Introduction to Oracle9i: SQL

Student Guide » Volume 2

40049GC10
Production 1.0
June 2001
D33052

ORACLE

Authors

Nancy Greenberg
Priya Nathan

Technical Contributors
and Reviewers

Josephine Turner
Anna Atkinson
Don Bates

Marco Berbeek
Andrew Brannigan
Michael Gerlach
Sharon Gray
Rosita Hanoman
Mozhe Jalali
Sarah Jones
Charbel Khouri
Christopher Lawless
Diana Lorentz
Nina Minchen
Cuong Nguyen
Daphne Nougier
Patrick Odell
Laura Pezzini
Stacey Procter
Maribel Renau
Bryan Roberts
Sunshine Salmon
Casa Sharif
Bernard Soleillant
Ruediger Steffan
Karla Villasenor
Andree Wheeley
Lachlan Williams

Publisher
Sheryl Domingue

Copyright © Oracle Corporation, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate 11l (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

Oracle and all references to Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Contents

Preface

Curriculum Map
Introduction
Objectives 1-2
Oracle9i [-3
Oracle9i Application Server -5
Oracle9i Database 1-6
Oracle9i: Object Relational Database Management System -8
Oracle Internet Platform -9
System Development Life Cycle 1-10
Data Storage on Different Media 1-12
Relational Database Concept [-13
Definition of a Relational Database [-14
Data Models 1-15
Entity Relationship Model 1-16
Entity Relationship Modeling Conventions 1-17
Relating Multiple Tables 1-19
Relational Database Terminology 1-20
Relational Database Properties 1-21
Communicating with a RDBMS Using SQL [-22
Relational Database Management System [-23
SQL Statements [-24
Tables Used in the Course 1-25

Summary [-26

1 Writing Basic SQL SELECT Statements
Objectives 1-2
Capabilities of SQL SELECT Statements 1-3
Basic SELECT Statement 1-4

Selecting All Columns 1-5

Selecting Specific Columns 1-6

Writing SQL Statements 1-7

Column Heading Defaults 1-8
Arithmetic Expressions 1-9

Using Arithmetic Operators 1-10
Operator Precedence 1-11

Using Parentheses 1-13

Defining a Null Value 1-14

Null Values in Arithmetic Expressions 1-15
Defining a Column Alias 1-16

Using Column Aliases 1-17
Concatenation Operator 1-18

Using the Concatenation Operator 1-19
Literal Character Strings 1-20

Using Literal Character Strings 1-21
Duplicate Rows 1-22

Eliminating Duplicate Rows 1-23

SQL and iSQL*Plus Interaction 1-24
SQL Statements versus iSQL*Plus Commands
Overview of iISQL*Plus 1-26

Logging In to iSQL*Plus 1-27

The iISQL*Plus Environment 1-28
Displaying Table Structure 1-29
Interacting with Script Files 1-31
Summary 1-34

Practice 1 Overview 1-35

1-25

2 Restricting and Sorting Data
Objectives 2-2
Limiting Rows Using a Selection 2-3
Limiting the Rows Selected 2-4
Using the WHERE Clause 2-5
Character Strings and Dates 2-6
Comparison Conditions 2-7
Using Comparison Conditions 2-8
Other Comparison Conditions 2-9
Using the BETWEEN Condition 2-10
Using the IN Condition 2-11
Using the LIKE Condition 2-12
Using the NULL Conditions 2-14
Logical Conditions 2-15
Using the AND Operator 2-16
Using the OR Operator 2-17
Using the NOT Operator 2-18
Rules of Precedence 2-19
ORDER BY Clause 2-22
Sorting in Descending Order 2-23
Sorting by Column Alias 2-24
Sorting by Multiple Columns 2-25
Summary 2-26

Practice 2 Overview 2-27

3 Single-Row Functions
Objectives 3-2
SQL Functions 3-3
Two Types of SQL Functions 3-4
Single-Row Functions 3-5
Character Functions 3-7
Case Manipulation Functions 3-9
Using Case Manipulation Functions 3-10
Character-Manipulation Functions 3-11
Using the Character-Manipulation Functions 3-12
Number Functions 3-13
Using the ROUND Function 3-14
Using the TRUNC Function 3-15
Using the MOD Function 3-16
Working with Dates 3-17
Arithmetic with Dates 3-19
Using Arithmetic Operators with Dates 3-20
Date Functions 3-21
Using Date Functions 3-22
Practice 3, Part 1 Overview 3-24
Conversion Functions 3-25
Implicit Data-Type Conversion 3-26
Explicit Data-Type Conversion 3-28
Using the TO_CHAR Function with Dates 3-31
Elements of the Date Format Model 3-32

Using the TO_CHAR Function with Dates 3-36

Vi

Using the TO_CHAR Function with Numbers 3-37
Using the TO_NUMBER and TO_DATE Functions 3-39
RR Date Format 3-40

Example of RR Date Format 3-41

Nesting Functions 3-42

General Functions 3-44

NVL Function 3-45

Using the NVL Function 3-46

Using the NVL2 Function 3-47

Using the NULLIF Function 3-48

Using the COALESCE Function 3-49

Conditional Expressions 3-51

The CASE Expression 3-52

Using the CASE Expression 3-53

The DECODE Function 3-54

Using the DECODE Function 3-55

Summary 3-57

Practice 3, Part 2 Overview 3-58

Displaying Data from Multiple Tables
Objectives 4-2

Obtaining Data from Multiple Tables 4-3
Cartesian Products 4-4

Generating a Cartesian Product 4-5
Types of Joins 4-6

Joining Tables Using Oracle Syntax 4-7

Vii

What Is an Equijoin? 4-8

Retrieving Records with Equijoins 4-9
Additional Search Conditions Using the AND Operator
Qualifying Ambiguous Column Names 4-11
Using Table Aliases 4-12

Joining More than Two Tables 4-13
Nonequijoins 4-14

Retrieving Records with Nonequijoins 4-15
Outer Joins 4-16

Outer Joins Syntax 4-17

Using Outer Joins 4-18

Self Joins 4-19

Joining a Table to Itself 4-20

Practice 4, Part 1 Overview 4-21

Joining Tables Using SQL: 1999 Syntax 4-22
Creating Cross Joins 4-23

Creating Natural Joins 4-24

Retrieving Records with Natural Joins 4-25
Creating Joins with the USING Clause 4-26
Retrieving Records with the USING Clause 4-27
Creating Joins with the ON Clause 4-28
Retrieving Records with the ON Clause 4-29
Creating Three-Way Joins with the ON Clause 4-30
INNER versus OUTER Joins 4-31

LEFT OUTER JOIN 4-32

RIGHT OUTER JOIN 4-33

viii

4-10

FULL OUTER JOIN 4-34
Additional Conditions 4-35
Summary 4-36

Practice 4, Part 2 Overview 4-37

Aggregating Data Using Group Functions
Objectives 5-2

What Are Group Functions? 5-3

Types of Group Functions 5-4

Group Functions Syntax 5-5

Using the AVG and SUM Functions 5-6

Using the MIN and MAX Functions 5-7

Using the COUNT Function 5-8

Using the DISTINCT Keyword 5-10

Group Functions and Null Values 5-11

Using the NVL Function with Group Functions 5-12
Creating Groups of Data 5-13

Creating Groups of Data: GROUP BY Clause Syntax 5-14
Using the GROUP BY Clause 5-15

Grouping by More Than One Column 5-17

Using the GROUP BY Clause on Multiple Columns 5-18
lllegal Queries Using Group Functions 5-19
Excluding Group Results 5-21

Excluding Group Results: The HAVING Clause 5-22
Using the HAVING Clause 5-23

Nesting Group Functions 5-25

Summary 5-26

Practice 5 Overview 5-27

6 Subqueries
Objectives 6-2
Using a Subquery to Solve a Problem 6-3
Subquery Syntax 6-4
Using a Subquery 6-5
Guidelines for Using Subqueries 6-6
Types of Subqueries 6-7
Single-Row Subqueries 6-8
Executing Single-Row Subqueries 6-9
Using Group Functions in a Subquery 6-10
The HAVING Clause with Subqueries 6-11
What Is Wrong with This Statement? 6-12
Will This Statement Return Rows? 6-13
Multiple-Row Subqueries 6-14
Using the ANY Operator in Multiple-Row Subqueries 6-15
Using the ALL Operator in Multiple-Row Subqueries 6-16
Null Values in a Subquery 6-17
Summary 6-18

Practice 6 Overview 6-19

7 Producing Readable Output with iSQL*Plus
Objectives 7-2
Substitution Variables 7-3
Using the & Substitution Variable 7-5
Character and Date Values with Substitution Variables 7-7

Specifying Column Names, Expressions, and Text 7-8

Defining Substitution Variables 7-10

DEFINE and UNDEFINE Commands 7-11
Using the DEFINE Command with & Substitution Variable 7-12
Using the VERIFY Command 7-14

Customizing the iISQL*Plus Environment 7-15
SET Command Variables 7-16

iISQL*Plus Format Commands 7-17

The COLUMN Command 7-18

Using the COLUMN Command 7-19

COLUMN Format Models 7-20

Using the BREAK Command 7-21

Using the TTITLE and BTITLE Commands 7-22
Creating a Script File to Run a Report 7-23
Sample Report 7-25

Summary 7-26

Practice 7 Overview 7-27

Manipulating Data

Objectives 8-2

Data Manipulation Language 8-3
Adding a New Row to a Table 8-4
The INSERT Statement Syntax 8-5
Inserting New Rows 8-6

Inserting Rows with Null Values 8-7
Inserting Special Values 8-8

Inserting Specific Date Values 8-9

Xi

Creating a Script 8-10

Copying Rows from Another Table 8-11

Changing Data in a Table 8-12

The UPDATE Statement Syntax 8-13

Updating Rows in a Table 8-14

Updating Two Columns with a Subquery 8-15
Updating Rows Based on Another Table 8-16
Updating Rows: Integrity Constraint Error 8-17
Removing a Row from a Table 8-18

The DELETE Statement 8-19

Deleting Rows from a Table 8-20

Deleting Rows Based on Another Table 8-21

Deleting Rows: Integrity Constraint Error 8-22

Using a Subquery in an INSERT Statement 8-23

Using the WITH CHECK OPTION Keyword on DML Statements 8-25
Overview of the Explict Default Feature 8-26

Using Explicit Default Values 8-27

The MERGE Statement 8-28

MERGE Statement Syntax 8-29

Merging Rows 8-30

Database Transactions 8-32

Advantages of COMMIT and ROLLBACK Statements 8-34
Controlling Transactions 8-35

Rolling Back Changes to a Marker 8-36

Implicit Transaction Processing 8-37

State of the Data Before COMMIT or ROLLBACK 8-38

State of the Data After COMMIT 8-39)
X1l

Committing Data 8-40

State of the Data After ROLLBACK 8-41
Statement-Level Rollback 8-42

Read Consistency 8-43

Implementation of Read Consistency 8-44
Locking 8-45

Implicit Locking 8-46

Summary 8-47

Practice 8 Overview 8-48

Creating and Managing Tables

Objectives 9-2

Database Objects 9-3

Naming Rules 9-4

The CREATE TABLE Statement 9-5
Referencing Another User’'s Tables 9-6

The DEFAULT Option 9-7

Creating Tables 9-8

Tables in the Oracle Database 9-9

Querying the Data Dictionary 9-10

Data Types 9-11

Datetime Data Types 9-13

TIMESTAMP WITH TIME ZONE Data Type 9-15
TIMESTAMP WITH LOCAL TIME Data Type 9-16
INTERVAL YEAR TO MONTH Data Type 9-17

Creating a Table by Using a Subquery Syntax 9-18

Xiii

Creating a Table by Using a Subquery 9-19
The ALTER TABLE Statement 9-20
Adding a Column 9-22

Modifying a Column 9-24

Dropping a Column 9-25

The SET UNUSED Option 9-26
Dropping a Table 9-27

Changing the Name of an Object 9-28
Truncating a Table 9-29

Adding Comments to a Table 9-30
Summary 9-31

Practice 9 Overview 9-32

10 Including Constraints
Objectives 10-2
What Are Constraints? 10-3
Constraint Guidelines 10-4
Defining Constraints 10-5
The NOT NULL Constraint 10-7
The UNIQUE Constraint 10-9
The PRIMARY KEY Constraint 10-11
The FOREIGN KEY Constraint 10-13
FOREIGN KEY Constraint Keywords 10-15
The CHECK Constraint 10-16
Adding a Constraint Syntax 10-17
Adding a Constraint 10-18

Dropping a Constraint 10-19

Xiv

11

Disabling Constraints 10-20

Enabling Constraints 10-21

Cascading Constraints 10-22

Viewing Constraints 10-24

Viewing the Columns Associated with Constraints 10-25
Summary 10-26

Practice 10 Overview 10-27

Creating Views

Objectives 11-2

Database Objects 11-3

What Is a View? 11-4

Why Use Views? 11-5

Simple Views and Complex Views 11-6
Creating a View 11-7

Retrieving Data from a View 11-10

Querying a View 11-11

Modifying a View 11-12

Creating a Complex View 11-13

Rules for Performing DML Operations on a View 11-14
Using the WITH CHECK OPTION Clause 11-17
Denying DML Operations 11-18

Removing a View 11-20

Inline Views 11-21

Top-n Analysis 11-22

Performing Top-n Analysis 11-23

XV

12

Example of Top-n Analysis 11-24
Summary 11-25

Practice 11 Overview 11-26

Other Database Objects

Objectives 12-2

Database Objects 12-3

What Is a Sequence? 12-4

The CREATE SEQUENCE Statement Syntax 12-5
Creating a Sequence 12-6

Confirming Sequences 12-7

NEXTVAL and CURRVAL Pseudocolumns 12-8
Using a Sequence 12-10

Modifying a Sequence 12-12

Guidelines for Modifying a Sequence 12-13
Removing a Sequence 12-14

What Is an Index? 12-15

How Are Indexes Created? 12-16

Creating an Index 12-17

When to Create an Index 12-18

When Not to Create an Index 12-19

Confirming Indexes 12-20

Function-Based Indexes 12-21

Removing an Index 12-22

Synonyms 12-23

XVi

13

14

Creating and Removing Synonyms 12-24
Summary 12-25

Practice 12 Overview 12-26

Controlling User Access

Objectives 13-2

Controlling User Access 13-3

Privileges 13-4

System Privileges 13-5

Creating Users 13-6

User System Privileges 13-7

Granting System Privileges 13-8

What Is a Role? 13-9

Creating and Granting Privileges to a Role 13-10
Changing Your Password 13-11

Object Privileges 13-12

Granting Object Privileges 13-14

Using the WITH GRANT OPTION and PUBLIC Keywords 13-15
Confirming Privileges Granted 13-16

How to Revoke Object Privileges 13-17
Revoking Object Privileges 13-18

Database Links 13-19

Summary 13-21

Practice 13 Overview 13-22

SQL Workshop Workshop Overview

Workshop Overview 14-2 B
XVI

15 Using SET Operators
Objectives 15-2
The SET Operators 15-3
Tables Used in This Lesson 15-4
The UNION SET Operator 15-7
Using the UNION Operator 15-8
The UNION ALL Operator 15-10
Using the UNION ALL Operator 15-11
The INTERSECT Operator 15-12
Using the INTERSECT Operator 15-13
The MINUS Operator 15-14
SET Operator Guidelines 15-16
The Oracle Server and SET Operators 15-17
Matching the SELECT Statements 15-18
Controlling the Order of Rows 15-20
Summary 15-21

Practice 15 Overview 15-22

16 Oracle 9i Datetime Functions
Objectives 16-2
TIME ZONES 16-3
Oracle 9i Datetime Support 16-4
CURRENT_DATE 16-6
CURRENT_TIMESTAMP 16-7
LOCALTIMESTAMP 16-8
DBTIMEZONE and SESSIONTIMEZONE 16-9

XViii

17

EXTRACT 16-10

FROM_TZ 16-11

TO_TIMESTAMP and TO_TIMESTAMP_TZ 16-12

TO_YMINTERVAL 16-13
TZ_OFFSET 16-14
Summary 16-16

Practice 16 Overview 16-17

Enhancements to the GROUP BY Clause
Objectives 17-2

Review of Group Functions 17-3

Review of the GROUP BY Clause 17-4
Review of the HAVING Clause 17-5
GROUP BY with ROLLUP and CUBE Operators
ROLLUP Operator 17-7

ROLLUP Operator Example 17-8

CUBE Operator 17-9

CUBE Operator: Example 17-10
GROUPING Function 17-11

GROUPING Function: Example 17-12
GROUPING SETS 17-13

GROUPING SETS: Example 17-15
Composite Columns 17-17

Composite Columns: Example 17-19

Concatenated Groupings 17-21

XixX

17-6

18

Concatenated Groupings Example 17-22
Summary 17-23

Practice 17 Overview 17-24

Advanced Subqueries

Objectives 18-2

What Is a Subquery? 18-3

Subqueries 18-4

Using a Subquery 18-5

Multiple-Column Subqueries 18-6
Column Comparisons 18-7

Pairwise Comparison Subquery 18-8
Nonpairwise Comparison Subquery 18-9
Using a Subquery in the FROM Clause 18-10
Scalar Subquery Expressions 18-11
Correlated Subqueries 18-14

Using Correlated Subqueries 18-16
Using the EXISTS Operator 18-18

Using the NOT EXISTS Operator 18-20
Correlated UPDATE 18-21

Correlated DELETE 18-24

The WITH Clause 18-26

WITH Clause: Example 18-27
Summary 18-29

Practice 18 Overview 18-31

XX

19 Hierarchical Retrieval
Objectives 19-2
Sample Data from the EMPLOYEES Table 19-3
Natural Tree Structure 19-4
Hierarchical Queries 19-5
Walking the Tree 19-6
Walking the Tree: From the Bottom Up 19-8
Walking the Tree: From the Top Down 19-9
Ranking Rows with the LEVEL Pseudocolumn 19-10
Formatting Hierarchical Reports Using LEVEL and LPAD 19-11
Pruning Branches 19-13
Summary 19-14

Practice 19 Overview 19-15

20 Oracle 9i Extensions to DML and DDL Statements
Objectives 20-2
Review of the INSERT Statement 20-3
Review of the UPDATE Statement 20-4
Overview of Multitable INSERT Statements 20-5
Types of Multitable INSERT Statements 20-7
Multitable INSERT Statements 20-8
Unconditional INSERT ALL 20-10
Conditional INSERT ALL 20-11
Conditional FIRST INSERT 20-13
Pivoting INSERT 20-15

External Tables 20-18

XXi

m O O W >»

Creating an External Table 20-19

Example of Creating an External Table 20-20

Querying External Tables 20-23

CREATE INDEX with CREATE TABLE Statement 20-24
Summary 20-25

Practice 20 Overview 20-26

Practice Solutions

Table Descriptions and Data
Using SQL* Plus

Writing Advanced Scripts

Oracle Architectural Components

Index
Additional Practices
Additional Practice Solutions

Table and Descriptions

XXii

Creating Views

oORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able
to do the following:

®* Describe aview
* Create, alter the definition of, and drop a view
®* Retrieve data through a view

* Insert, update, and delete data through
aview

®* Create and use an inline view
* Perform top-n analysis

11-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn to create and use views. Y ou also learn to query the relevant data dictionary object
to retrieve information about views. Finally, you learn to create and use inline views, and perform top-n
analysis using inline views.

Introduction to Oracle9i: SQL 11-2

11-3

Database Objects

Object Description

Table Basic unit of storage; composed of rows
and columns

View Logically represents subsets of data from
one or more tables

Sequence Generates primary key values

Index Improves the performance of some queries

Synonym Alternative name for an object

Copyright © Oracle Corporation, 2001. All rights reserved.

Introduction to Oracle9i: SQL 11-3

What Is a View?

EMPLOYEES Table

EMPLOYEE |0 FIRST NAME [LAST NAKE | FMAIL [PHONE NUMBEH [HIRE DATE[JOR 1D [SALARY

100 | Steven [Iing SKING ‘151234567 [7-JUNBT [&D_FRES | Z4000
10 [Meena [kochbar MKOCHHAR |515.123 4566 D1-sEPBS |ap wP | 47000
102 Lex [De Hazn LOEHAaM [B15.123.4560 13-18003 (A0 WP EET
103 |alewander [Hunald AHUNOLD 5904234567 03-JANDD |T_PROG | ooon

EMPLOYEE_ID | LAST _NAME
148 |Aotkay
174 Ahel

| 11000
| BEOL

176 [Taylor
, TR e e T 5 14000
[2 [Pa Fay FFAY JF03.123. 6566 [i7-alc=57 |ik_RERP 00
[¥ |Shallay Higgins SHIBGING F515.123 AOED [F-JUNSs AD MGR 12000
[6 [illiarm Gielz WISETZ [S15.123 B1E1 [F-JUN-GL aC AGCOUNT | 830
A0 rowes selected.
11-4 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a View?

Y ou can present logical subsets or combinations of data by creating views of tables. A view is alogical
table based on atable or another view. A view contains no data of its own but is like a window through
which data from tables can be viewed or changed. The tables on which aview is based are called base

tables. The view is stored as a SELECT statement in the data dictionary.

Introduction to Oracle9i: SQL 11-4

Why Use Views?

®* To restrict data access

* To make complex queries easy

®* To provide data independence

* To present different views of the same data

11-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Views
» Viewsrestrict access to the data because the view can display selective columns from the table.

* Views can be used to make simple queries to retrieve the results of complicated queries. For
example, views can be used to query information from multiple tables without the user knowing how
to write ajoin statement.

» Views provide data independence for ad hoc users and application programs. One view can be used
to retrieve data from several tables.

* Viewsprovide groups of users access to data according to their particular criteria
For more information, see Oracle9i SQL Reference, “CREATE VI EW’

Introduction to Oracle9i: SQL 11-5

Simple Views
and Complex Views

Feature Simple Views | Complex Views
Number of tables One One or more
Contain functions No Yes
Contain groups of data | No Yes
DML operations
through aview Yes Not always

11-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Simple Views versus Complex Views

There are two classifications for views: simple and complex. The basic differenceis related to the DML
(I NSERT, UPDATE, and DELETE) operations.

* A simpleview isonethat:
— Derives datafrom only one table
— Contains no functions or groups of data
— Can perform DML operations through the view
* A complex view is one that:
— Derives datafrom many tables
— Contains functions or groups of data
— Does not always allow DML operations through the view

Introduction to Oracle9i: SQL 11-6

Creating a View

®* You embed a subquery within the CREATE VI EW
statement.

CREATE [OR REPLACE] [FORCE| NOFORCE] VI EW vi ew
[(alias[, alias]...)]

AS subquery

[WTH CHECK OPTI ON [CONSTRAI NT constraint]]

[WTH READ ONLY [CONSTRAI NT constraint]];

® The subquery can contain complex SELECT
syntax.

11-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View
Y ou can create a view by embedding a subquery within the CREATE VI EWstatement.

In the syntax:

OR REPLACE re-createsthe view if it already exists

FORCE creates the view regardless of whether or not the base tables exist

NOFORCE creates the view only if the base tables exist (Thisisthe default.)

Vi ew isthe name of the view

alias specifies names for the expressions selected by the view's query (The
number of aliases must match the number of expressions selected by the
view.)

subquery isacomplete SELECT statement (Y ou can use aliases for the columns

in the SELECT list.)
W TH CHECK OPTI ON specifies that only rows accessible to the view can be inserted or

updated
constraint isthe name assigned to the CHECK OPTI ON constraint
W TH READ ONLY ensures that no DML operations can be performed on this view

Introduction to Oracle9i: SQL 11-7

Creating a View

* Create aview, EMPVUS0, that contains details of
employees in department 80.

CREATE VI EW enpvu80

AS SELECT enployee_ id, |ast_name, salary
FROM enpl oyees
WHERE departnent _id = 80;

Vi ew creat ed.

®* Describe the structure of the view by using the
ISQL*Plus DESCRI BE command.

| DESCRI BE enpvu80 I

11-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View (continued)

The example in the dide creates a view that contains the employ ee number, last name, and salary for each
employee in department 80.

Y ou can display the structure of the view by using the iSQL* Plus DESCRI BE command.

! Hame , Hull? | Type !
EMPLOYEE 1D NOTRULL NUMBERE) |
LAST MAME [MOT MULL ARCHARZ(2S) |
SALARY | INUMBER(E 2) |

Guidelines for creating aview:
» The subquery that defines a view can contain complex SELECT syntax, including joins, groups, and
subqueries.
» The subquery that defines the view cannot contain an ORDER BY clause. The ORDER BY clauseis
specified when you retrieve data from the view.

» If you do not specify a constraint name for a view created with the W TH CHECK OPTI ON, the
system assigns a default name in the format SYS_Cn.

* Youcan usethe OR REPLACE option to change the definition of the view without dropping and re-
creating it or regranting object privileges previoudy granted onit.

Introduction to Oracle9i: SQL 11-8

Creating a View

®* Create aview by using column aliases in the
subquery.

CREATE VI EW sal vu50
AS SELECT enployee_id | D NUMBER, |ast_nane NAME,
sal ary*12 ANN_SALARY
FROM enpl oyees
WHERE departnent _id = 50;
Vi ew creat ed.

® Select the columns from this view by the given
alias names.

11-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View (continued)
Y ou can control the column names by including column aiases within the subquery.

The examplein the dide creates a view containing the employee number (EMPLOYEE_| D) with the alias
I D_NUMBER, name (LAST_NAME) with the alias NAME, and annual salary (SALARY) with the dlias
ANN_SALARY for every employee in department 50.

As an dternative, you can use an alias after the CREATE statement and prior to the SELECT subquery. The
number of aliases listed must match the number of expressions selected in the subquery.

CREATE VI EW sal vu50 (1D _NUMBER, NAME, ANN_SALARY)
AS SELECT enployee_ id, |ast_nane, salary*12
FROM enpl oyees
WHERE departnent _id = 50;

Vi ew creat ed.

Introduction to Oracle9i: SQL 11-9

Retrieving Data from a View

SELECT *

FROM sal vub0;

ID_HUMBER MAME ANH_SALARY
124 |Mourgos F3EO0
141 |Rajs 42000
142 |Dawas 3ram
143 viatos 2
144 Margas Annon

11-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data from a View

Y ou can retrieve data from a view as you would from any table. Y ou can display either the contents of the
entire view or just specific rows and columns.

Introduction to Oracle9i: SQL 11-10

Querying a View

Oracle Server

4 iSQL*Plus I

USER VI EV6
SELECT * EMPVUSO
FROM enpvu80; > SELECT enpl oyee_i d,
ID_NUMBER | NAME ANN_SALARY l'ast_nane, salary
120 [Maurges 2600 FROM enpl oyees
141 [Rays 420 VWHERE departnent i d=80;
143 [Danies 37200
149 [Matoz 31300
144 [yanas 30000 - EMPLOYEES

- J

11-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Views in the Data Dictionary

Once your view has been created, you can query the data dictionary view called USER VI EW5 to see the
name of the view and the view definition. The text of the SELECT statement that constitutes your view is
stored in a LONG column.

Data Access Using Views
When you access data using a view, the Oracle Server performs the following operations:
1. Itretrievesthe view definition from the data dictionary table USER VI EWS.
2. It checks access privileges for the view base table.

3. It convertsthe view query into an equivalent operation on the underlying base table or tables. In
other words, dataisretrieved from, or an update is made to, the base tables.

Introduction to Oracle9i: SQL 11-11

Modifying a View

* Modify the EMPVU8O view by using CREATE OR
REPLACE VI EWclause. Add an alias for each
column name.

CREATE OR REPLACE VI EW enpvu80
(i d_nunber, nane, sal, departnent _id)
AS SELECT enployee_id, first_name || " ' || |ast_nane,
sal ary, departnent id
FROM enpl oyees
WHERE departnent _id = 80;
Vi ew creat ed.

® Column aliases in the CREATE VI EWclause are

listed in the same order as the columns in the
subquery.

11-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Modifying a View

With the OR REPLACE option, aview can be created even if one exists with this name already, thus
replacing the old version of the view for its owner. This means that the view can be altered without
dropping, re-creating, and regranting object privileges.

Note: When assigning column aliasesin the CREATE VI EWclause, remember that the aliases arelisted in
the same order as the columnsin the subquery.

Introduction to Oracle9i: SQL 11-12

Creating a Complex View

Create a complex view that contains group functions
to display values from two tables.

CREATE VI EWdept _sum vu
(nanme, mnsal, maxsal, avgsal)
AS SELECT d. depart ment _nanme, M N(e.sal ary),
MAX(e. sal ary), AVE e. sal ary)
FROM enpl oyees e, departnents d
WHERE e.departnment _id = d.departnent _id
GROUP BY d. depart nent _nane;
Vi ew creat ed.

11-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Complex View

The example in the dide creates a complex view of department names, minimum salaries, maximum
salaries, and average salaries by department. Note that alternative names have been specified for the view.
Thisisarequirement if any column of the view is derived from afunction or an expression.

Y ou can view the structure of the view by using the iSQL* Plus DESCRI BE command. Display the
contents of the view by issuing a SELECT statement.

SELECT *
FROM dept _sum vu;

| NAME | MINSAL | MAXSAL | AVGSAL

Aecounting i 5300 | 12000 | 10150
Adrrinistration | 4400 | 4400 | 4400
[Executive ! 17000 | 24000 | 19333.3333
T | 4200 | 5000 | B400
IMarketing i EOO0 | 13000 | 5500
Sales | 8600 | 11000 | 10033.3333
‘Shipping I 2500 | 800 | 3500

T rows selected.

Introduction to Oracle9i: SQL 11-13

Rules for Performing
DML Operations on a View

®* You can perform DML operations on simple views.

®* You cannot remove arow if the view contains the
following:

— Group functions

— A GROUP BY clause

— The DI STI NCT keyword

— The pseudocolumn ROWNUMkeyword

11-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Performing DML Operations on a View
Y ou can perform DML operations on data through a view if those operations follow certain rules.

Y ou can remove arow from aview unlessit contains any of the following:
» Group functions
* A GROUP BY clause
e TheD STI NCT keyword
» The pseudocolumn ROANUMkeyword

Introduction to Oracle9i: SQL 11-14

Rules for Performing
DML Operations on a View

You cannot modify data in a view if it contains:
— Group functions
— A GROUP BY clause
— The DI STI NCT keyword
— The pseudocolumn ROWNUMkeyword
— Columns defined by expressions

11-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Performing DML Operations on a View (continued)

Y ou can modify data through aview unlessit contains any of the conditions mentioned in the previous dide
or columns defined by expressions: for example, SALARY * 12.

Introduction to Oracle9i: SQL 11-15

Rules for Performing
DML Operations on a View

You cannot add data through a view if the view
includes:

— Group functions

— A GROUP BY clause

— The DI STI NCT keyword

— The pseudocolumn ROMNUMkeyword
— Columns defined by expressions

— NOT NULL columns in the base tables that are not
selected by the view

‘ 11-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Performing DML Operations on a View (continued)

Y ou can add data through a view unlessit contains any of the itemslisted in the dide or there are NOT
NULL columns, without default values, in the base table that are not selected by the view. All required
values must be present in the view. Remember that you are adding values directly into the underlying table
through the view.

For more information, see Oracle9i SQL Reference, “CREATE VI EW’

Introduction to Oracle9i: SQL 11-16

Using the W TH CHECK OPTI ON Clause

®* You can ensure that DML operations performed on
the view stay within the domain of the view by
using the W TH CHECK OPTI ON clause.

CREATE OR REPLACE VI EW enpvu20
AS SELECT *

FROM enpl oyees

VWHERE departnent _id = 20

W TH CHECK OPTI ON CONSTRAI NT enpvu20_ck;
Vi ew creat ed.

* Any attempt to change the department number for
any row in the view fails because it violates the
W TH CHECK OPTI ON constraint.

‘ 11-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the W TH CHECK OPTI ON Clause

It is possible to perform referential integrity checks through views. Y ou can also enforce constraints at the
database level. The view can be used to protect data integrity, but the useis very limited.
TheW TH CHECK OPTI ON clause specifiesthat | NSERTs and UPDATESs performed through the view

cannot create rows which the view cannot select, and therefore it alows integrity constraints and data
validation checks to be enforced on data being inserted or updated.

If there is an attempt to perform DML operations on rows that the view has not selected, an error is
displayed, with the constraint name if that has been specified.

UPDATE enpvu20
SET departnent _id = 10
WHERE enpl oyee id = 201;
UPDATE enpvu20
*

ERROR at |ine 1:
ORA- 01402: view WTH CHECK OPTI ON where-cl ause viol ati on

Note: No rows are updated because if the department number were to change to 10, the view would no
longer be able to see that employee. Therefore, withthe W TH CHECK OPTI ON clause, the view can see
only employees in department 20 and does not allow the department number for those employees to be
changed through the view.

Introduction to Oracle9i: SQL 11-17

Denying DML Operations

®* You can ensure that no DML operations occur by
adding the W TH READ ONLY option to your view

definition.

* Any attempt to perform a DML on any row in the
view results in an Oracle server error.

‘ 11-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Denying DML Operations

Y ou can ensure that no DML operations occur on your view by creating it with the W TH READ ONLY
option. The example in the slide modifies the EMPVULO view to prevent any DML operations on the view.

Introduction to Oracle9i: SQL 11-18

Denying DML Operations

CREATE OR REPLACE VI EW enpvulO
(enmpl oyee_nunber, enployee nane, job title)
AS SELECT enployee_ id, last_nane, job_ id
FROM enpl oyees
VWHERE departnent _id = 10
W TH READ ONLY;
Vi ew creat ed.

‘ 11-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Denying DML Operations
Any attempts to remove arow from aview with a read-only constraint resultsin an error.
DELETE FROM enpvulO

VWHERE enpl oyee_nunber = 200;
DELETE FROM enpvulO
*

ERROR at |ine 1:
ORA- 01752: cannot delete fromview w thout exactly one key-
preserved table

Any attemptsto insert arow or modify arow using the view with aread-only constraint resultsin the
following Oracle Server error:

01733: virtual columm not all owed here.

Introduction to Oracle9i: SQL 11-19

Removing a View

You can remove a view without losing data because a
view is based on underlying tables in the database.

DROP VI EW vi ew, I

DROP VI EW enpvu80;
Vi ew dr opped.

‘ 11-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a View

Y ou use the DROP VI EWstatement to remove a view. The statement removes the view definition from the
database. Dropping views has no effect on the tables on which the view was based. Views or other
applications based on deleted views become invalid. Only the creator or a user with the DROP ANY VI EW

privilege can remove aview.

In the syntax:
Vi ew is the name of the view

Introduction to Oracle9i: SQL 11-20

Inline Views

* Aninline view is a subquery with an alias (or
correlation name) that you can use within a SQL
statement.

* A named subquery in the FROMclause of the main
guery is an example of an inline view.

* Aninline view is not a schema object.

11-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Inline Views

Aninline view is created by placing a subquery in the FROMclause and giving that subquery an alias. The
subquery defines a data source that can be referenced in the main query. In the following example, the inline
view b returnsthe details of all department numbers and the maximum salary for each department from the
EMPLOYEES table. TheWHERE a. departnent _id = b.departnent_id AND a.salary <

b. maxsal clause of the main query displays employee names, salaries, department numbers, and maximum
salaries for al the employees who earn less than the maximum salary in their department.

SELECT a.last_nanme, a.salary, a.departnent _id, b. maxsal

FROM enpl oyees a, (SELECT departnent_id, max(sal ary) maxsal
FROM enpl oyees
GROUP BY departnment_id) b

WHERE a.departnment _id = b.departnent _id

AND a.salary < b. maxsal ;
| LAST_NAME | SALARY | DEPARTMENT_ID | MAXSAL
Fay | BOO0 | 20 | 13000
IRajs | 3500 | 50 | 5500
\Davies ! 3100 | a0 | 5800
|Gietz ' 1 e " 00

12 rowes selected.
Introduction to Oracle9i: SQL 11-21

Top-n Analysis

®* Top-n queries ask for the n largest or smallest
values of a column. For example:

— What are the ten best selling products?
— What are the ten worst selling products ?

* Both largest values and smallest values sets are
considered top-n queries.

11-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Top-n Analysis

Top-n queries are useful in scenarios where the need isto display only the n top-most or the n bottommost
records from atable based on a condition. This result set can be used for further analysis. For example
using top-n analysis you can perform the following types of queries:

* Thetop three earnersin the company

* Thefour most recent recruits in the company

* Thetop two sales representatives who have sold the maximum number of products
» Thetop three products that have had the maximum salesin the last six months

Introduction to Oracle9i: SQL 11-22

Performing Top-n Analysis

The high-level structure of atop-n analysis
qguery is:

colum_T1 st
FROM (SELECT [colum_li st]
FROM t abl e

ORDER BY Top-N_col um)
VWHERE ROVWNUM <= N

11-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Performing Top-n Analysis
Top-n queries use a consistent nested query structure with the elements described bel ow:

» A subguery or aninline view to generate the sorted list of data. The subquery or theinline view
includesthe ORDER BY clause to ensure that the ranking isin the desired order. For results
retrieving the largest values, a DESC parameter is needed.

* Anouter query to limit the number of rows in the final result set. The outer query includes the
following components:

— The ROANUM pseudocolumn, which assigns a sequential value starting with 1 to each of the
rows returned from the subquery.

— A WHERE clause, which specifies the n rowsto be returned. The outer WHERE clause must
usea< or <= operator.

Introduction to Oracle9i: SQL 11-23

Example of Top-n Analysis

To display the top three earner names and salaries
from the EMPLOYEES table.

SELECT ROMNUM as RANK, | ast _nane, salary

FROM (SELECT | ast _name, sal ary FROM enpl oyees
ORDER BY sal ary DESC)

VHERE ROMUM <= 3;

RANK | LAST NAME CAL ALY
1|king 24000
2 | Kochhar ol
3 |De Haan 17000

11-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Top-n Analysis

The example in the dide illustrates how to display the names and salaries of the top three earners from the
EMPLOYEES table. The subquery returns the details of all employee names and salaries from the
EMPLOYEES table, sorted in the descending order of the salaries. The WHERE ROWNUM < 3 clause of
the main query ensures that only the first three records from this result set are displayed.

Here is another example of top-n analysis that uses an inline view. The example below usesthe inline view
E to display the four most senior employees in the company.

SELECT ROMUM as SENI OR, E. | ast _nane, E.hire_date

FROM (SELECT | ast _nane, hire_date FROM enpl oyees
ORDER BY hire_date)E

VWHERE r ownum <= 4,

| SENIOR | LAST MAME | HIRE_DATE
! 1 |King 17-JUN-87
| 2 [ihalen 117-SEP-E7
| 3 |Kochhar 121-5EP-89
| 4 |Hunold 03-J&mM-50

Introduction to Oracle9i: SQL 11-24

Summary

In this lesson you should have learned that a view is
derived from data in other tables or other views and
provides the following advantages:

* Restricts database access

* Simplifies queries

* Provides data independence

* Provides multiple views of the same data

® Can be dropped without removing the underlying
data

‘ 11-25 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a View?

A view is based on atable or another view and acts as a window through which data on tables can be
viewed or changed. A view does not contain data. The definition of the view is stored in the data
dictionary. Y ou can see the definition of the view in the USER_VI EWS data dictionary table.

Advantages of Views
* Restrict database access
» Simplify queries

* Provide dataindependence
* Provide multiple views of the same data
» Can be removed without affecting the underlying data
View Options
e Canbeasmpleview, based on onetable
» Can be acomplex view based on more than one table or can contain groups of functions
* Can replace other views with the same name
» Can contain a check constraint
e Can beread-only

Introduction to Oracle9i: SQL 11-25

Practice 11 Overview

This practice covers the following topics:
* Creating a simple view

* Creating a complex view

* Creating a view with a check constraint
* Attempting to modify data in the view

* Displaying view definitions

* Removing views

11-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 11 Overview

In this practice, you create ssmple and complex views and attempt to perform DML statements on the
views.

Introduction to Oracle9i: SQL 11-26

Practice 11

1. Createaview called EMPLOYEES_VU based on the employee numbers, employee names, and
department numbers from the EMPLOYEES table. Change the heading for the employee name to

EMPLOYEE.

2. Display the contents of the EMPLOYEES_VU view.

| EMPLOYEE ID | EMPL OYEE | DEPARTMENT 1D

| 100 king | o0
| 101 |Kochhar | 90
! 102 |De Haan ! o0
| 102 |Hunold | 5O
| 104 |Ernst | RO
| 107 |Lorentz | B0
I 206 |Gietz |

A1EI|

20 rowes selected.

3. Select the view name and text from the USER VI EWS data dictionary view.
Note: Another view aready exists. The EMP_DETAI LS VI EWwas created as part of your schema.

Note: To see more contents of a LONG column, use the iSQL*Plus command SET LONG n, wheren is
the value of the number of characters of the LONG column that you want to see.

| VIEW NAME

FEXT

EMPLOYEES WU

SELECT employee_id, last_narme employee, depattment_id FROM
employees

EMP_DETAILS_WIEW

SELECT e.employee_id, e.job_id, e.manager_id, e department_id, d.locat
ion_id, Lcountry_id, e first name, e.last_name, e.salary, e.commissio

n_pct, d.department_name, j.job_title, | city, |.state_province, c.cou

ntry_name, r.region_name FROM employees e, departments d, jobs |,

loca tions |, countries ¢, regions r WHERE e.department_id =

d.department id AN D d.location_id = Llocation_id AND |.country_id =
c.country_id AMND c.region _id = r.region_id AND j.job_id = e job_id YWITH

READ OMLY

4. Using your EMPLOYEES VU view, enter a query to display all employee names and department

numbers.

| EMPLOYEE | DEPARTMENT ID

King | 90
\Kochhar | 90
|F‘| R B | [
Gigtz | 110

20 rowes selected.

Introduction to Oracle9i: SQL 11-27

Practice 11 (continued)

5. Create aview named DEPT50 that contains the employee numbers, employee last names, and
department numbers for all employeesin department 50. Label the view columns
EMPNO, EMPLOYEE, and DEPTNQO. Do not allow an employee to be reassigned to another

department through the view.
6. Display the structure and contents of the DEPT50 view.

| Name | Hull? | Type

[EMPNO IMOT MULL INUMBERIE)

[EMPLOYEE INOT MULL WARCHARZ(25)

DEPTND | NUMBER({4)

l EMPNO l EMPLOYEE | DEPTNO

| 124 iMnurgns | a0
! 141 |Rajs | &0
| 142 |Davies | 50
| 143 |Matos | &0
| 144 |Wargas | &0

7. Attempt to reassign Matos to department 80.

If you have time, complete the following exercise:

8. Createaview caled SALARY_ VU based on the employee last names, department names, salaries,
and salary grades for al employees. Use the EMPLOYEES, DEPARTMENTS, and JOB_GRADES
tables. Label the columns Enpl oyee, Depar t nent , Sal ary, and G ade, respectively.

Introduction to Oracle9i: SQL 11-28

Other Database Objects

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Create, maintain, and use sequences
* Create and maintain indexes
* Create private and public synonyms

12-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn how to create and maintain some of the other commonly used database objects.
These objects include sequences, indexes, and synonyms.

Introduction to Oracle9i: SQL 12-2

Database Objects

Object Description

Table Basic unit of storage; composed of rows
and columns

View Logically represents subsets of data from
one or more tables

Sequence Generates primary key values
Index Improves the performance of some queries
Synonym Alternative name for an object

12-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Objects

Many applications require the use of unique numbers as primary key values. Y ou can either build code into
the application to handle this requirement or use a sequence to generate unique numbers.

If you want to improve the performance of some queries, you should consider creating an index. Y ou can
also use indexes to enforce uniqueness on a column or a collecti on of columns.

Y ou can provide alternative names for objects by using synonyms.

Introduction to Oracle9i: SQL 12-3

What Is a Sequence?

A sequence:

* Automatically generates unique numbers

®* |s asharable object

* |stypically used to create a primary key value
* Replaces application code

®* Speeds up the efficiency of accessing sequence
values when cached in memory

12-4 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a Sequence?

A sequence isauser created database object that can be shared by multiple users to generate unique
integers.

A typical usage for sequencesisto create a primary key value, which must be unique for each row. The
sequence is generated and incremented (or decremented) by an internal Oracle routine. This can be atime-

saving object because it can reduce the amount of application code needed to write a sequence-generating
routine.

Sequence numbers are stored and generated independently of tables. Therefore, the same sequence can be
used for multiple tables.

Introduction to Oracle9i: SQL 12-4

The CREATE SEQUENCE Statement Syntax

Define a sequence to generate sequential numbers
automatically.

CREATE SEQUENCE sequence
[| NCREMENT BY n]

[START W TH n]

[{ MAXVALUE n | NOVAXVALUE}]
[{M NVALUE n | NOM NVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

12-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Sequence
Automatically generate sequential numbers by using the CREATE SEQUENCE statement.

In the syntax:

sequence is the name of the sequence generator

| NCREMENT BY n specifiesthe interval between sequence numbers where n isan
integer (If this clause is omitted, the sequence incrementsby 1.)

START WTH n specifies the first sequence number to be generated (If this clauseis
omitted, the sequence starts with 1.)

MAXVALUE n specifies the maximum value the sequence can generate

NOVAXVALUE specifies a maximum value of 10727 for an ascending sequence and
—1 for adescending sequence (Thisisthe default option.)

M NVALUE n specifies the minimum sequence value

NOM NVALUE specifies aminimum value of 1 for an ascending sequence and —
(10"26) for a descending sequence (Thisisthe default option.)

CYCLE | NOCYCLE specifies whether the sequence continues to generate values after

reaching its maximum or minimum value (NOCYCLE isthe default option.)

CACHE n | NOCACHE specifies how many values the Oracle Server preallocates and
keep in memory (By default, the Oracle Server caches 20 values.)

Introduction to Oracle9i: SQL 12-5

Creating a Sequence

®* Create a sequence named DEPT_DEPTI D_SEQto
be used for the primary key of the DEPARTMENTS
table.

®* Do not use the CYCLE option.

CREATE SEQUENCE dept depti d_seq
| NCREMENT BY 10
START WTH 120
MAXVALUE 9999
NOCACHE
NOCYCLE;
Sequence creat ed.

12-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Sequence (continued)

The example in the dide creates a sequence named DEPT_DEPTI D_SEQto be used for the
DEPARTNMENT _I D column of the DEPARTMENTS table. The sequence starts at 120, does not allow
caching, and does not cycle.

Do not use the CYCLE option if the sequence is used to generate primary key values, unless you have a
reliable mechanism that purges old rows faster than the sequence cycles.

For more information, see Oracle9i SQL Reference, “CREATE SEQUENCE.”

Note: The sequence is not tied to atable. Generally, you should name the sequence after itsintended use;
however the sequence can be used anywhere, regardless of its name.

Introduction to Oracle9i: SQL 12-6

Confirming Sequences

* Verify your sequence values in the
USER SEQUENCES data dictionary table.

SELECT sequence_nane, mn_value, max_val ue,
i ncrenment by, |ast_nunber

FROM user _sequences;

® The LAST_NUMBER column displays the next
available sequence number if NOCACHE is
specified.

12-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Sequences

Once you have created your sequence, it is documented in the data dictionary. Because a sequenceisa
database object, you can identify it in the USER_OBJECTS data dictionary table.

Y ou can also confirm the settings of the sequence by selecting from the USER SEQUENCES data
dictionary view.

| SEQUENCE_NAME |MIN_VALUE [MAX_VALUE INCREMENT BY [LAST NUMBER

\DEPARTMENTS_SEQ | % 9990 | 10 | 280
DEFT_DEPTID_SEQ | 7| o559 | 10 | 120
EMPLOYEES SEQ | 1| 1.0D00E+27 | 1 | 207
LOCATIONS_SEQ | T | 9500 | 100 | 3300

Introduction to Oracle9i: SQL 12-7

NEXTVAL and CURRVAL Pseudocolumns

* NEXTVAL returns the next available sequence
value.

It returns a unique value every time it is referenced,
even for different users.

* CURRVAL obtains the current sequence value.

* NEXTVAL must be issued for that sequence before
CURRVAL contains a value.

12-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Sequence

After you create your sequence, it generates sequential numbers for use in your tables. Reference the
sequence values by using the NEXTVAL and CURRVAL pseudocolumns.,

NEXTVAL and CURRVAL Pseudocolumns

The NEXTVAL pseudocolumn is used to extract successive sequence numbers from a specified sequence.
Y ou must qualify NEXTVAL with the sequence name. When you reference sequence. NEXTVAL, anew
sequence number is generated and the current sequence number is placed in CURRVAL.

The CURRVAL pseudocolumn is used to refer to a sequence number that the current user has just generated.
NEXTVAL must be used to generate a sequence number in the current user’ s session before CURRVAL can
be referenced. Y ou must qualify CURRVAL with the sequence name. When sequence. CURRVAL is
referenced, the last value returned to that user’s processis displayed.

Introduction to Oracle9i: SQL 12-8

Rules for Using NEXTVAL and CURRVAL
Y ou can use NEXTVAL and CURRVAL in the following contexts:
* The SELECT list of a SELECT statement that is not part of a subquery
» The SELECT list of asubquery inan | NSERT statement
* TheVALUES clause of an | NSERT statement
» The SET clause of an UPDATE statement
Y ou cannot use NEXTVAL and CURRVAL in the following contexts:
* The SELECT list of aview
* A SELECT statement with the DI STI NCT keyword
* A SELECT statement with GROUP BY, HAVI NG, or ORDER BY clauses
* A subquery ina SELECT, DELETE, or UPDATE statement
 TheDEFAULT expressionina CREATE TABLE or ALTER TABLE statement
For more information, see Oracle9i QL Reference, “Pseudocolumns’ and “ CREATE SEQUENCE section.”

Introduction to Oracle9i: SQL 12-9

Using a Sequence

®* Insert a new department named “ Support” in
location ID 2500.

| NSERT | NTO depart nent s(depart nent _id,
department _name, |ocation_id)
VALUES (dept _deptid_seq. NEXTVAL,
" Support', 2500);
1 row creat ed.

* View the current value for the DEPT_DEPTI D_SEQ
sequence.

SELECT dept _depti d_seq. CURRVAL
FROM dual ;

‘ 12-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Sequence

The example in the dide inserts a new department in the DEPARTMENTS table. It usesthe
DEPT_DEPTI D_SEQ sequence for generating a new department number as follows:

SELECT dept deptid_seq. CURRVAL
FROM dual ;

Suppose now you want to hire employees to staff the new department. The | NSERT statement to be
executed for al new employees can include the following code:

| NSERT | NTO enpl oyees (enpl oyee_id, departnent_id, ...)

VALUES (enpl oyees_seq. NEXTVAL, dept deptid _seq . CURRVAL, ...);
Note: The preceding example assumes that a sequence called EMPLOYEE SEQ has already been created
for generating new employee numbers.

Introduction to Oracle9i: SQL 12-10

Using a Sequence

®* (Caching sequence values in memory gives faster
access to those values.

® (Gaps in sequence values can occur when:
— Arrollback occurs
— The system crashes
— A sequence is used in another table

* If the sequence was created with NOCACHE, view

the next available value, by querying the
USER_SEQUENCES table.

‘ 12-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Caching Sequence Values

Cache sequences in memory to provide faster access to those sequence values. The cacheis populated the first
time you refer to the sequence. Each request for the next sequence value is retrieved from the cached
sequence. After the last sequence value is used, the next request for the sequence pulls another cache of
sequences into memory.

Gapsin the Sequence

Although sequence generators issue sequential numbers without gaps, this action occurs independent of a
commit or rollback. Therefore, if you roll back a statement containing a sequence, the number islost.

Another event that can cause gapsin the sequence is a system crash. If the sequence caches valuesin the
memory, then those values are logt if the system crashes.

Because sequences are not tied directly to tables, the same sequence can be used for multiple tables. If you do
s0, each table can contain gapsin the sequential numbers.

Viewing the Next Available Sequence Value without Incrementing It

If the sequence was created with NOCACHE, it is possible to view the next available sequence value without
incrementing it by querying the USER_SEQUENCES table.

Introduction to Oracle9i: SQL 12-11

Modifying a Sequence

Change the increment value, maximum value,
minimum value, cycle option, or cache option.

ALTER SEQUENCE dept deptid_seq
| NCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;
Sequence al tered.

‘ 12-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Altering a Sequence

If you reach the MAXVALUE limit for your sequence, no additional values from the sequence are allocated
and you will receive an error indicating that the sequence exceeds the MAXVALUE. To continue to use the
sequence, you can modify it by using the ALTER SEQUENCE statement.

Syntax

ALTER SEQUENCE sequence
[NCREMENT BY n]
[{ MAXVALUE n | NOVAXVALUE}]
[{M NVALUE n | NOM NVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

In the syntax:
sequence is the name of the sequence generator
For more information, see Oracle9i SQL Reference, “ALTER SEQUENCE.”

Introduction to Oracle9i: SQL 12-12

Guidelines for Modifying
a Sequence

®* You must be the owner or have the ALTER
privilege for the sequence.

* Only future sequence numbers are affected.

* The sequence must be dropped and

re-created to restart the sequence at a different
number.

® Some validation is performed.

‘ 12-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Modifying Sequences
* You must be the owner or have the ALTER privilege for the sequence in order to modify it.
* Only future sequence numbers are affected by the ALTER SEQUENCE statement.

 TheSTART W TH option cannot be changed using ALTER SEQUENCE. The sequence must be
dropped and re-created in order to restart the sequence at a different number.

» Somevalidation is performed. For example, a new MAXVALUE that is less than the current sequence
number cannot be imposed.

ALTER SEQUENCE dept _depti d_seq
| NCREMENT BY 20
MAXVALUE 90
NOCACHE
NOCYCLE;
ALTER SEQUENCE dept _depti d_seq
*
ERROR at |ine 1:

ORA- 04009: MAXVALUE cannot be made to be | ess than the current
val ue

Introduction to Oracle9i: SQL 12-13

Removing a Sequence

* Remove a sequence from the data dictionary by
using the DROP SEQUENCE statement.

®* Onceremoved, the sequence can no longer be
referenced.

DROP SEQUENCE dept deptid_seq;
Sequence dropped.

‘ 12-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a Sequence
To remove a sequence from the data dictionary, use the DROP SEQUENCE statement. Y ou must be the
owner of the sequence or have the DROP ANY SEQUENCE privilege to remove it.

Syntax
DROP SEQUENCE sequence;

In the syntax:
sequence is the name of the sequence generator

For more information, see Oracle9i QL Reference, “DROP SEQUENCE.”

Introduction to Oracle9i: SQL 12-14

What Is an Index?

An index:
* |s aschema object

®* |s used by the Oracle Server to speed up the
retrieval of rows by using a pointer

® Canreduce disk I/O by using a rapid path access
method to locate data quickly

* Isindependent of the table it indexes

* |s used and maintained automatically by the
Oracle Server

12-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Indexes

An Oracle Server index is a schema object that can speed up the retrieval of rows by using a pointer.
Indexes can be created explicitly or automatically. If you do not have an index on the column, then afull
table scan occurs.

Anindex provides direct and fast accessto rowsin atable. Its purpose is to reduce the necessity of disk 110
by using an indexed path to locate data quickly. The index is used and maintained automatically by the
Oracle Server. Once an index is created, no direct activity is required by the user.

Indexes are logically and physically independent of the table they index. This means that they can be
created or dropped at any time and have no effect on the base tables or other indexes.

Note: When you drop atable, corresponding indexes are a so dropped.
For more information, see Oracle9i Concepts, “Schema Objects’ section, “Indexes’ topic.

Introduction to Oracle9i: SQL 12-15

How Are Indexes Created?

* Automatically: A unique index is created
automatically when you define a PRI MARY KEY or
UNI QUE constraint in a table definition.

Manually: Users can create nonunigue indexes on
columns to speed up access to the rows.

‘ 12-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Indexes

Two types of indexes can be created. One typeis aunique index: the Oracle Server automatically creates
thisindex when you define acolumn in atable to have a PRI MARY KEY or a UNI QUE key constraint. The
name of the index isthe name given to the constraint.

The other type of index is a nonunique index, which auser can create. For example, you can create a
FOREI GN KEY column index for ajoin in aquery to improve retrieval speed.

Note: Y ou can manually create a unique index, but it is recommended that you create a unique constraint,
which implicitly creates a unique index.

Introduction to Oracle9i: SQL 12-16

Creating an Index

* (Create an index on one or more columns.

CREATE | NDEX i ndex
ON table (colum[, colum]...);

* Improve the speed of query access to the
LAST_NAME column in the EMPLOYEES table.

CREATE | NDEX enp_l ast_name_i dx
ON enpl oyees(| ast _nane);
| ndex creat ed.

‘ 12-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an Index
Create an index on one or more columns by issuing the CREATE | NDEX statement.

In the syntax:
i ndex is the name of the index
tabl e isthe name of the table
col umm is the name of the column in the table to be indexed

For more information, see Oracle9i QL Reference, “CREATE | NDEX.”

Introduction to Oracle9i: SQL 12-17

When to Create an Index

You should create an index if:
®* A column contains a wide range of values
®* A column contains a large number of null values

®* One or more columns are frequently used together
in a WHERE clause or a join condition

* The table is large and most queries are expected
to retrieve less than 2 to 4% of the rows

12-18 Copyright © Oracle Corporation, 2001. All rights reserved.

More Is Not Always Better

More indexes on atable does not mean faster queries. Each DML operation that is committed on atable
with indexes means that the indexes must be updated. The more indexes you have associated with atable,
the more effort the Oracle server must make to update all the indexes after a DML operation.

When to Create an I ndex

Therefore, you should create indexes only if:

* The column contains a wide range of values

* The column contains alarge number of null values

* Oneor more columns are frequently used together in a WHERE clause or join condition

» Thetableislarge and most queries are expected to retrieve less than 2 to 4% of the rows

Remember that if you want to enforce uniqueness, you should defi ne a unique constraint in the table
definition. Then aunique index is created automatically.

Introduction to Oracle9i: SQL 12-18

When Not to Create an Index

It is usually not worth creating an index if:
* Thetableis small

®* The columns are not often used as a condition in
the query

®* Most queries are expected to retrieve more than 2
to 4% of the rows in the table

* The table is updated frequently

* The indexed columns are referenced as part of an
expression

12-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Introduction to Oracle9i: SQL 12-19

Confirming Indexes

* The USER _| NDEXES data dictionary view contains
the name of the index and its uniqueness.

* The USER | ND_COLUMN\S view contains the index
name, the table name, and the column name.

SELECT ic.index_nane, ic.colum_nane,

i c.colum_position col _pos,ix.uni gueness
FROM user i ndexes ix, user_ind colums ic
VWHERE i c.index_name = iX.index_nane
AND i c.tabl e_nanme = ' EMPLOYEES' ;

12-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Indexes

Confirm the existence of indexes from the USER _| NDEXES data dictionary view. Y ou can aso check the
columns involved in an index by querying the USER_| ND_COLUMNS view.

The example on the dlide displays al the previoudy created indexes, with the names of the affected
column, and the index’ s uniqueness, on the EMPLOYEES table.

| INDEX_NAME [COLUMN NAME | COL POS | UNIQUENES
[EMP_EMAIL_UK [EMAIL | 1 [unIQUE

EMP_EMP_ID_PK [EMPLOYEE_ID | 1 [UNIQUE

[EMP_DEPARTMENT I \DEPARTMENT ID | 1 [NONUNIGUE
[EMP_JOB_IX \JOE_ID ! 1 |NONUNIQUE
[EMP_MANAGER_[X IMANAGER D | 1 [NONUNIQUE
[EMP_MAME_[X ILAST MAME | 1 [MONUNIQUE
[EMP_MAME_[¥ FIRST_MAME | 2 |[MOMUNIQUE
[EMP_LAST NAME_ID¥ ILAST MAME I 1 [NONUNIQUE

B rows selected.

Introduction to Oracle9i: SQL 12-20

Function-Based Indexes

e A function-based index is an index based on
expressions.

* Theindex expression is built from table columns,
constants, SQL functions, and user-defined
functions.

CREATE | NDEX upper _dept _name_i dx
ON depart nent s(UPPER(depart nent _nane)) ;

| ndex creat ed.

SELECT *
FROM departnents
WHERE UPPER(departnent _nane) = ' SALES';

12-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Function-Based Index
Function-based indexes defined with the UPPER(col uim_nane) or LOAER(col unn_nane)
keywords allow case-insensitive searches. For example, the following index:
CREATE | NDEX upper | ast_name_i dx ON enpl oyees (UPPER(I| ast_nane));
Facilitates processing queries such as:
SELECT * FROM enpl oyees WHERE UPPER(| ast _nane) = ' KI NG ;
To ensure that the Oracle Server uses the index rather than performing afull table scan, be sure that the

value of the function is not null in subsequent queries. For example, the following statement is guaranteed
to use the index, but without the WHERE clause the Oracle Server may perform afull table scan:

SELECT * FROM enpl oyees
VWHERE UPPER (Il ast_nane) IS NOT NULL
ORDER BY UPPER (| ast _nane);

The Oracle Server treats indexes with columns marked DESC as function-based indexes. The columns
marked DESC are sorted in descending order.

Introduction to Oracle9i: SQL 12-21

Removing an Index

* Remove an index from the data dictionary by
using the DROP | NDEX command.

|DRGDINDEXindex; I

* Remove the UPPER _LAST NAME | DXindex from
the data dictionary.

DROP | NDEX upper _| ast _nane_i dx;
I ndex dropped.

* To drop an index, you must be the owner of the
index or have the DROP ANY | NDEX privilege.

‘ 12-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing an Index

Y ou cannot modify indexes. To change an index, you must drop it and then re-create it. Remove an index
definition from the data dictionary by issuing the DROP | NDEX statement. To drop an index, you must be
the owner of theindex or have the DROP ANY | NDEX privilege.

In the syntax:
i ndex is the name of the index

Note: If you drop atable, indexes and constraints are automatically dropped, but views and sequences
remain.

Introduction to Oracle9i: SQL 12-22

Synonyms

Simplify access to objects by creating a synonym
(another name for an object). With synonyms, you can:

* Easereferring to a table owned by another user
®* Shorten lengthy object names

CREATE [PUBLI C] SYNONYM synonym
FOR obj ect ;

‘ 12-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Synonym for an Object

To refer to atable owned by another user, you need to prefix the table name with the name of the user who
created it followed by a period. Creating a synonym eliminates the need to qualify the object name with the
schema and provides you with an aternative name for atable, view, sequence, procedure, or other objects.

This method can be especially useful with lengthy object names, such as views.

In the syntax:

PUBLI C creates a synonym accessible to all users

synonym is the name of the synonym to be created

obj ect identifies the object for which the synonym is created
Guidelines

* The object cannot be contained in a package.
* A private synonym name must be distinct from all other objects owned by the same user.
For more information, see Oracle9i SQL Reference, “CREATE SYNONYM”

Introduction to Oracle9i: SQL 12-23

Creating and Removing Synonyms

® Create ashortened name for the
DEPT _SUM VU view.

CREATE SYNONYM d_sum
FOR dept _sumvu;

Synonym Cr eat ed.

* Drop asynonym.

DROP SYNONYM d_sum
Synonym dr opped.
‘ 12-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Synonym for an Object (continued)
The example in the dide creates a synonym for the DEPT_SUM VU view for quicker reference.

The database administrator can create a public synonym accessible to all users. The following example creates
apublic synonym named DEPT for Alice's DEPARTMENTS table:

CREATE PUBLI C SYNONYM dept
FOR al i ce. departnents;
Synonym cr eat ed.

Removing a Synonym

To drop asynonym, use the DROP SYNONYMstatement. Only the database administrator can drop a public
synonym.

DROP PUBLI C SYNONYM dept ;
Synonym dr opped.

For more information, see Oracle9i QL Reference, “DROP SYNONYM”

Introduction to Oracle9i: SQL 12-24

Summary

In this lesson, you should have learned how to:

®* (Generate sequence numbers automatically by
using a sequence generator

* View sequence information in the
USER SEQUENCES data dictionary table

* Create indexes to improve query retrieval speed

* View index information in the USER | NDEXES
dictionary table

®* Use synonyms to provide alternative names for
objects

12-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In thislesson, you should have |earned about some of the other database objects including sequences,
indexes, and views.

Sequences

The sequence generator can be used to automatically generate sequence numbers for rowsin tables. This
can save time and can reduce the amount of application code needed.

A sequence is a database object that can be shared with other users. Information about the sequence can be
found in the USER _SEQUENCES table of the data dictionary.

To use a sequence, reference it with either the NEXTVAL or the CURRVAL pseudocolumns.
» Retrieve the next number in the sequence by referencing sequence. NEXTVAL.
» Return the current available number by referencing sequence. CURRVAL.
Indexes

Indexes are used to improve query retrieval speed. Users can view the definitions of the indexesin the
USER _| NDEXES data dictionary view. An index can be dropped by the creator, or a user with the DROP
ANY | NDEX privilege, by using the DROP | NDEX statement.

Synonyms

Database administrators can create public synonyms and users can create private synonyms for
convenience, by using the CREATE SYNONYM statement. Synonyms permit short names or aternative
names for objects. Remove synonyms by using the DROP SYNONYM statement.

Introduction to Oracle9i: SQL 12-25

Practice 12 Overview

This practice covers the following topics:
* Creating sequences

* Using sequences

* Creating nonunique indexes

* Displaying data dictionary information about
sequences and indexes

* Dropping indexes

‘ 12-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 12 Overview

In this practice, you create a sequence to be used when populating your table. Y ou also create implicit and
explicit indexes.

Introduction to Oracle9i: SQL 12-26

Practice 12

1

Create a sequence to be used with the primary key column of the DEPT table. The

sequence should start at 200 and have a maximum value of 1000. Have your sequence increment
by ten numbers. Name the sequence DEPT_| D_SEQ.

Write aquery in ascript to display the following information about your sequences: sequence name,
maximum value, increment size, and last number. Name the script | ab12_2. sql . Run the statement
in your script.

| SEQUENCE NAME | MAX VALUE | INCREMENT BY | LAST NUMBER

DEPARTMENTS SEQ | 9990 | 10 | 280
IDEPT_ID_SEQ i 1000 | 10 | 200
EMPLOYEES SEQ | 1.0000E+27 | 1 | 207
ILOCATIONS_SEQ | 9900 | 100 | 3300

Write a script to insert two rows into the DEPT table. Name your script | ab12 3. sql . Besureto use
the sequence that you created for the ID column. Add two departments named Education and
Administration. Confirm your additions. Run the commandsin your script.

Create a nonunigue index on the foreign key column (DEPT _I D) in the EMP table.

Display the indexes and uniqueness that exist in the data dictionary for the EVP table.
Save the statement into ascript named | ab12_5. sql .

i INDEX MAME | TABLE_NAME | UNIQUENES
[EMP_DEPT_ID_ID¥ EMP NONUNIQUE
[EMP_ID_PK EMP UNIQUE

Introduction to Oracle9i: SQL 12-27

Introduction to Oracle9i: SQL 12-28

Controlling User Access

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* (Create users

* Createroles to ease setup and maintenance of the
security model

* Use the GRANT and REVCKE statements to grant
and revoke object privileges

® Create and access database links

13-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn how to control database access to specific objects and add new users with different
levels of access privileges.

Introduction to Oracle9i: SQL 13-2

Controlling User Access
)
N

Database
Administrator

\/

Username and Password
Privileges

13-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling User Access
In amultiple-user environment, you want to maintain security of the database access and use. With Oracle
server database security, you can do the following:
* Control database access
» Give access to specific objects in the database
» Confirm given and received privileges with the Oracle data dictionary
* Create synonyms for database objects

Database security can be classified into two categories: system security and data security. System security
covers access and use of the database at the system level, such as the username and password, the disk
space allocated to users, and the system operations that users can perform. Database security covers access
and use of the database objects and the actions that those users can have on the objects.

Introduction to Oracle9i: SQL 13-3

Privileges

* Database security:
— System security
— Data security
* System privileges: Gaining access to the database

®* Object privileges: Manipulating the content of the
database objects

* Schemas: Collections of objects, such as tables,
views, and sequences

13-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Privileges

Privileges are the right to execute particular SQL statements. The database administrator (DBA) isahigh-
level user with the ability to grant users access to the database and its objects. The users require system
privilegesto gain access to the database and object privileges to manipulate the content of the objectsin the
database. Users can also be given the privilege to grant additional privileges to other users or to roles,
which are named groups of related privileges.

Schemas

A schemaisacollection of objects, such astables, views, and sequences. The schemais owned by a
database user and has the same name as that user.

For more information, see Oracle9i Application Developer’s Guide - Fundamentals, “ Establishing a
Security Policy,” and Oracle9i Concepts, “ Database Security.”

Introduction to Oracle9i: SQL 13-4

System Privileges

* More than 100 privileges are available.

* The database administrator has high-level system
privileges for tasks such as:

— Creating new users
— Removing users

— Removing tables

— Backing up tables

13-5 Copyright © Oracle Corporation, 2001. All rights reserved.

System Privileges

More than 100 distinct system privileges are available for users and roles. System privileges typically are
provided by the database administrator.

Typical DBA Privileges

System Privilege Operations Authorized

CREATE USER Grantee can create other Oracle users (a privilege required
for aDBA role).

DRCP USER Grantee can drop another user.

DROP ANY TABLE Grantee can drop atable in any schema.

BACKUP ANY TABLE Grantee can back up any table in any schema with the
export utility.

SELECT ANY TABLE Grantee can query tables, views, or snapshotsin any
schema.

CREATE ANY TABLE Grantee can create tables in any schema.

Introduction to Oracle9i: SQL 13-5

Creating Users

The DBA creates users by using the CREATE USER
statement.

CREATE USER user
| DENTI FI ED BY password;

CREATE USER scott
| DENTI FI ED BY ti ger;
User creat ed.

13-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a User

The DBA creates the user by executing the CREATE USER statement. The user does not have any

privileges at this point. The DBA can then grant privileges to that user. These privileges determine what the
user can do at the database level.

The dide gives the abridged syntax for creating a user.

In the syntax:
user is the name of the user to be created
password specifies that the user must log in with this password

For more information, see Oracle9i SQL Reference, “GRANT” and “CREATE USER.”

Introduction to Oracle9i: SQL 13-6

User System Privileges

® Once auser is created, the DBA can grant specific
system privileges to a user.

13-7

GRANT privilege [, privilege...]
TO user

rol e,

[, user| PUBLIC...];

* An application developer, for example, may have
the following system privileges:

CREATE SESSI ON
CREATE TABLE
CREATE SEQUENCE
CREATE VI EW
CREATE PROCEDURE

Copyright © Oracle Corporation, 2001. All rights reserved.

Typical User Privileges
Now that the DBA has created a user, the DBA can assign privileges to that user.

System Privilege Operations Authorized
CREATE SESSI ON Connect to the database
CREATE TABLE Create tables in the user’ s schema
CREATE SEQUENCE Cresate a sequence in the user’s schema
CREATE VI EW Create aview in the user’s schema
CREATE PROCEDURE Create a stored procedure, function, or package in the user’'s
schema
In the syntax:
privilege is the system privilege to be granted

user |rol e| PUBLIC isthe name of the user, the name of therole, or PUBLI C designates

that every user is granted the privilege

Note: Current system privileges can be found in the dictionary view SESSI ON_PRI VS.

Introduction to Oracle9i: SQL 13-7

Granting System Privileges

The DBA can grant a user specific system privileges.

GRANT create session, create table,
creat e sequence, create view

TO scott;

Grant succeeded.

13-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting System Privileges

The DBA uses the GRANT statement to allocate system privilegesto the user. Once the user has been
granted the privileges, the user can immediately use those privileges.

In the example in the dide, user Scott has been assigned the privileges to create sessions, tables, sequences,
and views.

Introduction to Oracle9i: SQL 13-8

What Is a Role?

) Q Q b Q Q
N, Wl N, Nl
\/ \/ \/ Users v \/ \/

> Privileges > >
Allocating privileges Allocating privileges
without arole with arole
13-9 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a Role?

A roleisanamed group of related privilegesthat can be granted to the user. This method makesit easier to
revoke and maintain privileges.

A user can have access to several roles, and several users can be assigned the samerole. Roles are typically
created for a database application.

Creating and Assigning a Role
First, the DBA must create the role. Then the DBA can assign privileges to the role and usersto therole.

Syntax
CREATE RCOLE role;
In the syntax:
rol e is the name of the role to be created

Now that therole is created, the DBA can use the GRANT statement to assign users to the role aswell as
assign privilegesto therole.

Introduction to Oracle9i: SQL 13-9

Creating and Granting Privileges to a Role

* (Create arole

CREATE RCLE nanager;

Rol e creat ed.

®* Grant privileges to arole
GRANT create table, create view
TO manager;

G ant succeeded.

* Grantaroleto users

GRANT manager TO DEHAAN, KOCHHAR;
Grant succeeded.
13-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Role

The example in the dide creates a manager role and then allows managersto create tables and views. It

then grants DeHaan and Kochhar the role of managers. Now DeHaan and Kochhar can create tables and
views.

If users have multiple roles granted to them, they receive al of the privileges assoicated with all of the
roles.

Introduction to Oracle9i: SQL 13-10

Changing Your Password

* The DBA creates your user account and initializes
your password.

®* You can change your password by using the
ALTER USER statement.

ALTER USER scott
| DENTI FI ED BY | i on;
User altered.

13-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Your Password

The DBA creates an account and initializes a password for every user. Y ou can change your password by
using the ALTER USER statement.

Syntax
ALTER USER user | DENTI FI ED BY password;
In the syntax:
user isthe name of the user
password specifies the new password

Although this statement can be used to change your password, there are many other options. Y ou must have
the ALTER USER privilege to change any other option.

For more information, see Oracle9i QL Reference, “ALTER USER.”

Introduction to Oracle9i: SQL 13-11

Object Privileges
Object
Privilege Table | View |Sequence | Procedure
ALTER o) o)
DELETE O o]
EXECUTE O
| NDEX o)
| NSERT O o]
REFERENCES o) O
SELECT o) O o)
UPDATE O o]

‘ 13-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Object Privileges

Anobj ect privilege isaprivilege or right to perform a particular action on a specific table, view,
sequence, or procedure. Each object has a particular set of grantable privileges. Thetable in the dide lists
the privileges for various objects. Note that the only privileges that apply to a sequence are SELECT and
ALTER. UPDATE, REFERENCES, and | NSERT can be restricted by specifying a subset of updatable
columns. A SELECT privilege can be restricted by creating a view with a subset of columns and granting
the SELECT privilege only on the view. A privilege granted on a synonym is converted to a privilege on
the base table referenced by the synonym.

Introduction to Oracle9i: SQL 13-12

Object Privileges

®* Object privileges vary from object to object.
* An owner has all the privileges on the object.

* An owner can give specific privileges on that
owner’s object.

GRANT object _priv [(colums)]
ON obj ect
TO {user|rol e|] PUBLI C}

[W TH GRANT OPTI ON ;

‘ 13-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting Object Privileges

Different object privileges are available for different types of schema objects. A user automatically has all
object privileges for schema objects contained in the user’s schema. A user can grant any object privilege
on any schema object that the user owns to any other user or role. If the grant includes W TH GRANT
OPTI QN, then the grantee can further grant the object privilege to other users; otherwise, the grantee can
use the privilege but cannot grant it to other users.

In the syntax:

obj ect _priv is an object privilege to be granted

ALL specifies all object privileges

col ums specifies the column from a table or view on which privileges
are granted

ON obj ect is the object on which the privileges are granted

TO identifies to whom the privilege is granted

PUBLI C grants object privilegesto all users

W TH GRANT OPTI ON allows the grantee to grant the object privileges to other users
and roles

Introduction to Oracle9i: SQL 13-13

Granting Object Privileges

®* Grant query privileges on the EMPLOYEES table.

GRANT sel ect

ON enpl oyees
TO sue, rich;
G ant succeeded.

® Grant privileges to update specific columns to
users and roles.

GRANT update (departnment_nane, |ocation_id)
ON departnents

TO scott, nmanager;

G ant succeeded.

13-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines

» Togrant privileges on an object, the object must be in your own schema, or you must have been granted the
object privilegesW TH GRANT OPTI ON.

* Anobject owner can grant any object privilege on the object to any other user or role of the database.
* Theowner of an object automatically acquires all object privileges on that object.

Thefirst example in the slide grants users Sue and Rich the privilege to query your EMPLOYEES table. The
second example grants UPDATE privileges on specific columns in the DEPARTMENTS table to Scott and to the
manager role.

If Sue or Rich now want to SELECT data from the employees table, the syntax they must useis:
SELECT *
FROM scott . enpl oyees;

Alternatively, they can create a synonym for the table and SELECT from the synonym:
CREATE SYNONYM enp FOR scott. enpl oyees;
SELECT * FROM enp;

Note: DBAs generally alocate system privileges; any user who owns an object can grant object privileges.

Introduction to Oracle9i: SQL 13-14

Using the W TH GRANT COPTI ON and
PUBLI C Keywords

* Give a user authority to pass along privileges.

GRANT sel ect, insert
ON depart nents
TO scott

WTH GRANT OPTI ON;
Grant succeeded.

* Allow all users on the system to query data from
Alice’s DEPARTMENTS table.

GRANT sel ect

ON al i ce. departnents
TO PUBLI C;

G ant succeeded.

13-15 Copyright © Oracle Corporation, 2001. All rights reserved.

The W TH GRANT OPTI ON Keyword

A privilegethat is granted with the W TH GRANT OPTI ON clause can be passed on to other users and
roles by the grantee. Object privileges granted with the W TH GRANT OPTI ON clause are revoked when

the grantor’ s privilege is revoked.
The examplein the dide gives user Scott access to your DEPARTVENTS table with the privileges to query
the table and add rows to the table. The example also allows Scott to give others these privileges.

The PUBLI CKeyword
An owner of atable can grant accessto all users by using the PUBLI C keyword.
The second example alows all users on the system to query data from Alice's DEPARTMENTS table.

Introduction to Oracle9i: SQL 13-15

Confirming Privileges Granted

Data Dictionary View Description

ROLE_SYS PRI VS System privileges granted to roles
ROLE_TAB PRI VS Table privileges granted to roles
USER ROLE PRI VS Roles accessible by the user
USER _TAB_ PRI VS_MADE Object privileges granted on the

user’s objects

USER TAB PRI VS RECD Object privileges granted to the
user

USER COL_PRI VS MADE Object privileges granted on the
columns of the user’s objects

USER COL_ PRI VS _RECD Object privileges granted to the
user on specific columns

USER SYS PRI VS Lists system privileges granted to
the user

13-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Granted Privileges

If you attempt to perform an unauthorized operation (for example, deleting arow from atable for which
you do not have the DELETE privilege) the Oracle Server does not permit the operation to take place.

If you receive the Oracle Server error messaget abl e or vi ew does not exi st , you have done
either of the following:
» Named atable or view that does not exist
» Attempted to perform an operation on atable or view for which you do not have the appropriate
privilege
Y ou can access the data dictionary to view the privileges that you have. The chart in the dlide describes
various data dictionary views.

Introduction to Oracle9i: SQL 13-16

How to Revoke Object Privileges

®* You use the REVOKE statement to revoke privileges
granted to other users.

* Privileges granted to others through the W TH
GRANT OPTI ON clause are also revoked.

REVOKE {privilege [, privilege...]|ALL}
ON obj ect

FROM {user[, user...]|role|PUBLIC}

[CASCADE CONSTRAI NTS] ;

‘ 13-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Revoking Object Privileges

Remove privileges granted to other users by using the REVOKE statement. When you use the REVOKE
statement, the privileges that you specify are revoked from the users you name and from any other users to
whom those privileges were granted through the W TH GRANT OPTI ON clause.

In the syntax:

CASCADE isrequired to remove any referential integrity constraints made to the
CONSTRAI NTS object by means of the REFERENCES privilege

For more information, see Oracle9i SQL Reference, “REVOKE.”

Introduction to Oracle9i: SQL 13-17

Revoking Object Privileges

As user Alice, revoke the SELECT and | NSERT
privileges given to user Scott on the DEPARTMENTS

table.

REVOKE sel ect, insert
ON departnment s
FROM scott;

Revoke succeeded.

13-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Revoking Object Privileges (continued)

The examplein the dide revokes SELECT and | NSERT privileges given to user Scott on the
DEPARTMENTS table.

Note: If auser isgranted a privilege withthe W TH GRANT OPTI ON clause, that user can also grant the
privilege with the W TH GRANT OPTI ON clause, so that along chain of granteesis possible, but no
circular grants are permitted. If the owner revokes a privilege from a user who granted the privilege to other
users, the revoking cascadesto all privileges granted.

For example, if user A grants SELECT privilege on atable to user B including the W TH GRANT OPTI ON
clause, user B can grant to user Cthe SELECT privilege with the W TH GRANT OPTI ON clause aswell,
and user C can then grant to user Dthe SELECT privilege. If user A revokes privilege from user B, then the
privileges granted to users C and D are al so revoked.

Introduction to Oracle9i: SQL 13-18

Database Links

A database link connection allows local users to
access data on aremote database.

. Local Remote
t,\i‘\\/ll,ll’ | | a
B B fred EMP
g Table
SELECT * FROM HQ_ACME. COM
emp@iQ_ACME. COM Database

‘ 13-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Links

A database link is a pointer that defines a one-way communication path from an Oracle database server to
another database server. The link pointer is actually defined as an entry in a data dictionary table. To access
the link, you must be connected to the local database that contains the data dictionary entry.

A database link connection is one-way in the sense that a client connected to local database A can use alink
stored in database A to access information in remote database B, but users connected to database B cannot
use the same link to access data in database A. If local users on database B want to access data on database
A, they must define alink that is stored in the data dictionary of database B.

A database link connection gives local users access to data on a remote database. For this connection to
occur, each database in the distributed system must have a unique global database name. The global
database name uniquely identifies a database server in adistributed system.

The great advantage of database linksis that they allow users to access another user’s objects in aremote
database so that they are bounded by the privilege set of the object's owner. In other words, alocal user can
access a remote database without having to be a user on the remote database.

The example shows auser SCOTT accessing the EVP table on the remote database with the global name
HQ ACME. COM

Note: Typically, the DBA isresponsible for creating the database link. The dictionary view
USER_DB_LI NKS contains information on links to which a user has access.

Introduction to Oracle9i: SQL 13-19

Database Links

* C(Create the database link.

CREATE PUBLI C DATABASE LI NK hqg. acne. com
USI NG ' sal es' ;
Dat abase |i nk created.

* Write SQL statements that use the database link.

SELECT *
FROM fred. enp@iQ ACVE. COM

‘ 13-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Database Links

The examplein the dide creates a database link. The USI NG clause identifies the service name of aremote
database.

Once the database link is created, you can write SQL statements against the datain the remote site. If a
synonym is set up, you can write SQL statements using the synony m.

For example:
CREATE PUBLI C SYNONYM HQ EMP FOR enp@iQ ACVE. COM

Then write a SQL statement that uses the synonym:
SELECT * FROM HQ_EM;
Y ou cannot grant privileges on remote objects.

Introduction to Oracle9i: SQL 13-20

Summary

In this lesson you should have learned about DCL
statements that control access to the database and
database objects.

Statement Action

CREATE USER Creates a user (usually performed by
a DBA)

GRANT Gives other users privileges to
access the your objects

CREATE RCLE Creates a collection of privileges
(usually performed by a DBA)

ALTER USER Changes a user’s password

REVOKE Removes privileges on an object from
users

13-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
DBAs establish initial database security for users by assigning privileges to the users.

The DBA creates users who must have a password. The DBA is aso responsible for establishing the
initial system privilegesfor auser.

Once the user has created an object, the user can pass along any of the available object privileges to
other users or to all users by using the GRANT statement.

A DBA can create roles by using the CREATE ROLE statement to pass along a collection of system
or abject privileges to multiple users. Roles make granting and revoking privileges easier to maintain.

Users can change their password by using the ALTER USER statement.
Y ou can remove privileges from users by using the REVOKE statement.

With data dictionary views, users can view the privileges granted to them and those that are granted
on their abjects.

With database links, you can access data on remote databases. Privileges cannot be granted on remote
objects.

Introduction to Oracle9i: SQL 13-21

Practice 13 Overview

This practice covers the following topics:
* Granting other users privileges to your table

* Modifying another user’s table through the
privileges granted to you

* Creating a synonym

®* Querying the data dictionary views related to
privileges

13-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 13 Overview

Team up with other students for this exercise about controlling access to database objects.

Introduction to Oracle9i: SQL 13-22

Practice 13

1. What privilege should a user be given to log on to the Oracle Server? Isthis a system or an object
privilege?

2. What privilege should a user be given to create tables?

3. If you create atable, who can pass along privileges to other users on your table?

4. Youarethe DBA. You are creating many users who reguire the same system privileges.
What should you use to make your job easier?

5. What command do you use to change your password?

6. Grant another user access to your DEPARTMENTS table. Have the user grant you query access to his
or her DEPARTMENTS table.

7. Query all therowsinyour DEPARTMENTS table.

| DEPARTMENT_ID | DEPARTMENT_NAME |MANAGER_ID | LOCATION_ID
i 10 |Administration I 200 | 1700
| 20 |Marketing | 201 | 1800
| 50 |Shipping i 124 | 1500
| B0 |IT | 103 | 1400
i 80 |Sales I 149 | 2500
| 90 |Executive | 100 | 1700
| 110 |Accounting i 205 | 1700
| ’Iﬁi(}nntracting | | 1700

B rows selected.

8. Add anew row to your DEPARTMENTS table. Team 1 should add Education as department
number 500. Team 2 should add Human Resources department number 510. Query the other team’s
table.

9. Create asynonym for the other team’s DEPARTMENTS table.

Introduction to Oracle9i: SQL 13-23

Practice 13 (continued)

10. Query dl the rowsin the other team’s DEPARTMENTS table by using your synonym.

Team 1 SELECT statenent results:

| DEPARTMENT_ID | DEPARTMENT NAME |MANAGER_ID | LOCATION_ID

| 10 |Adrministration | 200 | 1700
| 20 |Marketing | 201 | 1800
| 510 |Human Resources | |

| 50 |Shipping | 124 | 1500
| B0 |IT | 103 | 1400
| a0 |Sales | 143 | 2600
| 90 |Executive | 100 | 1700
| 110 |Accounting | 205 | 1700
| 190 |Contracting | | 1700

9 rows selected.

Team 2 SELECT statenment results:

DEPARTMENT _ID | DEPARTMENT NAME

MANAGER ID | LOCATION_ID

| |

| 10 |Adrninistration | 200 | 1700
| 20 Marketing | 201 | 1800
| 500 |[Education | |

| 50 |Shipping | 124 | 1500
| B0 |IT | 103 | 1400
| 80 |Sales | 143 | 2500
| 90 |Executive | 100 | 1700
| 110 |Accounting | 205 | 1700
| 190 |Contracting | | 1700

9 rowes selected.

Introduction to Oracle9i: SQL 13-24

Practice 13 (continued)
11. Query the USER_TABLES data dictionary to see information about the tables that you own.

| TABLE_NAME
\COUNTRIES

[DEPARTMENTS

EMPLOYEES

JOBS

\JOB_GRADES

JOB_HISTORY

ILOCATIONS

[REGIONS

8 rows selected.

12. Query the ALL_TABLES data dictionary view to see information about all the tables that you can
access. Exclude tables that are you own.

Note: Your list may not exactly match the list shown below.

I TABLE_NAME | OWNER
IDEPARTMENTS | owner |

13. Revoke the SELECT privilege on your table from the other team.

Introduction to Oracle9i: SQL 13-25

Introduction to Oracle9i: SQL 13-26

SQL Workshop

Copyright © Oracle Corporation, 2001. All rights reserved.

Workshop Overview

This workshop covers:

14-2

Creating tables and sequences
Modifying data in the tables
Modifying table definitions
Creating views

Writing scripts containing SQL and iSQL*Plus
commands

Generating a simple report

Copyright © Oracle Corporation, 2001. All rights reserved.

Workshop Overview

In this workshop you build a set of database tables for a video application. After you create the tables, you
insert, update, and delete records in a video store database and generate areport. The database contains
only the essential tables.

Note: If you want to build the tables, you can execute the commandsin the bui | dt ab. sql scriptin
iISQL*Plus. If you want to drop the tables, you can execute the commandsin dr opvi d. sql scriptin
iSQL*Plus. Then you can execute the commandsin bui | dvi d. sql script iniSQL*Plusto create and
populate the tables. If you usethe bui | dvi d. sqgl script to build and populate the tables, start with step

6b.

Introduction to Oracle9i: SQL 14-2

Video Application Entity Relationship Diagram

(TITLE N
L1
RESERVATION * title
#* reservation date | the subject * description
of o rating
_Y_setup for 0 category
o release date
available as
responsible acopy_A_
for
TITLE_COPY
4 MEMBER) #* ID
#* 1D * status
* [ast name ,
o first name the subject of
o address responsible
o city for L —t—
o phone mad(e against \
.
join date RENTAL
created #* book date
~ J for o act ret date
0 exp ret date
. J

Introduction to Oracle9i: SQL 14-3

Practice 14

1. Create thetables based on the following table instance charts. Choose the appropriate data types and
be sure to add integrity constraints.

a. Table name; MEMBER

Column_ | MEMBER_ | LAST_ FI RST_NAM | ADDRESS aTy PHONE JAON

Name ID NAMVE E _
DATE

Key PK

Type

Null/ NN,U NN NN

Unigue

Default System

Value Date

Data NUMBER VARCHAR2 | VARCHAR2 VARCHAR2 VARCHAR2 VARCHARZ2 | DATE

Type

Length 10 25 25 100 30 15

b. Tablename: Tl TLE

Column TITLE ID | TITLE DESCRI PTI ON | RATI NG CATEGORY RELEASE
Key PK
Type
Null/ NN,U NN NN
Unique
Check G, PG, R, DRAMA,
NC17, NR COMEDY,

ACTION,

CHILD,

SCIFI,

DOCUMEN-

TARY
Data Type | NUVBER VARCHAR? | VARCHAR2 VARCHAR2 VARCHAR2 DATE
Length 10 60 400 4 20

Introduction to Oracle9i: SQL 14-4

Practice 14 (continued)
c. Tablename: TI TLE_COPY

Column COPY_I D TITLE_ID STATUS
Name
K ey PK PK,FK
Type
Null/ NN,U NN,U NN
Unique
Check AVAILABLE,
DESTROYED,
RENTED,
RESERVED
FK Ref TI TLE
Table
FK Ref TITLE_ID
Col
Data NUVBER NUVBER VARCHAR2
Type
Length 10 10 15
d. Table name: RENTAL
Column BOOK | MEMBER _ COPY_ ACT_RET_ | EXP_RET_ | TITLE_
Name DATE I D I D DATE DATE I D
Key PK PK,FK1 PK,FK2 PK,FK2
Type
Default System System Date
Value Date + 2 days
FK Ref VEMBER TI TLE_ TI TLE_
Table CoPY CcoPY
FK Ref MEMBER | | COPY_ TITLE_I D
Col D I D
Data DATE NUMBER NUMBER | DATE DATE NUMBER
Type
Length 10 10 10

Introduction to Oracle9i: SQL 14-5

Practice 14 (continued)
e. Table name: RESERVATI ON

Column RES VEMBER _ TITLE
Name DATE | D | D

Key PK PK,FK1 PK,FK2
Type

Null/ NN,U NN,U NN
Unique

FK Ref MVEMBER Tl TLE
Table

FK Ref NVEVBER | D TITLE_ID
Column

Data Type DATE NUMBER NUMBER
Length 10 10

2. Verify that the tables and constraints were created properly by checking the data dictionary.

! TABLE_NAME

MEMBER

IREMTAL

IRESERWVATION

TITLE

TITLE_COPY

| CONSTRAINT NAME [C [TABLE_NAME
MEMBER_LAST NAME NN c [MEMBER
IMEMEER_JOIN_DATE NN c |MEMEER
IMEMBER_MEMBER_ID_PK P [MEMEER
IRENTAL_BOOK_DATE_COPY_TITLE_PK P [RENTAL
[RENTAL_MEMEER_ID_FK R [RENTAL
IREMTAL_COPY_ID_TITLE_ID_FK R |[RENTAL
IRESERWATION_RESDATE_MEM_TIT_PK P [RESERVATION
IRESERWATION MEMBER ID R [RESERVATION
TITLE_COPY_COPY_ID_TITLE_ID_PK [P [TITLE_coPY

18 rows selected.

Introduction to Oracle9i: SQL 14-6

Practice 14 (continued)

3. Create sequences to uniquely identify each row in the MEMBER table and the Tl TLE table.

a. Member number for the MEMBER table: Start with 101; do not allow caching of the
values. Name the sequence MEMBER | D_SEQ.

b. Title number for the TI TLE table: Start with 92; no caching. Name the sequence
TI TLE_| D_SEQ.

c. Verify the existence of the sequencesin the data dictionary.
| SEQUENCE_NAME

MEMBER_ID_SEQ
ITITLE_ID_SEQ

4. Add datato thetables. Create a script for each set of datato add.

a Add movietitlesto the Tl TLE table. Write a script to enter the movie information.
Save the statementsin ascript named | ab14_4a. sql . Use the sequences to uniquely
identify each title. Enter the release datesin the DD- MON- YYYY format. Remember
that single quotation marks in a character field must be specially handled. Verify your
additions.

| TITLE

!Willie and Christmas Too

!Alien Again

The Glob

My Day OF

| P
|Miracles on Ice

ISDda Gang

B rows selected.

Introduction to Oracle9i: SQL 14-7

Practice 14 (continued)

Title

Description

Rating

Category

Release date

Willie and
Christmas
Too

All of Willie' s friends make

aChristmas list for Santa, but
Willie has yet to add his own
wish list.

CHILD

05-OCT-1995

Alien Again

Y et another installation of
science fiction history. Can
the heroine save the planet
from the alien life form?

SCIF

19-MAY -1995

The Glob

A meteor crashes near a
small American town and
unleashes carnivorous goo in
this classic.

NR

SCIF

12-AUG-1995

My Day Off

With alittle luck and alot of
ingenuity, a teenager skips
school for aday in New York

PG

COMEDY

12-JUL-1995

Miracles on
Ice

A six-year-old has doubts
about Santa Claus, but she
discovers that miracles really
do exist.

PG

DRAMA

12-SEP-1995

Soda Gang

After discovering a cache of
drugs, ayoung couple find
themselves pitted against a
vicious gang.

NR

ACTION

01-JUN-1995

Introduction to Oracle9i: SQL 14-8

Practice 14 (continued)

b. Add datato the MEMBER table. Place the insert statementsin a script named
| ab14 4b. sql . Execute commandsin the script. Be sure to use the sequence to add the
member numbers.

First_

Name | Last_ Name | Address City Phone Join_Date

Carmen | Velasguez 283 King Sesttle 206-899-6666 | 08-MAR-1990
Street

LaDoris | Ngao 5 Modrany Bratisava | 586-355-8882 | 08-MAR-1990

Midori | Nagayama | 68 Via Sao Paolo | 254-852-5764 | 17-JUN-1991
Centrale

Mark Quick-to- 6921 King Lagos 63-559-7777 | 07-APR-1990

See Way
Audry | Ropeburn 86 Chu Street | Hong 41-559-87 18-JAN-1991
Kong
Molly Urguhart 3035 Laurier Quebec 418-542-9988 | 18-JAN-1991

Introduction to Oracle9i: SQL 14-9

Practice 14 (continued)

¢. Add thefollowing movie copiesinthe TI TLE COPY table:
Note: Havethe TI TLE | D numbers available for this exercise.

Title Copy_ld Status
Willieand Christmas Too | 1 AVAILABLE
Alien Again 1 AVAILABLE
2 RENTED
The Glob 1 AVAILABLE
My Day Off 1 AVAILABLE
2 AVAILABLE
3 RENTED
Miracleson Ice 1 AVAILABLE
Soda Gang 1 AVAILABLE

d. Add thefollowing rentalsto the RENTAL table:

Note: Title number may be different depending on sequence number.

Title_ | Copy_ Member

Id Id Id Book_date | Exp_Ret Date Act_Ret_Date
92 1 101 3 daysago 1 day ago 2 days ago

93 2 101 1 day ago 1 day from now

95 3 102 2 daysago Today

97 1 106 4 days ago 2 days ago 2 days ago

Introduction to Oracle9i: SQL 14-10

Practice 14 (continued)

5. Createaview named Tl TLE_AVAI L to show the movie titles and the availability of
each copy and its expected return date if rented. Query all rows from the view. Order the results by
title.

Note: Your results may be different.

| TITLE | COPYID | STATUS | EXP RETD
Alien Again ! 1 |AvAILABLE !

\Alien Again | 2 |RENTED 115-MAR-01
IMiracles on Ice | 1 |AVAILABLE |

My Day OF | 1 |AVAILABLE |

My Day Off ! 2 |AVAILABLE !

My Day OF | 3 |RENTED 116-MAR-01
Soda Gang | 1 |AVAILABLE 114-MAR-O1
The Glab | 1 |AVAILABLE |

‘Willie and Christmas Too | 1 |AVAILABLE 115-MAR-01

9 rows selected.

6. Make changesto datain thetables.

a Add anew title. The movie is“Interstellar Wars,” whichisrated PG and classified asa
sci-fi movie. Therelease date is 07-JUL-77. The description is“ Futurigtic interstellar
action movie. Can the rebels save the humans from the evil empire?’ Besureto add a
title copy record for two copies.

b. Enter two reservations. One reservation isfor Carmen Velasquez, who wants to rent
“Interstellar Wars.” The other isfor Mark Quick-to-See, who wants to rent “ Soda
Gang.”

Introduction to Oracle9i: SQL 14-11

Practice 14 (continued)

c. Customer Carmen Velasquez rents the movie “ Interstellar Wars,” copy 1. Remove her
reservation for the movie. Record the information about the rental. Allow the default
value for the expected return date to be used. Verify that the rental was recorded by
using the view you created.

Note: Y our results may be different.

| TITLE | COPYID | STATUS | EXP RETD
Alien Again | 1 |AVAILABLE |

Alien Again | 2 |RENTED [158-MAR-O1
Interstellar Wars | 1 |RENTED 118-MAR-O1
Interstellar Yars | 2 |AwAILABLE |

Miracles on lce | 1 |AAILABLE |

My Day Off | 1 |AVAILABLE |

My Day Off | 2 |AVAILABLE |

My Day OF | 3 |RENTED 116-MAR-D1
Soda Gang | 1 \AVAILABLE 114-MAR-01
The Glob | 1 | AVAILABLE |

Willie and Christmas Too | 1 |AVAILABLE 15-MAR-01

11 rows selected.

7. Make amodification to one of the tables.

a. Add aPRI CE column to the TI TLE table to record the purchase price of the video.
The column should have atotal length of eight digits and two decimal places. Verify
your modifications.

| Hame | Null? | Type
TITLE_ID INOT MULL INUMBER(10)
TITLE INOT MULL WARCHARZ{ED)
[DESCRIPTION IMOT MULL WARCHARZ{400)
RATING | WARCHARZ(4)
|CATEGORY | WARCHARZ(20)
IRELEASE_DATE | DATE

PRICE | INUMBER(S 2)

Introduction to Oracle9i: SQL 14-12

Practice 14 (continued)

b. Createascript named | abl4 7b. sql that contains update statements that update
each video with a price according to the following list. Run the commandsin the

script.

Note: Havethe TI TLE | D numbers available for this exercise.

Title Price
Willie and Christmas Too 25
Alien Again 35
The Glob 35
My Day Off 35
Miracleson Ice 30
Soda Gang 35
Interstellar Wars 29

c. Ensurethat in the future al titles contain a price value. Verify the constraint.

[CrYSTRAINT MAME [C |

TITLE_PRICE_MN

T TRRCH_CONDITION

\C ["PRICE" IS WOT MULL

8. Create areport titled Customer History Report. This report contains each customer’s

history of renting videos. Be sure to include the customer name, movie rented, dates of the rental,
and duration of rentals. Total the number of rentals for all customers for the reporting period. Save

the commands that generate the report in ascript filenamed | ab14_8. sql .

Note: Your results may be different.

Fri Mar 16 Customer History Report page 1

I MEMBER i TITLE | BOOK_DATE | DURATION
|Carmen “Yelasquez IWiIIie and Christrmas Too |13-MAR-D1 | 1
| Alien Again 115-MAR-01 l

| Interstellar Wars 116-MAR-01 |

\LaDaris Mgao Ity Day Off 114-MAR-01 |

Molly Urguhart \Soda Gang [12-MAR-O1 | 2

Introduction to Oracle9i: SQL 14-13

Introduction to Oracle9i: SQL 14-14

Using SET Operators

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able
to do the following:

®* Describe SET operators

®* Use a SET operator to combine multiple queries into a single
query
® Control the order of rows returned

15-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim
In thislesson, you learn how to write queries by using SET operators.

Introduction to Oracle9i: SQL 15-2

The SET Operators

A B A B
@ UNI ONVUNI ON ALL
| NTERSECT
M NUS

o

15-3 Copyright © Oracle Corporation, 2001. All rights reserved.

The SET Operators

The SET operators combine the results of two or more component queriesinto one result. Queries
containing SET operators are called compound queries.

Operator Returns

UNI ON All distinct rows selected by either query

UNI ON ALL All rows selected by either query, including al duplicates

| NTERSECT All distinct rows selected by both queries

M NUS All digtinct rows that are selected by the first SELECT statement and that
are not selected in the second SELECT statement

All SET operators have equal precedence. If a SQL statement contains multiple SET operators, the Oracle
server evaluates them from left (top) to right (bottom) if no parentheses explicitly specify another order.

Y ou should use parentheses to specify the order of evaluation explicitly in queries that use the

| NTERSECT operator with other SET operators.

Note: Inthe dlide, thelight color (grey) in the diagram represents the query result.

Introduction to Oracle9i: SQL 15-3

Tables Used in This Lesson

The tables used in this lesson are:

e EMPLOYEES: Provides details regarding all
current employees

e JOB HI STORY: When an employee switches jobs,
the details of the start date and end date of the
former job, the job identification number and
department are recorded in this table

15-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Tables Used in This Lesson
Two tables are used in thislesson. They are the EMPLOYEES table and the JOB_HI STORY table.

The EMPLOYEES table stores the employee details. For the human resource records, this table stores a
unique identification number and email address for each employee. The details of the employee’sjob
identification number, salary, and manager are also stored. Some of the employees earn acommission in
addition to their salary; thisinformation is tracked too. The company organizes the roles of employeesinto
jobs. Some of the employees have been with the company for along time and have switched to different
jobs. Thisis monitored using the JOB_HI STORY table. When an employee switches jobs, the details of
the start date and end date of the former job, the job identification number and department are recorded in
the JOB_HI STORY table.

The structure and the data from the EMPLOYEES and the JOB_HI STORY tables are shown on the next

page.

There have been instances in the company of people who have held the same position more than once
during their tenure with the company. For example, consider the employee Taylor, who joined the
company on 24-MAR-1998. Taylor held the job title SA_REP for the period 24-MAR-98 to 31-DEC-98
and thejob title SA_MAN for the period 01-JAN-99 to 31-DEC-99. Taylor moved back into the job title of
SA REP, whichishiscurrent job title.

Similarly consider the employee Whalen, who joined the company on 17-SEP-1987. Whalen held the job
titte AD_ASST for the period 17-SEP-87 to 17-JUN-93 and the job title AC_ACCOUNT for the period 01-
JUL-94 to 31-DEC-98. Taylor moved back into the job title of AD_ASST, which is his current job title.

Introduction to Oracle9i: SQL 15-4

Tables Used in This Lesson (continued)

DESC enpl oyees

| Name | Null? | Type
[EMPLOYEE_ID IMOT MULL IMUMBER(E)
FIRST_MAME | WARCHAR2(20)
LAST_NAME IMOT MULL WARCHAR2(25)
[EMAIL IMOT MULL WARCHAR2(25)
\PHOME_NUMBER | WARCHARZ(20)
HIRE_DATE IMOT MULL DATE

JOB_ID IMOT MULL WARCHAR2(10)
|SALARY | MUMBER(E ,2)
(COMMISSION_PCT | MUMBER(2 2)
IMANAGER_ID | IMUMBER(E)
\DEPARTMENT _ID | MUMBER(4)

SELECT enpl oyee_id, |ast_nane,

FROM enpl oyees;

job_id, hire_date,

department _id

| EMPLOYEE_ID | LAST_NAME | JOB_ID | HIRE_DATE | DEPARTMENT_ID
| 100 |King AD_PRES M7-JUn-a7 | a0
| 101 |Kochhar AD_WP 21-5EP-82 | a0
| 102 |De Haan A0 WP 13-JAN-33 | 90
| 103 |Hunaold IT_PROG 03-JAN-90 | B0
| 104 |Enst IT_PROG 21-MAY-91 | B0
| 107 |Lorentz IT_PROG 07-FEE-33 | B0
| 124 |Mourgos IST_MAN 116-NOV-93 | &0
| 141 |Rajs \ST_CLERK 17-0CT-95 | 50
| 142 |Davies |ST_CLERK [29-JAN-97 | a0
| 143 |Matos |ST_CLERK 115-MAR-38 | 50
| 144 [Vargas |ST_CLERK 09-JUL-98 | 50
| 149 |Zlotkey SA_MAN 25-JAN-00 | a0
| 174 |Abel \SA_REP 11-MAY-9B | a0
176 [Taylor 'SA_REP 24-MAR-98 | a0
178 |Grant [SA_REP 24-MAY-93 |
| 200 [Whalen |40 ASST 117-SEP-a7 | 10
| 201 |Hartstein hdk_aan] 117-FEB-55 | 20
| 202 |Fay MiK_REP 17-AUG-97 | 20
| 205 |Higgins AC_MGR 07-JUN-94 | 110
| 205 |Gietz WAC_ACCOUNT 07-JUnN-34 | 110

20 rowes selected.

Introduction to Oracle9i: SQL 15-5

Tables Used in This Lesson (continued)
DESC j ob_hi story

| Name | Null? | Type
EMPLOYEE_ID INOT MULL NUMBER(E)
\START_DATE (NOT MULL DATE

[END_DATE INOT MULL IDATE

JOB_ID INOT MULL WARCHARZ(10)
\DEPARTMENT _ID | INUMBER(4)

SELECT * FROM job_history;

| EMPLOYEE_ID | START_DAT | END_DATE | JOB_ID | DEPARTMENT_ID
| 102 13-JAN-93 24-JUL-93 IT_PROG | B0
| 101 [21-SEP-89 [27-0CT-33 AC_ACCOUNT | 110
| 101 [28-0CT-93 58-MARS? |AC_MGR | 110
| 201 [17-FEB-96 [19-DEC-99 MIK_REP | 20
| 114 24-MAR-D3 31-DEC-92 ST _CLERK | 50
| 122 D1-JAN-93 31-DEC-92 ST _CLERK | &0
200 [17-SEP-87 M7-JUN-93 AD_ASST | 30
176 24-MAR-93 31-DEC-98 \SA_REP | a0
176 01-JAN-33 31-DEC-59 1SA_MAN | an
200 |01-JUL-94 131-DEC-98 |AC_ACCOUNT | a0

10 rows selected.

Introduction to Oracle9i: SQL 15-6

The UNI ON SET Operator

A B

The UNI ON operator returns results from both queries
after eliminating duplications.

15-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNI ON SET Operator

The UNI ON operator returns all rows selected by either query. Use the UNI ON operator to return all rows
from multiple tables and eliminate any duplicate rows.

Guidelines

» The number of columns and the data types of the columns being selected must be identical in al the
SELECT statements used in the query. The names of the columns need not be identical.

* UNI ON operates over all of the columns being selected.

* NULL values are not ignored during duplicate checking.

* Thel Noperator has a higher precedence than the UNI ON operator.

» By default, the output is sorted in ascending order of the first column of the SELECT clause.

Introduction to Oracle9i: SQL 15-7

Using the UNI ON Operator

Display the current and previous job details of all
employees. Display each employee only once.

SELECT enpl oyee id, job_ id
FROM enpl oyees

UNI ON

SELECT enpl oyee id, job_ id
FROM job_history;

| EMPLOYEE_ID i JOB_ID
| 100 |AD_PRES
| 101 [AC_ACCOUNT

il AD_ W
178 |SA_REP

200 |[AC_ACCOUNT
200 [AD ASST

28 rows selected.

15-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the UNI ON SET Operator

The UNI ON operator eliminates any duplicate records. If there are records that occur both in the
EMPLOYEES and the JOB_HI STORY tablesand are identical, the records will be displayed only once.
Observein the output shown on the dlide that the record for the employee with the EMPLOYEE | D 200
appearstwice asthe JOB_| Disdifferent in each row.
Consider the following example:

SELECT enployee_id, job_id, departnent_id

FROM enpl oyees

UNI ON

SELECT enployee id, job_ id, departnent _id

FROM job_history;

| EMPLOYEE ID ! JOB _ID | DEPARTMENT ID

| 100 [AD_PRES | 50

i 101 |AC_ACCOUNT i 110

| 101 |AC_MGR | 110

[1Nt lan we [arn
e o -
200 |AC_ACCOUNT 1 a0
200 |AD_ASST | 10
200 |AD_ASST | 90
201 [MK_MAN | 20

29 rows selected.
Introduction to Oracle9i: SQL 15-8

Using the UNI ON SET Operator (continued)
In the preceding output, employee 200 appears three times. Why? Notice the DEPARTMENT _| D values for
employee 200. One row has a DEPARTMVENT _| D of 90, another 10, and the third 90. Because of these
unique combinations of job IDs and department 1Ds, each row for employee 200 is unique and therefore

not considered a duplicate. Observe that the output is sorted in ascending order of the first column of the
SELECT clause, EMPLOYEE | Dinthiscase.

Introduction to Oracle9i: SQL 15-9

The UNI ON ALL Operator

A B

The UNI ON ALL operator returns results from both
queries including all duplications.

15-10 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNI ON ALL Operator
Usethe UNI ON ALL operator to return all rows from multiple queries.
Guidelines
* Unlike UNI ON, duplicate rows are not eliminated and the output is not sorted by defaullt.
» TheDI STI NCT keyword cannot be used.
Note: With the exception of the above, the guidelines for UNI ON and UNI ON ALL are the same.

Introduction to Oracle9i: SQL 15-10

Using the UNI ON ALL Operator

Display the current and previous departments of
all employees.

SELECT enpl oyee id, job_id, departnent _id
FROM enpl oyees

UNI ON ALL

SELECT enpl oyee_id, job_id, departnent_id
FROM job _history

CRDER BY enpl oyee i d;

EMPLOYEE_ID | JOB_ID | DEPARTMENT_ID
100 |AD_PRES | a0
174 |SA_Rer | .
[T7E oA RED 8]
176 [SA_MAN a0
[176 |SA_REP | =]
205 [AC_MGR | 110
206 |[AC_ACCOUNT | 110

30 rows selected.

15-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNI ON ALL Operator (continued)

In the example, 30 rows are selected. The combination of the two tablestotals to 30 rows. The UNI ON
ALL operator does not eliminate duplicate records. The duplicate records are highlighted in the output

shownin the dide. UNI ON returns all distinct rows selected by either query. UNI ON ALL returnsal rows

selected by either query, including al duplicates. Consider the query on the slide, now written with the

UNI ON clause:
SELECT enployee_id, job_id, departnent_id
FROM enpl oyees
UNI ON

SELECT enployee_id, job_id,departnent _id

FROM

job_history

ORDER BY enpl oyee_i d;

The preceding query returns 29 rows. Thisis because it eliminates the following row (asit is a duplicate):

EMPLOYEE_ID | JOB_ID I DEPARTMENT _ID

176 |SA_REP l

EHIII

Introduction to Oracle9i: SQL 15-11

The | NTERSECT Operator

A B

The | NTERSECT operator returns results that are
common to both queries.

15-12 Copyright © Oracle Corporation, 2001. All rights reserved.

The | NTERSECT Operator
Usethe | NTERSECT operator to return all rows common to multiple queries.
Guidelines

» The number of columns and the data types of the columns being selected by the SELECT statements
in the queries must be identical in all the SELECT statements used in the query. The names of the
columns need not be identical.

* Reversing the order of the intersected tables does not alter the result.
* | NTERSECT does not ignore NULL values.

Introduction to Oracle9i: SQL 15-12

Using the | NTERSECT Operator

Display the employee IDs and job IDs of employees
who are currently in a job title that they have held
once before during their tenure with the company

SELECT enpl oyee id, job_ id
FROM enpl oyees

| NTERSECT

SELECT enpl oyee_id, job_id
FROM job_history;

| EMPLOYEE_ID JOB_ID

[176 |24_REP

i 200 [AD_ASST

‘ 15-13 Copyright © Oracle Corporation, 2001. All rights reserved.

The | NTERSECT Operator (continued)

In the example in this dide, the query returns only the records that have the same values in the selected

columnsin both tables.

What will be the resultsif you add the DEPARTMENT_| D column to the SELECT statement from the
EMPLOYEES table and add the DEPARTMENT _I D column to the SELECT statement from the
JOB_HI STORY table and run this query? The results may be different because of the introduction of

another column whose values may or may not be duplicates.

Example

SELECT enpl oyee_id, job_id, departnent_id
FROM enpl oyees

| NTERSECT

SELECT enpl oyee_id, job_id, departnent _id
FROM job_history;

EMPLOYEE_ID | JOB_ID | DEPARTMENT _ID

176 |S4_REP I

80 |

Employee 200 is ho longer part of the results because the EMPLOYEES. DEPARTMVENT | Dvaueis

different from the JOB_HI STORY. DEPARTMENT _I D value.

Introduction to Oracle9i: SQL 15-13

The M NUS Operator

A B

The M NUS operator returns rows from the first query
that are not present in the second query.

15-14 Copyright © Oracle Corporation, 2001. All rights reserved.

The M NUS Operator
Use the M NUS operator to return rows returned by the first query that are not present in the second query
(the first SELECT statement M NUS the second SELECT statement).
Guidelines

* The number of columns and the data types of the columns being selected by the SELECT statements
in the queries must be identical in al the SELECT statements used in the query. The names of the

columns need not be identical.
» All of the columnsin the WHERE clause must be in the SELECT clause for the M NUS operator to
work.

Introduction to Oracle9i: SQL 15-14

The M NUS Operator

Display the employee IDs of those employees who have
not changed their jobs even once.

SELECT enpl oyee_id
FROM enpl oyees

M NUS

SELECT enpl oyee_id
FROM job_history;

EMPLOYEE_ID | JOB_ID
A0 PRES

o
]
]

2uU1 'M_l*(il\-"l.-"-‘xlu
| 202 |MK_REF
[205 |AC_MGR
[206 |AC _ACCOUNT

18 rows selected.

15-15 Copyright © Oracle Corporation, 2001. All rights reserved.

The M NUS Operator (continued)

In the example in the dide, the employee IDsinthe JOB_HI STORY table are subtracted from those in the
EMPLOYEES table. The results set displays the employees remaining after the subtraction; they are
represented by rows that exist in the EMPLOYEES table but do not exist inthe JOB_HI STCRY table.
These are the records of the employees who have not changed their jobs even once.

Introduction to Oracle9i: SQL 15-15

SET Operator Guidelines

* The expressions in the SELECT lists must match in
number and data type.

* Parentheses can be used to alter the sequence of
execution.

* The ORDER BY clause:

— Can appear only at the very end of the statement

— Will accept the column name, aliases from the first
SELECT statement, or the positional notation

15-16 Copyright © Oracle Corporation, 2001. All rights reserved.

SET Operator Guidelines

The expressionsin the select lists of the queries must match in number and datatype. Queries that use
UNI ON, UNI ON ALL, | NTERSECT, and M NUS SET operators in their WHERE clause must have
the same number and type of columnsin their SELECT list. For example:
SELECT enpl oyee_id, departnent_id
FROM enpl oyees
WHERE (enpl oyee_id, departnent_id)
I N (SELECT enpl oyee id, departnent _id
FROM enpl oyees
UNI ON
SELECT enpl oyee_id, departnent_id
FROM job_history);
The ORDER BY clause:
— Can appear only at the very end of the statement
— Will accept the column name, an alias, or the positional notation
The column name or alias, if used in an ORDER BY clause, must be from the first SELECT list.

SET operators can be used in subqueries.

Introduction to Oracle9i: SQL 15-16

The Oracle Server and SET Operators

* Duplicate rows are automatically eliminated except
in UNI ON ALL.

® Column names from the first query appear in the
result.

* The outputis sorted in ascending order by default
except in UNI ON ALL.

15-17 Copyright © Oracle Corporation, 2001. All rights reserved.

The Oracle Server and SET Operators

When a query uses SET operators, the Oracle Server eliminates duplicate rows automatically except in the
case of the UNI ON ALL operator. The column names in the output are decided by the column list in the
first SELECT statement. By default, the output is sorted in ascending order of the first column of the
SELECT clause.

The corresponding expressions in the select lists of the component queries of a compound query must match
in number and datatype. If component queries select character data, the data type of the return values are
determined as follows:

e If both queries select values of datatype CHAR, the returned values have datatype CHAR.

« If either or both of the queries select values of datatype VARCHARZ2, the returned values
have datatype VARCHAR2 .

Introduction to Oracle9i: SQL 15-17

Matching the SELECT Statements

Using the UNI ON operator, display the department ID,
location, and hire date for all employees.

SELECT departnent _id, TO NUMBER(null) | ocation, hire_date
FROM enpl oyees

UNI ON

SELECT department _id, location_id, TO DATE(null)

FROM departnents;

[DEPARTMENT_ID [LOCATION [HIRE_DATE I
[10 | 1700 | |
[10 | [17-sEP-B7 |
| 20 | 1800 | |
| 20 | [17-FEB-96 |
SAE-T R
| 190 | Trog | ‘
i i [24-maxr oo

27 rows selected.

15-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Matching the SELECT Statements

Asthe expressionsin the select lists of the queries must match in number , you can use dummy columns
and the data type conversion functions to comply with thisrule. Inthe dide, the namel ocat i on isgiven
as the dummy column heading. The TO_NUMBER function is used in the first query to match the NUMBER
datatype of the LOCATI ON_I D column retrieved by the second query. Similarly, the TO_DATE function
in the second query is used to match the DATE datatype of the Hl RE_DATE column retrieved by the
second query.

Introduction to Oracle9i: SQL 15-18

Matching the SELECT Statement

Using the UNI ON operator, display the employee ID,
job ID, and salary of all employees.

SELECT enpl oyee_id, job_id,salary
FROM enpl oyees

UNI ON

SELECT enpl oyee id, job_id,O
FROM job_history;

! EMPLOYEE_ID [JOB_ID [SALARY i
[100 |AD_PRES | 24000
TOT [BC_ACCOUNT | 0
101 [AC_MGR I 0
- 205 |ae_wiGR [12000
| 206 [AC_ACCOUNT | 5300 |

30 rowws selected.

15-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Matching the SELECT Statement: Example

The EMPLOYEES and JOB_HI STORY tables have several columnsin common; for example,
EMPLOYEE_I| D, JOB_| D and DEPARTMENT_I D. But what if you want the query to display the
EMPLOYEE_I D, JOB_| D, and SALARY using the UNI ON operator, knowing that the salary exists only in
the, EMPLOYEES table?

The code example in the dide matches the EMPLOYEE_| D and the JOB_I D columns in the EMPLOYEES
andinthe JOB_HI STORY tables. A literal value of 0isadded totheJOB H STORY SELECT statement
to match the numeric SALARY column in the EMPLOYEES SELECT statement.

In the preceding results, each row in the output that correspondsto arecord fromthe JOB_HI STORY table
contains a0 in the SALARY column.

Introduction to Oracle9i: SQL 15-19

15-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Order of Rows

Produce an English sentence using two
UNI ON operators.

COLUWN a_dunmy NOPRI NT

SELECT 'sing' AS "My dreant, 3 a_dumy
FROM dual

UNI ON

SELECT 'I''d like to teach', 1

FROM dual

UNI ON

SELECT "the world to', 2

FROM dual

ORDER BY 2;

| My dream

|I'd like to teach

[the warld to

ising

Controlling the Order of Rows

By default, the output is sorted in ascending order on the first column. Y ou can use the ORDER BY clause

to change this.
Using ORDER BY to Order Rows

The ORDER BY clause can be used only once in a compound query. If used, the ORDER BY clause must
be placed at the end of the query. The ORDER BY clause accepts the column name, an alias, or the
positional notation. Without the ORDER BY clause, the code example in the dide produces the following

output in the alphabetical order of the first column:

My dream

I'd like to teach

|sing

the warld to

Note: Consider a compound query where the UNI ON SET operator is used more than once. In this case, the

ORDER BY clause can use only positions rather than explicit expressions.

Introduction to Oracle9i: SQL 15-20

")

Summary

In this lesson, you should have learned the following:
* UNI ONreturns all distinct rows.
* UNI ON ALL returns all rows, including duplicates.

* | NTERSECT returns all rows shared by
both queries.

* M NUSreturns all distinct rows selected by the first
guery but not by the second.

* (CORDER BY can appear only at the very end of
the statement.

15-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
 TheUNI ON operator returns all rows selected by either query. Use the UNI ON operator to return al
rows from multiple tables and eliminate any duplicate rows.
* Usethe UNI ON ALL operator to return al rows from multiple queries. Unlike with the UNI ON
operator, duplicate rows are not eliminated and the output is not sorted by default.

* Usethel NTERSECT operator to return al rows common to multiple queries.

» Usethe M NUS operator to return rows returned by the first query that are not present in the second
query.

* Remember to use the ORDER BY clause only at the very end of the compound statement.

» Make sure that the corresponding expressions in the SELECT lists match in number and data type.

Introduction to Oracle9i: SQL 15-21

Practice 15 Overview

This practice covers the following topics:
* Writing queries using the SET operators

* Discovering alternative join methods

15-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 15 Overview
In this practice, you write queries using the SET operators.

Introduction to Oracle9i: SQL 15-22

Practice 15
1. List the department IDs for departments that do not contain the job ID ST_CLERK,
using SET operators.

DEPARTMENT _ID

10

20

alll

a0

110

|
|
|
| B0
|
|
|
|

120

¢ rows selected.

2. Display the country ID and the name of the countries that have no departments located in
them, using SET operators.

| co | COUNTRY_NAME

|DE |Germany

3. Produce alist of jobs for departments 10, 50, and 20, in that order. Display job ID and
department ID, using SET operators.

| JOB_ID | DEPARTMENT_ID

\AD_ASST | 10
|ST_CLERK | &0
|ST_MAN | 50
MK MAR | 20
IMIK_REP | 20

4. List the employee IDsand job IDs of those employees who are currently in the job title that

they have held once before during their tenure with the company.

EMPLOYEE_ID |

JOB_ID

176 |SA_REP

200 |AD_ASST

Introduction to Oracle9i: SQL 15-23

Practice 15 (Continued)

5. Writeacompound query that lists the following:
» Last names and department ID of all the employees from the EMPLOYEES table, irrespective
of the fact whether they belong to any department or not

» Department ID and department name of all the departments from the DEPARTMENTS table,
irrespective of the fact whether they have employees working in them or not.

| LAST_NAME | DEPARTMENT ID | TO _CHAR{NULL)
Abel | a0 |

|Davies | a0 |

|De Haan | 20 |

|Ernst | all] |

Fay | 20 |

Gietz | 110 |

|Grant | |

|Hartstein | 20 |

Higgins | 110 |

Hunold | B0 |

King | 90 |

[Kochhar | o0 |

|L|:|rentz | alll |

|Mat|:|5 | 50 |

|hn'1|:|urg|:|s | a0 |

Rajs | 50 |

|Taj,rI|:|r | 80 |

|‘v“argas | a0 |

‘halen | 10 |

Zlatkey | a0 |

| | 10 |Administratinn
| | 20 |Marketing
| | 50 |Shipping

| | B0 |IT

| | A0 |Sales

| | a0 |E}{ecutive
| | 110 |A|::|::|:|unting
| | 190 |Contracting

28 rows selected.

Introduction to Oracle9i: SQL 15-24

Oracle 91 Datetime Functions

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives
After completing this lesson, you should be able
use the following datetime functions:
* CURRENT_ DATE
®* CURRENT_TI MESTAMP
e LOCALTI MESTAWP
* DBTI MEZONE
e SESSI ONTI MEZONE
e EXTRACT
* FROM TZ
e TO_TI MESTAMP
e TO_TI MESTAMP_TZ
e TO_YM NTERVAL
* TZ OFFSET

16-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim
This lesson addresses some of the datetime functions introduced in Oracle9i.

Introduction to Oracle9i: SQL 16-2

TIME ZONES

16-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Time Zones

In Oracledi, you can include the time zone in your date and time data, as well as provide support for
fractional seconds. This lesson focuses on how to manipulate the new datetime data types included with
Oracle9i using the new datetime functions. To understand the working of these functions, it is necessary to
be familiar with the concept of time zones and Greenwich mean time, or GMT.

The hours of the day are measured by the turning of the earth. The time of day at any particular moment
depends on where you are. When it is noon in Greenwich, England, it is midnight along the international
date line. The earth is divided into 24 time zones, one for each hour of the day. The time along the prime
meridian in Greenwich, England is known as Greenwich mean time, or GMT. GMT is the time standard
against which all other time zonesin the world are referenced. It isthe same all year round and is not
effected by summer time or daylight savingstime. The meridian lineis an imaginary line that runs from the
North Pole to the South Pole. It is known as zero longitude and it is the line from which al other lines of
longitude are measured. All time is measured relative to Greenwich mean time (GMT) and all places have
alatitude (their distance north or south of the equator) and a longitude (their distance east or west of the
Greenwich meridian).

Daylight Saving Time

Most western nations advance the clock ahead one hour during the summer months. This period iscalled
daylight saving time. Daylight saving time lasts from the first Sunday in April to the last Sunday in
October in the most of the United States, Mexico and Canada. The nations of the European Union observe
daylight saving time, but they call it the summer time period. Europe's summer time period begins a week
earlier than its North American counterpart, but ends at the same time.

Introduction to Oracle9i: SQL 16-3

Oracle 9i Datetime Support

* In Oracle9i, you can include the time zone in your
date and time data, and provide support for
fractional seconds.

* Three new data types are added to DATE:
— TI MESTAMP
— TIMESTAMP WTH TI ME ZONE (TSTZ)
— TIMESTAMP WTH LOCAL TI ME ZONE (TSLTZ)

®* Oracle9i provides daylight savings support for
datetime data types in the server.

16-4

Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle 9i Datetime Support

With Oraclegi, three new data types are added to DATE, with the following differences:

Data Type Time Zone Fractional Seconds
DATE No No

TI MESTAWVP No Yes

TI MESTAWP All values of TI MESTAMP aswell | fracti onal _
(fractional seconds_ seconds_

preci sion) WTH

as the time zone displacement value
which indicates the hours and

preci si on isthe

TI MEZONE minutes before or after UTC number of digitsin the
(Coordinated Universal Time, fractional part of the
formerly Greenwich mean time). SECOND datetime field.

Accepted values are 0
t0 9. The default is 6.

TI MESTAWP All values of TI MESTAMP WTH | Yes

(fracti onal _seconds TI ME ZONE, with the following

_preci sion)

W TH LOCAL TI ME ZONE

exceptions:
- Dataisnormalized to the
database time zone when it
is stored in the database.
When the dataisretrieved,
users see the datain the
session time zone.

Introduction to Oracle9i: SQL 16-4

Oracle 9i Datetime Support (continued)

TI MESTAMP W TH LOCAL TI ME ZONE is stored in the database time zone. When a user selectsthe
data, the value is adjusted to the user's session time zone.

Example:
A San Francisco database has system time zone = -8:00. When aNew Y ork client (session time zone =

-5:00) insertsinto or selects from the San Francisco database, TI MESTAMP W TH LOCAL Tl ME ZONE
datais adjusted as follows:

e TheNew York client inserts TI| MESTAMP ' 1998- 1-23 6: 00: 00-5: 00' intoaTl MESTAMP
W TH LOCAL TI ME ZONE column in the San Francisco database. The inserted datais stored in
San Francisco as binary value 1998- 1- 23 3: 00: 00.

Whenthe New York client selects that inserted data from the San Francisco database, the value
displayed in New York is' 1998- 1- 23 6: 00: 00' .

* A San Francisco client, selecting the same data, seethevalue ' 1998- 1- 23 3: 00: 00" .

Support for Daylight Savings Times

The Oracle Server automatically determines, for any given time zone region, whether daylight savingsisin
effect and returnslocal time values based accordingly. The datetime value is sufficient for the server to
determine whether daylight savingstimeisin effect for agiven region in all cases except boundary cases.
A boundary case occurs during the period when daylight savings goesinto or comes out of effect. For
example, in the U.S.-Pacific region, when daylight savings comes into effect, the time changes from 2:00
am. to 3:00 am. The one hour interval between 2 and 3 am. does not exist. When daylight savings goes
out of effect, the time changes from 2:00 am. back to 1:00 am., and the one-hour interval between 1 and 2
am. isrepeated.

Oracle9i aso significantly reduces the cost of developing and deploying applications globally on asingle
database instance. Requirements for multigeographic applications include named time zones and
multilanguage support through Unicode. The datetime data types TSLTZ and TSTZ are time-zone-aware.
Datetime values can be specified asloca time in a particular region (rather than a particular offset). Using
the time zone rules tables for a given region, the time zone offset for alocal timeis calculated, taking into
consideration daylight savings time adjustments, and used in further operations.

This lesson addresses some of the new datetime functions introduced in Oracle9i.

Introduction to Oracle9i: SQL 16-5

CURRENT_DATE

ALTER SESSI ON SET NLS_DATE_FORNVAT =

' DD- MON- YYYY HH24: M : SS';
ALTER SESSI ON SET TIME_ZONE = '-5:0';
SELECT SESSI ONTI MEZONE, CURRENT_DATE FROM DUAL;

[SESSIONTIMEZOMNE i CURRENT_DATE
[E3EE 07 -IAR-2001 033150

ALTER SESSI ON SET TIME_ZONE = '-8:0';

SELECT SESSI ONTI MEZONE, CURRENT_DATE FROM DUAL;

[SESSIONTIMEZONE [FURRENT DATE
[f=00 7 -MAR-ZO0T 00 57 =2

CURRENT _DATE is sensitive to the session time zone

16-6 Copyright © Oracle Corporation, 2001. All rights reserved.

CURRENT_DATE

The CURRENT _DATE function returns the current date in the session’ stime zone. The return valueisa
date in the Gregorian calendar.

The examplesin the dide illustrate that CURRENT _DATE is sensitive to the session time zone. In the first
example, the session is altered to set the TI ME_ZONE parameter to -5:0. The TI ME_ZONE parameter
specifies the default local time zone displacement for the current SQL session. TI ME_ZONE isasession
parameter only, not an initidization parameter. The TI ME_ZONE parameter is set as follows:

TIME ZONE = '[+ | -] hh:mmi

The formatmask ([+ | -] hh: mm) indicates the hours and minutes before or after UTC (Coordinated
Universal Time, formerly known as Greenwich mean time).

Observein the output that the value of CURRENT _DATE changeswhen the TI ME_ZONE parameter
valueis changed to —8:0 in the second example.

Note: The ALTER SESSI ON command sets the date format of the session to
'DD- MON- YYYY HH24: M : SS' that is Day of month (1-31)-Abbreviated name of month-4-digit year
Hour of day (0-23):Minute (0-59):Second (0-59).

Introduction to Oracle9i: SQL 16-6

CURRENT_TI MESTAMP

ALTER SESSI ON SET TIME_ZONE = '-5:0';
SELECT SESSI ONTI MEZONE, CURRENT_TI MESTAMP FROM DUAL;

! SESSIONTIMEZOMNE i CURRENT_TIMESTAMP |
[-0s:00 D7-MAR-01 03.42.04.729042 AM[05:00 | |
ALTER SESSI ON SET TI ME_ZONE = '-8:0";

SELECT SESSI ONTI MEZONE, CURRENT_TI MESTAVP FROM DUAL;

! SESSIONTIMEZONE [CURRENT_TIMESTAMP
l-os:00 [07-MAR-O1 12.44.08.917054 Am[-05:00 |
16-7 Copyright © Oracle Corporation, 2001. All rights reserved.

CURRENT_TI MESTAWP

The CURRENT _TI MESTANMP function returns the current date and time in the session time zone, as a
value of the datatype TI| MESTAMP W TH Tl ME ZONE. The time zone displacement reflects the
current local time of the SQL session. The syntax of the CURRENT _TI MESTAMP functionis:

CURRENT_TI MESTAMP (pr eci si on)
Where, pr eci si on isan optional argument that specifiesthe fractional second precision of the time
value returned. If you omit precision, the default is 6.

The examplesin the dide illustrates that CURRENT_TI MESTAMP is sengitive to the session time zone. In
the first example, the sessionis altered to set the TI ME_ZONE parameter to —5:0. Observe in the output
that the value of CURRENT _TI MESTAMP changes when the TI ME_ZONE parameter value is changed to —
8:0 in the second example.

Introduction to Oracle9i: SQL 16-7

LOCALTI MESTAMP

ALTER SESSI ON SET TIME_ZONE = '-5:0';
SELECT CURRENT_TI MESTAWVP, LOCALTI MESTAMP FROM DUAL,

[CURRENT_TIMESTAMP i LOCALTIMESTAMP
[p7-MaR-D1 03 48 36 384601 AM[EDE:00] [07-MAR-D1 D3.45.36. 384601 AN
ALTER SESSI ON SET TIME_ZONE = '-8:0';

SELECT CURRENT_TI MESTAMP, LOCALTI MESTAMP FROM DUAL,;

[CURRENT_TIMESTAMP | LOCALTIMESTAMP |
[07-mar-01 12 51 20 919127 AM[0800 | [07-MAR-O1 1251 20919127 Al |
16-8 Copyright © Oracle Corporation, 2001. All rights reserved.

LOCALTI MESTAMP

The LOCALTI MESTANP function returns the current date and time in the session time zone in a value of
data type TI MESTAMP. The difference between this function and CURRENT_TI MESTAMP isthat
LOCALTI MESTAMP returnsa Tl MESTAMP value, while CURRENT _TI MESTAMP returns a

TI MESTAMP W TH TI ME ZONE value. TI MESTAMP W TH TI ME ZONE isavariant of

TI MESTAMP that includes a time zone displacement in its value. The time zone displacement isthe
difference (in hours and minutes) between local timeand UTC. The TI MESTAMP W TH TI ME ZONE
datat ype has the following format:

TI MESTAWP [(fractional _seconds_precision)] WTH TI ME ZONE

wheref racti onal _seconds_pr eci si on optionally specifies the number of digitsin the fractional
part of the SECOND datetime field and can be a number in the range 0 to 9. The default is 6. For example,
you specify TI MESTAMP W TH TI ME ZONE asaliteral asfollows:

TI MESTAVP ' 1997-01- 31 09: 26: 56. 66 +02: 00’
The syntax of the LOCAL_TI MESTAMP function is:
LOCAL_TI MESTAMP (TI MESTAMP_pr eci si on)

Where, TI MESTAMP_pr eci si on isan optional argument that specifies the fractional second precision
of the TI MESTAMP value returned.

The examplesin the dide illustrates the difference between LOCALTI MESTAMP and
CURRENT_TI MESTAMP. Observe that the LOCALTI MESTAMP does not display the time zone value,
while the CURRENT _TI MESTAMP does.

Introduction to Oracle9i: SQL 16-8

DBTI MEZONE and SESSI ONTI MEZONE

SELECT DBTI MEZONE FROM DUAL;

DETIME
H15:30

SELECT SESSI ONTI MEZONE FROM DUAL;

. SESSIONTIMEZCNE
fog.o0

16-9 Copyright © Oracle Corporation, 2001. All rights reserved.

DBTI MEZONE and SESSI ONTI MEZONE

The default database time zone is the same as the operating system's time zone. Y ou set the database's
default time zone by specifying the SET TI ME_ZONE clause of the CREATE DATABASE statement. If
omitted, the default database time zone is the operating system time zone. The database time zone can be
changed for asession withan ALTER SESSI ON statement.

The DBTI MEZONE function returns the value of the database time zone. The return typeis atime zone
offset (acharacter typeintheformat ' [+| -] TZH: TZM) or atime zone region name, depending on how
the user specified the database time zone value in the most recent CREATE DATABASE or ALTER
DATABASE statement. The example on the dide shows that the database time zone is set to UTC, asthe
TI ME_ZONE parameter isin the format:

TIME ZONE = '[+ | -] hh:nmi

The SESSI ONTI MEZONE function returns the value of the current session’ stime zone. Thereturntypeis
atime zone offset (a character typeintheformat ’ [+|] TZH: TZM) or atime zone region name,
depending on how the user specified the session time zone value in the most recent ALTER SESSI ON
statement. The example in the dide shows that the session time zoneis set to UTC.

Observe that the database time zone is different from the current session’ s time zone.

Introduction to Oracle9i: SQL 16-9

EXTRACT

SELECT EXTRACT (YEAR FROM SYSDATE) FROM DUAL;

| EXTRACT(YEARFROMSYSDATE}
| 2001

SELECT | ast _nane, hire_date,

EXTRACT (MONTH FROM HI RE_DATE)
FROM enpl oyees;
WHERE manager _id = 100;

[LAST NAME |[HIRE DATE EXTRACT(MONTHFROMHIRE DATE) |

|
[Fochhar [21-sEP-2 [3
[De Haan [13-040m-23 [1
[Fiourges [1E-ronom [11 |
|Flatkey |29-Jam-00 | 1
[Hartstein [17-FEB-28 [2 |
‘ 16-10 Copyright © Oracle Corporation, 2001. All rights reserved.

EXTRACT

The EXTRACT expression extracts and returns the value of a specified datetime field from a datetime or
interval value expression. Y ou can extract any of the components mentioned in the following syntax using
the EXTRACT function. The syntax of the EXTRACT functionis:
SELECT EXTRACT ([YEAR] [MONTH] [DAY] [HOUR] [M NUTE] [SECOND]
[TI MEZONE_HOUR] [TI MEZONE_M NUTE]
[TI MEZONE_REG ON] [TI MEZONE_ABBR]
FROM [datetinme_val ue_expression]
[interval val ue_expression]);

When you extract a TI MEZONE_REG ON or TI MEZONE_ABBR (abbreviation), the value returned isa
string containing the appropriate time zone name or abbreviation. When you extract any of the other
values, the value returned isin the Gregorian calendar. When extracting from a datetime with atime zone
value, the valuereturned isin UTC. For alisting of time zone names and their corresponding

abbreviations, query the V$TI MEZONE_NAMES dynamic performance view. In the first example on the
dide, the EXTRACT function is used to extract the YEAR from SYSDATE.

In the second example in the dide, the EXTRACT function is used to extract the MONTH from HI RE_DATE
column of the EMPLOYEES table, for those employees who report to the manager whose EMPLOYEE | D

is 100.

Introduction to Oracle9i: SQL 16-10

FROM TZ

SELECT FROM TZ(TI MESTAMP ' 2000- 03-28 08: 00: 00', "' 3: 00")
FROM DUAL;

[FROM_TZ(TIMES TAMP 200003 2808:00:00°,"3:007)

|28-M4F-00 08.00.00.000000000 L& +03:00

‘ 16-11 Copyright © Oracle Corporation, 2001. All rights reserved.

FROM TZ
The FROM _TZ function converts atime stamp valuetoa TI MESTAMP W TH TI ME ZONE value.
The syntax of the FROM_TZ function is as follows:

FROM TZ(ti mestanp_val ue, time_zone_val ue)

wheret i nme_zone_val ue isacharacter string in theformat ' TZH: TZM or a character expression that
returns astring in TZR (time zone region) with optional TZD f ormat. TZR represents the time zone region
in datetime input strings. Examplesare' Austral i a/North' ,' UTC ,and' Si ngapore' .TZD
represents an abbreviated form of the time zone region with daylight savings information. Examples are
" PST" for US/Pacific standard timeand ' PDT" for US/Pacific daylight time. To see alisting of valid
values for the TZR and TZD format elements, query the V$TI MEZONE_NAMES dynamic performance
view.
The example in the dide converts atime stamp valueto TI MESTAMP W TH TI ME ZONE.

Introduction to Oracle9i: SQL 16-11

TO TI MESTAMP and TO TI MESTAVP_TZ

SELECT TO TI MESTAMP (' 2000-12-01 11:00: 00",
"YYYY-MW DD HH: M : SS')
FROM DUAL,;

| TO_TIMESTAMP {(2000-12 0111:00:00°. YYYY-MM-DDHH:MI:S57)

L —

[01-DEC-00 11.00.00 A

SELECT TO_TI MESTAMP_TZ(' 1999-12-01 11:00: 00 -8:00',
"YYYY-MM DD HH: M : SS TZH. TZM)

FROM DUAL;

[TO_TIMESTAMP_TZ(1999-12.0111:00:00-8:00",YYYY_-MM_DDHH:MI:SSTZH:TZM')
b I ARSI ek

|01-DEC-29 11.00.00.000000000 Ak -03:00

‘ 16-12 Copyright © Oracle Corporation, 2001. All rights reserved.

TO_TI MESTAWP and TO_TI MESTAVP_TZ

The TO_TI MESTANMP function converts a string of CHAR, VARCHAR2, NCHAR, or N\VARCHAR? data type
to avaueof TI MESTAMP datatype. The syntax of the TO_TI MESTAMP function is:

TO_TI MESTAWVP (char,[fnt],[' nl sparam])

The optional f nt specifiesthe format of char . If you omit f nt , the string must be in the default format
of the TI MESTAMP datatype. The optional nl spar amspecifies the language in which month and day
names and abbreviations are returned. This argument can have this form:

' NLS_DATE_LANGUAGE = | anguage’
If you omit nl spar ans, this function uses the default date language for your session. The example on the
slide converts a character string to avalue of TI MESTAMP.
The TO_TI MESTAMP_TZ function converts a string of CHAR, VARCHARZ2, NCHAR, or NVARCHAR? data

typeto avaueof TI MESTAMP W TH Tl ME ZONE datatype. The syntax of the TO_TI MESTAMP_TZ
functionis:

TO Tl MESTAMP_TZ (char,[fmt],[' nl sparam])

The optional f nt specifies the format of char. If omitted, a string must be in the default format of the
TI MESTAMP W TH TI ME ZONE datatype. The optional nl spar amhas the same purposein this
functionasinthe TO_TI MESTAMP function. The example in the slide converts a character string to a
valueof TI MESTAMP W TH TI ME ZONE.

Note: The TO_TI MESTAMP_TZ function does not convert character stringsto TI MESTAMP W TH
LOCAL TI ME ZONE.

Introduction to Oracle9i: SQL 16-12

TO_YM NTERVAL

SELECT hire_date,
hire date + TO YM NTERVAL(' 01-02') AS
HI RE_DATE_YM NI NTERVAL

FROM EMPLOYEES

WHERE departnent _id = 20;

| HIRE_DATE | HIRE_DATE _YMININTERV
[17-FEB-1296 00:00:00 [17-2PR-1297 00:00:00
[17-20G-1997 00:00:00 [17-0CT-1998 00:00:00

‘ 16-13 Copyright © Oracle Corporation, 2001. All rights reserved.

TO_YM NTERVAL

The TO_YM NTERVAL function converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatypetoan| NTERVAL YEAR TO MONTH datatype. Thel NTERVAL YEAR TO
MONTH datatype stores a period of time using the YEAR and MONTH datetime fields. The format of

| NTERVAL YEAR TO MONTH isasfollows:

| NTERVAL YEAR [(year _precision)] TO MONTH

whereyear _pr eci si on isthe number of digitsin the YEAR datetime field. The default value of
year _precisionis2.
The syntax of the TO_YM NTERVAL functionis:

TO_YM NTERVAL (char)
where char isthe character string to be converted.

The examplein the dide calculates a date that is one year two months after the hire date for the employees
working in the department 20 of the EMPLOYEES table.

A reverse calculation can also be done using the TO_YM NTERVAL function. For example:
SELECT hire_date, hire date + TO YM NTERVAL(' -02-04') AS
HI RE_DATE_YM NTERVAL
FROM EMPLOYEES WHERE departnent _id = 20;

Observe that the character string passed to the TO_YM NTERVAL function has a negative value. The

example returns a date that is two years and four months before the hire date for the employees working in
the department 20 of the EMPLOYEES table.

Introduction to Oracle9i: SQL 16-13

TZ_OFFSET

SELECT TZ OFFSET(' US/ Eastern') FROM DUAL;

[TZ OFFS |
|-05:00 |

SELECT TZ OFFSET(' Canada/ Yukon') FROM DUAL;

! TZ_OFFS |
[-o8:00 |

SELECT TZ_OFFSET(' Eur ope/ London') FROM DUAL;

i TZ OFFS
|+00:00

‘ 16-14 Copyright © Oracle Corporation, 2001. All rights reserved.

TZ_OFFSET

The TZ_COFFSET function returns the time zone offset corresponding to the value entered. The return
value is dependent on the date when the statement is executed. For exampleif the TZ_OFFSET function
returns a value -08:00, the return value can be interpreted as the time zone from where the command was
executed is eight hours after UTC. You can enter avalid time zone name, atime zone offset from UTC
(which simply returns itself), or the keyword SESSI ONTI MEZONE or DBTI MEZONE. The syntax of the
TZ_OFFSET functionis:

TZ_OFFSET (['tine_zone_nanme'] '[+ | -] hh:mmi]

[SESSI ONTI MEZONE] [DBTI MEZONE])

The examplesin the dide can be interpreted as follows:
* Thetimezone‘ US/ East ern’ isfive hoursbehind UTC
» Thetimezone‘ Canada/ Yukon’ iseight hoursbehind UTC
 Thetimezone* Eur ope/ London’ isinthe UTC

For alisting of valid time zone name values, query the VSTl MEZONE_NAMES dynamic performance
view.

DESC V$TI MEZONE_NAMES

i Name | Null? | Type
TZNAME i WARCHARZ(B4)

TZABEREY WARCHARZ(BA)

Introduction to Oracle9i: SQL 16-14

TZ _OFFSET (continued)

SELECT * FROM V$TI MEZONE_NAMES;

| TZNAME | TZABBREV
AfricalCairo LMT
\AfricalCairo EET
\AfricalCairo [EEST
\AfricalTripali LMT
AfricalTripol \CET
AfricaTripol \CEST
AfricalTripoli EET
ArmericatAdak ILWT
iArmericaiAdak INST
iArmericaiAdak T
ArmericatAdak BST
ArmericaiAdak BOT
|Amaticalfdak HAST
US/Sarmoa BST
Us/Samoa 55T
WS LWT
WS MAMT
WS IMST
Y-S IMDST
Y-S [
-5 IMSD
Y-S WSk
Y-S EET
W-SU EEST
WET WEST
WET WET

B16 rows selected.

Introduction to Oracle9i: SQL 16-15

Summary

In this lesson, you should have learned how to use
the following functions:

e FROM TZ
e TO TI MESTAMP

e TO TI MESTAMP_TZ
e TO YM NTERVAL
e TZ OFFSET

* CURRENT_DATE

* CURRENT_TI MESTAWP
e LOCALTI MESTAMP

* DBTI MEZONE

e SESSI ONTI MEZONE

e EXTRACT

‘ 16-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
This lesson addressed some of the new datetime functions introduced in Oracle9i.

Introduction to Oracle9i: SQL 16-16

Practice 16 Overview

This practice covers using the Oracle9i datetime
functions.

16-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 16 Overview

In this practice, you display time zone offsets, CURRENT_DATE, CURRENT_TI MESTAMP, and the
LOCALTI MESTAMP. You aso set time zones and use the EXTRACT function.

Introduction to Oracle9i: SQL 16-17

Practice 16
1. Alter thesessionto set the NLS DATE FORMAT to DD- MON- YYYY HH24: M : SS.
2. a Write queriesto display the time zone offsets (TZ_OFFSET), for the following time

Zones.

— USPacific-New
| TZ_OFFS
-08:00

— Sngapore
| TZ_OFFS
|+08:00

— Egypt
| TZ_OFFS
+02:00

b. Alter the session to set the TI ME_ZONE parameter value to the time zone offset of

US/Pacific-New.
c. Display the CURRENT_DATE, CURRENT_TI MESTAMP, and LOCALTI MESTAMP for
this session.
Note: The output might be different based on the date when the command is
executed.

[CURRENT_DATE | CURRENT_TIMESTAMP | LOCALTIMESTAMP
07-MAR-2001 01:45:13 [07-MAR-O1 01.45.12.931393 AM -08:00 [07-MAR-01 01.45.12.931393 AM

d. Alter the session to set the TI ME_ZONE parameter valueto the time zone offset of
Singapore.
e. Display the CURRENT_DATE, CURRENT_TI MESTAMP, and LOCALTI MESTAMP for
this session. Note: The output might be different based on the date when the command is
| CURRENT_DATE | CURRENT_TIMESTAMP | LOCALTIMESTAMP
I07-MAR-2001 17:46:35 |07-MAR-01 05.46.34 628818 PM +03:00 |[07-MAR-01 05.46.34.628818 PM ‘

Note: Observe in the preceding practice that CURRENT_DATE, CURRENT_TI MESTAMP, and
LOCALTI MESTAMP are all sengitive to the session time zone.

3. Writeaaquery to display the DBTI MEZONE and SESSI ONTI MEZONE.

| DBTIME | SESSIONTIMEZONE

|+05:30 |-+08:00

Introduction to Oracle9i: SQL 16-18

Practice 16 (continued)

4. Writeaquery to extract the YEAR from HI RE_DATE column of the EMPLOYEES table for those
employees who work in department 80.

| LAST_NAME | EXTRACT{YEARFROMHIRE_DATE)

\Zlatkey | 2000
|Abel | 1996
Taylar | 1993

Introduction to Oracle9i: SQL 16-19

Introduction to Oracle9i: SQL 16-20

Enhancements to the
GROUP BY Clause

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able
to do the following:

®* Use the ROLLUP operation to produce
subtotal values

®* Use the CUBE operation to produce cross-
tabulation values

® Use the GROUPI NGfunction to identify the row
values created by ROLLUP or CUBE

®* Use GROUPI NG SETS to produce a single result set

17-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim
In this lesson you learn how to:
» Group datafor obtaining the following:
— Subtota values by using the ROLLUP operator
— Cross-tabulation values by using the CUBE operator

» Usethe GROUPI NG function to identify the level of aggregation in the results set produced by a
ROLLUP or CUBE operator.

* UseGROUPI NG SETS to produce asingle result set that isequivalent to a UNI ON ALL approach

Introduction to Oracle9i: SQL 17-2

Review of Group Functions

Group functions operate on sets of rows to give one
result per group.

SELECT [colum,] group_function(colum).
FROM tabl e
[WHERE condi ti on]

[GROUP BY group_by expression]
[ORDER BY col um];

Example:

SELECT AVE sal ary), STDDEV(sal ary),

COUNT(comm ssi on_pct), MAX(hi re_dat e)
FROM enpl oyees
VWHERE job_id LIKE ' SA% ;

17-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Group Functions

Y ou can use the GROUP BY clause to divide the rowsin atable into groups. Y ou can then use the group

functionsto return summary information for each group. Group functions can appear in select listsand in
ORDER BY and HAVI NG clauses. The Oracle Server applies the group functions to each group of rows
and returns a single result row for each group.

Typesof Group Functions

Each of the group functions AVG, SUM MAX, M N, COUNT, STDDEYV, and VARI ANCE accept one
argument. The functions AVG, SUM STDDEV, and VARI ANCE operate only on numeric values. MAX and
M N can operate on numeric, character, or date data values. COUNT returns the number of nonnull rows for
the given expression. The example in the dide cal culates the average salary, standard deviation on the

salary, number of employees earning a commission and the maximum hire date for those employees whose
JOB_| Dbeginswith SA.

Guidelinesfor Using Group Functions
» Thedatatypesfor the arguments can be CHAR, VARCHAR2, NUMBER, or DATE.

» All group functions except COUNT(*) ignore null values. To substitute a value for null values, use
the NVL function. COUNT returns either a number or zero.

* TheOracle Server implicitly sorts the result set in ascending order of the grouping columns
specified, when you use a GROUP BY clause. To override this default ordering, you can use DESC
inan ORDER BY clause.

Introduction to Oracle9i: SQL 17-3

Review of the GROUP BY Clause

Syntax:

SELECT [colum,] group_function(col um).
FROM tabl e

[WHERE condi tion]

[GROUP BY group_by_expressi on]
[ORDER BY col um];

Example:

SELECT departnent _id, job_id, SUMsalary),
COUNT(enpl oyee i d)

FROM enpl oyees

GROUP_BY departnent id, job id;

17-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Review of GROUP BY Clause
The exampleillustrated in the dide is evaluated by the Oracle Server asfollows:
» The SELECT clause specifies that the following columns are to be retrieved:
— Department ID and job ID columns from the EMPLOYEES table

— Thesum of all the salaries and the number of employeesin each group that you have
specified in the GROUP BY clause
* TheGROUP BY clause specifies how the rows should be grouped in the table. The total salary and

the number of employees are calculated for each job ID within each department. The rows are
grouped by department 1D and then grouped by job within each department.

| DEPARTMENT ID | JOBID | SUM(SALARY} | COUNT{EMPLOYEE_ID)

| 10 |AD_ASST | 4400 | 1
i 20 (MK MAN i 13000 | 1
| 20 |MK_REP | BO00 | 1
! 50 [ST_CLERK | 11700 | 4
, sl [AD WP ! 34000 o 2
| 110 |AC_ACCOUNT | 5300 | 1
| 110 |AC_MGR | 12000 | 1
| 'S4 _REP ! 7000 | 1

13 rows selected.

Introduction to Oracle9i: SQL 17-4

Review of the HAVI NG Clause

SELECT [colum,] group_function(colum).
FROM t abl e

[WHERE condi ti on]

[GROUP BY group_by expression]

[HAVI NG havi ng_expressi on];

[ORDER BY col um];

®* Use the HAVI NGclause to specify which groups
are to be displayed.

®* You further restrict the groups on the basis of a
limiting condition.

17-5 Copyright © Oracle Corporation, 2001. All rights reserved.

The HAVI NG Clause

Groups are formed and group functions are calculated before the HAVI NG clause is applied to the groups.
The HAVI NG clause can precede the GROUP BY clause, but it is recommended that you place the GROUP
BY clausefirst becauseit ismore logical.

The Oracle Server performs the following steps when you use the HAVI NG clause:
1. Groupsrows

2. Appliesthe group functions to the groups and displays the groups that match the criteriain the
HAVI NG clause

SELECT department _id, AVE sal ary)
FROM enpl oyees

GROUP BY departnent_id

HAVI NG AVE sal ary) >9500;

| DEPARTMENT_ID i AVG(SALARY) |
| a0 | 100333333 |
| o) | 19333 3333 |
! 110 | 10150 |

The example displays department 1D and average salary for those departments whose average salary is
greater than $9,500.

Introduction to Oracle9i: SQL 17-5

GROUP BY with ROLLUP and
CUBE Operators

® Use ROLLUP or CUBE with GROUP BY to produce
superaggregate rows by cross-referencing
columns.

* ROLLUP grouping produces a results set
containing the regular grouped rows and the
subtotal values.

* CUBE grouping produces a results set containing
the rows from ROLLUP and cross-tabulation rows.

17-6 Copyright © Oracle Corporation, 2001. All rights reserved.

GROUP BY with the ROLLUP and CUBE Operators

Y ou specify ROLLUP and CUBE operatorsin the GROUP BY clause of a query. ROLLUP grouping
produces a results set containing the regular grouped rows and subtotal rows. The CUBE operation in the
GROUP BY clause groups the selected rows based on the values of all possi ble combinations of
expressions in the specification and returns a single row of summary information for each group. Y ou can
use the CUBE operator to produce cross-tabulation rows.

Note: When working with ROLLUP and CUBE, make sure that the columns following the GROUP BY
clause have meaningful, real -life relationships with each other; otherwise the operators return irrelevant
information.

The ROLLUP and CUBE operators are available only in Oracle8i and later releases.

Introduction to Oracle9i: SQL 17-6

ROLLUP Operator

SELECT [col um,] group_function(colum).
FROM tabl e

[WHERE condi tion]

[GROUP BY [ROLLUP] group_by expression]

[HAVI NG havi ng_expressi on];

[ORDER BY col um];

e ROLLUPIis an extension to the GROUP BY clause.

®* Use the ROLLUP operation to produce cumulative
aggregates such as subtotals.

17-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The ROLLUP Operator

The ROLLUP operator delivers aggregates and superaggregates for expressions within a GROUP BY
statement. The ROLLUP operator can be used by report writers to extract statistics and summary
information from results sets. The cumulative aggregates can be used in reports, charts, and graphs.
The ROLLUP operator creates groupings by moving in one direction, from right to left, along the list of
columns specified in the GROUP BY clause. It then applies the aggregate function to these groupings.

Note: To produce subtotals in n dimensions (that is, n columnsin the GROUP BY clause) without a
ROLLUP operator, n+1 SELECT statements must be linked with UNI ON ALL. This makes the query
execution inefficient, because each of the SELECT statements causes table access. The ROLLUP operator
gathersits results with just one table access. The ROLLUP operator is useful if there are many columns
involved in producing the subtotals.

Introduction to Oracle9i: SQL 17-7

ROLLUP Operator Example

SELECT departnent _id, job_ id, SUMsalary)
FROMV enpl oyees

VWHERE departnent _id < 60

GROUP BY ROLLUP(departnent _id, job_id);

DEPARTMENT_ID [JOB_ID [sSum{SALARY) i
10 |AD _ASST [aa00

<«
. P RN 7 | =g o E T T
20 |MK_REP | s000
- ol [ST_CLERK | 1700
50 |ST_mlard | 5300

s o e e S .5 ‘

I T T ATSO0 <€ @

9 rows selected.

17-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a ROLLUP Operator
In the example in the dide:

» Tota salariesfor every job 1D within adepartment for those departments whose department ID is
less than 60 are displayed by the GROUP BY clause (labeled 1)

» The ROLLUP operator displays:

— Tota saary for those departments whose department 1D islessthan 60 (labeled 2)

— Tota saary for al departments whose department 1D is less than 60, irrespective of the job
IDs (labeled 3)

» All rowsindicated as 1 are regular rows and all rows indicated as 2 and 3 are superaggregate rows.

The ROLLUP operator creates subtotals that roll up from the most detailed level to a grand total, following
the grouping list specified in the GROUP BY clause. First it calculates the standard aggregate values for the
groups specified in the GROUP BY clause (in the example, the sum of salaries grouped on each job within
adepartment). Then it creates progressively higher-level subtotals, moving from right to left through the
list of grouping columns. (In the preceding example, the sum of salaries for each department is calculated,
followed by the sum of salariesfor all departments.)

e Given n expressions in the ROLLUP operator of the GROUP BY clause, the operation resultsinn+ 1
=2+ 1 =3 groupings.

* Rows based on the values of the first n expressions are called rows or regular rows and the others are
called superaggregate rows.

Introduction to Oracle9i: SQL 17-8

CUBE Operator

SELECT [col um,] group_function(col um).
FROM tabl e

[WHERE condi tion]

[GROUP BY [CUBE] group_by expression]

[HAVI NG havi ng_expressi on] ;

[ORDER BY col um];

* CUBE is an extension to the GROUP BY clause.

®* You can use the CUBE operator to produce cross-
tabulation values with a single SELECT statement.

17-9 Copyright © Oracle Corporation, 2001. All rights reserved.

The CUBE Operator

The CUBE operator is an additional switch inthe GROUP BY clausein a SELECT statement. The CUBE
operator can be applied to al aggregate functions, including AVG, SUM MAX, M N, and COUNT. It is used
to produce results sets that are typically used for cross-tabular reports. While ROLLUP produces only a
fraction of possible subtotal combinations, CUBE produces subtotals for al possible combinations of
groupings specified in the GROUP BY clause, and a grand total.

The CUBE operator is used with an aggregate function to generate additional rows in aresults set. Columns
included inthe GROUP BY clause are cross-referenced to produce a superset of groups. The aggregate
function specified in the select list is applied to these groups to produce summary values for the additional

superaggregate rows. The number of extra groups in the results set is determined by the number of columns
included in the GROUP BY clause.

In fact, every possible combination of the columns or expressionsin the GROUP BY clauseis used to
produce superaggregates. If you have n columns or expressionsin the GROUP BY clause, there will be 2"
possible superaggregate combinations. Mathematically, these combinations form an

n-dimensional cube, which is how the operator got its name.

By using application or programming tools, these superaggregate val ues can then be fed into charts and
graphs that convey results and relationships visually and effectively.

Introduction to Oracle9i: SQL 17-9

CUBE Operator: Example

SELECT departnent _id, job_ id, SUMsal ary)
FROM enpl oyees

WHERE departnent _id < 60

GROUP BY CUBE (departnent _id, job_id);

[DEPARTMENT ID [JOB_ID [SUM{SALARY)
— 0 [AD_ASST T 4400
10 | 2400 | €
20 MK MAR 13000
@' > 20 [mMek_REP 6000
piu | o0 (_@
N T R = e = = = T
L
=10

TFo00 PA——

|
|
I
|
|
e o I_ =
20 (ST _Man [5800
1
|
|
I
|
|

E-E“ -B- tﬁ_- ;n__"l -Iu Ea o)
[retb Rt 13000
[ble_REP 5000
@_) [=T cLERK 11700
I [T mam) s500

——m—m— YA)

14 rows selected.

‘ 17-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a CUBE Operator
The output of the SELECT statement in the example can be interpreted as follows:

e Thetota saary for every job within adepartment (for those departments whose department 1D isless
than 50) is displayed by the GROUP BY clause (labeled 1)

* Thetotal salary for those departments whose department ID isless than 50 (Iabeled 2)
» Thetotal salary for every job irrespective of the department (Iabeled 3)

» Tota salary for those departments whose department ID isless than 50, irrespective of the job titles
(labeled 4)

In the preceding example, all rowsindicated as 1 are regular rows, all rowsindicated as2 and 4 are
superaggregate rows, and all rows indicated as 3 are cross-tabulation val ues.

The CUBE operator has also performed the ROLLUP operation to display the subtotals for those departments

whose department 1D is less than 50 and the total salary for those departments whose department ID isless
than 50, irrespective of thejob titles. Additionally, the CUBE operator displays the total salary for every job

irrespective of the department.

Note: Similar to the ROLLUP operator, producing subtotalsin n dimensions (that is, n columnsin the GROUP
BY clause) without a CUBE operator requires 2" SELECT statements to be linked with UNI ON ALL. Thus, a
report with three dimensions requires 23 = 8 SELECT statements to be linked with UNI ON ALL.

Introduction to Oracle9i: SQL 17-10

GROUPI NG Function

SELECT [columm,] group_function(columm) . ., GROUPI N expr)
FROM tabl e

[WHERE condition]

[GROUP BY [ROLLUP][CUBE] group_by expression]

[HAVI NG havi ng_expression];

[ORDER BY col um];

* The GROUPI NG function can be used with either the
CUBE or ROLLUP operator.

* Using it, you can find the groups forming the
subtotal in arow.

®* Using it, you can differentiate stored NULL values
from NULL values created by ROLLUP or CUBE.

® |treturns Oor 1.

‘ 17-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The GROUPI NG Function

The GROUPI NG function can be used with either the CUBE or ROLLUP operator to help you understand how
asummary value has been obtained.

The GROUPI NG function uses asingle column asits argument. The expr in the GROUPI NG function must
match one of the expressionsin the GROUP BY clause. The function returns avalue of O or 1.

The vaues returned by the GROUPI NG function are useful to:

» Determine the level of aggregation of a given subtotal; that is, the group or groups on which the
subtotal is based

* ldentify whether a NULL valuein the expression column of arow of the result set indicates:
— A NULL value from the base table (stored NULL value)
— A NULL value created by ROLLUP/CUBE (as aresult of agroup function on that expression)
A vaue of 0 returned by the GROUPI NG function based on an expression indicates one of the following:
 The expression has been used to calcul ate the aggregate value.
» The NULL valuein the expression columnisastored NULL value.
A value of 1 returned by the GROUPI NG function based on an expression indicates one of the following:
» The expression has not been used to calculate the aggregate value.
» The NULL value in the expression column is created by ROLLUP or CUBE as aresult of grouping.

Introduction to Oracle9i: SQL 17-11

GROUPI NG Function: Example

SELECT departnent _id DEPTID, job id JOB, SUMsalary),
GROUPI NE departnment _i d) GRP_DEPT, GROUPI NG job_id) GRP_JOB
FROM enpl oyees

WHERE departnent _id < 50

GROUP BY ROLLUP(departnent id, job_id);

[DEPTID | JOB [sumsaLARY | GRP DEPT | GRP JOB |
10 | AD_AsSST | 4400 | o | o
O | | a400 | a | gl
=) W) O = T Y B f ToOnT | T (]

[20 [M<_REP [6000 | o | O

| 20 | | 1000 | o | e

[[I pracy: I u | T | T

B rows selected.

‘ 17-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a GROUPI NG Function

In the example in the dide, consider the summary value 4400 in the first row. This summary valueisthe
total salary for thejob ID of AD_ASST within department 10. To calculate this summary vaue, both the
columns DEPARTMENT _| D and JOB_I D have been taken into account. Thus avalue of 0O isreturned for
both the expressions GROUPI N& depar t ment _i d) and GROUPI NG j ob_i d) .

Consider the summary value 4400 in the second row. Thisvalue is the total salary for department 10 and
has been calculated by taking into account the column DEPARTMENT _I D; thus a value of 0 has been
returned by GROUPI NG depar t ment _i d) . Because the column JOB_| D has not been taken into
account to calculate this value, avalue of 1 has been returned for GROUPI N&j ob_i d) . You can
observe similar output in the fifth row.

In the last row, consider the summary value 23400. Thisisthetota salary for those departments whose
department 1D islessthan 50 and all job titles. To calculate this summary value, neither of the columns
DEPARTMENT _I Dand JOB_I D have been taken into account. Thus avalue of 1 isreturned for both the
expressions GROUPI N depart nent _i d) and GROUPI NG(j ob_i d) .

Introduction to Oracle9i: SQL 17-12

GROUPI NG SETS

® GROUPI NG SETS are a further extension of the
GROUP BY clause.

®* You can use GROUPI NG SETS to define multiple
groupings in the same query.

* The Oracle Server computes all groupings specified
in the GROUPI NG SETS clause and combines the
results of individual groupings with a UNI ON ALL
operation.

* Grouping set efficiency:
— Only one pass over the base table is required.

— Thereis no need to write complex UNI ON statements.

— The more elements the GROUPI NG SETS have, the
higher the performance benefit is.

‘ 17-13 Copyright © Oracle Corporation, 2001. All rights reserved.

GROUPI NG SETS

GROUPI NG SETS are afurther extension of the GROUP BY clause that let you specify multiple
groupings of data. Doing so facilitates efficient aggregation and hence facilitates analysis of data across
multiple dimensions.

A single SELECT statement can now be written using GROUPI NG SETS to specify various groupings
(that can aso include ROLLUP or CUBE operators), rather than multiple SELECT statements combined by
UNI ON ALL operators. For example, you can say:

SELECT department _id, job_id, manager _id, AV sal ary)
FROM enpl oyees

GROUP BY

GROUPI NG SETS

((departnent _id, job_id, nmanager_id),

(departnent _id, manager_id), (job_id, manager_id));

This statement cal cul ates aggregates over three groupings:
(departnent __id, job_id, manager_id), (departnent_id, manager_id)
and (job_id, manager_id)

Without this enhancement in Oracle9i, multiple queries combined together with UNI ON ALL are required
to get the output of the preceding SELECT statement. A multiquery approach isinefficient, for it requires
multiple scans of the same data.

Introduction to Oracle9i: SQL 17-13

GROUPI NG SETS (continued)
Compare the preceding statement with this alternative:
SELECT department _id, job_id, nmanager id, AV salary)

FROM enpl oyees
GROUP BY CUBE(departnent _id, job_id, manager _id);

The preceding statement computes all the 8 (2 *2 *2) groupings, though only the groups
(department _id, job_id, manager _id), (departnent_id, manager_id) and
(job_id, manager _i d) areof interest to you.
Another aternative is the following statement:

SELECT department _id, job_id, manager id, AV sal ary)

FROM enpl oyees

GROUP BY departnent _id, job_id, manager _id

UNI ON ALL

SELECT department id, NULL, manager id, AVE sal ary)

FROM enpl oyees

GROUP BY department _id, manager_id

UNI ON ALL

SELECT NULL, job_id, nanager _id, AV sal ary)

FROM enpl oyees

GROUP BY job_id, manager _id;

This statement requires three scans of the base table, making it inefficient.

CUBE and ROLLUP can be thought of as grouping sets with very specific semantics. The following
equivalencies show this fact:

CUBE(a, b, c) GROUPI NG SETS
isequivalent to ((a, b, ¢c), (a, b), (a, c), (b, c),
(a), (b), (c), ())

ROLLUP(a, b, c) GROUPI NG SETS ((a, b, ¢), (a, b),(a), ())
isequivaent to

Introduction to Oracle9i: SQL 17-14

GROUPI NG SETS: Example

SELECT departnent _id, job_id, manager _id, avg(sal ary)
FROM enpl oyees

GROUP BY GROUPI NG SETS

((departnent _id,job_id), (job_id, mnager _id));

DEPARTMENT ID | JOB_ID [MANAGER ID | AVG(SALARY)
— 10 DT | — 4400
20 Mkl | | 13000 ¢ @
20 [MKkK_REP | | =000
50 [ST_CLERK [[2025
a0 [ST_maar [[sa00
. | | T
[k et [100 | 13000
F_REF [201] G000
EE | 100 | 10500
[s2_REP [149 | B06G. GEGE7 ¢ @
[T _cLERK | 124 | 2025
[ST_kaard | 100 | s500

25 rows selected.

‘ 17-15 Copyright © Oracle Corporation, 2001. All rights reserved.

GROUPI NG SETS: Example

The query in the slide cal cul ates aggregates over two groupings. The table is divided into the following
groups:

. Department ID, Job ID
. Job ID, Manager ID

The average salaries for each of these groups are calculated. The results set displays average salary for
each of the two groups.

In the output, the group marked as 1 can be interpreted as:
» Theaverage salary of al employeeswith the job ID AD_ASST in the department 10 is 4400.
* Theaverage salary of all employeeswith the job ID MK_MAN in the department 20 is 13000.
* Theaverage salary of all employeeswith the job ID MK_REP in the department 20 is 6000.

* Theaverage salary of al employeeswith thejob ID ST_CLERK in the department 50 is 2925 and so
on.

Introduction to Oracle9i: SQL 17-15

GROUPI NG SETS: Example (continued)
The group marked as 2 in the output is interpreted as:

The average salary of all employeeswith thejob ID MK_MAN, who report to the manager with the
manager ID 100, is 13000.

The average salary of all employeeswith thejob ID MK_REP, who report to the manager with the
manager |D 201, is 6000, and so on.

The example in the dide can also be written as:

SELECT department _id, job_id, NULL as nanager _id,
AV sal ary) as AVGSAL
FROM enpl oyees
GROUP BY departnment _id, job_id
UNI ON ALL
SELECT NULL, job_id, nmanager _id, avg(salary) as AVGSAL
FROM enpl oyees
GROUP BY job_id, manager _id;

In the absence of an optimizer that looks across query blocks to generate the execution plan, the preceding
guery would need two scans of the base table, EMPLOYEES. This could be very inefficient. Hence the
usage of the GROUPI NG SETS statement is recommended.

Introduction to Oracle9i: SQL 17-16

Composite Columns

* A composite column is a collection of columns
that are treated as a unit.

ROLLUP (a, (b, C), q

* To specify composite columns, in the GROUP BY
clause you group columns within parentheses so

that the Oracle server treats them as a unit while
computing ROLLUP or CUBE operations.

* When used with ROLLUP or CUBE, composite

columns would mean skipping aggregation across
certain levels.

‘ 17-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Composite Columns

A composite column is acollection of columns that are treated as a unit during the computation of
groupings. Y ou specify the columns in parentheses as in the foll owing statement:

ROLLUP (a, (b, c), d)

Here, (b, ¢) formacomposite column and are treated as a unit. In general, composite columns are useful
in ROLLUP, CUBE, and GROUPI NG SETS. For example, in CUBE or ROLLUP, composite columns
would mean skipping aggregation across certain levels.

That is, GROUP BY ROLLUP(a, (b, c))

isequivaent to
GROUP BY a, b, ¢ UNION ALL
GROUP BY a UNION ALL
GROUP BY ()

Here, (b, c) aretreated asaunit and rollup will not be applied across (b, c) . Itisasif you havean
dias, for example z, for (b, c¢), and the GROUP BY expression reducesto
GROUP BY ROLLUP(a, z).
Note: GROUP BY() istypically a SELECT statement with NULL values for the columns aand b and
only the aggregate function. Thisis generally used for generating the grand totals.

SELECT NULL, NULL, aggregate_col

FROM <t abl e_nane>

GROUP BY ();

Introduction to Oracle9i: SQL 17-17

Composite Columns (continued)
Compare this with the normal ROLLUP asin:
GROUP BY ROLLUP(a, b, c)

which would be
GROUP BY a, b, ¢ UNION ALL
GROUP BY a, b UNION ALL
GROUP BY a UNI ON ALL
GROUP BY ().

Similarly,
GROUP BY CUBE((a, b), c¢)
would be equivalent to
GROUP BY a, b, ¢ UNION ALL
GROUP BY a, b UNION ALL

GROUP BY ¢ UNI ON ALL
GROUP By ()

The following table shows grouping sets specification and equivalent GROUP BY specification.

GROUPI NG SETS Statements

Equivalent GROUP BY Statements

GROUP BY GROUPI NG SETS(a, b, c)

GROUP BY a UNI ON ALL
GROUP BY b UNI ON ALL
GROUP BY c

column)

GROUP BY GROUPI NG SETS(a, b, (b, c))
(The GROUPI NG SETS expression has a composite

GROUP BY a UNI ON ALL
GROUP BY b UNI ON ALL
GROUP BY b, c

GROUP BY GROUPI NG SETS((a, b, c))

GROUP BY a, b, c

GROUP BY GROUPING SETS(a, (b), ()

GROUP BY aUNION ALL
GROUP BY b UNION ALL
GROUP BY ()

GROUP BY GROUPI NG SETS
(a, ROLLUP(b, c¢))

column)

(The GROUPI NG SETS expression has a composite

GROUP BY a UNI ON ALL
GROUP BY ROLLUP(Db, c¢)

Introduction to Oracle9i: SQL 17-18

Composite Columns: Example

SELECT departnent _id, job_id, manager _id, SUM sal ary)
FROMV enpl oyees
GROUP BY ROLLUP(departnent _id,(job_id, nmanager id));

DEPARTMENT ID JOB_ID MANAGER ID SUM{SALART)
10 |AD ASST 101 4400 | —
— T |]] Ta00
o R 7) g % PN B ! Ton | T
2 20 |mic_REP ! 201 | Eo00 | <€— @
1= =0T | | T
0 =T _CLERK [T]| T1700
[S0 (ST kA | 100 | se00 || €——
; —p]] oo
>4
|
TR PN o T | | CAL
, 110 | [[20300
[[52_REF | 149 | 7000
[| | | FOoo
| |

23 rows selected.

‘ 17-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Composite Columns: Example
Consider the example:
SELECT departnent _id, job_id, manager_id, SUMsal ary)
FROM enpl oyees
GROUP BY ROLLUP(departnent _id,job_id, manager _id);
The preceding query results in the Oracle Server computing the following groupings:
1. (departnent_id, job_id, manager_id)
2. (departnent _id, job_id)
3. (departnent _id)

4. ()
If you are just interested in grouping of lines (1), (3), and (4) in the preceding example, you cannot limit the
calculation to those groupings without using composite columns. With composite columns, thisis possible by
treating JOB_| D and MANAGER _I| D columns as a single unit while rolling up. Columns enclosed in
parentheses are treated as a unit while computing ROLLUP and CUBE. Thisisillustrated in the example on the
dide. By enclosing JOB_| D and MANAGER | D columnsin parenthesis, we indicate to the Oracle Server to
treat JOB_| D and MANAGER | D as a single unit, as a composite column.

Tro600
—@)

Introduction to Oracle9i: SQL 17-19

Composite Columns Example (continued)

The example in the dlide computes the following groupings:
e (departnent_id, job_id, nmanager _id)
* (departnent _id)
< ()

The example in the dide displays the following:
e Tota salary for every department (labeled 1)
e Total salary for every department, job ID, and manager (labeled 2)
e Grandtota (labeled 3)

The example in the dide can also be written as:
SELECT departnent_id, job_id, manager_id, SUMsal ary)
FROM enpl oyees
GROUP BY departnent _id,job_id, nanager id
UNION ALL
SELECT departnent id, TO CHAR(NULL), TO NUMBER(NULL), SUM sal ary)
FROM enpl oyees
GROUP BY departnent _id
UNI ON ALL
SELECT TO NUMBER(NULL), TO CHAR(NULL), TO NUMBER(NULL), SUMsal ary)
FROM enpl oyees
GROUP BY ();

In the absence of an optimizer that looks across query blocks to generate the execution plan, the preceding query
would need three scans of the base table, EMPLOYEES. This could be very inefficient. Hence, the use of composite
columns is recommended.

Introduction to Oracle9i: SQL 17-20

Concatenated Groupings

* (Concatenated groupings offer a concise way to
generate useful combinations of groupings.

* To specify concatenated grouping sets, you
separate multiple grouping sets, ROLLUP, and
CUBE operations with commas so that the Oracle
Server combines them into a single GROUP BY
clause.

* Theresultis across-product of groupings from
each grouping set.

GROUP BY GROUPI NG SETS(a, b), GROUPI NG SETS(c, d)

‘ 17-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Concatenated Columns

Concatenated groupings offer a concise way to generate useful combinations of groupings. The
concatenated groupings are specified ssimply by listing multiple grouping sets, cubes, and rollups, and
separating them with commas. Here is an example of concatenated grouping sets:

GROUP BY GROUPI NG SETS(a, b), GROUPI NG SETS(c, d)

The preceding SQL defines the following groupings:

(a, ¢), (a, d), (b, c), (b, d)

Concatenation of grouping setsis very helpful for these reasons:

» Ease of query development: you need not enumerate all groupings manually

» Useby applications: SQL generated by OLAP applications often involves concatenation of
grouping sets, with each grouping set defining groupings needed for adimension

Introduction to Oracle9i: SQL 17-21

Concatenated Groupings Example

SELECT
FROM

departnent _id,
enpl oyees
GROUP BY departnent _id, ROLLUP(j ob_i d), CUBE(manager _id);

job_id, manager _id, SUM sal ary)

DEPARTMENT ID | JOB 1D MANAGER 1D SUM{SALARY)
10 |[AD_aASST 101 4400 (—@
% | i T N [TOO | T=000
| 20 [M_REP [201 | 5000
| 50 |ST kA 100 5500
I 10 | 101 4400 (—@
I 20 | [201 | 5000 |
| 10 |[aD sAsSST [[a400 || €— e
[o | | | 4400 || —— 9

A9 rows selected.

‘ 17-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Concatenated Groupings Example

The example in the dide results in the following groupings:
e (departnent _id, nanager _id, job_id)
e (departnent _id, nmanager _id)
* (departnent_id, job_id)
* (departnent_id)
Thetota salary for each of these groupsis calculated.
The example in the dide displays the following:
» Total salary for every department, job ID, manager (labeled 1)
» Total salary for every department, manager 1D (labeled 2)
» Total saary for every department, job ID (labeled 3)
» Tota saary for every department (labeled 4)
For easier understanding, the details for the department 10 are highlighted in the output.

Introduction to Oracle9i: SQL 17-22

Summary

In this lesson, you should have learned how to:

®* Use the ROLLUP operation to produce
subtotal values

®* Use the CUBE operation to produce cross-tabulation
values

* Use the GROUPI NGfunction to identify the row values
created by ROLLUP or CUBE

* Use the GROUPI NG SETS syntax to define multiple
groupings in the same query.

* Usethe GROUP BY clause, to combine expressions in
various ways:
— Composite columns
— Concatenated grouping sets

‘ 17-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

ROLLUP and CUBE are extensions of the GROUP BY clause.
RCOLLUP isused to display subtotal and grand total values.
CUBE is used to display cross-tabulation values.

The GROUPI NG function helps you determine whether arow is an aggregate produced by a CUBE or
ROLLUP operator.

With the GROUPI NG SETS syntax, you can define multiple groupingsin the same query. GROUP
BY computes all the groupings specified and combines them with UNI ON ALL.

Within the GROUP BY clause, you can combine expressions in various ways:

— To specify composite columns, you group columns within parentheses so that the Oracle
Server treats them as a unit while computing ROLLUP or CUBE operations.

— To specify concatenated grouping sets, you separate multiple grouping sets, ROLLUP, and
CUBE operations with commas so that the Oracle Server combines them into a single GROUP
BY clause. Theresult is a cross-product of groupings from each grouping set.

Introduction to Oracle9i: SQL 17-23

Practice 17 Overview

This practice covers the following topics:
®* Using the ROLLUP operator

®* Using the CUBE operator

® Using the GROUPI NGfunction

®* Using GROUPI NG SETS

17-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 17 Overview

In this practice, you use the ROLLUP and CUBE operators as extensions of the GROUP BY clause. You
will also use GROUPI NG SETS.

Introduction to Oracle9i: SQL 17-24

Practice 17
1. Write aquery to display the following for those employees whose manager 1D isless than 120:
— Manager ID
— Job ID and total salary for every job ID for employees who report to the same manager
— Tota saary of those managers
— Total saary of those managers, irrespective of the job IDs

| MANAGER_ID | JOB_ID | SUM(SALARY)

| 100 |AD WP | 34000
| 100 MK_MAN | 13000
| 100 54, MAN | 10500
| 100 |ST_MAN | 5800
| 100 | | 3300
| 101 |AC_MGR | 12000
| 101 \AD_ASST | 4400
| 101 | | 16400
| 102 IT_PROG | 5000
| 102 | | 5000
| 103 IT_PROG | 10200
| 103 | | 10200
| | | 95900

13 rows selected.

Introduction to Oracle9i: SQL 17-25

Practice 17 (continued)

2. Observe the output from question 1. Write a query using the GROUPI NG function to determine
whether the NULL values in the columns corresponding to the GROUP BY expressions are

caused by the ROLLUP operation.

IMGR | JOB |SUM{SALARY) GROUPING(MANAGER_ID) | GROUPING(JOB_ID)
| 100 [aD wvP | 34000 | 0| a
| 100 [MK_MAN | 13000 | 0| i
| 100 |34 MAN | 10500 | i 0
| 100 |ST_MAM | 5800 | i i
[100 | | 63300 | i 1
| 101 |AC_MGR | 12000 | i 0
| 101 |aD_ASST | 4400 | 0| 0
| 101 | | 16400 | 0| 1
| 102 |IT_PROG | o000 | 0| i
| 102 | | 9000 | i 1
| 103 |IT_PROG | 10200 | i 0
| 103 | | 10200 | i 1
| | | 98900 | 1| 1

13 rows selected.

Introduction to Oracle9i: SQL 17-26

Practice 17 (continued)
3. Write aquery to display the following for those employees whose manager 1D isless than 120 :
— Manager ID
— Job and total salariesfor every job for employees who report to the same manager
— Total saary of those managers

— Cross-tabulation values to display the total salary for every job, irrespective of the
manager

— Tota salary irrespective of all job titles

| MANAGER_ID | JOB_ID | SUM(SALARY)

| 100 |AD_WP | 34000
| 100 [WK_MARN | 13000
| 100 |SA_MAN | 10500
| 100 [ST_MAN | 5800
| 100 | | E3300
| 101 |AC_MGR | 12000
| 101 |AD_ASST | 4400
| 101 | | 16400
| 102 IT_PROG | 9000
| 102 | | 5000
| 103 [IT_PROG | 10200
| 103 | | 10200
| AC_MGR | 12000
| |AD_ASST | 4400
| AD_WP | 34000
| IT_PROG | 19200
| IMK_MAN | 13000
| 1SA_ MAN | 10500
| ST _MAN | 5800
| | | 9A900

20 rows selected.

Introduction to Oracle9i: SQL 17-27

Practice 17 (continued)
4. Observe the output from question 3. Write a query using the GROUPI NG function to
determine whether the NULL values in the columns corresponding to the GROUP BY
expressions are caused by the CUBE operation.

IMGR | JOB |SUM(SALARY) | GROUPING(MANAGER_ID) | GROUPING{JOB_ID)
| 100 |AD VP | 34000 | 0 | 0
|00 MK _MAN | 13000 | 0| 0
| 100 |SA MAN | 10500 | 0| 0
| 100 |ST_MAN | 5800 | 0| 0
[100 | | 53300 | 0 | 1
| 101 |AC_MGR | 12000 | 0| 0
| 101 |AD_ASST | 4400 | 0| 0
| 101 | | 16400 | 0| 1
| 102 |IT_PROG | o000 | 0 | 0
| 102 | | 9000 | 0| 1
| 103 |IT_PROG | 10200 | 0| 0
|03 | | 10200 | 0| 1
| AC_MGR | 12000 | Al 0
| AD_ASST | 4400 |] 0
| AD VP 34000 | 1| 0
| IT_PROG | 19200 | | 0
| IMK_MAN | 13000 | 1 0
| ISA_MAN | 10500 | T | 0
| IST_MAN | 5800 | 1| 0
| | | 98900 | E| 1

20 rows selected.

Introduction to Oracle9i: SQL 17-28

Practice 17 (continued)
5. Using GROUPI NG SETS, write aquery to display the following groupings :

— departnent _id, manager_id, job_id
— departnent _id,
— rmanager _id,

job_id

job_

id

The query should calculate the sum of the salaries for each of these groups.

| DEPARTMENT ID | MANAGER_ID | JOB_ID | SUM(SALARY)

| 10 | 101 |AD_ASST | 4400
| 20 | 100 [MK_MAN | 13000
| 20 | 201 |MK_REP | 000
| 50 | 124 |ST_CLERK | 11700
| 50 | 100 |ST_MAN | 5800
| B0 | 102 IT_PROG | 9000
| GO | 103 IT_PROG | 10200
| a0 | 100 |[SA_MAN | 10500
| a0 | 143 |SA_REP | 19600
| a0 | AD_PRES | 24000
| a0 | 100 AD_VP | 34000
| 10 | 205 |AC_ACCOUNT | 8300
| 10 | 101 |AC_MGR | 12000
| | 149 |SA_REP | 7000
| 10 | AD_ASST | 4400
| 20 | IMK_MAN | 13000
| 20 | MK_REP | 6000
| 50 | \ST_CLERK | 11700
| 50 | IST_MAN | 5800
| B0 | IT_PROG | 19200
| a0 | S MAN | 10500
T T R R T I PR
. B 3 [IT_Phe | 200
| | 124 |ST_CLERK | 11700
| | 143 |SA_REP | 26600
| | 201 |MK_REP | 6000
| | 205 |AC_ACCOUNT | 8300
| | AD_PRES | 24000

A0 rows selected.

Introduction to Oracle9i: SQL 17-29

Introduction to Oracle9i: SQL 17-30

Introduction to Oracle9i: SQL 17-31

Introduction to Oracle9i: SQL 17-32

Advanced Subqueries

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able
to do the following:

* Write a multiple-column subquery

* Describe and explain the behavior of subqueries when
null values are retrieved

* Write a subquery in a FROMclause
®* Use scalar subqueries in SQL

* Describe the types of problems that can be solved with
correlated subqueries

* Write correlated subqueries

* Update and delete rows using correlated subqueries
* Usethe EXI STSand NOT EXI STS operators
* Usethe W THclause

18-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn how to write multiple-column subqueries and subqueriesin the FROMclause of a
SELECT statement. Y ou also learn how to solve problems by using scalar, correlated subqueries and the
W TH clause.

Introduction to Oracle9i: SQL 18-2

What Is a Subquery?

A subquery is a SELECT statement embedded in a
clause of another SQL statement.

Main 3 SELECT . ..
query FROM
VWHERE
(SELECT . .. <— subquery
FROM ...
WHERE ...)
18-3 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a Subquery?
A subquery isa SELECT statement that is embedded in a clause of another SQL statement, called the parent
statement.

The subquery (inner query) returns avalue that is used by the parent statement. Using a nested subquery is
equivalent to performing two sequential queries and using the result of the inner query asthe search value in
the outer query (main query).
Subqueries can be used for the following purposes:
* To provide valuesfor conditionsin WHERE, HAVI NG, and START W TH clauses of SELECT
Statements
* Todefine the set of rows to be inserted into the target table of an | NSERT or CREATE TABLE
Statement
» Todefinethe set of rowsto beincluded in aview or snapshot in a CREATE VI EWor CREATE
SNAPSHOT statement
» To define one or more values to be assigned to existing rows in an UPDATE statement

» Todefine atableto be operated on by a containing query. (Y ou do this by placing the subquery in the
FROMclause. This can be donein | NSERT, UPDATE, and DELETE statements as well.)

Note: A subquery is evaluated once for the entire parent statement.

Introduction to Oracle9i: SQL 18-3

Subqueries

SELECT sel ect _|i st

FROM table

WHERE expr operator (SELECT select |ist
FROM tabl e);

* The subquery (inner query) executes once before
the main query.

* The result of the subquery is used by the main
query (outer query).

18-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Subqueries

Y ou can build powerful statements out of simple ones by using subqueries. Subqueries can be very useful
when you need to select rows from atable with a condition that depends on the datain the table itself or
some other table. Subqueries are very useful for writing SQL statements that need values based on one or
more unknown conditional values.
In the syntax:

oper at or includesacomparison operator suchas>, =, or I N

Note: Comparison operatorsfall into two classes: single-row operators (>, =, >=, <, <>, <=) and multiple-
row operators (I N, ANY, ALL).

The subquery is often referred to as a nested SELECT, sub-SELECT, or inner SELECT statement. The
inner and outer queries can retrieve data from either the same table or different tables.

Introduction to Oracle9i: SQL 18-4

Using a Subquery

SELECT | ast _nane
FROM enpl oyees 10500
WHERE salary >
(SELECT sal ary
FROM enpl oyees
WHERE enpl oyee id = 149);

| LAST NAME
iKing
|Kaochhar
!De Haan
|hel
iHartstein
|Higgins
B rows selected.
18-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subqguery
In the example in the dide, the inner query returns the salary of the employee with employee number 149.

The outer query uses the result of the inner query to display the names of all the employees who earn more
than this amount.

Example
Display the names of all employees who earn less than the average salary in the company.

SELECT | ast_nane, job_id, salary

FROM enpl oyees

WHERE sal ary < (SELECT AV sal ary)
FROM enpl oyees);

Introduction to Oracle9i: SQL 18-5

Multiple-Column Subqueries

Main query =
-
WHERE (MANAGER_ID, DEPARTMENT_ID) IN

Subquery
100 90
102 60
124 50

Each row of the main query is compared to
values from a multiple-row and multiple-column
subquery.

18-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Multiple-Column Subqueries

So far you have written single-row subqgueries and multiple-row subqueries where only one columnis
returned by the inner SELECT statement and thisis used to evaluate the expression in the parent select
statement. If you want to compare two or more columns, you must write a compound WHERE clause using
logical operators. Using multiple-column subqueries, you can combine duplicate WHERE conditionsinto a
single WHERE clause.

Syntax
SELECT col um, col um,
FROMV tabl e
VHERE (colum, colum, ...) IN
(SELECT col um, col um,
FROM table

WHERE condition);

The graphic in the dide illustrates that the values of the MANAGER_| D and DEPARTMENT _| D from the
main query are being compared with the MANAGER _| D and DEPARTMENT_| D valuesretrieved by the
subquery. Since the number of columns that are being compared are more than one, the example qualifies
as amultiple-column subquery.

Introduction to Oracle9i: SQL 18-6

Column Comparisons

Column comparisons in a multiple-column subquery
can be:

®* Pairwise comparisons
* Nonpairwise comparisons

18-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Pairwise Versus Nonpairwise Comparisons

Column comparisons in a multiple-column subquery can be pairwise comparisons or nonpairwise
comparisons.

In the example on the next dide, a pairwise comparison was executed in the WHERE clause. Each candidate

row in the SELECT statement must have both the same MANAGER | D column and the DEPARTMVENT _| D
as the employee with the EMPLOYEE | D 178 or 174.

A multiple-column subquery can aso be a nonpairwise comparison. In anonpairwise comparison, each of
the columns from the WHERE clause of the parent SELECT statement are individually compared to

multiple values retrieved by the inner select statement. The individual columns can match any of the values
retrieved by the inner select statement. But collectively, all the multiple conditions of the main SELECT

statement must be satisfied for the row to be displayed. The example on the next page illustrates a
nonpairwise compari son.

Introduction to Oracle9i: SQL 18-7

Pairwise Comparison Subquery

Display the details of the employees who are managed
by the same manager and work in the same department
as the employees with EMPLOYEE | D178 or 174.

SELECT enpl oyee_id, manager id, departnent _id
FROM enpl oyees
WHERE (rmanager id, departnent _id) IN
(SELECT manager _id, department _id
FROM enpl oyees
WHERE enployee id IN (178,174))
AND enpl oyee_id NOT IN (178, 174);

18-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Pairwise Comparison Subquery

The example in the dideisthat of a multiple-column subquery because the subguery returns more than one
column. It compares the values in the MANAGER _| D column and the DEPARTMENT _I D column of each
row in the EMPLOYEES table with the values in the MANAGER | D column and the DEPARTMVENT _| D
column for the employees with the EMPLOYEE | D 178 or 174.

First, the subquery to retrieve the MANAGER | D and DEPARTMENT _I D values for the employees with the
EMPLOYEE | D 178 or 174 is executed. These values are compared with the MANAGER | D column and the
DEPARTNMENT _I D column of each row in the EMPLOYEES table. If the values match, the row is displayed.
In the output, the records of the employees with the EMPLOYEE_| D 178 or 174 will not be displayed. The
output of the query in the dide follows.

| EMPLOYEE_ID | MANAGER_ID ! DEPARTMENT ID

i 176 | 149 | a0

Introduction to Oracle9i: SQL 18-8

Nonpairwise Comparison Subquery

Display the details of the employees who are managed by
the same manager as the employees with EMPLOYEE | D
174 or 141 and work in the same department as the
employees with EMPLOYEE | D174 or 141.

SELECT enpl oyee_id, nanager id, departnent _id
FROM enpl oyees
WHERE nmanager _id IN
(SELECT rmanager _id
FROM enpl oyees
WHERE enployee id IN (174, 141))
AND departnment _id IN
(SELECT departnent _id
FROM enpl oyees
WHERE enployee id IN (174,141))
AND enpl oyee_id NOT I N(174,141);

18-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Nonpairwise Comparison Subquery

The example shows a nonpairwise comparison of the columns. It displays the EMPLOYEE | D,

MANAGER | D, and DEPARTMENT _| D of any employee whose manager |D matches any of the manager 1Ds
of employees whose employee IDs are either 174 or 141 and DEPARTMENT _| D match any of the department
IDs of employees whose employee IDs are either 174 or 141.

First, the subquery to retrieve the MANAGER | D values for the employees with the EMPLOYEE | D 174 or
141 is executed. Similarly, the second subquery to retrieve the DEPARTMENT _| D values for the employees
with the EMPLOYEE_| D 174 or 141 is executed. The retrieved values of the MANAGER | D and
DEPARTMENT _I D columns are compared with the MANAGER _| D and DEPARTMENT _I D column for each
row in the EMPLOYEES table. If the MANAGER | D column of the row in the EMPLOYEES table matches with
any of the values of the MANAGER | D retrieved by the inner subquery and if the DEPARTMENT _| D column
of the row in the EMPLOYEES table matches with any of the values of the DEPARTMVENT | D retrieved by
the second subquery, the record is displayed. The output of the query in the dide follows.

| EMPLOYEE_ID i MANAGER_ID i DEPARTMENT ID

| 142 | 124 | 50
| 143 | 124 | 50
! 144 | 124 | 50
| 176 | 143 | a0

Introduction to Oracle9i: SQL 18-9

Using a Subquery
in the FROMClause

SELECT a.last_nane, a.salary, a.departnent_id, b.sal avg
FROM enpl oyees a, (SELECT departnent _id,

AV(Q sal ary) sal avg

FROM enpl oyees

GROUP BY departnent _id) b
WHERE a.departnent_id = b.departnent _id

AND a.salary > b.sal avg;

| LAST MAME [sAaLARY [DEPARTMENT_ID [SALAVG
[Hartstein [13000 | 20 | o500
[mourgos [5800 | 50 | 3500
[Hunold [o000 | g0 | G400
|Zlotkey [10500 | a0 | 10033.3333
[2bel [11000 | g0 | 10033 .3353
[ing [24000 | 20 | 19333.3333
Higgins [12000 | 110 | 10150

¥ rows selected.

‘ 18-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery in the FROMClause

Y ou can use a subquery in the FROMclause of a SELECT statement, which is very similar to how views are
used. A subquery in the FROMclause of a SELECT statement isalso called an inline view. A subquery in the
FROMclause of a SELECT statement defines a data source for that particular SELECT statement, and only
that SELECT statement. The example on the dide displays employee last names, salaries, department
numbers, and average salaries for al the employees who earn more than the average salary in their
department. The subquery in the FROMclause is named b, and the outer query references the SALAVG column
using this alias.

Introduction to Oracle9i: SQL 18-10

Scalar Subquery Expressions

* A scalar subquery expression is a subquery that
returns exactly one column value from one row.

® Scalar subqueries were supported in Oracle8i only in a
limited set of cases, For example :

— SELECT statement (FROM WHERE clauses)
— VALUES list of an | NSERT statement
* In Oracle9i, scalar subqueries can be used in:
— Condition and expression part of DECODE and CASE
— All clauses of SELECT except GROUP BY

‘ 18-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Scalar Subqueries in SQL

A subquery that returns exactly one column value from one row is aso referred to as a scalar subquery.
Multiple-column subgueries written to compare two or more columns, using a compound WHERE clause
and logical operators, do not qualify as scalar subqueries.

The value of the scalar subquery expression is the value of the select list item of the subquery. If the
subguery returns O rows, the value of the scalar subquery expression is NULL. If the subquery returns more

than one row, the Oracle Server returns an error. The Oracle Server has always supported the usage of a
scalar subquery ina SELECT statement. The usage of scalar subqueries has been enhanced in Oracl€9i.

Y ou can now use scalar subgueriesin:

» Condition and expression part of DECCDE and CASE

» All clauses of SELECT except GROUP BY

* Intheleft-hand side of the operator in the SET clause and WHERE clause of UPDATE statement
However, scalar subqueries are not valid expressionsin the following places:

» Asdefault values for columns and hash expressions for clusters

* Inthe RETURNI NG clause of DML statements

* Asthebasisof afunction-based index

* InGROUP BY clauses, CHECK constraints, WHEN conditions

* HAVI NGclauses

* InSTART W THand CONNECT BY clauses

. In statements that are unrelated to queries, such as CREATE PROFI LE

Introduction to Oracle9i: SQL 18-11

Scalar Subqueries: Examples

Scalar Subqueries in CASE Expressions

SELECT enpl oyee_id, |ast_nane,
(CASE

VWHEN departnent _id =
(SELECT departnent _id FROM departnents

WHERE | ocation_id = 1800)

THEN ' Canada' ELSE ' USA" END) | ocati on
FROM enpl oyees;

20

Scalar Subqueries in ORDER BY Clause

SELECT enpl oyee_id, |ast_nane
FROM enpl oyees e
ORDER BY (SELECT depart nent _nane
FROM departnents d
VWHERE e. departnent _id = d.departnent _id);

18-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Scalar Subqueries: Examples

The first example in the dlide demonstrates that scalar subgueries can be used in CASE expressions. The
inner query returns the value 20, which is the department ID of the department whose location 1D is 1800.
The CASE expression in the outer query uses the result of the inner query to display the employee ID, last
names, and avalue of Canada or USA, depending on whether the department 1D of the record retrieved by
the outer query is 20 or not.

The result of the preceding example follows;

| EMPLOYEE_ID ! LAST _NAME | LOCATI

| 100 |King USA

i 101 |Kachhar USA,

| 102 |De Haan Usa,

| 103 |Hunold IUSA
1473 [hd=tac I RE=¥.%

, — wEn lUéﬂx

i 201 |Hartstein [Canada

| 202 |Fay iCanada

| 205 |Higgins UsSA

[206 |Gietz USA

20 rows selected.

Introduction to Oracle9i: SQL 18-12

Scalar Subqueries: Examples (Continued)

The second example in the slide demonstrates that scalar subqueries can be used in the ORDER BY clause.
The example orders the output based on the DEPARTMVENT _NAME by matching the

DEPARTMENT _I D from the EMPLOYEES table with the DEPARTMENT _| D from the DEPARTMVENTS
table. This comparison in donein a scalar subquery in the ORDER BY clause. The result of the the second
example follows:

EMPLOYEE_ID | LAST NAME

205 |Higgins

206 |Gietz

200 [Whalen

100 |King

101 |Kochhar

102 |De Haan

103 |Hunold

104 |[Ermst

107 |Lurentz

oo R
| 142 |Davies

| 143 Matos ’
| 144 |\=‘argas

| 178 |Grant

20 rowes selected.

The second example uses a correlated subquery. In a correlated subquery, the subquery references a column
from atable referred to in the parent statement. Correlated subqueries are explained later in this lesson.

Introduction to Oracle9i: SQL 18-13

Correlated Subqueries

Correlated subqueries are used for row-by-row
processing. Each subquery is executed once for
every row of the outer query.

GET
candidate row from outer query

Y

EXECUTE
inner query using candidate row value

Y

USE
values from inner query to qualify or
disqualify candidate row

‘ 18-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated Subqueries

—>>

The Oracle Server performs a correlated subquery when the subquery references a column from atable
referred to in the parent statement. A correlated subquery is evaluated once for each row processed by the
parent statement. The parent statement can be a SELECT, UPDATE, or DELETE statement.

Nested Subqueries Versus Correlated Subqueries

With anormal nested subquery, the inner SELECT query runsfirst and executes once, returning values to
be used by the main query. A correlated subquery, however, executes once for each candidate row
considered by the outer query. In other words, the inner query is driven by the outer query.

Nested Subquery Execution
» Theinner query executes first and finds a value.
» The outer query executes once, using the value from the inner query.
Correlated Subquery Execution
» Get acandidate row (fetched by the outer query).
» Execute theinner query using the value of the candidate row.
» Usethe vauesresulting from the inner query to qualify or disqualify the candidate.
* Repeat until no candidate row remains.

Introduction to Oracle9i: SQL 18-14

Correlated Subqueries

SELECT col uml, col um2,
FROM tablel outer
WHERE col uml oper at or
(SELECT colunml, col um?2
FROM t abl e2
WHERE exprl =
outer .expr2);

The subquery references a column from a table in
the parent query.

18-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated Subqueries (continued)

A correlated subquery is one way of reading every row in atable and comparing values in each row
against related data. It is used whenever a subquery must return a different result or set of results for each
candidate row considered by the main query. In other words, you use a correlated subquery to answer a
multipart question whose answer depends on the value in each row processed by the parent statement.

The Oracle Server performs a correlated subquery when the subquery references a column from atable in
the parent query.

Note: You can use the ANY and ALL operatorsin a correlated subquery.

Introduction to Oracle9i: SQL 18-15

Using Correlated Subqueries

Find all employees who earn more than the average
salary in their department.

SELECT | ast _nane, salary, departnent_id
FROM enpl oyees outer
WHERE sal ary >(SELECT AVQ@(sal ary)
FROM enpl oyees
VWHERE departnment_id =
out er. departnent _id);

. ; Each time a row from
| LAST_NAME | SALARY | DEPARTMENT_ID
[King | 24000 | o0] the outer query
onaia | 5000 | &0 is processed, the
[Maurgas | 5800 | 50 inner query is
[Ziotkey I 10500 | B0 evaluated.
[abel [11000 | 80
[Hartstein [13000 | 20
|Higgins [12000 | 110

7 rows selected.

18-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Correlated Subqgueries (continued)

The example in the dide determines which employees earn more than the average salary of their
department. In this case, the correlated subquery specifically computes the average salary for each
department.

Because both the outer query and inner query use the EMPLOYEES table in the FROMclause, an diasis
given to EMPLOYEES in the outer SELECT statement, for clarity. Not only does the alias make the entire
SELECT statement more readable, but without the alias the query would not work properly, because the
inner statement would not be able to distinguish the inner table column from the outer table column.

Introduction to Oracle9i: SQL 18-16

Using Correlated Subqueries

Display details of those employees who have switched
jobs at least twice.

SELECT e. enployee_id, |last_name,e.job_id
FROM enpl oyees e
WHERE 2 <= (SELECT. _OClJNT_(*)
FROM job_history
VWHERE enpl oyee_ id = e. enpl oyee_id);

| EMPLOYEE_ID | LAST NAME 1 JOB_ID |
| 101 [Kachhar [2D_P |
i 176 [Taylor [=a_RER B
| 200 [whalen [AD_ASST |

18-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Correlated Subqueries

The example in the dide displays the details of those employees who have switched jobs at least twice.
The Oracle Server evaluates a correlated subquery as follows:

1. Select arow from the table specified in the outer query. Thiswill be the current candidate row.
2. Storethe value of the column referenced in the subquery from this candidate row. (In the examplein
the dlide, the column referenced in the subquery is E. EMPLOYEE_| D.)

3. Perform the subguery with its condition referencing the value from the outer query’ s candidate row.
(In the example in the slide, group function COUNT(*) is evaluated based on the value
of the E. EMPLOYEE_| D column obtained in step 2.)

4. Evaluate the WHERE clause of the outer query on the basis of results of the subquery
performed in step 3. Thisis determinesif the candidate row is selected for output. (In the
example, the number of times an employee has switched jobs, evaluated by the subquery, is
compared with 2 in the WHERE clause of the outer query. If the condition is satisfied, that
employee record is displayed.)
5. Repeat the procedure for the next candidate row of the table, and so on until al the rowsin the table
have been processed.

The corrdation is established by using an element from the outer query in the subquery. In this
example, the correlation is established by the statement EMPLOYEE_| D = E. EMPLOYEE | Din
which you compare EMPLOYEE_| D from the table in the subquery with the EMPLOYEE | D from the
table in the outer query.

Introduction to Oracle9i: SQL 18-17

Using the EXI STS Operator

®* The EXI STS operator tests for existence of rows in
the results set of the subquery.

* |f asubquery row valueis found:
— The search does not continue in the inner query
— The condition is flagged TRUE
* |If asubquery row value is not found:
— The condition is flagged FALSE
— The search continues in the inner query

‘ 18-18 Copyright © Oracle Corporation, 2001. All rights reserved.

The EXI STS Operator

With nesting SELECT statements, all logical operators are valid. In addition, you can use the EXI STS
operator. This operator is frequently used with correlated subqueries to test whether avalue retrieved by
the outer query existsin the results set of the values retrieved by the inner query. If the subquery returns
at least one row, the operator returns TRUE. If the value does not exist, it returns FALSE. Accordingly,
NOT EXI STS tests whether avalue retrieved by the outer query isnot apart of the results set of the
values retrieved by the inner query.

Introduction to Oracle9i: SQL 18-18

Using the EXI STS Operator

Find employees who have at least one person
reporting to them.

SELECT enpl oyee id, last _nane, job id, departnent _id
FROM enpl oyees outer
WHERE EXI STS (SELECT ' X
FROM enpl oyees
WHERE manager _id =
out er. enpl oyee_id);

[EMPLOYEE 1D [LAST MAME [JoB_ D | DEPARTMENT_ID

[100 [King laD_PRES | o0
| 101 [Kachhar =D P [=T
[102 |[De Haan laD_wP | =Ta
[103 [Hunald [T_PROG [&0
[124 [Mourgos [ST_miarn | 50
[149 |Flotkey =X | 20
[201 |[Hartstein [Mttt | Z0
[205 [Higgins [2c_rmcR | 110

8 rows selected.

‘ 18-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the EXI STS Operator

The EXI STS operator ensures that the search in the inner query does not continue when at least one match
isfound for the manager and employee number by the condition:

WHERE manager _id = outer.enpl oyee_id.
Note that the inner SELECT query does not need to return a specific value, so a constant can be sel ected.
From a performance standpoint, it is faster to select a constant than a column.

Note: Having EMPLOYEE | D inthe SELECT clause of theinner query causes a table scan for that
column. Replacing it with the literal X, or any constant, improves performance. Thisis more efficient than
using the | N operator.

A | N construct can be used as an aternative for a EXI STS operator, as shown in the following example:

SELECT enpl oyee_id, | ast_nane, job_id, departnent _id
FROM enpl oyees
WHERE enpl oyee_id IN (SELECT nmanager_id

FROM enpl oyees

WHERE manager id IS NOT NULL);

Introduction to Oracle9i: SQL 18-19

Using the NOT EXI STS Operator

Find all departments that do not have any employees.

SELECT departnent _id, departnent_nane
FROM departnments d
VWHERE NOT EXI STS (SELECT ' X
FROM enpl oyees
WHERE departnent _id
= d. departnent _id);

| DEPARTMENT_ID | DEPARTMENT_ NAME |
| 90 |[Contracting i

‘ 18-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NOT EXI STS Operator
Alternative Solution

A NOT | N construct can be used as an aternative for aNOT EXI STS operator, as shown in the following
example.

SELECT department _id, departnent_nane

FROM departnents

WHERE departnent _id NOT I N (SELECT departnent _id
FROM enpl oyees);

ho rows selected

However, NOT | N evaluatesto FALSE if any member of the set isa NULL value. Therefore, your query
will not return any rows even if there are rows in the departments table that satisfy the WHERE condition.

Introduction to Oracle9i: SQL 18-20

Correlated UPDATE

UPDATE tabl el aliasl
SET col um = (SELECT expression
FROM table2 alias2
VWHERE aliasl.colum =
al i as2. col um);

Use a correlated subquery to update rows in one
table based on rows from another table.

18-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated UPDATE
In the case of the UPDATE statement, you can use a correlated subquery to update rows in one table based
on rows from another table.

Introduction to Oracle9i: SQL 18-21

Correlated UPDATE

« Denormalize the EMPLOYEES table by adding a
column to store the department name.

 Populate the table by using a correlated
update.

ALTER TABLE enpl oyees
ADD(depart ment _nane VARCHAR2(14));

UPDATE enpl oyees e
SET departnment _nane =
(SELECT depart nent _nane
FROM departnents d
WHERE e.departnment _id = d.departnent _id);

18-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated UPDATE (continued)

The example in the dide denormalizes the EMPLOYEES table by adding a column to store the department
name and then populates the table by using a correlated update.

Here is another example for a correlated update.
Problem Statement

Use a correlated subquery to update rows in the EMPLOYEES table based on rows from the REWARDS
table:
UPDATE enpl oyees
SET salary = (SELECT enpl oyees. sal ary + rewards. pay_rai se
FROM rewards
WHERE enployee id =
enpl oyees. enpl oyee_i d
AND payrai se_date =
(SELECT MAX(payr ai se_dat e)
FROM rewards
VHERE
enpl oyee_id = enpl oyees. enpl oyee_id))
WHERE enpl oyees. enpl oyee_i d
I N (SELECT enpl oyee id FROM rewards);

Introduction to Oracle9i: SQL 18-22

Correlated UPDATE (continued)

This example uses the REWARDS table. The REWARDS table has the columns EMPLOYEE_| D,
PAY_RAI SE, and PAYRAI SE_DATE. Every time an employee gets a pay raise, arecord with the details

of the employee 1D, the amount of the pay raise, and the date of receipt of the pay raise isinserted into the
REWARDS table. The REWARDS table can contain more than one record for an employee. The PAYRAI SE
__DATE column is used to identify the most recent pay raise received by an employee.

In the example, the SALARY column in the EMPLOYEES table is updated to reflect the latest pay raise

received by the employee. Thisis done by adding the current salary of the employee with the
corresponding pay raise from the REWARDS table.

Introduction to Oracle9i: SQL 18-23

Correlated DELETE

DELETE FROM tabl el aliasl
WHERE col unm oper at or
(SELECT expressi on
FROM table2 alias2
WHERE aliasl.colum = alias2.colum);

Use a correlated subquery to delete rows in one table
based on rows from another table.

‘ 18-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated DELETE

In the case of a DELETE statement, you can use a correlated subquery to delete only those rows that also
exist in another table. If you decide that you will maintain only the last four job history recordsin the
JOB_HI STORY table, then when an employee transfers to afifth job, you delete the oldest

JOB_HI STORY row by looking up the JOB_HI STORY table for the M N(START _DATE) for the
employee. The following code illustrates how the preceding operation can be performed using a correlated
DELETE:

DELETE FROM j ob_hi story JH
VWHERE enpl oyee_id =
(SELECT enpl oyee_i d
FROM enpl oyees E
WHERE JH. enpl oyee_id = E. enpl oyee_id
AND START_DATE =
(SELECT M N(start_date)
FROM j ob_history JH
WHERE JH. enpl oyee _id = E. enpl oyee_id)
AND 5 > (SELECT COUNT(*)
FROM j ob_hi story JH
WHERE JH. enpl oyee_id = E. enpl oyee_id
GROUP BY EMPLOYEE_I D
HAVI NG COUNT(*) >= 4));

Introduction to Oracle9i: SQL 18-24

Correlated DELETE

Use a correlated subquery to delete only those rows
from the EMPLOYEES table that also exist in the

EMP_HI STCRY table.

DELETE FROM enpl oyees E
VWHERE enpl oyee id =
(SELECT enpl oyee i d
FROM enp_history
WHERE enpl oyee id = E. enpl oyee i d);

‘ 18-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated DELETE (continued)
Example

Two tables are used in this example. They are:
» The EMPLOYEES table, which gives details of all the current employees
 TheEMP_HI STORY table, which gives details of previous employees

EMP_HI STORY contains data regarding previous employees, so it would be erroneous if the same
employee’ srecord existed in both the EMPLOYEES and EMP_HI STCRY tables. Y ou can delete such
erroneous records by using the correlated subquery shown in the dlide.

Introduction to Oracle9i: SQL 18-25

The W TH Clause

®* Using the W THclause, you can use the same
query block in a SELECT statement when it occurs

more than once within a complex query.

* The W THclause retrieves the results of a query
block and stores it in the user's temporary
tablespace.

* The W THclause improves performance

‘ 18-26 Copyright © Oracle Corporation, 2001. All rights reserved.

The W THclause

Using the W TH clause, you can define a query block before using it in aquery. The W TH clause
(formally known as subquery_factori ng_cl ause) enablesyou to reuse the same query block in a
SELECT statement when it occurs more than once within a complex query. Thisis particularly useful
when a query has many references to the same query block and there are joins and aggregations.

Using the W TH clause, you can reuse the same query when it is high cost to evaluate the query block and
it occurs more than once within a complex query. Using the W TH clause, the Oracle Server retrievesthe
results of a query block and storesit in the user’ s temporary tablespace. This can improve performance.

W TH Clause Benefits
* Makesthe query easy to read

» Evaluatesaclause only once, even if it appears multiple times in the query, thereby
enhancing performance

Introduction to Oracle9i: SQL 18-26

W TH Clause: Example

Using the W TH clause, write a query to display the
department name and total salaries for those
departments whose total salary is greater than the
average salary across departments.

‘ 18-27 Copyright © Oracle Corporation, 2001. All rights reserved.

W TH Clause: Example

The problem in the dide would require the following intermediate cal culations:
1. Cadculatethetota salary for every department, and store the result using a W TH clause.
2. Calculate the average salary across departments, and store the result using a W TH clause.

3. Comparethetotal salary calculated in the first step with the average salary calculated in the second
step. If the total salary for a particular department is greater than the average salary across
departments, display the department name and the total salary for that department.

The solution for the preceding problem is given in the next page.

Introduction to Oracle9i: SQL 18-27

W TH Clause: Example

W TH
dept _costs AS (

SELECT departnment _nane, SUM sal ary) AS dept _total
FROM enpl oyees, departnents
WHERE enpl oyees. departnent _id =
depart nents. departnent _i d
GROUP BY departnent _nane),
avg_cost AS
(SELECT SUM dept total)/ COUNT(*) AS dept _avg
FROM dept_costs)
SELECT * FROM dept_costs
VWHERE dept _total >
(SELECT FROM dept _avg)
ORDER BY depart ment _nane;

‘ 18-28 Copyright © Oracle Corporation, 2001. All rights reserved.

W TH Clause: Example

The SQL code in the dide is an example of a situation in which you can improve performance and write
SQL more simply by using the W TH clause. The query creates the query names DEPT _COSTS and
AVG_COST and then uses them in the body of the main query. Internally, the W TH clause is resolved
either asanin-line view or atemporary table. The optimizer chooses the appropriate resolution depending
on the cost or benefit of temporarily storing the results of the W TH clause.

Note: A subquery in the FROMclause of a SELECT statement is also called anin-line view.

The output generated by the SQL code on the dlide will be as follows:

DEPARTMENT _NANME DEPT_TOTAL
Executi ve 58000
Sal es 37100

The W TH Clause Usage Notes
e Itisused only with SELECT statements.

* A query nameisvisibleto al W TH element query blocks (including their subquery blocks) defined
after it and the main query block itself (including its subquery blocks).

* When the query name is the same as an existing table name, the parser searches from the inside out,
the query block name takes precedence over the table name.

* TheW TH clause can hold more than one query. Each query is then separated by a comma.

Introduction to Oracle9i: SQL 18-28

Summary

In this lesson, you should have learned the following:

* A multiple-column subquery returns more than
one column.

®* Multiple-column comparisons can be pairwise or
nonpairwise.

* A multiple-column subquery can also be used in
the FROMclause of a SELECT statement.

® Scalar subqueries have been enhanced in
Oracle 9i.

‘ 18-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Y ou can use multiple-column subgueries to combine multiple WHERE conditions into a single WHERE
clause. Column comparisons in a multiple-column subquery can be pairwise comparisons or non-pairwise
comparisons.

Y ou can use a subquery to define atable to be operated on by a containing query.

Oracle 9i enhances the the uses of scalar subqueries. Scalar subqueries can now be used in:
» Condition and expression part of DECCDE and CASE
» All clauses of SELECT except GROUP BY
» SET clause and WHERE clause of UPDATE statement

Introduction to Oracle9i: SQL 18-29

Summary

®* Correlated subqueries are useful whenever a
subquery must return a different result for each
candidate row.

* The EXI STS operator is a Boolean operator that
tests the presence of a value.

®* Correlated subqueries can be used with SELECT,
UPDATE, and DELETE statements.

® You can use the W THclause to use the same
query block in a SELECT statement when it occurs
more than once

‘ 18-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

The Oracle Server performs a correlated subquery when the subquery references a column from atable
referred to in the parent statement. A correlated subquery is evaluated once for each row processed by the
parent statement. The parent statement can be a SELECT, UPDATE, or DELETE statement. Using the

W TH clause, you can reuse the same query when it is costly to reevaluate the query block and it occurs
more than once within a complex query.

Introduction to Oracle9i: SQL 18-30

Practice 18 Overview

This practice covers the following topics:
® Creating multiple-column subqueries
* Writing correlated subqueries

® Using the EXI STS operator

® Using scalar subqueries

®* Using the W THclause

18-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 18 Overview

In this practice, you write multiple-column subqueries, correlated and scalar subqueries. Y ou also solve
problems by writing the W TH clause.

Introduction to Oracle9i: SQL 18-31

Practice 18

1. Write aquery to display the last name, department number, and salary of any employee whose
department number and salary both match the department number and salary of any employee
who earns a commission.

| LAST _NAME | DEPARTMENT _ID | SALARY

Taylar | a0 | 8500
Zlotkey | a0 | 10500
\&hel | g0 | 11000

2. Display the last name, department name, and salary of any employee whose salary and
commission match the salary and commission of any employee | ocated in location ID 1700.

| LAST _NAME | DEPARTMENT NAME | SALARY

"Whalen Administration | 4400
|Gietz |A|:c:nunting | 8300
iHiggins |A|:c:nunting | 12000
|I<|:u:hhar |E}{ecutive | 17000
|De Haan |E}{ecutiue | 17000
King Executive | 24000

B rowes selected.

3. Create aquery to display the last name, hire date, and salary for all employees who have the
same salary and commission as Kochhar.

Note: Do not display Kochhar in the result set.

| LAST _NAME | HIRE_DATE | SALARY
\De Haan 113-JAM-93 | 17000

4. Create a query to display the employees who earn a salary that is higher than the salary of
al of thesalesmanagers (JOB | D = ' SA MAN). Sort the results on salary from highest to
lowest.

| LAST_NAME | JOB_ID | SALARY

King |AD_PRES | 24000
\Knchhar AD_WP | 17000
\De Haan AD_WP | 17000
Hartstein IMK_MAN | 13000
Higgins AC_MGR | 12000
\Ahel |S4 REP | 11000

G rows selected.

Introduction to Oracle9i: SQL 18-32

Practice 18 (continued)

5. Display the details of the employee ID, last name, and department ID of those employees who livein
cities whose name beginswith T.
| EMPLOYEE_ID | LAST _NAME | DEPARTMENT_ID
| 201 |Hartstein | 20
| 202 |Fay | 20

6. Write aquery to find al employees who earn more than the average salary in their departments.
Display last name, salary, department 1D, and the average salary for the department.
Sort by average salary. Use aliases for the columns retrieved by the query as shown in the sample

output.

| ENAME | SALARY | DEPTNO | DEPT _AVG

IMourgos | 5800 | 50 | 3500
Hunaold | 9000 | 60 | 6400
Hartstein | 13000 | 20 | 9500
bl | 11000 | a0 | 10033.3333
Tlotkey | 10500 | 80 | 10033.3333
Higgins | 12000 | 110 | 10150
[King | 24000 | o0 | 19333.3333

7 rows selected.

7. Find all employees who are not supervisors.
a. First do thisusing the NOT EXI STS operator.

| LAST _NAME
|Ern st

|Lnrentz

|Rajs

|Dauies
|Matns
|“v’argas
Ahel
|Tay||:|r
|Grant
|Wha|en
Fay
|Gietz

12 rows selected.

b. Can this be done by using the NOT | N operator? How, or why not?

Introduction to Oracle9i: SQL 18-33

Practice 18 (continued)

8. Write aquery to display the last names of the employees who earn less than the average salary in their
departments.

| LAST_NAME
|Knchhar

|De Haan

|Ern5t

|L|:|rentz

|Davies
|Matns
|Vargas

|Taj,rlc:r

Fay
|Gietz

10 rows selected.

9. Write aquery to display the last names of the employees who have one or more coworkersin their
departments with later hire dates but higher salaries.

| LAST_NAME
|Raj s

|Davies
|Mat|:|5
|‘v’argas

|Tay|n:|r

Introduction to Oracle9i: SQL 18-34

Practice 18 (continued)

10. Write aquery to display the employee ID, last names, and department names of all employees.
Note: Use a scalar subquery to retrieve the department name in the SELECT statement.

| EMPLOYEE_ID | LAST NAME | DEPARTMENT
| 205 |Higgins |A|:c:nunting
| 206 |Gietz |A|:c:nunting
| 200 [Whalen Administration
| 100 |King |E}{ecutive
| 101 |Kochhar |E}{ecutive
| 102 |De Haan |E}{ecutive

| 103 Hunold I

| 104 [Ermst T

| 107 |Lorertz I

| 201 |Har15tein |Marketing
| 202 !Fay |Marketing
| 143 Tlotkey Sales

| 176 [Taylor |Sa|es

| 174 |Abel Sales

| 124 |Mnurgns |Shipping

| 141 Rajs ‘Shipping

| 142 Davies ‘Shipping

| 143 Matos ‘Shipping

| 144 |\farga5 |Shipping

| 178 |Grant |

20 rows selected.

11. Write aquery to display the department names of those departments whose total salary cost is above one
eighth (1/8) of the total salary cost of the whole company. Use the W TH clause to write this query. Name

the query SUMVARY.
DEPARTNMENT _NAME DEPT_TOTAL
Executi ve 58000
Sal es 37100

Introduction to Oracle9i: SQL 18-35

Introduction to Oracle9i: SQL 18-36

Hierarchical Retrieval

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able
to do the following:

* Interpret the concept of a hierarchical query
* Create atree-structured report

* Format hierarchical data

* Exclude branches from the tree structure

19-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim
In thislesson, you learn how to use hierarchical queriesto create tree-structured reports.

Introduction to Oracle9i: SQL 19-2

Sample Data from the EMPLOYEES
Table

EMPLOYEE 1N LAST MAME | JOEE 1D MANAGER I
100 [King |50 PRES
101 |Knchhar [&D_ P 100
102 Da Haan E 1m0
103 Hurold [T_PROG i
104 [Ermst [T_PROG 103
107 [Lomarez [T_PROE [IiE
124 [riourges [ET_MAN 1m0
141 [Fajs =T CLERK 124
142 Daies [ET CLERK 124
143 [hviatos [ET CLERE 1
144 Margas |ET_CLERK 124
145 [Tlotkey S8 rian 1m0
174 | &hel |=4 REF 143
176 [Taylar [Ea_RER 143
178 [Granl [z RER 145
200 halen a0 As5T 1
201 Hari=slain [k _piand 100
a2 [Fay [RER ani
205 Higgins |ac_mGR 10
206 Giet [AC_AncouMT 205

19-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Sample Data from the EMPLOYEES Table

Using hierarchical queries, you can retrieve data based on a natura hierarchical relationship between rows

inatable. A relational database does not store records in a hierarchical way. However, where a hierarchical
relationship exists between the rows of a single table, a process called tree walking enables the hierarchy to
be constructed. A hierarchical query is amethod of reporting, in order, the branches of atree.

Imagine afamily tree with the eldest members of the family found close to the base or trunk of the tree and
the youngest members representing branches of the tree. Branches can have their own branches, and so on.

A hierarchical query is possible when arelationship exists betw een rows in atable. For example, in the
dide, you see that employeeswith the job IDs of AD_VP, ST_MAN, SA_MAN, and MK_MAN report directly
to the president of the company. We know this because the MANAGER _| D column of these records contain
the employee ID 100, which belongs to the president (AD_PRES).

Note: Hierarchical trees are used in various fields such as human genealogy (family trees), livestock
(breeding purposes), corporate management (management hierarchies), manufacturing (product assembly),
evolutionary research (species development), and scientific research.

Introduction to Oracle9i: SQL 19-3

Natural Tree Structure
EMPLOYEE | D = 100 (Parent)

King
MANAGER | D = 100 (Child)

Kochhar De Hann Mourgos Zlotkey Hartstein

Rajs Davies Matos Vargas

— | Goyal

i Abel Taylor Grant
Gietz grpst

Whalen Higgens Hunold

Lorentz

19-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Natural Tree Structure

The EMPLOYEES table has a tree structure representing the management reporting line. The hierarchy can
be created by looking at the relationship between equivalent val uesin the EMPLOYEE | D and
MANAGER | D columns. Thisrelationship can be exploited by joining the tabl e to itself. The

MANAGER | D column contains the employee number of the employee’ s manager.

The parent-child relationship of atree structure enables you to control:
* Thedirection in which the hierarchy is walked
* Thestarting point inside the hierarchy

Note: The dlide displays an inverted tree structure of the management hierarchy of the employeesin the
EMPLOYEES table.

Introduction to Oracle9i: SQL 19-4

Hierarchical Queries

SELECT [LEVEL], colum, expr...
FROM table

[WHERE condi tion(s)]

[START WTH condi tion(s)]

[CONNECT BY PRIOR condition(s)];

VWHERE condition:

expr conparison_operator expr

19-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Keywords and Clauses
Hierarchical queries can beidentified by the presence of the CONNECT BY and START W TH clauses.

In the syntax:

SELECT Isthe standard SELECT clause.

LEVEL For each row returned by a hierarchical query, the LEVEL pseudocolumn
returns 1 for aroot row, 2 for achild of aroot, and so on.

FROMtable Specifies the table, view, or snapshot containing the columns. Y ou can
select from only one table.

VWHERE Restricts the rows returned by the query without affecting other rows of
the hierarchy.

condition |s a comparison with expressions.

START W TH Specifiesthe root rows of the hierarchy (where to start). This clauseis
required for atrue hierarchical query.

CONNECT BY Specifies the columns in which the relationship between parent and child
PRI OR rows exist. This clause isrequired for ahierarchical query.

The SELECT statement cannot contain ajoin or query from aview that containsajoin.

Introduction to Oracle9i: SQL 19-5

Walking the Tree

Starting Point

* Specifies the condition that must be met
®* Accepts any valid condition

START WTH col uml = val ue

* Using the EMPLOYEES table, start with the
employee whose last name is Kochhar.

... START WTH | ast_nane -='Kochhar'

19-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Walking the Tree

The row or rows to be used as the root of the tree are determined by the START W TH clause. The START
W TH clause can be used in conjunction with any valid condition.

Examples
Using the EMPLOYEES table, start with King, the president of the company.
START W TH manager _id | S NULL

Using the EMPLOYEES table, start with employee Kochhar. A START W TH condition can contain a
subguery.

START WTH enpl oyee_id = (SELECT enpl oyee_id
FROM enpl oyees
WHERE | ast_nane = ' Kochhar')

If the START W TH clause is omitted, the tree walk is started with all of the rowsin the table as root rows.
If aWHERE clause is used, the walk is started with all the rows that sati sfy the WHERE condition. Thisno
longer reflects atrue hierarchy.

Note: The clauses CONNECT BY PRI OR and START W THare not ANSI SQL standard.

Introduction to Oracle9i: SQL 19-6

Walking the Tree

CONNECT BY PRI OR col uml = col um2

Walk from the top down using the EMPLOYEES
table

CONNECT BY PRI OR enpl oyee_id = nmanager _id

Direction

Top down —> Columnl = Parent Key
Column2 = Child Key

Bottomup —> Column1 = Child Key
Column2 = Parent Key

19-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Walking the Tree (continued)

The direction of the query, whether it is from parent to child or from child to parent, is determined by the
CONNECT BY PRI OR column placement. The PRI OR operator refers to the parent row. To find the
children of a parent row, the Oracle Server evaluates the PRI OR expression for the parent row and the
other expressions for each row in the table. Rows for which the condition is true are the children of the
parent. The Oracle Server always selects children by evaluating the CONNECT BY condition with respect
to a current parent row.
Examples
Walk from the top down using the EMPLOYEES table. Define a hierarchical relationship in which the
EMPLOYEE | D value of the parent row is equal to the MANAGER | D value of the child row.

CONNECT BY PRI OR enpl oyee_id = manager _id
Walk from the bottom up using the EMPLOYEES table.

CONNECT BY PRI OR nanager id = enpl oyee_ id

The PRI OR operator does not necessarily need to be coded immediately following the CONNECT BY.
Thus, the following CONNECT BY PRI OR clause gives the same result as the one in the preceding
example.

CONNECT BY enpl oyee_id = PRI OR rmanager _id
Note: The CONNECT BY clause cannot contain a subguery.

Introduction to Oracle9i: SQL 19-7

Walking the Tree: From the Bottom Up

SELECT enpl oyee_id, |ast_name, job_id, manager _id
FROM enpl oyees

START WTH enployee id = 101

CONNECT BY PRI OR manager _id = enpl oyee_ i d;

| EMPLOYEE _ID | LAST NAME | JOB_ID | MAMNAGER_ID
[101 [KKochhar [AD WP [100
[100 |King [AD_PRES [

19-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Walking the Tree: From the Bottom Up
The example in the dide displays alist of managers starting wi th the employee whose employee ID is 101.

Example
In the following example, EMPLOYEE_| D values are evaluated for the parent row and MANACGER _| D, and
SALARY values are evaluated for the child rows. The PRI OR operator applies only to the EMPLOYEE | D

value.

CONNECT BY PRI OR enpl oyee_id = manager _i d
AND sal ary > 15000;

To qualify asa child row, arow must have a MANAGER | D value equal to the EMPLOYEE_| D value of
the parent row and must have a SALARY value greater than $15,000.

Introduction to Oracle9i: SQL 19-8

Walking the Tree: From the Top Down

SELECT || ast_nane||' reports to '||

PRIOR |ast_nanme "Wal k Top Down"

FROMV enpl oyees

START WTH | ast_nane = 'King'

CONNECT BY PRI OR enpl oyee _id = nmanager _id,

| Walk Top Down
|King reports to

|Har‘tstein reports to King

|Fa§,-' reports to Hartstein

|KOChhar reports to King
|Wha|en reports to Kochhar

.4l0s reports to vlourgos

H‘v’argas reports to Mourgos

|Zlotkey reports to King
i.-&.bel reports to Zlotkey
ITayIDr reports to Zlotkey

|Grant reports to Zlotkey

20 rows selected.

19-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Walking the Tree: From the Top Down

Walking from the top down, display the names of the employees and their manager. Use employee King as
the starting point. Print only one column.

Introduction to Oracle9i: SQL 19-9

Ranking Rows with the LEVEL
Pseudocolumn

Level 1
root/parent
King Level 2
parent/child
Kochhar De Hann Mourgos Zlotkey Hartstein
Level 3
' | | | parent/child
Whalen Higgens Hunold pais pavies Matos Vargas Nleaf
Ii_l | | Goyal

Abel Taylor Grant Level 4

leaf

‘ 19-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Ranking Rows with the LEVEL Pseudocolumn

Gietz pgrpgt Lorentz

Y ou can explicitly show the rank or level of arow in the hierarchy by using the LEVEL pseudocolumn.
Thiswill make your report more readable. The forks where one or more branches split away from alarger
branch are called nodes, and the very end of abranch is called aleaf, or |eaf node. The diagram in the dide
shows the nodes of the inverted tree with their LEVEL values. For example, employee Higgens is a parent
and a child, while employee Daviesis achild and aleaf.

The LEVEL Pseudocolumn

Value Level

1 A root node

2 A child of aroot node

3 A child of achild, and so on

Note: A root nodeisthe highest node within an inverted tree. A child node is any nonroot node. A parent
node is any node that has children. A leaf node is any node without children. The number of levels
returned by a hierarchical query may be limited by available user memory.

Inthe dide, Kingistheroot or parent (LEVEL = 1). Kochhar, De Hann, Mourgos, Zlotkey, Hartstein,
Higgens, and Hunold are children and also parents (LEVEL = 2). Whalen, Rgjs, Davies, Matos, Vargas,

Gietz, Erngt, Lorentz, Abel, Taylor, Grant, and Goyal are children and leaves.
(LEVEL = 3 andLEVEL = 4)

Introduction to Oracle9i: SQL 19-10

Formatting Hierarchical Reports Using
LEVEL and LPAD

Create a report displaying company management
levels, beginning with the highest level and indenting
each of the following levels.

COLUWN org_chart FORVAT Al2

SELECT LPAD(| ast _nanme, LENGTH(| ast_nane)+(LEVEL*2) -2," ")
AS org_chart

FROM enpl oyees

START WTH | ast _name=' Ki ng’

CONNECT BY PRI OR enpl oyee_i d=manager i d

‘ 19-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Formatting Hierarchical Reports Using LEVEL
Thenodesin atree are assigned level numbers from the root. Use the LPAD function in conjunction with
the pseudocolumn LEVEL to display a hierarchical report as an indented tree.
In the example on the dide:

* LPAD(ciarl,n [, char2]) retunschar 1, left-padded to length n with the sequence of
charactersin char 2. The argument n isthe total length of the return value asit is displayed on your
terminal screen.

e LPAD(| ast _nanme, LENGTH(| ast_nane)+(LEVEL*2) -2,"' ') definesthe display
format.

e char1listhe LAST _NAME, n thetotal length of the return value, islength of the LAST _NANME
+(LEVEL*2)-2 ,and char2 is' _'.

In other words, thistells SQL to take the LAST _NAME and left-pad it withthe' ' character till the
length of the resultant string is equal to the value determined by LENGTH(| ast _nane) +(LEVEL* 2) -
2.

For King, LEVEL = 1.Hence, (2* 1)-2=2-2=0. So King does not get padded withany ' '
character and is displayed in column 1.

For Kochhar, LEVEL = 2.Hence, (2* 2)-2=4-2=2.SoKochhar gets padded with2" _'
characters and is displayed indented.

Therest of the records in the EMPLOYEES table are displayed similarly.

Introduction to Oracle9i: SQL 19-11

Formatting Hierarchical Reports Using LEVEL (continued)

ORG_CHART

King

Kaochhar

W'halen

Higgins

Gietz

De Haan

Hunald

Ernst

Lorent =

Fajs

Davies

hatos

_ “argas

_ Zlotkey

Abel

_ Taylar

Grant

Hartstein

|
|
=
|
|
|
L
-
|
—
| Mourgos
-
-
|
|
|
.
|
.
=
-

20 rows selected.

Introduction to Oracle9i: SQL 19-12

Pruning Branches
Use the WHERE clause Use the CONNECT BY clause
to eliminate a node. to eliminate a branch.
VHERE | ast _nane != ' Hi ggi ns’ CONNECT BY PRI OR
enpl oyee id = nmanager id
Kochhar AND | ast _nane ! = "Higgins'
Kochhar
Whalen ufs
Whalen iggi
Gietz
Gietz

19-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Pruning Branches

Y ou can use the WHERE and CONNECT BY clauses to prune the tree; that is, to control which nodes or
rows are displayed. The predicate you use acts as a Boolean condition.

Examples

Starting at the root, walk from the top down, and eliminate empl oyee Higgins in the result, but process the
child rows.

SELECT departnent_id, enployee_id,|ast_nanme, job_id, salary
FROM enpl oyees

WHERE |l ast_nane != 'Higgins'

START W TH manager _id IS NULL

CONNECT BY PRI OR enpl oyee_i d = manager _i d;

Starting at the root, walk from the top down, and eliminate empl oyee Higginsand al child rows.

SELECT departnent _id, enployee id,last _nane, job_id, salary
FROM enpl oyees

START W TH manager _id | S NULL

CONNECT BY PRI OR enpl oyee_id = manager _i d

AND | ast _nane != "Higgins';

Introduction to Oracle9i: SQL 19-13

Summary

In this lesson, you should have learned the following:

®* You can use hierarchical queries to view a
hierarchical relationship between rows in a table.

®* You specify the direction and starting point of
the query.

®* You can eliminate nodes or branches by pruning.

‘ 19-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Y ou can use hierarchical queriesto retrieve data based on a natural hierarchical relationship between rows
inatable. The LEVEL pseudocolumn counts how far down a hierarchical tree you have traveled. Y ou can
specify the direction of the query using the CONNECT BY PRI OR clause. Y ou can specify the starting
point using the START W TH clause. Y ou can use the WHERE and CONNECT BY clausesto prune the
tree branches.

Introduction to Oracle9i: SQL 19-14

Practice 19 Overview

This practice covers the following topics:

* Distinguishing hierarchical queries from
nonhierarchical queries

®* Performing tree walks

* Producing an indented report by using the LEVEL
pseudocolumn

®* Pruning the tree structure
* Sorting the output

‘ 19-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 19 Overview

In this practice, you gain practical experience in producing hierarchical reports.
Paper-Based Questions
Question 1 is a paper-based question.

Introduction to Oracle9i: SQL 19-15

Practice 19

1. Look at the following output. |sthis output the result of a hierarchical query? Explain why or why not.

a. Exhibit 1:

| EMPLOYEE_ID | LAST NAME | MANAGER ID | SALARY | DEPARTMENT_ID

| 144 [argas | 124 | 2600 | A0
| 143 |Matos | 124 | 2600 | 50
| 142 |Davies | 124 | 3100 | 50
| 141 |Rajs | 124 | 3500 | &0
| 107 |Lorentz | 103 | 4200 | B0
| 200 Wyhalen | 101 | 4400 | 10
| 124 |Mourgos | 100 | 5800 | 500
| 104 |Emst | 103 | BOOD | B0
| 202 |Fay | 201 | 000 | 20

-

201 |Hartstein i 100 [1300 L
| 101 |Kochhar | 100 | 17000 | a0
| 102 |De Haan | 100 | 17000 | a0
| 100 |King | | 24000 | a0

Exhibit 2:

| EMPLOYEE_ID | LAST_NAME | DEPARTMENT ID | DEPARTMENT NAME
| 200 Whalan | 10 |Adrministration

| 201 |Hartstain | 20 Marketing

| 202 |Fay | 20 Marketing

| 124 |Mnurgns | a0 |Shipping

| 141 |Rajs | 50 |Shipping

101 |Knchhar 50 |E}{ecutive

100 |King [90 |Exeo e
|
|
|
|

|

| 102 |De Haan 90 |E}{ecutive
| 205 |Higgin5 110 |A|:|:|:|unting
| 206 |Gietz 110 |Accounting

Introduction to Oracle9i: SQL 19-16

Practice 19 (continued)

Exhibit 3:

| RANK | EMPLOYEE_ID | DEPARTMENT ID | MANAGER_ID

| 1| 100 | a0 |

| 7 101 | an | 100
| 3 | 200 | 10 | 101
| 3| 205 | 110 | 101
| 4| 206 | 110 | 205
| 7| 102 | o0 | 100
| 3 | 103 | B0 | 102
| 4| 104 | RO | 103
- 174 | G| 43
| 3 | 176 | a0 | 143
| 3 | 178 | | 143
| 7| 201 | 20 | 100
| 3 | 202 | 20 | 201

Introduction to Oracle9i: SQL 19-17

Practice 19 (continued)

2. Produce areport showing an organization chart for Mourgos' s department. Print last names, salaries,
and department IDs.

| LAST_NAME | SALARY | DEPARTMENT _ID

\Mourgos | 5200 | £0
Rajs | 3500 | &0
\Davies | 3100 | &0
Matos | 2600 | &0
Margas | 2500 | £0

3. Create areport that shows the hierarchy of the managers for the employee Lorentz. Display his
immediate manager first.

| LAST_NAME
|Hunn|d

|De Haan

|King

Introduction to Oracle9i: SQL 19-18

Practice 19 (continued)

4. Create an indented report showing the management hierarchy starting from the employee whose
LAST_NAME is Kochhar. Print the employee's last name, manager ID, and department I1D. Give
alias names to the columns as shown in the sample output.

| NAME | MGR | DEPTNO

Kochhar 100 a0
| | |

_Whalen | 101 | 10
|

__Higgins | 101 | 110
| g | 205 110
|

If you have time, complete the following exercise:

5. Produce a company organization chart that shows the management hierarchy. Start with the person
at thetop level, exclude all people with ajob ID of | T_PROG, and exclude De Haan and those
employees who report to De Haan.

| LAST _NAME | EMPLOYEE_ID | MANAGER_ID

King | 100 |

Hartstein | 20 | 100
[Fay | 202 | 201
Kochhar | 101 | 100
“WWhalen | 200 | 101
Higgins | 206 | 101
(Gietz | 206 | 205
IMourgos | 124 | 100
Rajs | 141 | 124
Davies | 142 | 124
Matos | 143 | 124
“argas | 144 | 124
Tlatkey | 143 | 100
Abel | 174 | 143
Taylor | 176 | 149
Grant | 178 | 149

16 rows selected.

Introduction to Oracle9i: SQL 19-19

Introduction to Oracle9i: SQL 19-20

Oracle 91 Extensions to
DML and DDL Statements

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Describe the features of multitable inserts
* Use the following types of multitable inserts
- Unconditional | NSERT
- Pivoting | NSERT
- Conditional ALL | NSERT
— Conditional FI RST | NSERT
* Create and use external tables

* Name the index at the time of creating a primary
key constraint

20-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

This lesson addresses the Oracle9i extensionsto DDL and DML statements. 1t focuses on multitable
| NSERT statements, types of multitable | NSERT statements, external tables, and the provision to name the
index at the time of creating a primary key constraint.

Introduction to Oracle9i: SQL 20-2

Review of the | NSERT Statement

* Add new rows to a table by using the | NSERT
statement.

| NSERT I NTO table [(colum [, colum...])]
VALUES (value [, value...]);

* Only onerow is inserted at a time with this syntax.

I NSERT | NTO depart nent s(departnent _i d, departnent_nane,
manager id, |ocation_id)

VALUES (70, 'Public Relations', 100, 1700);

1 row created.

20-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Review of the | NSERT Statement
Y ou can add new rows to atable by issuing the | NSERT statement.

In the syntax:
tabl e isthe name of thetable
col umm is the name of the column in the table to populate
val ue is the corresponding value for the column

Note: This statement with the VALUES clause adds only one row at atimeto atable.

Introduction to Oracle9i: SQL 20-3

Review of the UPDATE Statement

Modify existing rows with the UPDATE statement.

UPDATE tabl e
SET colum = value [, colum = val ue,

[WHERE condi tion];

* Update more than one row at atime, if required.

* Specific row or rows are modified if you specify
the WHERE clause.

UPDATE enpl oyees
SET departnent _id =
WHERE enpl oyee id =
1 row updat ed.

20-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Review of the UPDATE Statement
Y ou can modify existing rows by using the UPDATE statement.

In the syntax:
tabl e is the name of the table
col um is the name of the column in the table to populate
val ue isthe corresponding value or subquery for the column
condi tion identifies the rows to be updated and is composed of column names

expressions, constants, subqueries, and comparison operators
Confirm the update operation by querying the table to display the updated rows.

Introduction to Oracle9i: SQL 20-4

Overview of Multitable | NSERT Statements

®* The | NSERT..SELECT statement can be used to
insert rows into multiple tables as part of a single
DML statement.

* Multitable | NSERT statements can be used in data
warehousing systems to transfer data from one or
more operational sources to a set of target tables.

* They provide significant performance
improvement over:

— Single DML versus multiple | NSERT. . SELECT
statements

— Single DML versus a procedure to do multiple
inserts using | F. . . THEN syntax

20-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of Multitable | NSERT Statements

In amultitable | NSERT statement, you insert computed rows derived from the rows returned from the
evaluation of a subquery into one or more tables.

Multitable | NSERT statements can play a very useful role in a data warehouse scenario. Y ou need to load
your data warehouse regularly so that it can serveits purpose of facilitating business analysis. To do this,
data from one or more operational systems needs to be extracted and copied into the warehouse. The
process of extracting data from the source system and bringing it into the data warehouse is commonly
called ETL, which stands for extraction, transformation, and loading.

During extraction, the desired data has to be identified and extracted from many different sources, such as
database systems and applications. After extraction, the data has to be physically transported to the target
system or an intermediate system for further processing. Depending on the chosen way of transportation,
some transformations can be done during this process. For example, a SQL statement that directly accesses
aremote target through a gateway can concatenate two columns as part of the SELECT statement.

Once dataisloaded into an Oraclei, database, data transformations can be executed using SQL
operations. With Oracle9i multitable | NSERT statementsis one of the techniques for implementing SQL
data transformations.

Introduction to Oracle9i: SQL 20-5

Overview of Multitable Insert Statements

Multitable | NSERTS statement offer the benefits of the | NSERT ... SELECT statement when multiple
tables are involved as targets. Using functionality prior to Oracle9i, you had to deal with nindependent

I NSERT ... SELECT statements, thus processing the same source data n times and increasing the
transformation workload n times.

Aswiththeexisting | NSERT ... SELECT statement, the new statement can be paralleized and used
with the direct-load mechanism for faster performance.

Each record from any input stream, such as a nonrelational database table, can now be converted into
multiple records for more relational database table environment. To implement this functionality before
Oracle9i, you had to write multiple | NSERT statements.

Introduction to Oracle9i: SQL 20-6

Types of Multitable | NSERT Statements

Oracle9i introduces the following types of multitable insert
statements:

* Unconditional | NSERT
 Conditional ALL | NSERT

e Conditional FI RST | NSERT
e Pivoting | NSERT

20-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Multitable | NSERT Statements
Oracle 9i introduces the following types of multitable | NSERT statements:
* Unconditional | NSERT
» Conditional ALL | NSERT
» Conditional FI RST | NSERT
* Pivoting | NSERT
Y ou use different clauses to indicate the type of | NSERT to be executed.

Introduction to Oracle9i: SQL 20-7

Multitable | NSERT Statements

Syntax

| NSERT [ALL] [conditional _insert_clause]
[Insert _into_clause val ues_cl ause] (subquery)

condi tional _insert_clause

[ALL] [FI RST]
[WHEN condition THEN] [insert _into_clause val ues_cl ause]
[ELSE] [insert _into_clause val ues_cl ause]

20-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Multitable | NSERT Statements
The dide displays the generic format for multitable | NSERT statements. There are four types of multitable
insert statements.
* Unconditional | NSERT
» Conditional ALL | NSERT
» Conditional FI RST | NSERT
* Pivoting | NSERT
Unconditional | NSERT: ALL i nt o_cl ause

Specify ALL followed by multiplei nsert _i nt o_cl auses to perform an unconditional multitable
insert. The Oracle Server executeseachi nsert _i nt o_cl ause once for each row returned by the
subquery.

Conditional | NSERT: condi ti onal _i nsert _cl ause

Specify thecondi ti onal _i nsert _cl ause to perform a conditional multitable insert. The Oracle
server filterseach i nsert _i nt o_cl ause through the corresponding WHEN condition, which
determineswhether that i nsert _i nt o_cl ause isexecuted. A single multitable insert statement can
contain up to 127 WHEN clauses.

Conditional | NSERT: ALL

If you specify ALL, the Oracle server evauates each WHEN clause regardless of the results of the
evaluation of any other WHEN clause. For each WHEN clause whose condition evaluates to true, the Oracle
server executes the corresponding | NTO clause list.

Introduction to Oracle9i: SQL 20-8

Multitable | NSERT Statements (continued)
Conditional FI RST: | NSERT

If you specify FI RST, the Oracle Server evaluates each WHEN clause in the order in which it appearsin the
statement. If the first WHEN clause evaluatesto true, the Oracle Server executes the corresponding | NTO
clause and skips subsequent WHEN clauses for the given row.

Conditional | NSERT: ELSE Clause
For agiven row, if no WHEN clause evauates to true:

» |If you have specified an ELSE, clause the Oracle Server executesthe | NTO clause list associated
with the ELSE clause.

» |If you did not specify an ELSE clause, the Oracle Server takes no action for that row.
Restrictionson Multitable | NSERT Statements

* You can perform multitable inserts only on tables, not on views or materialized views.

* You cannot perform a multitable insert into aremote table.

* You cannot specify atable collection expression when performing a multitable insert.

e Inamultitableinsert, all of thei nsert _i nt o_cl auses cannot combine to specify more than
999 target columns.

Introduction to Oracle9i: SQL 20-9

Unconditional | NSERT ALL

* Select the EMPLOYEE | D, H RE_DATE, SALARY, and
MANAGER | Dvalues from the EMPLOYEES table for
those employees whose EMPLOYEE | Dis greater
than 200.

* Insert these values into the SAL_HI STORY and
MGR_HI STORY tables using a multitable | NSERT.

| NSERT ALL
| NTO sal _history VALUES(EVPI D, H REDATE, SAL)
I NTO ngr _hi story VALUES(EVPI D, MGR, SAL)

SELECT enpl oyee_id EMPI D , hire_dat e H REDATE,
salary SAL , manager _id MR

FROM enpl oyees

VWHERE enpl oyee id > 200;

2 rows created.

‘ 20-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Unconditional | NSERT ALL

The example in the dide inserts rowsinto both the SAL_H STORY and the MGR_HI STORY tables.

The SELECT statement retrieves the details of employee ID, hire date, salary, and manager 1D of those
employees whose employee ID is greater than 200 from the EMPLOYEES table. The details of the
employee ID, hire date, and salary are inserted into the SAL_HI STORY table. The details of employee ID,
manager ID and salary are inserted into the MGR_HI STORY table.

This| NSERT statement isreferred to as an unconditional | NSERT, as no further restriction is applied to
the rowsthat are retrieved by the SELECT statement. All the rows retrieved by the SELECT statement are
inserted into the two tables, SAL_HI STORY and MGR_HI STORY. The VALUES clause in the | NSERT
statements specifies the columns from the SELECT statement that have to be inserted into each of the
tables. Each row returned by the SELECT statement results in two inserts, one for the SAL_HI STORY
table and one for the MGR_HI STORY table.

Thefeedback 8 r ows cr eat ed can beinterpreted to mean that atotal of eight inserts were performed
on the base tables, SAL_HI STORY and MGR_HI STORY.

Introduction to Oracle9i: SQL 20-10

Conditional | NSERT ALL

* Select the EMPLOYEE | D, H RE_DATE, SALARY and
MANAGER | Dvalues from the EMPLOYEES table for
those employees whose EMPLOYEE | Dis greater
than 200.

* |f the SALARY is greater than $10,000, insert these
values into the SAL_HI STORY table using a
conditional multitable | NSERT statement.

* |f the MANAGER | Dis greater than 200, insert these
values into the MGR_HI STORY table using a
conditional multitable | NSERT statement.

‘ 20-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Conditional | NSERT ALL

The problem statement for a conditional | NSERT ALL statement is specified in the slide. The solution to
the preceding problem is shown in the next page.

Introduction to Oracle9i: SQL 20-11

Conditional | NSERT ALL

| NSERT ALL

VWHEN SAL > 10000 THEN

| NTO sal _hi story VALUES(EVPI D, H REDATE, SAL)

VWHEN MGR > 200 THEN

I NTO nmgr _hi story VALUES(EMPI D, MGR, SAL)

SELECT enpl oyee_id EMPI D, hire_date H REDATE ,
salary SAL, manager_id MR

FROM enpl oyees

WHERE enpl oyee_id > 200;

4 rows created.

4 rows created.

‘ 20-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Conditional | NSERT ALL (continued)

The example on the dide is similar to the example on the previous dide asit inserts rows into both the
SAL_HI STORY and the MGR_HI STORY tables. The SELECT statement retrieves the details of employee
ID, hire date, salary, and manager ID of those employees whose employee ID is greater than 200 from the
EMPLOYEES table. The details of employee ID, hire date, and salary are inserted into the SAL_HI STORY
table. The details of employee ID, manager ID, and salary are inserted into the MGR_HI STORY table.

This| NSERT statement isreferred to asaconditional ALL | NSERT, as a further restriction is applied to
the rowsthat are retrieved by the SELECT statement. From the rows that are retrieved by the SELECT
statement, only those rows in which the value of the SAL column is more than 10000 are inserted in the
SAL_HI STORY table, and similarly only those rows where the value of the MR column is more than 200
areinserted inthe MGR_HI STCORY table.

Observe that unlike the previous example, where eight rows were inserted into the tables, in this example
only four rows are inserted.

Thefeedback 4 rows cr eat ed canbeinterpreted to mean that atotal of four inserts were performed
on the base tables, SAL_HI STORY and MGR_HI STORY.

Introduction to Oracle9i: SQL 20-12

Conditional FI RST | NSERT

* Select the DEPARTMENT_I D, SUM SALARY) and
MAX(H RE_DATE) from the EMPLOYEES table.

* |f the SUM SALARY) is greater than $25,000 then
insert these values into the SPECI AL_SAL, using a
conditional FI RST multitable | NSERT.

* If the first WHEN clause evaluates to true, the
subsequent VWHEN clauses for this row should be
skipped.

* For the rows that do not satisfy the first WHEN
condition,insert into the HI REDATE_HI STORY_00,
or H REDATE_HI STORY_99, or H REDATE_HI STORY
tables, based on the value in the H RE_DATE
column using a conditional multitable | NSERT.

‘ 20-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Conditional FI RST | NSERT

The problem statement for a conditional FI RST | NSERT statement is specified in the slide. The solution
to the preceding problem is shown on the next page.

Introduction to Oracle9i: SQL 20-13

Conditional FI RST | NSERT

| NSERT FI RST

VWHEN SAL > 25000 THEN

| NTO speci al _sal VALUES(DEPTI D, SAL)

WHEN HI REDATE |i ke (' %0%) THEN

| NTO hiredate_history 00 VALUES(DEPTI D, H REDATE)

WHEN HI REDATE |ike (' 9%9%) THEN

| NTO hiredate_history 99 VALUES(DEPTI D, H REDATE)

ELSE

| NTO hiredate_history VALUES(DEPTI D, H REDATE)

SELECT departnent _id DEPTID, SUM sal ary) SAL,
MAX(hi re_dat e) H REDATE

FROM enpl oyees

GROUP BY departnent _id;

2 rows created.

‘ 20-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Conditional FI RST | NSERT (continued)

The example in the dide inserts rows into more than one table, using one single | NSERT statement. The
SELECT statement retrieves the details of department ID, total salary, and maximum hire date for every
department in the EMPLOYEES table.

This| NSERT statement isreferred to asa conditional FI RST | NSERT, as an exception is made for the
departments whose total salary is more than $25,000. The condition WHEN ALL > 25000 is evaluated
first. If the total salary for a department is more than $25,000, then the record isinserted into the

SPECI AL_SAL tableirrespective of the hire date. If thisfirst WHEN clause evaluates to true, the Oracle
server executes the corresponding | NTO clause and skips subsequent WWHEN clauses for this row.

For the rows that do not satisfy the first WHEN condition (WHEN SAL > 25000), therest of the
conditions are evaluated just as a conditional | NSERT statement, and the records retrieved by the SELECT
statement areinserted into the H REDATE_HI STORY_00, or H REDATE_HI STORY_99, or

HI REDATE_HI STORY tables, based on the value in the H REDATE column.

Thefeedback 8 rows cr eat ed can beinterpreted to mean that atotal of eight | NSERT statements
were performed on the base tables, SPECI AL_SAL ,HI REDATE_HI STORY_00,
HI REDATE_HI STORY_99, and H REDATE_HI STORY.

Introduction to Oracle9i: SQL 20-14

Pivoting | NSERT

® Suppose you receive a set of sales records from a
nonrelational database table,
SALES SOURCE_DATAIn the following format:

EMPLOYEE | D, WEEK | D, SALES MO\,
SALES TUE, SALES WED, SALES THUR,
SALES FRI

* You would want to store these records in the
SALES | NFOtable in a more typical relational

format:
EMPLOYEE | D, WEEK, SALES

® Using a pivoting | NSERT, convert the set of sales
records from the nonrelational database table to
relational format.

‘ 20-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Pivoting | NSERT

Pivoting is an operation in which you need to build a transformation such that each record from any input
stream, such as, a nonrelational database table, must be converted into multiple records for amore
relational database table environment.

In order to solve the problem mentioned in the dide, you need to build a transformation such that each
record from the original nonrelational database table, SALES SOURCE DATA, is converted into five
records for the datawarehouse's SALES | NFOtable. This operation is commonly referred to as pivoting.

The problem statement for apivoting | NSERT statement is specified in the dide. The solution to the
preceding problem is shown in the next page.

Introduction to Oracle9i: SQL 20-15

Pivoting | NSERT

| NSERT ALL
| NTO sal es_info VALUES (enpl oyee id, week id, sal es_MON)
| NTO sal es_info VALUES (enpl oyee_id, week _id, sal es_TUE)
| NTO sal es_info VALUES (enpl oyee id, week i d, sal es_ VED)
| NTO sal es_i nfo VALUES (enpl oyee_id, week i d, sal es_THUR)
| NTO sal es_info VALUES (enpl oyee id, week id, sales FRI)
SELECT EMPLOYEE | D, week id, sales MON, sal es TUE,
sal es VEED, sal es_THUR sal es_FRI
FROM sal es_source _dat a;

5 rows created.

‘ 20-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Pivoting | NSERT

In the examplein the dlide, the sales datais received from the nonrelational database table
SALES_SOURCE_DATA, which isthe details of the sales performed by a sales representative on each day
of aweek, for aweek with a particular week ID.

DESC SALES_SOURCE_DATA

| Name | Null? | Type
EMPLOYEE_ID | NUMBER(E)
WYEEK, D | NUMBER(2)
ISALES MON i MUMBER{R 2)
ISALES TUE | INUMBER(E 2)
ISALES WED i INUMBER(S 2)
|SALES THUR | INUMBER(E 2)
|SALES_FRI i MUMBER(B 2)

Introduction to Oracle9i: SQL 20-16

Pivoting INSERT (continued)
SELECT * FROM SALES SOURCE_DATA;

[EMPLOYEE_ID |WEEK_ID [SALES_MON |[SALES TUE |[SALES_WED |[SALES_THUR [SALES_FRI
| 176 | G | 2000 | 3000 | 4000 | 5000 | S

DESC SALES_| NFO

| Name | Null? | Type

EMPLOYEE_ID | NUMBER(E)

WYEEK | NUMBER(Z)

|SALES | INUMBER(B ,2)
SELECT * FROM sal es_i nf o;
| EMPLOYEE_ID | WEEK | SALES
| 176 | E | 2000
| 176 | 6 | 3000
| 176 | B | 4000
| 176 | 6 | &000
| 176 | E | 00D

Observe in the preceding example that using a pivoting | NSERT, one row from the
SALES SOURCE DATA tableis converted into five records for the relational table, SALES | NFO.

Introduction to Oracle9i: SQL 20-17

External Tables

* External tables are read-only tables in which the
data is stored outside the database in flat files.

* The metadata for an external table is created
using a CREATE TABLE statement.

* With the help of external tables, Oracle data can
be stored or unloaded as flat files.

* The data can be queried using SQL but you cannot
use DML and no indexes can be created.

‘ 20-18 Copyright © Oracle Corporation, 2001. All rights reserved.

External Tables

An external table is aread-only table whose metadata is stored in the database but whose data is stored
outside the database. Using the Oracle9 external table feature, you can use external data as avirtua table.
This data can be queried and joined directly and in parallel without requiring the external datato be first
loaded in the database. Y ou can use SQL, PL/SQL, and Javato query the datain an external table.

The main difference between external tables and regular tablesisthat externally organized tables are read-
only. No DML operations (UPDATE/I NSERT/DELETE) are possible, and no indexes can be created on
them.

The means of defining the metadata for external tablesisthrough the CREATE TABLE . ..

ORGANI ZATI ON EXTERNAL statement. This external table definition can be thought of asaview that is
used for running any SQL query against external data without requiring that the external datafirst be
loaded into the database.

The Oracle Server provides two major access drivers for external tables. One, the loader access driver, or
ORACLE_LOADER, is used for reading of data from external files using the Oracle |oader technology. This
access driver allows the Oracle Server to access data from any data source whose format can be interpreted
by the SQL*Loader utility. The other Oracle provided access driver, the import/export access driver, or
ORACLE_ | NTERNAL, can be used for both the importing and exporting of data using a platform
independent format.

Introduction to Oracle9i: SQL 20-18

Creating an External Table

* Usetheexternal table_ clause along with the
CREATE TABLE syntax to create an external table.

e Specify ORGANI ZATI ON as EXTERNAL to indicate
that the table is located outside the database.

* Theexternal tabl e clause consists of the
access driver TYPE,
external data properties, and the REJECT
LIMT.

* Theexternal _data properties consistof the
following:

— DEFAULT DI RECTORY
— ACCESS PARAMETERS
— LOCATI ON

‘ 20-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an External Table

Y ou create external tables using the ORGANI ZATI ON EXTERNAL clause of the CREATE TABLE
statement. Y ou are not in fact creating a table. Rather, you are creating metadata in the data dictionary that
you can use to access external data. The ORGANI ZATI ON clause lets you specify the order in which the
data rows of the table are stored. By specifying EXTERNAL in the ORGANI ZATI ON clause, you indicate
that the table is aread-only table located outside the database.

TYPE access_dri ver _type indicatesthe accessdriver of the external table. The access driver isthe
Application Programming Interface (API) that interprets the external data for the database. If you do not
specify TYPE, Oracle uses the default access driver, ORACLE _LQADER.

The REJECT LI M T clause lets you specify how many conversion errors can occur during a query of the
external data before an Oracle error isreturned and the query is aborted. The default valueis 0.

DEFAULT DI RECTORY letsyou specify one or more default directory objects corresponding to
directories on the file system where the external data sources may reside. Default directories can also be
used by the access driver to store auxiliary files such as error logs. Multiple default directories are
permitted to facilitate load balancing on multiple disk drives.

The optional ACCESS PARAMETERS clause lets you assign values to the parameters of the specific
access driver for this external table. Oracle does not interpret anything in this clause. It is up to the access
driver to interpret thisinformation in the context of the external data.

The LOCATI ON clause lets you specify one external locator for each external data source. Usually the

| ocati on_speci fi er isafile but it need not be. Oracle does not interpret this clause. It isup to the
access driver to interpret thisinformation in the context of the externa data.

Introduction to Oracle9i: SQL 20-19

Example of Creating an External Table

Create a DI RECTORY object that corresponds to the
directoryon the file system where the external data
source resides.

CREATE DI RECTORY enp_dir AS '/flat _files' ;

‘ 20-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Creating an External Table

Usethe CREATE DI RECTORY statement to create a directory object. A directory object specifies an alias
for adirectory on the server'sfile system where an external data source resides. Y ou can use directory
names when referring to an external data source, rather than har d-code the operating system pathname, for
greater file management flexibility.

You must have CREATE ANY DI RECTCORY system privileges to create directories. When you create a
directory, you are automatically granted the READ object privilege and can grant READ privileges to other
users and roles. The DBA can aso grant this privilege to other users and roles.

Syntax

CREATE [OR REPLACE] DI RECTORY AS ' pat h_nane';

In the syntax:
OR REPLACE

directory

' pat h_nane'

Specify OR REPLACE to re-create the directory database object if it
aready exists. You can use this clause to change the definition of an
existing directory without dropping, re-creating, and regranting database
object privileges previoudy granted on the directory. Users who had
previously been granted privileges on aredefined directory can till
access the directory without being regranted the privileges

Specify the name of the directory object to be created. The maximum
length of directory is 30 bytes. Y ou cannot qualify a directory object
with a schema name.

Specify the full pathname of the operating system directory on the server where

the files are located. The single quotes are required, with the result that the path
name is case sensitive.

Introduction to Oracle9i: SQL 20-20

Example of Creating an External Table

CREATE TABLE ol denmp (

enpno NUMBER, enpnane CHAR(20), birthdate DATE)
ORGANI ZATI ON EXTERNAL

(TYPE ORACLE_LQADER

DEFAULT DI RECTORY enp_dir

ACCESS PARAMETERS

(RECORDS DELI M TED BY NEW.I NE

BADFI LE ' bad_enp'

LOGFI LE ' | og_enp'

FI ELDS TERM NATED BY ',

(enmpno CHAR,

enmpnanme CHAR,

birthdate CHAR date fornmat date mask "dd-non-yyyy"))
LOCATI ON (" enpl.txt"))

PARALLEL 5

REJECT LIMT 200;

Table created.

‘ 20-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Creating an External Table (continued)

Assume that there is aflat file that has records in the followi ng format:
10, j ones, 11- Dec- 1934
20,smth, 12-Jun-1972

Records are delimited by new lines, and the fields are all terminated by a",". The name of thefileis:
[flat_files/enpl.txt

To convert thisfile as the data source for an external table, whose metadata will reside in the database, you
need to perform the following steps:

1. Create adirectory object enp_di r as follows:
CREATE DI RECTORY enp_dir AS '/flat _files'
2. Runthe CREATE TABLE command shown inthe dide.

The examplein the dide illustrates the table specification to create an external table for the file:

[flat _files/enpl.txt
In the example, the TYPE specification is given only to illustrate its use. If not specified,
ORACLE_LOADER isthe default access driver. The ACCESS PARAMETERS provide values to parameters
of the specific access driver and are interpreted by the access driver, not by the Oracle Server.
The PARALLEL clause enables five parallel execution serversto simultaneousy scan the external data
sources (files) when executing the | NSERT | NTO TABLE statement. For example, if PARALLEL=5
were specified, then more that one parallel execution server could be working on a data source. Because
external tables can be very large, for performance reasonsit is advisable to specify the PARALLEL clause,
or aparalé hint for the query.

Introduction to Oracle9i: SQL 20-21

Example of Defining External Tables (continued)

The REJECT LI M T clause specifiesthat if more than 200 conversion errors occur during a query of the

external data, the query is aborted and an error returned. These conversion errors can arise when the access
driver triesto transform the data in the data file to match the external table definition.

Once the CREATE TABLE command executes successfully, the external table OLDEMP can be described,

gueried upon like arelational table.

DESC ol denp
| Name | Null? | Type
[EMPHNO | NUMBER
|[EMPHAME | ICHAR(20)
|BIRTHDATE | DATE

In the following example, the | NSERT | NTO TABLE statement generates a dataflow from the external
data source to the Oracle SQL engine where datais processed. As dataiis extracted from the external table,
it istransparently converted by the ORACLE_ LOADER access driver fromits external representation into
an equivalent Oracle native representation. The | NSERT statement inserts data from the external table
OLDEMP into the Bl RTHDAYS table:

I NSERT | NTO bi rt hdays(enpno, enpnane, birthdate)
SELECT enpno, enpnane, birthdate FROM ol denp;

2 rows created.

We can now select from the BI RTHDAYS table.
SELECT * FROM bi rt hdays;

| EMPNO | EMPNAME i BIRTHDATE
| 10 |jones |11-DEC-1934 00:00:00
| 20 |smith [12-JUN-1972 00:00:00 |

2 rows selected.

Introduction to Oracle9i: SQL 20-22

Querying External Tables

SELECT *
FROM ol denp

empl.txt

‘ 20-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Querying External Table

An external table does not describe any datathat is stored in the database. Nor does it describe how datais
stored in the external source. Instead, it describes how the external table layer needs to present the data to
the server. It isthe responsibility of the access driver and the external table layer to do the necessary
transformations required on the data in the data file so that it matches the external table definition.

When the database server needs to access data in an external source, it calls the appropriate access driver to
get the data from an external source in aform that the database server expects.

It isimportant to remember that the description of the data in the data source is separate from the definition
of the external table. The source file can contain more or fewer fields than there are columnsin the table.
Also, the data types for fields in the data source can be different from the columns in the table. The access
driver takes care of ensuring the data from the data source is processed so that it matches the definition of
the external table.

Introduction to Oracle9i: SQL 20-23

CREATE | NDEX with CREATE TABLE Statement

CREATE TABLE NEW EMP
(enpl oyee_id NUMBER(6)
PRI MARY KEY USI NG | NDEX
(CREATE | NDEX enp_id_idx ON
NEW EMP(enpl oyee_id)),
first_name VARCHAR2(20),
| ast _nane VARCHAR2(25));

Table created.

SELECT | NDEX_NAME | TABLE_NAME

FROM USER | NDEXES
VWHERE TABLE_NAME = ' NEW EMP' ;

L RN\ / A iAR — ——ArI — AiAan —

| INDEX_NAME | TABLE_NAME |
[EMP_ID_IDX INEW EMP |

‘ 20-24 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE | NDEX with CREATE TABLE Statement

In the example in the dide, the CREATE | NDEX clause is used with the CREATE TABLE statement to

create a primary key index explicitly. Thisis an enhancement provided with Oracle 9i. Y ou can now name
your indexes at the time of PRI MARY key creation, unlike before where the Oracle Server would create an
index, but you did not have any control over the name of the index. The following exampleillustrates this:

CREATE TABLE EMP_UNNAMED | NDEX

(enpl oyee_i d NUMBER(6) PRI MARY KEY |,
first_name VARCHARZ2(20),
| ast _name VARCHAR2(25));

Tabl e created.

SELECT | NDEX_NAME, TABLE_NAME
FROM USER_| NDEXES
WHERE TABLE NAME = ' EMP_UNNAMED | NDEX' ;

| INDEX_NAME | TABLE_NAME |
[SYS_coo1254 EMP_UNNAMED _INDEX |

Observe that the Oracle Server gives aname to the Index that it creates for the PRI MARY KEY column.
But this name is cryptic and not easily understood. With Oracle9i, you can name your PRI MARY KEY
column indexes, as you create the table with the CREATE TABLE statement. However, prior to Oraclegi,
if you named your primary key constraint at the time of constrai nt creation, the index would also be created
with the same name as the constraint name.

Introduction to Oracle9i: SQL 20-24

Summary

In this lesson, you should have learned how to use the
following enhancements to DML and DDL statements:

®* The | NSERT..SELECT statement can be used to insert
rows into multiple tables as part of a single DML
statement.

e External tables can be created.

* Indexes can be named using the CREATE | NDEX
statement along with the CREATE TABLE statement.

‘ 20-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
Oracle 9i introduces the following types of multitable | NSERT statements.
* Unconditional | NSERT
» Conditional ALL | NSERT
» Conditional FI RST | NSERT
* Pivoting | NSERT

Usetheext er nal _t abl e_cl ause to create an external table, which is aread-only table whose
metadata is stored in the database but whose data is stored outside the database. External tables let you
query data without first loading it into the database.

With Oraclegi, you can hame your PRI MARY KEY column indexes as you create the table with the
CREATE TABLE statement.

Introduction to Oracle9i: SQL 20-25

Practice 20 Overview

This practice covers the following topics:
* Writing unconditional | NSERT

* Writing conditional ALL | NSERT

* Pivoting | NSERT

* Creating indexes along with the CREATE TABLE
command

20-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 20 Overview

In this practice, you write multitable inserts and use the CREATE | NDEX command at the time of table
creation, along with the CREATE TABLE command.

Introduction to Oracle9i: SQL 20-26

Practice 20
1. Runthecre_sal history. sqgl scriptintheLabsfolder to create the SAL_HI STORY table.
2. Display the structure of the SAL_HI STORY table.

| Name | Null? | Type
[EMPLOYEE_ID | NUMBERE)
HIRE_DATE ! \DATE

[SALARY | INUMBER(E 2)

3.Runthecre_ngr_history. sql scriptinthelLabsfolder to createthe MaR_HI STORY table.
4. Display the structure of the MGR_HI STORY table.

| MName | Null? ! Type
EMPLOYEE_ID | MUMBERIE)
MANAGER D | NUMBERIE)
ISALARY | INUMBER(S 2)

5.Runthecre_speci al _sal . sql scriptinthe Labsfolder to create the SPECI AL_SAL table.
6. Display the structure of the SPECI AL_SAL table.

| Name | Null? | Type
EMPLOYEE_ID | IMUMBER(E)
\SALARY | MUMBER(3,2) |

7. a. Write aquery to do the following:

— Retrieve the details of the employee ID, hire date, salary, and manager 1D of those
employees whose employee ID islessthan 125 from the EMPLOYEES table.

— If the salary is more than $20,000, insert the details of employee ID and salary into the

SPECI AL_SAL table.
— Insert the details of employee ID, hire date , salary into the SAL_HI STCRY table.

— Insert the details of the employee ID, manager 1D, and salary into the MGR_HI STORY

table.

Introduction to Oracle9i: SQL 20-27

Practice 20 (continued)

b. Display the records from the SPECI AL_SAL table.

| EMPLOYEE_ID | SALARY
| 100 | 24000
c. Display the records from the SAL_HI STORY table.
| EMPLOYEE_ID | HIRE_DATE | SALARY
| 101 [21-SEP-29 | 17000
| 102 [13-JAN-93 | 17000
| 103 |D3-JAN-90 | 9000
| 104 [21-MAY-91 | OO0
| 107 |07-FEB-99 | 4200
| 124 [16-NOY-39 | 5800
B rows selected.
d. Display the records from the MGR_HI STORY table.
| EMPLOYEE_ID | MANAGER_ID | SALARY
| 101 | 100 | 17000
| 102 | 100 | 17000
| 103 | 102 | 5000
| 104 | 103 | EO00
| 107 | 103 | 4200
| 124 | 100 | 5800

6 rows selected.

Introduction to Oracle9i: SQL 20-28

Practice 20 (continued)

8. a Runthecre_sal es_source_dat a. sqgl scriptinthe Labsfolder to create the
SALES SOURCE_DATA table.

b. Runthei ns_sal es_source_dat a. sql scriptinthe Labsfolder to insert recordsinto the
SALES SOURCE_DATA table.

c. Display the structure of the SALES SOURCE_DATA table.

| Name | Null? | Type
EMPLOYEE_ID | IMUKMBER{E]
WEEK_ID | NUMBER(Z)
\SALES_MON | NUMBER{E 2}
ISALES_TUE | INUMBER(B,2)
|SALES WED | IMUKMBER{E,2)
'SALES THUR | NUMBER(B,2)
\SALES FRI | NUMBER{E 2}

d. Display therecordsfromthe SALES SOURCE_DATA table.

[EMPLOYEE_ID \WEEK_ID |SALES_MON |SALES_TUE [SALES_WED |SALES_THUR [SALES_FRI
| 178 | 5 | 1750 | 2200 | 1500 | 1500 | 3000

e. Runthecre_sal es_i nfo. sql scriptintheLabsfolder to create the SALES_| NFOtable.
f. Display the structure of the SALES | NFOtable.

| NMame | Null? | Type
EMPLOYEE_ID | [MUMBERIE)
WYEEK | [MUMBER(Z)
\SALES | [NUMBER(S,2)

Introduction to Oracle9i: SQL 20-29

Practice 20 (continued)

g. Writeaquery to do the following:

Retrieve the details of employee ID, week ID, sales on Monday, sales on Tuesday, sales on Wednesday,
saleson Thursday, and sales on Friday from the SALES _SOURCE_DATA table.

Build atransformation such that each record retrieved from the SALES _SOURCE_DATA tableis
converted into multiple records for the SALES | NFOtable.

Hint: Use apivoting | NSERT statement.
h. Display the recordsfrom the SALES | NFOtable.

| EMPLOYEE ID ! WEEK | SALES

! 178 | B | 1750
| 178 | | 2200
| 178 | G | 1500
! 178 | | 1500
| 178 | | 3000

5 rows selected.

9.a Createthe DEPT_NAMED | NDEX table based on the following table instance chart. Name the index for
the PRI MARY KEY column as DEPT_PK | DX.

COLUMN Name Deptno Dname
Primary Key Yes

Datatype Number VARCHAR2
Length 4 30

b. Query the USER | NDEXES table to display the | NDEX_NAME for the DEPT_NAMED_| NDEX table.

i INDEX_NAME | TABLE_NAME
DEPT_PkK_IDX DEPT_MAMED INDEX

Introduction to Oracle9i: SQL 20-30

A

Practice Solutions

Practice 1 Solutions
1. [Initiate an iSQL*Plus session using the user 1D and password provided by the instructor.

2. iSQL*Plus commands access the database.
False

3. Thefollowing SELECT statement executes successfully:
True

SELECT | ast_nane, job_id, salary AS Sal
FROM enpl oyees;

4. Thefollowing SELECT statement executes successfully:
True

SELECT *
FROM j ob_grades;

5. Therearefour coding errorsin this statement. Can you identify them?

SELECT enpl oyee_id, |ast_nane
sal x 12 ANNUAL SALARY
FROM enpl oyees;

— The EMPLOYEES table does not contain acolumn called sal . Thecolumniscalled
SALARY.

— Themultiplication operator is*, not x, asshown in line 2.

— The ANNUAL SALARY aliascannot include spaces. The alias should read
ANNUAL _SALARY or beenclosed in double quotation marks.

— A commaismissing after the column, LAST_NAME.
6. Show the structure of the DEPARTMENTS table. Select all data from the DEPARTMENTS table.

DESCRI BE depart nents

SELECT *
FROM departnents;

7. Show the structure of the EMPLOYEES table. Create a query to display the last name, job code,

hire date, and employee number for each employee, with employee number appearing first. Save
your SQL statement to afilenamed | abl_7. sql .

DESCRI BE enpl oyees

SELECT enpl oyee_id, last_nane, job_id, hire_date
FROM enpl oyees;

Introduction to Oracle9i: SQL A-3

Practice 1 Solutions (continued)
8. Runyour query inthefilel abl_7. sql .
SELECT enpl oyee_id, last_nane, job_id, hire_date
FROM enpl oyees;
9. Create aquery to display unique job codes from the EMPLOYEES table.

SELECT DI STINCT job_id
FROM enpl oyees;

If you have time, complete the following exercises.

10. Copy the statement from | abl_7. sql into the iSQL*Plus Edit window. Name the column
headingsEnp #, Enpl oyee, Job, and Hi r e Dat e, respectively. Run your query again.
SELECT enployee_id "Enp #", |ast_nanme "Enpl oyee",

job_id "Job", hire_date "Hire Date"
FROM enpl oyees;

11. Display the last name concatenated with the job 1D, separated by a comma and space, and name the
column Enpl oyee and Title.

SELECT last _nane|]|', '||job_id "Enployee and Title"
FROM enpl oyees;

If you want an extra challenge, complete the following exercise:

12. Create aquery to display all the data from the EMPLOYEES table. Separate each column by a
comma. Name the column THE_OUTPUT.

SELECT enpl oyee_id || '," || first_nane || '," || last_nane
[1 "," || email || '," || phone_nunber || ","||] job_id
[l "," || manager_id || '," || hire_date || "," ||
salary || '," || commission_pct || ',' || departnent id
THE_QUTPUT

FROM enpl oyees;

Introduction to Oracle9i: SQL A-4

Practice 2 Solutions

1. Create aquery to display the last name and salary of employees earning more than $12,000.
Place your SQL statement in atext filenamed | ab2_1. sql . Runyour query.

SELECT | ast_name, salary
FROM enpl oyees
WHERE sal ary > 12000;

2. Create aquery to display the employee last name and department number for employee number
176.

SELECT | ast_name, departnent _id
FROM enpl oyees
WHERE enpl oyee_id = 176;

3. Modifyl ab2_1. sql todisplay thelast name and salary for all employeeswhose salary ishot in
the range of $5,000 and $12,000. Place your SQL statement in atext filenamed | ab2_3. sql .

SELECT | ast_name, salary
FROM enpl oyees
VWHERE sal ary NOT BETWEEN 5000 AND 12000;

4. Display the employee last name, job ID, and start date of employees hired between February 20,
1998, and May 1, 1998. Order the query in ascending order by start date.

SELECT last_nane, job_id, hire_date

FROM enpl oyees

VHERE hi re_dat e BETWEEN ' 20- Feb-1998' AND ' 01- May- 1998
ORDER BY hire_date;

Introduction to Oracle9i: SQL A-5

Practice 2 Solutions (continued)

5. Display the last name and department number of all employeesin departments 20 and 50 in
aphabetical order by name.

SELECT last_nane, department _id
FROM enpl oyees
WHERE department _id IN (20, 50)
CRDER BY | ast _nane;

6. Modify | ab2_3. sql tolist the last name and salary of employees who earn between $5,000 and
$12,000, and are in department 20 or 50. Label the columnsEnpl oyee and Mont hl y Sal ary,
respectively. Resave |l ab2_3. sql asl ab2_6. sql . Runthe statementin | ab2_6. sql .

SELECT |l ast_nane "Enpl oyee", salary "Mnthly Sal ary"
FROM enpl oyees

VHERE salary BETWEEN 5000 AND 12000

AND department _id IN (20, 50);

7. Display the last name and hire date of every employee who was hired in 1994,

SELECT last_nane, hire_date
FROM enpl oyees
VHERE hire_date LIKE '%94';

8. Digplay the last name and job title of all employeeswho do not have a manager.

SELECT | ast _name, job_id
FROM enpl oyees
WHERE manager _id IS NULL;

9. Display thelast name, salary, and commission for all employees who earn commissions. Sort
datain descending order of salary and commissions.

SELECT last_nane, salary, conm ssion_pct
FROM enpl oyees

WHERE comm ssion_pct 1S NOT NULL

ORDER BY sal ary DESC, commi ssion_pct DESC,

Introduction to Oracle9i: SQL A-6

Practice 2 Solutions (continued)
If you have time, complete the following exercises.
10. Display the last names of all employees where the third letter of the nameisan a.

SELECT | ast _name
FROM enpl oyees
WHERE last_name LIKE ' a%;

11. Display the last name of all employees who have an a and an ein their last name.

SELECT |l ast_nane

FROM enpl oyees
VWHERE | ast _name LIKE ' %a%
AND | ast _name LIKE ' %% ;

If you want an extra challenge, complete the following exercises:

12. Display the last name, job, and salary for all employees whose job is sales representative or stock
clerk and whose salary is not equal to $2,500, $3,500, or $7,000.

SELECT last _nane, job_id, salary

FROM enpl oyees

VHERE job_id IN ('SA REFP, 'ST_CLERK)
AND salary NOT I N (2500, 3500, 7000);

13. Modify | ab2_6. sqgl to display thelast name, salary, and commission for all employees whose
commission amount is 20%. Resave| ab2_6. sql asl ab2_13. sql . Rerun the statement in
| ab2_13. sql .

SELECT |l ast_nane "Enpl oyee", salary "Mnthly Sal ary",
commi ssi on_pct

FROM enpl oyees

VHERE comm ssi on_pct = . 20;

Introduction to Oracle9i: SQL A-7

Practice 3 Solutions
1. Writeaquery to display the current date. Label the column Dat e.

SELECT sysdate "Date"
FROM dual ;

2. For each employee, display the employee number, last_name, salary, and salary increased by 15%
and expressed as awhole number. Label the column New Sal ar y. Place your SQL statement in a
text filenamed | ab3_2. sql .

SELECT enpl oyee_id, |ast_nane, salary,
ROUND(sal ary * 1.15, 0) "New Sal ary"
FROM enpl oyees;

3. Runyour query inthefilel ab3_2. sql .

SELECT enpl oyee_id, |ast_name, salary,
ROUND(sal ary * 1.15, 0) "New Sal ary"
FROM enpl oyees;

4. Modify your query | ab3_2. sqgl to add acolumn that subtracts the old salary from
the new salary. Label the column | ncr ease. Savethe contents of thefileas| ab3_4. sql . Run
the revised query.

SELECT enpl oyee_id, |ast_nane, salary,
ROUND(sal ary * 1.15, 0) "New Sal ary",
ROUND(sal ary * 1.15, 0) - salary "lncrease"

FROM enpl oyees;

5. Write aquery that displays the employee’ slast names with the first letter capitalized and all other
letters lowercase and the length of the name for all employees whose name starts with J, A, or M.
Give each column an appropriate label. Sort the results by the employees’ |ast names.

SELECT | Nl TCAP(| ast _nane) " Nane",
LENGTH(| ast _nane) "Length"
FROM enpl oyees

VWHERE | ast _name LIKE 'J%
OR | ast _name LIKE ' Mo
OR | ast _name LIKE ' A%

ORDER BY | ast _nane;

Introduction to Oracle9i: SQL A-8

Practice 3 Solutions (continued)

6. For each employee, display the employee’ s last name, and cal cul ate the number of months between

today and the date the employee was hired. Label the column MONTHS_WORKED. Order your results
by the number of months employed. Round the number of months up to the closest whole number.
Note: Your resultswill differ.

SELECT | ast_nanme, ROUND(MONTHS_BETWEEN

(SYSDATE, hire_date)) MONTHS WORKED
FROM enpl oyees

ORDER BY MONTHS_BETWEEN(SYSDATE, hire_date);

Write aquery that produces the following for each employee:
<enpl oyee | ast nane> earns <salary> nonthly but wants <3 tines
sal ar y>. Label thecolumn Dream Sal ari es.

SELECT | ast _name || ' earns '

| TO CHAR(sal ary, 'fn$99, 999.00")

| ' nonthly but wants '

| TO CHAR(salary * 3, 'fn$99, 999.00')
| '.' "Dream Sal ari es"

|
|
|
|
enpl oyees;

FROM

If you have time, complete the following exercises.

8.

9.

10.

Create aquery to display the last name and salary for all employees. Format the salary to be 15
characterslong, |eft-padded with $. Label the column SALARY.
SELECT | ast _narne,

LPAD(sal ary, 15, '$') SALARY
FROM enpl oyees;

Display each employee’ slast name, hire date, and salary review date, which isthe first Monday after
six months of service. Label the column REVI EW Format the dates to appear in the format similar to
“Monday, the Thirty-First of July, 2000.”

SELECT | ast _name, hire_date,
TO_CHAR(NEXT_DAY(ADD_MONTHS(hi re_date, 6),' MONDAY'),

"frnDay, "the" Ddspth "of" Month, YYYY') REVIEW
FROM enpl oyees;

Display the last name, hire date, and day of the week on which the employee started. Label
the column DAY. Order the results by the day of the week starting with Monday.

SELECT | ast _name, hire_date,

TO CHAR(hire_date, 'DAY') DAY
FROM enpl oyees
ORDER BY TO CHAR(hire date - 1, 'd");

Introduction to Oracle9i: SQL A-9

Practice 3 Solutions (continued)

If you want an extra challenge, complete the following exercises:

11. Create aquery that displays the employees’ last names and commission amounts. If an employee
does not earn commission, put “* No Commission.” Label the column COVM

SELECT | ast _nane,
NVL(TO_CHAR(comm ssi on_pct), 'No Comm ssion') COMM
FROM enpl oyees;

12. Create aquery that displays the employees’ last names and indicates the amounts of their annual
salaries with asterisks. Each asterisk signifies athousand doll ars. Sort the data in descending order
of salary. Label the column EMPLOYEES_AND THEI R_SALARI ES.

SELECT rpad(l ast_nanme, 8)||" '|| rpad(' ', salary/1000+1, '*")
EMPLOYEES_AND_THEI R_SALARI ES

FROM enpl oyees

ORDER BY sal ary DESC;

13. Using the DECODE function, write a query that displays the grade of al employees based on the
value of the column JOB_|I D, as per the following data:

JOB GRADE
AD PRES

ST_MAN

| T_PROG

SA REP

ST CLERK

None of the above

om®oOnOw >

SELECT job_id, decode (job_id,

'ST CLERK', 'FE,
' SA_REP', 'D,
"IT PROG, 'C,
' ST_MVAN , 'B,
'AD PRES, 'A,
' 0') GRADE

FROM enpl oyees;

Introduction to Oracle9i: SQL A-10

Practice 3 Solutions (continued)
14. Rewrite the statement in the preceding question using the CASE syntax.

SELECT job_id, CASE job_id
VWHEN ' ST_CLERK' THEN '
VHEN ' SA REP' THEN '
VWHEN ' | T_PROG THEN '
VHEN ' ST_MAN THEN '
VWHEN ' AD PRES THEN ' A
ELSE '0' END GRADE

FROM enpl oyees;

®QQMm

Introduction to Oracle9i: SQL A-11

Practice 4 Solutions
1. Writeaquery to display the last name, department number, and department name for al
employees.
SELECT e.last_nane, e.departnment_id, d.departnent_nane

FROM enpl oyees e, departments d
WHERE e. departnent _id = d. departnent _id;

2. Create auniquelisting of al jobsthat are in department 30. Include the location of department 90
in the output.

SELECT DI STINCT job_id, location_id
FROM enpl oyees, departnents

WHERE enpl oyees. departnent _i d
AND enpl oyees. departnent _id =

= departnents. departnent _id
80;

3. Writeaquery to display the employee last name, department name, location ID, and city of al
employees who earn a commission.

SELECT e.last _nane, d.departnment_nane, d.location_id, |l.city
FROM enpl oyees e, departnments d, |ocations |

WHERE e. departnment _id = d.departnent _id

AND

d.location_id =1.location_id

AND e. commi ssion_pct |'S NOT NULL;

4. Display the employee last name and department name for all employees who have an a (lowercase)
in their last names. Place your SQL statement in atext filenamed | ab4_4. sql .

SELECT | ast _nane, departnment nane

FROM enpl oyees, departnents

WHERE enpl oyees. departnent _id = departnents. departnent _id
AND | ast _nane LIKE ' %a% ;

Introduction to Oracle9i: SQL A-12

Practice 4 Solutions (continued)

5. Write aquery to display the last name, job, department number, and department name for all
employees who work in Toronto.

SELECT e.last_nane, e.job_id, e.departnent _id,
d. depart nent _nane

FROM enpl oyees e JO N departnents d

ON (e.departnent _id = d.departnent _id)

JO N | ocations |

ON (d.location_id =1.location_id)

WHERE LOVER(I . city) "toronto';

6. Display the employee last name and employee number along with their manager’ s last name and
manager number. Label the columns Enpl oyee, Enp#, Manager , and Myr #, respectively.
Place your SQL statement in atext filenamed | ab4_6. sql .

SELECT w. | ast _nane "Enpl oyee", w. enployee_id "EMP#",
m | ast _name " Manager", menployee_id "Mr#"

FROM enpl oyees w joi n enpl oyees m

ON (w. nanager _id = menpl oyee_id);

Introduction to Oracle9i: SQL A-13

Practice 4 Solutions (continued)

7. Modify | ab4_6. sql todisplay all employeesincluding King, who has no manager.
Place your SQL statement in atext filenamed | ab4 7. sql . Runthequeryinl ab4_7. sql
SELECT w. |l ast _nane "Enpl oyee", w. enployee id "EMP#H",
m | ast _name "Manager"”, menployee_id "Mr#"
FROM enpl oyees w
LEFT OQUTER JO N enpl oyees m
ON (w. manager _id = m enpl oyee_id);

If you have time, complete the following exercises.

8. Create aquery that displays employee last names, department numbers, and all the
employees who work in the same department as a given employee. Give each column an appropriate
label.

SELECT e.departnment _id departnent, e.last_nanme enpl oyee,
c.last _nane col | eague

FROM enpl oyees e JO N enpl oyees ¢

ON (e.department _id = c.departnent _id)

WHERE e.enployee_id <> c. enpl oyee_id

ORDER BY e.departnent _id, e.last_nane, c.l|ast_nane;

9. Show the structure of the JOB_GRADES table. Create a query that displays the name, job,
department name, salary, and grade for all employees.
DESC JOB_GRADES
SELECT e.last_nane, e.job_id, d.departnent_nane,
e.salary, j.grade_level
FROM enpl oyees e, departnents d, job_grades |
WHERE e.departnent_id = d.departnent_id
AND e.salary BETVWEEN j .| owest _sal AND j. hi ghest_ sal;
-- OR
SELECT e.last _nane, e.job_id, d.departnent_nane,
e.salary, j.grade_level
FROM enpl oyees e JO N departnents d
N (e.departnment _id = d.departnent _id)
JON job_grades j
ON (e.salary BETWEEN j .| owest _sal AND j. highest_sal);

Introduction to Oracle9i: SQL A-14

Practice 4 Solutions (continued)
If you want an extra challenge, complete the following exercises:
10. Create aquery to display the name and hire date of any employee hired after employee Davies.

SELECT e.l ast _nane, e.hire_date

FROM enpl oyees e, enpl oyees davies
WHERE davi es. | ast_nanme = ' Davi es'

AND davies.hire _date < e.hire_date

-- OR

SELECT e.l ast _nane, e.hire_date

FROM enpl oyees e JO N enpl oyees davi es
ON (davi es.last_nane = 'Davies')
WHERE davies.hire date < e. hire_date;

11. Display the names and hire dates for all employees who were hired before their managers, along with
their manager’ s names and hire dates. Label the columns Enpl oyee, Enp
Hi red, Manager,and Mgr Hi r ed, respectively.

SELECT w.last_nane, w. hire date, mlast _name, mhire_date
FROM enpl oyees w, enpl oyees m

WHERE w. nanager _id = m enpl oyee_id

AND w. hire date < mhire_date;

-- OR

SELECT w.last_nane, w. hire date, mlast _name, mhire_date
FROM enpl oyees w JO N enpl oyees m

ON (w. manager _id = m enpl oyee_id)

VWHERE w. hire date < mhire_date;

Introduction to Oracle9i: SQL A-15

Practice 5 Solutions
Determine the validity of the following three statements. Circle either True or False.

1. Group functions work across many rows to produce one result.
True

2. Group functionsinclude nullsin calculations.

False. Group functionsignore null values. If you want to include null values, usethe NVL
function.

3. The WHERE clause restricts rows prior to inclusion in agroup calculation.
True

4. Display the highest, lowest, sum, and average salary of al empl oyees. Label the columns
Maxi mum M ni mum Sum and Aver age, respectively. Round your results to the nearest whole
number. Place your SQL statement in atext file named | ab5_6. sql .

SELECT ROUND(MAX(sal ary), 0) "Maxi nuni',
ROUND(M N(sal ary), 0) "M ni nuni,
ROUND(SUM sal ary), 0) "Suni,
ROUND(AVE sal ary), 0) "Aver age"
FROM enpl oyees;

5. Modify thequery inl ab5_4. sql to display the minimum, maximum, sum, and average salary for
eachjob type. Resavel ab5_ 4. sql tol ab5_5. sql . Runthe statement in| ab5_5. sql .

SELECT job_id, ROUND(MAX(salary),0) "Maximnt,
ROUND(M N(sal ary), 0) "M ni nuni,
ROUND(SUM sal ary), 0) "Sunt,
ROUND(AVQE sal ary), 0) "Aver age"

FROM enpl oyees

GROUP BY job_id;

Introduction to Oracle9i: SQL A-16

Practice 5 Solutions (continued)
6. Write aquery to display the number of people with the same job.
SELECT job_id, COUNT(*)
FROM enpl oyees
GRCOUP BY job_id;

7. Determine the number of managers without listing them. Label the column Nunber of
Manager s. Hint: Use the MANAGER | D column to determine the number of managers.

SELECT COUNT(DI STI NCT manager _i d) "Nunmber of Managers"
FROM enpl oyees;

8. Write aquery that displays the difference between the highest and lowest salaries. Label the column
DI FFERENCE.

SELECT MAX(salary) - M N(sal ary) DI FFERENCE
FROM enpl oyees;

If you have time, complete the following exercises.

9. Display the manager number and the salary of the lowest paid employee for that manager.
Exclude anyone whose manager is not known. Exclude any groups where the minimum
salary islessthan $6,000. Sort the output in descending order of salary.

SELECT manager _id, M N(sal ary)
FROM enpl oyees

VWHERE manager _id IS NOT NULL
GROUP BY manager _i d

HAVING M N(sal ary) > 6000
ORDER BY M N(sal ary) DESC,

10. Writeaquery to display each department’ s name, location, number of employees, and the average
salary for al employeesin that department. Label the columns Nane, Locat i on, Nunber of
Peopl e, and Sal ary, respectively. Round the average salary to two decimal places.

SELECT d. depart ment _name "Nanme", d.location_id "Location",
COUNT(*) "MNunber of People"”,
ROUND(AV@E sal ary), 2) "Sal ary"

FROM enpl oyees e, departnents d

VWHERE e.departnment _id = d.departnent _id

GROUP BY d. department _nane, d.location_id;

Introduction to Oracle9i: SQL A-17

Practice 5 Solutions (continued)
If you want an extra challenge, complete the following exercises:

11. Create aquery that will display the total number of employees and, of that total, the number of
employees hired in 1995, 1996, 1997, and 1998. Create appropriate column headings.

SELECT COUNT(*) total,
SUM DECODE(TO_CHAR(hire_date, 'YYYY'),1995,1,0))"1995",
SUM DECODE(TO_CHAR(hire_date, 'YYYY'), 1996,1,0))"1996",
SUM DECODE(TO_CHAR(hire_date, 'YYYY'),1997,1,0))"1997",
SUM DECODE(TO_CHAR(hire_date, 'YYYY'),1998,1,0))"1998"
FROM enpl oyees;

12. Create amatrix query to display the job, the salary for that job based on department number, and the
total salary for that job, for departments 20, 50, 80, and 90, giving each column an appropriate
heading.

SELECT job_id "Job",
SUM DECCODE(departnent _id , 20, salary)) "Dept 20",
SUM DECCODE(departnent _id , 50, salary)) "Dept 50",
SUM DECODE(departrnent _id , 80, salary)) "Dept 80",
SUM DECODE(department _id , 90, salary)) "Dept 90",
SUM sal ary) "Total"

FROM enpl oyees

GROUP BY job_ id;

Introduction to Oracle9i: SQL A-18

Practice 6 Solutions

1. Writeaquery to display the last name and hire date of any employeein the same
department as Zlotkey. Exclude Zlotkey.

SELECT | ast_nane, hire_date
FROM enpl oyees
WHERE departnent _id = (SELECT departnent id
FROM enpl oyees
WHERE | ast_name = 'Zl ot key')

AND | ast _nae <> 'Zl ot key' ;

2. Create aquery to display the employee numbers and last names of all employees who earn more than
the average salary. Sort the results in descending order of saary.

SELECT enpl oyee_id, |ast_nane

FROM enpl oyees

VWHERE salary > (SELECT AV{ sal ary)
FROM enpl oyees);

3. Writeaquery that displays the employee numbers and last names of all employeeswho work in a
department with any employee whose last name contains a u. Place your SQL statement in a text
filenamed | ab6_3. sql . Run your query.

SELECT enpl oyee_id, |ast_nane
FROM enpl oyees
WHERE departnent _id IN (SELECT departnent _id
FROM enpl oyees
WHERE | ast_nane like '%%);

4. Display the last name, department number, and job ID of all employees whose department location ID
is1700.

SELECT | ast _nane, departnent _id, job_ id

FROM enpl oyees
WHERE departnent _id I N (SELECT departnment _id
FROM departnents
WHERE | ocation_id = 1700);

Introduction to Oracle9i: SQL A-19

Practice 6 Solutions (continued)
5. Display the last name and salary of every employee who reportsto King.

SELECT | ast _nane, sal ary
FROM enpl oyees
WHERE nmanager id = (SELECT enpl oyee_id
FROM enpl oyees
WHERE | ast_nanme = 'King');

6. Display the department number, last name, and job ID for every employee in the Executive
department.

SELECT departnent _id, last_nane, job_id
FROM enpl oyees
WHERE departnent _id IN (SELECT department _id
FROM departnents
WHERE departnent _nane = ' Executive');

If you have time, complete the following exercises:

7. Modify thequeryinl ab6_3. sql to display the employee numbers, last names, and salaries of all
employees who earn more than the average salary and who work in a department with any employee
with auintheir name. Resave |l ab6_3. sql tol ab6_7. sqgl . Run the statement in
| ab6_7.sql .

SELECT enpl oyee_id, |ast_nane, salary
FROM enpl oyees
WHERE departnent _id IN (SELECT departnent id
FROM enpl oyees
VWHERE | ast_name like ' %u%)
AND sal ary > (SELECT AV sal ary)
FROM enpl oyees);

Introduction to Oracle9i: SQL A-20

Practice 7 Solutions
Determine whether the following statements are true or false:
1. Thefollowing statement is correct:
DEFINE & p_val = 100
False
Thecorrect use of DEFINE isDEFI NE p_val =100. The &isused within the SQL code.
2. The DEFI NE command isa SQL command.

False
The DEFI NE command isan iSQL*Plus command.

3. Writeascript file to display the employee last name, job, and hire date for all employees who
started between a given range. Concatenate the name and job together, separated by a space
and comma, and label the column Employees. Use the DEFI NE command to provide the two
ranges. Use the format MM/DD/YYYY. Savethe script fileas| ab7_3. sql .

SET ECHO OFF

SET VERI FY OFF

DEFI NE | ow_date = 01/01/1998
DEFI NE hi gh_date = 01/01/1999

SELECT last_nanme ||', '|| job_id EMPLOYEES, hire_date

FROM enpl oyees

WHERE hire_date BETWEEN TO_DATE(' & ow date', ' WM DD YYYY')
AND TO DATE(' &hi gh_date', ' MM DD YYYY')

/

UNDEFI NE | ow_dat e
UNDEFI NE hi gh_dat e
SET VERI FY ON

SET ECHO ON

Introduction to Oracle9i: SQL A-21

Practice 7 Solutions (continued)

4. Write ascript to display the employee last name, job, and department name for agiven location. The
search condition should allow for case-insensitive searches of the department location. Save the
script fileas| ab7_4. sql .

SET ECHO OFF
SET VERI FY OFF
COLUMWN | ast _nanme HEADI NG " EMPLOYEE NAME'

COLUWN department _name HEADI NG " DEPARTMVENT NANME"
SELECT e.last_nanme, e.job_id, d.departnent_nane

FROM enpl oyees e, departnents d, |ocations |
WHERE e.departnment _id = d.departnent _id

AND |.location_id = d.location_id

AND l.city = INITCAP(' & | ocation')

/

COLUWN | ast _nane CLEAR

COLUWN departnment _nanme CLEAR
SET VERI FY ON
SET ECHO ON

Introduction to Oracle9i: SQL A-22

Practice 7 Solutions (continued)

5. Modifythecodeinl| ab7_4. sql to create areport containing the department name, employee last
name, hire date, salary, and each employee' s annual salary for all employeesin agiven location.
Label the columns DEPARTMENT NAME, EMPLOYEE NAME, START DATE, SALARY, and
ANNUAL SALARY, placing the labels on multiple lines. Resave the script as| ab7_5. sql and
execute the commands in the script.

SET ECHO OFF

SET FEEDBACK OFF

SET VERI FY OFF

BREAK ON depart nent _name

COLUWN depart ment _nanme HEADI NG " DEPARTMENT| NAMVE"

COLUWN | ast _nane HEADI NG " EMPLOYEE| NAME"

COLUWN hi re_dat e HEADI NG " START| DATE"

COLUMWN sal ary HEADI NG " SALARY" FORVAT $99, 990. 00

COLUWN asal HEADI NG " ANNUAL| SALARY" FORMAT $99, 990. 00

SELECT d. department _nane, e.last_nane, e.hire_date,
e.salary, e.salary*12 asal

FROM departnents d, enployees e, |ocations |

WHERE e.departnent_id = d.departnent _id

AND d.location_id |.location_id

AND l.city " &p_Il ocati on’

ORDER BY d. depart nent _name

/

COLUWN department _name CLEAR
COLUWN | ast _nane CLEAR
COLUWN hire_date CLEAR
COLUWN sal ary CLEAR

COLUW asal CLEAR

CLEAR BREAK

SET VERI FY ON

SET FEEDBACK ON

SET ECHO ON

Introduction to Oracle9i: SQL A-23

Practice 8 Solutions
Insert datainto the MY_ EMPLOYEE table.

1. Runthestatementinthel ab8_1. sql script to build the MY_EMPLOYEE table that will be used for
the lab.

CREATE TABLE ny_enpl oyee
(id NUMBER(4) CONSTRAINT my_enpl oyee_ id_nn NOT NULL,
| ast _name VARCHAR2(25),
first_name VARCHAR2(25),

userid VARCHAR2(8),

salary NUMBER(9, 2));

2. Describe the structure of the MY_EMPLOYEE table to identify the column names.
DESCRI BE ny_enpl oyee

3. Add thefirst row of datato the MY_ EMPLOYEE table from the following sample data. Do not list the

columnsin the | NSERT clause.

ID LAST_NAME | FIRST_NAME [USERID SALARY
1 Patel Ralph rpatel 895
2 Dancs Betty bdancs 860
3 Biri Ben bbiri 1100
4 Newman Chad cnewman 750
5 Ropeburn Audrey aropebur 1550
I NSERT | NTO ny_enpl oyee
VALUES (1, 'Patel', 'Ralph', 'rpatel', 895);

Populate the MY_EMPL OYEE table with the second row of sample data from the preceding list. This
time, list the columns explicitly in the | NSERT clause.
I NSERT | NTO nmy_enpl oyee (id, |ast_nane, first_nane,
userid, salary)
VALUES (2, 'Dancs', 'Betty', 'bdancs', 860);

Confirm your addition to the table.

SELECT *
FROM ny_enpl oyee;

Introduction to Oracle9i: SQL A-24

Practice 8 Solutions (continued)

6. Writeaninsert statement in atext filenamed | oadenp. sql toload rowsinto the
MY_EMPLOYEE table. Concatenate the first letter of the first name and the first seven characters of
the last name to produce the userid.

SET ECHO OFF

SET VERI FY OFF

I NSERT | NTO ny_enpl oyee

VALUES (&p_id, '&p last _nane', '& first_nane',
| ower (substr (' & first_name', 1, 1) ||
substr(' & last _nane', 1, 7)), &p_salary);

SET VERI FY ON

SET ECHO ON

7. Populate the table with the next two rows of sample data by running the insert statement in the
script that you created.

SET ECHO OFF

SET VERI FY OFF

I NSERT | NTO nmy_enpl oyee

VALUES (&p_id, '&p_last_nane', '&p first_nane',
| ower (substr (' & _first_name', 1, 1) ||
substr(' & last _nane', 1, 7)), &p_salary);

SET VERI FY ON

SET ECHO ON

8. Confirm your additions to the table.

SELECT *
FROM nmy_enpl oyee;

9. Make the data additions permanent.
COW T;

Introduction to Oracle9i: SQL A-25

Practice 8 Solutions (continued)
Update and delete data in the MY_EMPLOYEE table.
10. Change the last name of employee 3 to Drexler.
UPDATE ny_enpl oyee

SET | ast _nane = 'Drexler’
VWHERE id = 3;

11. Change the salary to 1000 for al employees with a salary less than 900.

UPDATE ny_enpl oyee
SET salary = 1000
WHERE sal ary < 900;

12. Verify your changesto the table.

SELECT | ast_nane, salary
FROM my_enpl oyee;

13. Delete Betty Dancs from the MY_ EMPLOYEE table.

DELETE
FROM ny_enpl oyee
WHERE | ast _nane = ' Dancs';

14. Confirm your changesto the table.

SELECT *
FROM my_enpl oyee;

15. Commit all pending changes.
COW T;

Control data transaction to the MY_ EMPLOYEE table.

16. Populate the table with the last row of sample data by modifying the statementsin the script that you
created in step 6. Run the statementsin the script.

SET ECHO OFF

SET VERI FY OFF

I NSERT | NTO nmy_enpl oyee

VALUES (&p_id, '&p_last_nane', '&p first_nane',
| ower (substr (' & _first_nane', 1, 1) ||
substr (' & last_nane', 1, 7)), &p_salary);

SET VERI FY ON

SET ECHO ON

Introduction to Oracle9i: SQL A-26

Practice 8 Solutions (continued)
17. Confirm your addition to the table.

SELECT *
FROM ny _enpl oyee;

18. Mark an intermediate point in the processing of the transaction.
SAVEPO NT step_18;

19. Empty the entire table.

DELETE
FROM ny_enpl oyee;

20. Confirm that the tableis empty.

SELECT *
FROM mny_enpl oyee;

21. Discard the most recent DELETE operation without discarding the earlier | NSERT operation.
ROLLBACK TO step_18;

22. Confirm that the new row is till intact.

SELECT *
FROM ny_enpl oyee;

23. Make the data addition permanent.
COW T;

Introduction to Oracle9i: SQL A-27

Practice 9 Solutions

1. Create the DEPT table based on the following table instance chart. Place the syntax in a script called
| ab9_1. sql , then execute the statement in the script to create the table. Confirm that the tableis
created.

Column Name I D NANVE

Key Type
Nulls/Unique
FK Table
FK Column
Data type Nunber VARCHAR2
Length 7 25

CREATE TABLE dept
(i d NUVBER(7),
name VARCHAR2(25));

DESCRI BE dept

2. Populate the DEPT table with data from the DEPARTMENTS table. Include only columns that
you need.

| NSERT | NTO dept
SELECT departnent _id, departnent_nane
FROM departnments;

3. Create the EVP table based on the following table instance chart. Place the syntax in a script called
| ab9_3. sql , and then execute the statement in the script to create the table. Confirm that the tableis
created.

Column Name I D LAST_NAME FI RST_NAME DEPT_I D

Key Type
NullgUnique
FK Table
FK Column

Data type

Nunber

VARCHAR2

VARCHAR?

Number

Length

25

25

Introduction to Oracle9i: SQL A-28

Practice 9 Solutions (continued)

CREATE TABLE enp

(id NUMBER(7) ,
| ast _name VARCHAR2(25) ,
first_name VARCHAR2(25) ,
dept _id NUMVBER(7)) ;
DESCRI BE enp

4. Modify the EMP table to alow for longer employee last names. Confirm your modification.
ALTER TABLE enp
MODI FY (| ast_name VARCHAR2(50));

DESCRI BE enp

5. Confirm that both the DEPT and EMP tables are stored in the data dictionary. (Hint:
USER_TABLES)

SELECT tabl e name
FROM user tables
VHERE table_name IN (' DEPT', 'EMP);

6. Create the EMPLOYEES? table based on the structure of the EMPLOYEES table. Include only the
EMPLOYEE | D, FI RST_NAME, LAST_NAME, SALARY, and DEPARTMENT _| D columns. Name
the columns in your new table | D, FI RST_NAME, LAST_NAME, SALARY , and DEPT_I D,
respectively.

CREATE TABLE enpl oyees2 AS
SELECT enployee_id id, first_name, |ast_name, salary,

department _id dept _id
FROM enpl oyees;

7. Drop the EMP table.
DROP TABLE enp;

8. Renamethe EMPLOYEES? tableto EMP.
RENAMVE enpl oyees2 TO enp;

Introduction to Oracle9i: SQL A-29

Practice 9 Solutions (continued)

0.

10.

11.

Add a comment to the DEPT and EMP table definitions describing the tables. Confirm your additions
in the data dictionary.

COMMENT ON TABLE enp IS ' Enpl oyee Information';
COMMVENT ON TABLE dept IS ' Department |nformation';

SELECT *

FROM user _tab_comments
WHERE tabl e nanme = ' DEPT
OoR tabl e name = ' EMP ;

Drop the FI RST_NAME column from the EMP table. Confirm your modification by checking the
description of thetable.

ALTER TABLE enp
DROP COLUMN FI RST_NAME;

DESCRI BE enp

In the EMP table, mark the DEPT _| D column in the EMP table as UNUSED. Confirm your
modification by checking the description of the table.

ALTER TABLE enp
SET UNUSED (dept _id);

DESCRI BE enp

12. Drop al the UNUSED columns from the EMP table. Confirm your modification by checking the

description of thetable.

ALTER TABLE enp
DROP UNUSED COLUMNS;

DESCRI BE enp

Introduction to Oracle9i: SQL A-30

Practice 10 Solutions

1. Addatable-level PRI MARY KEY constraint to the EMP table on the | D column. The constraint
should be named at creation. Name the constraint ny_enp_i d_pk

ALTER TABLE enp
ADD CONSTRAI NT ny_enp_i d_pk PRI MARY KEY (id);

2. CreateaPRI MARY KEY constraint to the DEPT table using the | D column. The constraint should
be named at creation. Name the congtraint my _dept i d_pk.

ALTER TABLE dept
ADD CONSTRAI NT ny_deptid_pk PRI MARY KEY(id);

3. Add acolumn DEPT_I D to the EMP table. Add aforeign key reference on the EMP table that
ensures that the employee is not assigned to a nonexistent department. Name the constraint
ny_enp_dept _id fk.

ALTER TABLE enp
ADD (dept _id NUVBER(7));

ALTER TABLE enp
ADD CONSTRAI NT ny_enp_dept _id_fk
FOREI GN KEY (dept _i d) REFERENCES dept (id);

4. Confirm that the constraints were added by querying the USER_CONSTRAI NTS view. Note the
types and names of the constraints. Save your statement text in afilecalled | ab10_4. sql .

SELECT constraint_nanme, constraint_type
FROM user _constraints
WHERE table nane IN (' EM, ' DEPT');

5. Display the object names and types from the USER_OBJECTS data dictionary view for the EMP
and DEPT tables. Notice that the new tables and a new index were created.

SELECT obj ect _nane, object _type

FROM user _objects
WHERE obj ect _nane LI KE ' EMP%
OorR obj ect _nane LI KE ' DEPT% ;

If you have time, complete the following exercise:

6. Maodify the EMP table. Add a COVM SSI ON column of NUMBER data type, precision 2, scale 2.
Add acongtraint to the commission column that ensures that acommission value is greater than
zero.

ALTER TABLE EMP
ADD commi ssi on NUVBER(2, 2)
CONSTRAI NT nmy_enp_comm ck CHECK (comni ssion >= 0;

Introduction to Oracle9i: SQL A-31

Practice 11 Solutions

1. Createaview called EMPLOYEES_VU based on the employee numbers, employee names, and
department numbers from the EMPLOYEES table. Change the heading for the employee name to
EMPLOYEE.

CREATE OR REPLACE VI EW enpl oyees_vu AS
SELECT enpl oyee_id, |ast_nane enpl oyee, departnent _id
FROM enpl oyees;

2. Display the contents of the EMPLOYEES_VU view.
SELECT *
FROM enpl oyees_vu;
3. Select the view name and text from the USER_VI EWS data dictionary view.
Note: Another view aready exists. The EMP_DETAI LS VI EWwas created as part of your schema.

Note: To see more contents of a L ONG column, use the iSQL*Plus command SET LONG n, where
n isthe value of the number of characters of the L ONG column that you want to see.

SET LONG 600
SELECT vi ew_nane, text
FROM user _Vvi ews;

4. Using your EMPLOYEES_VU view, enter aquery to display all employee names and department
numbers.

SELECT enpl oyee, departnent_id
FROM enpl oyees_vu;

5. Create aview named DEPT50 that contains the employee numbers, employee last names, and
department numbers for all employeesin department 50. Label the view columns
EMPNO, EMPLOYEE, and DEPTNO. Do not allow an employee to be reassigned to another
department through the view.

CREATE VI EW dept 50 AS

SELECT enpl oyee_id enpno, |ast_name enpl oyee,
department _id deptno

FROM enpl oyees

WHERE departnment _id = 50

W TH CHECK OPTI ON CONSTRAI NT enp_dept 50;

Introduction to Oracle9i: SQL A-32

Practice 11 Solutions (continued)

6.

Display the structure and contents of the DEPT50 view.

DESCRI BE dept 50
SELECT *

FROM

dept 50;

7. Attempt to reassign Matos to department 80.

UPDATE dept 50
SET deptno = 80
WHERE enpl oyee = ' Matos';

If you have time, complete the following exercise:

8. Create aview caled SALARY_ VU based on the employee last names, department names, salaries,
and salary grades for al employees. Use the EMPLOYEES, DEPARTMENTS, and JOB_GRADES
tables. Label the columns Enpl oyee, Depar t nent , Sal ary, and G ade, respectively.

CREATE OR REPLACE VI EWsal ary_vu
AS
SELECT e.last_nane "Enpl oyee",
d. depart nent _nane "Departnent"”,
e.salary "Sal ary",
j . grade_| evel "G ades"
FROM enpl oyees e,
departnments d,
j ob_grades |
WHERE e.departnent_id = d.departnent _id
AND e.sal ary BETWEEN .l owest _sal and j.highest_sal;

Introduction to Oracle9i: SQL A-33

Practice 12 Solutions

1. Create a sequence to be used with the primary key column of the DEPT table. The sequence should
start at 200 and have a maximum value of 1000. Have your sequence increment by ten numbers.
Name the sequence DEPT | D_SEQ.

CREATE SEQUENCE dept _i d_seq
START W TH 200

| NCREMENT BY 10

MAXVALUE 1000;

2. Writeaquery inascript to display the following information about your sequences: sequence name,
maximum value, increment size, and last number. Name the script | ab12_ 2. sql . Runthe
statement in your script.

SELECT sequence_nane, nax_val ue, increnent_ by, |ast_nunber
FROM user _sequences;

3. Writeascript to insert two rowsinto the DEPT table. Name your script | ab12_3. sql .
Be sure to use the sequence that you created for the ID column. Add two departments named
Education and Administration. Confirm your additions. Run the commandsin your script.

| NSERT | NTO dept
VALUES (dept_id_seq. nextval, 'Education');

| NSERT | NTO dept
VALUES (dept_id_seq. nextval, '"Admnistration');

4. Create anonunigue index on the foreign key column (DEPT _I D) in the EMP table.

CREATE | NDEX enp_dept _id_idx ON enp (dept_id);

5. Display the indexes and uniqueness that exist in the data dictionary for the EMP table. Save the
statement into ascript named | ab12_5. sql .

SELECT i ndex_nane, table_name, uniqueness
FROM user i ndexes
WHERE tabl e _name = ' EMP' ;

Introduction to Oracle9i: SQL A-34

Practice 13 Solutions

1. What privilege should a user be given to log on to the Oracle Server? Isthis a system or an object

privilege?

The CREATE SESSI ON system privilege

What privilege should a user be given to create tables?

The CREATE TABLE privilege

If you create atable, who can pass along privilegesto other users on your table?

You can, or anyone you have given those privilegesto by usingthe W TH GRANT
OPTI ON.

You arethe DBA. Y ou are creating many users who require the same system privileges.
What should you use to make your job easier?

Createarole containing the system privilegesand grant theroletotheusers

What command do you use to change your password?

The ALTER USER statement

Grant another user access to your DEPARTMENTS table. Have the user grant you query accessto his
or her DEPARTIVENTS table.

Team 2 executes the GRANT st at enment.

GRANT sel ect
ON departnents
TO <user1>;

Team 1 executes the GRANT st at enment.

GRANT sel ect
N departnents
TO <user 2>;

VWHERE userl is the name of team1l and user2 is the name of team 2.

7.

Query all therows in your DEPARTMVENTS table.

SELECT *
FROM departnments;

Introduction to Oracle9i: SQL A-35

Practice 13 Solutions (continued)
8. Add anew row to your DEPARTMENTS table. Team 1 should add Education as department

number 500. Team 2 should add Human Resources department number 510. Query the other team’s

table.
Team 1 executes this | NSERT statenent.
I NSERT | NTO departnment s(departnent i d, departnent_nane)
VALUES (200, 'Education');

COW T;
Team 2 executes this | NSERT statenment.

I NSERT | NTO departnent s(departnent _id, departnent_nane)
VALUES (210, 'Administration');
COW T,
9. Create asynonym for the other team’s DEPARTMENTS table.
Team 1 creates a synonym naned tean®.

CREATE SYNONYM t ean®
FOR <user 2>. DEPARTMENTS;

Team 2 creates a synonym naned teaml.

CREATE SYNONYM t eaml
FOR <user1>. DEPARTMENTS,;

10. Query all the rowsin the other team’s DEPARTMVENTS table by using your synonym.
Team 1 executes this SELECT statenent.

SELECT *

FROM t ean®;
Team 2 executes this SELECT statenent.

SELECT *
FROM t eaml;

Introduction to Oracle9i: SQL A-36

Practice 13 Solutions (continued)
11. Query the USER_TABLES data dictionary to see information about the tables that you own.

SELECT tabl e _nane
FROM user _tabl es;

12. Query the ALL_TABLES data dictionary view to see information about all the tables that you
can access. Exclude tables that you own.

SELECT tabl e _nanme, owner
FROM all tables

VWHERE owner <> <your account>;
13. Revoke the SELECT privilege from the other team.
Team 1 revokes the privilege.

REVOKE sel ect

N departnents

FROM user 2;
Team 2 revokes the privilege.
REVOKE sel ect

ON departnents

FROM user 1;

Introduction to Oracle9i: SQL A-37

Practice 14 Solutions

1. Create the tables based on the following table instance charts. Choose the appropriate data types and

be sure to add integrity constraints.

a. Table name; MEMBER

Column_ | MEVBER_ | LAST_ FIRST_NAM | ADDRESS aTy PHONE JON
Name ID NANME E _
DATE

Key PK
Type
Null/ NN,U NN NN
Unique
Default System
Value Date
Data NUVBER | VARCHARZ | VARCHAR2 | VARCHAR? | VARCHARZ | VARCHAR? | DATE
Type
Length 10 25 25 100 30 15

CREATE TABLE nenber

(menber _id NUVBER(10)

CONSTRAI NT nmenber _nenber _i d_pk PRI MARY KEY,
| ast _name VARCHARZ2(25)
CONSTRAI NT nmenber | ast _nanme_nn NOT NULL,

first_name VARCHAR2(25) ,

addr ess VARCHAR2(100) ,

ci ty VARCHAR2(30),

phone VARCHAR2(15) ,

join_date DATE DEFAULT SYSDATE

CONSTRAI NT menber _join_date_nn NOT NULL);

Introduction to Oracle9i: SQL A-38

Practice 14 Solutions (continued)
b. Tablename: TI TLE

Column_ | TITLE_ID | TITLE DESCRI PTI ON | RATI NG CATEGORY | RELEASE_
Name DATE
Key PK
Type
Null/ NN,U NN NN
Unique
Check G, PG, R, DRAMA,
NC17, NR COMEDY,
ACTION,
CHILD,
SCIFI,
DOCUMEN-
TARY
Data Type | NUVBER VARCHARZ | VARCHAR? VARCHAR2 | VARCHARZ | DATE
Length 10 60 400 4 20
CREATE TABLE title
(title_id NUVBER(10)
CONSTRAINT title_ title_id_pk PRI MARY KEY,
title VARCHARZ2(60)
CONSTRAINT title title_nn NOT NULL,
description VARCHAR2(400)
CONSTRAI NT title_description_nn NOT NULL,
rating VARCHAR2(4)
CONSTRAINT title_rating_ck CHECK
(rating IN("G, "PG, "R, "NC17', "NR)),
cat egory VARCHAR2(20),
CONSTRAI NT title_category ck CHECK
(category IN (' DRAMA', ' COMEDY', 'ACTION ,

"CH LD, "SCIFI'",
rel ease_date DATE);

' DOCUMENTARY")),

Introduction to Oracle9i: SQL A-39

Practice 14 Solutions (continued)
c. Tablename: TI TLE_COPY

Column | COPY_ID TITLE_ID STATUS
Name
Key PK PK,FK
Type
Null/ NN,U NN,U NN
Unique
Check AVAILABLE,
DESTROYED,
RENTED,
RESERVED
FK Ref TI TLE
Table
FK Ref TITLE I D
Column
Data NUMBER NUMBER VARCHAR2
Type
Length 10 10 15
CREATE TABLE title_copy
(copy_id NUMBER(10) ,
title_id NUMBER(10)
CONSTRAINT title copy_title if_fk REFERENCES title(title_id),
st at us VARCHAR2(15)

CONSTRAI NT title_copy_status_nn NOT NULL
CONSTRAINT title_copy_status_ck CHECK (status IN

(" AVAI LABLE , 'DESTROYED ,' RENTED , ' RESERVED)),
CONSTRAINT title_copy_copy_id title_id_pk
PRI MARY KEY (copy_id, title_id));

Introduction to Oracle9i: SQL A-40

Practice 14 Solutions (continued)

d. Table name: RENTAL

Column |[BOOK_ [MEMBER_ [COPY_ |ACT_RET_ |EXP_RET_ | TITLE_
Name DATE I D I D DATE DATE I D

Key PK PK,FK1 PK,FK2 PK,FK2
Type

Default System System Date

Value Date + 2 days

FK Ref MEMBER TI TLE_ TI TLE_
Table coPY coPY
FK Ref MEMBER_| | COPY_ TITLE_I D
Column D | D

Data DATE NUMBER NUMBER | DATE DATE NUVBER
Type

Length 10 10 10

CREATE TABLE rent al

(book_dat e DATE DEFAULT SYSDATE,
menber _i d NUVBER(10)
CONSTRAI NT rental _menber _id_fk
REFERENCES nenber (menber _id),
copy_id NUVBER(10),

act _ret date DATE,
exp_ret_date DATE DEFAULT SYSDATE + 2,
title_id NUVBER(10) ,
CONSTRAI NT rental _book_date_copy_title_pk

PRI MARY KEY (book_date, nenber_id,
copy_id,title_id),

CONSTRAI NT rental _copy_id_ title_id_fk
FOREI GN KEY (copy_id, title_id)

REFERENCES title_copy(copy_id, title_ id));

Introduction to Oracle9i: SQL A-41

Practice 14 Solutions (continued)
e.

Table name: RESERVATI ON
Column RES MEMBER _ TITLE
Name DATE I D | D
Key PK PK,FK1 PK,FK2
Type
Null/ NN,U NN,U NN
Unigque
FK Ref MEMBER TI TLE
Table
FK Ref MEMBER | D TITLE ID
Column
Data Type DATE NUVBER NUVBER
Length 10 10
CREATE TABLE reservati on
(res_date DATE,

menber _i d NUVBER(10)

CONSTRAI NT reservati on_nenber _id

REFERENCES nenber (nmenber i d),

title id

NUMBER(10)
CONSTRAI NT reservation_title_id

REFERENCES title(title_id),
CONSTRAI NT reservation_resdate_nmemtit_pk PRI MARY KEY
(res_date,

Introduction to Oracle9i: SQL A-42

menber i d,

title id));

Practice 14 Solutions (continued)

2. Verify that the tables and constraints were created properly by checking the data dictionary.

SELECT table name

FROM user _tabl es

VHERE table_name IN (' MEMBER , 'TITLE , ' TITLE_COPY",
" RENTAL', ' RESERVATI ON');

SELECT constraint_nanme, constraint_type, table_nane
FROM user _constraints
VHERE table_name IN (' MEMBER , 'TITLE , ' TITLE _COPY",

" RENTAL', ' RESERVATI ON);

3. Create sequences to uniquely identify each row in the MEMBER table and the TI TLE table.

a. Member number for the VEMBER table: start with 101; do not allow caching of the
values. Name the sequence MEMBER_| D_SEQ.

CREATE SEQUENCE nenber _id_seq
START WTH 101
NOCACHE;

b. Title number for the TI TLE table: start with 92; no caching. Name the sequence
TI TLE_| D_SEQ.

CREATE SEQUENCE title_id_seq
START W TH 92
NOCACHE;

c. Verify the existence of the sequences in the data dictionary .

SELECT sequence_nane, increment by, |ast_nunber
FROM user _seguences
WHERE sequence_nane IN (' MEMBER ID SEQ , 'TITLE ID SEQ');

Introduction to Oracle9i: SQL A-43

Practice 14 Solutions (continued)

4. Add datato thetables. Create a script for each set of datato add.

a. Add movietitlesto the Tl TLE table. Write a script to enter the movie information. Save the
statementsin ascript named | ab14_4a. sql . Use the sequences to uniquely identify each
title. Enter the release dates in the DD- MON- YYYY format. Remember that single quotation
marksin a character field must be specially handled. Verify your additions.

SET ECHO OFF

INSERT INTO title(title id, title, description, rating,

category, release_date)

VALUES (title id seq. NEXTVAL, 'WIllie and Christnas Too',
"All of WIlie''s friends make a Christmas list for
Santa, but Wllie has yet to add his own wish list.",

"G, 'CH LD, TO DATE('05-QCT-1995',"' DD- MON- YYYY')

/

INSERT INTOtitle(title id , title, description, rating,

category, release_date)

VALUES (title_id_seq. NEXTVAL, 'Alien Again', 'Yet another
install ment of science fiction history. Can the
heroi ne save the planet fromthe alien Iife forn?',
"R, "SCIFI', TO DATE('19-MAY-1995',' DD- MON- YYYY'))

/

INSERT INTOtitle(title_id, title, description, rating,

category, release_date)

VALUES (title id seq. NEXTVAL, 'The dob', 'A nmeteor crashes
near a small American town and unl eashes carni vor ous
goo in this classic.', "NR, '"SCFI",

TO _DATE(' 12- AUG 1995', ' DD- MON- YYYY'))
/
INSERT INTO title(title_id, title, description, rating,
category, release_date)
VALUES (title id seq. NEXTVAL, 'MW Day Of', "Wth a little
luck and a I ot ingenuity, a teenager skips school for
a day in New York.', 'PG, 'COMVEDY',
TO DATE(' 12-JUL-1995',' DD- MON- YYYY'))
/

COWM T
/
SET ECHO ON

SELECT title
FROM title;

Introduction to Oracle9i: SQL A-44

Practice 14 Solutions (continued)

Title Description Rating | Category Release date
Willieand All of Willie' sfriends G CHILD 05-OCT-1995
Christmas make a Christmas list for
Too Santa, but Willie has yet to
add hisown wish list.
Alien Again | Yet another installationof | R SCIFI 19-MAY-1995
science fiction history. Can
the heroine save the planet
from the aien life form?
The Glob A meteor crashes near a NR SCIFI 12-AUG-1995
small American town and
unleashes carnivorous goo
inthisclassic.
My Day Off | Withalittleluck andalot | PG COMEDY | 12-JUL-1995
of ingenuity, a teenager
skips school for aday in
New Y ork
Miracleson | A six-year-old has doubts PG DRAMA 12-SEP-1995
Ice about Santa Claus, but she
discovers that miracles
really do exist.
Soda Gang After discovering acache | NR ACTION 01-JUN-1995

of drugs, ayoung couple
find themselves pitted
against a vicious gang.

Introduction to Oracle9i: SQL A-45

Practice 14 Solutions (continued)
b. Add data to the MEMBER table. Place the insert statementsin a script named

| ab14_4b. sql . Execute commands in the script. Be sure to use the sequence to add the
member numbers.

First_ Last Name | Address City Phone Join_Date

Name

Carmen Velasguez 283 King Street | Secttle 206-899-6666 | 08-MAR-1990

LaDoris Ngao 5 Modrany Bratidava | 586-355-8882 | 08-MAR-1990

Midori Nagayama | 68 ViaCentrae | Sao Paolo | 254-852-5764 | 17-JUN-1991

Mark Quick-to- 6921 King Lagos 63-559-7777 | 07-APR-1990

See Way

Audry Ropeburn 86 Chu Street Hong Kong | 41-559-87 18-JAN-1991

Molly Urguhart 3035 Laurier Quebec 418-542-9988 | 18-JAN-1991
SET ECHO OFF

SET VERI FY OFF
| NSERT | NTO menber (menber _i d,

city,

SET VERI FY ON
SET ECHO ON

"&city',

phone,

' &phone’ ,

first_nane,
j oi n_dat e)
VALUES (nmenber _i d_seq. NEXTVAL,

' &addr ess'

' DD- MM YYYY') ;
COW T;

"&first_name',
TO DATE(' & oi n_date',

Introduction to Oracle9i: SQL A-46

| ast _name, address,

' & ast _nane',

Practice 14 Solutions (continued)

¢. Add the following movie copiesinthe TI TLE_COPY table:
Note: Havethe Tl TLE | D numbers available for this exercise.

Title Copy_ld Status
Willie and Chrissmas Too | 1 AVAILABLE
Alien Again 1 AVAILABLE

2 RENTED
The Glob 1 AVAILABLE
My Day Off 1 AVAILABLE

2 AVAILABLE

3 RENTED
Miracleson Ice 1 AVAILABLE
Soda Gang 1 AVAILABLE
I NSERT INTO title copy(copy_id, title_ id, status)
VALUES (1, 92, 'AVAI LABLE);
INSERT INTO title_copy(copy_id, title_id, status)
VALUES (1, 93, 'AVAILABLE);
INSERT INTO title_copy(copy_id, title_id, status)
VALUES (2, 93, 'RENTED);
INSERT INTO title_copy(copy_id, title_id, status)
VALUES (1, 94, 'AVAI LABLE);
INSERT INTO title_copy(copy_id, title_id, status)

VALUES (1, 95,

I NSERT INTO title_copy(copy_id,
VALUES (2, 95,

I NSERT INTO title_copy(copy_id,
VALUES (3, 95,

I NSERT INTO title copy(copy_id,
VALUES (1, 96,

I NSERT INTO title copy(copy_id,
VALUES (1, 97,

' AVAI LABLE') ;
' AVAI LABLE') ;
' RENTED) ;

' AVAI LABLE') ;

" AVAI LABLE') ;

Introduction to Oracle9i: SQL A-47

title_id,status)
title_id,status)
title_id,status)

title_id,status)

Practice 14 Solutions (continued)

d. Add thefollowing rentals to the RENTAL table:
Note: Title number may be different depending on sequence number.

Title_| Copy_ | Member_

Id Id Id Book date | Exp_Ret Date Act_Ret Date
92 1 101 3 daysago 1 day ago 2 days ago

93 2 101 1 day ago 1 day from now

95 3 102 2 days ago Today

97 1 106 4 days ago 2 days ago 2 days ago

I NSERT INTO rental (title_id, copy_id, menber_id,
book_date, exp_ret_date, act_ret_date)

VALUES (92, 1, 101, sysdate-3, sysdate-1, sysdate-2);

I NSERT INTO rental (title_id, copy_id, menber_id,
book date, exp_ret _date, act_ret _date)

VALUES (93, 2, 101, sysdate-1, sysdate-1, NULL);

I NSERT INTO rental (title_id, copy_id, menber_id,
book date, exp ret _date, act_ret_date)

VALUES (95, 3, 102, sysdate-2, sysdate, NULL);

I NSERT INTO rental (title_id, copy_id, menber _id,
book date, exp ret _date,act _ret date)

VALUES (97, 1, 106, sysdate-4, sysdate-2, sysdate-2);

COW T;

Introduction to Oracle9i: SQL A-48

Practice 14 Solutions (continued)

5. Createaview named TI TLE_AVAI L to show the movietitles and the availability of

each copy and its expected return date if rented. Query all rows from the view. Order the results by
title.

CREATE VIEWtitle_avail AS
SELECT t.title, c.copy_id, c.status, r.exp ret _date

FROM titlet, title_copy c, rental r
VHERE t.title_id =c.title_id

AND c.copy_id = r.copy_id(+)

AND c.title id =r.title_ id(+);
SELECT *

FROM title avail

ORDER BY title, copy_id;

6. Make changesto datain the tables.
a Add anew title. The movieis“Interstellar Wars,” which is rated PG and classified as a
scifi movie. Therelease date is07-JUL-77. The description is“ Futuristic interstellar

action movie. Can the rebels save the humans from the evil empire?’ Be sureto add atitle
copy record for two copies.

INSERT INTO title(title_ id, title, description, rating,
category, rel ease_date)

VALUES (title_id_seq. NEXTVAL, 'Interstellar Wars',
"Futuristic interstellar action novie. Can the
rebel s save the humans fromthe evil Enpire?',
"PG, "SCIFl', "07-JUL-77");

INSERT INTO title copy (copy_id, title_id, status)

VALUES (1, 98, 'AVAILABLE);

INSERT INTO title copy (copy_id, title_id, status)
VALUES (2, 98, 'AVAILABLE);

b. Enter two reservations. One reservation isfor Carmen Velasguez, who wants to rent
“Interstellar Wars.” The other isfor Mark Quick-to-See, who wantsto rent “ Soda Gang.”

I NSERT | NTO reservation (res_date, menber _id, title_ id)
VALUES (SYSDATE, 101, 98);
I NSERT | NTO reservation (res_date, nmenber _id, title_ id)
VALUES (SYSDATE, 104, 97);

Introduction to Oracle9i: SQL A-49

Practice 14 Solutions (continued)

C.

Customer Carmen Velasgquez rents the movie “Interstellar Wars,” copy 1. Remove her
reservation for the movie. Record the information about the rental. Allow the default

value for the expected return date to be used. Verify that the rental was recorded by using
the view you created.

I NSERT I NTO rental (title_id, copy_id, mnenber _id)
VALUES (98, 1, 101);

UPDATE titl e _copy

SET st at us= ' RENTED

VWHERE title_id = 98

AND copy_id = 1;

DELETE

FROM reservation

WHERE nenber _id = 101;

SELECT *
FROM title_ avail
ORDER BY title, copy_id;

7. Make a modification to one of the tables.

a

Add aPRI CE column to the Tl TLE tableto record the purchase price of the video. The
column should have atotal length of eight digits and two decimal places. Verify your
modifications.

ALTER TABLE title

ADD (price NUMBER(S, 2));

DESCRIBE title

Introduction to Oracle9i: SQL A-50

Practice 14 Solutions (continued)

b. Createascript named| ab14_7b. sql that contains update statements that update each
video with a price according to the following list. Run the commands in the script.

Note: Havethe TI TLE | D numbers available for this exercise.

Title Price
Willie and Christmas Too 25
Alien Again 35
The Glob 35
My Day Off 35
Miracleson Ice 30
Soda Gang 35
Interstellar Wars 29
SET ECHO OFF

SET VERI FY OFF

DEFI NE pri ce=

DEFINE title_id=

UPDATE title

SET price = &price

VWHERE title_id = &itle_id;
SET VERI FY OFF

SET ECHO OFF

c. Ensurethat inthe future all titles contain a price value. Verify the constraint.

ALTER TABLE title

MODI FY (price CONSTRAINT title_price_nn NOT NULL);

SELECT constraint_nanme, constraint_type,
search_condition

FROM user _constraints

WHERE table name = 'TITLE ;

Introduction to Oracle9i: SQL A-51

Practice 14 Solutions (continued)
8. Create areport titled Customer History Report. This report contains each customer's

history of renting videos. Be sure to include the customer name, movie rented, dates of the
rental, and duration of rentals. Total the number of rentalsfor all customersfor the reporting
period. Save the commands that generate the report in ascript file named | ab14_8. sql .

SET ECHO OFF

SET VERI FY OFF

TTI TLE ' Custoner History Report'
BREAK ON nenber SKIP 1 ON REPORT

SELECT mfirst _nane||' '||mlast_nane MEMBER, t.title,
r.book date, r.act _ret _date - r.book date DURATI ON

FROM menber m title t, rental r

VWHERE r.menber _id = mnenber _id

AND r.title_id =t.title_id

ORDER BY nenber ;

CLEAR BREAK
TTI TLE OFF
SET VERI FY ON
SET ECHO ON

Introduction to Oracle9i: SQL A-52

Practice 15 Solutions

1. List the department IDs for departments that do not contain the job ID ST_CLERK, using SET
operators.

SELECT department _id

FROM departnents

M NUS

SELECT department _id

FROM enpl oyees

VWHERE job_id = 'ST_CLERK ;

2. Display the country ID and the name of the countries that have no departments located in them,
using SET operators.

SELECT country_id, country_name
FROM countries

M NUS
SELECT |.country_id,c.country_nane
FROM | ocations |, countries ¢

WHERE |.country_id = c.country_id;

3. Produce alist of jobsfor departments 10, 50, and 20, in that order. Display job ID and
department ID, using SET operators.

COLUWN dunmmy PRI NT

SELECT job_id, departnent_id, 'x' dummy
FROM enpl oyees

WHERE departnment _id = 10

UNI ON

SELECT job_id, departnent_id, 'y’
FROM enpl oyees

WHERE department _id = 50

UNI ON

SELECT job_id, departnent_id, 'z
FROM enpl oyees

WHERE departnment _id = 20

ORDER BY 3;

COLUWN durmmy NOPRI NT

Introduction to Oracle9i: SQL A-53

Practice 15 Solutions (continued)

4. Listthe employee IDsand job IDs of those employees, who are currently in the job title that they
have held once before during their tenure with the company.

SELECT enpl oyee id,job_id
FROM enpl oyees

| NTERSECT

SELECT enployee_id,job_id
FROM j ob_hi story;

5. Writeacompond query that lists the following :

» Last names and department ID of all the employees from the EMPLOYEES table, irrespective
of whether they belong to any department

* Department ID and department name of all the departments from the DEPARTMENTS table,
irrespective of whether they have employees working in them

SELECT | ast _nane, departnent _i d, TO CHAR(nul |)

FROM enpl oyees

UNI ON

SELECT TO _CHAR(null), departnent _i d, depart nent _nane
FROM depart ments;

Introduction to Oracle9i: SQL A-54

Practice 16 Solutions
1. Alterthesessionto setthe NLS DATE FORVAT to DD- MON- YYYY HH24: M : SS.

ALTER SESSI ON SET NLS_DATE_FORVAT =
" DD- MON- YYYY HH24: M : SS';

2. a Write queriesto display the time zone offsets (TZ_OFFSET) for the following time zones.

US/Pacific-New

SELECT TZ OFFSET (' US/ Pacific-New) from dual;
Sngapore

SELECT TZ OFFSET (' Si ngapore') from dual;
Egypt

SELECT TZ_COFFSET (' Egypt') from dual;

b. Alter the session to set the TI ME_ZONE parameter value to the time zone offset of
US/Pacific-New.

ALTER SESSI ON SET TI ME_ZONE = ' -8:00';

c. Display the CURRENT _DATE, CURRENT_TI MESTAMP, and LOCALTI MESTANMP for this
session.
Note: The output might be different based on the date when the command is executed.

SELECT CURRENT_DATE, CURRENT_TI MESTAMP, LOCALTI MESTAWP
FROM DUAL,;

d. Alter the sessionto set the TI ME_ZONE parameter value to the time zone offset of
Singapore.
ALTER SESSI ON SET TI ME_ZONE = ' +8: 00';

e. Display the CURRENT_DATE, CURRENT_TI MESTAMP, LOCALTI MESTAMP for this
session.
Note: The output might be different based on the date when the command is executed.

SELECT CURRENT_DATE, CURRENT_TI MESTAMP, LOCALTI MESTAWP
FROM DUAL;

3. Writeaquery to display the DBTI MEZONE and SESSI ONTI MEZONE.

SELECT DBTI MEZONE, SESSI ONTI MEZONE
FROM DUAL;

Introduction to Oracle9i: SQL A-55

Practice 16 Solutions (continued)

4. Write aquery to extract the YEAR from Hl RE_DATE column of the EMPL OYEES table for those
employees who work in department 80.

SELECT | ast _nane, EXTRACT (YEAR FROM HI RE_DATE)
FROM enpl oyees
WHERE departnent _id = 80;

Introduction to Oracle9i: SQL A-56

Practice 17 Solutions
1. Write aquery to display the following for those empl oyees whose manager 1D is less than 120:

Manager ID

Job ID and total salary for every job ID for employees who report to the same manager
Total salary of those managers

Total salary of those managers, irrespective of thejob IDs

SELECT manager _i d,job_id, sun{sal ary)
FROM enpl oyees

WHERE manager _id < 120

GROUP BY ROLLUP(manager _id,job_id);

2. Observe the output from question 1. Write a query using the GROUPI NG function to determine
whether the NULL values in the columns corresponding to the GROUP BY expressions are caused by
the ROLLUP operation.

SELECT manager _id MGR ,job_id JOB,

sum(sal ary), GROUPI N manager _i d), GROUPI N& j ob_i d)
FROM enpl oyees

VWHERE manager _id < 120

GROUP BY ROLLUP(manager _id,job_id);

3. Write aquery to display the following for those employees whose manager ID is
lessthan 120 :

Manager ID
Job and total salariesfor every job for employees who report to the same manager
Total salary of those managers

Cross-tabulation values to display the total salary for every job, irrespective of the
manager

Total salary irrespective of al job titles

SELECT manager _id, job_id, sun{salary)
FROM enpl oyees

WHERE manager _id < 120

GROUP BY CUBE(manager _id, job_id);

Introduction to Oracle9i: SQL A-57

Practice 17 Solutions (continued)

4. Observe the output from question 3. Write a query using the GROUPI NG function to determine
whether the NULL valuesin the columns corresponding to the GROUP BY expressions are
caused by the CUBE operation.

SELECT manager _id MGR ,job_id JOB,

sum(sal ary), GROUPI NG manager _i d), GROUPI NG j ob_i d)
FROM enpl oyees

WHERE manager id < 120

GROUP BY CUBE(manager _id,job_id);

5. Using GROUPI NG SETS, write aquery to display the following groupings :
— departnent _id, manager _id, job id
— departnent _id, job_id
— Mnager _id, job.id
The query should calculate the sum of the salaries for each of these groups.

SELECT department _id, manager _id, job_id, SUMsalary)
FROM enpl oyees

GROUP BY

GROUPI NG SETS ((departnent _id, manager_id, job_id),
(departnent _id, job_id), (manager_id,job_id));

Introduction to Oracle9i: SQL A-58

Practice 18 Solutions

1. Write aquery to display the last name, department number, and salary of any employee whose
department number and salary both match the department number and salary of any employee who
earns a commission.

SELECT | ast _nane, departnent_id, salary
FROM enpl oyees
WHERE (sal ary, departnent _id) IN
(SELECT salary, departnent_id
FROM enpl oyees
WHERE commi ssion_pct 1S NOT NULL);

2. Display the last name, department name, and salary of any employee whose salary and commission
match the salary and commission of any employee located in location 1D1700.

SELECT | ast _nane, departnent _nanme, salary
FROM enpl oyees e, departnments d
WHERE e.departnent _id = d.departnent_id
AND (salary, NVL(comm ssion_pct,0)) IN
(SELECT sal ary, NvVL(comi ssion_pct, 0)
FROM enpl oyees e, departnents d
WHERE e.departnment _id = d.departnent _id
AND d.location_id = 1700);

3. Create aquery to display the last name, hire date, and salary for al employees who have the same
salary and commission as Kochhar.

Note: Do not display Kochhar in the result set.

SELECT | ast _nane, hire_date, salary
FROM enpl oyees
WHERE (sal ary, NVL(conm ssion_pct,0)) IN
(SELECT sal ary, NvVL(comm ssion_pct, 0)
FROM enpl oyees
WHERE | ast_name = ' Kochhar')
AND | ast _nane != 'Kochhar"';

4. Create aquery to display the employees who earn asalary that is higher than the salary of
al of the salesmanagers (JOB_ | D = ' SA MAN). Sort the results on salary from highest to
lowest.

SELECT | ast _nane, job_id, salary
FROM enpl oyees
WHERE salary > ALL
(SELECT sal ary
FROM enpl oyees
VWHERE job_id = 'SA MAN)
ORDER BY sal ary DESC;

Introduction to Oracle9i: SQL A-59

Practice 18 Solutions (continued)

5. Display the details of the employee ID, last name, and department ID of those employees who live
in cities whose name beginswith T.

SELECT enpl oyee_id, |ast_nane, departnent_id
FROM enpl oyees
WHERE departnent _id IN (SELECT departnent _id
FROM depart nent s
WHERE | ocation_id IN
(SELECT location_id
FROM | ocat i ons
WHERE city LIKE "T%));

6. Writeaquery to find al employees who earn more than the average salary in their departments.
Display last name, salary, department ID, and the average salary for the department. Sort by average
salary. Use alises for the columns retrieved by the query as shown in the sample output.

SELECT e.l ast_nane enane, e.salary salary,
e.departnent _id deptno, AVE a.sal ary) dept_avg
FROM enpl oyees e, enpl oyees a
WHERE e.departnent _id = a.departnent _id
AND e.salary > (SELECT AV sal ary)
FROM enpl oyees

WHERE departnent _id = e.departnent _id)
GROUP BY e.last_nane, e.salary, e.departnent_id
ORDER BY AV({ a. sal ary);

7. Find al employees who are not supervisors.
a. Firgt do thisby using the NOT EXI STS operator.

SELECT outer. | ast_nane
FROM enpl oyees out er
VWHERE NOT EXI STS (SELECT ' X
FROM enpl oyees i nner
VWHERE i nner. manager _id =
out er . enpl oyee_i d);

Introduction to Oracle9i: SQL A-60

Practice 18 Solutions (continued)
b. Can this be done by using the NOT | N operator? How, or why not?

SELECT outer.last_nane

FROM enpl oyees outer

WHERE outer. enpl oyee_id

NOT I N (SELECT i nner. manager _id

FROM enpl oyees inner);

This alternative solution is not a good one. The subquery picks up aNULL value, so the entire
guery returns no rows. The reason isthat al conditions that compare aNULL value result in
NULL. Whenever NULL values are likely to be part of the value set, do not use NOT | Nasa
substitute for NOT EXI STS.

8. Write aquery to display the last names of the employees who earn less than the average salary in
their departments.

SELECT | ast _nane
FROM enpl oyees out er
WHERE outer.salary < (SELECT AV i nner. sal ary)
FROM enpl oyees i nner
WHERE i nner. departnment _id
= outer.departnent _id);

9. Write aquery to display the last names who have one or more coworkersin their departments with
later hire dates but higher salaries.

SELECT | ast_name
FROM enpl oyees out er
VWHERE EXI STS (SELECT ' X'
FROM enpl oyees i nner
WHERE i nner. departnment _id =
outer.departnent _id
AND i nner.hire_date > outer.hire _date
AND i nner.salary > outer.salary);

10. Write aquery to display the employee ID, last names of the employees, and department names of al
employees.
Note: Use a scalar subquery to retrieve the department name in the SELECT statement.

SELECT enpl oyee_id, |ast_nane,
(SELECT depart nent _nane
FROM departnments d
WHERE e.departnent_id =
d. departnent _id) departnent
FROM enpl oyees e
ORDER BY departnent;

Introduction to Oracle9i: SQL A-61

Practice 18 Solutions (continued)

11. Write aquery to display the department names of those departments whose total salary cost is above
one-eighth (1/8) of the total salary cost of the whole company. Use the W TH clause to write this
guery. Name the query SUMVARY.

W TH
sumary AS (

SELECT departnment _nanme, SUM sal ary) AS dept _total

FROM enpl oyees, departnents

WHERE enpl oyees. departnent _id =

departnents. departnent _id

GROUP BY depart ment _nane)

SELECT departnment nane, dept _total

FROM summary

WHERE dept _total > (
SELECT SUM dept _total) * 1/8
FROM sunmary)

ORDER BY dept total DESC

Introduction to Oracle9i: SQL A-62

Practice 19 Solutions

1. Look at the following output. Is this output the result of ahierarchical query? Explain why or why
not.

a Exhibit 1: Thisisnot a hierarchical query; thereport simply has a descending sort
on SALARY.

Exhibit 2: Thisisnot a hierarchical query; there aretwo tablesinvolved.

Exhibit 3: Yes, thisismost definitely a hierarchical query as it displaysthetree
structur e representing the management reporting line from the EMPLOYEES table.

2. Produce areport showing an organization chart for Mourgos' s department. Print last names, salaries,
and department IDs.

SELECT | ast _nane, salary, departnent _id
FROM enpl oyees

START WTH | ast _nanme = ' Mour gos'

CONNECT BY PRI OR enpl oyee_id = manager _i d;

3. Create areport that shows the hierarchy of the managers for the employee Lorentz. Display his
immediate manager first.

SELECT | ast _nane

FROM enpl oyees

WHERE | ast_name != 'Lorentz'

START WTH | ast_nanme = 'Lorentz'

CONNECT BY PRI OR nmanager _id = enpl oyee_i d;

4. Create anindented report showing the management hierarchy starting from the employee whose
LAST_NAME is Kochhar. Print the employee’ s last name, manager 1D, and department ID. Give dias
names to the columns as shown in the sample output.

COLUW name FORMAT A20

SELECT LPAD(| ast_nane, LENGITH(I|ast _nane) +(LEVEL*2) -2,"' ")
nane, manager _id ngr, departnment _id deptno

FROM enpl oyees

START WTH | ast_nane = ' Kochhar'

CONNECT BY PRI OR enpl oyee_id = nmanager _id

/

COLUWN nanme CLEAR

Introduction to Oracle9i: SQL A-63

Practice 19 Solutions (continued)
If you have time, complete the following exercises.
5. Produce a company organization chart that shows the management hierarchy. Start with the person at
the top level, exclude all people with ajob ID of IT_PROG, and exclude De Haan and those
employees who report to De Hann.

SELECT | ast _nane, enpl oyee_i d, manager _id
FROM enpl oyees

VWHERE job_id !="1T_PROG

START W TH manager _id IS NULL

CONNECT BY PRI OR enpl oyee_id = manager _i d
AND | ast _nanme ! = 'De Haan';

Introduction to Oracle9i: SQL A-64

Practice 20 Solutions
1. Runthecre_sal _history. sql scriptinthe Labsfolder to createthe SAL_HI STORY table.
@\ Labs\ cre_sal _hi story. sql
2. Display the structure of the SAL_HI STORY table.
DESC sal _hi story

3. Runthecre_ngr_history. sqgl scriptintheLabsfolder to create the MGR_HI STORY table.
@\ Labs\cre_ngr_history. sql

4. Display the structure of the MGR_HI STCRY table.
DESC mgr _hi story

5. Runthecre_speci al _sal . sqgl scriptintheLabsfolder to create the SPECI AL_SAL table.
@\ Labs\ cre_speci al _sal . sql

6. Display the structure of the SPECI AL_ SAL table.
DESC speci al _sal

7. a. Write a query to do the following:

— Retrieve the details of the employee ID, hire date, salary, and manager ID of those employees
whose employee ID isless than 125 from the EMPLOYEES table.

— If the salary is more than $20,000, insert the details of employee ID and salary into the
SPECI AL_SAL table.

— Insert the details of the employee ID, hire date, and salary into the SAL_HI STORY table.

— Insert the details of the employee ID, manager ID, and SYSDATE into the MGR_HI STORY
table.

| NSERT ALL

VWHEN SAL > 20000 THEN

| NTO special _enpsal VALUES (EMPI D, SAL)
ELSE

I NTO sal _hi story VALUES(EWVPI D, H REDATE, SAL)

I NTO ngr_hi story VALUES(EMPI D, MGR, SAL)

SELECT enpl oyee_id EMPI D, hire_date H REDATE,
sal ary SAL, manager_id M3R

FROM enpl oyees

WHERE enpl oyee id < 125;

Introduction to Oracle9i: SQL A-65

Practice 20 Solutions (continued)
b. Display the records from the SPECI AL_SAL table.
SELECT * FROM speci al _sal;

c. Display the records from the SAL_HI STORY table.
SELECT * FROM sal _history;

d. Display the records from the MGR_HI STORY table.
SELECT * FROM ngr _hi story;

8. a Runthecre_sal es_source_dat a. sgl scriptinthe Labsfolder to create the
SALES SOURCE_DATA table.

@\ Labs\ cre_sal es_sour ce_dat a. sql

b. Runthei ns_sal es_sour ce_dat a. sql scriptinthe Labsfolder to insert records into the
SALES SOURCE_DATA table.

@\ Labs\i ns_sal es_source_dat a. sql

c. Digplay the structure of the SALES SOURCE_DATA table.
DESC sal es_source_dat a

d. Display the records from the SALES SOURCE_DATA table.
SELECT * FROM SALES SOURCE_DATA;

e.Runthecre_sal es_i nfo. sgl scriptinthe Labsfolder to create the SALES | NFOtable.
@\ Labs\cre_sal es_i nfo. sql

f. Display the structure of the SALES | NFOtable.
DESC sal es_info

g. Write aquery to do the following:

— Retrieve the details of the employee ID, week ID, sales on Monday, sales on Tuesday, sales
on Wednesday, sales on Thursday, and sales on Friday from the SALES SOURCE _DATA

table.

— Build atransformation such that each record retrieved from the SALES SOURCE_DATA
table is converted into multiple records for the SALES | NFOtable.

Hint: Use apivoting | NSERT statement.

Introduction to Oracle9i: SQL A-66

Practice 20 Solutions (continued)

| NSERT ALL

I NTO sal es_i nfo VALUES (enpl oyee id, week id, sales MON)
I NTO sal es_i nfo VALUES (enpl oyee id, week id, sales TUE)
I NTO sal es_i nfo VALUES (enpl oyee id, week id, sal es VED)
I NTO sal es_info VALUES (enpl oyee_id, week_id, sales_THUR)
I NTO sal es_info VALUES (enpl oyee_id, week_id, sales_FRI)
SELECT EMPLOYEE I D, week id, sales MN, sales TUE,

sal es_WED, sal es THUR sal es FRI FROM sal es_source_dat a;

h. Display the records from the SALES | NFOtable.
SELECT * FROM sal es_i nf o;

9. a Createthe DEPT_NANMED | NDEX table based on the following table instance chart. Name the
index for the PRI MARY KEY column as DEPT_PK | DX.

COLUMN Name Deptno Dname
Primary Key Yes

Datatype Number VARCHAR2
Length 4 30

CREATE TABLE DEPT_NAMED | NDEX

(dept no NUVBER(4)

PRI MARY KEY USI NG | NDEX

(CREATE | NDEX dept _pk_i dx ON
DEPT_NAMED | NDEX(dept no)),
dnane VARCHAR2(30));

b. Query the USER | NDEXES table to display the | NDEX_NAME for the
DEPT_NAMED | NDEX table.

SELECT | NDEX_NAME, TABLE_NAME
FROM USER_| NDEXES
VWHERE TABLE NAME = ' DEPT_NAMED | NDEX' ;

Introduction to Oracle9i: SQL A-67

Practice D Solutions

1. Write ascript to describe and select the data from your tables. Use CHR(10) in the select list with
the concatenation operator (||) to generate aline feed in your report Save the output of the script
intory_filel.sql.Tosavethefile select the SAVE option for the output, and execute the code.
Remember to save thefilewitha. sql extension. To executetheny_fil el. sql , browseto
locate the script, load the script, and execute the script.

SET PAGESI ZE 0

SELECT 'DESC' || table_nane || CHR(10) ||
"SELECT * FROM' || table_nanme || ';'

FROM user _tabl es

/

SET PAGESI ZE 24

SET LI NESI ZE 100

2. Use SQL to generate SQL statements that revoke user privileges. Use the data dictionary views
USER_TAB_PRI VS_MADE and USER_COL_PRI VS_MADE.

a Executethescript\ Labs\ pri vs. sql to grant privilegesto the user SYSTEM

b. Query the data dictionary views to check the privileges. In the sample output shown, note that
the data in the GRANTOR column can vary depending on who the GRANTOR is. Also the last
column that has been truncated is the GRANTABLE column.

COLUWN grant ee FORVMAT Al10
COLUWN t abl e _name FORMAT A10
COLUWN colum_nanme FORMAT A10
COLUWN grant or FORMAT A10
COLUWN privil ege FORMVAT Al10
SELECT *

FROM user _tab_privs_nade
VWHERE grantee = ' SYSTEM ;

SELECT *

FROM user _col _privs_nmade

VWHERE grantee = ' SYSTEM ;

Introduction to Oracle9i: SQL A-68

Practice D Solutions (continued)

c. Produce a script to revoke the privileges. Save the output of the scriptintony_fil e2. sqgl . To
save thefile, select the SAVE option for the output, and execute the code. Remember to save the
filewitha. sql extension. To executetheny fil e2. sql , browseto locate the script, load the
script, and execute the script.

SET VERI FY OFF
SET PAGESI ZE O

SELECT "REVOKE ' || privilege || " ON'" ||

table_nanme || * FROM system'

FROM user _tab_privs_nmade

VWHERE grantee = ' SYSTEM

/

SELECT DI STI NCT "REVOKE ' || privilege || " ON'" ||
table_name || * FROM system'

FROM user_col _privs_made

VWHERE grantee = ' SYSTEM

/

SET VERI FY ON
SET PAGESI ZE 24

Introduction to Oracle9i: SQL A-69

Introduction to Oracle9i: SQL A-70

B

Table Descriptions
and Data

COUNTRI ES Table

DESCRI BE countri es

Name | Null? |

Type

|COUNTRY_ID IMOT MULL (CHAR(Z)

(COUNTRY_NAME |

WARCHAR2(40)

IREGION_ID | INUMBER

SELECT * FROM countri es;

| co

| COUNTRY_NAME

REGION_ID

ca,

|Canada

DE

|GEI’F|"|EIH'_-,-'

UK

|United Kingdom

s

|United States of America

R = =] k2

Introduction Oracle9i: SQL B-3

DEPARTNMENTS Table

DESCRI BE departnents

| Name | Hull? | Type
\DEPARTMENT _ID INOT MULL INUMBER(4)
[DEPARTMENT_MAME INOT MULL WARCHARZ(30)
IMANAGER_ID | INUMBER(B)

(LOCATION_ID | INUMBER(4)

SELECT * FROM depart nents;

| DEPARTMENT_ID | DEPARTMENT NAME | MANAGER ID | LOCATION_ID

| 10 |Administration | 200 | 1700
| 20 |Marketing | 201 | 1800
| 50 |Shipping | 124 | 1500
| B0 |IT | 103 | 1400
| 80 |Sales | 149 | 2500
| 90 |Executive | 100 | 1700
| 110 |Accounting | 205 | 1700
| 190 |Contracting | | 1700

g rows selected.

Introduction Oracle9i: SQL B-4

EMPLOYEES Table

DESCRI BE enpl oyees

| Name | Null? | Type
[EMFLOYEE_ID IMOT MULL IMUMBER(E)
FIRST_MAME | WARCHARZ(20)
ILAST_MAME IMOT MULL WARCHARZ(25)
[EMAIL INOT MULL WARCHARZ(25)
IPHOME_MNUMBER | WARCHARZ(20)
HIRE_DATE IMOT NULL \DATE

\JOB_ID IMOT NULL WARCHARZ(10)
\SALARY | MUMBER(S 2)
(COMMISSION_PCT | INUMBER(2 2)
IMANAGER_ID | MUMBER(E)
IDEPARTMENT_ID | IMUMBER(4)

SELECT * FROM enpl oyees;

[EMPLOYEE_ID [FIRST_NAME |LAST NAME| EMAIL |PHONE_NUMBER HIRE_DATE| JOB_ID
| 100 |Steven King ISKING 515,123 4567 17-JUN-B7 |AD_PRES
| 101 |Meena Kochhar [NKOCHHAR (515,123 4568 21-5EP-83 |AD_WP

| 102 |Lex \De Haan |LDEHAAM 515.123 4569 N3-JAN-GZ |AD WP

| 103 |Alexander |Hunold AHUMOLD 590423 4567 03-JAN-30 IT_PROG
| 104 |Bruce [Etmst IBERMST |590.423 45685 21-MAY-91 IT_PROG

| 107 |Diana Lorentz \DLORENTZ |590. 423 5567 07-FEB-99 |IT_PROG
| 124 |Kevin Mourgos [KMOURGOS [650.123.6234 ME-MOV-93 ST _MAN

| 141 [Trenna Rajs TRAJS [B50. 1218009 17-0CT-95 |ST_CLERK
| 142 |Curtis Davies (CDAWIES |B50.121.2994 29-JAN-G7 (ST _CLERK
| 143 |Randall IMatos RMATOS |650.121.2874 15-MAR-93 |ST_CLERK
| 144 |Peter argas IPYARGAS |550.121.2004 09-JUL98 ST _CLERK
| 149 |Eleni Zlotkey [EZLOTKEY [011.44.1344 429018 [29-JAN-D0 [SA_MAN
| 174 |Ellen bl [EABEL 011.44.1644 429267 [11-MAY-95 |SA_REP

| 176 |[Jonathon |Taylar UTAYLOR 01144 1644 429265 |24-MAR-98 |34 _REP

| 178 |Kimberely | Grant IKGRANT |011.44.1644 429263 [24-MAY-93 |SA REP

| 200 \Jennifer ‘halen WWHALEN |515.123.4444 17-5EP-87 |AD_ASST
| 201 |Michael Hartstein [MHARTSTE |515.123 5555 17-FEB-96 [MK_MAN
| 202 |Pat Fay IPFAY B03. 123 GG 17-AUG-97 MK_REP

| 205 |Shelley Higgins ISHIGGING |515.123.8080 07-JUN-94 |AC MGR
| 206 [wWilliam Gietz WGIETZ |515.123.8181 07-JUN-34 |AC_ACCOUNT

[G (i i N ¢ |

20 rowes selected.

EMPLOYEES Table (continued)

~ [SALARY [COMMISSION_PCT [MANAGER_ID [DEPARTMENT _ID

[24000 | | | 90
| 17000 | | 100 | 90
| 17000 | | 100 | 30
[om0 | | 102 | B0
| 6ooo | | 103 | B0
| 4200 | | 103 | =
| 5800 | | 100 | 50
| 3500 | | 124 | 50
[3100 | | 124 | 50
| 2600 | | 124 | 50
[2800 | | 124 | 50
| 10500 | | 100 | a0
| 11000 | 3| 149 | a0
[eemo | 7| 149 | a0
| 7000 | A5 | 149 |

| 4400 | | 101 | 10
[13000 | | 100 | 20
| 6ooo | | 201 | 20
[12000 | | 101 | 110
T| 8300 | | 205 | 110

Introduction Oracle9i: SQL B-6

JOBS Table

DESCRI BE j obs

| Mame | Null? | Type

JOB_ID INOT MULL ARCHARZ(10)

\JOB_TITLE INOT MULL WARCHARZ(35)

IMIN_SALARY | INUMBER(E)

IMAK_SALARY | INUMBER(E)

SELECT * FROM j obs;

| JOB.ID | JOB TITLE | MIN_SALARY | MAX_SALARY
AD_PRES President | 20000 | 40000
AD WP \Administration Vice President | 15000 | 30000
AD_ASST \Administration Assistant | 3000 | G000
AC_MGR Accounting Manager | 200 | 16000
AC_ACCOUNT |Public Accountant | 4200 | 9000
1S4 MAN \Sales Manager | 10000 | 20000
|SA REP \Sales Representative | OO0 | 12000
1ST_MAN Stock Manager | 5500 | 8500
|ST_CLERK Stock Clerk | 2000 | 5000
IT_PROG Programimer | 4000 | 10000
MK MAN IMarketing Manager | 9000 | 15000
IMI<_REP IMarketing Representative | 4000 | 5000

12 rows selected.

Introduction Oracle9i: SQL B-7

JOB_CGRADES Table

DESCRI BE j ob_gr ades

| Mame | Mull? | Type
\GRADE_LEVEL | WARCHARZ(3)

LOWEST_SAL | INUMBER

HIGHEST_SAL | INUMBER

SELECT * FROM j ob_gr ades;

| GRA | LOWEST_SAL | HIGHEST_SAL

& | 1000 | 2999
B | 3000 | 5999
[@ | OO0 | 9999
o] | 10000 | 14999
E | 15000 | 24999
F | 26000 | 40000

6 rows selected.

Introduction Oracle9i: SQL B-8

JOB_H STORY Table

DESCRI BE j ob_hi story

| Hame | Hull? | Type
[EMPLOYEE_ID INOT MULL INUMBER(E)
\START_DATE INOT MULL \DATE

[END_DATE IMOT MULL \DATE

JOB_ID INOT MULL WARCHARZ(10)
\DEPARTMENT_ID | IMUMBER(4)

SELECT * FROM j ob_hi story;

| EMPLOYEE_ID | START DAT | END DATE | JOB.ID | DEPARTMENT ID

| 102 [13-JAN-93 24-JUL88 |IT_PROG | B0
| 101 [21-SEP-89 27-0CT93 AC_ACCOUNT | 110
| 101 |[28-0CT-83 15-MAR-7 |AC_MGR | 110
| 201 |17-FEB-96 M9-DEC-22 |MK_REP | 20
| 114 [24-MAR-95 31-DEC-93 |5T_CLERK | A0
| 122 [D1-JAN-99 31-DEC-33 |ST_CLERK | 50
| 200 17-5EP-87 N7-JUnN-g3 |AD_ASST | a0
| 176 [24-MAR-95 31-DEC-38 |SA_REP | a0
| 176 [D1-JAN-99 31-DEC-22 |SA_MAN | a0
| 200 (01-JUL-94 31-DEC98 |AC_ACCOUNT | 90

10 rowes selected.

Introduction Oracle9i: SQL B-9

LOCATI ONS Table

DESCRI BE | ocati ons

| Hame | MNull? | Type

ILOCATION_ID IMOT MULL INUMBER(4)

\STREET_ADDRESS | WARCHARZ(40)

IPOSTAL_CODE | WARCHARZ(12)

iy IMCIT MULL "YARCHARZ(30)

\STATE_PROVINCE | WARCHARZ(25)

(COUNTRY_ID | (CHAR(Z)

SELECT * FROM | ocati ons;

ILOCATION_ID | STREET ADDRESS |POSTAL CODE | CITY |STATE_PROVINCE |CO

| 1400 2014 Jabberwocky Rd 26192 \Southlake Texas s

‘ 1500 ‘2011 Interiors Blvd ‘99235 South San e litarnia ‘US

Francisco

| 1700 {2004 Charade Rd 958199 Seattle ‘Washington s

| 1800 460 Bloor St. W, |OM MBS 1%8 Toronto \Ontari CA
hlagdalen Centre, The

‘ Sh0; [S e ‘om 976 Oxfard Oxfard ‘UK

Introduction Oracle9i: SQL B-10

REG ONS Table

DESCRI BE r egi ons

| Name | Null? | Type

IREGION_ID IMOT MULL INUMBER

IREGION_NAME | WARCHARZ(25)

SELECT * FROM r egi ons;

REGION_ID | REGION_NAME

1 |Eur|:|pe

2 |Ameri|:as

3 |Asia

4 |Middle East and Africa

Introduction Oracle9i: SQL B-11

Introduction Oracle9i: SQL B-12

Using SQL*Plus

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:

* Loginto SQL*Plus

* Edit SQL commands

* Format output using SQL*Plus commands
* Interact with script files

C-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

Y ou may want to create SELECT statements that can be used again and again. This lesson also coversthe

use of SQL*Plus commands to execute SQL statements. Y ou learn how to format output using SQL*Plus
commands, edit SQL commands, and save scriptsin SQL*Plus.

Introduction to Oracle9i: SQL C-2

SQL and SQL*Plus Interaction

SQL statements *
Server
SQL*Plus 1
.
* A .
T Query results |
|—) Buffer é‘
S~ SQL

\é* scripts

C-3 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL and SQL*Plus

SQL isacommand language for communication with the Oracle9i Server from any tool or application.
Oracle SQL contains many extensions. When you enter a SQL statement, it is stored in a part of memory
called the SQL buffer and remains there until you enter anew SQL statement.

SQL*Plusisan Oracletool that recognizes and submits SQL statements to the OracleQi Server for
execution. It contains its own command language.

Features of SQL

SQL can be used by arange of users, including those with little or no programming
experience.

It isanonprocedural language.
It reduces the amount of time required for creating and maintaining systems.
It is an English-like language.

Features of SQL*Plus

SQL*Plus accepts ad hoc entry of statements.

It accepts SQL input from files.

It provides aline editor for modifying SQL statements.
It controls environmental settings.

It formats query resultsinto basic reports.

It accesses local and remote databases.

Introduction to Oracle9i: SQL C-3

SQL Statements versus SQL*Plus
Commands

SQL
* A language
* ANSI standard

« Keywords cannot be
abbreviated

« Statements manipulate
data and table
definitions in the
database

SQL*Plus
* An environment
» Oracle proprietary

» Keywords can be
abbreviated

e Commands do not
allow manipulation of
values in the database

SQL E> SQL SQL*Plus E> SQL*.us
statements buffer commands keLrfer
C-4 Copyright © Oracle Corporation, 2001. All rights reserved.
SQL and SQL*Plus (continued)
The following table compares SQL and SQL*Plus:
SQL SQL*Plus

Server to access data

Is alanguage for communicating with the Oracle

Recognizes SQL statements and sends them to
the server

|'s based on American National Standards
Institute (ANSI) standard SQL

Isthe Oracle proprietary interface for executing
SQL statements

Manipulates data and table definitions in the
database

Does not allow manipulation of valuesin the
database

Is entered into the SQL buffer on one or more
lines

Isentered one line at atime, not stored in the
SQL buffer

Does not have a continuation character

Uses adash (-) as a continuation character if the
command is longer than one line

Cannot be abbreviated

Can be abbreviated

Uses a termination character to execute
commands immediately

Does not require termination characters;
executes commands immediately

Uses functions to perform some formatting

Uses commands to format data

Introduction to Oracle9i: SQL C-4

Overview of SQL*Plus

® Loginto SQL*Plus.

* Describe the table structure.
* Edit your SQL statement.

* Execute SQL from SQL*Plus.

®* Save SQL statements to files and append SQL
statements to files.

e Execute saved files.

* |Load commands from file to buffer
to edit.

C-5 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL*Plus
SQL*Plusis an environment in which you can do the following:
« Execute SQL statementsto retrieve, modify, add, and remove data from the database
e Format, perform calculations on, store, and print query results in the form of reports
e Create script filesto store SQL statements for repetitive use in the future
SQL*Plus commands can be divided into the following main categories:

Category Purpose

Environment Affect the general behavior of SQL statements for the session

Format Format query results

File manipulation | Save, load, and run script files

Execution Send SQL statements from SQL buffer to the Oracle Server

Edit Modify SQL statements in the buffer

Interaction Create and pass variables to SQL statements, print variable values, and
print messages to the screen

Miscellaneous Connect to the database, manipulate the SQL* Plus environment, and
display column definitions

Introduction to Oracle9i: SQL C-5

Logging In to SQL*Plus

* From aWindows environment:

User Name: ISCD“
Password: Im
Host String: ||
| 0K I Cancel

* From acommand line:

sgl pl us [usernane[/ password
[@lat abase]]]

C-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Logging In to SQL*Plus
How you invoke SQL*Plus depends on which type of operating system or Windows environment you are
running.

To log in through a Windows environment:
1. Select Start > Programs > Oracle for Windows NT > SQL*Plus.
2. Enter the username, password, and database name.
To log in through a command line environment:
1. Log on to your machine.
2. Enter the SQL*Plus command shown in the dlide.

In the syntax:
user nane your database username.
password your database password (if you enter your password here, it isvisible.)

@lat abase the database connect string.

Note: To ensure the integrity of your password, do not enter it at the operating system prompt. Instead,
enter only your username. Enter your password at the Password prompt.

After you log into SQL*Plus, you see the following message (if you are using SQL*Plus version 9i):

SQ.*Plus: Release 9.0.1.0.0 - Devel oprment on Tue Jan 9 08:44:28 2001
(c) Copyright 2000 Oracle Corporation. Al rights reserved.

Introduction to Oracle9i: SQL C-6

Displaying Table Structure

Use the SQL*Plus DESCRI BE command to display the
structure of a table.

DESC[Rl BE] t abl enane

C-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure

In SQL*Plus you can display the structure of atable using the DESCRI BE command. The result of the

command isadisplay of column names and data types as well as an indication if a column must contain
data.

In the syntax:

t abl enane the name of any existing table, view, or synonym that is accessi ble to the
user

To describe the JOB_GRADES table, use this command:

SQ.> DESCRI BE j ob_gr ades

Nanme Nul | ? Type
GRADE_LEVEL VARCHARZ (3)
LONEST_SAL NUMBER

H GHEST_SAL NUMBER

Introduction to Oracle9i: SQL C-7

Displaying Table Structure

SQL> DESCRI BE departments

Nanme Nul | ? Type
DEPARTIVENT _| D NOT NULL NUMBER(4)
DEPARTIMENT _NAME NOT NULL VARCHARZ2(30)
MANAGER | D NUVBER(6)
LOCATION_I D NUVBER(4)

C-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure (continued)
The example in the dide displays the information about the structure of the DEPARTVENTS table.

In the result;

Nul | ? specifies whether a column must contain data; NOT NULL indicatesthat a
column must contain data
Type displays the data type for a column

The following table describes the data types:

Datatype Description
NUMBER(p, s) Number value that has a maximum number of digits p, the number
of digitsto theright of the decimal point s
VARCHAR2(s) Variable-length character value of maximum size s
Date and time value between January 1, 4712 B.C., and A.D.
DATE December 31, 9999
CHAR(s) Fixed-length character value of size s

Introduction to Oracle9i: SQL C-8

SQL*Plus Editing Commands

e Al PPEND] text

e CJHANGE] / old / new
* (CHANGE] / text [/

* CL[EAR] BUFF[ER]

e DEL
e DEL n
e DEL mn
C-9 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL*Plus Editing Commands
SQL*Plus commands are entered one line at atime and are not stored in the SQL buffer.

Command Description
Al PPEND] t ext Adds text to the end of the current line
C[HANGE] / old / new Changes ol d text to new in the current line
C[HANGE] / text [/ Deletest ext from the current line
CL[EAR] BUFF[ER] Deletes all lines from the SQL buffer
DEL Deletes current line
DEL n Déeleteslinen
DEL m n Déeletes lines mto n inclusive
Guidelines

e If you press [Enter] before completing a command, SQL* Plus prompts you with aline number.

* You terminate the SQL buffer either by entering one of the termi nator characters (semicolon or slash)
or by pressing [Enter] twice. The SQL prompt then appears.

Introduction to Oracle9i: SQL C-9

SQL*Plus Editing Commands

e | [NPUT]

e |[NPUT] text
e L[IST]

e L[IST] n

e L[IST] mn
° RIUN

* n
* n text
e 0 text
C-10 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL*Plus Editing Commands (continued)

Command Description

I [NPUT] Inserts an indefinite number of lines

I [NPUT] text Inserts aline consisting of t ext

L[IST] Lists al linesin the SQL buffer

L[IST] n Lists one line (specified by n)

L[I1ST] mn Listsarange of lines (mto n) inclusive

RIUN| Displays and runs the current SQL statement in the buffer
n Specifies the line to make the current line

n text Replacesline n with t ext

0 text Inserts aline beforeline 1

Note: Y ou can enter only one SQL*Plus command per SQL prompt. SQL* Plus commands are not stored
in the buffer. To continue a SQL* Plus command on the next line, end the first line with a hyphen (-).

Introduction to Oracle9i: SQL C-10

Using LI ST, n, and APPEND

2*

FROM enpl oyees

SQL> LI ST
1 SELECT | ast_nane
2* FROM enpl oyees
SQL> 1
1* SELECT | ast_nane
SQ> A, job id
1* SELECT last_name, job_id
SQL> L
1 SELECT last_name, job_id

C-11

Copyright © Oracle Corporation, 2001. All rights reserved.

Using LI ST, n, and APPEND

e Usethel[| ST] command to display the contents of the SQL buffer. The * beside line 2 in the
buffer indicates that line 2 isthe current line. Any editsthat you made apply to the current line.

¢ Change the number of the current line by entering the number of the line you want to edit. The new

current line is displayed.

e Usethe Al PPEND] command to add text to the current line. The newly edited line is displayed.

Verify the new contents of the buffer by using the LI ST command.

Note: Many SQL*Plus commands including LI ST and APPEND can be abbreviated to just their first letter.

LI ST can be abbreviated to L, APPEND can be abbreviated to A.

Introduction to Oracle9i: SQL C-11

Using the CHANGE Command

SQ> L
1* SELECT * from enpl oyees

SQ.> c/ enpl oyees/ depart nents

1* SELECT * from departnents

SQ> L
1* SELECT * from departnents

C-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the CHANGE Command
e UselL[| ST] todisplay the contents of the buffer

* Usethe HANGE] command to alter the contents of the current linein the SQL buffer. In this case,
replace the empl oyees table with the departments table. The new current line is displayed.

* UsetheL[| ST] command to verify the new contents of the buffer.

Introduction to Oracle9i: SQL C-12

SQL*Plus File Commands

SAVE fil enane
CGET fil enane
START fil enane
@fil enanme

EDI T fil enane
SPOOL fil enane
EXIT

C-13

Copyright © Oracle Corporation, 2001. All rights reserved.

SQL*Plus File Commands

SQL statements communicate with the Oracle Server. SQL* Plus commands control the environment,
format query results, and manage files. Y ou can use the commands described in the following table:

Command

Description

SAV[E] filename [.ext]
[REP[LACE] APP[END]]

Saves current contents of SQL buffer to afile. Use APPEND
to add to an existing file; use REPL ACE to overwrite an
exiging file. The default extensionis . sql .

GET filenane [.ext]

Writes the contents of a previoudy saved file to the SQL
buffer. The default extension for the filename is.sql .

STAIRT] filenane [.ext]

Runs a previously saved command file.

@fil enanme

Runs a previoudy saved command file (same as START).

ED[I T]

Invokes the editor and saves the buffer contents to afile
named af i edt . buf .

ED[IT] [filename[.ext]]

Invokes the editor to edit contents of a saved file.

SPQ O] Stores query resultsin afile. OFF closes the spool file. QUT
[filenane[.ext]] closes the spool file and sends the file results to the system
CFF| QUT] printer.
EXIT Leaves SQL*Plus.

Introduction to Oracle9i: SQL C-13

Using the SAVE and START Commands

SQL> L
1 SELECT | ast_nanme, nanager id, departnent _id
2* FROM enpl oyees

SQL> SAVE ny_query

Created file my_query

SQL> START ny_query

LAST NAME MANAGER | D DEPARTMENT | D
Ki ng 90
Kochhar 100 90

20 rows sel ect ed.

C-14 Copyright © Oracle Corporation, 2001. All rights reserved.

SAVE

Use the SAVE command to store the current contents of the buffer in afile. In this way, you can store
frequently used scripts for usein the future.

START
Use the START command to run ascript in SQL*Plus.
ED T

Usethe EDI T command to edit an existing script. This opens an editor with the script filein it. When you
have made the changes, exit the editor to return to the SQL*Plus command line.

Introduction to Oracle9i: SQL C-14

Summary

Use SQL*Plus as an environment to:
* Execute SQL statements

* Edit SQL statements

* Format output

* |Interact with script files

C-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

SQL*Plusis an execution environment that you can use to send SQL commands to the database server and
to edit and save SQL commands. Y ou can execute commands from the SQL prompt or from a script file.

Introduction to Oracle9i: SQL C-15

Introduction to Oracle9i: SQL C-16

Writing Advanced Scripts

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this appendix, you should be able

to do the following:

®* Describe the types of problems that are solved by
using SQL to generate SQL

* Write a script that generates a script of DROP
TABLE statements

®* Write a script that generates a script of | NSERT

| NTOstatements

D-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this appendix, you learn how to write a SQL script to generates a SQL script.

Introduction to Oracle9i: SQL D-2

Using SQL to Generate SQL
Data

Csqu S

SQL script

* SQL can be used to generate scripts in SQL

* The data dictionary

— Is a collection of tables and views that contain database
information

— Is created and maintained by the Oracle server

D-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Using SQL to Generate SQL
SQL can be a powerful tool to generate other SQL statements. In most cases this involves writing a
script file. Y ou can use SQL from SQL to:
» Avoid repetitive coding
» Accessinformation from the data dictionary
» Drop or re-create database objects
» Generate dynamic predicates that contain run-time parameters

The examples used in thislesson involve selecting information f rom the data dictionary. The data
dictionary is acollection of tables and views that contain information about the database. This
collection is created and maintained by the Oracle Server. All data dictionary tables are owned by
the SYS user. Information stored in the data dictionary includes names of the Oracle Server users,
privileges granted to users, database object names, table constraints, and audition information. There
are four categories of data dictionary views. Each category has a distinct prefix that reflectsits
intended use.

Prefix Description

USER_ Contains details of objects owned by the user

ALL_ Contains details of objects to which the user has been granted access rights, in
addition to objects owned by the user

DBA__ Contains details of users with DBA privileges to access any object in the database

V$_ Stored information about database server performance and locking; available only to
the DBA

Introduction to Oracle9i: SQL D-3

Creating a Basic Script

SELECT ' CREATE TABLE ' || table_nanme || ' _test '
|| 'AS SELECT * FROM' || tabl e_nane
||" WHERE 1=2;°'

AS "Create Table Script”
FROM user tabl es;

| Create Table Script

[CREATE TAELE DERPARTMENTS_test AS SELECT * FROM DEPARTMENTS WHERE 1=2;
[CREATE TABLE EMPLOYEES test AS SELECT * FROM EMPLOYEES WHERE 1=2;
[CREATE TABLE JOBS_test AS SELECT * FROM JOBS WHERE 1=2;
[CREATE TABLE JOB_GRADES_test AS SELECT * FROM JOB_GRADES WHERE 1=2;
[CREATE TABLE JOB_HISTORY test AS SELECT * FROM JOB_HISTORY WHERE 1=2,;
[CREATE TABLE LOCATIONS test A% SELECT * FROM LOCATIONS WHERE 1=2;

|CREATE TABLE REGIONS test AS SELECT * FROM REGIONS WHERE 1=2;

3 rows selected.

D-4 Copyright © Oracle Corporation, 2001. All rights reserved.

A Basic Script

The example in the dide produces a report with CREATE TABLE statements from every table you
own. Each CREATE TABLE statement produced in the report includes the syntax to create atable
using the table name with a suffix of _t est and having only the structure of the corresponding
exigting table. The old table name is obtained from the TABLE_NAME column of the data dictionary
view USER_TABLES.

The next step is to enhance the report to automate the process.

Note: Y ou can query the data dictionary tablesto view various database objects that you own. The
data dictionary views frequently used include:

e USER TABLES: Displays description of the user’s own tables

* USER_OBJECTS: Displaysall the objects owned by the user

» USER _TAB_PRI VS_MADE: Displaysall grants on objects owned by the user

» USER_COL_PRI VS_MADE: Displaysall grants on columns of objects owned by the user

Introduction to Oracle9i: SQL D-4

Controlling the Environment

SET ECHO OFF _
SET FEEDBACK OFF [Set system variables
SET PAGESI ZE 0 to appropriate values.

SPOOL dr opem sql
SQL STATEMENT

SPOOL OFF
SET FEEDBACK ON
SET PAGESI ZE 24 Set system variables
SET ECHO ON back to the default
value.
D-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Environment
In order to execute the SQL statements that are generated, you must capture them in a spool file that
can then be run. Y ou must also plan to clean up the output that is generated and make sure that you
suppress elements such as headings, feedback messages, top titles, and so on. Y ou can accomplish
all of this by using i SQL*Plus commands.

Introduction to Oracle9i: SQL D-5

The Complete Picture

SET ECHO OFF
SET FEEDBACK OFF
SET PAGESI ZE O

SELECT ' DROP TABLE ' || object_nane || ';'
FROM user _objects

VWHERE obj ect _type = ' TABLE

/

SET FEEDBACK ON
SET PAGESI ZE 24
SET ECHO ON

D-6 Copyright © Oracle Corporation, 2001. All rights reserved.

The Complete Picture

The output of the command on the dideis saved into afile called dr opem sql using the Save
Output option in iSQL*Plus. Thisfile contains the following data. Thisfile can now be started from
the iSQL*Plus by locating the script file, loading it, and executing it.

| 'DROPTABLE’||OBJECT _NAME|

[DROP TABLE COUNTRIES:

|DRCIF' TABLE DEFARTMENTS;

|DRCIF' TABLE EMPLOYEES,

!DRDF‘ TABLE JOBS,

[DROP TABLE JOB_GRADES;

|DRCIF' TABLE JOB_HISTORY,

|DRCIF' TABLE LOCATIONS;

!DRDF‘ TABLE REGIONS;

Note: By default, files are spooled into the ORACLE_HOVE\ ORANT\ BI Nfolder in Windows NT.

Introduction to Oracle9i: SQL D-6

Dumping the Contents of a Table to a File

SET HEADI NG OFF ECHO OFF FEEDBACK OFF
SET PAGESI ZE O

SELECT

"I NSERT | NTO departnents_test VALUES

(" || departnent_id || ", """ || departnent_nane ||
"' | locationZid || ")

AS "lInsert Statements Script”

FROM departnents

/

SET PAGESI ZE 24
SET HEADI NG ON ECHO ON FEEDBACK ON

D-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Dumping Table Contents to a File
Sometimesit is useful to have the values for the rows of atabl ein atext file in the format of an
I NSERT | NTO VALUES statement. This script can be run to populate the table, in case the table
has been dropped accidentally.
The examplein the dide produces | NSERT statements for the DEPARTMVENTS_TEST table,
captured inthedat a. sql file using the Save Output option in iSQL*Plus.
The contents of the dat a. sqgl script file are asfollows:
I NSERT | NTO departnents_test VALUES
(10, 'Adm nistration', 1700);
I NSERT | NTO departnents_test VALUES
(20, 'Marketing', 1800);
| NSERT | NTO departnments_test VALUES
(50, ' Shipping , 1500);
| NSERT | NTO departnments_test VALUES
(60, "IT, 1400);

Introduction to Oracle9i: SQL D-7

Dumping the Contents of a Table to a File

Source

Result

IIIXIII IXI

""''||departnent_nane||'""" "Adnmi ni stration'

D-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Dumping Table Contents to a File (continued)

Y ou may have noticed the large number of single quotes in the slide on the previous page. A set of
four single quotes produces one single quote in the final statement. Also remember that character and

date values must be surrounded by quotes.

Within a string, to display one single quote, you need to prefix it with another single quote. For

example, in the fifth example in the dlide, the surrounding quotes are for the entire string. The second
quote acts as a prefix to display the third quote. Thusthe result is one single quote followed by the

parenthesis followed by the semicolon.

Introduction to Oracle9i: SQL D-8

Generating a Dynamic Predicate

COLUWN ny_col NEW VALUE dyn_where_cl ause

SELECT DECODE(' &&deptno', null,
DECODE (' &hiredate', null, " ',

"VWHERE hire_date=TO DATE('''||"' &hiredate'',' ' DD- MON- YYYY' ")'),
DECODE (' &&hiredate', null,

"WHERE department _id ="' || '&&deptno',

"VWHERE departnent _id ="' || '&&deptno' ||

" AND hire_date = TODATE('"'||' &hiredate' ', ' DD- MON-YYYY' ')"))

AS ny_col FROM dual ;

SELECT | ast _nane FROM enpl oyees &dyn_where_cl ause;

D-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Generating a Dynamic Predicate

The example in the dide generates a SELECT statement that retrieves data of all employeesin a
department who were hired on a specific day. The script generates the WHERE clause dynamically.

Note: Once the user variableisin place, you need to use the UNDEFI NE command to delete it.

Thefirst SELECT statement prompts you to enter the department number. If you do not enter any
department number, the department number is treated as null by the DECODE function, and the user
isthen prompted for the hire date. If you do not enter any hire date, the hire date is treated as null by
the DECODE function and the dynamic WHERE clause that is generated is also anull, which causes
the second SELECT statement to retrieve all rows from the EMPLOYEES table.

Note: The NEW V[ALUE] variable specifies a variable to hold a column value. Y ou can reference
thevariablein TTI TLE commands. Use NEW VAL UE to display column values or the date in the top
title. Y ou must include the column in a BREAK command with the SKI P PAGE action. The
variable name cannot contain a pound sign (#). NEW VAL UE is useful for master/detail reportsin
which there is a new master record for each page.

Introduction to Oracle9i: SQL D-9

Generating a Dynamic Predicate (continued)
Note: Here, the hire date must be entered in DD- MON- YYYY format.
The SELECT statement in the previous dide can be interpreted as follows:

IF (<<deptno>> isnot entered) THEN
IF (<<hiredate>> isnot entered) THEN
return empty string
ELSE
return the string ‘“WHERE hire_date = TO_DATE('<<hiredate>>', 'DD-MON-YYYY")’
ELSE
IF (<<hiredate>> is not entered) THEN
return the string ‘WHERE department_id = <<deptno>> entered'
ELSE
return the string ‘WHERE deparment_id = <<deptno>> entered
AND hire_date=TO DATE(' <<hiredate>>'", 'DD-MON-YYYY")
END IF

The returned string becomes the value of the variable DYN_ VWHERE CLAUSE, that will be used in
the second SELECT statement.

Introduction to Oracle9i: SQL D-10

Summary

In this appendix, you should have learned the

following:
®* You can write a SQL script to generate another
SQL script.

e Script files often use the data dictionary.
®* You can capture the output in a file.

D-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

SQL can be used to generate SQL scripts. These scripts can be used to avoid repetitive coding,
drop or re-create objects, get help from the data dictionary, and generate dynamic predicates that
contain run-time parameters.

i SQL*Plus commands can be used to capture the reports generated by the SQL statements and
clean up the output that is generated, such as suppressing headi ngs, feedback messages, and so on.

Introduction to Oracle9i: SQL D-11

Practice D Overview

This practice covers the following topics:

* Writing a script to describe and select the data
from your tables

* Writing a script to revoke user privileges

D-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice D Overview
In this practice, you gain practical experience in writing SQL to generate SQL.

Introduction to Oracle9i: SQL D-12

Practice D

1. Write ascript to describe and select the data from your tables. Use CHR(10) inthe select list

with the concatenation operator (||) to generate aline feed in your report Save the output of

thescriptintorry _fil el. sql . To savethefile, select SAVE option for the output and

execute the code. Remember to savethefilewitha. sql extension. To execute the
my_filel.sql, browsetolocate the script, load the script, and execute the script.

2. Use SQL to generate SQL statements that revoke user privileges. Use the data dictionary

views USER_TAB_ PRI VS_MADE and USER_COL_PRI VS_MADE.
a. Executethescript\ Lab\ pri vs. sql to grant privilegesto the user SYSTEM

b. Query the data dictionary views to check the privileges. In the sample output shown, note
that the data in the GRANTOR column can vary depending on who the GRANTCOR is. Also the
last column that has been truncated is the GRANTABLE column.

| GRANTEE | TABLE NAME | GRANTOR | PRIVILEGE | GRA | HIE
\SYSTEM \DEPARTMENT S TRNG4 ALTER MO MO
\SYSTEM \DEPARTMENT S TRNG4 \DELETE MO [NO
\SYSTEM DEPARTMENT S TRNG4 INDEX MO MO
\SYSTEM DEPARTMENT 5 TRMG4 INSERT MO MO
\SYSTEM \DEPARTMENT S TRNG4 \SELECT MO |NO
\SYSTEM \DEPARTMENT S TRNG4 IUPDATE MO [NO
\SYSTEM DEPARTMENT S TRNG4 \REFEREMCES MO MO
|SYSTEM |DEPARTMENT S TRMG4 |OM COMMIT REFRESH MO MO
\SYSTEM \DEPARTMENT S TRNG4 \QUERY REWR ITE MO |NO
\SYSTEM \DEPARTMENT S TRNG4 \DEBUG MO [NO
10 rows selected.

GRANTEE TABLE_NAME COLUMN_NAM | GRANTOR | PRIVILEGE | GRA |
\SYSTEM [EMPLOYEES \JOB_ID TRNG4 IUPDATE MO
\SYSTEM EMPLOYEES [SALARY TRNGA IUPDATE MO

2 rows selected.

Introduction to Oracle9i: SQL D-13

Practice D (continued)

c. Produce a script to revoke the privileges. Save the output of the scriptintony_fil e2. sqgl . To
save thefile, select the SAVE option for the output, and execute the code. Remember to save the
filewitha. sql extension. To executetheny fil e2. sql , browseto locate the script, load
the script, and execute the script.

| 'REVOKE'||PRIVILEGE||"ON’|[TABLE_NAME|'"FROMSYSTEM:'

|REVDKE ALTER ON DEPARTMENTS FROM system;

|REVDKE DELETE OM DEPARTMENTS FROM system;

|REVDKE INDEX ON DEPARTMEMNTS FROM system;

|REVDKE INSERT ON DEPARTMENTS FROM system;

|REVOKE SELECT ON DEPARTMENTS FROM system;

|REVDKE LIPDATE OM DEPARTMENTS FROM system;

|REVDKE REFEREMCES OMN DEFPARTMENTS FROM system;

|REVDKE OM COMMIT REFRESH OM DEPARTMENTS FROM system;

|REVDKE QUERY REWRITE ON DEFARTMENTS FROM system;

|REVDKE DEBUG ON DEPARTMENTS FROM system;

| 'REVOKE'[|PRIVILEGE|"ON’|[TABLE_NAME|'"FROMSYSTEM:®

|REVDKE LPDATE OM EMPLOYEES FROM system;

Introduction to Oracle9i: SQL D-14

Oracle Architectural
Components

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this appendix, you should be able
to do the following:

* Describe the Oracle Server architecture and its
main components

* List the structures involved in connecting a user
to an Oracle instance

* Listthe stages in processing:
— Queries
— DML statements
— Commits

E-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

This appendix introduces Oracle Server architecture by describing the files, processes, and memory structures
involved in establishing a database connection and executing a SQL command.

Introduction to Oracle9i: SQL E-2

Overview

Instance
User
process SGA Shared pool
Library
Data buffer|| Redo log cache
Server cache buffer Data dict.
process cache
(610D @ewd GrodEkPDCewBGinerd
A

- Database

E-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview

The Oracle Server isan object relational database management system that provides an open, comprehensive,
integrated approach to information management.

Primary Components

There are several processes, memory structures, and filesin an Oracle Server; however, not al of them are used
when processing a SQL statement. Some are used to improve the performance of the database, ensure that the
database can be recovered in the event of a software or hardware error, or perform other tasks necessary to maintain
the database. The Oracle Server consists of an Oracle instance and an Oracle database.

Oraclelnstance

An Oracle instance is the combination of the background processes and memory structures. The instance must be
started to access the data in the database. Every time an instance is started, a system global area (SGA) is alocated
and Oracle background processes are started. The SGA isamemory area used to store database information that is
shared by database processes.

Introduction to Oracle9i: SQL E-3

Primary Components (continued)

Oracle Instance (continued)

Background processes perform functions on behalf of the invoking process. They consolidate functions that
would otherwise be handled by multiple Oracle programs running for each user. The background processes
perform I/O and monitor other Oracle processes to provide incressed parallelism for better performance and
reliability.

Other Processes

The user processis the application program that originates SQL statements. The server process executes the SQL
statements sent from the user process.

Database Files

Database files are operating system files that provide the actual physical storage for database information. The
database files are used to ensure that the data is kept consistent and can be recovered in the event of afailure of
the instance.

Other Files

Nondatabase files are used to configure the instance, authenticate privileged users, and recover the database in
the event of adisk failure.

SQL Statement Processing

The user and server processes are the primary processes involved when a SQL statement is executed; however,
other processes may help the server complete the processing of the SQL statement.

Oracle Database Administrators

Database administrators are responsible for maintaining the Oracle Server so that the server can process user
requests. An understanding of the Oracle architecture is necessary to maintain it effectively.

Introduction to Oracle9i: SQL E-4

Oracle Database Files

- Database

E-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle Database Files

An Oracle database is a collection of data that is treated as a unit. The general purpose of adatabase isto store and
retrieve related information. The database has alogical structure and a physical structure. The physical structure of
the database is the set of operating system files in the database. An Oracle database consists of three file types:

Datafiles contain the actual datain the database. The datais stored in user-defined tables, but data files also contain
the data dictionary, before-images of modified data, indexes, and other types of structures. A database has at |east
one datafile. The characteristics of datafiles are:

e A datafile can be associated with only one database. Data files can have certain characteristics set so they
can automatically extend when the database runs out of space. One or more datafilesform alogical unit of
database storage called a tablespace. Redo logs contain arecord of changes made to the database to enable
recovery of the datain case of failures. A database requires at least two redo log files.

» Control files contain information necessary to maintain and verify database integrity. For example, a control
fileis used to identify the data files and redo log files. A database needs at |east one control file.

Introduction to Oracle9i: SQL E-5

Other Key Physical Structures

Database Archived
log files

E-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Other Key Files
The Oracle Server also uses other filesthat are not part of the database:

» The parameter file defines the characteristics of an Oracle instance. For example, it contains parameters that
size some of the memory structures in the SGA.

» The password file authenticates which users are permitted to start up and shut down an Oracle instance.

» Archived redo log files are offline copies of the redo log files that may be necessary to recover from media
failures.

Introduction to Oracle9i: SQL E-6

E-7

Oracle Instance

An Oracle instance:
®* |s ameans to access an Oracle database
e Always opens one and only one database

Instance

SGA Shared pool

Memory

structures
Data buffer|| Redo log

cache buffer

(€1 @evd Euod EkPD WD Giner| Peckdroin

Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle Instance

An Oracleinstance consists of the SGA memory structure and the background processes used to manage a
database. An instance isidentified by using methods specific to each operating system. The instance can open
and use only one database at atime.

System Global Area

The SGA isamemory area used to store database information that is shared by database processes. It contains
data and control information for the Oracle Server. It isalocated in the virtual memory of the computer where
the Oracle server resides. The SGA consists of several memory structures:

The shared pool is used to store the most recently executed SQL statements and the most recently used
data from the data dictionary. These SQL statements may be submitted by a user process or, in the case of
stored procedures, read from the data dictionary.

The database buffer cache is used to store the most recently used data. The datais read from, and written
to, the datafiles.

Theredo log buffer is used to track changes made to the database by the server and background processes.

Introduction to Oracle9i: SQL E-7

System Global Area (continued)

The purpose of these structuresis discussed in detail in later sections of this|esson.
There are also two optional memory structures in the SGA:
e Javapool: Used to store Java code

e Largepool: Used to store large memory structures not directly related to SQL statement processing;
for example, data blocks copied during backup and restore operations

Background Processes

The background processesin an instance perform common functions that are needed to service requests from
concurrent users without compromising the integrity and performance of the system. They consolidate
functions that would otherwise be handled by multiple Oracle programs running for each user. The
background processes perform 1/0O and monitor other Oracle processes to provide increased parallelism for
better performance and reliability.

Depending on its configuration, an Oracle instance may include several background processes, but every
instance includes these five required background processes:

» Database Writer (DBWO) isresponsible for writing changed data from the database buffer cache to
the datafiles.

» LogWriter (LGWR) writes changes registered in the redo log buffer to the redo log files.

» System Monitor (SMON) checks for consistency of the database and, if necessary, initiates recovery
of the database when the database is opened.

* Process Monitor (PMON) cleans up resources if one of the Oracle processesfails.

» The Checkpoint Process (CKPT) is responsible for updating database status information in the control
files and data files whenever changesin the buffer cache are permanently recorded in the database.

The following sections of this lesson explain how a server process uses some of the components of the
Oracle instance and database to process SQL statements submitted by a user process.

Introduction to Oracle9i: SQL E-8

Processing a SQL Statement

* Connect to an instance using:
— The user process
— The server process

* The Oracle Server components that are used
depend on the type of SQL statement:

— Queries return rows
— DML statements log changes
— Commit ensures transaction recovery

® Some Oracle Server components do not
participate in SQL statement processing.

E-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Components Used to Process SQL

Not al of the components of an Oracle instance are used to process SQL statements.The user and server
processes are used to connect a user to an Oracle instance. These processes are not part of the Oracle instance, but
arerequired to process a SQL statement.

Some of the background processes, SGA structures, and database files are used to process SQL statements.
Depending on the type of SQL statement, different components are used:

* Queriesrequire additional processing to return rowsto the user.

» Data manipulation language (DML) statements require additional processing to log the changes
made to the data.

» Commit processing ensures that the modified data in a transaction can be recovered.

Some required background processes do not directly participate in processing a SQL statement but are used to
improve performance and to recover the database.

The optional background process, ARCO, is used to ensure that a production database can be recovered.

Introduction to Oracle9i: SQL E-9

Connecting to an Instance

Oracle server
CONNER=
«—> L1

A

it

-

< = =
— —
Client
- Appllcatlon server . 7 Server
=\ —\—
Browser
E-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Processes Used to Connect to an Instance
Before users can submit SQL statements to the Oracle Server, they must connect to an instance.

The user starts atool such asiSQL*Plus or runs an application developed using atool such as Oracle Forms. This
application or tool is executed in auser process.

In the most basic configuration, when a user logs on to the Oracle Server, aprocessis created on the computer
running the Oracle server. This processis called a server process. The server process communicates with the
Oracle instance on behalf of the user process that runs on the client. The server process executes SQL statements
on behalf of the user.

Connection

A connection is a communication pathway between a user process and an Oracle Server. A database user can
connect to an Oracle Server in one of three ways:

» Theuser logs on to the operating system running the Oracle instance and starts an application or tool that
accesses the database on that system. The communication pathway is established using the interprocess
communication mechanisms available on the host operating system.

Introduction to Oracle9i: SQL E-10

Connection (continued)

e Theuser starts the application or tool on alocal computer and connects over a network to the computer
running the Oracle instance. In this configuration, called client-server, network software is used to
communi cate between the user and the Oracle Server.

* Inathree-tiered connection, the user’ s computer communicates over the network to an application or a
network server, which is connected through a network to the machine running the Oracle instance. For
example, the user runs a browser on a network computer to use an application residing on an NT server
that retrieves data from an Oracle database running on a UNIX host.

Sessions

A session is a specific connection of a user to an Oracle Server. The session starts when the user is validated by
the Oracle Server, and it ends when the user logs out or when there is an abnormal termination. For a given
database user, many concurrent sessions are possible if the user logs on from many tools, applications, or

terminals at the same time. Except for some specialized database administration tools, starting a database
session requires that the Oracle Server be available for use.

Note: The type of connection explained here, where there is a one-to-one correspondence between a user and
server process, is called a dedicated server connection.

Introduction to Oracle9i: SQL E-11

Processing a Query

* Parse:
— Search for identical statement
— Check syntax, object names, and privileges
— Lock objects used during parse
— Create and store execution plan
* Execute: Identify rows selected

* Fetch: Return rows to user process

E-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Query Processing Steps

Queries are different from other types of SQL statements because, if successful, they return data as results.
Whereas other statements simply return success or failure, a query can return one row or thousands of rows.

There are three main stages in the processing of a query:

. Parse
. Execute
. Fetch

Parsing a SQL Statement

During the parse stage, the SQL statement is passed from the user process to the server process, and a parsed
representation of the SQL statement isloaded into a shared SQL area.

During the parse, the server process performs the following functions:
. Searches for an existing copy of the SQL statement in the shared pool
. Vaidates the SQL statement by checking its syntax
. Performs data dictionary lookups to validate table and column definitions

Introduction to Oracle9i: SQL E-12

The Shared Pool

Shared pool

Library
cache

Data dictionary
cache

* The library cache contains the SQL statement text,
parsed code, and execution plan.

®* The data dictionary cache contains table, column,
and other object definitions and privileges.

* The shared pool is sized by SHARED POCL_SI ZE.

E-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Shared Pool Components

During the parse stage, the server process uses the areain the SGA known as the shared pool to compile the SQL
statement. The shared pool has two primary components:

. Library cache
. Data dictionary cache
Library Cache

Thelibrary cache stores information about the most recently used SQL statements in a memory structure called a
shared SQL area. The shared SQL area contains:

. The text of the SQL statement
. The parse tree: A compiled version of the statement
. The execution plan: The steps to be taken when executing the statement
The optimizer is the function in the Oracle Server that determines the optimal execution plan.

Introduction to Oracle9i: SQL E-13

Shared Pool Components (continued)
Library Cache (continued)

If a SQL statement is reexecuted and a shared SQL area already contains the execution plan for the
statement, the server process does not need to parse the statement. The library cache improves the
performance of applications that reuse SQL statements by reducing parse time and memory requirements. |f
the SQL statement is not reused, it is eventually aged out of the library cache.

Data Dictionary Cache

The data dictionary cache, also known as the dictionary cache or row cache, is a collection of the most
recently used definitionsin the database. It includes informati on about database files, tables, indexes,
columns, users, privileges, and other database objects.

During the parse phase, the server process |ooks for the information in the dictionary cache to resolve the
object names specified in the SQL statement and to validate the access privileges. If necessary, the server
process initiates the loading of thisinformation from the data files.

Sizing the Shared Pool
The size of the shared pool is specified by the initialization parameter SHARED POOL_SI ZE.

Introduction to Oracle9i: SQL E-14

Database Buffer Cache

Data buffer
cache

® Stores the most recently used blocks
* Size of a buffer based on DB_BLOCK SI ZE
* Number of buffers defined by DB_BLOCK BUFFERS

E-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Function of the Database Buffer Cache

When a query is processed, the server process looks in the database buffer cache for any blocksit needs. If the
block is not found in the database buffer cache, the server process reads the block from the datafile and placesa
copy in the buffer cache. Because subsequent requests for the same block may find the block in memory, the
requests may not require physical reads. The Oracle Server uses aleast recently used algorithm to age out buffers
that have not been accessed recently to make room for new blocks in the buffer cache.

Sizing the Database Buffer Cache

The size of each buffer in the buffer cache is egqual to the size of an Oracle block, and it is specified by the
DB_BLOCK_SI ZE parameter. The number of buffersis equal to the value of the DB_BL OCK_BUFFERS
parameter.

Introduction to Oracle9i: SQL E-15

Program Global Area (PGA)

* Not shared
* Writable only by the server process

* Contains:
— Sort area
— Session information

— Cursor state

Server
process

PGA

— Stack space

E-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Program Global Area Components

A program global area (PGA) isamemory region that contains data and control information for a server process. It
is anonshared memory created by Oracle when a server processis started. Accessto it is exclusive to that server
process and is read and written only by the Oracle Server code acting on behalf of it. The PGA memory allocated by
each server process attached to an Oracle instance is referred to as the aggregated PGA memory alocated by the
instance.

In adedicated server configuration, the PGA of the server includes these components:
. Sort area: Used for any sorts that may be required to process the SQL statement
. Session information: Includes user privileges and performance statistics for the session
. Cursor state: |ndicates the stage in the processing of the SQL statements that are currently used by the
session
. Stack space: Contains other session variables
The PGA is alocated when a processis created and deallocated when the processis terminated.

Introduction to Oracle9i: SQL E-16

Processing a DML Statement

SGA
User Shared pool
process
Data buffer| | Redo log
cache buffer
UPDATE enp ... - =
Server |\ @

process
Data Control Redo
files files log files
Database
E-17 Copyright © Oracle Corporation, 2001. All rights reserved.

DML Processing Steps
A data manipulation language (DML) statement requires only two phases of processing:
. Parse isthe same as the parse phase used for processing a query
. Execute requires additional processing to make data changes
DML Execute Phase
To execute a DML statement:

» If thedataand rollback blocks are not already in the buffer cache, the server process reads them from the
datafilesinto the buffer cache.

* The server process places locks on the rows that are to be modified.
* Intheredo log buffer, the server process records the changes to be made to the rollback and data.

* Therollback block changes record the values of the data beforeit is modified. The rollback block isused to
store the before image of the data, so that the DML statements can be rolled back if necessary.

» Thedata blocks changes record the new values of the data.

Introduction to Oracle9i: SQL E-17

DML Praocessing Steps (continued)
DML Execute Phase (continued)

The server process records the before image to the rollback block and updates the data block. Both of
these changes are done in the database buffer cache. Any changed blocks in the buffer cache are
marked as dirty buffers: that is, buffers that are not the same as the corresponding blocks on the disk.

The processing of a DELETE or | NSERT command uses similar steps. The before image for a
DELETE contains the column values in the deleted row, and the before image of an | NSERT contains
the row location information.

Because the changes made to the blocks are only recorded in memory structures and are not written
immediately to disk, a computer failure that causes the loss of the SGA can also lose these changes.

Introduction to Oracle9i: SQL E-18

Redo Log Buffer

Redo log
buffer

®* Has its size defined by LOG_BUFFER

®* Records changes made through the instance
* Is used sequentially

® Is acircular buffer

E-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Redo Log Buffer Characteristics
The server process records most of the changes made to datafile blocks in the redo log buffer, which is a part of
the SGA. The redo log buffer has the following characteristics:
e Itssizein bytesis defined by the LOG_BUFFER parameter.
e Itrecordsthe block that is changed, the location of the change, and the new value in aredo entry. A redo

entry makes no distinction between the type of block that is changed; it simply records which bytes are
changed in the block.

* Theredo log buffer is used sequentially, and changes made by one transaction may be interleaved with
changes made by other transactions.

* Itisacircular buffer that isreused after it isfilled, but only after all the old redo entries are recorded in the
redo log files.

Introduction to Oracle9i: SQL E-19

Rollback Segment

Old image

I‘

New
image
Table
Rollback segment
DML statement
E-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Rollback Segment
Before making a change, the server process saves the old data vaue into arollback segment. This beforeimageis
used to:

e Undo the changesiif the transaction is rolled back

« Provideread consistency by ensuring that other transactions do not see uncommitted changes made by the
DML statement

* Recover the database to a consistent state in case of failures

Rollback segments, like tables and indexes, exist in data files, and rollback blocks are brought into the database
buffer cache as required. Rollback segments are created by the DBA.

Changesto rollback segments are recorded in the redo log buffer.

Introduction to Oracle9i: SQL E-20

COW T Processing

@ Instance
SGA Shared pool
\ Data buffer] | Redo log
Server » cache buffer
process @
™\
OO S

®

i-(2)

Data Control Redo
files files log files
User
process
Database
E-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Fast COWM T

The Oracle Server uses afast commit mechanism that guarantees that the committed changes can be recovered in
case of instance failure.

System Change Number

Whenever atransaction commits, the Oracle Server assigns a commit system change number (SCN) to the
transaction. The SCN is monotonically incremented and is unique within the database. It is used by the Oracle
Server as an internal time stamp to synchronize data and to provide read consistency when datais retrieved from
the datafiles. Using the SCN enables the Oracle Server to perform consistency checks without depending on the
date and time of the operating system.
Stepsin Processng COW Ts
When a COW T isissued, the following steps are performed:

e The server process places a commit record, along with the SCN, in the redo log buffer.

* LOGAR performs a contiguous write of all the redo log buffer entries up to and including
the commit record to the redo log files. After this point, the Oracle Server can guarantee that the changes will
not be lost even if there is an instance failure.

Introduction to Oracle9i: SQL E-21

Steps in Processing COMM Ts (continued)

The user isinformed that the COMM T is complete.

The server process records information to indicate that the transaction is complete and that
resource locks can be released.

Flushing of the dirty buffersto the datafile is performed independently by DBWO and can occur either
before or after the commit.

Advantages of the Fast COWM T

The fast commit mechanism ensures data recovery by writing changes to the redo log buffer instead of
the datafiles. It has the following advantages:

Sequential writesto the log files are faster than writing to di fferent blocksin the datafile.

Only the minimal information that is necessary to record changes iswritten to the log files,
whereas writing to the data files would require whole blocks of datato be written.

If multiple transactions request to commit at the same time, the instance piggybacks redo log
records into asingle write.

Unlessthe redo log buffer is particularly full, only one synchronous writeis required per
transaction. If piggybacking occurs, there can be less than one synchronous write per transaction.

Because the redo log buffer may be flushed before the COVM T, the size of the transaction does
not affect the amount of time needed for an actual COMM T operation.

Note: Rolling back atransaction does not trigger LGAR to write to disk. The Oracle Server aways rolls
back uncommitted changes when recovering from failures. If there is afailure after arollback, before the
rollback entries are recorded on disk, the absence of a commit record is sufficient to ensure that the
changes made by the transaction are rolled back.

Introduction to Oracle9i: SQL E-22

Log Writer (LG\R)

SGA Shared pool)
LGAR writes when:
Data buffer| | Redo log e Thereisacommt
cache buffer » Theredo buffer log
Is one-third full

QQQ@@Q e Thereis more than

T 1 MB of redo
Y .
Data Control Redo . Before DBWO writes
files files log files
Database
E-23 Copyright © Oracle Corporation, 2001. All rights reserved.

LOG Writer
LGWR performs sequential writes from the redo log buffer to the redo log file under the following situations:
* When atransaction commits
* When theredo log buffer is one-third full
* When there is more than a megabyte of changes recorded in the redo log buffer
. Before DBW) writes modified blocks in the database buffer cache to the data files
Because the redo is needed for recovery, LGAR confirmsthe COVM T only after the redo iswritten to disk.

Introduction to Oracle9i: SQL E-23

Other Instance Processes

®* Other required processes:
— Database Writer (DBWD)
— Process Monitor (PMON)
— System Monitor (SMON)
— Checkpoint (CKPT)

* The archive process (ARCO) is usually created
in a production database

E-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Other Required Processes

Four other required processes do not participate directly in processing SQL statements:
. Database Writer (DBWD)
. Process Monitor (PMON)
. System Monitor (SMON)
. Checkpoint (CKPT)

The checkpoint processis used to synchronize database files.

The Archiver Process

All other background processes are optional, depending on the configuration of the database; however, one of them,
ARQO, is crucial to recovering a database after the loss of adisk. The ARCO processis usually created in a
production database.

Introduction to Oracle9i: SQL E-24

Database Writer (DBVD)

SGA Shared pool
DBW) writes when:
Data buffer]| Redo log * There are many dirty
cache buffer buffers
* There are few free

OO e

* Timeout occurs

Data Control Redo * Checkpoint occurs
files files log files
Database
E-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Writer

The server process records changes to rollback and data blocks in the buffer cache. The Database Writer (DBWD)
writes the dirty buffers from the database buffer cache to the datafiles. It ensures that a sufficient number of free
buffers (buffers that can be overwritten when server processes need to read in blocks from the data files) are
available in the database buffer cache. Database performance is improved because server processes make changes
only in the buffer cache, and the DBW) defers writing to the data files until one of the following events occurs:

e Thenumber of dirty buffers reaches athreshold value

e A process scans a specified number of blocks when scanning for free buffers and cannot
find any

« A timeout occurs (every three seconds)
e A checkpoint occurs (A checkpoint is a means of synchronizing the database buffer cache with the datafile.)

Introduction to Oracle9i: SQL E-25

SMON: System Monitor

e Automatically recovers the instance:
— Rolls forward changes in the redo logs
— Opens the database for user access
— Rolls back uncommitted transactions
® Coalesces free space

* Deallocates temporary segments

E-26 Copyright © Oracle Corporation, 2001. All rights reserved.

SMON: System Monitor

If the Oracleinstance fails, any information in the SGA that has not been written to disk islost. For example, the
failure of the operating system causes an instance failure. After the loss of the instance, the background process
SMON automatically performs instance recovery when the database is reopened. Instance recovery consists of the

following steps:

* Rolling forward to recover datathat has not been recorded in the data files but that has been recorded in the
online redo log. This data has not been written to disk because of the loss of the SGA during instance failure.
During this process, SMON reads the redo log files and applies the changes recorded in the redo log to the data

blocks. Because all committed transaction have been written to the redo logs, this process completely

recovers these transactions.

* Opening the database so users can log on. Any data that is not ocked by unrecovered transactionsis

immediately available.

* Roalling back uncommitted transactions. They are rolled back by SMON or by the individual server processes

asthey access locked data.
SMON also performs some space maintenance functions:
* |t combines, or coalesces, adjacent areas of free space in the datafiles.

» |t dedllocatestemporary segments to return them as free space in data files. Temporary segments are used to

store data during SQL statement processing.

Introduction to Oracle9i: SQL E-26

PMON: Process Monitor

Cleans up after failed processes by:
* Rolling back the transaction

* Releasing locks

* Releasing other resources

E-27 Copyright © Oracle Corporation, 2001. All rights reserved.

PMON Functionality
The background process PMON cleans up after failed processes by:
. Rolling back the user’s current transaction
. Releasing al currently held table or row locks
. Freeing other resources currently reserved by the user

Introduction to Oracle9i: SQL E-27

Summary

In this appendix, you should have learned how to:

* |dentify database files: data files, control files,
online redo logs

®* Describe SGA memory structures: DB buffer
cache, shared SQL pool, and redo log buffer

* Explain primary background processes:
DBWD, LGAR, CKPT, PMON, SMON, and ARCO

* List SQL processing steps: parse, execute, fetch

E-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
The Oracle database includes these files;

e Control files: Contain information required to verify the integrity of the database, including the names
of the other filesin the database (The control files are usually mirrored.)

« Datafiles: Contain the datain the database, including tables, indexes, rollback segments, and
temporary segments

« Onlineredo logs. Contain the changes made to the datafiles (Online redo logs are used for recovery
and are usually mirrored.)

Other files commonly used with the database include:
» Parameter file: Defines the characteristics of an Oracle instance
« Password file: Authenticates privileged database users
« Archived redo logs: Are backups of the online redo logs

Introduction to Oracle9i: SQL E-28

SGA Memory Structures
The System Global Area (SGA) has three primary structures:

Shared pool: Stores the most recently executed SQL statements and the most recently used data

from the data dictionary

Database buffer cache: Stores the most recently used data
Redo log buffer: Records changes made to the database using the instance

Background Processes

A production Oracle instance includes these processes:

Database Writer (DBWD): Writes changed data to the data files
Log Writer (LGAR): Records changes to the data files in the online redo log files

System Monitor (SMON): Checks for consistency and initiates recovery of the database when the
database is opened

Process Monitor (PMON): Cleans up the resources if one of the processes fails
Checkpoint Process (CKPT): Updates the database status information after a checkpoint

Archiver (ARCO): Backs up the online redo log to ensure recovery after amediafailure (This
processisoptional, but is usually included in a production instance.)

Depending on its configuration, the instance may also include other processes.

SQL Statement Processing Steps
The steps used to process a SQL statement include:

Parse: Compiles the SQL statement
Execute: Identifies selected rows or applies DML changesto the data
Fetch: Returns the rows queried by a SELECT statement

Introduction to Oracle9i: SQL E-29

Introduction to Oracle9i: SQL E-30

Index

Note: A bolded number or letter refers to an entire lesson or appendix.

APPEND Command C-11
ACCESS PARAMETER 20-19
Adding Data through a View 11-16
ADD_MONTHS Function 3-21
ALL Operator 6-16
Alias 1-4,1-17, 1-16, 2-7, 2-24, 11-9
Table Aliases 4-12
ALL | NSERT (Conditional) 20-7
ALL_COL_COMVENT Data Dictionary View 9-30
ALL_TAB COMVENT Data Dictionary View 9-30
ALTER SEQUENCE Statement 12-12
ALTER TABLE Statement 9-20, 9-21, 10-17, 10-20, 10-21, 13-11
ALTER USER Statement 13-11
Ambiguous Column Names 4-11
American National Standards Institute 1-24
ANSI [-24
ANY Operator 6-15
Application Server 1-5
Archived Redo Log File E-6
Arguments 3-3, 3-5
Arithmetic Expression 1-9
Arithmetic Operator 1-9
AS Subquery Clause 9-18
Assigning Privileges 13-7
Attributes [-16, I-19
AVG Function 5-6, 5-7

Introduction to Oracle9i: SQL Index-1

Index

Background Processes E-3, E-7
BETWEEN Operator 2-10
BREAK Command 7-18

BTl TLE Command 7-19

CHANGE Command C-12

Caching Sequence 12-1

Calculations in Expressions 1-9
Cardinality 1-18

Cartesian Product 4-4, 4-5

CASE Expression 3-51, 3-52, 18-12
CASCADE CONSTRAI NTS Clause 10-22
Character Data Type in Functions 3-4
Character Strings 2-5, 2-6

CHECK Constraint 10-16

Checkpoint Process e-8

Child Node 19-10

CLEAR BREAK Command 7-18
CQOALESCE Function 3-49

COLUWN Command 7-16, 7-17

Column Level Constraints 10-8
Command or Script Files 7-20
COWMENT Statement 9-30

COW T Statement 8-2, 8-33, 8-35, 8-39, 8-40, 9-8
Comparison Operator, Comparison Conditions 2-7, 18-4
Composite Column 17-17

Composite Unigue Key 10-10

CONCAT Function 3-11

Concatenated Groupings 17-21

Concatenation Operator 1-18

Introduction to Oracle9i: SQL Index-2

Index

Conditional FI RST | NSERT 20-7, 20-13, 20-14

Conditional If-Then-Else Logic 3-51
Conditional | NSERT ALL 20-7,20-11

Conditional Processing 3-51

Conditions, Logical 2-15

CONNECT BY Clause 19-5, 19-7, 19-13

CONSTRAI NTS 10
CASCADE CONSTRAI NTS Clause 10-22
CHECK Constraint 10-16
Column-Level Constraints 10-8
Defining Constraints 10-5
Deleting a Record with an Integrity Constraint 8-22
Disabling 10-20
Dropping a Constraint 10-19
FORElI GN KEY 10-13, 10-14, 10-15, 1-19
NOT NULL Constraint 10-7
Primary Key 10-11
READ ONLY Constraint 11-19
REFERENCE Constraint 10-15
Referential Integrity Constraint 10-13

Table-Level Constraints 10-8
UNI QUE Constraint 10-9, 10-10

Controlling Database Access 13

Control File e-5

Correlated Subquery 18-2, 18-13, 18-14, 18-15, 18-21, 18-24
Correlated UPDATE 18-22

Correlation 18-17

COUNT Function 5-8

Introduction to Oracle9i: SQL Index-3

CREATE DATABASE Statement 16-9
CREATE DI RECTCRY Statement 20-20
CREATE | NDEX Statement 12-17, 20-24
Creating Scripts 1-26

CREATE SEQUENCE Statement 12-5
CREATE TABLE Statement 9

CREATE USER Statement 13-6
CREATE VI EWStatement 11-7

Cross Tabular Reports 17-9

Cross Tabulation Rows 17-6

Cross Tabulation Values 17-10

CUBE Operator 17-2, 17-6, 17-9
CURRENT _DATE Function 16-6
CURRENT_TI MESTAMP Function 16-7
CURRVAL 9-7,12-8

CYCLE Clause (Sequences) 12-6

Date Functions 3-6
Data Control Language (DCL) Statements 8-33, 9
Data Definition Language (DDL) Statements 8-33, 9-5, 13
Data Manipulation Language (DML) Statements 8
DML Operations through a View 11-14
Data Dictionary Tables 9-9, D-3
Data Dictionary Cache E-13, E-14
Data File E-5
Data from More than One Table (Joins) 4

Data Structures in the Oracle Database 9-3, 9-5

Introduction to Oracle9i: SQL Index-4

Index

Data Types 3-25

Data Warehouse Applications 1-8
Database Links 13-19

Database Writer E-8

Date Conversion Functions 3-4, 3-35
Datetime Data Type 9-14

Datetime Functions 16-2

Daylight Savings Time 16-5

DBTI MEZONE Function 16-9
DECODE Expression 3-51, 3-54
DEFAULT Clause 8-26, 8-27, 9-7
Default Date Display 2-6, 3-17
DEFAULT DI RECTCORY 20-19
Default Sort Order 2-23

DEFI NE Command 7-5, 7-11

Defining Constraints 10-5

DELETE Statement 8-19, 8-20, 13-16
DESCRI BE Command 1-29, 8-7, 10-24, 11-13, C-7
DI SABLE Clause 10-20

DI STI NCT Keyword 1-4, 1-23, 5-5, 5-10
Dropping a Constraint 10-19

DROP ANY | NDEX Statement 12-2

DROP ANY VI EWStatement 11-20

Introduction to Oracle9i: SQL Index-5

DROP COLUWN Clause 9-25

DRCP | NDEX Statement 12

DROP SEQUENCE Statement 12-14
DROP SYNONYM 12-24

DROP TABLE Statement 9-27

DROP UNUSED COLUMNS Clause 9-26
DROP VI EWStatement 11-20

DUAL Table 3-14, 3-18

Duplicate Records 15-11

E-business 19-6, -3

EDI T Command C-14

Entity 1-16, 1-17, 1-18

Entity Relationship Diagram 1-16, 1-17, I-16
Equijoins 4-8, 4-27

ESCAPE Option 2-13

Exclusive Locks 8-46

Introduction to Oracle9i: SQL Index-6

Execute Button (in iSQL*Plus) 1-7, 1-32
Executing SQL 1-26
EXI STS Operator 18-18, 18-19
Explicit Data Type Conversion 3-25
Expressions
Calculations in Expressions 1-9
CASE Expression 3-51, 3-52, 18-12
DECODE Expression 3-51, 3-54
If-Then-Else Logic 3-51
External Tables 20
Conditional FI RST | NSERT 20-7, 20-13, 20-14
Conditional | NSERT ALL 20-7, 20-11
ORGANI ZATI ON EXTERNAL Clause 20-18, 20-19
Pivoting | NSERT 20-7, 20-15
Unconditional | NSERT 20-7, 20-10
REJECT LI M T Clause 20-19
TYPE ACCESS DRI VER_TYPE 20-19
EXTRACT Function 16-10

FOREI GN KEY Constraint 10-13, 10-14, 10-15, 0-19
Format Mode (fm) 3-31

FRACTI ONAL_SECONDS_PRECI SI ON 9-15

FROM Clause 1

FROMClause Query 11-21, 18-2,18-10

FROM TZ Function 16-11

Introduction to Oracle9i: SQL Index-7

Index

Functions 3, 5

AVG (Average) 5-6, 5-7
Character Data Type in Functions 3-4
COALESCE Function 3-49
CONCAT Function 3-11
COUNT Function 5-8
CURRENT _DATE Function 16-6
CURRENT_TI MESTAMP Function 16-7
Date Conversion Functions 3-4, 3-35
Datetime Functions 16-2
DBTI MEZONE Function 16-9
EXTRACT Function 16-10
TI MEZONE_ABBR 16-10
TI MEZONE_REQ ON 16-10
FROM TZ Function 16-11
I Nl TCAP Function 3-9
I NSTR Function 3-11
LAST_DAY Function 3-21

LENGTH Function 3-11

LOCALTI MESTAMP Function 16-8
LOVER Function 3-9

LPAD Function 3-11

MAX Function 5-6, 5-7

M N Function 5-6, 5-7

MONTHS BETWEEN Function 3-6, 3-21

Multiple-row Function 3-4

Introduction to Oracle9i: SQL Index-8

Functions 3, 5

NEXT DAY Function 3-21

NULLI F Function 3-48

Number Functions 3-13

NVL Function 3-45, 3-46, 5-5, 5-12
NVL2 Function 3-47

Returning a Value 3-3

ROUND Function 3-14, 3-21, 3-23
SESSI ONTI MEZONE Function 16-9
STDDEV Function 5-7

SUBSTR Function 3-11

SUM Function 5-6, 5-7

SYS Function 9-9

SYSDATE Function 3-18, 3-20, 9-7
TO_CHAR Function 3-31, 3-37, 3-39
TO_DATE Function 3-39
TO_NUMBER Function 3-39

TO _TI MESTAMP Function 16-12
TO_YM NTERVAL Function 16-13
TRI MFunction 3-11

TRUNC Function 3-15, 3-21, 3-23
TZOFFSET 16-14 Function
UPPER Function 3-9, 3-10

USER Function 9-7

Function-based