior written consent of DigitalPersona. The
contents of this guide are furnished for informational use only and are subject to change without notice. Any mention of
third-party companies and products is for demonstration purposes only and constitutes neither an endorsement nor a
recommendation. DigitalPersona assumes no responsibility with regard to the performance or use of these third-party
products. DigitalPersona makes every effort to ensure the accuracy of its documentation and assumes no responsibility or
liability for any errors or inaccuracies that may appear in it.

Technical Support

Upon your purchase of a Developer Support package (available from http://buy.digitalpersona.com), you are entitled to a
specified number of hours of telephone and email support.

Feedback

Although the information in this guide has been thoroughly reviewed and tested, we welcome your feedback on any
errors, omissions, or suggestions for future improvements. Please contact us at

TechPubs@digitalpersona.com
or

DigitalPersona, Inc.

720 Bay Road, Suite 100
Redwood City, California 94063
USA

(650) 474-4000

(650) 298-8313 Fax

Document Publication Date: June 22, 2010 (1.6.0)

Table of Contents

LIS 131 Yo [Tt T o P 1
BT o 1= W o 1 =T Tl AP 2

(@0 F=T o €T @ LT QY 2

[To Tl U] g 1= oY f @o T 0 V7= o1 o o 13 3
Notational CoNVENTIONSt et e ettt 3
Typographical CoNVENTIONS ...ttt et ettt e et e e e a et er e neneeneananans 3

AdditioNal RESOUICES ettt ettt e e e e et e e e e et e e 3
Related DOCUMENTATIONe ettt ettt et e enenn 4

ONlINE RESOUICES ..ttt ettt ettt e e e et et et ettt ettt e e e e e e ey 4

I 1= T =T [1] 0 T AP 4
Supported DigitalPersona hardware Productsoiiiiinininiiiii i, 4
Fingerprint Template Compatibilityooiuiii i i e et e i e e 5

B O ¥ T - o 6
(@0l o g V=T o) 3 6

Install the SOftWareo e e e 6
Connectthe Fingerprint Readercoiuiiiii i e e e et ettt it 6

Using the Sample Application e e e e et et 7

T [T3 - 1=) T 13
INStalliNg the SDK ...t e e e e e e e et e 13
Installing the Runtime Environment (RTE)ooiniii e 14
Installing and Uninstalling the RTE Silently ... e e e 16

I Y= = PP 17
53 10] 0 U< o (o) V£ (=] o T PP 17
LT 1T o) 1 | AP 17
Fingerprint Recognitionot e e e e 18
FiINgerprint ENrOlImEnt e e e e et et e e 18
Fingerprint Verificationo. oo e 18

False Positives and False Negativesuuiiiriiiiiii ittt ittt e it naeneans 19

(@] o= =11 o) 13 AP 21
Components Of the SDKt e e e e e e e e e 21

[el S @o] o] oo 1= o | PP 22
INItIAliZatioN ... e 23

L@ o= -1 1 o) 1P 23

L@ =T o T o 1P 23
Fingerprint Recognition COMPONENTottt et 24
FINgerprint ENrOlImEnt et e e ettt e e e e e 24

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide iii

Table of Contents

Typical Fingerprint Enrollment Workflow e 25
FiINgerprint Verificationvuiui i e e e e e e e 29
Typical Fingerprint Verification Workflowc.o i 30
D 0T AP RO O BN CE .ottt e e e e e 35
L1 [Vt T - 35
Device FUNCHIONS List ... i i e e e et et aaes 35
EXtraction FUNCEIONS List .. .o i e it e ettt it 36
Matching FUNCHIONS LISt ...ttt i e e e ettt e e et enenenns 36
Device FUNCLIONS REfEIENCE .. . o e e e e et 38
DP P BUI I I .ttt e e e e e e 38
DPFPCreateACUISITION ...\ttt et e e et e e e et e e e e 38
DPFPDestroy ACUISITION ...ttt et e et e e e e i e aentenneaneens 40
DPFPENUMEIateDEVICES ottt e et e e e e 41
DPFPGEtDEVICEINTO ettt i e e e e e 41
DPFPSetDeVIiCeParametero e 42
DPFPGetDEeVICEParamMeter .. ettt e 43

)] o o = Q=T 3 [0 1 44

[o o o T 44
DPFPStartACqUISITION ...t e e e e e e e 45
PP S OPACQUISITION .ttt ettt et et ettt e e et e aeenaeneeneans 46

)] o o 1T o 0 46
Extraction FUNCLIONS Reference ... oo vttt e e et et et 47
10 11 R 47

FX _getVersionInfo e e e 48

) el =T | (<] @] 1 £ <) S 48

o Gl (o =T e o =D S 49

L G (=18 0118 = 1= 49

FX getFeatureshen ... i e e 50

) G A - L § A=Y= | (1 £) 51

FX _getDisplaylmage ..ottt e e e e e e e 53
Matching FUNCtions Referencec.ouiiiiii e 55
GO o 1 55

M _getVersionINfO e e 55

(O o 1= Y=Y 4 Vo -3 P 56

Y Ol =T} (<] @] o] =) S 56

G of o 1YY @ o <" (P 57
MC_getSeCUNtYLEVELttt e e e e e e e e 57

M SEtSECUIItYLEVEL ..ottt e e e et et et e e e 58

MO MmNt .ottt e e e 59

DigitalPersonaOne Touch for Windows SDK: C/C++ Edition | Developer Guide iv

Table of Contents

MO _getFeatureslenot e e e e e e i 59
MC_generateRegFeaturest e e 60

M VY FEATUIESEX . .ottt ettt ettt ettt 62

=1 = I 6 (0 Lt 10 = P 64
DP D DEVICE _INFO .ottt e e e et e e e e et e e 64

DP _DEVICE _VERSION ..ttt e e e e e e e e 64

DP _HW INF O ..o e e e e e e e e e e e 65
DP_PRODUCT _VERSION ..ot e e e e e e e e e e 66

FT _VERSION _INFO .ttt i e e et e e et e e ettt 66

MO SETTINGS .o e e e e e e e e e e 67
YU 0 V=T - | o] o TS PP 68
DP_ACQUISITION P RIORITY .ottt e e e e e e e e e e 68

DP _ DEVICE _MOD ALY ettt e e e e e e et e 68
DP_DEVICE_TECHNOLOGY ..ottt ettt e e e e e e e 69

DP _DEVICE _UID T PE ..\ttt e e et et et e e e e et et 70

DP S AMPLE _QUALITY ottt e e e e e e e 70

FT MG _QUALITY ot e e e e e e e et e et et 72

FT TR _QUALITY ettt e e e e e e e e e e e e 72

o I S I S 1 = 73
Type Definitions and CONSTANTS un ettt ettt ettt e e et e a e eaenes 74
DFLT_FA_RATE MED _SEC _FA _RATE ..ttt e et e e e et 74
DP_SAMPLE _TYPE _IMAGE ... i e e e e e 74

o I 7N £ I 74

HD P OPERATION .ottt e e e e e e e e e e e 74
HIGH _SEC FA RATE ..ottt e e et e e et e e et e ettt 74
LOW _SEC FA RATE ettt e e e e e e e e e e e e 75
MED _SEC FA RATE .ttt e e e e et e e et e ettt 75

6 UserInterface APl RefErENCEottt e e e e e et e 76
L1 Ve T) o - 76
DPENIOIUL .o e e e e e e 76
DRV ity Ul L e e e 78
CallbaCKS .\ttt e e e 79
DPENROLLMENTPROC ..\ttt e e e e e e e e e 79
DPVERIFYPROC ..ttt e e e et e e e e 80

YU 0 V=1 - | o) o TS 82
DP_ENROLLMENT _ACTION ..ottt e e e e e e e et ettt e 82

7 Events Notifications and RetUrn Codesiuitiniit ittt et et et cieee 83
EVeNnts NOtifiCationsottt i i e e e e e e e 83
R T=] U] ¢ e Yo [T P 84

DigitalPersonaOne Touch for Windows SDK: C/C++ Edition | Developer Guide v

Table of Contents

8 Developing Citrix-aware applicationsuuiiti i i et et et et e e e 85
L =T 11 44 oYU o PP 86
RTENINStall FOlder ... e e e e e e 86

0T 1] Al o] (o =T 86
Fingerprint Reader DOCUMENTatioNottt e et e it ie e 90
Hardware Warnings and Regulatory Information ...t 90

Fingerprint Reader Use and Maintenance Guidecciiiiiiiiii i, 20

A Setting the False ACCEPt Rateottt e e et et e 91
False ACCEPt Rate (FAR) ..ottt e e e e e e e e e e et et et 91
Representation of Probability 91
REQUESTEA FAR ..t e i e e e e 92
AChIEVEA FAR Lt et e e e e e e e e 92

3 11T PO 92

B Platinum SDK Enrollment Template Conversionc..uiriiiiiiiiii i innennann. 93
Platinum SDK Enrollment Template Conversion for Microsoft Visual C++ 93
Platinum SDK Enrollment Template Conversion for Visual Basic6.0cccovininnn... 95

C Get/Set Device Parametersttt e e e e 96
L@ L= T PP 926
ParaM et S . e 96
GOSNy ittt e 97
T 1= PP 100

DigitalPersonaOne Touch for Windows SDK: C/C++ Edition | Developer Guide vi

Introduction |

The One Touch® for Windows SDK is a software development tool that enables developers to integrate
fingerprint biometrics into a wide set of Microsoft® Windows®-based applications, services, and products. The
tool enables developers to perform basic fingerprint biometric operations: capturing a fingerprint from a
DigitalPersona fingerprint reader, extracting the distinctive features from the captured fingerprint sample, and
storing the resulting data in a template for later comparison of a submitted fingerprint with an existing
fingerprint template.

In addition, the One Touch for Windows SDK enables developers to use a variety of programming languages in
a number of development environments to create their applications. The product includes detailed
documentation and sample code that can be used to guide developers to quickly and efficiently produce
fingerprint biometric additions to their products.

The One Touch for Windows SDK builds on a decade-long legacy of fingerprint biometric technology, being the
most popular set of development tools with the largest set of enrolled users of any biometric product in the
world. Because of its popularity, the DigitalPersona® Fingerprint Recognition Engine software —with its high
level of accuracy —and award-winning U.are.U® Fingerprint Reader hardware have been used with the widest-
age, hardest-to-fingerprint demographic of users in the world.

The One Touch for Windows SDK has been designed to authenticate users on the Microsoft® Windows Vista®
and Microsoft® Windows® XP operating systems running on any of the x86-based platforms. The product is
used with DigitalPersona fingerprint readers in a variety of useful configurations: standalone USB peripherals,
modaules that are built into customer platforms, and keyboards.

Also note that the DigitalPersona One Touch I.D. SDK includes the One Touch for Windows RTE, .NET
documentation and .NET samples as well; and can be used to implement a full-fledged biometrics product
encompassing fingerprint collection, enrollment, and verification. We strongly suggest that OTID developers
use this embedded version of OTW.

Fingerprint Authentication on a Remote Computer

This SDK includes transparent support for fingerprint authentication through Windows Terminal Services
(including Remote Desktop Connection) and through a Citrix connection to Metaframe Presentation Server
using a client from the Citrix Presentation Server Client package.

Through Remote Desktop or a Citrix session, you can use a local fingerprint reader to log on to, and use other
installed features of, a remote machine running your fingerprint-enabled application.

The following types of Citrix clients are supported:

= Program Neighborhood
= Program Neighborhood Agent
m Web Client

To take advantage of this feature, your fingerprint-enabled application must run on the Terminal Services or
Citrix server, not on the client. If you are developing a Citrix-aware application, see additional information in the
Developing Citrix-aware applications chapter on page 85.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 1

Chapter 1: Introduction Target Audience

Target Audience

This guide is for developers who have a working knowledge of the C or C++ programming language.

Chapter Overview

Chapter 1, Introduction, this chapter, describes the audience for which this guide is written; defines the
typographical and notational conventions used throughout this guide; identifies a number of resources that
may assist you in using the One Touch for Windows SDK: C/C++ Edition; identifies the minimum system
requirements needed to run the One Touch for Windows SDK: C/C++ Edition; and lists the DigitalPersona
products and fingerprint templates supported by the One Touch for Windows SDK: C/C++ Edition.

Chapter 2, Quick Start, provides a quick introduction to the One Touch for Windows SDK: C/C++ Edition using
one of the sample applications provided as part of the SDK.

Chapter 3, Installation, contains instructions for installing the SDK and the RTE and identifies the files and
folders that are installed on your hard disk.

Chapter 4, Overview, introduces One Touch for Windows SDK: C/C++ Edition terminology and concepts, shows
how data flows among the various One Touch for Windows SDK: C/C++ Edition components, and includes
workflow diagrams and explanations of the One Touch for Windows: C/C++ Edition API functions used to
perform the operations in the workflows.

Chapter 5, Core API Reference, defines the functions, data structures, and type definitions that are part of the
One Touch for Windows: C/C++ Edition Core API.

Chapter 6, User Interface API Reference, defines the functions and enumerations of the User Interface API, a high-
level wrapper providing a premade user interface and access to the full functionality of the Core API through a

small number of simple functions.

Chapter 7, Events Notifications and Return Codes, defines the codes returned by the One Touch for Windows: C/
C++ Edition API functions.

Chapter 9, Redistribution, identifies the files that you may distribute according to the End User License
Agreement (EULA) and lists the functionalities that you need to provide to your end users when you develop
products based on the One Touch for Windows: C/C++ Edition API.

Appendix A, Setting the False Accept Rate, provides information about determining and using specific values for
the FAR and evaluating and testing achieved values.

Appendix B, Platinum SDK Enrollment Template Conversion, contains sample code for converting Platinum SDK
registration templates for use with the One Touch for Windows SDK: C/C++ Edition.

A glossary and an index are also included for your reference.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 2

Chapter 1: Introduction Document Conventions

Document Conventions

This section defines the notational and typographical conventions used in this guide.

Notational Conventions

The following notational conventions are used throughout this guide:
NOTE: Notes provide supplemental reminders, tips, or suggestions.

IMPORTANT: Important notations contain significant information about system behavior, including problems
or side effects that can occur in specific situations.

Typographical Conventions

The following typographical conventions are used in this guide:

Typeface Purpose Example
Courier Used to indicate computer programming code | The only valid value for this field is TRUE.
bold

Initialize the licensing library by calling the
DPFPINnit function.

Italics Used for emphasis or to introduce new terms Duration is the period of time for which a template

For developers who are viewing this document certificate, once issued, is valid.

online, text in italics may also indicate Call DPIDCreateldentificationSet before
hypertext links to other areas in this guide. calling this function (page 20).

Bold Used for keystrokes and window and dialog Press Enter.
box elements Click the Info tab.

Additional Resources

You can refer to the resources in this section to assist you in using the One Touch for Windows SDK: C/C++
Edition.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 3

Chapter 1: Introduction

Related Documentation

Related Documentation

Subject

Document

Fingerprint recognition, including the history and basics
of fingerprint identification and the advantages of
DigitalPersona’s Fingerprint Recognition Engine

The DigitalPersona White Paper: Guide to Fingerprint
Recognition. The file, Fingerprint Guide.pdf, is located in
the Docs folder in the software package, and is not
automatically installed on your computer as part of the
setup process.

Late-breaking news about the product

The Readme.txt files provided in the root directory in the
SDK software package as well as in some subdirectories

Online Resources

Web site name

URL

DigitalPersona Developer Connection Forum for peer-to
peer interaction between DigitalPersona Developers

http.//www.digitalpersona.com/webforums/

Latest updates for DigitalPersona software products

http://www.digitalpersona.com/support/downloads/
software.php

System Requirements

This section lists the minimum software and hardware requirements needed to run the One Touch for Windows

SDK: C/C++ Edition.

x86-based processor or better

Microsoft® Windows® XP, 32-bit and 64-bit versions; Microsoft® Windows® XP Embedded, 32-bit version1;

or Microsoft® Windows Vista®, 32-bit and 64-bit versions

USB connector on the computer where the fingerprint reader is to be connected

DigitalPersona U.are.U 4000B or U.are.U 4500 fingerprint reader

Supported DigitalPersona hardware Products

The One Touch for Windows SDK: C/C++ Edition supports the following DigitalPersona hardware products:

m DigitalPersona U.are.U 4000B/4500 or later fingerprint readers and modules

» DigitalPersona U.are.U Fingerprint Keyboard

1. Alist of DLL dependencies for installation of your application on Microsoft Windows XP Embedded, One Touch for Windows XPE Dependencies.xls, is

located in the Docs folder in the SDK software package.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

http://www.digitalpersona.com/webforums/
http://www.digitalpersona.com/support/downloads/software.php

Chapter 1: Introduction Fingerprint Template Compatibility

Fingerprint Template Compatibility
Fingerprint templates produced by all editions of the One Touch for Windows SDK are also compatible with the
following DigitalPersona SDKs:

= Gold SDK

= Gold CE SDK

m One Touch for Linux SDK, all distributions

NOTE: Platinum SDK enrollment templates must be converted to a compatible format to work with these SDKs.
See Appendix B on page 93 for sample code that converts Platinum SDK templates to this format.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 5

Quick Start 2

This chapter provides a quick introduction to the One Touch for Windows SDK: C/C++ Edition using one of the
sample applications provided as part of the One Touch for Windows SDK.

The application is a sample Microsoft® Visual C++° project that demonstrates the functionality of the user
interfaces supported by the One Touch for Windows SDK: C/C++ Edition User Interface API.

Quick Concepts

The following definitions will assist you in understanding the purpose and functionality of the sample
application that is described in this section.

Enrollment—The process of capturing a person’s fingerprint four times, extracting the features from the
fingerprints, creating a fingerprint template, and storing the template for later comparison.

Verification—The process of comparing a captured fingerprint to a fingerprint template to determine whether
the two match.

Unenrollment—The process of deleting a fingerprint template associated with a previously enrolled
fingerprint.

For further descriptions of these processes, see Chapter 4 on page 17.

Install the Software

To install the One Touch for Windows SDK: C/C++ Edition
1. In the SDK folder in the SDK software package, open the Setup.exe file, and then click Next.

2. Follow the installation instructions as they appear.

3. Restart your computer.

Connect the Fingerprint Reader

Conenct the fingerprint reader to the USB connector on the system where you installed the SDK.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 6

Chapter 2: Quick Start

Using the Sample Application

By performing the exercises in this section, you will

m Start the sample application

Enroll a fingerprint

Verify a fingerprint
= Unenroll (delete) a fingerprint

Exit the sample application

To start the sample application

Max. Enrolled Fingerprint Count |2

+ Success " Retry " abort

Verification

Customn Caption

Callback Return Value 2. The DPFPUI Demo dialog box appears.

Using the Sample Application

OPFP Ul Do 1. Open the UIVBDemo.exe file.
Emrellimenii It is located in the <destination folder>One Touch SDK\C++ Samples\
Fingerprint Mask d DPFP Ul Demo\Release folder.

ET——— Enrolling a fingerprint consists of scanning your fingerprint four times
using the fingerprint reader.

*t'ou may enroll your fingerprints

g To enroll a fingerprint, click a finger on the hands below. |t is recommended that you enroll your

index finger. Enrolled fingers are highlighted. Y'ou may also delete an enrolled fingerprint by

clicking a highlighted finger.

If you are finizhed with fingerprint enroliment, click OF.

CustomText [To enroll a fingerprint
P 1.In the DPFPUI Demo dialog box, click Enroll Fingerprints.
On Error, Callback Return Yalue . . .
5 ~ The Fingerprint Enrollment dialog box appears.
Return Yalues
Feature set matched? [Fingerprint Enrollment
Feles Aeesplifaie [| Enroll a Fingerprint R

D)

2. On theright “hand,’ click the index finger.

A second Fingerprint Enrollment dialog box appears.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

Chapter 2: Quick Start Using the Sample Application

Fingerprint Enrollment

i
|

Enroll a Fingerprint
*t'ou may enroll your fingerprints

z

Scan vour right index fingerprint four times.

To begin, place and hold your right index finger on the
113 o fingerprint reader until the screen indicates that the scan is
'{:/'? Ny] successful. Repeat for each of the remaining scans.

Cancel

3. Using the fingerprint reader, scan your right index fingerprint.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 8

Chapter 2: Quick Start

4. Repeat step 3 until the Success message appears.

Enroll a Fingerprint /\
*t'ou may enroll your fingerprints @ N

Scan vour right index fingerprint four times.

Success

Success Message

ful. Place your finger on the

Cancel

5. In the message box, click OK.

The Enrollment was successful message appears.

Fingerprint Enrollment

Enroll a Fingerprint /\
*t'ou may enroll your fingerprints @ N

To enrall a fingerprint, click a finger on the hands below. [t is recommended that you enrall your
index finger. Enrolled fingers are highlighted. Y'ou may also delete an enrolled fingerprint by
clicking a highlighted finger.

jj Enrollment was successful

‘four right indesx fingerprint is now enrolled,

If you are finizhed with fingerprint enroliment, click OF.

6. Click OK.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

Using the Sample Application

Chapter 2: Quick Start

To verify a fingerprint
1. In the DPFPUI Demo dialog box, click Verify Fingerprint.
The Verify Your Identify dialog box appears.

8 Verify Your Identity
ﬂ DigitalPersona

Fingerprint Authentication System

Ta wverify yvour identity, touch the fingerprint

reader with any enrolled finger, @\

\>

2. Using the fingerprint reader, scan your right index fingerprint.

The Success message appears, which indicates that your fingerprint was verified.

Ta verify your iden
reader with any en

Cancel

3. In the message box, click OK.

4. Using the fingerprint reader, scan your right middle fingerprint.

The Retry message appears, which indicates that your fingerprint was not verified.

Ta verify your identi
reader with any enr

5. In the message box, click OK.

6. Click Cancel.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

Using the Sample Application

Chapter 2: Quick Start Using the Sample Application

To unenroll (delete) a fingerprint
1. In the DPFPUI Demo dialog box, click Enroll Fingerprints.

The Fingerprint Enrollment dialog box appears, indicating that you have enrolled your right index
fingerprint.

Fingerprint Enrollment

i
|

J

Enroll a Fingerprint
*t'ou may enroll your fingerprints

To enrall a fingerprint, click a finger on the hands below. [t is recommended that you enrall your
index finger. Enrolled fingers are highlighted. Y'ou may also delete an enrolled fingerprint by

clicking a highlighted finger.

If you are finizhed with fingerprint enroliment, click OF.

2. In the right “hand,” click the green index finger.

A message box appears, asking you to verify the deletion.

Enroll a Fingerprint
*t'ou may enroll your fingerprints

2

To enrall a fingerprint, click a finger on the hands below. [t is recommended that you enrall your
index finger. Enrolled fingers are highlighted. Y'ou may also delete an enrolled fingerprint by
clicking a highlighted finger.

Fingerprint Enrollment

P

\‘_./ Are you sure you wank o delete the right index fingerprint?

If you are finizhed with fingerprint enroliment, click OF.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 11

Chapter 2: Quick Start

Using the Sample Application
3. In the message box, click Yes.

The Success message appears.

Enroll a Fingerprint

*t'ou may enroll your fingerprints

To enrall a fingerprint, click a finger on the hands below. [t is recommended that you enrall your

index finger. Enrolled fingers are highlighted. Y'ou may also delete an enrolled fingerprint by
clicking a highlighted finger.

Success

Success Message

If you are finizhed with fingerprint enroliment, click OF.

4. In the message box, click OK.
The Fingerprint Deleted message appears.
Fingerprint Enrollment
Enroll a Fingerprint =

“t'ou may enroll your fingerprints

2

Toenmoll a fingerprint, click a finger on the hands below. It iz recommended that you enroll your

index finger. Enrolled fingers are highlighted. v'ou may alzo delete an enrolled fingerprint by
clicking a highlighted finger.

jg Fingerprint Deleted
The right index fingerprint has been deleted.

il

—

If pour are finished with fingerprint enrollment, click OF.

The right index finger is no longer green, indicating that the fingerprint associated with that finger is not
enrolled (has been deleted).
To exit the application

= In the DPFPUI Demo dialog box, click Quit.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

Installation 3

This chapter contains instructions for installing the various components of the One Touch for Windows SDK: C/
C++ Edition and identifies the files and folders that are installed on your hard disk.

The following two installations are located in the SDK software package:
m SDK, which you use in developing your application. This installation is located in the SDK folder.

m RTE (runtime environment), which you must provide to your end users to implement the One Touch for
Windows SDK: C/C++ Edition interfaces, objects, methods, and properties. This installation is located in
the RTE folder. (The RTE installation is also included in the SDK installation.)

Installing the SDK

To install the One Touch for Windows SDK: C/C++ Edition
1. In the SDK folder in the SDK software package, open the Setup.exe file, and then click Next.

2. Follow the installation instructions as they appear.
3. Restart your computer.

Table 1 describes the files and folders that are installed in the <destination folder> folder on your hard disk. The
RTE files and folders, which are listed in Table 2 on page 15, are also installed on your hard disk.

NOTE: All installations share the DLLs and the DPHostW.exe file that are installed with the C/C++ edition.
Additional product-specific files are provided for other editions.

Table 1. One Touch for Windows SDK: C/C++ Edition installed files and folders

Folder File Description
One Touch SDK\C-C++\Docs | One Touch for Windows SDK DigitalPersona One Touch for Windows SDK:
C-C++ Developer Guide.pdf C/C++ Edition Developer Guide
One Touch SDK\C-C++\ dpDefs.h Header files used by all of the One Touch for
Include DPDevClth Windows SDK APIs
dpFtrex.h
dpMatch.h
dpRCodes.h
dpUIApi.h

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 13

Chapter 3: Installation Installing the Runtime Environment (RTE)

Table 1. One Touch for Windows SDK: C/C++ Edition installed files and folders (continued)

Folder File Description

One Touch SDK\C-C++\Lib DPFPApi.lib Import libraries used by the One Touch for
DPFpULlib Windows SDK: C/C++ Edition API
dpHFtrex.lib
dpHMatch.lib

One Touch SDK\C-C++\C++ This folder contains a sample Microsoft® Visual C++° project that demonstrates the
Samples\DPFP Ul Demo functionality of the user interfaces supported by the One Touch for Windows SDK:
C/C++ Edition User Interface API.

One Touch SDK\C-C++\C++ This folder contains a sample Microsoft Visual C++ project that shows how to use the
Samples\Enrollment Sample | One Touch for Windows: C/C++ Edition Core API for performing fingerprint enrollment
Code and fingerprint verification.

Installing the Runtime Environment (RTE)

When you develop a product based on the One Touch for Windows SDK: C/C++ Edition, you need to provide
the redistributables to your end users. These files are designed and licensed for use with your application. You
may include the installation files located in the RTE\Install folder in your application or you may incorporate the
redistributables directly into your installer. You may also use the merge modules located in the Redist folder in
the SDK software package to create your own MSl installer. (See Redistribution on page 86 for licensing terms.)

If you created an application based on the One Touch for Windows: C/C++ Edition APIs that does notinclude an
installer, your end users must install the One Touch for Windows: C/C++ Edition Runtime Environment to run
your application.

To install the One Touch for Windows: C/C++ Edition RTE for 32-bit operating systems
1. In the RTE folder in the SDK software package, open the Setup.exe file.

2. Follow the installation instructions as they appear.

Table 2 identifies the files that are installed on your hard disk.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 14

Chapter 3: Installation

Installing the Runtime Environment (RTE)

Table 2. One Touch for Windows: C/C++ Edition RTE installed files and folders, 32-bit installation

Folder

File

Description

<destination folder>\Bin

DPCOper2.dll
DPDevice2.dll
DPDevTS.dll
DpHostW.exe
DPmsg.dll
DPMux.dll
DpSvinfo2.dll
DPTSCInt.dll
DPCrStor.dll

DLLs and executable file used by the all of the
One Touch for Windows APIs

<system folder>

DPFPApi.dIl
DpClback.dll
dpHFtrEx.dll
dpHMatch.dll
DPFpULdIl

DLLs used by all of the One Touch for Windows
SDK APIs

To install the One Touch for Windows: C/C++ Edition RTE for 64-bit operating systems

1. In the RTE\x64 folder in the SDK software package, open the Setup.exe file.

2. Follow the installation instructions as they appear.

Table 3 identifies the files that are installed on your hard disk for 64-bit versions of the supported operating

systems.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

Chapter 3: Installation Installing and Uninstalling the RTE Silently

Table 3. One Touch for Windows: C/C++ Edition RTE installed files and folders, 64-bit installation

Folder File Description
<destination folder>\Bin DPCOper2dll DLLs and executable file used by the all of the
DPDevice2.dll One Touch for Windows APIs
DPDevTS.dll
DpHostW.exe
DPMux.dll
DpSvinfo2.dll
DPTSCInt.dll
DPCrStordll
<destination folder>\Bin\x64 DPmsg.dll DLL used by the all of the One Touch for
Windows APIs
<system folder> DPFPApi.dlII 32-bit DLLs used by all of the One Touch for
DpClback.dll Windows APIs
dpHFtrEx.dll
dpHMatch.dll
DPFpULdIl
<system64 folder> DPFPApi.dIl 64-bit DLLs used by all of the One Touch for
DpClback.dll Windows APIs
dpHFtrex.dll
dpHMatch.dll
DPFpULdIl

Installing and Uninstalling the RTE Silently

The One Touch for Windows SDK software package contains a batch file, InstallOnly.bat, that you can use to
silently install the RTE. In addition, you can modify the file to selectively install the various features of the RTE.
Refer to the file for instructions.

The SDK software package also contains a file, UninstallOnly.bat, that you can use to silently uninstall the RTE.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 16

Overview 4

This chapter introduces One Touch for Windows SDK: C/C++ Edition concepts and terminology. This chapter
also includes typical workflow diagrams and explanations of the One Touch for Windows: C/C++ Edition API
functions used to perform the tasks in the workflows. For additional information on fingerprint biometrics, refer
to the “DigitalPersona White Paper: Guide to Fingerprint Recognition” included in the One Touch for Windows
SDK software package “doc” folder as “Fingerprint Guide.pdf.’

Biometric System

A biometric system is an automatic method of identifying a person based on the person’s unique physical and/
or behavioral traits, such as a fingerprint or an iris pattern, or a handwritten signature or voice. Biometric
identifiers are

» Universal
= Distinctive
m Persistent (sufficiently unchangeable over time)

m Collectable

Biometric systems have become an essential component of effective person recognition solutions because
biometric identifiers cannot be shared or misplaced and they naturally represent an individual’s bodily identity.
Substitute forms of identity, such as passwords (commonly used in logical access control) and identity cards
(frequently used for physical access control), do not provide this level of authentication that strongly validates
the link to the actual authorized user.

Fingerprint recognition is the most popular and mature biometric system used today. In addition to meeting
the four criteria above, fingerprint recognition systems perform well (that is, they are accurate, fast, and robust),
they are publicly acceptable, and they are hard to circumvent.

Fingerprint

A fingerprint is an impression of the ridges on the skin of a finger. A fingerprint recognition system uses the
distinctive and persistent characteristics from the ridges, also referred to as fingerprint features, to distinguish
one finger (or person) from another. The One Touch for Windows SDK: C/C++ Edition incorporates the
DigitalPersona Fingerprint Recognition Engine (Engine), which uses traditional as well as modern fingerprint
recognition methodologies to convert these fingerprint features into a format that is compact, distinguishing,
and persistent. The Engine then uses the converted, or extracted, fingerprint features in comparison and
decision-making to provide reliable personal recognition.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 17

Chapter 4: Overview Fingerprint Recognition

Fingerprint Recognition

The DigitalPersona fingerprint recognition system uses the processes of fingerprint enrollment and fingerprint
verification, which are illustrated in the block diagram in Figure 1 on page 19. Some of the tasks in these
processes are done by the fingerprint reader and its driver; some are accomplished using One Touch for
Windows: C/C++ Edition API functions, which use the Engine; and some are provided by your software
application and/or hardware.

Fingerprint Enroliment

Fingerprint enrollment is the initial process of collecting fingerprint data from a person (enrollee) and storing the
resulting data as a fingerprint template for later comparison. The following procedure describes typical
fingerprint enrollment. (Steps preceded by an asterisk are not performed by the One Touch for Windows SDK:
C/C++ Edition.)

1. *Obtain the enrollee’s identifier (Subject Identifier).

2. Capture the enrollee’s fingerprint using the fingerprint reader.

3. Extract the fingerprint feature set for the purpose of enrollment from the fingerprint sample.

4. Repeat steps 2 and 3 until you have enough fingerprint feature sets to create a fingerprint template.
5. Create a fingerprint template.

6. *Associate the fingerprint template with the enrollee through a Subject Identifier, such as a user name,
email address, or employee number.

7. *Store the fingerprint template, along with the Subject Identifier, for later comparison.

Fingerprint templates can be stored in any type of repository that you choose, such as a fingerprint
capture device, a smart card, or a local or central database.

Fingerprint Verification

Fingerprint verification is the process of comparing the fingerprint data to the fingerprint template produced at
enrollment and deciding if the two match. The following procedure describes typical fingerprint verification.
(Steps preceded by an asterisk are not performed by the One Touch for Windows SDK: C/C++ Edition.)

1. *Obtain the Subject Identifier of the person to be verified.
2. Capture a fingerprint sample using the fingerprint reader.
3. Extract a fingerprint feature set for the purpose of verification from the fingerprint sample.

4. *Retrieve the fingerprint template associated with the Subject Identifier from your repository.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 18

Chapter 4: Overview

5. Perform a one-to-one comparison between the fingerprint feature set and the fingerprint template, and

make a decision of match or non-match.

False Positives and False Negatives

6. *Act on the decision accordingly, for example, unlock the door to a building for a match, or deny access to
the building for a non-match.

Get Subject Identifier

4

Capture fingerprints

Create fingerprint

y

feature sets

Create template

Store template and
Subject Identifier

Fingerprint Verification

.| Retrieve template and

Get Subject Identifier

Subject Identifier

A 4

Capture fingerprint

Create fingerprint

feature set

Compare and
make decision

Use decision in
application

e

Legend

[] Performed by One Touch for Windows SDK: C/C++
[] Not performed by One Touch for Windows SDK: C/C++

Figure 1. DigitalPersona fingerprint recognition system

False Positives and False Negatives

Fingerprint recognition systems provide many security and convenience advantages over traditional methods

of recognition. However, they are essentially pattern recognition systems that inherently occasionally make
certain errors because no two impressions of the same finger are identical. During verification, sometimes a
person who is legitimately enrolled is rejected by the system (a false negative decision), and sometimes a
person who is not enrolled is accepted by the system (a false positive decision).

The proportion of false positive decisions is known as the false accept rate (FAR), and the proportion of false

negative decisions is known as the false reject rate (FRR). In fingerprint recognition systems, the FAR and the FRR

are traded off against each other, that is, the lower the FAR, the higher the FRR, and the higher the FAR, the

lower the FRR.

A One Touch for Windows: C/C++ Edition API function enables you to set the value of the FAR, also referred to
as the security level, to accommodate the needs of your application. In some applications, such as an access

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

Chapter 4: Overview False Positives and False Negatives

control system to a highly confidential site or database, a lower FAR is required. In other applications, such as a
entry system to an entertainment theme park, security (which reduces ticket fraud committed by a small

n

fraction of patrons by sharing their entry tickets) may not be as significant as accessibility for all of the patrons,

and it may be preferable to decrease the FRR at the expense of an increased FAR.

It is important to remember that the accuracy of the fingerprint recognition system is largely related to the
quality of the fingerprint. Testing with sizable groups of people over an extended period has shown that a
majority of people have feature-rich, high-quality fingerprints. These fingerprints will almost surely be
recognized accurately by the DigitalPersona Fingerprint Recognition Engine and practically never be falsely
accepted or falsely rejected. The DigitalPersona fingerprint recognition system is optimized to recognize
fingerprints of poor quality. However, a very small number of people may have to try a second or even a third
time to obtain an accurate reading. Their fingerprints may be difficult to verify because they are either worn
from manual labor or have unreadable ridges. Instruction in the proper use of the fingerprint reader will help
these people achieve the desired results.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

20

Chapter 4: Overview Operations

Operations

Each time the user puts a finger on the fingerprint reader, fingerprint-related data is sent to the Engine. When
the client application needs to perform some action requiring scanning a fingerprint, it should create an
operation.

There is only one type of operation supported: Fingerprint sample acquisition. Right now the Engine supports
only one type of fingerprint sample, which is a fingerprint image. During the creation of a fingerprint sample
acquisition operation, the client application may specify its priority level, which can be low, normal, or high.
Note that the high priority level is reserved for internal DigitalPersona use only.

Note that no more than one client application may obtain the results of a single fingerprint scan.

Itis possible to create and register any number of operations with normal priority, but no more than one
operation for each of low and high priority at a time.

When the Engine is ready to dispatch the result of fingerprint scan, it processes operations using the following
rules in the sequence shown.

1. If there is a high-priority operation registered, the result is dispatched to the process that owns the
operation.

2. If there is no high-priority operation registered, the engine determines which process owns the
topmost window. If there is a normal-priority operation owned by this process, it will receive the
result.

3. If the above-mentioned steps do not allow the engine to dispatch the result, the process owning the low-
priority operation (if registered) will receive the result.

If the result is still not dispatched, it is discarded.

Components of the SDK

The One Touch for Windows SDK: C/C++ Edition consists of the following two components:
= Device component

The device component directs fingerprint reader (device) data and events to your application.

= Fingerprint recognition component

The fingerprint recognition component performs fingerprint enrollment and verification and includes
two modules: the fingerprint feature extraction module and the fingerprint comparison module.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 21

Chapter 4: Overview

Device Component

Device Component

The device component workflow is shown below and is followed by explanations of the One Touch for
Windows: C/C++ Edition Core APl functions that are used to perform the tasks in the workflow.

Initialization
Initialize the
device component
DPFPInit

Enumerate available
fingerprint readers (devices)
DPFPEnumerateDevices

Create a fingerprint sample
acquisition operation
DPFPCreateAcquisition

Subscribe client for receiving
operation events notifications
DPFPStartAcquisition

Process the event

Unsubscribe client
from receiving operation
events notifications
DPFPStopAcquisition

Terminate the

device component
DPFPTerm

Optional step

Figure 2. Device component workflow

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

22

Chapter 4: Overview Initialization

Initialization

m Initialize the device component by calling the DPFPInit function (page 44).

Operation

1. (Optional) If necessary, enumerate the available fingerprint readers (devices) connected to a computer by
calling the DPFPEnumerateDevices function (page 47).

2. Create a fingerprint sample acquisition operation by calling the DPFPCreateAcquisition (page 38)
and specifying the device’s UID . You can also subscribe to all available fingerprint readers by passing the
value GUID_NULL.

3. Subscribe the client application for receiving operation events notifications by calling
DPFPStartAcquisition (page45)and passing the operation handle.

4. Process the event.
5. Unsubscribe by calling the DPFPStopAcquisition function (page 46)
6. Release a subscribed fingerprint reader by calling the DPFPDestroyAcquisition function

(page 40).

Clean-up

= Terminate the device component when your application no longer requires access to any fingerprint
readers by calling the DPFPTerm function (page 46).

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 23

Chapter 4: Overview Fingerprint Recognition Component

Fingerprint Recognition Component

This section includes illustrations of typical fingerprint enrollment and verification workflows for the fingerprint
recognition component and explanations of the One Touch for Windows: C/C++ Edition Core APl functions
used to perform the tasks in the workflows. Your application workflows may be different than those illustrated
here. For example, you could choose to create fingerprint feature sets locally and then send them to a server for
enrollment.

Fingerprint Enroliment

A typical fingerprint enrollment application workflow is represented below. Each figure is followed by
explanations of the One Touch for Windows: C/C++ Edition Core API functions that are used to perform the
tasks in that part of the workflow. Both the fingerprint feature extraction and the fingerprint comparison
modules are used for performing enrollment.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 24

Chapter 4: Overview

Typical Fingerprint Enrollment Workflow

Typical Fingerprint Enroliment Workflow

Initialize the fingerprint
comparison module
MC_init

4

Create a comparison context
MC_createContext

Initialize the fingerprint
feature extraction module
FX_init

A

Create a feature extraction context
FX_createContext

;

Retrieve the size of the
fingerprint template (ST) passing
feature set purpose FT_REG_FTR

MC_getFeaturesLen

Retrieve the size of the fingerprint
feature set (FSE) passing feature
set purpose FT_PRE_REG_FTR

A

Retrieve the required number of

fingerprint feature sets (N)
MC_getSettings

FX_getFeaturesLen

Figure 3. Typical fingerprint enrollment workflow: Initialization

Initialization Tasks

Steps 3 and 4 can be done before steps 1 and 2.

1. Initialize the fingerprint feature extraction module by calling the FX_init function (page 47).

2. Create afeature extraction context by calling the FX_createContext function (page 48)

3. Initialize the fingerprint comparison module by calling the MC_init function (page 55).

4. Create a comparison context by calling the MC_createContext function (page 56).

Steps 5 through 7 can be done in any order.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

25

Chapter 4: Overview Typical Fingerprint Enrollment Workflow

5. Retrieve the size of the fingerprint feature set (FSE) by calling the FX_getFeaturesLen functionand
passing feature set purpose FT_PRE_REG_FTR (page 50).

6. Retrieve the size of the fingerprint template (ST) by calling the MC_getFeaturesLen function and
passing feature set purpose FT_REG_FTR (page 59).

7. Retrieve the number (N) of fingerprint feature sets required to create the fingerprint template by calling
the MC_getSettings function (page 56).

Prepare the fingerprint . Capture a fingerprint
sample for display : sample from the
FX_getDisplayImage . fingerprint reader

:] [Create a fingerprint feature
| Display the image 1 set passing FSE and feature
[j set purpose FT_PRE_REG_FTR
: T 4 FX_eXTr‘aCTFea‘fur‘es

4

Store the fingerprint feature
set in volatile memory

Required number
of fingerprint
feature sets?

Legend
[] One Touch for Windows SDK: C/C++

: : Optional step

[] Application (not part of SDK)
I Fingerprint reader

Figure 4. Typical fingerprint enrollment workflow: Fingerprint feature set creation

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 26

Chapter 4: Overview Typical Fingerprint Enrollment Workflow

Fingerprint Feature Set Creation Tasks

Repeat the following required steps until you have created the number of fingerprint feature sets required to
generate a fingerprint template. This number (N) was obtained when you called the MC_getSettings
function during initialization (page 56). (Steps preceded by an asterisk are not accomplished using One Touch
for Windows: C/C++ Edition Core API functions.)

1. *Capture a fingerprint image from the fingerprint reader.

2. Create a fingerprint feature set by calling the FX_extractFeatures function and passing FSE and
feature set purpose FT_PRE_REG_FTR (page 57).

Steps 3 and 4 are optional.

3. Prepare the fingerprint image captured by the fingerprint reader for display by calling the
FX_getDisplaylmage function (page 53).

4. *Display the image.

5. *If the FX_extractFeatures function succeeds, store the resulting fingerprint feature set in volatile

memory.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

27

Chapter 4: Overview Typical Fingerprint Enrollment Workflow

Create a fingerprint template
passing ST and N number of

fingerprint feature sets
MC_generateRegFeatures

A

Store the fingerprint template
and associate it with a user ID

I -

| Clean-up y \ :
: Destroy the Destroy the feature |
| comparison context extraction context :
: MC_closeContext FX_closeContext |
i |
' |
| 4 A |
I

I Terminate the fingerprint Terminate the fingerprint :
| comparison module feature extraction module |
: MC_terminate FX_terminate |
| |
I
___ I

End
Legend

[] One Touch for Windows SDK: C/C++
[] Application (not part of SDK)

Figure 5. Typical fingerprint enrollment workflow: Fingerprint template creation and clean-up

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 28

Chapter 4: Overview Fingerprint Verification

Fingerprint Template Creation Tasks

1. Create afingerprint template by calling the MC_generateRegFeatures function and passing ST
and the N number of fingerprint features sets created previously and stored in volatile memory (page 60).

Step 2 is not accomplished using One Touch for Windows: C/C++ Edition Core API functions.
2. Store the fingerprint template in your repository and associate it with a user ID.

Clean-up Tasks

Steps 3 and 4 can be done before steps 1 and 2; however, during clean-up, you should always terminate
modaules in the reverse order of their initialization. In other words, if you initialize the fingerprint feature
extraction module first, you should terminate that module last, and if you initialize the comparison module
first, you should terminate that module last.

1. Destroy the comparison context by calling the MC_closeContext function (page 57)
2. Terminate the fingerprint comparison module by calling the MC_terminate function (page 59).
3. Destroy the feature extraction context by calling the FX_closeContext function (page 49)

4. Terminate the fingerprint feature extraction module by calling the FX_terminate function (page 49).

Fingerprint Verification

A typical fingerprint verification application workflow is represented in the following three illustrations. Each
figure is followed by explanations of the One Touch for Windows: C/C++ Edition Core API functions that are
used to perform the tasks in that part of the workflow. Both the fingerprint feature extraction and the
fingerprint comparison modules are used for performing verification.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 29

Chapter 4: Overview Typical Fingerprint Verification Workflow

Typical Fingerprint Verification Workflow

: Initialization

| 4 Y

I Initialize the fingerprint Initialize the fingerprint

: comparison module feature extraction module
| MC_init FX_init

I

I

I

| 4 Y

I

| Create a comparison context Create a feature extraction context
: MC_createContext FX_createContext

I

I

I

S ‘

Retrieve size of the fingerprint
feature set (FSV) passing feature
set purpose FT_VER_FTR
FX_getFeaturesLen

|

| Set the security level of the
: comparison context
T MC_setSecuritylLevel
|

|

|

|

: Optional step

Figure 6. Typical fingerprint enrollment workflow: Initialization
Initialization Tasks
Steps 3 and 4 can be done before steps 1 and 2.
1. Initialize the fingerprint feature extraction module by calling the FX_init function (page 47).
2. Create a feature extraction context by calling the FX_createContext function (page 48)
3. Initialize the fingerprint comparison module by calling the MC_init function (page 55).
4. Create a comparison context by calling the MC_createContext function (page 56).

5. Optionally, set the security level of the comparison context by calling the MC_setSecurityLevel
function (page 57). If you do not call this function, the default security level will be used.

6. Retrieve the size of the fingerprint feature set (FSV) by calling the FX_getFeatureslLen functionand
passing feature set purpose FT_VER_FTR (page 50).

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 30

Chapter 4: Overview Typical Fingerprint Verification Workflow

Prepare the fingerprint . Capture a fingerprint
sample for display : sample from the
FX_getDisplayImage . fingerprint reader

[Create a fingerprint feature set
Display the image 1 passing FSV and feature set
] [purpose FT_VER_FTR

| R 4 Fx_exfr‘acheafures

4

set in volatile memory

|
|
|
|
|
| Store the fingerprint feature
|
|
|
|

One Touch for Windows SDK: C/C++

7 Optional step
[| Application (not part of SDK)
I Fingerprint reader

Figure 7. Typical fingerprint verification workflow: Fingerprint feature set creation

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 31

Chapter 4: Overview Typical Fingerprint Verification Workflow

Fingerprint Feature Set Creation Tasks

Steps preceded by an asterisk are not accomplished using One Touch for Windows: C/C++ Edition Core API
functions.

1. *Acquire the user ID that was used to associate the fingerprint template with the person to be verified.
2. *Capture a fingerprint image from the person via the fingerprint reader.

3. Create afingerprint feature set by calling the FX_extractFeatures function and passing FSV and
feature set purpose FT_VER_FTR (page 57).

Steps 4 and 5 are optional.

4. Prepare the fingerprint image captured by the fingerprint reader for display by calling the
FX_getDisplaylmage function (page 53).

5. *Display the image.

6. *If the FX_extractFeatures function succeeds, store the resulting fingerprint feature set in volatile

memory.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

32

Chapter 4: Overview

Typical Fingerprint Verification Workflow

Retrieve the previously stored
fingerprint template associated with
the user ID and its size (ST)

A

Perform fingerprint verification
passing the template and ST, and
the stored feature set and FSV
MC_verifyFeaturesEx

Destroy the

comparison context
MC_closeContext

A 4

Terminate the fingerprint

comparison module
MC_terminate

—— e e e —]

Destroy the feature
extraction context
FX_closeContext

4

Terminate the fingerprint
feature extraction module
FX_terminate

Legend
[| Application (not part of SDK)

Figure 8. Typical fingerprint verification workflow: Comparison and decision and clean-up

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

End

33

Chapter 4: Overview Typical Fingerprint Verification Workflow

Comparison-and-Decision Tasks

Step 1 is not accomplished using One Touch for Windows: C/C++ Edition Core API functions.
1. *Retrieve the fingerprint template associated with the user ID and size ST from your repository.

2. Perform fingerprint verification by calling the MC_verifyFeatureskx function and passing the
stored fingerprint feature set together with FSV, and the fingerprint template together with ST (page 62).

Clean-up Tasks

Steps 3 and 4 can be done before steps 1 and 2; however, during clean-up, you should always terminate
modaules in the reverse order of their initialization. In other words, if you initialize the fingerprint feature
extraction module first, you should terminate that module last, and if you initialize the comparison module
first, you should terminate that module last.

1. Destroy the comparison context by calling the MC_closeContext function (page 57)
2. Terminate the fingerprint comparison module by calling the MC_terminate function (page 59).
3. Destroy the feature extraction context by calling the FX_closeContext function (page 49)

4. Terminate the fingerprint feature extraction module by calling the FX_terminate function (page 49).

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 34

Core API Reference 5

This chapter provides a reference to the One Touch for Windows: C/C++ Edition Core API, including information
about its

m Functions on page 35

m Data Structures on page 64

Enumerations on page 68

Type Definitions and Constants on page 74

The next chapter, User Interface API Reference, describes the DPUIAPI wrapper that simplifies access to the entire
functionality available in the Core APl described in this chapter. The wrapper provides a premade user interface
that handles device component, fingerprint enrollment, and fingerprint verification tasks through only two
functions and two callbacks.

This chapter defines the One Touch for Windows: C/C++ Edition Core APl functions. Use the three categorized
lists in this section to quickly find the functions contained in the following pages by function name or by
description.

Functions

The functions are arranged for convenience into these three categories.
m Device functions - are used to communicate with the U.are.U fingerprint reader.

» Extraction functions - are used for performing feature extraction, which is the system function that is
applied to a fingerprint sample to compute repeatable and distinctive information to be used for
fingerprint verification or fingerprint enrollment.

m Matching - compares a fingerprint template and a feature set and calculates a score that indicates how
likely it is that they come from the same finger.

Device Functions List

Function Page | Description

DPFPBufferFree 38 Frees memory previously allocated by a DPFP function call.

DPFPCreateAcquisition 38 Creates a fingerprint sample acquisition operation.

DPFPDestroyAcquisition 40 Destroys the operation previously created by DPFPCreateAcquisition
and deallocates all resources associated with that operation.

DPFPEnumerateDevices 41 Enumerates fingerprint readers (devices) connected to the computer.

DPFPGetDevicelnfo 41 Retrieves information about a specified fingerprint reader.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 35

Chapter 5: Core API Reference Extraction Functions List

Function Page | Description

DPFPSetDeviceParameter 42 Sets a specified value to a dedicated storage location on a U.are.U fingerprint
reader.

DPFPGetDevice Parameter 43 Gets the value contained in a dedicated storage location on a U.are.U

fingerprint reader.

DPFPGetVersion 44 Gets the API version information.

DPFPInit 44 Initializes the device component and allocates necessary resources.
DPFPStartAcquisition 45 Subscribes the client application for receiving operation events notifications.
DPFPStopAcquisition 46 Unsubscribes the client application from receiving operation events
DPFPTerm 46 Terminates the device component and deallocates resources.

Extraction Functions List

Function Page | Description

- Module Initialization, Settings and Termination -
FX_init 47 Initializes the dpFtrEx module.
FX_getVersioninfo 48 Returns the software version of the module.
FX_createContext 48 Creates a feature extraction context.
FX_closeContext 49 Closes a feature extraction context.
FX_terminate 49 Closes the dpFtrEx module.

- Feature Manipulation -

FX_getFeaturesLen 50 Returns the length of the features of the specified type.
FX_extractFeatures 51 Extracts the features from a given scan.
FX_getDisplaylmage 53 Returns an image prepared for display.

Matching Functions List

Function Page | Description

- Module Initialization, Settings, and Termination -

MC _init 55 Initializes the dpMatch module.

MC_getVersioninfo 55 Returns the software version of the module.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 36

Chapter 5: Core API Reference

Matching Functions List

Function Page | Description
MC_getSettings 56 Returns the number of fingerprint feature sets required.
MC_createContext 56 Creates a matching context.
MC_closeContext 57 Closes a matching context.
MC_getSecuritylevel 57 Returns the current security level.
MC_setSecuritylLevel 58 Sets the security level for a matching context.
MC_terminate 59 Closes the dpMatch module.
- Fingerprint Enrollment and Verification -
MC_getFeaturesLen 59 Returns the minimum and recommended length of the features.
MC_generateRegFeatures 60 Creates a fingerprint template.
MC_verifyFeaturesEx 62 Compares a fingerprint template with a fingerprint feature set.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

37

Chapter 5: Core API Reference

Device Functions Reference

Device Functions Reference

Device functions are used to communicate with the U.are.U fingerprint reader, and are listed in the pages that

follow.

DPFPBufferFree

Frees memory previously allocated by a DPFP function call.

Syntax
void DPFPBufferFree (PVOID p);

Parameter Names

p [in] The memory area to be freed.

Library
DPFPApi.lib

DPFPCreateAcquisition

Creates a fingerprint sample acquisition operation.

Syntax

HRESULT DPFPCreateAcquisition(
DP_ACQUISITION_PRIORITY eAcquisitionPriority,
REFGUID DevUID,

ULONG uSampleType,

HWND hWnd,

ULONG uMsg,

HDPOPERATION * phOperation

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

38

Chapter 5: Core API Reference

Parameters

Device Functions Reference

eAcquisitionPriority [in] Acquisition priority needed. Must be one of the following values:

DP_PRIORITY_HIGH

(RESERVED. For internal use only.)

The process subscribing with this priority
acquires device events exclusively.

The process subscribing with this priority
must have administrative privileges or run
under Local SYSTEM account.

Only one subscriber with this priority is
allowed.

DP_PRIORITY_NORMAL

The process subscribing with this priority
acquires device events only if it runs as a
foreground process.

Multiple subscribers with this priority are
allowed.

DP_PRIORITY_LOW

The process subscribing with this priority
acquires device events only if there are no
subscribers with higher priority.

Only one subscriber with this priority is
allowed.

DevUID [in] Fingerprint Reader serial number. Can be GUID_NULL if any
reader can be used.

uSampleType [in] Type of fingerprint sample needed. This parameter must be
DP_SAMPLE_TYPE_ IMAGE.

hWnd [in] Handle of the window to be notified of operation events.

uMsg [in] Window message to be sent as an event notification.

phOperation [out] Pointer to operation handle to be filled if operation was created

successfully.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

39

Chapter 5: Core API Reference Device Functions Reference

Return Values

S OK Operation was successfully created.

E_ACCESSDENIED Application attempted to subscribe to device events using
DP_PRIORITY_HIGH but the priority does not have adequate rights to do so.
Only members of built-in Administrators group and Local SYSTEM account have
the right to subscribe with DP_PRIORITY_HIGH priority. If DigitalPersona Pro
is also installed on the same computer, an administrator needs to allow use of this
function by enabling “Allow Fingerprint Data Redirection” in the governing GPO.
The E_ACCESSDENIED error will be returned otherwise.

E_INVALIDARG For subscribers with DP_PRIORITY_HIGH and DP_PRIORITY_LOW
priorities, this error indicates that there is another application which has already
subscribed to device events with the same priority.

Remarks

In order to free memory allocated for the operation created, the client application must call
DPFPDestroyAcquisition forthe handle returnedin phOperation.

Library
DPFPApi.lib

DPFPDestroyAcquisition

Destroys the operation previously created by DPFPCreateAcquisition and deallocates all resources
associated with that operation.

Syntax
HRESULT DPFPDestroyAcquisition (HDPOPERATION hOperation);

Parameter Names

hOperation [in] Handle to operation that is to be destroyed.

Return Values

S_OK Operation was successfully destroyed.

Library
DPFPApi.lib

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 40

Chapter 5: Core API Reference Device Functions Reference

DPFPEnumerateDevices

Enumerates the device UIDs of available fingerprint readers (devices) connected to this computer.

Syntax

HRESULT DPFPEnumerateDevices (
ULONG * puDevCount,
GUID ** ppDevUID

)
Parameters
puDevCount [out] Number of readers available. If no readers are found, this numberis O.
puDevUID [out] Pointer to be filled with the pointer to the array of device UIDs for available
fingerprint readers. If NULL, only the number of available readers will be
returned.
Return Values
S 0K Function was successful.

Remarks

Caller must release returned memory by calling DPFPBufferFree.

Library
DPFPApi.lib

DPFPGetDevicelnfo

Retrieves information about a particular reader.

Syntax

HRESULT DPFPGetDevicelnfo (
REFGUID DevUID,
DP_DEVICE_INFO * pDevinfo

);
Parameters
DevUID [in] Pointer to the UID of the fingerprint reader to retrieve information about.
pDevIinfo [in, out] Pointerto DP_DEVICE_INFO structure receiving information about the

specified reader.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 41

Chapter 5: Core API Reference Device Functions Reference

Return Values

S OK Information was retrieved.

Library
DPFPApi.lib

DPFPSetDeviceParameter

Writes a value (pData) to a dedicated storage location on a U.R.U fingerprint reader with the specified serial
number.

Syntax

HRESULT DPFPSetDeviceParameter(
REFGUID DevUID,
unsigned long ulParamiD,
const DATA BLOB* pData

):
Parameters

DevUID [in] Fingerprint reader serial number. Can be GUID_NULL if any reader can be used.

ulParamlD Target Parameter ID, as follows:
FT_SET_CLIENT_PRIVATE_KEY
Writes a hashed private key into a fingerprint reader’s persistant storage. This
feature is supported on DigitalPersona’s 4000B and later readers. The source data
to hash is supplied through pData.
The reader needs to be recycled (disconnected and reconnected) before the key
can be retrieved through DPFPGetDeviceParameter.

pData Parameter value to set.

Return Values

S_OK Parameter was set.

Library
DPFPApi.lib

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 42

Chapter 5: Core API Reference Device Functions Reference

DPFPGetDeviceParameter

Retrieves a parameter value from a specified reader.

Syntax

HRESULT DPFPGetDeviceParameter,
REFGUID DevUID,
unsigned long ulParamiD,
const DATA BLOB* pData

)
Parameters

DevUID [in] Fingerprint reader serial number. Can be GUID_NULL if any reader can be used.

ulParamlD Target Parameter ID, as follows:
FT_GET_CLIENT_PRIVATE_KEY
Reads a private key hash stored within a fingerprint reader’s persistant storage.
This feature is supported on DigitalPersona’s 4000B and later readers.
The reader needs to be recycled (disconnected and reconnected) after invoking
DPFPSetDeviceParameter, before the key can be retrieved.
pData is required in order to allocate 16 bytes of storage when the function is used
to retrieve this parameter.

pData [out] Parameter value to retrieve. The caller has to allocate, load, and destroy

DATA_BLOB members.

Return Values

S_OK Parameter retrieved.

Library
DPFPApi.lib

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 43

Chapter 5: Core API Reference Device Functions Reference

DPFPGetVersion

Gets the API version information.

Syntax

HRESULT DPFPGetVersion (
DP_PRODUCT_VERSION * pVersion

)

Parameters

pVersion [out] Pointer to the structure to be filled.

Return Values

S OK Function was successful.

Library
DPFPApi.lib

DPFPInit

Allocates and initializes necessary resources. It MUST be called before any other DPFPApi calls except for
DPFPBufferFree.

Syntax
HRESULT DPFPInit ;

Return Values

S 0K Initialization successful.
S_FALSE Library is already initialized.
0x800706B3 The RPC server is not listening, which means that the Biometric Authentication

Service has not been started.

Remarks

Every successful (thatis, FAILED() == FALSE) call of DPFPINnit must have a corresponding call of
the DPFPTerm function.

Library
DPFPApi.lib

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 44

Chapter 5: Core API Reference

DPFPStartAcquisition

Subscribes the client application for receiving operation events notifications.

Syntax

HRESULT DPFPStartAcquisition (
HDPOPERATION hOperation

)

Parameters

Device Functions Reference

hOperation [in] Operation handle.

Return Values

S 0K If subscription is successful.

Remarks

Each process can have no more than one active subscription for each operation priority level.

Library
DPFPApi.lib

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

45

Chapter 5: Core API Reference Device Functions Reference

DPFPStopAcquisition

Unsubscribes the client application from receiving operation events notifications.

Syntax

HRESULT DPFPStopAcquisition (
HDPOPERATION hOperation

)

Parameters

hOperation [in] Operation handle.

Return Values

S 0K If unsubscription is successful.

Library
DPFPApi.lib

DPFPTerm

Deallocates resources allocated by DPFPINIt.

Syntax
Void DPFPTerm ();

Library
DPFPApi.lib

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 46

Chapter 5: Core API Reference Extraction Functions Reference

Extraction Functions Reference

The dpFtrEx module contains code for performing feature extraction, which is the system function that is
applied to a fingerprint sample to compute repeatable and distinctive information to be used for fingerprint
verification or fingerprint enrollment.

The feature extraction modules maintain one or more contexts for each caller. A context can be created by
calling FX_createContext, andisreleased with FX_closeContext.

Extraction functions are used to create feature extraction contexts, extract features, and prepare an image for
display.

FX_extractFeatures isthe function that extracts the features from the image, which is passed as one of
the arguments. A handle to the context has to be passed to FX_extractFeatures and
FX_getDisplaylmage.

FX_init

Initializes the fingerprint extraction module. It reads various internal settings from the registry, initializes the
MC_SETTINGS structure and initializes the lookup tables used for matching.

This function must be called before any other function in the module is called.

Syntax
FX_DLL_INTERFACE FT_RETCODE fx_init(void);

Return Values

FT_OK Initialization successful.
FT_ERR_NO_MEMORY There was not enough memory to initialize the feature extraction
module.

FT_ERR_BAD_INI_SETTING Initialization settings are corrupted.

Library
dpHFtrEx.lib

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 47

Chapter 5: Core API Reference Extraction Functions Reference

FX_getVersioninfo

Retrieves the software version of the feature extraction module in the structure of type FT_VERSION_INFO.

Syntax

FX_DLL_ INTERFACE void FX_getVersioninfo(
OUT FT_VERSION_INFO PT fxModuleVersionPt

)

Parameters

fxModuleVersionPt [out] Pointer to the buffer containing the software version of the fingerprint
feature extraction module.

Return Values

FT_OK Function successful.

Library
dpHFtrEx.lib

FX_createContext

Creates a feature extraction context. If this function succeeds, it returns the handle to the context that is
created. All of the operations in this context require this handle.

Syntax

FX_DLL_INTERFACE FT_RETCODE FX_createContext(
OUT FT_HANDLE *fxContext

)

Parameters

fxContext [out] Pointer to the memory location where the context handle will be placed.

Return Values

FT_OK The function succeeded.

FT_ERR_NO_INIT FX_init hasnotyet been successfully called. The feature
extraction module has not been initialized.

FT_ERR_INVALID_CONTEXT There is not enough memory to create a context.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 48

Chapter 5: Core API Reference Extraction Functions Reference

Library
dpHFtrEx.lib

FX_closeContext

Destroys a feature extraction context created by FX_createContext and releases the allocated resources.

Syntax

FX_DLL_INTERFACE FT_RETCODE FX_closeContext(
IN FT_HANDLE fxContext

)

Parameters

xContext [in] Pointer to the context handle of the context to be closed.

Return Values

FT _OK The function succeeded.

FT_ERR_NO_INIT FX_init notyet been successfully called. The feature extraction
module has not been initialized.

FT_ERR_INVALID CONTEXT The given feature extraction context is not valid.

Library
dpHFtrEx.lib

FX_terminate

Terminates the fingerprint extraction module and releases all resources associated with it.

Syntax
FX_DLL_INTERFACE FT_RETCODE FX_terminate (void);

Return Values

FT_OK The function succeeded.

FT_WRN_NO_INIT The feature extraction module has not been initialized.

Library
dplibrary.dll

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 49

Chapter 5: Core API Reference Extraction Functions Reference

FX_getFeaturesLen

Retrieves the size of the buffer for the fingerprint feature set. This function returns either the minimum or the
recommended size that provides the best recognition accuracy, or both.

Syntax

FX_DLL_INTERFACE FT_RETCODE FX_getFeaturesLen(
IN FT_FTR_TYPE featureSetPurpose,
OUT 1Int* recommendedFeatureSetSize,
OUT int* minimumFeatureSetSize

)

Parameters

featureSetPurpose [in] Feature set purpose. Specifies the purpose for which the
fingerprint feature set is to be created. For a fingerprint feature
set to be used for enrollment, use the value
FT_PRE_REG_FTR; for verification, use FT_VER_FTR.
FT_REG_FTR is not a valid value for this function.

recommendedFeatureSetSize Pointer to the memory receiving the size of the buffer for the
fingerprint feature set recommended for best recognition
accuracy, or NULL.

If NULL ispassed, minimumFeatureSetSize mustnotbe
NULL.

minimumFeatureSetSize Pointer to the memory receiving the minimum size of the buffer
for the fingerprint feature set, or NULL.

If NULL ispassed, recommendedFeatureSet mustnotbe

NULL.
Return Values
FT_OK The function succeeded.
FT_ERR_NO_INIT The feature extraction module has not been initialized.

FT_ERR_INVALID PARAM The featureSetPurpose parameter is not valid.

Library
dpHFtrEx.lib

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 50

Chapter 5: Core API Reference Extraction Functions Reference

FX_extractFeatures

Creates a fingerprint feature set by applying fingerprint feature extraction to the fingerprint image obtained
from the fingerprint reader to compute repeatable and distinctive information. Depending on the specified
feature set purpose, this information can be used for either fingerprint enroliment or verification.

Syntax

FX_DLL_INTERFACE FT_RETCODE FX_ extractFeatures(
IN FT_HANDLE fxContext,
IN Int imageSize,
IN const FT_IMAGE_PTC imagePt,
IN FT_FTR_TYPE featureSetPurpose,
IN int featureSetSize,
OUT FT_BYTE* featureSet,
OUT FT_IMG_QUALITY_PT imageQualityPt,
OUT FT_FTR_QUALITY_PT featuresQualityPt,
OUT FT_BOOL* featureSetCreated

)
Parameter Names
fxContext [in] Handle to the feature extraction context
imageSize [in] Size in bytes of the image obtained from the fingerprint reader.
imagePt [in] Pointer to the buffer that contains the fingerprint image obtained from

the fingerprint reader

featureSetPurpose [in] Feature set purpose. Specifies the purpose for which the fingerprint
feature set is to be created. For a fingerprint feature set to be used for
enrollment, use the value FT_PRE_REG_FTR; for verification, use
FT_VER_FTR. FT_REG_FTR is not a valid value for this function.

featureSetSize [in] Fingerprint feature set size. This parameter is the size, in bytes, of the
fingerprint feature set. Use the FX_getFeaturesLen function (page 50)
to obtain information about which fingerprint feature set size to use.

featureSet [out] Pointer to the buffer location receiving the fingerprint feature set

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

51

Chapter 5: Core API Reference

Extraction Functions Reference

imageQualityPt

[out] Pointer to the buffer containing information about the quality of the
fingerprint image. Image quality is represented by one of the following
values:

FT_GOOD_IMG. The fingerprint image quality is good.
FT_IMG_TOO_LIGHT. The fingerprintimage is too light.
FT_IMG_TOO_DARK. The fingerprintimage is too dark.
FT_IMG_TOO_NOISY. The fingerprint image is too blurred.
FT_LOW_CONTRAST. The fingerprint image contrast is too low.

FT_UNKNOWN_ IMG_QUALITY. The fingerprint image quality is
undetermined.

featuresQualityPt

[out] Pointer to the buffer containing information about the quality of the
fingerprint features. If the fingerprint image quality (imageQual ityPt)
is not equal to the value FT_GOOD_IMG, extraction is not attempted, and
the parameter is set to FT_UNKNOWN_FTR_QUALITY.

Fingerprint features quality is represented by one of the following values:
FT_GOOD_FTR. The fingerprint features quality is good.
FT_NOT_ENOUGH_FTR. There are not enough fingerprint features.

FT_NO_CENTRAL_REGION. The fingerprint image does not contain the
central portion of the finger.

FT_AREA_TOO_SMALL. The fingerprintimage area is too small.
FT_UNKNOWN_FTR_QUALITY. Quality cannot be determined.

featureSetCreated

[out] Pointer to the memory receiving the value of whether the fingerprint
feature set is created. If the value of this parameteris FT_TRUE, the
fingerprint feature set was written to featureSet. If the valueis
FT_FALSE, afingerprint feature set was not created.

Return Values

FT_OK

The function succeeded.

FT_ERR_NO_INIT

The fingerprint feature extraction module is not initialized.

FT_ERR_INVALID_CONTEXT The given feature extraction context is not valid.

FT_ERR_INVALID_PARAM One or more parameters are not valid.

FT_ERR_NO_MEMORY

Not enough memory to perform fingerprint feature extraction.

FT_ERR_UNKNOWN_DEVICE The fingerprint reader is not supported.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 52

Chapter 5: Core API Reference

Library
dpHFtrEx.lib

FX_getDisplaylmage

Extraction Functions Reference

Prepares the fingerprint image obtained from the fingerprint reader for display. This may involve resizing,
changing the number of grayscale intensity levels, rotating, and otherwise processing the fingerprint image to
ensure that it displays well. The fingerprintimage passed to the FX_getDisplaylmage function is the
same fingerprint image used by the FX_extractFeatures function (page 57).

Syntax

FX_DLL_INTERFACE FT_RETCODE FX_ getDisplaylmage(
IN FT_HANDLE fxContext,
IN const FT_IMAGE PTC imagePt,
IN const FT_IMAGE_SIZE_PT plmageSize,
IN const FT_BOOL imageRotation,
IN const int numlntensitylLevels,
OUT FT_IMAGE_PT plmageBuffer

)
Parameter Names

fxContext [in] Handle to the feature extraction context

imagePt [in] Pointer to the buffer containing the fingerprint image obtained from
the fingerprint reader

plmageSize [in] Pointer to the buffer containing the requested dimensions (width and
height) of the fingerprintimage

imageRotation [in] Indicates whether the fingerprint image is to be rotated. If the value of
this parameter is equal to FT_TRUE, the fingerprintimage is rotated. If
the valueis FT_FALSE, the fingerprintimage is not rotated.

numlntensitylLevels [in] Requested number of grayscale intensity levels. Valid values are
integers between 1 and 256.

pImageBuffer [out] Pointer to the buffer which will be filled with display image bytes.

Buffer must be large enough to hold the image information that will be
returned, i.e. width times height of the image.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

53

Chapter 5: Core API Reference

Return Values

Extraction Functions Reference

FT_OK

The function succeeded.

FT_ERR_NO_INIT

The fingerprint feature extraction module is not initialized.

FT_ERR_INVALID_CONTEXT

The given feature extraction context is not valid.

FT_ERR_INVALID_PARAM

One or more parameters are not valid.

FT_ERR_NO_MEMORY

There is not enough memory to perform the function.

FT_ERR_UNKNOWN_DEVICE

The fingerprint reader is not supported.

Library
dpHFtrEx.lib

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 54

Chapter 5: Core API Reference Matching Functions Reference

Matching Functions Reference

The dpMatch module contains code that compares a fingerprint template and a fingerprint feature set and
calculates a score that indicates how likely it is that they come from the same finger.

The dpMatch module has a structure of type MC_SETTINGS, which is initialized by MC_init.

Most of the functions must be called in a particular context, which is specified by passing a context handle as
the first argument.

MC _init

Initializes the fingerprint comparison module. This function must be called before any other functions in the
module are called.

Syntax
MC_DLL_INTERFACE FT_RETCODE MC_init(void);

Return Values

FT_OK The function succeeded.

FT_ERR_BAD_INI_SETTING Initialization settings are corrupted.

FT_ERR_NO_MEMORY There is not enough memory to initialize the fingerprint comparison
module.
Library
dpHMatch.lib

MC_getVersioninfo

Retrieves the software version information of the fingerprint comparison module.

Syntax

MC_DLL_INTERFACE void MC_getVersionlnfo(
OUT FT_VERSION_INFO_PT mcModuleVersionPt

)

Parameters

mcModuleVersionPt [out] Pointer to software version of the fingerprint comparison module

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 55

Chapter 5: Core API Reference Matching Functions Reference

Return Values

FT_OK Function was completed successfully.

Library
dpHMatch.lib

MC_getSettings

Retrieves the current fingerprint comparison module settings in the structure of type MC_SETTINGS. This
function provides the number of fingerprint feature sets required for the purpose of fingerprint enrollment.
This setting is read-only.

Syntax

MC_DLL_INTERFACE FT_RETCODE MC_getSettings(
OUT MC_SETTINGS_PT mcSettingsPt

)

Parameters

mcSettingsPt [out] Pointer to the structure of the fingerprint comparison module settings

Return Values

FT_OK Function was completed successfully.

Library
dpHMatch.lib

MC_createContext

Creates a context for the fingerprint comparison module. If this function succeeds, it returns the handle to the
context that is created. All of the operations in this context require this handle.

Syntax

MC_DLL_INTERFACE FT_RETCODE MC_createContext(
OUT FT_HANDLE* mcContext

)

Parameters

mcContext [out] Pointer to the memory receiving the handle to the comparison context

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 56

Chapter 5: Core API Reference Matching Functions Reference

Return Values

FT_OK Function was completed successfully.

Library
dpHMatch.lib

MC_closeContext

Destroys a comparison context and releases the resources associated with it.

Syntax

MC_DLL_INTERFACE FT_RETCODE MC_closeContext(
IN FT_HANDLE mcContext

)

Parameters

mcContext [in] Handle to the comparison module context

Return Values

FT _OK Function was completed successfully.

Library
dpHMatch.lib

MC_getSecurityLevel

Retrieves the current security level of the specified comparison context in terms of the false accept rate (FAR).

Syntax

MC_DLL_INTERFACE FT_RETCODE MC_getSecurityLevel(
IN FT_HANDLE mcContext,
OUT FT_FA_RATE* targetFar

)
Parameters
mcContext [in] Handle to the comparison context
targetFar [out] Pointer to the memory receiving the target FAR for the comparison context

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 57

Chapter 5: Core API Reference Matching Functions Reference

Return Values

FT_OK Function was completed successfully.

Library
dpHMatch.lib

MC_setSecurityLevel

Sets the security level of a comparison context by specifying a target false accept rate (FAR). The lower the value
of the FAR, the higher the security level and the higher the target false reject rate (FRR). (See False Positives and
False Negatives on page 19 for more information about FAR and FRR.)

IMPORTANT: This function is to be used for comparison contexts only. Do not specify a security level for a
feature extraction context.

IMPORTANT: Although the default value of MED_SEC_FA_RATE is adequate for most applications, you
might require a lower or higher value to meet your needs. If you decide to use a value other than
the default, be sure that you understand the consequences of doing so. Refer to Appendix A on
page 91 for more information about setting the value of the FAR.

Syntax

MC_DLL_INTERFACE FT_RETCODE MC_setSecuritylLevel(
IN FT_HANDLE mcContext,
IN FT_FA_RATE targetFar

)
Parameters
mcContext [in] Handle to the comparison context
targetFar [in] Target FAR. For high security, use the low value of FAR defined in

HIGH_SEC_FA_RATE; for mid-range security, use the mid-range value of FAR
definedin MED_SEC_FA_RATE (the default); and for low security, use the high
value of FAR defined in LOW_SEC_FA RATE.

Return Values

FR_OK The function is successful
FR_ERR_NO_INIT The fingerprint comparison module is not initialized.
FR_ERR_INVALID_PARAM The value of the parameter targetFar <=0.0 or >=100.0, or

the specified comparison context is not valid.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 58

Chapter 5: Core API Reference Matching Functions Reference

FR_ERR_INVALID_CONTEXT The specified comparison context is not valid.

FR_WRN_INTERNAL The value of the parameter targetFar is unacceptably high and
was reduced to an internally defined value.

Library
dpHMatch.lib

MC_terminate

Terminates the fingerprint comparison module and releases the resources associated with it.

Syntax
MC_DLL_INTERFACE FT_RETCODE MC_terminate(void);

Return Values

FT_OK Termination was successful.

Library
dpHMatch.lib

MC_getFeaturesLen

Retrieves the size of the buffer for the fingerprint template. This function returns either the minimum or the
recommended size that provides the best recognition accuracy, or both.

Syntax

MC _DLL_INTERFACE FT_RETCODE MC_getFeaturesLen(
IN FT_FTR_TYPE featureSetPurpose,
IN int reserved,
OUT i1nt* recommendedTemplateSize,
OUT int* minimumTemplateSize

)

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 59

Chapter 5: Core API Reference Matching Functions Reference

Parameters
featureSetPurpose [in] Feature set purpose. Specifies the purpose for which the
fingerprint feature set is to be created. For a feature set to be used for
enrollment, use thevalue FT_PRE_REG_FTR; for verification, use
FT_VER_FTR; and for a fingerprint template, use FT_REG_FTR.
reserved [in] This parameter is deprecated and should always be setto 0.

recommendedTemplateSize [out] Pointer to the memory receiving the size of the buffer for the
fingerprint template recommended for best recognition accuracy, or
NULL. If NULL ispassed, minimumTemplateSize must not
be NULL.

minimumTemplateSize [out] Pointer to the memory receiving the minimum size of the
buffer for the fingerprint template, or NULL. If NULL is passed,
recommendedTemplateSize mustnotbe NULL.

Return Values

FT_OK Termination was successful.

Library
dpHMatch.lib

MC_generateRegFeatures

Creates a fingerprint template to be used for later comparison with a fingerprint feature set. This function,
known as fingerprint enrollment, computes the fingerprint template using the specified number of fingerprint
feature sets (numFeatureSets) successfully returned by the FX_extractFeatures function

(page 51).

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 60

Chapter 5: Core API Reference Matching Functions Reference

Syntax

MC_DLL_INTERFACE FT_RETCODE MC_generateRegFeatures(
IN FT_HANDLE mcContext,
IN int reservedo,
IN Int numFeatureSets,
IN int featureSetSize,
IN FT_BYTE* featureSet[],
IN Iint templateSize,
OUT FT_BYTE* template,
OUT FT_BYTE reservedl[],
OUT FT_BOOL* templateCreated

):
Parameters

mcContext [in] Handle to the comparison context

reservedO [in] This parameter is deprecated and should always be set to 0.

numFeatureSets [in] Number of input fingerprint feature sets, which is the number specified in
the numFeatureSets field of the structure of type MC_SETTINGS.

featureSetSize [in] Size of the buffer for the fingerprint feature set (assuming that the size of
each fingerprint feature set is the same)

featureSet[] [in] Array of pointers to the locations of the buffers for each fingerprint feature
set

templateSize [in] Size of the fingerprint template

template [out] Pointer to the location of the buffer receiving the fingerprint template

reservedl[] [out] This parameter is deprecated and should be set to NULL.

templateCreated [out] Pointer to the memory that will receive the value of whether the
template is created. If the value of this parameteris FT_TRUE, the
fingerprint template was written to template. If the valueis FT_FALSE,
a template was not created.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

61

Chapter 5: Core API Reference Matching Functions Reference

Return Values

FR_OK The function succeeded.
FR_ERR_NO_INIT The fingerprint comparison module is not initialized.
FR_ERR_NO_MEMORY There is not enough memory to perform the function.

FR_ERR_BAD_INI_SETTING Initialization settings are corrupted.

FR_ERR_INVALID BUFFER A buffer is not valid.

FR_ERR_INVALID_ PARAM One or more parameters are not valid.
FR_ERR_INTERNAL An internal error occurred.
Library
dpHMatch.lib

MC_verifyFeaturesEx

Performs a one-to-one comparison of a fingerprint feature set with a fingerprint template produced at
enrollment and makes a decision of match or non-match. This function is known as fingerprint verification. The
function succeeds if the comparison score is high enough given the security level of the specified comparison
context.

Syntax

MC_DLL_INTERFACE FT_RETCODE MC_verifyFeaturesgEx(
IN FT_HANDLE mcContext,
IN Iint templateSize,
IN OUT FT_BYTE* template,
IN int featureSetSize,
IN FT_BYTE* featureSet,
IN Int reservedO,
OUT void* reservedl,
OUT iInt reserved2[],
OUT FT_VER_SCORE_PT reserved3,
OUT double* achievedFar,
OUT FT_BOOL* comparisonDecision

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 62

Chapter 5: Core API Reference Matching Functions Reference

Parameters

mcContext [in] Handle to the comparison context

templateSize [in] Size of the fingerprint template

template [in, out] Pointer to the location of the buffer containing the fingerprint
template

featureSetSize [in] Size of the fingerprint feature set

featureSet [in] Pointer to the location of the buffer containing the fingerprint feature
set

reservedO [in] This parameter is deprecated and should always be O.

reservedl [in] This parameter is deprecated and should always be NULL.

reserved2[] [out] This parameter is deprecated and should always be NULL.

reserved3 [out] This parameter is deprecated and should always be NULL.

achievedFar [out] Pointer to the value of the achieved FAR for this comparison. If the

achieved FAR is not required, a NULL pointer can be passed.

comparisonDecision [out] Pointer to the memory that will receive the comparison decision. This
parameter indicates whether the comparison of the fingerprint feature set
and the fingerprint template resulted in a decision of match (FT_TRUE)
ornon-match (FT_FALSE) at the security level of the specified
comparison context.

Return Values

FR_OK The function succeeded.
FR_ERR_NO_INIT The fingerprint comparison module is not initialized.
FR_ERR_NO_MEMORY There is not enough memory to perform the function.

FR_ERR_BAD_INI_SETTING Initialization settings are corrupted.

FR_ERR_INVALID_BUFFER An internal error occurred.

FR_ERR_INVALID PARAM One or more parameters are not valid.
Library
dpHMatch.lib

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 63

Chapter 5: Core API Reference Data Structures

Data Structures

This section defines the One Touch for Windows: C/C++ Edition Core API data structures.

DP_DEVICE_INFO

Device information structure.

Syntax

typedef struct DP_DEVICE_ INFO

{
GUID DeviceUid;
DP_DEVICE_UID_TYPE eUidType;
DP_DEVICE_MODALITY eDeviceModality;
DP_DEVICE_TECHNOLOGY eDeviceTech;
DP_HW_INFO Hwlnfo;

} DP_DEVICE_INFO, * PDP_DEVICE_INFO;

Data Fields
DeviceUid Device unique identifier
eUidType Defines whether the UID is persistent or volatile

eDeviceModality Defines which modality the device is being used in

eDeviceTech Defines the type of technology used in the device

Hwlnfo Describes the device hardware

DP_DEVICE_VERSION

Device hardware/firmware version number structure.

Syntax

typedef struct DP_DEVICE_VERSION
{

ULONG uMajor;

ULONG uMinor;

ULONG uBuild;
} DP_DEVICE_VERSION;

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 64

Chapter 5: Core API Reference DP_HW_INFO

Data Fields
wMajor Major version of the product
wMinor Minor version of the product
wRevision Revision number of the product
uBuild Build number of the product
DP_HW_INFO

Device hardware information structure.

Syntax

typedef struct DP_HW_INF

{
unsigned int uLanguageld;
wchar_t szVendor[DP_MAX_USB_STRING_SIZE];
wchar_t szProduct[DP_MAX_USB_STRING_SIZE];
wchar_t szSerialNb[DP_MAX USB_STRING_SIZE];
DP_DEVICE_VERSION HardwareRevision
DP_DEVICE_VERSION FirmwareRevision;

} DP_HW_INFO, * PDP_HW_INFO;

Data Fields
uLanguageld Device language
szVendor Manufacturer name, for example, “DigitalPersona, Inc”
szProduct Build number of device hardware/firmware

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 65

Chapter 5: Core API Reference

DP_PRODUCT_VERSION

DigitalPersona product version structure.

Syntax

typedef struct DP_PRODUCT_VERSION

{

WORD wMajor;
WORD wMinor;
WORD wRevision;
WORD wBuild;
} DP_PRODUCT_VERSION, * PDP_PRODUCT_ VERSION;

DP_PRODUCT_VERSION

Data Fields
wMajor Major version of the product
wMinor Minor version of the product
wRevision Revision number of the product
uBuild Build number of the product

FT_VERSION_INFO

Fingerprint feature extraction or fingerprint comparison module version information structure.

Syntax

typedef struct

{

unsigned
unsigned
unsigned
unsigned

major;
minor;
revision;
build;

} FT_VERSION_INFO, * FT_VERSION_INFO_PT;

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

66

Chapter 5: Core API Reference

MC_SETTINGS

Data Fields
Major Major version number
Minor Minor version number
Revision Revision number number
Build Build number

MC_SETTINGS

Fingerprint comparison module settings structure.

Syntax

typedef struct{

int numPreRegFeatures;
} MC_SETTINGS, * MC_SETTINGS_PT;

Data Fields

numPreRegFeatures

template

Number of fingerprint feature sets required to generate a fingerprint

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

67

Chapter 5: Core API Reference Enumerations

Enumerations

This section defines the One Touch for Windows: C/C++ Edition Core APl enumerations.

DP_ACQUISITION_PRIORITY

Defines the priority of a fingerprint sample capture operation performed by a fingerprint reader.

Syntax

typedef enum DP_ACQUISITION_PRIORITY

{
DP_PRIORITY_HIGH= 1,
DP_PRIORITY_NORMAL= 2,
DP_PRIORITY_LOW = 3

3 DP_ACQUISITION_PRIORITY;

Values

DP_PRIORITY_HIGH Highest priority (RESERVED. For internal use only.)

DP_PRIORITY_NORMAL Standard priority

DP_PRIORITY_LOW Lowest priority

DP_DEVICE_MODALITY

Defines the modality that a fingerprint reader uses to capture fingerprint samples.

Syntax

typedef enum DP_DEVICE_MODALITY

{
DP_UNKNOWN_DEVICE_MODALITY = 0,
DP_SWIPE_DEVICE,
DP_AREA_DEVICE,
DP_DEVICE_MODALITY_NUM,

} DP_DEVICE_MODALITY;

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 68

Chapter 5: Core API Reference

Values

DP_DEVICE_TECHNOLOGY

DP_UNKNOWN_DEVICE_MODALITY

Device modality is unknown

DP_SWIPE_DEVICE

Swipe mode device

DP_AREA_DEVICE

Area mode device

DP_DEVICE_MODALITY_NUM

Count of different modalities defined

DP_DEVICE_TECHNOLOGY

Defines the fingerprint reader technology.

Syntax

typedef enum DP_DEVICE_TECHNOLOGY

{

DP_UNKNOWN_DEVICE_TECHNOLOGY = O,

DP_OPTICAL_DEVICE,
DP_CAPACITIVE_DEVICE,
DP_THERMAL_DEVICE,
DP_PRESSURE_DEVICE,
DP_DEVICE_TECHNOLOGY_ NUM,

} DP_DEVICE_TECHNOLOGY;

Values

DP_UNKNOWN_DEVICE_TECHNOLOGY

The technology used in the device is not known.

DP_OPTICAL_DEVICE

The technology used in the device is optical.

DP_CAPACITIVE_DEVICE

The technology used in the device is capacitive.

DP_THERMAL_DEVICE

The technology used in the device is thermal.

DP_PRESSURE_DEVICE

The technology used in the device is pressure.

DP_DEVICE_TECHNOLOGY_NUM

Count of the different technologies defined.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

69

Chapter 5: Core API Reference

DP_DEVICE_UID_TYPE
Defines the type of UUID identifying the device.

Syntax

typedef enum DP_DEVICE UID_TYPE
{
DP_PERSISTENT_DEVICE_UID = O,
DP_VOLATILE_DEVICE_UID,
} DP_DEVICE_UID_TYPE;

Values

DP_DEVICE_UID_TYPE

DP_PERSISTENT_DEVICE_UID Unique hardware identifier. Hardware dependent.

DP_VOLATILE DEVICE UID Software generated identifier.

DP_SAMPLE_QUALITY

Defines the quality of the fingerprint sample.

Syntax

typedef enum DP_SAMPLE_QUALITY {
DP_QUALITY_GOOD = O,
DP_QUALITY_NONE = 1,
DP_QUALITY_TOOLIGHT = 2,
DP_QUALITY_TOODARK = 3,
DP_QUALITY_TOONOISY = 4,
DP_QUALITY_LOWCONTR = 5,
DP_QUALITY_FTRNOTENOUGH = 6,
DP_QUALITY_NOCENTRAL = 7,
DP_QUALITY_NOFINGER = 8,
DP_QUALITY_TOOHIGH = 9,
DP_QUALITY_TOOLOW = 10,
DP_QUALITY_TOOLEFT = 11,
DP_QUALITY_TOORIGHT = 12,
DP_QUALITY_TOOSTRANGE = 13,
DP_QUALITY_TOOFAST = 14,
DP_QUALITY_TOOSKEWED = 15,
DP_QUALITY_TOOSHORT = 16,
DP_QUALITY_TOOSLOW = 17,

} DP_SAMPLE_QUALITY;

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

70

Chapter 5: Core API Reference

Values

DP_SAMPLE_QUALITY

DP_QUALITY_GOOD

The image is of good quality.

DP_QUALITY_NONE

There is no image.

DP_QUALITY_TOOLIGHT

The image is too light.

DP_QUALITY_TOODARK

The image is too dark.

DP_QUALITY_TOONOISY

The image is too noisy.

DP_QUALITY_LOWCONTR

The image contrast is too low.

DP_QUALITY_FTRNOTENOUGH

The image does not contain enough information.

DP_QUALITY_NOCENTRAL

The image is not centered.

DP_QUALITY_NOFINGER

The scanned object is not a finger.

DP_QUALITY_TOOHIGH

The finger was too high on the swipe sensor.

DP_QUALITY_TOOLOW

The finger was too low on the swipe sensor.

DP_QUALITY_TOOLEFT

The finger was too close to left border of the swipe sensor.

DP_QUALITY_TOORIGHT

The finger was too close to right border of the swipe sensor.

DP_QUALITY_TOOSTRANGE

The scan looks strange.

DP_QUALITY_TOOFAST

The finger was swiped too quickly.

DP_QUALITY_TOOSKEWED

The image is too skewed.

DP_QUALITY_TOOSHORT

The image is too short.

DP_QUALITY_TOOSLOW

The finger was swiped too slowly.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 71

Chapter 5: Core API Reference

FT_IMG_QUALITY

Defines the image quality.

typedef enum

{
FT_GOOD_IMG,
FT_IMG_TOO_ LIGHT,
FT_IMG_TOO DARK,
FT_IMG_TOO_NOISY,
FT _LOW_CONTRAST,
FT_UNKNOWN_IMG_QUALITY

} FT_IMG_QUALITY, *FT_IMG_

Values

QUALITY_PT;

FT_IMG_QUALITY

FT_GOOD_IMG

The fingerprint image quality is good.

FT_IMG_TOO_LIGHT

The fingerprintimage is too light.

FT_IMG_TOO_DARK

The fingerprintimage is too dark.

FT_IMG_TOO_NOISY

The fingerprint image is too blurred.

FT_LOW_CONTRAST

The fingerprint image contrast is too low.

FT_UNKNOWN_IMG_QUALITY

The fingerprint image quality is undetermined.

FT_FTR_QUALITY

Defines the fingerprint features quality.

typedef enum

{
FT_GOOD FTR,
FT_NOT_ENOUGH_FTR,
FT_NO_CENTRAL_REGION,
FT_UNKNOWN_FTR_QUALITY,
FT_AREA_TOO_ SMALL

} FT_FTR_QUALITY, * FT_FTR_QUALITY_PT;

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

72

Chapter 5: Core API Reference

Values

FT_FTR_TYPE

FT_GOOD_FTR

The fingerprint features quality is good.

FT_NOT_ENOUGH_FTR

There are not enough fingerprint features.

FT_NO_CENTRAL_REGION

The fingerprint image does not contain the central portion of the
finger.

FT_UNKNOWN_FTR_QUALITY

The fingerprint features quality is undetermined.

FT_AREA_TOO_SMALL

The fingerprint image area is too small.

FT_FTR_TYPE

Defines the feature set purpose.

Syntax

typedef enum

{
FT_PRE_REG_FTR,
FT_REG_FTR,

} FT_FTR_TYPE;

Values
FT_PRE_REG_FTR Value for a fingerprint feature set to be used for enrollment
FT_REG_FTR Value for a fingerprint template
FT_VER_FTR Value for a fingerprint feature set to be used for verification

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 73

Chapter 5: Core API Reference Type Definitions and Constants

Type Definitions and Constants

This section defines the One Touch for Windows: C/C++ Edition Core API type definitions and constants.
DFLT_FA_RATE MED_SEC_FA_RATE

Default value for target FAR.

Syntax

#define DFLT_FA_RATE MED_SEC_FA RATE

DP_SAMPLE_TYPE_IMAGE

Type of fingerprint sample needed. This value is used in the uSampleType parameter of the
DPFPCreateAcquisition function (page 38).

Syntax

#define DP_SAMPLE_TYPE_IMAGE 4

FT_FA_RATE

Target false accept rate (FAR). These are percentages, that is, a value of 0.1 means 0.1% = 1/1000. */

Syntax
typedef double FT_FA_ RATE;

HDPOPERATION
Operation handle.

Syntax
typedef unsigned long HDPOPERATION

HIGH_SEC_FA_RATE

High security/low value for target FAR.

Syntax
#define HIGH_SEC_FA_RATE 0.0001f

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 74

Chapter 5: Core API Reference LOW_SEC_FA_RATE

LOW_SEC_FA_RATE

Low security/high value for target FAR.

Syntax
#define LOW _SEC_FA_RATE 0.0100f

MED_SEC_FA_RATE

Mid-range security/mid-range value for target FAR.

Syntax
#define MED_SEC_FA_RATE 0.0010f

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 75

User Interface APl Reference 6

This chapter provides a reference to the User Interface API (DPUIAPI) wrapper that simplifies access to the entire
functionality available in the Core API described in the previous chapter. The wrapper provides a premade user
interface that handles device component, fingerprint enrollment, and fingerprint verification tasks through a

few simple functions and two callbacks.

Functions

DPEnrollUI

This function displays the user interface for enrolling the fingerprints and returns after closing of the user
interface. It does not store the fingerprint template; instead, it calls the application-defined function
DPENROLLMENTPROC for each enrollment or deletion of a fingerprint.

Syntax

DPFPUI_STDAPI DPEnrollUI(HWND hParentWnd,
USHORT usMaxEnrolIFingerCount,
PULONGpulEnrol ledFingersMask,
DPENROLLMENTPROC dpEnrollImentProc,

LPVOID pUserData
);

Parameters

hParentWnd

[in] Handle to the parent window.

usMaxEnrol IFingerCount

[in] Maximum number of fingers allowed to be enrolled. The value
should be between 1 and 10 (both inclusive).

pulEnrol ledFingersMask

[in, out] Bitwise mask that specifies the fingers enrolled. For possible
values, see Table 4.

dpEnrolImentProc

[in] Pointer to the function to be notified when a fingerprint
template is available for enrollment.

pUserData

[in] The pointer to the user data.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

76

Chapter 6: User Interface API Reference DPEnrollUI

The pulEnrolledFingersMask parameter contains a combination of the values representing a user’s
enrolled fingerprints. For example, if a user’s right index fingerprint and right middle fingerprint are
enrolled, the value of this property is 00000000 011000000, or 192.

Table 4. Values for the pulEnrolledFingersMask parameter

Finger Binary Representation Integer Representation
Left little finger 000000000 000000001 1
Left ring finger 000000000 000000010 2
Left middle finger 000000000 000000100 4
Left index finger 000000000 000001000 8
Left thumb 000000000 000010000 16
Right thumb 000000000 000100000 32
Right index finger 000000000 001000000 64
Right middle finger 000000000 010000000 128
Right ring finger 000000000 100000000 256
Right little finger 000000001 000000000 512

Return Values

S 0K Function successfully completed.

Library
DPFPULAII

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 77

Chapter 6: User Interface APl Reference DPVerifyUl

DPVerifyUl

Displays the fingerprint verification user interface. The title, text, and banner image of the fingerprint
verification user interface can be customized.

Syntax

DPFPUI_STDAPI DPVeriftyUl(
HWND hParentWnd,
DPVERIFYPROC dpVerifyProc,
LPCWSTR IpszCaption,
LPCWSTR NpszText,

HBITMAP hBanner,
LPVOID pUserData

)

Parameters
hParentWnd [in] Handle to the parent window.
dpVerifyProc [in] Pointer to the callback function.
IpszCaption [in] The caption of the dialog box.
IpszText [in] The text of the dialog box.
hBanner [in] The custom banner bitmap.
pUserData [in] The pointer to the user data.

Return Values

S_OK Fingerprint verification user interface successfully displayed.
0x800704c7 Fingerprint verification canceled by user.
E_ABORT Fingerprint verification was aborted by callback function.
Library
DPFPULAII

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 78

Chapter 6: User Interface API Reference Callbacks

Callbacks

A callback is executable code that is passed as an argument to other code. It allows a lower-level software layer
to call a subroutine (or function) defined in a higher-level layer.

DPENROLLMENTPROC

This is the application-provided callback function. This function is called while enrolling a new fingerprint or
deleting an enrolled fingerprint. The application should handle the storing of new fingerprint templates for
comparison or deleting of an enrolled fingerprint template in this callback. The application can display its own
success or error messages.

typedef HRESULT (CALLBACK *DPENROLLMENTPROC)(
HWND hParentWnd,
DP_ENROLLMENT_ACTION enrollmentAction,
UINT uiFingerlndex,
PDATA_BLOB pFingerprintTemplate,
LPVOID pUserData

)
Parameters

hParentWnd [in] Handle to the parent window.

enrolImentAction [in] Specifies whether to enroll the fingerprint or delete it. Values are
DP_ENROLLMENT_ADD or DP_ENROLLMENT_DELETE.

uiFingerindex [in] The index of the fingerprint to be enrolled, as defined in ANSI/NIST-
ITL 1. For possible values, see Table 5.

pFingerprintTemplate [in]If the enrolImentAction parameteris
DP_ENROLLMENT_ADD, then this contains a pointer to the
fingerprint template. Otherwise itis NULL.

pUserData [in] Pointer to the user data.

The uiFingerlndex parameter contains the index value of the finger associated with a fingerprint
template to be enrolled or with a fingerprint template to be deleted, as defined in ANSI/NIST-ITL 1. The index
values are assigned to the graphical representation of the fingers on the hands in the user interface. All
possible values are listed in Table 5.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 79

Chapter 6: User Interface API Reference DPVERIFYPROC

Table 5. Values for the uiFingerIndex parameter

Finger Index Value | Finger Index Value
Right thumb 1 Left thumb 6
Right index finger 2 Left index finger 7
Right middle finger 3 Left middle finger 8
Right ring finger 4 Left ring finger 9
Right little finger 5 Left little finger 10

Return Values

S 0K The fingerprint template was successfully saved.
0x800704c7 The operation could not be completed. A retry should be performed.
Library
DPFPULdII
DPVERIFYPROC

This is an application-provided callback function. It is called when a fingerprint feature set is ready for
comparison. The application should handle the comparison of this fingerprint feature set against the
fingerprint templates.

Syntax

typedef HRESULT (CALLBACK *DPVERIFYPROC)(
HWND hParentWnd,

PDATA_BLOB pVerificationFeatureSet,
LPVOID pUserData

);

Parameters

hParentWnd [in] Handle to the parent window.

pVerificationFeatureSet [in] Pointer to the fingerprint feature set to be verified.

pUserData [in] Pointer to the user data.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 80

Chapter 6: User Interface API Reference DPVERIFYPROC

Return Values

S 0K The fingerprint feature set to be verified matches one of the fingerprint templates.

0x800704c7 The fingerprint feature set to be verified did not match any of the fingerprint
templates. A retry should be performed.

Library
DPFPULAII

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 81

Chapter 6: User Interface API Reference

Enumerations

DP_ENROLLMENT_ACTION

Defines the requested fingerprint enrollment action.

Syntax

typedef enum
{
DP_ENROLLMENT_ADD,
DP_ENROLLMENT_DELETE
} DP_ENROLLMENT_ACTION;

Enumerations

Values
DP_ENROLLMET_ADD Enroll a fingerprint template.
DP_ENROLLMET_DELETE Delete a fingerprint template.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

82

Events Notifications and Return Codes 7

This chapter defines the notification events and return codes used within the One Touch for Windows: C/C++
Edition SDK.

Events Notifications

During the creation of an operation, the client application specifies the handle of the window to be notified on
operation-related events as well as the window message to be sent as a notification. The wParam of the
message specifies the event type. The value of IParam is event-specific.

Value | Defines Description

0 WN_COMPLETED Operation completed successfully. The fingerprint image is returned in
IParam as pointerto DATA_BLOB structure.

1 WN_ERROR An error occurred. The error code is returned in IParam.

2 WN_DISCONNECT The device has been disconnected. The pointer to device UID is returned
in IParam.

3 WN_RECONNECT The device has been reconnected. The pointer to device UID is returned
in IParam.

4 WN_SAMPLEQUALITY Provides information about the quality of the fingerprintimage. 1Param
contains the fingerprint image quality listed in the enum of type
DP_SAMPLE_QUALITY.

5 WN_FINGER_TOUCHED The device has been touched.

6 WN_FINGER_GONE The finger has been removed from the device.

7 WN_IMAGE_READY An image is ready from the device. The pointer to device UID is returned
in IParam.

10 WN_OPERATION_STOPPED Sent when an operation was stopped by calling

DPFPStopAcquisition.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 83

Chapter 7: Events Notifications and Return Codes

Return Codes

Return Codes

Value | Return Code Description
0 FT_OK The function succeeded.
1 FT_WRN_NO_INIT The fingerprint feature extraction module or the fingerprint
comparison module are not initialized.
8 FT_WRN_INTERNAL An internal error occurred.
9 FT_WRN_KEY_NOT_FOUND The fingerprint feature extraction module or the fingerprint
comparison module could not find an initialization setting.
11 FT_WRN_UNKNOWN_DEVICE The fingerprint reader is not known.
12 FT_WRN_TIMEOUT The function has timed out.
-1 FT_ERR_NO_INIT The fingerprint feature extraction module or the fingerprint
comparison module is not initialized.
-2 FT_ERR_INVALID_PARAM One or more parameters are not valid.
-3 FT_ERR_NOT_IMPLEMENTED The called function was not implemented
-4 FT_ERR_IO A generic I/O file error occurred.
-7 FT_ERR_NO_MEMORY There is not enough memory to perform the action.
-8 FT_ERR_INTERNAL An unknown internal error occurred.
-9 FT_ERR_BAD INI_SETTING Initialization settings are corrupted.
-10 FT_ERR_UNKNOWN_DEVICE The fingerprint reader is not known.
-1 FT_ERR_INVALID_BUFFER A buffer is not valid.
-16 FT_ERR_FEAT_LEN_TOO_SHORT The specified fingerprint feature set or fingerprint template buffer
size is too small.
-17 FT_ERR_INVALID_CONTEXT The given context is not valid.
-29 FT_ERR_INVALID_FTRS_TYPE The feature set purpose is not valid.
-32 FT_ERR_FTRS_INVALID Decrypted fingerprint features are not valid. Decryption may have
failed.
-33 FT_ERR_UNKNOWN_EXCEPTION An unknown exception occurred.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

84

Developing Citrix-aware applications 8

This SDK includes support for fingerprint authentication through Windows Terminal Services (including
Remote Desktop Connection) and through a Citrix connection to Metaframe Presentation Server using a client
from the Citrix Presentation Server Client package.

The following types of Citrix clients are supported for fingerprint authentication:

» Program Neighborhood
= Program Neighborhood Agent
= Web Client

In order to utilize this support, your application (or the end-user) will need to copy a file to the client computer
and register it. The name of the file is DPICACnt.dll, and it is located in the "Misc\Citrix Support" folder in the
product package.

To deploy the DigitalPersona library for Citrix support:

1. Locate the DPICACnt.dlI file in the "Misc\Citrix Support" folder of your software package..

2. Copy the file to the folder on the client computer where the Citrix client components are located (i.e. for
the Program Neighborhood client it might be the "Program Files\Citrix\ICA Client" folder).

3. Using the regsvr32.exe program, register the DPICACnt.dll library.

If you have several Citrix clients installed on a computer, deploy the DPICACnt.dll library to the Citrix client
folder for each client.

If your application will also be working with Pro Workstation 4.2.0 and later or Pro Kiosk 4.2.0 and later, you will
need to inform the end-user’s administrator that they will need to enable two Group Policy Objects (GPOs),
"Use DigitalPersona Pro Server for authentication" and "Allow Fingerprint Data Redirection". For information on
how to enable these policies, see the "DigitalPersona Pro for AD Guide.pdf" located in the DigitalPersona Pro
Server software package.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 85

Redistribution 9

You may redistribute the files in the RTE\Install and the Redist folders in any of the One Touch for Windows SDK
software packages to your end users pursuant to the terms of the end user license agreement (EULA),
attendant to the software and located in the Docs folder in the SDK software package.

When you develop a product based on the One Touch for Windows SDK, you need to provide the
redistributables to your end users. These files are designed and licensed for use with your application. You may
include the installation files located in the RTE\Install folder in your application, or you may incorporate the
redistributables directly into your installer. You may also use the merge modules located in the Redist folder in
the SDK software package to create your own MSl installer.

Per the terms of the EULA, DigitalPersona grants you a non-transferable, non-exclusive, worldwide license to
redistribute, either directly or via the respective merge modules, the following files contained in the RTE\Install

and Redist folders in the One Touch for Windows SDK software package to your end users and to incorporate
these files into derivative works for sale and distribution:

RTE\Install Folder

InstallOnly.bat

Setup.exe

Setup.msi

UninstallOnly.bat

Redist Folder

The following table indicates which merge modules are required to support each development language and
OsS.

Merge module C/C++ COM/ActiveX .NET Java
32-bit 64-bit | 32-bit | 64-bit | 32-bit | 64-bit | 32-bit | 64-bit

DpDrivers.msm X X X X X X X X
DpPolicies_OTW.msm X X X X X X X X
DpCore.msm X X X X X X X X
DpCore_x64.msm X X X X
DpProCore.msm X X X X
DpProCore_x64.msm X X X X

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 86

Chapter 9: Redistribution

Redist Folder

Merge module C/C++

COM/ActiveX

NET

Java

DpFpRec.msm X

X

DpFpRec_x64.msm X

DpFpUl.msm X X

DpFpUl_x64.msm X

DpOTCOMACctX.msm

DpOTCOMACctX_x64.msm

x| X | X | X | X

DpOTDotNet.msm

DpOTShrDotNet.msm

X | X | X | X| X | X | X

DpOTJni.msm

DpOTJni_x64.msm

DpOTJava.msm

The merge modules, and the files that they contain, are listed below alphabetically.

s DpCore.msm

This merge module contains the following files:

Dpcoper2.dll
Dpdevice2.dll
Dpfpapi.dll
Dphostw.exe
Dpmux.dll
Dpmsg.dll
Dpclback.dll
DPCrStor.dll

m DpCore_x64.msm

This merge module contains the following files:

Dpcoper2.dll
Dpdevice2.dll
Dpfpapi.dll

Dphostw.exe

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

87

Chapter 9: Redistribution

Dpmux.dll
Dpclback.dll
DPCrStor.dll
x64\Dpmsg.dll

m DpDrivers.msm

This merge module contains the following files:

Dpd00701x64.dll
Dpdevctix64.dll
Dpdevdatx64.dll
Dpersona_x64.cat
Dpersona_x64.inf
Dpi00701x64.dl
Dpinst32.exe
Dpinst64.exe
Usbdpfp.sys
Dpersona.cat
Dpersona.inf
Dpdevctl.dll
Dpdevdat.dll
Dpk00701.sys
Dpk00303.sys
Dpd00303.dlI
Dpd00701.dll
Dpi00701.dll

m DpFpRec.msm

This merge module contains the following files:

Dphftrex.dll
Dphmatch.dll

m DpFpRec_x64.msm

This merge module contains the following files:

<system folder>\Dphftrex.dll

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

Redist Folder

88

Chapter 9: Redistribution

<system folder>\Dphmatch.dll
<system64 folder>\Dphftrex.dll
<system64 folder>\Dphmatch.dll

DPFpUl.msm

This merge module contains the following file:

Dpfpui.dll

DPFpUI_x64.msm

This merge module contains the following file:

<system folder>\Dpfpui.dll
<system64 folder>\Dpfpui.dll

DpProCore.msm

This merge module contains the following files:

Dpdevts.dll
Dpsvinfo2.dll
Dptscint.dll

+DpOTCOMACctX.msm

This merge module contains the following files:

DPFPShrX.dll
DPFPDevX.dIl
DPFPEngX.dll
DPFPCtIX.dlI

+DpOTCOMACtX_x64.msm

This merge module contains the following files:

DPFPShrX.dll
DPFPDevX.dll
DPFPEngX.dll
DPFPCtIX.dll
x64\DpFpCtIX.dll
x64\DpFpDevX.dll
x64\DpFpEngX.dll
x64\DpFpShrX.dll

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

Redist Folder

89

Chapter 9: Redistribution Fingerprint Reader Documentation

m DpOTDotNET.msm
This merge module contains the following files:
= DPFPDevNET.dII
m DPFPEngNET.dII
» DPFPVerNET.dII
= DPFPGUINET.dII
= DPFPCtIXTypeLibNET.dII
m DPFPCtIXWrapperNET.dII
m DPFPShrXTypeLibNET.dlI
m DpOTShrDotNET.msm
This merge module contains the following files:

= DPFPShrNET.dII

Fingerprint Reader Documentation

You may redistribute the documentation included in the Redist folder of any One Touch for Windows SDK
software package to your end users pursuant to the terms of this section and of the EULA, attendant to the
software and located in the Docs folder in the SDK software package.

Hardware Warnings and Regulatory Information

If you distribute DigitalPersona U.are.U fingerprint readers to your end users, you are responsible for advising
them of the warnings and regulatory information included in the Warnings and Regulatory Information.pdf file
in the Redist folder of any One Touch for Windows SDK software package. You may copy and redistribute the
language, including the copyright and trademark notices, set forth in the Warnings and Regulatory
Information.pdf file.

Fingerprint Reader Use and Maintenance Guide

The DigitalPersona U.are.U fingerprint reader use and maintenance guides, DigitalPersona Reader Maintenance
Touch.pdf and DigitalPersona Reader Maintenance Swipe.pdf, are located in the Redist folder in the One Touch
for Windows SDK software package. You may copy and redistribute the DigitalPersona Reader Maintenance
Touch.pdf and the DigitalPersona Reader Maintenance Swipe.pdf files, including the copyright and trademark
notices, to those who purchase a U.are.U module or fingerprint reader from you.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 90

Setting the False Accept Rate A

This appendix is for developers who want to specify a false accept rate (FAR) other than the default used by the
DigitalPersona Fingerprint Recognition Engine.

False Accept Rate (FAR)

The false accept rate (FAR), also known as the security level, is the proportion of fingerprint verification
operations by authorized users that incorrectly returns a comparison decision of match. The FAR is typically
stated as the ratio of the expected number of false accept errors divided by the total number of verification
attempts, or the probability that a biometric system will falsely accept an unauthorized user. For example, a
probability of 0.001 (or 0.1%) means that out of 1,000 verification operations by authorized users, a system is
expected to return 1 incorrect match decision. Increasing the probability to, say, 0.0001 (or 0.01%) changes this
ratio from 1in 1,000 to 1 in 10,000.

Increasing or decreasing the FAR has the opposite effect on the false reject rate (FRR), that is, decreasing the
rate of false accepts increases the rate of false rejects and vice versa. Therefore, a high security level may be
appropriate for an access system to a secured area, but may not be acceptable for a system where convenience
or easy access is more significant than security.

Representation of Probability

Probability should always be in the range from 0 to 1. Some common representations of probability are listed in
column one of Table 2. The value in the third row represents the current default value used by the
DigitalPersona Fingerprint Recognition Engine, which offers a mid-range security level. The value in the second
row represents a typical high FAR/low security level, and the value in the fourth row represents a typical low
FAR/high security level.

Table 2. Common values of probability

Decimal (0to 1) Percent (0 to 100%) Fraction (1/n" to 1)
0.001 0.1% 1/1000
0.0001 0.01% 1/10000
0.00001 0.001% 1/100000
0.000001 0.0001% 1/1000000

1. Where n is equal to infinity.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

91

Appendix A: Setting the False Accept Rate

Requested FAR

You specify the value of the FAR using the targetFar parameter of the MC_setSecuritylLevel
function. While you can request any value from 0 to 100%, it is not guaranteed that the Engine will fulfill the
request exactly. The Engine implementation makes the best effort to accommodate the request by internally
setting the value closest to that requested within the restrictions it imposes for security.

The following sample code sets the FAR to a value of 0.005%.

//Sets the FAR to 0.005%
rc = MC_setSecuritylLevel (mcContext, 0.005);

Achieved FAR

The actual value of the FAR achieved for a particular verification operation is returned in the achievedFar
parameter of MC_verifyFeatureskEx function as a probability value between 0 and 1. This value is
typically much smaller than the requested FAR due to the accuracy of the DigitalPersona Fingerprint
Recognition Engine. The requested FAR specifies the maximum value of the FAR to be used by the Engine in
making the verification decision. The actual FAR achieved by the Engine when conducting a legitimate
comparison is usually a much lower value. The Engine implementation may choose the range and granularity
for the achieved FAR. If you make use of this value in your application, for example, by combining it with other
achieved FARs, you should use it with caution, as the granularity and range may change between versions of
DigitalPersona SDKs without notice.

Testing

Although you may achieve the desired values of the FAR in your development environment, it is not
guaranteed that your application will achieve the required security level in real-world situations. Even though
the Engine is designed to make its best effort to accurately implement the probability estimates, it is
recommended that you conduct system-level testing to determine the actual operating point and accuracy ina
given scenario. This is even more important in systems where multiple biometric factors are used for
identification.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 92

Platinum SDK Enrolliment Template Conversion B

This appendix is for Platinum SDK users who need to convert their Platinum SDK registration templates to a
format that is compatible with the SDKs that are listed in Fingerprint Template Compatibility on page 5.

Sample code is included below for C++ and Visual Basic.

Platinum SDK Enrollment Template Conversion for Microsoft Visual C++

Use Code Sample 1 in applications developed in Microsoft Visual C++ to convert DigitalPersona Platinum SDK
registration templates.

Code Sample 1. Platinum SDK Template Conversion for Microsoft Visual C++

#import "DpSdkEng.tlb"™ no_namespace, named_guids, raw_interfaces only
#include <atlbase.h>

bool PlatinumTOGold(unsigned char* platinumBlob, int platinumBlobSize,
unsigned char* goldBlob, int goldBufferSize,
int* goldTemplateSize)

// Load the byte array into FPTemplate Object
// to create Platinum template object
SAFEARRAYBOUND rgsabound;

rgsabound. ILbound = 0;

rgsabound.cElements = platinumBlobSize;

CComVariant varVal;
varVal .vt = VT_ARRAY | VT _UIl1;
varVal .parray = SafeArrayCreate(VT_Ul1l, 1, &rgsabound);

unsigned char* data;

if (FAILED(SafeArrayAccessData(varVal .parray, (void**)&data)))
return false;

memcpy(data, platinumBlob, platinumBlobSize);
SafeArrayUnaccessData(varVal .parray) ;

IFPTemplatePtr plFPTemplate(_ _uuidof(FPTemplate));

if (pIFPTemplate == NULL)
return false;

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 93

Appendix B: Platinum SDK Enrollment Template Conversion

Code Sample 1. Platinum SDK Template Conversion for Microsoft Visual C++ (continued)

AIErrors error;
if (FAILED(pIFPTemplate->Import(varVal, &error)))
return false;

if (error != Er_OK)
return false;

// Now plFPTemplate contains the Platinum template.
// Use TemplData property to get the Gold Template out.
CComVariant varValGold;

if (FAILED(pIFPTemplate->get TemplData(&varValGold)))
return false;

unsigned char* dataGold;
if (FAILED(SafeArrayAccessData(varValGold.parray, (void**)&dataGold)))
return false;

int blobSizeRequired = varValGold.parray->rgsabound->cElements *
varValGold.parray->cbElements;

*goldTemplateSize = blobSizeRequired;

if (goldBufferSize < blobSizeRequired) {

SafeArrayUnaccessData(varValGold.parray);
return false;

¥

memcpy(goldBlob, dataGold, blobSizeRequired);
SafeArrayUnaccessData(varValGold.parray) ;

return true;

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

Appendix B: Platinum SDK Enrollment Template Conversion

Platinum SDK Enrollment Template Conversion for Visual Basic 6.0

Use Code Sample 2 in applications developed in Microsoft Visual Basic 6.0 to convert DigitalPersona Platinum
SDK enrollment templates.

Code Sample 2. Platinum SDK Template Conversion for Visual Basic 6.0

Public Function PlatinumToGold(platinumTemplate As Variant) As Byte(Q)
Dim pTemplate As New FPTemplate

Dim vGold As Variant

Dim bGold() As Byte

Dim er As DpSdkEngLib.AlErrors

er = pTemplate. Import(platinumTemplate)

IT er <> Er_OK Then PlatinumToGold = "": Exit Function
vGold = pTemplate.TemplData

bGold = vGold

PlatinumToGold = bGold

End Function

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

95

Get/Set Device Parameters C

This appendix is for developers who want to specify and retrieve a device-specific private key on any of
DigitalPersona’s family of fingerprint readers (4000B and later).

Overview

All of DigitalPersona’s current family of fingerprint readers, beginning with the U.are.U 40008B series, have a
dedicated memory location that can be used to set a private key on the device and then retrieve the key
programatically. This feature can be used to “lock in” the use of a specific device with your applications. This is
most often used to ensure that a specific feature set and/or tested hardware device is the one that your
application expects.

Parameters

There are two Device Parameter functions accessible through the DPFPAPI library (DPFPAPI.dII);
DPFPSetDeviceParameter() and DPFPGetDeviceParameter(). The prototypes for these functions are available in
dpfpapi . h, and are shown below for your convenience.

DPFP_STDAPI DPFPSetDeviceParameter(
REFGUID DevUID,
unsigned long ulParamlD,
const DATA_BLOB* pData

)

DPFP_STDAP1 DPFPGetDeviceParameter(
REFGUID DevUID,
unsigned long ulParamlD,
DATA_BLOB* pData

):
These two functions set and get (read) the value stored on the fingerprint reader. They both require the use of a
device GUID, which can be retrieved through DPFPEnumerateDevices (see page 47).
A parameter ID is also needed (ulParamlD). The currently supported parameter IDs are:

FT_SET_CLIENT_PRIVATE_KEY - Writes a private key to a device. The device then needs to be recycled prior
to reading the value.

FT_GET_CLIENT_PRIVATE_KEY - Reads the private key from a device.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide 96

Glossary

biometric system

An automatic method of identifying a person
based on the person’s unique physical and/or
behavioral traits, such as a fingerprint or an iris
pattern, or a handwritten signature or a voice.

comparison

The estimation, calculation, or measurement of
similarity or dissimilarity between fingerprint
feature set(s) and fingerprint template(s).

comparison score

The numerical value resulting from a comparison of
fingerprint feature set(s) with fingerprint
template(s). Comparison scores can be of two
types: similarity scores or dissimilarity scores.

context

A temporary object used for passing data between
the steps of multi-step programming operations.

DigitalPersona Fingerprint Recognition Engine

A set of mathematical algorithms formalized to
determine whether a fingerprint feature set
matches a fingerprint template according to a
specified security level in terms of the false accept
rate (FAR).

enrollee
See fingerprint data subject.

enrollment
See fingerprint enroliment.

false accept rate (FAR)

The proportion of fingerprint verification
transactions by fingerprint data subjects not
enrolled in the system where an incorrect decision
of match is returned.

false reject rate (FRR)

The proportion of fingerprint verification
transactions by fingerprint enrollment subjects

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

against their own fingerprint template(s) where an
incorrect decision of non-match is returned.

features
See fingerprint features.

fingerprint
An impression of the ridges on the skin of a finger.

fingerprint capture device

A device that collects a signal of a fingerprint data
subject’s fingerprint characteristics and convertsitto a
fingerprint sample. A device can be any piece of
hardware (and supporting software and firmware). In
some systems, converting a signal from fingerprint
characteristics to a fingerprint sample may include
multiple components such as a camera, photographic
paper, printer, digital scanner, or ink and paper.

fingerprint characteristic

Biological finger surface details that can be detected
and from which distinguishing and repeatable
fingerprint feature set(s) can be extracted for the
purpose of fingerprint verification or fingerprint
enrollment.

fingerprint data

Either the fingerprint feature set, the fingerprint
template, or the fingerprint sample.

fingerprint data storage subsystem

A storage medium where fingerprint templates are
stored for reference. Each fingerprint template is
associated with a fingerprint enrollment subject.
Fingerprint templates can be stored within a
fingerprint capture device; on a portable medium such
as a smart card; locally, such as on a personal computer
or a local server; or in a central database.

fingerprint data subject

A person whose fingerprint sample(s), fingerprint
feature set(s), or fingerprint template(s) are present
within the fingerprint recognition system at any time.

97

Glossary

Fingerprint data can be either from a person being
recognized or from a fingerprint enrollment
subject.

fingerprint enroliment

a. In a fingerprint recognition system, the initial
process of collecting fingerprint data from a person
by extracting the fingerprint features from the
person’s fingerprint image for the purpose of
enrollment and then storing the resulting datain a
template for later comparison.

b. The system function that computes a fingerprint
template from a fingerprint feature set(s).

fingerprint enroliment subject

The fingerprint data subject whose fingerprint
template(s) are held in the fingerprint data storage
subsystem.

fingerprint feature extraction

The system function that is applied to a fingerprint
sample to compute repeatable and distinctive
information to be used for fingerprint verification
or fingerprint enrollment. The output of the
fingerprint feature extraction function is a
fingerprint feature set.

fingerprint features

The distinctive and persistent characteristics from
the ridges on the skin of a finger. See also
fingerprint characteristics.

fingerprint feature set

The output of a completed fingerprint feature
extraction process applied to a fingerprint sample.
A fingerprint feature set(s) can be produced for the
purpose of fingerprint verification or for the
purpose of fingerprint enroliment.

fingerprintimage
A digital representation of fingerprint features prior

to extraction that are obtained from a fingerprint
reader. See also fingerprint sample.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

fingerprint reader

A device that collects data from a person’s fingerprint
features and converts it to a fingerprint image.

fingerprint recognition system

A biometric system that uses the distinctive and
persistent characteristics from the ridges of a finger,
also referred to as fingerprint features, to distinguish
one finger (or person) from another.

fingerprint sample

The analog or digital representation of fingerprint
characteristics prior to fingerprint feature extraction
that are obtained from a fingerprint capture device. A
fingerprint sample may be raw (as captured), or
intermediate (after some processing).

fingerprint template

The output of a completed fingerprint enrollment
process that is stored in a fingerprint data storage
subsystem. Fingerprint templates are stored for later
comparison with a fingerprint feature set(s).

fingerprint verification

a. In a fingerprint recognition system, the process of
extracting the fingerprint features from a person’s
fingerprint image provided for the purpose of
verification, comparing the resulting data to the
template generated during enrollment, and deciding
if the two match.

b. The system function that performs a one-to-one
comparison and makes a decision of match or non-
match.

match

The decision that the fingerprint feature set(s) and
the fingerprint template(s) being compared are from
the same fingerprint data subject.

non-match

The decision that the fingerprint feature set(s) and
the fingerprint template(s) being compared are not
from the same fingerprint data subject.

98

Glossary

one-to-one comparison

The process in which recognition fingerprint
feature set(s) from one or more fingers of one
fingerprint data subject are compared with
fingerprint template(s) from one or more fingers of
one fingerprint data subject.

repository
See fingerprint data storage subsystem.

security level

The target false accept rate for a comparison
context. See also FAR.

verification
See fingerprint verification.

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

99

Index

A
additional resources 3
online resources 4
related documentation 4
Allow Fingerprint Data Redirection 85
audience for this guide 2

B

biometric system
defined 97
explained 17

bold typeface, uses of 3

C
chapters, overview of 2
Citrix 7
Citrix Web Client 1
Citrix, developing for 85
comparison context
creating
function for 56
in typical enrollment workflow 25
in typical verification workflow 30
destroying
function for 57
in typical enrollment workflow 29
in typical verification workflow 34
comparison module, purpose of 21
comparison, defined 97
compatible fingerprint templates
See fingerprint template compatibility
context 25
creating
comparison context
function for 56
in typical enrollment workflow 25
in typical verification workflow 30
feature extraction context
in typical enrollment workflow 25
in typical verification workflow 30
defined 97
destroying
comparison context
function for 57
in typical enrollment workflow 29
in typical verification workflow 34
feature extraction context
in typical enrollment workflow 29

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

in typical verification workflow 34
conventions, document
See document conventions
converting Platinum SDK enrollment templates
for Microsoft Visual Basic 6.0 95
for Microsoft Visual C++ 93
Core API Reference 35
Courier bold typeface, use of 3
creating
comparison context
function for 56
in typical enrollment workflow 25
in typical verification workflow 30
feature extraction context
in typical enrollment workflow 25
in typical verification workflow 30
fingerprint feature set
function for 57
in typical enrollment workflow 27
in typical verification workflow 32
fingerprint template
function for 60
in typical enrollment workflow 29

D
destroying
comparison context
function for 57
in typical enrollment workflow 29
in typical verification workflow 34
feature extraction context
in typical enrollment workflow 29
in typical verification workflow 34
device component
purpose of 21
workflow 22—23
DFLT_FA_RATE constant, defined 74
DigitalPersona Developer Connection Forum, URL to 4
DigitalPersona Fingerprint Recognition Engine 17
DigitalPersona fingerprint recognition system 18
illustrated 79
DigitalPersona products, supported 4
document conventions 3
notational 3
typographical 3
documentation, related 4
DP_ACQUISITION_PRIORITY enumeration, defined 68

100

Index

DP_DEVICE_INFO data structure, defined 64
DP_DEVICE_MODALITY enumeration, defined 68
DP_DEVICE_TECHNOLOGY enumeration, defined 69
DP_DEVICE_UID_TYPE enumeration, defined 70
DP_DEVICE_VERSION data structure, defined 64
DP_ENROLLMENT_ACTION enumeration, defined 82
DP_HW_INFO data structure, defined 65
DP_PRODUCT_VERSION data structure, defined 66
DP_SAMPLE_QUALITY enumeration, defined 70
DP_SAMPLE_TYPE_IMAGE constant, defined 74
DPENROLLMENTPROC callback, defined 79
DPEnrollUl function, defined 76
DPFPBufferFree function, defined 38
DPFPCreateAcquisition function

defined 38

using in device component workflow 23
DPFPDestroyAcquisition function

defined 40

using in device component workflow 23
DPFPEnumerateDevices function

defined 471

using in device component workflow 23
DPFPGetDevice Parameter 36
DPFPGetDevicelnfo function, defined 47
DPFPGetVersion function, defined 44
DPFPInit function

defined 44

using in device component workflow 23
DPFPSetDeviceParameter 36
DPFPStartAcquisition function

defined 45

using in device component workflow 23
DPFPStopAcquisition function

defined 46

using in device component workflow 23
DPFPTerm function

defined 46

using in device component workflow 23
DPVERIFYPROC callback, defined 80
DPVerifyUl function, defined 78
driver 18

E
Engine
See DigitalPersona Fingerprint Recognition Engine
enrollee 18
enrollment
See fingerprint enrollment
enrollment mask, possible values for 77

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

F
false accept rate 719
defined 97
setting target for comparison context
function for 58
in typical verification workflow 30
setting to value other than the default 917
false negative decision 79
false negative decision, proportion of 19
See also false accept rate
false positive decision 79
false positive decision, proportion of 19
See also false accept rate
false positives and false negatives 19
false reject rate 19
defined 97
FAR
See false accept rate
feature extraction context
creating
in typical enrollment workflow 25
in typical verification workflow 30
destroying
in typical enrollment workflow 29
in typical verification workflow 34
important notice not to set security level for 58
feature extraction module, purpose of 217
features
See fingerprint features
files and folders
installed for RTE
32-bitinstallation 15
64-bit installation 16
installed for SDK 13
fingerprint 17
defined 97
fingerprint capture device 18
defined 97
See fingerprint reader
fingerprint characteristics, defined 97
fingerprint comparison module
See comparison module
fingerprint data 18
defined 97
fingerprint data storage subsystem, defined 97
fingerprint enrollment 78
defined 98
typical workflow 24—29
clean-up 29
fingerprint feature set creation 27

101

Index

fingerprint template creation 29
initialization 25
fingerprint feature extraction
defined 98
performing
function for 57
in typical enrollment workflow 27, 32
fingerprint feature extraction module
See feature extraction module
fingerprint feature set 18
creating
function for 57
in typical enrollment workflow 27
in typical verification workflow 32
defined 98
retrieving number required for fingerprint template
creation
function for 56
in typical enrollment workflow 26
retrieving size of
in typical enrollment workflow 26
in typical verification workflow 30
fingerprint features, defined 98
fingerprint image
preparing for display
function for 53
in typical enrollment workflow 27
in typical verification workflow 32
fingerprint image, defined 98
fingerprint reader 18
defined 98
redistributing documentation for 90
use and maintenance guides, redistributing 90
fingerprint recognition 18
fingerprint recognition component 24
purpose of 21
fingerprint recognition system 17
defined 98
See also DigitalPersona fingerprint recognition system
fingerprint recognition, guide to 4
fingerprint sample, defined 98
See fingerprint image
fingerprint template 178
creating
function for 60
in typical enrollment workflow 29
defined 98
retrieving size of
function for 59
in typical enrollment workflow 26

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

fingerprint template compatibility 5
fingerprint verification 78
defined 98
performing
function for 62
in typical verification workflow 34
typical workflow 29—34
clean-up 34
comparison and decision 34
fingerprint feature set creation 32
initialization 30
folders and files
installed for RTE
32-bitinstallation 15
64-bit installation 16
installed for SDK 13
FRR
See false reject rate
FT_FA_RATE data type, defined 74
FT_FTR_QUALITY enumeration, defined 72
FT_FTR_TYPE enumeration, defined 73
FT_IMG_QUALITY enumeration, defined 72
FT_PRE_REG_FTR value
defined 57
using in typical enroliment workflow 26, 27
FT_REG_FTR value
defined 60
using in typical enroliment workflow 26
FT_VER_FTR value
defined 57
using in typical verification workflow 30, 32
FT_VERSION_INFO data structure, defined 66
FX_closeContext function
defined 49
using
in typical enrollment workflow 29
in typical verification workflow 34
FX_createContext function
defined 48
using
in typical enrollment workflow 25
in typical verification workflow 30
FX_extractFeatures function
defined 57
using
in typical enrollment workflow 27
in typical verification workflow 32
FX_getDisplaylmage function
defined 53
using

102

Index

in typical enrollment workflow 27
in typical verification workflow 32
FX_getFeaturesLen function
defined 50
using
in typical enrollment workflow 26
in typical verification workflow 30
FX_getVersionInfo function
defined 48
FX_init function
defined 47
using
in typical enrollment workflow 25
in typical verification workflow 30
FX_terminate function
defined 49
using
in typical enrollment workflow 29
in typical verification workflow 34

G
Group Policy Objects 85
GUID_NULL value
defined 39
using in device component workflow 23

H

hardware warnings and regulatory information,
redistributing 90

HDPOPERATION data type, defined 74

HIGH_SEC_FA_RATE constant, defined 74

|
image
See fingerprint image
important notation, defined 3
important notice
do not specify security level for feature extraction
context 58
read Appendix A before setting targetFar
parameter 58
initializing
comparison module
function for 55
in typical enroliment workflow 25
in typical verification workflow 30
feature extraction module
in typical enroliment workflow 25
in typical verification workflow 30
installation files for redistributables
redistributing 86

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

G
installing
RTE 74
RTE silently 16
italics typeface, uses of 3
L
LOW_SEC_FA_RATE constant, defined 75
M
match 79
defined 98
MC_closeContext function
defined 57
using
in typical enrollment workflow 29
in typical verification workflow 34
MC_createContext function
defined 56
using
in typical enrollment workflow 25
in typical verification workflow 30
MC_generateRegFeatures function
defined 60
using in typical enroliment workflow 29
MC_getFeaturesLen function
defined 59
using in typical enroliment workflow 26
MC_getSecurityLevel function, defined 57
MC_getSettings function
defined 56
using in typical enroliment workflow 26
MC_getVersionInfo function, defined 55
MC_init function
defined 55
using
in typical enroliment workflow 25
in typical verification workflow 30
MC_setSecurityLevel function
defined 58
using in typical verification workflow 30
MC_SETTINGS data structure, defined 67
MC_terminate function
defined 59
using
in typical enroliment workflow 29
in typical verification workflow 34
MC_verifyFeaturesEx function
defined 62
using in typical verification workflow 34
MED_SEC_FA_RATE constant, defined 74, 75
merge modules
103

Index

contents of 86
redistributing 86
Metaframe Presentation Server 1

N

non-match 79
defined 98

notational conventions 3

note notation, defined 3

number of required fingerprint feature sets for

fingerprint template creation, retrieving

function for 56
in typical enrollment workflow 26

o

one-to-one comparison 19
defined 99

online resources 4

overview
of chapters 2
of concepts and terminology 17

P
Platinum SDK enrollment template conversion 93
product compatibility

See fingerprint template compatibility
Program Neighborhood 17
Program Neighborhood Agent 7

R
Redist folder, redistributing contents of 86
redistributables, redistributing 86
redistribution of files 86
regulatory information, requirement to advise end users
of 90
releasing
resources associated with comparison module
function for 59
in typical enrollment workflow 29
in typical verification workflow 34
resources associated with feature extraction module
in typical enrollment workflow 29
in typical verification workflow 34
remote authentication 1
Remote Desktop Connection 1
repository 18
requirements, system
See system requirements
resources, additional
See additional resources
resources, online
See online resources

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

retrieving
number of required fingerprint feature sets for
fingerprint template creation
function for 56
in typical enrollment workflow 26
security level of comparison context, function for 57
size of fingerprint feature set
in typical enrollment workflow 26
in typical verification workflow 30
size of fingerprint template
function for 59
in typical enrollment workflow 26
software version information
comparison module, function for 55
RTE
installing 74
installing/uninstalling silently 76
redistributing 86
RTE\Install folder, redistributing contents of 86
runtime environment
See RTE

S
sample code for converting Platinum SDK enrollment
templates
for Microsoft Visual Basic 6.0 95
for Microsoft Visual C++ 93
SDK
components of 27
files and folders installed 73
security level 19
retrieving for comparison context, function for 57
setting for comparison context
function for 58
in typical verification workflow 30
silently installing RTE 16
size of fingerprint feature set, retrieving
in typical enrollment workflow 26
in typical verification workflow 30
size of fingerprint template, retrieving
function for 59
in typical enrollment workflow 26
software version information
retrieving for comparison module, function for 55
supported DigitalPersona products 4
system requirements 4

T

target audience for this guide 2

target false accept rate for comparison context
retrieving, function for 57

104

Index

setting
function for 58
in typical verification workflow 30
targetFar parameter
defined 57
important notice to read Appendix A before setting 58
template compatibility
See fingerprint template compatibility
terminating
comparison module
function for 59
in typical enrollment workflow 29
in typical verification workflow 34
feature extraction module
in typical enrollment workflow 29
in typical verification workflow 34
typefaces, uses of
bold 3
Courier bold 3
italics 3
typographical conventions 3

U
uninstalling RTE silently 76
updates for DigitalPersona software products, URL for
downloading 4
URLs
DigitalPersona Developer Connection Forum 4
Updates for DigitalPersona Software Products 4
use and maintenance guides for fingerprint readers,
redistributing 90
Use DigitalPersona Pro Server for authentication 85
using
device component API functions 23
fingerprint recognition component API functions 24—
34

\'J
verification
See fingerprint verification

w
Windows Terminal Services 1

DigitalPersona One Touch for Windows SDK: C/C++ Edition | Developer Guide

105

	Table of Contents
	Introduction
	Target Audience
	Chapter Overview
	Document Conventions
	Notational Conventions
	Typographical Conventions

	Additional Resources
	Related Documentation
	Online Resources

	System Requirements
	Supported DigitalPersona hardware Products
	Fingerprint Template Compatibility

	Quick Start
	Quick Concepts
	Install the Software
	Connect the Fingerprint Reader
	Using the Sample Application

	Installation
	Installing the SDK
	Installing the Runtime Environment (RTE)
	Installing and Uninstalling the RTE Silently

	Overview
	Biometric System
	Fingerprint
	Fingerprint Recognition
	Fingerprint Enrollment
	Fingerprint Verification

	False Positives and False Negatives
	Operations
	Components of the SDK
	Device Component
	Initialization
	Operation
	Clean-up

	Fingerprint Recognition Component
	Fingerprint Enrollment
	Typical Fingerprint Enrollment Workflow
	Initialization Tasks
	Fingerprint Feature Set Creation Tasks
	Fingerprint Template Creation Tasks
	Clean-up Tasks

	Fingerprint Verification
	Typical Fingerprint Verification Workflow
	Initialization Tasks
	Fingerprint Feature Set Creation Tasks
	Comparison-and-Decision Tasks
	Clean-up Tasks

	Core API Reference
	Functions
	Device Functions List
	Extraction Functions List
	Matching Functions List
	Device Functions Reference
	DPFPBufferFree
	DPFPCreateAcquisition
	DPFPDestroyAcquisition
	DPFPEnumerateDevices
	DPFPGetDeviceInfo
	DPFPSetDeviceParameter
	DPFPGetDeviceParameter
	DPFPGetVersion
	DPFPInit
	DPFPStartAcquisition
	DPFPStopAcquisition
	DPFPTerm

	Extraction Functions Reference
	FX_init
	FX_getVersionInfo
	FX_createContext
	FX_closeContext
	FX_terminate
	FX_getFeaturesLen
	FX_extractFeatures
	FX_getDisplayImage

	Matching Functions Reference
	MC_init
	MC_getVersionInfo
	MC_getSettings
	MC_createContext
	MC_closeContext
	MC_getSecurityLevel
	MC_setSecurityLevel
	MC_terminate
	MC_getFeaturesLen
	MC_generateRegFeatures
	MC_verifyFeaturesEx

	Data Structures
	DP_DEVICE_INFO
	Syntax
	Data Fields

	DP_DEVICE_VERSION
	Syntax
	Data Fields

	DP_HW_INFO
	Syntax
	Data Fields

	DP_PRODUCT_VERSION
	Syntax
	Data Fields

	FT_VERSION_INFO
	Syntax
	Data Fields

	MC_SETTINGS
	Syntax
	Data Fields

	Enumerations
	DP_ACQUISITION_PRIORITY
	Syntax
	Values

	DP_DEVICE_MODALITY
	Syntax
	Values

	DP_DEVICE_TECHNOLOGY
	Syntax
	Values

	DP_DEVICE_UID_TYPE
	Syntax
	Values

	DP_SAMPLE_QUALITY
	Syntax
	Values

	FT_IMG_QUALITY
	Values

	FT_FTR_QUALITY
	Values

	FT_FTR_TYPE
	Syntax
	Values

	Type Definitions and Constants
	DFLT_FA_RATE MED_SEC_FA_RATE
	Syntax

	DP_SAMPLE_TYPE_IMAGE
	Syntax

	FT_FA_RATE
	Syntax

	HDPOPERATION
	Syntax

	HIGH_SEC_FA_RATE
	Syntax

	LOW_SEC_FA_RATE
	Syntax

	MED_SEC_FA_RATE
	Syntax

	User Interface API Reference
	Functions
	DPEnrollUI
	Syntax
	Parameters
	Return Values
	Library

	DPVerifyUI
	Syntax
	Parameters
	Return Values
	Library

	Callbacks
	DPENROLLMENTPROC
	Parameters
	Return Values
	Library

	DPVERIFYPROC
	Syntax
	Parameters
	Return Values
	Library

	Enumerations
	DP_ENROLLMENT_ACTION
	Syntax
	Values

	Events Notifications and Return Codes
	Events Notifications
	Return Codes

	Developing Citrix-aware applications
	Redistribution
	RTE\Install Folder
	Redist Folder
	Fingerprint Reader Documentation
	Hardware Warnings and Regulatory Information
	Fingerprint Reader Use and Maintenance Guide

	Setting the False Accept Rate
	False Accept Rate (FAR)
	Representation of Probability
	Requested FAR
	Achieved FAR
	Testing

	Platinum SDK Enrollment Template Conversion
	Platinum SDK Enrollment Template Conversion for Microsoft Visual C++
	Platinum SDK Enrollment Template Conversion for Visual Basic 6.0

	Get/Set Device Parameters
	Overview
	Parameters

	Glossary
	biometric system
	comparison
	comparison score
	context
	DigitalPersona Fingerprint Recognition Engine
	enrollee
	enrollment
	false accept rate (FAR)
	false reject rate (FRR)
	features
	fingerprint
	fingerprint capture device
	fingerprint characteristic
	fingerprint data
	fingerprint data storage subsystem
	fingerprint data subject
	fingerprint enrollment
	fingerprint enrollment subject
	fingerprint feature extraction
	fingerprint features
	fingerprint feature set
	fingerprint image
	fingerprint reader
	fingerprint recognition system
	fingerprint sample
	fingerprint template
	fingerprint verification
	match
	non-match
	one-to-one comparison
	repository
	security level
	verification

	Index

