


Pentaho 3.2 Data Integration 
Beginner's Guide

Explore, transform, validate, and integrate your data with ease

María Carina Roldán

 

 BIRMINGHAM - MUMBAI



Pentaho 3.2 Data Integration
Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, 
or transmitted in any form or by any means, without the prior written permission of the 
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the author, Packt Publishing, nor its dealers or 
distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt 
Publishing cannot guarantee the accuracy of this information.

First published: April 2010

Production Reference: 1050410 

Published by Packt Publishing Ltd. 
32 Lincoln Road 
Olton 
Birmingham, B27 6PA, UK.

ISBN 978-1-847199-54-6

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)



Credits

Author

María Carina Roldán

Reviewers

Jens Bleuel

Roland Bouman

Matt Casters

James Dixon

Will Gorman

Gretchen Moran

Acquisition Editor

Usha Iyer

Development Editor

Reshma Sundaresan

Technical Editors

Gaurav Datar

Rukhsana Khambatta

Copy Editor

Sanchari Mukherjee

Editorial Team Leader

Gagandeep Singh

Project Team Leader

Lata Basantani

Project Coordinator

Poorvi Nair

Proofreader

Sandra Hopper

Indexer

Rekha Nair

Graphics

Geetanjali Sawant

Production Coordinator 

Shantanu Zagade

Cover Work

Shantanu Zagade



Foreword

If we look back at what has happened in the data integration market over the last 10 
years we can see a lot of change. In the first half of that decade there was an explosion 
in the number of data integration tools and in the second half there was a big wave of 
consolidations. This consolidation wave put an ever growing amount of data integration 
power in the hands of only a few large billion dollar companies. For any person, company 
or project in need of data integration, this meant either paying large amounts of money or 
doing hand-coding of their solution.

During that exact same period, we saw web servers, programming languages, operating 
systems, and even relational databases turn into a commodity in the ICT market place. This 
was driven among other things by the availability of open source software such as Apache, 
GNU, Linux, MySQL, and many others. For the ICT market, this meant that more services 
could be deployed at a lower cost. If you look closely at what has been going on in those last 
10 years, you will notice that most companies increasingly deployed more ICT services to  
end-users. These services get more and more connected over an ever growing network. 
Pretty much anything ranging from tiny mobile devices to huge cloud-based infrastructure  
is being deployed and all those can contain data that is valuable to an organization.

The job of any person that needs to integrate all this data is not easy. Complexity of 
information services technology usually increases exponentially with the number of systems 
involved. Because of this, integrating all these systems can be a daunting and scary task that 
is never complete. Any piece of code lives in what can be described as a software ecosystem 
that is always in a state of flux. Like in nature, certain ecosystems evolve extremely fast 
where others change very slowly over time. However, like in nature all ICT systems change. 
What is needed is another wave of commodification in the area of data integration and 
business intelligence in general. This is where Pentaho comes in.

Pentaho tries to provide answers to these problems by making the integration software 
available as open source, accessible, easy to use, and easy to maintain for users and 
developers alike. Every release of our software we try to make things easier, better, and 
faster. However, even if things can be done with nice user interfaces, there are still a huge 
amount of possibilities and options to choose from. 



As the founder of the project I've always liked the fact that Kettle users had a lot of choice. 
Choice translates into creativity, and creativity often delivers good solutions that are 
comfortable to the person implementing them. However, this choice can be daunting to any 
beginning Kettle developer. With thousands of options to choose from, it can be very hard to 
get started. 

This is above all others the reason why I'm very happy to see this book come to life. It will 
be a great and indispensable help for everyone that is taking steps into the wonderful world 
of data integration with Kettle. As such, I hope you see this book as an open invitation to get 
started with Kettle in the wonderful world of data integration.

Matt Casters 
Chief Data Integration at Pentaho 
Kettle founder



The Kettle Project

Whether there is a migration to do, an ETL process to run, or a need for massively loading 
data into a database, you have several software tools, ranging from expensive and 
sophisticated to free open source and friendly ones, which help you accomplish the task.

Ten years ago, the scenario was clearly different. By 2000, Matt Casters, a Belgian business 
intelligent consultant, had been working for a while as a datawarehouse architect and 
administrator. As such, he was one of quite a number of people who, no matter if the 
company they worked for was big or small, had to deal with the difficulties that involve 
bridging the gap between information technology and business needs. What made it even 
worse at that time was that ETL tools were prohibitively expensive and everything had to 
be crafted done. The last employer he worked for, didn't think that writing a new ETL tool 
would be a good idea. This was one of the motivations for Matt to become an independent 
contractor and to start his own company. That was in June 2001.

At the end of that year, he told his wife that he was going to write a new piece of software 
for himself to do ETL tasks. It was going to take up some time left and right in the evenings 
and weekends. Surprised, she asked how long it would take you to get it done. He replied 
that it would probably take five years and that he perhaps would have something working  
in three.

Working on that started in early 2003. Matt's main goals for writing the software included 
learning about databases, ETL processes, and data warehousing. This would in turn improve 
his chances on a job market that was pretty volatile. Ultimately, it would allow him to work 
full time on the software.

Another important goal was to understand what the tool had to do. Matt wanted a scalable 
and parallel tool, and wanted to isolate rows of data as much as possible.

The last but not least goal was to pick the right technology that would support the tool. The 
first idea was to build it on top of KDE, the popular Unix desktop environment. Trolltech, the 
people behind Qt, the core UI library of KDE, had released database plans to create drivers 
for popular databases. However, the lack of decent drivers for those databases drove Matt  
to change plans and use Java. He picked Java because he had some prior experience as he 
had written a Japanese Chess (Shogi) database program when Java 1.0 was released. To  
Sun's credit, this software still runs and is available at http://ibridge.be/shogi/.



After a year of development, the tool was capable of reading text files, reading from 
databases, writing to databases and it was very flexible. The experience with Java was not 
100% positive though. The code had grown unstructured, crashes occurred all too often, and 
it was hard to get something going with the Java graphic library used at that moment, the 
Abstract Window Toolkit (AWT); it looked bad and it was slow.

As for the library, Matt decided to start using the newly released Standard Widget Toolkit 
(SWT), which helped solve part of the problem. As for the rest, Kettle was a complete mess. 
It was time to ask for help. The help came in hands of Wim De Clercq, a senior enterprise 
Java architect, co-owner of Ixor (www.ixor.be) and also friend of Matt. At various intervals 
over the next few years, Wim involved himself in the project, giving advices to Matt about 
good practices in Java programming. Listening to that advice meant performing massive 
amounts of code changes. As a consequence, it was not unusual to spend weekends doing 
nothing but refactoring code and fixing thousands of errors because of that. But, bit by bit, 
things kept going in the right direction.

At that same time, Matt also showed the results to his peers, colleagues, and other senior 
BI consultants to hear what they thought of Kettle. That was how he got in touch with the 
Flemish Traffic Centre (www.verkeerscentrum.be/verkeersinfo/kaart) where billions 
of rows of data had to be integrated from thousands of data sources all over Belgium. All of 
a sudden, he was being paid to deploy and improve Kettle to handle that job. The diversity of 
test cases at the traffic center helped to improve Kettle dramatically. That was somewhere in 
2004 and Kettle was by its version 1.2.

While working at Flemish, Matt also posted messages on Javaforge (www.javaforge.com) 
to let people know they could download a free copy of Kettle for their own use. He got a 
few reactions. Despite some of them being remarkably negative, most were positive. The 
most interesting response came from a nice guy called Jens Bleuel in Germany who asked if 
it was possible to integrate third-party software into Kettle. In his specific case, he needed a 
connector to link Kettle with the German SAP software (www.sap.com). Kettle didn't have a 
plugin architecture, so Jens' question made Matt think about a plugin system, and that was 
the main motivation for developing version 2.0.

For various reasons including the birth of Matt's son Sam and a lot of consultancy work, 
it took around a year to release Kettle version 2.0. It was a fairly complete release with 
advanced support for slowly changing dimensions and junk dimensions (Chapter 9 explains 
those concepts), ability to connect to thirteen different databases, and the most important 
fact being support for plugins. Matt contacted Jens to let him know the news and Jens was 
really interested. It was a very memorable moment for Matt and Jens as it took them only a 
few hours to get a new plugin going that read data from an SAP/R3 server. There was a lot 
of excitement, and they agreed to start promoting the sales of Kettle from the Kettle.be 
website and from Proratio (www.proratio.de), the company Jens worked for.



Those were days of improvements, requests, people interested in the project. However, it 
became too much to handle. Doing development and sales all by themselves was no fun 
after a while. As such, Matt thought about open sourcing Kettle early in 2005 and by late 
summer he made his decision. Jens and Proratio didn't mind and the decision was final.

When they finally open sourced Kettle on December 2005, the response was massive. The 
downloadable package put up on Javaforge got downloaded around 35000 times during first 
week only. The news got spread all over the world pretty quickly.

What followed was a flood of messages, both private and on the forum. At its peak in March 
2006, Matt got over 300 messages a day concerning Kettle.

In no time, he was answering questions like crazy, allowing people to join the development 
team and working as a consultant at the same time. Added to this, the birth of his daughter 
Hannelore in February 2006 was too much to deal with.

Fortunately, good times came. While Matt was trying to handle all that, a discussion was 
taking place at the Pentaho forum (http://forums.pentaho.org/) concerning the ETL 
tool that Pentaho should support. They had selected Enhydra Octopus, a Java-based ETL 
software, but they didn't have a strong reliance on a specific tool.

While Jens was evaluating all sorts of open source BI packages, he came across that thread. 
Matt replied immediately persuading people at Pentaho to consider including Kettle. And 
he must be convincing because the answer came quickly and was positive. James Dixon, 
Pentaho founder and CTO, opened Kettle the possibility to be the premier and only ETL 
tool supported by Pentaho. Later on, Matt came in touch with one of the other Pentaho 
founders, Richard Daley, who offered him a job. That allowed Matt to focus full-time on 
Kettle. Four years later, he's still happily working for Pentaho as chief architect for data 
integration, doing the best effort to deliver Kettle 4.0. Jens Bleuel, who collaborated with 
Matt since the early versions, is now also part of the Pentaho team.



About the Author

María Carina was born in a small town in the Patagonia region in Argentina. She earned 
her Bachelor degree in Computer Science at UNLP in La Plata and then moved to Buenos 
Aires where she has lived since 1994 working in IT.

She has been working as a BI consultant for the last 10 years. At the beginning she worked 
with Cognos suite. However, over the last three years, she has been dedicated, full time, to 
developing Pentaho BI solutions both for local and several Latin-American companies, as well 
as for a French automotive company in the last months.

She is also an active contributor to the Pentaho community.

At present, she lives in Buenos Aires, Argentina, with her husband Adrián and children 
Camila and Nicolás.

Writing my first book in a foreign language and working on a full time job 
at the same time, not to mention the upbringing of two small kids, was 
definitely a big challenge. Now I can tell that it's not impossible. 
 
I dedicate this book to my husband and kids; I'd like to thank them for all 
their support and tolerance over the last year. I'd also like to thank my 
colleagues and friends who gave me encouraging words throughout the 
writing process. 
 
Special thanks to the people at Packt; working with them has been  
really pleasant. 
 
I'd also like to thank the Pentaho community and developers for making 
Kettle the incredible tool it is. Thanks to the technical reviewers who,  
with their very critical eye, contributed to make this a book suited to  
the audience.  
 
Finally, I'd like to thank Matt Casters who, despite his busy schedule, was 
willing to help me from the first moment he knew about this book.



About the Reviewers

Jens Bleuel is a Senior Consultant and Engineer at Pentaho. He is also working as a project 
leader, trainer, and product specialist in the services and support department. Before he 
joined Pentaho in mid 2007, he was software developer and project leader, and his main 
business was Data Warehousing and the architecture along with designing and developing of 
user friendly tools. He studied business economics, was on a grammar school for electronics, 
and has been programming in a wide area of environments such as Assembler, C, Visual 
Basic, Delphi, .NET, and these days mainly in Java. His customer focus is on the wholesale 
market and consumer goods industries. Jens is 40 years old and lives with his wife and two 
boys in Mainz, Germany (near the nice Rhine river). In his spare time, he practices Tai-Chi, 
Qigong, and photography.

Roland Bouman has been working in the IT industry since 1998, mostly as a database and 
web application developer. He has also worked for MySQL AB (later Sun Microsystems) as 
certification developer and as curriculum developer. 

Roland mainly focuses on open source web technology, databases, and Business Intelligence. 
He's an active member of the MySQL and Pentaho communities and can often be found 
speaking at worldwide conferences and events such as the MySQL user conference, the 
O'Reilly Open Source conference (OSCON), and at Pentaho community events. 

Roland is co-author of the MySQL 5.1 Cluster DBA Certification Study Guide (Vervante, 
ISBN: 595352502) and Pentaho Solutions: Business Intelligence and Data Warehousing with 
Pentaho and MySQL (Wiley, ISBN: 978-0-470-48432-6). He also writes on a regular basis for 
the Dutch Database Magazine (DBM).

Roland is @rolandbouman on Twitter and maintains a blog at  
http://rpbouman.blogspot.com/.



Matt Casters has been an independent senior BI consultant for almost two decades. In that 
period he led, designed, and implemented numerous data warehouses and BI solutions for 
large and small companies. In that capacity, he always had the need for ETL in some form 
or another. Almost out of pure necessity, he has been busy writing the ETL tool called Kettle 
(a.k.a. Pentaho Data Integration) for the past eight years. First, he developed the tool mostly 
on his own. Since the end of 2005 when Kettle was declared an open source technology, 
development took place with the help of a large community.  

Since the Kettle project was acquired by Pentaho in early 2006, he has been Chief of Data 
Integration at Pentaho as the lead architect, head of development, and spokesperson for the 
Kettle community.

I would like to personally thank the complete community for their help 
in making Kettle the success it is today. In particular, I would like to thank 
Maria for taking the time to write this nice book as well as the many 
articles on the Pentaho wiki (for example, the Kettle tutorials), and her 
appreciated participation on the forum. Many thanks also go to my 
employer Pentaho, for their large investment in open source BI in  
general and Kettle in particular.

James Dixon is the Chief Geek and one of the co-founders of Pentaho Corporation—the 
leading commercial open source Business Intelligence company. He has worked in the 
business intelligence market since graduating in 1992 from Southampton University with a 
degree in Computer Science. He has served as Software Engineer, Development Manager, 
Engineering VP, and CTO at multiple business intelligence software companies. He regularly 
uses Pentaho Data Integration for internal projects and was involved in the architectural 
design of PDI V3.0. 

He lives in Orlando, Florida, with his wife Tami and son Samuel.

I would like to thank my co-founders, my parents, and my wife Tami for all 
their support and tolerance of my odd working hours. 
 
I would like to thank my son Samuel for all the opportunities he gives me to 
prove I'm not as clever as I think I am.



Will Gorman is an Engineering Team Lead at Pentaho. He works on a variety of Pentaho's 
products, including Reporting, Analysis, Dashboards, Metadata, and the BI Server. Will 
started his career at GE Research and earned his Masters degree in Computer Science at 
Rensselaer Polytechnic Institute in Troy, New York. Will is the author of Pentaho Reporting 
3.5 for Java Developers (ISBN: 3193), published by Packt Publishing.

Gretchen Moran is a graduate of University of Wisconsin – Stevens Point with a Bachelor's 
degree in Computer Information Systems with a minor in Data Communications. Gretchen 
began her career as a corporate data warehouse developer in the insurance industry and 
joined Arbor Software/Hyperion Solutions in 1999 as a commercial developer for the 
Hyperion Analyzer and Web Analytics team. Gretchen has been a key player with Pentaho 
Corporation since its inception in 2004. As Community Leader and core developer, Gretchen 
managed the explosive growth of Pentaho's open source community for her first 2 years 
with the company.  Gretchen has contributed to many of the Pentaho projects, including the 
Pentaho BI Server, Pentaho Data Integration, Pentaho Metadata Editor, Pentaho Reporting, 
Pentaho Charting, and others.  

Thanks Doug, Anthony, Isabella and Baby Jack for giving me my favorite 
challenges and crowning achievements—being a wife and mom. 



Table of Contents
Preface 1

Chapter 1: Getting started with Pentaho Data Integration 7
Pentaho Data Integration and Pentaho BI Suite 7

Exploring the Pentaho Demo 9
Pentaho Data Integration 9

Using PDI in real world scenarios 11
Loading data warehouses or data marts 11
Integrating data 12
Data cleansing 12
Migrating information 13
Exporting data 13
Integrating PDI using Pentaho BI 13

Installing PDI 14
Time for action – installing PDI 14
Launching the PDI graphical designer: Spoon 15
Time for action – starting and customizing Spoon 15

Spoon 18
Setting preferences in the Options window 18
Storing transformations and jobs in a repository 19

Creating your first transformation 20
Time for action – creating a hello world transformation 20

Directing the Kettle engine with transformations 25
Exploring the Spoon interface 26
Running and previewing the transformation 27

Time for action – running and previewing the  
hello_world transformation  27
Installing MySQL 29
Time for action – installing MySQL on Windows 29
Time for action – installing MySQL on Ubuntu 32
Summary 34



Table of Contents

[ ii ]

Chapter 2: Getting Started with Transformations  35
Reading data from files 35
Time for action – reading results of football matches from files 36

Input files 41
Input steps 41

Reading several files at once 42
Time for action – reading all your files at a time using a single  
Text file input step 42
Time for action – reading all your files at a time using a single  
Text file input step and regular expressions 43

Regular expressions 44

Grids 46
Sending data to files 47
Time for action – sending the results of matches to a plain file 47

Output files 49
Output  steps 50

Some data definitions 50
Rowset 50
Streams 51

The Select values step 52
Getting system information 52
Time for action – updating a file with news about examinations 53

Getting information by using Get System Info step 57
Data types 58

Date fields 58
Numeric fields 59

Running transformations from a terminal window 60
Time for action – running the examination transformation from  
a terminal window 60
XML files 62
Time for action –  getting data from an XML file with information 
about countries 62

What is XML 67
PDI transformation files 68

Getting data from XML files 68
XPath 68
Configuring the Get data from XML step 69

Kettle variables 70
How and when you can use variables 70

Summary 72



Table of Contents

[ iii ]

Chapter 3: Basic data manipulation 73
Basic calculations 73
Time for action – reviewing examinations by using the Calculator step 74

Adding or modifying fields by using different PDI steps 82
The Calculator step 83
The Formula step 84

Time for action – reviewing examinations by using the Formula step 84
Calculations on groups of rows 88
Time for action – calculating World Cup statistics by grouping data 89

Group by step 94
Filtering 97
Time for action – counting frequent words by filtering 97

Filtering rows using the Filter rows step 103
Looking up data 105
Time for action – finding out which language people speak  105

The Stream lookup step 109
Summary 112

Chapter 4: Controlling the Flow of Data 113
Splitting streams 113
Time for action – browsing new PDI features by copying a dataset 114

Copying rows 119
Distributing rows 120

Time for action – assigning tasks by distributing 121
Splitting the stream based on conditions 125
Time for action – assigning tasks by filtering priorities with the Filter rows step 126

PDI steps for splitting the stream based on conditions 128
Time for action – assigning tasks by filtering priorities with the Switch/ Case step 129
Merging streams 131
Time for action – gathering progress and merging all together 132

PDI options for merging streams 134
Time for action – giving priority to Bouchard by using Append Stream 137
Summary 139

Chapter 5: Transforming Your Data with JavaScript Code and  
the JavaScript Step 141

Doing simple tasks with the JavaScript step 141
Time for action – calculating scores with JavaScript 142

Using the JavaScript language in PDI 147
Inserting JavaScript code using the Modified Java Script Value step 148

Adding fields 150



Table of Contents

[ iv ]

Modifying fields 150
Turning on the compatibility switch 151

Testing your code 151
Time for action – testing the calculation of averages 152

Testing the script using the Test script button 153

Enriching the code 154
Time for action – calculating flexible scores by using variables 154

Using named parameters 158
Using the special Start, Main, and End scripts 159
Using transformation predefined constants 159

Reading and parsing unstructured files 162
Time for action – changing a list of house descriptions with JavaScript 162

Looking at previous rows 164
Avoiding coding by using purpose-built steps 165
Summary 167

Chapter 6: Transforming the Row Set 169
Converting rows to columns 169
Time for action – enhancing a films file by converting rows to columns 170

Converting row data to column data by using the Row denormalizer step 173
Aggregating data with a Row denormalizer step 176

Time for action – calculating total scores by performances by country 177
Using Row denormalizer for aggregating data 178

Normalizing data 180
Time for action – enhancing the matches file by normalizing the dataset 180

Modifying the dataset with a Row Normalizer step 182
Summarizing the PDI steps that operate on sets of rows 184

Generating a custom time dimension dataset by using Kettle variables 186
Time for action – creating the time dimension dataset 187

Getting variables 191
Time for action – getting variables for setting the default starting date 192

Using the Get Variables step 193

Summary 194

Chapter 7: Validating Data and Handling Errors 195
Capturing errors 195
Time for action – capturing errors while calculating the age of a film 196

Using PDI error handling functionality 200
Aborting a transformation 201

Time for action – aborting when there are too many errors 202
Aborting a transformation using the Abort step 203

Fixing captured errors 203



Table of Contents

[ v ]

Time for action – treating errors that may appear 203
Treating rows coming to the error stream 205

Avoiding unexpected errors by validating data 206
Time for action – validating genres with a Regex Evaluation step 206

Validating data 208
Time for action – checking films file with the Data Validator 209

Defining simple validation rules using the Data Validator 211

Cleansing data 213
Summary 215

Chapter 8: Working with Databases 217
Introducing the Steel Wheels sample database  217

Connecting to the Steel Wheels database 219
Time for action – creating a connection with the Steel Wheels database 219

Connecting with Relational Database Management Systems 222

Exploring the Steel Wheels database 223
Time for action – exploring the sample database 224

A brief word about SQL 225
Exploring any configured database with the PDI Database explorer 228

Querying a database 229
Time for action – getting data about shipped orders 229

Getting data from the database with the Table input step 231
Using the SELECT statement for generating a new dataset 232

Making flexible queries by using parameters 234

Time for action – getting orders in a range of dates  by using parameters  234
Making flexible queries by using Kettle variables 236

Time for action – getting orders in a range of dates by using variables 237
Sending data to a database 239
Time for action – loading a table with a list of manufacturers 239

Inserting new data into a database table with the Table output step 245
Inserting or updating data by using other PDI steps 246

Time for action – inserting new products or updating existent ones 246
Time for action – testing the update of existing products 249

Inserting or updating data with the Insert/Update step 251

Eliminating data from a database 256
Time for action – deleting data about discontinued items 256

Deleting records of a database table with the Delete step 259
Summary 260

Chapter 9: Performing Advanced Operations with Databases 261
Preparing the environment 261
Time for action – populating the Jigsaw database 261

Exploring the Jigsaw database model 264



Table of Contents

[ vi ]

Looking up data in a database 266
Doing simple lookups 266

Time for action – using a Database lookup step to create a list of products to buy 266
Looking up values in a database with the Database lookup step 268

Doing complex lookups 270
Time for action – using a Database join step to create a list of  
suggested products to buy 270

Joining data from the database to the stream data by using a Database join step 272

Introducing dimensional modeling 275
Loading dimensions with data 276
Time for action – loading a region dimension with a  
Combination lookup/update step 276
Time for action – testing the transformation that loads the region dimension 279

Describing data with dimensions 281
Loading Type I SCD with a Combination lookup/update step 282

Keeping a history of changes 286
Time for action – keeping a history of product changes with the  
Dimension lookup/update step 286
Time for action – testing the transformation that keeps a history  
of product changes 288

Keeping an entire history of data with a Type II slowly changing dimension 289

Loading Type II SCDs with the Dimension lookup/update step 291
Summary 296

Chapter 10: Creating Basic Task Flows 297
Introducing PDI jobs 297
Time for action – creating a simple hello world job 298

Executing processes with PDI jobs 305
Using Spoon to design and run jobs 306

Using the transformation job entry 307
Receiving arguments and parameters in a job 309
Time for action – customizing the hello world file with  
arguments and parameters 309

Using named parameters in jobs 312
Running jobs from a terminal window 312
Time for action – executing the hello world job from a terminal window 313
Using named parameters and command-line arguments in transformations 314
Time for action – calling the hello world transformation with 
fixed arguments and parameters 315
Deciding between the use of a command-line argument and a named parameter 317
Running job entries under conditions 318



Table of Contents

[ vii ]

Time for action – sending a sales report and warning the  
administrator if something is wrong 318

Changing the flow of execution on the basis of conditions 324
Creating and using a file results list 326

Summary 327

Chapter 11: Creating Advanced Transformations and Jobs 329
Enhancing your processes with the use of variables 329
Time for action – updating a file with news about examinations by setting  
a variable with the name of the file 330

Setting variables inside a transformation 335
Enhancing the design of your processes 337
Time for action – generating files with top scores 337

Reusing part of your transformations 341
Time for action – calculating the top scores with a subtransformation 341

Creating and using subtransformations 345

Creating a job as a process flow 348
Time for action – splitting the generation of top scores by  
copying and getting rows 348

Transferring data between transformations by using the copy /get rows mechanism  352

Nesting jobs 354
Time for action – generating the files with top scores by nesting jobs 354

Running a job inside another job with a job entry 355
Understanding the scope of variables 356

Iterating jobs and transformations 357
Time for action – generating custom files by executing a transformation  
for every input row 358

Executing for each row 361
Summary 366

Chapter 12: Developing and Implementing a Simple Datamart 367
Exploring the sales datamart 367

Deciding the level of granularity 370
Loading the dimensions 370
Time for action – loading dimensions for the sales datamart 371
Extending the sales datamart model 376
Loading a fact table with aggregated data 378
Time for action – loading the sales fact table by looking up dimensions 378

Getting the information from the source with SQL queries 384
Translating the business keys into surrogate keys 388

Obtaining the surrogate key for a Type I SCD 388
Obtaining the surrogate key for a Type II SCD 389
Obtaining the surrogate key for the Junk dimension 391
Obtaining the surrogate key for the Time dimension 391



Table of Contents

[ viii ]

Getting facts and dimensions together 394
Time for action – loading the fact table using a range of dates obtained  
from the command line 394
Time for action – loading the sales star 396
Getting rid of administrative tasks 399
Time for action – automating the loading of the sales datamart 399
Summary 403

Chapter 13: Taking it Further 405
PDI best practices 405
Getting the most out of PDI 408

Extending Kettle with plugins 408
Overcoming real world risks with some remote execution 410
Scaling out to overcome bigger risks 411

Integrating PDI and the Pentaho BI suite 412
PDI as a process action 412
PDI as a datasource 413
More about the Pentaho suite 414

PDI Enterprise Edition and Kettle Developer Support 415
Summary 416

Appendix A: Working with Repositories 417
Creating a repository 418
Time for action – creating a PDI repository 418

Creating repositories to store your transformations and jobs 420
Working with the repository storage system 421
Time for action – logging into a repository 421

Logging into a repository by using credentials 422
Defining repository user accounts 422

Creating transformations and jobs in repository folders 423
Creating database connections, partitions, servers, and clusters 424
Backing up and restoring a repository 424

Examining and modifying the contents of a repository with  
the Repository explorer 424
Migrating from a file-based system to a repository-based system and  
vice-versa 426
Summary 427

Appendix B: Pan and Kitchen: Launching Transformations and  
Jobs from the Command Line 429

Running transformations and jobs stored in files 429
Running transformations and jobs from a repository 430

Specifying command line options 431



Table of Contents

[ ix ]

Checking the exit code 432
Providing options when running Pan and Kitchen 432

Log details 433
Named parameters 433
Arguments 433
Variables 433

Appendix C: Quick Reference: Steps and Job Entries 435
Transformation steps 436
Job entries 440

Appendix D: Spoon Shortcuts 443
General shortcuts 443
Designing transformations and jobs 444
Grids 445
Repositories 445

Appendix E: Introducing PDI 4 Features 447
Agile BI 447
Visual improvements for designing transformations and jobs 447

Experiencing the mouse-over assistance 447
Time for action – creating a hop with the mouse-over assistance 448

Using the mouse-over assistance toolbar 448

Experiencing the sniff-testing feature 449
Experiencing the job drill-down feature 449
Experiencing even more visual changes 450

Enterprise features 450
Summary 450

Appendix F: Pop Quiz Answers 451
Chapter 1 451

PDI data sources 451
PDI prerequisites 451
PDI basics 451

Chapter 2 452
formatting data 452

Chapter 3 452
concatenating strings 452

Chapter 4 452
data movement (copying and distributing) 452
splitting a stream 452

Chapter 5 453
finding the seven errors 453



Table of Contents

[ x ]

Chapter 6 453
using Kettle variables inside transformations 453

Chapter 7 453
PDI error handling 453

Chapter 8 454
defining database connections 454
database datatypes versus PDI datatypes 454
Insert/Update step versus Table Output/Update steps 454
filtering the first 10 rows 454

Chapter 9 454
loading slowly changing dimensions 454
loading type III slowly changing dimensions  455

Chapter 10 455
defining PDI jobs 455

Chapter 11 455
using the Add sequence step 455
deciding the scope of variables 455

Chapter 12 456
modifying a star model and loading the star with PDI 456

Chapter 13 456
remote execution and clustering 456

Index 457



Preface
Pentaho Data Integration (aka Kettle) is an engine along with a suite of tools responsible 
for the processes of Extracting, Transforming, and Loading—better known as the ETL 
processes. PDI not only serves as an ETL tool, but it's also used for other purposes such as 
migrating data between applications or databases, exporting data from databases to flat 
files, data cleansing, and much more. PDI has an intuitive, graphical, drag-and-drop design 
environment, and its ETL capabilities are powerful. However, getting started with PDI can be 
difficult or confusing. This book provides the guidance needed to overcome that difficulty, 
covering the key features of PDI. Each chapter introduces new features, allowing you to 
gradually get involved with the tool.

By the end of the book, you will have not only experimented with all kinds of examples, but 
will also have built a basic but complete datamart with the help of PDI.

How to read this book
Although it is recommended that you read all the chapters, you don't need to. The book 
allows you to tailor the PDI learning process according to your particular needs.

The first four chapters, along with Chapter 7 and Chapter 10, cover the core concepts. If 
you don't know PDI and want to learn just the basics, reading those chapters would suffice. 
Besides, if you need to work with databases, you could include Chapter 8 in the roadmap.

If you already know the basics, you can improve your PDI knowledge by reading chapters 5, 
6, and 11.

Finally, if you already know PDI and want to learn how to use it to load or maintain a 
datawarehouse or datamart, you will find all that you need in chapters 9 and 12.

While Chapter 13 is useful for anyone who is willing to take it further, all the appendices are 
valuable resources for anyone who reads this book.



Preface

[ � ]

What this book covers
Chapter 1, Getting started with Pentaho Data Integration serves as the most basic 
introduction to PDI, presenting the tool. The chapter includes instructions for installing PDI 
and gives you the opportunity to play with the graphical designer (Spoon). The chapter also 
includes instructions for installing a MySQL server.

Chapter 2, Getting Started with Transformations introduces one of the basic components 
of PDI—transformations. Then, it focuses on the explanation of how to work with files. It 
explains how to get data from simple input sources such as txt, csv, xml, and so on, do a 
preview of the data, and send the data back to any of these common output formats. The 
chapter also explains how to read command-line parameters and system information.

Chapter 3, Basic Data Manipulation explains the simplest and most commonly used ways of 
transforming data, including performing calculations, adding constants, counting, filtering, 
ordering, and looking for data.

Chapter 4—Controlling the Flow of Data explains different options that PDI offers to combine 
or split flows of data.

Chapter 5, Transforming Your Data with JavaScript Code and the JavaScript Step explains how 
JavaScript coding can help in the treatment of data. It shows why you need to code inside 
PDI, and explains in detail how to do it.

Chapter 6, Transforming the Row Set explains the ability of PDI to deal with some 
sophisticated problems, such as normalizing data from pivoted tables, in a simple fashion.

Chapter 7, Validating Data and Handling Errors explains the different options that PDI has to 
validate data, and how to treat the errors that may appear.

Chapter 8, Working with Databases explains how to use PDI to work with databases. The 
list of topics covered includes connecting to a database, previewing and getting data, and 
inserting, updating, and deleting data. As database knowledge is not presumed, the chapter 
also covers fundamental concepts of databases and the SQL language.

Chapter 9, Performing Advanced Operations with Databases explains how to perform 
advanced operations with databases, including those specially designed to load 
datawarehouses. A primer on datawarehouse concepts is also given in case you are not 
familiar with the subject.

Chapter 10, Creating Basic Task Flow serves as an introduction to processes in PDI. Through 
the creation of simple jobs, you will learn what jobs are and what they are used for.

Chapter 11, Creating Advanced Transformations and Jobs deals with advanced concepts that 
will allow you to build complex PDI projects. The list of covered topics includes nesting jobs, 
iterating on jobs and transformations, and creating subtransformations.



Preface

[ � ]

Chapter 12, Developing and implementing a simple datamart presents a simple datamart 
project, and guides you to build the datamart by using all the concepts learned throughout  
the book.

Chapter 13, Taking it Further gives a list of best PDI practices and recommendations for  
going beyond.

Appendix A, Working with repositories guides you step by step in the creation of a PDI 
database repository and then gives instructions to work with it.

Appendix B, Pan and Kitchen: Launching Transformations and Jobs from the Command Line is 
a quick reference for running transformations and jobs from the command line.

Appendix C, Quick Reference: Steps and Job Entries serves as a quick reference to steps and 
job entries used throughout the book.

Appendix D, Spoon Shortcuts is an extensive list of Spoon shortcuts useful for saving time 
when designing and running PDI jobs and transformations.

Appendix E, Introducing PDI 4 features quickly introduces you to the architectural and 
functional features included in Kettle 4—the version that was under development while 
writing this book. 

Appendix F, Pop Quiz Answers, contains answers to pop quiz questions.

What you need for this book
PDI is a multiplatform tool. This means no matter what your operating system is, you will 
be able to work with the tool. The only prerequisite is to have JVM 1.5 or a higher version 
installed. It is also useful to have Excel or Calc along with a nice text editor.

Having an Internet connection while reading is extremely useful as well. Several links are 
provided throughout the book that complement what is explained. Besides, there is the  
PDI forum where you may search or post doubts if you are stuck with something.

Who this book is for
This book is for software developers, database administrators, IT students, and everyone 
involved or interested in developing ETL solutions or, more generally, doing any kind of data 
manipulation. If you have never used PDI before, this will be a perfect book to start with.

You will find this book to be a good starting point if you are a database administrator, a data 
warehouse designer, an architect, or any person who is responsible for data warehouse 
projects and need to load data into them.



Preface

[ � ]

You don't need to have any prior data warehouse or database experience to read this book. 
Fundamental database and data warehouse technical terms and concepts are explained in 
an easy-to-understand language.

Conventions
In this book, you will find a number of styles of text that distinguish between different  
kinds of information. Here are some examples of these styles, and an explanation of  
their meaning.

Code words in text are shown as follows: "You read the examination.txt file, and did 
some calculations to see how the students did."

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in our text like this: "Edit the Sort rows step by 
double-clicking it, click the Get Fields button, and adjust the grid." 

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles 
that you really get the most out of. 

To send us general feedback, simply drop an email to feedback@packtpub.com, and 
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the 
SUGGEST A TITLE form on www.packtpub.com or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.



Preface

[ � ]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you 
to get the most from your purchase.

Downloading the example code for the book

Visit http://www.packtpub.com/files/code/9546_Code.zip to 
directly download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in text or code—we 
would be grateful if you would report this to us. By doing so, you can save other readers 
from frustration, and help us to improve subsequent versions of this book. If you find any 
errata, please report them by visiting http://www.packtpub.com/support, selecting 
your book, clicking on the let us know link, and entering the details of your errata.  
Once your errata are verified, your submission will be accepted and the errata added  
to any list of existing errata. Any existing errata can be viewed by selecting your title  
from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works in any form on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy. 

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it. 





1
Getting Started with Pentaho  

Data Integration

Pentaho Data Integration is an engine along with a suite of tools responsible 
for the processes of extracting, transforming, and loading—best known as the 
ETL processes. This book is meant to teach you how to use PDI.

In this chapter you will:

Learn what Pentaho Data Integration is

Install the software and start working with the PDI graphical designer

Install MySQL, a database engine that you will use when you start working  
with databases

Pentaho Data Integration and Pentaho BI Suite
Before introducing PDI, let's talk about Pentaho BI Suite. The Pentaho Business Intelligence 
Suite is a collection of software applications intended to create and deliver solutions for 
decision making. The main functional areas covered by the suite are:

Analysis: The analysis engine serves multidimensional analysis. It's provided by the 
Mondrian OLAP server and the JPivot library for navigation and exploring.











Getting Started with Pentaho Data Integration

[ � ]

Reporting: The reporting engine allows designing, creating, and distributing reports 
in various known formats (HTML, PDF, and so on) from different kinds of sources. 
The reports created in Pentaho are based mainly in the JFreeReport library, but it's 
possible to integrate reports created with external reporting libraries such as Jasper 
Reports or BIRT.

Data Mining: Data mining is running data through algorithms in order to understand 
the business and do predictive analysis. Data mining is possible thanks to the  
Weka Project.

Dashboards: Dashboards are used to monitor and analyze Key Performance 
Indicators (KPIs). A set of tools incorporated to the BI Suite in the latest version 
allows users to create interesting dashboards, including graphs, reports, analysis 
views, and other Pentaho content, without much effort.

Data integration: Data integration is used to integrate scattered information 
from different sources (applications, databases, files) and make the integrated 
information available to the final user. Pentaho Data Integration—our main 
concern—is the engine that provides this functionality.

All this functionality can be used standalone as well as integrated. In order to run analysis, 
reports, and so on integrated as a suite, you have to use the Pentaho BI Platform. The 
platform has a solution engine, and offers critical services such as authentication,  
scheduling, security, and web services.











Chapter 1

[ � ]

This set of software and services forms a complete BI Platform, which makes Pentaho Suite 
the world's leading open source Business Intelligence Suite.

Exploring the Pentaho Demo
Despite being out of the scope of this book, it's worth to briefly introduce the Pentaho 
Demo. The Pentaho BI Platform Demo is a preconfigured installation that lets you explore 
several capabilities of the Pentaho platform. It includes sample reports, cubes, and 
dashboards for Steel Wheels. Steel Wheels is a fictional store that sells all kind of scale 
replicas of vehicles.

The demo can be downloaded from http://sourceforge.net/projects/pentaho/
files/. Under the Business Intelligence Server folder, look for the latest stable 
version. The file you have to download is named biserver-ce-3.5.2.stable.zip for 
Windows and biserver-ce-3.5.2.stable.tar.gz for other systems.

In the same folder you will find a file named biserver-getting_started-ce-
3.5.0.pdf. The file is a guide that introduces you the platform and gives you some 
guidance on how to install and run it. The guide even includes a mini tutorial on building  
a simple PDI input-output transformation.

You can find more about Pentaho BI Suite at www.pentaho.org.

Pentaho Data Integration
Most of the Pentaho engines, including the engines mentioned earlier, were created as 
community projects and later adopted by Pentaho. The PDI engine is no exception—Pentaho 
Data Integration is the new denomination for the business intelligence tool born as Kettle.

The name Kettle didn't come from the recursive acronym Kettle Extraction, 
Transportation, Transformation, and Loading Environment it has now, but from 
KDE Extraction, Transportation, Transformation and Loading Environment, 
as the tool was planned to be written on top of KDE, as mentioned in the 
introduction of the book.

In April 2006 the Kettle project was acquired by the Pentaho Corporation and Matt Casters, 
Kettle's founder, also joined the Pentaho team as a Data Integration Architect.



Getting Started with Pentaho Data Integration

[ 10 ]

When Pentaho announced the acquisition, James Dixon, the Chief Technology Officer, said:

We reviewed many alternatives for open source data integration, and Kettle clearly 
had the best architecture, richest functionality, and most mature user interface. 
The open architecture and superior technology of the Pentaho BI Platform 
and Kettle allowed us to deliver integration in only a few days, and make that 
integration available to the community.

By joining forces with Pentaho, Kettle benefited from a huge developer community, as well 
as from a company that would support the future of the project.

From that moment the tool has grown constantly. Every few months a new release is 
available, bringing to the users, improvements in performance and existing functionality, 
new functionality, ease of use, and great changes in look and feel. The following is a timeline 
of the major events related to PDI since its acquisition by Pentaho:

June 2006: PDI 2.3 is released. Numerous developers had joined the project and 
there were bug fixes provided by people in various regions of the world. Among 
other changes, the version included enhancements for large scale environments  
and multilingual capabilities.

February 2007: Almost seven months after the last major revision, PDI 2.4 is 
released including remote execution and clustering support (more on this in  
Chapter 13), enhanced database support, and a single designer for the two  
main elements you design in Kettle—jobs and transformations. 

May 2007: PDI 2.5 is released including many new features, the main feature being 
the advanced error handling.

November 2007: PDI 3.0 emerges totally redesigned. Its major library changed to 
gain massive performance. The look and feel also changed completely.

October 2008: PDI 3.1 comes with an easier-to-use tool, along with a lot of new 
functionalities as well.

April 2009: PDI 3.2 is released with a really large number of changes for a 
minor version—new functionality, visualization improvements, performance 
improvements, and a huge pile of bug fixes. The main change in this version was the 
incorporation of dynamic clustering (see Chapter 13 for details).

In 2010 PDI 4.0 will be released, delivering mostly improvements with regard to 
enterprise features such as version control. 

Most users still refer to PDI as Kettle, its further name. Therefore, the names PDI, 
Pentaho Data Integration, and Kettle will be used interchangeably throughout 
the book.

















Chapter 1

[ 11 ]

Using PDI in real world scenarios
Paying attention to its name, Pentaho Data Integration, you could think of PDI as a tool to 
integrate data.

In you look at its original name, K.E.T.T.L.E., then you must conclude that it is a tool used 
for ETL processes which, as you may know, are most frequently seen in data warehouse 
environments.

In fact, PDI not only serves as a data integrator or an ETL tool, but is such a powerful tool 
that it is common to see it used for those and for many other purposes. Here you have  
some examples.

Loading datawarehouses or datamarts
The loading of a datawarehouse or a datamart involves many steps, and there are many 
variants depending on business area or business rules. However, in every case, the process 
involves the following steps:

Extracting information from one or different databases, text files, and other sources. 
The extraction process may include the task of validating and discarding data that 
doesn't match expected patterns or rules.

Transforming the obtained data to meet the business and technical needs required 
on the target. Transformation implies tasks such as converting data types, doing 
some calculations, filtering irrelevant data, and summarizing.

Loading the transformed data into the target database. Depending on the 
requirements, the loading may overwrite the existing information, or may  
add new information each time it is executed.



Getting Started with Pentaho Data Integration

[ 12 ]

Kettle comes ready to do every stage of this loading process. The following sample 
screenshot shows a simple ETL designed with Kettle:

Integrating data
Imagine two similar companies that need to merge their databases in order to have a unified 
view of the data, or a single company that has to combine information from a main ERP 
application and a CRM application, though they're not connected. These are just two of 
hundreds of examples where data integration is needed. Integrating data is not just a matter 
of gathering and mixing data; some conversions, validation, and transport of data has to be 
done. Kettle is meant to do all those tasks.

Data cleansing
Why do we need that data be correct and accurate? There are many reasons—for the 
efficiency of business, to generate trusted conclusions in data mining or statistical studies, 
to succeed when integrating data, and so on. Data cleansing is about ensuring that the 
data is correct and precise. This can be ensured by verifying if the data meets certain rules, 
discarding or correcting those that don't follow the expected pattern, setting default values 
for missing data, eliminating information that is duplicated, normalizing data to conform 
minimum and maximum values, and so on—tasks that Kettle makes possible, thanks to its 
vast set of transformation and validation capabilities.



Chapter 1

[ 13 ]

Migrating information
Think of a company of any size that uses a commercial ERP application. One day the owners 
realize that the licences are consuming an important share of its budget and so they decide 
to migrate to an open source ERP. The company will no longer have to pay licences, but if 
they want to do the change, they will have to migrate the information. Obviously it is not an 
option to start from scratch, or type the information by hand. Kettle makes the migration 
possible, thanks to its ability to interact with most kinds of sources and destinations such as 
plain files, and commercial and free databases and spreadsheets.

Exporting data
Sometimes you are forced by government regulations to export certain data to be processed 
by legacy systems. You can't just print and deliver some reports containing the required data. 
The data has to have a rigid format, with columns that have to obey some rules (size, format, 
content), different records for heading and tail, just to name some common demands. Kettle 
has the power to take crude data from the source and generate these kinds of ad hoc reports.

Integrating PDI using Pentaho BI
The previous examples show typical uses of PDI as a standalone application. However, Kettle 
may be used as part of a process inside the Pentaho BI Platform. There are many things 
embedded in the Pentaho application that Kettle can do—preprocessing data for an on-line 
report, sending mails in a schedule fashion, or generating spreadsheet reports.

You'll find more on this in Chapter 13. However, the use of PDI integrated 
with the BI Suite is beyond the scope of this book.

Pop quiz – PDI data sources
Which of the following aren't valid sources in Kettle:

1. Spreadsheets

2. Free database engines

3. Commercial database engines

4. Flat files

5. None of the above



Getting Started with Pentaho Data Integration

[ 14 ]

Installing PDI
In order to work with PDI you need to install the software. It's a simple task; let's do it.

Time for action – installing PDI
These are the instructions to install Kettle, whatever your operating system.

The only prerequisite to install PDI is to have JRE 5.0 or higher installed. If you don't have it, 
please download it from http://www.javasoft.com/ and install it before proceeding. 
Once you have checked the prerequisite, follow these steps:

1.	 From  http://community.pentaho.com/sourceforge/ follow the link to 
Pentaho Data Integration (Kettle). Alternatively, go directly to the download page 
http://sourceforge.net/projects/pentaho/files/Data Integration.

2.	 Choose the newest stable release. At this time, it is 3.2.0.

3.	 Download the file that matches your platform. The preceding screenshot should 
help you.

4.	 Unzip the downloaded file in a folder of your choice 
—C:/Kettle or /home/your_dir/kettle.



Chapter 1

[ 15 ]

5.	 If your system is Windows, you're done. Under UNIX-like environments, it's 
recommended that you make the scripts executable. Assuming that you  
chose Kettle as the installation folder, execute the following command:

	 cd	Kettle
	 chmod	+x	*.sh

What just happened?
You have installed the tool in just a few minutes. Now you have all you need to start working. 

Pop quiz – PDI prerequisites
Which of the following are mandatory to run PDI? You may choose more than one option.

1. Kettle

2. Pentaho BI platform

3. JRE

4. A database engine

Launching the PDI graphical designer: Spoon
Now that you've installed PDI, you must be eager to do some stuff with data. That will be 
possible only inside a graphical environment. PDI has a desktop designer tool named Spoon. 
Let's see how it feels to work with it.

Time for action – starting and customizing Spoon
In this tutorial you're going to launch the PDI graphical designer and get familiarized with itsn this tutorial you're going to launch the PDI graphical designer and get familiarized with its 
main features.

1.	 Start Spoon. 

If your system is Windows, type the following command:

												Spoon.bat	

In other platforms such as Unix, Linux, and so on, type:

Spoon.sh	

If you didn't make spoon.sh executable, you may type:

sh	Spoon.sh	









Getting Started with Pentaho Data Integration

[ 16 ]

2.	 As soon as Spoon starts, a dialog window appears asking for the repository 
connection data. Click the No Repository button. The main window appears. You  
will see a small window with the tip of the day. After reading it, close that window.

3.	 A welcome! window appears with some useful links for you to see.

4.	 Close the welcome window. You can open that window later from the main menu.

5.	 Click Options... from the Edit menu. A window appears where you can change 
various general and visual characteristics. Uncheck the circled checkboxes:

6.	 Select the tab window Look Feel.



Chapter 1

[ 17 ]

7.	 Change the Grid size and Preferred Language settings as follows:

8.	 Click the OK button.

9.	 Restart Spoon in order to apply the changes. You should neither see the repository 
dialog, nor the welcome window. You should see the following screen instead:



Getting Started with Pentaho Data Integration

[ 1� ]

What just happened?
You ran for the first time the graphical designer of PDI Spoon, and applied some  
custom configuration.

From the Look Feel configuration window, you changed the size of the dotted grid that 
appears in the canvas area while you are working. You also changed the preferred language. 
In the Option tab window, you chose not to show either the repository dialog or the 
welcome window at startup. These changes were applied as you restarted the tool, not 
before.

The second time you launched the tool, the repository dialog didn't show up. When the 
main window appeared, all the visible texts were shown in French, which was the selected 
language, and instead of the welcome window, there was a blank screen.

Spoon
This tool that you're exploring in this section is the PDI's desktop design tool. With Spoon you 
design, preview, and test all your work, that is, transformations and jobs. When you see PDI 
screenshots, what you are really seeing are Spoon screenshots. The other PDI components 
that you will meet in the following chapters are executed from terminal windows.

Setting preferences in the Options window
In the tutorial you changed some preferences in the Options window. There are several look 
and feel characteristics you can change beyond those you changed. Feel free to experiment 
with this setting.

Remember to restart Spoon in order to see the changes applied.

If you choose any language as preferred language other than English, you 
should select a different language as alternative. If you do so, every name or 
description not translated to your preferred language will be shown in the 
alternative language.

Just for the curious people: Italian and French are the overall winners of the list of languages 
to which the tool has been translated from English. Below them follow Korean, Argentinean 
Spanish, Japanese, and Chinese.



Chapter 1

[ 1� ]

One of the settings you changed was the appearance of the welcome window at start up. 
The welcome window has many useful links, all related with the tool: wiki pages, news, 
forum access, and more. It's worth exploring them.

You don't have to change the settings again to see the welcome window. 
You can open it from the menu Help | Show the Welcome Screen.

Storing transformations and jobs in a repository
The first time you launched Spoon, you chose No Repository. After that, you configured 
Spoon to stop asking you for the Repository option. You must be curious about what the 
repository is and why not to use it. Let's explain it.

As said, the results of working with PDI are Transformations and Jobs. In order to save the 
Transformations and Jobs, PDI offers two methods:

Repository: When you use the repository method you save jobs and  
transformations in a repository. A repository is a relational database specially 
designed for this purpose.

Files: The files method consists of saving jobs and transformations as regular XML 
files in the filesystem, with extension kjb and ktr respectively.

The following diagram summarizes this:

exclusive

REPOSITORY FILE SYSTEM

.ktr .kjb

Design, Preview, Run

SPOON
Kettle Engine

KETTLE

Transfor
mations Jobs

Transformations Jobs

Design, Preview, Run







Getting Started with Pentaho Data Integration

[ 20 ]

You cannot mix the two methods (files and repository) in the same project. Therefore, you 
must choose the method when you start the tool.

Why did we choose not to work with repository, or in other words, to work with files? This is 
mainly for the following two reasons:

Working with files is more natural and practical for most users.

Working with repository requires minimum database knowledge and that you also 
have access to a database engine from your computer. Having both preconditions 
would allow you to learn working with both methods. However, it's probable that 
you haven't.

Throughout this book, we will use the file method. For details of working with repositories, 
please refer to Appendix A.

Creating your first transformation
Until now, you've seen the very basic elements of Spoon. For sure, you must be waiting to do 
some interesting task beyond looking around. It's time to create your first transformation.

Time for action – creating a hello world transformation
How about starting by saying Hello to the World? Not original but enough for a very first 
practical exercise. Here is how you do it:

1.	 Create a folder named pdi_labs under the folder of your choice.

2.	 Open Spoon.

3.	 From the main menu select File | New Transformation.

4.	 At the left-hand side of the screen, you'll see a tree of Steps. Expand the Input 
branch by double-clicking it.

5.	 Left-click the Generate Rows icon.







Chapter 1

[ 21 ]

6.	 Without releasing the button, drag-and-drop the selected icon to the main canvas. 
The screen will look like this:

7.	 Double-click the Generate Rows step that you just put in the canvas and fill the text 
boxes and grid as follows:

8.	 From the Steps tree, double-click the Flow step.

9.	 Click the Dummy icon and drag-and-drop it to the main canvas.



Getting Started with Pentaho Data Integration

[ 22 ]

10.	Click the Generate Rows step and holding the Shift key down, drag the cursor 
towards the Dummy step. Release the button. The screen should look like this:

11.	Right-click somewhere on the canvas to bring up a contextual menu.

12.	Select New note. A note editor appears.

13.	Type some description such as Hello World! and click OK.

14.	From the main menu, select Transformation | Configuration. A window appears 
to specify transformation properties. Fill the Transformation name with a simple 
name as hello_world. Fill the Description field with a short description such as 
My first transformation. Finally provide a more clear explanation in the Extended 
description text box and click OK.

15.	From the main menu, select File | Save.

16.	Save the transformation in the folder pdi_labs with the name hello_world.

17.	Select the Dummy step by left-clicking it.

18.	Click on the Preview button in the menu above the main canvas.



Chapter 1

[ 23 ]

19.	A debug window appears. Click the Quick Launch button.

20.	The following window appears to preview the data generated by the transformation:

21.	Close the preview window and click the Run button.

22.	A window appears. Click Launch.



Getting Started with Pentaho Data Integration

[ 24 ]

23.	The execution results are shown in the bottom of the screen. The Logging tab  
should look as follows:

What just happened?
You've just created your first transformation.

First, you created a new transformation. From the tree on the left, you dragged two steps 
and drop them into the canvas. Finally, you linked them with a hop.

With the Generate Rows step, you created 10 rows of data with the message Hello World!. 
The Dummy step simply served as a destination of those rows.

After creating the transformation, you did a preview. The preview allowed you to see the 
content of the created data, this is, the 10 rows with the message Hello World!



Chapter 1

[ 25 ]

Finally, you ran the transformation. You could see the results of the execution at the bottom 
of the windows. There is a tab named Step Metrics with information about what happens 
with each steps in the transformation. There is also a Logging tab showing a complete detail 
of what happened.

Directing the Kettle engine with transformations
As shown in the following diagram, transformation is an entity made of steps linked by hops. 
These steps and hops build paths through which data flows. The data enters or is created in a 
step, the step applies some kind of transformation to it, and finally the data leaves that step. 
Therefore, it's said that a transformation is data-flow oriented.

Steps
Transformation

Output

Input

Hops

Step1 Step2 StepN...

A transformation itself is not a program nor an executable file. It is just plain XML. The 
transformation contains metadata that tells the Kettle engine what to do.

A step is the minimal unit inside a transformation. A big set of steps is available. These steps 
are grouped in categories such as the input and flow categories that you saw in the example. 
Each step is conceived to accomplish a specific function, going from reading a parameter to 
normalizing a dataset. Each step has a configuration window. These windows vary according 
to the functionality of the steps and the category to which they belong. What all steps have 
in common are the name and description:

Step property Description

Name A representative name inside the transformation.
Description A brief explanation that allows you to clarify the purpose of the step. 

It's not mandatory but it is useful.

A hop is a graphical representation of data flowing between two steps—an origin and a 
destination. The data that flows through that hop constitutes the output data of the origin 
step and the input data of the destination step.



Getting Started with Pentaho Data Integration

[ 26 ]

Exploring the Spoon interface
As you just saw, the Spoon is the tool using which you create, preview, and run 
transformations. The following screenshot shows you the basic work areas:

The words canvas and work area will be used interchangeably throughout 
the book.

Viewing the transformation structure 
If you click the View icon in the upper left corner of the screen, the tree will change to show 
the structure of the transformation currently being edited.

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>



Chapter 1

[ 27 ]

Running and previewing the transformation
The Preview functionality allows you to see a sample of the data produced for selected steps. 
In the previous example, you previewed the output of the Dummy Step. The Run option 
effectively runs the whole transformation.

Whether you preview or run a transformation, you'll get an execution results window 
showing what happened. Let's explain it through an example.

Time for action – running and previewing the hello_world 
transformation 

Let's do some testing and explore the results:

1.	 Open the hello_world transformation.

2.	 Edit the Generate Rows step, and change the limit from 10 to 1000 so that it 
generates 1,000 rows.

3.	 Select the Logging tab window at the bottom of the screen.

4.	 Click on Run.

5.	 In the Log level drop-down list, select RowLevel detail.

6.	 Click on Launch.

7.	 You can see how the logging window shows every task in a very detailed way. 

8.	 Edit the Generate Rows step, and change the limit to 10,000 so that it generates 
10,000 rows.

9.	 Select the Step Metrics.



Getting Started with Pentaho Data Integration

[ 2� ]

10.	Run the transformation.

11.	You can see how the numbers change as the rows travel through the steps.

What just happened?
You did some tests with the hello_world transformation and saw the results in the 
Execution Results window. 

Previewing the results in the Execution Results window
The Execution Results window shows you what is happening while you preview or run  
a transformation. 

The Logging tab shows the execution of your transformation, step by step. By default, the 
level of the logging detail is Basic but you can change it to see different levels of detail—from 
a minimal logging (level Minimal) to a very detailed one (level RowLevel). 

The Step Metrics tab shows, for each step of the transformation, the executed operations 
and several status and information columns. You may be interested in the following columns:

Column Description

Read Contains the number of rows coming from previous steps
Written Contains the number of rows leaving from this step toward the next
Input Number of rows read from a file or table
Output Number of rows written to a file or table
Errors Errors in the execution. If there are errors, the whole row becomes red
Active Tells the current status of the execution

In the example, you can see that the Generate Rows step writes rows, which then are read 
by the Dummy step. The Dummy step also writes the same rows, but in this case those  
go nowhere. 



Chapter 1

[ 2� ]

Pop quiz – PDI basics
For each of the following, decide if the sentence is true or false:

1. There are several graphical tools in PDI, but Spoon is the most used.

2. You can choose to save Transformations either in files or in a database.

3. To run a Transformation, an executable file has to be generated from Spoon.

4. The grid size option in the Look and Feel windows allows you to resize the work area.

5. To create a transformation, you have to provide external data.

Installing MySQL
Before skipping to the next chapter, let's devote some minutes to the installation of MySQL.

In Chapter 8 you will begin working with databases from PDI. In order to do that, you will 
need access to some database engine. As MySQL is the world's most popular open source 
database, it was the database engine chosen for the database-related tutorials in the book.

In this section you will learn to install the MySQL database engine both in Windows and 
Ubuntu, the most popular distribution of Linux these days. As the procedures for installing 
the software are different, a separate explanation is given for each system.

Time for action – installing MySQL on Windows
In order to install MySQL on your Windows system, please follow these instructions:

1.	 Open an internet browser and type http://dev.mysql.com/downloads/mysql/.

2.	 Select the Microsoft Windows platform and download the mysql-essential package 
that matches your system: 32-bit or 64-bit.

3.	 Double-click the downloaded file. A wizard will guide you through the process.

4.	 When asked about the setup type, select Typical.

5.	 Several screens follow. When the wizard is complete you'll have the option to 
configure the server. Check Configure the MySQL Server now and click Finish.



Getting Started with Pentaho Data Integration

[ 30 ]

6.	 A new wizard will be launched that lets you configure the server.

7.	 When asked about the configuration type, select Standard Configuration.

8.	 When prompted, set the Windows options as shown in the next screenshot:

9.	 When prompted for the security options, provide a password for the root user.
         You'll have to retype the password.

Provide a password that you can remember. You'll need it 
later to connect to the MySQL server.



Chapter 1

[ 31 ]

10.	 In the next window click on Execute to proceed with the configuration. When the 
         configuration is done, you'll see this:

11.	Click on Finish. After installing MySQL it is recommended that you install the GUI 
tools for administering and querying the database.

12.	Open an Internet browser and type  
http://dev.mysql.com/downloads/gui-tools/.

13.	Look for the Windows downloads and download the Windows (x86) package.

14.	Double-click the downloaded file. A wizard will guide you through the process.

15.	When asked about the setup type, select Complete.

16.	Several screens follow. Just follow the wizard instructions.

17.	When the wizard ends, you'll have the GUI tools added to the MySQL menu.



Getting Started with Pentaho Data Integration

[ 32 ]

What just happened?
You downloaded and installed MySQL on your Windows system. You also installed MySQL 
GUI tools, a software package that includes an administrator and a query browser utility and 
that will make your life easier when working with the database.

Time for action – installing MySQL on Ubuntu
This tutorial shows you the procedure to install MySQL on Ubuntu.

In order to follow the tutorial you need to be connected to 
the Internet.

Please follow these instructions:

1.	 Check that you have access to the Internet.

2.	 Open the Synaptic package manager from System | Administration | Synaptic 
         Package Manager.

3.	 Under Quick search type mysql-server and click on the Search button.

4.	 Among the results, locate mysql-server-5.1, click in the tiny square to the left, 
        and select Mark for Installation.

5.	 You'll be prompted for confirmation. Click on Mark.



Chapter 1

[ 33 ]

6.	 Now search for a package named mysql-admin.

7.	 When found, mark it for installation in the same way.

8.	 Click on Apply on the main toolbar.

9.	 A window shows up asking for confirmation. Click on Mark again. What follows is 
the download process followed by the installation process.

10.	At a particular moment a window appears asking you for a password for the root
         user—the administrator of the database. Enter a password of your choice. You'll 
         have to enter it twice.

Think of a password that you can remember. You'll need it 
later to connect to the MySQL server.

11.	When the process ends, you will see the changes applied.



Getting Started with Pentaho Data Integration

[ 34 ]

12.	Under Applications a new menu will also be added to access the GUI tools.

What just happened?
You installed MySQL server and GUI Tools in your Ubuntu system.

The previous directions are for standard installations. For custom installations, 
instructions related to other operating systems, or for troubleshooting, please 
check the MySQL documentation at—http://dev.mysql.com/doc/
refman/5.1/en/installing.html.

Summary
In this first chapter, you were introduced to Pentaho Data Integration. Specifically, you learned 
what Pentaho Data Integration is and you installed the tool. You were also introduced to 
Spoon, the graphical designer of PDI, and you created your first transformation.

As an additional exercise, you installed a MySQL server and the MySQL GUI tools. You will 
need this software when you start working with databases in Chapter 8.

Now that you've learned the basics, you're ready to begin creating your own transformations 
to explore real data. That is the topic of the next chapter.



2
Getting Started with Transformations 

In the previous chapter you used the graphical designer Spoon to create 
your first transformation: Hello world. Now you will start creating your own 
transformations to explore data from the real world. Data is everywhere; in 
particular you will find data in files. Product lists, logs, survey results, and 
statistical information are just a sample of the different kinds of information 
usually stored in files. In this chapter you will create transformations to get 
data from files, and also to send data back to files. This in turn will allow you to 
learn the basic PDI terminology related to data.

Reading data from files
Despite being the most primitive format used to store data, files are broadly used and they 
exist in several flavors as fixed width, comma-separated values, spreadsheet, or even free 
format files. PDI has the ability to read data from all types of files; in this first tutorial let's 
see how to use PDI to get data from text files.   



Getting Started with Transformations

[ 36 ]

Time for action – reading results of football matches from files
Suppose you have collected several football statistics in plain files. Your files look like this:

Group|Date|Home Team |Results|Away Team|Notes
Group 1|02/June|Italy|2-1|France|
Group 1|02/June|Argentina|2-1|Hungary
Group 1|06/June|Italy|3-1|Hungary
Group 1|06/June|Argentina|2-1|France
Group 1|10/June|France|3-1|Hungary
Group 1|10/June|Italy|1-0|Argentina
-------------------------------------------
World Cup 78
Group 1

You don't have one, but many files, all with the same structure. You now want to unify all the 
information in one single file. Let's begin by reading the files.

1.	 Create the folder named pdi_files. Inside it, create the input and  
output subfolders.

2.	 By using any text editor, type the file shown and save it under the name  
group1.txt in the folder named input, which you just created. You can also 
download the file from Packt's official website.

3.	 Start Spoon.

4.	 From the main menu select File | New Transformation.

5.	 Expand the Input branch of the steps tree.

6.	 Drag the Text file input icon to the canvas.

7.	 Double-click the text input file icon and give a name to the step.

8.	 Click the Browse... button and search the file group1.txt.

9.	 Select the file. The textbox File or directory will be temporarily populated with the full 
path of the file—for example, C:\pdi_files\input\group1.txt.



Chapter 2

[ 37 ]

10.	Click the Add button. The full text will be moved from the File or directory textbox to the 
grid. The configuration window should look as follows:

11.	Select the Content tab and fill it like this:



Getting Started with Transformations

[ 3� ]

12.	Select the Fields tab.	Click the Get Fields button. The screen should look like this:

13.	 In the small window that proposes you a number of sample lines, click OK.

14.	Close the scan results window.

15.	Change the second row. Under the Type column select Date, and under the Format 
column, type dd/MMM.

16.	The result value is text, not a number, so change the fourth row too. Under the Type 
column select String.

17.	Click the Preview rows button, and then the OK button.

18.	The previewed data should look like the following:



Chapter 2

[ 3� ]

19.	Expand the Transform branch of the steps tree.

20.	Drag the Select values icon to the canvas.

21.	Create a hop from the Text file input step to the Select values step.

Remember that you do it by selecting the first step, then dragging 
toward the second while holding down the Shift key.

22.	Double-click the Select values step icon and give a name to the step.

23.	Select the Remove tab.

24.	Click the Get fields to remove button.

25. Delete every row except the first and the last one by left-clicking them and  
pressing Delete.

26.	The tab window looks like this:

27.	Click OK.

28.	From the Flow branch of the steps tree, drag the Dummy icon to the canvas.

29.	Create a hop from the Select values step to the Dummy step. Your transformation 
should look like the following:



Getting Started with Transformations

[ 40 ]

30.	Configure the transformation by pressing Ctrl+T and giving a name and a description to 
the transformation.

31.	Save the transformation by pressing Ctrl+S.

32.	Select the Dummy step.

33.	Click the Preview button located on the transformation toolbar:

34.	Click the Quick Launch button.

35.	The following window appears, showing the final data:

What just happened?
You read your plain file with results of football matches into a transformation.

By using a Text file input step, you told Kettle the full path to your file, along with the 
characteristics of the file so that Kettle was able to read the data correctly—you specified 
that the file had a header, had three rows at the end that should be ignored, and specified 
the name and type of the columns.

After reading the file, you used a Select values step to remove columns you didn't need— the 
first and the last column.



Chapter 2

[ 41 ]

With those two simple steps, you were able to preview the data in your file from inside  
the transformation.

Another thing you may have noticed is the use of shortcuts instead of the menu options—for 
example, to save the transformation.

Many of the menu options can be accessed more quickly by using shortcuts. The 
available shortcuts for the menu options are mentioned as part of the name of 
the operation—for example, Run F9.

For a full shortcut reference please check Appendix D.

Input files
Files are one of the most used input sources. PDI can take data from several types of files, 
with very few limitations.

When you have a file to work with, the first thing you have to do is to specify where the file 
is, how it looks, and what kinds of values it contains. That is exactly what you did in the first 
tutorial of this chapter.

With the information you provide, Kettle can create the dataset to work within the  
current transformation.

Input steps
There are several steps that allow you to take a file as the input data. All those steps such as 
Text file input, Fixed file input, Excel Input, and so on are under the Input step category.

Despite the obvious differences that exist between these types of files, the ways to configure 
the steps have much in common. The following are the main properties you have to specify 
for an input step:

Name of the step: It is mandatory and must be different for every step in  
the transformation.

Name and location of the file: These must be specified of course. At the moment 
you create the transformation, it's not mandatory that the file exists. However, if it 
does, you will find it easier to configure this step.

Content type: This data includes delimiter character, type of encoding, whether a 
header is present, and so on. The list depends on the kind of file chosen. In every 
case, Kettle propose default values, so you don't have to enter too much data.









Getting Started with Transformations

[ 42 ]

Fields: Kettle has the facility to get the definitions automatically by clicking the Get 
Fields button. However, Kettle doesn't always guess the data types, size, or format 
as expected. So, after getting the fields you may change what you consider more 
appropriate, as you did in the tutorial.

Filtering: Some steps allow you to filter the data—skip blank rows, read only the first 
n rows, and so on.

After configuring an input step, you can preview the data just as you did, by Clicking 
the Preview Rows button. This is useful to discover if there is something wrong in the 
configuration. In that case, you can make the adjustments and preview again, until your  
data looks fine.

Reading several files at once
Until now you used an input step to read one file. But you have several files, all with the very 
same structure. That will not be a problem because with Kettle it is possible to read more 
than a file at a time.

Time for action – reading all your files at a time using a single 
Text file input step

To read all your files follow the next steps:

1.	 Open the transformation, double-click the input step, and add the other files in the 
same way you added the first.

2.	 After Clicking the Preview rows button, you will see this:







Chapter 2

[ 43 ]

What just happened?
You read several files at once. By putting in the grid the names of all the input files, you could 
get the content of every specified file one after the other.

Time for action – reading all your files at a time using a single 
Text file input step and regular expressions

You could do the same thing you did above by using a different notation.  
Follow these instructions: 

1.	 Open the transformation and edit the configuration windows of the input step.

2.	 Delete the lines with the names of the files.

3.	 In the first row of the grid, type C:\pdi_files\input\ under the File/Directory 
column, and group[1-4]\.txt under the Wildcard (Reg.Exp.) column.

4.	 Click the Show filename(s)... button. You'll see the list of files that match  
the expression.

5.	 Close the tiny window and click Preview rows to confirm that the rows shown 
belong to the four files that match the expression you typed.



Getting Started with Transformations

[ 44 ]

What just happened?
In this particular case, all filenames follow a pattern—group1.txt, group2.txt, and so 
on. In order to specify the names of the files, you used a regular expression. In the column 
File/Directory you put the static part of the names, while in the Wildcard (Reg.Exp.) column 
you put the regular expression with the pattern that a file must follow to be considered: 
the text group followed by a number between 1 and 4, and then .txt. Then, all files that 
matched the expression were considered as input files.

Regular expressions
There are many places inside Kettle where you may or have to provide a regular expression. 
A regular expression is much more than specifying the known wildcards ? and *.

Here you have some examples of regular expressions you may use to specify filenames:

The following regular 
expression ...

Matches ... Examples

.*\.txt Any txt file thisisaValidExample.
txt

test(19|20)\d\d-
(0[1-9]|1[012])\.txt

Any txt file beginning with test 
followed by a date using the format 
yyyy-mm

test2009-12.txt

test2009-01.txt

(?i)test.+\.txt Any txt file beginning with test, 
upper or lower case

TeSTcaseinsensitive.
tXt

Please note that the * wildcard doesn't work the same as it does on 
the command line. If you want to match any character, the * has to be 
preceded by a dot.

Here are some useful links in case you want to know more about regular expressions:

Regular Expression Quick Start:  
http://www.regular-expressions.info/quickstart.html

The Java Regular Expression Tutorial:  
http://java.sun.com/docs/books/tutorial/essential/regex/

Java Regular Expression Pattern Syntax: http://java.sun.com/javase/6/
docs/api/java/util/regex/Pattern.html









Chapter 2

[ 45 ]

 Troubleshooting reading files
Despite the simplicity of reading files with PDI, obstacles and errors appear. Many times  
the solution is simple but difficult to find if you are new to PDI. Here you have a list of 
common problems and possible solutions for you to take into account while reading and 
previewing a file:

Problem Diagnostic Possible solutions

You get the message 
Sorry, no rows found to 
be previewed.

This happens when the input file 
doesn't exist or is empty.

It also may happen if you 
specified the input files with 
regular expressions and there 
is no file that matches the 
expression. 

Check the name of the input files. 
Verify the syntax used, check that 
you didn't put spaces or any strange 
character as part of the name.

If you used regular expressions, check 
the syntax.

Also verify that you put the filename 
in the grid. If you just put it in the File 
or directory textbox, Kettle will not 
read it.

When you preview  the 
data you see a grid with 
blank lines

The file contains empty lines, or 
you forgot to get the fields.

Check the content of the file.

Also check that you got the fields in the 
Fields tab.

You see the whole line 
under the first defined 
field.

You didn't set the proper 
separator and Kettle couldn't split 
the different fields.

Check and fix the separator in the 
Content tab.

You see strange 
characters.

You left the default content but 
your file has a different format or 
encoding.

Check and fix the Format and Encoding 
in the Content tab.

If you are not sure of the format, you 
can specify mixed.

You don't see all the 
lines you have in the file

You are previewing just a sample 
(100 lines by default).

Or you put a limit to the number 
of rows to get.

Another problem may be that you 
set the wrong number of header 
or footer lines.

When you preview, you see just a 
sample. This is not a problem.

If you raise the previewed number of 
rows and still have few lines, check the 
Header, Footer and Limit options in 
the Content tab.



Getting Started with Transformations

[ 46 ]

Problem Diagnostic Possible solutions

Instead of rows of 
data, you get a window 
headed ERROR  with an 
extract of the log

Different errors may happen, but 
the most common has to do with 
problems in the definition of the 
fields.

You could try to understand the log 
and fix the definition accordingly. For 
example if you see:

Couldn't parse field [Integer] with 
value [Italy].

The error is that PDI found the text 
Italy in a field that you defined as 
Integer.

If you made a mistake, you could fix 
it. On the other hand, if the file has 
errors, you could read all fields as 
String and you will not get the error 
again. In chapter 7 you will learn how 
to overcome these situations.

Grids
Grids are tables used in many Spoon places to enter or display information. You already saw 
grids in several configuration windows—Text file input, Text file output, and Select values.

Many grids contain field information. Examples of these grids are the Field tab window in the 
Text Input and Output steps, or the main configuration window of the Select Values step. In 
these cases, the grids are usually accompanied by a Get Fields button. The Get Fields button 
is a facility to avoid typing. When you press that button, Kettle fills the grid with all the 
available fields.

For example, when reading a file, the Get Fields button fills the grid with the columns of the 
incoming file. When using a Select Values step or a File output step, the Get Fields button 
fills the grid with all the fields entering from a previous step.

Every time you see a Get Fields button, consider it as a shortcut to avoid typing. 
Kettle will bring the fields available to the grid; you will only have to check the 
information brought and make minimal changes.

There are many places in Spoon where the grid serves also to edit other kinds of information. 
One example of that is the grid where you specify the list of files in a Text File Input step. No 
matter what kind of grid you are editing, there is always a contextual menu, which you may 
access by right-clicking on a row. That menu offers editing options to copy, paste, or move 
rows of the grid.



Chapter 2

[ 47 ]

When the number of rows in the grid is big, use shortcuts! Most of the editing 
options of a grid have shortcuts that make the editing work easier and quicker.

You'll find a full list of shortcuts for editing grids in Appendix E.

Have a go hero – explore your own files
Try to read your own text files from Kettle. You must have several files with different kinds of 
data, different separators, and with or without header or footer. You can also search for files 
over the Internet; there are plenty of files there to download and play with. After configuring 
the input step, do a preview. If the data is not shown properly, fix the configuration and 
preview again until you are sure that the data is read as expected. If you have trouble 
reading the files, please refer to the Troubleshooting reading files section seen earlier for 
diagnosis and possible ways to solve the problems.

Sending data to files
Now you know how to bring data into Kettle. You didn't bring the data just to preview it; you 
probably want to do some transformation on the data, to finally send it to a final destination 
such as another plain file. Let's learn how to do this last task.

Time for action – sending the results of matches to a plain file
In the previous tutorial, you read all your "results of matches" files. Now you want to send 
the data coming from all files to a single output file.

1.	 Create a new transformation.

2.	 Drag a Text file input step to the canvas and configure it just as you did in the 
previous tutorial.

3.	 Drag a Select values step to the canvas and create a hop from the Text file input 
step to the Select values step.

4.	 Double-click the Select values step.

5.	 Click the Get fields to select button.



Getting Started with Transformations

[ 4� ]

6.	 Modify the fields as follows:

7.	 Expand the Output branch of the steps tree.

8.	 Drag the Text file output icon to the canvas.

9.	 Create a hop from the Select values step to the Text file output step.

10.	Double-click the Text file output step and give it a name.

11.	 In the file name type: C:/pdi_files/output/wcup_first_round.

Note that the path contains forward slashes. If your system is Windows, 
you may use back or forward slashes. PDI will recognize both notations.

12.	 In the Content tab, leave the default values.

13.	Select the Fields tab and configure it as follows:



Chapter 2

[ 4� ]

14.	Click OK.

15.	Give a name and description to the transformation.

16.	Save the transformation.

17.	Click Run and then Launch.

18.	Once the transformation is finished, check the file generated. It should have been 
created as C:/pdi_files/output/wcup_first_round.txt and should look  
like this:

Match Date;Home Team;Away Team;Result

02/06;Italy;France;2-1

02/06;Argentina;Hungary;2-1

06/06;Italy;Hungary;3-1

06/06;Argentina;France;2-1

10/06;France;Hungary;3-1

10/06;Italy;Argentina;1-0

01/06;Germany FR;Poland;0-0

02/06;Tunisia;Mexico;3-1

06/06;Germany FR;Mexico;6-0

…

What just happened?
You gathered information from several files and sent all the data to a single file. Before 
sending the data out, you used a Select Value step to select the data you wanted for the file 
and to rename the fields so that the header of the destination file looks clearer.

Output files
We saw that PDI could take data from several types of files. The same applies to output data. 
The data you have in a transformation can be sent to different types of files. All you have to 
do is redirect the flow of data towards an Output step.



Getting Started with Transformations

[ 50 ]

Output  steps
There are several steps that allow you to send the data to a file. All those steps are under the 
Output step category: Text file output and Excel Output are examples of them.

For an Output step, just like you do for an Input step, you also have to define:

Name of the step: It is mandatory and must be different for every step in  
the transformation.

Name and location of the file: These must be specified. If you specify an existing 
file, the file will be replaced by a new one (unless you check the Append checkbox 
present in some of the output steps).

Content type: This data includes delimiter character, type of encoding, whether to 
put a header, and so on. The list depends on the kind of file chosen. If you check 
Header, the header will be built with the names of the fields.

If you don't like the names of the fields as header names in your file, 
you may use a Select values step just to rename those fields.

Fields: Here you specify the list of fields that has to be sent to the file, and provide 
some format instructions. Just like in the input steps, you may use the Get Fields 
button to fill the grid. In this case, the grid is going to be filled based on the data 
that arrives from the previous step. You are not forced to send every piece of data 
coming to the output step, nor to send the fields in the same order.

Some data definitions
From the Kettle's point of view, data can be anything ready to be processed by software (for 
example files or data in databases). Whichever the subject or origin of the data, whichever 
its format, Kettle transformations can get the data for further processing and delivering.

Rowset
Transformations deals with datasets, that is, data presented in a tabular form, where:

Each column represents a field. A field has a name and a data type. The data type  
can be any of the common data types—number (float), string, date, Boolean, integer,  
or big number.

Each row corresponds to a given member of the dataset. All rows in a dataset have 
the same structure, that is, all rows have the same fields, in the same order. A field 
in a row may be null, but it has to be present.















Chapter 2

[ 51 ]

The dataset is called rowset. The following is an example of rowset. It is the rowset 
generated in the World Cup tutorial:

Streams
Once the data is read, it travels from step to step, through the hops that link those steps.

Nothing happens in the hops except data flowing. The real manipulation of data, as well as 
the modification of a stream by adding or removing columns, occurs in the steps.

Right-click on the Select values step of the transformation you created. In the contextual 
menu select Show output fields. You'll see this:

This window shows the metadata of the data that leaves this step, this is, name, type, and 
other properties of each field leaving this step towards the following step.

In the same way, if you select Show input fields, you will see the metadata of the data that 
left the previous step.





Getting Started with Transformations

[ 52 ]

The Select values step
The Select values step allows you to select, rename, and delete fields, or change the 
metadata of a field. The step has three tabs:

Select & Alter: This tab is also used to rename the fields or reorder them. This is 
how we used it in the last exercise.

Remove: This tab is useful to discard undesirable fields. We used it in the matches 
exercise to drop the first and last fields. Alternatively, we could use the Select & 
Alter tab, and specify the fields that you want to keep. Both are equivalent for  
that purpose.

Meta-data: This tab is used when you want to change the definition of a field such 
as telling Kettle to interpret a string field as a date. We will see examples of this later 
in this book.

You may use only one of the Select Values step tabs at a 
time. Kettle will not restrain you from filling more than one 
tab, but that could lead to unexpected behavior.

Have a go hero – extending your transformations by writing output files
Suppose you read your own files in the previous section, modify your transformations by 
writing some or all the data back into files, however, changing the format, headers, number 
or order of fields, and so on this time around. The objective is to get some experience to see 
what happens. After some tests, you will feel confident with input and output files, and be 
ready to move forward.

Getting system information
Until now, you have learned how to read data from known files, and send data back to files. 
What if you don't know beforehand the name of the file to process? There are several ways 
to handle this with Kettle. Let's learn the simplest. 









Chapter 2

[ 53 ]

Time for action – updating a file with news about examinations
Imagine you are responsible to collect the results of an annual examination that is being 
taken in a language school. The examination evaluates writing, reading, speaking, and 
listening skills. Every professor gives the exam to the students, the students take the 
examination, the professors grade the examinations in the scale 0-100 for each skill, and 
write the results in a text file, like the following:

student_code;name;writing;reading;speaking;listening
80711-85;William Miller;81;83;80;90
20362-34;Jennifer Martin;87;76;70;80
75283-17;Margaret Wilson;99;94;90;80
83714-28;Helen Thomas;89;97;80;80
61666-55;Maria Thomas;88;77;70;80

All the files follow that pattern.

When a professor has the file ready, he/she sends it to you, and you have to integrate the 
results in a global list. Let's do it with Kettle.

1.	 Before starting, be sure to have a file ready to read. Type it or download the sample files 
from the Packt's official website.

2.	 Create the file where the news will be appended. Type this:

---------------------------------------------------------

Annual Language Examinations

Testing writing, reading, speaking and listening skills

---------------------------------------------------------

student_code;name;writing;reading;speaking;listening;file_
processed;process_date

 Save the file as C:/pdi_files/output/examination.txt.

3.	 Create a new transformation.

4.	 Expand the Input branch of the steps tree.

5.	 Drag the Get System Info and Text file input icons to the canvas. 

6.	 Expand the Output branch of the steps tree, and drag a Text file output step to  
the canvas.



Getting Started with Transformations

[ 54 ]

7.	 Link the steps as follows:

8.	 Double-click the first Get System Info step icon and give it a name.

9.	 Fill the grid as follows:

10.	Click OK.

11.	Double-click the Text file Input step icon and configure it like here:



Chapter 2

[ 55 ]

12.	Select the Content tab.

13.	Check the Include filename in output? checkbox and type file_processed in the 
Filename fieldname textbox.

14.	Check the Add filenames to result checkbox.

15.	Select the Fields tab and Click the Get Fields button to fill the grid.

16.	Click OK.

17.	Double-click the second Get System Info step icon and give it a name.

18.	Add a field named process_date, and from the list of choices select system  
date (fixed).

19.	Double-click the Text file output step icon and give it a name.

20.	Type C:/pdi_files/output/examination as the filename.

21.	 In the Fields tab, press the Get Fields button to fill the grid.

22.	Change the format of the Date row to yy/MM/dd.

23.	Give a name and description to the transformation and save it.

24.	Press F9 to run the transformation.

25.	Fill in the argument grid, writing the full path of the file created.

26.	Click Launch.



Getting Started with Transformations

[ 56 ]

27.	The output file should look like this:

 ---------------------------------------------------------
Annual Language Examinations
Testing writing, reading, speaking and listening skills
---------------------------------------------------------
student_code;name;writing;reading;speaking;listening;file_
processed;process_date
80711-85;William Miller;81;83;80;90;C:\exams\exam1.txt;28-05-2009
20362-34;Jennifer Martin;87;76;70;80;C:\exams\exam1.txt;28-05-2009
75283-17;Margaret Wilson;99;94;90;80;C:\exams\exam1.txt;28-05-2009
83714-28;Helen Thomas;89;97;80;80;C:\exams\exam1.txt;28-05-2009
61666-55;Maria Thomas;88;77;70;80;C:\exams\exam1.txt;28-05-2009

28.	Run the transformation again.

29.	This time fill the argument grid with the name of a second file.

30.	Click Launch.

31.	Verify that the data from this second file was appended to the previous data in the 
output file.

What just happened?
You read a file whose name is known at runtime, and fed a destination file by appending the 
contents of the input file.

The first Get System Info step tells Kettle to take the first command line argument, and 
assume that it is the name of the file to read.

In the Text File Input step, you didn't specify the name of the file, but told Kettle to take as 
the name of the file, the field coming from the previous step, which is the read argument.

With the second Get System Info step you just took from the system, the date, which you 
used later to enrich the data sent to the destination file.

The destination file is appended with new data every time you run the transformation. 
Beyond the basic required data (student code and grades), the name of the processed file 
and the date on which the data is being appended are added as part of the data.

When you don't specify the name and location of a file (like in this example), or 
when the real file is not available at design time, you won't be able to use the 
Get Fields button, nor preview to see if the step is well configured. The trick is 
to configure the step by using a real file identical to the expected one. After the 
step is configured, change the name and location of the file as needed.



Chapter 2

[ 57 ]

Getting information by using Get System Info step
The Get System Info step allows you to get different information from the system. In this 
exercise, you took the system date and an argument. If you look to the available list, you  
will see more than just these two options.

Here we used the step in two different ways:

As a resource to take the name of the file from the command line

To add a field to the dataset

The use of this step will be clearer with a picture.

In this example, the Text File Input doesn't know the name or the location of the file. It takes 
it from the previous step, which is a Get System Info Step. As the Get System Info serves as  
a supplier of information, the hop that leaves the step changes its look and feel to show  
the situation.







Getting Started with Transformations

[ 5� ]

The second time the Get System Info is used, its function is simply to add a field to the 
incoming dataset.

Data types
Every field must have a data type. The data type can be any of the common data  
types—number (float), string, date, Boolean, integer, or big number. Strings are simple,  
just text for which you may specify a length. Date and numeric fields have more variants,  
and are worthy of while a separate explanation.

Date fields
Date is one the main data types available in Kettle. In the matches tutorial, you have an 
example of date field—the match date field. Its values were 2/Jun, 6/Jun, 10/Jun. Take a 
look at how you defined that field in the Text file input step. You defined the field as a date 
field with format dd/MMM. What does it mean? To Kettle it means that it has to interpret the 
field as a date, where the first two positions represent the day, then there is a slash, and 
finally there is the month in letters (that's the meaning of the three last positions).

Generally speaking, when a date field is created, like the text input field of the example, you 
have to define the format of the data so that Kettle can recognize in the field the different 
components of the date. There are several formats that may be defined for a date, all of 
them combinations of letters that represents date or time components. Here are the most 
basic ones:

Letters Meaning
y Year
M Month
d Day
H Hour (0-23)
m Minutes
s Seconds

Now let's see the other end of the same transformation—the output step. Here you set 
another format for the same field: dd/MM. According the table, this means the date has to 
have two positions for the day, then a slash, and then two positions for the month. Here, the 
format specification represents the mask you want to apply when the date is shown. Instead 
of 2/Jun, 6/Jun, 10/Jun, in the output file, you expect to see 02/06, 06/06, 10/06.

In the examination tutorial, you also have a Date field—the process date. When you created 
it, you didn't specify a format because you took the system date which, by definition, is a 
date and Kettle knows it. But when writing this date to the output file, again you defined a 
format, in this case it was yyyy/MM/dd.



Chapter 2

[ 5� ]

In general, when you are writing a date, the format attribute is used of format the data 
before sending it to the destination. In case you don't specify a format, Kettle sets a  
default format.

As said earlier, there are more combinations to define the format to a date field.  
For a complete reference, check the Sun Java API documentation located at  
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html.

Numeric fields
Numeric fields are present in almost all Kettle transformations. In the Examination example, 
you encountered numeric fields for the first time. The input file had four numeric fields. 
As the numbers were all integer, you didn't set a specific format. When you have more 
elaborate fields such as numbers with separators, dollar signs, and so on, you should specify 
a format to tell Kettle how to interpret the number. If you don't, Kettle will do its best to 
interpret the number, but this could lead to unexpected results.

At the other extreme of the flow, when writing to the output file text, you may specify the 
format in which you want the number to be shown.

There are several formats you may apply to a numeric field. The format is basically a 
combination of predefined symbols, each with a special meaning. The following are  
the most used symbols:

Symbol Meaning

# Digit Leading zeros are not shown

0 Digit If the digit is not present, zero is displayed in its place

. Decimal separator

- Minus sign

% Field has to be multiplied by 100 and shown as a percentage

These symbols are not used alone. In order to specify the format of your numbers, you 
have to combine them. Suppose that you have a numeric field whose value is 99.55; the 
following table shows you the same value after applying different formats to it:

Format Result

# 100

0 100

#.# 99.6

#.## 99.55

#.000 99.550

000.000 099.550



Getting Started with Transformations

[ 60 ]

If you don't specify a format for your numbers, you may still provide a Length and  
Precision. Length is the total number of significant figures, while precision is the number  
of floating-point digits.

If you neither specify format nor length or precision, Kettle behaves as follow. While reading, 
it does its best to interpret the incoming number, and when writing, it sends the data as it 
comes without applying any format.

For a complete reference on number formats, you can check the Sun Java API 
documentation available at http://java.sun.com/javase/6/docs/api/java/text/
DecimalFormat.html.

Running transformations from a terminal window
In the examination exercise, you specified that the name of the input file will be taken 
from the first command-line argument. That means when executing the transformation, 
the filename has to be supplied as an argument. Until now, you only ran transformations 
from inside Spoon. In the last exercise, you provided the argument by typing it in a dialog 
window. Now it is time to learn how to run transformations with or without arguments from 
a terminal window.

Time for action – running the examination transformation from 
a terminal window

Before executing the transformation from a terminal window, make sure that you have a new 
examination file to process, let's say exam3.txt. Then follow these instructions:

1.	 Open a terminal window and go to the directory where Kettle is installed.

On Windows systems type:

	 	 	 C:\pdi-ce>pan.bat	/file:c:\pdi_labs\examinations.ktr	c:\	
	 	 	 pdi_files\input\exam3.txt

On Unix, Linux, and other Unix-based systems type:

	 	 /home/yourself/pdi-ce/pan.sh	/file:/home/yourself/pdi_labs/	
	 	 examinations.ktr	c:/pdi_files/input/exam3.txt

If your transformation is in another folder, modify the command 
accordingly.









Chapter 2

[ 61 ]

2.	 You will see how the transformation runs, showing you the log in the terminal.

3.	 Check the output file. The contents of exam3.txt should be at the end of the file.

What just happened? 
You executed a transformation with Pan, the program that runs transformations from 
terminal windows. As part of the command, you specified the name of the transformation 
file and provided the name of the file to process, which was the only argument expected by 
the transformation. As a result, you got the same as if you had run the transformation from 
Spoon—a small file appended to the global file.

When you are designing transformations, you run them with Spoon; you don't use Pan. Pan 
is mainly used as part of batch processes, for example processes that run every night in a 
scheduled fashion.

Appendix B tells you all the details about using Pan.

Have a go hero – using different date formats 
Change the main transformation of the last tutorial so that the process_date is saved with 
a full format, that is, including day of week (Monday, Tuesday, and so on), month in letters 
(January, February, and so on), and time.



Getting Started with Transformations

[ 62 ]

Go for a hero – formatting ��.55
Create a transformation to see for yourself the different formats for the number 99.55. Test 
the formats shown in the Numeric fields section and try some other options as well.

To test this, you will need a dataset with a single row and a single field—the 
number. You can generate it with a Generate rows step.

Pop quiz–formatting data
Suppose that you read a file where the first column is a numeric identifier: 1, 2, 3, and so on. 
You read the field as a Number. Now you want to send the data back to a file. Despite being 
a number, this field is regular text to you because it is a code. How do you define the field in 
the Text output step (you may choose more than one option):

a. As a Number. In the format, you put #.

b. As a String. In the format, you put #.

c. As a String. You leave the format blank.

XML files
Even if you're not a system developer, you must have heard about XML files. XML files 
or documents are not only used to store data, but also to exchange data between 
heterogeneous systems over the Internet. PDI has many features that enable you to 
manipulate XML files. In this section you will learn to get data from those files.

Time for action –  getting data from an XML file with information 
about countries

In this tutorial you will build an Excel file with basic information about countries. The source 
will be an XML file that you can download from the Packt website. 

1.	 If you work under Windows, open the kettle.properties file located in the  
C:/Documents and Settings/yourself/.kettle folder and add the 
following line:

LABSOUTPUT=c:/pdi_files/output



Chapter 2

[ 63 ]

On the other hand, if you work under Linux (or similar), open the kettle.
properties file located in the /home/yourself/.kettle folder and add the 
following line:

LABSOUTPUT=/home/yourself/pdi_files/output

2.	 Make sure that the directory specified in kettle.properties exists.

3.	 Save the file.

4.	 Restart Spoon.

5.	 Create a new transformation.

6.	 Give a name to the transformation and save it in the same directory you have all the 
other transformations.

7.	 From the Packt website, download the resources folder containing a file named 
countries.xml. Save the folder in your working directory. For example, if your 
transformations are in pdi_labs, the file will be in pdi_labs/resources/. 

The last two steps are important. Don't skip them! If you do, 
some of the following steps will fail.

8.	 Take a look at the file. You can edit it with any text editor, or you can double-click it to 
see it within an explorer. In any case, you will see information about countries. This is 
just the extract for a single country: 

 <?xml version="1.0" encoding="UTF-8"?>
 <world>
 ...
  <country>
  <name>Argentina</name>
  <capital>Buenos Aires</capital>
  <language isofficial="T">
   <name>Spanish</name>
   <percentage>96.8</percentage>
  </language>
  <language isofficial="F">
   <name>Italian</name>
   <percentage>1.7</percentage>
  </language>
  <language isofficial="F">



Getting Started with Transformations

[ 64 ]

   <name>Indian Languages</name>
   <percentage>0.3</percentage>
  </language>
  </country>
 ...
 </world>

9.	 From the Input steps, drag a Get data from XML step to the canvas.

10.	Open the configuration window for this step by double-clicking it.

11.	 In the File or directory textbox, press Ctrl+Space. A drop-down list appears as shown in 
the next screenshot:

12.	Select Internal.Transformation.Filename.Directory. The textbox gets filled 
with this text. 

13.	Complete the text so that you can read ${Internal.Transformation.Filename.
Directory}/resources/countries.xml.

14.	Click on the Add button. The full path is moved to the grid.

15.	Select the Content tab and click Get XPath nodes.

16.	 In the list that appears, select /world/country/language.



Chapter 2

[ 65 ]

17.	Select the Fields tab and fill the grid as follows:

18.	Click Preview rows, and you should see something like this: 

19.	Click OK.

20.	From the Output steps, drag an Excel Output step to the canvas.

21.	Create a hop from the Get data from XML step to the Excel Output step.

22.	Open the configuration window for this step by double-clicking it.



Getting Started with Transformations

[ 66 ]

23.	 In the Filename textbox press Ctrl+Space.

24.	From the drop-down list, select ${LABSOUTPUT}.

25.	By the side of that text type /countries_info. The complete text should be 
${LABSOUTPUT}/countries_info.

26.	Select the Fields tab and click the Get Fields button to fill the grid.

27.	Click OK. This is your final transformation.

28.	Save the transformation.

29.	Run the transformation.

30.	Check that the countries_info.xls file has been created in the output directory 
and contains the information you previewed in the input step.

What just happened?
You got information about countries from an XML file and saved it in a more readable 
format—an Excel spreadsheet—for the common people.

To get the information, you used a Get data from XML step. As the source file was 
taken from a folder relative to the folder where you stored the transformation, you set 
the directory to ${Internal.Transformation.Filename.Directory}. When 
the transformation ran, Kettle replaced ${Internal.Transformation.Filename.
Directory} with the real path of the transformation: c:/pdi_labs/.

In the same way, you didn't put a fixed value for the path of the final Excel file. As directory, 
you used ${LABSOUTPUT}. When the transformation ran, Kettle replaced ${LABSOUTPUT} 
with the value you wrote in the kettle.properties file. The output file was then saved in 
that folder: c:/pdi_files/output.



Chapter 2

[ 67 ]

What is XML
XML stands for EXtensible Markup Language.  It is basically a language designed to describe 
data. XML files or documents contain information wrapped in tags. Look at this piece of XML 
taken from the countries file:

<?xml version="1.0" encoding="UTF-8"?>
<world>
...
 <country>
    <name>Argentina</name>
    <capital>Buenos Aires</capital>
    <language isofficial="T">
        <name>Spanish</name>
        <percentage>96.8</percentage>
    </language>
    <language isofficial="F">
        <name>Italian</name>
        <percentage>1.7</percentage>
    </language>
    <language isofficial="F">
        <name>Indian Languages</name>
        <percentage>0.3</percentage>
    </language>
 </country>
...
</world>

The first line in the document is the XML declaration. It defines the XML version of the 
document, and should always be present.

Below the declaration is the body of the document. The body is a set of nested elements. 
An element is a logical piece enclosed by a start-tag and a matching end-tag—for example, 
<country> </country>.

Within the start-tag of an element, you may have attributes. An attribute is a markup 
construct consisting of a name/value pair—for example, isofficial="F".

These are the most basic terminology related to XML files. If you want to know more about 
XML, you can visit http://www.w3schools.com/xml/.



Getting Started with Transformations

[ 6� ]

PDI transformation files
Despite the .ktr extension, PDI transformations are just XML files. As such, you are able to 
explore them inside and recognize different XML elements. Look the following sample text:

<?xml version="1.0" encoding="UTF-8"?>
<transformation>
  <info>
    <name>hello_world</name>
    <description>My first transformation</description>
    <extended_description>
        This transformation generates 10 rows 
        with the message Hello World.
    </extended_description>
...
</transformation>

This is an extract from the hello_world.ktr file. Here you can see the root element 
named transformation, and some inner elements such as info and name.

Note that if you copy a step by selecting it in the Spoon canvas and pressing Ctrl+C , and then 
pass it to a text editor, you can see its XML definition. If you copy it back to the canvas, a new 
identical step will be added to your transformation.

Getting data from XML files
In order to get data from an XML file, you have to use the Get Data From XML input step. 
To tell PDI which information to get from the file, it is required that you use a particular 
notation named XPath.

XPath
XPath is a set of rules used for getting information from an XML document. In XPath, XML 
documents are treated as trees of nodes. There are several types of nodes; elements, 
attributes, and texts are some of them. As an example, world, country, and isofficial 
are some of the nodes in the sample file.

Among the nodes there are relationships. A node has a parent, zero or more children, 
siblings, ancestors, and descendants depending on where the other nodes are in  
the hierarchy.

In the sample countries file, country is the the parent of the elements name, capital, and 
language. These three elements are children of country.

To select a node in an XML document, you have to use a path expression relative to a  
current node. 



Chapter 2

[ 6� ]

The following table has some examples of path expressions that you may use to specify 
fields. The examples assume that the current node is language.

Path expression Description Sample expression

node_name Selects all child nodes of the 
node named node_name.

percentage

This expression selects all child nodes of 
the node percentage. It looks for the node 
percentage inside the current node language.

. Selects the current node language

.. Selects the parent of the 
current node

../capital

This expression selects all child nodes of the 
node capital. It doesn't look in the current 
node (language), but inside its parent, which 
is country.

@ Selects an attribute @isofficial

This expression gets the attribute isofficial 
in the current node language.

Note that the expressions name and ../name are not the same. The 
first selects the name of the language, while the second selects the 
name of the country.

For more information on XPath, follow this link: http://www.w3schools.com/XPath/.

Configuring the Get data from XML step
In order to specify the name and location of an XML file, you have to fill the File tab just as 
you do in any file input step. What is different here is how you get the data.

The first thing you have to do is select the path that will identify the current node. You do 
it by filling the Loop XPath textbox in the Content tab. You can type it by hand, or you can 
select it from the list of available paths by Clicking the Get XPath nodes button.

Once you have selected a path, PDI will generate one row of data for every found path.

In the tutorial you selected /world/country/language. Then PDI generates one row for 
each /world/country/language element in the file.

After selecting the loop XPath, you have to specify the fields to get. In order to do that, 
you have to fill the grid in the Fields tab by using XPath notation as explained in the 
preceding section.



Getting Started with Transformations

[ 70 ]

Note that if you click the Get fields button, PDI will fill the grid with the child nodes of the 
current node. If you want to get some other node, you have to type its XPath by hand.

Also note the notation for the attributes. To get an attribute, you can use the @ notation as 
explained, or you can simply type the name of the attribute without @ and select Attribute 
under the Element column, as you did in the tutorial.

Kettle variables
In the last tutorial, you used the string ${Internal.Transformation.Filename.
Directory} to identify the folder where the current transformation was saved. You also 
used the string ${LABSOUTPUT} to define the destination folder of the output file. 
 
Both strings, ${Internal.Transformation.Filename.Directory} and 
${LABSOUTPUT}, are Kettle variables, that is, keywords linked to a value. You use the  
name of a variable, and when the transformation runs, the name of the variable is  
replaced by its value.

The first of these two variables is an environment variable, and it is not the only available. 
Other known environment variables are ${user.home}, ${java.io.tmpdir}, and 
${java.home}. All these variables are ready to use any time you need.

The second variable is a variable you defined in the kettle.properties file. In this file 
you may define as many variables as you want. The only thing you have to keep in mind is 
that those variables will be available inside Spoon after you restart it.

These two kinds of variables—environment variables and variables defined in the  
kettle.properties file—are the most primitive kinds of variables found in PDI.  
All of these variables are string variables and their scope is the Java virtual machine.

How and when you can use variables
Any time you see a red dollar sign by the side of a textbox, you may use a variable. Inside the 
textbox you can mix variable names with static text, as you did in the tutorial when you put 
the name of the destination as ${LABSOUTPUT}/countries_info.

To see all the available variables, you have to position the cursor in the textbox, press 
Ctrl+Space, and a full list is displayed for you to select the variable of your choice. If you put 
the mouse cursor over any of the variables for a second, the actual value of the variable will 
be shown.

If you know the name of the variable, you don't need to select it from the list. You may type 
its name, by using either of these notations—${<name>} or %%<name>%%.



Chapter 2

[ 71 ]

Have a go hero – exploring XML files
Now you can explore by yourself. On the Packt website there are some sample XML files. 
Download them and try this:

•	 Read the customer.xml file and create a list of customers.

•	 Read the tomcat-users.xml file and get the users and their passwords.

•	 Read the areachart.xml and get the color palette, that is, the list of colors used.

The customer file is included in the Pentaho Report Designer software package. 
The others come with the Pentaho BI package. This software has many XML files 
for you to use. If you are interested you can download the software from  
http://sourceforge.net/projects/pentaho/files/.

Have a go hero – enhancing the output countries file
Modify the transformation in the tutorial so that the Excel output uses a template. The 
template will be an Excel file with the header and format already applied, and will be located 
in a folder inside the pdi_labs folder.

Templates are configured in the Content tab of the Excel configuration window. 
In order to set the name for the template, use internal variables.

Have a go hero – documenting your work
As explained, transformations are nothing different than XML files. Now you'll create a new 
transformation that will take as input the transformations you've created so far, and will 
create a simple Excel spreadsheet with the name and description of all your transformations. 
If you keep this sheet updated by running the transformation on a regular basis, it will be 
easier to find a particular transformation you created in the past.

To get data from the transformations files, use the Get data from XML step.

As wildcard, use .*\.ktr. Doing so, you'll get all the files. 

On the other hand, as Loop XPath, use /transformation/info.



Getting Started with Transformations

[ 72 ]

Summary
In this chapter you learned how to get data from files and put data back into files. 
Specifically, you learned how to:

Get data from plain files and also from XML files

Put data into text files and Excel files

Get information from the operating system such as command-line arguments and 
system date

We also discussed the following:

The main PDI terminology related to data, for example datasets, data types,  
and streams

The Select values step, a commonly used step for selecting, reordering, removing 
and changing data

How and when to use Kettle variables

How to run transformations from a terminal with the Pan command

Now that you know how to get data into a transformation, you are ready to start 
manipulating data. This is going to happen in the next chapter.

















3
Basic Data Manipulation

In the previous chapter, you learned how to get data into PDI. Now you're ready to  
begin transforming that data. This chapter explains the simplest and most used ways  
of transforming data. We will cover the following:

Executing basic operations

Filtering and sorting of data

Looking up data outside the main stream of data

By the end of this chapter, you will be able to do simple but meaningful transformations on 
different types of data.

Basic calculations
You already know how to create a transformation and read data from an external source. 
Now, taking that data as a starting point, you will begin to do basic calculations.









Basic Data Manipulation

[ 74 ]

Time for action – reviewing examinations by using the 
Calculator step

Can you recollect the exercise about examinations you did in the previous chapter? You 
created an incremental file with examination results. The final file looked like the following:

---------------------------------------------------------
Annual Language Examinations
Testing writing, reading, speaking and listening skills
---------------------------------------------------------
student_code;name;writing;reading;speaking;listening;file_
processed;process_date
80711-85;William Miller; 81;83;80;90;C:\pdi_files\input\first_turn.
txt;28-05-2009
20362-34;Jennifer Martin; 87;76;70;80;C:\pdi_files\input\first_turn.
txt;28-05-2009
75283-17;Margaret Wilson; 99;94;90;80;C:\pdi_files\input\first_turn.
txt;28-05-2009
83714-28;Helen  Thomas; 89;97;80;80;C:\pdi_files\input\first_turn.
txt;28-05-2009
61666-55;Maria Thomas; 88;77;70;80;C:\pdi_files\input\first_turn.
txt;28-05-2009
...

Now you want to convert all grades in the scale 0-100 to a new scale from 0 to 5. Also, you 
want to take the average grade to see how the students did. 

1.	 Create a new transformation, give it a name and description, and save it.

2.	 By using a Text file input step, read the examination.txt file. Give the name and 
location of the file, check the Content tab to see that everything matches your file, and 
fill the Fields tab as here:



Chapter 3

[ 75 ]

3.	 Do a preview just to confirm that the step is well configured.

Notice that you have several lines as header. Because the 
names of the fields are not in the first row, you won't be able 
to use the Get Fields button successfully. You will have to write 
the fields manually, or you can avoid it by doing the following: 
Configure the step with a copy of the file that doesn't have the 
extra heading, just the heading row with the names of the fields. 
Then, restore the name of your file in the File tab, adjust the 
number of headings in the Content tab, and your step is ready.

4.	 Use the Select values step to remove the fields you will not use—file_processed 
and process_date.



Basic Data Manipulation

[ 76 ]

5.	 Drag another Select values step to the canvas. Select the Meta-data tab and change the 
meta-data of the numeric fields like here:

6.	 Near the upper-left corner of the screen, above the step tree, there is a textbox for 
searching. Type calc in the textbox. While you type, a filter is applied to show you only 
the steps that contain, in their name or description, the text you typed. You should be 
seeing this:

7.	 Among the steps you see, select the Calculator step and drag it to the canvas.



Chapter 3

[ 77 ]

8.	 To remove the filter, clear the typed text.

9.	 Create a hop from the Text file input step to the Calculator step.

10.	Edit the Calculator step and fill the grid as follows:

11.	To fill the Calculation column, simply select the operation from the list provided. Be sure 
to fill every column in the grid like shown in the screenshot.

You don't have to feel like you are doing data entry instead 
of learning PDI. You can avoid typing by copying and pasting 
similar rows, and then fixing the values properly. Appendix D 
has a list of shortcuts you can use when editing grids like these.

12.	Leave the Calculator step selected and click the Preview this transformation button 
followed by the Quick Launch button. You should see something similar to the  
following screenshot:



Basic Data Manipulation

[ 7� ]

The numbers may vary according to the contents of your file.

13.	Edit the calculator again and change the content of the Remove column like here:

14.	From the Transform category of steps, add a Sort rows step and create a hop from the 
Calculator step to this new step.

15.	Edit the Sort rows step by double-clicking it, click the Get Fields button, and adjust the 
grid as follows:

16.	Click OK.



Chapter 3

[ 7� ]

17.	Drag a third Select values step, create a hop from the Sort rows step to this new step, 
and use it to keep only the fields by which you ordered the data:

18.	From the Flow category of steps, add a Dummy step and create a hop from the last 
Select values step to this.

19.	Select the Dummy step and do a preview.

20.	The final preview looks like the following screenshot:



Basic Data Manipulation

[ �0 ]

If you get an error or a different result, review the explanation and make 
sure that you followed the instructions correctly. Do a preview on each 
step to discover in which one you have the problem. If you realize that 
the problem is in any of the steps that read the input files, please refer 
to the Troubleshooting reading files section in Chapter 2.

What just happened?
You read the examination.txt file, and did some calculations to see how the students did. 
You did the calculations by using the Calculator step.

First of all, you removed the fields you didn't need from the stream of data.

After that, you did the following calculations:

By dividing by 20, you converted all grades from the scale 0-100 to the scale 0-5.

Then, you calculated the average of the grades for the four skills—writing, reading, listening, 
and speaking. You created two auxiliary fields, aux1 and aux2, to calculate partial sums. After 
that, you created the field total with the sum of aux1 and aux2, another auxiliary field with 
the number 4, and finally the avg as the division of the total by the field four.

In order to obtain the new grades, as well as the average with two decimal positions, you 
need the result of the operation to be of a numeric type with precision 2. Therefore, you 
had to change the metadata, by adding a Select values step before the Calculator. With the 
Select values you changed the type of the numeric fields from integer to number, that is, 
float numbers. If you didn't, the quotients would have been rounded to integer numbers. 
You can try and see for yourself!

The first time you edited the calculator, you set the field Remove to N for every row in the 
calculator grid. By doing this, you could preview every field created in the calculator, even 
the auxiliary ones such as the fields twenty, aux1, and aux2. You then changed the field to 
Y so that the auxiliary fields didn't pass to the next step.

After doing the calculations, you sorted the data by using a Sort rows step. You specified the 
order by avg descending, then by student_code ascending.



Chapter 3

[ �1 ]

Sorting data

For small datasets, the sorting algorithm runs mainly using the JVM memory. 
When the number of rows exceeds 5,000, it works differently. Every five 
thousand rows, the process sorts them and writes them to a temporary file. 
When there are no more rows, it does a merge sort on all those files and gives 
you back the sorted dataset. You can conclude that for huge datasets a lot 
of reading and writing operations are done on your disk, which slows down 
the whole transformation. Fortunately, you can change the number of rows 
in memory (5,000 by default) by setting a new value in the Sort size (rows in 
memory) textbox. The bigger this number, the faster the sorting process.

Note that a sort size that works in your system may not work in a machine with 
a different configuration. To avoid that risk, you can use a different approach. 
In the Sort rows configuration window, you can set a Free memory threshold 
(in %) value. The process begins to use temporary files when the percentage 
of available memory drops below the indicated threshold. The lower the 
percentage, the faster the process.

As it's not possible to know the exact amount of free memory, it's not 
recommended to set a very small free memory threshold. You definitely 
shouldn't use that option in complex transformations or when there is more 
than one sort going on, as you could still run out of memory.

The two final steps were added to keep only the fields of interest, and to preview the result 
of the transformation. You can change the Dummy step for any of the output steps you 
already know.

You've used the Dummy step several times but still nothing has been said 
about it. Mainly it was because it does nothing! However, you can use it as a 
placeholder for testing purposes as in the last exercise.

Note that in this tutorial you used the Select values step in three different ways:

To remove fields by using the Remove tab.

To change the meta-data of some fields by using the Meta-data tab.

To select and rename fields by using the Select tab.

Remember that the Select values step's tabs are exclusive! You can't use more 
than one in the same step!









Basic Data Manipulation

[ �2 ]

Besides calculation, in this tutorial you did something you hadn't before—searching the  
step tree.

When you don't remember where a step is in the steps tree, or when you just 
want to find if there is a step that does some kind of operation, you could simply 
type the search criterion in the textbox above the steps tree. PDI does a search 
and filters all the steps that have that text as part of their name or description.

Adding or modifying fields by using different PDI steps
In this tutorial you used the Calculator step to create new fields and add them to  
your dataset. The Calculator is one the many steps that PDI has to create new fields by 
combining existent ones. Usually you will find these steps under the Transform category 
of the steps tree. The following table describes some of them (the examples refer to the 
examination file):

Step Description Example

Split Fields Split a single field into two 
or more. You have to give 
the character that acts as 
separator.

Split the name into two fields: Name and 
Last Name. The separator would be a space 
character.

Add constants Add one or more constants 
to the input rows

Add two constants: four and twenty. Then 
you could use them in the Calculator step 
without defining the auxiliary fields.

Replace in string Replace all occurrences of 
a text in a string field with 
another text

Replace the – in the student code by a /. 
For example: 108418-95 would become 
108418/95.

Number range Create a new field based on 
ranges of values. Applies to 
a numeric field.

Create a new field called exam_range with 
two ranges: Range A with the students with 
average grade below 3.5, and Range B with 
students with average grade greater or equal  
to 3.5.

Value Mapper Creates a correspondence 
between the values of 
a field and a new set of 
values.

Suppose you calculated the average grade as 
an integer number ranging from 0 to 5. You can 
map the average to A, B, C, D, like this:

Old value: 5; New value: A

Old value: 3, 4; New value: B

Old value: 1, 2; New value: C

Old value: 0; New value: D



Chapter 3

[ �3 ]

Step Description Example

User Defined Java 
Expression

Creates a new field by 
using a Java expression that 
involves one or more fields. 
This step may eventually 
replace any of the above 
but it's only recommended 
for those familiar with Java.

Create a flag (a Boolean field) that tells if a 
student passed. A student passes if his/her 
average grade is above 4.5.

The expression to use could be:  
(((writing+reading+speaking+ 
listening)/4)>4.5)?true:false

Any of these steps when added to your transformation, are executed for every row in the 
stream. It takes the row, identifies the fields needed to do its tasks, calculates the new 
field(s), and adds it to the dataset.

For details on a particular step, don't hesitate to visit the Wiki page for steps: 
http://wiki.pentaho.com/display/EAI/Pentaho+Data+Integration+v3.2.+St
eps

The Calculator step
The Calculator step you used in the tutorial, allows you to do simple calculations not only 
on numeric fields, but also on data and text. The Calculator step is not the only means to do 
calculations, but it is the simplest. It allows you to do simple calculations in a quick fashion.

The step has a grid where you can add all the fields you want to. Every row represents 
an operation that involves from one up to three operands (depending on the selected 
operation). When you select an operation, the description of the operation itself tells you 
which argument it needs. For example:

If you select Set constant field to value A, you have to provide a constant value 
under the column name A.

If you select A/B, the operation needs two arguments, and you have to provide 
them by indicating the fields to use in the columns named A and B respectively.

The result of every operation becomes a new field in your dataset, unless you set the 
Remove column to Y. The name of the new field is the one you type under the New  
field column.

For each and every row of the data set, the operations defined in the Calculator are 
calculated in the order in which they appear. Therefore, you may create auxiliary fields and 
then use them in rows of the Calculator grid that are below them. That is what you did in  
the tutorial when you defined the auxiliary fields aux1 and aux2 and then used them in the 
field total. 







Basic Data Manipulation

[ �4 ]

Just like every grid in Kettle, you have a contextual menu (and its corresponding shortcuts) 
that lets you manipulate the rows by deleting, moving, copying and pasting, and so on.

The Formula step
The Formula step is another step you can use for doing calculations. Let's give it a try by 
using it in the examination tutorial.

Time for action – reviewing examinations by using the 
Formula step

In this tutorial you will redo the previous exercise, but this time you will do the calculations 
with the Formula step.

1.	 Open the transformation you just finished.

2.	 Delete from the transformation the Calculator step, and put in its place a Formula 
step. You will find it under the Scripting category of steps.

3.	 Add a field named writing.

4.	 When you click the cell under the Formula column, a window appears to edit the 
formula for the new field.

5.	 In the upper area of the window, type [writing]/20. You will notice that the 
sentence is red if it is incomplete or the syntax is incorrect. In that case, the error is 
shown below the editing area, like in the following example:



Chapter 3

[ �5 ]

6.	 As soon as the formula is complete and correct, the red color disappears.

7.	 Click OK.

8.	 The formula you typed will be displayed in the cell you clicked.

9.	 Set Number as the type for the new field, and type writing in the Replace value 
column.

10.	Add three more fields to the grid in the same way you added this field so that the 
grid looks like the following:

11.	Click OK.

12.	Add a second Formula step.

13.	Add a field named avg and click the Formula cell to edit it.

14.	Expand the Mathematical category of functions to the leftside of the window, and click 
the AVERAGE function.



Basic Data Manipulation

[ �6 ]

15.	The explanation of the selected function appears to guide you.

16.	 In the editing area, type average([writing];[reading];[speaking]; 
[listening]).

17.	Click OK.

18.	Set the Value type to Number.

19.	Click OK.

20.	Create a hop from this step to the Sort rows step.

21.	Edit the last Select values step.

22.	Click Get fields to select.

23.	A question appears to ask you what to do. Click Clear and add all.

24.	The grid is reloaded with the modified fields.

25.	Click on the Dummy step and do a preview.

26.	There should be no difference with what you had in the Calculator version of  
the tutorial:



Chapter 3

[ �7 ]

What just happened?
You read the examination.txt file, and did some calculations using the Formula step to 
see how the students did.

It may happen that the preview window shows you less decimal positions than 
expected. This is a preview issue. One of the ways you have to see the numbers 
with more decimals is to send the numbers to an output file with a proper 
format and see the numbers in the file.

As you saw, you have quite a lot of functions available for building formulas and expressions. 
To reference a field you have to use square brackets, like in [writing]. You may reference 
only the current fields of the row. You have no way to access previous rows of the grid as 
you have in the Calculator step and so you needed two Formula steps to replace a single 
Calculator. But you saved auxiliary fields because the Formula allows you to type complex 
formulas in a single field without using partial calculations.

When the calculations are not simple, that is, they require resolving a complex 
formula or involve many operands, then you might prefer the Formula step over 
the Calculator.

The Formula step uses the library Libformula. The syntax used in LibFormula is based 
on the OpenFormula standard. For more information on OpenFormula, you may visit 
http://wiki.oasis-open.org/office/About_OpenFormula.



Basic Data Manipulation

[ �� ]

Have a go hero – listing students and their examinations results
Let's play a little with the examination file. Suppose you decide that only those students 
whose average grade was above 3.9 will pass the examination; the others will not. List the 
students ordered by average (desc.), last name (asc.), and name (asc.). The output list should 
have the following fields:

Student code

Name

Last Name

Passed (yes/no)

average grade

Pop quiz – concatenating strings
Suppose that you want to create a new field as the student_code plus the name of the 
student separated by a space, as for example 867432-94 Linda Rodriguez. Which of the 
following are possible solutions for your problem:

a. Use a Calculator, using the calculation a+b+c, where a is student_code, b is a 
space, and c is the name field.

b. Use a Formula, using as formula [student_code]+" "+[name]

c. Use a Formula, using as formula [student_code]&" "&[name]

You may choose more than one option.

Calculations on groups of rows
You just learned to do simple operations for every row of a dataset. Now you are ready to 
go beyond. Suppose you have a list of daily temperatures of a given country over a year. You 
may want to know the overall average temperature, the average temperature by region, 
or the coldest day of the year. When you work with data, these types of calculations are a 
common requirement. In this section you will learn to address those requirements with PDI.













Chapter 3

[ �� ]

Time for action – calculating World Cup statistics by 
grouping data

Let's forget the examinations for a while, and retake the World Cup tutorial from the 
previous chapter. The file you obtained from that tutorial was a list of results of football 
matches. These are sample rows of the final file:

Match Date;Home Team;Away Team;Result
02/06;Italy;France;2-1
02/06;Argentina;Hungary;2-1
06/06;Italy;Hungary;3-1
06/06;Argentina;France;2-1
10/06;France;Hungary;3-1
10/06;Italy;Argentina;1-0
...

Now you want to take that information to obtain some statistics such as the maximum 
number of goals per match in a given day. To do it, follow these instructions:

1.	 Create a new transformation, give it a name and description, and save it.

2.	 By using a Text file input step, read the wcup_first_round.txt file you generated 
in Chapter 2. Give the name and location of the file, check the Content tab to see that 
everything matches your file, and fill the Fields tab.

3.	 Do a preview just to confirm that the step is well configured.

4.	 From the Transform category of step, select a Split Fields step, drag it to the work area, 
and create a hop from the Text file input to this step.

5.	 Double-click the Split Fields steps and fill the grid like done in the following screenshot:



Basic Data Manipulation

[ �0 ]

6.	 Add a Calculator step to the transformation and create a hop from the Split Fields step 
to this step and edit the step to create the following new fields:

7.	 Add a Sort rows step to the transformation, create a hop from the Calculator step to this 
step, and sort the fields by Match_Date.

8.	 Expand the Statistics category of steps, and drag a Group by step to the canvas. Create a 
hop from the Sort rows step to this new step.

9.	 Edit the Group by step and fill the configuration window as shown next:



Chapter 3

[ �1 ]

10.	When you click the OK button, a window appears to warn you that this step  
needs the input to be sorted on the specified keys—the Range field in this case.  
Click I understand, and don't worry because you already sorted the data in the  
previous step.

11.	Add a final Dummy step.

12.	Select the Dummy and the Group by steps, left-click one and holding down the Shift 
key, left-click the other.

13.	Click the Preview this transformation button. You will see the the following:

14.	Click Quick Launch. The following window appears:

15.	Double-click the Sort rows step. A window appears with the data coming out of the Sort 
rows step.

16.	Double-click the Dummy step. A window appears with the data coming out of the 
Dummy step.



Basic Data Manipulation

[ �2 ]

17.	 If you rearrange the preview windows, you can see both preview windows at a time, and 
understand better what happened with the numbers. The following would be the data 
shown in the windows:

What just happened?
You opened a file with results from several matches and got some statistics from it.

In the file, there was a column with the match result in the format n-m, with n being the 
goals of the home team and m being the goals of the away team. With the Split Fields step, 
you split this field in two—one with each of these two numbers.

With the Calculator you did two things:

You created a new field with the total number of goals for each match.

You created a description for the match.







Chapter 3

[ �3 ]

Note that in order to create a description, you used the + operator to 
concatenate string rather than add numbers.

After that, you ordered the data by match date with a Sort rows step.

In the preview window of the Sort rows step, you could see all the calculated fields: home 
team goals, away team goals, match goals, and description.

Finally, you did some statistical calculations:

First, you grouped the rows by match date. You did this by typing Match_Date in the 
upper grid of the Group by step.

Then, for every match date, you calculated some statistics. You did the calculations by 
adding rows in the lower grid of the step, one for every statistic you needed.

Let's see how it works. Because the Group by step was preceded by a Sort rows step, the 
rows came to the step already ordered. When the rows arrive to the Group by step, Kettle 
creates groups based on the field(s) indicated in the upper grid—the Match_Date field in this 
case. The following drawing shows this idea:







Basic Data Manipulation

[ �4 ]

Then, for every group, the fields that you put in the lower grid are calculated. Let's see, for 
example, the group for the match date 03/06. For the rows in this group, Kettle calculated 
the following:

Matches: The number of matches played on 03/06. There were 4.

Sum of goals: The total number of goals converted on 03/06. There were 3+2+3+4=12.

Maximum: The maximum number of goals converted in a single match played on 03/06. 
The maximum among 3, 2, 3, and 4 was 4.

Teams: The descriptions of the teams which played on 03/06, separated by ; : Austria-
Spain; Sweden-Brazil; Netherlands-Iran; Peru-Scotland.

The same calculations were made for every group. You can verify the details by looking in the 
preview window.

Look at the Step Metrics tab in the Execution Results area of the screen:

Note that 24 rows entered the Group by step and only 7 came out of that step towards the 
Dummy step. That is because after the grouping, you no longer have the detail of matches. 
The output of the Group by step is your new data now—one row for every group created.

Group by step
The Group by step allows you to create groups of rows and calculate new fields over  
those groups.

In order to define the groups, you have to specify which field(s) are the keys. For every 
combination of values for those fields, Kettle builds a new group.

In the tutorial you grouped by a single field Match_date. Then for every value of  
Match_date, Kettle created a different group.











Chapter 3

[ �5 ]

The Group by step operates on consecutive rows. Suppose that the rows are already sorted 
by date, but those with date 10/06 are above the rest. The step traverses the dataset and 
each time the value for any of the grouping field changes, it creates a new group. If you  
see it this way, you will notice that the step will work even if the data is not sorted by the 
grouping field.

As you probably don't know how the data is ordered, it is safer and 
recommended that you sort the data by using a Sort rows step just 
before using a Group by step.

Once you have defined the groups, you are free to specify new fields to be calculated  
for every group. Every new field is defined as an aggregate function over some of the 
existent fields.

Let's review some of the fields you created in the tutorial:

The Matches field is the result of applying the Number of values function over 
the field Match_date.

The Sum of goals field is the result of applying the Sum function over the  
field goals.

The Maximum field is the result of applying the Maximum function over the  
field goals.

Finally, you have the option to calculate aggregate functions over the whole dataset. You do 
this by leaving the upper grid blank. Following the same example, you could calculate the 
total number of matches and the average number of goals for all those matches. This is how 
you do it:









Basic Data Manipulation

[ �6 ]

The following is what you get:

In any case, as a result of the Group by step, you will no longer have the detailed rows, 
unless you check the Include all rows? checkbox.

Have a go hero – calculating statistics for the examinations
Here you have one more task related with the examinations file. Create a new 
transformation, read the file, and calculate:

The number of students who passed

The number of students who failed

The average writing, reading, speaking, and listening grade obtained by students 
who passed

The average writing, reading, speaking, and listening grade obtained by students 
who failed

The minimum and maximum average grade among students who passed

The minimum and maximum average grade among students who failed

Use the Number range step to define the range of the average 
grade; then use a Group by step to calculate the statistics.















Chapter 3

[ �7 ]

Have a go hero – listing the languages spoken by country
Read the file with countries' information you used in Chapter 2. Build a file where each row 
has two columns—the name of a country and the list of spoken languages in that country.

As aggregate, use the option Concatenate strings separated by.

Filtering
Until now you learned how to accomplish several kinds of calculations that enriched the set 
of data. There is still another kind of operation that is frequently used, and does not have to 
do with enriching the data but with discarding data. It is filtering unwanted data. Now you 
will learn how to discard rows under given conditions.

Time for action – counting frequent words by filtering
Let's suppose, you have some plain text files, and you want to know what is said in them. You 
don't want to read them, so you decide to count the times that words appear in the text, and 
see the most frequent ones to get an idea of what the files are about.

Before starting, you'll need at least one text file to play with. The text file used in 
this tutorial is named smcng10.txt and is available for you to download from 
the Packt website.

Let's work:

1.	 Create a new transformation.

2.	 By using a Text file input step, read your file. The trick here is to put as a separator 
a sign you are not expecting in the file, for example |. By doing so, the entire line 
would be recognized as a single field. Configure the Fields tab by defining a single 
string field named line.

3. From the Transform category of step, drag to the canvas a Split field to rows step, 
and create a hop from Text file input step to this new step.



Basic Data Manipulation

[ �� ]

4. Configure the step like this:

5. With this last step selected, do a preview. Your preview window should look like this:

6. Close the preview window.

7. Expand the Flow category of steps, and drag a Filter rows step to the work area.

8. Create a hop from the last step to the Filter rows step.

9. Edit the Filter rows step by double-clicking it.



Chapter 3

[ �� ]

10. Click the <field> textbox to the left of the = sign. The list of fields appears.  
Select word.

11. Click the = sign. A list of operations appears. Select IS NOT NULL.

12. The window looks like the following:

13. Click OK.

14. From the Transform category of steps drag a Sort rows step to the canvas, and 
create a hop from the Filter rows step to this new step.

15. Sort the rows by word.

16. From the Statistics category, drag a Group by step, and create a hop from the Sort 
rows step to this step.

17. Configure the grids in the Group by configuration window like shown:



Basic Data Manipulation

[ 100 ]

18. Add a Calculator step, create a hop from the last step to this, and calculate the new 
field len_word representing the length of the words. For that, use the calculator 
function Return the length of a string A and select word from the  
drop-down menu for Field A.

19. Expand the Flow category and drag another Filter rows step to the canvas.

20. Create a hop from the Calculator step to this step and edit it.

21. Click <field> and select counter.

22. Click the = sign, and select >.

23. Click <value>. A small window appears.

24. In the Value textbox of the little window, enter 2.

25. Click OK.

26. Position the mouse cursor over the icon in the upper-right corner of the window. 
When the text Add condition shows up, click on the icon.

27. A new blank condition is shown below the one you created.

28. Click on null = [] and create the condition len_word>3, in the same way you 
created the condition counter>2.

29. Click OK.



Chapter 3

[ 101 ]

30. The final condition looks like this:

31. Add one more Filter rows step to the transformation and create a hop from the last 
step to this new step.

32. On the left side of the condition, select word.

33. As comparator select IN LIST.

34. At the end of the condition, inside the textbox value, type the following:  
a;an;and;the;that;this;there;these.

35. Click the upper-left square above the condition and the word NOT will appear.

36. The condition looks like the following:



Basic Data Manipulation

[ 102 ]

37. Add a Sort rows step, create a hop from the previous step to this step, and sort the 
rows in the descending order of counter.

38. Add a Dummy step at the end of the transformation, create a hop from the last step 
to the Dummy step.

39. With the Dummy step selected, preview the transformation. The following is what 
you should see now:

What just happened?
You read a regular plain file and arranged the words that appear in the file in some  
particular fashion.

The first thing you did was to read the plain file and split the lines so that every word became 
a new row in the dataset. Consider, for example, the following line:

subsidence; comparison with the Portillo chain.



Chapter 3

[ 103 ]

The splitting of this line resulted in the following rows being generated:

Thus, a new field named word became the basis for your transformation.

First of all, you discarded rows with null words. You did it by using a filter with the condition 
word IS NOT NULL. Then, you counted the words by using the Group by step you learned 
in the previous tutorial. Once you counted the words, you discarded those rows where the 
word was too short (length less than 4) or too common (comparing to a list you typed).

Once you applied all those filters, you sorted the rows in the descending order of  
the number of times the word appeared in the file so that you could see the most  
frequent words.

Scrolling down a little the preview window to skip some prepositions, pronouns, and other 
very common words that have nothing to do with a specific subject, you found words such 
as shells, strata, formation, South, elevation, porphyritic, Valley, tertiary, calcareous, plain, 
North, rocks, and so on. If you had to guess, you would say that this was a book or article 
about geology, and you would be right. The text taken for this exercise was Geological 
Observations on South America by Charles Darwin.

Filtering rows using the Filter rows step
The Filter rows step allows you to filter rows based on conditions and comparisons.

The step checks the condition for every row. Then it applies a filter letting pass only the rows 
for which the condition is true. The other rows are lost.

In the counting words exercise, you used the Filter rows step several times so you already 
have an idea of how it works. Let's review it.



Basic Data Manipulation

[ 104 ]

In the Filter rows setting window you have to enter a condition. The following table 
summarizes the different kinds of conditions you may enter:

Condition Description Example

A single field followed by IS NULL or 
IS NOT NULL

Checks whether the value of a 
field in the stream is null

word IS NOT NULL

A field, a comparator, and a constant Compares a field in the stream 
against a constant value.

counter > 2

Two fields  separated by a comparator Compares two fields in the 
stream

line CONTAINS 
word

You can combine conditions as shown here:

counter > 2
AND 
len_word>3

You can also create subconditions such as:

 (
 counter > 2
AND 
 len_word>3
 )
OR
 (word in list geology; sun)

In this last example, the condition lets the word geology pass even if it appears only once. It 
also lets the word sun pass, despite its length.

When editing conditions, you always have a contextual menu which allows you to add and 
delete sub-conditions, change the order of existent conditions, and more.

Maybe you wonder what the Send 'true' data to step: and Send 'false' data to step: textboxes 
are for. Be patient, you will learn how to use them in Chapter 4.

Have a go hero – playing with filters 
Now it is your turn to try filtering rows. Modify the counting_words transformation in the 
following way:

Alter the Filter rows steps. By using a Formula step create a flag (a Boolean field) 
that evaluates the different conditions (counter>2, and so on). Then use only one 
Filter rows step that filters the rows for which the flag is true. Test it and verify that 
the results are the same as before the change.





Chapter 3

[ 105 ]

In the Formula editing window, use the options under the Logic category.

Then in the Filter rows step, you can type true or Y as the value against which 
you compare the flag.

Add a sub-condition to avoid excluding some words, just like the one in the example: 
(word in list geology; sun). Change the list of words and test the filter to see 
that the results are as expected.

Have a go hero – counting words and discarding those that are 
commonly used

If you take a look at the results in the tutorial, you may notice that some words appear more 
than once in the final list because of special signs such as . , ) or ", or because of lower 
or upper case letters. For example, look how many times the word rock appears: rock (99 
occurrences) - rock,(51 occurrences) – rock. (11 occurrences) – rock." (1 occurrence) 
- rock: (6 occurrences) - rock; - (2 occurrences). You can fix this and make the word rock 
appear only once: Before grouping the words, remove all extra signs and convert all words to 
lower case or upper case, so they are grouped as expected.

Try one or more of the following steps: Formula, Calculator, Replace in string. 

Looking up data
Until now, you have been working with a single stream of data. When you did calculations or 
created conditions to compare fields, you only involved fields of your stream. Usually, this is 
not enough, and you need data from other sources. In this section you will learn to look up 
data outside your stream.

Time for action – finding out which language people speak 
An International Musical Contest will take place and 24 countries will participate, each 
presenting a duet. Your task is to hire interpreters so the contestants can communicate in 
their native language. In order to do that, you need to find out the language they speak:

1.	 Create a new transformation.

2.	 By using a Get Data From XML step, read the countries.xml file that contains 
information about countries that you used in Chapter 2.





Basic Data Manipulation

[ 106 ]

To avoid configuring the step again, you can open the transformation 
that reads this file, copy the Get data from XML step, and paste it here.

3.	 Drag a Filter rows step to the canvas.

4.	 Create a hop from the Get data from XML step to the Filter rows step.

5.	 Edit the Filter rows step and create the condition- isofficial= T.

6.	 Click the Filter rows step and do a preview. The list of previewed rows will show the 
countries along with the official languages:

Now let's create the main flow of data:

7.	 From the book website download the list of contestants. It looks like this:

 ID;Country;Duet
 1;Russia;Mikhail Davydova
 ;;Anastasia Davydova
 2;Spain;Carmen Rodriguez
 ;;Francisco Delgado
 3;Japan;Natsuki Harada
 ;;Emiko Suzuki
 4;China;Lin Jiang
 ;;Wei Chiu
 5;United States;Chelsea Thompson
 ;;Cassandra Sullivan
 6;Canada;Mackenzie Martin
 ;;Nathan Gauthier
 7;Italy;Giovanni Lombardi

;;Federica Lombardi



Chapter 3

[ 107 ]

8.	 In the same transformation, drag a Text file Input step to the canvas and read the 
downloaded file.

The ID and country have values only in the first of the two 
lines for each country. In order to repeat the values in the 
second line use the flag Repeat in the Fields tab. Set it to Y.

9.	 Expand the Lookup category of steps.

10.	Drag a Stream lookup step to the canvas.

11.	Create a hop from the Text file input you just created, to the Stream lookup step.

12.	Create another hop from the Filter rows step to the Stream lookup step.

13.	Edit the Stream lookup step by double-clicking it.

14.	 In the Lookup step drop-down list, select Filter official languages, the step that brings 
the list of languages.

15.	Fill the grids in the configuration window as follows:

Note that Country Name is a field coming from the text file stream, while the country 
field comes from the countries stream.



Basic Data Manipulation

[ 10� ]

16.	Click OK.

17.	The hop that goes from the Filter rows step to the Stream lookup step changes its look 
and feel, to show that this is the stream where the Stream lookup is going to look:

18.	After the Stream lookup, add a Filter rows step.

19.	 In the Filter rows step, type the condition language-IS NOT NULL.

20.	By using a Select values step, rename the fields Duet, Country Name and 
language to Name, Country, and Language.

21.	Drag a Text file output step to the canvas and create the file  
people_and_languages.txt with the selected fields.

22.	Save the transformation.

23.	Run the transformation and check the final file, which should look like this:

Name|Country|Language

Mikhail Davydova|Russia|

Anastasia Davydova|Russia|

Carmen Rodriguez|Spain|Spanish

Francisco Delgado|Spain|Spanish

Natsuki Harada|Japan|Japanese

Emiko Suzuki|Japan|Japanese



Chapter 3

[ 10� ]

Lin Jiang|China|Chinese

Wei Chiu|China|Chinese

Chelsea Thompson|United States|English

Cassandra Sullivan|United States|English

Mackenzie Martin|Canada|French

Nathan Gauthier|Canada|French

Giovanni Lombardi|Italy|Italian

Federica Lombardi|Italy|Italian

What just happened?
First of all, you read a file with information about countries and the languages spoken in 
those countries.

Then you read a list of people along with the country they come from. For every row in this 
list,  you told Kettle to look for the country (Country Name field) in the countries stream 
(country field), and to give you back a language and the percentage of people that speaks 
that language (language and percentage fields). Let's explain it with a sample row: The 
row for Francisco Delgado from Spain. When this row gets to the Stream lookup step, 
Kettle looks in the list of countries for a row with the country Spain. It finds it. Then, it 
returns the value of the columns language and percentage: Spanish and 74.4.

Now take another sample row—the row with the country Russia. When the row gets to the 
Stream lookup step, Kettle looks for it in the list of countries, but it doesn't find it. So what 
you get as language is a null string.

Whether the country is found or not, two new fields are added to your stream—language 
and percentage.

After the Stream lookup step, you discarded the rows where language is null, that is, those 
whose country wasn't found in the list of countries.

With the successful rows you generated an output file.

The Stream lookup step
The Stream lookup step allows you to look up data in a secondary stream.

You tell Kettle which of the incoming streams is the stream used to look up, by selecting the 
right choice in the Lookup step list.

The upper grid in the configuration window allows you to specify the names of the fields that 
are used to look up.



Basic Data Manipulation

[ 110 ]

In the left column, Field, you indicate the field of your main stream. You can fill this  
column by using the Get Fields button, and deleting all the fields you don't want to use  
for the search.

In the right column, Lookup Field, you indicate the field of the secondary stream.

When a row of data comes to the step, a lookup is made to see if there is a row in the 
secondary stream for which, every pair (Field, LookupField) in the grid has the value of 
Field equal to the value of LookupField. If there is one, the look up will be successful.

In the lower grid, you specify the names of the secondary stream fields that you want back 
as a result of the look up. You can fill this column by using the Get lookup fields button, and 
deleting all the fields you don't want to retrieve.

After the lookup, new fields are added to your dataset—one for every row of this grid.

For the rows for which the look up is successful, the values for the new fields will be taken 
from the lookup stream.

For the others, the fields will remain null, unless you set a default value.



Chapter 3

[ 111 ]

When you use a Stream lookup, all lookup data is loaded into memory. Then the stream 
lookup is made using a hash table algorithm. Even if you don't know how this algorithm 
works, it is important that you know the implications of using this step:

First, if the data where you look is huge, you take the risk of running out  
of memory.

Second, only one row is returned per key. If the key you are looking for is present 
more than once in the lookup stream, only one will be returned—for example, in the 
tutorial where there are more than one official languages spoken in a country, you 
get just one. Sometimes you don't care, but on some occasions this is not acceptable 
and you have to try some other methods. You'll learn other ways to do this later in 
the book.

Have a go hero – counting words more precisely
The tutorial where you counted the words in a file worked pretty well, but you may have 
noticed that it has some details you can fix or enhance. 

You discarded a very small list of words, but there are much more that are quite usual  
in English—prepositions, pronouns, auxiliary verbs, and many more. So here is the challenge: 
Get a list of commonly used words and save it in a file. Instead of excluding words from a 
small list as you did with a Filter rows step, exclude the words that are in your common 
words file.

Use a Stream lookup step.

Test the transformation with the same file, and also with other files, and verify 
that you get better results with all these changes.







Basic Data Manipulation

[ 112 ]

Summary
This chapter covered the simplest and most common ways of transforming data. Specifically, 
it covered how to:

Use different transformation steps to calculate new fields

Use the Calculator and the Formula steps

Filter and sort data

Calculate statistics on groups of rows

Look up data

After learning basic manipulation of data, you may now create more complex 
transformations, where the streams begin to split and merge. That is the core  
subject of the next chapter.













4
Controlling the Flow of Data

In the previous chapter, you learned the basics of transforming data. Basically 
you read data from some file, did some transformation to the data, and sent 
the data back to a different output. This is the simplest scenario. Think of 
a different situation. Suppose you collect results from a survey. You receive 
several files with the data and those files have different formats. You have to 
merge those files somehow and generate a unified view of the information. 
You also want to put aside the rows of data whose content is irrelevant. Finally, 
based on the rows that interest you, you want to create another file with some 
statistics. This kind of requirement is very common. In this chapter you will 
learn how to implement it with PDI.

Splitting streams
Until now, you have been working with simple, straight flows of data. When you deal with 
real problems, those simple flows are not enough. Many times, the rows of your dataset 
have to take different paths. This situation is handled very easily, and you will learn how to 
do it in this section. 



Controlling the Flow of Data

[ 114 ]

Time for action – browsing new PDI features by copying
a dataset

Before starting, let's introduce the Pentaho BI Platform Tracking site. At the tracking site you 
can see the current Pentaho roadmap and browse their issue tracking system. The PDI page 
for that site is http://jira.pentaho.com/browse/PDI.

In this exercise, you will export the list of proposed new features for PDI from the site, and 
generate detailed and summarized files from that information.

1.	 Access the main Pentaho tracking site page: http://jira.pentaho.com.

2.	 In the main menu, click on FIND ISSUES.

3. On the left side, select the following filters:

Project: Pentaho Data Integration {Kettle}

Issue Type: New Feature

Status: Open

4.	 At the bottom of the filter list, click View >>. A list of found issues will appear.







Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>



Chapter 4

[ 115 ]

5.	 Above the list, select Current field to export the list to an Excel file.

6.	 Save the file to the folder of your choice.

The Excel file exported from the JIRA site is a Microsoft Excel 97-
2003 Worksheet. PDI doesn't recognize this version of worksheets. 
So, before proceeding, open the file with Excel or Calc and convert 
it to Excel 97/2000/XP.

7.	 Create a transformation.

8.	 Read the file by using an Excel Input step. After selecting the file, click on the Sheets 
tab, and fill it as shown in the next screenshot so that it skips the header rows and 
the first column:

9.	 Click the Fields tab and fill the grid by clicking the Get fields from header  
row... button.



Controlling the Flow of Data

[ 116 ]

10.	Click the Preview rows just to be sure that you are reading the file properly. You 
should see all the contents of the Excel file except the three heading lines.

11.	Click OK.

12.	Add a Filter rows step to drop the rows where the Summary field is null.

13.	After the Filter rows step, add a Value Mapper step and fill it like here:

14.	After the Value Mapper step, add a Sort rows step and order the rows by 
priority_order (asc.), Summary (asc.).



Chapter 4

[ 117 ]

15.	After that add an Excel Output step, and configure it to send the priority_order 
and Summary fields to an Excel file named new_features.xls.

16.	Drag a Group by step to the canvas.

17.	Create a new hop from the Sort rows step to the Group by step.

18.	A warning window appears asking you to decide whether you wish to Copy or 
Distribute.

19.	Click Copy to send the rows toward both output steps.

20.	The hops leaving the Sort rows step change to show you the decision you made. So 
far you have this:

21.	Configure the Group by steps like shown:

22.	Add a new Excel Output step to the canvas and create a hop from the Group by step 
to this new step.



Controlling the Flow of Data

[ 11� ]

23.	Configure the Excel Output step to send the Priority and Quantity fields to an 
Excel file named new_features_summarized.xls.

24.	Save the transformation and run it.

25.	Verify that both files, new_features.xls and new_features_summarized.xls, 
have been created.

26.	The first file should look like this:

27.	And the second file should look like this:



Chapter 4

[ 11� ]

What just happened?
After exporting an Excel file with the PDI new features from the JIRA site, you read the file and 
created two Excel files—one with a list of the issues and the other with a summary of the list.

The first steps of the transformation are well known—read a file, filter null rows, map a field, 
and sort. 

Note that the mapping creates a new field to give an order to the Priority 
field so that the more severe issues are first in the list, while the minor priorities 
remain at the end of the list.

You linked the Sort rows step to two different steps. This caused PDI to ask you what to 
do with the rows leaving the step. By answering Copy, you told PDI to create a copy of 
the dataset. After that, two identical copies left the Sort rows step, each to a different 
destination step.

From the moment you copied the dataset, those copies became independent, each following 
its way. The first copy was sent to a detailed Excel file. The other copy was used to create a 
summary of the fields, which then was sent to another Excel file.

Copying rows
At any place in a transformation, you may decide to split the main stream into two or more 
streams. When you do so, you have to decide what to do with the data that leaves the last 
step—copy or distribute.

To copy means that the whole dataset is copied to each of the destination steps. Once the 
rows are sent to those steps, each follows its own way.

When you copy, the hops that leave the step from which you are copying change visually to 
indicate the copy action.



Controlling the Flow of Data

[ 120 ]

In the tutorial, you created two copies of the main dataset. You could have created more 
than two, like in this example:

When you split the stream into two or more streams, you can do whatever you want with 
each one as if they had never been the same. The transformations you apply to any of those 
output streams will not modify the data in the others.

You shouldn't assume a particular order in the execution of the output 
streams of a step. All the output streams receive the rows in synch and 
you don't have control over the order in which they are executed.

Have a go hero – recalculating statistics
Do you remember the exercise from Chapter 3 where you calculated some statistics? You 
created two transformations. One was to generate a file with students that failed. The other 
was to create a file with some statistics such as average grade, number of students who 
failed, and so.

Now you can do all that work in a single transformation, reading the file once.

Distributing rows
As said, when you split a stream, you can copy or distribute the rows. You already saw that 
copy is about creating copies of the whole dataset and sending each of them to each output 
stream. To distribute means the rows of the dataset are distributed among the destination 
steps. Let's see how it works through a modified exercise.



Chapter 4

[ 121 ]

Time for action – assigning tasks by distributing
Let's suppose you want to distribute the issues among three programmers so that each of 
them implements a subset of the new features.

1.	 Select Transformation | Copy transformation to clipboard in the main menu. 
Close the transformation and select Transformation | Paste transformation from 
clipboard. A new transformation is created identical to the one you copied. Change 
the description and save the transformation under a different name.

2.	 Now delete all the steps after the Sort rows step.

3.	 Change the filter step to keep only the unassigned issues: Assignee field equal to 
the string Unassigned. The condition looks like the next screenshot:

4.	 From the Transform category of steps, drag an Add sequence step to the canvas and 
create a hop from the Sort rows step to this new step.

5.	 Double-click the Add sequence step and replace the content of the Name of value 
textbox with nr.

6.	 Drag three Excel Output steps to the canvas.

7.	 Link the Add sequence step to one of these steps.



Controlling the Flow of Data

[ 122 ]

Configure the Excel Output step to send the fields nr, Priority, and Summary to an Excel 
file named f_costa.xls (the name of one of the programmers). The Fields tab should look 
like this:

8.	 Create a hop from the Add sequence step to the second Excel Output step. When 
asked to decide between Copy and Distribute, select Distribute.

9.	 Configure the step like before, but name the file as b_bouchard.xls  
(the second programmer).

10.	Create a hop from the Add sequence step to the last Excel Output step.

11.	Configure this last step like before, but name the file as a_mercier.xls  
(the last programmer).

12. The transformation should look like the following:



Chapter 4

[ 123 ]

13.	Run the transformation and look at the execution tab window to see  
what happened:

14. To see which rows belong to which of the created files, open any of them. It should 
look like this:

What just happened?
You distributed the issues among three programmers.

In the execution window, you could see that 84 rows leave the Add sequence step, and 28 
arrive to each of the Excel Output steps, that is, a third of the number of rows to each of 
them. You verified that when you explored the Excel files.

In the transformation, you added an Add sequence step that did nothing more than adding 
a sequential number to the rows. This sequence helps you recognize that one out of every 
three rows were distributed to every file.



Controlling the Flow of Data

[ 124 ]

Here you saw a practical example for the distributing option. When you distribute, the 
destination steps receive the rows in turn. For example, if you have three target steps, the 
first row goes to the first target step, the second row goes to the second step, the third row 
goes to the third step, the fourth row now goes to the first step, and so on.

As you could see, when distributing, the hop leaving the step from which you distribute is 
plain; it doesn't change its look and feel.

Despite this example showing clearly how the Distribute… method works, this is not how 
you will regularly use this option. The Distribute… option is mainly used for performance 
reasons. Throughout this book you will always use the Copy… option. To avoid being asked 
for the action to take every time you create more that one hop leaving a step, you can set 
the Copy… option as default; you do this by opening the PDI options window (Edit|Options 
… from the main menu) and unchecking the option Show "copy or distribute" dialog?. 
Remember that to see the change applied, you will have to restart Spoon.

Once you have changed this option, the default method is copying rows. If you want to 
distribute rows, you can change the action by right-clicking the step from which you want 
to copy or distribute, selecting Data Movement... in the contextual menu that appears, and 
then selecting the desired option.



Chapter 4

[ 125 ]

Pop quiz – data movement (copying and distributing)
Look at the following transformations:

If you do a preview on the Steps named Preview, which of the following is true:

a. The number of rows you see in (a) is greater or equal than the number of rows you 
see in (b)

b. The number of rows you see in (b) is greater or equal than the number of rows you 
see in (a)

c. The dataset you see in (a) is exactly the same as you see in (b) no matter what data 
you have in the Excel file.

You can create a transformation and test each option to check the results for yourself. To 
be sure you understand correctly where and when the rows take one or other way, you can 
preview every step in the transformation, not just the last one.

Splitting the stream based on conditions
In the previous section you learned to split the main stream of data into two or more 
streams. The whole dataset was copied or distributed among the destination steps. Now  
you will learn how to put conditions so that the rows take one way or another depending  
on the conditions.



Controlling the Flow of Data

[ 126 ]

Time for action – assigning tasks by filtering priorities with the 
Filter rows step

Following with the JIRA subject, let's do a more realistic distribution of tasks among 
programmers. Let's assign the serious task to our most experienced programmer,  
and the remaining tasks to others.

1.	 Create a new transformation.

2.	 Read the JIRA file and filter the unassigned tasks, just as you did in the  
previous tutorial.

3.	 Add a Filter rows step and two Excel Output steps to the canvas, and link them to 
the other steps as follows:

4.	 Configure one of the Excel Output steps to send the fields, Priority and Summary, 
to an Excel file named b_bouchard.xls (the name of the senior programmer).

5.	 Configure the other Excel Output step to send the fields Priority and Summary to 
an Excel file named new_features_to_develop.xls.

6.	 Double-click the Filter row step to edit it.

7.	 Enter the condition Priority = Critical OR Priority = Severe.

8.	 From the first drop-down list, Send 'true' data to step, select the step that creates 
the b_bouchard.xls Excel file.

9.	 From the other drop-down list, Send 'false' data to step, select the step that creates 
the Excel new_features_to_develop.xls Excel file.

10.	Click OK.



Chapter 4

[ 127 ]

11.	The hops leaving the Filter rows step change to show which way a row will take, 
depending on the result of the condition.

12.	Save the transformation.

13.	Run the transformation, and verify that the two Excel files were created.

14.	The files should look like this:



Controlling the Flow of Data

[ 12� ]

What just happened?
You sent the list of PDI new features to two Excel files—one file with the critical issues and 
the other file with the rest of the issues.

In the Filter row step, you put a condition to evaluate if the priority of a task was severe 
or critical. For every row coming to the filter, the condition was evaluated. The rows that 
had a severe or critical priority were sent toward the Excel Output step that creates the 
b_bouchard.xls file. The rows with another priority were sent towards the other Excel 
Output step, the one that creates the new_features_to_develop.xls file.

PDI steps for splitting the stream based on conditions
When you have to make a decision, and upon that decision split the stream in two, you can 
use the Filter row step as you did in this last exercise. In this case, the Filter rows step acts as a 
decision maker. It has a condition and two possible destinations. For every row coming to the 
filter, the step evaluates the condition. Then if the result of the condition is true, it decides 
to send the row toward the step selected in the first drop-down list of the configuration 
window—Send 'true' data to step.

If the result of the condition is false, it sends the row toward the step selected in the second 
drop-down list of the configuration window: Send 'false' data to step.

Sometimes you have to make nested decisions; consider the next figure for example:

In the transformation shown in the preceding diagram, the conditions are as simple as testing  
if a field is equal to a value. In situations like this you have a simpler way for accomplishing  
the same..



Chapter 4

[ 12� ]

Time for action – assigning tasks by filtering priorities with the 
Switch/ Case step

Let's use a Switch/Case step to replace the nested Filter Rows steps shown in the  
preceding diagram

1.	 Create a transformation like the following:

2.	 You will find the Switch/Case step in the Flow category of steps.

To save time, you can take the last transformation you created 
as the starting point.



Controlling the Flow of Data

[ 130 ]

3.	 Note that the hops arriving to the  Excel Output steps look strange. They are dotted 
orange lines. This look and feel shows you that the target steps are unreachable. In 
this case, it means that you still have to configure the Switch/Case step. Double-click 
it and fill it like here:

4.	 Save the transformation and run it

5.	 Open the Excel files generated to see that the transformation distributed the task among 
the files based on the given conditions.

What just happened?
In this tutorial you learned to use the Switch/Case step. This step routes rows of data to one 
or more target steps based on the value encountered in a given field.

In the Switch/Case step configuration window, you told Kettle where to send the row 
depending on a condition. The condition to evaluate was the equality of the field set in Field 
name to switch and the value indicated in the grid. In this case, the field name to switch 
is Priority, and the values against which it will be compared are the different values for 
priorities: Severe, Critical, and so on. Depending on the values of the Priority field, the rows 
will be sent to any of the target steps. For example, the rows where Priority=Medium, will be 
sent toward the target step New Features for Federica Costa.

Note that it is possible to specify the same target step more than once.

The Default target step represents the step where the rows that don't match any of the case 
values are sent. In this example, the rows with a priority not present in the list will be sent to 
the step New Features without priority.



Chapter 4

[ 131 ]

Have a go hero – listing languages and countries
Open the transformation you created in the Finding out which language people speak 
tutorial in Chapter 3. If you run the transformation and check the content of the output file, 
you'll notice that there are missing languages. Modify the transformation so that it generates 
two files—one with the rows where there is a language, that is, the rows for which the 
lookup didn't fail, and another file with the list of countries not found in the countries.
xml file.

Pop quiz – splitting a stream
Continuing with the contestant exercise, suppose that the number of interpreters you will 
hire depends on the number of people that speak each language:

Number of people that speaks the language Number of interpreters

Less than 3 1

Between 3 and 6 2

More that 6 3

You want to create a file with the languages with a single interpreter, another file with the 
languages with two interpreters, and a final file with the languages with three interpreters. 
Which of the following would solve your situation when it comes to splitting the languages 
into three output streams:

a. A Number range step followed by a Switch/Case step.

b. A Switch/Case step.

c. Both

In order to figure out the answer, create a transformation and count the number 
of people that speak each language. You'll have to use a Sort rows step followed 
by a Group by step. After that, try to develop each alternative solution and see 
what happens.

Merging streams
You've just seen how the rows of a dataset can take different paths. Here you will learn the 
opposite—how data coming from different places is merged into a single stream.



Controlling the Flow of Data

[ 132 ]

Time for action – gathering progress and merging all together
Suppose that you delivered the Excel files you generated in the Assigning tasks by filtering 
priorities tutorial earlier in the chapter. You gave the b_bouchard.xls to Benjamin 
Bouchard, the senior programmer. You also gave the other Excel file to a project leader who 
is going to assign the tasks to different programmers. Now they are giving you back the 
worksheets, with a new column indicating the progress of the development. In the case of 
the shared file, there is also a column with the name of the programmer who is working on 
every issue. Your task is now to unify those sheets.

Here is what the Excel files look like:

1.	 Create a new transformation.

2.	 Drag an Excel Input step to the canvas and read one of the files.

3.	 Add a Filter row step to keep only the rows where the progress is not null, that is, 
the rows belonging to tasks whose development has been started.

4.	 After the filter, add a Sort rows step, and configure it to order the fields by 
Progress, in descending order.



Chapter 4

[ 133 ]

5.	 Add another Excel Input step, read the other file, and filter and sort the rows just 
like you did before. Your transformation should look like this:

6.	 From the Transform category of steps, select the Add Constants step and drag it 
onto the canvas.

7.	 Link the step to the stream that reads the B. Bouchard's file; edit the step and add a 
new field named Programmer, with type string and value Benjamin Bouchard.

8.	 After this step, add a Select values step and reorder the fields so that they remain 
in a specific order Priority, Summary, Programmer, Progress—to resemble the 
other stream.

9.	 Now, from the Transform category add an Add sequence step, name the new field 
ID, and link the step with the Select values step.

10.	Create a hop from the Sort rows step of the other stream to the Add sequence step. 
Your transformation should look like the one shown next:



Controlling the Flow of Data

[ 134 ]

11.	Select the Add sequence step and do a preview. You will see this:

What just happened?
You read two similar Excel files and merged them into one single dataset.

First of all, you read, filtered, and sorted the files as usual. Then you altered the stream 
belonging to B. Bouchard, so it looked similar to the other. You added the field Programmer, 
and reordered the fields.

After that, you used an Add sequence step to create a single dataset containing the rows of 
both streams, with the rows numbered.

PDI options for merging streams
You can create a union of two or more streams anywhere in your transformation. To create a 
union of two or more data streams, you can use any step. The step unifies the data, takes the 
incoming streams in any order, and then it completes its task in the same way as if the data 
came from a single stream.

In the example, you used an Add sequence step as the step to join two streams. The step 
gathered the rows from the two streams, and then proceeded to numerate the rows with 
the sequence name ID.



Chapter 4

[ 135 ]

This is only one example of how you can mix streams together. As said, any step can be used 
to unify two streams. Whichever the step, the most important thing you have to have in 
mind is that you cannot mix rows that have a different layout. The rows have to have the 
same lengths, the same data types, and the same fields in the same order.

Fortunately, there is a trap detector that provides warnings at design time if a step is 
receiving mixed layouts.

You can try this out. Delete the Select values step. Create a hop from the Add constants step 
to the Add sequence step. A warning message appears as shown next:

In this case, the third field of the first stream, Programmer (String), does not have the 
same name or the same type as the third field of the second stream, Progress (Number).

Note that PDI warns you but it doesn't prevent you from mixing row layouts 
when creating the transformation. 

If you want Kettle to prevent you from running transformations with mixed row 
layouts, you can check the option Enable safe mode in the window that shows 
up when you dispatch the transformation. Have in mind that doing this will 
cause a performance drop.



Controlling the Flow of Data

[ 136 ]

When you use an arbitrary step to unify, the rows remain in the same order as they 
were in their original stream, but the streams are joined in any order. Take a look at the 
example's preview. The rows of the Bouchard's stream as well as the rows of the other 
stream remained sorted within its original group. However, whether the Bouchard's stream 
appeared before or after the rows of the other stream was just a matter of chance. You 
didn't decide the order of the streams; PDI decided it for you. If you care about the order in 
which the union is made, there are some steps that can help you. Here are the options  
you have: 

If you want to ... You can do this ...

Append two or more streams, and 
don't care about the order

Use any step. The selected step will take all the incoming 
streams in any order, and then will proceed with its specific 
task.

Append two streams in a given order Use the Append streams step from the Flow category. It 
helps to decide which stream goes first.

Merge two streams ordered by one or 
more fields

Use a Sorted Merge step from the Joins category. This 
step allows you to decide on which field(s) to order the 
incoming rows before sending them to the destination 
step(s). The input streams must be sorted on that field(s).

Merge two streams keeping the newest 
when there are duplicates

Use a Merge Rows (diff) step from the Joins category.

You tell PDI the key fields, that is, the fields that say that 
a row is the same in both streams. You also give PDI the 
fields to compare when the row is found in both streams.

PDI tries to match rows of both streams, based on the key 
fields. Then it creates a field that will act as a flag, and fills 
it as follows:

If a row was only found in the first stream, the 
flag is set to deleted.

If a row was only found in the second stream, the 
flag is set to new.

If the row was found in both streams, and the 
fields to compare are the same, the flag is set to 
identical.

If the row was found in both streams, and at least 
one of the fields to compare is different, the flag 
is set to changed.









Let's try one of these options.



Chapter 4

[ 137 ]

Time for action – giving priority to Bouchard by using 
Append Stream

Suppose you want the Bouchard's row before the other rows. You can modify the 
transformation as follows:

1.	 From the Flow category of steps, drag an Append Streams step to the canvas. 
Rearrange the steps and hops so the transformation looks like this:

2.	 Edit the Append streams step and select as the Head hop the one belonging to the 
Bouchard's rows, and as the Tail hop the other. Doing this, you indicate toPDI how it 
has to order the streams.

3.	 Do a preview on the Add sequence step. You should see this:



Controlling the Flow of Data

[ 13� ]

What just happened?
You changed the transformation to give priority to Bouchard's issues.

You made it by using the Append Streams step. By telling that the head hop was the one coming 
from the Bouchard's file, you got the expected order—first the rows with the tasks assigned 
to Bouchard, sorted by progress descending, and then the rows with the tasks assigned to 
other programmers, also sorted by progress descending.

Whether you use arbitrary steps or some of the special steps mentioned 
here to merge streams, don't forget to verify the layouts of the streams 
you are merging. Pay attention to the warnings of the trap detector and 
avoid mixing row layouts.

Have a go hero –  sorting and merging all tasks
Modify the previous exercise so that the final output is sorted by priority. Try two possible 
solutions:

Sort the input streams on their own and then use a Sorted Merge step.

Merge the stream with a Dummy step and then sort.

Which one do you think would give the best performance?

Refer to the Sort rows step issues in Chapter 3.

In which circumstances would you use the other option?

Have a go hero –  trying to find missing countries
As you saw in the countries exercises, there are missing countries in the countries.xml 
file. In fact, the countries are there, but with different names. For example, Russia in the 
contestant file is Russian Federation in the XML file. Modify the transformation that 
looks for the language. Split the stream in two—one for the rows where a language was 
found and the other for the rows where no language was found. For this last stream, use a 
Value Mapper step to rename the countries you identified as wrong, that is, rename Russia 
as  Russian Federation. Then look again for a language now with the new name. Finally, 
merge the two streams and create the output file with the result.







Chapter 4

[ 13� ]

Summary
In this chapter, you learned different options that PDI offers to combine or split flows of data. 
The chapter covered the following:

Copying and distributing rows

Splitting streams based on conditions

Merging independent streams in different ways

With the concepts you learned in the initial chapters, the range of tasks you are able to 
perform is already broad. In the next chapter, you will learn how to insert JavaScript code in 
your transformations not only as an alternative to perform some of those tasks, but also as 
a way to accomplish other tasks that are complicated or even unthinkable to carry out with 
regular PDI steps.











5
Transforming Your Data  

with JavaScript Code and the 
JavaScript Step

Whichever transformation you need to do on your data, you have a big chance 
of finding that PDI steps are able to do the job. Despite that, it may happen that 
there are not proper steps that serve your requirements, or that an apparently 
minor transformation consumes a lot of steps linked in a very confusing 
arrangement difficult to test or understand. Putting colorful icons here and 
there is funny and practical, but there are some situations like the ones 
described above where you inevitably will have to code. This chapter explains 
how to do it with JavaScript and the special JavaScript step.

In this chapter you will learn how to:

Insert and test JavaScript code in your transformations

Distinguish situations where coding is the best option, from those where there are 
better alternatives

Doing simple tasks with the JavaScript step
One of the traditional steps inside PDI is the JavaScript step that allows you to code inside 
PDI. In this section you will learn how to use it for doing simple tasks.







Transforming Your Data with JavaScript Code and the JavaScript Step

[ 142 ]

Time for action – calculating scores with JavaScript
The International Musical Contest mentioned in Chapter 4 has already taken place. Each duet 
performed twice. The first time technical skills were evaluated, while in the second, the focus 
was on artistic performance.

Each performance was assessed by a panel of five judges who awarded a mark out of a 
possible 10.

The following is the detailed list of scores:

Note that the fields don't fit in the screen, so the lines are wrapped and dotted lines are 
added for you to distinguish each line.

Now you have to calculate, for each evaluated skill, the overall score as well as an  
average score.

1.	 Download the sample file from the Packt website.

2.	 Create a transformation and drag a Fixed file input step to the canvas to read  
the file.



Chapter 5

[ 143 ]

3.	 Fill the configuration window as follows:

4.	 Press the Get Fields button. A window appears to help you define the columns.

5.	 Click between the fields to add markers that define the limits. The window will look 
like this:

6.	 Click on Next >. A new window appears for you to configure the fields.

7.	 Click on the first field at the left of the window and change the name to Performance. 
Verify that the type is set to String.



Transforming Your Data with JavaScript Code and the JavaScript Step

[ 144 ]

8.	 To the right, you will see a preview of the data for the field.

9.	 Select each field to the left of the window, change the names, and adjust the types. Set 
ID, Country, Duet, and Skill fields as String, and fields from Judge 1 to Judge 
5 as Integer.

10.	Go back and forth between these two windows as many times as you need until you are 
done with the definitions of the fields.

11.	Click on Finish.

12.	The grid at the bottom is now filled.

13.	Set the column Trim type to both for every field.

14.	  The window should look like the following:



Chapter 5

[ 145 ]

15.	Click on Preview the transformation. You should see this:

16.	From the Scripting category of steps, select a Modified JavaScript Value step and drag it 
to the canvas.

17.	Link the step to the Fixed file input step, and double-click it to configure it.

18.	Most of the configuration window is blank, which is the editing area. Type the following 
text in it:

var totalScore;
var wAverage;

totalScore = Judge1 + Judge2 + Judge3 + Judge4 + Judge5;

wAverage = 0.35 * Judge1 + 0.35 * Judge2

         + 0.10 * Judge3 + 0.10 * Judge4 + 0.10 * Judge5;

19.	Click on the Get variables button.



Transforming Your Data with JavaScript Code and the JavaScript Step

[ 146 ]

20.	The grid under the editing area gets filled with the two variables defined in the code. 
The window looks like this:

21.	Click on OK.

22.	Keep the JavaScript step selected and do a preview.

23.	  This is how the final data looks like: 



Chapter 5

[ 147 ]

What just happened?
You read the detailed list of scores and added two fields with the overall score and an 
average score for each evaluated skill.

In order to read the file, you used a step you hadn't used before—the Fixed file input step. 
You configured the step with the help of a wizard. You could have also filled the field grid 
manually if you wanted to.

After reading the file, you used a JavaScript step to create new fields. The code you typed 
was pure JavaScript code. In this case, you typed a simple code to calculate the total score 
and a weighted average combining the fields from Judge 1 to Judge 5.

Note that the average was defined by giving more weight, that is, more importance, to the 
scores coming from Judge 1 and Judge 2.

For example, consider the first line of the file. This is how the new fields were calculated:

totalScore = Judge1 + Judge2 + Judge3 + Judge4 + Judge5 = 8+8+9+8+9
           = 42
wAverage = 0.35*Judge1 + 0.35*Judge2+ 0.10*Judge3 + 0.10*Judge4 + 
0.10*Judge5 = 0.35*8 + 0.35*8+ 0.10*8 + 0.10*8 + 0.10*8 = 8.2

In order to add these new fields to your dataset, you brought them to the grid at the bottom 
of the window.

Note that this is not the only way to do calculations in PDI. All you did with the JavaScript 
step can also be done with other steps.

Using the JavaScript language in PDI
JavaScript is a scripting language primarily used in website development. However, inside PDI 
you use just the core language; you neither run a web browser nor do you care about HTML. 
There are many available JavaScript engines. PDI uses the Rhino engine, from Mozilla. Rhino 
is an open source implementation of the core JavaScript language; it doesn't contain objects 
or methods related to manipulation of web pages. If you are interested in knowing more 
about Rhino, you can visit https://developer.mozilla.org/en/Rhino_Overview.

The core language is not too different from other languages you might know. It has basic 
statements, block statements (statements enclosed by curly brackets), conditional statements 
(if..else and switch case), and loop statements ( for, do..while, and while). If you 
are interested in the language itself, you can access a good JavaScript guide following this link: 
https://developer.mozilla.org/En/Core_JavaScript_1.5_Guide.



Transforming Your Data with JavaScript Code and the JavaScript Step

[ 14� ]

Besides the basics, an interesting feature included in the PDI implementation is E4X, a 
programming language extension that allows you to manipulate XML objects inside JavaScript. 
You can find an E4X tutorial as well as a reference manual at https://developer.
mozilla.org/En/E4X/Processing_XML_with_E4X.

Finally, there is a complete tutorial and reference at http://www.w3schools.com/
js/. Despite being quite oriented to web development, which is not your concern, it is clear, 
complete, and has plenty of examples.

Inserting JavaScript code using the Modified Java Script  
Value step
The Modified Java Script Value step (JavaScript step in short) allows you to insert JavaScript 
code inside your transformation. The code you type here is executed once per row coming to 
the step.

Let's explore its dialog window.

Most of the window is occupied by the editing area. It's there that you write JavaScript code 
using the standard syntax of the language and the functions and fields from the tree  
to the left of the window.

The Transform Functions branch of the tree contains a rich list of functions, ready to use. 



Chapter 5

[ 14� ]

The functions are grouped by category.

String, Numeric, Date, and Logic categories contain usual JavaScript functions.

This is not a full list of JavaScript functions. You are allowed to 
use JavaScript functions even if they are not in this list.

The Special category contains a mix of utility functions. Most of them are not 
JavaScript functions but Kettle functions. You will use some of them later in  
this chapter.

Finally, the File category, as its name suggests, contains a list of functions that 
do simple verifications or actions related to files and folders—for example, 
fileExist() or createFolder().

To add a function to your script, simply double-click on it, and drag it to the location in your 
script where you wish to use it, or just type it.

If you are not sure about how to use a particular function or what a 
function does, just right-click on the function and select Sample. A new 
script window appears with a description of the function and sample code 
showing how to use it.

The Input fields branch contains the list of the fields coming from previous steps. To see and 
use the value of a field for the current row, you need to double-click on it or drag it to the 
code area. You can also type it by hand as you did in the tutorial.

When you use one of these fields in the code, it is treated as a JavaScript variable. As such, 
the name of the field has to follow the conventions for a variable name—for example, it 
cannot contain dots, nor can it start with non-character symbols.

As Kettle is quite permissive with names, you can have fields in your stream whose names 
are not valid to be used inside JavaScript code.

If you intend to use a field with a name that doesn't follow the name rules, 
rename it just before the JavaScript step with a Select values step. If you use 
that field without renaming it, you will not be warned when coding, but you'll 
get an error or unexpected results when you execute the transformation.

The Output fields is a list of the fields that will leave the step.









Transforming Your Data with JavaScript Code and the JavaScript Step

[ 150 ]

Adding fields
At the bottom of the window, there is a grid where you put the fields you created in the 
code. This is how you add a new field:

1. Define the field as a variable in the code—for example, var totalScore.

2. Fill the grid manually or by clicking the Get variables button. A new row will be filled 
for every variable you defined in the code.

That was exactly what you did for the new fields, totalScore and wAverage.

In the JavaScript code you can create and use all variables you need without declaring them. 
However, if you intend to add a variable as a field in your stream, the declaration with the 
var sentence is mandatory. 

The variables you define in the JavaScript code are not Kettle variables. 
JavaScript variables are local to the step, and have nothing to do with the 
Kettle variables you know.

Modifying fields
Instead of adding a field, you may want to change the value and eventually the data type of 
an existent field. You can do that but not directly in the code.

Imagine that you wanted to change the field Skill, converting it to uppercase. To 
accomplish this, double-click the JavaScript step and add the following two lines:

var uSkill; 
uSkill = upper(Skill);

Add the new field to the grid at the bottom:

By renaming uSkill to Skill and setting the Replace value 'Fieldname' or 'Rename to' to 
Y, the uSkill field is renamed to Skill and replaces the old Skill field.

Don't use the setValue() function to change existent fields. It may 
cause problems and remains just for compatibility reasons.



Chapter 5

[ 151 ]

Turning on the compatibility switch
In the JavaScript window, you might have seen the Compatibility mode checkbox. This 
checkbox, unchecked by default, causes JavaScript to work like it did in version 2.5 of the 
JavaScript engine. With that version, you could modify the values and their types directly in 
the code, which allows mixing data types, thus causing many problems.

Old JavaScript programs run in compatibility mode. However, when creating new code,  
you should make use of the new engine; that is, you should leave the compatibility mode 
turned off.

Do not check the compatibility switch. Leaving it unchecked, you will have a 
cleaner, faster, and safer code.

Have a go hero – adding and modifying fields to the contest data 
Take the contest file as source and do the following:

Add a field named average. For the first performance, calculate the average as 
a weighted average, just like you did in the tutorial. For the second performance, 
calculate the field as a regular average, that is, the sum of the five scores divided  
by five.

Modify the Performance field. Replace Duet 1st Performance and Duet 2nd 
Performance by 1st and 2nd.

There is no single way to code this, but here you have a list of functions or sentences you can 
use: if..then...else, indexOf(), substr()

Testing your code
After you type a script, you may want to test it. You can do it from inside the JavaScript 
configuration window. Let's try it:







Transforming Your Data with JavaScript Code and the JavaScript Step

[ 152 ]

Time for action – testing the calculation of averages
Let's test the code you've just created.

1.	 Double-click the JavaScript step.

2.	 Click on the Test script button.

3.	 A window appears to create a set of rows for testing. Fill it like here:

4.	 Click on Preview the transformation. A window appears showing five identical rows 
with the provided sample values. Close the preview window.

5.	 Click on OK to test the code.

A window appears with the result that will appear when we execute the script with 
the test data. 



Chapter 5

[ 153 ]

What just happened?
You tested the code of the JavaScript step.

You clicked on the Test script button, and created a dataset that served as the basis for 
testing the script. You previewed the test dataset.

After that, you did the test itself. A window appeared showing you how the created dataset 
looks like after the execution of the script—the totalScore and wAverage fields were 
added, and the skill field was converted to uppercase.

Testing the script using the Test script button
The Test script button allows you to check that the script does what it is intended to do. 
It actually generates a transformation in the back with two steps—a Generate Rows step 
sending data to a copy of the JavaScript step. Just after clicking on the button, you are 
allowed to fill the Generates Rows window with the test dataset.

The first thing that the test function does is to verify that the code is properly written; that is, 
that there are no syntax errors in the code. Try deleting the last parenthesis in the code and 
click on the Test script button. When you click OK to see the result of the execution, instead 
of a dataset you will see an error window.

If the script is syntactically correct, what follows is the preview of the JavaScript for the 
transformation in the back, that is, the JavaScript code applied to the test dataset.

If you don't see any error and the previewed data shows the expected results, you are  
done. If not, you can check the code, fix it, and test it again until you see that the step  
works properly.

Have a go hero – testing the new calculation of the average
Open the transformation of the previous Hero section, and test:

The weighted average code

The regular code

To test one or the other, simply change the test data. Don't 
touch your code!







Transforming Your Data with JavaScript Code and the JavaScript Step

[ 154 ]

Enriching the code
In the previous section, you learned how to insert code in your transformation by using 
a JavaScript step. In this section, you will see how to use variables from outside to give 
flexibility to your code. You also will learn how to take control of the rows from inside the 
JavaScript step.

Time for action – calculating flexible scores by using variables
Suppose that by the time you are creating the transformation, the weights for calculating 
the weighted average are unknown. You can modify the transformation by using parameters. 
Let's do it:

1.	 Open the transformation of the previous section and save it with a new name.

2.	 Press Ctrl+T to open the Transformation properties dialog window.

3.	 Select the Parameters tab and fill it like here:

4.	 Replace the JavaScript step by a new one and double-click it.

5.	 Expand the Transform Scripts branch of the tree at the left of the window.

6.	 Right-click the script named Script 1, select Rename, and type main as the  
new name.



Chapter 5

[ 155 ]

7.	 Position the mouse cursor over the editing window and right-click to bring up the 
following contextual menu:

8.	 Select Add new to add the script, which will execute before your main code.

9.	 A new script window appears. The script is added to the list of scripts under 
Transform Scripts.

10.	Bring up the contextual menu again, but this time clicking on the title of the new script. 
Select Set Start Script.

11.	Right-click the script in the tree list, and rename the new script as Start.

12.	 In the editing area of the new script, type the following code to bring the 
transformation parameters to the JavaScript code:

w1 = str2num(getVariable('WEIGHT1',0));
w2 = str2num(getVariable('WEIGHT2',0));
w3 = str2num(getVariable('WEIGHT3',0));
w4 = str2num(getVariable('WEIGHT4',0));
w5 = str2num(getVariable('WEIGHT5',0));

writeToLog('Getting weights...');



Transforming Your Data with JavaScript Code and the JavaScript Step

[ 156 ]

13.	Select the main script by clicking on its title and type the following code:

var wAverage;

wAverage = w1 * Judge1 + w2 * Judge2
         + w3 * Judge3 + w4 * Judge4 + w5 * Judge5;

writeToLog('row:' + getProcessCount('r') + ' wAverage:' + 
num2str(wAverage));
if (wAverage >=7)
 trans_Status = CONTINUE_TRANSFORMATION;
else
 trans_Status = SKIP_TRANSFORMATION;

14.	Click Get variables to add the wAverage variable to the grid.

15.	Close the JavaScript window.

16.	With the JavaScript step selected, click on the Preview this transformation button.

17.	When the preview window appears, click on Configure.

18.	 In the window that shows up, modify the parameters as follows:

19.	Click Launch.



Chapter 5

[ 157 ]

20.	The preview window shows this data:

21.	The log window shows this:

...
2009/07/23 14:46:54 - wAverage with Param..0 - Getting weights...
2009/07/23 14:46:54 - wAverage with Param..0 - row:1 wAverage:8
2009/07/23 14:46:54 - wAverage with Param..0 - row:2 wAverage:8
2009/07/23 14:46:54 - wAverage with Param..0 - row:3 wAverage:7.5
2009/07/23 14:46:54 - wAverage with Param..0 - row:4 wAverage:8
2009/07/23 14:46:54 - wAverage with Param..0 - row:5 wAverage:7.5
...

What just happened?
You modified the code of the JavaScript step to use parameters.

First, you created four parameters for the transformation, containing the weights for  
the calculation.

Then in the JavaScript step, you created a Start script to read the variables. That script 
executed once, before the main script. Note that you didn't declare the variables. You could 
have done it, but it's not mandatory unless you intend to add them as output fields.

In the main script, the script that is executed for every row, you typed the code to calculate 
the average by using those variables instead of fixed numbers.

After the calculation of the average, you kept only the rows for which the average was 
greater or equal to 7. You did it by setting the value of trans_Status to CONTINUE_
TRANSFORMATION for the rows you wanted to keep, and to SKIP_TRANSFORMATION  
for the rows you wanted to discard.



Transforming Your Data with JavaScript Code and the JavaScript Step

[ 15� ]

In the preview window, you could see that the average was calculated as a weighted  
average of the scores you provided, and that only the rows with an average greater or  
equal to 7 were kept.

Using named parameters
The parameters that you put in the transformation dialog window are called named 
parameters. They can be used through the transformation as regular variables, as if you  
had created them before—for example, in the kettle.properties file.

From the point of view of the transformation, the main difference between 
variables defined in the kettle.properties file and named parameters is 
that the named parameters have a default value that can be changed at the time 
you run the transformation.

In this case, the default values for the variables defined as named parameters WEIGHT1 to 
WEIGHT5 were 0.35, 0.35, 0.10, 0.10, and 0.10—the same that you had used in previous 
exercises. But when you executed, you changed the default and used 0.50, 0.50, 0, 0, and 0 
instead. This caused the formula for calculating the weighted average to work as an average 
of the first two scores. Take, for example, the numbers for the first row of the file. Consider 
the following code line:

wAverage = w1 * Judge1 + w2 * Judge2 + w3 * Judge3 + w4 * Judge4 + w5 
* Judge5;

It was calculated as:

wAverage = 0.50 * 8 + 0.50 * 8 + 0 * 9 + 0 * 8 + 0 * 9;

giving a weighted average equal to 8.

Note that the named parameters are ready to use through the transformation as regular 
variables. You can see and use them at any place where the icon with the dollar sign  
is present.

If you want to use a named parameter or any other Kettle variable such as LABSINPUT or 
java.io.tmpdir inside the JavaScript code, you have to use the getVariable() function 
as you did in the Start script.

When you run the transformation from the command line, you also have the possibility to 
specify values for named parameters. For details about this, check Appendix B.



Chapter 5

[ 15� ]

Using the special Start, Main, and End scripts
The JavaScript step allows you to create multiple scripts. The Transformation Script list 
displays a list with all scripts of the step.

In the tutorial, you added a special script named Start and used it to read the variables. 
The Start Script is a script that executes only once, before the execution of the main script 
you already know.

The Main script, the script that is created by default, executes for every row. As this script 
is executed after the start script, all variables defined in the main script there are accessible 
here. As an example of this, in the tutorial you used the start script to set values for the 
variables w1 through w5. Then in the main script you used those variables.

It is also possible to have an End Script that executes at the end of the execution of the step, 
that is, after the main script has been executed for all rows.

When you create a Start or an End script, don't forget to give it a name so 
that you can recognize it. If you don't, you may get confused because nothing in 
the step shows you the type of the scripts.

Beyond main, start, and end scripts, you can use extra scripts to avoid overloading the main 
script with code. The code in the extra scripts will be available after the execution of the 
special function LoadScriptFromTab().

Note that in the exercises, you wrote some text to the log by using the writeToLog() 
function. That had the only purpose of showing you that the start script executed at the 
beginning and the main script executed for every row. You can see this sequence in the 
execution log.

Using transformation predefined constants
In the tree to the left-hand side of the JavaScript window, under Transformation Constants, 
you have a list of predefined constants. You can use those constants to change the value of 
the predefined variable, trans_Status, such as: 

trans_Status = SKIP_TRANSFORMATION

Here is how it works:

Value of the trans_Status variable  Effect on the current row 
SKIP_TRANSFORMATION The current row is removed from the dataset
CONTINUE_TRANSFORMATION The current row is retained
ERROR_TRANSFORMATION The current row causes abortion of the transformation



Transforming Your Data with JavaScript Code and the JavaScript Step

[ 160 ]

In other words, you can use that constant to control what will happen to the rows. In the 
exercise you put:

if (wAverage >=7)
 trans_Status = CONTINUE_TRANSFORMATION;
else
 trans_Status = SKIP_TRANSFORMATION;

This means a row where the average is greater than or equal to 7 will continue its way to the 
following steps. On the contrary, a row with a lower average will be discarded.

Pop quiz – finding the 7 errors
Look at the following screenshot:



Chapter 5

[ 161 ]

Does it look good? Well, it is not. There are seven errors in it. Can you find them?

Have a go hero – keeping the top 10 performances
Modify the last tutorial. By using a JavaScript step, keep the top 10 performances, that is, 
the 10 performances with the best average.

Sort the data using a regular Sort rows step. Give the 
getProcessCount() function a try.

Have a go hero – calculating scores with Java code
If you are a Java programmer, or just curious, you will like to know that you can access  
Java libraries from inside the JavaScript step. On the book site there is a JAR file named  
pdi_chapter_5.jar. The JAR file contains a class with two methods—w_average()  
and r_average(), for calculating a weighted average and a regular average. 

Here is what you have to do:

1. Download the file from Packt's site, copy it to the libext folder inside the PDI 
installation folder, and restart Spoon. 

2. Replace the JavaScript calculation of the averages by a call to one of these  
methods. You'll have to specify the complete name of the class. Consider the  
next line for example:

wAverage = Packages.Averages.w_average(Judge1, Judge2, Judge3, 
Judge4, Judge5);

3. Preview the transformation and verify that it works properly.

The Java file is available as well. You can change it by adding new methods and trying them 
from PDI.

Likewise, you can try using any Java objects, as long as they are in PDI's classpath. Don't 
forget to type the complete name as in the following examples:

java.lang.Character.isDigit(c);
var my_date = new java.util.Date();
var val = Math.floor(Math.random()*100);



Transforming Your Data with JavaScript Code and the JavaScript Step

[ 162 ]

Reading and parsing unstructured files
It is marvelous to have input files where the information is well formed; that is, the number 
of columns and the type of its data is precise, all rows follow the same pattern, and so on. 
However, it is common to find input files where the information has little or no structure, or 
the structure doesn't follow the matrix (n rows by m columns) you expect. In this section you 
will learn how to deal with such files. 

Time for action – changing a list of house descriptions with 
JavaScript

You won the lottery and decided to invest the money in a new house. You asked a real-estate 
agency for a list of candidate houses for you and it gave you this:

...
Property Code: MCX-011
Status: Active
5 bedrooms
5 baths
Style: Contemporary
Basement
Laundry room
Fireplace
2 car garage
Central air conditioning
More Features: Attic, Clothes dryer, Clothes washer, Dishwasher

Property Code: MCX-012
4 bedrooms
3 baths
Fireplace
Attached parking
More Features: Alarm System, Eat in Kitchen, Powder Room

Property Code: MCX-013
3 bedrooms
...



Chapter 5

[ 163 ]

You want to compare the properties before visiting them, but you're finding it hard to do so 
because the file doesn't have a precise structure. Fortunately, you have the JavaScript step, 
which will help you to give the file some structure.

1.	 Create a new transformation.

2.	 Get the sample file from Packt site and read it with a Text file input step. Uncheck 
the Header checkbox and create a single field named text.

3.	 Do a preview. You should see the content of the file under a single column named 
text. Add a JavaScript step after the input step and double-click it to edit it.

4.	 In the editing area, type the following JavaScript code to create a field with the code 
of the property:

var prop_code;

posCod = indexOf(text,'Property Code:');
if (posCod>=0)
 prop_code = trim(substr(text,posCod+15));

5.	 Click Get variables to add the prop_code variable to the grid under the code.

6.	 Click OK.

7.	 With the JavaScript step selected, do a preview. You should see this:



Transforming Your Data with JavaScript Code and the JavaScript Step

[ 164 ]

What just happened?
You read a file where each house was described in several rows. You added to every row 
the code of the house to which that row belonged. In order to obtain the property code, 
you identified the lines with a code, and then you cut the Property Code: text with the 
substr function and discarded the leading spaces with trim.

Looking at previous rows
The code you wrote may seem a little strange at the beginning, but it is not. It  
creates a variable named prod_code, which will be used to create a new field to  
identify the properties. When the JavaScript code detects a property header row such  
as Property Code: MCX-002, it sets the variable prop_code to the code it finds  
in that line—MCX – 002 in this case.

Until a new header row appears, the prop_code variable keeps that value. Thus all the  
rows following a row like the one shown above will have the same value for the variable 
prop_code.

The variable is then used to create a new field, which will contain for every row, the code for 
the house to which it belongs.

This is an example of when you can keep values from previous rows to be used in the  
current row.

Note that here you use JavaScript to see and use values from previous rows, but 
you can't modify them! JavaScript always works on the current row.

Have a go hero – enhancing the houses file
Modify the exercise from the tutorial by doing the following:

1. After keeping the property code, discard the rows that headed each property 
description.

2. Create two new fields named feature and description. Fill the feature field 
with the feature described in the row (Exterior construction) and the description 
field with the description of that feature (Brick). If you think that is not worth 
keeping some features (Living Room), you may discard some rows. Discard also the 
original field text. Here you have a sample house description showing a possible 
output after the changes:



Chapter 5

[ 165 ]

 prop_code; Feature; Description
 MCX-023;bedrooms;4
 MCX-023;baths;4
 MCX-023;Style;Colonial
 MCX-023;family room;yes
 MCX-023;basement;yes
 MCX-023;fireplace;yes
 MCX-023;Heating features;Hot Water Heater
 MCX-023;Central air conditioning present;yes
 MCX-023;Exterior construction;Stucco
 MCX-023;Waterview;yes
 MCX-023;More Features;Attic, Living/Dining Room, Eat-In-Kitchen

Have a go hero – fill gaps in the contest file
Take a look at the contest file. Each performance occupies two rows, one showing each 
evaluated skill. The name of the country appeared only in the first row.

Open the first version of the contest transformation and modify it to fill the column Country 
where it is blank.

Avoiding coding by using purpose-built steps
You saw through the exercises how powerful the JavaScript step is for helping you in your 
transformations. In older versions of PDI, coding JavaScript was the only means you had for 
doing specific tasks. In the latest releases of PDI, actual steps appeared that eliminate the 
need for coding in many cases. Here you have some examples of that:

Formula: You saw it in Chapter 3. Before the appearance of this step,  
there were a lot of functions such as the text functions that you could only  
solve with JavaScript.

Analytic Query: This step offers a way to retrieve information from rows before or 
after the current.

Split field to rows: The step is used to create several rows from a single string value. 
You used this step in Chapter 3 to create a new row for each word found in a file.

Analytic Query and Split fields to row are examples of where not only the need for coding 
was eliminated, they also eliminated the need for accessing internal objects and functions 
such as Clone() or putRow() that you probably saw in old sample code or when browsing 
the PDI forum. The use of those objects and functions can lead to odd behavior and data 
corruption, and so their use is strongly discouraged.









Transforming Your Data with JavaScript Code and the JavaScript Step

[ 166 ]

Despite the appearance of new steps, you still have the choice to do the tasks with code.

In fact, quite a lot of tasks you do with regular PDI steps may also be done with JavaScript, 
by using the JavaScript step. This is a temptation to programmers who end up with 
transformations having plenty of JavaScript steps.

Whenever there is a step that does what you want to do, you should 
prefer that step to coding.

Why should you prefer to use a specific step rather than code? Here are some reasons:

To code takes more time to develop. You don't have to waste your time coding if 
there are steps that can solve your problem.

Code is hard to maintain. If you have to modify or fix a transformation, it will be 
much easier to tackle the change if the transformation is a bunch of colorful steps 
with meaningful names than if the transformation consists of just a couple of 
JavaScript icons.

A bunch of icons is self documented. A JavaScript step is like Pandora's box. Until 
you open it, you don't know exactly what it does, or whether it contains just a line of 
code or thousands.

JavaScript is inherently slow. Faster alternatives for simple expressions are the User 
Defined Java Expression and Calculator steps. They are typically more than twice 
as fast. The next PDI release will feature a User Defined Java Class step. One of the 
purposes of this step, intended to be used by Java developers, is to overcome the 
drawbacks of JavaScript.

On the contrary, there are situations where you may prefer or have to use JavaScript. Let's 
enumerate some of them:

To handle unstructured input data

For accessing Java libraries

When you need to use a function provided by the JavaScript language that is not 
provided by any of the regular PDI steps

When the JavaScript code saves a lot of regular PDI steps (as well as screen space), 
and you think it is not worth showing the details of what those steps do

In the end, it is up to you to choose one or the other option. The following exercise will help 
you a little in the recognition of pros and cons.



















Chapter 5

[ 167 ]

Have a go hero – creating alternative solutions
Redo the following Hero exercises you did in this chapter:

Adding and modifying fields to the contest data

Keeping the top 10 performances

Enhancing the houses file

Filling gaps in the contest file

Do these exercises without using JavaScript when possible. In each case, compare both 
versions, having in mind the following:

Time to develop

Maintenance

Documentation

Capability to handle unstructured data

Number of steps required

Performance

Decide which option you would choose if you had to decide.

To keep the 10 first performances, use an Add Sequence step.

To fill the gaps, use an Analytic Query step.

Summary
In this chapter, you learned to code JavaScript into PDI. Specifically, you learned:

What the JavaScript step is and how to use it

How to modify fields and add new fields to your dataset from inside your  
JavaScript step

How to deal with unstructured input data

You also considered the pros and cons of coding JavaScript inside your transformations, as 
well as alternative ways to do things, avoiding writing code when possible.

As a bonus, you learned the concept of named parameters.

If you feel confident with all you've learned until now, you are certainly ready to move on to 
the next chapter, where you will learn in a simple fashion how to solve some sophisticated 
problems such as normalizing data from pivot tables.































6
Transforming the Row Set

So far, you have been working with simple datasets, that is, datasets where 
the each row represented a different entity (for example a student) and each 
column represented a different attribute for that entity (for example student 
name). There are occasions when your dataset doesn’t resemble such a simple 
format, and working with it as is, may be complicate or even impossible. In 
other occasions your data simply does not have the structure you like or the 
structure you need.

Whichever your situation, you have to transform the dataset in an appropriate format and 
the solution is not always about changing or adding fields, or about filtering or adding rows. 
Sometimes it has to do with twisting the whole dataset. In this chapter you will learn how to:

Convert rows to columns

Convert columns to rows

Operate on sets of rows

You will also be introduced to a core subject in data warehousing: Time dimensions.

Converting rows to columns
In most datasets each row belongs to a different element such as a different match or 
a different student. However, there are datasets where a single row doesn't completely 
describe one element. Take, for example, the real-estate file from Chapter 5. Every  
house was described through several rows. A single row gave incomplete information  
about the house. The ideal situation would be one in which all the attributes for the  
house were in a single row. With PDI you can convert the data into this alternative  
format. You will learn how to do it in this section.









Transforming the Row Set

[ 170 ]

Time for action – enhancing a films file by converting 
rows to columns

In this tutorial we will work with a file that contains list of all French movies ever made. Each 
movie is described through several rows. This is how it looks like:

...
Caché
Year: 2005
Director:Michael Haneke
Cast: Daniel Auteuil, Juliette Binoche, Maurice Bénichou

Jean de Florette
Year: 1986
Genre: Historical drama
Director: Claude Berri
Produced by: Pierre Grunstein
Cast: Yves Montand, Gérard Depardieu, Daniel Auteuil

Le Ballon rouge
Year: 1956
Genre: Fantasy | Comedy | Drama
...

In order to process the information of the file, it would be better if the rows belonging to 
each movie were merged into a single row. Let's work on that.

1.	 Download the file from the Packt website.

2.	 Create a transformation and read the file with a Text file input step.

3.	 In the Content tab of the Text file input step put : as separator. Also uncheck the 
Header and the No empty rows options.

4.	 In the Fields tab enter two string fields—feature and description. Do a preview of 
the input file to see if it is well configured. You should see two columns—feature with 
the texts to the left of the semicolons, and description with the text to the right of 
the semicolons. 

5.	 Add a JavaScript step and type the following code that will create the film field:

var film;

if (getProcessCount('r') == 1) film = '';

if (feature == null)

 film = '';

else if (film == '')

 film = feature;



Chapter 6

[ 171 ]

6.	 Click on the Get variables button to add to the dataset the field film.

7.	 Add a Filter rows step with the condition description IS NOT NULL.

8.	 With the Filter rows step selected, do a preview. This is what you should see:

9.	 After the filter step, add a Row denormalizer step. You can find it under the  
Transform category.

10.	Double-click the step and fill it like here:



Transforming the Row Set

[ 172 ]

11.	From the Utility category select an If field value is null step.

12.	Double-click it , check the Select fields option, and fill the Fields grid as follows:

13.	With this last step selected, do a preview. You will see this:

What just happened?
You read a file with a selection of films in which each film was described through  
several rows.

First of all, you created a new field with the name of the film by using a small piece of 
JavaScript code. If you look at the code, you will note that the empty rows are key for 
calculating the new field. They are used in order to distinguish between one film and the 
next and that is the reason for unchecking the No empty rows option. When the code 
executes for an empty row, it sets the film to an empty value. Then, when it executes for the 
first line of a film (film == '' in the code), it sets the new value for the film field. When 
the code executes for other lines, it does nothing but the film already has the right value.

After that, you used a Row denormalizer step to translate the description of films from rows 
to columns, so the final dataset had a single row by film.

Finally, you used a new step to replace some null fields with the text n/a.



Chapter 6

[ 173 ]

Converting row data to column data by using the Row 
denormalizer step
The Row denormaliser step converts the incoming dataset into a new dataset by moving 
information from rows to columns according to the values of a key field.

To understand how the Row denormaliser works, let's do a sketch of the desired  
final dataset:

FILM YEAR GENRE DIRECTOR ACTORS

1 film
by row

Here, a film is described by using a single row. On the contrary, in your input file the 
description for every film was spread over several rows.

To tell PDI how to combine a group of rows into a single one, there are three things you have 
to think about:

Among the input fields there must be a key field. Depending on the value of that key 
field, you decide how the new fields will be filled. In your example, the key field is 
feature. Depending on the value of the column feature, you will send the value 
of the field description to some of the new fields: Year, Genres, Director,  
or Actors.

You have to decide which field or fields make up the groups of rows. In our example, 
that field is film. All rows with the same value for the field film make up a 
different group.

Decide the rules that have to be applied in order to fill the new target fields. All rules 
follow this pattern:

If the value for the key field is equal to A, then put the value of the 
field B into the new field C.

A sample rule could be: If the value for the field feature  
(our key field) is equal to Directed by, put the value of the  
field description into the new field Director.













Transforming the Row Set

[ 174 ]

Once you are clear about these three things, all you have to do is fill the Row denormaliser 
configuration window to tell PDI how to do this task.

1. Fill the key field textbox with the name of the key field. In the example, the field  
is feature.

2. Fill the upper grid with the fields that make up the grouping. In this case, it is film.

The dataset must be sorted on the grouping fields. If not, you will 
get unexpected results.

3. Finally, fill the lower grid. This grid contains the rules for the new fields. Fill it 
following this example:

To add this rule ... Fill a row like this ...
If the value for the key field is equal to A, put the 
value of the field B into the new field C.

Key value: A
Value fieldname: B
Target fieldname: C

This is how you fill the row for the sample rule:

If the value for the field feature (our key field) is 
equal to 'Directed by,' put the value of the field 
description into the new field Director.

Key value: Directed by
Value fieldname: description
Target fieldname: Director

For every rule you must fill a different row in the target fields' grid.

Let's see how the Row denormalizer works for the following sample rows:

PDI creates an output row for the film Manon Des Sources. Then it processes every row 
looking for values to fill the new fields. 



Chapter 6

[ 175 ]

Let's take the first row. The value for the key field feature is Directed by. PDI searches  
in the target fields' grid to see if there is an entry where the Key value is Directed by; it 
finds it.

Then it puts the value of the field description as the content for the target field 
Director. The output row is now like this:

Now take the second row. The value for the key field feature is 'Produced by.'

PDI searches in the target fields' grid to see if there is an entry where the Key value is 
Produced by. It cannot find it, and the information for this row is lost.

The following screenshot shows the rule applied to the third sample row. It also shows how 
the final output row looks like:



Transforming the Row Set

[ 176 ]

Note that the presence of rows is not mandatory for every key value entered in the target 
fields' grid. If an entry in the grid is not used, the target field is created anyway but it  
remains empty.

In this sample film, the year was not present. Then the field Year remained empty.

Have a go hero – houses revisited
Take the output file for the Hero exercise to enhance the houses file from the previous 
chapter. You can also download the sample file from the Packt site. Create a transformation 
that reads that file and generates the following output:

Aggregating data with a Row denormalizer step
In the previous section, you learned how to use the Row denormalizer step to combine 
several rows into one. The Row denormalizer step can also be used to take as input a dataset 
and generate as output a new dataset with aggregated or consolidated data. Let's see it with 
an example.



Chapter 6

[ 177 ]

Time for action – calculating total scores by performances 
by country

Let's work now with the contest file from Chapter 5. You will need the output file for the 
Hero exercise. Fill gaps in the contest file from that chapter. If you don't have it, you can 
download it from the Packt website.

In this tutorial, we will calculate the total score for each performance by country.

1.	 Create a new transformation.

2.	 Read the file with a Text file input step and do a preview to see that the step is well 
configured. You should see this:

3.	 With a Select values step, keep only the following columns: Country, Performance, 
and totalScore.

4.	 With a Sort Rows step sort the data by Country ascendant.

5.	 After the Sort Rows step, put a Row denormalizer step.

6.	 Double-click this last step to configure it.

7.	 As the key field put Performance, and as group fields put Country.

8.	 Fill the target fields' grid like shown:



Transforming the Row Set

[ 17� ]

9.	 Close the window.

10.	With the Row denormalizer step selected, do a preview. You will see this:

What just happened?
You read the contest file, grouped the data by country, and then created a new column 
for every performance. As values for those new fields you put the sum of the scores by 
performance and by country.

Using Row denormalizer for aggregating data
The purpose for which you used the Row denormaliser step in this tutorial was different 
from the purpose in the previous tutorial. In this case, you put the countries in rows, the 
performances in columns, and in the cells you put sums. The final dataset was kind of a cross 
tab like those you create with the DataPilot tool in Open Office, or the Pivot in Excel. The 
big difference is that here the final dataset is not interactive because, in essence, PDI is not. 
Another difference is that here you have to know the names or elements for the columns  
in advance.

Let's explain how the Row denormalizer step works in these cases. Basically, the way it 
works is quite the same as before:

The step groups the rows by the grouping fields and creates a new output row for  
each group.

The novelty here is the aggregation of values. When more than one row in the group 
matches the value for the key field, PDI calculates the new output field as the result of 
applying an aggregate function to all the values. The aggregate functions available are the 
same you already saw when you learned the Group by step—sum, minimum, first value,  
and so on. Take a look at the following sample rows:



Chapter 6

[ 17� ]

The first two rows had 1st as the value for the key field Performance. According to the rule 
of the Row denormaliser step, the values for the field totalScore of these two rows go to 
the new target field score_1st_performance. As the rule applies for two rows, the values 
for those rows have to be added, as Sum was the selected aggregation function.

So, the output data for this sample group is this:

The value for the new field score_1st_performance is 77 and is the sum of 38 and 39, 
the values of the field totalScore for the input rows where Performance was "1st."

Please note the difference between the Row denormaliser and the Group 
by step for aggregating. With the Row denormaliser step, you generate 
another new field for each interesting key value. Using the Group by step 
for the tutorial, you couldn't have created the two columns shown in the 
preceding screenshot—score_1st_performance and score_2nd_
performance.

Have a go hero – calculating scores by skill by continent
Create a new transformation. Read the contest file and generate the following output:

To get the continent for each country, download the countries.txt file from the Packt 
website and get the information with a Stream lookup step.



Transforming the Row Set

[ 1�0 ]

Normalizing data
Some datasets are nice to see but complicate to process further. Take a look at the matches 
file we saw in Chapter 3:

Match Date;Home Team;Away Team;Result
02/06;Italy;France;2-1
02/06;Argentina;Hungary;2-1
06/06;Italy;Hungary;3-1
06/06;Argentina;France;2-1
10/06;France;Hungary;3-1
10/06;Italy;Argentina;1-0
...

Imagine you want to answer these questions:

1. How many teams played?

2. Which team converted most goals?

3. Which team won all matches it played?

The dataset is not prepared to answer those questions, at least in an easy way. If you want 
to answer those questions in a simple way, you will first have to normalize the data, that is, 
convert it to a suitable format before proceeding. Let's work on it.

Time for action – enhancing the matches file by normalizing 
the dataset

Now you will convert the matches file you generated in Chapter 2 to a format suitable for 
answering the proposed questions.

1.	 Search on your disk for the file you created in Chapter 2, or download it from the  
Packt website.

2.	 Create a new transformation and read the file by using a Text file input step.

3.	 With a Split Fields step, split the Result field in two: home_t_goals and  
away_t_goals. (Do you remember having done this in chapter 3?)

4.	 From the Transform category of steps, drag a Row Normalizer step to the canvas.

5.	 Create a hop from the last step to this new one.



Chapter 6

[ 1�1 ]

6.	 Double-click the Row Normalizer step to edit it and fill the window as follows:

7.	 With the Row Normalizer selected, do a preview. You should see this:

What just happened?
You read the matches file and converted the dataset to a new one where both the home 
team and the away team appeared under a new column named team, together with another 
new column named goals holding the goals converted by each team. With this new format, 
it is really easy now to answer the questions proposed at the beginning of the section.



Transforming the Row Set

[ 1�2 ]

Modifying the dataset with a Row Normalizer step
The Row Normalizer step modifies your dataset, so it becomes more suitable for processing. 
Usually this involves transforming columns into rows.

To understand how it works, let's take as example the file from the tutorial. Here is a sketch 
of what we want to have at the end:

MATCH DATE TEAM GOALS

1st M
atch

2nd
Mat

ch 02/06

Italy

France

Hungary
2

1 Away Team

02/06

02/06

02/06

Argentina

2

1

... ... ...

Away Team
Home Team

Home Team

What we have now is this:

1st Match

2nd Match

Match Date Home Team Goals Away Team

02/06

Italy

Argentina
France
Hungary

2

1

Goals

02/06

2

1

... ... ... ... ...

Now it is just a matter of creating a correspondence between the old columns and the  
new ones.



Chapter 6

[ 1�3 ]

Just follow these steps and you have the work done:

Step Example

Identify the new desired fields. Give them a name. team, goals.

Look at the old fields and identify which ones you 
want to translate to the new fields.

Home_Team, home_t_goals, Away_Team, 
away_t_goals.

From that list, identify the columns you want to 
keep together in the same row, creating a sort 
of classification of the fields. Give each group a 
name. Also, give a name to the classification.

You want to keep together the fields Home_
Team and home_t_goals. So, you create a 
group with those fields, and name it home.

Likewise, you create a group named away with 
the fields Away_Team and away_t_goals.

Name the classification as class.

Define a correspondence between the fields 
identified above, and the new fields.

The old field Home_Team goes to the new  
field team.

The old field home_t_goals goes to the new  
field goals.

The old field Away_Team goes to the new  
field team.

The old field away_t_goals goes to the new  
field goals.

Transcript all these definitions to the Row Normalizer configuration window as shown below:



Transforming the Row Set

[ 1�4 ]

In the fields grid, insert one row for each of the fields you want to normalize.

Once you normalize, you have a new dataset where the fields for the groups you defined 
were converted to rows.

The number of rows in the new dataset is equal to the number of groups defined by the 
number of rows in the old dataset. In the tutorial, the final number is 24 rows x 2 
groups = 48 rows.

Note that the fields not mentioned in the configuration of the Row Normalizer (Match_Date 
field in the example) are kept without changes. They are simply duplicated for each new row.

In the tutorial, every group was made by two fields: Home_Team and home_t_goals for the 
first group, and Away_Team and away_t_goals for the second. When you normalize, a group 
may have just one field, two fields (as in this example), or more than two fields.

Summarizing the PDI steps that operate on sets of rows
The Row Normaliser and Row denormalizer steps you learned in this chapter are some of 
the PDI steps which, rather than treating single rows, operate on sets of rows. The following 
table gives you an overview of the main PDI steps that fall into this particular group of steps:

Step Purpose

Group by Builds aggregates such as Sum, Maximum, and so on, on groups of rows.

Univariate 
Statistics

Computes some simple statistics. It complements the Group by. It has less 
capabilities than that step but provides more aggregate functions such as 
median and percentiles.

Split Fields Splits a single field into more than one. Actually it doesn't operate on a set of 
rows, but it's common to use it combined with some of the steps in this table. 
For example: You could use a Group by step to concatenate a field, followed by 
a Split Fields step that splits that concatenated field into several columns.

Row Normaliser Transforms columns into rows making the dataset more suitable for processing.

Row denormaliser Moves information from rows to columns according to the values of a key field.

Row flattener Flattens consecutive rows. You could achieve the same by using a Group by to 
concatenate the field to flatten, followed by a Split Field step.

Sort rows Sorts rows based on field values. Alternatively, it can keep only unique rows. 

Split field to rows Splits a single string field and creates a new row for each split term.

Unique rows Removes double consecutive rows and leaves only unique occurrences.

For examples on using these steps or for getting more information about them, please refer 
to Appendix C, Quick reference: Steps and Job Entries.



Chapter 6

[ 1�5 ]

Have a go hero – verifying the benefits of normalization
Extend the transformation and answer the questions proposed at the beginning of  
the section:

How many teams played?

Which team converted most goals?

Which team won all matches it played?

For answering the third question, you'll have to modify the Row 
Normalizer step as well.

If you are not convinced that the normalizer process makes the work easier, you can try to 
answer the questions without normalizing. That effort will definitively convince you!

Have a go hero – normalizing the Films file
Consider the output of the first Time for action section in this chapter. Generate the 
following output:

You have two options here:

To modify the tutorial by sending the output to a new file. Then to use that new file 
to do this exercise.

To extend the stream in the original transformation by adding new steps after the 
Row Denormalizer step.













Transforming the Row Set

[ 1�6 ]

After doing the exercise, think about this: Does it make sense to denormalize and then 
normalize again? What is the difference between the original file and the output of this 
exercise? Could you have done the same without denormalizing and normalizing?

Have a go hero – calculating scores by judge
Take the contest file and generate the following output, where the columns represent the 
minimum, maximum, and average score given by every judge:

This exercise may appear difficult at first, but here's a clue: After reading the file, use a Group 
by step to calculate all the values you need for your final output. Leave the group field empty 
so that the step groups all rows in the dataset.

Generating a custom time dimension dataset by using 
Kettle variables
Dimensions are sets of attributes useful for describing a business. A list of products along 
with their shape, color, or size is a typical example of dimension. The time dimension is a 
special dimension used for describing a business in terms of when things happened. Just 
think of a time dimension as a list of dates along with attributes describing those dates. For 
example, given the date 05/08/2009, you know that it is a day of August, it belongs to the 
third quarter and it is Wednesday. These are some of the attributes for that date.

In the following tutorial you will create a transformation that generates the dataset for a 
time dimension. The dataset for a time dimension has one row for every date in a given 
range of dates and one column for each attribute of the date.



Chapter 6

[ 1�7 ]

Time for action – creating the time dimension dataset
In this tutorial we will create a simple dataset for a time dimension.

First we will create a stream with the days of the week:

1.	 Create a new transformation.

2.	 Press Ctrl+T to access the Transformation settings window.

3.	 Select the Parameters tab and fill it like shown in the next screenshot:

4.	 Expand the Job category of steps.

5.	 Drag a Get Variables step to the canvas, double-click the step, and fill the window 
like here:

6.	 After the Get Variables step, add a Split Fields step and use it to split the field 
week_days into seven String fields named sun, mon, tue, wed, thu, fri, and 
sat. As Delimiter, set a comma (,).

7.	 Add one more Split Fields step and use it to split the field week_days_short into 
seven String fields named sun_sh, mon_sh, tue_sh, wed_sh, thu_sh, fri_sh, 
and sat_sh. As Delimiter, set a comma (,).



Transforming the Row Set

[ 1�� ]

8.	 After this last step, add a Row Normalizer step.

9.	 Double-click the Row Normalizer step and fill it as follows:

10.	Keep the Row Normalizer step selected and do a preview. You will see this:

Now let's build the main stream:

1.	 Drag a Generate Rows step, an Add sequence step, a Calculator step, and a Filter 
rows step to the canvas.



Chapter 6

[ 1�� ]

2.	 Link them so you get this:

3.	 Double-click the Generate Rows step and use it to generate 45000 lines. Add a single 
Date field named first_day. As Format select yyyyMMdd and as Value write 
19000101. 

4.	 Double-click the Add sequence step. In the Name of value textbox, type days.

5.	 Double-click the Calculator step and fill the window as shown next:

6.	 Double-click the Filter rows step and add the filter date <= 31/12/2020. When you 
enter the date 31/12/2020, make sure to set the Type to Date and the Conversion 
format to dd/MM/yyyy. After the Filter rows step add a Stream lookup step.

7.	 Create two hops—one from the Filter rows step to the Stream lookup step and the 
other from the Row Normalizer step to the Stream lookup step.

8.	 Double-click the Stream lookup step. In the upper grid add a row, setting week_day 
under the Field column and w_day under the LookupField column. Use the lower grid 
to retrieve the String fields week_desc and week_short_desc. Finally, after the 
Stream lookup step, add a Select values step.



Transforming the Row Set

[ 1�0 ]

9.	 Use the Select values step to remove the unused fields first_day and days. Create a 
hop from the Stream lookup step to this step.

10.	With the Select values step selected, click the preview button.

11.	When the preview window appears click on Configure.

12.	Fill the column value in the Parameters grid of the transformation execution window  
as follows:

13.	Click the Launch button. You will see this:

What just happened?
You generated data for a time dimension with dates ranging from 01/01/1900 through 
31/12/2020. Time dimensions are meant to answer questions related with time such as: Do 
I sell more on Mondays or on Fridays? Am I selling more this quarter than the same quarter 
last year? The list of attributes you need to include in your time dimension depends on the 
kind of question you want to answer. Typical fields in a time dimension include: year, month 
(a number between 1 and 12), description of month, day of month, week day, and quarter. 



Chapter 6

[ 1�1 ]

In the tutorial you created a few attributes, but you could have added much more. Among 
the attributes included you had the week day. The week descriptions were taken from 
named parameters, which allowed you to set the language of the week descriptions at the 
time you ran the transformation. In the tutorial you specified Portuguese descriptions. If 
you had left the parameters grid empty, the transformation would have used the English 
descriptions that you put as default.

Let's explain how you build the stream with the number and descriptions for the days of 
the week. First, you created a dataset by getting the variables with the descriptions for the 
days of the week. After creating the dataset, you split the descriptions and by using the Row 
Normalize step, you converted that row into a list of rows, one for every day of the week. 
In other words, you created a single row with all the descriptions for the days of the week. 
Then you normalized it to create the list of days.

This method used for creating the list of days of a week is very useful when 
you have to create a very small dataset. It avoids the creation of external 
files to hold that data.

The transformation you created was inspired by the sample transformation  
General - Populate date dimension.ktr found in the samples/transformations 
folder inside the PDI installation folder. You can take a look at that transformation. It builds 
the dataset in a slightly different way, also by using Row Normalizer steps.

Getting variables
To create the secondary stream of the tutorial, you used a Get Variables step. The Get 
Variables step allows you to get the value of one or more variables. In this tutorial you  
read two variables that had been defined as named parameters.

When put as the first step of a stream like in this case, this step creates a dataset with one 
single row and as many fields as read variables.

The following is the dataset created by the Get Variables step in the time dimension tutorial:



Transforming the Row Set

[ 1�2 ]

When put in the middle of a stream, this step adds to the incoming dataset, as many fields as 
the number of variables it reads. Let's see how it works.

Time for action – getting variables for setting the default 
starting date

Let's modify the transformation so that the starting date depends on a parameter.

1.	 Press Ctrl+T to open the transformation settings window.

2.	 Add a parameter named START_DATE with default value 01/12/1999.

3.	 Add a Get variables step between the Calculator step and the Filter rows step .

4.	 Edit the Get variables step and a new field named start_date. Under Variable write 
${START_DATE}. As Type select Date, and under Format select or type dd/MM/yyyy. 

5.	 Modify the filter step so the condition is now: date>=start_date and 
date<=31/12/2020.

6.	 Modify the Select values step to remove the start_date field.

7.	 With the Select values step selected do a preview. You will see this:

What just happened?
You added a starting date as a named parameter. Then you read that variable into a new field 
and used it to keep only the dates that are greater or equal to its value.



Chapter 6

[ 1�3 ]

Using the Get Variables step
As you just saw, the Get Variables step allows you to get the value of one or more variables. In 
the main tutorial you saw how to use the step at the beginning of a stream. Now you saw how  
to use it in the middle. The following is the dataset after the Get Variables step for this  
last exercise:

With the Get Variables step, you can read any Kettle variable—variables defined in the 
kettle.properties file, internal variables as for example ${user.dir}, named parameters 
as in this tutorial, or variables defined in another transformation (you haven't yet learned about 
these variables but you will soon).

As you know, the type of Kettle variables is String by default. However, at the time you get a 
variable, you can change its metadata. As an example of that, in this last exercise you converted 
${START_DATE} to a Date by using the mask dd/MM/yyyy.

Note that you specified the variables as ${name of the variable}. You could have used 
%%name of the variable%% also. The full specification of the name of a variable allows you 
to mix variables with plain text.

Suppose that instead of a date you create a parameter named YEAR with default value 1950.

In the Get variables step you may specify 01/01/${YEAR} as the value.

When you execute the transformation, this text will be expanded to 01/01/1950 or to 
01/01/ plus the year you enter if you overwrite the default value.

Note that the purpose of using the Get Variable step is to have the values of 
variables as fields in the dataset. Otherwise, you don't need to use this step 
for using a variable. You just use it wherever you see a dollar sign icon.



Transforming the Row Set

[ 1�4 ]

Have a go hero – enhancing the time dimension
Modify the time dimension generation by doing the following:

Add the following fields to the dataset, taking as model the generation of weeks: 
Name of month, Short name of month, and Quarter.

Add two more parameters: start_year and end_year. Modify the transformation 
so that it generates dates only between those years. In other words, you have 
to discard dates out of that range. You may assume that the parameters will be 
between 1900 and 2020.

Pop quiz – using Kettle variables inside transformations
There are some Kettle predefined variables that hold information about the logged in user: 
user.country, user.language, etc. The following tasks involve the use of some of those 
variables. Which of the tasks can be accomplished without using a Get Variables step or a 
JavaScript step (Remember from the previous chapter that you can also get the value for a 
Kettle variable with a Javascript step):

a. Create a file named hello_<user>.txt, where <user> is the name of the  
logged user.

b. Create a file named hello.txt that contains a single line with the text Hello, 
<user>!, <user> being  is the name of the logged user.

c. Write to the log (by using the Write to log step) a greeting message like Hello, 
user!. The message has to be written in a different language depending on the 
language of the logged user.

d. All of the above

e. None of the above

Summary
In this chapter, you learned to transform your dataset by applying two magical steps: Row 
Normalizer and Row denormalizer. These two steps aren't the kind of steps you use every 
day such as a Filter Rows or a Select values step. But when you need to do the kind of task 
they achieve, you are really grateful that these steps exist. They do a complex task in a quite 
simple way. You also learned what a time dimension is and how to create a dataset for a  
time dimension.

So far, you've been learning to transform data. In the next chapter, you will set that kind of 
learning aside for a while. The chapter will be devoted to an essential subject when it comes 
to working in productive environments and dealing with real data—data validation and  
error handling.







7
Validating Data and Handling Errors

So far, you have been working alone in front of your own computer. In  
the "Time for action" exercises, the step-by-step instructions along with the  
error-free sample data helped you create and run transformations free of errors. 
During the "Have a go hero" exercises, you likely encountered numerous errors, 
but tips and troubleshooting notes were there to help you get rid of them.

This is quite different from real scenarios, mainly for two reasons:

Real data has errors—a fact that can't be avoided. If you fail to heed it, the 
transformations that run with your sample data will probably crash when  
running with real data.

In most cases, who runs your final work is decided by an automated process and is 
not user defined. Therefore, if a transformation crashes, there will be nobody to fix 
the problem.

In this chapter you will learn about the options that PDI offers to treat errors and validate 
data so that your transformations are well prepared to be run in a productive environment.

Capturing errors
Suppose that you are running or previewing a transformation from Spoon. As you already 
know, if an error occurs it is shown in the Logging window inside the Execution Results 
pane. As a consequence, you can look at the error, try to fix it, and run the transformation 
again. This is far from what happens in real life. As said, transformations in real scenarios 
are supposed to be automated. Therefore, it is not acceptable to have a transformation that 
crashes without someone who notices it and reacts to that situation. On the contrary, it's 
your duty to do everything you can to trap errors that may happen, avoiding unexpected 
crashes when possible. In this section you will learn how to do that.







Validating Data and Handling Errors

[ 1�6 ]

Time for action – capturing errors while calculating the age
of a film

In this tutorial you will use the output of the denormalizing process from the previous 
chapter. You will calculate the age of the films and classify them according to their age.

1.	 Get the file with the films. You can take the transformation that denormalized the 
data and generate the file with a Text file output step, or you can take a sample file 
from the Packt website. 

2.	 Create a new transformation and read the file with a Text file input step.

3.	 Do a preview of the data. You will see the following:

4.	 After the Text file input step, add a Get System Info step.

5.	 Edit the step, add a new field named today, and choose Today 00:00:00 as  
its value.

6.	 Add a JavaScript step.

7.	 Edit the step and type the following piece of code:

var diff;
film_date = str2date('01/01/' + Year, 'dd/MM/yyyy');
diff = dateDiff(film_date,today,”y”);

8.	 Click on Get variables to add diff as a new field.

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>



Chapter 7

[ 1�7 ]

9.	 Add a Number range step, edit it, and fill its window as follows:

10.	With a Sort rows step, sort the data by diff.

11.	Finally, add a Group by step and double-click to edit it.

12.	As group field put age_of_film. In the Aggregates grid create a field named 
number_of_films to hold the number of films with that age. Put film as the 
Subject and select Number of values (N) as the Type.

13.	Add a Dummy step at the end and do a preview. You will be surprised by an error 
like this:



Validating Data and Handling Errors

[ 1�� ]

14.	Look at the logging window. It looks like this:

15.	Now drag Write to log step to the canvas from the Utility category.

16.	Create a hop from the JavaScript step to this new step.

17.	Select the JavaScript step, right-click it to bring up a contextual menu, and select 
Define error handling....

18.	The error handling settings window appears. Fill it like shown:

19.	Click on OK.



Chapter 7

[ 1�� ]

20.	Save the transformation and do a new preview on the Dummy step. You will  
see this:

21.	The logging window will show you this:

 ... - Bad rows.0 - 
 ... - Bad rows.0 - ------------> Linenr 1------------------------- 
 ... - Bad rows.0 - null
 ... - Bad rows.0 - 
 ... - Bad rows.0 - Javascript error: 
	 ...	-	Bad	rows.0	-	Could	not	apply	the	given	format	dd/MM/yyyy		
	 on	the	string	for	01/01/null	:	Format.parseObject(String)	failed		
	 (script#4)

 ... - Bad rows.0 - 
 ... - Bad rows.0 - --> 4:0
 ... - Bad rows.0 - SCR-001
 ... - Bad rows.0 - 
 ... - Bad rows.0 - ====================
 ... - Bad rows.0 - 
 ... - Bad rows.0 - ------------> Linenr 2------------------------- 
 ... - Bad rows.0 - null
 ... - Bad rows.0 - 
 ... - Bad rows.0 - Javascript error: 
	 ...	-	Bad	rows.0	-	Could	not	apply	the	given	format	dd/MM/yyyy		
	 on	the	string	for	01/01/null	:	Format.parseObject(String)	failed		
	 (script#4)

 ... - Bad rows.0 - 
 ... - Bad rows.0 - --> 4:0
 ...

The date was cut from the log for clarity of the log messages.



Validating Data and Handling Errors

[ 200 ]

22.	Now do a preview on the Write to log step. This is what you see:

What just happened?
You created a transformation to read a list of films and group them according to their age, 
that is, how old the movie is. You were surprised by an unexpected error caused by the rows 
in which the year was undefined. Then you implemented error handling to capture that error 
and to avoid the abortion of the transformation. With the treatment of the error, you split 
the stream in two:

The rows that caused the error went to a new stream that wrote to the log 
information about the error

The rows that passed the JavaScript step without problem went through the  
main path 

Using PDI error handling functionality
With the error handling functionality, you can capture errors that otherwise would cause 
the transformation to halt. Instead of aborting, the rows that cause the errors are sent to a 
different stream for further treatment.

You don't need to implement error handling in every step, but in those where it's more 
likely to have errors when running the transformation. A typical situation where you should 
consider handling errors is in a JavaScript step. A code that works perfectly when designing 
might fail while executing against real data, where the most common errors are related to 
data type conversions or indexes out of range. Another common use of error handling is 
when working with databases (you will see more on this later in the book).

To configure the error handling, you have to right-click the step and select Define  
Error handling.







Chapter 7

[ 201 ]

Note that not all steps support error handling. The Define Error handling option 
is available only when clicking on steps that support it.

After opening the settings window, you have to fill it just as you did in the tutorial. You have 
to specify the target step for the bad rows along with the name of the extra fields being 
added, as part of the treatment of errors:

Field Description

Nr of errors fieldname Name for the field that will have the number of errors

Error fields fieldname Name for the field that will have the name of the field(s) that 
caused the errors

Error codes fieldname Name for the field that will have the error code

Error descriptions fieldname Name for the field that will have the error description

The first two are trivial. The last two deserve an explanation. The values for the error code 
and description fields are the same as those you see in the Logging tab when you don't trap 
the error. In the tutorial there was a JavaScript error with code SCR-001 and description 
JavaScript error: Could not apply the given format.... You saw this 
code as well as its description in the Logging tab when you didn't trap the error and the 
transformation crashed, and in the preview you made at the end of the error stream. This 
particular error was a JavaScript one, but the kind of error you get depends always on the 
kind of step where it occurs.

You are not forced to fill all the textboxes in the error setting window. Only the fields for 
which you provide a name will be added to the dataset. By doing a preview on the target 
step, you can see the extra fields that were added.

Aborting a transformation
You can handle the errors by detecting and sending bad rows to an extra stream. But when 
the errors are too many or when the errors are severe, the best option is to cancel the whole 
transformation. Let's see how to force the abortion of a transformation in such a situation.



Validating Data and Handling Errors

[ 202 ]

Time for action – aborting when there are too many errors
1.	 Open the transformation from the previous tutorial and save it under a  

different name.

2.	 From the Flow category, drag an Abort step to the canvas.

3.	 Create a hop from the Write to log step to the Abort step.

4.	 Double-click the Abort step. Enter 5 as Abort threshold. As Abort message, type 
Too many errors calculating age of film!.

5.	 Click OK.

6.	 Select the Dummy step and do a preview. As a result, a warning window shows up 
informing you that there were no rows to display. In the Step Metrics tab, the Abort 
after 5 errors line becomes red to show you that there was an error:

7.	 The log looks like this:

... - Bad rows.0 - 

... - Bad rows.0 - ====================
	 ...	-	Abort	after	5	errors.0	-	Row	nr	6	causing	abort	:		
	 [Trois	couleurs	-	Blanc],	[null],	[Comedy	|	Drama],		
	 [Krzysztof	Kieslowski],	[Zbigniew	Zamachowski,	Julie	Delpy],		
	 [2009/08/18	00:00:00.000],	[

... - Abort after 5 errors.0 - Javascript error: 

... - Abort after 5 errors.0 - Could not apply the given 
format dd/MM/yyyy on the string for 01/01/null : Format.
parseObject(String) failed (script#4)
... - Abort after 5 errors.0 - 
... - Abort after 5 errors.0 - --> 4:0], [SCR-001]
... - Abort after 5 errors.0 - Too many errors calculating age of 
film!
... - Abort after 5 errors.0 - Finished processing (I=0, O=0, R=6, 
W=6, U=0, E=1)



Chapter 7

[ 203 ]

...

... - Spoon - The transformation has finished!!

... - error_handling_with_abort - ERROR (version 3.2.0-GA, build 
10572 from 2009-05-12 08.45.26 by buildguy) : Errors detected!

What just happened?
You forced the abortion of a transformation after five erroneous rows.

Aborting a transformation using the Abort step
Through the use of the Abort step, you force the abortion of a transformation. Its main use is 
in error handling.

You can use the Abort step to force the abortion as soon as a row arrives to it, or after a 
certain number of rows as you did in the tutorial. To decide between one and the other 
option, you use the Abort threshold option. If threshold is 0, the Abort step will abort 
after the first row arrives. If threshold is N, the Abort step will cause the abortion of the 
transformation when the row number N+1 arrives at it.

Beyond the error handling situation, you may use the Abort step in any unexpected 
situation. Examples of that could be when you expect parameters and they are not present 
or when an incoming file is empty when it shouldn't be. In situations like these, you can force 
an abnormal ending of the execution just by adding an Abort step after the step that detects  
the anomaly. 

Fixing captured errors
In the Time for action—capturing errors while calculating the age of a film section of this 
chapter, you sent the bad rows to the log. However, when you capture errors, you can send 
the bad rows toward any step as long as the step knows how to treat those rows. Let's see  
an example of that.

Time for action – treating errors that may appear
1.	 Open the transformation from the tutorial and save it under a different name.

2.	 From the Transform category, drag the Add constants step to the canvas.

3.	 Create a hop from the Write to log step to the Add constants step.

4.	 Add an Integer constant named diff with value 999, and a String constant 
named age_of_film with value unknown.



Validating Data and Handling Errors

[ 204 ]

5.	 After the Add constants step, add a Select values step and use it to remove the 
fields err_code and err_desc.

6.	 Create a hop from the Select values step to the Sort rows step. Your transformation 
should look like this:

Note that you are merging two streams. Those 
streams must have the same metadata. If you get a 
trap detector warning, please verify that you executed 
these instructions exactly as explained.

7.	 Select the Dummy step and do a preview. You will see this:

What just happened?
You modified the transformation so that you didn't end up discarding the erroneous rows. In 
the error stream (the stream after the red dotted line), you fixed the rows by putting default 
values for the new fields. After that you returned the rows to the main stream.



Chapter 7

[ 205 ]

Treating rows coming to the error stream
If the errors are not severe enough to discard the rows, if you can somehow guess  
what data was supposed to be there instead of the error, or if you have default values for  
erroneous data, you can do your best to fix the errors and send the rows back to the  
main stream.

What you did instead of discarding the rows with no year information was to fix the rows 
and send them back to the main stream. The Group by step grouped them under a separate 
category named unknown.

There are no rules for what to do with bad rows where you handle errors. You always have 
the option to discard the bad rows or try to fix them. Sometimes you can fix only a few and 
discard the rest of them. It always depends on your particular data or business rules.

Pop quiz – PDI error handling
What does the PDI error-handling functionality do:

a. Avoids the happening of unexpected errors

b. Captures errors that happen and discards erroneous rows so you can continue 
working with valid data

c. Captures errors that happen and sends erroneous rows to a new stream, letting you 
decide what to do with them

Have a go hero – capturing errors while seeing who wins
On the Packt website you will find a modified football match file named  
wcup_modified.txt. This modified file has some intentional errors.

Download the file and do the following:

1. Create a transformation, read the file with a Text file input step. Set all fields  
as string.

2. Add a JavaScript step and type the following code in it:

var result_desc;

result_split = Result.split('-');
home_g = str2num(result_split[0]);
away_g = str2num(result_split[1]);

if (home_g > away_g)
 result_desc = Home_Team + ' wins';
else if (home_g < away_g)
 result_desc = Away_Team + ' wins';
else result_desc = 'Nobody wins';



Validating Data and Handling Errors

[ 206 ]

3. In the grid below the code, add the string variable result_desc.

4. Do a preview on the JavaScript step and see what happens.

5. Now try any of the following two solutions:

Handle the errors and discard the rows that cause those errors. 
Abort if there are more than 10 errors.

Handle the errors and fix the transformation by setting a default 
result description for the rows that cause the errors.

Avoiding unexpected errors by validating data
To avoid unexpected errors that happen or just to meet your requirements is a common 
practice to validate your data before processing it. Let's do some validations.

Time for action – validating genres with a Regex Evaluation step
In this tutorial you will read the modified films file and validate the genres field.

1.	 Create a new transformation.

2.	 Read the modified films file just as you did in the previous tutorial.

3.	 In the Content tab, check the Rownum in output? option and fill the Rownum 
fieldname with the text rownum.

4.	 Do a preview. You should see this:

5.	 After the Text file input step, add a Regex Evaluation step. You will find it under the 
Scripting category of steps.







Chapter 7

[ 207 ]

6.	 Under the Step settings box, select Genres as the Field to evaluate, and type 
genres_ok as the Result Fieldname.

7.	 In the Regular expression textbox type [A-Za-z\s\-]*(\|[A-Za-z\s\-]*)* .

8.	 Add the Filter rows step, an Add constants step, and two Text file output steps and 
link them as shown next:

9.	 Edit the Add constants step.

10.	Add a String constant named err_code with value GEN_INV and a String constant 
named err_desc with value Invalid list of genres.

11.	Configure the Text file output step after the Add constant step to create the 
${LABSOUTPUT}/films_err.txt file, with the fields rownum, err_code, and 
err_desc.

12.	Configure the other Text file output step to create the ${LABSOUTPUT}/films_
ok.txt file, with the fields film, Year, Genres, Director, and Actors.

13.	Double-click the Filter rows step and add the condition genres_ok = Y, Y being a 
Boolean value. Send true data to the stream that generates the films_ok.txt 
file. Send false data to the other stream.

14.	Run the transformation.

15.	Check the generated files. The films_err.txt file looks like the following:

rownum;err_code;err_desc
12;GEN_INV;Invalid list of genres
18;GEN_INV;Invalid list of genres
20;GEN_INV;Invalid list of genres
21;GEN_INV;Invalid list of genres
22;GEN_INV;Invalid list of genres
33;GEN_INV;Invalid list of genres
34;GEN_INV;Invalid list of genres
...



Validating Data and Handling Errors

[ 20� ]

The films_ok.txt file looks like this:

film;Year;Genres;Director;Actors
Persepolis;2007;Animation | Comedy | Drama | History;Vincent 
Paronnaud, Marjane Satrapi;Chiara Mastroianni, Catherine Deneuve, 
Danielle Darrieux
Trois couleurs - Rouge;1994;Drama;Krzysztof Kieslowski;Irène 
Jacob, Jean-Louis Trintignant, Frédérique Feder, Jean-Pierre 
Lorit, Samuel Le Bihan
Les Misérables;1933;Drama | History;Raymond Bernard;

...

What just happened?
You read the films file and checked that the Genres field was a list of strings separated by |. 
You created two files:

One file with the valid rows.

Another file with the rows with an invalid Genres field. Note that the rownum field 
you added when you read the file is used here for identifying the wrong lines.

In order to check the validity of the Genres field, you used a regular expression. The 
expression you typed accepts any combination of characters, spaces, or hyphens separated 
by a pipe. The * symbol allows empty genres as well. For a detailed explanation of regular 
expressions, please refer to Chapter 2.

Validating data
As said, you would validate data mainly for two reasons:

To prevent the transformation from aborting because of unexpected errors

To check that your data meets some pre-existing requirements

For example, consider some of the sample data from previous chapters:

In the match file, the results field had to be a string formed by two numbers 
separated by a -

In the real estate file, the flag for Fireplace had to be Yes or No

In the contest file the name of the country had to be a valid country, not a  
random string

If your data doesn't meet these requirements, it is possible that you don't have errors but 
you will still be working with invalid data.

















Chapter 7

[ 20� ]

In the last tutorial you just validated one of the fields. If you want to validate more than one 
field, you have a specific step that simplifies that work: The Data Validator.

Time for action – checking films file with the Data Validator
Let's validate not only the Genres field, but also the Year field.

1.	 Open the last transformation and save it under a new name.

2.	 Delete all steps except the Text file input and Text file output steps.

3.	 In the Fields tab of the Text file input step, change the Type of the Year from 
Integer to String. 

4.	 From the Validation category add a Data Validator step. Also add a Select values 
step. Link all steps as follows:

5.	 Double-click the Data Validator step.

6.	 Check the Report all errors, not only the first option found on at the top of the 
window. This will enable the Output one row, concatenate errors with separator 
option. Check this option too, and fill the textbox to the right with a slash /. Click on 
New validation and type genres as the name of the validation rule.

7.	 Click on OK.

8.	 Click on genres. The right half of the window is filled with checkboxes and textboxes 
where you will define the rule.



Validating Data and Handling Errors

[ 210 ]

9.	 Fill the header of the rule definition as follows:

10.	 In the Regular expression expected to match textbox, type  
[A-Za-z\s\-]*(\|[A-Za-z\s\-]*)*

11.	Click on New validation and type year as the name of the validation rule.

12.	Click on OK.

13.	Click on year and fill the header of the rule definition as follows:

14.	 In the data block, select the Only numeric data expected checkbox option.

15.	Click on OK.

16.	Right-click the Data Validator step and select Define error handling....

17.	Fill the error handling settings window as follows: As Target step, select the step that 
generates the file with invalid rows. Check the Enable the error handling? checkbox. 
Type err_desc as Error description field name, err_field as Error fields, and 
err_code as Error codes. Click on OK.

18.	Use the Select values step to change the metadata for the Year from String  
to Integer.

19.	Save the transformation and run it.



Chapter 7

[ 211 ]

20.	Check the generated files. The films_err.txt file now has more detail, as you 
validated two fields.

rownum;err_code;err_desc
	 9;YEAR_NULL;Year	invalid	or	absent

 12;GEN_INV;Invalid list of genres
 18;GEN_INV;Invalid list of genres
 20;GEN_INV;Invalid list of genres
 21;GEN_INV;Invalid list of genres
 22;GEN_INV;Invalid list of genres
 33;GEN_INV;Invalid list of genres
 34;GEN_INV;Invalid list of genres

	 47;YEAR_NULL/GEN_INV;Year	invalid	or	absent/Invalid	list	of	genres

	 48;YEAR_NULL/GEN_INV;Year	invalid	or	absent/Invalid	list	of	genres

	 49;YEAR_NULL;Year	invalid	or	absent

...

21.	The films_ok.txt file should have less rows instead, as the films with year invalid 
or absent are no longer sent to this file.

What just happened?
You used the Data Validator step to validate both the genres list and the year. You created  
a file with the good rows, and another file with the information to show you which errors 
were found.

Defining simple validation rules using the Data Validator
The Data Validator step, or DV for short, allows you to define simple validation rules to 
describe the expected characteristics for the incoming fields. The good thing about the DV 
step is that it concentrates several validations into a single step, and obviously it supports 
error handling.

For every validation rule, you have to specify these fields:

Field Description

Name of the field to validate Name of the incoming field whose value will be 
validated with this rule

Error code The error code to pass to error handling. If 
omitted, a default is set

Error description The error description to pass to error handling. If 
omitted, a default is set



Validating Data and Handling Errors

[ 212 ]

The error code and error description are useful to identify which field was erroneous when 
you have more than one validation rule in a single DV step.

It is possible for more than one field to cause a row pass to error handling. In that case, 
you can generate one output row per error or a single row with all error descriptions 
concatenated. In the tutorial you chose this last option.

In the settings window, once you select a validation rule, you have two blocks of settings—
the Data block where you define the expected data for a field and the Type block where you 
validate if a field matches a given type or not.

In the Data block you set the actual validation rule for a field.

The following table summarizes the kinds of validations you may apply in this block:

Validation Data block options

Allowing (only) null values Null allowed? / Only null values allowed?

Making sure that the length of the selected 
field is between a range of values

Max string length / Min string length.

You may use one or both at the same time.

Making sure that the value of the selected 
field is between a range of values

Maximum value / Minimum value

You may use one or both at the same time.

Making sure that the selected field matches 
a pattern

Only numeric data expected
Expected start string
Expected end string
Regular expression expected to match









Making sure that the selected field doesn't 
match a pattern

Not allowed start string
Not allowed end string
Regular expression not allowed  
to match







Making sure that the selected field is one of 
the values in a given list

Allowed values (when you have a  
fixed list)
Read allowed values from another step? 
(when the list comes from  
another stream)





In the tutorial, you used just a couple from this long list of options. For the validation of the 
genres, you used a regular expression that the field had to match. For the year, you checked 
that the field wasn't null and that it contained only numeric data.

Let's briefly explain what you did to validate the year. You read the year as a String. Then 
with the DV you checked that it contained only numeric data. If the data was valid, you 
changed the metadata to Integer after the row left the DV step.



Chapter 7

[ 213 ]

Why didn't you simply validate whether the year was an Integer? This is because the type 
validation just checks that the year is an integer field, rather than checking if it can be 
converted into an integer. In this case, the year is of type String because you read it  
as a String in the Text file input step.

What would happen if you read the year as an Integer? The invalid fields would cause  
an error in the Text file input step, and the row would never arrive to the DV step to  
be validated.

The type block allows you to validate the type of an incoming field. This just 
checks the real data type, rather than checking if the field can be converted 
into a given data type.

Have a go hero – validating the football matches file
From the Packt website, download the valid_countries.txt file. Modify the 
transformation from the previous "Hero" section doing the following things.

After reading the file, apply the following validation rules:

Field Validation rule

Match_Date dd/mm, where dd/mm is a valid date.

Home_Team Belongs to the list of countries in the valid_countries.txt file.

Away_Team Belongs to the list of countries in the valid_countries.txt file.

Result n-n where n is a number. 

Also validate that Home_Team is different from Away_Team.

Use a Data Validator step when possible.

Send the bad rows to a file of invalid data and the good rows to the JavaScript step.

Test your transformation and check that every validation rule is applied as expected.

Cleansing data
While validation means mainly rejecting data, data cleansing detects and tries to fix not only 
invalid data, but also data considered illegal or inaccurate in a specific domain.

For example, consider a field representing a year. A year containing non-numeric symbols 
should always be considered invalid and then rejected.



Validating Data and Handling Errors

[ 214 ]

Now look at the films example. In this specific case, the year might not be important to you. 
If you find a non-numeric value, you could just replace it by a null year meaning unknown 
and keep the data.

On the contrary, the simple rule that looks for numeric values is not enough. A year equal to 
1084 should also be considered invalid as it is impossible to have a film made at that time. 
However, as it is a common error to type 0 instead of 9, you may assume that there was a 
human mistake and you could replace the 0 in 1084 by a 9 automatically.

Doing data cleansing actually involves trying to detect and deal with these kinds of 
situations, knowing in advance the rules that apply.

Data cleansing, also known as data cleaning or data scrubbing, may be done manually 
or automatically depending on the complexity of the cleansing. With PDI you can use the 
automated option. For the validating part of the process, you can use any of the steps or 
mechanisms explained above. While for the cleaning part you can use any PDI step that suits, 
there are some steps that are particularly useful.

Step Purpose
If field value is null If a field is null, it changes its value to a constant. It can be applied to all fields 

of the same data type, or to particular fields.
Null if... Sets a field value to null if it is equal to a constant value.
Number range Creates ranges based on a numeric field. An example of use is converting 

floating numbers to a discrete scale such as 0, 0.25, 0.50, and so on. 
Value Mapper Maps values of a field from one value to another. For example, you can use 

this step to convert yes/no, true/false, or 0/1 values to Y/N.
Stream lookup Looks up values coming from another stream. In data cleansing, you can use 

it to set a default value if your field is not in a given list.
Database lookup Same as Stream lookup but looking in a database table.
Unique rows Removes double consecutive rows and leaves only unique occurrences.

For examples that use these steps or for getting more information about them, please refer 
to Appendix C, Job Entries and Steps Reference.

Have a go hero – cleansing films data
From the Packt's website, download the fix_genres.txt file. The file has the  
following lines:

erroneous;fixed
commedy;comedy
sci-fi; science fiction
science-fiction; science fiction
musical;music
historical;history



Chapter 7

[ 215 ]

Create a new transformation and do the following:

Read the modified films file that you have used throughout the chapter. Validate that the 
genre is a list of strings separated by |. Send the bad rows to a file of bad rows. So far,  
this is the same as you did in the last two tutorials. Now clean the genres in the lists.  
For every genre:

1. Check that it is not null. If it is null, discard it.

2. Split composed genres in two. For example, Historical drama becomes 
historical and drama.

3. Standardize the descriptions:

Remove trailing spaces.

Change the descriptions to lower case.

4. Check that it is not misspelled. For doing that, use the miss_genres.txt file. If 
the genre is in the list, replace the text by the correct description.

5. After all this cleaning add a Dummy step and preview the results.

To validate each genre, you can split the Genres field into rows. After the 
cleansing, you can recover the original lines by grouping the rows, using as 
aggregate Concatenate strings separated by | to concatenate 
the validated genres.

Summary
In this chapter, you learned two essential subjects when it comes to the running of 
transformations by nontechnical users, in productive environments, with real data—
validating data and handling errors.

In the next chapter, we go back to the development, this time with a subject that most of 
you must be waiting for since Chapter 1—working with databases.









�
Working with Databases

Database systems are the main mechanism used by most organizations to store 
and administer organizational data. Online sales, bank-related operations, 
customer service history, and credit card transactions are some examples of 
data stored in databases.

This is the first of two chapters fully dedicated to working with databases. This chapter 
provides an overview of the main database concepts. It also covers the following topics:

Connecting to databases

Previewing and getting data from a database

Inserting, updating, and deleting data from a database

Introducing the Steel Wheels sample database 
As you were told in the first chapter, there is a Pentaho Demo that includes data for a 
fictional store named Steel Wheels and you can download it from the Internet. This data is 
stored in a database that is going to be the starting point for you to learn how to work with 
databases in PDI. Before beginning to work on databases, let's briefly introduce the Steel 
Wheels database along with some database definitions.









Working with Databases

[ 21� ]

A relational database is a collection of items stored in tables. Typically, all items stored in a 
table belong to a particular type of data. The following table lists some of the tables in the 
Steel Wheels database:

Table Content
CUSTOMERS Steel Wheels' customers
EMPLOYEES Steel Wheels' employees
PRODUCTS Products sold by Steel Wheels 
OFFICES Steel Wheels' offices
ORDERS Information about sales orders
ORDERDETAILS Details about the sales orders

The items stored in the tables represent an entity or a concept in the real world. As an 
example, the CUSTOMERS table stores items representing customers. The ORDERS table 
stores items that represent sales orders in the real world.

In technical terms, a table is uniquely identified by a name such as CUSTOMERS, and contains 
columns and rows of data.

You can think of a table as a PDI dataset. You have fields (the columns of the table) and rows 
(the records of the table).

The columns, just like the fields in a PDI dataset, have a metadata describing their name, type, 
and length. The records hold the data for those columns; each record represents a different 
instance of the items in the table. As an example, the table CUSTOMERS describes the 
customers with the columns CUSTOMERNUMBER, CUSTOMERNAME, CONTACTLASTNAME and so 
forth. Each record of the table CUSTOMERS belongs to a different Steel Wheels' customer.

A table usually has a primary key. A primary key or PK is a combination of one or more 
columns that uniquely identify each record of the table. In the sample table, CUSTOMERS, 
the primary key is made up of a single column—CUSTOMERNUMBER. This means there cannot 
be two customers with the same customer number.

Tables in a relational database are usually related to one another. For example, the 
CUSTOMERS and ORDERS tables are related to convey the fact that real-world customers 
have placed one or more real-world orders. In the database, the ORDERS table has a column 
named CUSTOMERNUMBER with the number of the customer who placed the order. As said, 
CUSTOMERNUMBER is the column that uniquely identifies a customer in the CUSTOMERS 
table. Thus, there is a relationship between both tables. This kind of relationship between 
columns in two tables is called foreign key or FK.



Chapter 8

[ 21� ]

Connecting to the Steel Wheels database
The first thing you have to do in order to work with a database is tell PDI how to access the 
database. Let's learn how to do it.

Time for action – creating a connection with the Steel Wheels 
database

In this first database tutorial, you will download the sample database and create a 
connection for accessing it from PDI.

The Pentaho BI demo includes the sample data. So, if you have already 
downloaded the demo as explained in Chapter 1, just skip the first 
three steps. If the Pentaho BI demo is running on your machine, the 
database server is running as well. In that case, skip the first four steps.

1. Go to the Pentaho Download site: http://sourceforge.net/projects/
pentaho/files/.

2.	 Under the Business Intelligence Server | 1.7.1-stable, look for the file namedlook for the file named 
pentaho_sample_data-1.7.1.zip and download it.

3.	 Unzip the downloaded file.

4.	 Run start_hypersonic.bat under Windows or start_hypersonic.sh under 
Unix-based operating systems. If you download the sample data, you will find 
these scripts in the folder named pentaho-data. If you download the Pentaho BI 
server instead, you will find them in the folder named data. The following screen is 
displayed when the database server starts:



Working with Databases

[ 220 ]

Don't close this window. It would cause the database 
server to stop.

5.	 Open Spoon and create a new transformation.

6. Click on the View option that appears in the upper-left corner of the screen.

7. Right-click the Database connections option and click on New.

8.	 Fill the Database Connection dialog window as follows:



Chapter 8

[ 221 ]

9.	 Click on the Test button. The following window shows up:

If you get an error message instead of the Message window shown in the 
previous screenshot, please recheck the data you entered in the connection 
window. Also verify that the database is running, that is, the terminal window 
is still opened and doesn't show an error message. If you see an error, or if 
you don't see the terminal, please start the database server again as explained 
at the beginning of the tutorial.

10.	Click on OK to close the test window. 

11.	Click on OK again to close the database definition window. A new database 
connection is added to the tree.

12. Right-click on the database connection and click on Share. The connection 
is available in all transformations you create from now onwards. The shared 
connections are shown in bold letters.

13.	Save the transformation.

What just happened?
You created and tested a connection to the Pentaho Sample database. Finally, you shared the 
connection so that it could be reused in other transformations.



Working with Databases

[ 222 ]

Connecting with Relational Database Management Systems
Even if you've never worked with databases, you must have heard terms such as MySQL, Oracle, 
DB2, or MS SQL server. These are just some of many Relational Database Management 
Systems (RDBMS) on the market. An RDBMS is a software that lets you create and administer 
relational databases.

In the tutorial you worked with HyperSQL DataBase (HSQLDB), just another RDBMS formerly 
known as Hypersonic DB. HSQLDB has a small, fast database engine written in Java. HSQLDB 
is currently being used in many open source software projects such as OpenOffice.org 3.1 
as well as in commercial projects and products such as Mathematica. You can get more 
information about HSQLDB at http://hsqldb.org/.

PDI has the ability to connect with both commercial RDBMSes such as Oracle or MS SQL 
server and free RDBMSes such as MySQL. In order to get connected to a particular database, 
you have to define a connection to it.

A database connection describes all parameters needed to connect PDI to a database.

To create a connection, you must give the connection a name and fill at least the  
general settings:

Setting Description Steel Wheels sample

Connection 
type

Type of database system: HSQLDB, Oracle, MySQL, 
Firebird, and so on.

HSQLDB

Method of 
access

Native (JDBC), ODBC, JNDI, or OCI. The available options 
depend on the type of DB.

Native (JDBC)

Host name Name or IP address for the host where the database is. localhost

Database 
name

Identifies the database to which you want to connect. sampledata

Port number PDI sets as default the most usual port number for the 
selected type of database. You can change it of course.

9001

User Name / 
Password

Name of the user and password to connect to the 
database.

pentaho_admin / 
password

If you don't find your database engine in the list, you will still be able to connect 
to it by specifying as connection type, the Generic database option. In that case, 
you have to provide a connection URL and the driver class name.

After creating a connection, you can click the Test button to check that the connection has 
been defined correctly and that you can reach them from PDI.



Chapter 8

[ 223 ]

The database connections will be available just in the transformation where you defined 
them, unless you share it for reuse as you did in the tutorial. Normally, you share 
connections because you know that you will use them later in many transformations.

The information about shared connections is stored in a file named shared.xml, located in the 
same folder as the kettle.properties file.

When you have shared connections and you save the transformation, the connection 
information is saved in the transformation itself.

If there is more than one shared connection, all of them will be saved 
along with the transformation, even if the transformation doesn't use 
them all. To avoid this, go to the editing options and check the Only 
save used connections to XML? option. This option limits the XML 
content of a transformation to just the used connections.

Pop quiz – defining database connections
Which options do you have to connect to the same database in several transformations:

a. Define the connection in each transformation that needs it

b. Define a connection once and share it

c. Either of the above options

d. Neither of the above options

Have a go hero – connecting to your own databases
You must have access to a database, whether local or in the network to which you are logged 
in. Get the connection information for the database. From PDI create a connection to the 
database and test it to verify that you can access it from PDI.

Exploring the Steel Wheels database
In the previous section, you learned about what RDBMSs are and how to connect to an 
RDBMS from PDI. Before beginning to work with the data in a database, it would be useful to 
get familiarized with that database. In this section, you will learn to explore databases with 
the PDI Database explorer.



Working with Databases

[ 224 ]

Time for action – exploring the sample database
Let's explore the sample database:

1.	 Open the transformation you just created.

2. Right-click the connection in the Database connections list and select Explore in the 
contextual menu. The Database explorer on connection window opens.

3.	 Expand the Tables node of the tree and select CUSTOMERS. This is how the 
explorer looks:

4.	 Click on the Open SQL for [CUSTOMERS] option.

5.	 The following SQL editor window appears:



Chapter 8

[ 225 ]

6.	 Modify the text in the window so that you have the following:

 SELECT 
   CUSTOMERNUMBER
 , CUSTOMERNAME
 , CITY
 , COUNTRY
  FROM CUSTOMERS

7.	 Click on Execute. You will see the following result:

8.	 Close the preview window (the window that tells the result of the execution) and  
the SQL editor window.

9.	 Click on OK to close the database explorer window.

What just happened?
You explored the Pentaho sample database with the PDI Database explorer.

A brief word about SQL
Before explaining the details of the database explorer, it's worth giving an introduction to 
SQL—a central topic in relational database terminology.

SQL, that is, Structured Query Language is the language that lets you access and manipulate 
databases in a RDBMS.

SQL can be divided into two parts—DDL and DML.



Working with Databases

[ 226 ]

The DDL, that is, Data Definition Language is the branch of the language that basically allows 
creating or deleting databases and tables.

The following is an example of DDL. It is the DDL statement that creates the  
CUSTOMERS table.

CREATE TABLE CUSTOMERS
(
  CUSTOMERNUMBER INTEGER
, CUSTOMERNAME VARCHAR(50)
, CONTACTLASTNAME VARCHAR(50)
, CONTACTFIRSTNAME VARCHAR(50)
, PHONE VARCHAR(50)
, ADDRESSLINE1 VARCHAR(50)
, ADDRESSLINE2 VARCHAR(50)
, CITY VARCHAR(50)
, STATE VARCHAR(50)
, POSTALCODE VARCHAR(15)
, COUNTRY VARCHAR(50)
, SALESREPEMPLOYEENUMBER INTEGER
, CREDITLIMIT BIGINT
)

;

This DDL statement tells the database to create the table CUSTOMERS with the columns 
CUSTOMERNUMBER of the type INTEGER, the column CUSTOMERNAME of the type VARCHAR 
with length 50, and so on.

Note that INTEGER, VARCHAR, and BIGINT are HSQLDB types of data, not PDI ones. The 
DML, that is, Data Manipulation Language allows you to retrieve data from a database. It 
also lets you insert, update, or delete data from the database.

The statement you typed in the SQL editor is an example of DML:

SELECT 
  CUSTOMERNUMBER
, CUSTOMERNAME
, CITY
, COUNTRY
 FROM CUSTOMERS



Chapter 8

[ 227 ]

This statement is asking the database to retrieve all the rows for the CUSTOMERS table, 
showing only CUSTOMERNUMBER, CUSTOMERNAME, CITY, and COUNTRY columns. After you 
clicked Execute, PDI queried the database and showed you a window with the data you had 
asked for.

If you were to leave the following statement:

SELECT * FROM CUSTOMERS

the window would have showed you all columns for the CUSTOMERS table.

SELECT is the statement that allows you to retrieve data from one or more tables. It is the 
most commonly used DML statement and you're going to use it a lot when working with 
databases in PDI. You will learn more about the SELECT statement in the next section of  
this chapter.

Other important DML statements are: 

INSERT: This allows you to insert rows in a table
UPDATE : This allows you to update the values in rows of a table

DELETE: This statement is used to remove rows from a table

It is important to understand the meaning of these basic statements, but you are not  
forced to learn them as PDI offers you ways to insert, update, and delete without typing  
any SQL statement.

Although SQL is a standard, each database engine has its own version of the SQL language. 
However, all database engines support the main commands.

When you type SQL statements in PDI, try to keep the code within the 
standard. Your transformations will then be reusable in case you have 
to change the database engine.

If you are interested in learning more about SQL, there are a lot of tutorials on the Internet. 
The following are a few useful links with tutorials and SQL references:

http://www.sqlcourse.com/

http://www.w3schools.com/SQl/

http://sqlzoo.net/

Until now, you have used only HSQLDB. In the tutorials to come, you will also work with the 
MySQL database engine. So, you may be interested in specific documentation for MySQL, 
which you can find at http://dev.mysql.com/doc/. You can find even more information 
in books; there are plenty of books available about both SQL language and MySQL databases.















Working with Databases

[ 22� ]

Exploring any configured database with the PDI Database explorer
The database explorer allows you to explore any configured database. When you open the 
database explorer, the first thing you see is a tree with the different objects of the database. 
As soon as you select a database table, all buttons to the right side become available for you 
to explore that table. The following are the functions offered by the buttons at the right side 
of the database explorer:

Option Meaning

Preview first 100 rows of ... Return the first 100 rows of the selected table, or all the rows 
if the table has less that 100. This option shows all columns of 
the table.

Preview first...rows of ... The same as the previous option, but here you decide the 
number of rows to show.

Number of rows of ... Tells you the total number of records in the table.

Show layout of ... Shows you the metadata for the columns of the table.

Generate DDL Shows you the DDL statement that creates the selected table.

Generate DDL for other 
connection

It lets you select another existent connection. Then it shows 
you the DDL just like the previous option. The difference is that 
the DDL is written with the syntax of the database engine of the 
selected connection.

Open SQL for ... Lets you edit a SELECT statement to query the table. Here you 
decide which columns and rows to retrieve.

Truncate table Deletes all rows from the selected table.

In the tutorial you opened the Database explorer from the contextual 
menu in the Database connections tree. You can also open it by clicking 
the Explore option in the database definition window.

Have a go hero – exploring the sample data in depth
In the tutorial you just tried the Open SQL button. Feel free to try other buttons to  
explore not only the CUSTOMERS table but also the rest of the tables found in the Steel 
Wheels database.



Chapter 8

[ 22� ]

Have a go hero – exploring your own databases
In the previous section, there was a Hero exercise that asked you to connect to your own 
databases. If you have done that, then use a database connection defined by you and 
explore the database. See if you can recognize the different objects of the database. Run 
some previews to verify that everything looks as expected.

Querying a database
So far you have just connected to a database. You haven't yet worked with the data. Now is 
the time to do that.

Time for action – getting data about shipped orders
Let's continue working with the sample data.

1.	 Create a new transformation.

2.	 Select the Design view.

3.	 Expand the input category of steps and drag a Table Input step to the canvas.

4.	 Double-click the step.

5.	 Click on the Get SQL select statement... button. The database explorer  
window appears.

6.	 Expand the tables list and select ORDERS.

7.	 Click on OK.

8.	 PDI asks if you want to include the field names in the SQL. Answer Yes.

9.	 The SQL box gets filled with a SELECT SQL statement.

SELECT

  ORDERNUMBER

, ORDERDATE

, REQUIREDDATE

, SHIPPEDDATE

, STATUS

, COMMENTS

, CUSTOMERNUMBER

FROM ORDERS



Working with Databases

[ 230 ]

10.	At the end of the SQL statement, add the following clause:

WHERE STATUS = 'Shipped'

11.	Click Preview and then OK. The following window appears:

12. Close the window and click OK to close the step configuration window.

13.	After the Table input step add a Calculator step, a Number Range step, a Sort step, 
and a Select values step and link them as follows:

14. With the Calculator step, add an Integer field to calculate the difference between 
the shipped date and the required date. Use the calculation Date A – Date B  
(in days) and name the field diff_days. Use the Number ranges step to classify 
the delays in delivery.



Chapter 8

[ 231 ]

15.	Use the Sort rows step to sort the rows by the diff_days field.

16.	Use the Select values step to select the delivery, ORDERNUMBER, REQUIREDDATE, 
and SHIPPEDDATE fields.

17.	With the Select values step selected, do a preview. The following is how the final 
data will look:

What just happened?
From the sample database, you got information about shipped orders. After you read  
the data from the database, you classified the orders based on the time it took to do  
the shipment.

Getting data from the database with the Table input step
The Table input step is the main step to get data from a database. In order to use it, you have 
to specify the connection with the database. In the tutorial you didn't explicitly specify one 
because there was just one connection and PDI put it as the default value.



Working with Databases

[ 232 ]

The connection was available because you shared it before. If you hadn't, you should have 
created here again.

The output of a Table Input step is a regular dataset. Each column of the SQL query leads  
to a new field and the rows generated by the execution of the query become the rows of  
the dataset.

As the data types of the databases are not exactly the same as the PDI data types, when 
getting data from a table, PDI implicitly converts the metadata of the new fields.

For example, consider the ORDERS table. Open the Database Explorer and look at the DDL 
definition for the table. Then right-click the Table input step and select Show output fields to 
see the metadata of the created dataset. The following table shows you how the metadata 
was translated:

Table columns Database data type PDI metadata

ORDERNUMBER, 
CUSTOMERNUMBER

INTEGER Integer(9)

ORDERDATE, REQUIREDDATE, 
SHIPPEDDATE

TIMESTAMP Date

STATUS VARCHAR(15) String(15)

COMMENTS TEXT String(214748364)

Once the data comes out of the Table input step and the metadata is adjusted, PDI forgets 
that it comes from a database. It treats it just as regular data, no matter if it came from a 
database or any other data source.

Using the SELECT statement for generating a new dataset
The SQL area of a Table input step is where you write the SELECT statement that will 
generate the new dataset. As said before, SELECT is the statement that you use to retrieve 
data from one or more tables in your database.

The simplest SELECT statement is as follows:

SELECT <values> 
FROM <table name>

Here <table name> is the name of the table that will be queried to get the result set and 
<values> is the list of the desired columns of that table, separated by commas.

This is another simple SELECT statement:

SELECT ORDERNUMBER, ORDERDATE, STATUS 
FROM ORDERS



Chapter 8

[ 233 ]

If you want to select all columns, you can just put a * as here:

SELECT * 
FROM ORDERS

There are some optional clauses that you can add to a SELECT statement. The most  
commonly used among the optional clauses are WHERE and ORDER BY. The WHERE clause 
limits the list of retrieved records, while ORDER BY is used to retrieve the rows sorted by 
one or more columns.

Another common clause is DISTINCT that can be used to return only different records.

Let's see some sample SELECT statements:

Sample statement Output
SELECT ORDERNUMBER, ORDERDATE 
FROM ORDERS
WHERE SHIPPEDDATE IS NULL

Returns the number and order date for the orders 
that have not been shipped.

SELECT *
FROM EMPLOYEES
WHERE JOBTITLE = 'Sales Rep' 
ORDER BY LASTNAME, FIRSTNAME

Returns all columns for the employees whose job 
is sales representative, ordered by last name and 
first name.

SELECT PRODUCTNAME
FROM PRODUCTS
WHERE PRODUCTLINE LIKE '%Cars%'

Returns the list of products whose product line 
contains cars—for example, Classic cars and 
Vintage cars.

SELECT DISTINCT CUSTOMERNUMBER
FROM PAYMENTS
WHERE AMOUNT > 80000

Returns the list of customer numbers who have 
made payments with checks above USD80,000. 
The customers who have paid more than once 
with a check above USD80,000 appear more than 
once in the PAYMENTS table, but only once in this 
result set.

You can try these statements in the database explorer to check that the result sets are  
as explained.

When you add a Table input step, it comes with a default SELECT statement for you  
to complete.

SELECT <values> FROM <table name> WHERE <conditions>

If you need to query a single table, you can take advantage of the Get SQL select 
statement... button that generates the full statement for you. After you get the statement, 
you can modify it at your will by adding, say, WHERE or ORDER clauses just as you did in the 
tutorial. If you need to write more complex queries, you will have to do it manually.



Working with Databases

[ 234 ]

You can write any SELECT query as long as it is a valid SQL statement for 
the selected type of database. Remember that every database engine has 
its own dialect of the language.

Whether simple or complex, you may need to pass some parameters to the query. You can 
do it in a couple of ways. Let's explain this with two practical examples.

Making flexible queries by using parameters
One of the ways you have to make your queries more flexible is by passing it through some 
parameters. In the following tutorial you will learn how to do it.

Time for action – getting orders in a range of dates  by using 
parameters 

Now you will modify your transformation so that it shows orders in a range of dates.

1.	 Open the transformation from the previous tutorial and save it under a new name.

2.	 From the Input category, add a Get System Info step.

3.	 Double-click it and use the step to get the command line argument 1 and command 
line argument 2 values. Name the fields as date_from and date_to respectively. 
Create a hop from the Get System Info step to the Table input step.

4.	 Double-click the Table input step.

5.	 Modify the SELECT statement as follows:

 SELECT
   ORDERNUMBER
 , ORDERDATE
 , REQUIREDDATE
 , SHIPPEDDATE
 FROM ORDERS
 WHERE STATUS = 'Shipped'
	 AND	ORDERDATE	BETWEEN	?	AND	?

6.	 In the drop-down list to the right side of Insert data from step, select the  
incoming step.

7.	 Click OK. 

8.	 With the Select values step selected, click the Preview button.



Chapter 8

[ 235 ]

9.	 Click on Configure. 

10.	Fill the Arguments grid. To the right of the argument 01, type 2004-12-01. To the 
right of the argument 02, type 2004-12-10.

11.	Click OK. The following window appears:

What just happened?
You modified the transformation from the previous tutorial to get orders in a range of dates 
coming from the command line.

Adding parameters to your queries
You can make your queries more flexible by adding parameters. Let's explain how you do it.

The first thing to do is obtain the fields that will be plugged as parameters. You can get them 
from any source by using any number of steps, as long as you create a hop from the last step 
toward the Table input step.

In the tutorial you just used a Get System Info step that read the parameters from the 
command line.

Once you have the parameters for the query, you have to change the Table input step 
configuration. In the Insert data from step option, you have to select the name of the step 
that the parameters will come from. In the query, you have to put a question mark (?) for 
each incoming parameter.

When you execute the transformation, the question marks are replaced, one by one, with 
the data that comes to the Table input step.



Working with Databases

[ 236 ]

Let's see how it works in the tutorial. The following is the output of the Get System Info step:

In the SQL statement, you have two question marks. The first is replaced by the value of the 
date_from field and the second is replaced by the value of the date_to field. Now the SQL 
statement becomes:

SELECT
  ORDERNUMBER
, ORDERDATE
, REQUIREDDATE
, SHIPPEDDATE
FROM ORDERS
WHERE STATUS = 'Shipped'
AND	ORDERDATE	BETWEEN	'2004-12-01'	AND	'2004-12-10'

Here 2004-12-01 and 2004-12-10 are the values you entered as arguments for  
the transformation.

The replacement of the markers respects the order of the incoming fields.

When you use question marks to parameterize a query, you can't forget 
the following—the number of fields coming to a Table input step must be 
exactly the same as the number of question marks found in the query.

Making flexible queries by using Kettle variables
Another way you have to make your queries flexible is by using Kettle variables. Let's explain 
how you do it using an example.



Chapter 8

[ 237 ]

Time for action – getting orders in a range of dates by using 
variables

In this tutorial you will do the same as you did in the previous tutorial, but another method 
will be explained to you.

1.	 Open the main transformation we created in the Time for action–getting 
data about shipped orders section and save it under a new name.

2.	 Double-click the Table input step.

3.	 Modify the SELECT statement as follows:

 SELECT
   ORDERNUMBER
 , ORDERDATE
 , REQUIREDDATE
 , SHIPPEDDATE
 FROM ORDERS
 WHERE STATUS = 'Shipped'
	 AND	ORDERDATE	BETWEEN	'${DATE_FROM}'	AND	'${DATE_TO}'

4.	 Tick the Replace variables in script? checkbox.

5.	 Save the transformation.

6.	 With the Select values step selected, click the Preview button.

7.	 Click on Configure. 

8.	 Fill the Variables grid in the settings dialog window—type 2004-12-01 to the right 
of the DATE_FROM option and 2004-12-10 to the right of the DATE_TO option.

9.	 Click OK. This following window appears:



Working with Databases

[ 23� ]

What just happened?
You modified the transformation from the previous tutorial, so the range of dates is taken 
from two variables—DATE_FROM and DATE_TO. The final result set was exactly the same you 
got in the previous version of the transformation. 

Using Kettle variables in your queries
As an alternative to the use of positional parameters, you can use Kettle variables. Instead 
of getting the parameters from an incoming step, you check the option Replace variables in 
script? and replace the question marks by names of variables. The final result is the same.

PDI replaces the names of the variables by their values. Only after that, it sends the SQL 
statement to the database engine to be evaluated.

The advantage of using positional parameters over the variables is quite obvious—you don't 
have to define the variables in advance.

On the contrary, Kettle variables have several advantages over the use of question marks:

You can use the same variable more than once in the same query.

You can use variables for any portion of the query, not just the values. For example, 
you could have the following query:

SELECT ORDERNUMBER FROM ${ORDER_TABLE}

Then the result will vary upon the content of the variable ${ORDER_TABLE}. In the 
case of this example, the variable could be ORDERS or ORDERDETAILS.

A query with variables is easier to understand and less error prone than a query 
with positional parameters. When you use positional parameters, it's quite common 
to get confused and make mistakes.

Note that in order to provide parameters to a statement in a 
Table input step, it's perfectly possible to combine both methods: 
positional parameters and Kettle variables.

Pop quiz – database datatypes versus PDI datatypes
After you read data from the database with a Table Input step, what happens to the data 
types of that data:

a. They remain unchanged

b. PDI converts the database data types to internal data types

c. It depends on how you defined the database connection









Chapter 8

[ 23� ]

Have a go hero – querying the sample data
Based on the sample data:

Create a transformation to list the offices of Steel Wheels located in USA. Modify the 
transformation so that the country is entered by command line.

Create a transformation that lists the contact information of clients whose credit 
limit is above USD100,000. Modify the transformation so that the threshold is 
100000 by default, but can be modified when you run the transformation.  
(Hint: Use named parameters.)

Create a transformation that generates two Excel files—one with a list of planes  
and the other with a list of ships. Include the code, name, and description of  
the products.

Sending data to a database
By now you know how to get data from a database. Now you will learn how to insert data 
into it. For the next tutorials we will use a MySQL database, so before proceeding make sure 
you have MySQL installed ad running.

If you haven't yet installed MySQL, please refer to Chapter 1. It has 
basic instructions on installing MySQL, both on Windows and on 
Linux operating systems.

Time for action – loading a table with a list of manufacturers
Suppose you love jigsaw puzzles and decided to open a store for selling them. You have 
made all the arrangements and the only missing thing is the software. You have already 
acquired a software to handle your business, but you still have one hard task to do—insert 
data into the database, that is, load the database with the basic information about the 
products you are about to sell.

As this is the first of several tutorials in which you will interact with that database, the first 
thing you have to do is to create the database.

For MySQL-specific tasks such as the creation of a database, we will use 
the MySQL Query Browser, included in the MySQL GUI Tools software. If 
you don't have it or don't like it, you can accomplish the same tasks by 
using the MySQL Command Line Client or any other GUI Tool.









Working with Databases

[ 240 ]

1.	 From the Packt website, download the script file js.sql.

2.	 Launch the MySQL Query Browser.

3.	 A dialog window appears asking you for the connection information. Enter 
localhost as Server Host, and as Username and Password, enter the name 
and password of the user you created when you installed the software .

4.	 Click on OK.

5.	 From the File menu, select Open Script....

6.	 Locate the downloaded file and open it.

7.	 Click on the Execute button or press Ctrl+Enter.

8.	 In the Schemata tab window, a new database, js, appears.

9.	 Right-click the name of the database and select Make Default Schema.

10.	 In the Schemata tab window, expand the js tree and you will see the tables of  
the database.

11.	Close the script window.

Now that the database has been created, let's load some data into it:

1.	 From the Packt website, download the  manufacturers.xls file.

2.	 Open Spoon and create a new transformation.

3.	 Create a connection to the created database. Under Connection Type, select 
MySQL. In the Settings frame, insert the same values you provided for the 
connection in MySQL Query Browser—enter localhost as Host Name and 
js (the database you just created) as Database Name, and as User Name 
and Password, enter the name and password of the user you created when 
you installed MySQL. For other settings in the window, leave the default 
values. Test the connection to see if it has been properly created. 

The main reason for a failed test is either erroneous data provided 
in the setting window or the non-functioning of the server. If the 
test fails, please read the error message to know exactly what the 
error was and act accordingly. 

4.	 Right-click the database connection and share it.



Chapter 8

[ 241 ]

5.	 Drag an Excel Input step to the canvas and use it to read the  
manufacturers.xls file.

6.	 Click on Preview Rows to check that you are reading the file properly. You should  
see the following:

7.	 From the Output category of steps, drag a Table Output step to the canvas.

8.	 Create a hop from the Excel Input step to the Table output step.

9.	 Double-click the Table output step and fill the main settings window as 
follows—select js as Connection, as Target table, browse and select the 
table manufacturers or type it. Check the Specify database fields option.

It is not mandatory but recommended in this particular exercise that 
you also check the Truncate table option. Otherwise, the output 
table will have duplicate records if you run the transformation more 
than once.

10.	Select the Database fields tab.



Working with Databases

[ 242 ]

11.	Fill the grid as follows:

12.	Click OK.

13.	After the Table output step, add a Write to log step.

14.	Right-click the Table output step and select Define error handling....

15.	Fill the error handling settings window. As Target step, select the  
Write to log step. Check the Enable the error handling? option. Enter  
db_err_desc as Error descriptions fieldname, db_err_field as 
Error fields fieldname, and db_err_cod as Error codes fieldname.

16.	Click OK. The following is your final transformation:

17.	Save the transformation and run it.



Chapter 8

[ 243 ]

18.	Take a look at the Steps Metrics tab window. You will see the following:

19.	Now look at the Logging tab window. The following  is what you see:

20.	Switch to MySQL Query Browser.

21.	 In the Schemata window, double-click the manufacturers table.

22.	The query entry box is filled with a basic SELECT statement for that table such as:

SELECT * FROM manufacturers m;



Working with Databases

[ 244 ]

23.	Click Execute. The following result set is shown:

What just happened?
In the first part of the tutorial, you created the Jigsaw Puzzle database.

In Spoon, you created a connection to the new database.

Finally, you created a transformation that read an Excel file with a list of puzzle 
manufacturers and inserted that data into the manufacturers table. Note that not  
all rows were inserted. The row that couldn't be inserted was reported in the log.

In the data for the tutorial, there was a description too long to be inserted in the table. That 
was properly reported in the log because you implemented error handling. Doing that, you 
avoided the abortion of the transformation due to errors like that. As you learned in the 
previous chapter, when a row causes an error, it is up to you to decide what to do with that 
row. In this case, the row was sent to the log and wasn't inserted. Other possible options  
for you are:



Chapter 8

[ 245 ]

Fixing the problem in the Excel file and rerunning the transformation

Validating the data and fixing it properly (for example, cutting the descriptions) 
before the data arrives to the Table output step

Sending the full data for the erroneous rows to a file, fixing manually the data in the 
file, and creating a transformation that inserts only this data

Inserting new data into a database table with the Table  
output step
The Table output step is the main PDI step for inserting new data into a database table.

The use of this step is simple. You have to enter the name of the database connection  
and the name of the table where you want to insert data. The names for the connection  
and the table are mandatory, but as you can see, there are some extra settings for the  
Table output step.

The database field tab lets you specify the mapping between the dataset stream fields and 
the table fields. 

In the tutorial the dataset had two fields—CODE and NAME. The table has two columns 
named man_code and man_desc. 

As the names are different, you have to explicitly indicate that the CODE field is to be written 
in the table field named man_code, and that the NAME field is to be written in the table field 
named man_desc.

The following are some important tips and warnings about the use of the Table output step:

If the names of the fields in the PDI stream are equal to the names of the columns 
in the table, you don't have to specify the mapping. In that case, you have to leave 
the Specify database fields checkbox unchecked and make sure that all the fields 
coming to the Table output step exist in the table.

Before sending data to the Table output step, check your transformation against the 
definition of the table. All the mandatory columns that don't have a default value 
must have a corresponding field in the PDI stream coming to the Table output step.

Check the data types for the fields you are sending to the table. It is possible 
that a PDI field type and the table column data type don’t match. In that case, fix 
the problem before sending the data to the table. You can, for example, use the 
Metadata tab of a Select values step to change the data type of the data.















Working with Databases

[ 246 ]

In the Table output step, you may have noted a button named SQL. This button generates 
the DDL to create the output table. In the tutorial, the output table, manufacturers, 
already existed. But if you want to create the table from scratch, this button allows you  
to do it based on the database fields you provided in the step.

Inserting or updating data by using other PDI steps
The Table output step provides the simplest but not the only way to insert data into a 
database table. In this section, you will learn some alternatives for feeding a table with PDI.

Time for action – inserting new products or updating 
existent ones

So far, you created the Jigsaw Puzzles database and loaded a list of puzzles manufacturers. 
It's time to start loading information about the products you will sell— puzzles.

Suppose, in order to show you what they are selling, the suppliers provide you with the lists 
of products made by the manufacturers themselves. Fortunately, they don't give you the lists 
in the form of papers, but they give you either plain files or spreadsheets. In this tutorial, you 
will take the list of products offered by the manufacturer Classic DeLuxe and load it into the 
puzzles table.

1.	 From the Packt website, download the sample lists of products.

2.	 Open Spoon and create a new transformation.

3.	 Add a Text file input step and configure it to read the 
productlist_LUX_200908.txt file.

Pay attention to the each field. It's the price of the product and must be configured 
as a Number with format $0.00.

4.	 Preview the file. You should see the following:



Chapter 8

[ 247 ]

5.	 In the Selected Files grid, replace the text productlist_
LUX_200908.txt by ${PRODUCTLISTFILE}.

6.	 Click on OK.

7.	 After the Text file input step, add an Add constants step.

8.	 Use it to add a String constant named man_code with value LUX.

9.	 From the Output category of steps, drag an Insert/Update step to the 
canvas. Create a hop from the Add constants step to this new step.

10.	Double-click the step. Select js as Connection. As Target table, 
browse and select products. In the upper grid of the window, add the 
conditions pro_code = prodcod and man_code = man_code. Click 
the Edit mapping button. The mapping dialog window shows up.

11.	Under the Source fields list, click on prodcod, under the Target fields list click 
on pro_code, and then click the Add button. Again, under the Source fields 
list click on title, under the Target fields list click on pro_name, and then 
finally click Add. Proceed with the mapping until you get the following: 

12.	Click OK.



Working with Databases

[ 24� ]

13.	Fill the Update column for the price row with the value Y. Fill the rest of the 
column with the value N. The following is how the final grid looks like:

14.	After the Insert/Update step, add a Write to log step.

15.	Right-click the Insert/Update step and select Define error handling....

16.	Fill the error handling settings window just as you did in the previous tutorial.

17.	Save the transformation and run it by pressing the F9 key. 

18.	 In the settings window, assign the PRODUCTLISTFILE variable 
with the value productlist_LUX_200908.txt.

19.	Click on Launch.

20.	When the transformation ends, check the Step Metrics. You will see the following:



Chapter 8

[ 24� ]

21.	Switch to the SQL Query Browser application.

22.	Type the following in the query entry box: 

SELECT * FROM products p; 

23.	Click on Execute. The following result set is shown:

What just happened?
You populated the products table with data found in text files. For inserting the data, you 
used the Insert/Update step.

As this was the first time you dealt with the products table, before you ran the 
transformation, the table was empty. After running the transformation, you could  
see how all products in the file were inserted in the table.

Time for action – testing the update of existing products
In the preceding tutorial, you used an Insert/Update step, but only inserted records. Let's try 
the transformation again to see how the update option works.

1.	 If you closed the transformation, please open it. 

2.	 Press F9 to launch the transformation again.



Working with Databases

[ 250 ]

3.	 As the value for the PRODUCTLISTFILE variable, 
insert productlist_LUX_200909.txt.

4.	 Click Launch.

5.	 When the transformation ends, check the Step Metrics tab. You will see  
the following: 

6.	 Switch to the SQL Query Browser application and click Execute to run the query  
again. This time you will see this:



Chapter 8

[ 251 ]

What just happened?
You reran the transformation that was created in the previous tutorial, this time using a 
different input file. In this file there were new products and some products were removed 
from the list, whereas some had their descriptions, categories, and prices modified.

When you ran the transformation for the second time, the new products were added to 
the table. Also, the modified prices of the products were updated. In the Step Metrics tab 
window, you can see the number of inserted records (Output column) and the number of 
updated ones (Update column). 

Note that as the supplier may give you updated lists of products with different 
names of files, for the name of the file you used a variable. Doing so, you were 
able to reuse the transformation for reading different files each time.

Inserting or updating data with the Insert/Update step
While the Table output step allows you to insert brand new data, the Insert/Update step 
allows you to do both, insert and update data in a single step.

The rows coming to the Insert/Update step can be new data or can be data that already 
exists in the table. Depending on the case, the Insert/Update step behaves differently. Let's 
see each case in detail:

For each incoming row, the first thing the step does is use the lookup condition you put in 
the upper grid to check if the row already exists in the table.

In the tutorial you wrote two conditions: pro_code = prodcod and man_code = man_
code. Doing so, you told the step to look for a row in the products table for which the table 
column pro_code is equal to the field prodcod of your row, and the table column  
man_code is equal to the field with the same name of your row. 

If the lookup fails, that is, the row doesn't exist, the step inserts the row in the table by using 
the mapping you put in the lower grid.

The first time you ran the tutorial transformation, the table was empty. There were no  
rows against which to compare. In this case, all the lookups failed and, consequently, all  
rows were inserted.



Working with Databases

[ 252 ]

This insert operation is exactly the same that you could have done with a Table output step. 
That implies that here you also have to be careful about the following:

All the mandatory columns that don't have a default value must be present in the 
Update Field grid, including the keys you used in the upper grid

The data types for the fields you are sending to the table must match the data type 
for the columns of the table

If the lookup succeeds, the step updates the table replacing the old values with the new 
ones. This update is made only for the fields where you put Y as the value for the Update 
column in the lower grid.

If you don't want to perform any update operation, you can check the Don't perform any 
updates option.

The second time you ran the tutorial, you had two types of products in the file—products 
that already existed in the database and new products. For example, consider the following 
row found in the second file:

CLTR1001|A Saint at Radley|Trains|500 pieces|$13.30|Peter Webster

PDI looks for a row in the table where the prod_code is equal to CLTR1001 and man_code 
is equal to LUX (the field added with the Add constants step). It doesnt find it. Then it 
inserts a new row with the data coming from the file.

Take another sample row:

CLBO1007|Henley Regatta & Playing|Boats|500 pieces each|$19.94|2 
Puzzles in a Box

PDI looks for a row in the table where the prod_code is equal to CLBO1007 and man_code 
equal to LUX. It finds the following:

There are two differences between the old and the new versions of the product. Both the 
name and the price have changed.







Chapter 8

[ 253 ]

As you configured the Insert/Update step to update only the price column, the update 
operation does so. The new record in the table after the execution of the transformation  
is this:

Have a go hero – populating a films database
From the Packt website, download the films.sql script file. Run the script In MySQL. A 
new database will be created to hold film data.

Browse the folder where you have the files for Chapter 7 and get the French films file.  
You will use it to populate the following tables of the films database: GENRES, PEOPLE,  
and FILMS.

Now follow these instructions:

Create a connection to the database.

In order to populate the GENRES table, you have to build a list of genres, no 
duplicates! For the primary key, GEN_ID, you don't have a value in the file. Create 
the key with an Add sequence step.

The table, PEOPLE, will have the names of both actors and directors. In order to 
populate that table, you will have to create a single list of people, no duplicates here 
either! To generate the primary key, use the same method as before.

4. Finally, populate the FILMS table with the whole list of films found in the file.

Don't forget to handle errors so that you can detect bad rows.

Have a go hero – creating the time dimension
Now you're going to finish what you started back in Chapter 6—the creation of a  
time dimension.

From the Packt website, download the js_dw.sql script file. Run the script in MySQL.  
A new database named js_dw will be created.

Now you are going to modify the time_dimension.ktr transformation to load the time 
dataset into the lk_time table.

1.

2.

3.



Working with Databases

[ 254 ]

The following are some tips:

Create a connection to the created database

Find a correspondence between each field in the dataset and each column in the 
LK_TIME table

Use a Table output step to send the dataset to the table

After running the transformation, check if all rows were inserted as expected.

Pay attention to the main field in the time dimension—date.

In the transformation the date is a field whose type is Date. 

However, in the table the type for the date field is CHAR(8). This column 
is meant to hold the date as a String with the  format YYYYMMDD—for 
example 20090915. 

As explained, the data types of the data you sent to the table have to match 
the data types in the table. In this case, as the types don't match, you will 
have to use a Select values step and change the metadata of the date field 
from Date to String.

Have a go hero – populating the products table
This exercise has two parts. The first is intended to enrich the transformation you created 
in the tutorial. The transformation processed the product list files supplied by the Classics 
DeLuxe manufacturer. In the file, there was some extra information that you could put in the 
table such as the number of pieces of a puzzle. However, the data didn't come ready to use. 
Consider, for example, this text: 500 pieces each. In order to get the number of pieces, you 
need to do some transformation. Modify the transformation so that you can enrich the data 
in the products table.

The second part of the exercise has to do with populating the products table with products 
from other manufacturers. Unfortunately, you can't expect that all manufacturers to share 
the same structure for the list of products. Not only the structure changes, but also the 
kind of information they give you can vary. On the Packt website, you have several sample 
product files belonging to different manufactures. Explore them, analyze them to see if you 
can identify the different data you need for the products table, and load all the products  
into the database by using a different transformation for each manufacturer.









Chapter 8

[ 255 ]

The following are some tips:

Take as a model the transformation for the tutorial. You may reuse most of it.

You don't have to worry about the stock columns or the pro_type column 
because they already have default values.

Use the comments in the file to identify potential values for the pro_packaging, 
pro_shape and pro_style columns. Use the pro_packaging field for values 
such as 2 puzzles in a box. Use the pro_shape field for values such as 
Panoramic Puzzle or 3D Puzzle. Use the puzzle_type field for values  
such as Glow in the Dark or Wooden Puzzle.

You can leave the pro_description empty or put in it whatever you feel that 
fits—a fix string such as Best in market!, or the full comment found in the file,  
or whatever your imagination says.

Pop quiz – Insert/Update step versus Table Output/Update steps
In the last tutorial you read a file and used an Insert/Update step to populate the products 
table. Look at the following variant of the transformation:

Suppose you use this transformation instead of the original. Compared to the results you got 
in the tutorial, after the execution of this version of the transformation, the products table 
will have:

a. The same number of records

b. More records

c. Less records

d. It depends on the contents of the file











Working with Databases

[ 256 ]

Pop quiz – filtering the first 10 rows
The following SELECT statement:

SELECT TOP 10 * FROM CUSTOMERS

gives you the first ten customers in the CUSTOMERS table of the sample database.

Suppose you want to get the first ten products in the PRODUCTS table of the Jigsaw Puzzles 
database. Which of the following statements would do that:

a. SELECT TOP 10 * FROM product

b. SELECT * FROM product WHERE ROWNUM<11

c. SELECT * FROM product LIMIT 10

d. Any of the above statements

Eliminating data from a database
Deleting information from a database is not the most common operation with databases, but 
it is an important one. Now you will learn how to do it with PDI.

Time for action – deleting data about discontinued items
Suppose a manufacturer informs you about the categories of products that will no longer be 
available. You don't want to have in your database products something that you will not sell. 
Then you use PDI to delete them.

1.	 From the Packt website, download the LUX_discontinued.txt file.

2.	 Create a new transformation.

3.	 With a Text file input step, read the file.

4.	 Preview the file. You will see the following:



Chapter 8

[ 257 ]

5.	 After the Text file input step, add an Add constants step to add 
a String constant named man_code with value LUX.

6.	 Expand the Output category of steps and drag a Delete step to the canvas.

7.	 Create a hop from the Add constants step to the Delete step.

8.	 Double-click the Delete step. Select js as Connection and, as Target table, browse 
and select products. In the grid add the conditions man_code = man_code and 
pro_theme LIKE category. After the Delete step, add a Write to log step.

9.	 Right-click the Delete step and define the error handling just like you did in each of  
the previous tutorials in this chapter.

10.	Save the transformation.

11.	Before running the transformation, open the Database Explorer.

12.	Under the js connection, locate the products table and click  
Open SQL for [products].

13.	 In the simple SQL editor type:

SELECT pro_theme, pro_name FROM js.products p

ORDER BY pro_theme, pro_name;

14.	Click on Execute. You will see the following result set:



Working with Databases

[ 25� ]

15.	Close the preview data window and the results of the SQL window.

16.	Minimize the database explorer window.

17.	The database explorer is collapsed at the bottom of the Spoon window.

18.	Run the transformation.

19.	Look at the Step Metrics. The following is what you should see: 

20.	Maximize the database explorer window.

21.	 In the SQL editor window click Execute again. This time you will see this:



Chapter 8

[ 25� ]

What just happened?
You deleted from the products table all products belonging to the categories found in the 
LUX_discontinued.txt file.

Note that to query the list of products, you used the PDI Database explorer. You could have 
done the same by using MySQL Query Browser.

Deleting records of a database table with the Delete step
The Delete step allows you to delete records of a database table based on a given condition. 
For each row coming to the step, PDI deletes the records that match the condition set in its 
configuration window.

Let's see how it worked in the tutorial. The following is the dataset coming to the  
Delete step:

For each of these two rows PDI performs a new delete operation.

For the first row, the records deleted from the products table are those where man_code is 
equal to LUX and pro_theme is like FAMOUS LANDMARKS.

For the second row, the records deleted from the products table are those where  
man_code is equal to LUX and pro_theme is like COUNTRYSIDE.

You can verify the performed operations by comparing the result sets you got in the 
database explorer before and after running the transformation.

Just for your information, you could have done the same task with the following  
DELETE statements:

DELETE FROM products
WHERE man_code = 'LUX' and pro_theme LIKE 'FAMOUS LANDMARKS'

DELETE FROM products
WHERE man_code = 'LUX' and pro_theme LIKE 'COUNTRYSIDE'



Working with Databases

[ 260 ]

In the Step Metrics result, you may notice that the updated column for the Delete step has 
value 2. This number is the number of delete operations, not the number of deleted records, 
which was actually a bigger number.

Have a go hero – deleting old orders
Create a transformation that asks for a date from the command line and deletes all orders 
from the Steel Wheels database whose order dates are before the given date.

Summary
This chapter discussed how to use PDI to work with databases. Specifically, the chapter 
covered the following:

Introduction  to the Pentaho Sample Data Steel Wheels—the starting point for you 
to learn basic database theory

Creating connections from PDI to different database engines

Exploring databases with the PDI Database explorer

Basics of SQL

Performing CRUD (Create, Read, Update, and Delete) operations on databases

In the next chapter you will continue working with databases. You will learn some advanced 
concepts, including datawarehouse-specific operations.













�
Performing Advanced Operations 

with Databases
In this chapter you will learn about advanced operations with databases. The first part of the 
chapter includes:

Populating the Jigsaw puzzle database so that it is prepared for the rest of the 
activities in the chapter

Doing simple lookups in a database

Doing complex lookups

The second part of the chapter is fully devoted to datawarehouse-related concepts. The list 
of the topics that will be covered includes:

Introducing dimensional modeling

Loading dimensions

Preparing the environment
In order to learn the concepts of this chapter, a database with little or no data is useless. 
Therefore, the first thing you'll do is populating your Jigsaw puzzle database.

Time for action – populating the Jigsaw database
To load data massively into your Jigsaw database, you must have the Jigsaw database  
created and the MySQL server running. You already know how to do this. If not, please  
refer to Chapter 1 for the installation of MySQL and Chapter 8 for the creation of the  
Jigsaw database.













Performing Advanced Operations with Databases

[ 262 ]

This tutorial will overwrite all your data in the js database. If you don't 
want to overwrite the data in your js database, you could simply create a new 
database with a different name and run the js.sql script to create the tables 
in your new database.

After checking that everything is in order, follow these instructions:

1.	 From Packt's website download the js_data.sql script file.

2.	 Launch the MySQL query browser.

3.	 From the File menu select Open Script....

4.	 Locate the downloaded file and open it.

5.	 At the beginning of the script file you will see this line:

USE js;

If you created a new database, replace the name js by the name of your new 
database.

6.	 Click on the Execute button.

7.	 At the bottom of the screen, you'll see a progress message.

8.	 When the script execution ends, verify that the database has been populated. 
Execute some SELECT statements such as:

SELECT * FROM cities

All tables must have records.

Having populated the database, let's prepare the Spoon environment:

1.	 Edit the kettle.properties file located in the PDI home directory. Add the 
following variables: DB_HOST, DB_NAME, DB_USER, DB_PASS, and DB_PORT. As 
values put the setting for your connection to the Jigsaw database. Use the following 
lines as a guide:

DB_HOST=localhost

DB_NAME=js

DB_USER=root

DB_PASS=1234

DB_PORT=3306



Chapter 9

[ 263 ]

2.	 Add the following variables: DW_HOST, DW_NAME, DW_USER, DW_PASS, and  
DW_PORT. As values, put the setting for your connection to the js_dw  
database—the database you created in Chapter 8 to load the time dimension.  
Here are some sample lines for you to use:

DW_HOST=localhost

DW_NAME=js_dw

DW_USER=root

DW_PASS=1234

DW_PORT=3306

Save the file.

3.	 Included in the downloaded material is a file named shared.xml. Copy it to your 
PDI home directory (the same directory where the kettle.properties file is) 

overwriting the existing file.

Before overwriting the file, please take a backup, as this will 
delete any share connections you might have created.

4.	 Launch Spoon. If it was running, restart it so that it recognizes the changes in the 
kettle.properties file.

5.	 Create a new transformation.

If you don't see the shared database connections js and 
dw, please verify that you copied the shared.xml file to 
the right folder.

6.	 Right-click the js database connection and select Edit. In the Settings frame, instead 
of fixed values, you will see variables: ${DS_HOST} for Host Name, ${DS_NAME} for 
Database Name, and so on. 

7.	 Test the connection.

8.	 Repeat the steps for the js_dw shared connection: Right-click the database 
connection and select Edit. In the Settings frame, you will see the variables you 
defined in the kettle.properties file—${DW_HOST}, ${DW_NAME}, and so on.

9.	 Test the dw_js connection.



Performing Advanced Operations with Databases

[ 264 ]

If any of the database tests fail, please check that the connection 
variables you put in the kettle.properties file are correct. 
Also check that MySQL is running database.

What just happened?
In this tutorial you prepared the environment for working in the rest of the chapter.

You did two different things:

First, you ran a script that emptied all the js database tables and loaded data into them.

Then, you redefined the database connections to the databases js and js_dw.

Note that the names for the connection don't have to match the 
names of the databases. This can benefit you in the following way: If 
you created a database with a different name for the Jigsaw database 
puzzle, your connection may still be named js, and all code you 
download from the Packt website should work without touching 
anything but the kettle.properties file.

You edited the kettle.properties file by adding variables with the database connection 
values such as host name, database name, and so on. Then you edited the database 
connections. There you saw that the database settings didn't have values but variable 
names—the variables you had defined in the kettle.properties file. For shared 
connections, PDI takes the database definition from the shared.xml file.

Note that you didn't save the transformation you created. That was 
intentional. The only purpose for creating it was to be able to see the 
shared connections.

Exploring the Jigsaw database model
The information in this section allows you to understand the organization of the data in the 
Jigsaw database. In the first place, you have a DER. A DER or entity relationship diagram is 
a graphical representation that allows you to see how the tables in a database are related to 
each other. The following is the DER for the js database:







Chapter 9

[ 265 ]

The following table contains a brief explanation of what each table is for:

Table name Content

manufacturers Information about manufacturers of the products.

products It is about the products you sell such as puzzles and accessories. The 
table has descriptive information and data about prices and stock. The 
pro_type column has the type of product—puzzle, glue, and so on. 
Several of the columns apply only to puzzles, such as shape or pieces.

buy_methods It contains information about the list of methods for buying—for 
example, in store, by telephone, and so on.

payment_methods Information about list of methods of payment such as cash, check, 
credit card, and so on.

countries The list of countries.

cities The list of cities.

customers A list of customers. A customer has a number, a name, and an address.

invoices The header of invoices including date, customer number, and total 
amount. The invoices dates range from 2004 to 2010.



Performing Advanced Operations with Databases

[ 266 ]

Looking up data in a database
You already know how to create, update, and delete data from a database. It's now time to 
learn to look up data. Lookup is the act of searching for information in a database. You can 
look up a column of a single table or you can do more complex lookups. Let's begin with the 
simplest way of looking up.

Doing simple lookups
Sometimes you need to get information from a database table based on the data you have in 
your main stream. Let's see how you can do it. 

Time for action – using a Database lookup step to create a list 
of products to buy

Suppose you have an online system for your customers to order products. On a daily basis, 
the system creates a file with the orders information. Now you will check if you have stock 
for the ordered products and make a list of the products you'll have to buy.

1.	 Create a new transformation.

2.	 From the Input category of steps, drag a Get data from XML step to the canvas.

3.	 Use it to read the orders.xml file. In the Content tab, fill the Loop XPath option 
with the /orders/order string. In the Fields tab get the fields.

4.	 Do a preview. You will see the following: 



Chapter 9

[ 267 ]

To keep this exercise simple, the file contains a single 
product by order.

5.	 Add a Sort rows step and use it to sort the data by man_code, prod_code.

6.	 Add a Group by step and double-click it.

7.	 Use the upper grid for grouping by man_code and prod_code.

8.	 Use the lower grid for adding a field with the number of orders in each group. As 
Name write quantity, as Subject ordernumber, and as Type write Number of 
Values (N). Expand the Lookup category of steps.

9.	 Drag a Database lookup step to the canvas and create a hop from the Group by step 
toward this step.

10.	Double-click the Database lookup step.

11.	As Connection, select js and in Lookup table, browse the database and select 
products or just type its name.

12.	Fill the grids as follows:

If you don't see both grids, just resize the window. This is 
one of the few configuration steps that lack the scrollbar to 
the right side.

Also remember that with all grids in PDI, you always have 
the option to populate the grids by using the Get Fields and 
Get lookup fields buttons respectively.



Performing Advanced Operations with Databases

[ 26� ]

13.	Click on OK.

14.	Add a filter step to pass only the rows where pro_stock<quantity.

15.	Add a Text file output step to send the manufacturer code, the product code, the 
product name, and the ordered quantity to a file named products_to_buy.txt.

16.	Run the transformation.

17.	The file should have the following content:

man_code;prod_code;pro_name;quantity

EDU;ED13_93;Times Square;1

RAV;RVZ50031;Disney World Map;2

RAV;RVZ50106;Star Wars Clone Wars;1

What just happened?
You processed a file with orders. You grouped and counted the ordered products by product 
code. Then with the Database lookup step, you looked up the product table for the record 
belonging to the ordered product. You added to your stream, the name and stock for the 
products. After that, you kept only the rows for which the stock was lower than the units 
your customers ordered. With the rows that passed, you created a list of products to buy.

Looking up values in a database with the Database lookup step
The Database lookup step allows you to look up values in a database table. In the upper grid of 
the setting window, you specify the keys to look up. In the example you look for a record that 
has the same product code and manufacturer code as the codes coming in the stream.

In the lower grid you put the name of the table columns you want back. Those fields are 
added to the output stream. In this case, you added the name and the stock of the product.

The step returns only one row even if it doesn't find a matching record or if it finds more 
than one. When the step doesn't find a record with the given conditions, it returns null for  
all the added fields, unless you specify a default value for those new fields.

Note that this behavior is quite similar to the Stream lookup step's behavior. You search for 
a match and, if a record is found, the step returns you the specified fields. If not, the new 
fields are filled with default values. Besides the fact that the data is searched in a database, 
the new thing here is that you specify the comparator to be used: =, <, >, and so on. The 
Stream lookup step looks only for equal values. As all the products in the file existed in your 
database, the step found a record for every row, adding to your stream two fields: the name 
and the stock for the product. You can check it by doing a preview on the Database lookup 
step. After the Database lookup setup, you used a Filter rows step to discard the rows where 
the stock was lower than the required quantity of products. You can avoid adding this step 



Chapter 9

[ 26� ]

by refining the lookup configuration. In the upper grid you could add the condition pro_
stock<quantity and check the Do not pass the row if the lookup fails checkbox; you now 
get a different result. The step will look not only for the product, but also for the condition  
pro_stock<quantity. If it doesn't find a record that matches, that is, the lookup fails, the 
check Do not pass the row if the lookup fails does its work—filters the row. Doing these 
changes, you don't have to use the extra Filter rows step, nor add the pro_stock field to 
the stream unless you need it for another use.

As a final remark—if the lookup returns more than one row, only the first is returned. You 
have the option to abort the whole transformation if this happens—simply check the Fail on 
multiple results? checkbox.

Making a performance difference when looking up data in a database

Database lookups are costly and can severely impact transformation 
performance. However, performance can be significantly improved by using the 
cache feature of the Database lookup step. To enable the cache feature, just 
check the Enable cache? option.

This is how it works: Think of the cache as a buffer of high-speed memory that 
temporarily holds frequently requested data. By enabling the cache option, 
Kettle will look first in the cache and then in the database.

If the table where you look up has few records, you could preload the cache with 
all the data in the lookup table. You do it by checking the Load all data from 
table option. This will give you the best performance.

On the contrary, if the number of rows in the lookup table is too large to fit entirely 
into memory, instead of caching the whole table you can tell Kettle the maximum 
number of rows to hold in cache. You do it by specifying the number in the Cache 
size in rows textbox. The bigger this number, the faster the lookup process.

Be careful when setting the cache options. If you have a large table 
or don't have much memory, you risk running out of memory.

Have a go hero – preparing the delivery of the products
Create a new transformation and do the following. Taking as source the orders file, create a 
list of the customers who ordered products. Include their name, last name, and full address. 
Order the data by country name.

You will need two Database lookup steps—one for getting the customers' 
information and the other to get the name of the country.



Performing Advanced Operations with Databases

[ 270 ]

Have a go hero – refining the transformation
Modify the original transformation. As the file may have been manipulated, it may contain 
invalid data. Apply the following treatment:

Verify that there is a customer with the given number. If the customer doesn't exist, 
discard the row. Use the Do not pass the row if the lookup fails checkbox.

In the rows that passed, verify that there is a product with the given manufacturer and 
product codes. If the data is valid, check the stock and proceed. If not, make a list so that 
the cases can be handled later by the customer care department.

Doing complex lookups
The Database lookup step is very useful and quite simple, but it lets you search only  
for columns of a specific table. Let's now try a step that allows you to do more  
complex searches. 

Time for action – using a Database join step to create a list of
suggested products to buy

If your customers ordered a product that is out of stock and you don't want to let them 
down, you will suggest them some alternative puzzles to buy. 

1.	 Open the transformation of the previous tutorial and save it under a new name.

2.	 Delete the Text file output step.

3.	 Double-click the Group by step and add an aggregated field named customers with 
the list of customers separated by (,). Under Subject, select idcus and as Type, 
select Concatenate strings separated by ,.

4.	 Double-click the Database lookup step. In the Values to return from the lookup 
table grid, add pro_theme as value in the String field.

5.	 Add a Select values step. Use it to select the fields customers, quantity,  
pro_theme, and pro_name. Also rename quantity as quantity_param and 
pro_theme as theme_param. From the Lookup category, drag a Database join  
step to the canvas. Create a hop from the Select values step to this step.

6.	 Double-click the Database join step.

7.	 Select js as Connection.







Chapter 9

[ 271 ]

8.	 In the SQL frame type the following statement:

SELECT man_code

      , pro_code

      , pro_name

FROM   products

WHERE  pro_theme like ?

AND    pro_stock>=?

9.	 In the Number of rows to return textbox, type 4.

10.	Fill the grid as shown:

11.	  Click on OK. The transformation looks like this:

12.	With the last step selected, do a Preview.

13.	You should see this: 



Performing Advanced Operations with Databases

[ 272 ]

14.	 In the Step Metrics you should see this:

What just happened?
You took the list of orders and filtered those for which you ran out of products. For the 
customers that ordered those products you built a list of four alternative puzzles to buy.

The selection of the puzzles was based on the theme. To filter the suggested puzzles, you 
used the theme of the ordered product.

The second parameter in the Database join step, the ordered quantity, was used to offer only 
alternatives for products for which there is a sufficient stock.

Joining data from the database to the stream data by using a Database  
join step
With the Database join step, you can combine your incoming stream with data from your 
database, based on given conditions. The conditions are put as parameters in the query you 
write in the Database join step.

Note that this is not really a database join as the name suggests; it is a 
join of data from the database to the stream data.

In the tutorial you used two parameters—the theme and the quantity ordered. With those 
parameters, you queried the list of products with the same theme:

where pro_theme like ?

and for which you have stock:

and pro_stock>=?



Chapter 9

[ 273 ]

You set the parameters as question marks. This works like the question marks in a Table 
input step you learned in the last chapter—the parameters are replaced positionally. The 
difference is that here you define the list and the order of the parameters. You do it in the 
small grid at the bottom of the settings window. This means you aren't forced to use all the 
incoming fields as parameters, and that you also may change the order.

Just as you do in a Table input step, instead of using positional parameters, you can use 
Kettle variables by using the ${} notation and checking the Replace variables checkbox.

You don't need to add the Select values step to discard fields and rename the 
parameters. You did it just to have fewer fields in the final screenshot so that it 
was easier to understand the output of the Database join step.

The step will give you back the manufacturer code, the product code, and the product name 
for the matching records.

As you cannot do a preview here, you can write and try your query inside a 
Table input step or in MySQL Query Browser. When you are done, just copy 
and paste the query here. 

So far, you did the same you could have done with Database lookup step—looking for a 
record with a given condition, and adding new fields to the stream. However, there is a big 
difference here—you put 4 as the Number of rows to return. This means for each incoming 
row, the step will give you back up to four results. The following shows you this:

Note that if you had left the Number of rows to return empty, the step would 
have returned all found rows.



Performing Advanced Operations with Databases

[ 274 ]

You may need to use a Database join step in several situations:

When, as the result of the lookup, there is more than one row for each incoming row. 
This was the case in the tutorial.

When you have to look in a combination of tables. Look at the following SQL statement:

SELECT co.country_name

FROM customers cu

   , cities    ci

   , countries co

WHERE cu.city_id = ci.city_id

AND   ci.cou_id  = co.cou_id

AND   cu.cus_id  = 1000

This statement returns the name of the country where the customer with id 1000 
lives. If you want to look up the countries where a list of customers live, you can do 
it with a sentence like this by using a Database join step.

When you want to look for an aggregate result. Look at this sample query:

SELECT   pro_theme

       , count(*) quant

FROM     products

GROUP BY pro_theme

ORDER BY pro_theme

This statement returns the number of puzzles by theme. If you have a list of themes 
and you want to find out how many puzzles you have for each theme, you can use a 
query like this also by using a Database join step.

The last option in the list can also be developed without using the Database join step. 
You could execute the SELECT statement with a Table Input step, and then look for the 
calculated quantity by using a Stream lookup step.

As you can see, this is another situation where PDI offers more that one 
way to do the same thing. Sometimes it is a matter of taste. In general, you 
should test each option and choose the method which gives you the best 
performance. 









Chapter 9

[ 275 ]

Have a go hero – rebuilding the list of customers
Redo the Hero exercise preparing the delivery of the products, this time using a Database 
join step. Try to discover which one is preferable from the point of view of performance. If 
you don't see any difference, try with a bigger number of records in the main stream. You 
will have to create your own dataset for this test. 

Introducing dimensional modeling
So far you have dealt with the Jigsaw puzzles database, a database used for daily operational 
work. In the real-world, a database like this is maintained by an On-Line Transaction 
Processing (OLTP) system. The users of an OLTP system perform operational tasks—sell 
products, process orders, control stock, and so on. 

As a counterpart, a datawarehouse is a nonoperational database; it is a specialized database 
designed for decision support purposes. Users of a datawarehouse analyze the data, and 
they do it from different points of view. 

The most used technique for delivering data to datawarehouse users is dimensional 
modeling. This technique makes databases simple and understandable. 

The primary table in a dimensional model is the fact table. A fact table stores numerical 
measurements of the business such as quantity of products sold, amount represented by the 
sold products, discounts, taxes, number of invoices, number of claims, and anything that can 
be measured. These measurements are referred as facts.

A fact is useless without the dimension tables. Dimension tables contain the textual 
descriptors of the business. Typical dimensions are product, time, customers, and regions. 
The fact along with all the surrounding dimension tables make a star-like structure often 
called a star schema.

Datawarehouse is a very broad concept. In this book we will deal with datamarts. While a 
datawarehouse represents a global vision of an enterprise, a datamart holds the data from a 
single business process . 

Data stored in datawarehouses and datamarts usually comes from different sources, the 
operational database being the main. The process that takes the information from the source, 
transforms it in several ways, and finally loads the data into the datamart or datawarehouse is 
the already mentioned ETL process. As said, PDI is a perfect tool for accomplishing that task. 
In the rest of this chapter, you will learn how to load dimension tables with PDI. This will build 
the basis for the final project of the book: Loading a full datamart.



Performing Advanced Operations with Databases

[ 276 ]

Through the tutorials you will learn more about this. However, the terminology introduced 
here constitutes just a preamble to dimensional modeling. There is much more you 
can learn. If you are really interested in the subject, you should start by reading The 
Data Warehouse Toolkit (Second Edition) by Ralph Kimball and Margy Ross. The book is 
undoubtedly the best guide to dimensional modeling. 

Loading dimensions with data
A dimension is an entity that describes your business—customers and products are examples 
of dimensions. A very special dimension is the time dimension that you already know. A 
dimension table (no surprises here) is a table that contains information about a dimension. 
In this section you will learn to load dimension tables, that is, fill dimension tables with data. 

Time for action – loading a region dimension with a 
Combination lookup/update step

In this tutorial you will load a dimension that stores geographical information. 

1.	 Launch Spoon.

2.	 Create a new transformation.

3.	 Drag a Table input step to the canvas and double-click it.

4.	 As connection select js.

5.	 In the SQL area type the following query:

SELECT ci.city_id, city_name, country_name

FROM cities ci, countries co

WHERE ci.cou_id = co.cou_id

6.	 Click on OK.

7.	 Expand the Data Warehouse category of steps.

8.	 Select the Combination lookup/update step and drag it to the canvas.

9.	 Create a hop from the Table input step to this new step.

10.	Double-click the Combination lookup/update step.

11.	As Connection select dw.



Chapter 9

[ 277 ]

12.	As Target table browse and select lk_regions or simply type it.

13.	  Enter id as Technical key field and lastupdate as Date of last update field.

14.	Click OK.

15.	After the Combination lookup/update step, add an Update step.

16.	Double-click the Update step.

17.	Select dw as Connection and lk_regions as Target table.

18.	Fill the upper grid adding the condition id = id. The id to the left is the table id, 
while the id to the right is the stream id. 

19.	Fill the lower grid: Add one row with the values city and city_name. Add a 
second row with the values country and country_name. This will update the 
table columns city and country with the values city_name and country_name 
coming in the stream. 

20.	Now create another stream: Add to the canvas a Generate Rows step, a Table 
output step, and a Dummy step.

21.	Link the steps in the order you added them.

22.	Edit the Generate Rows step and set Limit to 1.

23.	Add four fields in this order: An Integer field named id with value 0, a String 
field named city with value N/A, another String  named country with value  
N/A, and an Integer field named id_js with value 0. Double-click the Table 
Output step.

24.	Select dw as Connection and lk_regions as Target table.

25.	Click on OK.

26.	 In the Table output step, enable error handling and send the bad rows to the  
Dummy step.



Performing Advanced Operations with Databases

[ 27� ]

27.	The transformation looks like this:

28.	Save the transformation and run it.

29.	The Step metrics looks like this:

30.	Explore the js_dw database and do a preview of the lk_regions table. You should 
see this:

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>



Chapter 9

[ 27� ]

What just happened?
You loaded the region dimension with geographical information—cities and countries.

Note that you took information from the operational database 
js and loaded a table in another database js_dw.

Before running the transformation, the dimension table lk_region was empty. When the 
transformation ran, all cities were inserted in the dimension table.

Besides the records with cities from the cities table, you also inserted a special record 
with values n/a for the descriptive fields. You did it in the second stream added to the 
transformation.

Note that the dimension table lk_regions has a column named region that you didn't 
update because you don't have data for that column. The column is filled with a default 
value set in the DDL definition of the table.

Time for action – testing the transformation that loads the 
region dimension

1. In the previous tutorial you loaded a dimension that stores geographical 
information. You ran it once, causing the insertion of one record for each city and a 
special record with values n/a for the descriptive fields. Let's apply some changes in 
the operational database, and run the transformation again to see what happens.

2.	 Launch MySQL Query Browser.

3.	 Type the following sentence to change the names of the countries to upper case:

UPDATE countries SET country_name = UCASE(country_name)

4.	 Execute it.

5.	 If the transformation created in the last tutorial is not open, open it again.

6.	 Run the transformation.



Performing Advanced Operations with Databases

[ 2�0 ]

7.	 The Step Metrics looks like this: 

8.	 Explore the js_dw database again and do a preview of the lk_regions table. This 
time you will see the following:

What just happened?
After changing the letter case for the names of the countries in the transactional database 
js, you again ran the transformation that updates the Regions dimension. This time the 
descriptions for the dimension table were updated.

As for the special record with values n/a for the descriptive fields, it had been created the 
first time the transformation ran. This time, as the record already existed, the row passed by 
to the Dummy step. 



Chapter 9

[ 2�1 ]

Describing data with dimensions
A dimension table contains descriptions about a particular entity or category of your 
business. Dimensions are one of the basic blocks of a datawarehouse or a datamart.

A dimension has the purpose of grouping, filtering, and describing data.

Think of a typical report you would like to have—sales grouped by region, by customer, by 
method of payment ordered by date. The by word lets you identify potential dimensions— 
regions, customers, method of payments, and date.

Best practices say that a dimension table must have its own technical key column different  
to the business key column used in the operational database. This technical key is known  
as a surrogate key. In the lk_region dimension table the surrogate key is the column  
named id.

While in the operational database the key may be a string such as the manufacturer code in 
the manufacturers table, surrogate keys are always integers. Another good practice is to have 
a special record for unavailable data. In the case of the regions example, this implies that 
besides one record for every city, you should have a record with key equal to zero, and n/a 
or unknown or something that represents invalid data for all the descriptive attributes.

Along with the descriptive attributes that you save in a dimension, you usually keep the 
business key so that you can match the data in the dimension table with the data in the 
source database. The following screenshot depicts typical columns in a dimension table:



Performing Advanced Operations with Databases

[ 2�2 ]

In the tutorial, you took information from the cities and countries tables and used that 
data to load the regions dimension. When there were changes in the transactional database, 
the changes were translated to the dimension table overwriting the old values. A dimension 
where changes may occur from time to time is called a Slowly Changing Dimension or SCD 
for short. If, when you update an SCD dimension, you don't preserve historical values but the 
old values, the dimension is called Type I slowly changing dimension (Type I SCD).

Loading Type I SCD with a Combination lookup/update step
In the tutorial, you loaded a Type I SCD by using a Combination lookup/update step. The 
Combination lookup/update or Combination L/U for short, looks in the dimension table 
for a record that matches the key fields you put in the upper grid in the settings window. If 
the combination exists, the step returns the surrogate key of the found record. If it doesn't 
exist, the step generates a new surrogate key and inserts a row with the key fields and the 
generated surrogate key. In any case, the surrogate key is added to the output stream.

Be aware that in the Combination Lookup/update step the following options 
do not refer to fields in the stream, but to columns in the table: Dimension 
field, Technical key field, and Date of last update field. You should read 
Dimension column, Technical key column, and Date of last update column.

Also note that the term Technical refers to the surrogate key.

Let's see how the Combination lookup/update step works with an example. Look at the 
following screenshot:



Chapter 9

[ 2�3 ]

The record to the right of the Table input icon is a sample city among the cities that the Table 
input step gets from the js database.

With the Combination L/U step, PDI looks for a record in the lk_region table in the dw 
database, where id_js is equal to the field city_id in the incoming stream, which is 7001. 
The first time you run the transformation, the dimension table is empty, so the lookup fails. 
This causes PDI to generate a new surrogate key according to what you put in the Technical 
key field area of the settings window.

You told PDI that the column that holds the surrogate key is the column named id. You also 
told PDI that in order to generate the key, the value should be equal to the maximum key 
found in the target table plus one. In this example, it generates a key equal to 7. You may 
also use a sequence or an auto increment field if the database engine allows it. If that is not 
the case, those options are disabled.

Then PDI generates the key and inserts the record you can see to the right of the 
Combination L/U step in the draw. Note that the record contains only values for the key 
fields and the technical key field.

The Combination L/U step put the returned technical key in the output stream. Then you 
used that key for updating the descriptions for city and country with the use of an Update 
step. After that step, the record is fully generated, as shown in the record to the right of  
the Update icon.

As the Combination L/U only maintains the key information, if 
you have non-key columns in the table you must update them 
with an extra Update step.

Note that those values must have a default value or must 
allow null values. If none of these conditions is true, the insert 
operation will fail. 

After converting to upper case, all the country names in the source database, you run the 
transformation again. 

This time the incoming record for the same city is this:

PDI looks for a record in the lk_region table, in the dw database, where id_js is equal 
to 7001. It finds it. It is the record inserted the first time you ran the transformation, as 
explained above.

Then, the Combination L/U simply returns the key field adding it to the output stream.



Performing Advanced Operations with Databases

[ 2�4 ]

Then you use the key that the step added to update the descriptions for city and country. 
After the Update step, the old values for city and country name are overwritten by the  
new ones:

Have a go hero – adding regions to the Region Dimension
Modify the transformation that loads the Region dimension to fill the region column. Get 
the values from the regions.xls file you can find among the downloaded material for this 
chapter. To add the region information to your stream, use a Stream lookup step.

While you are playing with dimensions, you may want to throw away all the 
inserted data and start over again. For doing that, simply explore the database 
and use the Truncate table option. You can do the same in MySQL Query 
Explorer. For the lk_regions dimension, you could execute any of  
the following:

DELETE FROM lk_regions or TRUNCATE TABLE lk_regions

Have a go hero – loading the manufacturers dimension
Create a transformation that loads the manufacturers dimension—lk_manufacturers.

Here you have the table definition and some guidance for loading:

Column Description

id Surrogate key.

name Name of the manufacturer.

id_js Business key. Here you have to store the manufacturer's code 
(man_code field of the source table manufacturers).

lastupdate Date of dimension update—system date.



Chapter 9

[ 2�5 ]

Have a go hero – loading a mini-dimension
A mini-dimension is a dimension where you store the frequently analyzed or frequently 
changing attributes of a large dimension. Look at the products in the Jigsaw puzzles 
database. There are several puzzle attributes you may be interested in, for example, when 
you analyze the sales—number of puzzles in a single pack, number of pieces of the puzzles, 
material of the product, and so on. Instead of creating a big dimension with all puzzle 
attributes, you can create a mini-dimension that stores only a selection of attributes. There 
would be one row in this mini-dimension for each unique combination of the selected 
attributes encountered in the products table, not one row per puzzle.

In this exercise, you'll have to load a mini-dimension with puzzle attributes. Here you have 
the definition of the table that will hold the mini-dimension data:

Column Description

id Surrogate key

glowsInDark Y/N

is3D Y/N

wooden Y/N

isPanoramic Y/N

nrPuzzles Number of puzzles in a single pack

nrPieces Number of pieces of the puzzle

Take as a starting point the following query:

SELECT DISTINCT pro_type
              , pro_packaging
              , pro_shape
              , pro_style
FROM  products
WHERE pro_type = 'PUZZLE'

Use the output stream for creating the fields you need for the dimension—for example,  
for the field is3D, you'll have to check the value of the pro_shape field.

Once you have all the fields you need, insert the records in the dimension table by using a 
Combination L/U step. In this mini-dimension, the key is made by all the fields of the table. 
As a consequence, you don’t need an extra Update step.



Performing Advanced Operations with Databases

[ 2�6 ]

Keeping a history of changes
The Region dimension is a typical Type I SCD dimension. If some description changes, as 
the country names did, it makes no sense to keep the old values. The new values simply 
overwrite the old ones. This is not always the best choice. Sometimes you would like to  
keep a history of the changes. Now you will learn to load a dimension that keeps a history.

Time for action – keeping a history of product changes with the 
Dimension lookup/update step

Let's load a puzzles dimension along with the history of the changes in puzzle attributes:

1.	 Create a new transformation.

2.	 Drag a Table input step to the work area and double-click it.

3.	 Select js as Connection. 

4.	 Type the following query in the SQL area:

SELECT pro_code

     , man_code

     , pro_name

     , pro_theme

FROM  products

WHERE pro_type LIKE 'PUZZLE'

5.	 Click on OK.

6.	 Add an Add constants step, and create a hop from the Table input, step toward it.

7.	 Use the step to add a Date field named changedate. As Format type dd/MM/
yyyy, and as Value, type 01/10/2009.

8.	 Expand the Data Warehouse category of steps.

9.	 Select the Dimension lookup/update step and drag it to the canvas.

10.	Create a hop from the Add constants step to this new step.

11.	Double-click the Dimension lookup/update step.

12.	As Connection select dw.

13.	  As Target table type lk_puzzles.



Chapter 9

[ 2�7 ]

14.	  Fill the Key fields as shown:

15.	Select id as Technical key field.

16.	 In the frame Creation of technical key, leave the default to  
Use table maximum + 1.

17.	As Version field, select version.

18.	As Stream Datefield, select changedate.

19.	As Date range start field, select start_date.

20.	As Table daterange end, select end_date.

21.	Select the Fields tab and fill it like this: 

22.	Close the settings window.

23.	Save the transformation, and run it.

24.	Explore the js_dw database and do a preview of the lk_puzzles table. 



Performing Advanced Operations with Databases

[ 2�� ]

25.	You should see this:

What just happened?
You loaded the puzzle dimension with the name and theme of the puzzles you sell. The 
dimension table has the usual columns for a dimension—technical id (field id), fields that 
store the key fields in the table of the operational database (prod_code and man_code), 
and columns for the puzzle attributes (name and theme). It also has some extra fields 
specially designed to keep history.

When you ran the transformation, all records were inserted in the dimension table. Also a 
special record was automatically inserted for unavailable data. 

So far, there is nothing new except for a few extra columns with dates. In the next tutorial, 
you will learn more about those columns.

Time for action – testing the transformation that keeps a history
of product changes

1. In the previous tutorial you loaded a dimension with products by using a Dimension 
lookup/update step. You ran the transformation once, causing the insertion of one 
record for each product and a special record with values n/a for the descriptive fields. 
Let's apply some changes in the operational database, and run the transformation again 
to see how the Dimension lookup/update step keeps history.

2.	 In MySQL Query Browser, open the script update_jumbo_products.sql and  
run it.

3.	 Switch to Spoon.

4.	 If the transformation created in the last tutorial is not open, open it again.



Chapter 9

[ 2�� ]

5.	 Run the transformation. Explore the js_dw database again. Press Open SQL for 
[lk_puzzles] and type the following sentence:

SELECT   *

FROM     lk_puzzles

WHERE    id_js_man = 'JUM' 

ORDER BY id_js_prod

       , version

6.	 You will see this: 

What just happened?
After making some changes in the operational database, you ran the transformation for a 
second time. The modifications you made caused the insertion of new records recreating the 
history of the puzzle attributes.

Keeping an entire history of data with a Type II slowly changing dimension
Type II SCDs differ from Type I SCDs  in that a Type II keeps the whole history of the data of 
your dimension. Typical examples of attributes for which you would like to keep a history are 
sales territories that change over time, categories of products that are reclassified from time 
to time, and promotions that you apply to products and are valid in a given range of dates. 

There are no rules that dictate whether or not you keep/retain the history in a 
dimension. It's the final user who decides based on his requirements.



Performing Advanced Operations with Databases

[ 2�0 ]

In the puzzle dimension, you kept information about the changes for the name and theme 
attributes. Let's see how the history is kept for this sample dimension.

Each puzzle is to be represented by one or more records, each with the information valid 
during a certain period of time, as in the following example:

01

1900 2199

31
12

VERSION : 1

To :

01-01-1900

664

Castles

01-10-2009

JUM, JUMB0107

Valid From :

Surrogate Key :

Business Key :

Fields :

Name :

Theme :

Cindrellas Grand Arrival

01-10-2009

JUM, JUMB0107

31-12-2199

1031

Disney

VERSION : 2 (current)

To :

Valid From :

Surrogate Key :

Business Key :

Fields :

Name :

Theme :

Cindrellas Grand Arrival

01
01

1900
10

The history is kept in three extra fields in the dimension table—version, date_from,  
and date_to.

The version field is an automatically incremented value that maintains a revision number of 
the records for a particular puzzle.

The date range is used to indicate the period of applicability of the data.

In the tutorial you also had a current field, that acted as a flag to show if a record is the 
record valid in the present day.

The sample puzzle, Cinderellas Grand Arrival, was classified in the category Castles until 
October 1, 2009. After that date, the puzzle was reclassified as a Disney puzzle. This is the 
second version of the puzzle, as indicated by the column version. It's also the current 
version, as indicated by the column current.



Chapter 9

[ 2�1 ]

In general, if you have to implement a Type II SCD with PDI, your dimension table  
must have the first three fields—version, date from, and date to. The current flag  
is optional. 

Loading Type II SCDs with the Dimension lookup/update step
Type II SCDs can be loaded by using the Dimension lookup/update step. The Dimension 
lookup/update or Dimension L/U for short, looks in the dimension for a record that matches 
the information you put in the Keys grid of the settings window.

If the lookup fails, it inserts a new record. If a record is found, the step inserts or updates 
records depending on how you configured the step.

Let's explain how the Dimension L/U works with the following sample puzzle in the  
js database:

The first time you run the transformation, the step looks in the dimension for a record where 
id_js_prod is equal to JUMBO107and id_js_man is equal to JUM. Not only that, the 
period from start_date to end_date of the found record must contain the value of the 
stream datefield, which is 01/10/2009.

Because you never loaded this table before, the table was empty and so the lookup failed.

As a result, the step inserts the following record:

Note the values that the step put for the special fields:

The version for the new record is 1, the current flag is set to true, and the start_date and 
end_date take as values the dates you put in the Min.year and Max.year: 01/01/1900 
and 31/12/2199.



Performing Advanced Operations with Databases

[ 2�2 ]

After making some modifications to the operational database, you ran the transformation 
again. Look at the following screenshot:

The puzzle information changed. As you see to the right of the Table input step, the puzzle is 
now classified as a Disney puzzle.

This time the lookup succeeds. There is a record for which the keys match and the period 
from start_date to end_date of the found record, 01/01/1900 to 31/12/2199, 
obviously contains the value of the stream datefield, 01/10/2009.

Once found, the step compares the fields you put in the Fields tab—name and theme in the 
dimension table against pro_name and pro_theme in the incoming stream. 

As there is a difference in the theme field, the step inserts a new record, and modifies the 
current—it changes the validity dates and sets the current flag to false. Now this puzzle has 
two versions in the dimension table, as you see below the Dimension L/U icon in the drawing.

These update and insert operations are made for all records that changed.

For the records that didn't change, dimension records are found but as nothing changed, 
nothing is inserted or updated.

Take a note about the stream date: The field you put here is key to the loading 
process of the dimension, as its value is interpreted by PDI as the effective 
date of the change. In the tutorial, you put a fixed date—01/10/2009. In 
real situations you should use the effective or last changed date of the data if 
that date is available. If it is not available, leave the field blank. PDI will use the 
system date.



Chapter 9

[ 2�3 ]

In this example, you filled the column Type of SCD update with the option Insert for every 
field. Doing so, you loaded a pure Type II SCD, that is, a dimension that keeps track of all 
changes in all fields.

In the sample puzzles dimension, you kept a history of changes both in the theme and in  
the name. For the sample puzzle, the theme was changed from Castles to Disney. If, after 
some time, you query the sales and notice that the sales for that puzzle increased after the 
change, then you may conclude that the customers are more interested in Disney puzzles 
than in castle puzzles. The possibility of creating these kinds of reports is a good reason for 
maintaining a Type II SCD.

On the other hand, if the name of the puzzle changes, you may not be so interested in  
knowing what the name was before. Fortunately, you may change the configuration and 
create a Hybrid SCD. Instead of selecting Insert for every field, you may select Update  
or Punch through: 

When there is a change in a field for which you chose Update, the new value 
overwrites the old value in the last dimension record version, this being the usual 
behavior in Type I SCDs.

When there is a change in a field for which you chose Punch through, the new 
data overwrites the old value in all record versions.

Note that selecting Punch through for all the fields, the Dimension L/U step allows you 
to load a Type I SCD dimension. When you build Type I SCD you are not interested in range 
dates. Thus, you can leave the Stream datefield textbox empty. The current date is assumed 
by default.

In practice both Type I, Type II, and Hybrid SCDs are used. The choice of the type of SCD 
depends on the business needs.

Besides all those inserts and updates operations, the Dimension L/U automatically inserts in 
the dimension a record for unavailable data.

In order to insert the special record with key equal to zero, all fields must have 
default values or allow nulls. If none of these conditions are true, the automatic 
insertion will fail.

In order to load a dimension with the Dimension L/U step, your table has to have columns 
for the version, date from, and date to. The step automatically maintains those columns.  
You simply have to put their names in the right textbox in the settings window.

Besides those fields, your dimension table may have a column for the current flag, and 
another column for the date of last insert or update. To fill those optional columns, you  
have to add them in the Fields tab as you did in the tutorial.







Performing Advanced Operations with Databases

[ 2�4 ]

Have a go hero – keeping a history just for the theme of a product
Modify the loading of the products dimension so that it only keeps a history of the theme. If 
the name of the product changes, just overwrite the old values. Modify some data in the js 
database and run your transformation to confirm that it works as expected.

Have a go hero – loading a Type II SCD dimension
As you saw in the Hero exercise to add regions to the Region Dimension, the countries were 
grouped in three: Spain, Rest of Europe, Rest of the World.

As the sales rose in several countries of the world, you decided to regroup the countries in 
more than three groups. However, you want to do it starting in 2008. For older sales you 
prefer to keep seeing the sales grouped by the original categories.

This is what you will do: Use the table named lk_regions_2 to create a Type II Region 
dimension. Here is a guide to follow:

Create a transformation that loads the dimension. You will take the stream date (the date 
you use for loading the dimension) from the command line. If the command line argument is 
empty, use the present day.

As the name for the sheet with the region definition, use a named parameter.

Stream date

If the command line argument is present, remember to change it to Date 
before using it. You do that with a Select values step.

Note that you have to define the format of the entered data in advance. 
Suppose that you want to enter as argument the date January 1, 2008. If  
you chose the format dd-mm-yyyy, you'll have to enter the argument as 
01-01-2008.

In case the command line argument is absent, you can get the default with 
a Get System Info step. Note that the system date you add with this step is 
already a Date field.



Chapter 9

[ 2�5 ]

Now just follow these steps:

1. Run the transformation by using the regions.xls file. Don't worry about the 
command line argument. Check that the dimension was loaded as expected. There 
has to be a single record for every city.

2. Run the transformation again. This time use the regions2008.xls file as source 
for the region column. As command line, enter January 1st, 2008. Remember to type 
the date in the expected format (check the preceding tip). Explore the dimension 
table. There has to be two records for each country—one valid before 2008 and  
one valid after that date.

3. Modify the sheet to create a new grouping for the American countries. Use your 
imagination for this task! Run the transformation for the third time. This time use 
the sheet you created and as date, type the present day (or leave the argument 
blank). Explore the dimension table. Now each city for the countries you regrouped 
has to have three versions, where the current is the version you created. The other 
cities should continue to have two versions each, because nothing related to those 
cities changed.

Pop quiz – loading slowly changing dimensions
Suppose you have DVDs with the French films in the catalog you've created so far. You 
rent those DVDs and keep the rental information in the database. Now you will design a 
dimensional model for that data.

1. You begin by designing a dimension to store the names of the films. How do you 
create the Films dimension:

a. As a Type I SCD

b. As a Type II SCD

c. You will decide when you have rented enough films so you make the  
right decision.

2. In order to create that dimension, you could use:

a. A Dimension L/U step

b. A Combination L/U step

c. Either of the above

d. Neither of the above



Performing Advanced Operations with Databases

[ 2�6 ]

Pop quiz – loading type III slowly changing dimensions
Type III SCD are dimensions that store the immediately preceding and current value for a 
descriptive field of the dimension. Each entity is stored in a single record. The field for which 
you want to keep the previous value has two columns assigned in the record: One for the 
current value and the other for the old. Sometimes, it is possible to have a third column 
holding the date of effective change.

Type III SCDs are appropriate when you don't want to keep all the history, but mainly when 
you need to support two views of the attribute simultaneously—the previous and the 
current. Suppose you have an Employees dimension. Among the attributes you have their 
position. People are promoted from time to time and you want to keep these changes in the 
dimension; however, you are not interested in knowing all the intermediate positions the 
employees have been through. In this case, you may implement a Type III SCD.

The question is, how would you load a Type III SCD with PDI:

a. With a Dimension L/U step configuring it properly

b. By using a Database lookup step to get the previous value. Then with a Dimension 
L/U step or a Combination L/U step to insert or update the records.

c. You can't load Type III SCDs with PDI

It's worth saying that type III SCD are used rather infrequently and not always can be 
automated. Sometimes they are used to represent human-applied changes and the 
implementation has to be made manually.

Summary
In this chapter you learned to perform some advanced operations on databases.

First, you populated the Jigsaw database in order to have data for the activities in the 
chapter. Then, you learned to do simple and complex searches in a database.

Then you were introduced to dimensional concepts and learned what dimensions are  
and how to load them with PDI. You learned about Type I, Type II, Type III SCDs and  
mini-dimensions. You still have to learn when and how to use those dimensions. You  
will do so in Chapter 12.

The steps you learned in this and the preceding chapter are far from being the full list of 
steps that PDI offers to work with databases. However, taking into account all you learned, 
you are now ready to use PDI for implementing most of your database requirements. In the 
next chapter, you will switch to a totally different yet core subject needed to work with  
PDI—jobs.



10
Creating Basic Task Flows

So far you have been working with data. You got data from a file, a sheet, or a 
database, transformed it somehow, and sent it back to some file or table in a 
database. You did it by using PDI transformations. A PDI transformation does 
not run in isolation. Usually, it is embedded in a bigger process. Here are  
some examples:

Download a file, clean it, load the information of the file in a database,  
and fill an audit file with the result of the operation.

Generate a daily report and transfer the report to a shared repository.

Update a datawarehouse. If something goes wrong, notify the  
administrator by e-mail.

All these examples are typical processes of which a transformation is only a piece. These 
types of processes can be implemented by PDI Jobs. In this chapter, you will learn to build 
basic jobs. These are the topics that will be covered:

Introduction to jobs

Executing tasks depending upon conditions

Introducing PDI jobs
A PDI job is analogous to a process. As with processes in real life, there are basic jobs and 
there are jobs that do really complex tasks. Let's start by creating a job in the first group—a 
hello world job.













Creating Basic Task Flows

[ 2�� ]

Time for action – creating a simple hello world job
In this tutorial, you will create a very simple job so that you get an idea of what jobs  
are about. 

Although you will now learn how to create a job, for this tutorial you first have to create  
a transformation.

1. Open Spoon.

2. Create a new transformation.

3. Drag a Generate rows step to the canvas and double-click it.

4. Add a String value named message, with the value Hello, World!.

5. Click on OK.

6. Add a Text file output step and create a hop from the Generate rows step to this 
new step.

7.	 Double-click the step.

8.	 Type ${LABSOUTPUT}/chapter10/hello as filename.

9.	 In the Fields tab, add the only field in the stream—message.

10.	Click on OK.

11.	 Inside the folder where you save your work, create a folder named 
transformations.

12.	Save the transformation with the name hello_world_file.ktr in the folder you 
just created. The following is your final transformation:



Chapter 10

[ 2�� ]

Now you are ready to create the main job.

13.	Select File | New | Job or press Ctrl+Alt+N. A new job is created.

14.	Press Ctrl+J. The Job properties window appears.

15.	Give a name and description to the job.



Creating Basic Task Flows

[ 300 ]

16.	Save the job in the folder where you created the transformations folder, with 
the name hello_world.kjb. 

17.	To the left of the screen, there is a tree with job entries. Expand the General 
category of job entries, select the START entry, and drag it to the work area.

18.	Expand the File management category, select the Create a folder entry, and drag it 
to the canvas.

19.	Select both entries. With the mouse cursor over the second entry, right-click and 
select New hop. A new hop is created.



Chapter 10

[ 301 ]

Just like in a transformation, you have several ways to create hops. 
For more detail, please refer to the Time for action – creating a 
Hello Word transformation section in Chapter 1 where hops were 
introduced or to Appendix D, Spoon Shortcuts.

20.	Double-click the Create a folder...icon.

21. In the textbox next to the Folder name option, type ${LABSOUTPUT}/chapter10 
and click on OK. From the General category, drag a transformation job entry to  
the canvas.

22.	Create a hop from the Create a folder entry to the transformation entry.

23.	Double-click the transformation job entry.

24.	Position the cursor in the Transformation filename textbox, press Ctrl+Space, and 
select ${Internal.Job.Filename.Directory}.

This variable is the counterpart to the variable {Internal.
Transformation.Filename.Directory} you already know. 
{Internal.Job.Filename.Directory} evaluates the 
directory where the job resides. 



Creating Basic Task Flows

[ 302 ]

25.	Click on the icon to the right of the textbox. The following dialog window shows up:

26.	As you can see, the {Internal.Job.Filename.Directory} variable provides  
a convenient starting place for looking up the transformation file. Select the  
hello_world_file.ktr transformation and click OK.

27.	Now the Transformation filename has the full path to the transformation.  
Replace the full job path back to ${Internal.Job.Filename.Directory}  
so that the final text for the Transformation filename field is as shown in the 
following screenshot:

28.	Click on OK.

29.	Press Ctrl+S to save the job.



Chapter 10

[ 303 ]

30.	Press F9 to run the job. The following window shows up:

Remember that in the initial chapters, you defined the 
LABSOUTPUT variable in the kettle.properties file. You 
should see its value in the Variables grid. If you removed the 
variable from that file, provide a value here. 

31.	Click on Launch.

32.	At the bottom of the screen, you'll see the Execution results. The Job metrics screen 
looks as follows:



Creating Basic Task Flows

[ 304 ]

33.	Select the Logging tab. It looks like this:

34.	Explore the folder pointed to by your ${LABSOUTPUT} variable—for example, c:/
pdi_files/output. You should see a new folder named chapter10.

35.	 Inside the chapter10 folder, you should see a file named hello.txt.

36.	Explore the file. It should have the following content:

Message
Hello, World!
Hello, World!
Hello, World!
Hello, World!

What just happened?
First of all, you created a transformation that generated a simple file with the message 
Hello, World!. The file was configured to be created in a folder named chapter10.

After that, you created a PDI Job. The job was built to create a folder named chapter10  
and then to execute the hello_world transformation.

When you ran the job, the chapter10 folder was created, and inside it, a file with the 
Hello, World! message was generated.



Chapter 10

[ 305 ]

Executing processes with PDI jobs
A Job is a PDI entity designed for the execution of processes. In the tutorial, you ran a 
simple process that created a folder and then generated a file in that folder. A more complex 
example could be the one that truncates all the tables in a database and loads data in all the 
tables from a set of text files. Other examples involve sending e-mails, transferring files, and 
executing shell scripts.

The unit of execution inside a job is called a job entry. In Spoon you can see the entries 
grouped into categories according to the purpose of the entries. In the tutorial, you used  
job entries from two of those categories: General and File management.

Most of the job entries in the File management category have a self-explanatory name such 
as Create a folder, and their use is quite intuitive. Feel free to experiment with them!

As to the General category, it contains many of the most used entries. Among them is the 
START job entry that you used. A job must start with a START job entry.

Don't forget to start your sequence of job entries with a START. A job 
can have any mix of job entries and hops, as long as they start with this 
special kind of job entry.

A Hop is a graphical representation that links two job entries. The direction of the hop 
defines the order of execution of the job entries it links. Besides, the execution of the 
destination job entry does not begin until the job entry that precedes it has finished. Look, 
for example, at the job in the tutorial. There is an entry that creates a folder, followed by an 
entry that executes a transformation. First of all, the job creates the folder. Once the folder 
has been created, the execution of the transformation begins. This allows the transformation 
to assume that the folder exists. So, it safely creates a file in that folder.

A hop connects only two job entries. However, a job entry may be reached by more than one 
hop. Also, more than one hop may leave a job entry.

A job, like a transformation, is neither a program nor an executable file. It is simply  
plain XML. The job contains metadata that tells the Kettle engine which processes to  
run and the order of execution of those processes. Therefore, it is said that a job is  
flow-control oriented.



Creating Basic Task Flows

[ 306 ]

Using Spoon to design and run jobs
As you just saw, with Spoon you not only create, preview, and run transformations, but you 
also create and run jobs.

You are already familiar with this graphical tool, so you don't need too much explanation 
about the basic work areas. So, let's do a brief review.

The following table describes the main differences you will notice while designing a job 
compared to designing a transformation:

Area Description
Design tree You don’t see a list of steps but a list of job entries (despite on top of 

the list you see the word Steps).
Job menu You no longer see some options that only have sense while working 

with datasets. One of them is the Preview button.
Job metrics tab  
(Execution results window)

Instead of a Step Metrics, you have this tab. Here you can see metrics 
for each job entry. 



Chapter 10

[ 307 ]

If you click the View icon in the upper-left corner of the screen, the tree will change to show 
the structure of the job currently being edited.

Using the transformation job entry
The transformation job entry allows you to call a transformation from a job.transformation job entry allows you to call a transformation from a job. job entry allows you to call a transformation from a job.

There are several situations where you may need to use a transformation job entry. 

In the tutorial, you had a transformation that generated a file in a given folder. You called the 
transformation from a job that created that folder in advance. In this case, the job and the 
transformation performed complementary tasks.

Sometimes the job just keeps your work organized. Consider the transformations that loaded 
the dimension tables for the js database. As you will usually run them together, you can 
embed them into a single job as shown in this figure:



Creating Basic Task Flows

[ 30� ]

The only task done by this job is to keep the transformations together. Although the picture Although the picture 
implies the entries are run simultaneoulsy, that is not the case.

Job entries typically execute sequentially, this being one of the central 
differences between jobs and transformations.

When you link two entries with a hop, you force an order of execution. On the contrary, 
when you create a job as shown in this preceding figure, you needn't give an order and the 
entries still run in sequence, one entry after another depending on the creation sequence.

Launching job entries in parallel

As the transformations that load dimensions are not dependent on each other, 
as an option, you can ask the START entry to launch them simultaneously. For 
doing that, right-click the START entry and select Launch next entries in parallel. 
Once selected, the arrows to the next job entries will be shown in dashed lines. 
This option is available in any entry, not just in the START entry.

The jobs explained earlier are just two examples of how and when you use a transformation 
job entry. Note that many transformations perform their tasks by themselves. In that 
case you are not forced to embed them into jobs. It makes no sense to have a job with 
just a START entry, followed by a transformation job entry. You can still execute those 
transformations alone, as you used to do until now.

Pop quiz – defining PDI jobs
1. A job is:

a. A big transformation that groups smaller transformations

b. An ordered group of task definitions

c. An unordered group of task definitions

2. For each of the following sentences select True or False. A job allows you to:

a. Send e-mails

b. Compare folders

c. Run transformations

d. Truncate database tables

e. Transfer files with FTP



Chapter 10

[ 30� ]

Have a go hero – loading the dimension tables
Create a job that loads the main dimension tables in the Jigsaw database—manufacturers, 
products, and regions. Test the job.

Receiving arguments and parameters in a job
Jobs, as well as transformations, are more flexible when receiving parameters from outside. 
You already learned to parameterize your transformations by using named parameters and 
command-line arguments. Let's extend these concepts to jobs.

Time for action – customizing the hello world file with 
arguments and parameters

Let's create a more flexible version of the job you did in the previous section.

1. Create a new transformation.

2.	 Press Ctrl+T to bring up the Transformation properties window.

3.	 Select the Parameters tab.

4.	 Add a named parameter HELLOFOLDER. Insert chapter10 as the default value.

5.	 Click on OK.

6.	 Drag a Get System Info step to the canvas .

7.	 Double-click the step.

8.	 Add a field named yourname. Select command line argument 1 as the Type.

9.	 Click on OK.

10.	Now add a Formula step located in the Scripting category of steps.

11.	Use the step to add a String field named message. As Formula, type "Hello, " 
& [yourname] & "!".

12.	Finally, add a Text file output step.

13.	Use the step to send the message data to a file. Enter ${LABSOUTPUT}/
${HELLOFOLDER}/hello as the name of the file.

14.	Save the transformation in the transformations folder you created in the 
previous tutorial, under the name hello_world_param.ktr.



Creating Basic Task Flows

[ 310 ]

15.	Open the hello_world.kjb job you created in the previous tutorial and save it 
under a new job named hello_world_param.kjb. 

16.	Press Ctrl+J to open the Job properties window.

17.	Select the Parameters tab.

18.	Add the same named parameter you added in the transformation.

19.	Click on OK.

20.	Double-click the Create a folder entry.

21.	Change the Folder name textbox content to ${LABSOUTPUT}/${HELLOFOLDER}.

22.	Double-click the Transformation entry.

23.	Change the transformation filename textbox to point to the new transformation: 
${Internal.Job.Filename.Directory}/transformations/hello_world_
param.ktr.

24.	Click on OK.

25.	Save the job and run it.

26.	Fill the dialog window with a value for the named parameter and a value for the 
command-line argument.



Chapter 10

[ 311 ]

27.	Click on Launch. 

28.	When the execution finishes, check the output folder. The folder named  
my_folder, which you initially specified as a named parameter, should be created.

29.	 Inside that folder there should be a file named hello.txt. This time the content of 
the file has been customized with the name you provided:

Hello, pdi student!

What just happened?
You created a transformation that generated a hello.txt file in a folder given as the 
named parameter. The content of the file is a customized "Hello" message that gets the 
name of the reader from the command line.

In the main job you also defined a named parameter, the same that you defined in the 
transformation. The job needs the parameter to create the folder.

When you run the job, you provided both the command-line argument and the named 
parameter in the job dialog window that shows up when you launch the execution. Then 
a folder was created with the name you gave, and a file was generated with the name you 
typed as argument.



Creating Basic Task Flows

[ 312 ]

Using named parameters in jobs
You can use named parameters in jobs in the same way you do in transformations. You 
define them in the Job properties window. You provide names and default values, and then 
you use them just as regular variables. The places where you can use variables, just as in a 
transformation, are identified with a dollar sign to the right of the textboxes. In the tutorial, 
you used a named parameter in the Create a folder job entry. In this particular example, 
you used the same named parameter both in the main job and in the transformation called 
by the job. So, you defined the named parameter HELLOFOLDER in two places—in the Job 
settings window and in the Transformation properties window.

If a named parameter is used only in the transformation, you 
don't need to define it in the job that calls the transformation.

Have a go hero – backing up your work
Suppose you want to back up your output files regularly, that is, the files in your 
${LABSOUTPUT} directory. Build a job that creates a ZIP file with all your output files. For 
the name and location of the ZIP file, use two named parameters. 

Use the Zip file job entry located in the File 
management category.

Running jobs from a terminal window
In the main tutorial of this section, both the job and the transformation called by the job 
used a named parameter. The transformation also required a command-line argument. 
When you executed the job from Spoon, you provided both the parameter and the  
argument in the job dialog window. You will now learn to launch the job and provide  
that information from a terminal window.



Chapter 10

[ 313 ]

Time for action – executing the hello world job from a terminal
window

In order to run the job from a terminal window, follow these instructions:

1. Open a terminal window.

2.	 Go to the directory where Kettle is installed.

On Windows systems type:

 C:\pdi-ce>kitchen /file:c:/pdi_labs/hello_world_param.kjb  
 Maria -param:"HELLOFOLDER=my_work" /norep

On Unix, Linux, and other Unix-like systems type:

 /home/yourself/pdi-ce/kitchen.sh /file:/home/yourself/ 
 pdi_labs/hello_world_param.kjb Maria -param:"HELLOFOLDER= 
 my_work" /norep

3.	 If your job is in another folder, modify the command accordingly. You may also 
replace the name Maria with your name, of course. If your name has spaces, 
enclose the whole argument within "".

4.	 You will see how the job runs, following the log in the terminal:

5.	 Go to the output folder—the folder pointed by your LABS_OUTPUT variable.

6.	 A folder named my_work should have been created.

7.	 Check the content of the folder. A file named hello.txt should be there. Edit the 
file. You should see the following:

Hello,Maria!







Creating Basic Task Flows

[ 314 ]

What just happened?
You ran the job with Kitchen, the program that executes jobs from the terminal window.

After the name of the command, kitchen.bat or kitchen.sh, depending on the 
platform, you provided the following:

The full path to the job file: /file:c:/pdi_labs/hello_world_param.kjb

A command-line argument: Maria. 

A named parameter, and a -param:"HELLOFOLDER=my_work"

The switch /norep to tell Kettle not to connect to a repository

After running the job, you could see that the folder had been created and a file with a 
custom "Hello" message had been generated.

Here you used some of the options available when you run Kitchen. Appendix B tells you all 
the details about using Kitchen for running jobs.

Have a go hero – experiencing Kitchen
Run the hello_world_param.kjb job from Kitchen, with and without providing 
arguments and parameters. See what happens in each case.

Using named parameters and command-line arguments 
in transformations
As you know, transformations accept both arguments from the command line and named 
parameters. When you run a transformation from Spoon, you supply the values for 
arguments and named parameters in the transformation dialog window that shows up  
when you launch the execution. From a terminal window, you provide those values in the 
Pan command line.

In this chapter you learned to run a transformation embedded in a job. Here, the methods 
you have for supplying named parameters and arguments needed by the transformation 
are quite similar. From Spoon you supply the values in the job dialog window that shows up 
when you launch the job execution. From the terminal window you provide the values in the 
Kitchen command line. 

Whether you run a job from Spoon or from Kitchen, the named parameters 
and arguments you provide are unique and shared by the main job and 
all transformations called by that job. Each transformation, as well as the 
main job, may or may not use them according to their needs.











Chapter 10

[ 315 ]

There is still another way in which you can pass parameters and arguments to a 
transformation. Let's see it by example.

Time for action – calling the hello world transformation with 
fixed arguments and parameters

This time you will call the parameterized transformation from a new job.

1. Open the hello_world.kjb job you created in the first section and save it as 
hello_world_fixedvalues.kjb.

2.	 Double-click the Create a folder job entry.

3.	 Replace the chapter10 string by the string fixedfolder.

4.	 Double-click the transformation job entry.

5.	 Change the Transformation filename as ${Internal.Job.Filename.
Directory}/transformations/hello_world_param.ktr.

6.	 Fill the Argument tab as follows.

7.	 Click the Parameters tab and fill it as follows:

8.	 Click on OK.

9.	 Save the job.



Creating Basic Task Flows

[ 316 ]

10.	Open a terminal window and go to the directory where Kettle is installed. 

On Windows systems type:

 C:\pdi-ce>kitchen /file:c:/pdi_labs/ 
 hello_world_param.kjb /norep

On Unix, Linux, and other Unix-like systems type:

 /home/yourself/pdi-ce/kitchen.sh /file:/home/yourself/ 
 pdi_labs/hello_world_param.kjb /norep

11.	When the execution finishes, check the output folder. A folder named 
fixedfolder has been created.

12.	 In that folder, you can see a hello.txt with the following content:

Hello, reader!

What just happened?
You reused the transformation that expects an argument and a named parameter from the 
command line. This time you created a job that called the transformation and set both the 
parameter and the argument in the transformation job entry setting window.

Then you ran the job from a terminal window, without typing any arguments or parameters. 
It didn't make any difference for the transformation. Whether you provide parameters and 
arguments from the command line or you set constant values in a transformation job entry, 
the transformation does its job—creating a file with a custom message in the folder with the 
name given by the ${HELLOFOLDER}parameter.

Instead of running from the terminal window, you could have run the 
job by pressing F9 and then clicking Launch, without typing anything 
in either the parameter or the argument grid. The final result should 
be exactly the same.

Have a go hero – saying hello again and again
Modify the hello_world_param.kjb job so that it generates three files in the default 
${HELLOFOLDER}, each saying "hello" to a different person.

After the creation of the folder, use three transformation job entries. 
Provide different arguments for each.

Run the job to see that it works as expected.







Chapter 10

[ 317 ]

Have a go hero – loading the time dimension from a job
In Chapter 6, you built a transformation that created the data for a time dimension. Then in 
Chapter 8, you finished the transformation loading the data into a time dimension table.

The transformation had several named parameters, one of them being START_DATE.  
Create a job that loads a time dimension with dates starting at 01/01/2000. In  
technical jargon, create a job that calls your transformation and passes it a value for  
the START_DATE parameter. 

Deciding between the use of a command-line argument 
and a named parameter
Both command-line arguments and named parameters are means for creating more flexible 
jobs and transformations. The following table summarizes the differences and the reasons 
for using one or the other. In the first column, the word argument refers to the external 
value you will use in your job or transformation. That argument could be implemented  
as a named parameter or as a command-line argument.

Situation Solution using named 
parameters

Solution using arguments

It is desirable to have a 
default for the argument

Named parameters are 
perfect in this case. You 
provide default values at the 
time you define them.

Before using the command-line 
argument, you have to evaluate if it 
was provided in the command line. If 
not, you have to set the default value 
at that moment.

The argument is 
mandatory

You don't have means 
to determine if the user 
provided a value for the 
named parameter.

To know if the user provided a value 
for the command-line argument, you 
just get the command-line argument 
and compare it to a null value.

You need several 
arguments but it is 
probable that not all of 
them are present.

If you don't have a value for a 
named parameter, you are not 
forced to enter it when you 
run the job or transformation.

Let's suppose that you expect three 
command line arguments. If you 
have a value only for the third, you 
still have to provide empty values for 
the first and the second.

You need several 
arguments and it is 
highly probable that all 
of them are present.

The command line would be 
too long. It will help explain 
clearly the purpose of each 
parameter, but typing the 
command line would be 
tedious.

The command-line is simple as you 
just list the values one after the 
other. However, there is a risk—you 
may unintentionally enter the values 
unordered, which could lead to 
unexpected results.



Creating Basic Task Flows

[ 31� ]

Situation Solution using named 
parameters

Solution using arguments

You want to use the 
argument in several places

You can do it, but you must 
assure that the value will not be 
overwritten in the middle of the 
execution. 

You can get the command-line 
argument by using a Get System Info 
step as many times as you need.

You need to use the value 
in a place where a variable 
is needed

Named parameters are ready to 
be used as Kettle variables.

First, you need to set a variable with 
the command-line argument value. 
Usually this requires creating additional 
transformations to be run before any 
other job or transformation.

Depending on your particular situation, you would prefer one or the other solution. Note 
that you can mix both as you did in the previous tutorials. 

Have a go hero – analysing the use of arguments and named parameters
In the Time for action – customizing the hello world file with fixed arguments and parameters 
section, you created a transformation that used an argument and a named parameter. Based 
on this preceding table, try to understand why the folder was defined as named parameter 
and the name of the person you want to say Hello to was defined as command-line 
argument. Would you have applied the same approach?

Running job entries under conditions
A job may contain any number of entries. Not all of them execute always. Some of them 
execute depending on the result of previous entries in the flow. Let's see it in practice.

Time for action – sending a sales report and warning the 
administrator if something is wrong

Now you will build a sales report and send it by e-mail. In order to follow the tutorial, you 
will need two simple prerequisites:

As the report will be based on the Jigsaw database you created in Chapter 8, you will 
need the MySQL server running.

In order to send e-mails, you will need at least one valid Gmail account. Sign up for 
an account. Alternatively, if you are familiar with you own SMTP configuration, you 
could use it instead.







Chapter 10

[ 31� ]

Once you've checked these prerequisites, you are ready to start.

1. Create a new transformation.

2.	 Add a Get System Info step. Use it to add a field named today. As Type, select 
Today 00:00:00.

3.	 Now add a Table input step.

4.	 Double-click the step.

5.	 As Connection, select js—the name of the connection to the jigsaw  
puzzles database.

Note that if the connection is not shared, you will have to 
define it. 

6.	 In the SQL frame, type the following statement:

SELECT   pay_code
       , COUNT(*) quantity
    , SUM(inv_price) amount
FROM     invoices
WHERE    inv_date = ?
GROUP BY pay_code

7.	 In the drop-down list to the right of Insert data from step, select the name of the 
Get System Info step.

8.	 Finally, add an Excel Output step.

9.	 Double-click the step.

10.	Enter type ${LABSOUTPUT}/sales_ as Filename.

11.	Check the Specify Date time format option. In the Date time format drop-down list, 
select yyyyMMdd.



Creating Basic Task Flows

[ 320 ]

12.	Make sure you don't uncheck the Add filenames to result option. Click on OK. Fill 
the Fields tab as here:

13.	Save the transformation under the transformations folder you created in a 
previous tutorial, with the name sales_report.ktr.

14.	Create a new job by pressing Ctrl+Alt+N.

15.	Add a START job entry.

16.	After the START entry, add a Transformation entry.

17.	Double-click the Transformation entry.

18.	Enter ${Internal.Job.Filename.Directory}/transformations/sales_
report.ktr as the transformation filename, either by hand or by browsing the 
folder and selecting the file.

19.	Click on OK.

20.	Expand the Mail category of entries and drag a Mail entry to the canvas.

21.	Create a hop from the transformation entry to the Mail entry.

22.	Double-click the Mail entry.

23.	Fill the main tab Addresses with the destination and the sender e-mail addresses, 
that is, provide values for the Destination address, Sender name, and Sender 
address textboxes. If you have two accounts to play with, put one of them as 
destination and the other as sender. If not, use the same e-mail twice.

24.	Select the Server tab and fill the SMTP Server frame as follows—enter smtp.gmail.
com as SMTP Server and 465 as Port.



Chapter 10

[ 321 ]

25.	Fill the Authentication frame. Check the Use authentication? checkbox. Fill the 
Authentication user and Authentication password textboxes. For example, if your 
account is pdi_account@gmail.com, then as user enter pdi_account and as 
password provide your e-mail password.

26.	Check the Use secure authentication? option. In Secure connection type, leave the 
default to SSL. Select the Email Message tab. In the Message Settings frame, check 
the Only send comment in mail body? option.

27.	Fill the Message frame, providing a subject and a comment for the e-mail—enter 
Sales report as Subject and Please check the attachment as Comment. Select the 
Attached Files tab and check the Attach file(s) to message? option.

28.	 In the Select file type list, select the type General.

29.	Click OK.

30.	Drag another Mail job entry to the canvas.

31.	Create a hop from the transformation entry to this new entry. This hop will appear 
in red.

32.	Double-click the new entry.

33.	Fill the Destination and Sender frames with destination and sender e-mail 
addresses. If you have another account to use as destination, use it here. Select the 
Server tab and fill it exactly as you did in the other Mail entry.

34.	Select the Email Message tab. In the Subject textbox, type Error generating 
sales report.

35.	Click on OK.

36.	Save the job and run it.

37.	Once the job finished, log into your account. You should have received a mail!



Creating Basic Task Flows

[ 322 ]

38.	Open the e-mail. This is what you should see:

39.	Click on the Open as a Google spreadsheet option. You will see the following:



Chapter 10

[ 323 ]

40.	Simulate being an intruder and do something that makes your transformation  
fail. You could, for example, stop MySQL or add some strange characters in the  
SQL statement.

41.	Run the job again.

42.	Check the administrator e-mail—the mail you put as destination in the second Mail 
job entry.

43.	The following is the e-mail you received this time:

What just happened?
You generated an Excel file with a crosstab report of sales on a particular day. If the file is 
generated successfully, an e-mail is sent with the Excel file attached. If some error occurs,  
an e-mail reporting the problem is sent to the administrator.



Creating Basic Task Flows

[ 324 ]

If you skipped Chapter 8 and still know nothing about databases with PDI, don't 
miss this exercise. Instead of the proposed sales report, create a transformation 
that generates any Excel file. The contents of the sheet is not the key here. Just 
make sure you leave the Add filenames to result option checked in the Excel 
output configuration window. Then proceed as explained.

In this example you used Gmail accounts for sending e-mails from a PDI job. You 
can use any mail server as long as you have access to the information required in 
the Server tab.

Changing the flow of execution on the basis of conditions
The execution of any job entry either succeeds or fails.

In particular, the job entries under the category Conditions just evaluates something and 
success or failure depends upon the result of the evaluation.

For example, the job entry File Exists succeeds if the file you put in its window exists. 
Otherwise, it fails.

Whichever the job entry, you can use the result of its execution to decide which of the 
entries following it execute and which don't.

In the tutorial, you included a transformation job entry. If the transformation runs without 
problem, this entry succeeds. Then the execution follows the green hop to the first Mail  
job entry. 

If, while running the transformation, some error occurs, the transformation entry fails. Then 
the execution follows the red path toward the e-mail to the administrator.

So, when you create a job, you not only arrange the entries and hops according to the 
expected order of execution, you also specify under which condition each job entry runs. 



Chapter 10

[ 325 ]

You can define the conditions in the hops. The following table lists the possibilities:

Color of the hop What the color represents The interpretation

Black Unconditional execution The destination entry executes no matter the 
result of the previous entry.

Green Execution upon success The destination entry executes only if the 
previous job entry is successful.

Red Execution upon failure The destination entry executes only if the 
previous job entry failed.

At any hop, you can define the condition under which the destination job entry will execute. 
By default, the first hop that leaves an entry is created green, whereas the second hop is 
created red. You can change the color, that is, the behavior of the hop. Just right-click on the 
hop, select Evaluation, and then the condition.

One exception is the hop or hops that leave the START step. You cannot edit them. The 
destination job entries execute unconditionally, that is, always.

Another exception is the special entry Dummy that does nothing, not even allowing you to 
decide if the job entries after it run or not. They always run.

Have a go hero – refining the sales report
Here we will modify the job that sends the e-mail containing the sales report. 

1. Modify the transformation so that the file is generated in the temporary folder 
${java.io.tmpdir}. If there is no sale for today, don't generate the file. You do 
this by checking the Do not create file at start option in the Excel output step.

2. Send the e-mail only if there were sales, that is, only if the file exists.

3. After sending the e-mail with the report attached, delete the file.



Creating Basic Task Flows

[ 326 ]

Use these new job entries: File Exists from the Conditions category and 
Delete file from the File management category.

Creating and using a file results list
In the tutorial you configured two Mail job entries. In the mail that follows the green hop, 
you attached the Excel file generated by the transformation. However, you didn't explicitly 
specify the name of the file to attach. How could PDI realize that you wanted to attach 
that file? it could because of the Add filenames to result checkbox in the Excel output 
configuration window. By checking that option, you added the name of the Excel file to a 
special list named File result.

When PDI hits an e-mail entry where Attach file(s) to message? is checked, it attaches to the 
e-mail all files in the File result list.

Most of the transformation steps that read or write files have this checkbox, and it is checked 
by default. The following sample belongs to a Text file input step:

Each time you use one of these steps you are adding names of files to this list, unless you 
uncheck the checkbox. 



Chapter 10

[ 327 ]

There are also several job entries in the File management and the File transfer categories 
that add one or more files to the File result list. Consider the following Copy Files…  
entry screen:

As with the Mail entry, there are some other entries that use the File result list. One example 
is Copy or Move result filenames. This entry copies or moves the files whose names are in 
this special list named File result.

Have a go hero – sharing your work
Suppose you want to share your PDI work with a friend. Send to him/her some of your ktr 
files by mail.

Use the Add filenames to result job entry located in the File management 
category to build the File result list. Then send the e-mail with the files attached.

Summary
In this chapter, you learned the basics about PDI jobs—what a job is, what you can do with a 
job, and how jobs are different from transformations. In particular, you learned to use a job 
for running one or more transformations.

You also saw how to use named parameters in jobs, and how to supply parameters and 
arguments to transformations when they are run from jobs.

In the next chapter, you will learn to create jobs that are a little more elaborative than the 
jobs you created here, which will give you more power to implement all types of processes.





11
Creating Advanced  

Transformations and Jobs

Iterating over a list of items (files, people, codes, and so on), implementing 
a process flow, and developing a reusable procedure are very common 
requirements in real world projects. Implementing these kind of needs in PDI 
is not intuitive, but it’s not complicate either. It’s just a matter of learning the 
right techniques that we will see in this chapter. Among other things, you will 
learn to implement process flows, nest jobs, and iterate the execution of jobs 
and transformations.

Enhancing your processes with the use of variables
For the tutorials in this chapter, you will take as your starting point a Time for action tutorial 
you did in Chapter 2 that involves updating a file with news about examinations. You are 
responsible for collecting the results of an annual examination where writing, reading, 
speaking, and listening skills are evaluated. The professors grade the examinations of their 
students in the scale 0-100 for each skill, and generate text files with the information. Then 
they send the files to you for integrating the results in a global list.

In the initial chapters, you were learning the basics of PDI. You were worried about how to 
do simple stuff such as reading a file or doing simple calculations. In this chapter, you will go 
beyond that and take care of the details such as making a decision if the filename expected  
as a command line is not provided or if it doesn't exist.



Creating Advanced Transformations and Jobs

[ 330 ]

Time for action – updating a file with news about examinations 
by setting a variable with the name of the file

The transformation in the Time for action from Chapter 2 that we just talked about reads a 
file provided by a professor, simply by taking the name of the file from the command line, 
and appends the file to the global one. Let's enhance that work.

1.	 Copy the examination files you used in Chapter 2 to the input files and folder 
defined in your kettle.properties file. If you don't have them, download them 
from the Packt website.

2.	 Open Spoon and create a new transformation.

3.	 Use a Get System Info step to get the first command-line argument. Name the field  
as filename.

4.	 Add a Filter rows step and create a hop from the Get System Info step to this step.

5.	 From the Flow category drag an Abort step to the canvas, and from the Job category 
of steps drag a Set Variables step.

6.	 From the Filter rows step, create two hops—one to the Abort step and the other 
to the Set Variables step. Double-click the Abort step. As Abort message, put File 
name is mandatory.

7.	 Double-click the Set Variables step and click on Get Fields. The window will be filled 
as shown here:

8.	 Click on OK.



Chapter 11

[ 331 ]

9.	 Double-click the Filter rows step. Add the following filter: filename IS NOT 
NULL. In the drop-down list to the right of Send 'true' data to step, select the Set 
Variables step, whereas in the drop-down list to the right of Send 'false' data to  
step, select the Abort step.

10.	The final transformation looks like this:

11.	Save the transformation in the transformations folder under the name 
getting_filename.ktr.

12.	Open the transformation named examinations.ktr that was created in Chapter 
2 or download it from the Packt website. Save it in the transformations folder 
under the name examinations_2.ktr.

13.	Delete the Get System Info step.

14.	Double-click the Text file input step.

15.	 In the Accept filenames from previous steps frame, uncheck the Accept filenames 
from previous step option.

16.	Under File/Directory in the Selected files grid, type ${FILENAME}. Save the 
transformation.

17.	Create a new job.

18.	From the General category, drag a START entry and a Transformation entry to the 
canvas and link them.

19.	Save the job as examinations.kjb.



Creating Advanced Transformations and Jobs

[ 332 ]

20.	Double-click the Transformation entry. As Transformation filename, put the name 
of the first transformation that you created: ${Internal.Job.Filename.
Directory}/transformations/getting_filename.ktr.

21.	Click on OK.

Remember that you can avoid typing that long variable name by 
clicking Ctrl+Space and selecting the variable from the list.

22.	From the Conditions category, drag a File Exists entry to the canvas and create a hop 
from the Transformation entry to this new one.

23.	Double-click the File Exists entry.

24.	Write ${FILENAME} in the File name textbox and click on OK.

25.	Add a new Transformation entry and create a hop from the File Exists entry to  
this one.

26.	Double-click the entry and, as Transformation filename, put the name of the 
second transformation you created:${Internal.Job.Filename.Directory}/
transformations/examinations_2.ktr.

27.	Add a Write To Log entry, and create a hop from the File Exists entry to this. The hop 
should be red, to indicate when execution fails. If not, right-click the hop and change 
the evaluation condition to Follow when result is false.

28.	Double-click the entry and fill all the textboxes as shown:



Chapter 11

[ 333 ]

29.	Add two entries—an abort and a success. Create hops to these new entries as 
shown next:

30.	Save the job.

31.	Press F9 to run the job.

32.	Set the logging level to Minimal logging and click on Launch.

33.	The job fails. The following is what you should see in the Logging tab in the 
Execution results window:



Creating Advanced Transformations and Jobs

[ 334 ]

34.	Press F9 again. This time set Basic logging as the logging level.

35.	 In the arguments grid, write the name of a fictitious file—for example,  
c:/pdi_files/input/nofile.txt. 

36.	  Click on Launch. This is what you see now in the Logging tab window:

37.	Press F9 for the third time. Now provide a real examination filename such as  
c:/pdi_files/input/exam1.txt. 

38.	  Click on Launch. This time you see no errors. The examination file is appended to 
the global file:



Chapter 11

[ 335 ]

What just happened?
You enhanced the transformation you created in Chapter 3 for appending an examination file 
to a global examination file. This time you embedded the transformation in a job. The first 
transformation checks that the argument is not null. In that case, it sets a variable with the 
name provided. The main job verifies that the file exists. If everything is all right, then the 
second transformation performs the main task—it appends the given file to the global file.

Note that you changed the logging levels just according to what you needed to see—the 
highlighted lines in the earlier explanation. 

You may choose any logging level you want depending on the details 
of information you want to see.

Setting variables inside a transformation
So far, you had defined variables only in the kettle.properties file or inside Spoon while 
you were designing a transformation. In this last exercise, you learned to define your own 
variables at run time. You set a variable with the name of the file provided as a command-line 
argument. You used that variable in the main job to check if the file existed. Then you used the 
variable again in the main transformation. There you used it as the name of the file to read.

This example showed you the how to set a variable with the value of a command-line 
argument. This is not always the case. The value you set in a variable can be originated in 
different ways—it can be a value coming from a table in a database, a value defined with a 
Generate rows step, a value calculated with a Formula or a Calculator step, and so on.

The variables you define with a Set variables step can be used in the same way and the same 
places where you use any Kettle variable. Just take precautions to avoid using these variables 
in the same transformation where you have set them.

The variables defined in a transformation are not available 
for using until you leave that transformation. 

Have a go hero – enhancing the examination tutorial even more
Modify the job in the tutorial to avoid processing the same file twice. If the file is  
successfully appended to the global file, rename the original file by changing the  
extension to processed—for example, after processing the exam1.txt file rename  
it to exam1.processed.



Creating Advanced Transformations and Jobs

[ 336 ]

After verifying if the file exists, also check whether the .processed version exists. If it 
exists, put a proper message in the log and abort. If someone accidently tries to process  
a file that is already processed, it will be ignored.

Besides the variable with the filename, create a variable with the name 
for the processed file. To build this name, simply manipulate the given 
name with some PDI steps.

Have a go hero – enhancing the  jigsaw database update process
In the Time for action – inserting new products or updating existent ones section in Chapter 
8, you read a file with a list of products belonging to the manufacturer Classic DeLuxe. 
The list was expected as a named parameter. Enhance that process. Create a job that first 
validates the existence of the provided file. If the file doesn't exist, put the proper error 
message in the log. If it exists, process the list. Then move the processed file to a folder 
named processed.

You don't need to create a transformation to set a variable with the 
name of the file. As it is expected as a named parameter, it is already 
available as a variable.

Have a go hero – executing the proper jigsaw database update process
In the hero exercise in Chapter 8 that involves populating the products table, you created 
different transformations for updating the products—one for each manufacturer. Now you 
will put all that work together.

Create a job that accepts two arguments—the name of the file to process and the code of 
the manufacturer to which the file belongs.

Create a transformation that validates that the code provided belongs to an existent 
manufacturer. If the code exists, set a variable named TRANSFORMATION_FILE with the 
name of the transformation that knows how to process the file for that manufacturer.

The transformation must also check that the name provided is not null. If it is not null, set a 
variable named FILENAME with the name supplied.

Then, in the job, check that the file exists. If it exists and the manufacturer code is valid, run 
the proper transformation. In order to do so, put ${TRANSFORMATION_FILE} as the name 
of the transformation in the transformation job entry dialog window. Now test your job.



Chapter 11

[ 337 ]

Enhancing the design of your processes
When your jobs or transformations begin to grow, you may find them a little disorganized or 
jumbled up. It's now time to do some rework. Let's see an example of this.

Time for action – generating files with top scores
In this tutorial, you will read the examination global file and generate four files—one for each 
particular skill. The files will contain the top 10 scores for each skill. The scores will not be 
the original, but converted to a scale with values in the range 0-5.

As you must be already quite confident with PDI, some explanations in this 
section will not have the full details. On the contrary, the general explanation 
will be focused on the structure of the jobs and transformations.

1.	 Create a new transformation and save it in the transformations folder under the 
name top_scores.ktr.

2.	 Use a Text file input step to read the global examination file generated in the 
previous tutorial.

3.	 After the Text file input step, add the following steps and link them in the  
same order:

A Select values step to remove the unused fields— 
file_processed and process_date.

A Split Fields to split the name of the students in two—name and 
last name.

A Formula step to convert name and last name to uppercase.

With the same Formula step, change the scale of the scores. 
Replace each skill field writing, reading, speaking, and 
listening with the same value divided by 20—for example, 
[writing]/20. You have already done this in Chapter 3.











Creating Advanced Transformations and Jobs

[ 33� ]

4.	 Do a preview on completion of the final step to check that you are doing well. You 
should see this:

5. After the last Formula step, add and link in this order the following steps:

A Sort rows step to order the rows in descending order by the 
writing field.

A JavaScript step to filter the first 10 rows. Remember that you 
learned to do this in the chapter devoted to JavaScript. You do it by 
typing the following piece of code:

 trans_Status = CONTINUE_TRANSFORMATION;

 if (getProcessCount('r')>10) trans_Status =  
 SKIP_TRANSFORMATION;

An Add sequence step to add a field named seq_w. Leave the 
defaults so that the field contains the values 1, 2, 3 …

A Select values step to rename the field seq_w as position and 
the field writing as score. Specify this change in the Select & 
Alter tab, and check the option Include unspecified fields, ordered.

A Text file output step to generate a file named writing_top10.
txt at the location specified by the ${LABSOUTPUT} variable. In the 
Fields tab, put the following fields— position, student_code, 
student_name, student_lastname, and score.

6. Save the transformation, as you've added a lot of steps and don't want to lose  
your work.













Chapter 11

[ 33� ]

7.	 Repeat step number 5, but this time sort by the reading field, rename the sequence 
seq_r as position and the field reading as score, and send the data to the 
reading_top10.txt file. 

To save time, you can copy all those steps, paste them, and do 
the proper adjustments.

8.	 Repeat the same procedure for the speaking field and the listening field.

9.	 This is how the transformation looks like:

10.	Save the transformation.



Creating Advanced Transformations and Jobs

[ 340 ]

11.	Run the transformation. Four files should have been generated. All the files should look 
similar. Let's check the writing_top10.txt file (the names and values may vary 
depending on the examination files that you have appended to the global file):

What just happened?
You read the big file with examination results and generated four files with information 
about the top scores—one file for each skill.

Beyond having used the Add sequences step for the first time, there was nothing new. 
However, there are several improvements you can do to this transformation. The next 
tutorials are meant to teach you some tricks.

Pop quiz – using the Add Sequence step
In the previous tutorial, you used different names for the sequences and then you renamed 
all of them to position. Which of the following options gives you the same results you got 
in the tutorial?

a. Using position as the name of the sequence in all Add sequence steps

b. Joining the four streams with a single Add sequence step and then splitting  
the stream back into four streams by using the Distribute method you learned  
in Chapter 4

c. Joining the four streams with a single Add sequence step and then splitting the 
stream back into four streams by using a Switch case step that distributes the  
rows properly

d. All of them

e. None of them



Chapter 11

[ 341 ]

Reusing part of your transformations
As you noticed, the sequence of steps used to get the ranks are almost identical for the four 
skills. You could have avoided copying and pasting or doing the same work several times by 
moving those steps to a subtransformation. Let's do it.

Time for action – calculating the top scores with a 
subtransformation

Let's modify the transformation that calculates the top scores to avoid unnecessary 
duplication of steps:

1.	 Under the transformation folder, create a new folder named 
subtransformations.

2.	 Create a new transformation and save it in that new folder with the name  
scores.ktr.

3.	 Expand the Mapping category of steps. Select a Mapping input specification step 
and drag it to the work area.

4.	 Double-click the step and fill it like this:

5.	 Add a Sort rows step and use it to sort the score field in descending order.

6.	 Add a JavaScript step and type the following code to filter the top 10 rows:

trans_Status = CONTINUE_TRANSFORMATION;

if (getProcessCount('r')>10) trans_Status = SKIP_TRANSFORMATION;

7.	 Add an Add sequence step to add a sequence field named seq.



Creating Advanced Transformations and Jobs

[ 342 ]

8.	 Finally, add a Mapping output specification step. You will find it in the Mapping 
category of steps. Your transformation looks like this:

9.	 Save the transformation.

10.	Open the transformation top_scores.ktr and save it as top_scores_with_
subtransformations.ktr.

11.	Modify the writing stream. Delete all steps except the Text file output step—the 
Sort rows, JavaScript, Add sequence, and the Select rows steps.

12.	Drag a Mapping (sub-transformation) step to the canvas and put it in the place 
where all the deleted steps were. You should have this:

13.	Double-click the Mapping step.



Chapter 11

[ 343 ]

14.	 In the Mapping transformation frame, select the option named Use a file for 
the mapping transformation. In the textbox below it, type ${Internal.
Transformation.Filename.Directory}/subtransformations/scores.
ktr. Select the Input tab, check the Is this the main data path? option, and fill the 
grid as shown:

15.	Select the Output tab and fill the grid as shown:

16.	Click on OK.

17.	Repeat the steps 11 to 16 for the other streams—reading, speaking, and listening. 
The only difference is what you put in the Input tab of the Mapping steps—instead 
of writing, you should put reading, speaking, and listening.

Note that you added four Mapping (subtransformation) 
steps, but you only need one subtransformation file.



Creating Advanced Transformations and Jobs

[ 344 ]

18.	The final transformation looks as follows:

19.	Save the transformation.

20.	Press F9 to run the transformation.

21.	Select Minimal logging and click on Launch. The Logging window looks like  
the following:



Chapter 11

[ 345 ]

22.	The output files should have been generated and should look exactly the same as 
before. This time let's check the reading_top10.txt file (the names and values 
may vary depending on the examination files that you appended to the global file):

What just happened?
You took the bunch of steps that calculate the top scores and moved it to a 
subtransformation. Then, in the main transformation, you simply called the 
subtransformation four times, each time using a different field.

It's worth saying that the Text file output step could also have been moved to the 
subtransformation. However, instead of simplifying the work, it would have complicated it. 
This is because the names of the files are different in each case and, in order to build that 
name, it would have been necessary to add some extra logic.

Creating and using subtransformations
Subtransformations are, as the named suggests, transformations inside transformations.

The PDI proper name for a subtransformation is mapping. However, as the 
word mapping is also used with other meanings in PDI, we will use the old, 
more intuitive name subtransformation.

In the tutorial, you created a subtransformation to isolate a task that you needed 
to apply four times. This is a common reason for creating a subtransformation—to 
isolate a functionality that is likely to be needed more than once. Then you called the 
subtransformations by using a single step.



Creating Advanced Transformations and Jobs

[ 346 ]

Let's see how subtransformations work. A subtransformation is like a regular transformation, 
but it has input and output steps, connecting it to the transformations that use it.

The Mapping input specification step defines the entry point to the subtransformation. 
You specify here just the fields needed by the subtransformation. The Mapping output 
specification step simply defines where the flow ends.

The presence of Mapping input specification and Mapping output 
specification steps is the only fact that makes a subtransformation 
different from a regular transformation.

In the sample subtransformation you created in the tutorial, you defined a single field named 
score. You sorted the rows by that field, filtered the top 10 rows, and added a sequence to 
identify the rank—a number from 1 to 10.

You call or execute a subtransformation by using a Mapping (sub-transformation) step. In 
order to execute the subtransformation successfully, you have to establish a relationship 
between your fields and the fields defined in the subtransformation.

Let's first see how to define the relationship between your data and the input specification. 
For the sample subtransformation, you have to define which of your fields is to be used as 
the input field score defined in the input specification. You can do it in an Input tab in the 
Mapping step dialog window. In the first Mapping step, you told the subtransformation to 
use the field writing as its score field.

If you look at the output fields coming out of the Mapping step, you will no longer see the 
writing field but a field named score. It is the same field writing that was renamed as 
score. If you don't want your fields to be renamed, simply check the Ask these values to 
be renamed back on output? option found in the Input tab. That will cause the field to be 
renamed back to its original name—writing in this example.

Let's now see how to define the relationship between your data and the output specification. 
If the subtransformation creates new fields, you may want to add them to your main 
dataset. To add to your dataset, a field created in the subtransformation, you use an Output 
tab of the Mapping step dialog window. In the tutorial, you were interested in adding the 
sequence. So, you configured the Output tab, telling the subtransformation to retrieve the 
field named seq in the subtransformation but renamed as position. This causes a new 
field named position to be added to your stream.

If you want the subtransformation to simply transform the incoming stream without adding 
new fields, or if you are not interested in the fields added in the subtransformation, you 
don't have to create an Output tab.



Chapter 11

[ 347 ]

The following screenshot summarizes what was explained just now. The upper and lower grids 
show the datasets before and after the streams have flown through the subtransformation.

The subtransformation in the tutorial allowed you to reuse a bunch of steps that were 
present in several places, avoiding doing the same task several times. Another common 
situation where you may use subtransformations is the one where you have a transformation 
with too many steps. If you can identify a subset of steps that accomplish a specific purpose, 
you may move those steps to a subtransformation. Doing so, your transformation will 
become cleaner and easier to understand.

Have a go hero – refining the subtransformation
Modify the subtransformation in the following way:

Add a new field named below_first. The field should have the difference between the 
score in the current row and the maximum score. For example, if the maximum score is 5 
and the current score is 4.85, the value for the field should be 0.15.

Modify the main transformation by adding the new field to all output files.



Creating Advanced Transformations and Jobs

[ 34� ]

Have a go hero – counting words more precisely (second version)
Combine the following Hero exercises from Chapter 3:

Counting words, discarding those that are commonly used

Counting words more precisely

Create a subtransformation that receives a String value and cleans it. Remove extra signs that 
may appear as part of the string such as . , ) or ". Then convert the string to lower case.

Also create a flag that tells whether the string is a valid word. Remember that the word is 
valid if its length is at least 3 and if it is not in a given list of common words.

Retrieve the modified word and the flag.

Modify the main transformation by using the subtransformation. After the 
subtransformation step, filter the words by looking at the flag.

Creating a job as a process flow
With the implementation of a subtransformation, you simplify much of the transformation. 
But you still have some reworking to do. In the main transformation, you basically do two 
things. First you read the source data from a file and prepare it for further processing. And 
then, after the preparation of the data, you generate the files with the top scores. To have a 
clearer vision of these two tasks, you can split the transformation in two, creating a job as a 
process flow. Let's see how to do that.

Time for action – splitting the generation of top scores by 
copying and getting rows

Now you will split your transformation into two smaller transformation so that each meets a 
specific task. Here are the instructions.

1.	 Open the transformation in the previous tutorial. Select all steps related to  
the preparation of data, that is, all steps from the Text file input step upto the  
Formula step.

2.	 Copy the steps and paste them in a new transformation.

3.	 Expand the Job category of steps.







Chapter 11

[ 34� ]

4.	 Select a Copy rows to result step, drag it to the canvas, and create a hop from the 
last step to this new one. Your transformation looks like this:

5.	 Save the transformation in the transformations folder with the name  
top_scores_flow_preparing.ktr.

6.	 Go back to the original transformation and select the rest of the steps, that is, the 
Mapping and the Text file output steps.

7.	 Copy the steps and paste them in a new transformation.

8.	 From the Job category of steps select a Get rows from result step, drag it to 
the canvas, and create a hop from this step to each of the Mapping steps. Your 
transformation looks like this:

9.	 Save the transformation in the transformations folder with the name top_
scores_flow_processing.ktr.

10.	 In the top_scores_flow_preparing transformation , right-click the step Copy 
rows to result and select Show output fields.



Creating Advanced Transformations and Jobs

[ 350 ]

11.	The grid with the output dataset shows up.

12.	Select all rows. Press Ctrl+C to copy the rows.

13.	 In the top_scores_flow_processing transformation, double-click the step Get 
rows from result.

14.	Press Ctrl+V to paste the values. You have the following result:

15.	Save the transformation.



Chapter 11

[ 351 ]

16.	Create a new Job.

17.	Add a START and two transformation entries to the canvas and link them one after 
the other.

18.	Double-click the first transformation. Put ${Internal.Job.Filename.
Directory}/transformations/top_scores_flow_preparing.ktr as the 
name of the transformation.

19.	Double-click the second transformation. Put ${Internal.Job.Filename.
Directory}/transformations/top_scores_flow_processing.ktr as  
the name of the transformation.

20.	Your job looks like the following:

21.	Save the job. Press F9 to open the Job properties window and click on Launch. 
Again, the four files should have been generated, with the very same information.

What just happened?
You split the main transformation in two—one for the preparation of data and the other for 
the generation of the files. Then you embedded the transformations into a job that executed 
them one after the other. By using the Copy rows to result step, you sent the flow of data 
outside the transformation, and using Get rows from result step, you picked that data to 
continue with the flow. The final result was the same as before the change.

Notice that you split the last version of the transformation—the 
one with the subtransformations inside. You could have split the 
original. The result would have been exactly the same.



Creating Advanced Transformations and Jobs

[ 352 ]

Transferring data between transformations by using the copy /get rows 
mechanism 
The copy/get rows mechanism allows you to transfer data between two transformations, 
creating a process flow. The following drawing shows you how it works:

Copy
rows
step

Transformation A

Data being
transferred

Get
rows
step

Transformation B

The Copy rows to result step transfers your rows of data to the outside of the  
transformation. You can then pick that data by using a Get rows from result step. In the 
preceding image, Transformation A copies the rows and, Transformation B, which executes  
right after Transformation A, gets the rows. If you create a single transformation with all 
steps from Transformation A followed by all steps from Transformation B, you would get  
the same result.

The copy of the dataset is made in memory. It's useful when you have 
small datasets. For bigger datasets, you should prefer saving the data in a 
temporary file or database table in the first transformation, and then create 
the dataset from the file or table in the second transformation.
The Serialize to file /De-serialize from file steps are very useful for this, as the 
data and the metadata are saved together.



Chapter 11

[ 353 ]

There is no limit to the number of transformations that can be chained using this 
mechanism. Look at the following image:

Transformation A

Get
Rows

Get
Rows

Copy
rows

Copy
rows .......... ..........

Transformation B Transformation N

As you can see, you may have a transformation that copies the rows, followed by another 
that gets the rows and copies again, followed by a third transformation that gets the rows,  
and so on.

Have a go hero – modifying the flow
Modify the last exercise in the following way:

Include just the students who had an average score above 70.

Note that you have to modify just the transformation that prepares 
the information, without caring about what the second process 
does with that data.

Generate just the top five scores for every skill.

Note that you have to modify just the transformation (or the 
subtransformation) that processes the information, without 
caring about how the list of students was built.

Create each file in a different transformation. The transformations execute one after  
the other.









Creating Advanced Transformations and Jobs

[ 354 ]

This exercise requires that you modify the flow. Each 
transformation gets the rows from the previous transformation, 
then generates a file, and copies the rows to the result to be 
used for the next transformation.

Nesting jobs
Suppose that every time you append a file with examination results, you want to generate 
updated files with the top 10 scores. You can do it manually, running one job after the other, 
or you can nest jobs.

Time for action – generating the files with top scores by 
nesting jobs

Let's modify the job that updates the global examination file, so at the end it generates 
updated top scores files:

1.	 Open the examinations job you created in the first tutorial of this chapter.

2.	 After the last transformation job entry, add a job entry as Job. You will find it under 
the General category of entries.

3.	 Double-click the Job job entry.

4.	 Type ${Internal.Job.Filename.Directory}/top_scores_flow.kjb  
as Job filename.

5.	 Click on OK.

6.	 Save the job.

7.	 Pick an examination that you have not yet appended to the global file—for example, 
exam5.txt.

8.	 Press F9.

9.	 In the Arguments grid, type the full path of the chosen file: c:/pdi_files/input/
exam5.txt. 

10.	Click on Launch.

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>



Chapter 11

[ 355 ]

11.	  In the Job metrics tab of the Execution results window, you will see the following:

12.	Also the chosen file should have been added to the global file, and updated files with 
top scores should have been generated.

What just happened?
You modified the job that updates the global examination file by including the generation of 
the files with top scores as part of the process. You did it by using a Job job entry whose task 
is to run a job inside a job.

In the Job metrics, you could see a hierarchy showing the details of the nested job as a  
sub-tree of that hierarchy.

Running a job inside another job with a job entry
The job entry, Job, allows you to run a job inside a job. Just like any job entry, this entry may 
end successfully or fail. Upon that result, the main job decides which of the entries that 
follows it will execute. None of the entries following the job entry starts until the nested job 
ends its execution. There is no limit to the levels of nesting. You may call a job, which calls  
a job, which again calls a job, and so on. Usually you will not need more than two or  
three levels.



Creating Advanced Transformations and Jobs

[ 356 ]

As with a transformation job entry, you must specify the location and name of the job file. 
If the job (or any transformation inside the nested job) uses arguments or has defined 
named parameters, you have the possibility of providing fixed values just as you do in a 
Transformation job entry—by filling the Arguments and Parameters tabs.

Understanding the scope of variables
By nesting jobs, you implicitly create a relationship between the jobs. Look at the  
following diagram:

Here you can see how a job, and even a transformation, may have parents and grandparents. 
The main job is called root job. This hierarchy is useful to understand the scope of variables. 
When you define a variable, you have the option to set the scope, that is, define the places 
where the variable is visible.



Chapter 11

[ 357 ]

The following table explains which jobs and transformations can access the variable 
depending on the variable's scope.

Variable scope type Visibility of the variable
Valid in the parent job Can be seen by the job that called the transformation and any 

transformation called by this job.
Valid in the grand-parent job Can be seen by the job that called the transformation, the job that 

called that job, and any transformation called by any of these jobs.
Valid in the root job Can be seen by all jobs in the chain starting with the main job, and 

any transformation called by any of these jobs.
Valid in the Java Virtual 
Machine

Seen by all the jobs and transformations run from the same 
Java Virtual Machine. For example, suppose that you define a 
variable with scope in the Java Virtual Machine. If you run the 
transformation from Spoon, then the variable will be available in all 
jobs and transformations you run from Spoon as long as you don't 
exit Spoon.

 Pop quiz – deciding the scope of variables
In the first tutorial you created a transformation that set a variable with the name of a file. 
For the scope, you left the default value: Valid in the root job. Which of the following scope 
types could you have chosen getting the same results (you may select more than one):

a. Valid in the parent job

b. Valid in the grand-parent job

c. Valid in the Java Virtual Machine

In general, if you have doubts about which scope type to use, you can use Valid 
in the root job and you will be good. Simply ensure that you are not using the 
same name of variable for different purposes.

Iterating jobs and transformations
It may happen that you develop a job or a transformation to be executed several times, once 
for each different row of your data. Consider that you have to send a custom e-mail to a list 
of customers. You would build a job that, for a given customer, get the relevant data such as 
name or e-mail account and send the e-mail. You would then run the job manually several 
times, once for each customer. Instead of doing that, PDI allows you to execute the job 
automatically once for each customer in your list.



Creating Advanced Transformations and Jobs

[ 35� ]

The same applies to transformations. If you have to execute the same transformation several 
times, once for each row of a set of data, you can do it by iterating the execution. The next 
Time for action tutorial shows you how to do this.

Time for action – generating custom files by executing a 
transformation for every input row

Suppose that 60 is the threshold below which a student must retake the examination. Let's 
find out the list of students with a score below 60, that is, those who didn't succeed in the 
writing examination. Then, let's create one file per student telling him/her about this.

First of all, let's create a transformation that generates the list of students who will take  
the examination:

1.	 Create a new transformation.

2.	 Drag a Text file input, a Filter rows, and a Select values step to the canvas and link 
them in that order.

3.	 Use the Text file input step to read the global examination file.

4.	 Use the Filter rows step to keep only those students with a writing score below 60.

5.	  With the Select values step, keep just the student_code and name values.

6.	 After this last step, add a Copy rows to result step.

7.	 Do a preview on this last step. You will see the following (the exact names and 
values depend on the number of files you have appended to the global file):

8.	 Save the transformation in the transformations folder with the name 
students_list.ktr.



Chapter 11

[ 35� ]

Now let's create a transformation that generates a single file. This transformation will be 
executed for each student in the list shown in the preceding screenshot:

1.	 Create a new transformation.

2.	 Drag a Get rows from result step to the canvas.

3.	 Double-click the Get rows from result step and use it to define two String  
fields—a field named student_code and another field named name.

4.	 Add a Formula step and create a hop from the Get rows from result step to this  
new step.

5.	 Use the Formula step to create a new String field named text. As value, type: 
"You'll have to take the examination again, " & [name] & ".".

6.	 After the Formula step, add a Delay row step. You will find it under the Utility 
category of steps.

7.	 Finally, add a Text file output step, and double-click the step to configure it.

8.	 As filename type ${LABSOUTPUT}/hello. Check the option Include time  
in filename?.

9.	 In the content tab, uncheck Header. As Field, select the field text.

10.	This is how your final transformation looks:

11.	Save the transformation in the transformations folder under the name  
hello_each.ktr.

You can't test this transformation alone. If you want to test it, just 
replace temporarily the Copy rows from result step with a Generate 
rows step, generate a single row with fixed values for the fields, and 
run the transformation.



Creating Advanced Transformations and Jobs

[ 360 ]

Let's create a job that puts everything together:

1.	 Create a job.

2.	 Drag a START, a Delete files, and two transformation entries to the canvas, and link 
them one after the other as shown:

3.	 Save the job.

4.	 Double-click the Delete files step. Fill the Files/Folders: grid with a single 
row—under File/Folder type ${LABSOUTPUT} and under Wilcard (RegExp) type 
hello.*\.txt. This regular expression includes all .txt files whose name start 
with the string "hello" in the ${LABSOUTPUT} folder.

5.	 Double-click the first transformation entry. As Transformation filename, put 
${Internal.Job.Filename.Directory}/transformations/student_
list.ktr and click on OK.

6.	 Double-click the second transformation entry. As Transformation filename, 
put ${Internal.Job.Filename.Directory}/transformations/ 
hello_each.ktr.

7.	 Check the option Execute for every input row?  and click on OK.

8.	 Save the job and press F9 to run it.

9.	 When the execution finishes, explore the folder pointed by your ${LABSOUTPUT} 
variable. You should see one file for each student in the list. The files are named 
hello_<hhmmddss>.txt where <hhmmddss> is the time in your system at the 
moment that the file was generated. The generated files look like the following:



Chapter 11

[ 361 ]

What just happened?
You built a list of students who had to retake the writing examination and, for each student, 
you generated a file with a custom message.

First, you created a transformation that built the list of the students and copied the rows 
outside the transformation by using the Copy rows to result step.

Then you created another transformation that gets a row from the result  and generates a 
file with a custom hello message.

Finally, you created the main job. First of all, the job deletes all files just in case you run 
the job more than once. Then it calls the first transformation and then executes the 
transformation that generates the file once for every copied row, that is, once for every 
student. Each time the transformation gets the rows from the result, it gets a single row with 
information about a single student and generates a file with the message for that student.

Before proceeding with the details about executing each row mechanism, let's briefly  
explain the new step used here—the Delay row step that is used to deliberately slow down  
a transformation. For each incoming row, the step waits for the amount of time indicated in 
its setting window which, by default, is 1 second. After that time, the row is given to the  
next step.

In this tutorial, the Delay row step is used to ensure that each time the transformation 
executes, the name of the file is different. As part of the name for the file, you put the time 
of your system including hours, minutes, and seconds. By waiting for a second, you can be 
sure that in every execution of the transformation the name of the file will be different from 
the name of the previous file.

Executing for each row
The execute for every input row? option you have in the transformation entry setting 
window allows you to run the transformation once for every row copied in a previous 
transformation by using the Copy rows to result step. PDI executes the transformation as 
many times as the number of copied rows, one after the other. Each time the transformation 
executes and gets the rows from the result, it actually gets a different row. 

Note that in the transformation you don't limit the number of incoming 
rows. You simply assume that you are receiving a single row. If you forget to 
set the execute for every input row? option in the job, the transformation 
will run but you will get unexpected results.



Creating Advanced Transformations and Jobs

[ 362 ]

This drawing shows you the mechanism for a dataset with three rows:

Copy
rows
step

Transformation A

1s
t ro

w

Get rows
step

Get rows
step

Get rows
step

Transformation B

Transformation B

Transformation B

......

......

......

......

2nd row

3rd row

The transformation A in the example copies three rows. Then the transformation B is 
executed three times—first for the first copied row, then for the second, and finally for  
the third row.



Chapter 11

[ 363 ]

If you look at the log in the tutorial, you can see it working:

The transformation that builds the list of students copies four rows to the results. Then the 
main job executes the second transformation four times—once for each of those students. 



Creating Advanced Transformations and Jobs

[ 364 ]

The following sketch shows it clearly:

This mechanism of executing for every input row applies also to jobs. To execute a single 
job several times, once for every copied row, you have to check the execute for every input 
row? option that you have in the job entry settings window.

Have a go hero – processing several files at once
Modify the first tutorial about Updating a file with news about examinations. But this time 
accept a folder as parameter. Then process all the text files in that folder, ordered by date of 
the file. For each processed file, put a line in the log telling the name of the processed file.

You can use the following hint. Create a first transformation that, instead of validating the 
parameter as a file, validates it as a folder. In order to do that, use the File exists step inside 
the Lookup category of steps.



Chapter 11

[ 365 ]

If the folder exists, use a Get File Names step. That step allows you to retrieve the list of 
filenames in a given folder, including the attributes for those files. To define which files to 
get, use the options in the box Filenames from field. Sort the list by file date and copy the 
names to the results.

In the second transformation, executed for every input row, get a row from the result, then 
use a Text file input step accepting the name from the previous step, and proceed as usual.

As you may find it difficult to use steps you never used before, you 
may download a working version for the first transformation. You'll 
find it among the material for this chapter.

Have a go hero – building lists of products to buy
This exercise is related to the JS database.

Create a transformation to find out the manufacturers for the products that have been sold 
best in the current month. Take the first three manufacturers in the list.

Create another transformation that, for every manufacturer in that list, builds a file with a list 
of products out of stock.

Hint

The first transformation must copy the rows to the result. The second transformation must 
execute for every input row. Start the transformation with a Get rows from result step, then 
a Table Input step that receives as parameter a manufacturer's code. The SQL to use could 
be something like:

SELECT *
FROM products
WHERE code_man LIKE '?' AND pro_stock<pro_stock_min

Have a go hero – e-mail students to let them know how they did
Suppose some students have asked you to send them an e-mail to tell them how they did in 
the examination. Get the list of students from a file you'll find inside the resources, find out 
their scores, and send them an e-mail with that information.

Hint

Create a transformation that builds the list of students that have asked you to send them the 
examination results, along with their e-mail and scores, and copies the rows to the result.



Creating Advanced Transformations and Jobs

[ 366 ]

Create a job that does the following: Call a transformation that gets a row from a result with 
the name, e-mail, and scores for a single student. Use that information to create variables 
needed to send an e-mail, for example Subject. After calling that transformation, use a Mail 
entry to send the e-mail by using the defined variables.

Create a main job. Execute the transformation that builds the list followed by the job 
described above, executing it for every input row.

To test the job that sends e-mails, you may temporarily replace the Get rows 
from result step with a Generate rows with fixed values step.

To test the main job, replace the e-mail accounts in the file with accounts you 
have access to.

Summary
In this chapter you learned techniques to combine jobs and transformations in  
different ways.

First, you learned to define your own variables at run time. You defined variables in one 
transformation and then used them in other jobs and/or transformations. You also learned 
to define different scopes for those variables.

After that, you learned to isolate part of a transformation as a subtransformation. You also 
learned to implement process flows by copying and getting rows, and how to nest jobs. By 
using all these PDI capabilities, your work will look cleaner and will be more organized.

Finally, you learned to iterate the execution of jobs and transformations.

Let's say that this was a really productive chapter. By now, you should be equipped with 
enough knowledge to use PDI for developing most of your requirements.

You're now ready for the next chapter, where you will develop the final project that will allow 
you to review a little of everything you've learned throughout the book.



12
Developing and Implementing a 

Simple Datamart

In this chapter you will develop a simple but complete process of loading a 
datamart while reviewing all concepts you learned throughout the book.

The chapter will cover the following:

Introduction to a sales datamart based on the Jigsaw puzzles database

Loading the dimensions of the sales datamart

Loading the fact table for the sales datamart

Automating what has been done

Exploring the sales datamart
In Chapter 9, you were introduced to star schemas. In short, a star schema consists of 
a central table known as the fact table, surrounded by dimension tables. While the fact 
has indicators of your business such as sales in dollars, the dimensions have descriptive 
information for the attributes of your business such as time, customers, and products.

A star that addresses a specific department's needs or that is built for use by a particular 
group of users is called a datamart. You can have datamarts focused on customer 
relationship management, inventory, human resources management, budget,  
and more. In this chapter, you will load a datamart focused on sales.

Sometimes the term datamart is confused with datawarehouse. However, datamarts and 
datawarehouses are not the same.











Developing and Implementing a Simple Datamart

[ 36� ]

The main difference between datamarts and datawarehouses is that 
datawarehouses address the needs of the whole organization, whereas 
a datamarts addresses the needs of a particular department.

Datawarehouses contain information from multiple subject areas, allowing you to have a 
global vision of your business. Therefore, they are oriented to the company's staff such as 
executives or managers.

The following star represents your sales datamart—a central fact named SALES, surrounded 
by six dimensions:

Product Type Time

Payment
Method

Buy
Method

Manufac
turer

SALES Region

The following is a brief description for the dimensions in your SALES star:

Dimension Description

Time The date on which the sales occurred

Regions The geographical area where the products were sold

Manufacturers The name of the manufacturers that build the products sold

Payment method Cash, Check, and so on

Buy method Internet, by telephone, and so on

Product type Puzzle, glue, frame, and so on

In real models you may find two types of dimensions related with 
time—a dimension holding calendar day attributes and a separate 
dimension with attributes such as hours, minutes, and seconds.



Chapter 12

[ 36� ]

Let's now look at the DER for the database that represents this model. The fact table is 
represented by a table named ft_sales.

The following table shows you the correspondence between the dimensions in the model 
and the tables in the database:

Dimension Table

Manufacturers lk_manufacturer

Time lk_time

Regions lk_regions_2

Payment method lk_junk_sales

Buy method lk_junk_sales

Product type none

As you can see, there is no one-to-one relationship between the dimensions in the model 
and the tables in the database.

A one-to-one relationship between a dimension and a database table is not 
required, but may coincidentally exist.

The first three dimensions have their corresponding tables.

The payment and buy method dimensions share a junk dimension. A junk dimension is an 
abstract dimension that groups unrelated low-cardinality flags, indicators, and attributes. Each 
of those items could technically be a dimension on its own, but grouping them into a junk 
dimension has the advantage of keeping your database model simple and it also saves space.



Developing and Implementing a Simple Datamart

[ 370 ]

The last dimension, product type, doesn't have a separate table. It is so simple that it isn't 
worth creating a dimension table. Instead, its values are stored in a dedicated field in the  
fact table. This kind of dimension is called degenerate dimension.

Deciding the level of granularity
The level of detail in your star model is called grain. The granularity is directly related to the 
types of questions you expect your model to answer. Let's see some examples.

The product-related information your model has is the manufacturer and the kind of product 
(puzzle, glue, and so on). Thus, it allows you to ask questions such as:

Beyond puzzles, what type of product is the best sold?

Do you sell more products manufactured by Ravensburger than products 
manufactured by Educa Jigsaws?

What if you want to know the names of the top ten products sold? You simply can't, as that 
level of detail is not stored in the model. For answering this type of question, you need a 
lower level of granularity. You could have that by adding a product dimension where each 
record represents a particular product.

Now let's see the time dimension. Each record in that dimension represents a particular 
calendar day. This allows you to answer questions such as: how many products did you sell 
every day in the last four months?

If you were not interested in daily, but in monthly information, you could have designed a 
model with a higher level of granularity by creating a time dimension with just one record 
per month.

Understanding the level of granularity of your model is a key to the process of loading the 
fact table, as you will see when you load the sales fact table.

Loading the dimensions
As you saw, the sales star model consists of a fact surrounded by the dimension tables. In 
order to load the star, first you have to load the dimensions. You already learned how to  
load dimension tables. Here you will load the dimensions for the sales star.







Chapter 12

[ 371 ]

Time for action – loading dimensions for the sales datamart
In this tutorial, you will load each dimension for the sales datamart and enclose them into a 
single job. Before starting, check the following things:

Check that the database engine is up and that both the js and the js_dw databases 
are accessible from PDI.

If your time dimension table, lk_time, has data, truncate the table. You may do it 
by using the Truncate table [lk_time] option in the database explorer.

You may reuse the js_dw database in which you have been loading data in 
previous chapters. There is no problem with that. However, creating a whole 
new database is preferred so that you can see how the entire process works.

The explanation will be focused on the general process. For details of creating a 
transformation that loads a particular type of dimension, please refer to Chapter 9. You  
can also download the full material for this chapter where the transformations and jobs  
are ready to browse and try.

1.	 Create a new transformation and use it to load the manufacturer dimension. 
This is a Type I SCD dimension. The data for the dimension comes from the 
manufacturers table in the js database. The dimension table in js_dw is  
lk_manufacturer. Use the following screenshot as a guide:

2.	 Save the transformation the lk_transformations.

3.	 Create a new transformation and use it to load the regions dimension.







Developing and Implementing a Simple Datamart

[ 372 ]

You already loaded this dimension in the Time for action 
– loading a region dimension with a Combination lookup/
update step section in Chapter 9. The load of the region field 
was part of a Hero exercise in that chapter. If you did it, you 
may skip this step.

4.	 The region dimension is a Type II SCD dimension. The data for the dimension comes 
from the city and country tables. The information about regions is in Excel files 
that you can download from the Packt web site. The dimension table in js_dw is 
lk_regions_2. Use the following screenshot as a guide:

5.	 Save the transformation in the lk_transformations folder.

6.	 Create a new transformation and use it to load the time dimension.

You already created the dataset for the time dimension 
in the Time for action –creating the time dimension 
dataset section in Chapter 6. Then in Chapter 8 the loading 
of the data into a table was part of a Hero exercise. If you 
have done it, you may skip this step.

The dimension table in js_dw is lk_time.

7.	 Save the transformation in the lk_transformations folder.



Chapter 12

[ 373 ]

Now you will create a job to put it all together:

8.	 Create a new job and save it in the same folder where you created the  
lk_transformations folder.

9.	 Drag a START entry and two Transformation job entries to the canvas.

10.	Create a hop from the START entry to each of the transformation entries. You have 
the following:

11.	Use one of the transformation entries to execute the transformation that loads the 
manufacturer dimension.

12.	Use the other transformation entry to execute the transformation that loads the 
region dimension.

13.	Add an Evaluate rows number in a table entry to the canvas. You'll find it under the 
Conditions category.

14.	Create a hop from the START entry towards this new entry.

15.	Double-click the new entry and fill it like shown:



Developing and Implementing a Simple Datamart

[ 374 ]

16.	After this entry, add another transformation entry and use it to execute the 
transformation that loads the time dimension.

17.	Finally, from the General category add a Success entry.

18.	Create a hop from the Evaluate… step to this entry. The hop should be red, meaning 
that this step executes when the evaluation fails.

19.	Your final job looks like this:

20.	Save the job.

21.	Run the job. The manufacturer and regions dimensions should be loaded. You can 
verify it by exploring the tables from the PDI explorer or in MySQL query browser.

22.	 In the logging window, you'll see that the evaluation succeeded and so the time 
dimension is also loaded:



Chapter 12

[ 375 ]

23.	You can check it by exploring the table.

24.	Run the transformation again. This time the evaluation fails and the transformation 
that loads the time dimension is not executed this time.

What just happened?
You created the transformations to load the dimensions you need for your sales star.

As already explained in Chapter 10, the job entries connected to the START entry run one 
after the other, not in parallel as the arrangement in the work area might suggest.

As for the time dimension, once it is loaded, you don't need to load it again. Therefore, you 
put an evaluation entry to check if the table had already been loaded. The first time you 
run the job, there were no records, so the time dimension was loaded. The second time, 
the time dimension had already been loaded. This time the evaluation failed, avoiding the 
execution of the transformation that loaded the time dimension.



Developing and Implementing a Simple Datamart

[ 376 ]

Note that you put in a Success entry to avoid the job failing after 
the failed evaluation.

Extending the sales datamart model
You may, and you usually, have more than one fact table sharing some of the dimensions. 
Look at the following diagram:

Product Type Time

Payment
Method

Buy
Method

Manufac
turer

SALES Region PUZZLES
SALES

Theme Glows in the
Dark

3D Puzzle

Wooden
Puzzle

PackagingPieces

Panoramic
Puzzle

It shows two stars sharing three dimensions: Regions, Manufacturers, and Time. The star model 
to the left is the sales star model you already know. The star model to the right doesn't have 
data for accessories, but does have more detail for puzzles such as the number of pieces they 
have or the category or theme they belong to. When you have more than one fact table sharing 
dimensions as here, you have what is called a constellation.

The following table summarizes the dimensions added to the datamart:

Dimension Description

Pieces Number of pieces of the puzzle, grouped in the following ranges: 0-25, 
26-100, and so on

Theme Classification of the puzzle in any of the following categories: Fantasy, 
Castles, Landscapes, and so on

Glows in the dark Yes/No

3D puzzle Yes/No

Wooden puzzle Yes/No

Panoramic puzzle Yes/No

Packaging Number of puzzles packed together: 1, 2, 3, 4



Chapter 12

[ 377 ]

The following is the updated ERD for the database that represents the model:

The new fact table is represented by a table named ft_puzz_sales.

The following table shows you the correspondence between the dimensions added to the 
model and the tables in the database.

Dimension Table
Pieces lk_pieces

Theme lk_puzzles

Glows in the dark lk_mini_prod

3D puzzle lk_mini_prod

Wooden puzzle lk_mini_prod

Panoramic lk_mini_prod

Packaging lk_mini_prod

The following Hero exercise allows you to practice what you learned in the tutorial, but this 
time applied to the puzzle star model.



Developing and Implementing a Simple Datamart

[ 37� ]

Have a go hero – loading the dimensions for the puzzles star model
In this exercise you will load some of the dimensions that were added to the model.

Create a transformation that loads the lk_pieces dimension. You may create any 
range you like. The following table may help you in the creation:

min max description
0 25 Under 25
26 100 26-100
101 1000 101-1000
1001 2000 1001-2000
2000 99999 >2000

Create another transformation that loads the lk_puzzles dimensions. This is a  
Type II SCD, and you have already loaded it in Chapter 9. If you have the transformation 
that does it, half of your work is done.

Finally, modify the job in the tutorial by adding the execution of these new 
transformations. Note that the lk_pieces dimension has to be loaded just once.

Loading a fact table with aggregated data
Now that you have data in your dimensions, you are ready to load the sales fact table. In this 
section, you will learn how to do it.

Time for action – loading the sales fact table by looking up 
dimensions

Let's load the sales fact table, ft_sales, with sales information for a given range of dates. 
Before doing this exercise, be sure that you have already loaded the dimensions. You did it in 
the previous tutorial.

Also check that the database engine is up and that both the js and the js_dw databases are 
accessible from PDI. If everything is in order, you are ready to start:

1.	 Create a new transformation.

2.	 Drag a Table input step to the canvas.

3.	 Double-click the step. Select js as Connection—the connection to the  
operational database.









Chapter 12

[ 37� ]

4.	 In the SQL frame type the following query:

SELECT i.inv_date
      ,d.man_code
      ,cu.city_id
      ,pr.pro_type      product_type
      ,b.buy_desc
      ,p.pay_desc
      ,sum(d.cant_prod) quantity
      ,sum(d.price)     amount
FROM   invoices         i
      ,invoices_detail  d
      ,customers        cu
      ,buy_methods      b
      ,payment_methods  p
      ,products         pr
WHERE i.invoice_number = d.invoice_number
  AND       i.cus_id   = cu.cus_id
  AND       i.buy_code = b.buy_code
  AND       i.pay_code = p.pay_code
  AND       d.pro_code = pr.pro_code
  AND       d.man_code = pr.man_code
  AND i.inv_date BETWEEN cast('${DATE_FROM}' as date)
                     AND cast('${DATE_TO}'   as date)
GROUP BY i.inv_date
        ,d.man_code
      ,cu.city_id
      ,pr.pro_type
      ,b.buy_desc
      ,p.pay_desc

5.	 Check the Replace variables in script? option and click OK.

Let's retrieve the surrogate key for the manufacturer:

6.	 From the Lookup category, drag a Database lookup step to the canvas.

7.	 Create a hop from the Table input step to this new step.

8.	 Double-click the Database lookup step.

9.	 Select dw as Connection—the connection to the datamart database.

10.	Click on Browse...and select the lk_manufacturers table.

11.	Fill the upper grid with the following condition: id_js = man_code.



Developing and Implementing a Simple Datamart

[ 3�0 ]

12.	Fill the lower grid—under Field type id, as New name type id_manufacturer, as 
Default type 0, and as Type select Integer.

13.	Click on OK.

Now you will get the surrogate key for the region:

14.	From the Data Warehouse category drag a Dimension lookup/update step to  
the canvas.

15.	Create a hop from the Database lookup step to this new step.

16.	Double-click the Dimension lookup/update step.

17.	As Connection select dw.

18.	Browse and select the lk_regions_2 table.

19.	Fill the Keys grid as shown next:

20.	Select id as Technical key field. In the new name textbox, type id_region.

21.	As Stream Datefield select inv_date.

22.	As Date range star field and Table daterange end select start_date and end_date 
respectively.

23.	Select the Fields tab and fill it like here:



Chapter 12

[ 3�1 ]

Now it's time to generate the surrogate key for the junk dimension:

24.	From the Data Warehouse category drag a Combination lookup/update step to the 
canvas.

25.	Create a hop from the Dimension lookup/update step to this new step.

26.	Double-click the Combination lookup/update step.

27.	Select dw as Connection. 

28.	Browse and select the lk_junk_sales table.

29.	Fill the grid as shown:

30.	As Technical key field type id. In the Creation of technical key frame, leave the default 
value Use table maximum  + 1.

31.	Click OK.

32.	Add a Select values step and use it to rename the field id to id_junk_sales.

Finally, let's do some adjustments and send the data to the fact table:

33.	Add another Select values step to change the metadata of the inv_date field  
as shown:



Developing and Implementing a Simple Datamart

[ 3�2 ]

34.	Add a Table output step and double-click it.

35.	Select dw as Connection.

36.	Browse and select the ft_sales table.

37.	Check the Specify database fields option, select the Database fields grid, and fill it as 
shown:

Remember that you can avoid typing by using the 
Get fields button.

38.	Click on OK. The following is your final transformation. Press Ctrl+S to save it.



Chapter 12

[ 3�3 ]

39.	Press F9 to run it.

40.	 In the settings window, provide some values for the date range.

41.	Click on Launch.

42.	The fact table should have been loaded. To check it, open the database explorer and run 
the following query:

SELECT * FROM ft_sales

You will get the following:

43.	To verify that only the sales between the provided dates were processed, run the 
following query:

SELECT MIN(dt), MAX(dt) FROM ft_sales

44.	You will get the following:



Developing and Implementing a Simple Datamart

[ 3�4 ]

What just happened?
You loaded the sales fact table with the sales in a given range of dates.

First of all you got the information from the source database. You did it by typing an SQL 
query in a Table input step. You already know how a Table input step works.

As said, a fact table has foreign keys to the primary key of the dimension tables. The query 
you wrote gave you business keys. So, after getting the data from the source, you translated 
the business keys into surrogate keys. You did it in different ways depending on the kind of 
each related dimension.

Finally, you inserted the obtained data into the fact table ft_sales.

Getting the information from the source with SQL queries
You already know how to use a Table input step to get information from any database. 
However, the query in the tutorial may have looked strange or long compared with the 
queries you wrote in previous chapters. There is nothing mysterious in that query: It's simply 
a matter of knowing what to put in it. Let's explain it in detail.

The first thing you have to do in order to load the fact table is to look at the grain.

As mentioned at the beginning of the chapter, the grain, or level of detail, of the fact is 
implicitly expressed in terms of the dimension.

Looking at the model, you can see the following dimensions, along with their level of detail:

Dimension Level of detail (most atomic data)
Manufacturers manufacturer
Regions city
Time day
Product Type product type
Payment method payment method
Buy method buy method

Does this have anything to do with loading the fact? Well, the answer is yes. This is  
because the numbers you have to put as measures in the numeric fields must be aggregated 
accordingly to the dimensions. These are the measurements—quantity representing the 
number of products sold and Sales representing the amounts.

So, in order to feed the table, what you need to take from the source is the sum of 
quantity and the sum of sales for every combination of manufacturer, day, city, 
product type, payment method, and buy method.



Chapter 12

[ 3�5 ]

In SQL terms you do it with a query such as the one you wrote in the Table input step. The 
query is not as complicated as it may seem at first. Let's dissect the query, beginning with  
the FROM clause.

FROM   invoices         i
      ,invoices_detail  d
      ,customers        cu
      ,buy_methods      b
      ,payment_methods  p
      ,products         pr

These are the tables to take the information from. The word following the name of the  
table is an alias for the table—for example, pr for the table products. The alias is used  
to distinguish fields that have the same name but are in different tables.

The database engine takes all the records for all the listed tables, side by side, and creates  
all the possible combination of records where each new record has all the fields for all  
the tables.

WHERE i.invoice_number = d.invoice_number
  AND       i.cus_id   = cu.cus_id
  AND       i.buy_code = b.buy_code
  AND       i.pay_code = p.pay_code
  AND       d.pro_code = pr.pro_code
  AND       d.man_code = pr.man_code

These conditions represent the join between tables. A join limits the number of  
records you have when combining tables as explained above. For example, consider  
the following condition:

i.cus_id = cu.cus_id

This condition implies that out of all the records, the engine keeps only those where  
the customer ID in the table invoices is the same as that of the customer ID in the  
table customers.

  AND i.inv_date BETWEEN cast('${DATE_FROM}' as date)
                     AND cast('${DATE_TO}'   as date)

This query simply filters the sales in the given range. The cast function converts a string 
to a date.



Developing and Implementing a Simple Datamart

[ 3�6 ]

Different engines have different ways to cast or convert fields from one data type 
to another. If you are using an engine different from MySQL, you may have to 
check your database documentation and fix this part of the query.

GROUP BY i.inv_date
        ,d.man_code
      ,cu.city_id
      ,pr.pro_type
      ,b.buy_desc
      ,p.pay_desc

By using the GROUP BY clause, you ask the SQL engine that for each different combination of 
the listed fields, it should return just one record.

Finally, look at the fields following the SELECT clause:

SELECT i.inv_date
      ,d.man_code
      ,cu.city_id
      ,pr.pro_type      product_type
      ,b.buy_desc
      ,p.pay_desc
						,sum(d.cant_prod)	quantity

						,sum(d.price)					amount

These fields are the business keys you need—date of sale, manufacturer, city, and so  
on—one for each dimension in the sales model. Note the word product_type after  
the pro_type field. This is an alias for the field. Using an alia,s the field is renamed in  
the output.

As you can see, with the exception of the highlighted fields, the fields you put after the 
SELECT clause are exactly the same as you put in the GROUP BY clause. When you have a 
GROUP BY clause in your sentence, after the SELECT clause you can put only those fields 
that are listed in the GROUP BY clause or aggregated functions such as the following:

      ,sum(d.cant_prod) quantity
      ,sum(d.price)     amount

sum() is an aggregate function that gives you the sum of the column you put into brackets. 
Therefore, these last two fields are the sum of the cant_prod field and the sum of the 
price field for all the grouped records. These two fields give you the measures for your  
fact table.



Chapter 12

[ 3�7 ]

To confirm that the GROUP BY works as explained, let's explore one example. Remove from 
the query, the sum() functions, leaving just the fields, along with the GROUP BY clause.  
Do a preview setting 2009-07-07 both as start_date and end_date. You will see  
the following:

As you can see, in the same day, in the same city, you sold two products of the same type, made 
for the same manufacturer, by using the same payment and buy method. In the fact table you will 
not save two records, but will save a single record. Restore the original query and do a preview. 
You will see the following:

Here you can see that the GROUP BY clause has grouped those two records into a single one. For 
quantity and amount it summed the individual values.

Note that the GROUP BY clause, along with the aggregate functions, does the same as you 
could have done by using a Sort rows step to sort by the listed fields, followed by a Group by 
step to get the sum of the numeric fields.

Wherever the database can do the operations, for performance reasons it's 
recommended that you allow the database engine do it.



Developing and Implementing a Simple Datamart

[ 3�� ]

Translating the business keys into surrogate keys
You already have the transactional data for the fact table. But that data contains business 
keys. Look at the fields definition for your fact table:

  dt CHAR(8) NOT NULL,
		id_manufacturer	INT(10)	NOT	NULL,

		id_region	INT(4)	NOT	NULL,

		id_junk_sales	INT(10)	NOT	NULL,

  product_type CHAR(10) NOT NULL,
  quantity INT(6) DEFAULT 0 NOT NULL,
  amount NUMERIC(8,2) DEFAULT 0 NOT NULL

id_manufacturer, id_region, and id_junk_sales are foreign keys to surrogate keys. 
So, before inserting the data into the fact, for each business key you have to find the proper 
surrogate key. Depending on the kind of dimensions referenced by the IDs in the fact table, 
you get those IDs in a different way. Let's see in the following section, how you do it in  
each case.

Obtaining the surrogate key for a Type I SCD
For getting the surrogate key in the case of a Type I SCD such as the Manufacturer one, you 
used a Database lookup step. You are already familiar with this step, so understanding how 
to use it is easy.

In the first grid you provided the business keys. The key to look up in the incoming stream is 
man_code, whereas the key to look up in the dimension table is stored in the field id_js.

With the Database lookup step you returned the field named id, which is the field that 
stores the surrogate key. You renamed it to id_manufacturer, as this is the name you  
need for the fact table.

If the key is not found, you use 0 as default, that is, the record in the dimension reserved for 
unknown values.



Chapter 12

[ 3�� ]

The following screenshot shows you how it works:

Obtaining the surrogate key for a Type II SCD
In the case of a Type II SCD such as the Region dimension, you used the same step that was 
used to load the table dimension—a Dimension L/U step. The difference is that here you 
unchecked the Update the dimension? option. By doing that, the step behaves just as a 
database lookup—you provide the keys to lookup and the step returns the fields you put 
both in the Fields tab and in the Technical key field option. The difference with this step is 
that here you have to provide time information. By using that time information, PDI finds 
and returns, from the Type II SCD, the proper record in time:



Developing and Implementing a Simple Datamart

[ 3�0 ]

Here you give PDI the names for the columns that store the data ranges—start_date  
and end_date. You also give it the name of the field stream to use in order to compare  
the dates—in this case inv_date, that is, the date of the sale.

Look at the following screenshot to understand how the lookup works:

The step has to get the surrogate key for the city with ID 261. There are two records  
for that city. The key is in finding the proper record, the record valid on 07/07/2009.  
So, PDI compares the date provided against the start_date and end_date fields  
and returns the surrogate key 582, for which the city is classified as belonging to the  
Nordic Countries region.

If no record is found for the given keys on the given date, the step retrieves the ID 0, which is 
used for the unknown data.



Chapter 12

[ 3�1 ]

Obtaining the surrogate key for the Junk dimension
The payment and buy methods are stored in a junk dimension. A junk dimension can be 
loaded by using a Combination L/U step. You learned how to use this step in the Time for 
action named Loading a region dimension with a Combination lookup/update step in  
Chapter 9. As all the fields in a junk dimension are part of the primary key, you don't  
need an extra Update step to load it.

In the tutorial, you loaded the dimension at the same time you loaded the fact. You know 
from Chapter 9 that when you use a Combination L/U step, the step returns you the 
generated key. So, the use of the step here for loading and getting the key at the same  
time fits perfectly.

If the dimension had been loaded previously, instead of a Combination 
L/U step you could have used a Database lookup step by putting the key 
fields in the upper grid and the key in the lower grid of the Database lookup 
configuration window.

Obtaining the surrogate key for the Time dimension
You already obtained the surrogate keys for Type I and Type II SCDs and for the Junk 
dimension. Finally, there is a Time dimension. As for the key, you use the date in string format; 
the method for getting the surrogate key is simply changing the metadata from date to string 
by using the proper format. Once again, if you had used a regular surrogate key instead of the 
date, for getting the surrogate key you would have to use a Database lookup step.

The following table summarizes the different possibilities:

Dimension type Method for getting the surrogate key Sample 
dimension

Type I SCD Database lookup step. Manufacturer

Type II SCD Dimension L/U step. Regions

Junk and Mini Combination L/U step if you load the dimension at the same 
time as you load the fact (as in the tutorial).

Database lookup step if the dimension is already loaded.

Sales Junk 
dimension

Degenerate As you don't have a table nor key to translate, you just store the 
data as a field in the fact. You don't have to worry about getting 
surrogate keys.

Product Type

Time Change the metadata to the proper format if you use date as the 
key (as in the tutorial).

Dimension L/U step if you use a normal surrogate key.

Time



Developing and Implementing a Simple Datamart

[ 3�2 ]

Pop quiz – modifying a star model and loading the star with PDI
Suppose you want to do some modifications to your star model. What are the changes you'll 
have to make in each case:

1. Instead of using a region dimension that keeps history of the changes (Type II SCD),  
you want to use a classic  region dimension (Type I).

a. As table for the region dimension:

i. You reuse the table lk_regions_2.

ii. You use a different table.

iii. Any of the above.

b. As field with the foreign key in the fact table:

i. You reuse the id_region field.

ii. You create a new field.

c. For getting the surrogate key:

i. You keep using the Dimension lookup/update step.

ii. You replace the Dimension lookup/update step by another step.

iii. It depends on the how your dimension table looks.

2. You want to change the grain for the Time dimension; you are interested in  
monthly information.

a. As table for the time dimension:

i. You reuse the table lk_time.

ii. You use a different table.

iii. Any of the above.

b. As field with the foreign key in the fact table:

i. You reuse the dt field.

ii. You create a new field.

c. For getting the surrogate key:

i. You keep using the Select values step and changing the metadata.

ii. You use another method.



Chapter 12

[ 3�3 ]

3. You decided to create a new table for the product type dimension. The table will 
have the following columns: id, product_type_description, and product_
type. As data you would have, for example: 1, puzzle, puzzle for the product 
type puzzle, or 2, glue, accessory for the product type glue.

a. As field with the foreign key in the fact table:

i. You reuse the product_type field.

ii. You create a new field.

b. For getting the surrogate key:

i. You use a Combination lookup/update step

ii. You use a Dimension lookup/update step

iii. You use a Database lookup/update step

Have a go hero – loading a puzzles fact table
In the previous Hero exercise you were asked to load the dimensions for the puzzle star 
model. Now you will load the fact table.

To load the fact table you'll need to build a query taking data from the source. Try to figure 
out what the query looks like. Then you may try writing the query by yourself, or you may 
cheat; this query will serve you as a starting point:

SELECT
      i.inv_date
     ,d.man_code
     ,cu.city_id
     ,pr.pro_theme
     ,pr.pro_pieces
     ,pr.pro_packaging
     ,pr.pro_shape
     ,pr.pro_style
     ,SUM(d.cant_prod) quantity
FROM  invoices        i
     ,invoices_detail d
     ,customers       cu
     ,products        pr
WHERE i.invoice_number = d.invoice_number
  AND       i.cus_id   = cu.cus_id
  AND       d.pro_code = pr.pro_code
  AND       d.man_code = pr.man_code
  AND pr.pro_type like 'PUZZLE'
  AND i.inv_date BETWEEN cast('${DATE_FROM}' as date)
                     AND cast('${DATE_TO}' as date)



Developing and Implementing a Simple Datamart

[ 3�4 ]

GROUP BY i.inv_date
        ,d.man_code
        ,cu.city_id
        ,pr.pro_theme
        ,pr.pro_pieces
        ,pr.pro_packaging
        ,pr.pro_shape
        ,pr.pro_style

After that, look for the surrogate keys for dimensions of Type I and II.

Here you have a mini-dimension. You may load it at the same time you load the fact as you 
did in the tutorial with the Junk dimension. Also, make sure that you properly modify the 
metadata for the time field. 

Insert the data into the fact, and check whether the data was loaded as expected.

Getting facts and dimensions together
Loading the star involves both loading the dimensions and loading the fact. You already loaded 
the dimensions and the fact separately. In the following two tutorials, you will put it all together:

Time for action – loading the fact table using a range of dates 
obtained from the command line

Now you will get the range of dates from the command line and load the fact table using  
that range:

1.	 Create a new transformation.

2.	 With a Get system info step, get the first two arguments from the command line and 
name them date_from and date_to.

3.	 By using a couple of steps, check that the arguments are not null, have the proper 
format (yyyy-mm-dd), and are valid dates.

4.	 If something is wrong with the arguments, abort.

5.	 If the arguments are valid, use a Set variables step to set two variables named  
DATE_FROM and DATE_TO.

6.	 Save the transformation in the same folder you saved the transformation that loads the 
fact table.

7.	 Test the transformation by providing valid and invalid arguments to see that it works  
as expected.



Chapter 12

[ 3�5 ]

8.	 Create a job and save it in the same folder you saved the job that loads the dimensions.

9.	 Drag to the canvas a START and two transformation job entries, and link them one after 
the other.

10.	Use the first transformation entry to execute the transformation you just created.

11.	Use the second transformation entry to execute the transformation that loads the  
fact table.

12.	This is how your job should look like:

13.	Save the job.

14.	Press F9 to run the job.

15.	Fill the job settings window as follows:

16.	Click on Launch.



Developing and Implementing a Simple Datamart

[ 3�6 ]

17.	When the execution finishes, explore the database to check that the data for the given 
dates was loaded in the fact table. You will see this:

What just happened?
You built a main job that loads the sales fact table. First, it reads from the command line the 
range of dates to be used for loading the fact and validates it. If they are not valid, the process 
aborts. If they are valid, the fact table is loaded for the dates in that range.

Time for action – loading the sales star
You already created a job for loading the dimensions and another job for loading the fact.

In this tutorial, you will put them together in a single main job:

1.	 Create a new job in the same folder in which you saved those jobs. Name this job  
load_dm_sales.kjb.

2.	 Drag to the canvas a START and two job entries, and link them one after the other.

3.	 Use the first job entry to execute the job that loads the dimensions.

4.	 Use the second Job entry to execute the job you just created for loading the fact table.

5.	 Save the job. This is how it looks:



Chapter 12

[ 3�7 ]

6.	 Press F9 to run the job.

7.	 As arguments, provide a new range of dates: 2009-09-01, 2009-09-30. Then  
press Launch.

8.	 The dimensions will be loaded first, followed by the loading of the fact table.

9.	 The Job metrics tab in the Execution results window shows you the whole  
process running:



Developing and Implementing a Simple Datamart

[ 3�� ]

10.	Exploring the database, you'll see once again the data updated:

What just happened?
You built a main job that loads the sales datamart. First, it loads the dimensions. After that, it 
loads the fact table by filtering sales in a range of dates coming from the command line.

Have a go hero – enhancing the loading process of the sales fact table
Facts tables are rarely updated. Usually you just insert new data. However, after loading a 
fact, you may detect that there were errors in the source. Or it could also happen that some 
data arrives late to the system. In order to take into account those situations, you should 
have the possibility to reprocess data already processed. To avoid duplicates in the fact table, 
do the following modification to the loading process:

After getting the start and end date and before loading the fact table, delete the records that 
may have been inserted in a previous execution for the given range of dates.

Have a go hero – loading the puzzles sales star
Modify the main job so that it also loads the puzzle fact table.

Make sure that the job that loads the dimensions includes all the dimensions needed for both 
fact tables. Also, pay attention that you don't read and validate the arguments twice.

Have a go hero – loading the facts once a month
Modify the whole solution so the loading of the fact tables is made once a month. Don't modify 
the model! You still want to have daily information in the fact tables; what you want to do is 
simply replace the daily updating process with a monthly process. Ask for a single parameter as 
yyyymm and validate it. Replace the old parameters START_DATE and END_DATE with this new 
one, wherever you use them.



Chapter 12

[ 3�� ]

Getting rid of administrative tasks
The solution you built during the chapter loads both dimensions and fact in a star model for 
a given range of dates. Now suppose that you want to keep your datamart always updated. 
Would you sit every day in front of your computer, and run the same job over and over 
again? You probably would, but you know that it wouldn't be a good idea. There are better 
ways to do this. Let's see how you can get rid of that task.

Time for action – automating the loading of the sales datamart
Suppose that every day you want to update your sales datamart by adding the information 
about the sales for the day before. Let's do some modifications to the jobs and 
transformations you did so that the job can run automatically.

In order to test the changes, you'll have to change the date for your system. Set the current 
date as 2009-10-02.

1.	 Create a new transformation.

2.	 Drag to the canvas a Get system data step and fill it like here:

3.	 With a Select values step, change the metadata of both fields: As type put String 
and as format, yyyy-MM-dd.

4.	 Add a Set variables step and use the two fields to create two variables named 
START_DATE and END_DATE.

5.	 Save the transformation in the same folder you saved the transformation that loads 
the fact.



Developing and Implementing a Simple Datamart

[ 400 ]

6.	 Modify the job that loads the fact so that instead of executing, the transformation 
that takes the range of dates from the command line executes this one. The job 
looks like this:

7.	 Save it.

Now let's create the scripts for executing the job from the command line:

1.	 Create a folder named log in the folder of your choice.

2.	 Open a terminal window.

3.	 Create a new file with your favorite text editor.

4.	 If your system is not Windows, go to step 7.

5.	 Under Windows systems, type the following:

for /f "tokens=1-3 delims=/- " %%a in ('date /t') do set 
XDate=%%c%%b%%a
for /f "tokens=1-2 delims=: " %%a in ('time /t') do set 
XTime=%%a.%%b

set	path_etl=C:\pdi_labs

set	path_log=C:\logs

c:\
cd ..
cd	pdi-ce

kitchen.bat /file:%path_etl%\load_dm_sales.kjb /level:Detailed >> 
%path_log%\sales_"%Xdate% %XTime%".log

6.	 Save the file as dm_sales.bat in a folder of your choice. Skip the following  
two steps.



Chapter 12

[ 401 ]

7.	 Under Linux, Unix, and similar systems, type the following:

UNXETL=/pdi_labs

UNXLOG=/logs

cd	/pdi-ce

kitchen.sh /file:$UNXETL/load_dm_sales.kjb /level:Detailed >> 
$UNXLOG/sales_'date +%y%m%d-%H%M'.log

8.	 Save the file as dm_sales.sh in a folder of your choice.

Irrespective of your system, please replace the names of the 
folders in the highlighted lines with the names of your own 
folders, that is path_etl (the folder where your main job is), 
path_log (the folder you just created), and pdi-ce (the 
folder where PDI is installed).

Now let's test what you've done:

1.	 Execute the batch you created:

Under windows, type: dm_sales.bat

Under Unix-like systems, type: sh dm_sales.sh

2.	 When the prompt in the command window is available, it means that the batch 
ended. Check the log folder. You'll find a new file with the extension log, named 
sales followed by the date and hour, for example:sales_0210Fri 06.46.log.

3.	 Edit the log. You'll see the full log for the execution of the job. Within the lines, you'll 
see these:

INFO  02-10 17:46:39,015 - Set Variables DATE_FROM and DATE_TO.0 
- Set variable DATE_FROM to value [2009-10-01]
INFO  02-10 17:46:39,015 - Set Variables DATE_FROM and DATE_TO.0 
- Set variable DATE_TO to value [2009-10-01]



Developing and Implementing a Simple Datamart

[ 402 ]

4.	 Also check the fact table. The fact should have data for the sales made yesterday:

Don't forget to restore the date in your system!

What just happened?
You modified the job that loads the sales datamart so that it always loads the sales from a 
day before. You also created a script that embedded the execution of the Kitchen command 
and sent the result to a log. The name of the log is different for every day; this allows you 
keep a history of logs.

To understand exactly the full Kitchen command line you put into the scripts, please refer to 
Appendix B, Pan and Kitchen: Launching Transformations and Jobs from the Command Line.

Doing all this, you don't have to worry about providing dates for the process, nor running 
Spoon, nor remembering the syntax of the Kitchen command. Not only that, if you use a 
system utility such as a cron in Unix or the scheduler in Windows to schedule this script to 
run every day after midnight, you are done. You got rid of all the administrative tasks!

Have a go hero – Creating a back up of your work automatically
Choose a folder where you use to save your work (it could be for example the pdi_labs folder) 
Create a job that zips your work under the name backup_yyyymmdd.zip where  yyyymmdd 
represents the system date. Test the job.



Chapter 12

[ 403 ]

Then create a .bat or .sh file that executes your job sending the log to a file. Test the script.

Finally, schedule the script to be executed weekly.

Have a go hero – enhancing the automate process by sending an e-mail if 
an error occurs

Modify the main job so if something goes wrong, it sends you an e-mail reporting the problem. 
Doing so, you don't have to worry about checking the daily log to see if everything went fine. 
Unless there is a problem with the e-mail server, you'll be notified whenever some error occurs.

Summary
In this chapter you created a set of jobs and transformations that loads a sales datamart. 
Specifically, you learned how to load a fact table and to embed that process into a bigger 
one—the process that loads a full datamart.

You also learned to automate PDI processes, which is useful to get rid of tedious and 
repetitive manual tasks. In particular, you automated the loading of your sales datamart.

Beyond that, you must have found this chapter useful for reviewing all you learned since 
the first chapter. If you can't wait for more, read the next chapter. There you will find useful 
information for going further.





13
Taking it Further

The lessons learned in previous chapters gave you the basis of PDI. If you liked 
working with PDI and intend to use it in your own projects, there is much more 
ranging from applying best practices to using PDI integrated with the Pentaho 
BI Suite.

This chapter points you the right direction for taking it further. The chapter begins by giving 
you some advice to take into account in your daily work with PDI. After that it introduces you 
some advanced PDI concepts for you to know to what extent you can use the tool beyond 
the basics.

PDI best practices
If you intend to work seriously with PDI, knowing how to accomplish different tasks is not 
enough. Here are some guidelines that will help you go in the right direction.

Outline your ideas on paper before creating a transformation or a job:

Don't drop steps randomly on the canvas trying to get things working. You could end 
up with a transformation or job that is difficult to understand and even useless.

Document your work:

Write at least a simple description in the transformations and jobs setting windows. 
Replace the default names of steps and job entries with meaningful ones. Use notes 
to clarify the purpose of the transformations and jobs. Doing this, your work will be 
quite self documented.







Taking it Further

[ 406 ]

Make your jobs and transformations clear to understand:

Arrange the elements in the canvas so that it doesn't look like a puzzle to solve. 
Memorize the shortcuts for arrangement and alignment, and use them regularly. 
You'll find a full list in Appendix D, Spoon shortcuts.

Organize PDI elements in folders:

Don't save all the transformations and jobs in the same folder. Organize them 
according to their purpose.

Make your work flexible and reusable:

Make use of arguments, variables, and named parameters. If you identify tasks that 
are going to be used in several situations, create subtransformations.

Make your work portable (ready for deployment):

This involves making sure even if you move your work to another machine or 
another folder, or the paths to source or destination files change, or the connection 
properties to the databases change, everything should work either with minimal 
changes or without changes. In order to make ensure that, don't use fixed names 
but variables. If you know the values for the variables beforehand, define the 
variables in the kettle.properties file. For the name of the transformations and 
jobs, use relative paths—use the ${Internal.Job.Filename.Directory} and 
${Internal.Transformation.Filename.Directory} variables.

Avoid overloading your transformations:

A transformation should do a precise task. If it doesn't, think of splitting it in two 
or more, or create subtransformations. Doing this will make your transformation 
clearer and also reusable in the case of subtransformations.

Handle errors:

Try to figure out the kind of errors that may happen and trap them by validating and 
handling errors, and taking appropriate actions such as fixing data, taking alternative 
paths, sending friendly message to the log files, and so on.

Do everything you can to optimize the PDI performance:

You can find a full checklist at http://wiki.pentaho.com/display/COM/PDI+
Performance+tuning+check-list. As of version 3.1.0, PDI introduced a tool for 
tracking the performance of individual steps in a transformation. You can find more 
information at http://wiki.pentaho.com/display/EAI/Step+performance
+monitoring.

















Chapter 13

[ 407 ]

Keep track of jobs and transformations history:

You can use a versioning system such as subversion. Doing so, you could recover 
older versions of your jobs and transformations or examine the history of how they 
changed. For more on subversion, visit http://subversion.tigris.org/.

Bookmark the forum page and visit it frequently. The PDI forum is available 
at http://forums.pentaho.org/forumdisplay.php?f=135.

The following is the main PDI forum page:

If you get stuck with something, search for a solution in the forum. If you don't find what you're 
looking for, create a new thread, expose your doubts or scenario clearly, and you'll get a prompt 
answer, as the Pentaho community, and particularly the PDI one, is quite active.





Taking it Further

[ 40� ]

Getting the most out of PDI
Throughout the book you learned, step by step, how to use PDI for accomplishing several 
kinds of tasks— reading from different kinds of sources, writing back to them, transforming 
data in several ways, loading data into databases, and even loading a full data mart. You 
already have the knowledge and the experience to do anything you want or you need with 
PDI from now on. However, PDI offers you some more features that may be useful for you as 
well. The following sections will introduce them and will guide you so that you know where 
to look for in case they want to put them into practice.

Extending Kettle with plugins
As you could see while learning Kettle, there is a large set of steps and job entries to choose 
from when designing jobs and transformations. The number rises above 200 between steps 
and entries! If you still feel like you need more, there are more options—plugins.

Kettle plugins are basically steps or job entries that you install separately. The available 
plugins are listed at http://wiki.pentaho.org/display/EAI/List+of+Available+
Pentaho+Data+Integration+Plugins.

Most of the listed plugins can be downloaded and used for free. Some are so popular or 
useful that they end up becoming standard steps of PDI—for example, the Formula step that 
you used several times throughout the book.

There are other plugins that come as a trial version and you have to pay to use them.

It's also possible for you to develop your own plugins. The only prerequisite is knowing how 
to develop code in Java. If you are interested in the subject, you can get more information at 
http://wiki.pentaho.com/display/EAI/Writing+your+own+Pentaho+Data+Int
egration+Plug-In.

It's no coincidence that the author of those pages is Jens Bleuel. Jens used the  
plugin architecture back in 2004, in order to connect Kettle with SAP, when he was  
working at Proratio. The plugin support was incorporated in Kettle 2.0 and the  
PRORATIO - SAP Connector, today available as a commercial plugin, was one of  
the first developed Kettle plugins.

You should know that 3.x plugins no longer work on Kettle 4.0.



Chapter 13

[ 40� ]

Have a go hero – listing the top 10 students by using the Head plugin step
Browse the plugin page and look for a plugin named Head. As described in the page, this 
plugin is a step that keeps the first x rows of the stream. Download the plugin and install it. 
The installation process is really straightforward. You have to copy a couple of *.jar files to 
the libext directory inside the PDI installation folder, add the environment variable for the 
PDI to find the libraries, and restart Spoon. The downloaded file includes a documentation 
with full instructions. Once installed, the Head will appear as a new step within the 
Transformation category of steps as shown here:

Create a transformation that reads the examination file that was used in the Time for Action 
– reviewing examination by using the Calculator step section in Chapter 3 and some other 
chapters as well. Generate an output file with the top 10 students by average score in 
descending order. In order to keep the top 10, use the Head plugin.

Before knowing of the existence of this plugin, you used to do this kind of 
filtering by using the JavaScript step. Another way to do it is by using an Add 
sequence step followed by a Filter rows step. Note that none of these methods 
use an ad hoc step.



Taking it Further

[ 410 ]

Overcoming real world risks with some remote execution
In order to learn to use Kettle, you used very simple and small sets of data. It's worth saying 
that all you learned can be also applied for processing huge files and databases with millions 
of records. However, that's not for free! When you deal with such datasets, there are many 
risks—your transformations slow down, you may run out of memory, and so on.

The first step in trying to overcome those problems is to do some remote execution. Suppose 
you have to process a huge file located at a remote machine and that the only thing you  
have to do with that file is to get some statistics such as the maximum, minimum, and 
average value for a particular piece of data in the file. If you do it in the classic way, the data 
in the file would travel along the network for being processed by Kettle in your machine, 
loading the network unnecessarily.

PDI offers you the possibility to execute the tasks remotely. The remote execution capability 
allows you to run the transformation in the machine where the data resides. Doing so, the 
only data that would travel through the network will be the calculated data.

This kind of remote execution is done by Carte, a simple server that you can install in  
a remote machine and that does nothing but run jobs and transformations on demand. 
Therefore, it is called a slave server. You can start, monitor, and stop the execution of  
jobs and transformations remotely as depicted here:

Transformations
and Jobs

Starts
Monitors
Stops

SPOON CARTE

Executes

Kettle Engine Kettle Engine

Network

You don't need to download additional software because Carte is distributed as part of the 
Kettle software. For documentation on carte, follow this link: http://wiki.pentaho.
com/display/EAI/Carte+User+Documentation.



Chapter 13

[ 411 ]

Scaling out to overcome bigger risks
As mentioned above, PDI can handle huge volumes of data. However, the bigger the volume 
or complexity of your tasks, the bigger the risks. The solution not only lies in executing 
remotely, but in order to enhance your performance and avoid undesirable situations, you'd 
better increase your power. You basically have two options—you can either scale up or 
scale out. Scaling up involves buying a better processor, more memory, or disks with more 
capacity. Scaling out means to provide more processing power by distributing the work over  
multiple machines.

With PDI you can scale out by executing jobs and transformations in a cluster. A cluster is a 
group of Carte instances or slave servers that collectively execute a job or a transformation. 
One of those servers is designed as the master and takes care of controlling the execution 
across the cluster. Each server executes only a portion of the whole task.

Transformations
and Jobs

Network

CARTE

Kettle Engine

CARTE

Kettle Engine

CARTE

Kettle Engine

CARTE

Kettle Engine

ExecutesExecutes
Executes Executes

MASTER Slave server1 Slave server2 Slave serverN

The list of servers that would make up a cluster may be known in advance, or you can have 
dynamic clusters—clusters where the slave servers are known only at run time. This feature 
allows you to hire resources—for example, server machines provided as a service over the 
Internet, and run your jobs and transformations processes over those servers in a dynamic 
cluster. This kind of Internet service is quite new and is known as cloud-computing, Amazon 
EC2 being one of the most popular.

If you are interested in the subject, there is an interesting paper named Pentaho Data 
Integration: Scaling Out Large Data Volume Processing in the Cloud or on Premise,  
presented by the Pentaho partner Bayon Technologies. You can download it from  
http://www.bayontechnologies.com.



Taking it Further

[ 412 ]

Pop quiz – remote execution and clustering
For each of the following, decide if the sentence is true or false:

a. Carte is a graphical tool for designing jobs and transformations that are going to be 
run remotely.

b. In order to run a transformation remotely you have to define a cluster.

c. When you have very complex transformations or huge datasets you have to execute 
in a cluster because PDI doesn’t support that load in a single machine.

d. To run a transformation in a cluster you have to know the list of servers in advance.

e. If you want to run jobs or transformations remotely or in a cluster you need the PDI 
Enterprise Edition.

Integrating PDI and the Pentaho BI suite
In this book you learned to use PDI standalone, but as mentioned in the first chapter, it is 
possible to use it integrated with the rest of the suite. There are a couple of options for  
doing so.

PDI as a process action
In Chapter 1 you were introduced to the Pentaho platform. Everything in the Pentaho 
platform is made by action sequences. An action sequence is, as its name suggests, a 
sequence of atomic actions that together accomplish small business processes.

Look at the following sample with regard to the Puzzle business:

Consider that you regularly receive updated price lists (one for each manufacturer) and you 
drop the files in a given folder. When you decide to hike the prices, you process one of those 
files and get a web-based report with the updated prices. You can implement that process 
with an action sequence.

Get list of files
to process Prompt for the file Update prices Run web-based

report

There are four atomic actions in this sequence. You already know how to do the first and 
third actions (building the list of available price lists and updating the prices) with PDI. You 
can create transformations or jobs that perform these tasks and then use them as actions 
in an action sequence. The following is a sample screenshot of Design Studio, the action 
sequence editor:



Chapter 13

[ 413 ]

The  screenshot shows how the action sequence editor looks like while editing the explained 
action sequence. In the tree at the left side, you can see the list of actions, while the right 
section allows you to configure each action. The action being edited in the screenshot is the 
PDI transformation that updates the prices.

PDI as a datasource
You already created several transformations that, after doing some data manipulation, 
generated plain files or Excel sheets. What if, instead of these types of output files, you 
wanted the same data displayed as a more attractive, colorful, and interactive web-based 
report? You can't do it with PDI alone. With the newest Pentaho report engine you can take 
the data that came out of a transformation and use it as the data source for your report. 
Having the data, the reporting tool allows you to generate any kind of output.



Taking it Further

[ 414 ]

If you want to learn more about Pentaho reporting, you can start by visiting the wiki at 
http://wiki.pentaho.com/display/Reporting/Pentaho+Reporting+Communi
ty+Documentation. Or you can buy the book Pentaho Reporting 3.5 for Java Developers 
(ISBN: 3193), authored by Will Gorman, published by Packt Publishing. Despite its name, it 
is not just a book for developers; it's a great book for those who are unfamiliar with the tool 
and who want to learn how to create reports with it.

Data coming out of a transformation can also be used as a source data for a CDF dashboard. 
A dashboard is an application that shows you visual indicators such as charts, traffic lights, or 
dials. A CDF dashboard is a dashboard created with a toolkit, known as Community Dashboard 
Framework, which is developed by members of the Pentaho community. The CDF dashboards, 
recently incorporated as part of the Pentaho suite, accept many types of data sources, PDI 
transformations being one of them. The only restriction (at least for now) is that they only 
accept transformations stored in a repository (see Chapter 1 and Appendix A for details). For 
more about CDF here is a link to the wiki page: http://wiki.pentaho.com/display/
COM/Community+Dashboard+Framework.

More about the Pentaho suite
The options mentioned earlier for using PDI integrated with other components of the suite 
are a good starting point to begin working with the Pentaho BI suite. By putting into practice 
those examples, you can gradually get familiarized with the suite.

There is much more to learn once you get started. Look at the following sample screen:



Chapter 13

[ 415 ]

This represents a multidimensional view of your sales data mart. Here you can see cross-tab 
information for puzzle sales in August and September for three specific manufacturers across 
different regions, countries, and cities. It looks really useful for exploring your sales numbers, 
doesn't it? Well, this is just an example of what you can do with Pentaho beyond using PDI 
reporting and dashboard tools mentioned earlier.

For more about the suite, you can visit the wiki page http://wiki.pentaho.com/ or the 
Pentaho site (www.pentaho.com). If, instead of browsing here and there, you prefer to  
read it all in a single place, there is also a new book that brings you a good introduction to 
the whole suite. The book is titled Pentaho Solutions (Wiley publishing), authored by Roland 
Bouman and Jos van Dongen—two seasoned Pentaho community members.

PDI Enterprise Edition and Kettle Developer Support
Pentaho offers an Enterprise Edition of the Pentaho BI Suite and also for PDI. The PDI 
Enterprise Edition adds an Enterprise Console for performance monitoring, remote 
administration, and alerting. There are also a growing number of extra plugins for 
enterprise customers. In addition to the PDI extensions, customers get services and support, 
indemnification, software maintenance (fix versions, e.g. 3.2.2), and a knowledge base with 
additional technical resources.

Since the end of 2009, Pentaho also offers Kettle Developer Support for the Community 
Edition. With this, you can get direct assistance from the product experts for the design, 
development, and testing phases of the ETL lifecycle. This option is perfect for getting 
started, removing roadblocks, and troubleshooting ETL processes.

For further information, check the Pentaho site (www.pentaho.com).



Taking it Further

[ 416 ]

Summary
This chapter provided you with a list of best practices to apply while working with PDI. If 
you follow the given advice, your work will not only be useful, but also flexible, reusable, 
documented, and neatly presented.

You were introduced to PDI plugins, a mechanism that allows you to customize the tool.

A quick review about remote execution and clustering was given for those interested in 
developing PDI in large environments.

Finally, an introduction was given showing you how PDI can be used not only as a standalone 
tool but can also be integrated with the Pentaho BI suite.

Some links and references were provided for those of you who, after reading the book and 
particularly this chapter, are anxious to learn more.

I hope you enjoyed reading the book and learning PDI, and will start using PDI to solve all 
your data requirements.



A
Working with Repositories

Spoon allows you to store your transformations and jobs under two  
different configurations—file based and repository based. In contrast to the 
file-based configuration that keeps the transformations and jobs in XML format 
such as *.ktr and *.kjb files in the local file system, the repository-based 
configuration keeps the same information in tables in a relational database. 

While working with the file-based system is simple and practical, the repository-based 
system can be convenient in some situations. The following is a list of some of the distinctive 
repository features:

Repositories implement security. In order to work with a repository, you need 
credentials. You can create users and profiles with different permissions on the 
repository; however, keep in mind that the kind of permissions you may apply is 
limited.

Repositories are prepared for basic team development. The elements you create 
(transformations, jobs, database connections, and so on) are shared by all repository 
users as soon as you create them. 

If you want to use PDI as the input source in dashboards made with the CDF (refer to 
Chapter 13 for details), the only way you have is by working with repositories.

PDI 4, in its Enterprise version, will include a lot of new repository features such as 
version control.











Working with Repositories

[ 41� ]

Before you decide on working with a repository, you have to be aware of the file-based 
system benefits that you may lose out on. Here are some examples:

When working with the repository-based system, you need access to the repository 
database. If, for some reason, you cannot access the database (due to a network 
problem or any other issue), you will not be able to work. You don't have this 
restriction when working with files—you need only the software and the  
.ktr/.kjb files. 

When working with repositories, it is difficult to keep track of the changes. On  
the other hand, when you work with the file system, it's easier to know which  
jobs or transformations are modified. If you use Subversion, you even have  
version control.

Suppose you want to search and replace some text in all jobs and transformations. 
If you are working with repositories, you would have to do it for each table in the 
repository database. When working with the file-based system, this task is quite 
simple—you could create an Eclipse project, load the root directory of your jobs  
and transformations, and do the task by using the Eclipse utilities.

This appendix explains how to create a repository and how to work with it. You can give 
repositories a try and decide for yourself which method, repository-based or file-based, suits 
you best.

Creating a repository
If you want to work with the repository-based configuration, you have to create a repository 
in advance.

Time for action – creating a PDI repository
To create a repository, follow these steps:

1. Open MySQL Command Line Client.

2.	 In the command window, type the following:

 CREATE DATABASE PDI_REPO;

3.	 Open Spoon.

4.	 If the repository dialog appears, skip to step 6.

5.	 Open the repository dialog from the Repository | Connect to repository menu.

6.	 Click on New to create a new repository. The repository information dialog shows 
up. Click on New to create a new database connection.









Appendix A

[ 41� ]

7.	 The database connection window appears. Define a connection to the database  
you have just created and give a name to the connection— PDI_REPO_CONN 
in this case.

If you want to refer to the steps on creating the database 
connection, check out Time for action – creating a connection to 
the Steel Wheels database section in Chapter 8. 

8.	 Test the connection to see that it is properly configured.

9.	 Click OK to close the database connection window. The Select database connection 
box will show the created connection.

10.	Give the name MY_REPO to the repository. As description, type My first repository.

11.	Click on Create or Upgrade.

12. PDI will ask you if you are sure you want to create the repository on the specified 
database connection. Answer Yes if you are sure of the settings you entered. 

13. A dialog appears asking if you want to do a dry run to evaluate the generated SQL 
before execution.

14. Answer No unless you want to preview the SQL that will create the reposProgress 
progress window appears showing you the progress while the repository is  
being created.

15. Finally, you see a window with the message Kettle created the repository on the 
specified connection. Close the dialog window.



Working with Repositories

[ 420 ]

16. Click on OK to close the repository information window. You will be back in the 
repository dialog, this time with a new repository available in the repository  
drop-down list.

17. If you want to start working with the created repository, please refer to the Working 
with the repository storage system section. If not, click on No Repository. This will 
close the window.

What just happened?
In MySQL you created a new database named PDI_REPO. Then you used that database to 
create a PDI repository.

Creating repositories to store your transformations and jobs
A Kettle repository is a database that provides you with a storage system for your 
transformations and jobs. The repository is the alternative to the *.ktr and *.kjb  
file-based system.

In order to create a new repository, a database must have been created previously. In the 
tutorial, the repository was created in a MySQL RDBMS. However, you can create your 
repositories in any relational database. 

The PDI repository database should be used exclusively for its purpose!

Note that if the repository has already been created from another machine or by another 
user, that is, another profile in the operating system, you don't have to create the repository 
again. In that case, just define the connection to the repository but don't create it again. In 
other words, follow all the instructions but don't click the Create or Upgrade button.

Once you have created a repository, its name, description, and connection information are 
stored in a file named repositories.xml, which is located in the PDI home directory.  
The repository database is populated with a bunch of tables with familiar names such as 
transformation, job, steps, and steps_type.



Appendix A

[ 421 ]

Note that you may have more than one repository—different repositories for different 
projects, different repositories for different versions of a project, a repository just for testing 
new PDI features, and another for serious development, and so on. Therefore, it is important 
that you give the repositories meaningful names and descriptions so that you don't get 
confused if you have more than one.

Working with the repository storage system
In order to work with a repository, you must have created at least one. If you haven't, please 
refer to the section Creating a repository.

If you already have a repository and you want to work with it, the first thing you have to do is 
to log into it. The next tutorial helps you do this.

Time for action – logging into a repository
To log into an existent repository, follow these instructions:

1. Launch Spoon.

2. If the repository dialog window doesn't show up, select Repository | Connect to 
repository from the main menu. The repository dialog window appears.

3. In the drop-down list, select the repository you want to log into.

4. Type your username and password. If you have never created any users, use the 
default username and password—admin and admin. Click on OK. 

5. You will now be logged into the repository. You will see the name of the repository 
in the upper-left corner of Spoon:

What just happened?
You opened Spoon and logged into a repository. In order to do that, you provided the name 
of the repository and proper credentials. Once you did it, you were ready to start working 
with the repository.



Working with Repositories

[ 422 ]

Logging into a repository by using credentials
If you want to work with the repository storage system, you have to log into the repository 
before you begin your work. In order to do that, you have to choose the repository and 
provide a repository username and password.

The repository dialog that allows you to log into the repository can be opened from the 
main Spoon menu. If you intend to log into the repository often, you'd better select Edit | 
Options... and check the general option Show repository dialog at startup?. This will cause 
the repository dialog to always show up when you launch Spoon.

It is possible to log into the repository automatically. Let's assume you have a repository  
named MY_REPO and you use the default user. Add the following lines to the  
kettle.properties file:

KETTLE_REPOSITORY=MY_REPO
KETTLE_USER=admin
KETTLE_PASSWORD=admin

The next time you launch Spoon, you will be logged into the repository automatically.

For details about the kettle.properties file, refer to the section on 
Kettle variables in Chapter 2.

Because the log information is exposed, auto login is not recommended.

Defining repository user accounts
To log into a repository, you need a user account. Every repository user has a profile  
that dictates the permissions that the user has on the repository. There are three  
predefined profiles:

Profile Permissions
Read-only Cannot create nor modify any element in the repository
User Can create, modify, and delete any object in the repository excepting 

users and profiles
Administrator Has full permissions, including creating new users and profiles



Appendix A

[ 423 ]

There are also two predefined users:

admin: A user with Administrator profile. This is the user you used to log into the 
repository for the first time. It has full permissions on the repository.

guest: A user with Read-only profile.

If you have Administrator profile, you can create, modify, rename, or delete users and 
profiles from the Repository explorer. For details, please refer to the section Examining and 
modifying the contents of a repository with the Repository explorer, later in this chapter. Any 
user may change his/her own user information both from the Repository explorer and from 
the Repository | Edit current user menu option. 

Creating transformations and jobs in repository folders
In a repository, the jobs and transformations are organized in folders. A folder in a repository 
fulfills the same purpose as a folder in your drive—it allows you to keep your work organized. 
Once you create a folder, you can save both transformations and jobs in it.

While connected to a repository you design, preview, and run jobs and transformations 
just as you do with files. However, there are some differences when it comes to opening, 
creating, or saving your work. So, let's summarize how you do those tasks when logged  
into a repository:

Task Procedure
Open a transformation / job Select File | Open. The Repository explorer shows up. Navigate the 

repository until you find the transformation or job you want to open. 
Double-click it.

Create a folder Select Repository | Explore repository, expand the transformation 
or job tree, locate the parent folder, right-click and create the folder. 
Alternatively, double-click the parent folder.

Create a transformation Select File | New | Transformation or press Ctrl+N.
Create a Job Select File | New | Job or press Ctrl+Alt+N.
Save a transformation Press Ctrl+T. Give a name to the transformation. In the Directory 

textbox, select the folder where the transformation is going to be saved. 
Press Ctrl+S. The transformation will now be saved in the selected 
directory under the given name.

Save a job Press Ctrl+J. Give a name to the job. In the Directory textbox, select the 
folder where the job is going to be saved. Press Ctrl+S. The job will be 
saved in the selected directory under the given name.







Working with Repositories

[ 424 ]

Creating database connections, partitions, servers, and clusters
Besides users, profiles, jobs, and transformations, there are some additional PDI elements 
that you can define:

Element Description
Database connections Connection definitions to relational databases. These are covered in 

Chapter 8.
Partition schemas Partitioning is a mechanism by which you send individual rows  

to different copies of the same step—for example, based on a  
field value.

This is an advanced topic not covered in this book.
Slave servers Slave servers are installed in remote machines to execute jobs and 

transformations remotely. They are introduced in Chapter 13.
Clusters Clusters are groups of slave servers that collectively execute a job or 

a transformation. They are also introduced in Chapter 13.

All these elements can also be created, modified, and deleted from the Repository explorer.

Once you create any of these elements, it is automatically shared by all repository users.

Backing up and restoring a repository
A PDI repository is a database. As such, you may regularly backup it with the utilities 
provided by the RDBMS. However, PDI offers you a method for creating a backup in  
an XML file.

You create a backup from the Repository explorer. Right-click the name of the repository and 
select Export all objects to an XML file. You will be asked for the name and location of the 
XML file that will contain the backup data. In order to back up a single folder, instead of right-
clicking the repository name, right-click the name of the folder.

You can restore a backup made in an XML file also from the Repository explorer. Right-click 
the name of the repository and select Import all objects from an XML file. You will be asked 
for the name and location of the XML file that contains the backup.

Examining and modifying the contents of a repository 
with the Repository explorer
The Repository explorer shows you a tree view of the repository to which you are 
connected. From the main Spoon menu, select Repository | Explore Repository and you  
get to the explorer window. The following screenshot shows you a sample Repository 
explorer screen:



Appendix A

[ 425 ]

In the tree you can see: Database connections, Partition schemas, Slave servers (slaves in 
the tree), Clusters, Transformations, Jobs, Users, and Profiles.

You can sort the different elements by name, user, changed data, or description by just 
clicking on the appropriate column header: Name, User, Changed date, or Description. The 
sort is made within each folder. 

The Repository explorer not only shows you these elements, but also allows you to create, 
modify, rename, and delete them. The following table summarizes the available actions:

Action Procedure Example
Create a new element

(any but 
transformations and 
jobs)

Double-click the name of the 
element at the top of the list.

Alternatively, right-click any 
element in its category and 
select the New option.

In order to create a new user, 
double-click the word Users at the 
top of the users list, or right-click any 
user and select New User.

Open an element for 
editing

Right-click it and select the Open 
option. Alternatively, double-
click it.

In order to edit a job, double-click it, 
or right-click and select Open job.

Delete an element Right-click it and select the 
Delete option.

In order to delete a user, right-click it 
and select Delete user.

 



Working with Repositories

[ 426 ]

When you explore the repository, you don't see jobs and transformations 
mixed. Consequently, the whole folder tree appears twice—once under 
Transformations and then under Jobs.

In order to confirm your work, click on Commit changes. If you make a mistake, click on 
Rollback changes.

Migrating from a file-based system to a repository-based 
system and vice-versa
No matter which storage system you are using, file based or repository based, you may want 
to move your work to the other system. The following tables summarize the procedure for 
doing that:

Migrating from file-based configuration to repository-based configuration:

PDI element Procedure for migrating from file to repository

Transformations or jobs From File | Import from an XML file, browse to locate the .ktr/.kjb file 
to import and open it. Once the file has been imported, you can save it into 
the repository as usual.

Database connections, 
partition schemas, 
slaves, and clusters

When importing from XML, a job or transformation that uses the database 
connection, the connection is imported as well. The same applies to 
partitions, slave servers, and clusters.

Migrating from file-based configuration to repository-based configuration:

PDI element Procedure for migrating from repository to file

Single transformation 
or job

Open the job or transformation, select File | Export to an XML file, browse 
to the folder where you want to save the job or transformation, and save 
it. Once it has been exported, it will be available to work with under the file 
storage method or to import from another repository.

All transformations 
saved in a folder

In the Repository explorer, right-click the name of the folder and select 
Export transformations. You will be asked to select the directory where the 
folder along with all its subfolders and transformations will be exported to.

If you right-click the name of the repository or the root folder in the 
transformation tree, you may export all the transformations.



Appendix A

[ 427 ]

PDI element Procedure for migrating from repository to file

All jobs saved in a folder In the Repository explorer, right-click the name of the folder and select 
Export Jobs. You will be asked to select the directory where the folder 
along with all its subfolders and jobs will be exported to.

If you right-click the name of the repository or the root folder in the job 
tree, you may export all the jobs.

Database connections, 
partition schemas, 
slaves and clusters

When exporting to XML a job or transformation that uses the database 
connection, the connection is exported as well (it's saved as part of the 
KTR/KJB file). The same applies to partitions, slave servers, and clusters.

You have to be logged into the repository in order to perform any of the 
explained operations.

If you share a database connection, a partition schema, a slave server, or a cluster, it will 
be available for using both from a file and from any repository, as the shared elements are 
always saved in the shared.xml file in the Kettle home directory. 

Summary
This appendix covered the basics concepts for working with repositories. Besides the topics 
covered here, working with repositories is pretty much the same as working with files.

Although the tutorials in this book were explained assuming that you work with files, all of 
them can be implemented under a repository-based configuration with minimal changes. For 
example, instead of saving a transformation in c:\pdi_labs\hello.ktr, you could save it 
in a folder named pdi_labs with the name hello.  Besides these tiny details, you shouldn't 
have any trouble in developing and testing the exercises.





B
Pan and Kitchen: Launching 

Transformations and Jobs from the 
Command Line

All the transformations and jobs you design in Spoon end up being used as part of batch 
processes—for example, processes that run every night in a scheduled fashion. When it 
comes to running them in that way, you need Pan and Kitchen.

Pan is a command line program that lets you launch the transformations designed in 
Spoon, both from .ktr files and from a repository.

The counterpart to Pan is Kitchen that allows you to run jobs both from .kjb files 
and from a repository.

This appendix shows you different options you have to run these commands.

Running transformations and jobs stored in files
In order to run a transformation or job stored as a .ktr / .kjb file, follow these steps:

1. Open a terminal window.

2. Go to the Kettle installation directory.

3. Run the proper command according to the following table:

Running a ... Windows Unix-like system

transformation pan.bat	/file:<ktr	file	
name>

pan.sh	/file:<ktr	file	name>

job kitchen.bat	/file:<kjb	
file	name>

kitchen.sh	/file:<kjb	file	
name>





Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>



Pan and Kitchen: Launching Transformations and Jobs from the Command Line

[ 430 ]

When specifying the .ktr/.kjb filename, you must include the full path. If the name 
contains spaces, surround it with double quotes.

Here are some examples: 

Suppose that you work with Windows and that your Kettle installation directory is 
c:\pdi-ce. In order to execute a transformation stored in the file c:\pdi_labs\
hello.ktr, you have to type the following commands:

	 C:

	 cd	\pdi-ce

 pan.bat /file:"c:\pdi_labs\hello.ktr"

Suppose that you work with a Unix-like system and that your Kettle installation 
directory is /home/yourself/pdi-ce. In order to execute a job stored in the file 
/home/pdi_labs/hellojob.kjb, you have to type the following commands:

	 cd	/home/yourself/pdi-ce

	 kitchen.sh	/file:"/home/yourself/pdi-ce/hellojob.kjb"

If you have a repository with auto login (refer Appendix A), as 
part of the command, add /norep. This will avoid that PDI 
login to the repository.

Running transformations and jobs from a repository
In order to run a transformation or job stored in a repository follow these steps:

1. Open a terminal window.

2. Go to the Kettle installation directory.

3. Run the proper command according to the following table:

Running a ... Windows Unix-like system
transformation pan.bat	/rep:<value>									

								/user:<user>
								/pass:<value>
								/trans:<value>
								/dir:<value>

pan.sh	/rep:<value>
							/user:<user>
							/pass:<value>
							/trans:<value>
							/dir:<value>

job kitchen.bat	/rep:<value>
												/user:<user>
												/pass:<value>
												/job:<value>
												/dir:<value>

kitchen.sh	/rep:<value>
											/user:<user>
											/pass:<value>
											/job:<value>
											/dir:<value>







Appendix B

[ 431 ]

In this preceding table:

• rep is the name of the repository to log into

• user and pass are the credentials to log into the repository

• trans and job are the names of the transformation or job to run

• dir is the name of the directory where the transformation or job is located

The parameters are shown on different lines for you to clearly identify all the options.

When you type the command, you have to write all the parameters on 
the same line.

Suppose that you work on Windows, you have a repository named MY_REPO, and you log 
into the repository with user PDI_USER and password 1234. To run a transformation named 
Hello located in a directory named MY_WORK in that repository, type the following:

pan.bat	/rep:"MY_REPO"	/user:"PDI_USER"	/pass:"1234"	/trans:"Hello"	/
dir:"/MY_WORK/"

If you defined auto-login, you don't need to provide the repository 
information— the rep, user, and pass command line parameters—
as part of the command.

Specifying command line options
In the examples provided in this appendix, all options are specified by using the /option:
value syntax—for example, /trans:"Hello".

Instead of /, you can also use -. Between the name of the option and the value, you can also 
use =. This means the options /trans:"Hello" and -trans="Hello" are equivalents.

You may use any combination of /,-, :, and =.

In Windows, the use of - and = may cause problems; it's 
recommended that you use the /option:value syntax.

If there are spaces in the values, you can use quotes ('') or double quotes ("") to keep the 
values together. If there are no spaces, the quotes are optional. 



Pan and Kitchen: Launching Transformations and Jobs from the Command Line

[ 432 ]

Checking the exit code
Both Pan and Kitchen return an error code based on how the execution went. To check the 
exit code of Pan or Kitchen under Windows, type the following command: 

echo	%ERRORLEVEL%

To check the exit code of Pan or Kitchen under Unix-like systems, type the  
following command:

echo	$?

If you get a zero, it means that there are no errors, whereas a value greater than zero 
implies failure. To understand the meaning of the error, please refer to the Pan / Kitchen 
documentation; URL references are provided at the end of the appendix.

Providing options when running Pan and Kitchen
When you execute a transformation or a job with Spoon, you have the option to provide 
additional information such as named parameters. The following Spoon dialog window 
shows you an example of that:



Appendix B

[ 433 ]

When you execute the transformation or job with Pan or Kitchen respectively, you provide 
this same information as options in the command line. This is how you do it compared  
side-by-side with Spoon:

Log details
Spoon Pan/Kitchen option Example
You specify the log level in 
the drop-down list inside 
the Details box.

When the transformation or 
job runs, the log is shown 
in the Execution Results 
window.

/level:<logging level>

where the logging level can be 
one of the following:

Error, Nothing, Minimal, 
Basic, Detailed, Debug, or 
Rowlevel.

/level:Detailed

The log appears in the terminal 
window, but you can use the 
command language of your 
operating system to redirect  
it to a file.

Named parameters
Spoon Pan/Kitchen option Example
You specify the named 
parameters in the 
Parameters box. The 
window shows you the 
name of the defined named 
parameters for you to fill 
the values or keep the 
default values.

/param:

<parameter	name>=

<parameter	value>

/param:

"REPORTS_FOLDER=

c:\my_rep\"

Arguments
Spoon PAN/Kitchen option Example
You specify the command 
line arguments in the 
Arguments grid. Each line 
corresponds to a different 
argument.

You type them in order as part of 
the command.

20091001 20091031

Variables
Spoon Pan/Kitchen

The grid named Variables shows the 
variables used in the transformation/job 
as well as their current values. At the  
time of the execution, you can type 
different values.

You cannot set variables either in the Pan or in the 
Kitchen command. The variables have to exist. You may 
define them in the kettle.properties file. To 
get the details of this file, refer to the Kettle Variables 
section in Chapter 2.



Pan and Kitchen: Launching Transformations and Jobs from the Command Line

[ 434 ]

Suppose that the sample transformation shown in the screenshot is located at  
c:\pdi_labs\sales_report.ktr. Then the following Pan command

pan.bat	/file:"c:\pdi_labs\sales_report.ktr"	20091001	20091031	/level:De-
tailed	>	c:\pdi_labs\logs\sales_report.log

executes the transformation with the same options shown in the screenshot. The command 
redirects the log to the file c:\pdi_labs\logs\sales_report.log.

Besides these, both Pan and Kitchen have additional options. For a full list and more 
examples, visit the Pan and Kitchen documentation at http://wiki.pentaho.com/
display/EAI/Pan+User+Documentation and http://wiki.pentaho.com/
display/EAI/Kitchen+User+Documentation.



C
Quick Reference:  

Steps and Job Entries
This appendix summarizes the purpose of the steps and job entries used in the tutorials 
throughout the book. For each of them, you can see the name of the Time for action section 
where it was introduced and also a reference to the chapters where you can find more 
examples that use it.

How to use this reference

Suppose you are inside Spoon, editing a Transformation. If the transformation 
uses a step that you don't know and you want to understand what it does or 
how to use it, double-click the step and take note of the title of the settings 
window; that title is the name of the step. Then search for that name in the 
transformation steps reference table. The steps are listed in alphabetical order 
so that you can find them quickly. The last column will take you to the place in 
the book where the step is explained.

The same applies to jobs. If you see in a job an unknown entry, double-click the 
entry and take note of the title of the settings window; that title is the name of 
the entry. Then search for that name in the job entries reference table. The job 
entries are also listed in alphabetical order.



Quick Reference: Steps and Job Entries

[ 436 ]

Transformation steps
The following table includes all the transformation steps used in the book. For a full list  
of steps and their descriptions, select Help | Show step plug-in information in Spoon's  
main menu.

You can also visit http://wiki.pentaho.com/display/EAI/Pentaho+Data+Integra
tion+v3.2.+Steps for a full step reference along with some examples.

Icon Name Purpose Time for action
Abort Aborts a transformation Aborting when there are too 

many errors (Chapter 7); also in 
Chapters 11 and 12

Add constants Adds one or more constant 
fields to the stream

Gathering progress and 
merging all together (Chapter 
4); also in Chapters 7, 8, and 9

Add sequence Gets the next value from a 
sequence

Assigning tasks by Distributing 
(Chapter 4); also in Chapters 6 
and 11

Append 
streams

Appends two streams in 
an ordered way

Giving priority to Bouchard  
by using Append Stream 
(Chapter 4)

Calculator Creates new fields by 
performing simple 
calculations

Reviewing examination by 
using the Calculator step 
(Chapter 3); also in  
Chapters 6 and 8

Combination 
lookup/update

Updates a junk dimension. 
Alternatively, it can be 
used to update  
Type I SCD.

Loading a region dimension 
with a Combination lookup/
update step (Chapter 9); also in 
Chapter 12

Copy rows to 
result

Write rows to the 
executing job. The 
information will then be 
passed to the next entry in 
the job.

Splitting the generation of top 
scores by copying and getting 
rows (Chapter 11) 

Data Validator Validates fields based on a 
set of rules

Checking films file with the 
Data Validator (Chapter 7) 

Database join Executes a database query 
using stream values as 
parameters

Using a Database join step 
to create a list of suggested 
products to buy (Chapter 9) 

Database 
lookup

Looks up values in a 
database table

Using a Database lookup step to 
create a list of products to buy 
(Chapter 9), also in Chapter 12



Appendix C

[ 437 ]

Icon Name Purpose Time for action
Delay row For each incoming row, 

waits a given time before 
giving the row to the  
next step

Generating custom files by 
executing a transformation for 
every input row (Chapter 11) 

Delete Delete data in a database 
table

Deleting data about 
discontinued items (Chapter 8) 

Dimension 
lookup/update

Updates or looks up a 
Type II SCD. Alternatively, 
it can be used to update 
Type I SCD or hybrid 
dimensions.

Keeping a history of product 
changes with the Dimension 
lookup/update step  
(Chapter 9), also in Chapter 12

Dummy (do 
nothing)

This step type doesn't do 
anything! However it is 
used often. 

Creating a hello world 
transformation (Chapter 1),  
also in Chapters 2, 3, 7, and 9

Excel Input Reads data from a 
Microsoft Excel (.xls) file

Browsing PDI new features by 
copying a dataset (Chapter 4); 
also in Chapter 8

Excel Output Writes data to a Microsoft 
Excel (.xls) file

Getting data from an XML 
file with information about 
countries (Chapter 2); also in 
Chapters 4 and10

Filter rows Splits the stream in two 
upon a given condition. 
Alternatively, it is used to 
let pass just the rows that 
meet the condition.

Counting frequent words by 
filtering (Chapter 3); also in 
Chapters 4, 6, 7, 9, 11, and 12

Fixed file input Reads data from a fixed 
width file

Calculating Scores with 
JavaScript (Chapter 5) 

Formula Creates new fields by 
using formulas. It uses 
Pentaho's libformula.

Reviewing examination by 
using the Formula step  
(Chapter 3); also in  
Chapters 10 and 11

Generate Rows Generates a number of 
equal rows

Creating a hello world 
transformation (Chapter 1);  
also in Chapters 6, 9, and 10

Get data from 
XML

Gets data from XML files Getting data from an XML 
file with information about 
countries(Chapter 2); also in 
chapters 3 and 9



Quick Reference: Steps and Job Entries

[ 43� ]

Icon Name Purpose Time for action
Get rows from 
result

Reads rows from a 
previous entry in a job

Splitting the generation of top 
scores by copying and getting 
rows (Chapter 11) 

Get System 
Info

Gets information from the 
system like system date, 
arguments, etc.

Updating a file with news about 
examination (Chapter 2) also in 
Chapters 7, 8, 10, 11, and12

Get Variables Takes the values of 
environment or Kettle 
variables and adds them as 
fields in the stream

Creating the time dimension 
dataset(Chapter 6)

Group by Builds aggregates in a 
group by fashion. This 
works only on a sorted 
input. If the input is 
not sorted, only double 
consecutive rows are 
handled correctly

Calculating World Cup statistics 
by grouping data (Chapter 3); 
also in Chapters 4, 7, and 9

If field value is 
null

If a field is null, it changes 
its value to a constant. It 
can be applied to all fields 
of a same data type, or to 
particular fields

Enhancing a films file by 
converting rows to columns 
(Chapter 6) 

Insert / Update Updates or inserts rows in 
a database table

Inserting new products or 
updating existent ones  
(Chapter 8) 

Mapping (sub-
transformation)

Runs a subtransformation Calculating the top scores with a 
subtransformation (Chapter 11) 

Mapping input 
specification

Specifies the input 
interface of a  
sub-transformation

Calculating the top scores with a 
subtransformation (Chapter 11) 

Mapping 
output 
specification

Specifies the output 
interface of a  
sub-transformation

Calculating the top scores with a 
subtransformation (Chapter 11) 

Modified Java 
Script Value

Allows you to code 
Javascript to modify or 
create new fields. It's also 
possible to code Java

Calculating Scores with 
JavaScript(Chapter 5); also in 
Chapters 6, 7, and 11

Number range Creates ranges based on a 
numeric field

Capturing errors while 
calculating the age of a film 
(Chapter 7); also in Chapter 8



Appendix C

[ 43� ]

Icon Name Purpose Time for action
Regex 
Evaluation

Evaluates a field with a 
regular expression

Validating Genres with a Regex 
Evaluation step (Chapter 7); also 
in Chapter 12

Row 
denormaliser

Denormalises rows by 
looking up key-value pairs

Enhancing a films file by 
converting rows to columns 
(Chapter 6) 

Row 
Normaliser

Normalises data  
de-normalised

Enhancing the matches file 
by normalizing the dataset 
(Chapter 6)

Select values Selects, reorders, or 
removes fields. Also 
allows you to change the 
metadata of fields

Reading all your files at a 
time using a single Text file 
input step (Chapter 2); also in 
Chapters 3, 4, 6, 7, 8, 9, 11,  
and 12

Set Variables Sets Kettle variables based 
on a single input row

Updating a file with news 
about examinations by setting 
a variable with the name of the 
file (Chapter 11); also in  
Chapter 12

Sort rows Sorts rows based upon 
field values, ascending or 
descending

Reviewing examinations by 
using the Calculator step 
(Chapter 3); also in Chapters 4, 
6, 7, 8, 9, and 11

Split field to 
rows

Splits a single string field 
and creates a new row for 
each split term

Counting frequent words by 
filtering (Chapter 3) 

Split Fields Splits a single field into 
more than one

Calculating World Cup statistics 
by grouping data (Chapter 3); 
also in Chapters 6 and 11

Stream lookup Looks up values coming 
from another stream in the 
transformation

Finding out which language 
people speak (Chapter 3); also 
in Chapter 6

Switch / Case Switches a row to a certain 
target step based on the 
value of a field

Assigning tasks by filtering 
priorities with the Switch/ Case 
step (Chapter 4) 

Table input Reads data from a database 
table

Getting data about shipped 
orders (Chapter 8); also in 
Chapters 9, 10, and 12

Table output Writes data to a database 
table

Loading a table with a list of 
manufacturers (Chapter 8), also 
in Chapters 9 and 12



Quick Reference: Steps and Job Entries

[ 440 ]

Icon Name Purpose Time for action
Text file input Reads data from a text file Reading all your files at a 

time using a single Text file 
input step (Chapter 2); also in 
Chapters 3, 5, 6, 7, 8, and 11

Text file output Writes data to a text file Sending the results of matches 
to a plain file (Chapter 2); also in 
Chapters 3, 7, 9, 10, and 11

Update Updates data in a database 
table

Loading a region dimension 
with a Combination lookup/
update step (Chapter 9)

Value Mapper Maps values of a certain 
field from one value to 
another

Browsing PDI new features by 
copying a dataset (Chapter 4) 

Job entries
The following table includes all the job entries used in the book. For a full list of job  
entries and their descriptions, select Help | Show job entries plug-in information in  
Spoon's main menu.

You can also visit http://wiki.pentaho.com/display/EAI/Pentaho+Data+Integra
tion+v3.2.+Job+Entries for more information.

There you'll find a full job entries reference and some examples as well.

Icon Name Purpose Time for action

Abort job Aborts the job Updating a file with news 
about examinations by setting 
a variable with the name of the 
file (Chapter 11) 

Create a folder Creates a folder Creating a simple Hello world 
job (Chapter 10) 

Delete file Deletes a file Generating custom files by 
executing a transformation for 
every input row (Chapter 11) 

Evaluate rows 
number in a 
table

Evaluates the content of a 
table

Loading the dimensions for the 
sales datamart (Chapter 12) 



Appendix C

[ 441 ]

Icon Name Purpose Time for action

File Exists Checks if a file exists Updating a file with news 
about examinations by setting 
a variable with the name of the 
file (Chapter 11) 

Job Executes a job Generating the files with top 
scores by nesting jobs (Chapter 
11); also in Chapter 12

Mail Sends an e-mail Sending a sales report and 
warning the administrator 
if something were wrong 
(Chapter 10) 

Special entries Start job entry; mandatory 
at the beginning of a job

Creating a simple Hello 
world job (Chapter 10); also in 
Chapters 11 and 12

Success Forces the success of a job 
execution

Updating a file with news 
about examinations by setting 
a variable with the name of the 
file (Chapter 11); also in  
Chapter 12

Transformation Executes a transformation Creating a simple Hello 
world job (Chapter 10); also in 
Chapters 11 and 12

Note that this appendix is just a quick reference. It's not meant at all for learning 
to use PDI. In order to learn from scratch, you should read the book starting from 
the first chapter.





D
Spoon Shortcuts

The following tables summarize the main Spoon shortcuts. Have this appendix handy; it will 
save a lot of time while working with Spoon.

If you are a Mac user, please be aware that a mixture of Windows and Mac keys 
is used. Thus, the shortcut keys are not always what you expect. For example, in 
some cases you copy with Ctrl+C, while in others you do it with Command+C.

General shortcuts
The following table lists general Spoon shortcuts:

Action Shortcut
New job Ctrl+Alt+N
New transformation Ctrl+N
Open a job/transformation Ctrl+O
Save a job/transformation Ctrl+S
Close a job/transformation Ctrl+F4
Run a job/transformation F9
Preview a transformation F10
Debug a transformation Shift+F10
Verify a transformation F11
Job settings Ctrl+J
Transformation settings Ctrl+T
Search metadata Ctrl+F
Set environment variables Ctrl+Alt+J
Show environment variables Ctrl+L
Show arguments Ctrl+Alt+U



Spoon Shortcuts

[ 444 ]

Designing transformations and jobs
The following are the shortcuts that help the design of transformations and jobs:

Action Shortcut

New step/job entry Drag the step/job entry icon to the work 
area and drop it there

Edit step/job entry Double-click

Edit step description Double-click the middle mouse button

New hop Click a step and drag toward the second 
step while holding down the middle 
mouse button or while pressing Shift and 
holding down the left mouse button

Edit a hop Double-click in transformations,  
right-click in jobs

Split a hop Drag a step over the hop until it  
gets wider

Select some steps/job entries Ctrl+click

Select all steps Ctrl+A

Clear selection Esc

Copy selected steps/job entries to clipboard Ctrl+C

Paste from clipboard to work area Ctrl+V

Delete selected steps/job entries Del

Align selected steps/job entries to top Ctrl+Up

Align selected steps/job entries to bottom Ctrl+Down

Align selected steps/job entries to left Ctrl+Left

Align selected steps/job entries to right Ctrl+Right

Distribute selected steps/job entries horizontally Alt+Right

Distribute selected steps/job entries vertically Alt+Up

Zoom in Page up

Zoom out Page down

Zoom 100% Home

Snap to grid Alt+Home

Undo Ctrl+Z

Redo Ctrl+Y

Show output stream (only available in transformations) Position the mouse cursor over the step; 
then press Space bar



Appendix D

[ 445 ]

Grids
Action Shortcut

Move a row up Ctrl+Up

Move a row down Ctrl+Down

Resize all columns to see the full values (header included) F3

Resize all columns to see the full values (header excluded) F4

Select all rows Ctrl+A

Clear selection Esc

Copy selected lines to clipboard Ctrl+C

Paste from clipboard to grid Ctrl+V

Cut selected lines Ctrl+X

Delete selected lines Del

Keep only selected lines Ctrl+K

Undo Ctrl+Z

Redo Ctrl+Y

Repositories
Action Shortcut

Connect to repository Ctrl+R

Disconnect repository Ctr+D

Explore repository Ctrl+E

Edit current user Ctrl+U





E
Introducing PDI 4 Features

While writing this book, version 4.0 of PDI was still under development. Kettle 4.0 was 
mainly created to provide a new API for the future—the API that is cleaned up, flexible, more 
pluggable, and so on. Beside those architectural changes, Kettle 4.0 also includes some new 
functional features. This appendix will quickly introduce you to those features.

Agile BI
Pentaho Agile Business Intelligence (Agile BI) is a new, iterative design approach to BI 
development. Agile BI provides an integrated solution that enables you, as an ETL designer, 
to work iteratively, modeling the data, visualizing it, and finally providing the data to users 
for self-service reporting and analysis. Agile BI is delivered as a plugin to Pentaho Data 
Integration. You can learn more about Agile BI at http://wiki.pentaho.com/display/
AGILEBI/Documentation.

Visual improvements for designing transformations and 
jobs
The new version of the product includes mainly Enterprise or advanced features. There are, 
however, a couple of novelties in the Community Edition that will catch your attention as 
soon as you start using the new version of the software. In this section you will learn about 
those novelties.

Experiencing the mouse-over assistance
The mouse-over assistance is the first new feature you will notice. It assists you while editing 
jobs and transformations. Let's see it working.



Introducing PDI 4 Features

[ 44� ]

Time for action – creating a hop with the mouse-over assistance
You already know several ways to create a hop between two job entries or two steps. Now 
you will learn a new way:

1.	 Create a job and drag two job entries to the canvas. Name the entries A and B.

2.	 Position the mouse cursor over the entry named A and wait until a tiny toolbar 
shows up below the entry icon as shown:

3.	 Click on the output connector (the last icon in the toolbar), and drag toward the 
entry named B. A grayed hop is displayed.

4.	 When the mouse cursor is over the B entry, release the mouse button. A hop is 
created from the A entry to the B entry.

What just happened?
You created a hop between two job entries by using the mouse-over assistance—a feature 
incorporated in PDI 4.

Using the mouse-over assistance toolbar
When you position the mouse cursor over a step in a transformation or a job entry in a job, a 
tiny toolbar shows up to assist you. The following diagram depicts its options:



Appendix E

[ 44� ]

The following table explains each button in this toolbar:

Button Description
Edit Equivalent to double-clicking the job entry/step to edit it.
Menu Equivalent to right-clicking the job entry/step to bring up the  

contextual menu.
Input 
connector

Assistant for creating hops leaving from this job entry/step. If the job 
entry/step doesn't accept any input (that is, START entry job or Generate 
Rows step), the input connector is disabled.

Output 
connector

Assistant for creating hops directed toward this job entry/step. It's used as 
shown in the tutorial, but the direction of the created hop is the opposite.

In the tutorial, you created a simple hop between two job entries. You can create hops 
between steps in the same way. In this case, depending on the kind of source step, you might 
be prompted for the kind of hop to create. For example, when leaving a Filter rows step, you 
will be asked if the destination step is where you'll send the "true" data, or where you will 
send the "false" data, or if this is the main output of the step.

Experiencing the sniff-testing feature
The sniff-testing feature allows you to see the rows that are coming into or out of a step 
in real time. While a transformation is running, right-click a step, select Sniff test during 
execution | Sniff test output rows. A window appears showing you the output data as it 
is being processed. In the same way, you can select Sniff test during execution | Sniff test 
input rows to see the incoming rows.

Note that the sniff-testing feature slows down the transformation and 
its use is recommended just for debugging purposes.

Experiencing the job drill-down feature
In Chapters 10 and 11, you learned how to nest jobs and transformations. You even learned 
how to create subtransformations. Whichever the case, when you ran the main job or 
transformation, there was a single log tab showing the log for the main and all nested jobs 
and transformations.

In PDI 4.0, when a job entry is running, you can drill-down into that. Drilling down means 
opening that entry and seeing what's going on inside that job or transformation. In a 
separate window, you'll see both the step metrics and the log. If there are more nested 
transformations or jobs, you can continue drilling down. You can go even further into a 
running subtransformation. In any of these jobs or transformations, you may sniff test  
as well, as described above. 



Introducing PDI 4 Features

[ 450 ]

Drilling down is useful, for example, to understand why your jobs or transformations don't 
behave as expected or to find out where a performance problem is.

You can see the job drill-down and sniff-testing in action in two videos made by Matt Casters, 
Kettle chief leader and author of these features at: http://www.ibridge.be/?p=179.

Experiencing even more visual changes
Besides the features that we have just seen, there are some other UI improvements  
worth mentioning:

Enhanced notes editor: Now you can apply different fonts and colors to the notes 
you create in Spoon.

Color-coded logs: Now it is easier to read a log, as different colors allow you to 
quickly identify different kinds of log messages.

Revamped Repository explorer: The Repository explorer has been completely 
redesigned, making this a major UI improvement in Kettle 4.0.

Enterprise features
As said, most of the functional features included in Kettle 4.0 apply only to the Enterprise 
version of the product. Among those features, the following are the most remarkable:

Job and transformation versioning and locking

Robust security and administration capabilities

Ability to schedule jobs and transformations from Spoon 

Enhanced logging architecture for real-time monitoring and debugging of 
transformations

Summary
This appendix introduced you to the main features included in Kettle 4.0. All the explanations 
and exercises in this book have been developed, explained, and tested in the latest stable 
version 3.2. However, as the new version of the product includes mainly Enterprise or 
advanced features, working with Kettle 4.0 Community Edition is not so different from 
working with Kettle 3.2. You can try all the examples and exercises in the book in  
Kettle 4.0 if you want to. You shouldn't have any difficulties.

















F
Pop Quiz Answers

Chapter 1

PDI data sources
1 5

PDI prerequisites
1 1 and 3

PDI basics
1 False (Spoon is the only graphical tool)

2 True

3 False (Spoon doesn't generate code, but interprets Transformation and Jobs)

4 False (The grid size is intended to line up steps in the screen)

5 False (As an example the transformation in this chapter created the rows of data 
from scratch; it didn't use external data) 



Pop Quiz Answers

[ 452 ]

Chapter 2

formatting data
1 (a) and (b). The field is already a Number, so you may define the output 

field as a Number, taking care of the format you apply. If you define 
the output field as a String and you don't set a format, Kettle will send 
the field to the output as 1.0, 2.0, 3.0, etc., which clearly is not 
the same as your code. Just to confirm this, create a single file and a 
transformation to see the results for yourself.

Chapter 3

concatenating strings
1 (a) and (c). The calculator allows you to use the + operator both for 

adding numbers and for concatenating text. The Formula step makes a 
difference: To add numbers you use  
+; to concatenate text you have to use & instead.

Chapter 4

data movement (copying and distributing)
1  (b). In the second transformation the rows are copied, so all the 

unassigned rows reach the dummy step. In the first transformation the 
rows are distributed, so to the filter step arrives half of the rows. When 
you do the preview, you see only the unassigned tasks for this half; you 
don't see the unassigned tasks that went to the other stream.

splitting a stream
1 (c). Both (a) and (b) solve the situation.



Appendix F

[ 453 ]

Chapter 5

finding the seven errors
1 1.    The type of log a doesn't exist. Look at the sample provided for the 

function to see the valid options.

2.    The variable uSkill is not defined. Its definition is required if you want 
to add it to the list of new fields.

3.    setValue() cause an error without compatibility mode. To change the 
value of the Country field, a new variable should be used instead.

4.    A variable named average is calculated but wAverage is used as the  
new field.

5.    It is not trans_status; it is trans_Status.

6.    No data type was specified for the totalScore field.

7.    The sentence writeToLog(‘Ready to calculate averages...') 
will be written for every row. To write it at the beginning, you have to put it 
in a Start script, not in the main.

Chapter 6

using Kettle variables inside transformations
1 (a). You don't need a Get Variables step in this case. As name of the file you simply type 

hello_${user.name} or hello_%%user.name%%.

In (b) and (c) you need to add the variables ${user.name} and ${user.
language} respectively as fields of your dataset. You do it with a Get  
Variables step.

Chapter 7

PDI error handling
1  (c). With PDI you cannot avoid unexpected errors; you can capture them avoiding the 

crash of the transformation. After that, discarding or treating the bad rows is up to you.



Pop Quiz Answers

[ 454 ]

Chapter �

defining database connections
1 (c)

database datatypes versus PDI datatypes
1 (b)

Insert/Update step versus Table Output/Update steps
1 (a) If an incoming row belongs to a product that doesn't exist in the products table, 

both the Insert/Update step and the Table output step will insert the record.

If an incoming row belongs to a product that already exist in the products table, 
the Insert/Update step updates it. In this alternative version, the Table output will 
fail (there cannot be two products with the same value for the primary key) but the 
failing row goes to the Update step that updates the record.

If an incoming row contains invalid data (for example, a price with a non numeric 
value), neither of the Insert/Update step, the Table output step, and the Update 
step would insert or update the table with this product.

filtering the first 10 rows
1 (c). To limit the number of rows in MySQL you use the clause LIMIT. (a) and (b) are 

dialects: (a) is valid in HSQLDB. (b) is valid in Oracle. If you put any of this options in 
a Table Input for querying the js database, the transformation would fail

Chapter �

loading slowly changing dimensions
1 (a). The decision for the kind of dimension is not related to data you have.  

You just have to know your business, so the last option is out. You don't  
need  to keep history for the name of the film. If the name changes it is because it was 
misspelled, or because you want to change the name to upper case, or something like 
that. It doesn't have sense to keep the old value. So you create  
a Type I SCD.

2 (c). You can use any of these steps for loading a Type I SCD. In the tutorial for loading 
a type I SCD you used a Combination L/U, but you could have used the other too, as 
explained above.



Appendix F

[ 455 ]

loading type III slowly changing dimensions 
1 (b). With a Database lookup to get the current value stored in the dimension. If there is 

no data in the dimension table, the  lookup fails and returns null; that is not a problem. 
After that, you compare the found data with the new one and set the proper values for 
the dimension columns. Then you load the dimension either with a Combination L/U or 
with a Dimension lookup, just as you do for a regular Type I SCD.

Chapter 10

defining PDI jobs
1 (b)

2 All the given options are True. Simply explore the Job entries tree and you'll find the 
answers.

Chapter 11

using the Add sequence step
1 (e) None of the proposed solution gives you the same results you obtained in the 

tutorial. The Add sequence step gives you the next value in a sequence which 
can be a database sequence or transformation counter. In the tutorial you used a 
transformation counter. In the options (b) and (c), instead of four sequences from 1 
to 10, a single sequence from 1 to 40 would have been generated. No matter which 
method you use for generating the sequence, if you use the same name of sequence in 
more than one Add sequence step, the sequence is the same and is shared by all those 
steps. Therefore, the option (a) also would have generated a single sequence from 1 to 
40 shared by the four streams.

Besides these details about the generation of sequences, the (b) option introduces an 
extra inconvenience. By distributing rows, you cannot be sure that the rows will go to 
the proper stream. PDI would have distributed them in its own fashion.

deciding the scope of variables
1 All the options are valid. In the tutorial you had just a transformation and its parent  

job, that is also the root job. So (a) is valid. The grand-parent job scope includes the 
parent job so option (b) is valid too. Option (c) includes all the other options, so it is a 
valid option too.



Pop Quiz Answers

[ 456 ]

Chapter 12

modifying a star model and loading the star with PDI
1 a iii As mentioned in Chapter 9, despite being 

designed for building Type II SCDs, the 
Dimension L/U step can be used for building 
Type I SCDs as well. So, you have two options: 
Reuse the table (modifying the transformation 
that loads it) and get the surrogate key with 
a Dimension L/U step, or use another table 
without all fields specific to Type II dimensions 
and, for getting the surrogate key, use a DB 
Lookup step.

In any case, you may reuse the id_region 
field, as it is a integer and serves in any 
situation.

b i

c iii

2 a ii The dimension table has to have one record by 
month. Therefore a different table is needed. 
For the key you could use a string with the 
format yyyymm. If you don't want to change 
the fact table, you may reuse the dt field 
leaving blank the last two characters, but it 
would be more appropriate to have a string 
field with just 6 positions. For getting the 
surrogate key you use a Select values step 
changing the metadata but this time you put as 
format the new mask yyyymm.

b ii

c i

3 a ii The product_type field is a string; it's not 
the proper field for referencing a surrogate key 
from a fact table, so you have to define a new 
field for that purpose. For getting the right key 
you use a Database lookup step.

b iii

Chapter 13

remote execution and clustering
1 None of the sentences are true.



Index
Symbols
${<variable>} notation  193
%%<variable>%% notation  193
*.kjb format  417
*.ktr format  417
.kjb file jobs  429, 430
.ktr file transformations

running  429, 430
/option:value syntax  431

A
action sequence  412
administrative tasks

getting rid of  399
sales datamart loading, automating  399-402
work backup, creating automatically  402

Agile BI  447

B
basic calculation

calculator step, using  74
data, sorting  81
Dummy step  81
examination review, calculator step used  74, 

78, 80
field modification, PDI used  82
fields, modifying  82
Select values step, using  81

basic modification
Group by step  94

business keys to surrogate keys, sales fact table
junk dimension surrogate key, obtaining  391
time dimension surrogate key, obtaining  391
translating  388-391

TypeII SCD surrogate key, obtaining  389, 390
Type I SCD surrogate key, obtaining  388, 389

C
calculator step used, basic calculation

about  74
average, taking  74-77
editing  78
examination, reviewing  80, 81
final preview  80
preview  78
Select Values step  79
Sort rows Step  78

Carte  410
CDF  414
change history, maintaining

Dimension lookup/update step, using  286-288
steps  286
transformation, testing  288, 289

cloud-computing  411
cluster  411, 424
coding

disadvantages  166
command line argument

named parameters, differentiating between  
317, 318

passing, to transformation  315, 316
use, analyzing  318

Community Dashboard Framework. See  CDF
Community Edition  415
complex lookups, data

customers list, rebuilding  275
database to stream data, joining  272-274
performing  270
suggested products list, creating  270, 272



[ ��8 ]

columns  218
connecting, with RDBMS  222, 223
constellation  376
custom time dimension dataset

creating  187-191
generating, Kettle variables used  186
Get Variables step  191-193

D
dashboard

screenshot  414
data

normalizing  180, 181
normalizing, Row Normalizer step used  182, 

184
reading, from files  35

data, database
complex lookups, doing  270
looking up  266
simple lookups, doing  266

data, reading
football match results, reading  36-40
from files  35
grids  46
input files  41
input files, properties  41, 42
multiple files, reading at once  42, 43
multiple files reading, single Text file input step 

used  43, 44
reading files, troubleshooting  45, 46
regular expressions  44

data, sending to database
data, inserting  246-251
data, updating  246-251
Insert/Update step, using  251-253
inserting, table output step used  245
table list, loading  239-244

data, XML files
Get Data From XML input step, configuring  69
node, selecting  69
obtaining  68
path expression, examples  69
XPath, using  68

database connections  424
database connections See also connecting, with 

RDBMS

database explorer, using  228
database operations  261
database querying

data, working with  229-231
data obtaining, table input step used  231, 232
SELECT statement, using  232, 233

data cleaning. See  data cleansing
data cleansing

about  213, 214
example  214
PDI step, using  214

data elimination, from database
Delete step using  259, 260
steps  256-258

data manipulation
basic calculation  73
filtering  97

Data Manipulation Language. See  DML
datamart

about  275, 367
datawarehouse, difference  368
sales datamart  368

data scrubbing. See  data cleansing
dataset

custom time dimension dataset, generating  186
data, normalizing  180
modifying, Row Normalizer step used  182, 184
rows, converting to columns  169

data to files, transferring
about  47
field  50
field, deleting  52
field, selecting  52
field metadata, changing  52
match results, sending  47, 49
output files  49
row  50
rowset  50
streams  51

data transformation  141
data type, system information

date field  58, 59
date formats, using  62
number 99.55, formatting  62
numeric fields  59, 60
transformation, executing  60, 61



[ ��9 ]

data validation
example  208
films, checking  209, 210
need for  208
simple validation rules, defining  211-213

datawarehouse
about  275
datamart, difference  368

DDL
about  226
example  226

degenerate dimension  370
Design Studio

screenshot  413
dimensional modeling

about  275, 276
datamart  275
datawarehouse  275
dimension tables  275
fact table  275
junk dimension  369
mini dimension  285
SCD  282
star schema  275

dimensions, sales datamart
about  186
loading  371-376

Dimension tables  275
dimension tables, with data

about  275
change history, maintaining  286
dimension data, describing  281, 282
loading  276
loading, combination lookup/update step used  

276-281
DML

about  226
example  226, 227

dynamic clusters  411

E
E4X  148
Eclipse  418
Enterprise Console  415
Enterprise features  450
entity relationship diagram. See  ERD
ERD  264

errors, capturing
Abort step, using  203
about  195
captured errors, fixing  203, 204
error handling functionality, using  200, 201
film age, calculating  196-199
PDI error handling functionality, activities  205
rows, treating  205, 206
transformation, aborting  201-203

ETL  7
exit code

checking, under Unix-based systems  432
checking, under Windows  432

EXtensible Markup Language. See  XML
Extracting, Transforming and Loading. See  ETL

F
facts  275
fact table

about  275
loading, date ranges used  394-396

field  50
field modification, basic modification

add constants field  82
calculator step  83
examples  89-92
Formula step  84-87
number range field  82
replace in string field  82
split fields  82
student, listing  88
User Defined Java Expression  83
Value Mapper  82

file
data, reading from  35
file result list, creating  326
file result list, using  326
output files, writing  52
updating  53-56

file-based system
migrating, to repository-based system  426

file result  326
filtering

frequent words, counting  97-102
rows  104, 105
rows, filter rows used  103



[ �60 ]

spoken language, identifying  105-109
Stream lookup step  109
word count, discarding commonly used  105

filter rows step
using, for filtering row  103

first transformation, Spoon
hello world transformation, creating  20-24
interface, exploring  26
Kettle engine, directing  25
previewing  27, 28
previewing, results in Execution Results window  

28
running  27, 28
structure, viewing  26

flow-control oriented  305
foreign keys (FK)  218
formula step  165

G
grain  370
grid shortcuts

Ctrl+A  445
Ctrl+C  445
Ctrl+Down  445
Ctrl+K  445
Ctrl+Up  445
Ctrl+V  445
Ctrl+X  445
Ctrl+Y  445
Ctrl+Z  445
Del  445
Esc  445
F3  445
F4  445

Group by step, basic modification
about  94
fields, reviewing  95
preview  96
tasks  96

H
hash table algorithm  111
hop

about  25, 305
creating  298-300
hop color  325

HSQLDB  222
Hybrid SCD  293
HyperSQL DataBase. See  HSQLDB

I
id_junk_sales key  388
id_manufacturer key  388
id_region key  388
installing

MySQL  29
MySQL, on Ubuntu  32-34
MySQL, on Windows  29-31
PDI  14, 15

J
JavaScript

advantages  166
JavaScript code, inserting

about  148
average calculations, testing  152, 153
Clone() function  165
code, testing  151
compatibility switch, turning on  151
fields, adding  150, 151
fields, modifying  150, 151
getProcessCount() function  161
Input fields branch  149
LoadScriptFormTab() function  159
new average calculations, testing  153
script, testing  153
Transform Functions  149

JavaScript step
about  154
End Script  159
JavaScript code, inserting  148
Java code, using  161
Main script  159
named parameters, using  158
scores, calculating  142-147
simple tasks, doing  142
Start Script  159
transformation predefined constants, using  

159-161, 453
transformations, modifying  154-157
using, in PDI  147

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>



[ �61 ]

jigsaw puzzle database
buy_methods table  265
cities table  265
countries table  265
customers table  265
exploring  264, 265
invoices table  265
manufactures table  265
payment_methods table  265
populating  261-264
products table  265

job
designing, shortcuts  444
flexible version, creating  309-311
hello world file, customizing  309-311
hello world job, creating  298-304
named parameters, using  312
processes, executing  305
running, from repository  430, 431
transformation job entry, using  307, 308

job, creating as process flow
data flow, modifying  353
data transfer, copy/get rows mechanism used  

352, 353
transformation, splitting  348-351

job, running from repository
command line options, specifying  431
steps  430, 431

job, running from terminal window
steps  313

job entry
abort job  440
about  305
create a folder  440
delete file  440
evaluate rows number in a table  440
File Exists  441
Job  441
mail  441
special entries  441
success  441
transformation  441

job entry, executing
execution flow, modifying  324, 325
launching, in parallel  308

sales report, sending  318-323
job iteration

about  357
custom files, executing  358-361
every input row, executing  361-366

jobs, nesting
files, generating  354, 355
job, running inside another job  355

join  385
junk dimension  369

K
KDE Extraction, Transportation, Transformation 

and loading Environment. See  Kettle
Kettle  9
kettle.properties file  62, 63, 264
Kettle 4.0, features

Agile BI  447
Enterprise features  450
visual improvements  447

Kettle Developer Support  415
Kettle repository  420
Kettle variables, XML files

about  70
exploring  71
Get Variable step  193
scope types  357
using  70
variables, getting  192
work documentation  71

Key Performance Indicators. See  KPIs
Kitchen

about  429
arguments  433
documentation  434
log details  433
named parameters  433
running, options  432
sales datamart loading, automating  399-402
variables  433

KPIs  8

L
LoadScriptFromTab() function  159



[ �6� ]

M
mapping  345
master  411
mini-dimension

loading  285
Modified JavaScript Values step. See  JavaScript 

step
mouse-over assistance

toolbar, using  448, 449
working  448

MySQL
installing  29
installing, on Ubuntu  32-34
installing, on Windows  29-31

MySQL, installing
onUbuntu  32-34
on Windows  29-32

N
named parameters

command line argument, differentiating  
between  317, 318

passing, to transformation  315, 316
use, analysing  318
using  158

O
OLTP  275
On-Line Transaction Processing. See  OLTP
output files

output steps  50

P
Pan

about  429
arguments  433
documentation  434
examination transformation, executing from 

terminal window  60, 61
log details  433
named parameters  433
running, options  432
variables  433

partition schemas  424

PDI
about  7
and Pentaho BI Suite  7
best practices  405
cloud-computing  411
cluster  411
dynamic clusters  411
features  408-411
integrating, with Pentaho BI suite  412
graphic designer, launching  15-18
installing  14, 15
job  297
Kettle  9
Kettle plug-ins  408, 409
master  411
PDI 2.3  10
PDI 2.4  10
PDI 2.5  10
PDI 3.0  10
PDI 3.1  10
PDI 3.2  10
PDI 4.0  10
real world risk, overcoming  410
scaling out  411
scaling up  411
Spoon  15
using, in real world scenarios  11

PDI, using in real world scenarios
data, cleansing  12
data, exporting  13
data, integrating  12
datamart, loading  11, 12
datawarehouse, loading  11, 12
information, migration  13
integrating, Pentaho BI used  13

PDI best practices  405-407
PDI elements

clusters  424
database connections  424
partial schemas  424
slave servers  424

PDI Enterprise Edition  415
PDI features

browsing  114
browsing, dataset copied  114-119

PDI graphic designer. See  Spoon



[ �6� ]

PDI integration, with Pentaho BI suite
about  412
as datasource  413
as process action  412, 413
Pentaho suite  414, 415

PDI options, stream merge
Bouchard’s rows  137, 138
choosing  134, 135
tasks, merging  138
tasks, sorting  138
union, creating  134

PDI, steps
about  184
films file, normalizing  185, 186
normalize benefits, verifying  185
scores, calculating  186

Pentaho Agile Business Intelligence. See Agile BI
Pentaho BI Suite

analysis engine  7
and PDI  7
dashboards  8
data integration  8
data mining  8
Pentaho BI Platform  8
reporting engine  8

Pentaho BI suite integration, with PDI
about  412-415
as datasource  413
as process action  412, 413

Pentaho Data Integration. See  PDI
plug-in

Kettle plug-in  408, 409
primary key (PK)  218
process execution, PDI job

about  305
hop  305
job design, comparing with job transformation  

306
job entry  305
job running, Spoon used  306

puzzles fact table
loading  393

R
RDBMS  222
records  218
regular expressions  44

relational database  218
Relational Database Management System. See  

RDBMS
repository

backing up  424
creating  418-420
details, storing  420
features  417
file-based system benefits  418
jobs in folders, creating  42
Kettle repository  420
logging into  421
logging into, credentials used  422
restoring  424
storage system, working with  421
tasks  423
transformation in folders, creating  423
user accounts, using  422, 423
shortcuts  445

repository-based system
migrating, to file-based system  426, 427

repository explorer
element, creating  425
element, deleting  425
element, opening  425
using, for content examination  424, 425
using, for content modification  424, 425

repository shortcuts
Ctr+D  445
Ctrl+E  445
Ctrl+R  445
Ctrl+U  445

Rhino engine  147
root-job  365
row  50
Row denormalizer

about  173
data, aggregating  176-179
working  173

rows, converting to columns
about  169
data, aggregating  176-179
films file, enhancing  170-172
Row denormalizer step, using  173-176
total scores, calculating  177-179

rows, Stream split
copying  119, 120



[ �6� ]

distributing  120
tasks, assigning  121-124

rowset  51

S
sales datamart

degenerate dimension  370
dimensions  368
dimensions, loading  370
exploring  369
granularity level, determining  370
junk dimension  369
model  376

sales datamart model
about  376, 377
added dimensions  376
added dimensions, loading  378

sales fact table
business keys to surrogate keys, translating  388
information obtaining, SQL queries used   

384-387
loading  378

scaling out  411
scaling up  411
SCD

about 282
Type II SCD  289
Type I SCD  282

SELECT statement
aggregate function  386
Kettle variables, advantages  238
Kettle variables, using  236, 237
Kettle variables, using in queries  238
parameters, adding  235, 236
parameters, using  234, 235
using  232, 233

simple lookups, data
buyers product list, creating  266, 267
database values, looking up  268, 269
performing  266

slave server  410, 424
Slowly Changing Dimensions. See  SCD
sniff-testing feature  449
sorting data  74
split field to rows step  165

Spoon
about  18
files method  19
first transformation, creating  20
jobs, storing  19
launching  16, 17, 18
method, choosing  20
options window preference, setting  18
repository method  19
shortcuts  443
starting  15
transformation, storing  19

Spoon Interface
Design view  26, 306
exploring  26
View perspective  26, 307
transformation structure  26

Spoon shortcuts
Ctrl+Alt+J  443
Ctrl+Alt+N  443
Ctrl+Alt+U  443
Ctrl+F  443
Ctrl+F4  443
Ctrl+J  443
Ctrl+L  443
Ctrl+N  443
Ctrl+O  443
Ctrl+S  443
Ctrl+T  443
F10  443
F11  443
F9  443
of job design  444
of transformation design  444
Shift+F10  443

SQL
about  225
cast function  385
DDL  226
DML  226

star schema  275
Steel Wheels database

about  217, 218
configured database exploring, database  

explorer used  228
connecting, with RDBMS  222, 223
connecting to  219



[ �6� ]

connection, creating  219-221
sample database, exploring  224, 225
SQL  225
tables  218

stream, merging
about  131
PDI options  134, 135
progress, gathering  132-134

Stream lookup step, filtering
using  109, 110
word counting, precisely  111

streams
merging  131
splitting  113
splitting, based on condition  126

Stream split
PDI features, browsing  113
rows, copying  119, 120
rows, distributing  120-124

Stream split, based on condition
PDI, steps  128
task, assigning  128
tasks assignment, Filter rows step used  126, 

127
tasks assignment, Switch/Case step used  129, 

130
Structured Query Language. See  SQL
subtransformation, transformation design

about  345
redefining  347
using  345
working  346, 347
scores, calculating  341-345

Subversion  418
surrogate key  281
system information

data type  58
examination news file, updating  53-56
Get System Info step  57

T
table  218
time dimension  186
transformation

command line arguments, using  314-317
designing, shortcuts  444

running, from repository  430, 431
steps  436
named parameters, using  314-317

transformation, designing
color-coded logs  450
enhanced notes editor  450
job drill-down feature  449
mouse-over assistance   447, 448
mouse-over assistance toolbar, using  448
revamped repository explorer  450
sniff-testing feature  449

transformation, enhancing
variables, setting  335, 336
variables, using  330-335

transformation, running from repository
command line options, specifying  431
steps  430, 431

transformation design, enhancing
example  337-340
job, creating as process flow  348
jobs, nesting  354

transformation iteration. See  job iteration
transformation steps

abort  436
add constants  436
add sequence  436
analytic query step  165
append streams  436
calculator  436
combination lookup/update  436
copy rows to result  436
database join  436
database lookup  436
data Validator  436
delay row  437
delete  437
dimension lookup/update  437
dummy  437
excel input  437
excel output  437
filter rows  437
fixed file input  437
formula  437
generate rows  437
get data from XML  437
get rows from result  438
Get System Info  438



[ �66 ]

Get Variables  438
Group by  438
If field value is null  438
Insert / Update  438
mapping (sub-transformation)  438
mapping input specification  438
mapping output specification  438
Merge Rows (diff)  136
Modified Java Script Value  438
Number range  438
Regex Evaluation  439
Replace in String  82
Row denormaliser  439
RowFlattener  184
Row Normaliser  439
select values  439
Set Variables  439
Sorted Merge  136
Sort rows  439
Split Fields  439
Split field to rows  439
stream lookup  439
Switch / Case  439
table input  439
table output  439
text file input  440
text file output  440
update  440
Unique rows  184, 214
Univariate Statistics  184
User Defined Java Expression  83
Value Mapper  440

trap detector  135
Type II SCD

about  289-291
loading, Dimension lookup/update step used  

291-294
using, to maintain entire history  289-291, 294

Type I SCD
loading, with combination lookup/update step  

282-284
manufactures dimension, loading  284, 285
regions, adding  284

U
Ubuntu

MySQL, installing  32-34
unexpected errors, avoiding

data, cleansing   213
data, validating  206-210
genres field, validating  206, 207

unstructured files
contest files, modifying  165
modifying  164
previous rows, viewing  164
reading  162, 163

user accounts, repository
administrator  422
defining  422, 423
predefined user, admin  423
predefined user, guest  423
read-only  422
user  422

V
variables. See  Kettle variables, XML files 

W
Windows

MySQL, installing  29-31

X
XML

about  67
PDI transformations files  68

XML files
about  62
basic country information, building  62-66
data, obtaining  68
Kettle variables  70



Thank you for buying  
Pentaho �.� Data Integration: 
Beginner's Guide 

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that 
project. Therefore by purchasing Pentaho 3.2 Data Integration: Beginner's Guide, Packt will 
have given some of the money received to the Pentaho Data Integration project.
In the long term, we see ourselves and you—customers and readers of our books—as part of 
the Open Source ecosystem, providing sustainable revenue for the projects we publish on. 
Our aim at Packt is to establish publishing royalties as an essential part of the service and 
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and 
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.  
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.PacktPub.com.



Pentaho Reporting �.� for  
Java Developers 
ISBN: 978-1-847193-19-3             Paperback: 384 pages

Create advanced reports, including cross tabs,  
sub-reports, and charts that connect to practically any 
data source using open source Pentaho Reporting

1. # Create great-looking enterprise reports in 
PDF, Excel, and HTML with Pentaho's Open 
Source Reporting Suite, and integrate report 
generation into your existing Java application 
with minimal hassle

2. Use data source options to develop advanced 
graphs, graphics, cross tabs, and sub-reports

3. Dive deeply into the Pentaho Reporting 
Engine's XML and Java APIs to create  
dynamic reports

Practical Data Analysis and 
Reporting with BIRT
ISBN: 978-1-847191-09-0            Paperback: 312 pages

Use the open-source Eclipse-based Business 
Intelligence and Reporting Tools system to design 
and create reports quickly

1. Get started with BIRT Report Designer

2. Develop the skills to get the most from it

3. Transform raw data into visual and  
interactive content

4. Design, manage, format, and deploy high-
quality reports

Please check www.PacktPub.com for information on our titles



Oracle Warehouse Builder 11g: 
Getting Started
ISBN: 978-1-847195-74-6            Paperback: 368 pages

Extract, Transform, and Load data to build a 
dynamic, operational data warehouse

1. Build a working data warehouse from scratch 
with Oracle Warehouse Builder

2. Cover techniques in Extracting, Transforming, 
and Loading data into your data warehouse

3. Learn about the design of a data warehouse 
by using a multi-dimensional design with an 
underlying relational star schema.

Creating your MySQL Database: 
Practical Design Tips and 
Techniques
ISBN: 978-1-904811-30-5            Paperback: 108 pages

A short guide for everyone on how to structure 
your data and set-up your MySQL database tables 
efficiently and easily

1. How best to collect, name, group, and structure 
your data

2. Design your data with future growth in mind

3. Practical examples from initial ideas to final 
designs 

4. The quickest way to learn how to design good 
data structures for MySQL

Please check www.PacktPub.com for information on our titles




	Cover
	Copyright
	Credits
	Foreword
	The Kettle Project
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting started with Pentaho Data Integration
	Pentaho Data Integration and Pentaho BI Suite
	Exploring the Pentaho Demo

	Pentaho Data Integration
	Using PDI in real world scenarios
	Loading data warehouses or data marts
	Integrating data
	Data cleansing
	Migrating information
	Exporting data
	Integrating PDI using Pentaho BI


	Installing PDI
	Time for action – installing PDI
	Launching the PDI graphical designer: Spoon
	Time for action – starting and customizing Spoon
	Spoon
	Setting preferences in the Options window
	Storing transformations and jobs in a repository

	Creating your first transformation

	Time for action – creating a hello world transformation
	Directing the Kettle engine with transformations
	Exploring the Spoon interface
	Running and previewing the transformation


	Time for action – running and previewing the hello_world 
	transformation 
	Installing MySQL
	Time for action – installing MySQL on Windows
	Time for action – installing MySQL on Ubuntu
	Summary

	Chapter 2: Getting Started with Transformations 
	Reading data from files
	Time for action – reading results of football matches from files
	Input files
	Input steps

	Reading several files at once

	Time for action – reading all your files at a time using a single 
	Text file input step
	Time for action – reading all your files at a time using a single 
	Text file input step and regular expressions
	Regular expressions
	Grids

	Sending data to files
	Time for action – sending the results of matches to a plain file
	Output files
	Output  steps

	Some data definitions
	Rowset
	Streams

	The Select values step

	Getting system information
	Time for action – updating a file with news about examinations
	Getting information by using Get System Info step
	Data types
	Date fields
	Numeric fields

	Running transformations from a terminal window

	Time for action – running the examination transformation from 
	a terminal window
	XML files
	Time for action –  getting data from an XML file with information 
	about countries
	What is XML
	PDI transformation files

	Getting data from XML files
	XPath
	Configuring the Get data from XML step

	Kettle variables
	How and when you can use variables


	Summary

	Chapter 3: Basic data manipulation
	Basic calculations
	Time for action – reviewing examinations by using the 
	Calculator step
	Adding or modifying fields by using different PDI steps
	The Calculator step
	The Formula step


	Time for action – reviewing examinations by using the 
	Formula step
	Calculations on groups of rows
	Time for action – calculating World Cup statistics by 
	grouping data
	Group by step

	Filtering
	Time for action – counting frequent words by filtering
	Filtering rows using the Filter rows step

	Looking up data
	Time for action – finding out which language people speak 
	The Stream lookup step

	Summary

	Chapter 4: Controlling the Flow of Data
	Splitting streams
	Time for action – browsing new PDI features by copying
	a dataset
	Copying rows
	Distributing rows

	Time for action – assigning tasks by distributing
	Splitting the stream based on conditions
	Time for action – assigning tasks by filtering priorities with the 
	Filter rows step
	PDI steps for splitting the stream based on conditions

	Time for action – assigning tasks by filtering priorities with the 
	Switch/ Case step
	Merging streams
	Time for action – gathering progress and merging all together
	PDI options for merging streams

	Time for action – giving priority to Bouchard by using 
	Append Stream
	Summary

	Chapter 5: Transforming Your Data with JavaScript Code and the JavaScript Step
	Doing simple tasks with the JavaScript step
	Time for action – calculating scores with JavaScript
	Using the JavaScript language in PDI
	Inserting JavaScript code using the Modified Java Script Value step
	Adding fields
	Modifying fields
	Turning on the compatibility switch

	Testing your code

	Time for action – testing the calculation of averages
	Testing the script using the Test script button

	Enriching the code
	Time for action – calculating flexible scores by using variables
	Using named parameters
	Using the special Start, Main, and End scripts
	Using transformation predefined constants

	Reading and parsing unstructured files
	Time for action – changing a list of house descriptions with 
	JavaScript
	Looking at previous rows

	Avoiding coding by using purpose-built steps
	Summary

	Chapter 6: Transforming the Row Set
	Converting rows to columns
	Time for action – enhancing a films file by converting 
	rows to columns
	Converting row data to column data by using the Row denormalizer step
	Aggregating data with a Row denormalizer step

	Time for action – calculating total scores by performances 
	by country
	Using Row denormalizer for aggregating data

	Normalizing data
	Time for action – enhancing the matches file by normalizing 
	the dataset
	Modifying the dataset with a Row Normalizer step
	Summarizing the PDI steps that operate on sets of rows

	Generating a custom time dimension dataset by using Kettle variables
	Time for action – creating the time dimension dataset
	Getting variables

	Time for action – getting variables for setting the default 
	starting date
	Using the Get Variables step

	Summary

	Chapter 7: Validating Data and Handling Errors
	Capturing errors
	Time for action – capturing errors while calculating the age
	of a film
	Using PDI error handling functionality
	Aborting a transformation

	Time for action – aborting when there are too many errors
	Aborting a transformation using the Abort step
	Fixing captured errors

	Time for action – treating errors that may appear
	Treating rows coming to the error stream

	Avoiding unexpected errors by validating data
	Time for action – validating genres with a Regex Evaluation step
	Validating data

	Time for action – checking films file with the Data Validator
	Defining simple validation rules using the Data Validator
	Cleansing data

	Summary

	Chapter 8: Working with Databases
	Introducing the Steel Wheels sample database 
	Connecting to the Steel Wheels database

	Time for action – creating a connection with the Steel Wheels 
	database
	Connecting with Relational Database Management Systems
	Exploring the Steel Wheels database

	Time for action – exploring the sample database
	A brief word about SQL
	Exploring any configured database with the PDI Database explorer


	Querying a database
	Time for action – getting data about shipped orders
	Getting data from the database with the Table input step
	Using the SELECT statement for generating a new dataset
	Making flexible queries by using parameters


	Time for action – getting orders in a range of dates  by using 
	parameters 
	Making flexible queries by using Kettle variables

	Time for action – getting orders in a range of dates by using 
	variables
	Sending data to a database
	Time for action – loading a table with a list of manufacturers
	Inserting new data into a database table with the Table output step
	Inserting or updating data by using other PDI steps

	Time for action – inserting new products or updating 
	existent ones
	Time for action – testing the update of existing products
	Inserting or updating data with the Insert/Update step

	Eliminating data from a database
	Time for action – deleting data about discontinued items
	Deleting records of a database table with the Delete step

	Summary

	Chapter 9: Performing Advanced Operations with Databases
	Preparing the environment
	Time for action – populating the Jigsaw database
	Exploring the Jigsaw database model

	Looking up data in a database
	Doing simple lookups

	Time for action – using a Database lookup step to create a list 
	of products to buy
	Looking up values in a database with the Database lookup step
	Doing complex lookups

	Time for action – using a Database join step to create a list of
	suggested products to buy
	Joining data from the database to the stream data by using a Database join step

	Introducing dimensional modeling
	Loading dimensions with data
	Time for action – loading a region dimension with a 
	Combination lookup/update step
	Time for action – testing the transformation that loads the 
	region dimension
	Describing data with dimensions
	Loading Type I SCD with a Combination lookup/update step

	Keeping a history of changes

	Time for action – keeping a history of product changes with the 
	Dimension lookup/update step
	Time for action – testing the transformation that keeps a history
	of product changes
	Keeping an entire history of data with a Type II slowly changing dimension
	Loading Type II SCDs with the Dimension lookup/update step

	Summary

	Chapter 10: Creating Basic Task Flows
	Introducing PDI jobs
	Time for action – creating a simple hello world job
	Executing processes with PDI jobs
	Using Spoon to design and run jobs

	Using the transformation job entry

	Receiving arguments and parameters in a job
	Time for action – customizing the hello world file with 
	arguments and parameters
	Using named parameters in jobs

	Running jobs from a terminal window
	Time for action – executing the hello world job from a terminal
	window
	Using named parameters and command-line arguments in transformations
	Time for action – calling the hello world transformation with 
	fixed arguments and parameters
	Deciding between the use of a command-line argument and a named parameter
	Running job entries under conditions
	Time for action – sending a sales report and warning the 
	administrator if something is wrong
	Changing the flow of execution on the basis of conditions
	Creating and using a file results list

	Summary

	Chapter 11: Creating Advanced Transformations and Jobs
	Enhancing your processes with the use of variables
	Time for action – updating a file with news about examinations 
	by setting a variable with the name of the file
	Setting variables inside a transformation

	Enhancing the design of your processes
	Time for action – generating files with top scores
	Reusing part of your transformations

	Time for action – calculating the top scores with a 
	subtransformation
	Creating and using subtransformations
	Creating a job as a process flow

	Time for action – splitting the generation of top scores by 
	copying and getting rows
	Transferring data between transformations by using the copy /get rows mechanism 
	Nesting jobs

	Time for action – generating the files with top scores by 
	nesting jobs
	Running a job inside another job with a job entry
	Understanding the scope of variables


	Iterating jobs and transformations
	Time for action – generating custom files by executing a 
	transformation for every input row
	Executing for each row

	Summary

	Chapter 12: Developing and Implementing a Simple Datamart
	Exploring the sales datamart
	Deciding the level of granularity

	Loading the dimensions
	Time for action – loading dimensions for the sales datamart
	Extending the sales datamart model
	Loading a fact table with aggregated data
	Time for action – loading the sales fact table by looking up 
	dimensions
	Getting the information from the source with SQL queries
	Translating the business keys into surrogate keys
	Obtaining the surrogate key for a Type I SCD
	Obtaining the surrogate key for a Type II SCD
	Obtaining the surrogate key for the Junk dimension
	Obtaining the surrogate key for the Time dimension


	Getting facts and dimensions together
	Time for action – loading the fact table using a range of dates 
	obtained from the command line
	Time for action – loading the sales star
	Getting rid of administrative tasks
	Time for action – automating the loading of the sales datamart
	Summary

	Chapter 13: Taking it Further
	PDI best practices
	Getting the most out of PDI
	Extending Kettle with plugins
	Overcoming real world risks with some remote execution
	Scaling out to overcome bigger risks

	Integrating PDI and the Pentaho BI suite
	PDI as a process action
	PDI as a datasource
	More about the Pentaho suite

	PDI Enterprise Edition and Kettle Developer Support
	Summary

	Appendix A: Working with Repositories
	Creating a repository
	Time for action – creating a PDI repository
	Creating repositories to store your transformations and jobs

	Working with the repository storage system
	Time for action – logging into a repository
	Logging into a repository by using credentials
	Defining repository user accounts

	Creating transformations and jobs in repository folders
	Creating database connections, partitions, servers, and clusters
	Backing up and restoring a repository

	Examining and modifying the contents of a repository with the Repository explorer
	Migrating from a file-based system to a repository-based system and vice-versa
	Summary

	Appendix B: Pan and Kitchen: Launching Transformations and Jobs from the Command Line
	Running transformations and jobs stored in files
	Running transformations and jobs from a repository
	Specifying command line options

	Checking the exit code
	Providing options when running Pan and Kitchen
	Log details
	Named parameters
	Arguments
	Variables


	Appendix C: Quick Reference: Steps and Job Entries
	Transformation steps
	Job entries

	Appendix D: Spoon Shortcuts
	General shortcuts
	Designing transformations and jobs
	Grids
	Repositories

	Appendix E: Introducing PDI 4 Features
	Agile BI
	Visual improvements for designing transformations and jobs
	Experiencing the mouse-over assistance

	Time for action – creating a hop with the mouse-over assistance
	Using the mouse-over assistance toolbar
	Experiencing the sniff-testing feature
	Experiencing the job drill-down feature
	Experiencing even more visual changes

	Enterprise features
	Summary

	Appendix F: Pop Quiz Answers
	Chapter 1
	PDI data sources
	PDI prerequisites
	PDI basics

	Chapter 2
	formatting data

	Chapter 3
	concatenating strings

	Chapter 4
	data movement (copying and distributing)
	splitting a stream

	Chapter 5
	finding the seven errors

	Chapter 6
	using Kettle variables inside transformations

	Chapter 7
	PDI error handling

	Chapter 8
	defining database connections
	database datatypes vs PDI datatypes
	Insert/Update step versus Table Output/Update steps
	filtering the first 10 rows

	Chapter 9
	loading slowly changing dimensions
	loading type III slowly changing dimensions 

	Chapter 10
	defining PDI jobs

	Chapter 11
	using the Add sequence step
	deciding the scope of variables

	Chapter 12
	modifying a star model and loading the star with PDI

	Chapter 13
	remote execution and clustering


	Index



