

What Readers Are Saying About Pragmatic Guide to JavaScript

I wish I had owned this book when I first started out doing JavaScript! Prag-
matic Guide to JavaScript will take you a big step ahead in programming
real-world JavaScript by showing you what is going on behind the scenes in
popular JavaScript libraries and giving you no-nonsense advice and back-
ground information on how to do the right thing. With the condensed years
of experience of one of the best JavaScript developers around, it’s a must-
read with great reference to everyday JavaScript tasks.

Thomas Fuchs
Creator of the script.aculo.us framework

An impressive collection of very practical tips and tricks for getting the most
out of JavaScript in today’s browsers, with topics ranging from fundamen-
tals such as form validation and JSON handling to application examples
such as mashups and geolocation. I highly recommend this book for anyone
wanting to be more productive with JavaScript in their web applications.

Dylan Schiemann
CEO at SitePen, cofounder of the Dojo Toolkit

There are a number of JavaScript books on the market today, but most of
them tend to focus on the new or inexperienced JavaScript programmer.
Porteneuve does no such thing, and this Pragmatic Guide is a better book
for it. If you’re a novice, go elsewhere first, and then when you have some
scripting under your belt, come back; if you’ve worked with JavaScript
before, then Pragmatic Guide to JavaScript takes a set of techniques that
you may have heard about or seen and makes them useful to you. Recom-
mended.

Stuart Langridge
kryogenix.org, @sil

Pragmatic Guide to JavaScript
Christophe Porteneuve

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and The Pragmatic Pro-
grammers, LLC was aware of a trademark claim, the designations have been printed in initial
capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic
Programming, Pragmatic Bookshelf and the linking g device are trademarks of The Pragmatic
Programmers, LLC.
Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.
Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please
visit us at http://www.pragprog.com.
The team that produced this book includes:
Editor: David McClintock
Indexing: Potomac Indexing, LLC
Copy edit: Kim Wimpsett
Layout: Steve Peter
Production: Janet Furlow
Customer support: Ellie Callahan
International: Juliet Benda

Copyright © 2010 Pragmatic Programmers, LLC.
All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.
Printed in the United States of America.

ISBN-10: 1-934356-67-0
ISBN-13: 978-1-934356-67-8
Printed on acid-free paper.
P1.0 printing, November 2010
Version: 2010-11-18

http://www.pragprog.com

Contents
Dedication 9

Acknowledgments 10

Introduction 12
What’s This Book About, and Who Is It For? 12
This Book and JavaScript Libraries 13
This Book at a Glance . 14
How to Read This Book . 15

I Bread and Butter: Pure JavaScript 16
Task 1. Dynamically Selecting a Method/Property 18

Task 2. Achieving Code Privacy with the Module Pattern 20

Task 3. Using Optional, Variable, and Named Arguments 22

II The DOM, Events, and Timers 24
Task 4. Obtaining References to DOM Elements 26

Task 5. Dynamically Styling Content 28

Task 6. Changing an Element’s Contents 30

Task 7. Running Code When the DOM Is Loaded 32

Task 8. Listening for Events (and Stopping) 34

Task 9. Leveraging Event Delegation 36

Task 10. Decoupling Behaviors with Custom Events 38

Task 11. Simulating Background Processing 40

CONTENTS 6

III UI Tricks 42
Task 12. Pulling Off Classy Tooltips 44

Task 13. Making Unobtrusive Pop-Ups 46

Task 14. Preloading Images 48

Task 15. Creating a Lightbox Effect 50

Task 16. Implementing an “Infinite Scroll” 52

Task 17. Maintaining Viewport When Loading Content 54

IV Form-fu 56
Task 18. Temporarily Disabling a Submit Button 58

Task 19. Providing Input Length Feedback 60

Task 20. (Un)checking aWhole Set of Checkboxes at Once 62

Task 21. Validating Forms: The Basics 64

Task 22. Validating Forms: Going Further 66

Task 23. Validating Forms: The Whole Nine Yards 68

Task 24. Providing On-the-Fly Help Tooltips on Forms 70

Task 25. Autocompleting Input As It’s Typed 72

Task 26. Using Dynamic Multiple File Uploads 74

V Talking with the Server Side 76
Task 27. Reading/Writing Cookies 78

Task 28. Loading Stuff Through Ajax (Same Domain) 80

Task 29. Using JSON 82

Task 30. Using JSON-P 84

Task 31. Cross-Domain “Ajax” (Take 1) 86

CONTENTS 7

Task 32. Cross-Domain “Ajax” (Take 2) 88

VI Making Mashups 90
Task 33. Syndicating Your Twitter Updates 92

Task 34. Syndicating Your Flickr Updates 94

Task 35. Geocoding a Location and Getting Photos For It 96

CONTENTS 8

VII Appendices 98
A JavaScript Cheat Sheet 99

B Debugging JavaScript 102
B.1 Here Be Dragons 102
B.2 Firefox and Firebug 103
B.3 Safari and Web Inspector 107
B.4 IE6, IE7, the IE Toolbar, and Web Developer Express 109
B.5 IE8 and Developer Tools 112
B.6 Opera and Dragonfly 113
B.7 Virtual Machines Are Your Friends 114
B.8 The Network May Be Your Enemy 115

C JavaScript Frameworks 116
C.1 Prototype, script.aculo.us, and Scripty2 117
C.2 jQuery and jQuery UI 118
C.3 MooTools . 120
C.4 YUI . 120
C.5 ExtJS . 122
C.6 Dojo . 123

D Getting Help 125
D.1 Help on JavaScript in General 125
D.2 Help on Frameworks 127

E Bibliography 130

Index 132

Dedication
Pour Élodie, ma femme, l’étoile de ma vie.
To Élodie, my wife, always my shining star.

Acknowledgments
Writing a book is never easy. A technical book doesn’t need a plot and spares
the author the anguish of the blank page, but it subjects the author to a world
of pressure from peers and the duties to be technically accurate and to convey
best practices. This is why writing a book remains a significant endeavor and
why authors can use all the help they can get.
In writing this book, I am first and foremost indebted to the amazing creators
of the frameworks I mention and use. Not only did they grace the world with
their praiseworthy work, but many also took the time to review this book
and make sure I didn’t unintentionally disgrace their brainchildren. I owe
heartfelt thanks to Sam Stephenson, Thomas Fuchs, John Resig, Alex Russell,
Jack Slocum, and a large number of core developers and contributors who I
couldn’t possibly have enough space to name here. I am even more indebted
to the members of the Prototype Core team. They’ve been a helpful, highly
skilled bunch with whom I’ve learned so much, especially Andrew Dupont,
Tobie Langel, and Juriy Zaytsev.
In the search for technical accuracy and overall book bettering, a number of
people, some of whom I mentioned already, gracefully agreed to review this
book and reduce the chances of mymaking a fool of myself. And I was indeed
graced with an outstanding list of reviewers! I bow with respect and gratitude
to Dion Almaer, Arnaud Berthomier, Aaron Gustafson, Christian Heilmann,
Dylan Schiemann, and Sam Stephenson.
This is my second book with the Pragmatic Programmers. Once again, Dave
Thomas and Andy Hunt opened their virtual doors to me and let me work
with their wonderful staff on this new series of books, the Pragmatic Guides.
It’s been a thrill to work with the series editor, Susannah Davidson Pfalzer;
my editor, David McClintock (making his Prag debut); the keen-eyed Kim
Wimpsett for copyediting; the wizardly Sara Lynn Eastler for producing a
Pragmatic-quality index; and the skillful Steve Peter, whose typesetting
makes the book look good.

ACKNOWLEDGMENTS 11

Last but by no means least, I am forever grateful to Élodie, my beloved wife.
She’s put up with four books over the past five years, and she’s always been
supportive and loving. I am the luckiest guy on Earth, and I could not dream
of a better spouse. This book, once again, is for her.

Introduction
If you’ve been paying even minimal attention to JavaScript these past few
years, you’ve heard this before: it’s the Next Big Language. Once the province
of half-baked implementations and useless scrolling messages, it has become
a world-class, dynamic, object-oriented language with super-fast implemen-
tations on the client and server sides.
On the one hand, JavaScript’s designers are endowing it with a new healthy
dose of power, through the EcmaScript 5 (ES5) specification. On the other
hand, kick-ass engines (such as V8, JavaScriptCore, SpiderMonkey, Rhino,
and Carakan) and emergent standards and technologies (with CommonJS1
and Node2 in the lead) make it usable both in browsers and as stand-alone,
powerful architectures on the server. Even the upcoming Internet Explorer 9
is upping its JavaScript game with the promise of huge speed boosts.
Not only is JavaScript a powerful, dynamic language, but it now has a rich
ecosystem of professional-grade development tools, infrastructures, frame-
works, and tool kits. It is versatile, fast, and very well suited to a wide range
of programming tasks, especially when it comes to web-based applications
and services.
It’s time to dive in!

What’s This Book About, and Who Is It For?

This book is not really intended to teach you “JavaScript the language.” For
one thing, the language itself is not very complicated, so if you have prior
experience in programming any reasonably common language—even if it’s
just the basics (variables, loops, and so on)—you’ll get your bearings easily
enough. You don’t need to actually know some JavaScript already (although
it could help), and you certainly don’t need to be any sort of programming
guru.
Actually, if you’re looking for the nitty-gritty and the hardcore technical
details of JavaScript, you’ll be better off reading a dedicated resource, such as
1. http://commonjs.org/
2. http://nodejs.org/

http://commonjs.org/
http://nodejs.org/

THIS BOOK AND JAVASCRIPT LIBRARIES 13

the “JavaScript core skills” section of Opera’s excellent Web Standards Cur-
riculum.3 Should you ever need even more intricate, implementation-level
details, you could then head to either the official specs of the language or
one of the massive “bible” books such as David Flanagan’s JavaScript: The
Definitive Guide [Fla06].
This book aims to provide you with quick yet qualitative solutions to common
client-side JavaScript-based tasks, from low-level stuff (such as getting a ref-
erence to a DOM element) to intricate features (such as Ajax-based autocom-
pletion). This means we’ll tackle JavaScript, CSS, the DOM, Ajax, JSON,
and more. We won’t go deep into the server side; this book is mostly on the
client side of things (most often the browser). You’ll encounter a couple of
tiny PHP scripts along the way, for illustration purposes, but you could write
your server side any way you like—including in JavaScript, for instance, with
Node!
It’s not just for copying and pasting, either. The text for each task takes care
to highlight the key concepts, the potential gotchas, and the technical tricks
you should take away from the task. Ultimately, you should step away from
this book as a better JavaScript programmer.

This Book and JavaScript Libraries

Let’s speak plainly here. If you’re doing any sort of nontrivial JavaScript pro-
gramming and you’re not relying heavily on good, established frameworks for
it, You’re Doing It Wrong. On the browser side, effectively pulling off web
page scripting is a challenge. You face obstacles from all sides: DOM incon-
sistencies, faulty language implementations, CSS quirks, weird Ajax bugs,
and more. On the server side, once you have a runtime ready, you still face
the enormous task of putting together the basic bricks of an application server
such as a datastore, a network stack, a module system, and so on.
Fortunately, great people already solved these challenges for you. There’s a
wealth of options, too, especially on the client side; take a look at Appendix C,
on page 116, for details on the main JavaScript frameworks.
Because any competent and pragmatic JavaScript developer will rely on one
or more good frameworks, this book takes care to illustrate all the major
client-side frameworks in what I think of as “basic” tasks. I selected Proto-
type, jQuery, MooTools, YUI, Dojo, and ExtJS, which should cover most of
the “developer mind share” in this business.
3. http://www.opera.com/company/education/curriculum/

http://www.opera.com/company/education/curriculum/

THIS BOOK AT A GLANCE 14

For “nonbasic” tasks, I went mostly with my personal favorite, Prototype,4
except for one task (the lightbox one), where the solution I deem superior
ends up being a jQuery plug-in. But really, once you master the basic tasks,
you can rewrite or adapt my solutions using your framework of choice. And
indeed, to facilitate this, we’re putting the entire codebase for this book up
in a public GitHub repository.5 This way, creating a variant favoring another
framework (say, jQuery) is as easy as clicking GitHub’s Fork button, and
finding such derived versions of the codebase becomes a snap.
Also note that all the code for this book, besides being available in a neatly
packaged code archive on the book’s website,6 is available live for your test-
ing and tweaking pleasure at http://demos.pocketjavascript.com/.

This Book at a Glance

This book is divided into theme-oriented parts, each with a number of tasks.
It concludes with a few appendixes, some of which you may want to read
before the main body of the book (especially the cheat sheet and the one
about debugging JavaScript).

• Part 1 covers a few critical JavaScript code patterns that are too often
ignored by JavaScript developers. They’re just about the language, so
they’re framework-agnostic but indispensible for good coding on a
daily basis. Be sure to start here!

• Part 2 is mostly about what I refer to as “basic” tasks, focusing on
fundamental DOM and CSS manipulations, plus event handling and
timers. Because of their “basic” status, I took care to list the relevant
code for all major frameworks, so you can pick whatever suits you best.
You should also check out Appendix C, on page 116, when reading this
part so you get a good picture of the framework landscape and make
informed decisions.

• Part 3 is all about the user interface, especially visual effects and neat
UI ideas: good-looking tooltips, lightboxes, image preloading, infinite
scrolling, and the like.

• Part 4 is complementary to Part 3, because it focuses on forms, a critical
part of most web applications. Among other things, a number of tools
are there to assist, simplify, and validate input.

• Part 5 is all about the client-server relationship, with topics such as
cookies, JSON, and Ajax (same- and cross-domain).

4. Full disclosure: I’m a member of Prototype Core.
5. http://github.com/tdd/pragmatic-javascript
6. http://pragprog.com/titles/pg_js

http://demos.pocketjavascript.com/
http://github.com/tdd/pragmatic-javascript
http://pragprog.com/titles/pg_js

HOW TO READ THIS BOOK 15

• Part 6, the final part, pushes this idea further by talking with third-
party services, in the best mashup spirit. I chose three trendy topics
here: playing with Twitter, Flickr, and geo-related APIs.

• Appendix A is my take on a JavaScript cheat sheet; I attempted to
condense both the reference of the language and the important tips,
leaving out a few language elements I felt were superfluous. I hope
you find it useful.

• Appendix B is about debugging JavaScript; you owe it to yourself to
know everything inside it, if only to spare you countless hours of hair-
tearing, particularly when it comes to Internet Explorer.

• Appendix C tries to provide a useful description of the major frame-
works I chose to include in this book. I did my best to provide an accu-
rate depiction of all of them, presenting them in their best light and
giving you a few tips about how best to choose a framework, on a case-
by-case basis.

• Appendix D acts as a quick reference to the best helpful resources
about JavaScript itself and the main frameworks; it sums up the rel-
evant parts of Appendix C, plus a number of extra resources, mostly
language-related. I put it at the end of the book so it’s easier to locate.

How to Read This Book

In the Pragmatic Guide series, each chapter consists of two facing pages—
one with text and one with code. If you’re reading this book on paper, this
flows naturally. But if you’re reading an electronic edition of this book, you
may want to set your reader to display two pages at once, in the side-by-side
or “two-up” mode, provided your display is large enough. This will give you
the best results.

Part I

Bread and Butter: Pure JavaScript

BREAD AND BUTTER: PURE JAVASCRIPT 17

It’s time to get started. This part serves as a warm-up with a cou-

ple fundamental pieces of know-how about bare-bones JavaScript.

The code samples in the following tasks do not rely on any frame-

work or library.

• You’ll learn how to access object properties and methods

dynamically (once your code decides what their name is) in

Task 1, Dynamically Selecting a Method/Property.

• In Task 2, Achieving Code Privacy with the Module Pattern,

you’ll find out how to keep internals of your code enclosed

in a private scope to avoid “polluting” other code and keep

your stuff self-contained.

• Finally, you’ll be able to create functions that can be called

with a wide variety of arguments, using Task 3, Using Optional,

Variable, and Named Arguments.

Remember that you can get a full source code archive for this book

on its online page.7 You can also access them directly at the demo

site.8 Finally, don’t forget that a simple empty web page (later, with

whatever libraries or frameworks you need loaded in), with a Java-

Script console open, is all you need to test this stuff interactively.

7. http://pragprog.com/titles/pg_js
8. http://demos.pocketjavascript.com

http://pragprog.com/titles/pg_js
http://demos.pocketjavascript.com

DYNAMICALLY SELECTING A METHOD/PROPERTY 18

1 Dynamically Selecting a
Method/Property

Often you find yourself wanting to call one of two methods (functions
associated with an object) depending on the situation. Or instead of
functions to call, this could be about reading, or writing, to one of two
possible properties (variables associated with an object). The code for this
would look something like what follows:
if (condition) {

myObj.method1(someArg);

} else {

myObj.method2(someArg);

}

JavaScript offers a simple syntax for dynamically selecting methods and
properties, all relying on the square brackets ([]) operator. You see,
JavaScript has two interchangeable syntaxes for member access (that is a
common dynamic language trait):
obj[expressionResultingInMemberName] == obj.memberName

If you’ve ever plucked a value from an Array cell using its integer index,
you’ve already used the square brackets operator for dynamic member
selection! This is because Array objects have properties named after their
numerical indices (plus the length property). However, in this case,
JavaScript won’t let you use the dot operator (.) for direct access. myArray.0

is invalid syntax (too bad, that would have made a good nerd trick).
Here’s why using the square brackets operator ([]) is more powerful than dot
notation: you can put anything in between the brackets to obtain the name
of the member (property or method) that you want to access. Common cases
include literals, variables holding the member name, name composition
expressions (mostly string concatenations), and quick if/then choices in the
form of a ternary operator (condition ? valueIfTrue : valueIfFalse). It’ll all be
turned into a string first and then used to look up the member you want to use.
In JavaScript, functions are objects too and can be referenced like any other
value. When an expression results in a function, you can call it by using
parentheses, possibly with arguments, just like you would on a function
you’re calling straight by its name.
Note that if the arguments you want to pass to the method vary depending on
which technique you select, using parentheses may quickly become too
cluttered for easy reading. In that case, going for a regular if/else structure is
a wiser move.

DYNAMICALLY SELECTING A METHOD/PROPERTY 19

Use the square brackets ([]) operator.

object['propertyName'] // => object.propertyName

object['methodName'](arg1) // => object.methodName(arg1)

Toggle behavior.

// Call show() or hide(), depending on shouldBeVisible

element[shouldBeVisible ? 'show' : 'hide']();

// Avoid "heavy" animations on IE to favor immediate reflow

// (assumes we've got a properly set isIE variable)

element[isIE ? 'simpleEffect' : 'complexEffect']();

Compose method names.

element[(enable ? 'add' : 'remove') + 'ClassName']('enabled');

Try this example code in any window.

var love = { firstName: 'Élodie', lastName: 'Porteneuve' };

var useFirstName = true;

alert(love[useFirstName ? 'firstName' : 'lastName']); // => "Élodie"

ACHIEVING CODE PRIVACY WITH THE MODULE PATTERN 20

2 Achieving Code Privacy with the
Module Pattern

The more JavaScript there is in your codebase, the more your global scope
may get “polluted” with numerous functions and variables that would
actually be better kept private to whatever set of code uses it. With this
comes the risk of name collision, with one script unintentionally overwriting
another’s identifiers. This leads to bugs.
We need to be able to create self-contained, opaque batches of JavaScript
code, which would expose only selected identifiers, if any, to the outside
world. Indeed, this is a major requirement for “programming in the large,”
being able to bring in frameworks and libraries in any page without risking a
clash. This is what the module pattern is for.
The whole idea of the module pattern is to create a private scope for
var-declared identifiers and functions, a scope that only functions defined
inside it can access. To make some of these definitions accessible to the
outside world, our enclosing function has two choices. It may return an
object with these selected values as properties (see the facing page); we just
need to assign that returned object to a variable in the outside scope. Another
way is to pass the enclosing function a scope object that it writes properties
to (to make these global, you’d simply pass window).
In JavaScript, identifiers first used with the var declaring keyword are local.
(They belong to the function currently defined.) Identifiers first used without
var are global. (They’re grafted onto the current default scope, which most
of the time means the global window object.)
In a few specific circumstances, the current default scope will not actually be
global, so there are ways to execute code in a context where non-var

identifiers will not leak into the global namespace—but that is a bit outside
the scope of this task.
Technically, you do not have to name your “public properties” exactly like
your private identifiers. Indeed, you could define public methods on the fly
in the returned object literal using anonymous functions. But such practices
would result in code that is more obscure (or misleading) to read
and—perhaps more importantly—to debug. As a rule of thumb, whenever
possible, try to define your functions using named function expressions:
function myFunctionName(...) { ... }

This makes for clearer code and helps a lot with the readability of the stack
traces when debugging your JavaScript.

ACHIEVING CODE PRIVACY WITH THE MODULE PATTERN 21

Use vars inside anonymous functions.

(function() {

var privateField = 42;

function innerFunc() {

notSoPrivate = 43;

return notSoPrivate;

}

alert(privateField); // => 42

innerFunc();

alert(notSoPrivate); // => 43

})();

alert(typeof privateField); // => undefined

alert(notSoPrivate); // => 43 (ouch!)

Try this example: “private properties.”

var obj = (function() {

var privateField = 42;

var publicField = 'foobar';

function processInternals() { alert('Internal stuff: ' + privateField); }

function run() {

processInternals();

alert('Still private stuff: ' + privateField);

alert('Public stuff: ' + publicField);

}

return {

publicField: publicField,

run: run

};

})();

obj.run() // three alerts: Internal, still private, public

obj.publicField // foobar

obj.processInternals() // Undefined

obj.privateField // Undefined

USING OPTIONAL, VARIABLE, AND NAMED ARGUMENTS 22

3 Using Optional, Variable,
and Named Arguments

To master argument-fu, the one thing you must really grok is this: the
parameters you explicitly name do not constrain the arguments you actually
pass. Every function keeps a list of the arguments passed to it in a predefined
arguments local variable that behaves like an Array. (It has length and a []

operator.) So, declaring parameters is equivalent to providing local names
for the first arguments that may be passed. If arguments are indeed passed in
these positions, these identifiers will refer to them. If not, the identifiers will
be undefined.
Now, pay special attention to the beginning of the optional arguments
example on the facing page. We’re testing whether a second argument was
passed by using an undefined === rant test. Why the triple equal sign? The
answer lies in the equivalence rules of JavaScript. Check this out:
undefined === null // => false

undefined == null // => true

Ah. So, assuming we would consider null a valid value for rant, we need to
check not only the value but the type of rant. That’s exactly what === does.
It’s the strict equality operator.
Quite often, though, you’ll use a more lax definition of “missing” for your
argument. For instance, rant is supposed to be a usable text: empty strings,
null, undefined, 0, and false would likely all be considered useless. All of
these are false-equivalent in JavaScript, so we could get pretty concise here:
rant = rant || 'IE6 must die!';

This broad range of false-equivalence in JavaScript is the main reason I use
the in operator in the fourth example on the facing page, to determine
whether the options object has a given property already—instead of just
testing !options[opt]. This code is fairly generic, and we’d like to be able to
use it anywhere, so we’re taking a conservative approach and testing actual
property presence, regardless of the property’s value.
That example also shows the proper use of the for...in construct to iterate
over an object’s properties.
Finally, notice the way I defined the defaults for repeat()’s arguments in a
public property of the function itself. This allows our user code to modify
the defaults without resorting to a global object that’s not syntactically
related to our function. To generically grab a reference to our function from
within itself, we use the special callee property of arguments.

USING OPTIONAL, VARIABLE, AND NAMED ARGUMENTS 23

Declare parameters (name arguments).

function repeat(rant, times) {

while (--times >= 0)

alert(rant);

}

repeat('IE6 must die!', 5); // => 5 alert boxes in a row

Grab arguments (however many).

The built-in arguments local variable lets you access them dynamically.
This lets you emulate variable-length argument lists, or varargs.
function repeat(times) {

while (--times >= 0) {

for (var index = 1, len = arguments.length; index < len; ++index) {

alert(arguments[index]);

}

}

}

repeat(2, 'IE6 must die!', 'So should IE7...'); // => 4 alert boxes

Take optional arguments with default values.

function repeat(times, rant) {

if (undefined === rant) {

rant = 'IE6 must die!';

}

while (--times >= 0) {

alert(rant);

}

}

repeat(3); // => 3 IE6 alert boxes

repeat(3, 'So should IE7...'); // => 3 IE7 alert boxes

Use a literal object for pseudo-named arguments.

function repeat(options) {

options = options || {};

for (var opt in (repeat.defaultOptions || {})) {

if (!(opt in options)) {

options[opt] = repeat.defaultOptions[opt];

}

}

for (var index = 0; index < options.times; ++index) {

alert(options.rant);

}

}

repeat.defaultOptions = { times: 2, rant: 'IE6 must die!' };

repeat(); // 2 IE6 alert boxes

repeat({ times: 3 }); // 3 IE6 alert boxes

repeat({ times: 2, rant: 'Flash must die!' }); // 2 Flash alert boxes

Part II

The DOM, Events, and Timers

THE DOM, EVENTS, AND TIMERS 25

So, we started stretching our JavaScript muscles with Part I, focus-

ing on a few key aspects of the language. It is now time to dive into

what ties JavaScript and our web pages together: manipulating the

DOM.

DOM manipulations mostly fall into a few categories:

• Getting references to the elements we want to manipulate,

covered in Task 4, Obtaining References to DOM Elements

• Changing their appearance, either instantly or in an

animated fashion (most of the time it’s about showing, hiding,

or moving them), as described in Task 5, Dynamically Styling

Content

• Altering their contents, which is illustrated in Task 6, Changing

an Element’s Contents

All of this happens either during page initialization, in reaction to

specific events, or sometimes after some time has passed. We will

therefore discuss the following:

• Page initialization in Task 7, Running Code When the DOM Is

Loaded. More specifically, we’ll discuss how to detect when

the DOM is loaded so we can start tweaking it.

• How to listen on events, looking at the basics in Task 8, Listening

for Events (and Stopping), then aiming for efficiency with Task

9, Leveraging Event Delegation, and finally gaining power with

Task 10, Decoupling Behaviors with Custom Events.

• How to play with timers (for instance to simulate background

processing), in Task 11, Simulating Background Processing.

And because they are such critical building blocks of any signifi-

cant web application, I’m going to show you code for them in all

the major frameworks I selected for this book; at this level, they’re

all functionally equivalent anyway. Compared anatomy was all the

rage a couple centuries ago; it still remains a good way to get a

wider perspective on things.

OBTAINING REFERENCES TO DOM ELEMENTS 26

4 Obtaining References to DOM
Elements

Grabbing elements on a page and “traversing” the DOM (moving around
from one element to another) are two cornerstones of any web page
scripting. Although the grabbing part is finally being addressed properly in
latest crop of browsers—it took more than a decade, though!—DOM
walking without libraries remains an incredible mess. That’s why we all use
one library or another, either consistently or on a per-project basis.
There are only a few points I’d like to touch on here.
First, be warned that all code relying on document.getElementById falls
victim to IE’s unbelievable quirk. It will look into any and all name=

attributes, too. Now, if you work with strict DOCTYPEs (which you
should!), this seems to only mean “Beware of field names!” That’s because
you unconsciously rule out the <head> and its <meta> tag’s name=

attribute. So, what happens when you unwittingly define an element with an
id= of description or keywords and you try to grab it? You get the <meta>
element instead of your intended target! So, just avoid these id= values.
On the facing page, I mention that most techniques for selecting elements let
you specify a context node or root node, which acts as a root element within
which to perform the selection. By default, that context is the whole
document. If you look at API docs for utilities such as $$(), query(),
jQuery’s all-purpose $(), and the like, you’ll always find an optional
argument (usually the second one) that lets you pass your context element.
Remember that the narrower the search, the faster the selection!
Finally, the bare-bones DOM API is not well suited to common
moving-around use cases, because it works with nodes, not elements. You
get bogged down in whitespace, comments, text nodes, and so on. This is
why most libraries provide nifty, element-oriented helpers. Prototype,
jQuery, and MooTools provide a rich API, with previous() (or prev()),
next(), siblings(), ancestors(), and the like, or get-prefixed versions of
these. The YUI 3 API is slightly less rich. Dojo and Ext JS seem to lack this
sugar in their cores.
Most libraries support ID- and CSS3-based selections.

OBTAINING REFERENCES TO DOM ELEMENTS 27

Grab an element by its ID.

document.getElementById('elementId') // Plain W3C DOM

$('elementId') // Prototype, MooTools

$('#elementId') // jQuery

Y.one('#elementId') // YUI 3

dojo.byId('elementId') // Dojo

Ext.getDom('elementId') // Ext JS 3

Grab elements by XPath/CSS selection.

Supported syntaxes vary depending on the library, and the W3C Selectors
API is available (but blazingly fast) only in recent-enough browsers: Firefox
3.1+, Safari 3.1+, IE8+ (standards mode), Chrome, and Opera 10+.
Also, note that all libraries provide some way to specify the context, the root
node within which to explore (by default the entire document). Narrowing
the context down whenever possible speeds up your code and reduces
memory usage.
document.querySelectorAll('selectors') // Native (see above)

$$('selectors') // Prototype, MooTools

someRootElement.select('selectors') // Prototype

$('selectors') // jQuery

Y.all('selectors') // YUI 3

dojo.query('selectors') // Dojo

Ext.query('selectors') // Ext JS 3

Move around (DOM traversals).

Here are a couple of quick Prototype-based examples. For context and extra
information, check out the facing page.
// From element with id=some..., get the nearest <h2> container with class

// "category", then walk along its later sibling elements until one has a

// "summary" class.

$('someDeeplyNestedElement').up('h2.category').next('.summary');

// Set the text-indent CSS property for every immediate container of

// links with a "sifr" class.

$$('a.sifr').invoke('up').invoke('setStyle', 'text-indent: -9999px');

DYNAMICALLY STYLING CONTENT 28

5 Dynamically Styling Content

The ability to get the current value (specified or computed) of a CSS
property for an element—and even more importantly to change that
styling—is of paramount importance when creating a web UI. Unfortunately,
browsers and W3C specs leave us pretty much in the dark here. All libraries
provide more or less the same API, as you can see on the facing page.
The answer, for dynamic styling, is to use classes.
Being able to tweak styles manually is useful for developing your own visual
effects, but that’s an exercise best left to library authors and JavaScript
ninjas. I believe that you, as a front-end developer, should cleanly separate
the specific styling from your JavaScript code and rely only on toggling CSS
class names for your own stuff and built-in effects provided by your library
of choice.
Indeed, all libraries provide a uniform API to add, remove, and check the
presence of CSS class names from an element. MooTools, jQuery, YUI,
Dojo, and Ext all use addClass(), hasClass(), removeClass(), and
toggleClass(). Prototype just appends a Name suffix to those (that is,
hasClassName()).
But don’t forget the shortcuts!
All libraries provide various shortcuts for common use cases, both on the
get and the set sides, such as visibility (hide/show/toggle), opacity (as per
CSS’s spec, even on IE), dimensions, and so on. Check the docs—the
method names are often obvious.

DYNAMICALLY STYLING CONTENT 29

Style an element.

// Prototype

$(element).setStyle('prop: value; prop2: value2;')

$(element).setStyle({ prop: 'value', prop2: 'value2' })

// jQuery

$(element).css('prop', 'value')

$(element).css({ prop: 'value', prop2: 'value2' })

// MooTools

$(element).setStyle('prop', 'value')

$(element).setStyles({ prop: 'value', prop2: 'value2' })

// YUI 3

Y.one('#id').setStyle('prop', 'value')

Y.one('#id').setStyles({ prop: 'value', prop2: 'value2' })

// Dojo

dojo.style(element, 'prop', 'value')

dojo.style(element, { prop: 'value', prop2: 'value2' })

// Ext JS

Ext.get(element).setStyle('prop', 'value')

Ext.get(element).setStyle({ prop: 'value', prop2: 'value2' })

Ext.get(element).applyStyles(function(e) { return someSpec; })

Retrieve a style.

// Prototype

$(element).getStyle('prop')

// jQuery

$(element).css('prop')

// MooTools

$(element).getStyle('prop')

// YUI 3

Y.one('#id').getComputedStyle('prop')

Y.one('#id').getStyle('prop')

// Dojo

dojo.style(element, 'prop')

dojo.style(element) // => full computed style set

// Ext JS

Ext.get(element).getStyle('prop')

Ext.get(element).getStyles('prop', 'prop2', 'prop3')

Related Tasks

• Task 6, Changing an Element’s Contents, on the following page

CHANGING AN ELEMENT’S CONTENTS 30

6 Changing an Element’s Contents

You may ask, why not just use innerHTML to change an element’s contents?
It is often tempting to just go and assign the desired markup to the
innerHTML property of the container element. Indeed, this is orders of
magnitude faster than other methods. However, on many browsers,
innerHTML chokes on various bits of markup. Libraries switch to other
mechanisms (such as manual DOM building or markup preprocessing) when
necessary. When dealing with content injection instead of full-on
replacement—or when the markup includes inline scripts, as discussed a
couple paragraphs later—using libraries also proves easier, more concise,
and less error-prone than manually tweaking markup.
Be careful not to confuse updating with replacing. Most methods do
updating by default—for example, the only position for dojo.place().
Updating changes the inside of the element, but replacing changes the
element itself, thereby invalidating its ID and any event listeners attached to
it. It is equivalent to setting the outerHTML property, when available.
Fortunately, several libraries provide a wealth of special-case methods
supplementing the basic update/insert need, such as element wrapping,
selector-based multiple-element operations, cleanup of superfluous empty
text nodes, and the like. Be sure to check your preferred library’s API
documentation for details.
But if you’re injecting <script> tags, watch out! By default, embedded
<script> tags in natively injected markup will not run, and this is sometimes
an issue. Whenever you can, work around this by leveraging event
delegation.9 But this need is common enough that several libraries
specifically address it:

• Prototype actually runs inline <scripts> by default in update(),
replace(), and insert(). (For Ajax updates, you’ll need to set the
evalScripts option to true.)

• jQuery’s html() method also runs inline scripts by default.
• Ext’s update() method accepts a second argument that, when true,
runs inline scripts.

These script runnings sometimes operate within a special evaluation context
for security purposes. Check out your preferred library’s documentation for
details.
9. See Task 9, Leveraging Event Delegation, on page 36 for details.

CHANGING AN ELEMENT’S CONTENTS 31

Update the entire contents of an element.

// Prototype

$(element).update('<p>new internal HTML</p>')

$(element).replace('<p>This will replace the element itself</p>')

// jQuery

$(element).html('<p>new internal HTML</p>')

$(element).text('The <div> and elements carry no inherent semantics.')

// MooTools

$(element).set('html', '<p>new internal HTML</p>')

$(element).set('text', 'The semantics of << and >> varies across languages.')

// YUI 3

Y.one('#id').setContent('<p>new internal HTML</p>')

// Dojo

dojo.place('<p>new internal HTML</p>', element, 'only')

dojo.place('<p>This will replace the element itself</p>', element, 'replace')

// Ext JS

Ext.get(element).update('<p>new internal HTML</p>')

Notice how jQuery and MooTools have special updaters that will escape
whatever tags are present in the passed text; this is handy when trying to
actually display code.

Inject extra contents into an element.

// Prototype. Positions: 'before', 'top', 'bottom', 'after'

$(element).insert('<p>This gets at bottom</p>')

$(element).insert({ pos: markup, pos2: markup2... })

// jQuery (many more methods available)

$(element).before('<p>This gets before the element</p>')

$(element).prepend('<p>This gets at top</p>')

$(element).append('<p>This gets at bottom</p>')

$(element).after('<p>This gets after the element</p>')

// YUI 3

Y.one('#id').prepend('<p>This gets at top</p>')

Y.one('#id').append('<p>This gets at top</p>')

Y.one('#id').insert('<p>This gets where told</p>', nextChildElement)

Y.one('#id').insert('<p>This gets where told</p>', childIndex)

// Dojo. Positions: 'before', 'first', 'last', 'after'

dojo.place('<p>This gets where told</p>', element, pos)

// Ext JS. Positions: 'beforeBegin', 'afterBegin', 'beforeEnd', 'afterEnd'

Ext.get(element).insertHtml(pos, '<p>This gets where told</p>')

Related Tasks

• Task 5, Dynamically Styling Content, on page 28

RUNNING CODE WHEN THE DOM IS LOADED 32

7 Running Code When the DOM Is
Loaded

Being able to run code as soon as the page’s DOM is loaded is a critical part
of making your page responsive right from the start.
If you kick in only when the window’s load event triggers, your code must
wait for every last resource to be loaded—style sheets, images, and scripts
such as Google Analytics trackers, which can be annoyingly slow. That can
amount to a long time after the initial page rendering.
All libraries naturally address this topic, in rather similar ways. You end up
attaching a function to a custom trigger they provide, through a custom
method or a custom event (such as in Prototype, MooTools, and YUI 3).
By the way, here’s a related good practice: if parts of your UI rely on
JavaScript, you should style your page in such a way that the non-JavaScript
alternative is visible by default and the JavaScript-related UI is hidden. Then
in the DOM-loaded event, you would just add a JavaScript-related class to
your document’s body and let your CSS toggle visibilities accordingly. This
is much better than hiding irrelevant UI through JavaScript, because it avoids
the risk of such UI flashing in and out during page load.
Now for a rather technical side note: imagine your initialization code is in an
instance method somewhere and that method needs to preserve its binding. It
uses this internally and needs it to refer to its proper containing instance.
Although most libraries let you wing it with a regular method binding (such
as with Prototype’s bind()), Dojo and Ext JS address this up front by letting
you provide an explicit reference for the method’s instance. That way, they
can call the method in its proper context directly:
// Dojo

dojo.addOnLoad(binding, fx)

// Ext JS

Ext.onReady(fx, binding)

You should also check whether your initialization code can actually run at
DOM-loading time; in a few situations, this is actually too soon. For
instance, you may depend on specific images being loaded so you can set up
a UI based on their dimensions, or in a similar vein, you may need to have a
CSS style sheet loaded and applied to get proper element dimensions, color,
or whatnot. You may then need to wait for window’s load event. Most of the
time, though, DOM-loading is “late enough” and makes a perfect setup spot.

RUNNING CODE WHEN THE DOM IS LOADED 33

Trigger at DOM load.

// Prototype

document.observe('dom:ready', fx)

// jQuery

$(fx)

// MooTools

window.addEvent('domready', fx)

// YUI 3

Y.on('domready', fx)

// Dojo

dojo.addOnLoad(fx)

// Ext JS

Ext.onReady(fx)

Related Tasks

• Task 8, Listening for Events (and Stopping), on the next page

LISTENING FOR EVENTS (AND STOPPING) 34

8 Listening for Events (and Stopping)

Events are a huge subject, and there’s no way this two-page spread will
cover even the basics. The main idea is this: what you see on the facing page
is a very short reference card. You should (I could almost say, you must) take
the time to carefully read your library’s documentation and guides on events.
Mastering event-fu will pay off 100 times over.
In particular, note that many libraries have shorthand methods for listening
to specific events. So, you could call, say, onclick(handlerFx) instead of
connect(’click’, handlerFx). Another useful trick is that most libraries let
you pass fewer arguments when you stop observing, decommissioning all
events that match that broader spec (all click handlers or all of the element’s
handlers, for example).
Noteworthy specifics: Dojo uses a single mechanism to connect any sort of
event (regular DOM event, custom events, so-called global events,
publish-subscribe stuff, and bare-bones method calls) to the triggering of any
sort of function (bona fide event handlers, plain functions, and methods).
This is pretty nifty. And Ext allows a fourth argument to on(), which allows
a wealth of options.
Should you want to observe events at the document level (leveraging event
bubbling), all libraries provide an easy way to do so. For instance, Prototype
lets you call document.observe, and there are wrappers like dojo.doc and
Ext.getDoc(). However, you should not rely too much on arguments and
options related to event capture (top-down event propagation/censorship),
because they are often not properly supported on IE before IE8.
All libraries also take care to provide your handlers with a beefed-up Event

object, equipped with W3C-mandated properties and methods and often a
few more, to boot.
By default, handler functions, being passed as function references, lose their
potential binding and execute in the global context.10 Several libraries
address this on the spot, letting you pass an optional scope object argument.
Finally, most libraries support custom events and bake a few ones in,
mainstream or otherwise. I know I couldn’t live without DOM readiness,
mouseenter, and mouseleave, to name but a few.

10. For the whole story on JavaScript binding—its gotchas and tricks—check out my ALA article
at http://www.alistapart.com/articles/getoutbindingsituations/.

http://www.alistapart.com/articles/getoutbindingsituations/

LISTENING FOR EVENTS (AND STOPPING) 35

Listen to an event on one element.

// Prototype

$(element).observe('event', handlerFx)

// jQuery

$(elementOrSelector).bind('event', handlerFx)

// MooTools

$(element).addEvent('event', handlerFx)

// YUI 3

Y.on('event', handlerFx, elementOrSelector)

// Dojo (context-free handlerFx or context-requiring method)

dojo.connect(element, 'event', handlerFx)

// Ext

Ext.get(element).on('event', handlerFx)

Listen to an event on multiple elements.

// Prototype

elements.invoke('observe', 'event', handlerFx)

// jQuery

$(elements).bind('event', handlerFx)

// YUI 3

Y.on('event', handlerFx, elementOrSelector)

// Dojo

dojo.query(selector).connect('event', handlerFx)

// Ext, for on-DOM-readiness bindings:

Ext.addBehaviors({ 'selector@event': handlerFx... })

Stop listening.

// Prototype

$(element).stopObserving('event', handlerFx)

// jQuery

$(elementOrSelector).unbind('event', handlerFx)

// MooTools

$(element).removeEvent('event', handlerFx)

// YUI 3

Y.detach('event', handlerFx, elementOrSelector)

// Dojo

dojo.disconnect(handleReturnedByConnect)

// Ext (watch out: "un", not "on"...)

Ext.get(element).un('event', handlerFx)

Related Tasks

• Task 7, Running Code When the DOM Is Loaded, on page 32
• Task 9, Leveraging Event Delegation, on the next page
• Task 10, Decoupling Behaviors with Custom Events, on page 38

LEVERAGING EVENT DELEGATION 36

9 Leveraging Event Delegation

Learn this by heart, and make it yours: event delegation is the better way.
You see, most events bubble, such as mouse or keyboard events. When they
happen somewhere in the DOM, they trigger on every element along the
ancestor line, up to the document element, from the inside out (that is, unless
one of these elements has a listener that stops the bubbling).
Suppose we have a large number of elements that should share a behavior. If
the triggering event for that behavior bubbles, we’re much better off listening
for it higher up in the DOM, at the level of the elements’ nearest common
ancestor or perhaps directly at the document level. This saves some
significant memory and CPU time.
Listening higher up in the DOM is also great for behaviors on Ajax-loaded
contents. Because you listen “outside” the loaded content, freshly added
elements leverage your behavior automatically, without requiring post-load
listener attachment.
However, sometimes we have to resort to hacks or abandon delegation
entirely, because our triggering events do not bubble. Unbelievably, submit,
change, focus, and blur do not bubble—this is infuriating when dealing
with shared form/field behavior. Although workaround code exists to
simulate bubbling for at least part of these, their inability to bubble is a
hassle.
I should mention that only since jQuery 1.4 did live() become flexible
enough for event delegation per se, without performance issues. With that
version, it also gained the ability to work on many nonbubbling events. On
the other hand, Dojo’s behavior() seems like it would use event delegation,
but it doesn’t. It’s just nice syntactic sugar.
Note the findElement() call in the code sample, on line 2. Currently, our
links just contain a simple text, so clicking within the link means clicking the
link itself. But imagine you jazz things up and add an icon (such as a
plus/minus icon). Then clicks could, technically, happen on the icon but still
within the link. So with Prototype, when you attach a delegation-based event
listener, be sure to always use the event’s findElement() method instead of
its less witty element() counterpart.

LEVERAGING EVENT DELEGATION 37

Toggle item contents.

Download dom/delegation.html

<ul id="items">

<!-- We will insert togglers in each LI using JS -->

<div><p>Data 1</p><p>Data 2</p></div>

<div><p>Data 1</p><p>Data 2</p></div>

<div><p>Data 1</p><p>Data 2</p></div>

<!-- Potentially lots more elements here... -->

Here’s a Prototype-based script for it:
Download dom/delegation.js

Line 1 $('items').observe('click', function(e) {

- var trigger = e.findElement('a.toggler');

- if (!trigger) return;

- e.stop();

5 var content = trigger.up('p').next('div');

- if (!content) return;

- content.toggle();

- trigger.update(content.visible() ? 'Close' : 'Open');

- trigger.blur();

10 });

-

- $('items').select('li').each(function(item) {

- item.insert({ top: '<p>Open</p>' });

- item.down('div').hide();

15 });

Use a delegation-specific API in libraries.

// Prototype 1.7

$('items').on('click', 'a.toggler', handlerFx);

// jQuery 1.4

$('a.toggler', '#items').live('click', handlerFx);

// YUI 3

Y.delegate('click', handlerFx, '#items', 'a.toggler');

// Ext

Ext.get('items').on('click', handlerFx, this, { delegate: 'a.toggler' });

Related Tasks

• Task 8, Listening for Events (and Stopping), on page 34

http://media.pragprog.com/titles/pg_js/code/dom/delegation.html
http://media.pragprog.com/titles/pg_js/code/dom/delegation.js

DECOUPLING BEHAVIORS WITH CUSTOM EVENTS 38

10 Decoupling Behaviors with Custom
Events

When your codebase grows large enough or when you want to reuse part of
it in a totally different context, you may encounter situations where you say,
“I wish this code could be triggered any which way, instead of making
assumptions about my DOM.”
Most of the time, this relates to how widgets can interact with each other. For
instance, some background chat polling engine notifies the chat widget new
messages are coming in, or a photo viewer and its zoom-preloading facility
both get notified when a photo carousel has one of its pictures clicked.
This is what custom events are for. There are several aspects about custom
event behavior that will vary depending on which framework you’re using:

• DOM-like behavior: You listen for and trigger custom events on DOM
nodes (including document). They bubble, can get stopped, and so
on. This is what Prototype, jQuery, and MooTools do. When events do
not propagate, they must be fired on the object listening for them.

• Namespacing: Some frameworks will require you to namespace your
events, usually with a colon-based prefix, to distinguish them from
native events. Prototype mandates this; other frameworks will let you
name custom events any way you like.

• Custom payload: Frameworks let you pass extra data to the event
handler when you trigger the custom event. Prototype accepts a single
extra argument (which can obviously be a richly structured object)
that will be provided as the event’smemo property. jQuery will pass
along any extra arguments to the handler, after its initial event object
argument. All other frameworks will pass these arguments to the
handler without any prefixing. Dojo systematically requires such
arguments as a single array, even if there is only one value.

• Common event API: Only Dojo seems to require that you use the
specific publish/subscribe API for custom events, reserving its usual
events API for native DOM events. This also means there is no
DOM-like behavior (for instance, bubbling).

• Declaration: MooTools lets you define custom events as special
variations of predefined events (say, a click requiring the Alt key be
pressed), yet its facility for declaring such events is mandatory for
custom events, even if you should just declare their name. Any
undeclared custom event will not be fired.

DECOUPLING BEHAVIORS WITH CUSTOM EVENTS 39

Listen for a custom event.

// Prototype -- payload in event.memo

$(element).observe('ns:event', handlerFx)

document.observe('ns:event', handlerFx)

// jQuery -- payload as handler extra arguments

$(elementOrSelector).bind('event', handlerFx)

// MooTools -- payload as handler arguments

Element.Events.event = {};

$(element).addEvent('event', handlerFx)

// YUI 3 -- payload as handler arguments

Y.on('event', handlerFx)

// Dojo -- payload as handler arguments

dojo.subscribe('event', context, handlerFx)

Fire a custom event.

// Prototype

$(element).fire('custom:event');

document.fire('custom:event');

whichever.fire('custom:event', { foo: 'bar', baz: 42 });

// jQuery

$(elements).trigger('event')

$(elements).trigger('event', { foo: 'bar', baz: 42 });

$(elements).trigger('event', ['bar', 42]);

// MooTools

$(element).fireEvent('event')

$(element).fireEvent('event', arg)

document.fireEvent('event', [arg1, arg2, arg3])

// YUI 3

Y.fire('event')

Y.fire('event', arg1, arg2, arg3)

// Dojo

dojo.publish('event')

dojo.publish('event', [arg])

Related Tasks

• Task 8, Listening for Events (and Stopping), on page 34

SIMULATING BACKGROUND PROCESSING 40

11 Simulating Background Processing

Say you need to carry out lengthy processing in your web page; perhaps you
intend to provide a computationally intensive, graphical representation of a
large dataset from a table. You want to keep the browser responsive while
crunching numbers and drawing stuff. This calls for background processing.
This is because of how JavaScript engines execute your code:

• JavaScript is essentially single-threaded.
• Your JavaScript-running thread is, for all intents and purposes, shared
with the rest of your page’s behavior. The immediate consequence is
that when your JavaScript code runs, no rendering happens. No new
content, no reflow, no redrawing of a page partially obscured by
another window...nothing.

So, if you run some intensive processing, your page will freeze until that
processing completes. That usually means your entire browser will freeze.
That’s why several browsers nowadays have “abort lengthy script”
mechanisms in place. Others, such as Chrome, mitigate this issue by running
every page in its own process.
Unless you go with Web Workers (which is certainly not a cross-browser
option for now), you need to resort to pseudo-parallel tricks, and the main
trick relies on a pair of methods—setTimeout() and
clearTimeout()—provided by the global window object.
The idea is to partition a big job into any number of smaller steps, keeping
track of our progress, knowing when to stop, and scheduling chunks at
regular intervals. When a chunk is done, that chunk schedules the next one
for a short time later; in the meantime, the browser regains control, thereby
being able to handle page activity and any other scripting that needs to run.
Although calling clearTimeout() and cleaning up the timer handle you
stored from your setTimeout() call are not strictly required, both actions are
good practice, reduce memory leaks, and have virtually no performance cost.
This technique is great for going through a large processing job, but it’s
terrible for behaviors demanding a smooth progression—such as visual
effects—since timer precision varies wildly (25–500 ms). In such situations,
you should use a single fixed-interval timer and rely on time differences for
accurate measurement.11

11. For a real example of this, check out the main loop of Thomas Fuch’s awesome Émile, a
50-line visual effects library at http://github.com/madrobby/emile.

http://github.com/madrobby/emile

SIMULATING BACKGROUND PROCESSING 41

Schedule and cancel execution of code.

These are the two core methods at the heart of simulating background
processing with timers:
var handle = window.setTimeout(callback, intervalInMs);

window.clearTimeout(handle);

Let your user toggle background processing.

This book’s source archive includes a visual demo. The crux of the code
goes like this:
Download dom/background.js

var CHUNK_INTERVAL = 25; // ms.

var running = false, progress = 0, processTimer;

function runChunk() {

window.clearTimeout(processTimer);

processTimer = null;

if (!running) return;

// Some work chunk. Let's simulate it:

for (var i = 0; i < 10000; i += (Math.random() * 5).round())

;

++progress;

updateUI(); // See source archive -- just updates a progressbar

if (progress < 100) {

processTimer = window.setTimeout(runChunk, CHUNK_INTERVAL);

} else {

progress = 0, running = false;

}

}

function toggleProcessing() {

running = !running;

if (running) {

processTimer = window.setTimeout(runChunk, CHUNK_INTERVAL);

}

}

http://media.pragprog.com/titles/pg_js/code/dom/background.js

Part III

UI Tricks

UI TRICKS 43

Manipulating the DOM is akin to our basic tools. Ultimately, every-

thing else boils down to DOM tweaking. But most of our actual

needs are higher level than that, including creating useful user inter-

face (UI) effects, behaviors, and widgets; handling forms in a useful

manner; and much more still. In this part, we will start with generally

useful UI behaviors.

• Task 12, Pulling Off Classy Tooltips, will explore how to provide

nice-looking, contextual information “bubbles” in our pages.

• Sometimes pop-up windows are OK; and when they are, lack

of JavaScript should not prevent access to the target con-

tents. See how to get the best of both worlds in Task 13, Making

Unobtrusive Pop-Ups.

• Preloading images cannot always be done with CSS spriting

(for instance, with user-provided images); for such situations,

Task 14, Preloading Images, shows you how to resort to Java-

Script.

• Proper use of lightboxes (pseudo-dialogs standing out by dim-

ming the remainder of the page) creates a neat experience;

Task 15, Creating a Lightbox Effect, shows a top-notch solution.

• Browsing large datasets is sometimes better done through

smart scrolling, as illustrated in Task 16, Implementing an “Infi-

nite Scroll”.

• There are times when you need to load new content above

the position in the page that triggers such loading; to avoid

destabilizing visual behavior, check out Task 17, Maintaining

Viewport When Loading Content.

From then on in this book, we will rely on frameworks and libraries

to ease our work; almost all of the time, I will go with Prototype (the

lightbox task will use a jQuery plug-in, though, because it seemed

like the best tool for that particular job).

Still, Prototype does not necessarily appeal to every front-end devel-

oper out there, so check out the GitHub repository for this book’s

codebase.12 I intend for people to create forks of it adapted for

whatever JavaScript framework they like best. This way, you can get

the code for these tasks in whatever framework you prefer. And if it’s

not there yet, why not go ahead and author it yourself?

12. http://github.com/tdd/pragmatic-javascript

http://github.com/tdd/pragmatic-javascript

PULLING OFF CLASSY TOOLTIPS 44

12 Pulling Off Classy Tooltips

Native tooltips (obtained through title=) are unreliable at best. Text wrapping
vs. stretching vs. truncation, line breaks, and appearance delays are all
browser- or user-dependent. Plus, their content is plain text—no styling and
certainly no rich markup.
To reclaim control, we need to implement our own tooltips, positioning
elements that get shown or hidden when the mouse enters or exits specific
areas of the page (or when the user tabs through, for better accessibility).
Since this book is about JavaScript, I won’t delve into the CSS parts. Also,
I’ll limit the design approach to simple stuff: not overlaying the trigger
element, not moving alongside the mouse cursor, not providing in-tooltip
mouse-based UI, and so on.
So, for our purposes, the crux of the implementation is this: use CSS to hide
the tooltip by default, and add a :hover selector on the container element
(which doesn’t have to be a link) to restore its visibility.

However, that implementation won’t work with IE6, which only obeys
:hover on <a> elements. You must use a script to react tomouseover and
mouseout manually. Here, because of the way Prototype implements
show() and hide(), we can’t prehide tooltips through CSS rules—this
explains the small IE6 hack I show in the sample CSS on the facing page.
For advanced needs, odds are you’ll find your fit among the host of tooltip
libraries out there, either directly in frameworks or based on them.
Personally, my favorite Prototype-based library is the kick-ass Prototip2.13

13. http://www.nickstakenburg.com/projects/prototip2/

http://www.nickstakenburg.com/projects/prototip2/

PULLING OFF CLASSY TOOLTIPS 45

Tag the tooltip.

Download ui/tooltips/index.html

<li tabindex="1">

Capacity: 1.5 TB

<div class="tooltip" >

<p>1.5 Terabyte = 1,536 Gigabytes</p>

<p>Enough for 50,000 songs, 1,000 DivX movies, 100,000

high-definition photos, hundreds of iDVD projects and

plenty of backup space left.</p>

</div>

Style the tooltip.

Download ui/tooltips/tooltips.css

#files li { position: relative; }

#files li .tooltip {

position: absolute; top: 8px; left: 120px; width: 24em;

z-index: 1; display: none;

/* IE6 doesn't know li:hover, so we need to toggle via JS,

therefore avoiding in-rule display: none */

_display: block;

border: 1px solid gray;

background: #fffdc3 url(bg_tooltip.png) top left repeat-x;

}

#files li:hover .tooltip,

#files li:focus .tooltip { display: block; }

Script for IE6 (which won’t :hover on nonlinks).

Download ui/tooltips/tooltips.js

function toggle(reveal, e) {

var trigger = e.findElement('li'),

tooltip = trigger && trigger.down('.tooltip');

if (!tooltip) return;

tooltip[reveal ? 'show' : 'hide']();

}

document.observe('dom:loaded', function() {

var isIE6 = Prototype.Browser.IE &&

undefined === document.body.style.maxHeight;

if (!isIE6) return;

var files = $('files'), tooltips = files && files.select('.tooltip');

if (!files || 0 == tooltips.length) return;

tooltips.invoke('hide');

files.observe('mouseover', toggle.curry(true)).

observe('mouseout', toggle.curry(false));

});

http://media.pragprog.com/titles/pg_js/code/ui/tooltips/index.html
http://media.pragprog.com/titles/pg_js/code/ui/tooltips/tooltips.css
http://media.pragprog.com/titles/pg_js/code/ui/tooltips/tooltips.js

MAKING UNOBTRUSIVE POP-UPS 46

13 Making Unobtrusive Pop-Ups

Whether you’re using “actual” pop-ups (distinct windows) or pseudo
pop-ups (elements on the current page, styled to look window-like), the
problem remains: how do you provide access to this content for users who
can’t—or don’t want to—open a window? Think disabled window opening,
screen readers, search engines, and so on.
There’s only one way: have the link actually link to the pop-up’s contents,
and apply progressive enhancement from there.
If your content is intended as an HTML fragment displayed in a pseudo
pop-up (perhaps loaded through Ajax, too), you’ll need to make sure you
can serve it distinctly, with or without a containing document markup. That
way, users accessing it through a regular link, as a stand-alone document, get
something nice.
The gist of the practice here is this: link to the target content natively (href=

and, perhaps, target="_blank"), and then use JavaScript to hook into these
links and jazz ’em up. Baking your own window-opening code is fairly
easy—it’s all about the built-in window.open() method.
If you’re adding a pseudo pop-up or lightbox, do use a good existing library
and spare yourself the living hell of cross-browser issues and positioning
algorithms. Here are a few pointers:

• Scripty2’s UI part14
• jQuery UI15
• Dijit (based on Dojo)16
• YUI’s Overlay module17
• Ext.Window18

Also keep in mind that small pop-up content may qualify for a
click-triggered rich tooltip instead of a full-on pop-up zone. In such a
situation, check out tooltip libraries and modules.

14. http://github.com/madrobby/scripty2
15. http://jqueryui.com/
16. http://dojotoolkit.org/projects/dijit
17. http://developer.yahoo.com/yui/3/overlay/
18. http://www.extjs.com/deploy/dev/docs/?class=Ext.Window

http://github.com/madrobby/scripty2
http://jqueryui.com/
http://dojotoolkit.org/projects/dijit
http://developer.yahoo.com/yui/3/overlay/
http://www.extjs.com/deploy/dev/docs/?class=Ext.Window

MAKING UNOBTRUSIVE POP-UPS 47

Tag for progressive enhancement.

Download ui/popups/index.html

<p>

The great thing about <a class="popup" target="_blank"

href="http://pragprog.com/titles/pg_js">Pocket Guide to JavaScript

is that it focuses on a bunch of specific, useful tasks.</p>

Script a plain window.open().

Download ui/popups/popups.js

var POPUP_FEATURES = 'status=yes,resizable=yes,scrollbars=yes,' +

'width=800,height=500,left=100,top=100';

function hookPopupLink(e) {

var trigger = e.findElement('a.popup');

if (!trigger) return;

e.stop(); trigger.blur();

var wndName = trigger.readAttribute('target') ||

('wnd' + trigger.identify());

window.open(trigger.href, wndName, POPUP_FEATURES).focus();

}

document.observe('click', hookPopupLink);

Related Tasks

• Task 12, Pulling Off Classy Tooltips, on page 44
• Task 15, Creating a Lightbox Effect, on page 50

http://media.pragprog.com/titles/pg_js/code/ui/popups/index.html
http://media.pragprog.com/titles/pg_js/code/ui/popups/popups.js

PRELOADING IMAGES 48

14 Preloading Images

When your page offers user interaction that changes what images are
displayed (perhaps providing a zoom, a close-up, a front/back view, or
whatever), you do not want the user to see a momentary blank screen
because the image you suddenly need takes an instant to load. You may want
to preload such images.
In essence, there are only three ways to preload images:

• With JavaScript, using dynamically created Image objects with
appropriate src properties: Doing so lets you detect when preloaded
images are indeed loaded.

• With CSS, hiding preloaded images: This boils down to using hidden
 tags for the images to preload. You hide either the
tags themselves or a common container (which I prefer).

• With CSS sprites: When you want to preload stuff like rollovers or a
bunch of related images (backgrounds, borders, and corners, for
instance), this should definitely be your preferred approach.19

The CSS approach is fairly straightforward, but it does not provide you with
as much potential control as the JavaScript approach. The markup and script
on the facing page make the assumption that image tags with a
rel="preloadZoom" attribute have a close-up version with the same
URI—with a _closeup name suffix—preloaded for rollover close-ups.
This is typically the kind of situation where the JavaScript option is
preferable to the CSS ones. Since the rollover depends on JavaScript, we
should preload in JavaScript too. (If no JavaScript is available, we won’t
preload stuff that can’t be shown later.) Moreover, preloading in JavaScript
avoids markup/styling bloat.
With JavaScript, we can avoid the risk of a temporarily blank/incomplete
render by toggling to an image only when we’re sure it’s preloaded. The
nonsprite CSS approach runs a (admittedly low) risk of toggling to an image
that is not loaded yet.
For more hardcore techniques on fast image loading, take a look at Steve
Souder’s May 2009 presentation: 14 rules for faster-loading images.20

19. Check out the seminal http://www.alistapart.com/articles/sprites and the more
recent http://css-tricks.com/css-sprites/. Steve Souders also maintains the SpriteMe tool:
http://spriteme.org/.
20. http://stevesouders.com/docs/wordcamp-20090530.ppt

http://www.alistapart.com/articles/sprites
http://css-tricks.com/css-sprites/
http://spriteme.org/
http://stevesouders.com/docs/wordcamp-20090530.ppt

PRELOADING IMAGES 49

Tag for preload.

Download ui/preloading/index.html

<ul id="products">

<h2>

Prototype and script.aculo.us

</h2>

<h2>

Programming Scala

</h2>

Script the preload.

Download ui/preloading/preloading.js

function preloadImages() {

$$('img[rel="preloadZoom"]').each(function(img) {

var pimg = new Image();

pimg.src = img.src.replace(/(\.\w+$)/, '_closeup$1');

});

}

document.observe('dom:loaded', preloadImages);

Roll over to (ideally preloaded) images.

Download ui/preloading/preloading.js

function togglePreloaded(e) {

var trigger = e.findElement('img[rel="preloadZoom"]');

if (!trigger) return;

if (e.type == 'mouseover') {

trigger.src = trigger.src.replace(/(\.\w+$)/, '_closeup$1');

} else {

trigger.src = trigger.src.replace('_closeup', '');

}

}

document.observe('mouseover', togglePreloaded).

observe('mouseout', togglePreloaded);

http://media.pragprog.com/titles/pg_js/code/ui/preloading/index.html
http://media.pragprog.com/titles/pg_js/code/ui/preloading/preloading.js
http://media.pragprog.com/titles/pg_js/code/ui/preloading/preloading.js

CREATING A LIGHTBOX EFFECT 50

15 Creating a Lightbox Effect

Lightboxing is the act of bringing up some content while shadowing the rest
of the page behind a mouse-inhibiting overlay. Most of the time, the lightbox
UI is centered on the page. Lightboxes usually feature images and are
launched from linked text or a linked thumbnail image on the page.

In the example for this book, we’re using the FancyBox jQuery plug-in by
Janis Skarnelis to make thumbnail images lightbox to larger versions. It’s
unobtrusive, is fairly lightweight, is drop-in easy, and looks gorgeous out of
the box. Still, check out the bottom of the book’s demo page for alternatives,
if you’d like.
FancyBox is not limited to image contents—it can bring up anything,
including <iframe> stuff. It defaults to just-in-time Ajax loading when the
link’s target URI neither “looks like an image file” nor uses iframes. So, fat
images can load on-demand through an extensionless URL, for example.
Like most UI-related libraries, FancyBox needs to load at least one script and
one CSS file. It assumes its images are in the style sheet’s folder, avoiding
tedious CSS tweaking. FancyBox makes no image URL requirements.
To make links lightbox, we just grab them and call their fancybox()
method, as demonstrated on the facing page. It works without any options,
but it provides a number of possible tweaks. I really like to see my
thumbnails zoom in to their larger versions, so I set it up that way.

CREATING A LIGHTBOX EFFECT 51

Load FancyBox.

Download ui/lightbox/index.html

<link rel="stylesheet" type="text/css"

href="vendor/fancybox/jquery.fancybox-1.2.6.css" />

<script type="text/javascript" src="vendor/jquery-1.3.2.min.js"></script>

<script type="text/javascript"

src="vendor/fancybox/jquery.fancybox-1.2.6.pack.js"></script>

Link to individual images.

Download ui/lightbox/index.html

Link to images as a browsable group.

Download ui/lightbox/index.html

Initialize FancyBox (with some customization thrown in).

Download ui/lightbox/lightbox.js

$(function() {

$('#thumbnails a').fancybox({

zoomSpeedIn: 300, zoomOpacity: true, overlayColor: '#000',

overlayOpacity: 0.6

});

});

Related Tasks

• Task 12, Pulling Off Classy Tooltips, on page 44
• Task 13,Making Unobtrusive Pop-Ups, on page 46

http://media.pragprog.com/titles/pg_js/code/ui/lightbox/index.html
http://media.pragprog.com/titles/pg_js/code/ui/lightbox/index.html
http://media.pragprog.com/titles/pg_js/code/ui/lightbox/index.html
http://media.pragprog.com/titles/pg_js/code/ui/lightbox/lightbox.js

IMPLEMENTING AN “INFINITE SCROLL” 52

16 Implementing an “Infinite Scroll”

Gmail introduced us to infinite scroll, spelling doom for pagination in a
number of scenarios. Many people (certainly not all, though) find it more
efficient to scroll through a boatload of items and use visual pattern matching
rather than pointing to and clicking pagination link after pagination link.
Pagination mostly arose for technical reasons alone:

• Older browsers render slowly, forcing us to keep our pages “light
enough.”

• Bandwidth may be limited anywhere between client and server,
encouraging us to stay lean.

• Server-side processing time grows as the data grows. Rendering the
entire dataset all at once is not only unnecessary from a consumption
standpoint but is infeasible for our servers (or at the very least
impractical and unwieldy), especially if they want to keep handling
enough concurrent requests.

Still, pagination was just one way—the non-JavaScript way. But as soon as
JavaScript is enabled, you can hide any pagination links and replace them
with infinite scroll when that makes sense. I leave that decision to your
usability experts—and to your good sense.
As you can see on the facing code, infinite scroll is nothing too fancy. The
only tricky part is jumping through a couple of hoops to get our metrics
right, across browsers, as evidenced in the lowEnough() method code.
We check, essentially, that the bottom of the document is not too far below
the bottom of our viewport. Then it’s just a matter of looking at the current
state of vertical scrolling often enough—ten times per second is certainly
snappy!—and loading more content through Ajax.
From an accessibility (and failover) perspective, you may want to also offer
pagination and perhaps hide Next links at setup time and then restore these
links if your Ajax fetching fails so users get an alternative.
A note for those of you without a working PHP setup handy: you’ll just end
up loading more stuff instantaneously; the PHP code simulates load time by
waiting half a second before returning static content.

IMPLEMENTING AN “INFINITE SCROLL” 53

Check whether we scrolled low enough.

Download ui/infinite/infinite.js

function lowEnough() {

var pageHeight = Math.max(document.body.scrollHeight,

document.body.offsetHeight);

var viewportHeight = window.innerHeight ||

document.documentElement.clientHeight ||

document.body.clientHeight || 0;

var scrollHeight = window.pageYOffset ||

document.documentElement.scrollTop ||

document.body.scrollTop || 0;

// Trigger for scrolls within 20 pixels from page bottom

return pageHeight - viewportHeight - scrollHeight < 20;

}

Keep an eye on scroll level and fetch more.

Download ui/infinite/infinite.js

function checkScroll() {

if (!lowEnough()) return pollScroll();

$('spinner').show();

new Ajax.Updater('posts', 'more.php', {

method: 'get', insertion: 'bottom',

onComplete: function() { $('spinner').hide(); },

onSuccess: pollScroll

});

}

function pollScroll() { setTimeout(checkScroll, 100); }

pollScroll();

http://media.pragprog.com/titles/pg_js/code/ui/infinite/infinite.js
http://media.pragprog.com/titles/pg_js/code/ui/infinite/infinite.js

MAINTAINING VIEWPORT WHEN LOADING CONTENT 54

17 Maintaining Viewport When Loading
Content

At times, you may want to maintain the contents of the user’s viewport—all
that’s visible inside the browser window—even as the user clicks to load
more content above it. For example, a user clicks to view previous
comments, but you don’t want to push the user’s scroll position down as the
comments load from above.
In cases like this, you’ll find yourself facing a small obstacle. Intuitively,
users expect that their position on the page will not move. But by loading
content above, you’ll push the rest of the document, including the clicked
zone, farther down the viewport and quite possibly outside of it.
The solution is to preserve the scrolling position relative to the viewport. To
do that, we need to grab the viewport’s “scrolling offset”—the viewport
position prior to loading content above some of what it displays—and
restore that offset once the content has been injected. Offsets are typically a
messy business, full of cross-browser hairiness, but thanks to libraries such
as Prototype and their position-related features, this can actually be solved
rather concisely.
The facing code is adapted from Gist by Sam Stephenson. Before loading
extra content, we grab the trigger link’s in-document position (its
cumulativeOffset()) and subtract from it the viewport’s current scrolling,
which tells us how far down this trigger appears in the viewport. Then, after
the new content is injected, we determine what the viewport’s new offset
should be, by using the converse subtraction.
Readers familiar with Prototype may wonder why I went with Ajax.Request

here, instead of the more specific Ajax.Updater. I did so because this lets
me grab the original scrolling position as late as possible, specifically after
the Ajax request completes, avoiding a weird “scroll reset” effect if the user
scrolls during the Ajax request.
This makes for a fairly nice user experience, with very little code.

MAINTAINING VIEWPORT WHEN LOADING CONTENT 55

Preserve the viewport position.

Download ui/viewport/index.html

<h2>Comments</h2>

<div id="extraComments">

See previous

comments you already know about

</div>

<h3>Comment 5</h3>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim

ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut

aliquip ex ea commodo consequat.</p>

Grab the scroll before Ajax, and adjust after it.

Download ui/viewport/viewport.js

function loadKnownComments(e) {

e.stop();

var zone = $('extraComments'), ref = zone.next('h3');

var upd = new Ajax.Request('known_comments.html', {

method: 'get',

onSuccess: function(res) {

var orig = ref.cumulativeOffset().top -

document.viewport.getScrollOffsets().top;

zone.insert({ before: res.responseText });

window.scrollTo(0, ref.cumulativeOffset().top - orig);

}

});

}

http://media.pragprog.com/titles/pg_js/code/ui/viewport/index.html
http://media.pragprog.com/titles/pg_js/code/ui/viewport/viewport.js

Part IV

Form-fu

FORM-FU 57

Forms are a key part of web applications now. We are always gath-

ering information from our users to fill in profiles, set up tasks and

services, send messages, and whatnot. Yet most of the forms you

encounter online are in a sorry state of usability and ergonomics.

This part attempts to provide a number of recipes to make user

experience (increasingly known as UX) better when dealing with

forms.

The key idea behind useful forms is this: don’t waste your users’ time.

• Save them from double submits, using Task 18, Temporarily Dis-

abling a Submit Button.

• Let them know how much text they can still type in, thanks to

Task 19, Providing Input Length Feedback.

• Allow them to toggle choices on and off en masse, as shown

in Task 20, (Un)checking a Whole Set of Checkboxes at Once.

• Validate immediately as much of their input as possible, with

Task 21, Validating Forms: The Basics; Task 22, Validating Forms:

Going Further ; and Task 23, Validating Forms: The Whole Nine

Yards. Do you know anybody who likes to discover belatedly

that their username is already taken or that their password

does not comply with security requirements?

• Provide extra help for filling in particular fields, as illustrated in

Task 24, Providing On-the-Fly Help Tooltips on Forms.

• Suggest alternative inputs or completions; you’ll see how in

Task 25, Autocompleting Input As It’s Typed.

• Let them upload multiple files in one pass, a trick that’s dem-

onstrated in Task 26, Using Dynamic Multiple File Uploads.

Those are just a few examples of what you can do to make your

forms more pleasant to use. We will explore how to achieve such

things in the following tasks.

Still, never forget that you cannot take JavaScript for granted. All

your forms should still work with no JavaScript whatsoever; perhaps

they will be less nifty to use, but they must work. The server side must

validate everything no matter what, no links should lead nowhere

when they are not intercepted by scripts, and so on. When putting

up forms, progressive enhancement is paramount. Make sure they

work without scripting or CSS, and then you can add layers of extra

comfort through whatever technologies are available—and

enabled.

TEMPORARILY DISABLING A SUBMIT BUTTON 58

18 Temporarily Disabling a
Submit Button

Sometimes our forms take a while to be processed on the server side.
Perhaps we’re uploading a large file using a good ol’ <input type="file"... />

field, or the server is just busy for some reason. At any rate, we do not want
our user to resubmit the form while we’re processing it already.
Double-submits are just irritating, you know?
To avoid this, we can react to our form being submitted by disabling any UI
means of submitting it, which boils down to <input> or <button> tags with
type="submit" or type="image" attributes. Because a few browsers (such as
our beloved MSIE) do not handle CSS attribute selectors well, we should
“tag” those elements with a specific class, say submit, and use it to select
elements we intend to disable.
On the facing page, the first script shows the minimum Prototype-based code
for that. It’s fairly straightforward.
You will likely want to go the extra mile and add some further UI decoration
to your form as it is submitting; not all browsers render disabled fields in a
clear visual style, and perhaps you also want to stress the fact that something
is going on. (You’re not just disabling that thing to be obnoxious, are you?)
The second script illustrates adding a custom class to our disabled <input>
tags. Because the UI update that results from applying CSS is not as
“built-in” as a disabling call, we also want to make sure our browser can
“take a breath” before we have it submit the form (at which time it’s likely to
ignore any further visual update and just plow ahead with the submission).
To solve this common problem, we delay() the submit() call by just a tenth
of a second.
Also notice the that = this closure trick in our JavaScript code here. As you
may know, calling a function (in this case, the one we end up delay()ing)
can lose our current binding—the value this refers to. Instead of forcing such
a binding, which requires an extra layer of function wrapping and is
therefore pretty costly, we rely on closures to let the code inside our ad hoc
anonymous function retain a reference to our original this (the form being
submitted) in order to call submit() on it in due time.21

21. Queasy about JS function bindings? Check out my ALA article at
http://www.alistapart.com/articles/getoutbindingsituations/ for details. Not too sure about
closures and how they’re useful? My pal Juriy “Kangax” Zaytsev wrote a great article about it at
http://msdn.microsoft.com/en-us/scriptjunkie/ff696765.aspx.

http://www.alistapart.com/articles/getoutbindingsituations/
http://msdn.microsoft.com/en-us/scriptjunkie/ff696765.aspx

TEMPORARILY DISABLING A SUBMIT BUTTON 59

Disable on the submit event.

Download form/submit/submit.js

function preventMultipleSubmits() {

this.select('.submit').invoke('disable');

}

document.observe('dom:loaded', function() {

$('commentForm').observe('submit', preventMultipleSubmits);

});

Download form/submit/index.html

<form id="commentForm" action="post_comment.php">

<p>

<label for="edtText">Your text</label>

<textarea id="edtText" name="text" cols="40" rows="5"></textarea>

</p>

<p><input type="submit" class="submit" value="Send" /></p>

</form>

Use classes for extra decoration (a bit of flourish).

Download form/submit/submit.js

function preventMultipleSubmits(e) {

if (!this.hasClassName('submitting')) {

e.stop();

}

this.addClassName('submitting').select('.submit').invoke('disable');

var that = this;

(function() { that.submit(); }).delay(0.1);

}

http://media.pragprog.com/titles/pg_js/code/form/submit/submit.js
http://media.pragprog.com/titles/pg_js/code/form/submit/index.html
http://media.pragprog.com/titles/pg_js/code/form/submit/submit.js

PROVIDING INPUT LENGTH FEEDBACK 60

19 Providing Input Length Feedback

A common source of frustration when filling in forms is to suddenly see the
text input stop dead, even when there was some text warning us of the
maximum length. Not only that, but did you know that <textarea> has no
maxlength= attribute? Seriously. It’s not valid HTML and will be blissfully
ignored (unless you’re fortunate enough to be able to use HTML5).
So, to provide a unified way to specify maximum lengths, we can rely on
dedicated CSS classes for, er, “data storage.” They will use a two-part name:
first a maxLength prefix, then a positive integer, stating the maximum length
we want. See the markup on the facing page.
Then we can use JavaScript to do the following:
1. Dynamically decorate the form zones (I’ll assume paragraphs, for the
sake of brevity) containing these elements (the facing code adds a
class to the paragraph), and then dynamically create the placeholder
for remaining-length feedback.

2. Initialize the feedback zone to the current state.
3. Bind appropriate event listeners for as-you-type feedback.
4. Position the feedback zone (I put it under the bottom-right corner of
its matching field here) and add it to the document, now that it’s ready
for prime time!

Now whenever typing occurs, we just need to update the feedback, and if we
hit or exceed the maximum length (something impossible on a <textarea>),
we’ll backpedal to the maximum allowed length.
Note a couple of tricks in this code:

• We listen for both keyup and keypress in order to react to noncharacter
keys (deletions, cuts, and pastes, mostly) and character keys.
Listening to keydown would be useless because it occurs before the
text changes, and we have no reliable way of determining across
browsers and keyboard layouts whether the text will change.

• To avoid recomputing the maximum length at every keystroke, we
cache it during setup. To associate maximum lengths with our fields,
we use a JavaScript-based associative array between the fields’ id=

attributes22 and the fields themselves. This is lighter weight than using
expando properties.

22. We use Prototype’s identify() here to make sure our element has an id=.

PROVIDING INPUT LENGTH FEEDBACK 61

Specify maximum lengths through markup.

Download form/feedback/index.html

<p>

<label for="edtDescription">Description</label>

<textarea id="edtDescription" name="description" cols="40"

rows="5" class="maxLength200"></textarea>

</p>

Set up feedback for maximum-length fields.

Download form/feedback/feedback.js

var maxLengths = {};

function bindMaxLengthFeedbacks() {

var mlClass, maxLength, feedback;

$$('*[class^=maxLength]').each(function(field) {

field.up('p').addClassName('lengthFeedback');

mlClass = field.className.match(/\bmaxLength(\d+)\b/)[0];

maxLength = parseInt(mlClass.replace(/\D+/g, ''), 10);

feedback = new Element('span', { 'class': 'feedback' });

maxLengths[field.identify()] = [maxLength, feedback];

updateFeedback(field);

field.observe('keyup', updateFeedback).

observe('keypress', updateFeedback);

feedback.clonePosition(field, { setHeight: false,

offsetTop: field.offsetHeight + 2 });

field.insert({ after: feedback });

});

}

Give feedback on the fly.

Download form/feedback/feedback.js

function updateFeedback(e) {

var field = e.tagName ? e : e.element();

var current = field.getValue().length,

data = maxLengths[field.id], max = data[0],

delta = current < max ? max - current : 0;

data[1].update('Remaining: ' + delta);

if (current > max) {

field.setValue(field.getValue().substring(0, max));

}

}

http://media.pragprog.com/titles/pg_js/code/form/feedback/index.html
http://media.pragprog.com/titles/pg_js/code/form/feedback/feedback.js
http://media.pragprog.com/titles/pg_js/code/form/feedback/feedback.js

(UN)CHECKING A WHOLE SET OF CHECKBOXES AT ONCE 62

20 (Un)checking a Whole Set of
Checkboxes at Once

It happens time and time again: you have a list, and there are operations your
users would like to do en masse. The tasks of deleting, moving, archiving,
and changing a given property for a number of them all boil down to letting
your users check specific items.
And sometimes, all of them. That can be a pain in the butt when the list is
long, and that is why mass toggling is a nice UI feature.

The markup is simple. Let’s just put a checkbox in the table’s head section to
act as a toggler. This scopes it automatically, letting our script navigate to the
matching <tbody> as a container for checkboxes of interest.
The script itself is fairly concise: react to clicks on the toggler by looking up
checkboxes in the matching <tbody> and updating their checked=

attribute to reflect our togglers.
Now, as an exercise, you could try to adapt this code to achieve two goals:

• Allow multiple tables in the page, with a toggler each. This mostly
means you’ll replace an id= with a class and use event delegation to
avoid registering too many listeners.

• Cater to the more complex tables by allowing more than one <tbody>
in a table. Yes, that is valid markup (one body per semantic section of
the table, when you group data in some way). Interestingly, if you add
more than one <tbody>, you’ll end up simplifying the script!

(UN)CHECKING A WHOLE SET OF CHECKBOXES AT ONCE 63

Create the markup for a reference checkbox and a check list.

Download form/checklist/index_for_book.html

<table id="mailbox">

<thead>

<tr>

<th><input type="checkbox" id="toggler" /></th>

<th>Subject</th>

<th>Date</th>

<!-- From, Size, Attachments... -->

</tr>

</thead>

<tbody>

<tr>

<td><input type="checkbox" name="mail_ids[]" value="1" /></td>

<td>Happy new year!</td>

<td>Jan 1, 2010 00:03am</td>

<!-- ... -->

</tr>

<!-- More rows... -->

</tbody>

</table>

Propagate checked status to first-in-line checkboxes.

Download form/checklist/checklist.js

function toggleAllCheckboxes() {

var scope = this.up('table').down('tbody'), boxes = scope &&

scope.select('tr input[type="checkbox"]:first-of-type');

var refChecked = this.checked;

(boxes || []).each(function(box) { box.checked = refChecked; });

}

document.observe('dom:loaded', function() {

$('toggler').observe('click', toggleAllCheckboxes);

});

http://media.pragprog.com/titles/pg_js/code/form/checklist/index_for_book.html
http://media.pragprog.com/titles/pg_js/code/form/checklist/checklist.js

VALIDATING FORMS: THE BASICS 64

21 Validating Forms: The Basics

Client-side validation is a must-have. Seriously. Regardless of your users’
connection throughput, having to do a round-trip on the server for any
validations that could be done straight in the browser is a crying shame. You
don’t want to feel anything but pride about your web pages, so let’s dive in!
This first task focuses on the most basic type of validation: required fields,
that is, verifying that specific fields have nonblank text or are checked, and
so on. We’ll use a convention of tagging such fields with the required CSS
class and rely on styling for visual feedback on missing fields.
First, be sure to intercept the form’s submit event, not the submit button’s
click or text fields’ Return keys. The only surefire way of catching a form
before it goes to the server is its submit event. It even fires on programmatic
submissions (form.submit() calls).
Once hooked in, we just need to grab all elements in the form tagged as
required and verify that they have a nonblank value. Prototype’s blank()
extension on String is convenient here. Strings containing nothing but
whitespace are deemed blank, and from a semantic point of view, they sure
are no better than actual empty strings. Note, however, that if you have a
field where whitespace-only is considered all right, you can just use if

(field.getValue())—in JavaScript, empty strings are false-equivalent.
Our code maintains a firstOffender reference so we can help the user correct
input by autofocusing the first problematic field. Last but certainly not least,
once we’re done with our checks, if there is at least one problem, we stop()
the event, effectively preventing the current form from being submitted.
As a final reminder, out of the box, submit events do not bubble in Internet
Explorer. So if your code needs to run in IE too, you would have to attach an
event listener for every single form on the page you want to check, including
dynamically inserted forms obtained after initial DOM loading. jQuery
simulates bubbling for submit in IE since version 1.4 but at the cost of
somewhat heavy monitoring of all clicks and keypresses within all forms.

VALIDATING FORMS: THE BASICS 65

Mark required fields.

Download form/validation101/index_for_book.html

<form id="registration">

<p>

<label for="user_first_name">First name*</label>

<input type="text" name="user[first_name]" id="user_first_name"

class="required text" />

</p>

<!-- ...more fields... -->

<p class="radios">

<input type="checkbox" id="terms" name="terms" class="required" />

<label for="terms">I accept the terms of service*</label>

</p>

<p><input type="submit" value="Sign me up!" /></p>

</form>

Detect missing required fields.

Download form/validation101/validation101.js

function checkForm(e) {

var firstOffender, value;

this.select('.required').each(function(field) {

value = field.getValue();

if (value && !value.blank()) {

field.up('p').removeClassName('missing');

} else {

firstOffender = firstOffender || field;

field.up('p').addClassName('missing');

}

});

if (firstOffender) { e.stop(); firstOffender.focus(); }

}

document.observe('dom:loaded', function() {

$('registration').observe('submit', checkForm);

});

Related Tasks

• Task 22, Validating Forms: Going Further, on the next page
• Task 23, Validating Forms: The Whole Nine Yards, on page 68

http://media.pragprog.com/titles/pg_js/code/form/validation101/index_for_book.html
http://media.pragprog.com/titles/pg_js/code/form/validation101/validation101.js

VALIDATING FORMS: GOING FURTHER 66

22 Validating Forms: Going Further

The previous task had us check that required fields are indeed filled in or
checked. Good. However, we’ll often want text fields to obey a given format,
such as phone numbers, email addresses, integers, or more general numbers.
Such fields can be filled in but incorrect, and we should do our best to check
that up front. As always, this is a complement to the truly mandatory checks,
which are the ones on the server side.
The general way to go about this, which is fairly concise and efficient, is a
regular expression. Now, if at this point in your developer career you’re not
comfortable with regular expressions, do yourself a big favor and set aside a
couple of hours to dive into them. Although they can look inscrutable to the
novice, they are built on very few syntactic rules (about a dozen, half of
which are usually sufficient), and knowing “regexes” will save you countless
coding hours over and over again. You can find plenty of good, interactive
tutorials online.
On the facing page, the idea of the code is to detect CSS classes on form
fields that match a regex-based check. I just put three regexes in there, but
you can extend features by simply adding new key-value pairs to the
FIELD_PATTERNS dictionary. But let me fend off the purists’ teeth-grinding
right now. Yes, the patterns I show do not cover nondecimal numbers,
exponentional float notation, and about 0.1 percent of the email addresses in
use today. Big deal. But this task is about field validation, not regex-fu. Feel
free to tweak the patterns to suit your needs!
This code is fairly short and straightforward; there are just two bits of
interest I’d like to shine some light on here. First, the $F(element) function
is just a shorthand notation for element.getValue().
Second, if you’ve ever used regexes in JavaScript, odds are you went with
the all-purpose myString.match(myPattern) way. This works, because it
returns either null for no match or an Array of matches (or match groups)
otherwise. However, when all you need to know is whether a match was
found or not and you don’t care about the match’s specifics, you should
invert the question and ask the pattern to test() the String, which just returns
a Boolean.
Indeed, the test() approach is more robust: it will not break if passed
something else than a String, while attempting to callmatch() on a
non-String would fail. As an added benefit, test() is slightly more efficient. I
like to use such bits of performance as a matter of course, especially when
they don’t carry a code readability (or code weight) penalty.

VALIDATING FORMS: GOING FURTHER 67

Mark fields requiring special syntax.

Download form/validation102/index.html

<p>

<label for="user_email">Email*</label>

<input type="text" name="user[email]" id="user_email"

class="required text email" />

</p>

<p>

<label for="user_favnumber">Favorite number</label>

<input type="text" name="user[favnumber]" id="user_favnumber"

class="text number" />

</p>

Check special-syntax fields.

Download form/validation102/validation102.js

var FIELD_PATTERNS = {

integer: /^\d+$/,

number: /^\d+(?:\.\d+)?$/,

email: /^[A-Z0-9._%+-]+@(?:[A-Z0-9-]+\.)+[A-Z]{2,6}$/i

};

function checkField(field) {

var value = $F(field).toString().strip();

for (var pattern in FIELD_PATTERNS) {

if (!field.hasClassName(pattern)) continue;

if (!FIELD_PATTERNS[pattern].test(value)) return false;

}

return true;

}

Related Tasks

• Task 21, Validating Forms: The Basics, on page 64
• Task 23, Validating Forms: The Whole Nine Yards, on the following
page

http://media.pragprog.com/titles/pg_js/code/form/validation102/index.html
http://media.pragprog.com/titles/pg_js/code/form/validation102/validation102.js

VALIDATING FORMS: THE WHOLE NINE YARDS 68

23 Validating Forms: The Whole Nine
Yards

The two previous tasks—Task 21, Validating Forms: The Basics, on page 64
and Task 22, Validating Forms: Going Further, on page 66—dealt with
required fields and text input pattern checking. We now need to ping the
server side for more up-front checking.
This is our first use of Ajax in this book, an area of JavaScript that can be
troublesome to debug. If you haven’t yet, read through Appendix B, on
page 102, before going on; the information there will, ideally, prove
invaluable when you try to troubleshoot or tweak event- or Ajax-driven code.
The poster child of Ajax form validation is unique fields. Most often, this is
about logins and email addresses. We’ll implement such a check here for a
login field, assuming our application mandates having logins that are unique
across all users.
An important facet of Ajax validations is on-the-fly UI feedback, with
behaviors such as check-in-progress and check-result indicators. So, our
markup must plan for these UI elements. On a higher level, you must also
decide, perhaps on a per-field basis, what triggering behavior you’re looking
for. Should you check input as it’s typed (using high-frequency field
monitoring) or once it’s typed (using change events)? In this example, I went
with the former option, implying Prototype’s Field.Observer mechanism,
which I set with a 0.8" interval23 so as not to strain slow typists too much.
Our check starts by ignoring empty or one-letter inputs, assuming our system
requires logins to be at least two characters long (so checks on shorter text
would be useless). Then it fires up an Ajax GET request to a server-side
checking script and relies on the HTTP response code (2xx = success;
anything else is failure, with a special check that status is filled in, because
Opera ignores many 4xx codes) to update the feedback UI appropriately.
I also put a tiny server-side pseudo-check code in there. It simulates
Internet-connection latency so you can see the spinner now and then, and it
returns appropriate HTTP response codes, depending on whether the login
you typed is already known or not.

23. Yes, my geeky friends, I could have said “a 1.25Hz frequency.”

VALIDATING FORMS: THE WHOLE NINE YARDS 69

Mark up the login field.

Download form/validation_ajax/index.html

<p>

<label for="user_login">Login*</label>

<input type="text" name="user[login]" id="user_login"

class="required text" />

</p>

Watch the login.

Download form/validation_ajax/validation_ajax.js

document.observe('dom:loaded', function checkLogin() {

var feedback = $('user_login').next('.feedback'),

spinner = $('user_login').next('.spinner');

new Field.Observer('user_login', 0.8, function(_, value) {

if (value.length < 2) return;

feedback.hide(); spinner.show();

new Ajax.Request('check_login.php', {

method: 'get', parameters: { login: value },

onComplete: function(res) {

if (Ajax.activeRequestCount > 1) return;

if (res.request.success() && res.status) {

feedback.update('Login available!').removeClassName('ko');

} else {

feedback.update('Login taken!').addClassName('ko');

}

spinner.hide(); feedback.show();

},

});

});

});

Simulate the login.

Download form/validation_ajax/check_login.php

<?php

sleep(rand(5, 10) / 10.0); // Simulate intarwebs delay...

$RESERVED = array('bob', 'doudou', 'tdd', 'meshak', 'ook');

$login = isset($_GET['login']) ? $_GET['login'] : '';

$response = in_array($login, $RESERVED) ? '422 Conflict' : '202 Accepted';

header('HTTP/1.1 ' . $response);

?>

http://media.pragprog.com/titles/pg_js/code/form/validation_ajax/index.html
http://media.pragprog.com/titles/pg_js/code/form/validation_ajax/validation_ajax.js
http://media.pragprog.com/titles/pg_js/code/form/validation_ajax/check_login.php

PROVIDING ON-THE-FLY HELP TOOLTIPS ON FORMS 70

24 Providing On-the-Fly Help Tooltips on
Forms

Sometimes we put complex forms online. Fields have advanced semantics or
nontrivial input rules. For instance, we may enforce complexity
requirements on password fields, in which case it’s best practice (and just
plain polite) to warn our users up front. But when multiple fields require
detailed warnings and instructions, our forms can get cluttered.

A useful approach is to put such details in per-field tooltips and make them
visible only when needed—when the field has focus. In short, it’s a
form-related variation on what we did in Task 12, Pulling Off Classy
Tooltips, on page 44.
Note that the best place for it would be inside the labels, not just in the same
paragraph. This way, such information is available to, say, blind users
regardless of their screen reader’s current mode.
Styling—especially in terms of positioning the tooltips—is very important to
this task, so I show a bit of CSS on the facing page. But that’s admittedly a
trivial example. It can be enhanced, both code-wise and performance-wise, if
you use a library that simulates bubbling for the focus and blur events, so
you don’t have to explicitly register event listeners for every relevant field.
At the time of this writing, the latest jQuery does this out of the box, and
you’ll find more or less official plug-ins for your most popular JavaScript
frameworks to fit the same bill.

PROVIDING ON-THE-FLY HELP TOOLTIPS ON FORMS 71

Put tooltips where they’re useful.

Download form/tooltips/index.html

<p>

<label for="user_login">

Login*

Logins must be unique, at least 3 characters long,

and may only use letters, numbers, white space,

hyphens, underscores and periods.

</label>

<input type="text" id="user_login" name="user[login]"

class="required text" />

</p>

Style for uniform, clean appearance.

Download form/tooltips/tooltips.css

#registration label { float: left; width: 6em; position: relative; zoom: 1; }

#registration input.text { width: 14em; }

#registration .tooltip {

display: block; position: absolute; left: 24em; top: 0;

padding: 0.35em 0.5em 0.35em 2em; width: 15em;

border: 1px solid silver;

color: gray; font-size: 80%;

background: #ffc url(lightbulb.png) 0.5em 0.3em no-repeat;

}

Show on focus, hide on blur.

Download form/tooltips/tooltips.js

document.observe('dom:loaded', function() {

var attr = Prototype.Browser.IE ? 'htmlFor' : 'for';

function showTooltip() {

var tooltip = $$('label['+attr+'="'+this.id+'"] .tooltip').first();

tooltip && tooltip.show();

}

function hideTooltip() {

var tooltip = $$('label['+attr+'="'+this.id+'"] .tooltip').first();

tooltip && tooltip.hide();

}

$('registration').getInputs().invoke('observe', 'focus', showTooltip).

invoke('observe', 'blur', hideTooltip);

});

http://media.pragprog.com/titles/pg_js/code/form/tooltips/index.html
http://media.pragprog.com/titles/pg_js/code/form/tooltips/tooltips.css
http://media.pragprog.com/titles/pg_js/code/form/tooltips/tooltips.js

AUTOCOMPLETING INPUT AS IT’S TYPED 72

25 Autocompleting Input As It’s Typed

What’s even better than validating input before it’s sent to the server?
Validating input as the user types! By matching users’ ongoing input against
a database of valid/useful inputs, we can make suggestions that not only help
them correct, say, spelling errors, but also save them from manually typing
long stuff that is common enough to show up in our suggestions list.

This is traditionally referred to as autocompletion. The only question is
whether your reference datasource is prefetched on the client side (as a
simple Array or perhaps a more richly structured object, such as a JSON
literal) or is stored on the server, repeatedly queried as typing progresses.
Here’s a good rule of thumb: if your datasource is small enough (such as a
reference list of states, currencies, or model names within a single brand),
prefetch it inside the script (for instance, generate the JavaScript literal for it
when rendering the page). Otherwise, go Ajax, and be sure to tune the query
frequency so you get good user experience even with slow connections or
quick typists.
Script.aculo.us 1.8 has a good autocompletion control with a ton of
customization options, which we’ll use here, along with its Prototype
substrate. Depending on your datasource location, you go with either
Autocompleter.Local or Ajax.Autocompleter. (I know, the naming isn’t
very consistent; sorry about that.) In the first case, you just specify your
datasource Array and can tweak match behavior with a handful of options
(fullSearch, partialSearch, partialChars, and ignoreCase). In the Ajax
case, you provide the base URI and regular Ajax-related options, including
extra parameters to send.

AUTOCOMPLETING INPUT AS IT’S TYPED 73

Mark up a field for autocompletion.

Download form/autocompletion/index.html

<div class="p" id="local">

<label for="edtCachedSearch">Local search:</label>

<input type="text" id="edtCachedSearch" name="search" type="text" />

<div class="completions"></div>

</div>

Style for readability.

Download form/autocompletion/autocompletion.css

.completions {

border: 1px solid silver; background: white; font-size: 80%; z-index: 2;

}

.completions ul { margin: 0; padding: 0; list-style-type: none; }

.completions li { line-height: 1.5em; white-space: nowrap;

overflow: hidden; }

.completions li.selected { background: #ffa; }

.completions strong { color: green; }

Autocomplete from a client-side datasource.

Download form/autocompletion/autocompletion.js

var FREQUENT_SEARCHES = [

'JavaScript', 'JavaScript frameworks', 'Prototype', 'jQuery', 'Dojo',

'MooTools', 'Ext', 'Ext JS', 'script.aculo.us', 'Scripty2', 'Ajax',

'XHR', '42'

];

function initLocalCompletions() {

var field = $('edtCachedSearch'), zone = field.next('.completions');

new Autocompleter.Local(field, zone, FREQUENT_SEARCHES,

{ fullSearch: true });

}

Autocomplete with Ajax.

Download form/autocompletion/autocompletion.js

function initAjaxCompletions() {

var field = $('edtAjaxSearch'), zone = field.next('.completions');

new Ajax.Autocompleter(field, zone, 'autocomplete.php', {

method: 'get', paramName: 'search' });

}

Related Tasks

• Task 23, Validating Forms: The Whole Nine Yards, on page 68

http://media.pragprog.com/titles/pg_js/code/form/autocompletion/index.html
http://media.pragprog.com/titles/pg_js/code/form/autocompletion/autocompletion.css
http://media.pragprog.com/titles/pg_js/code/form/autocompletion/autocompletion.js
http://media.pragprog.com/titles/pg_js/code/form/autocompletion/autocompletion.js

USING DYNAMIC MULTIPLE FILE UPLOADS 74

26 Using Dynamic Multiple File Uploads

The file upload feature currently built into HTML (as in, pre-HTML5)
basically blows. It’s single-file, it has no upload progress feedback, it cannot
filter on size or file type constraints, and so on. And it uses Base64 encoding,
which means every file sent is blown up by 33 percent. Unless we use stuff
like WebSockets or SWFUpload, we are stuck with most of these limitations.
However, we can improve the user experience a bit by letting users pick
multiple files in a nice way. When I say “nice” here, I basically mean
“without as many visible file controls as there are files.” I like how 37signals
presents lists of files-to-be-uploaded in their products: a flat, icon-decorated
list of filenames with the option to remove them from the upload “queue.”

The trick is to clone the file field every time its value is set, move the original
file field—hidden—in the “queue,” and reset the clone’s value so the field
appears blank again. The facing code uses a for the queue,
synthesizing a to hold the file field, filename, and removal icon every
time a file is selected. It just feels nicer that way. The next great step would
be to exert more control of the input (multiple files at once, size/type
constraint enforcement, and so on), but that just isn’t possible with the
current <input type="file" >; go look up SWFUpload for such nifty features.
The final bit of script shown here gets CSS class names from file extensions
using a nice little mapping and handles queue item removal when links in
the queue are clicked.

USING DYNAMIC MULTIPLE FILE UPLOADS 75

Create the initial markup for your form.

Download form/uploads/index.html

<form method="post" action="server.php" enctype="multipart/form-data">

<ul id="uploads">

<p><input type="file" name="files[]" id="filSelector" /></p>

<p><input type="submit" value="Send these files" /></p>

</form>

Queue up file uploads.

Download form/uploads/uploads.js

function queueFile() {

var fileName = $F(this), clone = this.cloneNode(true);

var item = new Element('li', { 'class': getFileClass(fileName) });

$(clone).observe('change', queueFile).setValue('');

this.parentNode.appendChild(clone);

item.appendChild(this);

item.appendChild(document.createTextNode(fileName));

item.insert('<button></button>');

$('uploads').appendChild(item);

}

document.observe('dom:loaded', function() {

$('filSelector').observe('change', queueFile);

$('uploads').observe('click', handleQueueRemoval);

});

Add some flair: per-extension styling and queue removal.

Download form/uploads/uploads.js

var ICONS = $H({ word: $w('doc docx'), image: $w('jpg jpeg gif png') });

function getFileClass(fileName) {

var ext = (fileName.match(/\.(.+?)$/) || [])[1].toString().toLowerCase();

var icon = ICONS.detect(function(pair) { return pair[1].include(ext); });

return (icon || [])[0];

}

function handleQueueRemoval(e) {

var trigger = e.findElement('button');

trigger && trigger.up('li').remove();

}

http://media.pragprog.com/titles/pg_js/code/form/uploads/index.html
http://media.pragprog.com/titles/pg_js/code/form/uploads/uploads.js
http://media.pragprog.com/titles/pg_js/code/form/uploads/uploads.js

Part V

Talking with the Server Side

TALKING WITH THE SERVER SIDE 77

The previous part showed us, among other things, how we could

go about validating as much input as we could on the client side.

It also started dipping into server-provided data for more involved

validations, completions, and so on. Most web apps rely on a back

end to do their thing; how they “talk” with that back end is the topic

of this part.

• We’ll first talk about cookies, one of the earliest ways of per-

sisting state across requests, allowing us to create a session of

navigation for our users so we can remember what they’ve

done, remember who they are, and so on. This is covered in

Task 27, Reading/Writing Cookies. Permanent cookies, stored

on the user’s disk, let us “remember” them across visits, too,

which can have useful applications. Unfortunately, native

cookie manipulation in JavaScript is rather poor; we’ll see how

to deal with them more easily.

• We’ll then focus on the Big Boy of Web 2.0 applications and

services: Ajax. First, we’ll cover the basics of how to talk with

our server without reloading the page; this is in Task 28, Load-

ing Stuff Through Ajax (Same Domain).

• Then we’ll get a good look at JSON in Task 29, Using JSON,

and its cousin JSON-P in Task 30, Using JSON-P. These are a

great way of exchanging data between a JavaScript-driven

client and any server (so much easier to wield than XML).

• Finally, as an opening path toward mashups, we’ll cover most

of the (numerous) ways of talking with third-party services

located on domains other than ours. This is available in Task

31, Cross-Domain “Ajax” (Take 1), and Task 32, Cross-Domain

“Ajax” (Take 2).

Debugging Ajax or JSON-P calls can be pretty tricky. If you haven’t

read through it yet, be sure to check Appendix B, on page 102.

You’ll get all the tools you need there to comfortably pry into what-

ever client-server exchanges your code is doing; there’s just no point

in needlessly wasting hours and pulling your hair.

READING/WRITING COOKIES 78

27 Reading/Writing Cookies

Directly tweaking cookies on the client side is often useful. We can use them
to spare our users the need to redefine their settings at every page load by
persisting stuff such as pagination size, active tab (in a tabbed UI) across
post-and-redirect, collapsed/expanded nodes in a tree, and so on.
Regardless of how we set up these cookies (in scope or expiry), the only
native interface to the cookie subsystem we get is the “DOM Level 0”
document.cookie property. This property acts as a getter when read and as
a setter/deleter when written to. Unfortunately, it didn’t go out of its way to
provide a neat interface for individual cookie settings. It feels like we’re
reading and writing raw HTTP headers!
So, to spare us this tedium, most frameworks provide, either directly or
through well-known plug-ins, more comfortable access to cookies. Cookie
management is a small enough matter, though, that you should not have to
depend on a framework for it. Even if you do use a framework
already—which you should!—and it has cookie-related features, you may
not like its API for it.
That’s why, as I show on the facing page, I wrote a stand-alone cookies
JavaScript helper. It does not require any framework and attempts to provide
a handy API (especially when it comes to options). It’s well tested and
documented; you may want to give it a shot!
Finally, you should keep in mind a few facts about cookies:

• They reside on the client side, so they’re pretty much naked in the
wild. You should never put sensitive data in there, unless you’re
encrypting and tamper-proofing them in some robust way.

• They’re severely limited in size (4KB) and should therefore not be
used for storing large items of data (such as history, complex cart
contents, text drafts, and so on).

• They might not be available, although this is a very rare phenomenon.
What’s a bit more frequent, however, is for set-expiry cookies not to
persist across sessions, because of security policies in the browser
(either because of company security policies or because your user
configured their browser that way out of privacy concerns).

So, try to use cookies only for extra comfort, especially persistent cookies.

READING/WRITING COOKIES 79

Use frameworks or plug-ins.

// jQuery Cookies plug-in (http://code.google.com/p/cookies/)

$.cookies.set(key, value[, options])

$.cookies.get(key)

$.cookies.filter(nameRegExp)

$.cookies.del(key[, options])

$.cookies.test()

// MooTools

Cookie.write(key, value[, options])

Cookie.read(key)

Cookie.dispose(key[, options])

// YUI 2 Cookie Utility

YAHOO.util.Cookie.set(name, value[, options]);

YAHOO.util.Cookie.get(name[, typeOrDecoderCallback]);

YAHOO.util.Cookie.remove(name[, options]);

// YUI >= 3

Y.Cookie.set(name, value[, options]);

Y.Cookie.get(name[, typeOrDecoderCallback]);

Y.Cookie.remove(name[, options]);

// Dojo

dojo.cookie(name, value[, options])

dojo.cookie(name)

dojo.cookie(name, null, { expires: -1 });

// Ext

Ext.util.Cookies.set(name, value[, expires][, path][, domain][, secure])

Ext.util.Cookies.get(name)

Ext.util.Cookies.clear(name)

Use my stand-alone cookies.js helper.

// Helper available at http://github.com/tdd/cookies-js-helper

Cookie.get(name)

Cookie.list([nameRegExp])

Cookie.set(name, value[, options])

Cookie.remove(name[, options])

Cookie.test()

LOADING STUFF THROUGH AJAX (SAME DOMAIN) 80

28 Loading Stuff Through Ajax (Same
Domain)

Performing an Ajax request, especially on the same domain as the current
page, is such a fundamental building block of today’s web applications that I
have to mention how to do it in all major frameworks. However, I could not
possibly hope to fit all the details in this one page or even in ten pages. Every
framework provides a host of options, settings, and tweaks around Ajax
behavior that take a lot of space to cover.
So, I’ll just point you in the right direction with the generic signatures on the
facing page and provide a few avenues of further exploration:

• All frameworks let you send Ajax requests using any of the four basic
HTTP verbs—GET, POST, PUT, and DELETE—and tweaked HTTP
headers, so you can interact smoothly with, say, REST services.

• All frameworks provide a number of callbacks—so you can apply
custom processing to the Ajax response or pitch in during the request
life cycle (start, success/failure, completion, and so on). Common
Ajax response formats such as JavaScript, JSON, JSON-P, XML, and
HTML often enjoy built-in, automatic decoding (and sometimes
automatic processing, especially for JavaScript and JSON-P).

• Several frameworks let you specify general defaults for Ajax options
(for instance, jQuery has $.ajaxDefaults) and register global callbacks
(commonly used to maintain a single Ajax indicator—such as the
famous “spinner”—across all Ajax requests in the page, for example).

• A number of frameworks provide special shortcuts for “Ajaxifying”
forms, either using the HTML-mandated serialization for them or
letting you tweak it. For instance, YUI 3 has a form option, and
Prototype equips <form> elements with a request() shortcut.

• Each framework provides a few bits of specific functionality, such as
file uploads capability, HTTP basic authentication support, reentrance
control and request chaining, response caching, and more.

• You should always make sure to provide useful behavior for both
success and failure of your Ajax calls. The failure case is too often
ignored or poorly handled.

A final piece of advice: using Ajax requests in synchronous mode is roughly
equivalent to summoning a vicious demon right in your web page. If you
want synchronous, own up to it and just go for a regular page reload!

LOADING STUFF THROUGH AJAX (SAME DOMAIN) 81

Make a simple Ajax request.

// Prototype

new Ajax.Request(url[, options])

new Ajax.Updater(container, url[, options])

// jQuery

$.ajax([settings])

// MooTools

new Request([options])

// YUI < 3

YAHOO.util.Connect.asyncRequest(method, url, callback, postData)

// YUI >= 3

Y.io(url[, config])

// Dojo

dojo.xhrGet(settings) // or xhrPost, xhrPut, xhrDelete.

// ExtJS

Ext.Ajax.request(settings)

Use more involved, Prototype-based features, for a taste.

Ajax.Responders.register({

onCreate: function() { $('spinner').show(); },

onComplete: function() {

if (0 == Ajax.activeRequestCount)

$('spinner').hide();

}

});

new Ajax.Updater({ success: 'latestUsers' }, '/users/latest', {

method: 'get',

parameters: { mode: 'summary', threshold: 'auto' },

evalScripts: true,

onFailure: function() {

logError('We could not fetch the latest logged-in users, sorry.');

}

});

USING JSON 82

29 Using JSON

Using JSON has become over the past few years the preferred way of
exchanging data between remote resources and JavaScript-based clients. The
JSON format24 is actually a subset of the literal notations allowed by
standard JavaScript. JSON has a few limitations but certainly boasts two
significant advantages over XML:

• It’s more lightweight (less verbose).
• It does not require any particular client-side technology—besides
JavaScript itself—to be interpreted and processed.

Nowadays, most server-side technologies provide facilities to encode any
eligible data structure into a JSON string and decode such strings when they
come in. Depending on your technology of choice, you may need to install
an extra library (easily found through Google), but rest assured you’re
covered with Ruby, PHP, Python, Java, ColdFusion, and ASP.NET, to name
but a few.
JSON lets you encode regular, integer-indexed arrays and associative arrays
(aka hashes, dictionaries, or maps). In the latter case, keys can be anything
(as long as they’re quoted), and values can be numbers, strings (barring some
escaping), Booleans, null, or regular/associative arrays, nested to any depth
you need. Decoding it is easy, but producing a JSON string requires some
coding, so most JavaScript frameworks do that for you. More often than not,
they also provide JSON-specific behavior for Ajax requests, as an extra
convenience.
Note that JSON is supposed to be reasonably secure, which is why it doesn’t
serialize functions. A valid JSON string always boils down to an inert object
literal that, when run/interpreted, cannot do any harm by itself. However, if
what you get is not a valid JSON string—and embeds a malicious function
call—you’re at risk. This is why most JSON-parsing features offer an option
to check/sanitize the string before running it.
This book’s code features an example page that fetches a JSON system info
object through Ajax and populates a table row with it, using a couple neat
tricks. You should check it out!
One of the main ways to use JSON these days is a small trick called JSON-P,
which results in passing a JSON object to a callback function predefined in a
script. You’ll learn more about that in the next task.

24. As defined on http://www.json.org/

http://www.json.org/

USING JSON 83

Decode/encode a JSON string barehanded.

// Fast but only as secure as jsonString

var data = eval('(' + jsonString + ')');

// Native JSON support or json2.js; more secure

var data = JSON.parse(jsonString);

JSON.stringify(obj); // Native JSON support

Decode/encode a JSON string with frameworks.

// Prototype has toJSON() instance methods plus these:

Object.toJSON(obj)

someJsonString.evalJSON([sanitize = false])

// jQuery

$.parseJSON(someJsonString)

// Mootools

JSON.decode(someJsonString[, secure = false])

JSON.encode(obj)

// YUI

Y.JSON.parse(someJsonString)

Y.JSON.stringify(obj)

// Dojo

dojo.fromJson(someJsonString)

dojo.toJson(obj[, prettyPrint = false])

// Ext

Ext.util.JSON.decode(someJsonString)

Ext.util.JSON.encode(obj)

Related Tasks

• Task 30, Using JSON-P, on the next page

USING JSON-P 84

30 Using JSON-P

Using JSON-P is the predominant way to get remote, structured data into a
JavaScript-based client. The main transport for it relies on dynamically
generated <script> tags, and this has an interesting side effect: the transport
is not restricted by the same-origin policy. A growing number of web
services and APIs (especially the RESTful ones) provide a JSON output
format and JSON-P support.
The simple idea behind it is this: you get back a JavaScript source that passes
a regular JSON literal to a callback function you provided. This means that
the callback function was defined beforehand by your own code and made
globally available (which is not so great, but we can’t work around that).
Now, depending on your mind-set and how much you can trust the remote
resources you intend to use with JSON-P, this can be either a relief (this is a
great way of emulating cross-domain Ajax) or a concern (JSON-P
essentially runs JavaScript generated by a third-party in your page).
If you’re targeting your own server and resources, you’re in the clear, and it’s
all rainbows and unicorns. But if you’re targeting third-party resources you
do not entirely trust, there could be trouble. Because of the mechanism
involved (a <script> tag), you cannot preparse the returned JavaScript to
make sure it’s a safe JSON-P callback invocation. To get that intermediary
step, you’d have to use actual Ajax to get the script, which won’t work on all
browsers for a third-party resource, as we’ll see in the next task.
At any rate, measuring trustworthiness and reliability of your remote
JSON-P providers is up to you.
I should point out that the transport we’re using—dynamic <script>
tags—restricts JSON-P to GET requests and, consecutively, to payloads at
about 4KB (a traditional GET limitation). Although there’s no magic cure
for the latter, with some help from the server side, we can easily turn a GET
request into anything else, as we’ll see in Task 32, Cross-Domain “Ajax”
(Take 2), on page 88.

USING JSON-P 85

Implement JSON-P with bare-bones code.

In its simplest form, it just goes like this:
Download server/jsonp/jsonp.js

document.documentElement.firstChild.appendChild(

new Element('script', { type: 'text/javascript',

src: this.href + '&r=' + Math.random() }));

The previous code executes in the context of a link click handler, so this is
the <a> element being activated.
The random parameter is there to circumvent browser caching; in production
code, you’d check the URI to decide whether to prefix it with & or ?.
A more advanced way is to use dynamic id= attributes for such scripts and
remove them post-load to avoid flooding the DOM. The dynamic id= can
double as random parameter:
Download server/jsonp/jsonp.js

var script = new Element('script', { type: 'text/javascript',

src: this.href });

script.src += ('&r=' + script.identify());

script.observe('load', Element.remove.curry(script));

document.documentElement.firstChild.appendChild(script);

Use JSON-P facilities from frameworks.

A few frameworks provide functions, specific to JSON-P, that can always
come in handy:
// jQuery

$.getJSON(url[, data][, callback])

// Mootools

new Request.JSONP({ url: ..., onComplete: function(data) {...} })

// Dojo

dojo.io.script.get({ url: ..., jsonp: function(data) {...} })

Related Tasks

• Task 29, Using JSON, on page 82
• Task 32, Cross-Domain “Ajax” (Take 2), on page 88

http://media.pragprog.com/titles/pg_js/code/server/jsonp/jsonp.js
http://media.pragprog.com/titles/pg_js/code/server/jsonp/jsonp.js

CROSS-DOMAIN “AJAX” (TAKE 1) 86

31 Cross-Domain “Ajax” (Take 1)

Sending data to, or retrieving it from, third-party services is an increasingly
common need. In this time of mashups, we routinely need our web pages to
communicate with service and content providers, ideally without taxing our
own servers in the process.
There are a number of approaches to loading stuff behind the scenes, across
domains. I’m going to show you the more important ones and stick to
reliable stuff; that should be plenty enough for your actual use cases.
Let me describe the lay of the land real quickly:

• A so-called server-side proxy will work every time, for every URL. If
that works for you, you should do it. You might need a number of
tweaks if you play with file uploads, content types, POST requests,
and the like (always sanitize and check incoming requests, though;
you don’t want to unwittingly become a spam gateway).

• The future lies with cross-origin resource sharing (CORS), the W3C
spec for cross-domain requests, which XHR2 uses.25 Currently,
however, this works only on Firefox 3.5+, Safari 4+, and Chrome. IE8
implements the basics (GET only, no custom headers, no credentials,
and so on) but requires you to use a custom object, XDomainRequest.

• If both these approaches are unavailable, then your ticket is either
JSON-P or dynamic/hidden forms and <iframe>s.

• There’s no magic bullet for POSTing complex contents to another
domain without using a server-side proxy. There are half-solutions
(see the next task) but no one-size-fits-all solution.

On the facing page, the book’s code for this task illustrates a nice CORS
approach (no extra code needed; just use XMLHttpRequest), a server-side
proxy approach, and two dynamic approaches based on form and, for one of
them, <iframe> (one returns a 204 response code, which lets us skip the
hidden <iframe> target because the browser won’t attempt to navigate).
I should stress that you should only bother with forms and <iframe>s if you
don’t want to rely on external services; otherwise, YQL (reviewed in the
next task) is definitely your ticket.

25. Check out https://developer.mozilla.org/en/HTTP_access_control for more details on CORS
and XHR2.

https://developer.mozilla.org/en/HTTP_access_control

CROSS-DOMAIN “AJAX” (TAKE 1) 87

Use a CORS-compliant XMLHttpRequest.

Download server/crossdomain1/crossdomain1.js

new Ajax.Updater({ success: 'responses' }, this.href, {

method: 'get', insertion: 'bottom'

});

Use a server-side proxy (from the current domain).

Download server/crossdomain1/crossdomain1.js

new Ajax.Updater({ success: 'responses' }, 'ssp.php', {

method: 'get', parameters: { uri: this.href }, insertion: 'bottom'

});

Use a dynamically generated form and <iframe>.

Download server/crossdomain1/crossdomain1.js

var warp = new Element('iframe', { name: '__blackhole' });

warp.setStyle('width: 0; height: 0; border: 0');

document.body.appendChild(warp);

warp.observe('load', function() {

$('responses').insert('<p>OK, posted.</p>');

});

var form = new Element('form', { method: 'post', action: this.href,

target: '__blackhole' });

form.submit();

Use a dynamically generated form on a 204 resource.

Download server/crossdomain1/crossdomain1.js

var form = new Element('form', { method: 'post', action: this.href });

form.submit();

Element.insert.defer('responses', '<p>OK, posted.</p>');

Related Tasks

• Task 32, Cross-Domain “Ajax” (Take 2), on the next page

http://media.pragprog.com/titles/pg_js/code/server/crossdomain1/crossdomain1.js
http://media.pragprog.com/titles/pg_js/code/server/crossdomain1/crossdomain1.js
http://media.pragprog.com/titles/pg_js/code/server/crossdomain1/crossdomain1.js
http://media.pragprog.com/titles/pg_js/code/server/crossdomain1/crossdomain1.js

CROSS-DOMAIN “AJAX” (TAKE 2) 88

32 Cross-Domain “Ajax” (Take 2)

There are a few other ways to access other-domain, remote contents behind
the scenes. For starters, you can use our trusty JSON-P friend. One
interesting use of JSON-P—to access a treasure trove of services, APIs, and
contents—is the YQL service by Yahoo! YQL lets you read (and sometimes
write to) data tables that map onto just about every possible resource you
could dream of: well-known websites and services (search, maps,
geolocation, social networks, Flickr, music data, weather, feeds and
microformats, and so on). If you haven’t played with it yet, head over there
now.26
When it comes to accessing a random resource and returning its raw HTML
response, YQL provides two awesome “tables” named html and htmlpost
(the latter one is a community table provided by Chris Heilmann and is
hence full of win). These let you GET or POST to an HTML-returning
resource and will even extract contents for you based on an XPath selector!
I also want to mention a rather nifty approach, dubbed CSSHttpRequest. It
does require a server side, though. This relies on the data: URI scheme to
embed random contents inside special-name CSS rules. Because CSS files
are not subject to the same-origin policy, this works. A small open source
library provides the CSSHttpRequest JavaScript object and also server-side
code for Ruby, Python, and PHP (which are fairly easy to adapt to other
languages). You can get the details online.27
The code example for this task in the book’s codebase lets you play with all
the approaches listed previously.
I’ll wrap up with two ways I intentionally didn’t include here so you won’t
say I forgot them. (Ha!) First, you could use a Flash bridge; although this
requires some form of CORS information on the server side, there’s a library
called flXHR that makes this a snap. But Flash is a proprietary technology
that I happen to dislike, and even this aside, loading Flash for this is way
overkill.
Finally, you could also use a “web bug,” a server-side call to a dynamically
selected image, through a regular tag (that you would generate with
your script). The thing is, the only response you can derive is based on the
image dimensions, and properly detecting these after load is, surprisingly, a
can of worms. Balancing how limited the response is versus how much
jumping-through-flames is required, I avoid this technique.
26. http://developer.yahoo.com/yql/
27. http://nb.io/hacks/csshttprequest

http://developer.yahoo.com/yql/
http://nb.io/hacks/csshttprequest

CROSS-DOMAIN “AJAX” (TAKE 2) 89

Use plain old JSON-P.

window.jsonpCallback = function jsonpCallback(data) {

$('responses').update(data.payload.escapeHTML());

};

document.documentElement.firstChild.appendChild(

new Element('script', { type: 'text/javascript',

src: this.href + '?r=' + Math.random() + '&callback=jsonpCallback' }));

Use the YQL html table with JSON-P-X.

function yqlCallback(data) {

// data.results is an array of matching elements' HTML fragments.

};

var url = "http://github.com/languages/Ruby/updated",

xpath = "//*[@class='title']",

yql = 'select * from html where url="'+url+'" and xpath="'+xpath+'"',

data = { q: yql, format: 'xml', callback: 'yqlCallback' };

document.documentElement.firstChild.appendChild(

new Element('script', { type: 'text/javascript',

src: 'http://query.yahooapis.com/v1/public/yql?' +

Object.toQueryString(data) + '&r=' + Math.random() }));

Use the YQL htmlpost table with JSON-P.

function yqlCallback(data) {

// data.query.results.postresult.p == array of matching elements' contents.

};

var yql = 'use "http://datatables.org/data/htmlpost.xml" as htmlpost;\

select * from htmlpost\

where url="http://demos.pocketjavascript.com/server/jsonp/postdemo.php"\

and postdata="foo=foo&bar=bar" and xpath="//p"',

data = { q: yql, format: 'json', callback: 'yqlCallback' };

document.documentElement.firstChild.appendChild(

new Element('script', { type: 'text/javascript',

src: 'http://query.yahooapis.com/v1/public/yql?' +

Object.toQueryString(data) + '&r=' + Math.random() }));

Use CSSHttpRequest.

CSSHttpRequest.get(this.href, function(res) {

$('responses').insert('<p>' + res.escapeHTML() + '</p>');

});

Related Tasks

• Task 31, Cross-Domain “Ajax” (Take 1), on page 86
• Task 30, Using JSON-P, on page 84

Part VI

Making Mashups

MAKING MASHUPS 91

The final part of this book covers concrete examples of making your

own web page, located on your own domain, talk with third-party

services. There won’t be any custom server proxy or XML in here, just

JSON-P and YQL, so this code is self-contained and works anywhere!

However, you may find only the juicy bits in the code pages of this

book. Sometimes a few finishing touches are required to wrap the

demo. So, be sure to check these in the source code archive28 or

the live demo site29 to see how it all fits together.

• Syndicating your Twitter feed on a web page is a common

feature nowadays, and doing it on the client side can help

when you otherwise heavily cache the hosting page. Task 33,

Syndicating Your Twitter Updates, has you covered.

• Slapping your recent Flickr photo uploads in a page block

somewhere is equally common and is explained in Task 34,

Syndicating Your Flickr Updates.

• The third task, Task 35, Geocoding a Location and Getting

Photos For It, explores an increasingly important aspect of the

Web: geocoding (not to be confused with geolocation, which

is also an important emerging trend but will only work on the

latest, bleeding-edge browsers). Essentially, it’s about turning

place names and addresses into actual geographic coordi-

nates so you can pinpoint them on a map, put them in relation

with other data (say, photos from Flickr or tweets!), and create

all sorts of useful mashups tying multiple datasets together. The

Web and its data are more hackable today than they ever

were, and there is enormous potential in what we can do with

this!

28. http://pragprog.com/titles/pg_js
29. http://demos.pocketjavascript.com/

http://pragprog.com/titles/pg_js
http://demos.pocketjavascript.com/

SYNDICATING YOUR TWITTER UPDATES 92

33 Syndicating Your Twitter Updates

Fetching your recent tweets is a piece of cake, as is using most of Twitter’s
API. It’s just a simple JSON-P call, really!
We won’t fetch retweets, mentions, or whatnot here. This is because most
Twitter syndication happens in a business context, where your Twitter
account is used as an extra marketing channel and you’re not interested
much in showing retweets, replies, or mentions alongside your own
messages. Moreover, the Twitter API does not provide a straightforward way
to grab, say, retweets alongside tweets—you’d need two separate calls, one
of them authenticated, which means that authentication to your own account
would be available on the client side in your visitors’ browsers. And we
don’t want that. (The other option is syndication on the server side, which
falls outside the scope of this book.)
In the code on the facing page, the actual fetching takes only a couple of
lines, in the loadTwitterStream() method. Twitter gives you read access to
any username’s direct tweets through a URL,30 and we’re interested in a
JSON format here.
What you get back is an array of tweet objects with a wealth of properties,
such as created_at, geo, in_reply_to_status_id, source, and text.31
The twitterCallback() function on the facing page illustrates simple tweet
formatting: linking up a reply mention and URLs in general. In the online
example code for this task, you’ll get an augmented version that also handles
hash tags and mentions and shows author information (avatar, name, tweet
count, and so on).
Before you do too much with Twitter’s API, you should go through Twitter’s
nice API documentation32 and also be careful about rate limits enforced on
parts of the API to avoid overtaxing the system as your usage scales up.

30. http://twitter.com/statuses/user_timeline/username.format
31. You’ll get full details at http://apiwiki.twitter.com/Return-Values.
32. http://apiwiki.twitter.com/

http://twitter.com/statuses/user_timeline/username.format
http://apiwiki.twitter.com/Return-Values
http://apiwiki.twitter.com/

SYNDICATING YOUR TWITTER UPDATES 93

Fetch your recent tweets.

The following code relies on Prototype for a few things ($(), each(),
escapeHTML(), insert()...) but is readily convertible to other frameworks.
Download mashups/twitter/twitter.js

var REGEXP_URL = new RegExp('(https?://.*?)(\\W?(?:\\s|$))', 'gi');

function twitterCallback(data) {

var stream = $('twitterStream'), replyTo, contents;

data.each(function(tweet) {

contents = tweet.text.escapeHTML().replace(REGEXP_URL,

'$1$2');

if (replyTo = tweet.in_reply_to_screen_name) { // Intentional assign

contents = contents.replace('@' + replyTo,

'<a href="http://twitter.com/' + replyTo + '/statuses/' +

tweet.in_reply_to_status_id + '">$&');

}

contents = '<p>' + contents + '</p>' +

'<p class="stamp">' + tweet.created_at + '</p>';

stream.insert(contents);

});

}

function loadTwitterStream(userName) {

var uri = 'http://twitter.com/statuses/user_timeline/'+userName+'.json';

document.documentElement.firstChild.appendChild(

new Element('script', { type: 'text/javascript',

src: uri + '?callback=twitterCallback&r=' + Math.random() }));

}

Check out part of a JSON-encoded tweet.

(Actual returned datasets are far more detailed, and URLs are obviously not
truncated—this is just to give you an idea.)
{

"in_reply_to_screen_name": null,

"user": {

"friends_count": 27, "statuses_count": 622,

"name": "ChristophePorteneuve",

"followers_count": 215,

"profile_image_url": "http://a3.twimg.com/.../headshot_tdd_normal.jpg",

},

"id": 9537162839, "created_at": "Tue Feb 23 18:35:22 +0000 2010",

"in_reply_to_status_id": null,

"text": "15' pour 850m. Sympa av Saint-Ouen + av Clichy aux heures de..."

}

http://media.pragprog.com/titles/pg_js/code/mashups/twitter/twitter.js

SYNDICATING YOUR FLICKR UPDATES 94

34 Syndicating Your Flickr Updates

Flickr provides a fairly large, REST-conformant API, but its useful parts
often require authentication, which can be cumbersome and is not, at any
rate, very suitable for public-facing syndicated content.
You can get most of the useful query features more easily through YQL.
However, in this particular instance, we can just hack through the JSON
variant of the Atom feeds Flickr provides for most pages, including user
pages. The resulting dataset contains all the information we need, including
prebuilt image and profile URLs, dimensions, and publication dates. Such a
feed is limited to the latest twenty picture updates, but this remains a great fit
for “Flickr updates” syndication.
The JSON fragment on the facing page illustrates the kind of resultset we
get. We’re mostly interested in the photo thumbnail URL and date of
publication here. We could get the original dimensions and date of taking
with a bit more work, too. However, to keep things simple here, we’ll stick
to a single request and not too much tweaking.
The image URL we get targets the medium-size version of our photos, when
we want smaller, square thumbnails. We just need to change the image URL
suffix from _m to _s to fix that.
The facing code also nicely illustrates the Template class from Prototype,
which lets us efficiently produce “formatted strings” in a repeatable way.
Again, you can get more information in an unauthenticated way using the
YQL tables for Flickr (with one request for the original resultset and then
extra queries per photo for further details). And if you need to grab more
info yet, or actually update data, the API is there, too.

SYNDICATING YOUR FLICKR UPDATES 95

Fetch someone’s public photos.

Download mashups/flickr/flickr.js

var FLICKR_ENDPOINT='http://api.flickr.com/services/feeds/photos_public.gne';

var FLICKR_USER_ID ='97027332@N00'; // That's me!

var item = new Template(

'');

function jsonFlickrFeed(data) {

var stream = $('flickrStream'), d, dateStr;

data.items.each(function(photo) {

d = photo.published.split(/\D/);

dateStr = d[1] + '/' + d[2] + '/' + d[0];

stream.insert(item.evaluate({

src: photo.media.m.replace('_m', '_s'), target: photo.link,

title: 'Published on ' + dateStr + ' GMT'

}));

});

$('indicator').removeClassName('loading').update('Loaded!');

}

function loadFlickrPhotostream() {

var uri = FLICKR_ENDPOINT + '?format=json&id=' + FLICKR_USER_ID;

document.documentElement.firstChild.appendChild(

new Element('script', { type: 'text/javascript',

src: uri + '&r=' + Math.random() }));

}

Check out some of the JSON-P response.

jsonFlickrFeed({

// ...

"items": [

{

"title": "P1010071",

"link": "http://www.flickr.com/photos/97027332@N00/4105961623/",

"media": {

"m":"http://farm3.static.flickr.com/2638/4105961623_ec0ca9c164_m.jpg"

},

"date_taken": "2009-11-12T15:38:21-08:00",

// ...

"published": "2009-11-15T18:54:21Z",

// ...

},

// ...

]

})

http://media.pragprog.com/titles/pg_js/code/mashups/flickr/flickr.js

GEOCODING A LOCATION AND GETTING PHOTOS FOR IT 96

35 Geocoding a Location and Getting
Photos For It

Geolocation has become a very common need, mostly thanks to the rise of
the mobile Web, so we’re going to illustrate the two main aspects of it:

• First, turning a textual location (address, city, region or state, country)
into a geolocation (which essentially boils down to a latitude and a
longitude)33

• Second, searching data based on these geocoordinates
A lot of APIs are available, including prominent “geocoders” from Google,
Yahoo!, Geonames, and others. For our purposes, I’ll use a very simple,
straightforward, and useful tool: Yahoo’s Placemaker API and Christian
Heilmann’s JavaScript wrapper for it, JS-Placemaker. This API lets us
analyze any text to extract one or more potential geolocations for it, and
we’ll use that to turn a location name (say, something typed into a form
field) into latitude and longitude coordinates.
Like all Yahoo! Developer Network APIs, Placemaker requires a Yahoo!
AppID; the sample code on the facing page includes a working one, but you
should get your own AppIDs to play with.34 Then all you need to do is
provide the JavaScript wrapper with it and call its getPlaces() method with
the text to analyze, a callback to process the results, and optionally the text’s
locale (for instance, en-US or fr-FR) to help Placemaker analyze it correctly.
Notice a tiny trick in the code to “normalize” the resultset toward a
guaranteed array of places. Because a one-match case has a singlematch

property and a multiple-match case returns an array namedmatches, we use
a (matches || [match]) construct to access both situations as an array.
On the Flickr side of things, we just use the flickr.photos.search method with
its geo-related parameters lat and lon, through a JSON-P call very much like
in the previous task. Because we’re doing a global search here, we don’t
need to specify a user ID this time.
If you’re interested in georelated tricks and hacks that are on the client side
and JavaScript-based—including GeoIP and the W3C Geo API—you can
find a wealth of info, demos, and cool stuff on the page maintained by
evangelist extraordinaire Christian Heilmann.35

33. Often you’ll also want to use extra data such as accuracy and the resulting bounding box.
34. Get those at https://developer.apps.yahoo.com/wsregapp/.
35. http://isithackday.com/hacks/geo/

https://developer.apps.yahoo.com/wsregapp/
http://isithackday.com/hacks/geo/

GEOCODING A LOCATION AND GETTING PHOTOS FOR IT 97

Fetch geolocations for any given text.

(The following code actually assumes only the first resulting geolocation is
relevant.)
Download mashups/geo/geo.js

// Use your *own* API key for your own code :-)

var YAHOO_APPID = 'KwWEZW_V34GVYNWW0LZm6NT.' +

'XfIwNrF9ysko8qu6sDuE6SbehuptUZQp6jKF130V25hFTMrrdrbQeo4-';

function getGeoLocationFor(text) {

Placemaker.config.appID = YAHOO_APPID;

$('indicator').addClassName('loading').update('Getting geolocation for ' +

text.escapeHTML() + '...').show();

Placemaker.getPlaces(text, function(places) {

if (places.error) {

$('indicator').removeClassName('loading').

update(places.error.escapeHTML());

} else {

var loc = (places.matches || [places.match])[0].place;

$('indicator').update('Loading ' + loc.name +

' pics (' + loc.type + ')...');

getGeoPhotos(loc.centroid.latitude, loc.centroid.longitude);

}

}, 'en-US');

}

Fetch geolocated photos from Flickr.

Download mashups/geo/geo.js

// flickrCallback is very similar to the Flickr syndication task's code.

// Get full example code at http://pragprog.com/titles/pg_js/source_code

function getGeoPhotos(lat, lon) {

$('indicator').addClassName('loading').show();

var uri = FLICKR_ENDPOINT + '?' + Object.toQueryString({

method: 'flickr.photos.search', api_key: FLICKR_API_KEY,

extras: 'date_taken,url_sq,description', lat: lat, lon: lon,

per_page: 50, format: 'json', jsoncallback: 'flickrCallback'

});

document.documentElement.firstChild.appendChild(

new Element('script', { type: 'text/javascript',

src: uri + '&r=' + Math.random() }));

}

http://media.pragprog.com/titles/pg_js/code/mashups/geo/geo.js
http://media.pragprog.com/titles/pg_js/code/mashups/geo/geo.js

Part VII

Appendices

JavaScript Cheat Sheet

JAVASCRIPT CHEAT SHEET 100

���������	
���	
��	

����������	
����������������������	
������������

����������	�

�������������	�
�����������

���������������������
������	�����������
�����������������������

���	������
����������������������������������	���

�
�������������
������������

�
��������
�������

����������	
����������������

��	�	������������������� �����
�!"��������	�#

$���%�	��"�� ��	��������&�����	��"��������������������

$����������������	��� �����	�����&��������������������������������"������	���

���"''�(��������
�������������	�������

�������	��	
������������������ �

$�����������	���������"��
�"�����)���������������������*�+��!����"!"

��������
�
������������������#
$��������������������	
����������"��,�������-�����'����������������������������

$� ��	����������."���������/��0� +123������

�������������
�$$�������%%�����

4"�����	�	����
$�$$�������������������%%
$���%%�������������"�����������������"��������'����5�������������	���

$���$$�������������"������"�������

����������	�	��������	
���������������

�����������������/�����������
������������6�����������#

�������	��������
�&#'

$�7����������������������(���		��&!'������������8��
$�9���	���	�	��������������
��$���(&��	�������'�����()�	������
��$���(&����*�������'+#,�����()���*������+#,
�����������&-�
�����.��
�/��0������'+,1

���������	
�	��������/��: :,, 4��� �"����5

2���������������
2�$$������%%
2�+#,�'��������������

+!���3,���+4����,���!���3���4����
+��$$��,�%%�+5�$$��,�����$$���%%�5�$$��

�����	����	����������������
�$�%�6����������

6������;<�
��������������'�������������������������� �=����'�������

������������������

$�9���������������5�����������+#,�7�#�8
$��(�������������5����+#,�7�#�8

9����������������)�������*�������������������������'����	�����"������
���������
�������������'�����������������)����������������������*���������

$�>	���	���1>��(��������'"��������������"������"����

$�>	���	�1>��(�����������"������"������������

?"��������������!�������/�����������
��������������	��������'���������
�����������
�5��������������������������"��������'���������"����"���

�����������������������������������	�������'�������>�*�
>�/���������@���
	�������"���������������	��������������������������	�������"	����

'������������

7��"	���������������������'�������
�����!"������������)�����*�������"���
���������	����������'�����'�����"������"	��������������"������4+
'"����������>�������>����"�������������	�������"	����������"����
����
����������	�����"��������"����������"	�������������
��������������."���
��/�����9		��������������:�*�����&'��

�����������������
�������������������
��

-�	��;�������;�<;����������1

2���������������	"���������������"�����-�	�
A�"����"�����������������"�� ���/������������������

0��������������������������������'�������������������@������������������'��	
�����������������������������������	������	�����������"������'"��������

B'���"����������������������	���'�����������'����
����������������������'"�������

"����������������������

+���5����+,�7
�����/*���
����*�	��
���
����*�	������

����������5����
������	��:�����������	���	���	���	�5���

�:�����)
8,+,1

�����	 ;���;�)?!;�3�?;��3)?����

F�	��:
"J����";��*�������������������������

:�		������������T	�T��T��T"�T��T�^^^^����(��T�����������

>������ �	��;����
�

9		�� &';�&?;��;�3';�&&&3';��';�?'#

Y��� ��/�Y���+#,����������������������

B�:U�� ������	�����:
��������������������

R��5���� ���5����+#,�7#8��������������������

D�(�5� 7��	��0�-����;��	���0�-�����#�8

��������� �������������������"�����
�����	������������	�����������"	�����������

���� ����."����"���'����L��'�����������"���'���)������"��*�9<6�����
����������
���������		����������������)������"�*������	�������

���
�
��	�� ������������������������

L������� M"	�������'��������������������
�������L���������

���
���"����'���M�����M"	�����(��������
��"��������'�������"	�����������M���
�."�����������"	����
�����"����������'��&����
���+�,�'����������
����������

'��������(
������������('��������(
������������(

!���	

������������������	

$�:�	�������������(�������������������������������	�������������������
$�B'���"�!"����������������������������������	������"����������������"�����
��������������"��
������
�"���	�:��)��
�+
�	,����������'

��
�)���5*+	�:��,�
$�B'���"�������������������"��������"��'�����������'������
��"��!"����������
����������."����'������������"�
�	��/��������"�������������"����� +.0#,�

:������
�������'�	��������
�����������

)�T��TY�T/�T_�T
�TF�&#'�&6#'
����������������	"�������������

��"������� T9�T`�6�a�T��T>

-������."����'����
���������	�����

���8,��.��8�K�����K,��7���;8�7;���8�7���;���8

���"������
."����'����
��	�������	�����

�.�..��.

-��"���� +#,�����"��������/���'3�����
�+.0#,������3������"����'������

2��/������� +.�#,���."�������	����
�+. #,���."����������	����

���/���'������� T?#TN������"�������"���
�T$���������	�����

7���������� %���'�������������"�
���	�����������

N��/���-"����@��4���+������� *���0���	�:�	�:)5��������
��:b(

B������������������(��"�����
��"���'�������������������K�8�

: -�������	�����������!"�������'��������"������
��"�������'����	�

� :�����������������&�����������
����#�

� 6"������������������������)��	��������������������
�����������������
��

JAVASCRIPT CHEAT SHEET 101

��

B�����'�����	"�������������C
�D������&��������������������
���"����"�����'����
'��	�"�����������'�������
����
�7��	���#�
�����	���������"���������
�'��������"��&��������������

@����������������������EF��������������
�	�����'�����������������"��
/�����������"����������������'�4���+������

��
�	�5�����������	��=������5�
��5��5*�5*�	�5��

�5��
��5�������
����::�	����������������������������
�����������	��������
������
����������������	����5�����:����������������
�����	�������
���5���
��������	��5�����:�����-����/���5=�:���	�-�����	���5���������5
	���	��
*�	��
����5�
���	�
/��5*�
��5*	���<����*�
��*	�/��*	�/

�	��
������	���������-�	�-����-��������/*����/��*

��������������������������������������

@���:����� /����/���!�����������	�+#,
�������������"����"���
	���������(��G������������������+�'���
�?���'�(�����?����"�
�<����

B�H,��"�������������'��������'����������������"�������(���������

?����"����5��
������!�������������������	���������

�����5��
���)��:������/�*���0��:����	���:)5�����::��:)

���������!���
��!������"����������!���
��!������"�

���+5��������,�7
/��5*�+���	,�7
��5��� ��5�
��-����90
8 ����5���9

�����	��=1
���+5���9,�7 ��5�
��-��>?0
��5���9 ��5�
��-��>�0
8���
�����+5���>,�7 ����5���>
��5���> �����	��=1
8���
��7 ���������0
��5���@ ����5���@
8 8

������
��������������������"�����������������"�����������������������������
��
������/�����/������"������������������#

#��
����������#��
����������

��	�+��5�1���
�1���5	,�7 /*����+5���,�7
��5��� ��5���A�	*��
��-�	B��
8 8

���7 /*����+�	��,�7
��5���B��9�C��
�D�5� ��5���B��9�C��
�D�5�
8�/*����+5���, �����+
=��B�
�D�E�	�,

����5�������1
�����+(�
�F���C�����:,
�����	��=1
��	�������	@���

 !�	������������"
 8

��	�+-�	�����;������)���:�*1������1����,
��5���

$�	��!�����������%���������������$�	��!�����������%���������������

-�	�����	1
���5�����5�����5=+,�7
������	�$$�/����/)5���	E������+����	,1
������	�������1
��5�����5=@���1
8

/����/)
��E������+5�����5=;�?,1����)?�
�5���

$�&�����������������$�&�����������������

-�	�����!1
�-��+�����G��*)
H	�+?4,�,�����������������I�J������/��*�5�	�
��5���KBL@��������+��@3�MN������,��������O������
��5���KBL@��������+�F�$�J�,��������������F����4��J�
��	
�L��+�?�,�������������������������M�P
��	
�L��+�M�,������������������������������P
��	
�L��+�?�;�?,���������������������?�Q
��	
�R����+�3?�)?!����,�����������������3)?�?!
�
���+��	
�L��+������	�,,����������������	��
G��*)AL)��R����+3,����������������������3)?��
+!)3?S4�,)��R����+3,��������������������!)3?M
G��*)AL)��A	�5�
���+3,������������������3)?�

I�����"������(�����������(
������B����"������������7�����'�(���������������
���5
J���������(�����������(
����������������'"������@��������������'��������������'��	�

'����	����&�������������&&'����	����&�������������&&

?����
������3�������:�*���������������������
������������

�����)5*�	9�+?,����������������������������
�*�����)�����D�+���,���������������������
�*�����)�����D�+���;�3,�����������������3���	����������	���
�*�����)��
�L����D�+���,����������������3
�*�����)��
�L����D�+���;��,�����������������	�������
��	���
�*�����)	����5�+���;��C�,����������������*�C���
�*�����)	����5�+�&������'�:;����,��������*�����

�*�����)	����5�+�+),T?�:;����5����+
,�7
��	���	��
)��K���	@�
�+,1
8,��������*�CC��

�����5�)
����+���,������������&���;����;��5�'
�����T�5�)
����+�T
��,��������&���;����;��5�'
���5�)
����+��,���������������&���;����;��5�'
�����5�)
����+���;��,���������&���;���5�'���	�������
��������
�*�����)
��
�	��:+�,���������������
�*�����)
��
�	��:+�;��,��������������	��������������
���
�*�����)
��5�+�3,����������������������
�������������
�*�����)
��5�+�3;��?,����������������	��������������
��������������
�O����U�)��C�/�	@�
�+,���������V������
��V(W�X��)��K���	@�
�+,��������YOZ[�\9�
�*�����)���5*+�+),T?�,��������&����;����'�I

I�'"���	������������(�8
�����"�������"��K��������(�K
�����

$���	����&&�	����!�����"���$���	����&&�	����!�����"���

-�	��		���&�;�3;��;�!;�4'1

�)���:�*������������������!
�)5��5��+&S;�M;�N',�������&�#N'
�		�������������������������&�#N'
�)��
*+?,����������������&�#?'
�)��
*���+?,��������������&?#?'
�)���+,�������������������?
�)
*���+,�����������������?
�		�������������������������&�#N'
�)
��5�+�;���,������������&4;�S;�M'
�)(���+��,������������������3�!4SMN�

�)
�	�+���5����+�;��,�7
��	���	����]��1
8,�������&N;�M;�S;�4;�!;��;�3;��'

�)
�	�+,����������&�;�3;��;�!;�4;�S;�M;�N'
�)
���5�+!,�������&S;�M;�N'
�		�����������������&�;�3;��;�!;�4'

)(��
����*������!�������)(��
����*������!�������

�	��7
���*�
@���G��U������
8�5��5*+�,�7
���*�
@���B��
D���D�U		�	
������	���	
�����*���		�	���(�5�
8���������7
���*�
@���B��
_*��*�	D	���E*�	�L
9�U		�	
8

A�"�������������"�������������������!����������������	��
����5������D�(�5�

+��!�&��������+��!�&��������
@����������6������!��������������������������	�������'�������������		�������������

�������"	�����'�"��'"�������������O����������	����

$�N������U�C���C�?�CDc�U�CDc?U�FdBE?b��FdBE��������:���/�
H	�
$�@������	������AL��5�
��
��������������5�
�
������
$���"����� 	�������
�5��������	���������	������	����

Debugging JavaScript
B.1 Here Be Dragons

Just a few years back, the art of debugging JavaScript code felt like handling
unstable nitroglycerine blindfolded on a trampoline. Not only did we feel
dramatically under-equipped, but the few tools we did have at our disposal
were rather unwieldy and on the whole did not feel very helpful (except, in
all fairness, for the IE debugging tools inside Visual Web Developer Express,
which had been there for a while and were quite good).
After all, JavaScript debugging at the time seemed so borderline dangerous
that, in its time-honored Ghostbusters-based code name tradition, Mozilla’s
JavaScript debugger was christened Venkman, and its baseline was “Don’t
cross the streams.” Yes, things were—or at least felt—that hazardous.
Then Joe Hewitt dropped by and released to the world what he unassumingly
referred to as “just a bunch of scripts put together.” Firebug cast a great beacon
of light on our forsaken field (that is, front-end web development), and there
was much rejoicing in the land.
And because the bar had been so raised and the game so changed, good peo-
ple from all browser vendors rolled up their sleeves and started tackling these
problems again, in their own ways, which is why we now have Safari’s Web
Inspector, Opera’s Dragonfly, and, yes, even a pretty decent JavaScript debug-
ger in Internet Explorer 8. Still, Firebug keeps plowing ahead (at somewhat
varying speed, admittedly) and retains a special place in the hearts of web
developers.
Setting Up a Debug Bench
The walk-throughs in this appendix all use a test page with a bit of JavaScript
to step through, play with, and generally demo the script-debugging facilities
of each browser. You can find these two files—debugbench.html and its
debugbench.js dependency—in the online code archive for this book.

FIREFOX AND FIREBUG 103

Here’s the HTML page, which is as bare-bones as it gets:
Download debugbench.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<script type="text/javascript" src="debugbench.js"></script>

<title>Pocket JavaScript debug bench</title>

</head>

<body>

<h1>Debug bench</h1>

<input type="button" onclick="alert(fibo(20))" value="Fibo(20)" />

</body>

</html>

And here’s the JavaScript source we’ll play with:
Download debugbench.js

function fibo(base) {

if (base <= 2)

return 1;

return fibo(base - 1) + fibo(base - 2);

}

B.2 Firefox and Firebug

You can grab Firebug at http://getfirebug.comor from the Mozilla Add-Ons
directory at http://addons.mozilla.org. At the time of this writing, Firebug is
ramping up to release its 1.4 version; several alphas having been around for
a while. Firebug had a somewhat difficult period for a while, when its Ajax-
related features resulted in weird behaviors such as double requests, but it’s
been mending and is coming back to us in better shape than ever. So, if you
left it during the 1.2 to 1.3 era, you should definitely give it another try.
By default, Firebug’s features are disabled on any address you’re browsing,
including local files. This is for performance reasons, and you just need to
click the bug icon on the right side of your status bar to open the Firebug
panel and start enabling the features you want for the current domain, page,
or file.
Firebug is very feature-rich, but the areas of most concern for this book are
the Console and Script tabs. The console is a live JavaScript command line
and a log area your scripts can write to using the global console object and
its built-in methods such as log(), debug(), error(), and group(), to name
but a few. (Read about the whole console API on Firebug’s website.)

http://media.pragprog.com/titles/pg_js/code/debugbench.html
http://media.pragprog.com/titles/pg_js/code/debugbench.js
http://getfirebug.com
http://addons.mozilla.org

FIREFOX AND FIREBUG 104

Figure B.1: Firebug’s basic Script view on our debug bench

The Script tab is the actual debugger. It lets you browse all the JavaScript parts
of your page (loaded files, inline event attributes, and so on), set breakpoints,
step through your code, keep an eye on specific expressions or variables (on
the Watch subtab), and look at the current stack trace (in the Stack subtab).
It’s all we need for scrutinizing our JavaScript code as it runs.
The basic view of the script debugger for our test bench is shown in Fig-
ure B.1.
There are basically two ways to get code running here: either drop into the
console and type away JavaScript that triggers the code we intend to examine
or cause events in the page that trigger the same code.1 In our debug bench
page, our fibo() function is called with argument 20 when a button is pressed.
You can verify this works by clicking the button—you should get a dialog
box with the result (6,765). There are a number of things you can do in the
debugger to dig into the details of this function’s execution:

• Choose a script file (or HTML page with inline scripts): click the arrow
next to the filename above the source pane, and select your file.

1. Technically, many debuggers let you get into step-by-step mode any time an exception is
raised (that is, when an error happens). In Firebug, click the arrow next to the Script tab’s label for
this kind of feature.

FIREFOX AND FIREBUG 105

• Toggle breakpoints on specific lines of code: just click at the line’s
level in the source pane’s left gutter.

• Require that a given condition be satisfied for a breakpoint to trigger:
right-click the breakpoint’s bullet in the gutter, and type the JavaScript
expression for the condition.

• Disable a breakpoint for a while, without losing its position and con-
ditions: go to the Breakpoints subtab, and uncheck the breakpoint’s
checkbox.

• Once a breakpoint was hit, step through the code: icons above the
source pane let you step into (that is, if the current line calls a func-
tion, step inside that function), step over (just run such function calls
without stepping inside them), and step out (run the current function
and resume manual stepping once back in the caller function).

• At any time, keep an eye on local variables and values for any expres-
sion of interest you would have set up earlier: just look into the Watch
subtab.

We’ll go through a number of these steps manually here as an example manip-
ulation you can reproduce on the other browsers, to get a hang of things. First,
let’s say we want to get into step-by-step mode when the fibo() function is
called with an argument that’s small enough—say, less than 5. To do this, we
first need to set the breakpoint on the function’s first line and then equip that
breakpoint with the appropriate condition.
1. Click in the source pane’s gutter, facing the function’s first line (line
2).

2. Right-click the red dot that appeared to signal the breakpoint’s pres-
ence, and type the condition you need in the tooltip: base < 5. You
should see something similar to Figure B.2, on the next page. Validate.

You’re all set! Now click the Fibo(20) button in the web page; the function
will start its recursive descent, and you should hit the breakpoint. Click the
Stack subtab in the right pane to see where you’re at; you should see some-
thing like Figure B.3, on the following page, which lets you see the current
state of recursion: 15 levels down already (if you scroll down, you’ll see the
initial onclick= handler call).
By clicking theWatch subtab, you can see all the local variables, including the
current binding (what object this is currently referencing) and arguments. In
Figure B.4, on page 107, you can see that we’re running as a global function
(this currently references the global window object) and the base argument

FIREFOX AND FIREBUG 106

Figure B.2: Setting a conditional breakpoint in Firebug

Figure B.3: A stack trace view in Firebug

is 4. Note that you could also use the Watch subtab to change these values by
just double-clicking the value line in the list and typing the new value.
Let’s explore the various kinds of stepping now. You should be on the fibo()
function’s first inner line (line 2) just now. Click the Step Into icon (the one
immediately to the right of the blue Play icon used to resume execution) once.
Since the condition is false, the next line is skipped, and you get to the return

line. Hit the same icon again. Since it’s a function call and you’re stepping
into, you’ll get one level down and recurse your way into the same function,
this time with base being 3 (glance at the Watch subtab to verify this).
Let’s say you’re not interested in digging any deeper now, and you just want
to run the code until you’re back at the level you just left (base equal to 4).
To do this, follow these steps:
1. You’ll first need to remove, or at least disable, the breakpoint you set
earlier. Otherwise, it’ll keep breaking your stride any time the code

SAFARI AND WEB INSPECTOR 107

Figure B.4: The Watch view in Firebug

calls fibo() with an argument less than 5. Click over to the Breakpoints
subtab, and uncheck your breakpoint to disable it.

2. Then click the Step Out icon (the last one above the source pane) to let
the code run away until it hits the previous stack trace level again. You
should find yourself on the return line you had come from, with base

being equal to 4 again.
3. Repeating that operation will have you run back up the trace again and
again (meaning the base watch is tracing back to values higher and
higher), so that after a short while, you’ll notice the stack trace on the
right is thinning up on the Stack subtab.

4. When you’re tired of manually stepping and want to just resume nor-
mal execution, hit the Play button (the blue right arrow).

Note that all these stepping/running icons have shortcut keys, but these vary
widely based on the platform you’re running Firebug on. They’re usually
mentioned in the icons’ tooltips, so just let your mouse hover on them to
figure out these shortcuts.

B.3 Safari and Web Inspector

Safari has been honing its Web Inspector in recent years, and version 4.0
comes with a very decent feature set. (I hear current “nightlies” are making
really good progress, too.) Although it is currently a bit subpar (with regard
to Firebug) when it comes to DOM modification, its console and JavaScript
debugger are certainly equivalent.
The Web Inspector’s Scripts section, with its console pane open, is shown in
Figure B.5, on the following page (you can use one of the bottom-row icons

SAFARI AND WEB INSPECTOR 108

Figure B.5: Safari’s Web Inspector

Figure B.6: Stepping in Web Inspector

or simply the Esc key to toggle the console on and off, regardless of your
currently visible section).
In the current public release of Safari, Web Inspector differs from Firebug
in a few key places; for instance, you cannot exactly remove a breakpoint.
You can only disable it. You cannot put a condition to it, either. And there
are no watches. Still, it’s already a pretty useful tool (and upcoming releases
only get better). You can see what stepping looks like a few levels down in the
recursion stack, as shown in Figure B.6, which shows how similar its behavior
is to Firebug’s.

IE6, IE7, THE IE TOOLBAR, AND WEB DEVELOPER EXPRESS 109

B.4 IE6, IE7, the IE Toolbar, and Web Developer Express

Internet Explorer has long been the bane of web developers, if only because of
its sudden development halt once the “browser wars” were over and Netscape
lay dead on the field. Microsoft is putting some significant effort now into
recent versions of Internet Explorer (IE8 and IE9 typically make great leaps
forward), but IE6 and IE7 are more than a decade behind the competition
when it comes to web standards, including JavaScript support.
To add insult to injury, there is not even a remotely decent JavaScript debug-
ger built into these browsers. There’s a rather dumb error console, and that’s
it. When scouting around for debugging solutions applicable to these either
of these versions, you’ll find a few options.
Leaving aside the antiquated Microsoft Script Debugger, the most common
tool is the Visual Web Developer Express edition: This is the free, limited
edition of Microsoft’s mammoth Visual Web Developer tool, which is really
a customized version of its Visual Studio series, targeted at web developers.
It’s been around for a while and has a rather good JavaScript debugger.
So yes, unless you already use such tools for development (say, you do .NET
stuff), you would have to download a multigigabyte file (the installer, at
2.6MB, is just a proxy tool) just to debug JavaScript. But if you need to debug
JavaScript in IE6 or IE7, it is worth going through, if only to preserve your
sanity.2 When configuring, remember that neither Silverlight nor SQL Server
are quite necessary for our purpose here.
Once installed, launch Visual Web Developer Express edition (that’s quite a
mouthful, so let’s just say “VWDE” from now on, shall we?); once it com-
pletes initial setup, you’ll get a welcome page similar to Figure B.7, on the
following page.
The Express edition, being free, tries to reduce our elbow room by not letting
us attach to a running browser. The trick, then, is to use it to spawn an attached
browser. This is a web browser spawned by VWDE in debug mode, so any
JavaScript errors get intercepted by VWDE’s debugger.
Once we have an attached browser, we can use it to surf wherever we please.
Errors will drop us right into the debugger, and we can also grab running
documents inside VWDE and put breakpoints and such in them. To replicate
the manipulations from the first section of this appendix, you’ll need the latter
option.
To spawn an attached IE6 or IE7 browser, we need to play ball a bit with
VWDE’s requirements.
2. You can download it at http://www.microsoft.com/express/download/default.aspx.

http://www.microsoft.com/express/download/default.aspx

IE6, IE7, THE IE TOOLBAR, AND WEB DEVELOPER EXPRESS 110

Figure B.7: Visual Web Developer 2008 Express edition: Welcome

There are essentially two rules we must abide by here:
• We must have a VWDE project set up and with debugging enabled.
• We must set IE7 as our default browser so that it is the one launched
by the “Start debugging” feature.

Both requirements need only be dealt with once (unless you’re testing this
on the machine where you also surf on a regular basis and therefore need to
switch your default browser back and forth between IE and whatever elected
browser you have). Let’s address these requirements:
1. Open IE6 or IE7, and click Tools > Internet Options....
2. Go to the Advanced tab, and scroll to the Browsing section.
3. Make sure “Display a notification about every script error” is checked
and both “Disable script debugging...” are unchecked.

4. Close IE entirely.
5. Click File > New Web Site....

IE6, IE7, THE IE TOOLBAR, AND WEB DEVELOPER EXPRESS 111

Figure B.8: Debugging IE7 with breakpoints

6. Select the Empty Web Site option, and browse to whatever dummy
directory you want to set it up in. Click OK.

7. Click the “Start debugging” menu option or icon (the green arrow).
8. This first time around, VWDE detects your project is not yet set up for
debugging. It lacks a special Web.config file. A dialog box offers to
create it for you or continue without debugging—obviously, leave the
first option checked, and click OK.

9. You should see a development server on a dynamic port started in the
taskbar, and your IE opens up on an empty directory listing named
after your project’s directory (a warning bar may tell you the browser is
working using the Intranet security zone, which is fine with us). You’re
set to go!

Now that we’re all set up, just browse to our debugbench.html file any
which way. Once opened, look into VWDE. On the right, in the Solution
Explorer panel, you should see a Running documents branch with debug-

bench.html and debugbench.js listed. Double-click the latter.
You’re there! You can now set your breakpoint on line 2 the usual way (click
in the gutter), switch back to your IE, and click the Fibo(20) button. You drop
back to the debugger in stepping mode, as shown in Figure B.8. Voila!

IE8 AND DEVELOPER TOOLS 112

B.5 IE8 and Developer Tools

There’s no question about it: Internet Explorer 8 is a great step forward in
the IE world. Aside from the notable improvements in web standards support
(although it still lags far behind modern browsers, it’s certainly not stuck in
the Cretaceous anymore), these points are of immediate interest to us Java-
Scripters:

• The JScript engine in IE8 is on average seven times slower than other
JavaScript engines in released browsers. This peaks at a factor of al-
most twelve against Chrome’s v8 or the latest builds of Safari’s Squir-
relfish Extreme and Firefox’s Tracemonkey.
Why is that a good news? IE7 used to be up to ninety times slower.
And IE6 couldn’t live with the shame of its own factor figure. So, the
IE team managed to improve its JScript engine by a factor of about
thirteen, which has to be declared awesome, like it or not.

• The DOM performance in IE8, which is our second major pain point
when scripting, has also received some significant love and is now lag-
ging by an average factor of “only” four, which is also a major improve-
ment.

• IE8 has built-in “Developer Tools,” which are a cleaned-up, snappier
version of the IE Developer Toolbar we use in IE6 and IE7, with an
actual JavaScript debugger thrown in. One that actually works and
doesn’t entail incessant glitches between IE and an external debugging
app.

So, not only can we start thinking about reenabling our fancy effects and Ajax
operations in the IE world, but we can also do so knowing debugging got a
whole lot easier!
Incidentally, IE8 also explores ways to reduce the perceived performance
impact of script loading. You still should use generic optimizations such as
“load scripts at the bottom of the ”3 and, even more importantly, script con-
catenation (for example, through Sprockets4) and gzip’ping.5
The IE8 Developer Tools pane with its Script tab opened and a debugging
session going on is shown in Figure B.9, on the following page, with our
now-familiar breakpoint. Toggling the debugger on and off is simply a mat-
ter of clicking the large button in the toolbar, and we get the usual stepping
3. http://developer.yahoo.com/performance/rules.html#js_bottom
4. http://getsprockets.com
5. For lots of great advice about web page loading and rendering performance, get Thomas Fuchs
and Amy Hoy’s excellent JavaScript Performance Rocks! [HF09], and check out the Performance
tips on the Yahoo! Developer Network at http://developer.yahoo.com/performance/rules.html.

http://developer.yahoo.com/performance/rules.html#js_bottom
http://getsprockets.com
http://developer.yahoo.com/performance/rules.html

OPERA AND DRAGONFLY 113

Figure B.9: IE8 Developer Tools: Script tab

options, local variables, watches, callstack inspection, a sort of console (I
wish Microsoft would stop calling those “immediate window”...), and break-
points we can disable or remove (no conditions on them, though).
That’s all we need, really! The whole thing feels responsive and never froze
my IE8. Honest!

B.6 Opera and Dragonfly

Opera takes an uncommon approach to providing developer tools. Its Drag-
onfly tool is “both offline and online,” because it is automatically downloaded
and updated through the Internet when you open its pane in Opera. This
means you need to be online the first time you use it, which should hardly
be an issue. However, in my personal experience, I found it to kind of require
being online to simply work.When offline, even if I had downloaded it before,
it usually aborted launch because it was not able to connect to Opera’s server
(or something).
Its current version (alpha 3 at the time of this writing) clearly states it’s still
rough, and I can only hope the Opera folks will come to their senses, UI-
wise, and rethink their gazillions-of-multilevel-tabs approach from the ground
up. I would think all the other tools use a Firebug-like layout for a reason
(it’s simple enough yet powerful enough), but Opera goes on and builds this
complex, intricate UI. It seems to have been getting better in recent versions,
though.
For our purpose of debugging JavaScript, we just need what’s in the Scripts
tab, as displayed in Figure B.10, on the next page. You’ll find toolbar but-
tons for the usual stuff: run/resume, step over, step into, step out, and when to
automatically trigger debug mode (for example, entering a function, encoun-
tering an error). A drop-down list lets you display the source file (JavaScript
or HTML) you want to debug through; the gutter next to the code lets you deal

VIRTUAL MACHINES ARE YOUR FRIENDS 114

Figure B.10: Opera Dragonfly: Scripts tab

with breakpoints (right-click them to disable/reenable them); the Command
line subtab under the code (yes, under...) provides a command line akin to
the console; and righthand tabs provide access to the call stack and the local
variables (in the Inspection tab).
In short, regular debugging can be done. I should confess, though, that my
usual debugging cycle goes like this. First, code with either Safari or Firefox.
Then verify and adjust (if needed) in “the other one” (either Firefox or Safari)
and then in IE8, IE7, and IE6 (in that order). Finally, just to be sure, run a
quick check in Opera and Chrome.
Thus, I follow the sequence I use for XHTML/CSS development. And just
like markup and styling, once you get JavaScript working all right in Safari,
Firefox, and the IE set, it usually works like a charm in Chrome and Opera.
So, debugging in Opera is a rare need for me.
As a final note, know there is a Debug menu you can enable in Opera that
gives you direct access to a number of functions reminiscent of Firefox’s Web
Developer Toolbar extension or Safari’s Development menu. You can enable
it by downloading a configuration file from within Opera.6

B.7 Virtual Machines Are Your Friends

Nowadays RAM is cheap. Most of use web developers code on machines
with 4GB to 8GB of RAM, and the even more fortunate guys also run on
6. http://dragonfly.opera.com/app/debugmenu/DebugMenu.ini

http://dragonfly.opera.com/app/debugmenu/DebugMenu.ini

THE NETWORK MAY BE YOUR ENEMY 115

SSD drives, making their overall experience snappy. On the heels of that phe-
nomenon, virtual machines are getting a place of honor in any serious web
developer’s toolkit. VM software is cheap, even sometimes free, and options
are quite numerous: Parallels Desktop7 (on OS X, Windows, and Linux),
VMware Fusion8 (on OSX) or VMware Workstation9 (on Windows), Sun’s
VirtualBox10 (on just about any major OS), and many more still.
This commoditization of virtual machines lets us set up separate VMs to repli-
cate all the browser situations we need to test for: IE6 to IE9, various versions
of Safari, Chrome, Firefox, Opera, and so on. Most browsers will not let you
run multiple versions of them on a single OS, or if they do, you will not get
100 percent identical behavior with that of said browser being the only ver-
sion installed (case in point: the third-party MultipleIE package on Windows
XP). VMs let you isolate successive versions in distinct OS images. Best of
all, they let you run all this on a single computer. Typically, the host OS of
choice is OS X; this is because of many factors, but the most relevant one to
me is this: it’s easy to set up a Linux or Windows in a VM, but it’s very hard
to run OS X inside a VM hosted on a non-Mac platform.
So by all means, go VM! This is so much more convenient than having to use
multiple boxes or remote desktops where you keep colliding with other web
developers using them at the same time.

B.8 The Network May Be Your Enemy

Sometimes you run into bugs that feel like heisenbugs:11 they happen only
when you don’t look. As soon as you start stepping through your code or try
to reproduce this on your development box, the elusive behavior is nowhere
to be found. What gives?
This typically happens with Ajaxy stuff and high-latency or flaky connec-
tions (such as dial-ups or your corporate proxy barely keeping its head above
water). To reproduce this kind of situation, you can use software known as
slow proxies. My favorite tool in this area, and perhaps the most well-known,
is Charles,12 a Java-based tool (hence running on all major platforms). Not
only does it let you throttle your perceived bandwidth, adjust your latency,
and generally tweak your perceived network behavior, but it can also record
and replay network sessions, and it provides detailed HTTP/HTTPS monitor-
ing. Such tools are a godsend!
7. http://www.parallels.com/products/desktop/
8. http://www.vmware.com/fr/products/fusion/
9. http://www.vmware.com/products/workstation/
10. http://www.virtualbox.org/
11. http://en.wikipedia.org/wiki/Heisenbug
12. http://www.charlesproxy.com/

http://www.parallels.com/products/desktop/
http://www.vmware.com/fr/products/fusion/
http://www.vmware.com/products/workstation/
http://www.virtualbox.org/
http://en.wikipedia.org/wiki/Heisenbug
http://www.charlesproxy.com/

JavaScript Frameworks
JavaScript is a great language all by itself. But when it comes to interact-
ing with its environment—such as the DOM, CSS, or XMLHttpRequest, to
name only the most common client-side examples—going pure-JavaScript
feels like building a skyscraper with a couple flintstone axes and a bunch of
slippery logs. This is mostly because of two factors: the raw DOM interfaces
have no reasonably high-level features, and most browsers deviate from web
standards in their own oh-so-particular ways.
Because of this, a large number of JavaScript frameworks arose. Some of
them gained enough traction and followers to become very well established,
and I’ll take you through the most prominent ones in this appendix.
Understand this right now: you should very much use a framework, perhaps
even multiple frameworks, depending on the project or task at hand. The
source code for such frameworks is very likely more robust, better tested,
better documented, and better supported than what you would write on your
own. Also, it’s there already, so it can save you countless hours of frustrating
development. Be pragmatic about it!
Choosing a framework is an important task, and you should pay attention to
a number of factors. Here’s a list you can use:

• How long has it been around? Is the code mature and stable? Is it well
tested? (That is, is there a strong test suite maintained for it?)

• Is there a strong, lively community around it? Can I find help easily?
• Is there good documentation, preferably official?
• Does its API design work with my own sense of aesthetics? When I
use this framework, do I end up with code I like to read and write?

• Does the framework serve a particular set of goals? Is it targeted at a
specific developer audience? If so, do my goals, or my profile, fit?

On the other hand, here’s an often-touted criterion you should not care about:
codebase size. Gone are the days when serving JavaScript had to be slow,
my friend. Nowadays, there are numerous techniques we can use to serve an

PROTOTYPE, SCRIPT.ACULO.US, AND SCRIPTY2 117

otherwise large and well-commented codebase with lightning speed. These
include comment stripping, code compression,1 good HTTP response headers
to help browsers cache, CDN distribution, and more.
Popular frameworks resort to most or all of these tools to ensure your pages
will grab them in no time at all, so don’t start arguing about a few measly
source code kilobytes, OK?

C.1 Prototype, script.aculo.us, and Scripty2

Prototype is the first well-known JavaScript framework. Sam Stephenson cre-
ated it at 37signals all the way back in February 2005 to provide a unified,
easy-to-use API for DOM manipulation, event handling, and Ajax. Thomas
Fuchs created script.aculo.us in 2005 as a companion API to Prototype, grow-
ing from the well-known Yellow Fade Technique to a full-blown suite for
visual effects, drag-and-drop, and a few bare-bones UI widgets. Scripty2 is
a complete rewrite and expansion of script.aculo.us, currently in beta, that’s
very much geared toward visual effects.
The team behind Prototype fluctuates around a kernel of about half a dozen
volunteers, most prominently Sam, Tobie Langel, and Andrew Dupont. Avail-
able under an MIT license (basically, it’s open source and usable anywhere),
the complete source is available on GitHub for browsing, forking, and tweak-
ing, and there’s a feedback mailing list plus a bug report system.
An ecosystem has evolved around Prototype, including PDoc (a code inline
documentation system), Evidence (a unit testing framework), Sprockets (an
advanced JavaScript processing and concatenation tool), and Scripteka (a
plug-ins repository). The community is alive and kicking, mostly on Google
Groups. A number of books exist; to date, the most current are Practical Pro-
totype and script.aculo.us [Dup08], by Andrew Dupont, and Prototype and
script.aculo.us [Por07], by yours truly.
Although Prototype is generally considered the first well-known JavaScript
framework, in the past two years its popularity has slowly been declining,
apparently moving toward jQuery. I believe, however, that these two frame-
works address distinct—although overlapping—sets of needs (and they cer-
tainly have very different code aesthetics).
Prototype’s architecture, code aesthetics, and cohesive API design are very
well suited to significant codebases with robust APIs, and its “porting” of
many of Ruby’s goodies (such as the Enumerable module) make a lot of
algorithm-heavy code easy to write. It’s a framework for people who want to
embrace JavaScript and write awesome stuff with it, growing and maintaining
1. Avoid code obfuscation, though, or whoever debugs on top of it will hate you.

JQUERY AND JQUERY UI 118

an application’s codebase over time. So, it’s probably not the best choice for
people just trying to pull some feature off or cobble together a website using
widgets and plug-ins without knowing much about the language.
Here’s a quick recap of the current versions at the time of this writing and the
URLs you’re likely to need:

• Prototype is at http://prototypejs.org/; its current version is 1.7.
• script.aculo.us is at http://script.aculo.us/ (duh!); its current version is
1.8.3, and development is basically frozen, because focus shifted to
Scripty2.

• Scripty2 can be found at http://scripty2.com/. It is currently in Alpha
release 6.

• PDoc is at http://pdoc.org/.
• Sprockets is at http://getsprockets.org/.
• Scripteka is at http://scripteka.com/.
• The support mailing list is found at http://groups.google.com/group/
prototype-scriptaculous. You can also try the #prototype IRC channel
on Freenode.

• The feedback mailing list is found at http://groups.google.com/group/
prototype-core. Do not ask for help there—use the support list!

• The official repository is on GitHub: http://github.com/sstephenson/
prototype.

• If you have bugs to report, first read the guide at http://prototypejs.org/
contribute, prepare your report with care, and then head over to https://
prototype.lighthouseapp.com/.

C.2 jQuery and jQuery UI

jQuery originated in August 2005 when John Resig, having played with Pro-
totype, decided that although he loved the features, the API, and the general
feel of the code, it didn’t quite suit his own taste. So, he went and tried some-
thing different. John is a friendly JavaScript guru working at Mozilla, so his
undertaking the development of a framework was, you could say, in the nat-
ural order of things. After a version 1.0 release in June 2006, jQuery has
enjoyed a rapid uptake in the last two years, thanks to massive community-
driving work. The jQuery project was formally founded in September 2009,
and its version 1.4 was released in January 2010 amid a two-week online cel-
ebration and coding fest. (The current version at the time of this writing is
1.4.2.)

http://prototypejs.org/
http://script.aculo.us/
http://scripty2.com/
http://pdoc.org/
http://getsprockets.org/
http://scripteka.com/
http://groups.google.com/group/prototype-scriptaculous
http://groups.google.com/group/prototype-scriptaculous
http://groups.google.com/group/prototype-core
http://groups.google.com/group/prototype-core
http://github.com/sstephenson/prototype
http://github.com/sstephenson/prototype
http://prototypejs.org/contribute
http://prototypejs.org/contribute
https://prototype.lighthouseapp.com/
https://prototype.lighthouseapp.com/

JQUERY AND JQUERY UI 119

jQuery’s focus is mostly on lowering the perceived barrier-to-entry for people
wanting to spruce up their web pages with a bit of JavaScript without prior
knowledge of the language (or sometimes of programming in general). Its
API provides a lot of quick shortcuts targeted at the most common use cases,
and a number of plug-ins (some of them grouped in the jQuery UI project)
take care of the rest. Recently I’ve been hearing people describe jQuery as
“a DSL for DOM manipulation” or state that “jQuery comes from selectors
to code, allowing people who know CSS to use JavaScript.” Although not
entirely accurate (as in, a bit reductionist), such characterizations do capture
the essence of jQuery.
The major driving force behind jQuery is its astounding team. Aside from
almost two dozen people working on plug-ins projects, the core, the UI, and
the website, its force very much lies with the half-dozen people who nurture
the jQuery community through conferences, events, meetups, and the like.
Having a number of corporate sponsors doesn’t hurt, but the project itself
remains open source, using a dual GPL/MIT license, hosted at GitHub, and
allowing bug reports through Trac.
Around the core jQuery project and the jQuery UI, you’ll find a number of
magazines and conferences, meetups, user groups, and online forums. Several
jQuery books have been published, including jQuery for Dummies [Bei10],2
jQuery in Action [BK10], jQuery: Novice to Ninja [CS10], and jQuery Cook-
book [Lin09].
As I mentioned, I believe jQuery and Prototype address somewhat different
need sets. I cannot deny the many merits of jQuery, and I certainly see how
appealing it is to large categories of users, such as those needing JavaScript
as a mere tool toward quick ends, who don’t want to have to learn too much
API to get common tasks done in a snap. The teeming life of the jQuery
community is also a big plus, because it inspires confidence in the project’s
longevity and level of support. jQuery is, at the time of this writing, at version
1.4.2.
Here’s a list of the URLs you’re likely to need or want to check out:

• The official website is http://jquery.com/.
• The official website for jQuery UI is http://jqueryui.com/.
• Source code is hosted at GitHub: http://github.com/jquery/jquery.
• Bug tracking can be found at http://dev.jquery.com/.
• All official forums can be found at http://docs.jquery.com/Discussion.

2. This goes to show how widely known the framework has become!

http://jquery.com/
http://jqueryui.com/
http://github.com/jquery/jquery
http://dev.jquery.com/
http://docs.jquery.com/Discussion

MOOTOOLS 120

C.3 MooTools

Created in 2006 by Valerio Proietti, MooTools is like a handpicked subset
of features—it’s most of Prototype plus visual effects plus a few domain-
specific tools (cookie management, SWFObject wrapper for Flash loading,
and so on). Its original goals are to provide traditional, class-based object-
programming features and to remain compact (admittedly, in this age of
Google Ajax APIs, script concatenation, and gzipping, this latter aspect is
a less effective selling point).
The project is split into MooTools Core (the framework itself) and MooTools
More (the plug-in repository).
Supported by a core team of thirteen, MooTools is an open source, MIT-
licensed project currently in version 1.2.4. It is hosted on GitHub, with bug
tracking and feature requests on Lighthouse and support through a Google
Group and a dedicated forum.
The significant book on MooTools isMooTools Essentials [New08].
It seems as if MooTools has, at least so far, the lowest popularity/reach among
the frameworks in this appendix. Still, it does have a non-negligible developer
mind share.
Here are a few pointers you may need:

• MooTools’ official website is at http://mootools.net/.
• The source code is at http://github.com/mootools/mootools-core.
• Bug tracking and feature requests can be found at https://mootools.
lighthouseapp.com/.

• You can get support and news on the Google Group at http://groups.
google.com/group/mootools-users and the forum at http://mooforum.
net/. There are also a number of docs and tutorials to get you up to
speed on http://mootorial.com/.

C.4 YUI

The Yahoo! User Interface library, commonly dubbed YUI (which, as far
as I know, is pronounced by spelling it), is part of a larger set of devel-
oper resources maintained by the Yahoo! Developer Network (YDN). The
project started in 2005 and had its first release in early 2006. It is a very
strong, modular, powerful framework, with perhaps a somewhat steep initial
learning curve. Its core JavaScript functionality lies in “YUI 3,” and there are
numerous extra features, not necessarily JavaScript-related, in other modules.
YUI is used intensively on Yahoo! “properties” (websites and online services

http://mootools.net/
http://github.com/mootools/mootools-core
https://mootools.lighthouseapp.com/
https://mootools.lighthouseapp.com/
http://groups.google.com/group/mootools-users
http://groups.google.com/group/mootools-users
http://mooforum.net/
http://mooforum.net/
http://mootorial.com/

YUI 121

Yahoo! owns), so it certainly has a proven track record of stability and per-
formance.
You should know that the convention for initializing the framework and ac-
cessing its modules and features changed drastically between versions 2 and
3, so be wary of old documentation and tutorials. Any calls starting with
YAHOO. are basically version 2. Note, however, that since YUI 3.1 you can
integrate older-style solutions and code more simply.
Although contribution to the core of YUI is not quite open source (despite a
BSD license, actual contribution to this part of the codebase seems restricted
to YDN), the YUI Gallery lets people contribute modules. You can also con-
tribute bug reports and feature requests.
Most of the quality documentation about YUI is online, either at the offi-
cial website for the framework or on the YUI Library website, which is very
community-oriented. You’ll also find a treasure trove of articles by Christian
Heilmann, an evangelist at YDN, sprinkled across a number of popular web
development online magazines. The docs contain hundreds of examples with
step-by-step instructions. The quality of the docs perhaps explains why, at
this point, there are precious few books about YUI, though. The only book
I found of some significance dates back to YUI2: Learning the Yahoo! User
Interface Library [Wel08].
YUI is fairly popular. However, YUI is mostly used in the rich Internet appli-
cation (RIA) space, like Dojo, because it is perceived to be rather overkill
(and overweight) for less-UI-intensive use cases. In that respect, it’s often
used in conjunction with other useful YDN resources such as the “reset” and
“grid” style sheets. The community interaction is centralized at the official
YUI Library website.
YUI sports a few very good “selling points”:

• It has a very cohesive API (its style is consistent throughout).
• It’s extremely well-tested and well-documented.
• It pays special attention to accessibility (for example, ARIA support).
• Its modular, load-on-demand approach, coupled with its massive CDN,
keeps it very usable even in lightweight environments.

• It is officially maintained and supported by a large corporation
(Yahoo!), which makes it a fairly low-risk bet when building your
project’s technology stack.

I do believe that you should favor a lighter-weight library for anything where
that’s sufficient, though. It makes for less stuff to absorb and digest. It also

EXTJS 122

makes it easier for you to contribute quickly by fixing or extending stuff you
need.
These are four URLs you should know:

• The official website is at http://developer.yahoo.com/yui/3/.
• The source code repository is at http://github.com/yui.
• Bug reports and feedback are found at http://yuilibrary.com/projects/
yui3/report.

• Community resources in general are at http://yuilibrary.com/.

C.5 ExtJS

ExtJS is a full-blown RIA framework focusing on rich, desktop-like UI wid-
gets such as tree views, datagrids, and dialog boxes. It started out in 2006
(I think) as an add-on by Jack Slocum, which you could use over Prototype,
jQuery, or YUI. Since then, it has evolved into a stand-alone, large frame-
work targeted specifically at building rich, desktop-style user interfaces; for
instance, having nailed great datagrid, tree, and Ajax features early on, ExtJS
is a popular tool for building website administration pages.
ExtJS is a product of the eponymous company, which provides related tools
such as Ext Designer and the Ext GWT bridge. It is available under a triple
license: GPLv3, commercial, and OEM. This license split caused quite a stir
when it launched, not least because it essentially prevented use in non-GPL-
compatible open source projects. On the other hand, it means you can get
commercial tech support, training, and subscriptions from the library creators.
It’s too bad the repository is closed, accessible only through release snapshots
on a custom download page. I couldn’t find a prominent bug-tracking system,
either, so all in all, despite a GPLv3 option, the project source doesn’t look
that open.
Like all good projects with a full-time, corporate workforce behind them,3
ExtJS is moving apace. At the time of this writing, it’s at version 3.1.1, and
2010 is expected to see several major releases leading up to 4.0.
Documentation is rather good, with an easily browsable—if sometimes terse
—API reference, obviously built with ExtJS, and numerous complete, useful
application samples. You’ll also find a few books, most notably ExtJS 3.0
Cookbook [Ram09], released in late 2009, and ExtJS in Action [Gar10], due
in summer 2010.
3. ExtJS has a six-person management team and a full-time developer team of unknown size.

http://developer.yahoo.com/yui/3/
http://github.com/yui
http://yuilibrary.com/projects/yui3/report
http://yuilibrary.com/projects/yui3/report
http://yuilibrary.com/

DOJO 123

Finally, given the somewhat proprietary nature of the project, the ecosystem is
mostly limited to the official website, sporting forums and a good wiki-based
Learning Center offering demos, screencasts, tutorials, and more.
These are the mandatory links:

• This is the ExtJS official website: http://extjs.com/.
• Download it at http://www.extjs.com/products/extjs/download.php.
• You can find the forum at http://www.extjs.com/forum/.
• The Learning Center’s home is at http://www.extjs.com/learn/Main_
Page.

C.6 Dojo

We will complete this tour of the most popular frameworks with Dojo. It was
created in 2004 through the arduous and joint efforts of Alex Russell, Dylan
Schiemann, and David Schontzler while at Informatica, and it released in big
one-oh on November 5, 2007, getting split into Dojo (the core), Dijit (the UI
widgets), and DojoX (the plug-ins and extended features).
Dojo plays in much the same space as ExtJS now. It’s a major RIA framework
with huge corporate backing. It is now nurtured by the Dojo Foundation,
which includes corporate sponsors such as IBM, Google, AOL, Thomson
Reuters, TIBCO, Zend, and Sitepen, to name only a few. Its current release at
the time of this writing is 1.5.0. Unlike ExtJS though, Dojo is actually open
source, being dual-licensed under the Academic Free License 2.1 and the new
BSD license, and maintaining public GitHub, Subversion, and Bazaar repos-
itories and an online bug tracking system.
Dojo is also close to projects that are now also under the umbrella of the Dojo
Foundation, the most well-known ones being cometD and DWR, two early—
and still relevant—systems for doing push notifications from the server to the
browser (not to forget Sizzle, Persevere, and General Interface).
Dojo is very active at web development conferences (with T-shirts, subconfer-
ences, meetups, the works!) and in general maintains a lively community with
dedicated forums. As far as community strength goes, it’s probably second
only to jQuery. You’ll find a number of good books, too, includingMastering
Dojo [RGR08], Dojo: the Definitive Guide [Rus08], Practical Dojo Projects
[Zam08], and more recently Getting StartED with Dojo [Hay10].
The online docs are very good, split among a Quick Start Guide, a Reference
Guide, and the API documentation, plus a cross point of entry using “popular
solutions” that are task-oriented (for example, “Create charts from datasets”).

http://extjs.com/
http://www.extjs.com/products/extjs/download.php
http://www.extjs.com/forum/
http://www.extjs.com/learn/Main_Page
http://www.extjs.com/learn/Main_Page

DOJO 124

In my opinion, should you need to create RIA-type, desktop-like applications
based on web standards, Dojo should be your primary choice.
We’ll wrap up this appendix with a quick list of Dojo’s important URLs:

• This is the official website: http://www.dojotoolkit.org/.
• You can access the repository at http://svn.dojotoolkit.org/src/ (pity
they don’t use Git).

• You can find bug tracking and reporting at http://bugs.dojotoolkit.org/.
• You can engage with the community at http://www.dojotoolkit.org/
community/.

http://www.dojotoolkit.org/
http://svn.dojotoolkit.org/src/
http://bugs.dojotoolkit.org/
http://www.dojotoolkit.org/community/
http://www.dojotoolkit.org/community/

Getting Help
Well, I certainly hope you found this book useful. Still, you’ll need to find
some solutions yourself, or you may need someone to confirm you’re on track.
So, where can you get more help and engage with other people about all this?

D.1 Help on JavaScript in General

Having great frameworks around is no excuse for not knowing your Java-
Script. Sometimes you actually need to dive in and write some actual code,
or perhaps you can’t make use of your usual framework for various reasons
(performance on mobile devices,1 anyone?).
Newsgroups
Remember the time before DSL was (almost) everywhere? Before Google
Groups? Before Google, actually?Well, perhaps you weren’t developing back
then, but we had Usenet. It’s still around, and recently, a new generation has
discovered how good it can be at, say, sharing binary files. Better still, it has
newsgroups for every programming language known to man.
Every ISP provides newsgroup access; it’s that weird “NNTP server” thing
you saw on your subscription papers. And most aggregators, feed readers,
and even email clients—Thunderbird, Entourage, Outlook, and, yes, even
Outlook Express—let you connect to an NNTP server and subscribe to news-
groups of your choice. (Depending on your ISP, you’ll have your pick of
thousands.)
Heck, even if you don’t want to access these groups that way, Google Groups
maintains bridges to most useful newsgroups, including the following ones:

• The core of all the action is at comp.lang.javascript. (The address
is short for COMPuter LANGuage JavaScript.) It’s been around for
ages and remains the main location for all online discussions related

1. Except if you’re using the awesome, just-released zepto.js library by Thomas
Fuchs: http://github.com/madrobby/zepto. Or even go fastest-ever with vapor.js:
http://github.com/madrobby/vapor.js.

http://github.com/madrobby/zepto
http://github.com/madrobby/vapor.js

HELP ON JAVASCRIPT IN GENERAL 126

to the language itself. You’ll find all kinds of attendees, from complete
newbies to awesome gurus.

• You can also get non-English discussion in the few language-specific
subgroups, like de.comp.lang.javascript, fr.comp.lang.javascript,
japan.comp.lang.javascript, and the like.

Mailing Lists and Forums
You’ll find plenty of forums out there, with quality varying from abysmal
to awesome, depending on who’s posting. Just stay away from cut-and-paste
dumpsters; this is how bad practices keep popping up everywhere.

• Google Groups maintains a bridge on the newsgroups I mentioned
before, so you could head there.2

• Sitepoint is usually pretty good, so you could try their JavaScript
forum.3

• Webdeveloper has a lot of activity.4
But seriously, go with the first one (the newsgroup bridge) whenever possible.
There’s a higher signal-to-noise ratio.
IRC Channels
Ah, IRC. This is another old-timer, but it’s great because, well, it’s instant
messaging. On the other hand, its usefulness depends on whether knowledge-
able people are logged in at the same time you are.
The main channel, on irc.freenode.net, is ##javascript. It usually boasts
between 300 and 400 attendees at any given time. With a bit of poking around,
you can also find a few good non-English channels.
Further Reading
You can find a number of authoritative books on JavaScript. I’ve listed many
in the bibliography, but I’ll comment on a few here:

• JavaScript: The Definitive Guide [Fla06], by David Flanagan, is widely
acknowledged as the JavaScript bible, which is funny since the Java-
Script Bible [Goo07] is by Danny Goodman, prefaced by Brendan
Eich. (A seventh edition is due very soon.)

• You’ll also want to take a look at JavaScript: The Good Parts [Cro08],
by Douglas Crockford, the guy behind JSON and JSLint, who keeps
telling us not to use two-thirds of what the language offers (grin).

2. http://groups.google.com/group/comp.lang.javascript
3. http://www.sitepoint.com/forums/forumdisplay.php?f=15
4. http://www.webdeveloper.com/forum/forumdisplay.php?forumid=3

http://groups.google.com/group/comp.lang.javascript
http://www.sitepoint.com/forums/forumdisplay.php?f=15
http://www.webdeveloper.com/forum/forumdisplay.php?forumid=3

HELP ON FRAMEWORKS 127

• John Resig, of jQuery fame, recently wrote what seems to be a great
little book at Sitepoint: Secrets of the JavaScript Ninja [Res09].

• Still at Sitepoint, although slightly more dated, is a great book by sev-
eral authors: The Art and Science of JavaScript [AEH+07].

• Evangelist extraordinaire Chris Heilmann authored Beginning Java-
Script with DOM Scripting and Ajax: From Novice to Professional
[Hei06], which is also a great read.

• I would be remiss if I did not add Thomas Fuchs and Amy Hoy’s latest
jewel, which is really a companion tool for performance, performance,
and performance: JavaScript Performance Rocks! [HF09].

D.2 Help on Frameworks

This section brings together the various online resources sprinkled through
Appendix C.
Prototype and script.aculo.us

• Official support list5
• Online API docs6
• IRC channels: #prototype and #scriptaculous on Freenode

Books:
• Practical Prototype and script.aculo.us [Dup08], by Andrew Dupont
• Prototype and script.aculo.us [Por07], by yours truly

jQuery

• Official forums7
• Tutorials8
• API documentation9
• IRC channel: #jquery on Freenode

Books:
• jQuery for Dummies [Bei10] by Lynn Beighley
• jQuery in Action [BK10] by Bear Bibault and Yehuda Kata (and origi-
nally John Resig)

• jQuery: Novice to Ninja [CS10] by Earle Castledine and Craig Sharkie
5. http://groups.google.com/group/prototype-scriptaculous
6. http://api.prototypejs.org/ and http://wiki.github.com/madrobby/scriptaculous/
7. http://forum.jquery.com/
8. http://docs.jquery.com/Tutorials
9. http://docs.jquery.com/Main_Page

http://groups.google.com/group/prototype-scriptaculous
http://api.prototypejs.org/
http://wiki.github.com/madrobby/scriptaculous/
http://forum.jquery.com/
http://docs.jquery.com/Tutorials
http://docs.jquery.com/Main_Page

HELP ON FRAMEWORKS 128

• jQuery Cookbook [Lin09] by Cody Lindley
MooTools

• Official support list10
• Forum11
• Tutorials12
• API documentation13

Books:
• MooTools Essentials [New08] by Aaron Newton

YUI

• Forum14
• Documentation15
• IRC channel: #yui on Freenode (not very active, though)

Books:
• Learning the Yahoo! User Interface library [Wel08], by Dan Wellman

ExtJS

• Forum16
• Demos17
• API documentation18
• Learning Center19
• IRC channels: #extjs on Freenode (not very active though)

Books:
• ExtJS 3.0 Cookbook [Ram09], by Jorge Ramon
• ExtJS in Action [Gar10], by Jesus Garcia

10. http://groups.google.com/group/mootools-users
11. http://mooforum.net/
12. http://mootorial.com/
13. http://mootools.net/docs/core
14. http://yuilibrary.com/forum/
15. http://developer.yahoo.com/yui/3/
16. http://www.extjs.com/forum/
17. http://www.extjs.com/deploy/dev/examples/
18. http://www.extjs.com/deploy/dev/docs/
19. http://www.extjs.com/learn/Main_Page

http://groups.google.com/group/mootools-users
http://mooforum.net/
http://mootorial.com/
http://mootools.net/docs/core
http://yuilibrary.com/forum/
http://developer.yahoo.com/yui/3/
http://www.extjs.com/forum/
http://www.extjs.com/deploy/dev/examples/
http://www.extjs.com/deploy/dev/docs/
http://www.extjs.com/learn/Main_Page

HELP ON FRAMEWORKS 129

Dojo

• Forum20
• API documentation and tutorials21
• IRC channels: #dojo on Freenode

Books:
• Mastering Dojo [RGR08], by Craig Riecke, Rawld Gill, and Alex Rus-
sell

• Dojo: the Definitive Guide [Rus08], by Matthew A. Russell
• Practical Dojo Projects [Zam08], by Frank Zammetti

20. http://www.dojotoolkit.org/community/
21. http://www.dojotoolkit.org/documentation/

http://www.dojotoolkit.org/community/
http://www.dojotoolkit.org/documentation/

Bibliography
[AEH+07] Cameron Adams, James Edwards, Christian Heilmann, Michael

Mahemoff, Ara Pehlivanian, Dan Webb, and Simon Willison.
The Art and Science of JavaScript. Sitepoint, 2007.

[Bei10] Lynn Beighley. jQuery for Dummies. For Dummies, 2010.
[BK10] Bear Bibeault and Yehuda Katz. jQuery in Action. Manning

Publications Co., Greenwich, CT, second edition, 2010.
[Cro08] Douglas Crockford. JavaScript: The Good Parts. O’Reilly

Media, Inc. / Yahoo! Press, Sebastopol, CA, 2008.
[CS10] Earle Castledine and Craig Sharkie. jQuery: Novice to Ninja.

Sitepoint, San Francisco, CA, 2010.
[Dup08] Andrew Dupont. Practical Prototype and script.aculo.us.

Apress, New York, NY, 2008.
[Fla06] David Flanagan. JavaScript: The Definitive Guide. O’Reilly

Media, Inc., Sebastopol, CA, fifth edition, 2006.
[Gar10] Jesus Garcia. ExtJS in Action. Manning Publications Co.,

Greenwich, CT, 2010.
[Goo07] Danny Goodman. JavaScript Bible. John Wiley & Sons, 2007.
[Hay10] Kyle Hayes. Getting StartED with Dojo. Friends of ED, New

York, NY, 2010.
[Hei06] Christian Heilmann. Beginning JavaScript with DOM Scripting

and Ajax: From Novice to Professional. Apress, New York, NY,
2006.

[HF09] Amy Hoy and Thomas Fuchs. JavaScript Performance Rocks!
Slash7, Vienna, Austria, 2009.

[Lin09] Cody Lindley. jQuery Cookbook. O’Reilly Media, Inc.,
Sebastopol, CA, 2009.

BIBLIOGRAPHY 131

[New08] Aaron Newton. MooTools Essentials. Apress, 2008.
[Por07] Christophe Porteneuve. Prototype and script.aculo.us: You

never knew JavaScript could do this! The Pragmatic Program-
mers, LLC, Raleigh, NC, and Dallas, TX, 2007.

[Ram09] Jorge Ramon. ExtJS 3.0 Cookbook. Packt, Birmingham, UK,
2009.

[Res09] John Resig. Secrets of the JavaScript Ninja. Manning Publica-
tions Co., Greenwich, CT, 2009.

[RGR08] Craig Riecke, Rawld Gill, and Alex Russell. Mastering Dojo:
JavaScript and Ajax Tools for Great Web Experiences. The
Pragmatic Programmers, LLC, Raleigh, NC, and Dallas, TX,
2008.

[Rus08] Matthew A. Russell. Dojo: the Definitive Guide. O’Reilly
Media, Inc., Sebastopol, CA, 2008.

[Wel08] Dan Wellman. Learning the Yahoo! User Interface library.
Packt, Birmingham, UK, 2008.

[Zam08] Frank Zammetti. Practical Dojo Projects. Apress, New York,
NY, 2008.

Index
A
Ajax
autocompletion with, 72
cross-domain with, 86, 88
form validation, 68
loading through, 80
updates, 30

Ajax.Autocompleter, 72
Ajax.Request, 54
APIs
common event, 38
Flickr, 94
geocoders, 96
jQuery, 26
MooTools, 26
Prototype, 26
Twitter, 92
Yahoo! Placemaker, 96
YUI 3, 26

arguments
grabbing, 23
optional, variable-length and named,
22

array objects, 18
The Art and Science of JavaScript (Adams

et al), 127
Autocompleter.Local, 72
autocompleting forms, 72

B
background processing, 40
bandwidth, pagination and, 52
Base64 encoding, 74
Beginning JavaScript with DOM Scripting

and Ajax: From Novice to
Professional (Heilmann), 127

behaviors, 38
Beighley, Lynn, 127
Bibault, Bear, 127
binding, 34n, 58
blank(), 64

browsers
pagination and age of, 52
spawning, 109

bubbling events, 36

C
callbacks, 80
Castledine, Earle, 127
Charles Java-based tool, 115
checkboxes, 62
checking checkboxes, 62
classes, 28
clearTimeout(), 40
client-side validation, 64
code
compression of, 116
privacy of, 20
running when DOM is loaded, 32

code obfuscation, 116n
codebase size, 116
comp.lang.javascript, 125
compression (code), 116
content
changing element, 30
dynamically styling, 28
maintaining viewport when loading, 54

context node, 26
cookies, 78
CORS (cross-origin resource sharing), 86
Crockford, Douglas, 126
cross-domain management, 86, 88
cross-origin resource sharing (CORS), 86
CSS
grabbing elements by selection, 27
preloading images with, 48
sprites, 48
tooltips and, 44

CSSHttpRequest, 88
cumulativeOffset(), 54
D
debug bench, setting up, 102

DEBUGGING JAVASCRIPT FUCHS

debugging JavaScript
Firefox and Firebug, 103–107
IE6, IE7, IE Developer Toolbar and
Web Developer Express, 109–111

IE8 and Developer Tools, 112
networks, 115
Opera and Dragonfly, 113
overview, 102
Safari and Web Inspector, 107
virtual machines, 114

declaration, 38
Developer Tools, 112
Dijit, 46
disabling submit buttons, 58
DOCTYPEs, 26
document.cookie property, 78
document.getElementsById, 26
Dojo

behavior(), 36
common event API, 38
connecting events, 34
custom payload, 38
frameworks, 123
help, 129
preserving binding, 32

Dojo: the Definitive Guide (Russell), 123,
129

DOM
API, 26
behaviors and custom events, 38
changing element contents, 30
dynamically styling content, 28
elements, 26
event delegation, 36
listening for events, 34
manipulating, 25, 43
performance in IE8, 112
running code with loaded, 32
simulating background processing, 40
traversals, 27

DOM-like behavior, 38
dot operator (.), 18
Dragonfly, 113
Dupont, Andrew, 117, 127
dynamic multiple file uploads, 74

E
element.getValue(), 66
elements
changing content of, 30
grabbing by selection, 27
updating, 31

equivalence rules of JavaScript, 22
Event object, 34

events
bubbling, 36
decoupling behaviors with, 38
leveraging delegation, 36
listening for, 34

Evidence, 117
Ext
connecting events, 34
updates, 30

Ext JS, 26, 32
Ext. Window, 46
ExtJS
frameworks, 122
help, 128

ExtJS in Action (Garcia), 122, 128
ExtJS 3.0 Cookbook (Ramon), 122, 128

F
false-equivalence, 22
FancyBox jQuery plug-in, 50
$F(element) function, 66
fibo() function, 104
file upload feature, 74
findElement(), 36
Firebug, 102, 103, 104n
Firefox, 103
Flanagan, David, 126
Flash bridge, 88
Flickr, 94
flickr.photos.search method, 96
flXHR, 88
forms
autocompleting, 72
checking/unchecking checkboxes, 62
disabling submit buttons, 58
dynamic multiple file uploads, 74
help tooltips on, 70
overview, 57
providing input length feedback, 60
validating, 64, 66, 68

forums, 126
frameworks
Dojo, 123
ExtJS, 122
help, 127
jQuery/jQuery UI, 118
MooTools, 120
overview, 116
Prototype, 117
script.aculo.us, 117
Scripty2, 117
YUI (Yahoo! User Interface library),
120

Fuchs, Thomas, 40n, 117, 127

133

FUNCTION REFERENCES LOWENOUGH() METHOD

function references, 34
functions
calling, 18
defining, 20
see also specific functions

G
Garcia, Jesus, 128
geocoding locations, 96
GeoIP, 96
getPlaces() method, 96
Getting StartED with Dojo (Hayes), 123
Gill, Rawld, 129
GitHub, 43, 43n, 117
Goodman, Danny, 126
Google Groups, 126
grabbing arguments, 23

H
handler functions, 34
Heilmann, Christian, 88, 96, 121, 127
heisenbugs, 115
help
books, 126
Dojo, 129
ExtJS, 128
frameworks, 127
IRC channels, 126
jQuery, 127
mailing lists and forums, 126
MooTools, 128
newsgroups, 125
Prototype, 127
script.aculo.us, 127
YUI (Yahoo! User Interface Library),
128

Hewitt, Joe, 102
:hover selector, 44
Hoy, Amy, 112n, 127

I
ID, grabbing elements by, 26
identify(), 60n
IE Developer Toolbar, 109
images, preloading, 48
infinite scroll, 52
innerHTML property, 30
input
autocompletion of forms, 72
feedback for length of, 60

Internet Explorer, 109, 112
IRC channels, 126

J
JavaScript, 48
see also debugging JavaScript

JavaScript Bible (Goodman), 126
JavaScript debugger (IE8), 112
JavaScript function bindings, 58n
JavaScript Performance Rocks! (Hoy and

Fuchs), 112n, 127
JavaScript: The Definitive Guide

(Flanagan), 126
JavaScript: The Good Parts (Crockford),

126
jQuery
API, 26
custom payload, 38
DOM-like behavior, 38
FancyBox plug-in, 50
frameworks, 118
help, 127
live(), 36
simulating bubbling, 64
updates, 30

jQuery Cookbook (Lindley), 119, 128
jQuery For Dummies (Beighley), 127
jQuery for Dummies (Beighley), 119
jQuery in Action (Bibault and Kata), 119,

127
jQuery: Novice to Ninja (Castledine and

Sharkie), 119, 127
jQuery UI, 46, 118
JS-Placemaker, 96
JScript engine, 112
JSON, 82, 92, 94
JSON-P, 84, 86, 88

K
Kata, Yehuda, 127
keydown, 60
keypress, 60
keyup, 60

L
Langel, Tobie, 117
Learning the Yahoo! User Interface

Library (Wellman), 121, 128
leveraging event delegation, 36
library shortcuts, 28
lightbox effects, 50
Lindley, Cody, 128
listening for events, 34
loading through Ajax, 80
loadTwitterStream(), 92
lowEnough() method, 52

MAILING LISTS SETTING UP A DEBUG BENCH

M
mailing lists, 126
mashups
Flickr, 94
geocoding, 96
overview, 91
Twitter, 92

mass toggling feature, 62
Mastering Dojo (Riecke, Gill and

Russell), 123, 129
maxlength prefix, 60
methods, 18
see also specific methods

Microsoft Script Debugger, 109
module pattern, 20
MooTools
API, 26
declaration, 38
DOM-like behavior, 38
frameworks, 120
help, 128

MooTools Essentials (Newton), 120, 128
myString.match(myPattern), 66

N
namespacing, 38
networks, 115
newsgroups, 125
Newton, Aaron, 128
nodes, 26

O
obfuscation (code), 116n
objects, see specific objects
offset scrolling, 54
Opera, 113
operators, see specific operators

P
pagination, 52
Parallels Desktop, 114
parameters, declaring, 23
payload (custom), 38
PDoc, 117
Placemaker API (Yahoo), 96
plug-ins, 50
pop-ups, 46
Practical Dojo Projects (Zammetti), 129
Practical Prototype and script.aculo.us

(Dupont), 117, 127
preloading images, 48
Proietti, Valerio, 120
properties, 18

see also specific properties
Prototip2, 44
Prototype
API, 26
custom payload, 38
delegation-based event listener, 36
DOM-like behavior, 38
frameworks, 117
help, 127
leveraging event bubbling, 34
namespacing, 38
preserving binding, 32
updates, 30
use of, 43

Prototype and script.aculo.us
(Porteneuve), 117, 127

pseudo pop-ups, 46

R
Ramon, Jorge, 128
reading cookies, 78
regexes, 66
replacing, updating versus, 30
Resig, John, 118, 127
Riecke, Craig, 129
root node, 26
Russell, Alex, 123, 129
Russell, Matthew, 129

S
Safari, 107
Schiemann, Dylan, 123
Schontzler, David, 123
Script Debugger (Microsoft), 109
Script tab (Firebug), 104
<script> tags, 30
script.aculo.us, 72, 117, 127
Scripteka, 117
Scripty2, 46, 117
scrolling offset, 54
Secrets of the JavaScript Ninja (Resig),

127
server-side
cross-domain Ajax, 86, 88
JSON, 82
JSON-P, 84
loading through Ajax, 80
overview, 77
processing time, 52
proxy, 86
reading/writing cookies, 78

setTimeout(), 40
setting up a debug bench, 102

SHARKIE ZAYTSEV

Sharkie, Craig, 127
simulating background processing, 40
Sitepoint, 126
Skarnelis, Janis, 50
Slocum, Jack, 122
slow proxies, 115
Souder, Steve, 48, 48n
source code archive, 17
spawning browsers, 109
specifying input lengths, 60
SpriteMe tool, 48n
Sprockets, 117
square brackets ([]) operator, 18
step-by-step mode, 104n
Stephenson, Sam, 54, 117
styling, 28, 70
submit buttons, 58
submit events, 64
Sun, 114
syndicating
Flickr updates, 94
Twitter updates, 92

T
test(), 66
third-party services, 86
37signals, 74, 117
tools
Charles Java-based, 115
SpriteMe, 48n

tooltips
help on forms, 70
implementing, 44

Twitter, 92
twitterCallback() function, 92

U
UI
creating lightbox effects, 50
creating popups, 46
implementing infinite scrolls, 52
implementing tooltips, 44
maintaining viewport when loading
content, 54

overview, 43
preloading images, 48

unchecking checkboxes, 62
undefined === rant test, 22

updating
elements, 31
replacing versus, 30

Usenet, 125

V
validation
client-side, 64
forms, 64, 66, 68

var-declared identifiers and functions, 20
viewport, maintaining when loading

content, 54
virtual machines, 114
VirtualBox (Sun), 114
Visual Web Developer Express edition,

109
VMware Fusion, 114
VMware Workstation, 114

W
W3C Geo API, 96
web bug, 88
Web Developer Express, 109
Web Inspector, 107
Web Workers, 40
Webdeveloper, 126
Wellman, Dan, 128
window.open() method, 46
writing cookies, 78

X
XPath selection, 27

Y
Yahoo!
Developer Network, 112n
Placemaker API, 96
YQL service, 88

YQL service (Yahoo!), 88
YUI (Yahoo! User Interface Library)
frameworks, 120
help, 128
Overlay module, 46

YUI 3 API, 26

Z
Zammetti, Frank, 129
Zaytsev, Juriy, 58n

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of
your game. The following are in print as of October 2010; be sure to check our website at
pragprog.com for newer titles.
Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build Stunning
Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248
Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200
Agile Web Development with Rails 2009 9781934356166 792
Beginning Mac Programming: Develop with Objective-C
and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great Management 2005 9780976694021 192
Best of Ruby Quiz 2006 9780976694076 304
Cocoa Programming: A Quick-Start Guide for
Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone: Creating
Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on Mac OS X 2009 9781934356326 256
Data Crunching: Solve Everyday Problems using Java,
Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your Code 2009 9781934356289 232
Deploying Rails Applications: A Step-by-Step Guide 2008 9780978739201 280
Design Accessible Web Sites: 36 Keys to Creating
Content for All Audiences and Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open Source
Tools

2008 9781934356067 368

Domain-Driven Design Using Naked Objects 2009 9781934356449 375
Enterprise Integration with Ruby 2006 9780976694069 360
Enterprise Recipes with Ruby and Rails 2008 9781934356234 416
Everyday Scripting with Ruby: for Teams, Testers, and
You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250
From Java To Ruby: Things Every Manager Should Know 2006 9780976694090 160
FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240
GIS for Web Developers: Adding Where to Your Web
Applications

2007 9780974514093 275

Google Maps API: Adding Where to Your Applications 2006 PDF-Only 83
Grails: A Quick-Start Guide 2009 9781934356463 200
Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264
Hello, Android: Introducing Google’s Mobile
Development Platform

2010 9781934356562 320
Continued on next page

pragprog.com

Title Year ISBN Pages
Interface Oriented Design 2006 9780976694052 240
iPad Programming: A Quick-Start Guide for iPhone
Developers

2010 9781934356579 248

iPhone SDK Development 2009 9781934356258 576
Land the Tech Job You Love 2009 9781934356265 280
Language Implementation Patterns: Create Your Own
Domain-Specific and General Programming Languages

2009 9781934356456 350

Learn to Program 2009 9781934356364 240
Manage It! Your Guide to Modern Pragmatic Project
Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your Capacity
and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for Great
Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby Pros 2010 9781934356470 240
Modular Java: Creating Flexible Applications with OSGi
and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240
No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320
Pomodoro Technique Illustrated: The Easy Way to Do
More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to Computer
Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208
Pragmatic Guide to Git 2010 9781934356722 168
Pragmatic Project Automation: How to Build, Deploy,
and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your
Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176
Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160
Pragmatic Version Control using CVS 2003 9780974514000 176
Pragmatic Version Control Using Git 2008 9781934356159 200
Pragmatic Version Control using Subversion 2006 9780977616657 248
Programming Clojure 2009 9781934356333 304
Programming Cocoa with Ruby: Create Compelling Mac
Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent World 2007 9781934356005 536
Programming Groovy: Dynamic Productivity for the Java
Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic Programmers’ Guide 2004 9780974514055 864
Programming Ruby 1.9: The Pragmatic Programmers’
Guide

2009 9781934356081 960
Continued on next page

Title Year ISBN Pages
Programming Scala: Tackle Multi-Core Complexity on
the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew
JavaScript Could Do This!

2007 9781934356012 448

Rails for .NET Developers 2008 9781934356203 300
Rails for Java Developers 2007 9780977616695 336
Rails for PHP Developers 2008 9781934356043 432
Rails Recipes 2006 9780977616602 350
Rapid GUI Development with QtRuby 2005 PDF-Only 83
Release It! Design and Deploy Production-Ready
Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192
Seven Languages in Seven Weeks: A Pragmatic Guide to
Learning Programming Languages

2010 9781934356593 300

Ship It! A Practical Guide to Successful Software Projects 2005 9780974514048 224
SQL Antipatterns: Avoiding the Pitfalls of Database
Programming

2010 9781934356555 352

Stripes ...and Java Web Development Is Fun Again 2008 9781934356210 375
Test-Drive ASP.NET MVC 2010 9781934356531 296
TextMate: Power Editing for the Mac 2007 9780978739232 208
The Agile Samurai: How Agile Masters Deliver Great
Software

2010 9781934356586 280

The Definitive ANTLR Reference: Building
Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a Remarkable
Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240
Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400
Web Design for Developers: A Programmer’s Guide to
Design Tools and Techniques

2009 9781934356135 300

More Fun With Languages

Seven Languages in Seven Weeks
In this book you’ll get a hands-on tour of Clojure, Haskell, Io,
Prolog, Scala, Erlang, and Ruby. Whether or not your favorite
language is on that list, you’ll broaden your perspective of
programming by examining these languages side-by-side. You’ll
learn something new from each, and best of all, you’ll learn how to
learn a language quickly.
Seven Languages in Seven Weeks: A Pragmatic Guide to
Learning Programming Languages
Bruce A. Tate
(300 pages) ISBN: 978-1934356-59-3. $34.95
http://pragprog.com/titles/btlang

Language Implementation Patterns
Learn to build configuration file readers, data readers, model-driven
code generators, source-to-source translators, source analyzers, and
interpreters. You don’t need a background in computer
science—ANTLR creator Terence Parr demystifies language
implementation by breaking it down into the most common design
patterns. Pattern by pattern, you’ll learn the key skills you need to
implement your own computer languages.
Language Implementation Patterns: Create Your Own
Domain-Specific and General Programming Languages
Terence Parr
(350 pages) ISBN: 978-1934356-45-6. $34.95
http://pragprog.com/titles/tpdsl

http://pragprog.com/titles/btlang
http://pragprog.com/titles/tpdsl

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue
the well-known Pragmatic Programmer style and continue to garner awards and rave reviews. As
development gets more and more difficult, the Pragmatic Programmers will be there with more
titles and products to help you stay on top of your game.

Visit Us Online
Pragmatic Guide to JavaScript

http://pragprog.com/titles/pg_js
Source code from this book, errata, and other resources. Come give us feedback, too!
Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.
Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with our
wiki, and benefit from the experience of other Pragmatic Programmers.
New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available for
purchase at our store: pragprog.com/titles/pg_js.

Contact Us
Online Orders: www.pragprog.com/catalog
Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/pg_js
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/pg_js
www.pragprog.com/catalog

	Contents
	Dedication
	Acknowledgments
	Introduction
	What's This Book About, and Who Is It For?
	This Book and JavaScript Libraries
	This Book at a Glance
	How to Read This Book

	Bread and Butter: Pure JavaScript
	Task 1. Dynamically Selecting a Method/Property
	Task 2. Achieving Code Privacy with the Module Pattern
	Task 3. Using Optional, Variable, and Named Arguments

	The DOM, Events, and Timers
	Task 4. Obtaining References to DOM Elements
	Task 5. Dynamically Styling Content
	Task 6. Changing an Element's Contents
	Task 7. Running Code When the DOM Is Loaded
	Task 8. Listening for Events (and Stopping)
	Task 9. Leveraging Event Delegation
	Task 10. Decoupling Behaviors with Custom Events
	Task 11. Simulating Background Processing

	UI Tricks
	Task 12. Pulling Off Classy Tooltips
	Task 13. Making Unobtrusive Pop-Ups
	Task 14. Preloading Images
	Task 15. Creating a Lightbox Effect
	Task 16. Implementing an "Infinite Scroll"
	Task 17. Maintaining Viewport When Loading Content

	Form-fu
	Task 18. Temporarily Disabling a Submit Button
	Task 19. Providing Input Length Feedback
	Task 20. (Un)checking a Whole Set of Checkboxes at Once
	Task 21. Validating Forms: The Basics
	Task 22. Validating Forms: Going Further
	Task 23. Validating Forms: The Whole Nine Yards
	Task 24. Providing On-the-Fly Help Tooltips on Forms
	Task 25. Autocompleting Input As It's Typed
	Task 26. Using Dynamic Multiple File Uploads

	Talking with the Server Side
	Task 27. Reading/Writing Cookies
	Task 28. Loading Stuff Through Ajax (Same Domain)
	Task 29. Using JSON
	Task 30. Using JSON-P
	Task 31. Cross-Domain "Ajax" (Take 1)
	Task 32. Cross-Domain "Ajax" (Take 2)

	Making Mashups
	Task 33. Syndicating Your Twitter Updates
	Task 34. Syndicating Your Flickr Updates
	Task 35. Geocoding a Location and Getting Photos For It

	Appendices
	JavaScript Cheat Sheet
	Debugging JavaScript
	Here Be Dragons
	Firefox and Firebug
	Safari and Web Inspector
	IE6, IE7, the IE Toolbar, and Web Developer Express
	IE8 and Developer Tools
	Opera and Dragonfly
	Virtual Machines Are Your Friends
	The Network May Be Your Enemy

	JavaScript Frameworks
	Prototype, script.aculo.us, and Scripty2
	jQuery and jQuery UI
	MooTools
	YUI
	ExtJS
	Dojo

	Getting Help
	Help on JavaScript in General
	Help on Frameworks

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

