
PowerPlant X 1.0
Developer’s Guide

 Revised 2003/08/13

Metrowerks, the Metrowerks logo, and CodeWarrior are registered trademarks of Metrowerks Corp. in the US and/or
other countries. All other tradenames and trademarks are the property of their respective owners.

Copyright © Metrowerks Corporation. 2003. ALL RIGHTS RESERVED.

The reproduction and use of this document and related materials are governed by a license agreement media,
it may be printed for non-commercial personal use only, in accordance with the license agreement related to the
product associated with the documentation. Consult that license agreement before use or reproduction of any
portion of this document. If you do not have a copy of the license agreement, contact your Metrowerks repre-
sentative or call 800-377-5416 (if outside the US call +1-512-996-5300). Subject to the foregoing non-commercial
personal use, no portion of this documentation may be reproduced or transmitted in any form or by any means,
electronic or mechanical, without prior written permission from Metrowerks.

Metrowerks reserves the right to make changes to any product described or referred to in this document without further
notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod-
ucts for any particular purpose, nor does Metrowerks assume any liability arising out of the application or use of any
product described herein and specifically disclaims any and all liability. Metrowerks software is not authorized for
and has not been designed, tested, manufactured, or intended for use in developing applications where the fail-
ure, malfunction, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage
to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities,
nuclear facilities, aircraft navigation or communication, emergency systems, or other applications with a simi-
lar degree of potential hazard.

USE OF ALL SOFTWARE, DOCUMENTATION AND RELATED MATERIALS ARE SUBJECT TO THE
METROWERKS END USER LICENSE AGREEMENT FOR SUCH PRODUCT.

How to Contact Metrowerks

Corporate Headquarters Metrowerks Corporation
7700 West Parmer Lane
Austin, TX 78729
U.S.A.

World Wide Web http://www.metrowerks.com

Sales Voice: 800-377-5416
Fax: 512-996-4910
Email: sales@metrowerks.com

Technical Support Voice: 800-377-5416
Email: support@metrowerks.com

http://www.metrowerks.com

Table of Contents

1 Introduction 7
Before You Begin . . 7

How to Use This Book . . 7

Using Other Documentation . . 8

Conventions Used In This Book . 9

2 PowerPlant X Overview 11
Design Principles . 11

Small Classes Give Big Flexibility and Power. 11

Mac OS X, Mach-O, Carbon, and HIToolbox 12

Standard C++ Library . 13

Naming Conventions. 13

Namespaces . 13

Files, Classes, and Structures . 14

Function Names . 14

Variable and Argument Names 15

Data Type and Template Names 15

Macro and Constant Names . 15

Mac OS Interfaces. 16

System Wrappers . 16

Referring to Mac OS Interfaces 16

3 Converting Interface Builder Files 19
Using the Converter . 19

Adding Converted Files to Your Project 20

Adding Data Files . 20

Adding Header and Source Code Files 21

Constructing Windows Generated by the View Converter 21

4 Views and Controls 23
View Characteristics . 23
3PowerPlant X 1.0 Developer’s Guide

Table of Contents
Controls are Subclasses of View 23

Class View Uses HIToolbox. 24

The Superview and Subviews . 24

Views Receive and Act on Events 24

Views are Persistent . 24

Views May Be Manipulated . 25

View Construction Requirements. 25

Constructing Views and Controls . 25

Deleting Views . 26

Manipulating Controls . 26

Hiding and Showing Controls . 26

Enabling and Disabling Controls 27

Examining and Changing a View’s Value 27

Responding to User Interaction 28

Managing Hierarchical Views . 28

Changing a View Hierarchy . 29

Resizing Views. 29

Creating Custom Views . 30

Choosing Which Events to Handle 31

Customizing Views With Inheritance 31

Customizing Views With Attachments 33

Windows 39
Window Characteristics . 39

Windows and Views . 39

Window Construction Requirements 39

Common Window Tasks . 40

Constructing Windows . 40

Closing Windows . 41

When to Close a Window. 42

Customizing a Window’s Close Behavior 43

Adding Subviews to Windows . 44

Customizing Window Behavior . 45
4 PowerPlant X 1.0 Developer’s Guide

Table of Contents
Applications 47
Application Characteristics . 47

Handling Custom Commands . 47

Launching . 49

Quitting . 51

Utility and Operating System Classes 53
Testing and Debugging . 53

Verifying With Signals . 53

Controlling Signals . 54

Exception and Error Handling . 55

Throwing Exceptions . 55

Controlling Exception Behavior 56

Exception Classes. 57

Getting Location Information . 58

Character Strings . 58

System Wrappers . 59

Index 61
5PowerPlant X 1.0 Developer’s Guide

Table of Contents
6 PowerPlant X 1.0 Developer’s Guide

1
Introduction

Mac OS X is an impressive operating system. It is responsive, stable, and offers a rich
variety of sophisticated and intuitive managers and services to interact with the user.

Designing and developing an application for Mac OS X is not easy, however. To be
successful and effective, an application must carefully handle countless details.
Consequently, you, the application’s developer, must also work hard. Thankfully, the
PowerPlant X framework solves many of the problems you normally handle during
development.

PowerPlant X is an application framework written in C++. It uses the Carbon
interfaces in Mac OS X to provide significant parts of an application for you. The
PowerPlant X framework is simple and flexible to use, but powerful and expressive.
Let the PowerPlant X framework handle the details while you concentrate on the
bigger, more interesting issues.

Before You Begin
Before you begin reading this book, you should be familiar with some topics that this
book does not cover:

• Mac OS X software development, including the Carbon layer and HIToolbox
features

• the C++ programming language, including the Metrowerks CodeWarrior C/C++
compilers and other tools for Mac OS X software development

• the CodeWarrior Integrated Development Environment (IDE)

How to Use This Book
To learn why you should take advantage of the PowerPlant X framework, read this
chapter and “PowerPlant X Overview.” These chapters introduce the PowerPlant X
framework. They describe the framework’s design, its conventions, and other
information that you will find helpful while using the PowerPlant X framework.
7PowerPlant X 1.0 Developer’s Guide

Introduction
Using Other Documentation
After reading these general chapters, pick and choose among the remaining chapters to
learn about specific parts of the framework. Each of these chapters introduces a small
part of the framework, how it works, and how to use it in your application.

These chapters illustrate how to use the PowerPlant X framework with source code
listings. Many of these listings are taken from the example projects for the
PowerPlant X framework. To examine and try out these projects, go to this folder

Metrowerks Folder/(CodeWarrior Examples)/Mac OS X Examples/
PowerPlant X/

where Metrowerks Folder is the folder where you installed your CodeWarrior software
and documentation for Mac OS X.

Using Other Documentation
Table 1.1 list other CodeWarrior documentation that is related to this guide.

Table 1.2 lists the documentation for Mac OS X application programming interfaces
(APIs) that the PowerPlant X framework uses. Apple Computer, Inc. publishes this
documentation at

http://developer.apple.com.

Table 1.1 Related CodeWarrior documentation

To learn about... refer to this documentation

using CodeWarrior tools and libraries to develop
Mac OS software

Targeting Mac OS

CodeWarrior C/C++ compilers C Compilers Reference

the CodeWarrior IDE IDE User Guide

the Metrowerks Standard Library for C++ (MSL
C++)

MSL C++ Reference

Table 1.2 Related Mac OS documentation

To learn about... refer to this documentation

Mac OS X in general Mac OS X: An Overview for Developers

user interface conventions for Mac OS X
applications

Aqua Human Interface Guidelines
8 PowerPlant X 1.0 Developer’s Guide

Introduction
Conventions Used In This Book
Conventions Used In This Book
Table 1.3 lists the typographical formats that this book uses to denote types of
information.

HIToolbox, the object-oriented system on
which Mac OS X bases its user interface

Introducing HIView
HIObject Reference
HIView Reference

the Carbon Event manager Handling Carbon Events
Carbon Event Manager Reference

the File manager File Manager Reference

Navigation Services Navigation Services for Carbon: An Overview
Programming With Navigation Services

the Apple Event manager Apple Event Manager Reference

Bundles and property lists Bundles
Property Lists

Table 1.3 Typographical conventions

Information Examples

items that appear in source code, including class
names, variable names, and literal values

PPx::Window
apples != oranges
"untitled"

file names CustomViews.mcp
cassert

Internet addresses http://www.metrowerks.com

items that appear on the screen, including menu
commands, labels for controls, and window titles

the File menu’s Close command
Preferences window

new expressions or terminology We call an object persistent if it is able
to save its state in a permanent place,
typically a file, so that it may be
perfectly restored later.

placeholders for other values newtitle is the new name for the object

titles of books CodeWarrior IDE User Guide

Table 1.2 Related Mac OS documentation (continued)

To learn about... refer to this documentation
9PowerPlant X 1.0 Developer’s Guide

Introduction
Conventions Used In This Book
10 PowerPlant X 1.0 Developer’s Guide

2
PowerPlant X Overview

The PowerPlant X framework gets its elegance, flexibility, and power from its strong
design and implementation. Read this chapter to introduce yourself to the
PowerPlant X design and implementation.

• Design Principles

• Naming Conventions

• Mac OS Interfaces

Design Principles
The PowerPlant X framework follows a few principles in its design and takes
advantage of some Mac OS and Standard C++ technologies in its implementation:

• Small Classes Give Big Flexibility and Power

• Mac OS X, Mach-O, Carbon, and HIToolbox

• Standard C++ Library

Small Classes Give Big Flexibility and
Power
PowerPlant X classes are small, independent, and focused on a single purpose or task.
PowerPlant X framework gets its power, simplicity, and flexibility by encouraging
you to choose and combine only the classes you need to solve your programming
problems rather than relying on overburdened classes with unused members.

For example, the PowerPlant X Window class encapsulates a Mac OS window. The
Window class creates and removes a window on the screen. It also offers member
functions to hide and show the window, and to retrieve and change its title.

By itself, such a class would only be a convenient set of function wrappers for a few
Mac OS system calls. But the PowerPlant X Window class inherits from the
EventTarget, Attachable, and WindowCloserDoer classes, too (Listing 2.1).
11PowerPlant X 1.0 Developer’s Guide

PowerPlant X Overview
Design Principles
Listing 2.1 From class Window’s declaration

class Window:
 public Attachable, // Add and remove Attachment objects.
 public EventTarget, // Receive and handle events.
 public WindowCloseDoer // Handle window-closing behavior.
{
 // ...
};

Inheriting from class Attachable allows you to add objects derived from class
Attachment to a Window object. By adding and removing Attachment objects, you
gain the ability to customize an Attachable object’s behavior at runtime instead of
customizing it through inheritance.

By inheriting from class EventTarget, Window objects become capable of receiving
events from the Carbon Event manager. Also, class EventTarget, in turn, inherits
from class Persist, which declares functions for saving and reconstructing an object
from an external source, such as a file.

Class WindowCloseDoer handles the Window object’s behavior when the window
closes. WindowCloseDoer, in turn, inherits from SpecificEventDoer, a class for
handling a precise Carbon Event. The PowerPlant X framework declares a subclass of
SpecificEventDoer for each kind of event that the Carbon Event manager
generates. A class gains tremendous power by inheriting from EventTarget and any
number of subclasses of SpecificEventDoer, without becoming difficult to
implement or modify.

By inheriting from just 3 classes, a subclass becomes a sophisticated interface that is
simple to implement and use.

Mac OS X, Mach-O, Carbon, and HIToolbox
The PowerPlant X framework takes advantage of the great, new technologies that
Mac OS X introduces. PowerPlant X applications use the Mach-O executable format,
the native format for Mac OS X applications.

PowerPlant X classes use the Carbon interfaces to interact with Mac OS managers and
services. The PowerPlant X classes use the Mac OS HIToolbox object system to
implement user interface views and controls.
12 PowerPlant X 1.0 Developer’s Guide

PowerPlant X Overview
Naming Conventions
Standard C++ Library
To manage its internal data structures, the PowerPlant X framework relies on the
stability and flexibility of the ISO Standard C++ Library’s container classes and other
utilities.

Items in the ISO Standard C++ Library are in the std namespace.

Naming Conventions
• Namespaces

• Files, Classes, and Structures

• Function Names

• Variable and Argument Names

• Data Type and Template Names

• Macro and Constant Names

Namespaces
The PowerPlant X header and source code files use C++ namespaces to organize its
classes.

The top PowerPlant X namespace is the PPx namespace. All PowerPlant X classes,
templates, functions, and global variables are declared and defined in this namespace.
(Preprocessor macros are defined outside of C++ namespaces.)

Listing 2.2 shows examples of using this namespace.

Listing 2.2 Using the PowerPlant X namespace

void BeginProgram()
{
 PPx::RegisterCommonXMLDecoders(); // 1
 PPx::RegisterCommonXMLEncoders(); // 2

 PPx_RegisterPersistent_(PPx::Window); // 3
 PPx_RegisterPersistent_(PPx::WindowContentView); // 4
 PPx_RegisterPersistent_(PPx::BindingsFrameAdapter); // 5
}

Items 1 and 2 call functions in the PPx namespace.
13PowerPlant X 1.0 Developer’s Guide

PowerPlant X Overview
Naming Conventions
Items 3, 4, and 5 combine preprocessor macro calls (PPx_RegisterPersistent_)
with names of classes in the PPx namespace (Window, WindowContentView, and
BindingsFrameAdapter).

The PowerPlant X source files often use unnamed namespaces to restrict the scope of
the items in the unnamed namespace to the file that they appear in.

Files, Classes, and Structures
The names of source code files end with .cp. The names of header files end with .h.
PowerPlant X files have names that begin with PPx. Some files contain classes,
functions, and structures to simplify the Mac OS interfaces. The names of these files
begin with Sys.

Examples:

PPxView.h

PPxView.cpp

SysCFData.h

SysCFData.cp

Class and structure names begin with an uppercase letter. Classes and structures that
encapsulate Mac OS functions and data structures begin with Sys.

Examples:

View

DataFork

SysAEHandler

Function Names
PowerPlant X functions and member functions begin with an uppercase letter.
Function names are usually verbs.

Examples:

SetMenuCommandStatus()

RegisterCommonXMLDecoders()

Member functions that retrieve and change values in an object begin with Get and
Set, respectively. Member functions that retrieve a logical state of an object begin
with Is or Has. Examples:
14 PowerPlant X 1.0 Developer’s Guide

PowerPlant X Overview
Naming Conventions
GetClassName()

SetBindings()

Variable and Argument Names
Variable names begin with a lowercase letter. Variable members in a class begin with
a lowercase m followed by an uppercase letter. Variable members in a structure do not
begin with m. Class variables, variables declared with static in the class declaration,
begin with an s followed by an uppercase letter. Examples:

mSubViews

sRootObject

Function argument names begin with in, out, or io to indicate input, output, and
input/output values, respectively. Examples:

inPreviousState

outResult

ioCurrentName

Data Type and Template Names
Type names begin with an uppercase letter. Examples:

ObjectMapT

BaseT

Enumeration type names begin with an uppercase E. Examples:

EMetaTarget

ESockState

Template parameter types begin with an uppercase T. Template parameters specified
with class should be a class type. Template parameters specified with typename
may be any type. Examples:

TEventClass

TEventKind

Macro and Constant Names
Macro names begin with PPx_.
15PowerPlant X 1.0 Developer’s Guide

PowerPlant X Overview
Mac OS Interfaces
Macros that are used like functions use the same naming convention as functions, but
begin with PPx_ and end with _. Macro arguments follow the same naming
conventions as the items they represent. Examples:

PPX_Version

#define PPx_Throw_(ExceptionClass, inWhat, inWhy)

Macros that are used to control conditional compilation use underscores to separate
words. Examples:

PPx_Debug_Exceptions

PPx_Debug_Signals

Constant names begin with a description of the constant’s data type, which begins with
a lowercase letter, followed by an underscore, followed by a description of the
constant, which begins with an uppercase letter. Examples:

err_BadParam

dataValue_True

If the constant represents the ID of a resource, the name begins with the resource type.
Examples:

MBAR_Main

ALRT_Exception

Mac OS Interfaces
• System Wrappers

• Referring to Mac OS Interfaces

System Wrappers
The PowerPlant X framework offers several wrapper classes that simplify your
application’s interaction with Mac OS. For example, the PowerPlant X
SysAppleEvent class encapsulates the Mac OS AppleEvent data structure, making
it easier to create and manipulate. For more information, see “System Wrappers.”

Referring to Mac OS Interfaces
Mac OS interfaces are in the global namespace. To refer to a Mac OS function, data
type, structure or other item, make sure the name of the item has a “::” prefix. Listing
2.3 shows an example.
16 PowerPlant X 1.0 Developer’s Guide

PowerPlant X Overview
Mac OS Interfaces
Listing 2.3 Using Mac OS interfaces with “::”

void MyLoadMenuBar()
{
 MenuBarHandle mbar = ::GetNewMBar(128);
}

17PowerPlant X 1.0 Developer’s Guide

PowerPlant X Overview
Mac OS Interfaces
18 PowerPlant X 1.0 Developer’s Guide

3
Converting Interface
Builder Files

The PowerPlant X View Converter application converts .nib files into PowerPlant X
source code and data files. With the view converter, you can import user interface
layouts that you create with Apple Computer’s Interface Builder application into your
PowerPlant X application. This chapter shows you how to use this tool.

• Using the Converter

• Adding Converted Files to Your Project

• Constructing Windows Generated by the View Converter

Using the Converter
The PowerPlant X View Converter application converts Carbon window layouts in
.nib files into PowerPlant X data and source code files.

To convert a .nib file into PowerPlant X data and source code files, follow these
steps:

1. Drag and drop the .nib file onto this application:

Metrowerks Folder/Other Metrowerks Tools/PPxViewConverter

where Metrowerks Folder is the name of the folder where you have installed the
CodeWarrior tools.

2. In the window that appears, select the items in the .nib file that you want to
convert to PowerPlant X files by clicking their checkboxes in the Use column

3. To change the name of the C++ class that the view converter creates for a window
layout, click its name in the Class Name column to type the new class name.

The new class name must be a valid C++ class name. In other words, the name
must begin with an alphabetic character or underscore, followed by alphanumeric
and underscore characters.
19PowerPlant X 1.0 Developer’s Guide

Converting Interface Builder Files
Adding Converted Files to Your Project
4. Click Convert to XML.

For each window in the .nib file, the view converter creates a new PowerPlant X
class that is a subclass of Window. Each new class contains data members for the
subviews within the window.

The view converter stores the information for these new classes in source code and
data files:

• a header file (.h) declares a new subclass of the PowerPlant X Window class

• a source code file (.cp) defines the functions of the new Window subclass

• a data file (.pobj) contains the layout information of the new Window subclass

The view converter stores these files in the same folder as the .nib file they were
converted from. The new files are in a new subfolder.

Adding Converted Files to Your Project
After converting a .nib file to PowerPlant X files, you are ready to add the
PowerPlant X files to your project:

• Adding Data Files

• Adding Header and Source Code Files

Adding Data Files
To add the converted .pobj files to your project, follow these steps.

1. In the CodeWarrior IDE, open the project for your PowerPlant X application.

2. In the project window, click the Package tab to see the hierarchy of folders for the
application’s bundle.

3. Place .pobj files that apply to all regions in this folder in the project window:

ApplicationName.app
 Contents
 Resources

where ApplicationName is the name of your application.

4. Place region-specific .pobj files to the appropriate package folder in the project
window:

ApplicationName.app
 Contents
20 PowerPlant X 1.0 Developer’s Guide

Converting Interface Builder Files
Constructing Windows Generated by the View Converter
 Resources
 RegionName.lproj

where ApplicationName is the name of your application and RegionName is the
name of region.

Adding Header and Source Code Files
To add the converted .h and .cp files to your project, follow these steps.

1. In the CodeWarrior IDE, open the project for your PowerPlant X application.

2. In the project window, click the Files tab to see the hierarchy of folders for the
application’s bundle.

3. Add the new .h and .cp files in the project window.

Constructing Windows Generated by the
View Converter

After adding the converted files to your project, you are ready to refer to them in your
PowerPlant X application’s source code. To use the new classes, you must first
register them with the PowerPlant X persistence mechanism before instantiating them.

 Listing 3.1 shows an example that registers some converted classes with the
PowerPlant X persistence mechanism.

Listing 3.1 Registering Converted Window Classes

// Include the files generated by the PowerPlant X view converter.
#include "MyDocumentWindow.h"
#include "MyProgressWindow.h"

void MyRegisterConvertedWindows()
{
 PPx_RegisterPersistent_(MyDocumentWindow);
 PPx_RegisterPersistent_(MyProgressWindow);
}

MyRegisterConvertedWindows() registers window classes named
MyDocumentWindow and MyProgressWindow. Call this function before
instantiating one of these classes, typically at application startup.
21PowerPlant X 1.0 Developer’s Guide

Converting Interface Builder Files
Constructing Windows Generated by the View Converter
Listing 3.2 shows an example that instantiates a converted window class.

Listing 3.2 Instantiating a Converted Window Class

MyDocumentWindow* MyCreateDocWindow()
{
 // Create a window safely.
 std::auto_ptr < MyDocumentWindow > safewind =
 PPx::XMLSerializer::ResourceToObjects < MyDocumentWindow > (
 CFSTR("MyDocumentWindow"));

 // Window was successfully created, so we no longer need the auto_ptr.
 MyDocumentWindow* wind = safewind.release();

 // Make the new window visible.
 wind->Show();

 return wind;
}

MyCreateDocWindow() uses the automatic pointer class in the ISO Standard C++
Library to ensure exception safety. It calls the XMLSerializer class’s
ResourceToObjects() function to create a MyDocumentWindow object.
ResourceToObjects() creates the object by reading the contents of the
MyDocumentWindow.pobj file in the application’s bundle, which was generated by
the view converter application.
22 PowerPlant X 1.0 Developer’s Guide

4
Views and Controls

The View class manages user interface items that appear in a window. For example,
the most frequently-used subclasses of View manage Mac OS X controls, such as
radio buttons, image wells, scroll bars, and so on.

This chapter describes the View class’s properties and capabilities:

• View Characteristics

• Constructing Views and Controls

• Deleting Views

• Manipulating Controls

• Managing Hierarchical Views

• Creating Custom Views

View Characteristics
Class View and its subclasses implement the user interface elements that appear in a
window and interact with the user:

• Controls are Subclasses of View

• Class View Uses HIToolbox

• The Superview and Subviews

• Views Receive and Act on Events

• Views are Persistent

• Views May Be Manipulated

• View Construction Requirements

Controls are Subclasses of View
Class View is an abstract class. This class implements the default behaviors that are
common to all views. The PowerPlant X framework also implements subclasses of
23PowerPlant X 1.0 Developer’s Guide

Views and Controls
View Characteristics
View for each kind of Mac OS control. To create your own custom views and controls,
the framework offers class BaseView. BaseView is a concrete subclass of class
View.

Class View Uses HIToolbox
The PowerPlant X framework uses the Mac OS HIToolbox object system to manage
the parts of a View object that interact with the operating system. Because it is based
on HIViewRef, PowerPlant X classes use the HIPoint, HIRect, and HISize data
types to specify coordinates and dimensions when manipulating objects derived from
class View.

The Superview and Subviews
A view has a superview and may contain subviews. The PowerPlant X framework
offers powerful features for managing this hierarchy:

• A view may add itself to a superview and a superview may remove some or all of
its subviews.

• A view’s visibility and whether or not is enabled are dominated by its superview;
when a view becomes invisible or disabled, its superviews also become invisible
or disabled, respectively.

• When a view’s superview changes dimensions, it automatically resizes its
subviews.

“Managing Hierarchical Views” describes the member functions that perform these
tasks.

Views Receive and Act on Events
Because they inherit from EventTarget, view objects can handle commands and
Carbon Events. View objects are also attachable, allowing them to be customized at
runtime.

Views are Persistent
Inheriting from EventTarget also allows objects derived from View to be persistent.
24 PowerPlant X 1.0 Developer’s Guide

Views and Controls
Constructing Views and Controls
Views May Be Manipulated
Views may be shown, hidden, activated, deactivated, enabled, and disabled. Some
subclasses of views, for example, views that implement Mac OS controls, may also
have their values changed and retrieved.

“Manipulating Controls” describes the member functions that perform these tasks.

View Construction Requirements
Like other PowerPlant X classes that are capable of persistence, classes you derive
from View must meet these requirements to be properly constructed:

• a default constructor

• override the InitState(), Initialize(), and FinishInit() functions

Override the InitState() function to initialize data members from persistent
external data that superclasses of your View subclass do not read. Your
InitState() function should call the InitState() function of your class’s
immediate superclass.

Override Initialize() to initialize data from function arguments. Your
Initialize() function should call the Initialize() function of your class’s
immediate superclass.

Override FinishInit() to complete any initialization your object needs that is
common to both persistent and regular construction. In other words, FinishInit()
allows you to avoid redundant initialization tasks shared by InitState() and
Initialize().

“Creating Custom Views” shows you how to use this style of object construction.

Constructing Views and Controls
To instantiate a control and place it in a superview, use the CreateView() function.
Listing 4.1 shows an example.

Listing 4.1 Creating a control

void MyAddLabel(
 PPx::View* inSuperView,
 CFStringRef inText,
 const HIRect& inFrame)
{

25PowerPlant X 1.0 Developer’s Guide

Views and Controls
Deleting Views
 PPx::StaticText* label = PPx::CreateView < PPx::StaticText > (
 inSuperView,
 inFrame,
 PPx::visible_Yes,
 PPx::enabled_Yes,
 inText,
 nil);
}

The CreateView() function instantiates a new view object on the heap, adds it to a
superview, configures its appearance and state, then calls its Initialize() and
FinishInit() functions.

To place a View object in a window’s content are, call the window’s
GetContentView() function. Use the result of this function as the superview
argument when calling the CreateView() function.

Deleting Views
To remove the view from its superview without destroying it, call the view’s
RemoveFromSuperView().

To destroy a view, including removing it from its superview, use the delete operator.
The View class’s destructor destroys its subviews recursively, then removes itself
from its superview.

Manipulating Controls
The View class provides functions that directly manipulate the HIView object that a
View object contains:

• Hiding and Showing Controls

• Enabling and Disabling Controls

• Examining and Changing a View’s Value

• Responding to User Interaction

Hiding and Showing Controls
To show or hide a view, call the SetVisible() function. To check to see if a view is
visible, call its IsVisible() function.
26 PowerPlant X 1.0 Developer’s Guide

Views and Controls
Manipulating Controls
A view retains the status of its visibility even when its superview’s visibility changes.
When a superview becomes invisible, all of its visible subviews also become invisible.
When a superview is made visible, any of its previously-visible subviews become
visible again. Subviews that were previously invisible remain invisible.

Enabling and Disabling Controls
To enable and disable a view, call the SetEnabled() function. To check to see if a
view is enabled, call its IsEnabled() function.

Like its visibility, a subview retains its enabled status when its superview’s enabled
state changes. For example, when a superview becomes disabled, its subviews retain
their status even though they are also disabled. When the superview later becomes
enabled, its subviews that were previously enabled become enabled again and its
subviews that were previously disabled remain disabled.

Examining and Changing a View’s Value
Table 4.1 lists the member functions in the View class that manipulate a view’s value.
Many Mac OS user interface controls use the value to specify the control’s appearance
and behavior. For example class Slider provides a Mac OS slider control. The
control’s minimum and maximum specify the slider control’s range. The control’s
value specifies the position of the slider’s thumb.

Table 4.1 Examining and changing a control’s value

To do this... call this member function

change the control’s value SetValue()

retrieve the control’s value GetValue()

change the control’s minimum SetMinValue()

retrieve the control’s minimum GetMinValue()

change the control’s maximum SetMaxValue()

retrieve the control’s maximum GetMaxValue()

change the control’s text label SetTitle()

retrieve the control’s text label GetTitle()
27PowerPlant X 1.0 Developer’s Guide

Views and Controls
Managing Hierarchical Views
Responding to User Interaction
To respond to the events generated when a user interacts with a view, you may either
create a custom view that inherits from the appropriate subclass of EventDoer, or you
may add an attachment that intercepts the appropriate event. Listing 4.2 and Listing
4.3 show an example of inheriting from a subclass of EventDoer to allow a control to
respond to a user-generated event.

Listing 4.2 Declaring an event handler to respond to user interaction

class MyWizardLauncher: public PPx::RoundButton,
 public PPx::ControlHitDoer
{
protected:
 virtual OSStatus DoControlHit(
 PPx::SysCarbonEvent& ioEvent,
 ControlRef inControl,
 ControlPartCode inPartCode,
 UIn32 inKeyModifiers);
};

Listing 4.3 Defining an event handler to respond to user interaction

OSStatus MyWizardLauncher::DoControlHit(
 PPx::SysCarbonEvent& /* ioEvent */,
 ControlRef /* inControl */,
 ControlPartCode /* inPartCode */,
 UIn32 /* inKeyModifiers */)
{
 MyShowWizWindow();
 return noErr; // handled event, do not propagate
}

Managing Hierarchical Views
Some views are containers for other views. For example, the PowerPlant X
RadioGroup and RadioButton classes are both subclasses of View. A
RadioGroup object displays a group of RadioButton objects. The RadioGroup
object acts as a superview for a group of RadioButton objects, which are subviews.
28 PowerPlant X 1.0 Developer’s Guide

Views and Controls
Managing Hierarchical Views
A View object may have only one superview and 0 or more subviews. The
PowerPlant X framework conveniently handles many of the details of working with a
view’s superview and subviews:

• Changing a View Hierarchy

• Resizing Views

Changing a View Hierarchy
View::AddSubView() adds a subview (and the sub-subviews within it) to a view. If
the subview already belongs to another superview, it is detached from its old
superview before being added to its new superview.

View::RemoveFromSuperView() removes a subview from its superview, making
the subview invisible. The subview is not destroyed, it only detaches itself from its
superview.

Resizing Views
To specify how a View object behaves when the screen dimensions of its superview
changes, use a FrameAdapter object to calculate a View object’s new dimensions.
The FrameAdapter class’s AdaptFrame() member accepts the original and
updated superview dimensions and the current dimensions of the view being resized.
Using these arguments, AdaptFrame() calculates the view’s new dimensions.

Class FrameAdapter is an abstract class. Subclasses of FrameAdapter define
specific resizing policies by overriding AdaptFrame(). Class
BindingsFrameAdapter is a subclass of FrameAdapter that updates a view’s
frame based on whether or not each side of a subview is at a fixed distance to its
superview’s corresponding side.

Figure 4.1 shows an example. With a BindingsFrameAdapter object, the subview
locks its left, top, and right sides to its superview’s corresponding sides. After resizing
the superview to increase its width and reduce its height, the subview’s left, top, and
right sides move to stay the same distance from the superview’s corresponding sides.
However, the subview’s bottom side remains unchanged. Consequently, the superview
clips the bottom part of the subview.
29PowerPlant X 1.0 Developer’s Guide

Views and Controls
Creating Custom Views
Figure 4.1 Using a BindingsFrameAdapter

Listing 4.4 shows the source code that implements this behavior.

Listing 4.4 Example of using BindingsFrameAdapter

void MyLockLeftTopRight(View* inSubView)
{
 PPx::BindingsFrameAdapter* adapter = new PPx::BindingsFrameAdapter;

 // left, top, right, bottom
 adapter->SetBindings(true, true, true, false);
 inSubView->SetFrameAdapter(adapter);
}

Behind the scenes, the View class relies on the ControlBoundsChangedDoer and
FrameAdapter classes to manage the way it reacts to changes in its screen
dimensions.

The View class inherits from ControlBoundsChangedDoer to react to
kEventControlBoundsChanged events from the Mac OS Carbon Event manager.
Class View overrides this event handler class’s member function,
DoControlBoundsChanged(), to notify each of its subviews by calling their
AdoptToSuperFrameSize() functions. This function checks to see if the subview
has a FrameAdapter object. If so, it calls the FrameAdapter object’s
AdaptFrame() function.

Creating Custom Views
To create your own view, use the BaseView class. BaseView is a concrete subclass
of View. By itself, BaseView object does nothing. To specify how a BaseView
object behaves you may either

superview

subview

superview

subview

Before resizing After resizing
30 PowerPlant X 1.0 Developer’s Guide

Views and Controls
Creating Custom Views
• declare a subclass of BaseView that also inherits from event-handling classes at
compile time

• add (and remove) event-handling attachments to a BaseView object at runtime

This section describes which events to handle and the kinds of custom view
arrangements that the PowerPlant X framework offers:

• Choosing Which Events to Handle

• Customizing Views With Inheritance

• Customizing Views With Attachments

Choosing Which Events to Handle
Use event handlers to implement how your custom view appears and behaves.
Whether you use inheritance or attachments, your custom view must handle events to
draw the view and, optionally, interact with the user. The header file
PPxViewEvents.h declares event-handling classes for views. This file offer a broad
range of event handlers, but this section covers the most commonly used handlers,
listed in Table 4.2.

Customizing Views With Inheritance
When declaring your custom view’s class, derive it from BaseView and the
appropriate event-handling classes that you want your custom view to act on. Listing
4.5 shows an example of a custom view’s class declaration.

Listing 4.5 Declaration of a custom view using class inheritance

class MyButton : public PPx::BaseView,
 public PPx::ControlDrawDoer,
 public PPx::ControlHitTestDoer,
 public PPx::ControlHiliteChangedDoer {

Table 4.2 Deciding which events to handle in a custom view

To implement this behavior... inherit from this class

the view’s appearance on the screen ControlDrawDoer

respond to a user’s click in the control ControlHitDoer

determine if a point is in the control ControlHitTestDoer

change the control’s state in response to
a mouse click

ControlHiliteChangedDoer
31PowerPlant X 1.0 Developer’s Guide

Views and Controls
Creating Custom Views
protected:
 virtual OSStatus DoControlDraw(
 PPx::SysCarbonEvent& ioEvent,
 ControlRef inControl,
 ControlPartCode inPartCode,
 RgnHandle inClipRgn,
 CGContextRef inContext);

 virtual OSStatus DoControlHitTest(
 PPx::SysCarbonEvent& ioEvent,
 ControlRef inControl,
 const HIPoint& inHitPoint,
 ControlPartCode& outPartCode);

 virtual OSStatus DoControlHiliteChanged(
 PPx::SysCarbonEvent& ioEvent,
 ControlRef inControl);

 // Other member functions...
};

Class MyButton inherits from BaseView. From BaseView, MyButton receives the
abilities of all objects derived from View.

MyButton also inherits from ControlDrawDoer, ControlHitTestDoer, and
ControlHiliteChangeDoer, which allow MyButton to specify how it will be
drawn and how it reacts to mouse movements and clicks. Listing 4.6 shows the
definitions of the related member functions that handle these events.

Listing 4.6 Handling inherited events in a custom control

OSStatus
MyButton::DoControlDraw(
 PPx::SysCarbonEvent& /* ioEvent */,
 ControlRef inControl,
 ControlPartCode /* inPartCode */,
 RgnHandle /* inClipRgn */,
 CGContextRef inContext)
{
 HIRect frame;
 GetLocalFrame(frame);

 if (::IsControlHilited(inControl)) {
 ::CGContextSetRGBFillColor(inContext, 0.1, 0.1, 1.0, 0.3);
 } else {
32 PowerPlant X 1.0 Developer’s Guide

Views and Controls
Creating Custom Views
 ::CGContextSetGrayFillColor(inContext, 0.5, 0.3);
 }

 ::CGContextFillRect(inContext, frame);

 return noErr;
}

OSStatus
MyButton::DoControlHitTest(
 PPx::SysCarbonEvent& /* ioEvent */,
 ControlRef /* inControl */,
 const HIPoint& inHitPoint,
 ControlPartCode& outPartCode)
{
 OSStatus result = eventNotHandledErr;

 HIRect frame;
 GetLocalFrame(frame);
 if (::CGRectContainsPoint(frame, inHitPoint)) {
 outPartCode = kControlButtonPart;
 result = noErr;
 }
 return result;
}

OSStatus
MyButton::DoControlHiliteChanged(
 PPx::SysCarbonEvent& /* ioEvent */,
 ControlRef inControl)
{
 ::HIViewSetNeedsDisplay(inControl, true);
 return noErr;
}

Customizing Views With Attachments
An alternative to implementing event handling behaviors with class inheritance is to
use attachments. Attachment objects offer an advantage over class inheritance: they
can be added to and removed from an Attachable object at runtime. Listing 4.7
shows an example.
33PowerPlant X 1.0 Developer’s Guide

Views and Controls
Creating Custom Views
Listing 4.7 Using an Attachment object with a View

void MyWorkWithFrame(PPx::View* inView)
{
 // Create and attach the attachment.
 MyDrawFrameAttachment* frameAtt = new MyDrawFrameAttachment;
 frameAtt->Initialize(inView);
 frameAtt->FinishInit();
 inView->AddAttachment(frameAtt);

 // Use the inView object with its new attachment.

 // Note: RemoveAttachment also destroys the attachment!
 inView->RemoveAttachment(frameAtt);
}

MyDrawFrameAttachment draws a rectangle around the object it is attached to.
Although MyWorkWithFrame() accepts an argument of type View,
MyDrawAttachment can be attached to any object that inherits from EventTarget
and Attachable. (Of course, MyDrawAttachment will have no effect on the object
it is attached to unless that object receives the events that MyDrawAttachment
handles.)

Listing 4.8 shows the MyDrawFrameAttachment class used in Listing 4.7.

Listing 4.8 Declaration for an Attachment object

class MyDrawFrameAttachment :
 public PPx::TargetAttachment,
 public PPx::ControlDrawDoer {

public:
 void Initialize(PPx::EventTarget* inTarget);

protected:
 virtual void InitState(PPx::ObjectState& inState);
 virtual OSStatus DoControlDraw(
 PPx::SysCarbonEvent& ioEvent,
 ControlRef inControl,
 ControlPartCode inPartCode,
 RgnHandle inClipRgn,
 CGContextRef inContext);

private:
 virtual CFStringRef ClassName() const;
34 PowerPlant X 1.0 Developer’s Guide

Views and Controls
Creating Custom Views
 void FinishInit();

 PPx::SysEventTargetRef mEventTarget;
};

MyDrawFrameAttachment inherits from TargetAttachment and
ControlDrawDoer. TargetAttachment inherits from Attachment. With
TargetAttachment’s members, MyDrawFrameAttachment manages an event
target. With ControlDrawDoer, MyDrawFrameAttachment handles draw events
from the Carbon Event manager.

Initialize() accepts the object that will receive the events that the attachment
handles. FinishInit() allows the attachment object to initialize other data members
(Listing 4.9).

Listing 4.9 Initializing an attachment

void
MyDrawFrameAttachment::Initialize(
 PPx::EventTarget* inTarget)
{
 SetEventTarget(inTarget);
}

void
MyDrawFrameAttachment::FinishInit()
{
 PPx::EventTarget* target = GetEventTarget();

 if (target != nil) {
 ::EventHandlerRef eventHandler =
 PPx::ControlDrawDoer::Install(target->GetSysEventTarget());
 mEventHandler.Adopt(eventHandler);
 }
}

FinishInit() installs the MyDrawFrameAttachment object as a
ControlDrawDoer event handler and remembers the result in mEventHandler, a
SysEventHandler object. A SysEventHandler data member ensures that the
event handler will be properly uninstalled when a MyDrawFrameAttachment object
is destroyed.
35PowerPlant X 1.0 Developer’s Guide

Views and Controls
Creating Custom Views
ClassName() and InitState() do the tasks needed for the PowerPlant X
persistence mechanism (Listing 4.10). Because a MyDrawFrameAttachment object
does not have any of its own data that needs to be saved and restored, its
InitState() function only calls the InitState() function of its parent class.

Listing 4.10 Handling persistence in an attachment

CFStringRef
MyDrawFrameAttachment::ClassName() const
{
 return CFSTR("MyDrawFrameAttachment");
}

void
MyDrawFrameAttachment::InitState(
 PPx::ObjectState& inState)
{
 PPx::TargetAttachment::InitState(inState);
}

DoControlDraw(), inherited from ControlDrawDoer, implements the behavior
for reacting to a control draw event (Listing 4.11).

Listing 4.11 Handling an event in an attachment

OSStatus
MyDrawFrameAttachment::DoControlDraw(
 PPx::SysCarbonEvent& /* ioEvent */,
 ControlRef inControl,
 ControlPartCode /* inPartCode */,
 RgnHandle /* inClipRgn */,
 CGContextRef inContext)
{
 HIRect frame;
 ::HIViewGetFrame(inControl, &frame);
 frame.origin.x = 0;
 frame.origin.y = 0;
 ::CGContextStrokeRect(inContext, frame);
 return eventNotHandledErr; // Propagate the event.
}

DoControlDraw() returns eventNotHandledErr, which indicates that the event
should also be sent to the next event handler in the Carbon Event manager’s event
stack. By allowing this event to propagate, the MyDrawFrameAttachment object
36 PowerPlant X 1.0 Developer’s Guide

Views and Controls
Creating Custom Views
allows other handlers the opportunity to receive this event, including other
attachments and the object to which the MyDrawFrameAttachment is attached.
37PowerPlant X 1.0 Developer’s Guide

Views and Controls
Creating Custom Views
38 PowerPlant X 1.0 Developer’s Guide

Windows

In this chapter we learn how to manipulate windows using the PowerPlant X Window
class. The Window class encapsulates the usual Mac OS X Window Manager features.
It also adds persistence along with view and event handling capabilities. Thanks to the
PowerPlant X framework, a sophisticated user interface element becomes surprisingly
simple to manipulate and customize.

The sections in this chapter show you how to use the PowerPlant X features that
manage Mac OS windows:

• Window Characteristics

• Constructing Windows

• Closing Windows

• Adding Subviews to Windows

• Customizing Window Behavior

Window Characteristics
This section introduces class Window:

• Windows and Views

• Window Construction Requirements

• Common Window Tasks

Windows and Views
In the PowerPlant X framework, the Window class is not derived from the View class.
In other words, the Mac OS Window managed by a PowerPlant X Window object, by
itself, is blank. To display its contents, the Window class contains a single root view
that acts as a superview for everything that appears in the window’s content area.

In the PowerPlant X framework, this superview is called the content view. To retrieve
a Window object’s content view, call the object’s GetContentView() member.

Window Construction Requirements
Classes derived from Window must meet these requirements to be properly
constructed:
39PowerPlant X 1.0 Developer’s Guide

Windows
Constructing Windows
• a default constructor

• override the InitState(), Initialize(), FinishInit() functions

The InitState() function initializes a newly-constructed object’s data members
from external data. Make sure that your InitState() function also calls the
InitState() function of your Window subclass’s immediate superclass.

The Initialize() function initializes a new object from its arguments. Make sure
that your Initialize() function also calls the Initialize() function of your
Window subclass’s immediate superclass.

Override FinishInit() to do initialization tasks that are common to both the
Initialize() and InitState() functions.

Common Window Tasks
The Window class has member functions that perform some commonly-used tasks for
window manipulation. Table 5.1 lists those features.

Constructing Windows
Listing 5.1 shows an example of instantiating a new window.

Table 5.1 Commonly-used window manipulations

To do this... call this function in class Window

make the window visible Show()

make the window invisible Hide()

check to see if the window is visible IsVisible()

change the window’s title SetTitle()

get the window’s title GetTitle()

get the reference to the Mac OS window
being managed by a PowerPlant X
Window object

GetSysWindow()

get the PowerPlant X Window object that
manages a Mac OS window

GetWindowObject()
40 PowerPlant X 1.0 Developer’s Guide

Windows
Closing Windows
Listing 5.1 Creating a new window

PPx::Window* MyMakeWindow()
{
 // Construct and set up the window.
 Rect myBounds = { 100, 50, 400, 450 }; // top, left, bottom, right

 PPx::Window* myWindow = new PPx::Window;
 myWindow->Initialize(
 kDocumentWindowClass, // class
 Window::GetDefaultAttributes(),
 myBounds, // dimensions, in global coordinates
 CFSTR("My Window")); // title
 myWindow->FinishInit();

 // Add subviews to the window here.

 // Make the window visible.
 myWindow->Show();
}

To create a new window, just construct an object of class Window using the new
operator, then call the object’s Initialize() and FinishInit() functions. The
window is ready to accept subviews at this point. See “Adding Subviews to Windows”
for more information. After adding the subviews to the window’s content area and the
window is ready to be displayed, call the Show() function.

Closing Windows
To close a window, call its Close() function. To customize how a window reacts
when it is about to be closed, override the Window class’s DoWindowClose()
function.

Among other classes, the Window class inherits from WindowCloseDoer.
WindowCloseDoer is a subclass of EventDoer that handles the Carbon Event
manager’s window close event (kind kEventWindowClose, class
kEventClassWindow). Consequently, the member function in class Window that
implements the event handler for WindowCloseDoer is DoWindowClose().

The rest of this section describes when to call the Window::Close() function and
how to implement a window’s behavior when it closes:

• When to Close a Window
41PowerPlant X 1.0 Developer’s Guide

Windows
Closing Windows
• Customizing a Window’s Close Behavior

When to Close a Window
The Window class’s Close() function does not close a window directly. Instead, it
posts a window close event, allowing the Window class’s WindowCloseDoer handler
to act on the event.

Typically, the user closes a window by

• clicking the window’s close button

• choosing Close from the File menu

The PowerPlant X framework handles clicks on a window’s close button for you.
When the user clicks a window’s close button, the Carbon Event manager issues a
kEventWindowClose event. The Carbon Event manager dispatches this event to the
Window::DoWindowClose() function.

The PowerPlant X framework defers handling menu commands to your application,
however, including the File menu’s Close command. To handle this command, mix
your application’s class with the CommandHandler class to implement behavior for
the kHICommandClose Carbon Event. Listing 5.2 shows the parts of a window
class’s declaration that handle the Close command.

Listing 5.2 Declarations for handling the File menu’s Close command.

class MyApp:
 public PPx::Application,
 public PPx::CommandHandler < kHICommandClose >
 // Other superclasses...
{
protected:
 virtual OSStatus DoSpecificCommand(
 PPx::CommandIDType < kHICommandClose >,
 PPx::SysCarbonEvent& ioEvent);

 virtual OSStatus DoSpecificCommandStatus(
 PPx::CommandIDType < kHICommandClose >,
 PPx::SysCarbonEvent& ioEvent);

 // Other member functions...
}

42 PowerPlant X 1.0 Developer’s Guide

Windows
Closing Windows
With the CommandHandler member functions, DoSpecificCommand() and
DoSpecificCommandStatus(), you determine the Close command’s status and
what it does when the user chooses it. Specifically, the Close command should be
enabled if there is a window active and it should call the front-most window’s
Close() member. 5.3 shows the functions in the MyApp class that implement this
behavior.

Listing 5.3 Definitions for handling the File menu’s Close command

OSStatus
MyApp::DoSpecificCommand(
 PPx::CommandIDType < kHICommandClose >,
 PPx::SysCarbonEvent& /* ioEvent */)
{
 PPx::Window* wind = PPx::Window::GetWindowObject(::FrontWindow());
 if (wind != nil) {
 wind->Close();
 }
 return noErr;
}

OSStatus
MyApp::DoSpecificCommandStatus(
 PPx::CommandIDType < kHICommandClose >,
 PPx::SysCarbonEvent& /* ioEvent */)
{
 bool isPPxWind = PPx::Window::GetWindowObject(::FrontWindow());

 PPx::EventUtils::SetMenuCommandStatus(kHICommandClose, isPPxWind);
 return noErr;
}

Customizing a Window’s Close Behavior
The default implementation for DoWindowClose() destroys the window object by
using the delete operator. The Window class’s destructor ensures that the window’s
subviews are destroyed.

A typical reason to change a window’s close behavior is to prompt the user to save
changes to the window’s contents. If the user’s choice eventually leads to the window
being closed, delete the window. To prevent the close event from propagating to
previously-installed handlers in the Carbon Event stack, return noErr. Listing 5.4
shows an example.
43PowerPlant X 1.0 Developer’s Guide

Windows
Adding Subviews to Windows
Listing 5.4 Customizing how a window closes

// In a header file...
class MyCustomWindow: public PPx::Window
{
protected:
 virtual OSStatus DoWindowClose(
 SysCarbonEvent& ioEvent,
 WindowRef inWindow);
};

// In a source code file...
OSStatus
MyCustomWindow::DoWindowClose(
 SysCarbonEvent& ioEvent,
 WindowRef inWindow)
{
 bool cancel = MyDontSaveCancelSave();
 if (cancel)
 { // User chooses to close the window.
 delete this;
 }
 return noErr;
}

Adding Subviews to Windows
To add a subview to a window’s content view, call the Window object’s
AddSubView() function.

Alternatively, PowerPlant X classes that derive from the View class have an
Initialize() function that requires an argument specifying a superview. When
creating a subview derived from class View, use the CreateView() function with the
value returned from your window’s GetContentView() function. Listing 5.5 shows
an example.

Listing 5.5 Adding subviews to windows

 PPx::Window* myWindow1 = MyMakeWindow();
 PPx::Window* myWindow2 = MyMakeWindow();

 // Create a view, in this case a class derived from View.
 HIRect myViewBounds = { 1, 1, 25, 25}; // left, top, width, height
44 PowerPlant X 1.0 Developer’s Guide

Windows
Customizing Window Behavior
 // Set up the new view, adding it as a subview of myWindow1’s
 // content view.
 PPx::ChasingArrows* myArrows =
 PPx::CreateView < PPx::ChasingArrows > (
 myWindow1->GetContentView(),
 myViewBounds,
 PPx::visible_Yes,
 PPx::enabled_Yes);

 // Add a view to a window after the view has been created.
 // In this case, myArrows will be removed from myWindow1 and
 // added to myWindow2.
 myWindow2->AddSubView(myArrows);

Customizing Window Behavior
Thanks to the EventDoer class, changing the way a window behaves is simple: just
derive a new class from Window and the appropriate subclasses of EventDoer. The
PowerPlant X framework offers many subclasses of EventDoer customize
practically any facet of a window’s appearance and interaction with the user:

• the classes in PPxWindowEvents.h customize the way a window behaves

• the classes in PPxWindowDefEvents.h customize the window’s definition

Like many other PowerPlant X objects, a Window object can be customized through
inheritance or through attachments. Listing 5.6 and Listing 5.7 show an example of
customizing a window’s behavior by inheriting from a subclass of EventDoer.

Listing 5.6 Declarations for customizing a window’s behavior

class MyWizWindow: public PPx::Window,
 public PPx::WindowGetIdealSizeDoer
{
protected:
 // Compute the preferred size of my wizard window.
 virtual OSStatus DoWindowGetIdealSize(
 SysCarbonEvent& ioEvent,
 WindowRef inWindow,
 Point& outIdealSize);

private:
 // Custom initialization goes here.
45PowerPlant X 1.0 Developer’s Guide

Windows
Customizing Window Behavior
 virtual void FinishInit();
};

Listing 5.7 Definitions for customizing a window’s behavior

OSStatus
MyWizWindow::DoWindowGetIdealSize(
 SysCarbonEvent& /* ioEvent */,
 WindowRef /* inWindow */,
 Point& outIdealSize)
{
 outIdealSize.v = 300;
 outIdealSize.h = 500;
};

void
MyWizWindow::FinishInit()
{
 // Register our event handler.
 EventTargetRef targRef = GetSysEventTarget();
 PPx::WindowGetIdealSizeDoer::Install(targRef);
}

46 PowerPlant X 1.0 Developer’s Guide

Applications

The PowerPlant X Application class handles application-level capabilities. This
chapter describes this class and how to use it.

• Application Characteristics

• Handling Custom Commands

• Launching

• Quitting

Application Characteristics
The Application class implements the behaviors for launching, quitting, and other
application-level tasks. Class Application inherits from
ApplicationEventTarget and Attachable:

• ApplicationEventTarget allows applications to receive events from the Mac
OS Carbon Event manager and handles persistence by eventually inheriting from
class Persistent.

• Attachable allows Attachment objects to be associated with applications.

Handling Custom Commands
By itself, class Application only defines member functions for handling persistence
and for starting the Carbon Event manager’s event loop. To customize your
application, create a subclass of Application. Listing 6.1 shows an example of an
application that handles an Import command.

Listing 6.1 Declaring a custom application class to handle a command

class MyApp:
 public PPx::Application,
 public PPx::CommandConverter,
 public PPx::CommandHandler < cmd_Import >
 // other superclasses
{
public:
 const UInt32 cmd_Import = 'impt';
47PowerPlant X 1.0 Developer’s Guide

Applications
Handling Custom Commands
 virtual OSStatus DoSpecificCommand(
 PPx::ComandIDType < cmd_Import >,
 PPx::SysCarbonEvent& ioEvent);

 virtual OSStatus DoSpecificCommandStatus(
 PPx::ComandIDType < cmd_Import >,
 PPx::SysCarbonEvent& ioEvent);

 void DoImport();

 bool CanImport() const;

 // Other member functions...
};

Class MyApp inherits from CommandConverter to translate raw Carbon Events into
events that contain custom commands.

MyApp also inherits from CommandHandler to implement a handler for a specific
command, in this case, the Import command. (Instead of class inheritance, you could
also create a separate attachment class that handles the Import command.)

The DoSpecificCommand() function, inherited from class CommandHandler,
implements MyApp’s Import command. DoSpecificCommandStatus(), also
inherited from CommandHandler, computes whether or not the Import command is
enabled (Listing 6.2).

Listing 6.2 Handling a command in an application

OSStatus
MyApp::DoSpecificCommand(
 PPx::CommandIDType < MyApp::cmd_Import >,
 PPx::SysCarbonEvent& /* ioEvent */)
{
 DoImport();
}

OSStatus
MyApp::DoSpecificCommandStatus(
 PPx::CommandIDType < MyApp::cmd_Import >,
 PPx::SysCarbonEvent& /* ioEvent */)
{
 PPx::EventUtils::SetMenuCommandStatus(
 cmd_Import, CanImport());
48 PowerPlant X 1.0 Developer’s Guide

Applications
Launching
 return noErr; // Do not propagate the event.
}

Launching
Starting a PowerPlant X application requires a few steps:

• initialize Mac OS services

• set PowerPlant X debugging options

• register PowerPlant X persistence services and classes

• instantiate an Application object and call its Run() function

Listing 6.3 shows a simple definition for a PowerPlant X application’s main()
function.

Listing 6.3 Starting an application

const short MBAR_menuBar = 128;

void InitMacOS();
void InitDebug();
void InitPersistence();
void RunApp();

int main(void)
{
 InitMacOS();
 InitDebug();
 InitPersistence();
 RunApp();
}

The InitMacOS() function initializes the Mac OS services that the application needs
and installs the application’s menu bar (Listing 6.4).

Listing 6.4 Setting up Mac OS services and loading a menu bar

void InitMacOS()
{
 ::InitCursor();
49PowerPlant X 1.0 Developer’s Guide

Applications
Launching
 MenuBarHandle menuBar = ::GetMenuBar(MBAR_menuBar);
 ::SetMenuBar(menuBar);
}

The InitDebug() function configures the PowerPlant X signal and exception
macros (Listing 6.5). A preprocessor macro, My_Debuggable_Build_, controls the
source code generated by the signal and exception macros. See “Testing and
Debugging” and “Exception and Error Handling” for more information on these
macros.

Listing 6.5 Specifying the behavior of PowerPlant X signals and exceptions

void InitDebug()
{
#if My_Debuggable_Build_
 PPx_SetDebugThrow_Alert_();
 PPx_SetDebugSignal_Alert_();
#else
 PPx_SetDebugThrow_Nothing_();
 PPx_SetDebugSignal_Nothing_();
#endif
}

The InitPersistence() function registers the PowerPlant X decoders, encoders
and the persistent-capable classes that the application uses (Listing 6.6).

Listing 6.6 Registering decoders, encoders, and classes for persistence

// Call once, at application startup.
void InitPersistence()
{
 // Register data decoders and encoders.
 PPx::RegisterCommonXMLDecoders();
 PPx::RegisterCommonXMLEncoders();

 // Register PowerPlant X classes that the application uses.
 PPx_RegisterPersistent_(PPx::Window);
 PPx_RegisterPersistent_(PPx::WindowContentView);

 // Register custom classes.
 PPx_RegisterPersistent_(MyDrawFrameAttachment);
 PPx_RegisterPersistent_(MyCustomApp);
}

50 PowerPlant X 1.0 Developer’s Guide

Applications
Quitting
Calling InitPersistence() when initializing an application allows the application
to save and restore objects. The external representation of objects will be in XML
format, and will be capable of saving and restoring objects of class Window,
WindowContentView, MyDrawFrameAttachment, and MyCustomApp.

The RunApp() function instantiates and runs the application object (Listing 6.7).

Listing 6.7 Running an Application object

void RunApp()
{
 MyApp app;

 app.Run();
}

Quitting
There are two occasions when an application quits:

• the user chooses the Quit command from the application menu, causing the
Carbon Event manager to issue a kHICommandQuit event

• an application or Mac OS sends an Apple Event to quit, kAEQuitApplication

Your application does not need handlers for both the kHICommandQuit and
kAEQuitApplication events, however. Instead, your application can take
advantage of the Mac OS default command handler for the kHICommandQuit event.
This default handler for kHICommandQuit issues a kAEQuitApplication Apple
Event. So, to handle both of these events, make sure your subclass of Application
also inherits from AEQuitApplicationDoer.

To always enable the Quit command in the application menu, your class should also
inherit from SpecificCommandEnableDoer.

Listing 6.8 shows the parts of the MyApp class declaration that handle quitting.

Listing 6.8 Declaring a custom application class to handle the Quit command

class MyApp:
 public PPx::Application,
 // other superclasses
 public PPx::AEQuitApplicationDoer,
 public PPx::SpecificCommandEnableDoer < kHICommandQuit >
51PowerPlant X 1.0 Developer’s Guide

Applications
Quitting
{
public:
 // Other member functions...

 virtual OSStatus DoAEQuitApplication(
 const AutoAEDesc& inAppleEvent,
 AutoAEDesc& outAEReply);

 void Disconnect();
 void ReleaseSubsystems();

};

The DoAEQuitApplication() cleans up the application’s state before it quits and
stops the Carbon Event manager loop, which returns control to the application class’s
Run() function. (Listing 6.9).

Listing 6.9 Handling the command and Apple Event for quitting an application

OSStatus MyApp::DoAEQuitApplication(
 const AutoAEDesc& /* inAppleEvent */,
 AutoAEDesc& /* outAEReply */)
{
 Disconnect();
 ReleaseSubsystems();

 // Leave the Carbon Event manager’s event loop.
 ::QuitApplicationEventLoop();

 return noErr;
}
52 PowerPlant X 1.0 Developer’s Guide

Utility and Operating
System Classes

Besides classes that implement an application’s appearance and behavior,
PowerPlant X offers utility classes to simplify tedious tasks and handle tasks not
directly related to implementing application features:

• Testing and Debugging

• Exception and Error Handling

• Character Strings

• System Wrappers

Testing and Debugging
Use the PPx_Signal macros to verify the integrity of your program as it runs, like
assert() in Standard C++ Library.

• Verifying With Signals

• Controlling Signals

Verifying With Signals
Use the PPx_Signal macros to test the assumptions you rely on while developing
your application. A signal does nothing if its test succeeds and reports failed tests to
you, allowing you to detect bugs more easily. Some common uses for PowerPlant X
signals include

• verifying the validity of arguments passed to a function

• verifying the value returned by a function

• verifying that the computations performed in a function are correct before the
function returns

NOTE Like most assertion facilities, make sure that the signal’s test
condition has no side effects. In other words, the evaluation of the
condition that is passed to a PPx_SignalIf_ or
PPx_SignalIfNot_ macro must not change the program’s state.
53PowerPlant X 1.0 Developer’s Guide

Utility and Operating System Classes
Testing and Debugging
 Table 7.1 lists describes these macros.

Controlling Signals
To activate these macros, define the PPx_Debug_Signals preprocessor macro with
a true value. To turn off these macros, define PPx_Debug_Signals with 0 or
undefine it. Make sure the definition of this macro occurs before including the
PPxDebugging.h header file.

The signal macros report the cause of their signal in an alert box, in the debugger, to
the standard error stream, or not at all. By default, the PPx_Signal macros do
nothing, even if they are activated. Table 7.2 lists the macros that control the behavior
of the PPx_Signal macros.

When an alert box appears to report a signal, you are prompted to continue executing
the application, stop the application, go to the debugger, or continue without reporting
future signals.

When reporting signals to the standard error stream, signal output appears in one of a
few ways:

• the SIOUX window, if you are using the CodeWarrior SIOUX library in your
application

Table 7.1 PPx_Signal macros

To do this... use this macro

verify that a condition is true PPx_SignalIf_(cond)
where cond is a boolean expression

verify that a condition is false PPx_SignalIfNot_(cond)
where cond is a boolean expression

always report a signal PPx_SignalString_(str)
where str is a character string

Table 7.2 Controlling PPx_Signal behavior

To specify that signals should... use this macro

not be reported PPx_SetDebugSignal_Nothing_()

appear in an alert box PPx_SetDebugSignal_Alert_()

be reported in the debugger PPx_SetDebugSignal_Debugger_()

be output to the error stream, stderr PPx_SetDebugSignal_Console_()
54 PowerPlant X 1.0 Developer’s Guide

Utility and Operating System Classes
Exception and Error Handling
• the CodeWarrior IDE’s Log Window, if you are using the CodeWarrior IDE’s
debugger without the SIOUX library

• in a terminal window, if you have launched your PowerPlant X application from
the command line

• redirected to a file, if you have launched your PowerPlant X application from the
command line and redirected the standard error stream’s output

Exception and Error Handling
PPx_Throw macros raise a C++ exception, allowing you to add error-handling
capabilities in your application.

• Throwing Exceptions

• Controlling Exception Behavior

• Exception Classes

• Getting Location Information

Throwing Exceptions
Use PPx_Throw macros to check for and respond to error conditions while your
program runs. For example, if your application attempts to read a file but fails, throw
an exception so that your application’s error-handling features can correct the problem
or report it to the user.

 Table 7.3 lists describes these macros.

Table 7.3 PPx_Throw macros

To do this... use this macro

check that a condition is
true

PPx_ThrowIf_(cond, except, what, why)
where cond is a boolean expression, except is the type of
exception to throw, what is the exception ID, and why is a
character string describing the exception

check that a pointer is not
nil

PPx_ThrowIfNil_(ptr, except, what, why)
where ptr is a pointer expression, except is the type of
exception to throw, what is the exception ID, and why is a
character string describing the exception
55PowerPlant X 1.0 Developer’s Guide

Utility and Operating System Classes
Exception and Error Handling
Controlling Exception Behavior
Like PPx_Signal macros, PPx_Throw macros optionally report the cause of an
exception. (Although PPx_Signal macros can be turned off, PPx_Throw macros
always throw exceptions even when they do not report them.)

Exception objects optionally store a description of the cause of the exception and the
source code location where the exception was thrown. Define
PPx_Debug_Exceptions macro to a true value to record this information. To
declare Exception classes that do not record this information, define
PPx_Debug_Exceptions to 0 or undefine it. Make sure the definition of this macro
occurs before including the PPxDebugging.h header file.

These macros report the cause of the signal in an alert box, in the debugger, or not at
all. By default, the PPx_Throw macros do not report exceptions. Table 7.4 lists the
macros that control the behavior of the PPx_Throw macros.

When an alert box appears to report an exception, you are prompted to continue
executing the application, stop the application, go to the debugger, or continue without
reporting future exceptions (although any future exceptions will still be thrown).

check an Mac OS error
code

PPx_ThrowIfOSError_(error, why)
where error is a value of type OSStatus and why is a
character string describing the exception. This macro throws
an exception of type OSError.

always throw an exception PPx_Throw_(except, what, why)
where except is the type of exception to throw, what is the
exception ID, and why is a character string describing the
exception

Table 7.4 Controlling how PPx_Throw macros report an exception to the user

To specify that exceptions
should...

use this macro

not be reported PPx_SetDebugThrow_Nothing_()

appear in an alert box PPx_SetDebugThrow_Alert_()

be reported in the debugger PPx_SetDebugThrow_Debugger_()

be output to the error file, stderr PPx_SetDebugThrow_Console_()

Table 7.3 PPx_Throw macros (continued)

To do this... use this macro
56 PowerPlant X 1.0 Developer’s Guide

Utility and Operating System Classes
Exception and Error Handling
When reporting exceptions to the standard error stream, exception output appears in
one of a few ways:

• the SIOUX window, if you are using the CodeWarrior SIOUX library in your
application

• the CodeWarrior IDE’s Log Window, if you are using the CodeWarrior IDE’s
debugger without the SIOUX library

• in a terminal window, if you have launched your PowerPlant X application from
the command line

• redirected to a file, if you have launched your PowerPlant X application from the
command line and redirected the standard error stream’s output

Exception Classes
The PPx_Throw macros throw C++ exceptions with objects derived from the
PowerPlant X Exception class.Listing 7.1 lists the hierarchy of exception classes.

Listing 7.1 PowerPlant X Exception Class Hierarchy

Exception
 OSError
 OSErrorCode
 LogicError
 RuntimeError
 DataError

When thrown in an exception with the PowerPlant X PPX_Throw macros,
Exception objects, and objects of its subclasses, contain information about the
exception. Table 7.5 and Table 7.6 list the member functions that retrieve this
information.

If the PPx_Debug_Exceptions macro is undefined or defined with a false value, the
Why() function returns an empty string and the Where() function returns
57PowerPlant X 1.0 Developer’s Guide

Utility and Operating System Classes
Character Strings
sourceLocation_Nothing, which has nil pointers for the file and function names,
and 0 for the line number.

Getting Location Information
If the PPx_Debug_Exceptions preprocessor symbol is defined with a true value,
class Exception and its subclasses store information about an exception’s source
code location. The SourceLocation structure has members that specify a function
name, line number, and source code file.

Character Strings
The PowerPlant X CFString class makes the Core Foundations string type in the
Mac OS Core Foundations interfaces convenient to use.

PPX::CFString is derived from PPx::CFMutableObject, which declares a
conversion operator for returning a pointer to a CFString. In other words, to the
compiler, a PPx::CFString object can be converted to an object of type
CFStringRef. Thanks to this conversion operator, you may pass PPx::CFString
objects to Mac OS routines that require CFStringRef arguments.

Table 7.5 Getting information about an exception

To get this information... use this member function in class
Exception

the exception ID What()

Mac OS error code that caused the
exception (available in OSError and
OSErrorCode classes only)

GetOSErrorCode()

Table 7.6 Additional information about exceptions

To get this information when
PPx_Debug_Exceptions is
defined with a true value...

use this member function in class
Exception

a textual description Why()

location in source code where the
exception was thrown

Where()
58 PowerPlant X 1.0 Developer’s Guide

Utility and Operating System Classes
System Wrappers
CFString declares several functions to construct, append, assign, search, compare,
and perform many other manipulations on character strings. The PowerPlant X
framework overloads many of these functions to allow Core Foundation strings to be
used with C strings, Pascal strings, and other character string formats.

System Wrappers
In your PowerPlant X application you will often need to call Mac OS routines directly.
Consequently, your application will also need to manipulate Mac OS data types and
structures. To simplify the system calls and data structure manipulations, the
PowerPlant X framework offers a range of wrapper classes. A wrapper class
encapsulates a service or manager in Mac OS, making it simpler and more convenient
to use.

The PowerPlant X wrapper classes are organized into groups.These groups are
arranged in subfolders with the same name in the PowerPlant X folder on your
computer.Table 7.7 describes these groups.

Table 7.7 Wrapper class groups

This group... offers classes to simplify using this
part of Mac OS

CoreFoundation Mac OS Core Foundation services and data
structures

Events Carbon Events and Apple Events

HIToolbox Mac OS HIToolbox object system for user
interface items

OSServices other, smaller services and manager in Mac
OS
59PowerPlant X 1.0 Developer’s Guide

Utility and Operating System Classes
System Wrappers
60 PowerPlant X 1.0 Developer’s Guide

Index

Symbols
.cp 14, 21
.h 14, 21
.nib 19
.pobj 20
:: 16

A
alert box

reporting exceptions 56
reporting signals 54

ANSI C++. See C++.
Apple Events

quitting 51
Application

custom 47
launching 49
overview 47
quitting 51

application menu 51
applications

launching 49
quitting 51
See also Application.
startup 49

arguments
naming 15

assert() 53
assertions

See also signals.
using 53

Attachable 33
Attachment 33
auto_ptr 22

B
bundle 20

C
C++

exceptions 55
ISO Standard Library 13, 22, 53
namespace. See namespaces.

standard error stream 56
Carbon 7
cerr 54, 56
CFMutableObject 58
CFString 58
CFStringRef 58
character

strings 58
checking for nil pointers 55
classes

naming 14
clicking 28
close button 42
Close command 42
commands

Close 42
custom 47
handling 42, 47
Quit 51

console
reporting exceptions 56
reporting signals 54

constants
naming 15

controls
as View 24

conversion operator 58
Core Foundation

strings 59
wrapper classes 59

D
debugger

reporting exceptions 56
reporting signals 54

debugging 53
delete operator 26, 43
design by contract 53

E
error

handling 55, 56
standard file 54
standard stream 56
61PowerPlant X 1.0 Developer’s Guide

events
in View 24
system wrappers 59

exceptions
configuring 50
description of 58
handling 55
hierarchy 57
ID 58
kinds of 57
Mac OS errors 58
OSError 58
OSErrorCode 58
redirecting output 57
reporting in alert box 56
reporting in console 56
reporting in debugger 56
source code location 58
throwing 55

F
File menu 42
files

header 14
Interface Builder 19
naming 14
redirected 55, 57

Files tab 21
functions

naming 14

G
GetContentView() 39
GetOSErrorCode() 58

H
header files 14
HIToolbox

system wrappers 59
View 24
views and controls 12

HIView 26

I
Interface Builder 19
ISO C++. See C++.

L
launching 49
localization 20
Log Window 55, 57

M
Mac OS

Carbon 7
interfaces 16
Mach-O 12
namespace 13
See also Core Foundations.
See also HIToolbox
system wrappers 16
windows 40

Mach-O 12
macros

assertion 53
exceptions 55
naming 15
PPx_Debug_Exceptions 57
PPx_SetDebugSignal_Alert_() 54
PPx_SetDebugSignal_Console_() 54
PPx_SetDebugSignal_Debugger_() 54
PPx_SetDebugSignal_Nothing_() 54
PPx_SetDebugThrow_Alert_() 56
PPx_SetDebugThrow_Console_() 56
PPx_SetDebugThrow_Debugger_() 56
PPx_SetDebugThrow_Nothing_()

exceptions
not reporting 56

PPx_SignalIf_() 53, 54
PPx_SignalIfNot_() 53, 54
PPx_SignalString_() 54
PPx_Throw_() 56
PPx_ThrowIf_() 55
PPx_ThrowIfNil_() 55
PPx_ThrowIfOSError_() 56
signals 53

menu bar 49
menus

application 51
File 42
handling 42
menu bar 49

mouse click 28
62 PowerPlant X 1.0 Developer’s Guide

N
namespaces

and Mac OS 13
naming 13
PPx 13
std 13

new operator 41
nil pointers, checking for 55

O
operators

conversion 58
delete 26, 43
new 41
scope resolution 16

OSError 58
OSErrorCode 58

P
Package tab 20
persistence

configuring 50
construction 25, 40
View 24
Window 40

pointers
automatic 22
nil 55

PowerPlant X
namespace 13

PPx 13
PPx_Debug_Exceptions 56, 57, 58
PPx_Debug_Signals 54
PPx_SetDebugSignal_Alert_() 54
PPx_SetDebugSignal_Console_() 54
PPx_SetDebugSignal_Debugger_() 54
PPx_SetDebugSignal_Nothing_() 54
PPx_SetDebugThrow_Alert_() 56
PPx_SetDebugThrow_Console_() 56
PPx_SetDebugThrow_Debugger_() 56
PPx_SetDebugThrow_Nothing_() 56
PPx_SignalIf_() 53, 54
PPx_SignalIfNot_() 53, 54
PPx_SignalString_() 54
PPx_Throw_() 56
PPx_ThrowIf_() 55

PPx_ThrowIfNil_() 55
PPx_ThrowIfOSError_() 56
PPxDebugging.h 54, 56
PPxViewConverter 19
project window 20, 21

Q
Quit command 51
quitting 51

R
redirected output 55, 57
region 20
resizing View 29
ResourceToObjects() 22

S
scope resolution operator 16
side effects 53
signals

configuring 50
not reporting 54
redirecting output 55
reporting in alert box 54
reporting in console 54
reporting in debugger 54
turning off 54

SIOUX 54, 57
source code

files 14
location of exception 58

SourceLocation 58
sourceLocation_Nothing 58
Standard C++ Library. See C++.
std 13
std::cerr 54, 56
stderr 54, 56
strings 58
structures

naming 14
subviews 24, 28, 44
superviews 24, 26, 28

T
templates
63PowerPlant X 1.0 Developer’s Guide

naming 15
terminating application 51
testing 53
types

naming 15

V
variables

naming 15
View

about 23
adding to superview 29
and Window 39
construction 25
controls 24
converting from Interface Builder 19
custom 30
destruction 26
disabling 27
enabling 27
events 24
HIToolbox 24
persistence 24
removing from superview 26, 29
resizing 29
subviews 24
superview 24
user interaction 28
visibility 26

W
What() 58
Where 58
Where() 57
Why() 57, 58
Window

adding subviews 44
and View 39
closing 41
constructing 39, 40
content area 39
custom 45
destroying 43
from Mac OS window 40
Mac OS window 40
overview 39
persistence 40
title 40

visibility 40
windows

close button 42
See also Window.

X
XMLSerializer 22
64 PowerPlant X 1.0 Developer’s Guide

	Introduction
	Before You Begin
	How to Use This Book
	Using Other Documentation
	Conventions Used In This Book

	PowerPlant X Overview
	Design Principles
	Small Classes Give Big Flexibility and Power
	Mac OS X, Mach-O, Carbon, and HIToolbox
	Standard C++ Library

	Naming Conventions
	Namespaces
	Files, Classes, and Structures
	Function Names
	Variable and Argument Names
	Data Type and Template Names
	Macro and Constant Names

	Mac OS Interfaces
	System Wrappers
	Referring to Mac OS Interfaces

	Converting Interface Builder Files
	Using the Converter
	Adding Converted Files to Your Project
	Adding Data Files
	Adding Header and Source Code Files

	Constructing Windows Generated by the View Converter

	Views and Controls
	View Characteristics
	Controls are Subclasses of View
	Class View Uses HIToolbox
	The Superview and Subviews
	Views Receive and Act on Events
	Views are Persistent
	Views May Be Manipulated
	View Construction Requirements

	Constructing Views and Controls
	Deleting Views
	Manipulating Controls
	Hiding and Showing Controls
	Enabling and Disabling Controls
	Examining and Changing a View’s Value
	Responding to User Interaction

	Managing Hierarchical Views
	Changing a View Hierarchy
	Resizing Views

	Creating Custom Views
	Choosing Which Events to Handle
	Customizing Views With Inheritance
	Customizing Views With Attachments

	Windows
	Window Characteristics
	Windows and Views
	Window Construction Requirements
	Common Window Tasks

	Constructing Windows
	Closing Windows
	When to Close a Window
	Customizing a Window’s Close Behavior

	Adding Subviews to Windows
	Customizing Window Behavior

	Applications
	Application Characteristics
	Handling Custom Commands
	Launching
	Quitting

	Utility and Operating System Classes
	Testing and Debugging
	Verifying With Signals
	Controlling Signals

	Exception and Error Handling
	Throwing Exceptions
	Controlling Exception Behavior
	Exception Classes
	Getting Location Information

	Character Strings
	System Wrappers

	Index

