
Issue 15 © Solarflare Communications 2013 i

Onload

User Guide

Onload User Guide

Copyright © 2013 SOLARFLARE Communications, Inc. All rights reserved.

The software and hardware as applicable (the “Product”) described in this document, and this document, are protected
by copyright laws, patents and other intellectual property laws and international treaties. The Product described in this
document is provided pursuant to a license agreement, evaluation agreement and/or non-disclosure agreement. The
Product may be used only in accordance with the terms of such agreement. The software as applicable may be copied only
in accordance with the terms of such agreement.

Onload is licensed under the GNU General Public License (Version 2, June 1991). See the LICENSE file in the distribution for
details. The Onload Extensions Stub Library is Copyright licensed under the BSD 2-Clause License.

Onload contains algorithms and uses hardware interface techniques which are subject to Solarflare Communications Inc
patent applications. Parties interested in licensing Solarflare's IP are encouraged to contact Solarflare's Intellectual
Property Licensing Group at:

Director of Intellectual Property Licensing
Intellectual Property Licensing Group
Solarflare Communications Inc,
7505 Irvine Center Drive
Suite 100
Irvine, California 92618

You will not disclose to a third party the results of any performance tests carried out using Onload or EnterpriseOnload
without the prior written consent of Solarflare.

The furnishing of this document to you does not give you any rights or licenses, express or implied, by estoppel or
otherwise, with respect to any such Product, or any copyrights, patents or other intellectual property rights covering such
Product, and this document does not contain or represent any commitment of any kind on the part of SOLARFLARE
Communications, Inc. or its affiliates.

The only warranties granted by SOLARFLARE Communications, Inc. or its affiliates in connection with the Product described
in this document are those expressly set forth in the license agreement, evaluation agreement and/or non-disclosure
agreement pursuant to which the Product is provided. EXCEPT AS EXPRESSLY SET FORTH IN SUCH AGREEMENT, NEITHER
SOLARFLARE COMMUNICATIONS, INC. NOR ITS AFFILIATES MAKE ANY REPRESENTATIONS OR WARRANTIES OF ANY KIND
(EXPRESS OR IMPLIED) REGARDING THE PRODUCT OR THIS DOCUMENTATION AND HEREBY DISCLAIM ALL IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT, AND ANY
WARRANTIES THAT MAY ARISE FROM COURSE OF DEALING, COURSE OF PERFORMANCE OR USAGE OF TRADE. Unless
otherwise expressly set forth in such agreement, to the extent allowed by applicable law (a) in no event shall SOLARFLARE
Communications, Inc. or its affiliates have any liability under any legal theory for any loss of revenues or profits, loss of use
or data, or business interruptions, or for any indirect, special, incidental or consequential damages, even if advised of the
possibility of such damages; and (b) the total liability of SOLARFLARE Communications, Inc. or its affiliates arising from or
relating to such agreement or the use of this document shall not exceed the amount received by SOLARFLARE
Communications, Inc. or its affiliates for that copy of the Product or this document which is the subject of such liability.

The Product is not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear
facility applications.

SF-104474-CD

Issue 15

Onload

User Guide
 Table of Contents

Chapter 1: What’s New . 1

Chapter 2: Low Latency Quickstart Guide . 4

Chapter 3: Background . 12
3.1 Introduction. . 12

Chapter 4: Installation . 16
4.1 Introduction . 16
4.2 Onload Distributions . 16
4.3 Hardware and Software Supported Platforms . 17
4.4 Onload and the Network Adapter Driver . 17
4.5 Pre-install Notes . 17
4.6 EnterpriseOnload - Build and Install from SRPM . 18
4.7 OpenOnload DKMS Installation . 19
4.8 Build OpenOnload Source RPM. 19
4.9 OpenOnload - Installation. 20
4.10 Onload Kernel Modules . 22
4.11 Configuring the Network Interfaces . 22
4.12 Installing Netperf. 23
4.13 How to run Onload . 23
4.14 Testing the Onload Installation . 23
4.15 Apply an Onload Patch . 23

Chapter 5: Tuning Onload . 22
5.1 Introduction . 22
5.2 System Tuning . 22
5.3 Standard Tuning. 26
5.4 Performance Jitter. 28
5.5 Advanced Tuning . 30

Chapter 6: Features & Functionality. 34
6.1 Introduction . 34
6.2 Onload Transparency . 34
6.3 Onload Stacks. 34
6.4 Virtual Network Interface (VNIC) . 34
6.5 Functional Overview . 35
6.6 Onload with Mixed Network Adapters . 35
6.7 Maximum Number of Network Interfaces . 35
6.8 Onloaded PIDs . 35
6.9 Onload and File Descriptors, Stacks and Sockets . 36
6.10 System calls intercepted by Onload. 36
Issue 15 © Solarflare Communications 2013 ii

Onload

User Guide
 6.11 Linux Sysctls . 36
6.12 Changing Onload Control Plane Table Sizes . 38
6.13 TCP Operation . 39
6.14 UDP Operation. 48
6.15 User Level recvmmsg for UDP . 52
6.16 User-Level sendmmsg for UDP. 52
6.17 Multiplexed I/O . 52
6.18 Stack Sharing . 55
6.19 Multicast Replication . 56
6.20 Multicast Operation and Stack Sharing . 56
6.21 Multicast Loopback . 59
6.22 Bonding, Link aggregation and Failover. 59
6.23 VLANS . 60
6.24 Accelerated pipe() . 60
6.25 Zero-Copy API . 61
6.26 Receive Filtering . 61
6.27 Packet Buffers . 61
6.28 Programmed I/O . 70
6.29 Templated Sends . 71
6.30 Debug and Logging . 72

Chapter 7: Limitations . 73
7.1 Introduction . 73
7.2 Changes to Behavior . 73
7.3 Limits to Acceleration . 74
7.4 epoll - Known Issues . 78
7.5 Configuration Issues . 80

Chapter 8: Change History. 85
8.1 Features . 85
8.2 Environment Variables . 87
8.3 Module Options. 91

Appendix A: Parameter Reference . 93

Appendix B: Meta Options . 121

Appendix C: Build Dependencies . 122

Appendix D: Onload Extensions API . 112

Appendix E: onload_stackdump . 137

Appendix F: Solarflare sfnettest . 156
Issue 15 © Solarflare Communications 2013 iii

Onload

User Guide
 Appendix G: onload_tcpdump . 164

Appendix H: ef_vi. 166

Appendix I: onload_iptables . 174

Appendix J: Solarflare efpio Test Application . 180
Issue 15 © Solarflare Communications 2013 iv

 Onload

User Guide
Chapter 1: What’s New
This section identifies new features introduced in the OpenOnload 201310 release, the OpenOnload
201310-u1 release and latest additions to this user guide.

This version of the user guide introduces the Solarflare Flareon™ Ultra SFN7122F and SFN7322F
Dual-Port 10GbE PCIe 3.0 Server I/O Adapters.

This user guide is also applicable to EnterpriseOnload v2.1.0.3 - refer to Change History on page 85
to confirm feature availability in the Enterprise release.

For a complete list of features and enhancements refer to the release notes and the release change
log available from: http://www.openonload.org/download.html.

New Features 201310-u1

Receive Packet Hardware Timestamping

The SO_TIMESTAMPING socket option allow an application to recover hardware generated
timestamps for received packets. This is supported for Onload applications running on the Solarflare
SFN7000 series adapters. For details refer to SO_TIMESTAMPING (hardware timestamps) on
page 50.

The Onload environment variable EF_RX_TIMESTAMPING controls whether hardware timestamps
are enabled on all received packets. Refer to Appendix A: Parameter Reference on page 93 for
details.

Low Latency Transmit

The Onload environment variable EF_TX_PUSH_THRESHOLD is used together with EF_TX_PUSH to
improve the performance of the low-latency transmit feature. This feature is supported on SFN7000
series adapters. For details of this variable refer to Appendix A: Parameter Reference on page 93.

Onload Extensions API - Java Native Interface

The JNI wrapper provides access to the Onload extensions API from within Java. Users should refer
to the README file and Java source files in /onload-<version>/src/tools/jni directory.

Onload Extensions API - MSG WARM Detection

Onload versions before onload-201310 do not support the ONLOAD_MSG_WARM flag and using the
flag on TCP send calls will cause the ’warm’ packet to be actually sent on the wire.

The onload_fd_check_feature() function can be called before using the ONLOAD_MSG_WARM
flag on TCP send calls to ensure the Onload socket being used does actually support the
ONLOAD_MSG_WARM feature. For details refer to onload_fd_check_feature() on page 114.

Adapter Net Driver

The OpenOnload 201310-u1 release includes an updated net driver. The v4.0.2.6628 driver supports
all Solarflare adapters.
Issue 15 © Solarflare Communications 2013 1

http://www.openonload.org/download.html

 Onload

User Guide
New Features 201310

The OpenOnload 201310 release includes new features to support the Solarflare Flareon Ultra
SFN7122F and SFN7322F adapters.

Multicast Replication

The SFN7000 series adapters support Multicast Replication where packets are replicated in
hardware and delivered to multiple receive queues. This feature allows any number of Onload
clients, listening to the same multicast data stream to receive a copy of the received packets without
the need to share Onload stacks. See Multicast Replication on page 56 for details.

Large Buffer Table Support

The SFN7000 series adapters support large buffer table entries, which for many applications, can
help eliminate limitations on the number of packet buffers that existed on previous generation
Solarflare adapters. Refer to Large Buffer Table Support on page 62 for further details.

PIO

The SFN7000 series adapters support programmed input/output on the transmit path where
packets are pushed directly to the adapter by the CPU. See “Programmed I/O” on page 70.

Templated Sends

Building on top of PIO, the templated sends extensions API can further improve transmit latency
using a packet template which contains the bulk of the data to be sent. The template is created on
the adapter and populated with the remaining data immediately before sending. For more
information about templated sends and the use of packet templates see Templated Sends on
page 71.

ONLOAD_MSG_WARM

The ONLOAD_MSG_WARM flag, when used on the TCP send calls, will ’exercise’ the TCP fast send
path to maintain low latency performance on TCP connections that rarely send data. See
ONLOAD_MSG_WARM on page 46 for details.

Onload Handling dup3()

A system call to dup3() will now be intercepted in Onload-201310.

Adapter Net Driver

The OpenOnload 201310 release includes an updated net driver. The v4.0.0.6585 driver supports all
Solarflare adapters.
Issue 15 © Solarflare Communications 2013 2

 Onload

User Guide
Change History

The Change History section is updated with every revision of this document to include the latest
Onload features, changes or additions to environment variables and changes or additions to onload
module options. Refer to Change History on page 85.

Documentation Changes

Appendix J: Solarflare efpio Test Application on page 180 describes the Solarflare layer 2 benchmark
efpio with command line examples and options.
Issue 15 © Solarflare Communications 2013 3

 Onload

User Guide
Chapter 2: Low Latency Quickstart Guide

Introduction
This section demonstrates how to achieve very low latency coupled with minimum jitter on a system
fitted with the Solarflare SFN7122F network adapter and using Solarflare’s kernel-bypass network
acceleration middleware, OpenOnload.

The procedure will focus on the performance of the network adapter for TCP and UDP applications
running on Linux using the industry-standard Netperf network benchmark application and the
Solarflare supplied open source sfnettest network benchmark suite.

Please read the Solarflare LICENSE file regarding the disclosure of benchmark test results.

Software Installation
Before running Low Latency benchmark tests ensure that correct driver and firmware versions are
installed e.g. (minimum driver and firmware versions are shown):

[root@server-N]# ethtool -i eth3
driver: sfc
version: 4.0.0.6585
firmware-version: 4.0.0.6585

Netperf

Netperf can be downloaded from http://www.netperf.org/netperf/

Unpack the compressed tar file using the tar command:

[root@system-N]# tar -zxvf netperf-<version>.tar.gz

This will create a sub-directory called netperf-<version> from which the configure and make
commands can be run (as root):

./configure
make install

Following installation the netperf and netserver applications are located in the src
subdirectory.

Solarflare sfnettest

Download the sfnettest-<version>.tgz source file from www.openonload.org

Unpack the tar file using the tar command:

[root@system-N]# tar -zxvf sfnettest-<version>.tgz

Run the make utility from the sfnettest-<version>/src subdirectory to build the sfnt-
pingpong application.
Issue 15 © Solarflare Communications 2013 4

http://www.netperf.org/netperf/
http://www.netperf.org/netperf/
http://www.netperf.org/netperf/DownloadNetperf.html
http://www.openonload.org

 Onload

User Guide
Solarflare Onload

Before Onload network and kernel drivers can be built and installed the system must support a build
environment capable of compiling kernel modules. Refer to Appendix C - Build Dependencies in the
Onload User Guide for more details.

Download the Onload-<version>.tgz file from www.openonload.org

Unpack the tar file using the tar command:

[root@system-N]# tar -zxvf onload-<version>.tgz

Run the onload_install command from the Onload-<version>/scripts subdirectory:

[root@system-N]# ./onload_install

Test Setup
The diagram below identifies the required physical configuration of two servers equipped with
Solarflare network adapters connected back-to-back in order to measure the latency of the adapter,
drivers and acceleration middleware. If required, tests can be repeated with a 10G switch on the link
to measure the additional latency delta using a particular switch.

Requirements:

• Two servers are equipped with Solarflare network adapters and connected with a single cable
between the Solarflare interfaces.

• The Solarflare interfaces are configured with an IP address so that traffic can pass between
them. Use ping to verify connection.

• Onload, netperf and sfnettest are installed on both machines.
Issue 15 © Solarflare Communications 2013 5

http://www.openonload.org

 Onload

User Guide
Pre-Test Configuration
On both machines:

1 Isolate the CPU cores that will be used from the general SMP balancing and scheduler
algorithms. Add the following option to the kernel line in /boot/grub/grub.conf:

isolcpus=<comma separated cpu list>

2 Stop the cpuspeed service to prevent power saving modes from reducing CPU clock speed.

[root@system-N]# service cpuspeed stop

3 Stop the irqbalance service to prevent the OS from rebalancing interrupts between available
CPU cores.

[root@system-N]# service irqbalance stop

4 Stop the iptables service to eliminate overheads incurred by the firewall. Solarflare
recommend this step on RHEL6 for improved latency when using the kernel network driver.

[root@system-N]# service iptables stop

5 Disable interrupt moderation.

[root@system-N]# ethtool -C eth<N> rx-usecs 0 adaptive-rx off

Where N is the identifier of the Solarflare adapter ethernet interface e.g. eth4

6 Refer to the Reference System Specification below for BIOS features.

Reference System Specification
The following latency measurements were recorded on twin Intel® Sandy Bridge servers. The
specification of the test systems is as follows:

• DELL PowerEdge R210 servers equipped with Intel® Xeon® CPU E3-1280 @3.60GHz, 2 x 2GB
DIMMs.

• BIOS: Turbo mode ENABLED, cstates DISABLED, IOMMU DISABLED.

• Red Hat Enterprise Linux V6.4 (x86_64 kernel, version 2.6.32-358.el6.x86_64).

• Solarflare SFN7122F NIC (driver and firmware – see Software Installation) Direct attach cable at
10G.

• OpenOnload distribution: openonload-201310.

It is expected that similar results will be achieved on any Intel based, PCIe Gen 3 server or
compatible system.
Issue 15 © Solarflare Communications 2013 6

 Onload

User Guide
UDP Latency: Netperf

Run the netserver application on system-1:
[root@system-1]# pkill -f netserver
[root@system-1]# onload --profile=latency taskset -c 0 ./netserver

Run the netperf application on system -2:

[root@system-2]# onload --profile=latency taskset -c 0 ./netperf -t UDP_RR -H
<system1-ip> -l 10 -- -r 32

Socket Size Request Resp. Elapsed Trans
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec
229376 229376 32 32 10.00 294170.83

294170 transactions/second means that each transaction takes 1/294170 seconds resulting in a
RTT/2 latency of (1/294170)/2 or 1.69μs

UDP Latency: sfnt-pingpong

Run the sfnt-pingpong application on both systems:

[root@system-1]# onload --profile=latency taskset -c 0 ./sfnt-pingpong
[root@system-2]# onload --profile=latency taskset -c 0 ./sfnt-pingpong --affinity
"0;0" udp <system1-ip>

size mean min median max %ile stddev iter
 0 1648 1603 1642 12340 1742 48 904000
 1 1643 1598 1638 14532 1732 46 907000
 2 1644 1600 1638 9641 1734 42 907000
 4 1643 1598 1638 13210 1731 43 907000
 8 1646 1600 1640 8707 1736 44 905000
 16 1635 1591 1629 9753 1724 41 911000
 32 1672 1612 1666 11198 1756 48 891000
 64 1706 1649 1701 9638 1796 42 873000
 128 1824 1744 1820 8620 1938 53 817000

 256 1981 1911 1975 8238 2090 48 753000

The output identifies mean, minimum, median and maximum (nanosecond) RTT/2 latency for
increasing TCP packet sizes including the 99% percentile and standard deviation for these results. A
message size of 32 bytes has a mean latency of 1.67μs with a 99%ile latency under 1.8μs.
Issue 15 © Solarflare Communications 2013 7

 Onload

User Guide

TCP Latency: Netperf

Run the netserver application on system-1:
[root@system-1]# pkill -f netserver
[root@system-1]# onload --profile=latency taskset -c 0 ./netserver

Run the netperf application on system-2:

[root@system-2]# onload --profile=latency taskset -c 0 ./netperf -t
TCP_RR -H <system1-ip> -l 10 -- -r 32

Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec
16384 87380 32 32 10.00 271057.10

271057 transactions/second means that each transaction takes 1/271057 seconds resulting in a
RTT/2 latency of (1/271057)/2 or 1.84μs.

TCP Latency: sfnt-pingpong

Run the sfnt-pingpong application on both systems:

[root@system-1]# onload --profile=latency taskset -c 0 ./sfnt-pingpong
[root@system-2]# onload --profile=latency taskset -c 0 ./sfnt-pingpong --affinity
"0;0" tcp <system1-ip>
#
size mean min median max %ile stddev iter
 1 1810 1744 1795 15775 1959 62 823000
 2 1809 1744 1793 11080 1961 60 824000
 4 1812 1743 1797 12595 1964 60 822000
 8 1810 1745 1794 11773 1959 58 824000
 16 1816 1746 1801 9081 1967 56 821000
 32 1835 1767 1820 8049 1989 58 812000
 64 1900 1804 1886 9764 2065 67 785000
 128 2000 1907 1985 8440 2167 67 746000

 256 2139 2057 2123 482577 2304 578 698000

The output identifies mean, minimum, median and maximum (nanosecond) RTT/2 latency for
increasing TCP packet sizes including the 99% percentile and standard deviation for these results. A
message size of 32 bytes has a mean latency of 1.83μs with a 99%ile latency under 2.0μs.
Issue 15 © Solarflare Communications 2013 8

 Onload

User Guide
Layer 2 ef_vi Latency

The efpio UDP test application, supplied with the onload-201310 package, can be used to measure
latency of the Solarflare ef_vi layer 2 API. efpio uses PIO.

Using the same back-to-back configuration described above, efpio latency tests were recorded on
DELL PowerEdge R210 servers.

ef_vi_version_str: 201306-7122preview2
udp payload len: 28
iterations: 100000
frame len: 70
round-trip time: 2.65 μs (1.32 RTT/2)

Appendix J: Solarflare efpio Test Application on page 180 describes the efpio application,
command line options and provides example command lines.
Issue 15 © Solarflare Communications 2013 9

 Onload

User Guide
Comparative Data

Dual Package Server

Latency tests recorded in this document, were conducted on a single CPU package server. Results
may differ between different server types and may be different from servers having multiple NUMA
nodes. Many factors influence the latency on a server so some experimentation is required to
identify the CPU core producing the lowest latency.

To enable comparison, the latency benchmark tests were repeated with a pair of dual CPU package
servers having the following specification:

• DELL PowerEdge R620 servers equipped with Intel® Xeon® CPU E5-2690 @2.90GHz, 4 x 8GB
DIMMs.

• BIOS: Turbo mode ENABLED, cstates DISABLED, IOMMU DISABLED.

• Red Hat Enterprise Linux V6.4 (x86_64 kernel, version 2.6.32-358.el6.x86_64).

• Solarflare SFN7122F NIC (see Software Installation above) Direct attach cable at 10G.

• OpenOnload distribution: openonload-201310.

Adapter Comparison

The following table shows a comparison between latency tests conducted on the SFN6122F and the
SFN7122F adapters - values shown are the RTT/2 value in microseconds.

Table 1: Dual CPU Server Data

Application UDP μs TCP μs

Netperf 1.83 1.99

efpio 1.42 N/A

sfnt-pingpong 1.78 1.97

Table 2: Latency Tests - Comparative Data

Test SFN6122F SFN7122F Latency gain

UDP 2.2 1.6 27%

TCP 2.4 1.8 25%

ef_vi UDP efpingpong - 2.0 efpio - 1.3 40%
Issue 15 © Solarflare Communications 2013 10

 Onload

User Guide
Testing Without Onload
The benchmark performance tests can be run without Onload using the regular kernel network
drivers. To do this remove the onload --profile=latency part from the command line.

To get the best response and comparable latency results using kernel drivers, Solarflare recommend
setting interrupt affinity such that interrupts and the application are running on different CPU cores
but on the same processor package - examples below.

Use the following command to identify receive queues created for an interface e.g:

cat /proc/interrupts | grep eth2

33: 0 0 0 0 IR-PCI-MSI-edge eth2-0
34: 0 0 0 0 IR-PCI-MSI-edge eth2-1

Direct IRQ 33 to CPU core 0 and IRQ 34 to CPU core 1:

echo 1 > /proc/irq/33/smp_affinity
echo 2 > /proc/irq/34/smp_affinity

Latency figures are shown in microseconds.

Further Information
For installation of Solarflare adapters and performance tuning of the network driver when not using
Onload refer to the Solarflare Server Adapter User Guide (SF-103837-CD) available from https://
support.solarflare.com/

The Onload feature set and detailed performance tuning information can be found in the Onload
User Guide (SF-104474-CD) available from https://support.solarflare.com/

Questions regarding Solarflare products, Onload and this user guide can be emailed to
support@solarflare.com.

 RHEL 6.4 (TCP) RHEL 6.4 (UDP)

 Mean 99%ile Mean 99%ile

 6.3 7.0 5.4 5.8
Issue 15 © Solarflare Communications 2013 11

https://support.solarflare.com/
https://support.solarflare.com
https://support.solarflare.com
https://support.solarflare.com/
https://support.solarflare.com

 Onload

User Guide
Chapter 3: Background

3.1 Introduction.

Onload is the Solarflare accelerated network middleware. It is an implementation of TCP and UDP
over IP which is dynamically linked into the address space of user-mode applications, and granted
direct (but safe) access to the network-adapter hardware. The result is that data can be transmitted
to and received from the network directly by the application, without involvement of the operating
system. This technique is known as 'kernel bypass'.

Kernel bypass avoids disruptive events such as system calls, context switches and interrupts and so
increases the efficiency with which a processor can execute application code. This also directly
reduces the host processing overhead, typically by a factor of two, leaving more CPU time available
for application processing. This effect is most pronounced for applications which are network
intensive, such as:

• Market-data and trading applications

• Computational fluid dynamics (CFD)

• HPC (High Performance Computing)

• HPMPI (High Performance Message Passing Interface), Onload is compatible with MPICH1 and
2, HPMPI, OpenMPI and SCALI

• Other physical models which are moderately parallelizable

• High-bandwidth video-streaming

• Web-caching, Load-balancing and Memcached applications

• Other system hot-spots such as distributed lock managers or forced serialization points

The Onload library dynamically links with the application at runtime using the standard BSD sockets
API, meaning that no modifications are required to the application being accelerated. Onload is the
first and only product to offer full kernel bypass for POSIX socket-based applications over TCP/IP and
UDP/IP protocols

NOTE: This guide should be read in conjunction with the Solarflare Server Adapter User’s Guide,
SF-103837-CD, which describes procedures for hardware and software installation of Solarflare
network interfaces cards, network device drivers and related software.

NOTE: Throughout this user guide the term Onload refers to both OpenOnload and
EnterpriseOnload unless otherwise stated.
Issue 15 © Solarflare Communications 2013 12

 Onload

User Guide
Contrasting with Conventional Networking

When using conventional networking, an application calls on the OS kernel to send and receive data
to and from the network. Transitioning from the application to the kernel is an expensive operation,
and can be a significant performance barrier.

When an application accelerated using Onload needs to send or receive data, it need not access the
operating system, but can directly access a partition on the network adapter. The two schemes are
shown in Figure 1.

Figure 1: Contrast with Conventional Networking.

An important feature of the conventional model is that applications do not get direct access to the
networking hardware and so cannot compromise system integrity. Onload is able to preserve system
integrity by partitioning the NIC at the hardware level into many, protected 'Virtual NICs' (VNIC). An
application can be granted direct access to a VNIC without the ability to access the rest of the system
(including other VNICs or memory that does not belong to the application). Thus Onload with a
Solarflare NIC allows optimum performance without compromising security or system integrity.
Issue 15 © Solarflare Communications 2013 13

 Onload

User Guide
In summary, Onload can significantly reduce network processing overheads. As an example, the
table below shows application to application latency (1/2 RTT) being reduced by 60% over the
regular kernel stack.

How Onload Increases Performance

Onload can significantly reduce the costs associated with networking by reducing CPU overheads and
improving performance for latency, bandwidth and application scalability.

Overhead

Transitioning into and out of the kernel from a user-space application is a relatively expensive
operation: the equivalent of hundreds or thousands of instructions. With conventional networking
such a transition is required every time the application sends and receives data. With Onload, the
TCP/IP processing can be done entirely within the user-process, eliminating expensive application/
kernel transitions, i.e. system calls. In addition, the Onload TCP/IP stack is highly tuned, offering
further overhead savings.

The overhead savings of Onload mean more of the CPU's computing power is available to the
application to do useful work.

Latency

Conventionally, when a server application is ready to process a transaction it calls into the OS kernel
to perform a 'receive' operation, where the kernel puts the calling thread 'to sleep' until a request
arrives from the network. When such a request arrives, the network hardware 'interrupts' the
kernel, which receives the request and 'wakes' the application.

All of this overhead takes CPU cycles as well as increasing cache and translation lookaside-buffer
(TLB) footprint. With Onload, the application can remain at user level waiting for requests to arrive
at the network adapter and process them directly. The elimination of a kernel-to-user transition, an
interrupt, and a subsequent user-to-kernel transition can significantly reduce latency. In short,
reduced overheads mean reduced latency.

Bandwidth

Because Onload imposes less overhead, it can process more bytes of network traffic every second.
Along with specially tuned buffering and algorithms designed for 10 gigabit networks, Onload allows
applications to achieve significantly improved bandwidth.

Back to Back
1/2 RTT latency TCP (us) UDP (us)

Solarflare (Onload) 1.83 1.67

Solarflare (Kernel) 6.3 5.4
Issue 15 © Solarflare Communications 2013 14

 Onload

User Guide
Scalability

Modern multi-core systems are capable of running many applications simultaneously. However, the
advantages can be quickly lost when the multiple cores contend on a single resource, such as locks
in a kernel network stack or device driver. These problems are compounded on modern systems with
multiple caches across many CPU cores and Non-Uniform Memory Architectures.

Onload results in the network adapter being partitioned and each partition being accessed by an
independent copy of the TCP/IP stack. The result is that with Onload, doubling the cores really can
result in doubled throughput as demonstrated by Figure 2.

Figure 2: Onload Partitioned Network Adapter

Further Information

For detailed information about Onload operation and functionality refer to Features & Functionality
on page 34.
Issue 15 © Solarflare Communications 2013 15

 Onload

User Guide
Chapter 4: Installation

4.1 Introduction
This chapter covers the following topics:

• Onload Distributions...Page 16

• Hardware and Software Supported Platforms...Page 17

• Onload and the Network Adapter Driver...Page 17

• Onload and the Network Adapter Driver...Page 17

• Pre-install Notes...Page 17

• EnterpriseOnload - Build and Install from SRPM...Page 18

• OpenOnload DKMS Installation...Page 19

• Build OpenOnload Source RPM...Page 19

• OpenOnload - Installation...Page 20

• Onload Kernel Modules...Page 22

• Configuring the Network Interfaces...Page 22

• Installing Netperf...Page 23

• Testing the Onload Installation...Page 23

• Apply an Onload Patch...Page 23

4.2 Onload Distributions
Onload is available in two distributions

• “OpenOnload” is a free version of Onload available from http://www.openonload.org/
distributed as a source tarball under the GPLv2 license. OpenOnload is subject to a linear
development cycle where major releases every 3-4 months include the latest development
features.

• “EnterpriseOnload” is a commercial enterprise version of Onload distributed as a source RPM
under the GPLv2 license. EnterpriseOnload differs from OpenOnload in that it is offered as a
mature commercial product that is downstream from OpenOnload having undergone a
comprehensive software product test cycle resulting in tested, hardened and validated code.

The Solarflare product range offers a flexible and broad range of support options, users should
consult their reseller for details and refer to the Solarflare Enterprise Service and Support
information at http://www.solarflare.com/Enterprise-Service-Support.
Issue 15 © Solarflare Communications 2013 16

http://www.openonload.org/
http://www.solarflare.com/Enterprise-Service-Support
http://www.solarflare.com/Enterprise-Service-Support
http://www.solarflare.com/Enterprise-Service-Support

 Onload

User Guide
4.3 Hardware and Software Supported Platforms
• Onload is supported for all Solarflare Flareon Adapters, Onload Network Adapters, Solarflare

mezzanine adapters and the SFA6902F ApplicationOnload™ Engine. Refer to the Solarflare
Server Adapter User Guide ’Product Specifications’ for details.

• Onload can be installed on the following x86, 32 bit and 64 bit platforms:

Red Hat Enterprise Linux 5, 6 and Red Hat MRG, MRG 2 update 3

SUSE Linux Enterprise Server 10, 11 and SLERT

Whilst the Onload QA test cycle predominantly focuses on the Linux OS versions documented
above, Solarflare are not aware of any issues preventing Onload installation on other Linux
variants such as Ubuntu, Centos, Gentoo, Fedora and Debian variants.

• All lntel and AMD x86 processors.

4.4 Onload and the Network Adapter Driver
The Solarflare network adapter driver, the "net driver", is generally available from three sources:

• Download as source RPM from support.solarflare.com.

• Packaged ’in box’ in many Linux distributions e.g Red Hat Enterprise Linux.

• Packaged in the OpenOnload distribution.

When using Onload you must use the adapter driver distributed with that version of Onload.

4.5 Pre-install Notes

NOTE: If Onload is to accelerate a 32bit application on a 64bit architecture, the 32bit libc
development headers should be installed before building Onload. Refer to Appendix C for install
instructions.

NOTE: You must remove any existing Solarflare RPM driver packages before installing Onload.

NOTE: When migrating between Onload versions or between OpenOnload and EnterpriseOnload, a
previously installed version must first be removed using the onload_uninstall command.

NOTE: The Solarflare drivers are currently classified as unsupported in SLES11, the certification
process is underway. To overcome this add ’allow_unsupported_modules 1’ to the /etc/
modprobe.d/unsupported-modules file
Issue 15 © Solarflare Communications 2013 17

https://support.solarflare.com/index.php?view=categories&id=165&option=com_cognidox&Itemid=2

 Onload

User Guide
4.6 EnterpriseOnload - Build and Install from SRPM
The following steps identify the procedures to build and install EnterpriseOnload. SRPMs can be built
by the ’root’ or ’non-root’ user, but the user must have superuser privileges to install RPMs.
Customers should contact their Solarflare customer representative for access to the
EnterpriseOnload SRPM resources.

Build the RPM

As root:

rpmbuild --rebuild enterpriseonload-<version>.src.rpm

Or as a non-root user:

It is advised to use _topdir to ensure that RPMs are built into a directory to which the user has
permissions. The directory structure must pre-exist for the rpmbuild command to succeed.

mkdir -p /tmp//myrpm/{SOURCES,BUILD,RPMS,SRPMS}

rpmbuild --define "_topdir /tmp/myrpm" \

--rebuild enterpriseonload-<version>.src.rpm

Building the source RPM will produce 2 binary RPM files which can be found in the

• /usr/src/*/RPMS/ directory

• or, when built by a non-root user in _topdir/RPMS

• or, when _topdir was defined in the rpmbuild command line in /tmp/myrpm/RPMS/x86_64/

for example the EnterpriseOnload user-space components:

/usr/src/redhat/RPMS/x86_64/enterpriseonload-<version>.x86_64.rpm

and the EnterpriseOnload kernel components:

/usr/src/redhat/RPMS/x86_64/enterpriseonload-kmod-2.6.18-92.el5-
<version>.x86_64.rpm

Install the EnterpriseOnload RPM

The EnterpriseOnload RPM and the kernel RPM must be installed for EnterpriseOnload to function
correctly.

rpm -ivf enterpriseonload-<version>.x86_64.rpm

NOTE: Refer to Appendix C for details of build dependencies.

NOTE: On some non-standard kernels the rpmbuild might fail because of build dependencies. In
this event retry, adding the --nodeps option to the command line.
Issue 15 © Solarflare Communications 2013 18

 Onload

User Guide
rpm -ivf enterpriseonload-kmod-2.6.18-92.el5-<version>.x86_64.rpm

Installing the EnterpriseOnload Kernel Module

This will load the EnterpriseOnload kernel driver and other driver dependencies and create any
device nodes needed for EnterpriseOnload drivers and utilities. The command should be run as root.

/etc/init.d/openonload start

Following successful execution this command produces no output, but the ’onload’ script will
identify that the kernel module is now loaded.

onload

EnterpriseOnload <version>

Copyright 2006-2013 Solarflare Communications, 2002-2005 Level 5 Networks

Built: Oct 15 2013 09:19:23 12:23:12 (release)

Kernel module: <version>

4.7 OpenOnload DKMS Installation
OpenOnload from version 201210 is available in DKMS RPM format. The OpenOnload DKMS
distribution package is not available directly from www.openonload.org, users who wish to install
from DKMS should send an email to support@solarflare.com.

4.8 Build OpenOnload Source RPM
A source RPM can be built from the OpenOnload distribution tar file.

1 Download the required tar file from the following location:

http://www.openonload.org/download.html

Copy the file to a directory on the machine where the source RPM is to be created.

2 As root, execute the following command:

rpmbuild -ts openonload-<version>.tgz*

 x86_64 Wrote: /root/rpmbuild/SRPMS/openonload-<version>.src.rpm

NOTE: EnterpriseOnload is now installed but the kernel modules are not yet loaded.

NOTE: The EnterpriseOnload-kmod filename is specific to the kernel that it is built for.

NOTE: At this point EnterpriseOnload is loaded, but until the network interface has been configured
and brought into service EnterpriseOnload will be unable to accelerate traffic.
Issue 15 © Solarflare Communications 2013 19

http://www.openonload.org/download.html

 Onload

User Guide
The output identifies the location of the source RPM. Use the -ta option to get a binary RPM.

4.9 OpenOnload - Installation
The following procedure demonstrates how to download, untar and install OpenOnload.

Download and untar OpenOnload

1 Download the required tar file from the following location:

http://www.openonload.org/download.html

The compressed tar file (.tgz) should be downloaded/copied to a directory on the machine on which
it will be installed.

2 As root, unpack the tar file using the tar command.

tar -zxvf openonload-<version>.tgz

This will unpack the tar file and, within the current directory, create a sub-directory called
openonload-<version> which contains other sub-directories including the scripts directory
from which subsequent install commands can be run.

Building and Installing OpenOnload

The following command will build and install OpenOnload and required drivers in the system
directories:

 ./onload_install

Successful installation will output the following 3 lines from the onload_install process:

onload_install: Build complete.
onload_install: Installing OpenOnload.
onload_install: Install complete.

Load Onload Drivers

Following installation it is necessary to load the Onload drivers:

onload_tool reload

When used with OpenOnload this command will replace any previously loaded network adapter
driver with the driver from the OpenOnload distribution.

Check that Solarflare drivers are loaded using the following commands:

lsmod | grep sfc

NOTE: Refer to Appendix C for details of build dependencies.

NOTE: The onload_install script does not create RPMs.
Issue 15 © Solarflare Communications 2013 20

http://www.openonload.org/download.html

 Onload

User Guide
lsmod | grep onload

An alternative to the reload command is to reboot the system to load Onload drivers.

Confirm Onload Installation

When the Onload installation is complete run the onload command from the openonload-
<version>/scripts subdirectory to confirm installation of Onload software and kernel module:

[root@server1 scripts] onload

Will display the Onload product banner and usage:

OpenOnload 201310
Copyright 2006-2012 Solarflare Communications, 2002-2005 Level 5
Networks
Built: Oct 15 2013 09:19:23 (release)
Kernel module: 201310

usage:
 onload [options] <command> <command-args>

options:
 --profile=<profile> -- comma sep list of config profile(s)
 --force-profiles -- profile settings override environment
 --no-app-handler -- do not use app-specific settings
 --app=<app-name> -- identify application to run under onload
 --version -- print version information
 -v -- verbose
 -h --help -- this help message
Issue 15 © Solarflare Communications 2013 21

 Onload

User Guide
4.10 Onload Kernel Modules
To identify Solarflare drivers already installed on the server:

modprobe -l | grep sfc (grep onload)

To unload any loaded drivers:

onload_tool unload

To remove the installed files of a previous Onload:

onload_uninstall

To load the Solarflare and Onload drivers (if not already loaded):

modprobe sfc

Reload drivers following upgrade or changed settings:

onload_tool reload

4.11 Configuring the Network Interfaces
Network interfaces should be configured according to the Solarflare Server Adapter User’s Guide.

When the interface(s) have been configured, the dmesg command will display output similar to the
following (one entry for each Solarflare interface):

sfc 0000:13:00.0: INFO: eth2 Solarflare Communications NIC PCI(1924:803)

Driver Name Description

sfc.ko A Linux net driver provides the interface between the Linux
network stack and the Solarflare network adapter.

sfc_char.ko Provides low level access to the Solarflare network adapter
virtualized resources. Supports direct access to the network
adapter for applications that use the ef_vi user-level interface
for maximum performance.

sfc_tune.ko This is used to prevent the kernel during idle periods from
putting the CPUs into a sleep state.

sfc_affinity.ko Used to direct traffic flow managed by a thread to the core the
thread is running on, inserts packet filters that override the
RSS behaviour.

sfc_resource.ko Manages the virtualization resources of the adapter and
shares the resources between other drivers.

onload.ko The kernel component of Onload.
Issue 15 © Solarflare Communications 2013 22

 Onload

User Guide
sfc 0000:13:00.1: INFO: eth3 Solarflare Communications NIC PCI(1924:803)

4.12 Installing Netperf
Refer to the Low Latency Quickstart Guide on page 4 for instructions to install Netperf and Solarflare
sfnettest applications.

4.13 How to run Onload
Once Onload has been installed there are different ways to accelerate applications. Exporting
LD_PRELOAD will mean that all applications started in the same environment will be accelerated.

export LD_PRELOAD=libonload.so

Pre-fixing the application command line with the onload command will accelerate the application.

onload <app_name> [app_options]

4.14 Testing the Onload Installation
The the Low Latency Quickstart Guide on page 4 demonstrates testing of Onload with Netperf and
the Solarflare sfnettest benchmark tools.

4.15 Apply an Onload Patch
Occasionally, the Solarflare Support Group may issue a software ’patch’ which is applied to onload
to resolve a specific bug or investigate a specific issue. The following procedure describes how a
patch should be applied to the installed OpenOnload software.

1 Copy the patch to a directory on the server where onload is already installed.

2 Go to the onload directory and apply the patch e.g.

cd openonload-<version>
[openonload-<version>]$ patch -p1 < ~/<path>/<name of patch file>.patch

3 Uninstall the old onload drivers

[openonload-<version>]$ onload_uninstall

4 Build and re-install the onload drivers

[openonload-<version>]$./scripts/onload_install
[openonload-<version>]$ onload_tool reload

NOTE: IP address configuration should be carried out using normal OS tools e.g. system-config-
network (Red Hat) or yast (SUSE).
Issue 15 © Solarflare Communications 2013 23

 Onload

User Guide
The following procedure describes how a patch should be applied to the installed EnterpriseOnload
RPM. (This example patches EnterpriseOnload version 2.1.0.3).

1 Copy the patch to the directory on the server where the EnterpriseOnload RPM package exists
and carry out the following commands:

rpm2cpio enterpriseonload-2.1.0.3-1.src.rpm | cpio –id
tar -xzf enterpriseonload-2.1.0.3.tgz
cd enterpriseonload-2.1.0.3
patch -p1 < $PATCHNAME

2 This can now be installed directory from this directory:

./scripts/onload_install

3 Or it can be repackaged as a new RPM:

cd ..
tar cz fenterpriseonload-2.1.0.3.tgz enterpriseonload-2.1.0.3
rpmbuild -ts enterpriseonload-2.1.0.3.tgz

4 The rpmbuild procedure will display a ’Wrote’ line identifying the location of the built RPM e.g

Wrote: /root/rpmbuild/SRPMS/enterpriseonload-2.1.0.3-1.el6.src.rpm

5 Install the RPM in the usual way:

rpm -ivh /root/rpmbuild/SRPMS/enterpriseonload-2.1.0.3-1.el6.src.rpm
Issue 15 © Solarflare Communications 2013 24

 Onload

User Guide
Chapter 5: Tuning Onload

5.1 Introduction
This chapter documents the available tuning options for Onload, and the expected results. The
options can be split into the following categories:

• System Tuning

• Standard Latency Tuning.

• Advanced Tuning driven from analysis of the Onload stack using onload_stackdump.

Most of the Onload configuration parameters, including tuning parameters, are set by environment
variables exported into the accelerated applications environment. Environment variables can be
identified throughout this manual as they begin with EF_. All environment variables are described
in Appendices A and B of this manual. Examples throughout this guide assume the use of the bash
or sh shells; other shells may use different methods to export variables into the applications
environment.

Section 5.2 describes tools and commands which can be used to tune the server and OS.

Section 5.3 describes how to perform standard heuristic tuning, which can help improve the
application’s performance. There are also benchmark examples running specific tests to
demonstrate the improvements Onload can have on an application.

Section 5.5 introduces advanced tuning options using onload_stackdump. There are worked
examples to demonstrate how to achieve the application tuning goals.

5.2 System Tuning
This section details steps to tune the server and operating system for lowest latency.

Sysjitter

The Solarflare sysjitter utility measures the extent to which the system introduces jitter and so
impacts on the user-level process. Sysjitter runs a thread on each processor core and when the
thread is de-scheduled from the core it measures for how long. Sysjitter produces summary statistics
for each processor core. The sysjitter utility can be downloaded from www.openonload.org

Sysjitter should be run on a system that is idle. When running on a system with cpusets enabled -
run sysjitter as root.

Refer to the sysjitter README file for further information on building and running sysjitter.

NOTE: Onload tuning and kernel driver tuning are subject to different requirements. This section
describes the steps to tune Onload. For details on how to tune the Solarflare kernel driver, refer to
the 'Performance Tuning on Linux' section of the Solarflare Server Adapter User Guide.
Issue 15 © Solarflare Communications 2013 22

www.openonload.org
https://support.solarflare.com/index.php?view=categories&id=165&option=com_cognidox&Itemid=2

 Onload

User Guide
The following is an example of the output from sysjitter on a single CPU socket server with 4 CPU
cores.

./sysjitter --runtime 10 200 | column -t

core_i: 0 1 2 3
threshold(ns): 200 200 200 200
cpu_mhz: 3215 3215 3215 3215
runtime(ns): 9987653973 9987652245 9987652070 9987652027
runtime(s): 9.988 9.988 9.988 9.988
int_n: 10001 10130 10012 10001
int_n_per_sec: 1001.336 1014.252 1002.438 1001.336
int_min(ns): 1333 1247 1299 1446
int_median(ns): 1390 1330 1329 1470
int_mean(ns): 1424 1452 1452 1502
int_90(ns): 1437 1372 1357 1519
int_99(ns): 1619 5046 2392 1688
int_999(ns): 5065 22977 15604 3694
int_9999(ns): 31260 39017 184305 36419
int_99999(ns): 40613 45065 347097 49998
int_max(ns): 40613 45065 347097 49998
int_total(ns): 14244846 14719972 14541991 15031294
int_total(%): 0.143 0.147 0.146 0.150

The table below describes the output fields of the sysjitter utility.

Field Description

threshold (ns) ignore any interrupts shorter than
this period

cpu_mhz CPU speed

runtime (ns) runtime of sysjitter - nanoseconds

runtime (s) runtime of sysjitter - seconds

int_n number of interruptions to the
user thread

int_n_per_sec number of interruptions to the
user thread per second

int_min (ns) minimum time taken away from
the user thread due to an
interruption

int_median (ns) median time taken away from the
user thread due to an interruption

int_mean (ns) mean time taken away from the
user thread due to an interruption
Issue 15 © Solarflare Communications 2013 23

 Onload

User Guide
CPU Power Saving Mode

Modern processors utilize design features that enable a CPU core to drop into lowering power states
when instructed by the operating system that the CPU core is idle. When the OS schedules work on
the idle CPU core (or when other CPU cores or devices need to access data currently in the idle CPU
core’s data cache) the CPU core is signalled to return to the fully-on power state. These changes in
CPU core power states create additional network latency and jitter.

Solarflare therefore recommend that customers wishing to achieve the lowest latency and lowest
jitter disable the "C1E power state" or "CPU power saving mode" within the machine's BIOS. If this
is not possible, as an alternative, Solarflare provide a software mechanism to prevent each CPU core
entering these lower power states. This is achieved by using the following command (as root):

onload_tool disable_cstates [persist]

Use the persist option to retain the setting following system restarts.

This command prevents Linux from indicating to the CPU core it is idle, but can result in the
processor using additional power compared with disabling the lower power states in the BIOS. It can
therefore cause the processor to operate at a higher temperature; this is why disabling processor
power states in the BIOS is recommended where available.

Disabling the CPU power saving modes is required if the application is to realize low latency with low
jitter.

int_90 (ns) 90%percentile value

int_99 (ns) 99% percentile value

int_999 (ns) 99.9% percentile value

int_9999 (ns) 99.99% percentile value

int_99999 (ns) 99.999% percentile value

int_max (ns) max time taken away from the user
thread

int_total (ns) total time spent not processing the
user thread

int_total (%) int_total(ns) as a percentage
of total runtime

NOTE: The onload_tool disable_cstates command relies on the idle_enable=2 option in the
onload.conf file. In Linux 3.x kernels this does not function and the user should replace the line
options sfc_tune idle_enable=2 line in /etc/modprobe.d/onload.conf with intel_idle.max_cstate=0
idle=poll.

Field Description
Issue 15 © Solarflare Communications 2013 24

 Onload

User Guide
Customers should consult their system vendor and documentation for details concerning the
disabling of C1E, C states or CPU power saving states.
Issue 15 © Solarflare Communications 2013 25

 Onload

User Guide
5.3 Standard Tuning
This section details standard tuning steps for Onload.

Spinning (busy-wait)

Conventionally, when an application attempts to read from a socket and no data is available, the
application will enter the OS kernel and block. When data becomes available, the network adapter
will interrupt the CPU, allowing the kernel to reschedule the application to continue.

Blocking and interrupts are relatively expensive operations, and can adversely affect bandwidth,
latency and CPU efficiency.

Onload can be configured to spin on the processor in user mode for up to a specified number of
microseconds waiting for data from the network. If the spin period expires the processor will revert
to conventional blocking behaviour. Onload uses the EF_POLL_USEC environment variable to
configure the length of the spin timeout.

export EF_POLL_USEC=100000

will set the busy-wait period to 100 milliseconds. See Appendix B: Meta Options on page 121 for
more details.

Enabling spinning

To enable spinning in Onload:

Set EF_POLL_USEC. This causes Onload to spin on the processor for up to the specified number of
microseconds before blocking. This setting is used in TCP and UDP and also in recv(), select(),
pselect() and poll(), ppoll() and epoll_wait(), epoll_pwait(). Use the following
command:

export EF_POLL_USEC=100000

Setting the EF_POLL_USEC variable also sets the following environment variables.

EF_SPIN_USEC=EF_POLL_USEC
EF_SELECT_SPIN=1
EF_EPOLL_SPIN=1
EF_POLL_SPIN=1
EF_PKT_WAIT_SPIN=1
EF_TCP_SEND_SPIN=1
EF_UDP_RECV_SPIN=1
EF_UDP_SEND_SPIN=1
EF_TCP_RECV_SPIN=1
EF_BUZZ_USEC=EF_POLL_USEC
EF_SOCK_LOCK_BUZZ=1

NOTE: If neither of the spinning options EF_POLL_USEC and EF_SPIN_USEC are set, Onload will
resort to default interrupt driven behaviour because the EF_INT_DRIVEN environment variable is
enabled by default.
Issue 15 © Solarflare Communications 2013 26

 Onload

User Guide
EF_STACK_LOCK_BUZZ=1

Turn off adaptive moderation and set interrupt moderation to 60 microseconds. Use the following
command:

/sbin/ethtool -C eth2 rx-usecs 60 adaptive-rx off

See Appendix B: Meta Options on page 121 for more details

When to Use Spinning

The optimal setting is dependent on the nature of the application. If an application is likely to find
data soon after blocking, or the system does not have any other major tasks to perform, spinning
can improve latency and bandwidth significantly.

In general, an application will benefit from spinning if the number of active threads is less than the
number of available CPU cores. However, if the application has more active threads than available
CPU cores, spinning can adversely affect application performance because a thread that is spinning
(and therefore idle) takes CPU time away from another thread that could be doing work. If in doubt,
it is advisable to try an application with a range of settings to discover the optimal value.

Polling vs. Interrupts

Interrupts are useful because they allow the CPU to do other useful work while simultaneously
waiting for asynchronous events (such as the reception of packets from the network). The historical
alternative to interrupts was for the CPU to periodically poll for asynchronous events and on single
processor systems this could result in greater latency than would be observed with interrupts.
Historically it was accepted that interrupts were "good for latency".

On modern, multicore systems the tradeoffs are different. It is often possible to dedicate an entire
CPU core to the processing of a single source of asynchronous events (such as network traffic). The
CPU dedicated to processing network traffic can be spinning (aka busy waiting), continuously polling
for the arrival of packets. When a packet arrives, the CPU can begin processing it almost
immediately.

Contrast the polling model to an interrupt-driven model. Here the CPU is likely in its "idle loop" when
an interrupt occurs. The idle loop is interrupted, the interrupt handler executes, typically marking a
worker task as runnable. The OS scheduler will then run and switches to the kernel thread that will
process the incoming packet. There is typically a subsequent task switch to a user-mode thread
where the real work of processing the event (e.g. acting on the packet payload) is performed.
Depending on the system, it can take on the order of a microsecond to respond to an interrupt and
switch to the appropriate thread context before beginning the real work of processing the event. A
dedicated CPU spinning in a polling loop can begin processing the asynchronous event in a matter of
nanoseconds.

It follows that spinning only becomes an option if a CPU core can be dedicated to the asynchronous
event. If there are more threads awaiting events than CPU cores (i.e. if all CPU cores are
oversubscribed to application worker threads), then spinning is not a viable option, (at least, not for
all events). One thread will be spinning, polling for the event while another could be doing useful
work. Spinning in such a scenario can lead to (dramatically) increased latencies. But if a CPU core can
Issue 15 © Solarflare Communications 2013 27

 Onload

User Guide
be dedicated to each thread that blocks waiting for network I/O, then spinning is the best method
to achieve the lowest possible latency.

5.4 Performance Jitter
On any system reducing or eliminating jitter is key to gaining optimum performance, however the
causes of jitter leading to poor performance can be difficult to define and difficult to remedy. The
following section identifies some key points that should be considered.

• A first step towards reducing jitter should be to consider the configuration settings specified in
the Low Latency Quickstart Guide on page 4 - this includes the disabling of the irqbalance
service, interrupt moderation settings and measures to prevent CPU cores switching to power
saving modes.

• Use isolcpus to isolate CPU cores that the application - or at least the critical threads of the
application will use and prevent OS housekeeping tasks and other non-critical tasks from
running on these cores.

• Set an application thread running on one core and the interrupts for that thread on a separate
core - but on the same physical CPU package. Even when spinning, interrupts may still occur, for
example, if the application fails to call into the Onload stack for extended periods because it is
busy doing other work.

• Ideally each spinning thread will be allocated a separate core so that, in the event that it blocks
or is de-scheduled, it will not prevent other important threads from doing work. A common
cause of jitter is more than one spinning thread sharing the same CPU core. Jitter spikes may
indicate that one thread is being held off the CPU core by another thread.

• When EF_STACK_LOCK_BUZZ=1, threads will spin for the EF_BUZZ_USEC period while they wait
to acquire the stack lock. Lock buzzing can lead to unfairness between threads competing for a
lock, and so result in resource starvation for one. Occurrences of this are counted in the
'stack_lock_buzz' counter.

• If a multi-thread application is doing lots of socket operations, stack lock contention will lead to
send/receive performance jitter. In such cases improved performance can be had when each
contending thread has its own stack. This can be managed with EF_STACK_PER_THREAD which
creates a separate Onload stack for the sockets created by each thread. If separate stacks are not
an option then it may be beneficial to reduce the EF_BUZZ_USEC period or to disable stack lock
buzzing altogether.

• It is always important that threads that need to communicate with each other are running on
the same CPU package so that these threads can share a memory cache.

• Jitter may also be introduced when some sockets are accelerated and others are not. Onload
will ensure that accelerated sockets are given priority over non-accelerated sockets, although
this delay will only be in the region of a few microseconds - not milliseconds, the penalty will
always be on the side of the non-accelerated sockets. The environment variables
EF_POLL_FAST_USEC and EF_POLL_NONBLOCK_FAST_USEC can be configured to manage the
extent of priority of accelerated sockets over non-accelerated sockets.

• If traffic is sparse, spinning will deliver the same latency benefits, but the user should ensure
that the spin timeout period, configured using the EF_POLL_USEC variable, is sufficiently long to
ensure the thread is still spinning when traffic is received.
Issue 15 © Solarflare Communications 2013 28

 Onload

User Guide
• When applications only need to send and receive occasionally it may be beneficial to implement
a keepalive - heartbeat mechanism between peers. This has the effect of retaining the process
data in the CPU memory cache. Calling send or receive after a delay can result in the call taking
measurably longer, due to the cache effects, than if this is called in a tight loop.

• On some servers BIOS settings such as power and utilization monitoring can cause unnecessary
jitter by performing monitoring tasks on all CPU cores. The user should check the BIOS and
decide if periodic tasks (and the related SMIs) can be disabled.

• The Solarflare sysjitter utility can be used to identify and measure jitter on all cores of an idle
system - refer to Sysjitter on page 22 for details.

Using Onload Tuning Profiles

Environment variables set in the application user-space can be used configure and control aspects
of the accelerated application’s performance. These variables can be exported using the Linux
export command e.g.

export EF_POLL_USEC=100000

Onload supports tuning profile script files which are used to group environment variables within a
single file to be called from the Onload command line.

The latency profile sets the EF_POLL_USEC=100000 setting the busy-wait spin timeout to 100
milliseconds. The profile also disables TCP faststart for new or idle connections where additional TCP
ACKs will add latency to the receive path. To use the profile include it on the onload command line
e.g

onload --profile=latency netperf -H onload2-sfc -t TCP_RR

Following Onload installation, profiles provided by Solarflare are located in the following directory -
this directory will be deleted by the onload_uninstall command:

/usr/libexec/onload/profiles

User-defined environment variables can be written to a user-defined profile script file (having a .opf
extension) and stored in any directory on the server. The full path to the file should then be specified
on the onload command line e.g.

 onload --profile=/tmp/myprofile.opf netperf -H onload2-sfc -t TCP_RR

As an example the latency profile, provided by the Onload distribution is shown below:

Onload low latency profile.
Enable polling / spinning. When the application makes a blocking call
such as recv() or poll(), this causes Onload to busy wait for up to 100ms
before blocking.
onload_set EF_POLL_USEC=100000
Disable FASTSTART when connection is new or has been idle for a while.
The additional acks it causes add latency on the receive path.
onload_set EF_TCP_FASTSTART_INIT 0
onload_set EF_TCP_FASTSTART_IDLE 0

For a complete list of environment variables refer to See “Appendix A: Parameter Reference” on
page 93.
Issue 15 © Solarflare Communications 2013 29

 Onload

User Guide
Benchmark Testing

Benchmark procedures using Onload, netperf and sfnt_pingpong are described in the Low Latency
Quickstart Guide on page 4.

5.5 Advanced Tuning
Advanced tuning requires closer examination of the application performance. The application
should be tuned to achieve the following objectives:

• To have as much processing at user-level as possible.

• To have as few interrupts as possible.

• To eliminate drops.

• To minimize lock contention.

Onload includes a diagnostic application called onload_stackdump, which can be used to monitor
Onload performance and to set tuning options.

The following sections demonstrate the use of onload_stackdump to examine aspects of the
system performance and set environment variables to achieve the tuning objectives.

For further examples and use of onload_stackdump refer to Appendix E: onload_stackdump on
page 137.

Monitoring Using onload_stackdump

To use onload_stackdump, enter the following command:

onload_stackdump <command>

To list available commands and view documentation for onload_stackdump enter the following
commands:

onload_stackdump doc

onload_stackdump -h

A specific stack number can also be provided on the onload_stackdump command line.

Worked Examples

Processing at User-Level

Many applications can achieve better performance when most processing occurs at user-level rather
than kernel-level. To identify how an application is performing, enter the following command:

onload_stackdump lots | grep poll
Issue 15 © Solarflare Communications 2013 30

 Onload

User Guide
Output:

The output identifies many more k_polls than u_polls indicating that the stack is operating
mainly at kernel-level and not achieving optimal performance.

Solution

Terminate the application and set the EF_POLL_USEC parameter to 100000. Re-start the
application and re-run onload_stackdump:

export EF_POLL_USEC=100000

onload_stackdump lots | grep polls

The output identifies that the number of u_polls is far greater than the number of k_polls
indicating that the stack is now operating mainly at user-level.

As Few Interrupts as Possible

All applications achieve better performance when subject to as few interrupts as possible. The level
of interrupts is reported as the evq_interrupt_wakes value reported by onload_stackdump.
For example:

onload_stackdump lots | grep _evs

$ onload_stackdump lots | grep poll
 time: netif=52a6fc7 poll=52a6fc7 now=52a6fd8 (diff=0.017sec)
 k_polls: 673
 u_polls: 2
 periodic_polls: 655
 evq_wakeup_polls: 12
 deferred_polls: 0
 evq_timeout_polls: 4

$

$ onload_stackdump lots | grep polls
 time: netif=52debb1 poll=52debb1 now=52debb1 (diff=0.000sec)
 k_polls: 18
 u_polls: 181272
 periodic_polls: 35
 evq_wakeup_polls: 3
 deferred_polls: 0
 evq_timeout_polls: 1
$

Issue 15 © Solarflare Communications 2013 31

 Onload

User Guide
Output:

The output identifies the number of packets sent and received tx_evs and rx_evs,together
with the number of interrupts, evq_interrupt_wakes.

Solution

If an application is observed taking lots of interrupts it may be beneficial to increase the spin time
with the EF_POLL_USEC variable or setting a high interrupt moderation value for the net driver
using ethtool.

The number of interrupts on the system can also be identified from /proc/interrupts.

Eliminating Drops

The performance of networks is impacted by any packet loss. This is especially pronounced for
reliable data transfer protocols that are built on top of unicast or multicast UDP sockets.

First check to see if packets have been dropped by the network adapter before reaching the Onload
stack. Use ethtool to collect stats directly from the network adapter:

The rx_nodesc_drop_cnt increasing over time is an indication that packets are being dropped
by the adapter due to a lack of Onload-provided receive buffering.

Packets can also be dropped with UDP due to datagrams arriving when the socket buffer is full i.e.
traffic is arriving faster than the application can consume. To check for dropped packets at the socket
level, enter:

onload_stackdump lots | grep drop

$ onload_stackdump lots | grep _evs
 evq: cap=2048 current=70 is_32_evs=0 is_ev=0
 rx_evs: 77274
 tx_evs: 6583
 periodic_evs: 0
 evq_interrupt_wakes: 52
 evq_timeout_evs: 3
$

$ ethtool -S eth2 | egrep "(nodesc)|(bad)"
 tx_bad_bytes: 0
 tx_bad: 0
 rx_bad_bytes: 0
 rx_bad: 0
 rx_bad_lt64: 0
 rx_bad_64_to_15xx: 0
 rx_bad_15xx_to_jumbo: 0
 rx_bad_gtjumbo: 0
 rx_nodesc_drop_cnt: 0
$

Issue 15 © Solarflare Communications 2013 32

 Onload

User Guide
Output:

The output identifies that packets are not being dropped on the system.

Solution

If packet loss is observed at the network level due to a lack of receive buffering try increasing the size
of the receive descriptor queue size via EF_RXQ_SIZE. If packet drops are observed at the socket
level consult the application documentation - it may also be worth experimenting with socket buffer
sizes (see EF_UDP_RCVBUF). Setting the EF_EVS_PER_POLL variable to a higher value may also
improve efficiency - refer to Appendix A for a description of this variable.

Minimizing Lock Contention

Lock contention can greatly affect performance. Use onload_stackdump to identify instances of
lock contention:

onload_stackdump lots | egrep "(lock_)|(sleep)"

Output:

The output identifies that very little lock contention is occurring.

Solution

If high values are observed for any of the lock variables, try increasing the value of EF_BUZZ_USEC
to reduce the 'sleeps' value. If stacks are being shared across processes, try using a different stack
per process.

$ onload_stackdump lots | grep drop
 rcv: drop=0(0%) eagain=0 pktinfo=0
$

$ onload_stackdump lots | egrep "(lock_)|(sleep)"
 sleep_seq=1 wake_rq=TxRx flags=
 sock_sleeps: 1
 unlock_slow: 0
 lock_wakes: 0
 stack_lock_buzz: 0
 sock_lock_sleeps: 0
 sock_lock_buzz: 0
 tcp_send_ni_lock_contends: 0
 udp_send_ni_lock_contends: 0
 getsockopt_ni_lock_contends: 0
 setsockopt_ni_lock_contends: 0
$
Issue 15 © Solarflare Communications 2013 33

 Onload

User Guide
Chapter 6: Features & Functionality

6.1 Introduction
This chapter provides detailed information about specific aspects of Solarflare Onload operation and
functionality.

6.2 Onload Transparency
Onload provides significantly improved performance without the need to rewrite or recompile the
user application, whilst retaining complete interoperability with the standard TCP and UDP
protocols.

In the regular kernel TCP/IP architecture an application is dynamically linked to the libc library. This
OS library provides support for the standard BSD sockets API via a set of ’wrapper’ functions with
real processing occurring at the kernel-level. Onload also supports the standard BSD sockets API.
However, in contrast to the kernel TCP/IP, Onload moves protocol processing out of the kernel-space
and into the user-level Onload library itself.

As a networking application invokes the standard socket API function calls e.g. socket(), read(),
write() etc, these are intercepted by the Onload library making use of the LD_PRELOAD
mechanism on Linux. From each function call, Onload will examine the file descriptor identifying
those sockets using a Solarflare interface - which are processed by the Onload stack, whilst those not
using a Solarflare interface are transparently passed to the kernel stack.

6.3 Onload Stacks
An Onload 'stack' is an instance of a TCP/IP stack. The stack includes transmit and receive buffers,
open connections and the associated port numbers and stack options. Each stack has associated
with it one or more Virtual NICs (typically one per physical port that stack is using).

In normal usage, each accelerated process will have its own Onload stack shared by all connections
created by the process. It is also possible for multiple processes to share a single Onload stack
instance (refer to Stack Sharing on page 55), and for a single application to have more than one
Onload stack. Refer to Appendix D: Onload Extensions API on page 112.

6.4 Virtual Network Interface (VNIC)
The Solarflare network adapter supports 1024 transmit queues, 1024 receive queues, 1024 event
queues and 1024 timer resources per network port. A VNIC (virtual network interface) consists of
one unique instance of each of these resources which allows the VNIC client i.e. the Onload stack,
an isolated and safe mechanism of sending and receiving network traffic. Received packets are
steered to the correct VNIC by means of IP/MAC filter tables on the network adapter and/or Receive
Side Scaling (RSS). An Onload stack allocates one VNIC per Solarflare network port so it has a
dedicated send and receive channel from user mode.
Issue 15 © Solarflare Communications 2013 34

 Onload

User Guide
Following a reset of the Solarflare network adapter driver, all virtual interface resources including
Onload stacks and sockets will be re-instated. The reset operation will be transparent to the
application, but traffic will be lost during the reset.

6.5 Functional Overview
When establishing its first socket, an application is allocated an Onload stack which allocates the
required VNICs.

When a packet arrives, IP filtering in the adapter identifies the socket and the data is written to the
next available receive buffer in the corresponding Onload stack. The adapter then writes an event to
an “event queue” managed by Onload. If the application is regularly making socket calls, Onload is
regularly polling this event queue, and then processing events rather than interrupts are the normal
means by which an application is able to rendezvous with its data.

User-level processing significantly reduces kernel/user-level context switching and interrupts are
only required when the application blocks - since when the application is making socket calls, Onload
is busy processing the event queue picking up new network events.

6.6 Onload with Mixed Network Adapters
A server may be equipped with Solarflare network interfaces and non-Solarflare network interfaces.
When an application is accelerated, Onload reads the Linux kernel routing table (Onload will only
consider the kernel default routing table) to identify which network interface is required to make a
connection. If a non-Solarflare interface is required to reach a destination Onload will pass the
connection to the kernel TCP/IP stack. No additional configuration is required to achieve this as
Onload does this automatically by looking in the IP route table.

6.7 Maximum Number of Network Interfaces
Onload supports up to 6 Solarflare network interfaces by default. If an application requires more
Solarflare interfaces the following values can be altered in the source code: src/include/ci/
internal/transport_config_opt.h header file:

CI_CFG_MAX_INTERFACES and CI_CFG_MAX_REGISTER_INTERFACES.

Following changes to these values it is necessary to rebuild and reinstall Onload.

6.8 Onloaded PIDs
To identify processes accelerated by Onload use the onload_fuser command:

onload_fuser -v

9886 ping

Only processes that have created an Onload stack are present. Processes which are loaded under
Onload, but have not created any sockets are not present. The onload_stackdump command can
also list accelerated processes - see List Onloaded Processes on page 138 for details.
Issue 15 © Solarflare Communications 2013 35

 Onload

User Guide
6.9 Onload and File Descriptors, Stacks and Sockets
For an Onloaded process it is possible to identify the file descriptors, Onload stacks and sockets being
accelerated by Onload. Use the /proc/<PID>/fd file - supplying the PID of the accelerated process
e.g.

ls -l /proc/9886/fd
total 0
lrwx------ 1 root root 64 May 14 14:09 0 -> /dev/pts/0
lrwx------ 1 root root 64 May 14 14:09 1 -> /dev/pts/0
lrwx------ 1 root root 64 May 14 14:09 2 -> /dev/pts/0
lrwx------ 1 root root 64 May 14 14:09 3 -> onload:[tcp:6:3]
lrwx------ 1 root root 64 May 14 14:09 4 -> /dev/pts/0
lrwx------ 1 root root 64 May 14 14:09 5 -> /dev/onload
lrwx------ 1 root root 64 May 14 14:09 6 -> onload:[udp:6:2]

Accelerated file descriptors are listed as symbolic links to /dev/onload. Accelerated sockets are
described in [protocol:stack:socket] format.

6.10 System calls intercepted by Onload
System calls intercepted by the Onload library are listed in the following file:

[onload]/src/include/onload/declare_syscalls.h.tmpl

6.11 Linux Sysctls
The Linux directory/proc/sys/net/ipv4 contains default settings which tune different parts of
the IPv4 networking stack. In many cases Onload takes its default settings from the values in this
directory. These defaults can be overridden, for a specified processes or socket, using socket options
or with Onload environment variables. The following tables identify the default Linux values and
how Onload tuning parameters can override the Linux settings.

Kernel Value tcp_slow_start_after_idle

Description controls congestion window validation as per RFC2861. This is
"off" by default in Onload, as it's not usually useful in modern
switched networks

Onload value #define CI_CFG_CONGESTION_WINDOW_VALIDATION

Comments in transport_config_opt.h - recompile after changing.

Kernel Value tcp_congestion_control

Description determines what congestion control algorithm is used by TCP.
Valid settings include reno, bic and cubic

Onload value no direct equivalent - see the section on TCP Congestion Control
Issue 15 © Solarflare Communications 2013 36

 Onload

User Guide
Comments see EF_CONG_AVOID_SCALE_BACK

Kernel Value tcp_adv_win_scale

Description defines how quickly the TCP window will advance

Onload value no direct equivalent - see the section on TCP Congestion Control

Comments see EF_TCP_ADV_WIN_SCALE_MAX

Kernel Value tcp_rmem

Description the default size of sockets' receive buffers (in bytes)

Onload value defaults to the currently active Linux settings

Comments can be overriden with the SO_RCVBUF socket option.

can be set with EF_TCP_RCVBUF

Kernel Value tcp_wmem

Description the default size of sockets' send buffers (in bytes)

Onload value defaults to the currently active Linux settings

Comments EF_TCP_SNDBUF overrides SO_SNDBUF which overrides
tcp_wmem

Kernel Value tcp_dsack

Description allows TCP to send duplicate SACKS

Onload value uses the currently active Linux settings

Comments

Kernel Value tcp_fack

Description enables fast retransmissions

Onload value fast retransmissions are always enabled

Comments

Kernel Value tcp_sack

Description enable TCP select acknowledgements, as per RFC2018

Onload value enabled by default

Comments clear bit 2 of EF_TCP_SYN_OPTS to disable
Issue 15 © Solarflare Communications 2013 37

 Onload

User Guide
Refer to the Appendix A: Parameter Reference on page 93 for details of environment variables.

6.12 Changing Onload Control Plane Table Sizes
Onload supports the following runtime configurable options which determine the size of control
plane tables:

The table above identifies the default values for the Onload control plane tables. The default values
are normally sufficient for the majority of applications and creating larger tables may impact
application performance. If non-default values are needed, the user should create a file in the /etc/
modprobe.d directory. The file must have a .conf extension and Onload options can be added to the
file, a single option per line, in the following format:

options onload max_neighs=512

Following changes Onload should be restarted using the reload command:

onload_tool reload

Kernel Value tcp_max_syn_backlog

Description the maximum size of a listening socket's backlog

Onload value set with EF_TCP_BACKLOG_MAX

Comments

Option Description Default

max_layer2_interfaces Sets the maximum number of network
interfaces, including physical interfaces,
VLANs and bonds, supported in Onload’s
control plane.

50

max_neighs Sets the maximum number of rows in the
Onload ARP/neighbour table. The value is
rounded up to a power of two.

1024

max_routes Sets the maximum number of entries in the
Onload route table.

256
Issue 15 © Solarflare Communications 2013 38

 Onload

User Guide
6.13 TCP Operation
The table below identifies the Onload TCP implementation RFC compliance.

TCP Handshake - SYN, SYNACK

During the TCP connection establishment 3-way handshake, Onload negotiates the MSS, Window
Scale, SACK permitted, ECN, PAWS and RTTM timestamps.

For TCP connections Onload will negotiate an appropriate MSS for the MTU configured on the
interface. However, when using jumbo frames, Onload will currently negotiate an MSS value up to a
maximum of 2048 bytes minus the number of bytes required for packet headers. This is due to the
fact that the size of buffers passed to the Solarflare network interface card is 2048 bytes and the
Onload stack cannot currently handle fragmented packets on its TCP receive path.

TCP options advertised during the handshake can be selected using the EF_TCP_SYN_OPTS
environment variable. Refer to Appendix A: Parameter Reference on page 93 for details of
environment variables.

RFC Title Compliance

793 Transmission Control Protocol Yes

813 Window and Acknowledgement
Strategy in TCP

Yes

896 Congestion Control in IP/TCP Yes

1122 Requirements for Hosts Yes

1191 Path MTU Discovery Yes

1323 TCP Extensions for High
Performance

Yes

2018 TCP Selective Acknowledgment
Options

Yes

2581 TCP Congestion Control Yes

2582 The NewReno Modification to
TCP’s Fast Recovery Algorithm

Yes

2988 Computing TCP’s Retransmission
Timer

Yes

3128 Protection Against a Variant of
the Tiny Fragment Attack

Yes

3168 The Addition of Explicit
Congestion Notification (ECN) to
IP

Yes

3465 TCP Congestion Control with
Appropriate Byte Counting (ABC)

Yes
Issue 15 © Solarflare Communications 2013 39

 Onload

User Guide
TCP Socket Options

Onload TCP supports the following socket options which can be used in the setsockopt() and
getsockopt() function calls.

Option Description

SO_ACCEPTCONN determines whether the socket can accept incoming connections - true
for listening sockets. (Only valid as a getsockopt()).

SO_BINDTODEVICE bind this socket to a particular network interface.

SO_CONNECT_TIME number of seconds a connection has been established. (Only valid as a
getsockopt()).

SO_DEBUG enable protocol debugging.

SO_DONTROUTE outgoing data should be sent on whatever interface the socket is bound
to and not routed via another interface.

SO_ERROR the errno value of the last error occurring on the socket. (Only valid as a
getsockopt()).

SO_EXCLUSIVEADDR
USE

prevents other sockets using the SO_REUSEADDR option to bind to the
same address and port.

SO_KEEPALIVE enable sending of keep-alive messages on connection oriented sockets.

SO_LINGER when enabled a close() or shutdown() will not return until all
queued messages for the socket have been successfully sent or the linger
timeout has been reached. Otherwise the close() or shutdown()
returns immediately and sockets are closed in the background.

SO_OOBINLINE indicates that out-of-bound data should be returned in-line with regular
data. This option is only valid for connection-oriented protocols that
support out-of-band data.

SO_PRIORITY set the priority for all packets sent on this socket. Packets with a higher
priority may be processed first depending on the selected device
queueing discipline.

SO_RCVBUF sets or gets the maximum socket receive buffer in bytes. The value set is
doubled by the kernel and by Onload to allow for bookkeeping overheads
when it is set by the setsockopt() function call. Note that
EF_TCP_RCVBUF overrides this value.

SO_RCVLOWAT sets the minimum number of bytes to process for socket input
operations.

SO_RCVTIMEO sets the timeout for input function to complete.

SO_RECVTIMEO sets the timeout in milliseconds for blocking receive calls.

SO_REUSEADDR can reuse local port numbers i.e. another socket can bind to the same
port except when there is an active listening socket bound to the port.
Issue 15 © Solarflare Communications 2013 40

 Onload

User Guide
TCP Level Options

Onload TCP supports the following TCP options which can be used in the setsockopt() and
getsockopt() function calls

SO_SNDBUF sets or gets the maximum socket send buffer in bytes. The value set is
doubled by the kernel and by Onload to allow for bookkeeping overhead
when it is set by the setsockopt() function call. Note that
EF_TCP_SNDBUF and EF_TCP_SNDBUF_MODE override this value.

SO_SNDLOWAT sets the minimum number of bytes to process for socket output
operations. Always set to 1 byte.

SO_SNDTIMEO set the timeout for sending function to send before reporting an error.

SO_TIMESTAMP enable/disable receiving the SO_TIMESTAMP control message.

SO_TIMESTAMPNS enable/disable receiving the SO_TIMESTAMP control message.

SO_TIMESTAMPING enable/disable hardware timestamps for received packets. See
SO_TIMESTAMPING (hardware timestamps) on page 50.

SO_TYPE returns the socket type (SOCK_STREAM or SOCK_DGRAM). (Only valid as
a getsockopt()).

Option Description

TCP_CORK stops sends on segments less than MSS size until the connection is
uncorked.

TCP_DEFER_ACCEPT a connection is ESTABLISHED after handshake is complete instead of
leaving it in SYN-RECV until the first real data packet arrives. The
connection is placed in the accept queue when the first data packet
arrives.

TCP_INFO populates an internal data structure with tcp statistic values.

TCP_KEEPALIVE_AB
ORT_THRESHHOLD

how long to try to produce a successful keepalive before giving up.

TCP_KEEPALIVE_TH
RESHHOLD

specifies the idle time for keepalive timers.

TCP_KEEPCNT number of keepalives before giving up.

TCP_KEEPIDLE idle time for keepalives.

TCP_KEEPINTVL time between keepalives.

TCP_MAXSEG gets the MSS size for this connection.

TCP_NODELAY disables Nagle’s Algorithm and small segments are sent without delay
and without waiting for previous segments to be acknowledged.
Issue 15 © Solarflare Communications 2013 41

 Onload

User Guide
TCP File Descriptor Control

Onload supports the following options in socket() and accept() calls.

TCP_QUICKACK when enabled ACK messages are sent immediately following reception of
the next data packet. This flag will be reset to zero following every use i.e.
it is a one time option. Default value is 1 (enabled).

Option Description

SOCK_CLOEXEC supported in socket() and accept(). Sets the O_NONBLOCK file
status flag on the new open file descriptor saving extra calls to
fcntl(2) to achieve the same result.

SOCK_NONBLOCK supported in accept(). Sets the close-on-exec (FD_CLOEXEC) flag on
the new file descriptor.
Issue 15 © Solarflare Communications 2013 42

 Onload

User Guide
TCP Congestion Control

Onload TCP implements congestion control in accordance with RFC3465 and employs the NewReno
algorithm with extensions for Appropriate Byte Counting (ABC).

On new or idle connections and those experiencing loss, Onload employs a Fast Start algorithm in
which delayed acknowledgments are disabled, thereby creating more ACKs and subsequently
’growing’ the congestion window rapidly. Two environment variables; EF_TCP_FASTSTART_INIT
and EF_TCP_FASTSTART_LOSS are associated with the fast start - Refer to Appendix A: Parameter
Reference on page 93 for details.

During Slow Start, the congestion window is initially set to 2 x maximum segment size (MSS) value.
As each ACK is received the congestion window size is increased by the number of bytes
acknowledged up to a maximum 2 x MSS bytes. This allows Onload to transmit the minimum of the
congestion window and advertised window size i.e.

transmission window (bytes) = min(CWND,receiver advertised window size)

If loss is detected - either by retransmission timeout (RTO), or the reception of duplicate ACKs,
Onload will adopt a congestion avoidance algorithm to slow the transmission rate. In congestion
avoidance the transmission window is halved from its current size - but will not be less than 2 x MSS.
If congestion avoidance was triggered by an RTO timeout the Slow Start algorithm is again used to
restore the transmit rate. If triggered by duplicate ACKs Onload employs a Fast Retransmit and Fast
Recovery algorithm.

If Onload TCP receives 3 duplicate ACKs this indicates that a segment has been lost - rather than just
received out of order and causes the immediate retransmission of the lost segment (Fast
Retransmit). The continued reception of duplicate ACKs is an indication that traffic still flows within
the network and Onload will follow Fast Retransmit with Fast Recovery.

During Fast Recovery Onload again resorts to the congestion avoidance (without Slow Start)
algorithm with the congestion window size being halved from its present value.

Onload supports a number of environment variables that influence the behaviour of the congestion
window and recovery algorithms Refer to Appendix A: Parameter Reference on page 93.:

EF_TCP_INITIAL_CWND - sets the initial size (bytes) of congestion window

EF_TCP_LOSS_MIN_CWND - sets the minimum size of the congestion window following loss.

EF_CONG_AVOID_SCALE_BACK - slows down the rate at which the TCP congestion window is
opened to help reduce loss in environments already suffering congestion and loss.

The congestion variables should be used with caution so as to avoid violating TCP protocol
requirements and degrading TCP performance.
Issue 15 © Solarflare Communications 2013 43

 Onload

User Guide
TCP SACK

Onload will employ TCP Selective Acknowledgment (SACK) if the option has been negotiated and
agreed by both ends of a connection during the connection establishment 3-way handshake. Refer
to RFC 2018 for further information.

TCP QUICKACK

TCP will generally aim to defer the sending of ACKs in order to minimize the number of packets on
the network. Onload supports the standard TCP_QUICKACK socket option which allows some
control over this behaviour. Enabling TCP_QUICKACK causes an ACK to be sent immediately in
response to the reception of the following data packet. This is a one-shot operation and
TCP_QUICKACK self clears to zero immediately after the ACK is sent.

TCP Delayed ACK

By default TCP stacks delay sending acknowledgments (ACKs) to improve efficiency and utilization of
a network link. Delayed ACKs also improve receive latency by ensuring that ACKs are not sent on the
critical path. However, if the sender of TCP packets is using Nagle’s algorithm, receive latency will be
impaired by using delayed ACKs.

Using the EF_DELACK_THRESH environment variable the user can specify how many TCP segments
can be received before Onload will respond with a TCP ACK. Refer to the Parameter List on page 93
for details of the Onload environment delayed TCP ACK variables.

TCP Dynamic ACK

The sending of excessive TCP ACKs can impair performance and increase receive side latency.
Although TCP generally aims to defer the sending of ACKs, Onload also supports a further
mechanism. The EF_DYNAMIC_ACK_THRESH environment variable allows Onload to dynamically
determine when it is non-detrimental to throughput and efficiency to send a TCP ACK. Onload will
force an TCP ACK to be sent if the number of TCP ACKs pending reaches the threshold value.

Refer to the Parameter List on page 93 for details of the Onload environment delayed TCP ACK
variables.

NOTE: When used together with EF_DELACK_THRESH or EF_DYNAMIC_ACK_THRESH, the socket
option TCP_QUICKACK will behave exactly as stated above. Both onload environment variables
identify the maximum number of segments that can be received before an ACK is returned. Sending
an ACK before the specified maximum is reached is allowed.

NOTE: TCP ACKS should be transmitted at a sufficient rate to ensure the remote end does not drop
the TCP connection.
Issue 15 © Solarflare Communications 2013 44

 Onload

User Guide
TCP Loopback Acceleration

Onload supports the acceleration of TCP loopback connections, providing an accelerated
mechanism through which two processes on the same host can communicate. Accelerated TCP
loopback connections do not invoke system calls, reduce the overheads for read/write operations
and offer improved latency over the kernel implementation.

The server and client processes who want to communicate using an accelerated TCP loopback
connection do not need to be configured to share an Onload stack. However, the server and client
TCP loopback sockets can only be accelerated if they are in the same Onload stack. Onload has the
ability to move a TCP loopback socket between Onload stacks to achieve this.

TCP loopback acceleration is configured via the environment variables EF_TCP_CLIENT_LOOPBACK
and EF_TCP_SERVER_LOOPBACK.As well as enabling TCP loopback acceleration these
environment variables control Onload’s behavior when the server and client sockets do not originate
in the same Onload stack. This gives the user greater flexibility and control when establishing
loopback on TCP sockets either from the listening (server) socket or from the connecting (client)
socket. The connecting socket can use any local address or specify the loopback address.

The following diagram illustrates the client and server loopback options. Refer to Appendix A:
Parameter Reference on page 93 for a description of the loopback variables.

Figure 3: EF_TCP_CLIENT/SERVER_LOOPBACK
Issue 15 © Solarflare Communications 2013 45

 Onload

User Guide
The client loopback option EF_TCP_CLIENT_LOOPBACK=4, when used with the server loopback
option EF_TCP_SERVER_LOOPBACK=2, differs from other loopback options such that rather than
move sockets between existing stacks they will create an additional stack and move sockets from
both ends of the TCP connection into this new stack. This avoids the possibility of having many
loopback sockets sharing and contending for the resources of a single stack.

TCP Striping

Onload supports a Solarflare proprietary TCP striping mechanism that allows a single TCP connection
to use both physical ports of a network adapter. Using the combined bandwidth of both ports means
increased throughput for TCP streaming applications. TCP striping can be particularly beneficial for
Message Passing Interface (MPI) applications.

If the TCP connection’s source IP address and destination IP address are on the same subnet as
defined by EF_STRIPE_NETMASK then Onload will attempt to negotiate TCP striping for the
connection. Onload TCP striping must be configured at both ends of the link.

TCP striping allows a single TCP connection to use the full bandwidth of both physical ports on the
same adapter. This should not be confused with link aggregation/port bonding in which any one TCP
connection within the bond can only use a single physical port and therefore more than one TCP
connection would be required to realize the full bandwidth of two physical ports.

TCP Connection Reset on RTO

Under certain circumstances it may be preferable to avoid re-sending TCP data to a peer service
when data delivery has been delayed. Once data has been sent, and for which no acknowledgment
has been received, the TCP retransmission timeout period represents a considerable delay. When
the retransmission timeout (RTO) eventually expires it may be preferable not to retransmit the
original data.

Onload can be configured to reset a TCP connection rather than attempt to retransmit data for which
no acknowledgment has be received.

This feature is enabled with the EF_TCP_RST_DELAYED_CONN per stack environment variable and
applies to all TCP connections in the onload stack. On any TCP connection in the onload stack, if the
RTO timer expires before an ACK is received the TCP connection will be reset.

ONLOAD_MSG_WARM

Applications that send data infrequently may see increased send latency compared to an application
that is making frequent sends. This is due to the send path and associated data structures not being
cache and TLB resident (which can occur even if the CPU has been otherwise idle since the previous
send call).

NOTE: TCP striping is disabled by default. To enable this feature set the parameter
CI_CFG_PORT_STRIPING=1 in the onload distribution source directory src/include/
internal/tranport_config_opt.h file.
Issue 15 © Solarflare Communications 2013 46

 Onload

User Guide
Onload therefore supports applications repeatedly calling send to keep the TCP fast send path
’warm’ in the cache without actually sending data. This is particularly useful for applications that
only send infrequently and helps to maintain low latency performance for those TCP connections
that do not send often. These "fake" sends are performed by setting the ONLOAD_MSG_WARM flag
when calling the TCP send calls. The message warm feature does not transmit any packets.

char buf[10];
send(fd, buf, 10, ONLOAD_MSG_WARM);

Onload stackdump supports new counters to indicate the level of message warm use:

tx_msg_warm_try is a count of the number of times a message warm send function was called,
but the sendpath was not exercised due to Onload locking constraints.

tx_msg_warm is a count of the number of times a message warm send function was called when
the send path was exercised.

NOTE: If the ONLOAD_MSG_WARM flag is used on sockets which are not accelerated - including
those handed off to the kernel by Onload, it may cause the message warm packets to be actually
sent. This is due to a limitation in some Linux distributions which appear to ignore this flag. The
Onload extensions API can be used to check whether a socket supports the MSG_WARM feature via
the onload_fd_check_feature() API (onload_fd_check_feature() on page 114).

NOTE: Onload versions earlier than 201310 do not support the ONLOAD_MSG_WARM socket flag,
therefore setting the flag will cause message warm packets to be sent.
Issue 15 © Solarflare Communications 2013 47

 Onload

User Guide
6.14 UDP Operation
The table below identifies the Onload UDP implementation RFC compliance.

Socket Options

Onload UDP supports the following socket options which can be used in the setsockopt() and
getsockopt() function calls.

RFC Title Compliance

768 User Datagram Protocol Yes

1122 Requirements for Hosts Yes

3678 Socket Interface Extensions for
Multicast Source Filters

Partial

See Source Specific Socket Options on page 50

Option Description

SO_BINDTODEVICE bind this socket to a particular network interface. See SO_BINDTODEVICE
below.

SO_BROADCAST when enabled datagram sockets can send and receive packets to/from a
broadcast address.

SO_DEBUG enable protocol debugging.

SO_DONTROUTE outgoing data should be sent on whatever interface the socket is bound
to and not routed via another interface.

SO_ERROR the errno value of the last error occurring on the socket. (Only valid as a
getsockopt()).

SO_EXCLUSIVEADDR
USE

prevents other sockets using the SO_REUSEADDR option to bind to the
same address and port.

SO_LINGER when enabled a close()or shutdown()will not return until all
queued messages for the socket have been successfully sent or the linger
timeout has been reached. Otherwise the call returns immediately and
sockets are closed in the background.

SO_PRIORITY set the priority for all packets sent on this socket. Packets with a higher
priority may be processed first depending on the selected device
queueing discipline.

SO_RCVBUF sets or gets the maximum socket receive buffer in bytes. The value set is
doubled by the kernel and by Onload to allow for bookkeeping overhead
when it is set by the setsockopt() function call. Note that
EF_UDP_RCVBUF overrides this value.

SO_RCVLOWAT sets the minimum number of bytes to process for socket input
operations.
Issue 15 © Solarflare Communications 2013 48

 Onload

User Guide
SO_RECVTIMEO sets the timeout for input function to complete.

SO_REUSEADDR can reuse local ports i.e. another socket can bind to the same port
number except when there is an active listening socket bound to the port.

SO_SNDBUF sets or gets the maximum socket send buffer in bytes. The value set is
doubled by the kernel and by Onload to allow for bookkeeping overhead
when it is set by the setsockopt() function call. Note that
EF_UDP_SNDBUF overrides this value.

SO_SNDLOWAT sets the minimum number of bytes to process for socket output
operations. Always set to 1 byte.

SO_SNDTIMEO set the timeout for sending function to send before reporting an error.

SO_TIMESTAMP enable or disable receiving the SO_TIMESTAMP control message
(microsecond resolution). See SO_TIMESTAMP and SO_TIMESTAMPNS
(software timestamps) below.

SO_TIMESTAMPNS enable or disable receiving the SO_TIMESTAMP control message
(nanosecond resolution). See SO_TIMESTAMP and SO_TIMESTAMPNS
(software timestamps) below.

SO_TIMESTAMPING enable/disable hardware timestamps for received packets. See
SO_TIMESTAMPING (hardware timestamps) on page 50.

SO_TYPE returns the socket type (SOCK_STREAM or SOCK_DGRAM). (Only valid as
a getsockopt()).
Issue 15 © Solarflare Communications 2013 49

 Onload

User Guide
Source Specific Socket Options

The following table identifies source specific socket options supported from onload-201210-u1
onwards. Refer to release notes for Onload specific behaviour regarding these options.

SO_TIMESTAMP and SO_TIMESTAMPNS (software timestamps)

The setsockopt() function call may be passed an option SO_TIMESTAMP to enable timestamping
on the specified socket. Functions such as cmesg() recvmsg() and recvmmsg() can then
extract timestamp data for packets received at the socket.

Onload implements a software timestamping mechanism, providing microsecond resolution.
Onload software timestamps avoid the need for a per-packet system call and thereby reduce the
normal timestamp overheads.

The Solarflare adapter will always deliver received packets to the receive ring buffer in the order that
these arrive from the network. Onload will append a software timestamp to the packet meta data
when it retrieves a packet from the ring buffer - before the packet is transferred to a waiting socket
buffer. This implies that the timestamps will reflect the order the packets arrive from the network,
but there may be a delay between the packet being received by the hardware and the software
timestamp being applied.

Applications preferring timestamps with nanosecond resolution can use SO_TIMESTAMPNS in place
of the normal (micro second resolution) SO_TIMESTAMP value.

SO_TIMESTAMPING (hardware timestamps)

The setsockopt() function call may be passed an option SO_TIMESTAMPING to enable hardware
timestamps to be generated by the adapter for each received packet. Functions such as cmesg(),
recvmsg() and recvmmsg() can then extract timestamp data for packets received at the socket. This
support is only available on SFN7000 series adapters. Before receiving hardware timestamps:

• A valid AppFlex license for hardware timestamps must be installed on the Solarflare Flareon
Ultra adapter. The PTP/timestamping license is installed on the SFN7322F during manufacture,
such a license can be installed on the SFN7122F adapter by the user.

• The Onload stack for the socket must have the environment variable EF_RX_TIMESTAMPING set
- see Appendix A: Parameter Reference on page 92 for settings.

Option Description

IP_ADD_SOURCE_MEMBERSHIP Join the supplied multicast group on the given
interface and accept data from the supplied source
address.

IP_DROP_SOURCE_MEMBERSHIP Drops membership to the given multicast group,
interface and source address.

MCAST_JOIN_SOURCE_GROUP Join a source specific group.

MCAST_LEAVE_SOURCE_GROUP Leave a source specific group.
Issue 15 © Solarflare Communications 2013 50

 Onload

User Guide
Received packets are timestamped when they enter the MAC on the SFN7000 series adapter.

Interested users should read the kernel SO_TIMESTAMPING documentation for more details of how
to use this socket API – kernel documentation can be found, for example, at:

 http://lxr.linux.no/linux/Documentation/networking/timestamping.

 SO_BINDTODEVICE

In response to the setsockopt() function call with SO_BINDTODEVICE, sockets identifying non-
Solarflare interfaces will be handled by the kernel and all sockets identifying Solarflare interfaces will
be handled by Onload. All sends from a socket are sent via the bound interface and all TCP, UDP and
Multicast packets received via the bound interface are delivered only to the socket bound to the
interface.

UDP Send and Receive Paths

For each UDP socket, Onload creates both an accelerated socket and a kernel socket. There is usually
no file descriptor for the kernel socket visible in the user’s file descriptor table. When a UDP process
is ready to transmit data, Onload will check a cached ARP table which maps IP addresses to MAC
addresses. A cache ’hit’ results in sending via the Onload accelerated socket. A cache ‘miss’ results
in a syscall to populate the user mode cached ARP table. If no MAC address can be identified via this
process the packet is sent via the kernel stack to provoke ARP resolution. Therefore, it is possible that
some UDP traffic will be sent occasionally via the kernel stack.

Figure 4: UDP Send and Receive Paths
Figure 4 illustrates the UDP send and receive paths. Lighter arrows indicate the accelerated ’kernel
bypass’ path. Darker arrows identify fragmented UDP packets received by the Solarflare adapter and
Issue 15 © Solarflare Communications 2013 51

http://lxr.linux.no/linux/Documentation/networking/timestamping

 Onload

User Guide
UDP packets received from a non-Solarflare adapter. UDP packets arriving at the Solarflare adapter
are filtered on source and destination address and port number to identify a VNIC the packet will be
delivered to. Fragmented UDP packets are received by the application via the kernel UDP socket.
UDP packets received by a non-Solarflare adapter are always received via the kernel UDP socket.

Fragmented UDP

When sending datagrams which exceed the MTU, the Onload stack will send multiple Ethernet
packets. On hosts running Onload, fragmented datagrams are always received via the kernel stack.

6.15 User Level recvmmsg for UDP
The recvmmsg() function is intercepted for UDP sockets which are accelerated by Onload.

The Onload user-level recvmmsg() is available to systems that do not have kernel/libc support for
this function. The recvmmsg()is not supported for TCP sockets.

6.16 User-Level sendmmsg for UDP
The sendmmsg() function is intercepted for UDP sockets which are accelerated by Onload.

The Onload user-level sendmmsg() is available to systems that do not have kernel/libc support for
this function. The sendmmsg() is not supported for TCP sockets.

6.17 Multiplexed I/O
Linux supports various common methods for handling multiplexed I/O operation:

• poll(), ppoll()

• select(), pselect()

• the epoll set of functions.

The general behaviour of the poll(), ppoll(), select(), pselect(), epoll_wait()
and epoll_pwait()functions with Onload is as follows:

• If there are operations ready on any Onload accelerated file descriptor these functions will
return immediately. Refer to the relevant subsections below for specific behaviour details.

• If there are no Onload accelerated file descriptors ready, and spinning is not enabled these
functions will enter the kernel and block.

• If the set contains file descriptors that are not accelerated sockets, Onload must make a system
call to determine the readiness of these sockets. If there are no file descriptors ready and
spinning is enabled, Onload will spin to ensure that accelerated sockets are polled a specified
number of times before unaccelerated sockets are examined. This reduces the overhead
incurred when Onload has to call into the kernel and reduces latency on accelerated sockets.

The following subsections discuss the use of these I/O functions and Onload environment variables
that can be used to manipulate behaviour of the I/O operation.
Issue 15 © Solarflare Communications 2013 52

 Onload

User Guide
Poll, ppoll

The poll(), ppoll() file descriptor set can consist of both accelerated and non-accelerated file
descriptors. The environment variable EF_UL_POLL enables/disables acceleration of the poll(),
ppoll() function calls. Onload supports the following options for the EF_UL_POLL variable:

Additional environment variables can be employed to control the poll(), ppoll() functions and
to give priority to accelerated sockets over non-accelerated sockets and other file descriptors. Refer
to EF_POLL_FAST, EF_POLL_FAST_USEC and EF_POLL_SPIN in Appendix A: Parameter
Reference on page 93.

Select, pselect

The select(), pselect() file descriptor set can consist of both accelerated and non-accelerated
file descriptors. The environment variable EF_UL_SELECT enables/disables acceleration of the
select(), pselect() function calls. Onload supports the following options for the
EF_UL_SELECT variable:

Additional environment variables can be employed to control the select(), pselect()
functions and to give priority to accelerated sockets over non-accelerated sockets and other file
descriptors. Refer to EF_SELECT_FAST and EF_SELECT_SPIN in Appendix A: Parameter
Reference on page 93.

Value Behaviour

0 Disable acceleration at user-level. Calls to poll(), ppoll() are handled by
the kernel.

Spinning cannot be enabled.

1 Enable acceleration at user-level. Calls to poll(), ppoll() are processed at
user level.

Spinning can be enabled and interrupts are avoided until an application blocks.

Value Epoll Behaviour

0 Disable acceleration at user-level. Calls to select(), pselect() are handled
by the kernel.

Spinning cannot be enabled.

1 Enable acceleration at user-level. Calls to select() pselect() are processed
at user-level.

Spinning can be enabled and interrupts are avoided until an application blocks.
Issue 15 © Solarflare Communications 2013 53

 Onload

User Guide
Epoll

The epoll set of functions, epoll_create(), epoll_ctl, epoll_wait(), epoll_pwait(),
are accelerated in the same way as poll and select. The environment variable EF_UL_EPOLL
enables/disables epoll acceleration. Refer to the release change log for enhancements and changes
to EPOLL behaviour.

Using Onload an epoll set can consist of both Onload file descriptors and kernel file descriptors.
Onload supports the following options for the EF_UL_EPOLL environment variable:

The relative performance of epoll options 1 and 2 depends on the details of application behaviour
as well as the number of accelerated file descriptors in the epoll set. Behaviour may also differ
between earlier and later kernels and between Linux realtime and non-realtime kernels. Generally
the OS will allocate short time slices to a user-level CPU intensive application which may result in
performance (latency spikes). A kernel-level CPU intensive process is less likely to be de-scheduled
resulting in better performance. Solarflare recommend the user evaluate both options for an
applications that manages many file descriptors.

Additional environment variables can be employed to control the epoll_ctl(), epoll_wait()
and epoll_pwait() functions and to give priority to accelerated sockets over non-accelerated
sockets and other file descriptors. Refer to EF_EPOLL_CTL_FAST, EF_EPOLL_SPIN and

Value Epoll Behaviour

0 Accelerated epoll is disabled and epoll_ctl(), epoll_wait() and
epoll_pwait() function calls are processed in the kernel. Other functions calls
such as send() and recv() are still accelerated.

Interrupt avoidance does not function and spinning cannot be enabled.

If a socket is handed over to the kernel stack after it has been added to an epoll
set, it will be dropped from the epoll set.

1 Function calls to epoll_ctl(), epoll_wait(), epoll_pwait() are
processed at user level.

Delivers best latency except when the number of accelerated file descriptors in
the epoll set is very large. This option also gives the best acceleration of
epoll_ctl()calls.

Spinning can be enabled and interrupts are avoided until an application blocks.

CPU overhead and latency increase with the number of file descriptors in the
epoll set.

2 Calls to epoll_ctl(), epoll_wait(), epoll_pwait() are processed in
the kernel.

Delivers best performance for large numbers of accelerated file descriptors.

Spinning can be enabled and interrupts are avoided until an application blocks.

CPU overhead and latency are independent of the number of file descriptors in
the epoll set.
Issue 15 © Solarflare Communications 2013 54

 Onload

User Guide
EF_EPOLL_MT_SAFE in Appendix A: Parameter Reference on page 93.

Refer to epoll - Known Issues on page 78.

6.18 Stack Sharing
By default each process using Onload has its own 'stack'. Refer to Onload Stacks for definition.
Several processes can be made to share a single stack, using the EF_NAME environment variable.
Processes with the same value for EF_NAME in their environment will share a stack.

Stack sharing is necessary to enable multiple processes using Onload to be accelerated when
receiving the same multicast stream or to allow one application to receive a multicast stream
generated locally by a second application. Stacks may also be shared by multiple processes in order
to preserve and control resources within the system. Stack sharing can be employed by processes
handling TCP as well as UDP sockets.

Stack sharing should only be requested if there is a trust relationship between the processes. If two
processes share a stack then they are not completely isolated: a bug in one process may impact the
other, or one process can gain access to the other's privileged information (i.e. breach security).
Once the EF_NAME variable is set, any process on the local host can set the same value and gain
access to the stack.

By default Onload stacks can only be shared with processes having the same UID. The
EF_SHARE_WITH environment variable provides additional security while allowing a different UID
to share a stack. Refer to Appendix A: Parameter Reference on page 93 for a description of the
EF_NAME and EF_SHARE_WITH variables.

Processes sharing an Onload stack should also not use huge pages. Onload will issue a warning at
startup and prevent the allocation of huge pages if EF_SHARE_WITH identifies a UID of another
process or is set to -1. If a process P1 creates an Onload stack, but is not using huge pages and
another process P2 attempts to share the Onload stack by setting EF_NAME, the stack options set by
P1 will apply, allocation of huge pages in P2 will be prevented.

An alternative method of implementing stack sharing is to use the Onload Extensions API and the
onload_set_stackname() function which, through its scope parameter, can limit stack access to
the processes created by a particular user. Refer to Appendix D: Onload Extensions API on page 112
for details.
Issue 15 © Solarflare Communications 2013 55

 Onload

User Guide
6.19 Multicast Replication
The Solarflare SFN7000 series adapters support multicast replication where received packets are
replicated in hardware and delivered to multiple receive queues. This feature allows any number of
Onload clients, listening to the same multicast data stream, to receive their own copy of the packets,
without an additional software copy and without the need to share Onload stacks. The packets are
delivered multiple times by the controller to each receive queue that has installed a hardware filter
to receive the specified multicast stream.

Multicast replication is performed in the adapter transparently and does not need to be explicitly
enabled.

This feature removes the need to share Onload stacks using the EF_NAME environment variable.
Users using EF_NAME exclusively for sharing multicast traffic can now remove EF_NAME from the
configurations.

6.20 Multicast Operation and Stack Sharing
To illustrate shared stacks, the following examples describe Onload behaviour when two processes,
on the same host, subscribe to the same multicast stream:

• Multicast Receive Using Different Onload Stacks...Page 57

• Multicast Transmit Using Different Onload Stacks...Page 57

• Multicast Receive Sharing an Onload Stack...Page 58

• Multicast Transmit Sharing an Onload Stack...Page 58

• Multicast Receive - Onload Stack and Kernel Stack...Page 58.

NOTE: The following subsections use two processes to demonstrate Onload behaviour. In practice
multiple processes can share the same Onload stack. Stack sharing is not limited to multicast
subscribers and can be employed by any TCP and UDP applications.
Issue 15 © Solarflare Communications 2013 56

 Onload

User Guide
Multicast Receive Using Different Onload Stacks

Onload will notice if two Onload stacks on the same host subscribe to the same multicast stream and
will respond by redirecting the stream to go through the kernel. Handing the stream to the kernel,
though still using Onload stacks, allows both subscribers to receive the datagrams, but user-space
acceleration is lost and the receive rate is lower that it could otherwise be. Figure 5 below illustrates
the configuration. Arrows indicate the receive path and fragmented UDP path.

Figure 5: Multicast Receive Using Different Onload Stacks.

The reason for this behaviour is because the Solarflare NIC will not deliver a single received multicast
packet multiple times to multiple stacks – the packet is delivered only once. If a received packet is
delivered to kernel-space, then the kernel TCP/IP stack will copy the received data multiple times to
each socket listening on the corresponding multicast stream. If the received packet were delivered
directly to Onload, where the stacks are mapped to user-space, it would only be delivered to a single
subscriber of the multicast stream.

Multicast Transmit Using Different Onload Stacks

Referring to Figure 5, if one process were to transmit multicast datagrams, these would not be
received by the second process. Onload is only able to accelerate transmitted multicast datagrams
when they do not need to be delivered to other applications in the same host. Or more accurately,
the multicast stream can only be delivered within the same Onload stack.

Onload by default changes the default state of the IP_MULTICAST_LOOP socket option to 0 rather
than 1. This change allows Onload to accelerate multicast transmit for most applications, but means
that multicast traffic is not delivered to other applications on the same host unless the subscriber
sockets are in the same stack. The normal behaviour can be restored by setting
Issue 15 © Solarflare Communications 2013 57

 Onload

User Guide
EF_FORCE_SEND_MULTICAST=0, but this limits multicast acceleration on transmit to sockets that
have manually set the IP_MULTICAST_LOOP socket option to zero.

Multicast Receive Sharing an Onload Stack

Setting the EF_NAME environment variable to the same string in both processes means they can
share an Onload stack. The stream is no longer redirected through the kernel resulting in a much
higher receive rate than can be observed with the kernel TCP/IP stack (or with separate Onload
stacks where the data path is via the kernel TCP/IP stack). This configuration is illustrated in Figure 6
below. Lighter arrows indicate the accelerated (kernel bypass) path. Darker arrows indicate the
fragmented UDP path.

Figure 6: Sharing an Onload Stack

Multicast Transmit Sharing an Onload Stack

Referring to Figure 6, datagrams transmitted by one process would be received by the second
process because both processes share the Onload stack.

Multicast Receive - Onload Stack and Kernel Stack

If a multicast stream is being accelerated by Onload, and another application that is not using Onload
subscribes to the same stream, then the second application will not receive the associated
datagrams. Therefore if multiple applications subscribe to a particular multicast stream, either all or
none should be run with Onload.
Issue 15 © Solarflare Communications 2013 58

 Onload

User Guide
To enable multiple applications accelerated with Onload to subscribe to the same multicast stream,
the applications must share the same Onload stack. Stack sharing is achieved by using the EF_NAME
environment variable.

Multicast Receive and Multiple Sockets

When multiple sockets join the same multicast group, received packets are delivered to these
sockets in the order that they joined the group.

When multiple sockets are created by different threads and all threads are spinning on recv(), the
thread which is able to receive first will also deliver the packets to the other sockets.

If a thread ’A’ is spinning on poll(), and another thread ’B’, listening to the same group, calls
recv() but does not spin, ’A’ will notice a received packet first and deliver the packet to ’B’ without
an interrupt occurring.

6.21 Multicast Loopback
The socket option IP_MULTICAST_LOOP controls whether multicast traffic sent on a socket can be
received locally on the machine. With Onload, the default value of the IP_MULTICAST_LOOP socket
option is 0 (the kernel stack defaults IP_MULTICAST_LOOP to 1). Therefore by default with Onload
multicast traffic sent on a socket will not be received locally.

As well as setting IP_MULTICAST_LOOP to 1, receiving multicast traffic locally requires both the
sender and receiver to be using the same Onload stack. Therefore, when a receiver is in the same
application as the sender it will receive multicast traffic. If sender and receiver are in different
applications then both must be running Onload and must be configured to share the same Onload
stack.

For two processes to share an Onload stack both must set the same value for the EF_NAME
parameter. If one local process is to receive the data sent by a sending local process,
EF_MULTICAST_LOOP_OFF must be disabled (set to zero) on the sender.

6.22 Bonding, Link aggregation and Failover
Bonding (aka teaming) allows for improved reliability and increased bandwidth by combining
physical ports from one or more Solarflare adapters into a bond. A bond has a single IP address,
single MAC address and functions as a single port or single adapter to provide redundancy.

Onload monitors the OS configuration of the standard kernel bonding module and accelerates traffic
over bonds that are detected as suitable (see limitations). As a result no special configuration is
required to accelerate traffic over bonded interfaces.

e.g. To configure an 802.3ad bond of two SFC interfaces (eth2 and eth3):

modprobe bonding miimon=100 mode=4 xmit_hash_policy=layer3+4

ifconfig bond0 up

Interfaces must be down before adding to the bond.

echo +eth2 > /sys/class/net/bond0/bonding/slaves
Issue 15 © Solarflare Communications 2013 59

 Onload

User Guide
echo +eth3 > /sys/class/net/bond0/bonding/slaves

ifconfig bond0 192.168.1.1/24

The file /var/log/messages should then contain a line similar to:

[onload] Accelerating bond0 using Onload

Traffic over this interface will then be accelerated by Onload.

To disable Onload acceleration of bonds set CI_CFG_TEAMING=0 in the file
transport_config_opt.h at compile time.

Refer to the Limitations section, Bonding, Link aggregation on page 75 for further information.

6.23 VLANS
The division of a physical network into multiple broadcast domains or VLANs offers improved
scalability, security and network management.

Onload will accelerate traffic over suitable VLAN interfaces by default with no additional
configuration required.

e.g. to add an interface for VLAN 5 over an SFC interface (eth2)

onload_loaddrivers

modprobe 8021q

vconfig add eth2 5

ifconfig eth2.5 192.168.1.1/24

Traffic over this interface will then be transparently accelerated by Onload.

Refer to the Limitations section, VLANs on page 75 for further information.

6.24 Accelerated pipe()
Onload supports the acceleration of pipes, providing an accelerated IPC mechanism through which
two processes on the same host can communicate using shared memory at user-level. Accelerated
pipes do not invoke system calls. Accelerated pipes therefore, reduce the overheads for read/write
operations and offer improved latency over the kernel implementation.

To create a user-level pipe, and before the pipe() or pipe2() function is called, a process must
be accelerated by Onload and must have created an Onload stack. By default, an accelerated process
that has not created an Onload stack is granted only a non-accelerated pipe. See EF_PIPE for other
options.

The accelerated pipe is created from the pool of available 2Kbyte socket buffers and expanded as
size requires to a maximum size of 64Kbytes.

The following function calls, related to pipes, will be accelerated by Onload and will not enter the
kernel unless they block;

pipe(), read(), write(), readv(), writev(), send(), recv(), recvmsg(),
sendmsg(), poll(), select(), epoll_ctl(), epoll_wait()
Issue 15 © Solarflare Communications 2013 60

 Onload

User Guide
As with TCP/UDP sockets, the Onload tuning options such as EF_POLL_USEC and EF_SPIN_USEC
will also influence performance of the user-level pipe.

Refer also to EF_PIPE, EF_PIPE_RECV_SPIN, EF_PIPE_SEND_SPIN in Appendix A:
Parameter Reference on page 93.

6.25 Zero-Copy API
The Onload Extensions API includes support for zero-copy of TCP transmit packets and UDP receive
packets. Refer to Zero-Copy API on page 123 for detailed descriptions and example source code of
the API.

6.26 Receive Filtering
The Onload Extensions API supports a Receive Filtering API which allows user-defined filters to
determine if data received on a UDP socket should be discarded before it enters the socket receive
buffer. Refer to the Receive Filtering API Overview on page 134 for a detailed description and
example source code of the API.

6.27 Packet Buffers

Introduction

Packet buffers describe the memory used by the Onload stack (and Solarflare adapter) to receive,
transmit and queue network data. Packet buffers provide a method for user-mode accessible
memory to be directly accessed by the network adapter without compromising system integrity.

Onload will request huge pages if these are available when allocating memory for packet buffers.
Using huge pages can lead to improved performance for some applications by reducing the number
of Translation Lookaside Buffer (TLB) entries needed to describe packet buffers and therefore
minimize TLB ’thrashing’.

Onload offers two configuration modes for network packet buffers:

Network Adapter Buffer Table Mode

Solarflare network adapters employ a proprietary hardware-based buffer address translation
mechanism to provide memory protection and translation to Onload stacks accessing a VNIC on the
adapter. This is the default packet buffer mode and is suitable for the majority of applications using
Onload.

NOTE: Only anonymous pipes created with the pipe() or pipe2() function calls will be accelerated.

NOTE: Onload huge page support should not be enabled if the application uses IPC namespaces
and the CLONE_NEWIPC flag.
Issue 15 © Solarflare Communications 2013 61

 Onload

User Guide
This scheme employs a buffer table residing on the network adapter to control the memory an
Onload stack can use to send and receive packets.

While the adapter’s buffer table is sufficient for the majority of applications, on adapters prior to the
SFN7000 series, it is limited to approximately 120,000 x 2Kbyte buffers which have to be shared
between all Onload stacks.

If the total packet buffer requirements of all applications using Onload require more than the
number of packet buffers supported by the adapter’s buffer table, the user should consider changing
to the Scalable Packet Buffers configuration.

Large Buffer Table Support

The Solarflare SFN7000 series adapters alleviate the packet buffer limitations of previous generation
Solarflare adapters and support many more than the 120,000 packet buffer without the need to
switch to Scalable Packet Buffer Mode.

Each buffer table entry in the SFN7000 series adapter can describe a 4kbyte, 64kbyte, 1Mbyte or
4Mbyte block of memory where each table entry is the page size as directed by the operating
system.

Scalable Packet Buffer Mode

Scalable Packet Buffer Mode is an alternative packet buffer mode which allows a much higher
number of packet buffers to be used by Onload. Using the Scalable Packet Buffer Mode Onload
stacks employ Single Root I/O Virtualization (SR-IOV) virtual functions (VF) to provide memory
protection and translation. This mechanism removes the 120K buffers limitation imposed by the
Network Adapter Buffer Table Mode.

For deployments where using SR-IOV and/or the IOMMU is not an option, Onload also supports an
alternative Scalable Packet Buffer Mode scheme called Physical Addressing Mode. Physical
addressing also removes the 120K packet buffer limitation, however physical addressing does not
provide the memory protection provided by SR-IOV and an IOMMU. For details of Physical
Addressing Mode see Physical Addressing Mode on page 70.

For further details on SR-IOV configuration refer to Configuring Scalable Packet Buffers on page 66.

NOTE: Enabling SR-IOV, which is needed for Scalable Packet Buffer Mode, has a latency impact
which depends on the adapter model. For the SFN5000 adapter series, latency increases by
approximately 50ns for the 1/2 RTT latency. The SFN6000 adapter series has equivalent latency to
the SFN5000 adapter series when operating in this mode.

NOTE: SR-IOV and therefore Scalable Packet Buffer Mode is not supported on the Solarflare
SFN7122F network adapter at this time, but will be made available in a future revision.

NOTE: SR-IOV and therefore Scalable Packet Buffer Mode is not supported on the Solarflare
SFN4112F network adapter.

NOTE: MRG users should refer to Red Hat MRG 2 and SR-IOV on page 83.
Issue 15 © Solarflare Communications 2013 62

 Onload

User Guide
How Packet Buffers Are Used by Onload

Each packet buffer is allocated to exactly one Onload stack and is used to receive, transmit or queue
network data. Packet buffers are used by Onload in the following ways:

1 Receive descriptor rings. By default the RX descriptor ring will hold 512 packet buffers at all
times. This value is configurable using the EF_RXQ_SIZE (per stack) variable.

2 Transmit descriptor rings. By default the TX descriptor ring will hold up to 512 packet buffers.
This value is configurable using the EF_TXQ_SIZE (per stack) variable.

3 To queue data held in receive and transmit socket buffers.

4 TCP sockets can also hold packet buffers in the socket’s retransmit queue and in the reorder
queue.

Identifying Packet Buffer Requirements

When deciding the number of packet buffers required by an Onload stack consideration should be
given to the resource needs of the stack to ensure that the available packet buffers can be shared
efficiently between all Onload stacks.

Example 1:

If we consider a hypothetical case of a single host:

- which employs multiple Onload stacks e.g 10

- each stack has multiple sockets e.g 6

- and each socket uses many packet buffers e.g 2000

This would require a total of 120000 packet buffers

Example 2:

If on a stack the TCP receive queue is 1 Mbyte and the MSS value is 1472 bytes, this would require
at least 700 packet buffers - (and a greater number if segments smaller that the MSS were received).

Example 3:

A UDP receive queue of 200 Kbytes where received datagrams are each 200 bytes would hold 1000
packet buffers.

The examples above use only approximate calculated values. The onload_stackdump command
provides accurate measurements of packet buffer allocation and usage.

Consideration should be given to packet buffer allocation to ensure that each stack is allocated the
buffers it will require rather than a ’one size fits all’ approach.

When using the Buffer Table Mode the system is limited to 120K packet buffers - these are allocated
symmetrically across all Solarflare interfaces.

NOTE: User-level pipes do not consume packet buffer resources.
Issue 15 © Solarflare Communications 2013 63

 Onload

User Guide
For large scale applications the Scalable Packet Buffer Mode removes the limitations imposed by the
network adapter buffer table. See Configuring Scalable Packet Buffers on page 66 for details.

Running Out of Packet Buffers

When Onload detects that a stack is close to allocating all available packet buffers it will take action
to try and avoid packet buffer exhaustion. Onload will automatically start dropping packets on
receive and, where possible, will reduce the receive descriptor ring fill level in an attempt to alleviate
the situation. A ’memory pressure’ condition can be identified using the onload_stackdump lots
command where the pkt_bufs field will display the CRITICAL indicator. See Identifying Memory
Pressure below.

Complete packet buffer exhaustion can result in deadlock. In an Onload stack, if all available packet
buffers are allocated (for example currently queued in socket buffers) the stack is prevented from
transmitting further data as there are no packet buffers available for the task.

If all available packet buffers are allocated then Onload will also fail to keep its adapters receive
queues replenished. If the queues fall empty further data received by the adapter is instantly
dropped. On a TCP connection packet buffers are used to hold unacknowledged data in the
retransmit queue, and dropping received packets containing ACKs delays the freeing of these packet
buffers back to Onload. Setting the value of EF_MIN_FREE_PACKETS=0 can result in a stack having
no free packet buffers and this, in turn, can prevent the stack from shutting down cleanly.

Identifying Memory Pressure

The following extracts from the onload_stackdump command identify an Onload stack under
memory pressure.

The EF_MAX_PACKETS value identifies the maximum number of packet buffers that can be used by
the stack. EF_MAX_RX_PACKETS is the maximum number of packet buffers that can be used to hold
packets received. EF_MAX_TX_PACKETS is the maximum number of packet buffers that can be
used to hold packets to send. These two values are always less that EF_MAX_PACKETS to ensure
that neither the transmit or receive paths can starve the other of packet buffers. Refer to Appendix
A: Parameter Reference on page 93 for detailed descriptions of these per stack variables.

The example Onload stack has the following default environment variable values:

EF_MAX_PACKETS: 32768
EF_MAX_RX_PACKETS: 24576
EF_MAX_TX_PACKETS: 24576

The onload_stackdump lots command identifies packet buffer allocation and the onset of a
memory pressure state:

pkt_bufs: size=2048 max=32768 alloc=24576 free=32 async=0 CRITICAL
pkt_bufs: rx=24544 rx_ring=9 rx_queued=24535

NOTE: Packet buffers are accessible to all network interfaces and each packet buffer requires an
entry in every network adapters’ buffer table. Adding more network adapters - and therefore more
interfaces does not increase the number of packet buffers available.
Issue 15 © Solarflare Communications 2013 64

 Onload

User Guide
There are potentially 32768 packet buffers available and the stack has allocated (used) 24576 packet
buffers.

In the socket receive buffers there are 24544 packets buffers waiting to be processed by the
application - this is approaching the EF_MAX_RX_PACKETS limit and is the reason the CRITICAL
flag is present i.e. the Onload stack is under memory pressure. Only 9 packet buffers are available to
the receive descriptor ring.

Onload will aim to keep the RX descriptor ring full at all times. If there are not enough available
packet buffers to refill the RX descriptor ring this is indicated by the LOW memory pressure flag.

The onload_stackdump lots command will also identify the number of memory pressure
events and number of packets dropped as a result of memory pressure.

memory_pressure: 1
memory_pressure_drops: 22096

Controlling Onload Packet Buffer Use

A number of environment variables control the packet buffer allocation on a per stack basis. Refer
to Appendix A: Parameter Reference on page 93 for a description of EF_MAX_PACKETS.

Unless explicitly configured by the user, EF_MAX_RX_PACKETS and EF_MAX_TX_PACKETS will be
automatically set to 75% of the EF_MAX_PACKETS value. This ensures that sufficient buffers are
available to both receive and transmit. The EF_MAX_RX_PACKETS and EF_MAX_TX_PACKETS are
not typically configured by the user.

If an application requires more packet buffers than the maximum configured, then
EF_MAX_PACKETS may be increased to meet demand, however it should be recognized that larger
packet buffer queues increase cache footprint which can lead to reduced throughput and increased
latency.

EF_MAX_PACKETS is the maximum number of packet buffers that could be used by the stack.
Setting EF_MAX_RX_PACKETS to a value greater than EF_MAX_PACKETS effectively means that
all packet buffers (EF_MAX_PACKETS) allocated to the stack will be used for RX - with nothing left
for TX. The safest method is to only increase EF_MAX_PACKETS which keeps the RX and TX packet
buffers values at 75% of this value.
Issue 15 © Solarflare Communications 2013 65

 Onload

User Guide
Configuring Scalable Packet Buffers

Using the Scalable Packet Buffer Mode Onload stacks are bound to virtual functions (VFs) and
provide a PCI SR-IOV compliant means to provide memory protection and translation. VFs employ
the kernel IOMMU.

Refer to Chapter 7 and Scalable Packet Buffer Mode on page 83 for 32-bit kernel limitations.

Procedure:

Step 1. Platform Support on page 66

Step 2. BIOS and Linux Kernel Configuration on page 67

Step 3. Update adapter firmware and enable SR-IOV on page 67

Step 4. Enable VFs for Onload on page 68

Step 5. Check PCIe VF Configuration on page 68

Step 6. Check VFs in onload_stackdump on page 69

Step 1. Platform Support

Scalable Packet Buffer Mode is implemented using SR-IOV, support for which is a relatively recent
addition to the Linux kernel. There were several kernel bugs in early incarnations of SR-IOV support,
up to and including kernel.org 2.6.34. The fixes have been back-ported to recent Red Hat kernels.
Users are advised to enable scalable packet buffer mode on Red Hat kernel 2.6.32-131.0.15 or later,
or kernel.org 2.6.35 or later. In other distributions, it is recommended that the most recent patched
kernel version is used

• The system hardware must have an IOMMU and this must be enabled in the BIOS.

• The kernel must be compiled with support for IOMMU and kernel command line options are
required to select the IOMMU mode.

• The kernel must be compiled with support for SR-IOV APIs (CONFIG-PCI-IOV).

• SR-IOV must be enabled on the network adapter using the sfboot utility.

• When more than 6 VFs are needed, the system hardware and kernel must support PCIe
Alternative Requester ID (ARI) - a PCIe Gen 2 feature.

• Onload options EF_PACKET_BUFFER_MODE=1 must be set in the environment.

NOTE: SR-IOV and therefore Scalable Packet Buffer Mode is not currently supported on the
SFN7000 series adapter but will be available in a future release.

NOTE: The Scalable Packet Buffer feature can be susceptible to known kernel issues observed on
RHEL6 and SLES 11. (See http://www.spinics.net/lists/linux-pci/msg10480.html for details. The
condition can result in an unresponsive server if intel_iommu has been enabled in the
grub.conf file, as per the procedure at Step 2. BIOS and Linux Kernel Configuration on page 67,
and if the Solarflare sfc_resource driver is reloaded. This issue has been addressed in newer kernels
Issue 15 © Solarflare Communications 2013 66

http://www.spinics.net/lists/linux-pci/msg10480.html
http://www.spinics.net/lists/linux-pci/msg10480.html
http://www.spinics.net/lists/linux-pci/msg10480.html

 Onload

User Guide
Step 2. BIOS and Linux Kernel Configuration

To use SR-IOV, hardware virtualization must be enabled. Refer to RedHat Enabling Intel VT-x and
AMD-V Virtualization in BIOS for more information. Take care to enable VT-d as well as VT on an Intel
platform.

To verify that the extensions have been correctly enabled refer to RedHat Verifying virtualization
extensions.For best kernel configuration performance and to avoid kernel bugs exhibited when
IOMMU is enabled for all devices, Solarflare recommend the kernel is configured to use the IOMMU
in pass-through mode - append the following lines to kernel line in the /boot/grub/grub.conf
file:

On an Intel system:

intel_iommu=on iommu=on,pt

On an AMD system:

amd_iommu=on, iommu=on,pt

In pass-through mode the IOMMU is bypassed for regular devices. Refer to Red Hat: PCI
passthrough for more information.

Step 3. Update adapter firmware and enable SR-IOV

1 Download and install the Solarflare Linux Utilities RPM from support.solarflare.com and unzip
the utilities file to reveal the RPM:

2 Install the RPM:

rpm -Uvh sfutils-<version>.rpm

3 Identify the current firmware version on the adapter:

NOTE: On Linux Red Hat 5 servers (2.6.18) it is necessary to also use the iommu_type=2 option.

NOTE: EnterpriseOnload v2.1.0.0 users and OpenOnload v201109-u2 (onwards) users:

Recent kernels are compiled with support for IOMMUs by default, but unfortunately the
realtime (-rt) kernel patches are not currently compatible with IOMMUs (Red Hat MRG kernels
are compiled with CONFIG_PCI_IOV disabled). It is possible to use scalable packet buffer
mode on some systems without IOMMU support, but in an insecure mode. In this
configuration the IOMMU is bypassed, and there is no checking of DMA addresses provided
by Onload in user-space. Bugs or mis-behaviour of user-space code can compromise the
system.

To enable this insecure mode, set the Onload module option
unsafe_sriov_without_iommu=1 for the sfc_resource kernel module.

Linux MRG users are urged to use MRGu2 and kernel 3.2.33-rt50.66.el6rt.x86_64 or later to
avoid known issues and limitations of earlier versions.

The unsafe_sriov_without_iommu option is obsoleted in OpenOnload 201210. It is
replaced by physical addressing mode - see Physical Addressing Mode on page 70 for details.
Issue 15 © Solarflare Communications 2013 67

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/sect-Virtualization-Troubleshooting-Enabling_Intel_VT_and_AMD_V_virtualization_hardware_extensions_in_BIOS.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization/chap-Virtualization-PCI_passthrough.html
http://docs.fedoraproject.org/en-US/Fedora/13/html/Virtualization_Guide/sect-Virtualization-Tips_and_tricks-Verifying_virtualization_extensions.html
http://docs.fedoraproject.org/en-US/Fedora/13/html/Virtualization_Guide/sect-Virtualization-Tips_and_tricks-Verifying_virtualization_extensions.html
http://docs.fedoraproject.org/en-US/Fedora/13/html/Virtualization_Guide/sect-Virtualization-Tips_and_tricks-Verifying_virtualization_extensions.html
https://support.solarflare.com/index.php?view=categories&id=165&option=com_cognidox&Itemid=2

 Onload

User Guide
sfupdate

4 Upgrade the adapter firmware with sfupdate:

sfupdate --write

Full instructions on using sfupdate can be found in the Solarflare Network Server Adapter User
Guide.

5 Use sfboot to enable SR-IOV and enable the VFs. You can enable up to 127 VFs per port, but
the host BIOS may only be able to support a smaller number. The following example will
configure 16 VFs on each Solarflare port:

sfboot sriov=enabled vf-count=16 vf-msix-limit=1

6 It is necessary to reboot the server following changes using sfboot and sfupdate.

Step 4. Enable VFs for Onload

#export EF_PACKET_BUFFER_MODE=1

Refer to Appendix A: Parameter Reference on page 93 for other values.

Step 5. Check PCIe VF Configuration

The network adapter sfc driver will initialize the VFs, which can be displayed by the lspci
command:

lspci -d 1924:

05:00.0 Ethernet controller: Solarflare Communications SFC9020
[Solarflare]
05:00.1 Ethernet controller: Solarflare Communications SFC9020
[Solarflare]
05:00.2 Ethernet controller: Solarflare Communications SFC9020 Virtual
Function [Solarflare]

Option Default Value Description

sriov=<enabled |
disabled>

Disabled Enable/Disable hardware SRIOV support

vf-count=<n> 127 Number of virtual functions advertised per
port. See the note below.

vf-msix-limit=<n> 1 Number of MSI-X interrupts per VF

NOTE: Enabling all 127 VFs per port with more than one MSI-X interrupt per VF may not be
supported by the host BIOS. If the BIOS doesn't support this then you may get 127 VFs on one port
and no VFs on the other port. You should contact your BIOS vendor for an upgrade or reduce the VF
count.

NOTE: On Red Hat 5 servers the vf-count should not exceed 32.

NOTE: VF allocation must be symmetric across all Solarflare interfaces.
Issue 15 © Solarflare Communications 2013 68

 Onload

User Guide
05:00.3 Ethernet controller: Solarflare Communications SFC9020 Virtual
Function [Solarflare]
05:00.4 Ethernet controller: Solarflare Communications SFC9020 Virtual
Function [Solarflare]
05:00.5 Ethernet controller: Solarflare Communications SFC9020 Virtual
Function [Solarflare]
05:00.6 Ethernet controller: Solarflare Communications SFC9020 Virtual
Function [Solarflare]
05:00.7 Ethernet controller: Solarflare Communications SFC9020 Virtual
Function [Solarflare]
05:01.0 Ethernet controller: Solarflare Communications SFC9020 Virtual
Function [Solarflare]
05:01.1 Ethernet controller: Solarflare Communications SFC9020 Virtual
Function [Solarflare]

The lspci example output above identifies one physical function per physical port and the virtual
functions (four for each port) of a single Solarflare dual-port network adapter.

Step 6. Check VFs in onload_stackdump

The onload_stackdump netif command will identify VFs being used by Onload stacks as in the
following example:

onload_stackdump netif
ci_netif_dump: stack=0 name=
 ver=201109 uid=0 pid=3354
 lock=10000000 UNLOCKED nics=3 primed=3
 sock_bufs: max=1024 n_allocated=4
 pkt_bufs: size=2048 max=32768 alloc=1152 free=128 async=0
 pkt_bufs: rx=1024 rx_ring=1024 rx_queued=0
 pkt_bufs: tx=0 tx_ring=0 tx_oflow=0 tx_other=0
 time: netif=3df7d2 poll=3df7d2 now=3df7d2 (diff=0.000sec)
ci_netif_dump_vi: stack=0 intf=0 vi=67 dev=0000:05:01.0 hw=0C0
 evq: cap=2048 current=8 is_32_evs=0 is_ev=0
 rxq: cap=511 lim=511 spc=15 level=496 total_desc=0
 txq: cap=511 lim=511 spc=511 level=0 pkts=0 oflow_pkts=0
 txq: tot_pkts=0 bytes=0
ci_netif_dump_vi: stack=0 intf=1 vi=67 dev=0000:05:01.1 hw=0C0
 evq: cap=2048 current=8 is_32_evs=0 is_ev=0
 rxq: cap=511 lim=511 spc=15 level=496 total_desc=0
 txq: cap=511 lim=511 spc=511 level=0 pkts=0 oflow_pkts=0
 txq: tot_pkts=0 bytes=0

The output above corresponds to VFs advertised on the Solarflare network adapter interface
identified using the lspci command - Refer to Step 5 above.
Issue 15 © Solarflare Communications 2013 69

 Onload

User Guide
Physical Addressing Mode

Physical addressing mode is a Scalable Packet Buffer Mode that also allows Onload stacks to use
large amounts of packet buffer memory (avoiding the limitations of the address translation table on
the adapter), but without the requirement to configure and use SR-IOV virtual functions.

Physical addressing mode, does however, remove memory protection from the network adapter’s
access of packet buffers. Unprivileged user-level code is provided and directly handles the raw
physical memory addresses of packets buffers. User-level code provides physical memory addresses
directly to the adapter and therefore has the ability to direct the adapter to read or write arbitrary
memory locations. A result of this is that a malicious or buggy application can compromise system
integrity and security. OpenOnload versions earlier than onload-201210 and EnterpriseOnload-
2.1.0.0 are limited to 1 million packet buffers. This limit was raised to 2 million packets buffers in
201210-u1 and EnterpriseOnload-2.1.0.1.

To enable physical addressing mode:

1 Ignore configuration steps 1-4 above.

2 Put the following option into a user-created .conf file in the /etc/modprobe.d directory:

options onload phys_mode_gid=<n>

Where setting <n> to be -1 allows all users to use physical addressing mode and setting to an integer
x restricts use of physical addressing mode to the specific user group x.

3 Reload the Onload drivers

onload_tool reload

4 Enable the Onload environment using EF_PACKET_BUFFER_MODE 2 or 3.

EF_PACKET_BUFFER_MODE=2 is equivalent to mode 0, but uses physical addresses. Mode 3 uses SR-
IOV VFs with physical addresses, but does not use the IOMMU for memory translation and
protection. Refer to Appendix A: Parameter Reference on page 93 for a complete description of all
EF_PACKET_BUFFER_MODE options.

6.28 Programmed I/O
PIO (programmed input/output) describes the process whereby data is directly transferred by the
CPU to or from an I/O device. It is an alternative to bus master DMA techniques where data are
transferred without CPU involvement.

Solarflare 7000 series adapters support TX PIO, where packets on the transmit path can be “pushed”
to the adapter directly by the CPU. This improves the latency of transmitted packets but can cause a
very small increase in CPU utilisation. TX PIO is therefore especially useful for smaller packets.

The Onload TX PIO feature is enabled by default but can be disabled via the environment variable
EF_PIO. An additional environment variable, EF_PIO_THRESHOLD specifies the size of the largest
packet size that can use TX PIO.
Issue 15 © Solarflare Communications 2013 70

 Onload

User Guide
PIO buffers on the adapter are limited to a maximum of 8 Onload stacks. For optimum performance,
PIO buffers should be reserved for critical processes and other processes should set EF_PIO to 0
(zero).

The Onload stackdump utility provides additional counters to indicate the level of PIO use - see TX
PIO Counters on page 138 for details.

The Solarflare net driver will also use PIO buffers for non-accelerated sockets and this will reduce the
number of PIO buffers available to Onload stacks. To prevent this set the driver module option
piobuf_size=0.

When both accelerated and non-accelerated sockets are using PIO, the number of PIO buffers
available to Onload stacks can be calculated from the total 16 available PIO regions:

Using the above example values, each port on the adapter requires:

piobuf_size * rss_cpus / region size = 0.5 regions - (round up - so each port needs 1 region).

This leaves 16-2 = 14 regions for Onload stacks which also require one region per port, per stack.
Therefore from our example we can have 7 onload stacks using PIO buffers.

6.29 Templated Sends
“Templated sends” is another SFN7000 series adapter feature that builds on top of TX PIO to provide
further transmit latency improvements. This can be used in applications that know the majority of
the content of packets in advance of when the packet is to be sent. For example, a market feed
handler may publish packets that vary only in the specific value of certain fields, possibly different
symbols and price information, but are otherwise identical. Templated sends involve creating a
template of a packet on the adapter containing the bulk of the data prior to the time of sending the
packet. Then, when the packet is to be sent, the remaining data is pushed to the adapter to complete
and send the packet.

The Onload templated sends feature uses the Onload Extensions API to generate the packet
template which is then instantiated on the adapter ready to receive the “missing” data before each
transmission.

The API details are available in the Onload 201310 distribution at /src/include/onload/
extensions_zc.h

Refer to Appendix D: Onload Extensions API for further information on the use of packet templates
including code examples of using this feature.

description example value

piobuf_size driver module parameter 256

rss_cpus driver module parameter 4

region a chunk of memory 2048 bytes 2048 bytes
Issue 15 © Solarflare Communications 2013 71

 Onload

User Guide
6.30 Debug and Logging
Onload support various debug and logging options

Logging and debug information will be displayed on an attached console or will be sent to the syslog.
To force all debug to the syslog set the onload environment variable EF_LOG_VIA_IOCTL=1.

Log Levels:

• EF_UNIX_LOG - refer to Appendix A: Parameter Reference on page 93 for details.

• TP_LOG (bitmask) - useful for stack debugging. See Onload source code /src/include/ci/
internal/ip_log.h for bit values.

• Onload module options:

- oo_debug_bits=[bitmask] - useful for kernel logging and events not involving an onload
stack. See src/include/onload/debug.h for bit values.

- ci_tp_log=[bitmask] - useful for kernel logging and events involving an onload stack. See
Onload source code /src/include/ci/internal/ip_log.h for details.
Issue 15 © Solarflare Communications 2013 72

 Onload

User Guide
Chapter 7: Limitations
Users are advised to read the latest release_notes distributed with the Onload release for a
comprehensive list of Known Issues.

7.1 Introduction
This chapter outlines configurations that Onload does not accelerate and ways in which Onload may
change behaviour of the system and applications. It is a key goal of Onload to be fully compatible
with the behaviour of the regular kernel stack, but there are some cases where behaviour deviates.

7.2 Changes to Behavior

Multithreaded Applications Termination

As Onload handles networking in the context of the calling application's thread it is recommended
that applications ensure all threads exit cleanly when the process terminates. In particular the
exit() function causes all threads to exit immediately - even those in critical sections. This can
cause threads currently within the Onload stack holding the per stack lock to terminate without
releasing this shared lock - this is particularly important for shared stacks where a process sharing
the stack could ’hang’ when Onload locks are not released.

An unclean exit can prevent the Onload kernel components from cleanly closing the application's
TCP connections, a message similar to the following will be observed:

[onload] Stack [0] released with lock stuck

and any pending TCP connections will be reset. To prevent this, applications should always ensure
that all threads exit cleanly.

Packet Capture

Packets delivered to an application via the accelerated path are not visible to the OS kernel. As a
result, diagnostic tools such as tcpdump and wireshark do not capture accelerated packets. The
Solarflare supplied onload_tcpdump does support capture of UDP and TCP packets from Onload
stacks - Refer to Appendix G: onload_tcpdump on page 164 for details.

Firewalls

Packets delivered to an application via the accelerated path are not visible to the OS kernel. As a
result, these packets are not visible to the kernel firewall (iptables) and therefore firewall rules will
not be applied to accelerated traffic. The onload_iptables feature can be used to enforce Linux
iptables rules as hardware filters on the Solarflare adapter, refer to Appendix I: onload_iptables on
Issue 15 © Solarflare Communications 2013 73

 Onload

User Guide
page 174.

System Tools

With the exception of ’listening’ sockets, TCP sockets accelerated by Onload are not visible to the
netstat tool. UDP sockets are visible to netstat.

Accelerated sockets appear in the /proc directory as symbolic links to /dev/onload. Tools that
rely on /proc will probably not identify the associated file descriptors as being sockets. Refer to
Onload and File Descriptors, Stacks and Sockets on page 36 for more details.

Accelerated sockets can be inspected in detail with the Onload onload_stackdump tool, which
exposes considerably more information than the regular system tools. For details of
onload_stackdump refer to Appendix E: onload_stackdump on page 137.

Signals

If an application receives a SIGSTOP signal, it is possible for the processing of network events to be
stalled in an Onload stack used by the application. This happens if the application is holding a lock
inside the stack when the application is stopped, and if the application remains stopped for a long
time, this may cause TCP connections to time-out.

A signal which terminates an application can prevent threads from exiting cleanly. Refer to
Multithreaded Applications Termination on page 73 for more information.

Undefined content may result when a signal handler uses the third argument (ucontext) and if the
signal is postponed by Onload. To avoid this, use the Onload module option
safe_signals_and_exit=0 or use EF_SIGNALS_NOPOSTPONE to prevent specific signals being
postponed by Onload.

7.3 Limits to Acceleration

IP Fragmentation

Fragmented IP traffic is not accelerated by Onload on the receive side, and is instead received
transparently via the kernel stack. IP fragmentation is rarely seen with TCP, because the TCP/IP stacks
segment messages into MTU-sized IP datagrams. With UDP, datagrams are fragmented by IP if they
are too large for the configured MTU. Refer to Fragmented UDP on page 52 for a description of
Onload behaviour.

Broadcast Traffic

Broadcast sends and receives function as normal but will not be accelerated. Multicast traffic can be
accelerated.

NOTE: Hardware filtering on the network adapter will ensure that accelerated applications receive
traffic only on ports to which they are bound.
Issue 15 © Solarflare Communications 2013 74

 Onload

User Guide
IPv6 Traffic

IPv6 traffic functions as normal but will not be accelerated.

Raw Sockets

Raw Socket sends and receives function as normal but will not be accelerated.

Statically Linked Applications

Onload will not accelerate statically linked applications. This is due to the method in which Onload
intercepts libc function calls (using LD_PRELOAD).

Local Port Address

Onload is limited to OOF_LOCAL_ADDR_MAX number of local interface addresses. A local address
can identify a physical port or a VLAN, and multiple addresses can be assigned to a single interface
where each address contributes to the maximum value. Users can allocate additional local interface
addresses by increasing the compile time constant OOF_LOCAL_ADDR_MAX in the /src/lib/
efthrm/oof_impl.h file and rebuilding Onload. In onload-201205 OOF_LOCAL_ADDR_MAX was
replaced by the onload module option max_layer2_interfaces.

Bonding, Link aggregation

• Onload will only accelerate traffic over 802.3ad and active-backup bonds.

• Onload will not accelerate traffic if a bond contains any slave interfaces that are not Solarflare
network devices. Adding a non-Solarflare network device to a bond that is currently accelerated
by Onload may result in unexpected results such as connections being reset.

• Acceleration of bonded interfaces in Onload requires a kernel configured with sysfs support
and a bonding module version of 3.0.0 or later.

In cases where Onload will not accelerate the traffic it will continue to work via the OS network stack.

For more information and details of configuration options refer to the Solarflare Server Adapter User
Guide section ’Setting Up Teams’.

VLANs

• Onload will only accelerate traffic over VLANs where the master device is either a Solarflare
network device, or over a bonded interface that is accelerated. i.e. If the VLAN's master is
accelerated, then so is the VLAN interface itself.

• Nested VLAN tags are not accelerated, but will function as normal.

• The ifconfig command will return inconsistent statistics on VLAN interfaces (not master
interface).
Issue 15 © Solarflare Communications 2013 75

 Onload

User Guide
• When a Solarflare interface is part of a bond (team) and also on a VLAN, network traffic will not
be accelerated on this interface or any other interface on the same adapter and same VLAN.

• Hardware filters installed by Onload on the Solarflare adapter will only consider the IP address
and port, but not the VLAN identifier. Therefore if the same IP address:port combination exists
on different VLAN interfaces, only the first interface to install the filter will receive the traffic.

In cases where Onload will not accelerate the traffic it will continue to work via the OS network stack.

For more information and details and configuration options refer to the Solarflare Server Adapter
User Guide section ’Setting Up VLANs’.

TCP RTO During Overload Conditions

Under very high load conditions an increased frequency of TCP retransmission timeouts (RTOs)
might be observed. This has the potential to occur when a thread servicing the stack is descheduled
by the CPU whilst still holding the stack lock thus preventing another thread from accessing/polling
the stack. A stack not being serviced means that ACKs are not received in a timely manner for
packets sent and results in RTOs for the unacknowledged packets.

Enabling the per stack environment variable EF_INT_DRIVEN can reduce the likelihood of this
behaviour by ensuring the stack is serviced promptly.

TCP with Jumbo Frames

When using jumbo frames with TCP, Onload will limit the MSS to 2048 bytes to ensure that segments
do not exceed the size of internal packet buffers.

This should present no problems unless the remote end of a connection is unable to negotiate this
lower MSS value.

Transmission Path - Packet Loss

Occasionally Onload needs to send a packet, which would normally be accelerated, via the kernel.
This occurs when there is no destination address entry in the ARP table or to prevent an ARP table
entry from becoming stale.

By default, the Linux sysctl, unres_qlen, will enqueue 3 packets per unresolved address when
waiting for an ARP reply, and on a server subject to a very high UDP or TCP traffic load this can result
in packet loss on the transmit path and packets being discarded.

The unres_qlen value can be identified using the following command:

sysctl -a | grep unres_qlen
net.ipv4.neigh.eth2.unres_qlen = 3
net.ipv4.neigh.eth0.unres_qlen = 3
net.ipv4.neigh.lo.unres_qlen = 3
net.ipv4.neigh.default.unres_qlen = 3

NOTE: The onload_tool reload command will unload then reload the adapter driver removing
all physical devices and associated VLAN devices.
Issue 15 © Solarflare Communications 2013 76

 Onload

User Guide
Changes to the queue lengths can be made permanent in the /etc/sysctl.conf file. Solarflare
recommend setting the unres_qlen value to at least 50.
If packet discards are suspected, this extremely rare condition can be indicated by the cp_defer
counter produced by the onload_stackdump lots command on UDP sockets or from the
unresolved_discards counter in the Linux /proc/net/stat arp_cache file.
Issue 15 © Solarflare Communications 2013 77

 Onload

User Guide
7.4 epoll - Known Issues
Onload supports different implementations of epoll controlled by the EF_UL_EPOLL environment
variable - see Multiplexed I/O on page 52 for configuration details.

• When using EF_UL_EPOLL=1, it has been identified that the behavior of epoll_wait()
differs from the kernel when the EPOLLONESHOT event is requested, resulting in two ’wakeups’
being observed, one from the kernel and one from Onload. This behavior is apparent on
SOCK_DGRAM and SOCK_STREAM sockets for all combinations of EPOLLONESHOT, EPOLLIN
and EPOLLOUT events. This applies for TCP listening sockets and UDP sockets, but not for TCP
connected sockets.

• EF_EPOLL_CTL_FAST is enabled by default and this modifies the semantics of epoll. In
particular, it buffers up calls to epoll_ctl() and only applies them when epoll_wait() is
called. This can break applications that do epoll_wait() in one thread and epoll_ctl() in
another thread. The issue only affects EF_UL_EPOLL=2 and the solution is to set
EF_EPOLL_CTL_FAST=0 if this is a problem. The described condition does not occur if
EF_UL_EPOLL=1.

• When EF_EPOLL_CTL_FAST is enabled and an application is testing the readiness of an epoll
file descriptor without actually calling epoll_wait(), for example by doing epoll within epoll
or epoll within select(), if one thread is calling select() or epoll_wait() and another
thread is doing epoll_ctl(), then EF_EPOLL_CTL_FAST should be disabled. This applies
when using EF_UL_EPOLL 1 or 2.

If the application is monitoring the state of the epoll file descriptor indirectly, e.g. by monitoring
the epoll fd with poll, then EF_EPOLL_CTL_FAST can cause issues and should be set to zero.

• A socket should removed from an epoll set only when all references to the socket are closed.

With EF_UL_EPOLL=1 (default) a socket is removed from the epoll set if the file descriptor is
closed, even if other references to the socket exist. This can cause problems if file descriptors are
duplicated using dup(). For example:

s = socket();

s2 = dup(s);

epoll_ctl(epoll_fd, EPOLL_CTL_ADD, s, ...);

close(s); /* socket referenced by s is removed from epoll set when using
onload */

Workaround is set EF_UL_EPOLL=2.

• When Onload is unable to accelerate a connected socket, e.g. because no route to the
destination exists which uses a Solarflare interface, the socket will be handed off to the kernel
and is removed from the epoll set. Because the socket is no longer in the epoll set, attempts to
modify the socket with epoll_ctl() will fail with the ENOENT (descriptor not present) error.
The described condition does not occur if EF_UL_EPOLL=1.

• If an epoll file descriptor is passed to the read() or write () functions these will return a
different errorcode than that reported by the kernel stack. This issue exists for all
implementations of epoll.
Issue 15 © Solarflare Communications 2013 78

 Onload

User Guide
• When EPOLLET is used and the event is ready, epoll_wait() is triggered by ANY event on the
socket instead of the requested event. This issue should not affect application correctness. The
problem exists for both implementations of epoll.

• When using the receive filtering API (see Receive Filtering API Overview on page 134) I/O
multiplex functions such as poll() and select() may return that a socket is readable, but a
subsequent call to read() can fail because the filter has rejected the packets. Affected system
calls are poll(), epoll(), select() and pselect().
Issue 15 © Solarflare Communications 2013 79

 Onload

User Guide
7.5 Configuration Issues

Mixed Adapters Sharing a Broadcast Domain

Onload should not be used when Solarflare and non-Solarflare interfaces in the same network server
are configured in the same broadcast domain1 as depicted by the following diagram.

When an originating server (S1) sends an ARP request to a remote server (S2) having more than one
interface within the same broadcast domain, ARP responses from S2 will be generated from all
interfaces and it is non-deterministic which response the originator uses. When Onload detects this
situation, it prompts a message identifying 'duplicate claim of ip address' to appear in
the (S1) host syslog as a warning of potential problems.

Problem 1

Traffic from S1 to S2 may be delivered through either of the interfaces on S2, irrespective of the IP
address used. This means that if one interface is accelerated by Onload and the other is not, you may
or may not get acceleration.

To resolve the situation (for the current session) issue the following command:

echo 1 >/proc/sys/net/ipv4/conf/all/arp_ignore

or to resolve it permanently add the following line to the /etc/sysctl.conf file:

net.ipv4.conf.all.arp_ignore = 1

and run the sysctl command for this be effective.

sysctl -p

These commands ensure that an interface will only respond to an ARP request when the IP address
matches its own. Refer to the Linux documentation Linux/Documentation/networking/ip-
sysctl.txt for further details.
Issue 15 © Solarflare Communications 2013 80

 Onload

User Guide
Problem 2

A more serious problem arises if one interface on S2 carries Onload accelerated TCP connections and
another interface on the same host and same broadcast domain is non-Solarflare:

A TCP packet received on the non-Solarflare interface can result in accelerated TCP connections
being reset by the kernel stack and therefore appear to the application as if TCP connections are
being dropped/terminated at random.

To prevent this situation the Solarflare and non-Solarflare interfaces should not be configured in the
same broadcast domain. The solution described for problem 1 above can reduce the frequency of
problem 2, but does not eliminate it.

TCP packets can be directed to the wrong interface because either (i) the originator S1 needs to
refresh its ARP table for the destination IP address - so sends an ARP request and subsequently
directs TCP packets to the non-Solarflare interface, or (ii) a switch within the broadcast domain
broadcasts the TCP packets to all interfaces.

1.A Broadcast domain can be a local network segment or VLAN.

Virtual Memory on 32 Bit Systems

On 32 bit Linux systems the amount of allocated virtual address space defaults, typically, to 128Mb
which limits the number of Solarflare interfaces that can be configured. Virtual memory allocation
can be identified in the /proc/meminfo file e.g.

grep Vmalloc /proc/meminfo
VmallocTotal: 122880 kB
VmallocUsed: 76380 kB
VmallocChunk: 15600 kB

The Onload driver will attempt to map all PCI Base Address Registers for each Solarflare interface
into virtual memory where each interface requires 16Mb.

Examination of the kernel logs in /var/log/messages at the point the Onload driver is loading,
would reveal a memory allocation failure as in the following extract:

allocation failed: out of vmalloc space - use vmalloc=<size> to increase
size.
[sfc efrm] Failed (-12) to map bar (16777216 bytes)
[sfc efrm] efrm_nic_add: ERROR: linux_efrm_nic_ctor failed (-12)

One solution is to use a 64 bit kernel. Another is to increase the virtual memory allocation on the 32
bit system by setting vmalloc size on the ’kernel line’ in the /boot/grub/grub.conf file to 256,
for example,

kernel /vmlinuz-2.6.18-238.el5 ro root=/dev/sda7 vmalloc=256M

The system must be rebooted for this change to take effect.
Issue 15 © Solarflare Communications 2013 81

 Onload

User Guide
Hardware Resources

Onload uses certain physical resources on the network adapter. If these resources are exhausted, it
is not possible to create new Onload stacks and not possible to accelerate new sockets. These
physical resources include:

1 Virtual NICs. Virtual NICs provide the interface by which a user level application sends and
receives network traffic. When these are exhausted it is not possible to create new Onload
stacks, meaning new applications cannot be accelerated. However, Solarflare network
adapters support large numbers of Virtual NICs, and this resource is not typically the first to
run out.

2 Filters. Filters are used to demultiplex packets received from the wire to the appropriate
application. When these are exhausted it is not possible to create new accelerated sockets.
Solarflare recommend that applications do not allocate more than 4096 filters.

3 Buffer table entries. The buffer table provides address protection and translation for DMA
buffers. When these are exhausted it is not possible to create new Onload stacks, and existing
stacks are not able to allocate more DMA buffers.

When any of these resources are exhausted, normal operation of the system should continue, but it
will not be possible to accelerate new sockets or applications.

Under severe conditions, after resources are exhausted, it may not be possible to send or receive
traffic resulting in applications getting ’stuck’. The onload_stackdump utility should be used to
monitor hardware resources.

IGMP Operation and Multicast Process Priority

It is important that the priority of processes using UDP multicast do not have a higher priority than
the kernel thread handling the management of multicast group membership.

Failure to observe this could lead to the following situations:

1 Incorrect kernel IGMP operation.

2 The higher priority user process is able to effectively block the kernel thread and prevent it
from identifying the multicast group to Onload which will react by dropping packets received
for the multicast group.

A combination of indicators may identify this:

• ethtool reports good packets being received while multicast mismatch does not increase.

• ifconfig identifies data is being received.

• onload_stackdump will show the rx_discard_mcast_mismatch counter increasing.

Lowering the priority of the user process will remedy the situation and allow the multicast packets
through Onload to the user process.
Issue 15 © Solarflare Communications 2013 82

 Onload

User Guide
Dynamic Loading

If the onload library libonload is opened with dlopen() and closed with dlclose() it can leave
the application in an unpredictable state. Users are advised to use the RTLD_NODELETE flag to
prevent the library from being unloaded when dlclose() is called.

Scalable Packet Buffer Mode

Support for SR-IOV is disabled on 32-bit kernels, therefore the following features are not available
on 32-bit kernels.

• Scalable Packet Buffer Mode (EF_PACKET_BUFFER_MODE=1)

• ef_vi with VFs

On some recent kernel versions, configuring the adapter to have a large number of VFs (via sfboot)
can cause kernel panics. This problem affects kernel versions in the range 3.0 to 3.3 inclusive and is
due to the netlink messages that include information about network interfaces growing too large.

The problem can be avoided by ensuring that the total number of physical network interfaces,
including VFs, is no more than 30.

Scalable Packet Buffer Mode on SFN7122F and SFN7322F

SR-IOV and therefore Scalable Packet Buffer Mode is not currently supported on the SFN7000 series
adapters. This feature will be supported in a future release.

Huge Pages with IPC namespace

Huge page support should not be enabled if the application uses IPC namespaces and the
CLONE_NEWIPC flag. Failure to observe this may result in a segfault.

Huge Pages with Shared Stacks

Processes which share an Onload stack should not attempt to use huge pages. Refer to Stack Sharing
on page 55 for limitation details.

Huge Pages - Size

When using huge pages, it is recommended to avoid setting the page size greater than 2 Mbyte. A
failure to observe this could lead to Onload unable to allocate further buffer table space for packet
buffers.

Red Hat MRG 2 and SR-IOV

EnterpriseOnload from version 2.1.0.1 includes support for Red Hat MRG2 update 3 and the 3.6.11-
rt kernel. Solarflare do not recommend the use of SR-IOV or the IOMMU when using Onload on
these systems due to a number of known kernel issues. The following Onload features should not be
used on MRG2u3:
Issue 15 © Solarflare Communications 2013 83

 Onload

User Guide
• Scalable packet buffer mode (EF_PACKET_BUFFER_MODE=1)

• ef_vi with VFs

PowerPC Architecture

• 32 bit applications are known not to work correctly with onload-201310. This has been
corrected in onload-201310-u1.

• SR-IOV is not supported by onload-201310 on PowerPC systems.

• PowerPC architectures do not currently support PIO for reduced latency. EF_PIO should be set
to zero.

Java 7 Applications - use of vfork()

Onload accelerated Java 7 applications that call vfork() should set the environment variable
EF_VFORK_MODE=2 and thereafter the application should not create sockets or accelerated pipes
in vfork() child before exec.
Issue 15 © Solarflare Communications 2013 84

 Onload

User Guide
Chapter 8: Change History
This chapter provides a brief history of changes, additions and removals to Onload releases affecting
Onload behaviour and Onload environment variables.

• Features...Page 85

• Environment Variables...Page 87

• Module Options...Page 91

The OOL column identifies the OpenOnload release supporting the feature. The EOL column
identifies the EnterpriseOnload release supporting the feature. (NS = not supported)

8.1 Features

Feature OOL EOL Description/Notes

SO_TIMESTAMPING 201310-u1 NS Socket option to receive hardware timestamps for
received packets.

onload_fd_check_feature() 201310-u1 NS onload_fd_check_feature() on page 114

4.0.2.6628 net driver 201310-u1 NS Net driver supporting SFN5xxx, 6xxx and 7xxx series
adapters introducing hardware packet timestamps
and PTP on 7xxx series adapters.

4.0.0.6585 net driver 201310 NS Net driver supporting SFN5xxx, 6xxx and 7xxx series
adapters and Solarflare PTP and hardware packet
timestamps.

Multicast Replication 201310 NS Multicast Replication on page 56

TX PIO 201310 NS Programmed I/O on page 70

Large Buffer Table Support 201310 NS Large Buffer Table Support on page 62

Templated Sends 201310 NS Templated Sends on page 71

ONLOAD_MSG_WARM 201310 NS ONLOAD_MSG_WARM on page 46

SO_TIMESTAMP

SO_TIMESTAMPNS

201310 NS Supported for TCP sockets

dup3() 201310 NS Onload wil intercept calls to create a copy of a file
descriptor using dup3().

3.3.0.6262 net driver NS 2.1.0.1 Support Solarflare Enhanced PTP (sfptpd).

IP_ADD_SOURCE_MEMBERSHIP 201210-u1 NS Join the supplied multicast group on the given
interface and accept data from the supplied source
address.
Issue 15 © Solarflare Communications 2013 85

 Onload

User Guide
IP_DROP_SOURCE_MEMBERSHI
P

201210-u1 NS Drops membership to the given multicast group,
interface and source address.

MCAST_JOIN_SOURCE_GROUP 201210-u1 NS Join a source specific group.

MCAST_LEAVE_SOURCE_GROUP 201210-u1 NS Leave a source specific group.

3.3.0.6246 net driver 201210-u1 NS Support Solarflare Enhanced PTP (sfptpd).

Huge pages support 201210 NS Packet buffers use huge pages. Controlled by
EF_USE_HUGE_PAGES

Default is 1 - use huge pages if available

See Limitations on page 73

onload_iptables 201210 NS Apply Linux iptables firewall rules or user-defined
firewall rules to Solarflare interfaces

onload_stackdump processes

onload_stackdump affinities

onload_stackdump env

201210 NS Show all accelerated processes by PID

Show CPU core accelerated process is running on

Show environment variables - EF_VALIDATE_ENV

Physical addressing mode 201210 NS Allows a process to use physical addresses rather than
controlled I/O addresses. Enabled by
EF_PACKET_BUFFER_MODE 2 or 3

UDP sendmmsg() 201210 NS Send multiple msgs in a single function call

I/O Multiplexing 201210 NS Support for ppoll(), pselect() and
epoll_pwait()

DKMS 201210 NS OpenOnload available in DKMS RPM binary format

3.2.1.6222B net driver 201210 NS OpenOnload only

3.2.1.6110 net driver NS 2.1.0.0 EnterpriseOnload only

3.2.1.6099 net driver 201205-u1 NS

Removing zombie stacks 201205-u1 2.1.0.0 onload_stackdump -z kill will terminate stacks
lingering after exit

Compatibility 201205-u1 2.1.0.0 Compatibility with RHEL6.3 and Linux 3.4.0

TCP striping 201205 2.1.0.0 Single TCP connection can use the full bandwidth of
both ports on a Solarflare adapter

TCP loopback acceleration 201205 2.1.0.0 EF_TCP_CLIENT_LOOPBACK &
EF_TCP_SERVER_LOOPBACK

TCP delayed acknowledgments 201205 2.1.0.0 EF_DYNAMIC_ACK_THRESH

TCP reset following RTO 201205 2.1.0.0 EF_TCP_RST_DELAYED_CONN

Configure control plane tables 201205 2.1.0.0 max_layer_2_interface
max_neighs
max_routes

Onload adapter support 201109-u2 2.0.0.0 Onload support for SFN5322F & SFN6x22F

Feature OOL EOL Description/Notes
Issue 15 © Solarflare Communications 2013 86

 Onload

User Guide
8.2 Environment Variables

Accelerate pipe2() 201109-u2 2.0.0.0 Accelerate pipe2() function call

SOCK_NONBLOCK
SOCK_CLOEXEC

201109-u2 2.0.0.0 TCP socket types

Extensions API 201109-u2 2.0.0.0 Support for onload_thread_set_spin()

3.2 net driver 201109-u1 2.0.0.0

Onload_tcpdump 201109 2.0.0.0

Scalable Packet Buffer 201109 2.0.0.0 EF_PACKET_BUFFER_MODE=1

Zero-Copy UDP RX 201109 2.0.0.0

Zero-Copy TCP TX 201109 2.0.0.0

Receive filtering 201109 2.0.0.0

TCP_QUICKACK 201109 2.0.0.0 setsockopt() option

Benchmark tool sfnettest 201109 2.0.0.0 Support for sfnt-stream

3.1 net driver 201104

Extensions API 201104 2.0.0.0 Initial publication

SO_BINDTODEVICE
SO_TIMESTAMP
SO_TIMESTAMPNS

201104 2.0.0.0 setsockopt() and getsockopt() options

Accelerated pipe() 201104 2.0.0.0 Accelerate pipe() function call

UDP recvmmsg() 201104 2.0.0.0 Deliver multiple msgs in a single function call

Benchmark tool sfnettest 201104 2.0.0.0 Supports only sfnt-pingpong

Variable OOL EOL Changed Notes

EF_TX_PUSH_THRESHOLD 201310_u1 NS Improve EF_TX_PUSH low latency
transmit feature.

EF_RX_TIMESTAMPING 201310_u1 NS Control of receive packet hardware
timestamps.

EF_RETRANSMIT_THRESHOLD_SY
NACK

201104 1.0.0.0 201310-u1 Default changed from 4 to 5.

EF_PIO 201310 NS Enable/disable PIO

Default value 1.

Feature OOL EOL Description/Notes
Issue 15 © Solarflare Communications 2013 87

 Onload

User Guide
EF_PIO_THRESHOLD 201310 NS Identifies the largest packet size that
can use PIO. Default value is 1514.

EF_VFORK_MODE 201310 NS Dictates how vfork() intercept should
work.

EF_FREE_PACKETS_LOW_WATERM
ARK

201310 NS Level of free packets to be retained
during runtime.

EF_TCP_SNDBUF_MODE 201310 2.0.0.6 Limit TCP packet buffers used on the
send queue and retransmit queue.

EF_TXQ_SIZE 201310 Limited to 2048 for SFN7000 series.

EF_MAX_ENDPOINTS 201104 1.1.0.3 201310 Default changed to 1024 from 10.

EF_SO_TIMESTAMP_RESYNC_TIM
E

201104 2.1.0.1 201310 Removed from OOL.

EF_SIGNALS_NOPOSTPONE 201210-u1 2.1.0.1 Prevent the specified list of signals
from being postponed by onload.

EF_FORCE_TCP_NODELAY 201210 NS Force use of TCP_NODELAY.

EF_USE_HUGE_PAGES 201210 NS Enables huge pages for packet buffers.

EF_VALIDATE_ENV 201210 NS Will warn about obsolete or
misspelled options in the environment

Default value 1.

EF_PD_VF 201205-u1 2.1.0.0 201210 Allocate VIs within SR-IOV VFs to
allocate unlimited memory.

Replaced with new options on
EF_PACKET_BUFFER_MODE

EF_PD_PHYS_MODE 201205_u1 2.1.0.0 201210 Allows a VI to use physical addressing
rather than protected I/O addresses

Replaced with new options on
EF_PACKET_BUFFER_MODE

EF_MAX_PACKETS 20101111 1.0.0.0 201210 Onload will round the specified value
up to the nearest multiple of 1024.

EF_EPCACHE_MAX 20101111 1.0.0.0 201210 Removed from OOL

EF_TCP_MAX_SEQERR_MSGS NS 201210 Removed

EF_STACK_LOCK_BUZZ 20101111 1.0.0.0 201210 OOL Change to per_process, from
per_stack. EOL is per stack.

EF_RFC_RTO_INITIAL 20101111 1.0.0.0 201210

2.1.0.0

Change default to 1000 from 3000

EF_DYNAMIC_ACK_THRESH 201205 2.1.0.0 201210 Default value changed to 16 from 32 in
201210

Variable OOL EOL Changed Notes
Issue 15 © Solarflare Communications 2013 88

 Onload

User Guide
EF_TCP_SERVER_LOOPBACK

EF_TCP_CLIENT_LOOPBACK

201205 2.1.0.0 201210 TCP loopback acceleration

Added option 4 for client loopback to
cause both ends of a TCP connection
to share a newly created stack.

Option 4 is not supported in
EnterpriseOnload.

EF_TCP_RST_DELAYED 201205 2.1.0.0 Reset TCP connection following RTO
expiry

EF_SA_ONSTACK_INTERCEPT 201205 2.1.0.0 Default value 0

EF_SHARE_WITH 201109-u2 2.0.0.0

EF_EPOLL_CTL_HANDOFF 201109-u2 2.0.0.0 Default value 1

EF_CHECK_STACK_USER NS 201109-u2 Renamed EF_SHARE_WITH

EF_POLL_USEC 201109-u1 1.0.0.0

EF_DEFER_WORK_LIMIT 201109-u1 2.0.0.0 Default value 32

EF_POLL_FAST_LOOPS 20101111 1.0.0.0 201109-u1

2.0.0.0

Renamed EF_POLL_FAST_USEC

EF_POLL_NONBLOCK_FAST_LOOP
S

201104 2.0.0.0 201109-u1

2.0.0.1

Renamed
EF_POLL_NONBLOCK_FAST_USEC

EF_PIPE_RECV_SPIN 201104 2.0.0.0 201109-u1 Becomes per-process, was previously
per-stack

EF_PKT_WAIT_SPIN 20101111 1.0.0.0 201109-u1 Becomes per-process, was previously
per-stack

EF_PIPE_SEND_SPIN 201104 2.0.0.0 201109-u1 Becomes per-process, was previously
per-stack

EF_TCP_ACCEPT_SPIN 20101111 1.0.0.0 201109-u1 Becomes per-process, was previously
per-stack

EF_TCP_RECV_SPIN 20101111 1.0.0.0 201109-u1 Becomes per-process, was previously
per-stack

EF_TCP_SEND_SPIN 20101111 1.0.0.0 201109-u1 Becomes per-process, was previously
per-stack

EF_UDP_RECV_SPIN 20101111 1.0.0.0 201109-u1 Becomes per-process, was previously
per-stack

EF_UDP_SEND_SPIN 20101111 1.0.0.0 201109-u1 Becomes per-process, was previously
per-stack

EF_EPOLL_NONBLOCK_FAST_LOO
PS

201104-u2 2.0.0.0 201109-u1 Removed

EF_POLL_AVOID_INT 20101111 1.0.0.0 201109-u1 Removed

EF_SELECT_AVOID_INT 20101111 1.0.0.0 201109-u1 Removed

Variable OOL EOL Changed Notes
Issue 15 © Solarflare Communications 2013 89

 Onload

User Guide
EF_SIG_DEFER 20101111 1.0.0.0 201109-u1 Removed

EF_IRQ_CORE 201109 2.0.0.0 201109-u2 Non-root user can now set it when
using scalable packet buffer mode

EF_IRQ_CHANNEL 201109 2.0.0.0

EF_IRQ_MODERATION 201109 2.0.0.0 Default value 0

EF_PACKET_BUFFER_MODE 201109 2.0.0.0 201210 In 201210 options 2 and 3 enable
physical addressing mode.

EOL only supports option 1.

Default - disabled

EF_SIG_REINIT 201109 NS 201109-u1 Default value 0.

Removed in 201109-u1

EF_POLL_TCP_LISTEN_UL_ONLY 201104 2.0.0.0 201109 Removed

EF_POLL_UDP 20101111 1.0.0.0 201109 Removed

EF_POLL_UDP_TX_FAST 20101111 1.0.0.0 201109 Removed

EF_POLL_UDP_UL_ONLY 201104 2.0.0.0 201109 Removed

EF_SELECT_UDP 20101111 1.0.0.0 201109 Removed

EF_SELECT_UDP_TX_FAST 20101111 1.0.0.0 201109 Removed

EF_UDP_CHECK_ERRORS 20101111 1.0.0.0 201109 Removed

EF_UDP_RECV_FAST_LOOPS 20101111 1.0.0.0 201109 Removed

EF_UDP_RECV_MCAST_UL_ONLY 20101111 1.0.0.0 201109 Removed

EF_UDP_RECV_UL_ONLY 20101111 1.0.0.0 201109 Removed

EF_TX_QOS_CLASS 201104-u2 2.0.0.0 Default value 0

EF_TX_MIN_IPG_CNTL 201104-u2 2.0.0.0 Default value 0

EF_TCP_LISTEN_HANDOVER 201104-u2 2.0.0.0 Default value 0

EF_TCP_CONNECT_HANDOVER 201104-u2 2.0.0.0 Default value 0

EF_EPOLL_NONBLOCK_FAST_LOO
PS

201104-u2 2.0.0.0

201109-u1

Default value 32

Removed in 201109-u1

EF_TCP_SNDBUF_MODE 2.0.0.6 Default value 0

EF_UDP_PORT_HANDOVER2_MAX 201104-u1 2.0.0.0 Default value 1

EF_UDP_PORT_HANDOVER2_MIN 201104-u1 2.0.0.0 Default value 2

EF_UDP_PORT_HANDOVER3_MAX 201104-u1 2.0.0.0 Default value 1

EF_UDP_PORT_HANDOVER3_MIN 201104-u1 2.0.0.0 Default value 2

EF_STACK_PER_THREAD 201104-u1 2.0.0.0 Default value 0

Variable OOL EOL Changed Notes
Issue 15 © Solarflare Communications 2013 90

 Onload

User Guide
8.3 Module Options

EF_PREFAULT_PACKETS 20101111 1.0.0.0 201104-u1 Enabled by default, was previously
disabled

EF_MCAST_RECV 201104-u1 2.0.0.0 Default value 1

EF_MCAST_JOIN_BINDTODEVICE 201104-u1 2.0.0.0 Default value 0

EF_MCAST_JOIN_HANDOVER 201104-u1 2.0.0.0 Default value 0

EF_DONT_ACCELERATE 201104-u1 2.0.0.0 Default value 0

EF_MULTICAST 20101111 1.0.0.0 201104-u1 Removed

EF_TX_PUSH 20101111-
u1

1.0.0.0 201104

201109

Enabled by default, was previously
disabled

No longer set by the latency profile
script

Option OOL EOL Changed Notes

epoll2_max_stacks 201210 NS Identifies the maximum
number of stacks that an epoll
file descriptor can handle
when EF_UL_EPOLL=2

phys_mode_gid 201210 NS Enable physical addressing
mode and restrict which users
can use it

shared_buffer_table 201210 NS This option should be set to
enable ef_vi applications that
use the ef_iobufset API.
Setting
shared_buffer_table=10000
will make 10000 buffer table
entries available for use with
ef_iobufset.

safe_signals_and_exit 201205 2.1.0.0 When Onload intercepts a
termination signal it will
attempt a clean exit by
releasing resources including
stack locks etc. The default is
(1) enabled and it is
recommended that this
remains enabled unless signal
handling problems occur when
it can be disabled (0).

Variable OOL EOL Changed Notes
Issue 15 © Solarflare Communications 2013 91

 Onload

User Guide
max_layer2_interfaces 201205 2.1.0.0 Maximum number of network
interfaces (includes physical,
VLAN and bonds) supported in
the control plane.

max_routes 201205 2.1.0.0 Maximum number of entries in
the Onload route table. Default
is 256.

max_neighs 201205 2.1.0.0 Maximum number of entries in
Onload ARP/neighbour table.
Rounded up to power of two
value. Default is 1024.

unsafe_sriov_without_iommu 201209-u2 2.0.0.0 201210 Removed, obsoleted by
physical addressing modes and
phys_mode_gid.

buffer_table_min

buffer_table_max

2.0.0.0 201210 Obsolete - Removed

NOTE: The user should always refer to the Onload distribution release notes and change log. These
are available from http://www.openonload.org/download.html.

Option OOL EOL Changed Notes
Issue 15 © Solarflare Communications 2013 92

http://www.openonload.org/download.html
http://www.openonload.org/download.html

 Onload

User Guide
Appendix A: Parameter Reference

Parameter List
The parameter list details the following:

• The environment variable used to set the parameter.

• Parameter name: the name used by onload_stackdump.

• The default, min and max values.

• Whether the variable scope applies per-stack or per-process.

• Description.

EF_ACCEPTQ_MIN_BACKLOG

Name: acceptq_min_backlog default: 1 per-stack

Sets a minimum value to use for the 'backlog' argument to the listen() call. If the application requests a smaller
value, use this value instead.

EF_ACCEPT_INHERIT_NODELAY

Name: accept_force_inherit_nodelay default: 1 min: 0 max: 1 per-process

If set to 1, TCP sockets accepted from a listening socket inherit the TCP_NODELAY socket option from the
listening socket.

EF_ACCEPT_INHERIT_NONBLOCK

Name: accept_force_inherit_nonblock default: 0 min: 0 max: 1 per-process

If set to 1, TCP sockets accepted from a listening socket inherit the O_NONBLOCK flag from the listening socket.

EF_BINDTODEVICE_HANDOVER

Name: bindtodevice_handover default: 0 min: 0 max: 1 per-stack

Hand sockets over to the kernel stack that have the SO_BINDTODEVICE socket option enabled.
Issue 15 © Solarflare Communications 2013 93

 Onload

User Guide
EF_BURST_CONTROL_LIMIT

Name: burst_control_limit default: 0 per-stack

If non-zero, limits how many bytes of data are transmitted in a single burst. This can be useful to avoid drops on
low-end switches which contain limited buffering or limited internal bandwidth. This is not usually needed for
use with most modern, high-performance switches.

EF_BUZZ_USEC

Name: buzz_usec default: 0 per-stack

Sets the timeout in microseconds for lock buzzing options. Set to zero to disable lock buzzing (spinning). Will
buzz forever if set to -1. Also set by the EF_POLL_USEC option.

EF_CONG_AVOID_SCALE_BACK

Name: cong_avoid_scale_back default: 0 per-stack

When >0, this option slows down the rate at which the TCP congestion window is opened. This can help to
reduce loss in environments where there is lots of congestion and loss.

EF_DEFER_WORK_LIMIT

Name: defer_work_limit default: 32 per-stack

The maximum number of times that work can be deferred to the lock holder before we force the unlocked
thread to block and wait for the lock

EF_DELACK_THRESH

Name: delack_thresh default: 1 min: 0 max: 65535 per-stack

This option controls the delayed acknowledgement algorithm. A socket may receive up to the specified number
of TCP segments without generating an ACK. Setting this option to 0 disables delayed acknowledgements.NB.
This option is overridden by EF_DYNAMIC_ACK_THRESH, so both options need to be set to 0 to disable delayed
acknowledgements.
Issue 15 © Solarflare Communications 2013 94

 Onload

User Guide
EF_DONT_ACCELERATE

Name: dont_accelerate default: 0 min: 0 max: 1 per-process

Do not accelerate by default. This option is usually used in conjuction with onload_set_stackname() to allow
individual sockets to be accelerated selectively.

EF_DYNAMIC_ACK_THRESH

Name: dynack_thresh default: 16 min: 0 max: 65535 per-stack

If set to >0 this will turn on dynamic adapation of the ACK rate to increase efficiency by avoiding ACKs when they
would reduce throughput. The value is used as the threshold for number of pending ACKs before an ACK is
forced. If set to zero then the standard delayed-ack algorithm is used.

EF_EPOLL_CTL_FAST

Name: ul_epoll_ctl_fast default: 1 min: 0 max: 1 per-process

Avoid system calls in epoll_ctl() when using an accelerated epoll implementation. System calls are deferred until
epoll_wait() blocks, and in some cases removed completely. This option improves performance for applications
that call epoll_ctl() frequently.CAVEATS: This option has no effect when EF_UL_EPOLL=0. Following dup(),
dup2(), fork() or exec(), some changes to epoll sets may be lost. If you monitor the epoll fd in another poll, select
or epoll set, and the effects of epoll_ctl() are latency critical, then this option can cause latency spikes or even
deadlock.

EF_EPOLL_CTL_HANDOFF

Name: ul_epoll_ctl_handoff default: 1 min: 0 max: 1 per-process

Allow epoll_ctl() calls to be passed from one thread to another in order to avoid lock contention. This
optimisation is particularly important when epoll_ctl() calls are made concurrently with epoll_wait() and
spinning is enabled.This option is enabled by default.CAVEAT: This option may cause an error code returned by
epoll_ctl() to be hidden from the application when a call is deferred. In such cases an error message is emitted to
stderr or the system log.

EF_EPOLL_MT_SAFE

Name: ul_epoll_mt_safe default: 0 min: 0 max: 1 per-process

This option disables concurrency control inside the accelerated epoll implementations, reducing CPU overhead.
It is safe to enable this option if, for each epoll set, all calls on the epoll set are concurrency safe.This option
Issue 15 © Solarflare Communications 2013 95

 Onload

User Guide
improves performance with EF_UL_EPOLL=1 and also with EF_UL_EPOLL=2 and EF_EPOLL_CTL_FAST=1.

EF_EPOLL_SPIN

Name: ul_epoll_spin default: 0 min: 0 max: 1 per-process

Spin in epoll_wait() calls until an event is satisfied or the spin timeout expires (whichever is the sooner). If the
spin timeout expires, enter the kernel and block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_EVS_PER_POLL

Name: evs_per_poll default: 64 min: 0 max: 0x7fffffff per-stack

Sets the number of hardware network events to handle before performing other work. The value chosen
represents a trade-off: Larger values increase batching (which typically improves efficiency) but may also
increase the working set size (which harms cache efficiency).

EF_FDS_MT_SAFE

Name: fds_mt_safe default: 1 min: 0 max: 1 per-process

This option allows less strict concurrency control when accessing the user-level file descriptor table, resulting in
increased performance, particularly for multi-threaded applications. Single-threaded applications get a small
latency benefit, but multi-threaded applications benefit most due to decreased cache-line bouncing between
CPU cores.This option is unsafe for applications that make changes to file descriptors in one thread while
accessing the same file descriptors in other threads. For example, closing a file descriptor in one thread while
invoking another system call on that file descriptor in a second thread. Concurrent calls that do not change the
object underlying the file descriptor remain safe.Calls to bind(), connect(), listen() may change underlying object.
If you call such functions in one thread while accessing the same file descriptor from the other thread, this option
is also unsafe.Also concurrent calls may happen from signal handlers, so set this to 0 if your signal handlers may
close sockets

EF_FDTABLE_SIZE

Name: fdtable_size default: 0 per-process

Limit the number of opened file descriptors by this value. If zero, the initial hard limit of open files (`ulimit -n -H`)
is used. Hard and soft resource limits for opened file descriptors (help ulimit, man 2 setrlimit) are bound by this
value.
Issue 15 © Solarflare Communications 2013 96

 Onload

User Guide
EF_FDTABLE_STRICT

Name: fdtable_strict default: 0 min: 0 max: 1 per-process

Enables more strict concurrency control for the user-level file descriptor table. Enabling this option can reduce
performance for applications that create and destroy many connections per second.

EF_FORCE_SEND_MULTICAST

Name: force_send_multicast default: 1 min: 0 max: 1 per-stack

This option causes all multicast sends to be accelerated. When disabled, multicast sends are only accelerated for
sockets that have cleared the IP_MULTICAST_LOOP flag.This option disables loopback of multicast traffic to
receivers on the same host, unless those receivers are sharing an OpenOnload stack with the sender (see
EF_NAME) and EF_MULTICAST_LOOP_OFF=0. See the OpenOnload manual for further details on multicast
operation.

EF_FORCE_TCP_NODELAY

Name: tcp_force_nodelay default: 0 min: 0 max: 2 per-stack

This option allows the user to override the use of TCP_NODELAY. This may be useful in cases where 3rd-party
software is (not) setting this value and the user would like to control its behaviour: 0 - do not override 1 -
always set TCP_NODELAY 2 - never set TCP_NODELAY

EF_FORK_NETIF

Name: fork_netif default: 3 min: CI_UNIX_FORK_NETIF_NONE max:
CI_UNIX_FORK_NETIF_BOTH per-process

This option controls behaviour after an application calls fork(). 0 - Neither fork parent nor child creates a new
OpenOnload stack 1 - Child creates a new stack for new sockets 2 - Parent creates a new stack for new sockets
3 - Parent and child each create a new stack for new sockets

EF_FREE_PACKETS_LOW_WATERMARK

NAME: free_packets_low default: 100 per-stack

Keep free packets number to be at least this value. EF_MIN_FREE_PACKETS defines initialisation behaviour; this
value is about normal application runtime. This value is used if we can not allocate more packets at any time, i.e.
in case of AMD IOMMU only.
Issue 15 © Solarflare Communications 2013 97

 Onload

User Guide
EF_HELPER_PRIME_USEC

Name: timer_prime_usec default: 250 per-stack

Sets the frequency with which software should reset the count-down timer. Usually set to a value that is
significantly smaller than EF_HELPER_USEC to prevent the count-down timer from firing unless needed. Defaults
to (EF_HELPER_USEC / 2).

EF_HELPER_USEC

Name: timer_usec default: 500 per-stack

Timeout in microseconds for the count-down interrupt timer. This timer generates an interrupt if network
events are not handled by the application within the given time. It ensures that network events are handled
promptly when the application is not invoking the network, or is descheduled.Set this to 0 to disable the count-
down interrupt timer. It is disabled by default for stacks that are interrupt driven.

EF_INT_DRIVEN

Name: int_driven default: 1 min: 0 max: 1 per-stack

Put the stack into an 'interrupt driven' mode of operation. When this option is not enabled Onload uses
heuristics to decide when to enable interrupts, and this can cause latency jitter in some applications. So enabling
this option can help avoid latency outliers.This option is enabled by default except when spinning is enabled.This
option can be used in conjunction with spinning to prevent outliers caused when the spin timeout is exceeded
and the application blocks, or when the application is descheduled. In this case we recommend that interrupt
moderation be set to a reasonably high value (eg. 100us) to prevent too high a rate of interrupts.

EF_INT_REPRIME

Name: int_reprime default: 0 min: 0 max: 1 per-stack

Enable interrupts more aggressively than the default.

EF_IRQ_CHANNEL

Name: irq_channel default: 4294967295 min: -1 max: SMAX per-stack

Set the net-driver receive channel that will be used to handle interrupts for this stack. The core that receives
interrupts for this stack will be whichever core is configured to handle interrupts for the specified net driver
receive channel.This option only takes effect EF_PACKET_BUFFER_MODE=0 (default) or 2.
Issue 15 © Solarflare Communications 2013 98

 Onload

User Guide
EF_IRQ_CORE

Name: irq_core default: 4294967295 min: -1 max: SMAX per-stack

Specify which CPU core interrupts for this stack should be handled on.With EF_PACKET_BUFFER_MODE=1 or 3,
Onload creates dedicated interrupts for each stack, and the interrupt is assigned to the requested core.With
EF_PACKET_BUFFER_MODE=0 (default) or 2, Onload interrupts are handled via net driver receive channel
interrupts. The sfc_affinity driver is used to choose which net-driver receive channel is used. It is only possible
for interrupts to be handled on the requested core if a net driver interrupt is assigned to the selected core.
Otherwise a nearby core will be selected.Note that if the IRQ balancer service is enabled it may redirect
interrupts to other cores.

EF_IRQ_MODERATION

Name: irq_usec default: 0 min: 0 max: 1000000 per-stack

Interrupt moderation interval, in microseconds.This option only takes effective with
EF_PACKET_BUFFER_MODE=1 or 3. Otherwise the interrupt moderation settings of the kernel net driver take
effect.

EF_KEEPALIVE_INTVL

Name: keepalive_intvl default: 75000 per-stack

Default interval between keepalives, in milliseconds.

EF_KEEPALIVE_PROBES

Name: keepalive_probes default: 9 per-stack

Default number of keepalive probes to try before aborting the connection.

EF_KEEPALIVE_TIME

Name: keepalive_time default: 7200000 per-stack

Default idle time before keepalive probes are sent, in milliseconds.
Issue 15 © Solarflare Communications 2013 99

 Onload

User Guide
EF_LOAD_ENV

Name: load_env default: 1 min: 0 max: 1 per-process

OpenOnload will only consult other environment variables if this option is set. i.e. Clearing this option will cause
all other EF_ environment variables to be ignored.

EF_LOG_VIA_IOCTL

Name: log_via_ioctl default: 0 min: 0 max: 1 per-process

Causes error and log messages emitted by OpenOnload to be written to the system log rather than written to
standard error. This includes the copyright banner emitted when an application creates a new OpenOnload
stack.By default, OpenOnload logs are written to the application standard error if and only if it is a TTY.Enable
this option when it is important not to change what the application writes to standard error.Disable it to
guarantee that log goes to standard error even if it is not a TTY.

EF_MAX_ENDPOINTS

Name: max_ep_bufs default: 1024 min: 0 max: CI_CFG_NETIF_MAX_ENDPOINTS_MAX per-
stack

This option places an upper limit on the number of accelerated endpoints (sockets, pipes etc.) in an Onload
stack. This option should be set to a power of two between 1 and 32,768.When this limit is reached listening
sockets are not able to accept new connections over accelerated interfaces. New sockets and pipes created via
socket() and pipe() etc. are handed over to the kernel stack and so are not accelerated.Note: Multiple endpoint
buffers are consumed by each accelerated pipe.

EF_MAX_EP_PINNED_PAGES

Name: max_ep_pinned_pages default: 512 per-stack

Not currently used.

EF_MAX_PACKETS

Name: max_packets default: 32768 min: 1024 per-stack

Upper limit on number of packet buffers in each OpenOnload stack. Packet buffers require hardware resources
which may become a limiting factor if many stacks are each using many packet buffers. This option can be used
to limit how much hardware resource and memory a stack uses. This option has an upper limit determined by
the max_packets_per_stack onload module option.Note: When 'scalable packet buffer mode' is not enabled (see
Issue 15 © Solarflare Communications 2013 100

 Onload

User Guide
EF_PACKET_BUFFER_MODE) the total number of packet buffers possible in aggregate is limited by a hardware
resource. The SFN5x series adapters support approximately 120,000 packet buffers.

EF_MAX_RX_PACKETS

Name: max_rx_packets default: 24576 min: 0 max: 1000000000 per-stack

The maximum number of packet buffers in a stack that can be used by the receive data path. This should be set
to a value smaller than EF_MAX_PACKETS to ensure that some packet buffers are reserved for the transmit path.

EF_MAX_TX_PACKETS

Name: max_tx_packets default: 24576 min: 0 max: 1000000000 per-stack

The maximum number of packet buffers in a stack that can be used by the transmit data path. This should be set
to a value smaller than EF_MAX_PACKETS to ensure that some packet buffers are reserved for the receive path.

EF_MCAST_JOIN_BINDTODEVICE

Name: mcast_join_bindtodevice default: 0 min: 0 max: 1 per-stack

When a UDP socket joins a multicast group (using IP_ADD_MEMBERSHIP or similar), this option causes the
socket to be bound to the interface that the join was on. The benefit of this is that it ensures the socket will not
accidentally receive packets from other interfaces that happen to match the same group and port. This can
sometimes happen if another socket joins the same multicast group on a different interface, or if the switch is
not filtering multicast traffic effectively.If the socket joins multicast groups on more than one interface, then the
binding is automatically removed.

EF_MCAST_JOIN_HANDOVER

Name: mcast_join_handover default: 0 min: 0 max: 2 per-stack

When this option is set to 1, and a UDP socket joins a multicast group on an interface that is not accelerated, the
UDP socket is handed-over to the kernel stack. This can be a good idea because it prevents that socket from
consuming Onload resources, and may also help avoid spinning when it is not wanted.When set to 2, UDP
sockets that join multicast groups are always handed-over to the kernel stack.
Issue 15 © Solarflare Communications 2013 101

 Onload

User Guide
EF_MCAST_RECV

Name: mcast_recv default: 1 min: 0 max: 1 per-stack

Controls whether or not to accelerate multicast receives. When set to zero, multicast receives are not
accelerated, but the socket continues to be managed by Onload.See also EF_MCAST_JOIN_HANDOVER.See the
OpenOnload manual for further details on multicast operation.

EF_MIN_FREE_PACKETS

Name: min_free_packets default: 100 per-stack

Minimum number of free packets to reserve for each stack at initialisation. If Onload is not able to allocate
sufficient packet buffers to fill the RX rings and fill the free pool with the given number of buffers, then creation
of the stack will fail.

EF_MULTICAST_LOOP_OFF

Name: multicast_loop_off default: 1 min: 0 max: 1 per-stack

When set, disables loopback of multicast traffic to receivers in the same OpenOnload stack.See the OpenOnload
manual for further details on multicast operation.

EF_NAME

Name: ef_name per-process

Processes setting the same value for EF_NAME in their environment can share an OpenOnload stack.

EF_NETIF_DTOR

Name: netif_dtor default: 1 min: 0 max: 2 per-process

This option controls the lifetime of OpenOnload stacks when the last socket in a stack is closed.

EF_NONAGLE_INFLIGHT_MAX

Name: nonagle_inflight_max default: 50 min: 1 per-stack

This option affects the behaviour of TCP sockets with the TCP_NODELAY socket option. Nagle's algorithm is
enabled when the number of packets in-flight (sent but not acknowledged) exceeds the value of this option. This
improves efficiency when sending many small messages, while preserving low latency.Set this option to -1 to
Issue 15 © Solarflare Communications 2013 102

 Onload

User Guide
ensure that Nagle's algorithm never delays sending of TCP messages on sockets with TCP_NODELAY enabled.

EF_NO_FAIL

Name: no_fail default: 1 min: 0 max: 1 per-process

This option controls whether failure to create an accelerated socket (due to resource limitations) is hidden by
creating a conventional unaccelerated socket. Set this option to 0 to cause out-of-resources errors to be
propagated as errors to the application, or to 1 to have Onload use the kernel stack instead when out of
resources.Disabling this option can be useful to ensure that sockets are being accelerated as expected (ie. to find
out when they are not).

EF_PACKET_BUFFER_MODE

Name: packet_buffer_mode default: 0 min: 0 max: 3 per-stack

This option affects how DMA buffers are managed. The default packet buffer mode uses a limited hardware
resource, and so restricts the total amount of memory that can be used by Onload for DMA.Setting
EF_PACKET_BUFFER_MODE!=0 enables 'scalable packet buffer mode' which removes that limit. See details for
each mode below. 1 - SR-IOV with IOMMU. Each stack allocates a separate PCI Virtual Function. IOMMU
guarantees that different stacks do not have any access to each other data. 2 - Physical address mode.
Inherently unsafe; no address space separation between different stacks or net driver packets. 3 - SR-IOV with
physical address mode. Each stack allocates a separate PCI Virtual Function. IOMMU is not used, so this mode is
unsafe in the same way as (2).To use odd modes (1 and 3) SR-IOV must be enabled in the BIOS, OS kernel and on
the network adapter. In these modes you also get faster interrupt handler which can improve latency for some
workloads.For mode (1) you also have to enable IOMMU (also known as VT-d) in BIOSand in your kernel.For
unsafe physical address modes (2) and (3), you should tune phys_mode_gid module parameter of the onload
module.

EF_PIO

NAME: pio default: 1 min: 0 max: 2 per-stack

Control of whether Programmed I/O is used instead of DMA for small packets: 0 - no (use DMA); 1 - use PIO for
small packets if available (default); 2 - use PIO for small packets and fail if PIO is not available.

Mode 1 will fall back to DMA if PIO is not currently available.

Mode 2 will fail to create the stack if the hardware supports PIO but PIO is not currently available. On hardware
that does not support PIO there is no difference between mode 1 and mode 2

In all cases, PIO will only be used for small packets (see EF_PIO_THRESHOLD) and if the VI's transmit queue is
currently empty. If these conditions are not met DMA will be used, even in mode 2.
Issue 15 © Solarflare Communications 2013 103

 Onload

User Guide
EF_PIO_THRESHOLD

NAME: pio_thresh default: 1514 max: 0 per-stack

Sets a threshold for the size of packet that will use PIO, if turned on using EF_PIO. Packets up to the threshold
will use PIO. Larger packets will not.

EF_PIPE

Name: ul_pipe default: 2 min: CI_UNIX_PIPE_DONT_ACCELERATE max:
CI_UNIX_PIPE_ACCELERATE_IF_NETIF per-process

- disable pipe acceleration, 1 - enable pipe acceleration, 2 - acclerate pipes only if an Onload stack already exists
in the process.

EF_PIPE_RECV_SPIN

Name: pipe_recv_spin default: 0 min: 0 max: 1 per-process

Spin in pipe receive calls until data arrives or the spin timeout expires (whichever is the sooner). If the spin
timeout expires, enter the kernel and block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_PIPE_SEND_SPIN

Name: pipe_send_spin default: 0 min: 0 max: 1 per-process

Spin in pipe send calls until space becomes available in the socket buffer or the spin timeout expires (whichever
is the sooner). If the spin timeout expires, enter the kernel and block. The spin timeout is set by EF_SPIN_USEC
or EF_POLL_USEC.

EF_PKT_WAIT_SPIN

Name: pkt_wait_spin default: 0 min: 0 max: 1 per-process

Spin while waiting for DMA buffers. If the spin timeout expires, enter the kernel and block. The spin timeout is
set by EF_SPIN_USEC or EF_POLL_USEC.

EF_POLL_FAST

Name: ul_poll_fast default: 1 min: 0 max: 1 per-process

Allow a poll() call to return without inspecting the state of all polled file descriptors when at least one event is
satisfied. This allows the accelerated poll() call to avoid a system call when accelerated sockets are 'ready', and
Issue 15 © Solarflare Communications 2013 104

 Onload

User Guide
can increase performance substantially.This option changes the semantics of poll(), and as such could cause
applications to misbehave. It effectively gives priority to accelerated sockets over non-accelerated sockets and
other file descriptors. In practice a vast majority of applications work fine with this option.

EF_POLL_FAST_USEC

Name: ul_poll_fast_usec default: 32 per-process

When spinning in a poll() call, causes accelerated sockets to be polled for N usecs before unaccelerated sockets
are polled. This reduces latency for accelerated sockets, possibly at the expense of latency on unaccelerated
sockets. Since accelerated sockets are typically the parts of the application which are most performance-
sensitive this is typically a good tradeoff.

EF_POLL_NONBLOCK_FAST_USEC

Name: ul_poll_nonblock_fast_usec default: 200 per-process

When invoking poll() with timeout==0 (non-blocking), this option causes non-accelerated sockets to be polled
only every N usecs.This reduces latency for accelerated sockets, possibly at the expense of latency on
unaccelerated sockets. Since accelerated sockets are typically the parts of the application which are most
performance-sensitive this is often a good tradeoff.Set this option to zero to disable, or to a higher value to
further improve latency for accelerated sockets.This option changes the behaviour of poll() calls, so could
potentially cause an application to misbehave.

EF_POLL_ON_DEMAND

Name: poll_on_demand default: 1 min: 0 max: 1 per-stack

Poll for network events in the context of the application calls into the network stack. This option is enabled by
default.This option can improve performance in multi-threaded applications where the Onload stack is interrupt-
driven (EF_INT_DRIVEN=1), because it can reduce lock contention. Setting EF_POLL_ON_DEMAND=0 ensures
that network events are (mostly) processed in response to interrupts.

EF_POLL_SPIN

Name: ul_poll_spin default: 0 min: 0 max: 1 per-process

Spin in poll() calls until an event is satisfied or the spin timeout expires (whichever is the sooner). If the spin
timeout expires, enter the kernel and block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.
Issue 15 © Solarflare Communications 2013 105

 Onload

User Guide
EF_POLL_USEC

Name: ef_poll_usec_meta_option default: 0 per-process

This option enables spinning and sets the spin timeout in microseconds.Setting this option is equivalent to:
Setting EF_SPIN_USEC and EF_BUZZ_USEC, enabling spinning for UDP sends and receives, TCP sends and
receives, select, poll and epoll_wait(), and enabling lock buzzing.Spinning typically reduces latency and jitter
substantially, and can also improve throughput. However, in some applications spinning can harm performance;
particularly application that have many threads. When spinning is enabled you should normally dedicate a CPU
core to each thread that spins.You can use the EF_*_SPIN options to selectively enable or disable spinning for
each API and transport. You can also use the onload_thread_set_spin() extension API to control spinning on a
per-thread and per-API basis.

EF_PREFAULT_PACKETS

Name: prefault_packets default: 1 min: 0 max: 1000000000 per-stack

When set, this option causes the process to 'touch' the specified number of packet buffers when the Onload
stack is created. This causes memory for the packet buffers to be pre-allocated, and also causes them to be
memory-mapped into the process address space. This can prevent latency jitter caused by allocation and
memory-mapping overheads.The number of packets requested is in addition to the packet buffers that are
allocated to fill the RX rings. There is no guarantee that it will be possible to allocate the number of packet
buffers requested.The default setting causes all packet buffers to be mapped into the user-level address space,
but does not cause any extra buffers to be reserved. Set to 0 to prevent prefaulting.

EF_PROBE

Name: probe default: 1 min: 0 max: 1 per-process

When set, file descriptors accessed following exec() will be 'probed' and OpenOnload sockets will be mapped to
user-land so that they can be accelerated. Otherwise OpenOnload sockets are not accelerated following exec().

EF_RETRANSMIT_THRESHOLD

Name: retransmit_threshold default: 15 min: 0 max: SMAX per-stack

Number of retransmit timeouts before a TCP connect is aborted.

EF_RETRANSMIT_THRESHOLD_SYN

Name: retransmit_threshold_syn default: 4 min: 0 max: SMAX per-stack
Issue 15 © Solarflare Communications 2013 106

 Onload

User Guide
Number of times a SYN will be retransmitted before a connect() attempt will be aborted.

EF_RETRANSMIT_THRESHOLD_SYNACK

Name: retransmit_threshold_synack default: 5 min: 0 max: SMAX per-stack

Number of times a SYN-ACK will be retransmitted before an embryonic connection will be aborted.

EF_RFC_RTO_INITIAL

Name: rto_initial default: 1000 per-stack

Initial retransmit timeout in milliseconds. i.e. The number of milliseconds to wait for an ACK before
retransmitting packets.

EF_RFC_RTO_MAX

Name: rto_max default: 120000 per-stack

Maximum retransmit timeout in milliseconds.

EF_RFC_RTO_MIN

Name: rto_min default: 200 per-stack

Minimum retransmit timeout in milliseconds.

EF_RXQ_LIMIT

Name: rxq_limit default: 65535 min: CI_CFG_RX_DESC_BATCH max: 65535 per-stack

Maximum fill level for the receive descriptor ring. This has no effect when it has a value larger than the ring size
(EF_RXQ_SIZE).

EF_RXQ_MIN

Name: rxq_min default: 256 min: 2 * CI_CFG_RX_DESC_BATCH + 1 per-stack

Minimum initial fill level for each RX ring. If Onload is not able to allocate sufficient packet buffers to fill each RX
ring to this level, then creation of the stack will fail.
Issue 15 © Solarflare Communications 2013 107

 Onload

User Guide
EF_RXQ_SIZE

Name: rxq_size default: 512 min: 512 max: 4096 per-stack

Set the size of the receive descriptor ring. Valid values: 512, 1024, 2048 or 4096.A larger ring size can absorb
larger packet bursts without drops, but may reduce efficiency because the working set size is increased.

EF_RX_TIMESTAMPING

Name: rx_timestamping default: 0 min: 0 max: 3 per-stack

Control of hardware timestamping of received packets, possible values:

0 - do not do timestamping (default)
1 - request timestamping but continue if hardware is not capable or it does not succeed
2 - request timestamping and fail if hardware is capable and it does not succeed
3 - request timestamping and fail if hardware is not capable or it does not succeed.

EF_SA_ONSTACK_INTERCEPT

Name: sa_onstack_intercept default: 0 min: 0 max: 1 per-process

Intercept signals when signal handler is installed with SA_ONSTACK flag. 0 - Don't intercept. If you call socket-
related functions such as send, file-related functions such as close or dup from your signal handler, then your
application may deadlock. (default) 1 - Intercept. There is no guarantee that SA_ONSTACK flag will really work,
but OpenOnload library will do its best.

EF_SELECT_FAST

Name: ul_select_fast default: 1 min: 0 max: 1 per-process

Allow a select() call to return without inspecting the state of all selected file descriptors when at least one
selected event is satisfied. This allows the accelerated select() call to avoid a system call when accelerated
sockets are 'ready', and can increase performance substantially.This option changes the semantics of select(),
and as such could cause applications to misbehave. It effectively gives priority to accelerated sockets over non-
accelerated sockets and other file descriptors. In practice a vast majority of applications work fine with this
option.

EF_SELECT_SPIN

Name: ul_select_spin default: 0 min: 0 max: 1 per-process
Issue 15 © Solarflare Communications 2013 108

 Onload

User Guide
Spin in blocking select() calls until the select set is satisfied or the spin timeout expires (whichever is the sooner).
If the spin timeout expires, enter the kernel and block. The spin timeout is set by EF_SPIN_USEC or
EF_POLL_USEC.

EF_SEND_POLL_MAX_EVS

Name: send_poll_max_events default: 96 min: 1 max: 65535 per-stack

When polling for network events after sending, this places a limit on the number of events handled.

EF_SEND_POLL_THRESH

Name: send_poll_thresh default: 64 min: 0 max: 65535 per-stack

Poll for network events after sending this many packets.Setting this to a larger value may improve transmit
throughput for small messages by allowing batching. However, such batching may cause sends to be delayed
leading to increased jitter.

EF_SHARE_WITH

Name: share_with default: 0 min: -1 max: SMAX per-stack

Set this option to allow a stack to be accessed by processes owned by another user. Set it to the UID of a user
that should be permitted to share this stack, or set it to -1 to allow any user to share the stack. By default stacks
are not accessible by users other than root.Processes invoked by root can access any stack. Setuid processes can
only access stacks created by the effective user, not the real user. This restriction can be relaxed by setting the
onload kernel module option allow_insecure_setuid_sharing=1.WARNING: A user that is permitted to access a
stack is able to: Snoop on any data transmitted or received via the stack; Inject or modify data transmitted or
received via the stack; damage the stack and any sockets or connections in it; cause misbehaviour and crashes in
any application using the stack.

EF_SIGNALS_NOPOSTPONE

Name: signals_no_postpone default: 67109952 min: 0 max: (ci_uint64)(-1) per-process

Comma-separated list of signal numbers to avoid postponing of the signal handlers. Your application will
deadlock if one of the handlers uses socket function. By default, the list includes SIGBUS, SIGSEGV and
SIGPROF.Please specify numbers, not string aliases: EF_SIGNALS_NOPOSTPONE=7,11,27 instead of
EF_SIGNALS_NOPOSTPONE=SIGBUS,SIGSEGV,SIGPROF.You can set EF_SIGNALS_NOPOSTPONE to empty value
to postpone all signal handlers in the same way if you suspect these signals to call network functions.
Issue 15 © Solarflare Communications 2013 109

 Onload

User Guide
EF_SOCK_LOCK_BUZZ

Name: sock_lock_buzz default: 0 min: 0 max: 1 per-process

Spin while waiting to obtain a per-socket lock. If the spin timeout expires, enter the kernel and block. The spin
timeout is set by EF_BUZZ_USEC.The per-socket lock is taken in recv() calls and similar. This option can reduce
jitter when multiple threads invoke recv() on the same socket, but can reduce fairness between threads
competing for the lock.

EF_SPIN_USEC

Name: ul_spin_usec default: 0 per-process

Sets the timeout in microseconds for spinning options. Set this to to -1 to spin forever. The spin timeout may
also be set by the EF_POLL_USEC option.Spinning typically reduces latency and jitter substantially, and can also
improve throughput. However, in some applications spinning can harm performance; particularly application
that have many threads. When spinning is enabled you should normally dedicate a CPU core to each thread that
spins.You can use the EF_*_SPIN options to selectively enable or disable spinning for each API and transport.
You can also use the onload_thread_set_spin() extension API to control spinning on a per-thread and per-API
basis.

EF_STACK_LOCK_BUZZ

Name: stack_lock_buzz default: 0 min: 0 max: 1 per-process

Spin while waiting to obtain a per-stack lock. If the spin timeout expires, enter the kernel and block. The spin
timeout is set by EF_BUZZ_USEC.This option reduces jitter caused by lock contention, but can reduce fairness
between threads competing for the lock.

EF_STACK_PER_THREAD

Name: stack_per_thread default: 0 min: 0 max: 1 per-process

Create a separate Onload stack for the sockets created by each thread.

EF_TCP

Name: ul_tcp default: 1 min: 0 max: 1 per-process

Clear to disable acceleration of new TCP sockets.
Issue 15 © Solarflare Communications 2013 110

 Onload

User Guide
EF_TCP_ACCEPT_SPIN

Name: tcp_accept_spin default: 0 min: 0 max: 1 per-process

Spin in blocking TCP accept() calls until data arrives, the spin timeout expires or the socket timeout
expires(whichever is the sooner). If the spin timeout expires, enter the kernel and block. The spin timeout is set
by EF_SPIN_USEC or EF_POLL_USEC.

EF_TCP_ADV_WIN_SCALE_MAX

Name: tcp_adv_win_scale_max default: 14 min: 0 max: 14 per-stack

Maximum value for TCP window scaling that will be advertised.

EF_TCP_BACKLOG_MAX

Name: tcp_backlog_max default: 256 per-stack

Places an upper limit on the number of embryonic (half-open) connections in an OpenOnload stack.

EF_TCP_CLIENT_LOOPBACK

Name: tcp_client_loopback default: 0 min: 0 max: CITP_TCP_LOOPBACK_TO_NEWSTACK
per-stack

Enable acceleration of TCP loopback connections on the connecting (client) side: 0 - not accelerated (default);
1 - accelerate if the listening socket is in the same stack (you should also set EF_TCP_SERVER_LOOPBACK!=0); 2
- accelerate and move accepted socket to the stack of the connecting socket (server should allow this via
EF_TCP_SERVER_LOOPBACK=2); 3 - accelerate and move the connecting socket to the stack of the listening
socket (server should allow this via EF_TCP_SERVER_LOOPBACK!=0). 4 - accelerate and move both connecting
and accepted sockets to the new stack (server should allow this via EF_TCP_SERVER_LOOPBACK=2).NOTE:
Option 3 breaks some usecases with epoll, fork and dup calls.

EF_TCP_CONNECT_HANDOVER

Name: tcp_connect_handover default: 0 min: 0 max: 1 per-stack

When an accelerated TCP socket calls connect(), hand it over to the kernel stack. This option disables
acceleration of active-open TCP connections.
Issue 15 © Solarflare Communications 2013 111

 Onload

User Guide
EF_TCP_FASTSTART_IDLE

Name: tcp_faststart_idle default: 65536 min: 0 per-stack

The FASTSTART feature prevents Onload from delaying ACKs during times when doing so may reduce
performance. FASTSTART is enabled when a connection is new, following loss and after the connection has been
idle for a while.This option sets the number of bytes that must be ACKed by the receiver before the connection
exits FASTSTART. Set to zero to prevent a connection entering FASTSTART after an idle period.

EF_TCP_FASTSTART_INIT

Name: tcp_faststart_init default: 65536 min: 0 per-stack

The FASTSTART feature prevents Onload from delaying ACKs during times when doing so may reduce
performance. FASTSTART is enabled when a connection is new, following loss and after the connection has been
idle for a while.This option sets the number of bytes that must be ACKed by the receiver before the connection
exits FASTSTART. Set to zero to disable FASTSTART on new connections.

EF_TCP_FASTSTART_LOSS

Name: tcp_faststart_loss default: 65536 min: 0 per-stack

The FASTSTART feature prevents Onload from delaying ACKs during times when doing so may reduce
performance. FASTSTART is enabled when a connection is new, following loss and after the connection has been
idle for a while.This option sets the number of bytes that must be ACKed by the receiver before the connection
exits FASTSTART following loss. Set to zero to disable FASTSTART after loss.

EF_TCP_FIN_TIMEOUT

Name: fin_timeout default: 60 per-stack

Time in seconds to wait for a FIN in the TCP FIN_WAIT2 state.

EF_TCP_INITIAL_CWND

Name: initial_cwnd default: 0 min: 0 max: SMAX per-stack

Sets the initial size of the congestion window (in bytes) for TCP connections. Some care is needed as, for
example, setting smaller than the segment size may result in Onload being unable to send traffic.

WARNING: Modifying this option may violate the TCP protocol.
Issue 15 © Solarflare Communications 2013 112

 Onload

User Guide
EF_TCP_LISTEN_HANDOVER

Name: tcp_listen_handover default: 0 min: 0 max: 1 per-stack

When an accelerated TCP socket calls listen(), hand it over to the kernel stack. This option disables acceleration
of TCP listening sockets and passively opened TCP connections.

EF_TCP_LOSS_MIN_CWND

Name: loss_min_cwnd default: 0 min: 0 max: SMAX per-stack

Sets the minimum size of the congestion window for TCP connections following loss.WARNING: Modifying this
option may violate the TCP protocol.

EF_TCP_RCVBUF

Name: tcp_rcvbuf_user default: 0 per-stack

Override SO_RCVBUF for TCP sockets. (Note: the actual size of the buffer is double the amount requested,
mimicking the behavior of the Linux kernel.)

EF_TCP_RECV_SPIN

Name: tcp_recv_spin default: 0 min: 0 max: 1 per-process

Spin in blocking TCP receive calls until data arrives, the spin timeout expires or the socket timeout expires
(whichever is the sooner). If the spin timeout expires, enter the kernel and block. The spin timeout is set by
EF_SPIN_USEC or EF_POLL_USEC.

EF_TCP_RST_DELAYED_CONN

Name: rst_delayed_conn default: 0 min: 0 max: 1 per-stack

This option tells Onload to reset TCP connections rather than allow data to be transmitted late. Specifically, TCP
connections are reset if the retransmit timeout fires. (This usually happens when data is lost, and normally
triggers a retransmit which results in data being delivered hundreds of milliseconds late).WARNING: This option
is likely to cause connections to be reset spuriously if ACK packets are dropped in the network.
Issue 15 © Solarflare Communications 2013 113

 Onload

User Guide
EF_TCP_RX_CHECKS

Name: tcp_rx_checks default: 0 min: 0 max: 1 per-stack

Internal/debugging use only: perform extra debugging/consistency checks on received packets.

EF_TCP_RX_LOG_FLAGS

Name: tcp_rx_log_flags default: 0 per-stack

Log received packets that have any of these flags set in the TCP header. Only active when EF_TCP_RX_CHECKS is
set.

EF_TCP_SEND_SPIN

Name: tcp_send_spin default: 0 min: 0 max: 1 per-process

Spin in blocking TCP send calls until window is updated by peer, the spin timeout expires or the socket timeout
expires (whichever is the sooner). If the spin timeout expires, enter the kernel and block. The spin timeout is set
by EF_SPIN_USEC or EF_POLL_USEC.

EF_TCP_SERVER_LOOPBACK

Name: tcp_server_loopback default: 0 min: 0 max:
CITP_TCP_LOOPBACK_ALLOW_ALIEN_IN_ACCEPTQ per-stack

Enable acceleration of TCP loopback connections on the listening (server) side: 0 - not accelerated (default); 1
- accelerate if the connecting socket is in the same stack (you should also set EF_TCP_CLIENT_LOOPBACK!=0); 2
- accelerate and allow accepted socket to be in another stack (this is necessary for clients with
EF_TCP_CLIENT_LOOPBACK=2,4).

EF_TCP_SNDBUF

Name: tcp_sndbuf_user default: 0 per-stack

Override SO_SNDBUF for TCP sockets (Note: the actual size of the buffer is double the amount requested,
mimicking the behavior of the Linux kernel.)
Issue 15 © Solarflare Communications 2013 114

 Onload

User Guide
EF_TCP_SNDBUF_MODE

Name: tcp_sndbuf_mode default: 0 min: 0 max: 1 per-stack

This option controls how the SO_SNDBUF limit is applied to TCP sockets. In the default mode the limit applies
only to the send queue. When this option is set to 1, the limit applies to the size of the send queue and
retransmit queue combined.

EF_TCP_SYN_OPTS

Name: syn_opts default: 7 per-stack

A bitmask specifying the TCP options to advertise in SYN segments.bit 0 (0x1) is set to 1 to enable PAWS and
RTTM timestamps (RFC1323),bit 1 (0x2) is set to 1 to enable window scaling (RFC1323),bit 2 (0x4) is set to 1 to
enable SACK (RFC2018),bit 3 (0x8) is set to 1 to enable ECN (RFC3128).

EF_TCP_TCONST_MSL

Name: msl_seconds default: 25 per-stack

The Maximum Segment Lifetime (as defined by the TCP RFC). A smaller value causes connections to spend less
time in the TIME_WAIT state.

EF_TXQ_LIMIT

Name: txq_limit default: 268435455 min: 16 * 1024 max: 0xfffffff per-stack

Maximum number of bytes to enqueue on the transmit descriptor ring.

EF_TXQ_RESTART

Name: txq_restart default: 268435455 min: 1 max: 0xfffffff per-stack

Level (in bytes) to which the transmit descriptor ring must fall before it will be filled again.

EF_TXQ_SIZE

Name: txq_size default: 512 min: 512 max: 4096 per-stack

Set the size of the transmit descriptor ring. Valid values: 512, 1024, 2048 or 4096. The max transmit queue size
supported by the SFN7000 series adapter is 2048.
Issue 15 © Solarflare Communications 2013 115

 Onload

User Guide
EF_TX_MIN_IPG_CNTL

Name: tx_min_ipg_cntl default: 0 min: -1 max: 20 per-stack

Rate pacing value.

EF_TX_PUSH

Name: tx_push default: 1 min: 0 max: 1 per-stack

Enable low-latency transmit.

EF_TX_PUSH_THRESHOLD

Name: tx_push_thresh default: 100 min: 1 per-stack

Sets a threshold for the number of outstanding sends before we stop using TX descriptor push. This has no effect
if EF_TX_PUSH=0. This threshold is ignored, and assumed to be 1, on pre-SFN7000 series hardware. It makes
sense to set this value similar to EF_SEND_POLL_THRESH.

EF_TX_QOS_CLASS

Name: tx_qos_class default: 0 min: 0 max: 1 per-stack

Set the QOS class for transmitted packets on this Onload stack. Two QOS classes are supported: 0 and 1. By
default both Onload accelerated traffic and kernel traffic are in class 0. You can minimise latency by placing
latency sensitive traffic into a separate QOS class from bulk traffic.

EF_UDP

Name: ul_udp default: 1 min: 0 max: 1 per-process

Clear to disable acceleration of new UDP sockets.

EF_UDP_CONNECT_HANDOVER

Name: udp_connect_handover default: 1 min: 0 max: 1 per-stack

When a UDP socket is connected to an IP address that cannot be accelerated by OpenOnload, hand the socket
over to the kernel stack.When this option is disabled the socket remains under the control of OpenOnload. This
may be worthwhile because the socket may subsequently be re-connected to an IP address that can be
accelerated.
Issue 15 © Solarflare Communications 2013 116

 Onload

User Guide
EF_UDP_PORT_HANDOVER2_MAX

Name: udp_port_handover2_max default: 1 per-stack

When set (together with EF_UDP_PORT_HANDOVER2_MIN), this causes UDP sockets explicitly bound to a port
in the given range to be handed over to the kernel stack. The range is inclusive.

EF_UDP_PORT_HANDOVER2_MIN

Name: udp_port_handover2_min default: 2 per-stack

When set (together with EF_UDP_PORT_HANDOVER2_MAX), this causes UDP sockets explicitly bound to a port
in the given range to be handed over to the kernel stack. The range is inclusive.

EF_UDP_PORT_HANDOVER3_MAX

Name: udp_port_handover3_max default: 1 per-stack

When set (together with EF_UDP_PORT_HANDOVER3_MIN), this causes UDP sockets explicitly bound to a port
in the given range to be handed over to the kernel stack. The range is inclusive.

EF_UDP_PORT_HANDOVER3_MIN

Name: udp_port_handover3_min default: 2 per-stack

When set (together with EF_UDP_PORT_HANDOVER3_MAX), this causes UDP sockets explicitly bound to a port
in the given range to be handed over to the kernel stack. The range is inclusive.

EF_UDP_PORT_HANDOVER_MAX

Name: udp_port_handover_max default: 1 per-stack

When set (together with EF_UDP_PORT_HANDOVER_MIN), this causes UDP sockets explicitly bound to a port in
the given range to be handed over to the kernel stack. The range is inclusive.

EF_UDP_PORT_HANDOVER_MIN

Name: udp_port_handover_min default: 2 per-stack

When set (together with EF_UDP_PORT_HANDOVER_MAX), this causes UDP sockets explicitly bound to a port in
the given range to be handed over to the kernel stack. The range is inclusive.
Issue 15 © Solarflare Communications 2013 117

 Onload

User Guide
EF_UDP_RCVBUF

Name: udp_rcvbuf_user default: 0 per-stack

Override SO_RCVBUF for UDP sockets. (Note: the actual size of the buffer is double the amount requested,
mimicking the behavior of the Linux kernel.)

EF_UDP_RECV_SPIN

Name: udp_recv_spin default: 0 min: 0 max: 1 per-process

Spin in blocking UDP receive calls until data arrives, the spin timeout expires or the socket timeout expires
(whichever is the sooner). If the spin timeout expires, enter the kernel and block. The spin timeout is set by
EF_SPIN_USEC or EF_POLL_USEC.

EF_UDP_SEND_SPIN

Name: udp_send_spin default: 0 min: 0 max: 1 per-process

Spin in blocking UDP send calls until space becomes available in the socket buffer, the spin timeout expires or the
socket timeout expires (whichever is the sooner). If the spin timeout expires, enter the kernel and block. The
spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.Note: UDP sends usually complete very quickly, but can
block if the application does a large burst of sends at a high rate. This option reduces jitter when such blocking is
needed.

EF_UDP_SEND_UNLOCKED

Name: udp_send_unlocked default: 1 min: 0 max: 1 per-stack

Enables the 'unlocked' UDP send path. When enabled this option improves concurrency when multiple threads
are performing UDP sends.

EF_UDP_SEND_UNLOCK_THRESH

Name: udp_send_unlock_thresh default: 1500 per-stack

UDP message size below which we attempt to take the stack lock early. Taking the lock early reduces overhead
and latency slightly, but may increase lock contention in multi-threaded applications.

EF_UDP_SNDBUF
Issue 15 © Solarflare Communications 2013 118

 Onload

User Guide
Name: udp_sndbuf_user default: 0 per-stack

Override SO_SNDBUF for UDP sockets. (Note: the actual size of the buffer is double the amount requested,
mimicking the behavior of the Linux kernel.)

EF_UL_EPOLL

Name: ul_epoll default: 1 min: 0 max: 2 per-process

Choose epoll implementation. The choices are: 0 - kernel (unaccelerated) 1 - user-level (accelerated, lowest
latency) 2 - kernel-accelerated (best when there are lots of sockets in the set)The default is the user-level
implementation (1).

EF_UL_POLL

Name: ul_poll default: 1 min: 0 max: 1 per-process

Clear to disable acceleration of poll() calls at user-level.

EF_UL_SELECT

Name: ul_select default: 1 min: 0 max: 1 per-process

Clear to disable acceleration of select() calls at user-level.

EF_UNCONFINE_SYN

Name: unconfine_syn default: 1 min: 0 max: 1 per-stack

Accept TCP connections that cross into or out-of a private network.

EF_UNIX_LOG

Name: log_level default: 3 per-process

A bitmask determining which kinds of diagnostics messages will be logged. 0x1 errors 0x2
unexpected 0x4 setup 0x8 verbose 0x10 select() 0x20 poll() 0x100 socket set-up
0x200 socket control 0x400 socket caching 0x1000 signal interception 0x2000 library enter/
exit 0x4000 log call arguments 0x8000 context lookup 0x10000 pass-through 0x20000 very
verbose 0x40000 Verbose returned error 0x80000 V.Verbose errors: show 'ok' too 0x20000000
verbose transport control 0x40000000 very verbose transport control 0x80000000 verbose pass-through
Issue 15 © Solarflare Communications 2013 119

 Onload

User Guide
EF_URG_RFC

Name: urg_rfc default: 0 min: 0 max: 1 per-stack

Choose between compliance with RFC1122 (1) or BSD behaviour (0) regarding the location of the urgent point in
TCP packet headers.

EF_USE_DSACK

Name: use_dsack default: 1 min: 0 max: 1 per-stack

Whether or not to use DSACK (duplicate SACK).

EF_USE_HUGE_PAGES

Name: huge_pages default: 1 min: 0 max: 2 per-stack

Control of whether huge pages are used for packet buffers: 0 - no; 1 - use huge pages if available (default); 2 -
always use huge pages and fail if huge pages are not available.Mode 1 prints syslog message if there is not
enough huge pages in the system.Mode 2 guarantees only initially-allocated packets to be in huge pages. It is
recommended to use this mode together with EF_MIN_FREE_PACKETS, to control the number of such
guaranteed huge pages. All non-initial packets are allocated in huge pages when possible; syslog message is
printed if the system is out of huge pages.Non-initial packets may be allocated in non-huge pages without any
warning in syslog for both mode 1 and 2 even if the system has free huge pages.

EF_VALIDATE_ENV

Name: validate_env default: 1 min: 0 max: 1 per-stack

When set this option validates Onload related environment variables (starting with EF_).

EF_VFORK_MODE

NAME: vfork_mode default: 1 min: 0 max: 2 per-process

This option dictates how vfork() intercept should work. After a vfork(), parent and child still share address space
but not file descriptors. We have to be careful about making changes in the child that can be seen in the parent.
We offer three options here. Different apps may require different options depending on their use of vfork(). If
using EF_VFORK_MODE=2, it is not safe to create sockets or pipes in the child before calling exec().

 0 - Old behavior. Replace vfork() with fork() 1 - Replace vfork() with fork() and block parent till
child exits/execs 2 - Replace vfork() with vfork()
Issue 15 © Solarflare Communications 2013 120

Issue 15 © Solarflare Communications 2013 121

 Onload

User Guide

Appendix B: Meta Options
There are several environment variables which act as meta-options and set several of the options
detailed in Appendix A. These are:

EF_POLL_USEC

Setting EF_POLL_USEC causes the following options to be set:

EF_SPIN_USEC=EF_POLL_USEC

EF_SELECT_SPIN=1

EF_EPOLL_SPIN=1

EF_POLL_SPIN=1

EF_PKT_WAIT_SPIN=1

EF_TCP_SEND_SPIN=1

EF_UDP_RECV_SPIN=1

EF_UDP_SEND_SPIN=1

EF_TCP_RECV_SPIN=1

EF_BUZZ_USEC=EF_POLL_USEC

EF_SOCK_LOCK_BUZZ=1

EF_STACK_LOCK_BUZZ=1

EF_BUZZ_USEC

Setting EF_BUZZ_USEC sets the following options:

EF_SOCK_LOCK_BUZZ=1

EF_STACK_LOCK_BUZZ=1

NOTE: If neither of the spinning options; EF_POLL_USEC and EF_SPIN_USEC are set, Onload will
resort to default interrupt driven behaviour because the EF_INT_DRIVEN environment variable is
enabled by default.

NOTE: If EF_POLL_USEC is set to value N, then EF_BUZZ_USEC is also set to N only if N <= 100, If
N > 100 then EF_BUZZ_USEC will be set to 100. This is deliberate as spinning for too long on
internal locks may adversely affect performance. However the user can explicity set
EF_BUZZ_USEC value e.g.

export EF_POLL_USEC=10000
export EF_BUZZ_USEC=1000

Issue 15 © Solarflare Communications 2013 122

 Onload

User Guide

Appendix C: Build Dependencies
General

Before Onload network and kernel drivers can be built and installed, the target platform must
support the following capabilities:

• Support a general C build environment - i.e. has gcc, make, libc and libc-devel.

• Can compile kernel modules - i.e. has the correct kernel-devel package for the installed kernel
version.

• If 32 bit applications are to be accelerated on 64 bit architectures the machine must be able to
build 32 bit applications.

Building Kernel Modules

The kernel must be built with CONFIG_NETFILTER enabled. Standard distributions will already
have this enabled, but it must also be enabled when building a custom kernel. This option does not
affect performance.

The following commands can be used to install kernel development headers.

• Debian based Distributions - including Ubuntu (any kernel):

apt-get install linux-headers-$(uname -r)

• For RedHat/Fedora (not for 32bit Kernel):

If the system supports a 32 bit Kernel and the kernel is PAE then install kernel-PAE-devel
otherwise install the following package:

yum -y install kernel-devel

• For SuSE:

yast -i kernel-source

Building 32 bit applications on 64 bit architecture platforms

The following commands can be used to install 32 bit libc development headers.

• Debian based Distributions - including Ubuntu:

apt-get install gcc-multilib libc6-dev-i386

• For RedHat/Fedora:

yum -y install glibc-devel.i586

• For SuSE:

yast -i glibc-devel-32bit

yast -i gcc-32bit

 Onload

User Guide
Appendix D: Onload Extensions API
The Onload Extensions API allows the user to customise an application using advanced features to
improve performance.

The Extensions API does not create any runtime dependency on Onload and an application using the
API can run without Onload. The license for the API and associated libraries is a BSD 2-Clause
License.

This section covers the follows topics:

Common Components...Page 112

Stacks API...Page 117

Zero-Copy API...Page 123

Receive Filtering API Overview...Page 134

Templated Sends...Page 136

Source Code

The onload source code is provided with the Onload distribution. Entry points for the source code
are:

src/lib/transport/unix/onload_ext_intercept.c

src/lib/transport/unix/zc_intercept.c

Common Components

For all applications employing the Extensions API the following components are provided:

• #include <onload/extensions.h>

An application should include the header file containing function prototypes and constant
values required when using the API.

• libonload_ext.a, libonload_ext.so

This library provides stub implementations of the extended API. An application that wishes to
use the extensions API should link against this library.

When Onload is not present, the application will continue to function, but calls to the
extensions API will have no effect (unless documented otherwise).

To link to this library include the ’-l’ linker option on the compiler command line i.e.

-lonload_ext
Issue 15 © Solarflare Communications 2013 112

 Onload

User Guide
• onload_is_present()

• onload_fd_stat()

Description If the application is linked with libonload_ext, but not running with
Onload this will return 0. If the application is running with Onload
this will return 1.

Definition int onload_is_present (void)

Formal Parameters none

Return Value Returns 1 from libonload.so library or 0 from libonload_ext.a
library

Description Retrieves internal details about an accelerated socket.

Definition see above

Formal Parameters see above

Return Value Returns:

0 socket is not accelerated

1 socket is accelerated

-ENOMEM when memory cannot be allocated

Notes When calling free() on stack_name use the (char *) because
memory is allocated using malloc.
Issue 15 © Solarflare Communications 2013 113

 Onload

User Guide
• onload_fd_check_feature()

Description Used to check whether the Onload file descriptor supports a feature
or not.

Definition see above

Formal Parameters see above

Return Value 0 if the feature is supported

>0 if the fd is supported

-ENOSYS if onload_fd_check_feature() is not supported.

Notes none.
Issue 15 © Solarflare Communications 2013 114

 Onload

User Guide
• onload_thread_set_spin()

The onload_thread_set_spin API can be used to control spinning on a per-thread or per-API
basis. The existing spin-related configuration options set the default behaviour for threads, and the
onload_thread_set_spin API overrides the default.

Description For each thread, specify which operations should spin.

Definition int onload_thread_set_spin(
enum onload_spin_type type,
unsigned spin)

Formal Parameters type: which operation to change the spin status of. Type must be
one of the following:

enum onload_spin_type{
ONLOAD_SPIN_ALL
ONLOAD_SPIN_UDP_RECV,
ONLOAD_SPIN_UDP_SEND,
ONLOAD_SPIN_TCP_RECV,
ONLOAD_SPIN_TCP_SEND,
ONLOAD_SPIN_TCP_ACCEPT,
ONLOAD_SPIN_PIPE_RECV,
ONLOAD_SPIN_PIPE_SEND,
ONLOAD_SPIN_SELECT,
ONLOAD_SPIN_POLL,
ONLOAD_SPIN_PKT_WAIT,
ONLOAD_SPIN_EPOLL_WAIT
};

spin: is a boolean which indicates whether the operation should
spin or not.

Return Value Return zero 0 on success or -EINVAL if unsupported type is
specified.

Notes Spin time (for all threads) is set using the EF_SPIN_USEC
parameter.

Disable all sorts of spinning:
 onload_thread_set_spin(ONLOAD_SPIN_ALL, 0);

Enable all sorts of spinning:
 onload_thread_set_spin(ONLOAD_SPIN_ALL, 1);
Issue 15 © Solarflare Communications 2013 115

 Onload

User Guide
 To enable spinning only for certain threads:

1 Set the spin timeout by setting EF_SPIN_USEC, and disable spinning by default by setting
EF_POLL_USEC=0.

2 In each thread that should spin, invoke onload_thread_set_spin().

 To disable spinning only in certain threads:

1 Enable spinning by setting EF_POLL_USEC=<timeout>.

2 In each thread that should not spin, invoke onload_thread_set_spin().

NOTE: If a thread is set to NOT spin and then blocks this may invoke an interrupt for the whole
stack. Interrupts occurring on moderately busy threads may cause unintended and undesirable
consequences.
Issue 15 © Solarflare Communications 2013 116

 Onload

User Guide
Stacks API

Using the Onload Extensions API an application can bind selected sockets to specific Onload stacks
and in this way ensure that time-critical sockets are not starved of resources by other non-critical
sockets. The API allows an application to select sockets which are to be accelerated thus reserving
Onload resources for performance critical paths. This also prevents non-critical paths from creating
jitter for critical paths.

• onload_set_stackname()

Description Select the Onload stack that new sockets are placed in.

Definition int onload_set_stackname(
 int who,
 int scope,
 const char *name)

Formal Parameters who: Must be one of the following:

ONLOAD_THIS_THREAD - to modify the stack name in which all
subsequent sockets are created by this thread.

ONLOAD_ALL_THREADS - to modify the stack name in which all
subsequent sockets are created by all threads in the current
process. ONLOAD_THIS_THREAD takes precedence over
ONLOAD_ALL_THREADS.

scope: Must be one of the following:

ONLOAD_SCOPE_THREAD - name is scoped with current thread

ONLOAD_SCOPE_PROCESS - name is scoped with current process

ONLOAD_SCOPE_USER - name is scoped with current user

ONLOAD_SCOPE_GLOBAL - name is global across all threads, users
and processes.

ONLOAD_SCOPE_NOCHANGE - undo effect of a previous call to
onload_set_stackname(ONLOAD_THIS_THREAD, ...) see notes.

name: is the stack name up to 8 characters.

or can be an empty string to set no stackname

or can be the special value ONLOAD_DONT_ACCELERATE to prevent
sockets created in this thread, user, process from being accelerated.

Sockets identified by the options above will belong to the
Onload stack until a subsequent call using
onload_set_stackname identifies a different stack or the
ONLOAD_SCOPE_NOCHANGE option is used.
Issue 15 © Solarflare Communications 2013 117

 Onload

User Guide
Return Value 0 on success

-1 with errno set to ENAMETOOLONG if the name exceeds
permitted length

-1 with errno set to EINVAL if other parameters are invalid.

Notes 1. This applies for stacks selected for sockets created by socket()
and for pipe(), it has no effect on accept(). Passively opened
sockets created via accept() will always be in the same stack as
the listening socket that they are linked to, this means that the
following are functionally identical i.e.

onload_set_stackname(foo)
socket
listen
onload_set_stackname(bar)
accept

and

onload_set_stackname(foo)
socket
listen
accept
onload_set_stackname(bar)

In both cases the listening socket and the accepted socket will be in
stack foo.

2. Scope defines the namespace in which a stack belongs. A
stackname of foo in scope user is not the same as a stackname of
foo in scope thread. Scope restricts the visibility of a stack to either
the current thread, current process, current user or is unrestricted
(global). This has the property that with, for example, process based
scoping, two processes can have the same stackname without
sharing a stack - as the stack for each process has a different
namespace.

3. Scoping can be thought of as adding a suffix to the supplied name
e.g.

ONLOAD_SCOPE_THREAD: <stackname>-t<thread_id>

ONLOAD_SCOPE_PROCESS: <stackname>-p<process_id>

ONLOAD_SCOPE_USER: <stackname>-u<user_id>

ONLOAD_SCOPE_GLOBAL: <stackname>

This is an example only and the implementation is free to do
something different such as maintaining different lists for different
scopes.
Issue 15 © Solarflare Communications 2013 118

 Onload

User Guide
Related environment variables are:

• EF_DONT_ACCELERATE

Default: 0 Min: 0 Max: 1 Per-process

If this environment variable is set then acceleration for ALL sockets is disabled and handed off
to the kernel stack until the application overrides this state with a call to
onload_set_stackname().

• EF_STACK_PER_THREAD

Default: 0 Min: 0 Max: 1 Per-process

If this environment variable is set each socket created by the application will be placed in a
stack depending on the thread in which it is created. Stacks could, for example, be named
using the thread ID of the thread that creates the stack, but this should not be relied upon.

A call to onload_set_stackname overrides this variable. EF_DONT_ACCELERATE takes
precedence over this variable.

• EF_NAME

The environment variable EF_NAME will be honoured to control Onlaod stack sharing.
However, a call to onload_set_stackname overrides this variable and,
EF_DONT_ACCELERATE and EF_STACK_PER_THREAD both take precedence over EF_NAME.

Notes (continued) 4. ONLOAD_SCOPE_NOCHANGE will undo the effect of a previous
call to onload_set_stackname(ONLOAD_THIS_THREAD, ...).

If you have previously used
onload_set_stackname(ONLOAD_THIS_THREAD, ...) and want to
revert to the behaviour of threads that are using the
ONLOAD_ALL_THREADS configuration, without changing that
configuration, you can do the following:

onload_set_stackname(ONLOAD_ALL_THREADS,
ONLOAD_SCOPE_NOCHANGE, "");.
Issue 15 © Solarflare Communications 2013 119

 Onload

User Guide
• onload_stackname_save()

• onload_stackname_restore()

The API stackname save and restore functions provide flexibility when binding sockets to an
Onload stack.

Using a combination of onload_set_stackname(), onload_stackname_save() and
onload_stackname_restore(), the user is able to create default stack settings which
apply to one or more sockets, save this state and then create changed stack settings which are
applied to other sockets. The original default settings can then be restored to apply to
subsequent sockets.

Stacks API Usage

Using a combination of the EF_DONT_ACCELERATE environment variable and the function
onload_set_stackname(), the user is able to control/select sockets which are to be
accelerated and isolate these performance critical sockets and threads from the rest of the
system.

Description Save the state of the current onload stack identified by the previous
call to onload_set_stackname()

Definition int onload_stackname_save (void)

Formal Parameters none

Return Value 0 on success

-ENOMEM when memory cannot be allocated.

Description Restore stack state saved with a previous call to
onload_stackname_save(). All updates/changes to state of
the current stack will be deleted and all state previously saved will
be restored.

Definition int onload_stackname_restore (void)

Formal Parameters none

Return Value 0 on success

non-zero if an error occurs.
Issue 15 © Solarflare Communications 2013 120

 Onload

User Guide
• onload_stack_opt_set_int()

• onload_stack_opt_reset()

Description Set/modify per stack options that all subsequently created stacks
will use instead of using the existing global stack options..

Definition int onload_stack_opt_set_int(
const char* name,
int64_t value)

Formal Parameters name: stack option to modify

value: new value for the stack option.

Example:

onload_stack_opt_set_int(dont_accelerate, 1);

Return Value 0 on success

-1 with errno set to EINVAL if the requested option is not found.

Notes Cannot be used to modify options on existing stacks - only for new
stacks.

Cannot be used to modify process options - only stack options.

Modified options will be used for all newly created stacks until
onload_stack_opt_reset() is called.

Description Revert to using global stack options for newly created stacks..

Definition int onload_stack_opt_reset(void)

Formal Parameters none.

Return Value 0 always

Notes Should be called following a call to onload_stack_opt_set_int() to
revert to using global stack options for all newly created stacks.
Issue 15 © Solarflare Communications 2013 121

 Onload

User Guide
Stacks API - Examples

• This thread will use stack foo, other threads in the stack will continue as before.

onload_set_stackname(ONLOAD_THIS_THREAD, ONLOAD_SCOPE_GLOBAL, "foo")

• All threads in this process will get their own stack called foo. This is equivalent to the
EF_STACK_PER_THREAD environment variable.

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_THREAD, "foo")

• All threads in this process will share a stack called foo. If another process did the same function
call it will get its own stack.

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_PROCESS, "foo")

• All threads in this process will share a stack called foo. If another process run by the same user
did the same, it would share the same stack as the first process. If another process run by a
different user did the same it would get is own stack.

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_USER, "foo")

• Equivalent to EF_NAME. All threads will use a stack called foo which is shared by any other
process which does the same.

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_GLOBAL, "foo")

• Equivalent to EF_DONT_ACCELERATE. New sockets/pipes will not be accelerated until another
call to onload_set_stackname().

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_GLOBAL,
ONLOAD_DONT_ACCELERATE)
Issue 15 © Solarflare Communications 2013 122

 Onload

User Guide
Zero-Copy API

Zero-Copy can improve the performance of networking applications by eliminating intermediate
buffers when transferring data between application and network adapter.

The Onload Extensions Zero-Copy API supports zero-copy of UDP received packet data and TCP
transmit packet data.

The API provides the following components:

• #include <onload/extensions_zc.h>

In addition to the common components, an application should include this header file which
contains all function prototypes and constant values required when using the API.

This file includes comprehensive documentation, required data structures and function
definitions.

Zero-Copy Data Buffers

To avoid the copy data is passed to and from the application in special buffers described by a struct
onload_zc_iovec. A message or datagram can consist of multiple iovecs using a struct
onload_zc_msg. A single call to send may involve multiple messages using an array of struct
onload_zc_mmsg.

Figure 7: Zero-Copy Data Buffers
Issue 15 © Solarflare Communications 2013 123

 Onload

User Guide
Zero-Copy UDP Receive Overview

Figure 8 illustrates the difference between the normal UDP receive mode and the zero-copy
method.

When using the standard POSIX socket calls, the adapter delivers packets to an Onload packet buffer
which is described by a descriptor previously placed in the RX descriptor ring. When the application
calls recv(), Onload copies the data from the packet buffer to an application-supplied buffer.

Using the zero-copy UDP receive API the application calls the onload_zc_recv() function
including a callback function which will be called when data is ready. The callback can directly access
the data inside the Onload packet buffer avoiding a copy.

Figure 8: Traditional vs. Zero-Copy UDP Receive

A single call using onload_zc_recv() function can result in multiple datagrams being delivered
to the callback function. Each time the callback returns to Onload the next datagram is delivered.
Processing stops when the callback instructs Onload to cease delivery or there are no further
received datagrams.

If the receiving application does not require to look at all data received (i.e. is filtering) this can result
in a considerable performance advantage because this data is not pulled into the processor's cache,
thereby reducing the application cache footprint.

As a general rule, the callback function should avoid calling other system calls which attempt to
modify or close the current socket.

Zero-copy UDP Receive is implemented within the Onload Extensions API.
Issue 15 © Solarflare Communications 2013 124

 Onload

User Guide
Zero-Copy UDP Receive

The onload_zc_recv() function specifies a callback to invoke for each received UDP datagram.
The callback is invoked in the context of the call to onload_zc_recv() (i.e. It blocks/spins waiting
for data).

Before calling, the application must set the following in the struct onload_zc_recv_args:

Figure 9: Zero-Copy recv_args

The callback gets to examine the data, and can control what happens next: (i) whether or not the
buffer(s) are kept by the callback or are immediately freed by Onload; and (ii) whether or not
onload_zc_recv() will internally loop and invoke the callback with the next datagram, or
immediately return to the application. The next action is determined by setting flags in the return
code as follows:

cb set to the callback function pointer

user_ptr set to point to application state, this is not touched by onload

msg.msghdr.msg_control
msg_controllen
msg_name
msg_namelen

the user application should set these to appropriate buffers and
lengths (if required) as you would for recvmsg (or NULL and 0 if
not used)

flags set to indicate behavior (e.g. ONLOAD_MSG_DONTWAIT)

ONLOAD_ZC_KEEP the callback function can elect to retain ownership of received
buffer(s) by returning ONLOAD_ZC_KEEP. Following this, the
correct way to release retained buffers is to call
onload_zc_release_buffers()to explicitly release the
first buffer from each received datagram. Subsequent buffers
pertaining to the same datagram will then be automatically
released.
Issue 15 © Solarflare Communications 2013 125

 Onload

User Guide
Flags can also be set by Onload:

If there is unaccelerated data on the socket from the kernel’s receive path this cannot be handled
without copying. The application has two choices as follows:

ONLOAD_ZC_CONTINUE to suggest that Onload should loop and process more
datagrams

ONLOAD_ZC_TERMINATE to insist that Onload immediately return from the
onload_zc_recv()

ONLOAD_ZC_END_OF_BURST Onload sets this flag to indicate that this is the last packet

ONLOAD_ZC_MSG_SHARED Packet buffers are read only

ONLOAD_MSG_RECV_OS_INLI
NE

set this flag when calling onload_zc_recv(). Onload will
deal with the kernel data internally and pass it to the callback

check return code check the return code from onload_zc_recv(). If it returns
ENOTEMPTY then the application must call
onload_recvmsg_kernel() to retrieve the kernel data.
Issue 15 © Solarflare Communications 2013 126

 Onload

User Guide
Zero-Copy Receive Example #1

Figure 10: Zero-Copy Receive -example #1
Issue 15 © Solarflare Communications 2013 127

 Onload

User Guide
Zero-Copy Receive Example #2

Figure 11: Zero-Copy Receive - example #2

NOTE: onload_zc_recv() should not be used together with onload_set_recv_filter()and
only supports accelerated (Onloaded) sockets. For example, when bound to a broadcast address
the socket fd is handed off to the kernel and this function will return ESOCKNOTSUPPORT.
Issue 15 © Solarflare Communications 2013 128

 Onload

User Guide
Zero-Copy TCP Send Overview

Figure 12 illustrates the difference between the normal TCP transmit method and the zero- copy
method.

When using standard POSIX socket calls, the application first creates the payload data in an
application allocated buffer before calling the send() function. Onload will copy the data to a
Onload packet buffer in memory and post a descriptor to this buffer in the network adapter TX
descriptor ring.

Using the zero-copy TCP transmit API the application calls the onload_zc_alloc_buffers()
function to request buffers from Onload. A pointer to a packet buffer is returned in response. The
application places the data to send directly into this buffer and then calls onload_zc_send() to
indicate to Onload that data is available to send.

Onload will post a descriptor for the packet buffer in the network adapter TX descriptor ring and ring
the TX doorbell. The network adapter fetches the data for transmission.

Figure 12: Traditional vs. Zero-Copy TCP Transmit

Zero-copy TCP transmit is implemented within the Onload Extensions API.

NOTE: The socket used to allocate zero-copy buffers must be in the same stack as the socket used
to send the buffers. When using TCP loopback, Onload can move a socket from one stack to
another. Users must ensure that they ALWAYS USE BUFFERS FROM THE CORRECT STACK.

NOTE: The onload_zc_send function does not currently support the ONLOAD_MSG_MORE or
TCP_CORK flags.
Issue 15 © Solarflare Communications 2013 129

 Onload

User Guide
Zero-Copy TCP Send

The zero-copy send API supports the sending of multiple messages to different sockets in a single
call. Data buffers must be allocated in advance and for best efficiency these should be allocated in
blocks and off the critical path. The user should avoid simply moving the copy from Onload into the
application, but where this is unavoidable, it should also be done off the critical path.

Figure 13: Zero-Copy send

Figure 14: Zero-Copy allocate buffers

The onload_zc_send() function return value identifies how many of the onload_zc_mmsg
array’s rc fields are set. Each onload_zc_mmsg.rc returns how many bytes (or error) were sent in
for that message. Refer to the table below.

Sent buffers are owned by Onload. Unsent buffers are owned by the application and must be freed
or reused to avoid leaking.

rc = onload_zc_send()

rc < 0 application error calling onload_zc_send(). rc
is set to the error code

rc == 0 should not happen

0 < rc <= n_msgs rc is set to the number of messages whose status
has been sent in mmsgs[i].rc.

rc == n_msgs is the normal case

rc = mmsg[i].rc

rc < 0 error sending this message. rc is set to the error
code

rc >= 0 rc is set to the number of bytes that have been
sent in this message. Compare to the message
length to establish which buffers sent
Issue 15 © Solarflare Communications 2013 130

 Onload

User Guide
Zero-Copy Send - Single Message, Single Buffer

Figure 15: Zero-Copy - Single Message, Single Buffer Example

The example above demonstrates error code handling. Note it contains an examples of bad practice
where buffers are allocated and populated on the critical path.
Issue 15 © Solarflare Communications 2013 131

 Onload

User Guide
Zero-Copy Send - Multiple Message, Multiple Buffers

Figure 16: Zero-Copy - Multiple Messages, Multiple Buffers Example

The example above demonstrates error code handling and contains some examples of bad practice
where buffers are allocated and populated on the critical path.
Issue 15 © Solarflare Communications 2013 132

 Onload

User Guide
Zero-Copy Send - Full Example

Figure 17: Zero-Copy Send
Issue 15 © Solarflare Communications 2013 133

 Onload

User Guide
Receive Filtering API Overview

The Onload Extensions Receive API allows user-defined filters to determine if data received on a UDP
socket should be discarded before it enters the socket receive buffer.

Receive filtering provides an alternative to the onload_zc_recv() function described in the
previous sections. It allows the application to examine the received data inplace and direct Onload
to discard a subset of the data if not required - thereby saving the overhead of having to copy
unwanted data. Only the subset of datagrams that the application is interested in are copied into the
application buffers

Figure 18: UDP Receive Filtering

Receive filtering is implemented within the Onload Extensions API.

NOTE: An application using the Receive Filtering API can continue to use any POSIX function on the
socket e.g select() poll(), epoll_wait() or recv(), but must not use the
onload_zc_receive() function.
Issue 15 © Solarflare Communications 2013 134

 Onload

User Guide
Receive Filtering API

The Onload Extensions Receive Filtering API installs a user defined filter that determines whether
received data is passed to the receive function or discarded by Onload.

The API provides the following components:

• #include <onload/extensions_zc.h>

In addition to the common components, an application should include this header file which
contains all function prototypes and constant values required when using the API.

This file includes comprehensive documentation, required data structures and function
definitions

The Receive Filtering API is a variation on the zero-copy receive whereby the normal socket methods
are used for accessing the data, but the application can specify a filter that is run on each datagram
before it is received. The filter can elect to discard or even modify the received message before this
is copied to the application.

Figure 19: Receive Filter

The onload_set_recv_filter() function returns immediately and the filter callback is
executed in the context of subsequent calls to recv(), recvmsg() etc.

NOTE: When using receive filtering, calls to poll(), select() etc, may return that a socket is
readable, but if the filter then discards the datagram a call to recv() would not find it and block.

NOTE: The application should respect the ONLOAD_ZC_MSG_SHARED flag - this indicates that the
datagram may be delivered to more than one socket and so should not be modified.
Issue 15 © Solarflare Communications 2013 135

 Onload

User Guide
Receive Filter - Example

Figure 20: Receive Filter - Example
.

Templated Sends

For a description of the templates sends feature, refer to Templated Sends on page 71. For a
description of the packet template to be used by the templated sends feature refer to the use notes
and references to onload_msg_template in the [onload]/src/include/onload/
extensions_zc.h file included with the Onload 201310 distribution.

NOTE: The onload_set_recv_filter() function should NOT be used together with the
onload_zc_recv() function.
Issue 15 © Solarflare Communications 2013 136

 Onload

User Guide
Appendix E: onload_stackdump

Introduction

The Solarflare onload_stackdump diagnostic utility is a component of the Onload distribution
which can be used to monitor Onload performance, set tuning options and examine aspects of the
system performance.

The following examples of onload_stackdump are demonstrated elsewhere in this user guide:

• Monitoring Using onload_stackdump on page 30

• Processing at User-Level on page 30

• As Few Interrupts as Possible on page 31

• Eliminating Drops on page 32

• Minimizing Lock Contention on page 33

General Use

The onload_stackdump tool can produce an extensive range of data and it can be more useful to
limit output to specific stacks or to specific aspects of the system performance for analysis purposes.

• For help, and to list all onload_stackdump commands and options:

onload_stackdump -?

• To list and read environment variables descriptions:

onload_stackdump doc

• For descriptions of statistics variables:

onload_stackdump describe_stats

Describes all statistics listed by the onload_stackdump lots command.

• To identify all stacks, by identifier and name, and all processes accelerated by Onload:

onload_stackdump

#stack-id stack-name pids
6 teststack 28570

• To limit the command/option to a specific stack e.g (stack 4).

onload_stackdump 4 lots

NOTE: To view data for all stacks, created by all users, the user must be root when running
onload_stackdump. Non-root users can only view data for stacks created by themselves and
accessible to them via the EF_SHARE_WITH variable.
Issue 15 © Solarflare Communications 2013 137

 Onload

User Guide
List Onloaded Processes

The ’onload_stackdump processes’ command will show the PID and name of processes being
accelerated by Onload and the Onload stack being used by each process e.g.

onload_stackdump processes
#pid stack-id cmdline
25587 3 ./sfnt-pingpong

Onloaded proceseses which have not created a socket are not displayed, but can be identified using
the lsof command.

Identify Onloaded Processes Affinities

The ’onload_stackdump affinities’ command will identify the task affinity for an accelerated
process e.g.

onload_stackdump affinities
pid=25587
cmdline=./sfnt-pingpong
task25587: 80

The task affinity is identified from an 8 bit mask i.e. 01 is CPU core 0, 02 is CPU core 1, 80 is CPU core
7 etc.

List Onload Environment variables

The ’onload_stackdump env’ command will identify onloaded processes running in the current
environment and list all Onload variables set in the current environment e.g.

EF_POLL_USEC=100000 EF_TXQ_SIZE=4096 EF_INT_DRIVE=1 onload <application>

onload_stackdump env
pid: 25587
cmdline: ./sfnt-pingpong
env: EF_POLL_USEC=100000
env: EF_TXQ_SIZE=4096
env: EF_INT_DRIVEN=1

TX PIO Counters

The Onload stackdump utility exposes new counters to indicate how often TX PIO is being used -
see Programmed I/O on page 70. To view PIO counters run the following command:

$ onload_stackdump stats | grep pio
pio_pkts: 2485971
no_pio_err: 0
Issue 15 © Solarflare Communications 2013 138

 Onload

User Guide
The values returned will identify the number of packets sent via PIO and number of times when PIO
was not used due to an error condition.

Removing Zombie and Orphan Stacks

Onload stacks and sockets can remain active even after all processes using them have been
terminated or have exited, for example to ensure sent data is successfully received by the TCP peer
or to honour TCP TIME_WAIT semantics. Such stacks should always eventually self-destruct and
disappear with no user intervention. However, these stacks, in some instances, cause problems for
re-starting applications, for example the application may be unable to use the same port numbers
when these are still being used by the persistent stack socket. Persistent stacks also retain resources
such as packet buffers which are then denied to other stacks.

Such stacks are termed ’zombie’ or ’orphan’ stacks and it may be undesirable or desirable that they
exist.

• To list all persistent stacks:

onload_stackdump -z all

No output to the console or syslog means that no such stacks exist.

• To list a specific persistent stack:

onload_stackdump -z <stack ID>

• To display the state of persistent stacks:

onload_stackdump -z dump

• To terminate persistent stacks

onload_stackdump -z kill

• To display all options available for zombie/orphan stacks:

onload_stackdump --help

Snapshot vs. Dynamic Views

The onload_stackdump tool presents a snapshot view of the system when invoked. To monitor
state and variable changes whilst an application is running use onload_stackdump with the Linux
watch command e.g.

snapshot: onload_stackdump netif

dynamic: watch -d -n1 onload_stackdump netif

Some onload_stackdump commands also update periodically whilst monitoring a process. These
commands usually have the watch_ prefix e.g.

watch_stats, watch_more_stats, watch_tcp_stats, watch_ip_stats etc.

Use the onload_stackdump -h option to list all commands.
Issue 15 © Solarflare Communications 2013 139

 Onload

User Guide
Monitoring Receive and Transmit Packet Buffers

onload_stackdump packets

The onload_stackdump packets command can be useful to review packet buffer allocation, use
and reuse within a monitored process.

The example above identifies that the process has a maximum of 32768 buffers (each of 2048 bytes)
available. From this pool 576 buffers have been allocated and 50 from that allocation are currently
free for reuse - that means they can be pushed onto the receive or transmit ring buffers ready to
accept new incoming/outgoing data.

On the receive side of the stack, 525 packet buffers have been allocated, 522 have been pushed to
the receive ring - and are available for incoming packets, and 3 are currently in the receive queue for
the application to process.

On the transmit side of the stack, only 1 packet buffer is currently allocated and because it is not
currently in the transmit ring and is not in an overflow buffer it is counted as tx_other. The remaining
values are calculations based on the packet buffer values.

$ onload_stackdump packets
ci_netif_pkt_dump_all: id=6
pkt_bufs: size=2048 max=32768 alloc=576 free=50 async=0
pkt_bufs: rx=525 rx_ring=522 rx_queued=3
pkt_bufs: tx=1 tx_ring=0 tx_oflow=0 tx_other=1
509: 0x8000 Rx
1: 0x4000 Nonb
n_zero_refs=66 n_freepkts=50 estimated_free_nonb=16
free_nonb=0 nonb_pkt_pool=a39ffff
Issue 15 © Solarflare Communications 2013 140

 Onload

User Guide
TCP Application STATS

The following onload_stackdump commands can be used to monitor accelerated TCP
connections:

onload_stackdump tcp_stats

onload_stackdump more_stats | grep tcp

Field Description

tcp_active_opens Number of socket connections initiated by the local
end

tcp_passive_opens Number of sockets connections accepted by the local
end

tcp_attempt_fails Number of failed connection attempts

tcp_estab_resets Number of established connections which were
subsequently reset

tcp_curr_estab Number of socket connections in the established or
close_wait states

tcp_in_segs Total number of received segments - includes errored
segments

tcp_out_segs Total number of transmitted segments - excluding
segments containing only retransmitted octets

tcp_retran_segs Total number of retransmitted segments

tcp_in_errs Total number of segments received with errors

tcp_out_rsts Number of reset segments sent

Field Description

tcp_has_recvq Non zero if receive queue has data ready

tcp_recvq_bytes Total bytes in receive queue

tcp_recvq_pkts Total packets in receive queue

tcp_has_recv_reorder Non zero if socket has out of sequence bytes

tcp_recv_reorder_pkts: Number of out of sequence packets received

tcp_has_sendq Non zero if send queues have data ready

tcp_sendq_bytes Number of bytes currently in all send queues for this
connection
Issue 15 © Solarflare Communications 2013 141

 Onload

User Guide
Use the onload_stackdump -h command to list all TCP connection, stack and socket commands.

The onload_stackdump LOTS Command.

The onload_stackdump lots command will produce extensive data for all accelerated stacks and
sockets. The command can also be restricted to a specific stack and its associated connections when
the stack number is entered on the command line e.g.

onload_stackdump lots

onload_stackdump 2 lots

For descriptions of the statistics refer to the output from the following command:

onload_stackdump describe_stats

The following tables describe the output from the onload_stackdump lots command for:

• TCP stack

• TCP established connection socket

• TCP listening socket

• UDP socket

Within the tables the following abbreviations are used:

• rx = receive (or receiver), tx = transmit (or send)

• pkts = packets, skts = sockets

• Max = maximum, num = number, seq = sequence number

tcp_sendq_pkts Number of packets currently in all send queues for
this connection

tcp_has_inflight Non zero if some data remains unacknowledged

tcp_inflight_bytes Total number of unacknowledged bytes

tcp_inflight_pkts Total number of unacknowledged packets

tcp_n_in_listenq Number of sockets (summed across all listening
sockets) where the local end has responded to SYN,
with a SYN_ACK, but this has not yet been
acknowledged by the remote end

tcp_n_in_acceptq Number of sockets (summed across all listening
sockets) that are currently queued waiting for the
local application to call accept()
Issue 15 © Solarflare Communications 2013 142

 Onload

User Guide
Stackdump Output: TCP Stack

onload_stackdump lots Command entered

ci_netif_dump: stack=7 name= Stack id and stack name as set by
EF_NAME.

ver=201310 uid=0 pid=21098 Onload version, user id and process id of
creator process

lock=20000000 LOCKED nics=3 primed=1 Internal stack lock status

nics = bitfield identifies adapters used by
this stack e.g. 3 = 0x11 - so stack is using
NICs 1 and 2.

primed = 1 means the event queue will
generate an interrupt when the next
event arrives

sock_bufs: max=1024 n_allocated=4 Max number of sockets buffers which can
be allocated, and number currently in
use. Socket buffers are also used by
pipes.

pkt_bufs: size=2048 max=32768 alloc=576
free=57 async=0

Packet buffers:

A total of 32768 (each of 2048 bytes) pkt
buffers are available to this stack. 576
have been allocated of which 57 are free
and can be reused by either receive or
transmit rings.

async = buffers that are not free, not
being used, not being reaped - i.e in a
state waiting to be returned for reuse
Issue 15 © Solarflare Communications 2013 143

 Onload

User Guide
pkt_bufs: rx=517 rx_ring=514 rx_queued=3 Receive packet buffers:

A total of 517 pkt buffers are currently in
use, 514 have been pushed to the receive
ring, 3 are in the application’s receive
queue

If the CRITICAL flag is displayed it
indicates a memory pressure condition in
which the number of packets in the
receive socket buffers (rx=517) is
approaching the EF_MAX_RX_PACKETS
value.

If the LOW flag is displayed it indicates a
memory pressure condition when there
are not enough packet buffers available
to refill the RX descriptor ring.

pkt_bufs: tx=2 tx_ring=1 tx_oflow=0
tx_other=1

Transmit packet buffers:

A total of 2 pkt buffers are currently in
use, 1 remains in the transmit ring, 0
buffers have overflowed. tx_other = pkt
buffers not in use by transmit and not in
tx_ring or tx_oflow queue

time: netif=5eb5c61 poll=5eb5c61
now=5eb5c61 (diff=0.000sec)

Internal timer values

ci_netif_dump_vi: stack=7 intf=0
vi_instance=87 hw=0C0

Data describes the stack’s virtual
interface to the NIC

evq: cap=2048 current=16de30 is_32_evs=0
is_ev=0

Event queue data:

cap - max num of events queue can hold

current - current event queue location

is_32_evs - is 1 if there are 32 or more
events pending

is_ev - is 1 if there are any events
pending
Issue 15 © Solarflare Communications 2013 144

 Onload

User Guide
rxq: cap=511 lim=511 spc=1 level=510
total_desc=93666

Receive queue data:

cap - total capacity

lim - max fill level for receive descriptor
ring, specified by EF_RXQ_LIMIT

spc - amount of free space in receive
queue - how many descriptors could be
added before the receive queue becomes
full

level - how full the receive queue
currently is

total_desc - total number of descriptors
that have been pushed to the receive
queue

txq: cap=511 lim=511 spc=511 level=0 pkts=0
oflow_pkts=0

Transmit queue data:

cap - total capacity

lim - max fill level for transmit descriptor
ring, specified by EF_TXQ_LIMIT

spc - amount of free space in the
transmit queue - how many descriptors
could be added before the transmit
queue becomes full

level - how full the transmit queue
currently is

pkts - how many packets are represented
by the descriptors in the transmit queue

oflow - how many packets are in the
overflow transmit queue (i.e. waiting for
space in the NIC's transmit queue)

txq: tot_pkts=93669 bytes=0 Total number of packets sent and
number of packet bytes currently in the
queue

ci_netif_dump_extra: stack=7 Additional data follows

in_poll=0 post_poll_list_empty=1
poll_did_wake=0

Stack Polling Status:

in_poll = process is currently polling

post_poll_list_empty=1, (1=true,
0=false) tasks to be done once polling is
complete

poll_did_wake = while polling, the
process identified a socket which needs
to be woken following the poll
Issue 15 © Solarflare Communications 2013 145

 Onload

User Guide
rx_defrag_head=-1 rx_defrag_tail=-1 Reassembly sequence numbers. -1
means no re-assembly has occurred

tx_tcp_may_alloc=1 nonb_pool=1
send_may_poll=0 is_spinner=0

TCP buffer data:

tx_tcp_may_alloc=num pkt buffers tcp
could use

nonb_pool= number of pkt buffers
available to tcp process without holding
lock

send_may_poll=0

is_spinner= TRUE if a thread is spinning

send_may_poll=0 0

hwport_to_intf_i=0,-1,-1,-1,-1,-1
intf_i_to_hwport=0,0,0,0,0,0

Internal mapping of internal interfaces to
hardware ports

uk_intf_ver=03e89aa26d20b98fd08793e771f2cdd
9

md5 user/kernel interface checksum
computed by both kernel and user
application to verify internal data
structures

ci_netif_dump_reap_list: stack=7

 7:2
 7:1

Identifies sockets that have buffers which
can be freed e.g. 7:2 = stack 7 socket 2
Issue 15 © Solarflare Communications 2013 146

 Onload

User Guide
Stackdump Output: TCP Established Connection Socket

TCP 7:1 lcl=192.168.1.2:50773
rmt=192.168.1.1:34875 ESTABLISHED

Socket Configuration.

Stack:socket id, local and remote ip:port
address, TCP connection is ESTABLISHED

lock: 10000000 UNLOCKED Internal stack lock status

rx_wake=0000b6f4(RQ) tx_wake=00000002
flags:

Internal sequence values that are
incremented each time a queue is
’woken’

addr_spc_id=fffffffffffffffe s_flags: REUSE
BOUND

Address space identifier in which this
socket exists and flags set on the socket

Allow bind to reuse local addresses

rcvbuf=129940 sndbuf=131072 rx_errno=0
tx_errno=0 so_error=0

Socket receive buffer size, send buffer
size, rx_errno = ZERO whilst data can still
arrive, otherwise contains error code.
tx_errno = ZERO if transmit can still
happen, otherwise contains error code.
so_error = current socket error (0 = no
error)

tcpflags: TSO WSCL SACK ESTAB TCP flags currently set for this sockets

TCP state: ESTABLISHED State of the TCP connection

snd: up=b554bb86 una-nxt-max=b554bb86-
b554bb87-b556b6a6 enq=b554bb87

TCP sequence numbers.

up = (urgent pointer) sequence of byte
following the 00B byte

una-nxt-max = sequence number of first
unacknowledged byte, sequence number
of next byte we expect to be
acknowledged and max = sequence of
last byte in the current send window

enq = sequence number of last byte
currently queued for transmit
Issue 15 © Solarflare Communications 2013 147

 Onload

User Guide
send=0(0) pre=0 inflight=1(1) wnd=129824
unused=129823

Send Data.

send = number of pkts(bytes) sent

pre = number of pkts in pre-send queue.
A process can add data to the prequeue
when it is prevented from sending the
data immediately. The data will be sent
when the current sending operation is
complete

inflight = number of pkts(bytes) sent but
not yet acknowledged

wnd = receiver’s advertised window size
(bytes) and number of free (unused)
space (bytes) in that window

snd: cwnd=49733+0 used=0 ssthresh=65535
bytes_acked=0 Open

Congestion window (cwnd).

cwnd = congestion window size (bytes)

used = portion of the cwnd currently in
use

slowstart thresh - number of bytes that
have to be sent before process can exit
slow start

bytes_acked = number of bytes
acknowledged - this value is used to
calculate the rate at which the
congestion window is opened

current cwnd status = OPEN

snd:Onloaded(Valid) if=6 mtu=1500 intf_i=0
vlan=0 encap=4

Onloaded = can reach the destination via
an accelerated interface.

(Valid) = cached control plane
information is up-to-date, can send
immediately using this information.

(Old) = cached control plane information
may be out-of-date. On next send Onload
will do a control plane lookup - this will
add some latency.

rcv: nxt-max=0e9251fe-0e944d1d
current=0e944d92 FASTSTART FAST

Receiver Data.

nxt-max = next byte we expect to receive
and last byte we expect to receive
(because of window size)

current = byte currently being processed
Issue 15 © Solarflare Communications 2013 148

 Onload

User Guide
rob_n=0 recv1_n=2 recv2_n=0 wnd adv=129823
cur=129940 usr=0

Reorder buffer.

Bytes received out of sequence are put
into a reorder buffer awaiting further
bytes before reordering can occur.

rob_n = num of bytes in reorder buffer

recv1_n = num of bytes in general
reorder buffer

recv2_n = num of bytes in urgent data
reorder buffer

wnd adv = receiver advertised window
size

cur = current receive window size

usr = current tcp stack user

async: rx_put=-1 rx_get=-1 tx_head=-1 Asynchronous queue data.

eff_mss=1448 smss=1460 amss=1460
used_bufs=2 uid=0 wscl s=1 r=1

Max Segment Size.

eff_mss = effective_mss

smss = sender mss

amss = advertised mss

used_bufs = number of transmit buffers
used

user id that created this socket(0 = root)

wscl s/r = parameters to window scaling
algorithm

srtt=01 rttvar=000 rto=189 zwins=0,0 Round trip time (RTT) - all values are
timer ticks.

srtt = smothed RTT value

rttvar = RTT variation

rto = current RTO timeout value

zwins = zero windows, times when
advertised window has gone to zero size.
Issue 15 © Solarflare Communications 2013 149

 Onload

User Guide
retrans=0 dupacks=0 rtos=0 frecs=0 seqerr=0
ooo_pkts=0 ooo=0

Re-transmissions.

number of retrans which have occurred

dupacks = number of duplicate acks
received

rtos = number of retrans timeouts

frecs = number of fast recoverys

seqerr = number of sequence errors

number of out of sequence pkts

number of out of order events

timers: Currently active timers

tx_nomac Number of TCP packets sent via the OS
using raw sockets when up to date ARP
data is not available.
Issue 15 © Solarflare Communications 2013 150

 Onload

User Guide
Stackdump Output: TCP Stack Listen Socket

TCP 7:3 lcl=0.0.0.0:50773 rmt=0.0.0.0:0
LISTEN

Socket configuration.

stack:socket id, LISTENING socket on port
50773

local and remote addresses not set - not
bound to any IP addr

lock: 10000000 UNLOCKED Internal stack lock status

rx_wake=00000000 tx_wake=00000000 flags: Internal sequence values that are
incremented each time a queue is
’woken’

addr_spc_id=fffffffffffffffe s_flags: REUSE
BOUND PBOUND

Address space identifier in which this
socket exists and flags set on the socket

Allow bind to reuse local port

rcvbuf=129940 sndbuf=131072 rx_errno=6b
tx_errno=20 so_error=0

Receive Buffer.

socket receive buffer size, send buffer
size, rx_errno = ZERO whilst data can still
arrive, otherwise contains error code.
tx_errno = ZERO if transmit can still
happen, otherwise contains error code.
so_error = current socket error (0 = no
error)

tcpflags: WSCL SACK Flags advertised during handshake

listenq: max=1024 n=0 Listen Queue.

queue of half open connects (SYN
received and SYNACK sent - waiting for
final ACK)

n - number of connections in the queue

acceptq: max=5 n=0 get=-1 put=-1 total=0 Accept Queue.

queue of open connections, waiting for
application to call accept().

max = max connections that can exist in
the queue

n = current number of connections

get/put = indexes for queue access

total = num of connections that have
traversed this queue
Issue 15 © Solarflare Communications 2013 151

 Onload

User Guide
epcache: n=0 cache=EMPTY pending=EMPTY Endpoint cache.

n = number of endpoints currently
known to this socket

cache = EMPTY or yes if endpoints are
still cached

pending = EMTPY or yes if endpoints stilll
have to be cached

defer_accept=0 Number of times TCP_DEFER_ACCEPT
kicked in - see TCP socket options

l_overflow=0 l_no_synrecv=0 a_overflow=0
a_no_sock=0 ack_rsts=0 os=2

l_overflow = number of times listen
queue was full and had to reject a SYN
request

l_no_synrecv = number of times unable
to allocate internal resource for SYN
request

a_overflow = number of times unable to
promote connection to the accept queue
which is full

a_no_sock = number of times unable to
create socket

ack_rsts = number of times received an
ACK before SYN so the connection was
reset

os=2 there are 2 sockets being
processed in the kernel
Issue 15 © Solarflare Communications 2013 152

 Onload

User Guide
Stackdump Output: UDP Socket:

UDP 4:1 lcl=192.168.1.2:38142
rmt=192.168.1.1:42638 UDP

Socket Configuration.

stack:socket id, UDP socket on port
38142

Local and remote addresses and ports

lock: 20000000 LOCKED Stack internal lock status

rx_wake=000e69b0 tx_wake=000e69b1 flags: Internal sequence values that are
incremented each time a queue is
’woken’

addr_spc_id=fffffffffffffffe s_flags: REUSE Address space identifier in which this
socket exists and flags set on the socket

Allow bind to reuse local addresses

rcvbuf=129024 sndbuf=129024 rx_errno=0
tx_errno=0 so_error=0

Buffers.

socket receive buffer size, send buffer
size, rx_errno = ZERO whilst data can still
arrive, otherwise contains error code.
tx_errno = ZERO if transmit can still
happen, otherwise contains error code.
so_error = current socket error (0 = no
error)

udpflags: FILT MCAST_LOOP RXOS Flags set on the UDP socket

mcast_snd: intf=-1 ifindex=0 saddr=0.0.0.0
ttl=1 mtu=1500

Multicast.

intf = multicast hardware port id (-1
means port was not set)

ifindex = interface (port) identifier

saddr = IP address

tt1 = time to live (default for multicast
=1)

mtu = max transmission unit size

rcv: q_bytes=0 q_pkts=0 reap=2
tot_bytes=30225920 tot_pkts=944560

Receive Queue.

q_bytes = num bytes currently in rx
queue

q_pkts = num pkts currently in rx queue

tot_bytes = total bytes received

tot_pkts = total pkts received
Issue 15 © Solarflare Communications 2013 153

 Onload

User Guide
rcv: oflow=0(0%) drop=0 eagain=0 pktinfo=0

q_max=0

Overflow Buffer.

oflow = number of datagrams in the
overflow queue when the socket buffer is
full.

drop = number of datagrams dropped
due to running out of packet buffer
memory.

eagain = number of times the application
tried to read from a socket when there is
no data ready - this value can be ignored
on the rcv side

pktinfo = number of times IP_PKTINFO
control message was received

q_max = max depth reached by the
receive queue (bytes)

rcv: os=0(0%) os_slow=0 os_error=0 Number of datagrams received via:

os = operating system

os_slow = operating system slow socket

os_error = recv() function call via OS
returned an error

snd: q=0+0 ul=944561 os=0(0%) os_slow=0(0%) Send values.

q = number of bytes sent to the interface
but not yet transmitted

ul = number of datagrams sent via onload

os = number of datagrams sent via OS

os_slow number of datagrams sent via
OS slow path

snd: cp_match=0(0%) Unconnected UDP send.

cp_match = number dgrams sent via
accelerated path and percent this is of all
unconnected send dgrams

snd: lk_poll=0(0%) lk_pkt=944561(100%)
lk_snd=0(0%)

Stack internal lock.

lk_poll = number of times the lock was
held while we poll the stack

lk_pkt = number of pkts sent while
holding the lock

lk_snd = number of times the lock was
held while sending data
Issue 15 © Solarflare Communications 2013 154

 Onload

User Guide
Following the stack and socket data onload_stackdump lots will display a list of statistical data.
For descriptions of the fields refer to the output from the following command:

onload_stackdump describe_stats

The final list produced by onload_stackdump lots shows the current values of all environment
variables in the monitored process environment. For descriptions of the environment variables refer
to Appendix A: Parameter Reference on page 93 or use the onload_stackdump doc command.

snd: lk_defer=0(0%) cached_daddr=0.0.0.0 Sending deferred to the process/thread
currently holding the lock

snd: eagain=0 spin=0 block=0 eagain = count of the number of times
the application tried to send data, but
the transmit queue is already full. A high
value on the send side may indicate
transmit issues.

spin = number of times process had to
spin when the send queue was full

block = number of times process had to
block when the send queue was full

snd: poll_avoids_full=0 fragments=0
confirm=0

poll_avoids_full = number of times
polling created space in the send queue

fragments = number of (non first)
fragments sent

confirm = number of datagrams sent
with MSG_CONFIRM flag

snd: os_late=0 unconnect_late=0 os_late = number of pkts sent via OS
after copying

unconnect_late = number of pkts silently
dropped when process/thread becomes
disconnected during a send procedure
Issue 15 © Solarflare Communications 2013 155

 Onload

User Guide
Appendix F: Solarflare sfnettest

Introduction

Solarflare sfnettest is a set of benchmark tools and test utilities supplied by Solarflare for benchmark
and performance testing of network servers and network adapters. The sfnettest is available in
binary and source forms from:

http://www.openonload.org/

Download the sfnettest-<version>.tgz source file and unpack using the tar command.

tar -zxvf sfnettest-<version>.tgz

Run the make utility from the /sfnettest-<version>/src subdirectory to build the benchmark
applications.

Refer to the README.sfnt-pingpong or README.sfnt-stream files in the distribution directory once
sfnettest is installed.

sfnt-pingpong

Description:

The sfnt-pingpong application measures TCP and UDP latency by creating a single socket
between two servers and running a simple message pattern between them. The output identifies
latency and statistics for increasing TCP/UDP packet sizes.

Usage:

 sfnt-pingpong [options] [<tcp|udp|pipe|unix_stream|unix_datagram>
[<host[:port]>]]

Options:

Option Description

--port server port

--sizes single message size (bytes)

--connect connect() UDP socket

--spin spin on non-blocking recv()

--muxer select, poll or epoll

--serv-muxer none, select, poll or epoll (same as client by default)

--rtt report round-trip-time

--raw dump raw results to files

--percentile percentile
Issue 15 © Solarflare Communications 2013 156

http://www.openonload.org/

 Onload

User Guide
--minmsg minimum message size

--maxmsg maximum message size

--minms min time per msg size (ms)

--maxms max time per msg size (ms)

--miniter minimum iterations for result

--maxiter maximum iterations for result

--mcast use multicast addressing

--mcastintf set the multicast interface. The client sends this
parameter to the server.

--mcastintf=eth2 both client and server use eth2

--mcastintf=’eth2;eth3’ client uses eth2 and server
uses eth3 (quotes are required for this format)

--mcastloop IP_MULTICAST_LOOP

--bindtodev SO_BINDTODEVICE

--forkboth fork client and server

--n-pipe include pipes in file descriptor set

--n-unix-d include unix datagrams in the file descriptor set

--n-unix-s include unix streams in the file descriptor set

--n-udp include UDP sockets in file descriptor set

--n-tcpc include TCP sockets in file descriptor set

--n-tcpl include TCP listening sockets in file descriptor set

--tcp-serv host:port for TCP connections

--timeout socket SND/RECV timeout

--affinity ’<client-core>;<server-core>’ Enclose values in
quotes. This option should be set on the client side
only. The client sends the <server_core> value to the
server. The user must ensure that the identified
server core is available on the server machine.

This option will override any value set by taskset on
the same command line.

--n-pings number of ping messages

Option Description
Issue 15 © Solarflare Communications 2013 157

 Onload

User Guide

Standard options:

Example TCP latency command lines:

[root@server]# onload --profile=latency taskset -c 1 ./sfnt-pingpong

[root@client]# onload --profile=latency taskset -c 1 ./sfnt-pingpong --
maxms=10000 --affinity "1;1" tcp <server-ip>

Example UDP latency command lines:

[root@server]# onload --profile=latency taskset -c 9 ./sfnt-pingpong

[root@client]# onload --profile=latency taskset -c 9 ./sfnt-pingpong --
maxms=10000 --affinity "9;9" udp <server_ip>

Example output:

version: 1.4.0-modified
src: 13b27e6b86132da11b727fbe552e2293
date: Sat Apr 21 11:56:22 BST 2012
uname: Linux server4.uk.level5networks.com 2.6.32-220.el6.x86_64 #1 SMP Wed Nov
9 08:03:13 EST 2011 x86_64 x86_64 x86_64 GNU/Linux
cpu: model name : Intel(R) Xeon(R) CPU E5-2687W 0 @ 3.10GHz
lspci: 05:00.0 Ethernet controller: Intel Corporation I350 Gigabit Network
Connection (rev 01)
lspci: 05:00.1 Ethernet controller: Intel Corporation I350 Gigabit Network
Connection (rev 01)
lspci: 83:00.0 Ethernet controller: Solarflare Communications SFC9020
[Solarstorm]
lspci: 83:00.1 Ethernet controller: Solarflare Communications SFC9020
[Solarstorm]
lspci: 85:00.0 Ethernet controller: Intel Corporation 82574L Gigabit Network
Connection
eth0: driver: igb
eth0: version: 3.0.6-k

--n-pongs number of pong messages

--nodelay enable TCP_NODELAY

Option Description

-? --help this message

-q --quiet quiet

-v --verbose display more information

Option Description
Issue 15 © Solarflare Communications 2013 158

 Onload

User Guide
eth0: bus-info: 0000:05:00.0
eth1: driver: igb
eth1: version: 3.0.6-k
eth1: bus-info: 0000:05:00.1
eth2: driver: sfc
eth2: version: 3.2.1.6083
eth2: bus-info: 0000:83:00.0
eth3: driver: sfc
eth3: version: 3.2.1.6083
eth3: bus-info: 0000:83:00.1
eth4: driver: e1000e
eth4: version: 1.4.4-k
eth4: bus-info: 0000:85:00.0
virbr0: driver: bridge
virbr0: version: 2.3
virbr0: bus-info: N/A
virbr0-nic: driver: tun
virbr0-nic: version: 1.6
virbr0-nic: bus-info: tap
ram: MemTotal: 32959748 kB
tsc_hz: 3099966880
LD_PRELOAD=libonload.so
server LD_PRELOAD=libonload.so
onload_version=201205
EF_TCP_FASTSTART_INIT=0
EF_POLL_USEC=100000
EF_TCP_FASTSTART_IDLE=0
#
size mean min median max %ile stddev iter
 1 2453 2380 2434 18288 2669 77 1000000
 2 2453 2379 2435 45109 2616 90 1000000
 4 2467 2380 2436 10502 2730 82 1000000
 8 2465 2383 2446 8798 2642 70 1000000
 16 2460 2380 2441 7494 2632 68 1000000
 32 2474 2399 2454 8758 2677 71 1000000
 64 2495 2419 2474 12174 2716 77 1000000

The output identifies mean, minimum, median and maximum (nanosecond) RTT/2 latency for
increasing packet sizes including the 99% percentile and standard deviation for these results. A
message size of 32 bytes has a mean latency of 2.4 microsecs with a 99%ile latency less than 2.7
microsecs.
Issue 15 © Solarflare Communications 2013 159

 Onload

User Guide
sfnt-stream

The sfnt-stream application measures RTT latency (not 1/2 RTT) for a fixed size message at
increasing message rates. Latency is calculated from a sample of all messages sent. Message rates
can be set with the rates option and the number of messages to sample using the sample option.

Solarflare sfnt-stream only functions on UDP sockets. This limitation will be removed to support
other protocols in the future.

Refer to the README.sfnt-stream file which is part of the Onload distribution for further
information.

Usage:

 sfnt-stream [options] [tcp|udp|pipe|unix_stream|unix_datagram
[host[:port]]]

Options:

Option Description

--msgsize message size (bytes)

--rates msg rates <min>-<max>[+<step>]

--millisec time per test (milliseconds)

--samples number of samples per test

--stop stop when TX rate achieved is below give percentage
of target rate

--maxburst maximum burst length

--port server port number

--connect connect() UDP socket

--spin spin on non-blocking recv()

--muxer select, poll, epoll or none

--rtt report round-trip-time

--raw dump raw results to file

--percentile percentile

--mcast set the multicast address

--mcastintf set multicast interface. The client sends this
parameter to the server.

--mcastintf=eth2 both client and server use eth2

--mcastintf=’eth2;eth3’ client uses eth2 and server
uses eth3 (quotes are required for this format)
Issue 15 © Solarflare Communications 2013 160

 Onload

User Guide
standard options:

--mcastloop IP_MULTICAST_LOOP

--ttl IP_TTL and IP_MULTICAST_TTL

--bindtodevice SO_BINDTODEVICE

--n-pipe include pipes in file descriptor set

--n-unix-d include unix datagram in file descriptor set

--n-unix-s include unix stream in file descriptor set

--n-udp include UDP sockets in file descriptor set

--n-tcpc include TCP sockets in file descriptor set

--n-tcpl include TCP listening sockets in file descriptor set

--tcpc-serv host:port for TCP connections

--nodelay enable TCP_NODELAY

--affinity "<client-tx>,<client-rx>;<server-core>" enclose the
values in double quotes e.g. "4,5;3". This option
should be set on the client side only. The client sends
the <server_core> value to the server. The user must
ensure that the identified server core is available on
the server machine.

This option will override any value set by taskset on
the same command line.

--rtt-iter iterations for RTT measurement

Option Description

-? --help this message

-q --quiet quiet

-v --verbose display more information

--version display version information

Option Description
Issue 15 © Solarflare Communications 2013 161

 Onload

User Guide
Example command lines client/server

./sfnt-stream (server)
./sfnt-stream --affinity 1,1 udp <server-ip> (client)
./taskset -c 1 ./sfnt-stream --affinity="3,5;3" --mcastintf=eth4 udp
<remote-ip> (client)

Bonded Interfaces: sfnt-stream

The following example configures a single bond, having two slaves interfaces, on each machine.
Both client and server machines use eth4 and eth5.

Client Configuration

[root@client src]# ifconfig eth4 0.0.0.0 down
[root@client src]# ifconfig eth5 0.0.0.0 down
[root@client src]# modprobe bonding miimon=100 mode=1

xmit_hash_policy=layer2 primary=eth5
[root@client src]# ifconfig bond0 up
[root@client src]# echo +eth4 > /sys/class/net/bond0/bonding/slaves
[root@client src]# echo +eth5 > /sys/class/net/bond0/bonding/slaves
[root@client src]# ifconfig bond0 172.16.136.27/21

[root@client src]# onload --profile=latency taskset -c 3 ./sfnt-stream
sfnt-stream: server: waiting for client to connect...
sfnt-stream: server: client connected
sfnt-stream: server: client 0 at 172.16.136.28:45037

Server Configuration

[root@server src]# ifconfig eth4 0.0.0.0 down
[root@server src]# ifconfig eth5 0.0.0.0 down
[root@server src]# modprobe bonding miimon=100 mode=1

xmit_hash_policy=layer2 primary=eth5
[root@server src]# ifconfig bond0 up
[root@server src]# echo +eth4 > /sys/class/net/bond0/bonding/slaves
[root@server src]# echo +eth5 > /sys/class/net/bond0/bonding/slaves
[root@server src]# ifconfig bond0 172.16.136.28/21

NOTE: server sends to IP address of client bond
[root@server src]# onload --profile=latency taskset -c 1 ./sfnt-stream --

mcastintf=bond0 --affinity "1,1;3" udp 172.16.136.27
Issue 15 © Solarflare Communications 2013 162

 Onload

User Guide
Output Fields:

All time measurements are nanoseconds unless otherwise stated.

Field Description

mps target Msg per sec target rate

mps send Msg per sec actual rate

mps recv Msg receive rate

latency mean RTT mean latency

latency min RTT minimum latency

latency median RTT median latency

latency max RTT maximum latency

latency %ile RTT 99%ile

latency stddev Standard deviation of sample

latency samples Number of messages used to calculate latency measurement

sendjit mean Mean variance when sending messages

sendjit min Minimum variance when sending messages

sendjit max Maximum variance when sending messages

sendjit behind Number of times the sender falls behind and is unable to keep
up with the transmit rate

gaps n_gaps Count the number of gaps appearing in the stream

gaps n_drops Count the number of drops from stream

gaps n_ooo Count the number of sequence numbers received out of order
Issue 15 © Solarflare Communications 2013 163

 Onload

User Guide
Appendix G: onload_tcpdump

Introduction

By definition, Onload is a kernel bypass technology and this prevents packets from being captured
by packet sniffing applications such as tcpdump, netstat and wireshark.

Onload supports the onload_tcpdump application that supports packet capture from onload
stacks to a file or to be displayed on standard out (stdout). Packet capture files produced by
onload_tcpdump can then be imported to the regular tcpdump, wireshark or other third party
application where users can take advantage of dedicated search and analysis features.

Onload_tcpdump allows for the capture of all TCP and UDP unicast and multicast data sent or
received via Onload stacks - including shared stacks.

Building onload_tcpdump

The onload_tcpdump script is supplied with the Onload distribution and is located in the Onload-
<version>/scripts sub-directory.

Using onload_tcpdump

For help use the ./onload_tcpdump -h command:

Usage:
onload_tcpdump [-o stack-(id|name) [-o stack ...]]
tcpdump_options_and_parameters
"man tcpdump" for details on tcpdump parameters.
You may use stack id number or shell-like pattern for the stack name
to specify the Onload stacks to listen on.
If you do not specify stacks, onload_tcpdump will monitor all onload stacks.
If you do not specify interface via -i option, onload_tcpdump
listens on ALL interfaces instead of the first one.

For further information refer to the Linux man tcpdump pages.

Examples:

• Capture all accelerated traffic from eth2 to a file called mycaps.pcap:

onload_tcpdump -ieth2 -wmycaps.pcap

• If no file is specified onload_tcpdump will direct output to stdout:

onload_tcpdump -ieth2

• To capture accelerated traffic for a specific Onload stack (by name):

onload_tcpdump -ieth4 -o stackname

NOTE: libpcap and libpcap-devel must be built and installed BEFORE Onload is installed.
Issue 15 © Solarflare Communications 2013 164

 Onload

User Guide
• To capture accelerated traffic for a specific Onload stack (by ID):

onload_tcpdump -o 7

• To capture accelerated traffic for Onload stacks where name begins with "abc"

onload_tcpdump -o ’abc*’

• To capture accelerated traffic for onload stack 1, stack named "stack2" and all onload stacks with
name beginning with "ab":

 # onload_tcpdump -o 1 -o ’stack2’ -o ’ab*’

Dependencies

The onload_tcpdump application requires libpcap and libpcap-devel to be installed on the
server. If libpcap is not installed the following message is reported when onload_tcpdump is
invoked:

./onload_tcpdump
ci Onload was compiled without libpcap development package installed. You
need to install libpcap-devel or libpcap-dev package to run onload_tcpdump.
tcpdump: truncated dump file; tried to read 24 file header bytes, only got 0
Hangup

If libpcap is missing it can be downloaded from http://www.tcpdump.org/

Untar the compressed file on the target server and follow build instructions in the INSTALL.txt
file. The libpcap package must be installed before Onload is built and installed.

Limitations

• Currently onload_tcpdump captures only packets from onload stacks and not from kernel
stacks.

• The onload_tcpdump application monitors stack creation events and will attach to newly
created stacks however, there is a short period (normally only a few milliseconds) between stack
creation and the attachment during which packets sent/received will not be captured.

Known Issues

Users may notice that the packets sent when the destination address is not in the host ARP table
causes the packets to appear in both onload_tcpdump and (Linux) tcpdump.

SolarCapture

Solarflare’s SolarCapture is a packet capture application for Solarflare network adapters. It is able to
capture received packets from the wire at line rate, assigning accurate timestamps to each packet.
Packets are captured to PCAP file or forwarded to user-supplied logic for processing. For details see
the SolarCapture User Guide (SF-108469-CD) available from https://support.solarflare.com/.
Issue 15 © Solarflare Communications 2013 165

http://www.tcpdump.org/

 Onload

User Guide
Appendix H: ef_vi
The Solarflare ef_vi API is a layer 2 API that grants an application direct access to the Solarflare
network adapter datapath to deliver lower latency and reduced per message processing overheads.
ef_vi is the internal API used by Onload for sending and receiving packets. It can be used directly by
applications that want the very lowest latency send and receive API and that do not require a POSIX
socket interface.

Characteristics

• ef_vi is packaged with the Onload distribution.

• ef_vi is an OSI level 2 interface which sends and receives raw Ethernet frames.

• ef_vi supports a zero-copy interface because the user process has direct access to memory
buffers used by the hardware to receive and transmit data.

• An application can use both ef_vi and Onload at the same time. For example, use ef_vi to
receive UDP market data and Onload sockets for TCP connections for trading.

• The ef_vi API can deliver lower latency than Onload and incurs reduced per message overheads.

• ef_vi is free software distributed under a LGPL license.

• The user application wishing to use the layer 2 ef_vi API must implement the higher layer
protocols.

Components

All components required to build and link a user application with the Solarflare ef_vi API are
distributed with Onload. When Onload is installed all required directories/files are located under the
Onload distribution directory:

Compiling and Linking

Refer to the README.ef_vi file in the Onload directory for compile and link instructions.

Using ef_vi

Users of ef_vi must first allocate a virtual interface (VI), encapsulated by the type "ef_vi". A VI
includes:

• A receive descriptor ring (for receiving packets).

• A transmit descriptor ring (for sending packets).

• An event queue (to receive notifications from the hardware).
Issue 15 © Solarflare Communications 2013 166

 Onload

User Guide
Figure 21: Virtual Interface Components

To transmit a packet, the application writes the packet contents (including all headers) into one or
more packet buffers, and calls ef_vi_transmit(). One or more descriptors that describe the
packet are queued in the transmit ring, and a doorbell is "rung" to inform the adapter that the
transmit ring is non-empty.

To receive packets, descriptors, each identifying a buffer, are queued in the receive ring --
ef_vi_receive_init() and _post()(Refer to Handling Events on page 171). When packets
arrive at the VI, they are written into the buffers in fifo order.

The event queue is a channel from the adapter to software which notifies software when packets
arrive from the network, and when transmits complete (so that the buffers can be freed or reused).
The application retrieves these events by calling ef_eventq_poll().

The buffers used for packet data must be pinned so that they cannot be paged, and they must be
registered for DMA with the network adapter. The type "ef_iobufset" encapsulates a set of
buffers. The adapter uses a special address space to identify locations in these buffers, and such
addresses are designated by the type "ef_addr".

Filters are the means by which the adapter decides where to deliver packets it receives from the
network. By default all packets are delivered to the kernel network stack. Filters are added by the
application to direct received packets to a given VI.
Issue 15 © Solarflare Communications 2013 167

 Onload

User Guide
Protection Domain

The protection domain is a collection of VIs and memory regions tied to a single user interface. A
memory region can be registered with different protection domains. This is useful for zero-copy
forwarding. Refer also to ef_vi - Physical Addressing Mode on page 169 and ef_vi - Scalable Packet
Buffer Mode on page 169.

Any memory region in a protection domain can be used with any VI in the protection domain.

Figure 22: Create a Protection Domain

Virtual Interface

Figure 23: Allocate a Virtual Interface

A virtual interface consists of a transmit queue, receive queue and event queue. A VI can be
allocated with just one of the above three components, but if the event queue is omitted an optional
VI that has an event queue must be specified.

Memory Region

Figure 24: Allocate a Memory Region

The ef_memreg_alloc() function registers a block of memory to be used with VIs within a
protection domain. Performance will be improved when cache lined memory is set to a use a
minimum 4KB or aligning the memory region on a 2MB boundary to use huge pages.
Issue 15 © Solarflare Communications 2013 168

 Onload

User Guide
Receive Packet Buffers

Returns the size (bytes) of the received packet meta data prefix.

A packet buffer should be at least as large as the value returned from ef_vi_receive_buffer_len.

Address Space

Three modes are possible for setting up the adapter address space; buffer table, SR-IOV, or no
translation.

The buffer table is a block of memory on the adapter that does the translation from buffer ID to
physical addresses. When using a SFN5000 or SFN6000 series adapter there are 120,000 entries in
the buffer table. Each buffer is mapped in each adapter so, regardless of the number of NICs
installed, there are a total of 120,000 packet buffers in the system. The SFN7000 series adapters can
employ more than the 120K packet buffers without the need to use Scalable packet buffer mode -
refer to Large Buffer Table Support on page 62 for details.

SR-IOV employs the IOMMU virtual addresses. The IOMMU removes the 120K buffer limitation of
the buffer table. See Scalable Packet Buffer Mode on page 62 for details of how to configure SR-IOV
and enable the system IOMMU.

The no translation mode requires the application to identify actual physical addresses to the adapter
which means the application can direct the adapter to read/write any piece of memory. It is
important to ensure that packet buffers are page aligned.

ef_vi - Physical Addressing Mode

An ef_vi application can use physical addressing mode, see Physical Addressing Mode on page 70.
To enable physical addressing mode set the environment variable EF_VI_PD_FLAGS=phys.

ef_vi - Scalable Packet Buffer Mode

Using Scalable Packet Buffer Mode, packet buffers are allocated from the kernel IOMMU instead of
from the buffer table. An ef_vi application can enable this mode by setting EF_VI_PD_FLAGS=vf.
The caveats applicable to an Onload application will also apply i.e. SR-IOV must be enabled, the
kernel must support an IOMMU. Refer to Scalable Packet Buffer Mode on page 62 for configuration
details and caveats.
Issue 15 © Solarflare Communications 2013 169

 Onload

User Guide
Filters

• The application is able to set multiple types of filters on the same VI.

• If a filter already exists, an error is returned.

• Cookies are used to remove filters.

• De-allocating a VI removes the filters set for the VI

• NOTE: IP filters do not match IP fragments, which are therefore received by the kernel stack. If
this is an issue, layer 2 filters should be installed by the user.

Figure 25: Creating Filters

An issue has been identified in Onload-201310 such that if two applications attempt to install the
same unicast|multicast all filters, an error will be returned and either application could receive the
packets (both not both). If either application then exits, the packets are returned through the kernel
and the remaining application will not receive the packets. This will be addressed in a future Onload
release.

Transmitting Packets

The packet buffer memory must have been previously registered with the protection domain. If the
transmit queue is empty when the doorbell is rung, 'TX PUSH' is used. In 'TX_PUSH', the doorbell is
rung and the address of the packet buffer is written in one shot improving latency. TX_PUSH can
Issue 15 © Solarflare Communications 2013 170

 Onload

User Guide
cause ef_vi to poll for events, to check if the transmit queue is empty, before sending which can lead
to a latency versus throughput trade off in some scenarios.

Figure 26: Transmit Packets

Handling Events

• Receive descriptors should be posted to the adapter receive ring in multiples of 8. When an
application pushes 10 descriptors, ef_vi will push 8 and ev_vi will ignore descriptor batch sizes <
8. Users should beware that if the rx ring is empty and the application pushes < 8 descriptors
before blocking on the event queue, the application will remain blocked as there are no
descriptors available to receive packets so nothing gets posted to the event queue.

• The batch size for polling should be greater than the batch size for refilling to detect when the
receive queue is going empty.

• Packets of a size smaller than the interface MTU but larger than packet buffer sizes are delivered
in multiple buffers as jumbos.

• Since the adapter is cut-through, errors in receiving packets like multicast mismatch, CRC errors,
etc. are delivered along with the packet. The software must detect these errors and recycle the
associated packet buffers.
Issue 15 © Solarflare Communications 2013 171

 Onload

User Guide
Using ef_vi Example
Issue 15 © Solarflare Communications 2013 172

 Onload

User Guide
Example Applications

Solarflare ef_vi comes with a range of example applications - including source code and make files.

Building Example Applications

The ef_vi example applications are built along with the Onload installation and will be present in the
/Onload-<version>/build/gnu_x86_64/tests/ef_vi subdirectory. In the build directory
there will be gnu, gnu_x86_64, x86_64_linux-<kernel version> directories. Files under the gnu
directory are 32bit (if these are built), files under the gnu_x86_64 are 64bit.

Source code files for the example applications exist in the /Onload-<version>/src/tests/
ef_vi subdirectory.

To rebuild the example applications you must have the Onload-<version>/scripts
subdirectory in your path and use the following procedure:

[root@server01 Onload-201109]# cd scripts/
[root@server01 scripts]# export PATH="$PWD:$PATH"
[root@server01 scripts]# cd ../build/_gnu_x86_64/tests/ef_vi/
[root@server01 ef_vi]# make clean
[root@serverr01 ef_vi]# make

Application Description

efforward Forward packets between two interfaces
without modification.

efpingpong Ping a simple message format between two
interfaces.

efpio Pingpong application that uses PIO.

efrss Forward packets between two interfaces
without modification, spreading the load over
multiple VIs and threads.

efsink Receives streams of packets on a single
interface.
Issue 15 © Solarflare Communications 2013 173

 OpenOnload

User Guide
Appendix I: onload_iptables

Description

The Linux netfilter iptables feature provides filtering based on user-configurable rules with the aim
of managing access to network devices and preventing unauthorized or malicious passage of
network traffic. Packets delivered to an application via the Onload accelerated path are not visible
to the OS kernel and, as a result, these packets are not visible to the kernel firewall (iptables).

The onload_iptables feature allows the user to configure rules which determine which hardware
filters Onload is permitted to insert on the adapter and therefore which connections and sockets can
bypass the kernel and, as a consequence, bypass iptables.

The onload_iptables command can convert a snapshot1 copy of the kernel iptables rules into Onload
firewall rules used to determine if sockets, created by an Onloaded process, are retained by Onload
or handed off to the kernel network stack. Additionally, user-defined filter rules can be added to the
Onload firewall on a per interface basis. The Onload firewall applies to the receive filter path only.

How it works

Before Onload accelerates a socket it first checks the Onload firewall module. If the firewall module
indicates the acceleration of the socket would violate a firewall rule, the acceleration request is
denied and the socket is handed off to the kernel. Network traffic sent or received on the socket is
not accelerated.

Onload firewall rules are parsed in ascending numerical order. The first rule to match the newly
created socket - which may indicate to accelerate or decelerate the socket - is selected and no
further rules are parsed.

If the Onload firewall rules are an exact copy of the kernel iptables i.e. with no additional rules added
by the Onload user, then a socket handed off to the kernel, because of an iptables rule violation, will
be unable to receive data through either path.

Changing rules using onload_iptables will not interrupt existing network connections.

1. Subsequent changes to kernel iptables will not be reflected in the Onload firewall.

NOTE: Onload firewall rules will not persist over network driver restarts.

NOTE: The onload_iptables "IP rules" will only block hardware IP filters from being inserted and
onload_iptables "MAC rules" will only block hardware MAC filters from being inserted. Therefore it
is possible that if a rule is inserted to block a MAC address, the user is still able to accept traffic from
the specified host by Onload inserting an appropriate IP hardware filter.
Issue 15 © Solarflare Communications 2013 174

 OpenOnload

User Guide
Files

When the Onload drivers are loaded, firewall rules exist in the Linux proc psuedo file system at:

/proc/driver/sfc_resource

Within this directory the firewall_add, firewall_del and resources files will be present. These files are
writeable only by a root user. No attempt should be made to remove these files.

Once rules have been created for a particular interface – and only while these rules exist – a separate
directory exists which contains the current firewall rules for the interface:

/proc/driver/sfc_resource/ethN/firewall_rules

Features

To get help:

onload_iptables -h

Rules

The general format of the rule is:

rule=n if=ethN protocol=(ip|tcp|udp) [local_ip=a.b.c.d[/mask]]
[remote_ip=a.b.c.d[/mask]] [local_port=a[-b]] [remote_port=a[-b]]
action=(ACCELERATE|DECELERATE)

rule=n if=ethN protocol=eth mac=xx:xx:xx:xx:xx:xx[/FF:FF:FF:FF:FF:FF]
action=(ACCELERATE|DECELERATE)

Preview firewall rules

Before creating the Onload firewall, run the onload_iptables -v option to identify which rules
will be adopted by the firewall and which will be rejected (a reason is given for rejection):

onload_iptables -v

DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:5201
=> if=None protocol=tcp local_ip=0.0.0.0/0 local_port=5201-5201
remote_ip=0.0.0.0/0 remote_port=0-65535 action=DECELERATE

DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:5201
=> if=None protocol=tcp local_ip=0.0.0.0/0 local_port=5201-5201
remote_ip=0.0.0.0/0 remote_port=0-65535 action=DECELERATE

DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpts:80:88
=> if=None protocol=tcp local_ip=0.0.0.0/0 local_port=80-88
remote_ip=0.0.0.0/0 remote_port=0-65535 action=
tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:800
Issue 15 © Solarflare Communications 2013 175

 OpenOnload

User Guide
=> Error parsing: Insuffcient arguments in rule.

The last rule is rejected because the action is missing.

To convert Linux iptables to Onload firewall rules

The Linux iptables can be applied to all or individual Solarflare interfaces.

Onload iptables are only applied to the receive filter path. The user can select the INPUT CHAIN or
a user defined CHAIN to parse from the iptables. The default CHAIN is INPUT. To adopt the rules from
iptables even though some rules will be rejected enter the following command identifying the
Solarflare interface the rules should be applied to:

onload_iptables -i ethN -c
onload_iptables -a -c

Running the onload_iptables command will overwrite existing rules in the Onload firewall when
used with the -i (interface) or -a (all interfaces) options.

To view rules for a specific interface:

When firewall rules exist for a Solarflare interface, and only while they exist, a directory for the
interface will be created in:

/proc/driver/sfc_resource

Rules for a specific interface will be found in the firewall_rules file e.g.

cat /proc/driver/sfc_resource/eth3/firewall_rules

if=eth3 rule=0 protocol=tcp local_ip=0.0.0.0/0.0.0.0 remote_ip=0.0.0.0/
0.0.0.0 local_port=5201-5201 remote_port=0-65535 action=DECELERATE
if=eth3 rule=1 protocol=tcp local_ip=0.0.0.0/0.0.0.0 remote_ip=0.0.0.0/
0.0.0.0 local_port=5201-5201 remote_port=0-65535 action=DECELERATE

NOTE: The -v option does not create firewall rules for any Solarflare interface, but allows the user
to preview which Linux iptables rules will be accepted and which will be rejected by Onload

NOTE: Applying the Linux iptables to a Solarflare interface is optional. The alternatives are to
create user-defined firewall rules per interface or not to apply any firewall rules per interface
(default behaviour).

NOTE: onload_iptables will import all rules to the identified interface - even rules specified on
another interface. To avoid importing rules specified on ’other’ interfaces using the --use-extended
option.
Issue 15 © Solarflare Communications 2013 176

 OpenOnload

User Guide
if=eth3 rule=2 protocol=tcp local_ip=0.0.0.0/0.0.0.0 remote_ip=0.0.0.0/
0.0.0.0 local_port=5201-5201 remote_port=72-72 action=DECELERATE
if=eth3 rule=3 protocol=tcp local_ip=0.0.0.0/0.0.0.0 remote_ip=0.0.0.0/
0.0.0.0 local_port=80-88 remote_port=0-65535 action=DECELERATE

To add a rule for a selected interface

echo "rule=4 if=eth3 action=ACCEPT protocol=udp local_port=7330-7340" > /
proc/driver/sfc_resource/firewall_add

Rules can be inserted into any position in the table and existing rule numbers will be adjusted to
accommodate new rules. If a rule number is not specified the rule will be appended to the existing
rule list.

To delete a rule from a selected interface:

To delete a single rule:

echo "if=eth3 rule=2" > /proc/driver/sfc_resource/firewall_del

To delete all rules:

echo "eth2 all" > /proc/driver/sfc_resource/firewall_del

When the last rule for an interface has been deleted the interface firewall_rules file is removed from
/proc/driver/sfc_resource. The interface directory will be removed only when completely
empty.

Error Checking

The onload_iptables command does not log errors to stdout. Errors arising from add or delete
commands will logged in dmesg.

Interface & Port

Onload firewall rules are bound to an interface and not to a physical adapter port. It is possible to
create rules for an interface in a configured/down state.

Virtual/Bonded Interface

On virtual or bonded interfaces firewall rules are only applied and enforced on the ’real’ interface.

NOTE: Errors resulting from the add/delete commands will be displayed in dmesg.
Issue 15 © Solarflare Communications 2013 177

 OpenOnload

User Guide
Error Messages

Error messages relating to onload_iptables operations will appear in dmesg.

Table 3:

Error Message Description

Internal error Internal condition - should not happen.

Unsupported rule Internal condition - should not happen.

Out of memory allocating new
rule

Memory allocation error.

Seen multiple rule numbers Only a single rule number can be specified when
adding/deleting rules.

Seen multiple interfaces Only a single interface can be specified when
adding/deleting rules.

Unable to understand action The action specified when adding a rule is not
supported. Note that there should be no spaces i.e.
action=ACCELERATE.

Unable to understand
protocol

Non-supported protocol.

Unable to understand
remainder of the rule

Non-supported parameters/syntax.

Failed to understand
interface

The interface does not exist. Rules can be added to
an interface that does not yet exist, but cannot be
deleted from an non-existent interface.

Failed to remove rule The rule does not exist.

Error removing table Internal condition - should not happen.

Invalid local_ip rule Invalid address/mask format. Supported formats:

a.b.c.d

a.b.c.d/n

a.b.c.d/e.f.g.h

where a.b.c.d.e.f.g.h are decimal range 0-255, n =
decimal range 0-32.

Invalid remote_ip rule Invalid address/mask format.

Invalid rule A rule must identify at least an interface, a protocol,
an action and at least one match criteria.
Issue 15 © Solarflare Communications 2013 178

 OpenOnload

User Guide
Invalid mac Invalid mac address/mask format.

Supported formats:

xx:xx:xx:xx:xx:xx

xx:xx:xx:xx:xx:xx/xx:xx:xx:xx:xx:xx

where x is a hex digit.

NOTE: A Linux limitation applicable to the /proc/ filesystem restricts a write operation to 1024
bytes. When writing to /proc/driver/sfc_resource/firewall_[add|del] files the user is advised to
flush the write between lines which exceed the 1024 byte limit.

Table 3:

Error Message Description
Issue 15 © Solarflare Communications 2013 179

 Onload

User Guide
Appendix J: Solarflare efpio Test Application
The openonload-201310 distribution includes the command line efpio test application to measure
latency of the Solarflare ef_vi layer 2 API with PIO. The efpio application is a single thread ping/pong.
When all iterations are complete the client side will display the round-trip time.

By default efpio downloads a packet to the adapter at start of day and transmits this same packet on
every iteration of the test. The –c option can be used to test the latency of ef_vi using PIO to transfer
a new transmit packet to the adapter on every iteration.

With the onload distribution installed efpio will be present in the following directory:

~/openonload-201310/build/gnu_x86_64/tests/ef_vi

efpio Options

./efpio –help
usage:
 efpio [options] <ping|pong> <interface>
 <local-ip-intf> <local-port>
 <remote-mac> <remote-ip-intf> <remote-port>

options:
 -n <iterations> - set number of iterations
 -s <message-size> - set udp payload size
 -w - sleep instead of busy wait
 -v - use a VF
 -p - physical address mode
 -t - disable TX push
 -c - copy on critical path

Table 4: efpio Options

Parameter Description

interface the local interface to use e.g. eth2

local-ip-intf local interface IP address/host name

local-port local interface IP port number to use

remote-mac MAC address of the remote interface

remote-ip-intf remote server IP address/host name

remote-port remote server port number
Issue 15 © Solarflare Communications 2013 180

 Onload

User Guide
To run efpio

The efpio must be started on the server (pong side) before the client (ping side) is run. Command
line examples are shown below.

1 On the server side (server1)

taskset –c <M> ./efpio pong eth<N> <local-ip> 8001 <server2-mac> <server2-
ip> 8001

ef_vi_version_str: 201306-7122preview2
udp payload len: 28
iterations: 100000
frame len: 70

2 On the client side (server2)

taskset –c <M> ./efpio ping eth<N> <local-ip> 8001 <server1-mac> <server1-
ip> 8001

ef_vi_version_str: 201306-7122preview2
udp payload len: 28
iterations: 100000
frame len: 70
round-trip time: 2.848 μs

M = cpu core, N = Solarflare adapter interface.
Issue 15 © Solarflare Communications 2013 181

	Chapter 1: What’s New
	New Features 201310-u1
	New Features 201310
	Change History
	Documentation Changes

	Chapter 2: Low Latency Quickstart Guide
	Chapter 3: Background
	3.1 Introduction.
	Contrasting with Conventional Networking
	How Onload Increases Performance
	Further Information

	Chapter 4: Installation
	4.1 Introduction
	4.2 Onload Distributions
	4.3 Hardware and Software Supported Platforms
	4.4 Onload and the Network Adapter Driver
	4.5 Pre-install Notes
	4.6 EnterpriseOnload - Build and Install from SRPM
	Build the RPM
	Install the EnterpriseOnload RPM
	Installing the EnterpriseOnload Kernel Module

	4.7 OpenOnload DKMS Installation
	4.8 Build OpenOnload Source RPM
	4.9 OpenOnload - Installation
	Download and untar OpenOnload
	Building and Installing OpenOnload
	Load Onload Drivers
	Confirm Onload Installation

	4.10 Onload Kernel Modules
	4.11 Configuring the Network Interfaces
	4.12 Installing Netperf
	4.13 How to run Onload
	4.14 Testing the Onload Installation
	4.15 Apply an Onload Patch

	Chapter 5: Tuning Onload
	5.1 Introduction
	5.2 System Tuning
	Sysjitter
	CPU Power Saving Mode

	5.3 Standard Tuning
	Spinning (busy-wait)
	Enabling spinning
	When to Use Spinning
	Polling vs. Interrupts

	5.4 Performance Jitter
	Using Onload Tuning Profiles
	Benchmark Testing

	5.5 Advanced Tuning
	Monitoring Using onload_stackdump

	Chapter 6: Features & Functionality
	6.1 Introduction
	6.2 Onload Transparency
	6.3 Onload Stacks
	6.4 Virtual Network Interface (VNIC)
	6.5 Functional Overview
	6.6 Onload with Mixed Network Adapters
	6.7 Maximum Number of Network Interfaces
	6.8 Onloaded PIDs
	6.9 Onload and File Descriptors, Stacks and Sockets
	6.10 System calls intercepted by Onload
	6.11 Linux Sysctls
	6.12 Changing Onload Control Plane Table Sizes
	6.13 TCP Operation
	TCP Handshake - SYN, SYNACK
	TCP Socket Options
	TCP Level Options
	TCP File Descriptor Control
	TCP Congestion Control
	TCP SACK
	TCP QUICKACK
	TCP Delayed ACK
	TCP Dynamic ACK
	TCP Loopback Acceleration
	TCP Striping
	TCP Connection Reset on RTO
	ONLOAD_MSG_WARM

	6.14 UDP Operation
	Socket Options
	Source Specific Socket Options
	SO_TIMESTAMP and SO_TIMESTAMPNS (software timestamps)
	SO_TIMESTAMPING (hardware timestamps)
	SO_BINDTODEVICE
	UDP Send and Receive Paths
	Fragmented UDP

	6.15 User Level recvmmsg for UDP
	6.16 User-Level sendmmsg for UDP
	6.17 Multiplexed I/O
	Poll, ppoll
	Select, pselect
	Epoll

	6.18 Stack Sharing
	6.19 Multicast Replication
	6.20 Multicast Operation and Stack Sharing
	Multicast Receive Using Different Onload Stacks
	Multicast Transmit Using Different Onload Stacks
	Multicast Receive Sharing an Onload Stack
	Multicast Transmit Sharing an Onload Stack
	Multicast Receive - Onload Stack and Kernel Stack
	Multicast Receive and Multiple Sockets

	6.21 Multicast Loopback
	6.22 Bonding, Link aggregation and Failover
	6.23 VLANS
	6.24 Accelerated pipe()
	6.25 Zero-Copy API
	6.26 Receive Filtering
	6.27 Packet Buffers
	Introduction
	How Packet Buffers Are Used by Onload
	Identifying Packet Buffer Requirements
	Running Out of Packet Buffers
	Controlling Onload Packet Buffer Use
	Configuring Scalable Packet Buffers
	Physical Addressing Mode

	6.28 Programmed I/O
	6.29 Templated Sends
	6.30 Debug and Logging

	Chapter 7: Limitations
	7.1 Introduction
	7.2 Changes to Behavior
	Multithreaded Applications Termination
	Packet Capture
	Firewalls
	System Tools
	Signals

	7.3 Limits to Acceleration
	IP Fragmentation
	Broadcast Traffic
	IPv6 Traffic
	Raw Sockets
	Statically Linked Applications
	Local Port Address
	Bonding, Link aggregation
	VLANs
	TCP RTO During Overload Conditions
	TCP with Jumbo Frames
	Transmission Path - Packet Loss

	7.4 epoll - Known Issues
	7.5 Configuration Issues
	Mixed Adapters Sharing a Broadcast Domain
	Virtual Memory on 32 Bit Systems
	Hardware Resources
	IGMP Operation and Multicast Process Priority
	Dynamic Loading
	Scalable Packet Buffer Mode
	Scalable Packet Buffer Mode on SFN7122F and SFN7322F
	Huge Pages with IPC namespace
	Huge Pages with Shared Stacks
	Huge Pages - Size
	Red Hat MRG 2 and SR-IOV
	PowerPC Architecture
	Java 7 Applications - use of vfork()

	Chapter 8: Change History
	8.1 Features
	8.2 Environment Variables
	8.3 Module Options

	Appendix A: Parameter Reference
	EF_FORCE_TCP_NODELAY
	EF_FREE_PACKETS_LOW_WATERMARK
	EF_PIO
	EF_PIO_THRESHOLD
	EF_PIPE
	EF_VFORK_MODE

	Appendix B: Meta Options
	Appendix C: Build Dependencies
	Appendix D: Onload Extensions API
	Source Code
	Common Components
	Stacks API
	Stacks API Usage
	Stacks API - Examples
	Zero-Copy API
	Zero-Copy Data Buffers
	Zero-Copy UDP Receive Overview
	Zero-Copy UDP Receive
	Zero-Copy Receive Example #1
	Zero-Copy Receive Example #2
	Zero-Copy TCP Send Overview
	Zero-Copy TCP Send
	Zero-Copy Send - Single Message, Single Buffer
	Zero-Copy Send - Multiple Message, Multiple Buffers
	Zero-Copy Send - Full Example
	Receive Filtering API Overview
	Receive Filtering API
	Receive Filter - Example
	Templated Sends

	Appendix E: onload_stackdump
	Introduction
	General Use
	List Onloaded Processes
	Identify Onloaded Processes Affinities
	List Onload Environment variables
	TX PIO Counters
	Snapshot vs. Dynamic Views
	Monitoring Receive and Transmit Packet Buffers
	TCP Application STATS
	The onload_stackdump LOTS Command.

	Appendix F: Solarflare sfnettest
	Introduction
	sfnt-pingpong
	sfnt-stream
	Bonded Interfaces: sfnt-stream

	Appendix G: onload_tcpdump
	Introduction
	Building onload_tcpdump
	Using onload_tcpdump
	Dependencies
	Limitations
	Known Issues
	SolarCapture

	Appendix H: ef_vi
	Characteristics
	Components
	Compiling and Linking
	Using ef_vi
	Protection Domain
	Virtual Interface
	Memory Region
	Receive Packet Buffers
	Address Space
	ef_vi - Physical Addressing Mode
	ef_vi - Scalable Packet Buffer Mode
	Filters
	Transmitting Packets
	Handling Events
	Using ef_vi Example
	Example Applications
	Building Example Applications

	Appendix I: onload_iptables
	Description
	How it works
	Files
	Features
	Rules
	Error Messages

	Appendix J: Solarflare efpio Test Application

