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ABSTRACT

Some Practical Guidance for the Implementation of
Propensity Score Matching”

Propensity Score Matching (PSM) has become a popular approach to estimate causal
treatment effects. It is widely applied when evaluating labour market policies, but empirical
examples can be found in very diverse fields of study. Once the researcher has decided to
use PSM, he is confronted with a lot of questions regarding its implementation. To begin with,
a first decision has to be made concerning the estimation of the propensity score. Following
that one has to decide which matching algorithm to choose and determine the region of
common support. Subsequently, the matching quality has to be assessed and treatment
effects and their standard errors have to be estimated. Furthermore, questions like “what to
do if there is choice-based sampling?” or “when to measure effects?” can be important in
empirical studies. Finally, one might also want to test the sensitivity of estimated treatment
effects with respect to unobserved heterogeneity or failure of the common support condition.
Each implementation step involves a lot of decisions and different approaches can be
thought of. The aim of this paper is to discuss these implementation issues and give some
guidance to researchers who want to use PSM for evaluation purposes.
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1 Introduction

Matching has become a popular approach to estimate causal treatment effects. It is
widely applied when evaluating labour market policies (see e.g. Dehejia and Wahba
(1999) or Heckman, Ichimura, and Todd (1997)), but empirical examples can be
found in very diverse fields of study. It applies for all situations where one has
a treatment, a group of treated individuals and a group of untreated individuals.
The nature of treatment may be very diverse. For example, Perkins, Tu, Underhill,
Zhou, and Murray (2000) discuss the usage of matching in pharmacoepidemiologic
research. Hitt and Frei (2002) analyse the effect of online banking on the profitability
of customers. Davies and Kim (2003) compare the effect on the percentage bid-ask
spread of Canadian firms being interlisted on an US-Exchange, whereas Brand and
Halaby (2003) analyse the effect of elite college attendance on career outcomes.
Ham, Li, and Reagan (2003) study the effect of a migration decision on the wage
growth of young men and Bryson (2002) analyse the effect of union membership on
wages of employees. Every microeconometric evaluation study has to overcome the
fundamental evaluation problem and address the possible occurrence of selection
bias. The first problem arises because we would like to know the difference between
the participants’ outcome with and without treatment. Clearly, we cannot observe
both outcomes for the same individual at the same time. Taking the mean outcome
of non-participants as an approximation is not advisable, since participants and
non-participants usually differ even in the absence of treatment. This problem is
known as selection bias and a good example is the case, where motivated individuals
have a higher probability of entering a training programme and have also a higher
probability of finding a job. The matching approach is one possible solution to the
selection problem. It originated from the statistical literature and shows a close
link to the experimental context.! Its basic idea is to find in a large group of non-
participants those individuals who are similar to the participants in all relevant
pre-treatment characteristics X. That being done, differences in outcomes of this
well selected and thus adequate control group and of participants can be attributed
to the programme.

Since conditioning on all relevant covariates is limited in case of a high dimen-
sional vector X (‘curse of dimensionality’), Rosenbaum and Rubin (1983) suggest
the use of so-called balancing scores b(X), i.e. functions of the relevant observed co-
variates X such that the conditional distribution of X given b(X) is independent of
assignment into treatment. One possible balancing score is the propensity score, i.e.
the probability of participating in a programme given observed characteristics X.
Matching procedures based on this balancing score are known as propensity score
matching (PSM) and will be the focus of this paper. Once the researcher has decided
to use PSM, he is confronted with a lot of questions regarding its implementation.
Figure 1 summarises the necessary steps when implementing PSM.2

See e.g. Rubin (1974), Rosenbaum and Rubin (1983, 1985a) or Lechner (1998).

2The decision whether to apply PSM or covariate matching (CVM) will not be discussed in this
paper. With CVM distance measures like the Mahalanobis distance are used to calculate similarity
of two individuals in terms of covariate values and the matching is done on these distances. The
interested reader is referred to Imbens (2004) or Abadie and Imbens (2004) who develop covariate
and bias-adjusted matching estimators. Zhao (2004) discusses the basic differences between PSM
and covariate matching.



Figure 1: PSM - Implementation Steps

Step 0: Step 1: Step 2: Step 3: Step 4: Step 5:
Decide Propensity Choose Check Over-\ | Matching Sensitivity
between Score Matching lap/Common ) Quality/Effect) Analysis
PSM and Estimation Algorithm Support Estimation

CVM (sec. 3.1) (sec. 3.2) (sec. 3.3) (sec. 3.4-3.7) (sec. 4)

CVM: Covariate Matching, PSM: Propensity Score Matching

The aim of this paper is to discuss these issues and give some practical guidance
to researchers who want to use PSM for evaluation purposes. The paper is organised
as follows. In section 2 we will describe the basic evaluation framework and possible
treatment effects of interest. Furthermore we show how propensity score matching
solves the evaluation problem and highlight the implicit identifying assumptions. In
section 3 we will focus on implementation steps of PSM estimators. To begin with,
a first decision has to be made concerning the estimation of the propensity score
(see subsection 3.1). One has not only to decide about the probability model to be
used for estimation, but also about variables which should be included in this model.
In subsection 3.2 we briefly evaluate the (dis-)advantages of different matching al-
gorithms. Following that we discuss how to check the overlap between treatment
and comparison group and how to implement the common support requirement in
subsection 3.3. In subsection 3.4 we will show how to assess the matching qual-
ity. Subsequently we present the problem of choice-based sampling and discuss the
question ‘when to measure programme effects?’” in subsections 3.5 and 3.6. Estimat-
ing standard errors for treatment effects will be briefly discussed in subsection 3.7,
before we conclude this section with an overview of available software to estimate
treatment effects (3.8). Section 4 will be concerned with the sensitivity of estimated
treatment effects. In subsection 4.1 we describe an approach (Rosenbaum bounds)
that allows the researcher to determine how strongly an unmeasured variable must
influence the selection process in order to undermine the implications of PSM. In
subsection 4.2 we describe an approach proposed by Lechner (2000b). He incorpo-
rates information from those individuals who failed the common support restriction,
to calculate bounds of the parameter of interest, if all individuals from the sample at
hand would have been included. Finally, section 5 reviews all steps and concludes.

2 Evaluation Framework and Matching Basics

Roy-Rubin Model: Inference about the impact of a treatment on the outcome of
an individual involves speculation about how this individual would have performed



had he not received the treatment. The standard framework in evaluation analysis to
formalise this problem is the potential outcome approach or Roy-Rubin-model (Roy
(1951), Rubin (1974)). The main pillars of this model are individuals, treatment
and potential outcomes. In the case of a binary treatment the treatment indicator
D; equals one if individual ¢ receives treatment and zero otherwise. The potential
outcomes are then defined as Y;(D;) for each individual i, where i = 1,..., N and N
denotes the total population. The treatment effect for an individual i can be written
as:

m = Yi(1) - Yi(0). (1)

The fundamental evaluation problem arises because only one of the potential out-
comes is observed for each individual 7. The unobserved outcome is called counter-
factual outcome. Hence, estimating the individual treatment effect 7; is not possible
and one has to concentrate on (population) average treatment effects.?

Parameter of Interest: The parameter that received the most attention in eval-
uation literature is the ‘average treatment effect on the treated’ (ATT), which is

defined as:
rarr = E(|D = 1) = B[Y(1)|D = 1] - E[Y(0)|D = 1] @)

As the counterfactual mean for those being treated - E[Y (0)|D = 1] - is not observed,
one has to choose a proper substitute for it in order to estimate ATT. Using the
mean outcome of untreated individuals £[Y (0)|D = 0] is in non-experimental studies
usually not a good idea, because it is most likely that components which determine
the treatment decision also determine the outcome variable of interest. Thus, the
outcomes of individuals from treatment and comparison group would differ even in
the absence of treatment leading to a ‘self-selection bias’. For ATT it can be noted
as:

E[Y(1)|D = 1]~ E[Y(0)|D = 0] = rarr + E[Y(0)|D = 1] - E[Y(0)[D = 0]. (3)

The difference between the left hand side of equation (3) and 7477 is the so-called
‘self-selection bias’. The true parameter 7477 is only identified, if:

E[Y(0)|D = 1] — E[Y(0)|D = 0] = 0. (4)

In social experiments where assignment to treatment is random this is ensured and
the treatment effect is identified.* In non-experimental studies one has to invoke
some identifying assumptions to solve the section problem stated in equation (3).
Another parameter of interest is the ‘average treatment effect’ (ATE), which is
defined as:

Tare = E[Y/(1) = Y(0)]. (5)

The additional challenge when estimating ATE is that both counterfactual outcomes
E]Y(1)|D = 0] and E[Y (0)|D = 1] have to be constructed.

3Estimation of average treatment effects requires that the treatment effect for each individ-
ual 7 is independent of treatment participation of other individuals (‘stable unit-treatment value
assumption’).

4See Smith (2000) for a discussion about advantages and disadvantages of social experiments.



Conditional Independence Assumption: One possible identification strategy
is to assume, that given a set of observable covariates X which are not affected by
treatment, potential outcomes are independent of treatment assignment:

(Unconfoundedness) Y (0),Y(1)II DX, V X. (6)

This implies, that selection is solely based on observable characteristics and that
all variables that influence treatment assignment and potential outcomes simultane-
ously are observed by the researcher. Clearly, this is a strong assumption and has to
be justified by the data quality at hand. For the rest of the paper we will assume that
this condition holds.® It should also be clear, that conditioning on all relevant covari-
ates is limited in case of a high dimensional vector X. For instance if X contains s
covariates which are all dichotomous, the number of possible matches will be 2°. To
deal with this dimensionality problem, Rosenbaum and Rubin (1983) suggest to use
so-called balancing scores. They show that if potential outcomes are independent
of treatment conditional on covariates X, they are also independent of treatment
conditional on a balancing score b(X). The propensity score P(D = 1|X) = P(X),
i.e. the probability for an individual to participate in a treatment given his ob-
served covariates X, is one possible balancing score. The conditional independence
assumption (CIA) based on the propensity score (PS) can be written as:

(Unconfoundedness given the PS) Y(0),Y (1) I D|P(X), V X. (7)

Common Support: A further requirement besides independence is the common
support or overlap condition. It rules out the phenomenon of perfect predictability
of D given X:

(Overlap) 0< P(D=1|X)<1 (8)

It ensures that persons with the same X values have a positive probability of be-
ing both participants and non-participants (Heckman, LaLonde, and Smith, 1999).

Estimation Strategy: Given that CIA holds and assuming additional that there
is overlap between both groups (called ‘strong ignorability’ by Rosenbaum and Rubin
(1983)), the PSM estimator for ATT can be written in general as®:

Thtr = Epcop—{E[Y (1)|D =1, P(X)] - E[Y (0)|D = 0, P(X)]}. (9

To put it in words, the PSM estimator is simply the mean difference in outcomes
over the common support, appropriately weighted by the propensity score distrib-
ution of participants. Based on this brief outline of the matching estimator in the
general evaluation framework, we are now going to discuss the implementation of
PSM in detail.

5See Blundell and Costa Dias (2002) or Caliendo and Hujer (2005) for evaluation strategies
when selection is also based on unobservable characteristics.
SFor the identification of ATT it is sufficient to assume that Y (0)I[ID|P(X) and P(D = 1|X) <

1.



3 Implementation of Propensity Score Matching

3.1 Estimating the Propensity Score

When estimating the propensity score, two choices have to be made. The first one
concerns the model to be used for the estimation, and the second one the variables
to be included in this model. We will start with the model choice before we discuss
which variables to include in the model.

Model Choice: Little advice is available regarding which functional form to use
(see e.g. the discussion in Smith (1997)). In principle any discrete choice model
can be used. Preference for logit or probit models (compared to linear proba-
bility models) derives from the well-known shortcomings of the linear probability
model, especially the unlikeliness of the functional form when the response variable
is highly skewed and predictions that are outside the [0, 1] bounds of probabilities.
However, when the purpose of a model is classification rather than estimation of
structural coefficients, it is less clear that these criticisms apply (Smith, 1997). For
the binary treatment case, where we estimate the probability of participation vs.
non-participation, logit and probit models usually yield similar results. Hence, the
choice is not too critical, even though the logit distribution has more density mass
in the bounds. However, when leaving the binary treatment case, the choice of
the model becomes more important. The multiple treatment case (as discussed in
Imbens (2000) and Lechner (2001)) constitutes of more than two alternatives, e.g.
when an individual is faced with the choice to participate in job-creation schemes,
vocational training or wage subsidy programmes or do not participate at all. For
that case it is well known that the multinomial logit is based on stronger assump-
tions than the multinomial probit model, making the latter one the preferable op-
tion.” However, since the multinomial probit is computational more burdensome,
a practical alternative is to estimate a series of binomial models like suggested by
Lechner (2001). Bryson, Dorsett, and Purdon (2002) note that there are two short-
comings regarding this approach. First, as the number of options increases, the
number of models to be estimated increases disproportionately (for L options we
need 0.5(L(L — 1)) models). Second, in each model only two options at a time are
considered and consequently the choice is conditional on being in one of the two
selected groups. On the other hand, Lechner (2001) compares the performance of
the multinomial probit approach and the series estimation and finds little difference
in their relative performance. He suggests that the latter approach may be more
robust since a mis-specification in one of the series will not compromise all others
as would be the case in the multinomial probit model.

Variable Choice: More advice is available regarding the inclusion (or exclusion)
of covariates in the propensity score model. The matching strategy builds on the

"Especially the ‘independence from irrelevant alternatives’ assumption (ITA) is critical. It ba-
sically states that the odds ratio between two alternatives are independent of other alternatives.
This assumption is convenient for estimation but not appealing from an economic or behavioural
point of view (for details see e.g. Greene (2003)).



CIA, requiring that the outcome variable(s) must be independent of treatment con-
ditional on the propensity score. Hence, implementing matching requires choosing
a set of variables X that credibly satisfy this condition. Heckman, Ichimura, and
Todd (1997) show that omitting important variables can seriously increase bias in
resulting estimates. Only variables that influence simultaneously the participation
decision and the outcome variable should be included. Hence, economic theory, a
sound knowledge of previous research and also information about the institutional
settings should guide the researcher in building up the model (see e.g. Smith and
Todd (2005) or Sianesi (2004)). It should also be clear that only variables that
are unaffected by participation (or the anticipation of it) should be included in the
model. To ensure this, variables should either be fixed over time or measured be-
fore participation. In the latter case, it must be guaranteed that the variable has
not been influenced by the anticipation of participation. Heckman, Lalonde, and
Smith (1999) also point out, that the data for participants and non-participants
should stem from the same sources (e.g. the same questionnaire). The better and
more informative the data are, the easier it is to credibly justify the CIA and the
matching procedure. However, it should also be clear that ‘too good’ data is not
helpful either. If P(X) = 0 or P(X) = 1 for some values of X, then we cannot
use matching conditional on those X values to estimate a treatment effect, because
persons with such characteristics either always or never receive treatment. Hence,
the common support condition as stated in equation (8) fails and matches cannot be
performed. Some randomness is needed that guarantees that persons with identical
characteristics can be observed in both states (Heckman, Ichimura, and Todd, 1998).

In cases of uncertainty of the proper specification, sometimes the question may
arise if it is better to include too many rather than too few variables. Bryson,
Dorsett, and Purdon (2002) note that there are two reasons why over-parameterised
models should be avoided. First, it may be the case that including extraneous vari-
ables in the participation model exacerbate the support problem. Second, although
the inclusion of non-significant variables will not bias the estimates or make them
inconsistent, it can increase their variance. The results from Augurzky and Schmidt
(2000) point in the same direction. They run a simulation study to investigate
propensity score matching when selection into treatment is remarkably strong, and
treated and untreated individuals differ considerably in their observable character-
istics. In their setup, explanatory variables in the selection equation are partitioned
into two sets. The first set includes variables that strongly influence the participa-
tion and the outcome equation, whereas the second set does not (or only weakly)
influence the outcome equation. Including the full set of covariates in small samples
might cause problems in terms of higher variance, since either some treated have
to be discarded from the analysis or control units have to be used more than once.
They show that matching on an inconsistent estimate of the propensity score (i.e.
the one without the second set of covariates) produces better estimation results of
the average treatment effect.

On the other hand, Rubin and Thomas (1996) recommend against ‘trimming’
models in the name of parsimony. They argue that a variable should only be excluded
from analysis if there is consensus that the variable is either unrelated to the outcome
or not a proper covariate. If there are doubts about these two points, they explicitly
advise to include the relevant variables in the propensity score estimation.



By these criteria, there are both reasons for and against including all of the rea-
sonable covariates available. Basically, the points made so far imply that the choice
of variables should be based on economic theory and previous empirical findings.
But clearly, there are also some formal (statistical) tests which can be used. Heck-
man, Ichimura, Smith, and Todd (1998) and Heckman and Smith (1999) discuss
two strategies for the selection of variables to be used in estimating the propensity
score.

Hit or Miss Method: The first one is the ‘hit or miss’ method or prediction rate
metric, where variables are chosen to maximise the within-sample correct prediction
rates. This method classifies an observation as ‘1’ if the estimated propensity score
is larger than the sample proportion of persons taking treatment, i.e. P(X ) > P.
If P(X) < P observations are classified as ‘0’. This method maximises the overall
classification rate for the sample assuming that the costs for the misclassification are
equal for the two groups (Heckman, Ichimura, and Todd, 1997).8 But clearly, it has
to be kept in mind that the main purpose of the propensity score estimation is not
to predict selection into treatment as good as possible but to balance all covariates
(Augurzky and Schmidt, 2000).

Statistical Significance: The second approach relies on statistical significance
and is very common in textbook econometrics. To do so, one starts with a par-
simonious specification of the model, e.g. a constant, the age and some regional
information, and then ‘tests up’ by iteratively adding variables to the specifica-
tion. A new variable is kept if it is statistically significant at conventional levels. If
combined with the ‘hit or miss’ method, variables are kept if they are statistically
significant and increase the prediction rates by a substantial amount (Heckman,
Ichimura, Smith, and Todd, 1998).

Leave-one-out Cross-Validation: Leave-one-out cross-validation can also be
used to choose the set of variables to be included in the propensity score. Black
and Smith (2003) implement their model selection procedure by starting with a
‘minimal’ model containing only two variables. They subsequently add blocks of
additional variables and compare the resulting mean squared errors. As a note of
caution they stress, that this amounts to choosing the propensity score model based
on goodness-of-fit considerations, rather than based on theory and evidence about
the set of variables related to the participation decision and the outcomes (Black
and Smith, 2003). They also point out an interesting trade-off in finite samples
between the plausibility of the CIA and the variance of the estimates. When using
the full specification, bias arises from selecting a wide bandwidth in response to the
weakness of the common support. In contrast to that, when matching on the mini-
mal specification, common support is not a problem but the plausibility of the CTA
is. This trade-off also affects the estimated standard errors, which are smaller for
the minimal specification where the common support condition poses no problem.

Finally, checking the matching quality can also help to determine which variables

8See e.g. Breiman, Friedman, Olsen, and Stone (1984) for theory and Heckman, Ichimura,
Smith, and Todd (1998) or Smith and Todd (2005) for applications.



should be included in the model. We will discuss this point later on in subsection
3.4.

Overweighting some Variables: Let us assume for the moment that we have
found a satisfactory specification of the model. It may sometimes be felt that some
variables play a specifically important role in determining participation and outcome
(Bryson, Dorsett, and Purdon, 2002). As an example, one can think of the influence
of gender and region in determining the wage of individuals. Let us take as given for
the moment that men earn more than women and the wage level is higher in region
A compared to region B. If we add dummy variables for gender and region in the
propensity score estimation, it is still possible that women in region B are matched
with men in region A, since the gender and region dummies are only a sub-set of all
available variables. There are basically two ways to put greater emphasis on specific
variables. One can either find variables in the comparison group who are identical
with respect to these variables, or carry out matching on sub-populations. The
study from Lechner (2002) is a good example for the first approach. He evaluates
the effects of active labour market policies in Switzerland and uses the propensity
score as a ‘partial’ balancing score which is complemented by an exact matching on
sex, duration of unemployment and native language. Heckman, Ichimura, and Todd
(1997) and Heckman, Ichimura, Smith, and Todd (1998) use the second strategy
and implement matching separately for four demographic groups. That implies that
the complete matching procedure (estimating the propensity score, checking the
common support, etc.) has to be implemented separately for each group. This is
analogous to insisting on a perfect match e.g. in terms of gender and region and then
carrying out propensity score matching. This procedure is especially recommendable
if one expects the effects to be heterogeneous between certain groups.

Alternatives to the Propensity Score: Finally, it should also be noted that
it is possible to match on a measure other than the propensity score, namely the
underlying index of the score estimation. The advantage of this is that the index
differentiates more between observations in the extremes of the distribution of the
propensity score (Lechner, 2000a). This is useful if there is some concentration of
observations in the tails of the distribution. Additionally, in some recent papers the
propensity score is estimated by duration models. This is of particular interest if
the ‘timing of events’ plays a crucial role (see e.g. Brodaty, Crepon, and Fougere

(2001) or Sianesi (2004)).

3.2 Choosing a Matching Algorithm

The PSM estimator in its general form was stated in equation (9). All matching
estimators contrast the outcome of a treated individual with outcomes of comparison
group members. PSM estimators differ not only in the way the neighbourhood for
each treated individual is defined and the common support problem is handled, but
also with respect to the weights assigned to these neighbours. Figure 2 depicts
different PSM estimators and the inherent choices to be made when they are used.



We will not discuss the technical details of each estimator here at depth but rather
present the general ideas and the involved trade-offs with each algorithm.’

Figure 2: Different Matching Algorithms

Nearest . X)Vith/with?ut rg];:;:;m;r;\th :
. = Oversampling (2-NN, 5-NN a.s.o.
N elghbour (NN) = Weights for oversampling

Caliper and Radius = Max. tolerance level (caliper)

= 1-NN only or more (radius)

Matching Algorithms Stratification and —‘ = Number of strata/intervals
Interval
Kernel and Local = Kernel functions (e.g. Gaussian, a.s.0.)
Linear = Bandwidth parameter
Weighting }—‘ = Way PS is estimated is crucial

NN: Nearest Neighbour, PS: Propensity Score

Nearest Neighbour Matching: The most straightforward matching estimator
is nearest neighbor (NN) matching. The individual from the comparison group is
chosen as a matching partner for a treated individual that is closest in terms of
propensity score. Several variants of NN matching are proposed, e.g. NN matching
‘with replacement’ and ‘without replacement’. In the former case, an untreated
individual can be used more than once as a match, whereas in the latter case it
is considered only once. Matching with replacement involves a trade-off between
bias and variance. If we allow replacement, the average quality of matching will
increase and the bias will decrease. This is of particular interest with data where the
propensity score distribution is very different in the treatment and the control group.
For example, if we have a lot of treated individuals with high propensity scores but
only few comparison individuals with high propensity scores, we get bad matches as
some of the high-score participants will get matched to low-score non-participants.
This can be overcome by allowing replacement, which in turn reduces the number of
distinct non-participants used to construct the counterfactual outcome and thereby
increases the variance of the estimator (Smith and Todd, 2005). A problem which is
related to NN matching without replacement is that estimates depend on the order
in which observations get matched. Hence, when using this approach it should be
ensured that ordering is randomly done.

It is also suggested to use more than one nearest neighbour (‘oversampling’).
This form of matching involves a trade-off between variance and bias, too. It trades
reduced variance, resulting from using more information to construct the counter-
factual for each participant, with increased bias that results from on average poorer

9See Smith and Todd (2005) or Imbens (2004) for more technical details.



matches (see e.g. Smith (1997)). When using oversampling, one has to decide how
many matching partners should be chosen for each treated individual and which
weight (e.g. uniform or triangular weight) should be assigned to them.

Caliper and Radius Matching: NN matching faces the risk of bad matches,
if the closest neighbour is far away. This can be avoided by imposing a tolerance
level on the maximum propensity score distance (caliper). Imposing a caliper works
in the same direction as allowing for replacement. Bad matches are avoided and
hence the matching quality rises. However, if fewer matches can be performed, the
variance of the estimates increases. Applying caliper matching means that those
individual from the comparison group is chosen as a matching partner for a treated
individual that lies within the caliper (‘propensity range’) and is closest in terms of
propensity score. As Smith and Todd (2005) note, a possible drawback of caliper
matching is that it is difficult to know a priori what choice for the tolerance level is
reasonable.

Dehejia and Wahba (2002) suggest a variant of caliper matching which is called
radius matching. The basic idea of this variant is to use not only the nearest
neighbour within each caliper but all of the comparison members within the caliper.
A benefit of this approach is that it uses only as many comparison units as are
available within the caliper and therefore allows for usage of extra (fewer) units
when good matches are (not) available. Hence, it shares the attractive feature of
oversampling mentioned above, but avoids the risk of bad matches.

Stratification and Interval Matching: The idea of stratification matching is to
partition the common support of the propensity score into a set of intervals (strata)
and to calculate the impact within each interval by taking the mean difference in
outcomes between treated and control observations. This method is also known
as interval matching, blocking and subclassification (Rosenbaum and Rubin, 1983).
Clearly, one question to be answered is how many strata should be used in empirical
analysis. Cochrane and Chambers (1965) shows that five subclasses are often enough
to remove 95% of the bias associated with one single covariate. Since, as Imbens
(2004) notes, all bias under unconfoundedness is associated with the propensity
score, this suggests that under normality the use of five strata removes most of the
bias associated with all covariates. One way to justify the choice of the number of
strata is to check the balance of the propensity score (or the covariates) within each
stratum (see e.g. Aakvik (2001)). Most of the algorithms can be described in the
following way: First, check if within a stratum the propensity score is balanced. If
not, strata are too large and need to be split. If, conditional on the propensity score
being balanced, the covariates are unbalanced, the specification of the propensity
score is not adequate and has to be re-specified, e.g. through the addition of higher-
order terms or interactions (Dehejia and Wahba, 1999).

Kernel and Local Linear Matching: The matching algorithms discussed so far
have in common that only a few observations from the comparison group are used
to construct the counterfactual outcome of a treated individual. Kernel matching
(KM) and local linear matching (LLM) are non-parametric matching estimators
that use weighted averages of all individuals in the control group to construct the

10



counterfactual outcome. Thus, one major advantage of these approaches is the lower
variance which is achieved because more information is used. A drawback of these
methods is that possibly observations are used that are bad matches. Hence, the
proper imposition of the common support condition is of major importance for KM
and LLM. Heckman, Ichimura, and Todd (1998) derive the asymptotic distribution
of these estimators and Heckman, Ichimura, and Todd (1997) present an application.
As Smith and Todd (2005) note, kernel matching can be seen as a weighted regres-
sion of the counterfactual outcome on an intercept with weights given by the kernel
weights. Weights depend on the distance between each individual from the control
group and the participant observation for which the counterfactual is estimated. It
is worth noting that if weights from a symmetric, nonnegative, unimodal kernel are
used, then the average places higher weight on persons close in terms of propensity
score of a treated individual and lower weight on more distant observations. The
estimated intercept provides an estimate of the counterfactual mean. The differ-
ence between KM and LLM is that the latter includes in addition to the intercept
a linear term in the propensity score of a treated individual. This is an advantage
whenever comparison group observations are distributed asymmetrically around the
treated observation, e.g. at boundary points, or when there are gaps in the propen-
sity score distribution. When applying KM one has to choose the kernel function
and the bandwidth parameter. The first point appears to be relatively unimportant
in practice (DiNardo and Tobias, 2001). What is seen as more important (see e.g.
Silverman (1986) or Pagan and Ullah (1999)) is the choice of the bandwidth para-
meter with the following trade-off arising: High bandwidth-values yield a smoother
estimated density function, therefore leading to a better fit and a decreasing vari-
ance between the estimated and the true underlying density function. On the other
hand, underlying features may be smoothed away by a large bandwidth leading to a
biased estimate. The bandwidth choice is therefore a compromise between a small
variance and an unbiased estimate of the true density function.

Weighting on Propensity Score: Imbens (2004) notes that propensity scores
can also be used as weights to obtain a balanced sample of treated and untreated
individuals. If the propensity score is known, the estimator can directly by imple-
mented as the difference between a weighted average of the outcomes for the treated
and untreated individuals. Unless in experimental settings, the propensity score has
to be estimated. As Zhao (2004) note, the way propensity scores are estimated is
crucial when implementing weighting estimators. Hirano and Imbens (2002) suggest
a straightforward way to implement this weighting on propensity score estimator by
combining it with regression adjustment.

Trade-offs in Terms of Bias and Efficiency: Having presented the different
possibilities, the question remains on how one should select a specific matching al-
gorithm. Clearly, asymptotically all PSM estimators should yield the same results,
because with growing sample size they all become closer to comparing only exact
matches (Smith, 2000). However, in small samples the choice of the matching al-
gorithm can be important (Heckman, Ichimura, and Todd, 1997), where usually a
trade-off between bias and variance arises (see Table 1). So what advice can be given
to researchers facing the problem of choosing a matching estimator? It should be
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clear that there is no ‘winner’ for all situations and that the choice of the estimator
crucially depends on the situation at hand. The performance of different matching
estimators varies case-by-case and depends largely on the data structure at hand
(Zhao, 2000). To give an example, if there are only a few control observations, it
makes no sense to match without replacement. On the other hand, if there are a lot
of comparable untreated individuals it might be worth using more than one nearest
neighbour (either by oversampling or kernel matching) to gain more precision in
estimates. Pragmatically, it seems sensible to try a number of approaches. Should
they give similar results, the choice may be unimportant. Should results differ, fur-
ther investigation may be needed in order to reveal more about the source of the
disparity (Bryson, Dorsett, and Purdon, 2002).

Table 1: Trade-Offs in Terms of Bias and Efficiency

Decision Bias Variance
Nearest neighbour matching:

multiple neighbours / single neighbour (+)
with caliper / without caliper )/
Use of control individuals:

with replacement / without replacement (-)/(+)  (+)/(-)
Choosing method:

NN-matching / Radius-matching /) H)/E)
KM or LLM / NN-methods (+)/¢() )/
Bandwidth choice with KM:

small / large /) H)/6G)

KM: Kernel Matching, LLM: Local Linear Matching
NN: Nearest Neighbour
Increase: (+), Decrease: (-)

3.3 Overlap and Common Support

Our discussion in section 2 has shown that ATT and ATE are only defined in the
region of common support. Hence, an important step is to check the overlap and
the region of common support between treatment and comparison group. Several
ways are suggested in the literature, where the most straightforward one is a visual
analysis of the density distribution of the propensity score in both groups. Lechner
(2000b) argues that given that the support problem can be spotted by inspecting the
propensity score distribution, there is no need to implement a complicated formal
estimator. However, some formal guidelines might help the researcher to deter-
mine the region of common support more precisely. We will present two methods,
where the first one is essentially based on comparing the minima and maxima of
the propensity score in both groups and the second one is based on estimating the
density distribution in both groups. Implementing the common support condition
ensures that any combination of characteristics observed in the treatment group can
also be observed among the control group (Bryson, Dorsett, and Purdon, 2002). For
ATT it is sufficient to ensure the existence of potential matches in the control group,
whereas for ATE it is additionally required that the combinations of characteristics
in the comparison group may also be observed in the treatment group (Bryson,
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Dorsett, and Purdon, 2002).

Minima and Maxima comparison: The basic criterion of this approach is to
delete all observations whose propensity score is smaller than the minimum and
larger than the maximum in the opposite group. To give an example let us as-
sume for a moment that the propensity score lies within the interval [0.07,0.94]
in the treatment group and within [0.04,0.89] in the control group. Hence, with
the ‘minima and maxima criterion’, the common support is given by [0.07,0.89].
Observations which lie outside this region are discarded from analysis. Clearly a
two-sided test is only necessary if the parameter of interest is ATE; for ATT it is
sufficient to ensure that for each participant a close non-participant can be found.
It should also be clear that the common support condition is in some ways more
important for the implementation of kernel matching than it is for the implemen-
tation of nearest-neighbour matching. That is, because with kernel matching all
untreated observations are used to estimate the missing counterfactual outcome,
whereas with NN-matching only the closest neighbour is used. Hence, NN-matching
(with the additional imposition of a maximum allowed caliper) handles the common
support problem pretty well. There are some problems associated with the ‘minima
and maxima comparison’, e.g. if there are observations at the bounds which are
discarded even though they are very close to the bounds. Another problem arises
if there are areas within the common support interval where there is only limited
overlap between both groups, e.g. if in the region [0.51,0.55] only treated observa-
tions can be found. Additionally problems arise, if the density in the tails of the
distribution are very thin, for example when there is a substantial distance from
the smallest maximum to the second smallest element. Therefore, Lechner (2002)
suggests to check the sensitivity of the results when the minima and maxima are
replaced by the 10th smallest and 10th largest observation.

Trimming to Determine the Common Support A different way to overcome
these possible problems is suggested by Smith and Todd (2005). They use a trim-
ming procedure to determine the common support region and define the region of
common support as those values of P that have positive density within both the
D =1 and D = 0 distributions, that is:

Sp={P:f(PID=1)>0 and f(P|D=0)> 0}, (10)

where f(P|D = 1) > 0 and f(P|D = 0) > 0 are non-parametric density estima-
tors. Any P points for which the estimated density is exactly zero are excluded.
Additionally - to ensure that the densities are strictly positive - they require that
the densities exceed zero by a threshold amount ¢. So not only the P points for
which the estimated density is exactly zero, but also an additional ¢ percent of the
remaining P points for which the estimated density is positive but very low are
excluded:

Spe={Pq: f(PID=1)>q and f(P|D=0)> ¢}.10 (11)

0For details on how to estimate the cut-off trimming level see Smith and Todd (2005). Galdo
(2004) notes that the determination of the smoothing parameter is critical here. If the distribution
is skewed to the right for participants and skewed to the left for non-participants, assuming a
normal distribution may be very misleading.
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Figure 3: The Common Support Problem
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The left side in each example refers to non-participants (D=0), the right side to participants (D=1).
Source: Hypothetical Example

Figure 3 gives a hypothetical example and clarifies the differences between both
approaches. In the first example the propensity score distribution is highly skewed
to the left (right) for participants (non-participants). Even though this is an ex-
treme example, researchers are confronted with similar distributions in practice,
too. With the ‘minima and maxima comparison’ we would exclude any observations
lying outside the region of common support given by [0.2,0.8]. Depending on the
chosen trimming level ¢, we would maybe also exclude control observations in the
interval [0.7,0.8] and treated observations in the interval [0.2,0.3] with the trimming
approach since the densities are relatively low there. However, no large differences
between both approaches would emerge. In the second example we do not find any
control individuals in the region [0.4,0.7]. The ‘minima and maxima comparison’
fails in that situation, since minima and maxima in both groups are equal at 0.01
and 0.99. Hence, no observations would be excluded based on this criterion making
the estimation of treatment effects in the region [0.4,0.7] questionable. The trim-
ming method on the other hand would explicitly exclude treated observations in that
propensity score range and would therefore deliver more reliable results. Hence, the
choice of the method depends on the data situation at hand and before making any
decisions, a visual analysis is recommended.

Failure of the Common Support: Once one has defined the region of common
support, individuals that fall outside this region have to be disregarded and for these
individuals the treatment effect cannot be estimated. Bryson, Dorsett, and Purdon
(2002) note that when the proportion of lost individuals is small, this poses few
problems. However, if the number is too large, there may be concerns whether the
estimated effect on the remaining individuals can be viewed as representative. It may
be instructive to inspect the characteristics of discarded individuals since those can
provide important clues when interpreting the estimated treatment effects. Lechner
(2000b) notes that both ignoring the support problem and estimating treatment
effects only within the common support (subgroup effects) may be misleading. He
develops an approach that can be used to derive bounds for the true treatment effect
and we describe this approach in detail in subsection 4.2.
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3.4 Assessing the Matching Quality

Since we do not condition on all covariates but on the propensity score, it has to be
checked if the matching procedure is able to balance the distribution of the relevant
variables in both the control and treatment group. Several procedures to do so will be
discussed in this subsection. These procedures can also, as already mentioned, help
in determining which interactions and higher order terms to include for a given set
of covariates X. The basic idea of all approaches is to compare the situation before
and after matching and check if there remain any differences after conditioning
on the propensity score. If there are differences, matching on the score was not
(completely) successful and remedial measures have to be done, e.g. by including
interaction-terms in the estimation of the propensity score. A helpful theorem in
this context is suggested by Rosenbaum and Rubin (1983) and states that:

X 11 D|P(D = 1|X). (12)

This means that after conditioning on P(D = 1|X), additional conditioning on X
should not provide new information about the treatment decision. Hence, if after
conditioning on the propensity score there is still dependence on X, this suggests
either mis-specification in the model used to estimate P(D = 1|X) or a failure of
the CIA (Smith and Todd, 2005)."

Standardised Bias: One suitable indicator to assess the distance in marginal dis-
tributions of the X-variables is the standardised bias (SB) suggested by Rosenbaum
and Rubin (1985). For each covariate X it is defined as the difference of sample
means in the treated and matched control subsamples as a percentage of the square
root of the average of sample variances in both groups. The standardised bias before
matching is given by:

X, - X
SBbefore = 100 - ( - 0) . (13>
V0.5 (Vi(X) + Vo(X))
The standardised bias after matching is given by:
Xy —X
SBafte'r = ( Sl OM) (14)

o V0.5 - (Vi (X) + Vou (X))

where X; (V) is the mean (variance) in the treatment group before matching and
Xo (V) the analogue for the control group. Xiju (Vi) and Xop(Vops) are the
corresponding values for the matched samples. This is a common approach used in
many evaluation studies, e.g. by Lechner (1999), Sianesi (2004) and Caliendo, Hujer,
and Thomsen (2005). One possible problem with the standardised bias approach is
that we do not have a clear indication for the success of the matching procedure,
even though in most empirical studies a bias reduction below 3% or 5% is seen as
sufficient.

1Smith and Todd (2005) note that this theorem holds for any X, including those that do not
satisfy the CIA required to justify matching. As such, the theorem is not informative about which
set of variables to include in X.
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t-Test: A similar approach uses a two-sample t-test to check if there are signifi-
cant differences in covariate means for both groups (Rosenbaum and Rubin, 1985).
Before matching differences are expected, but after matching the covariates should
be balanced in both groups and hence no significant differences should be found.
The t-test might be preferred if the evaluator is concerned with the statistical sig-
nificance of the results. The shortcoming here is that the bias reduction before and
after matching is not clearly visible.

Joint significance and Pseudo-R?*: Additionally, Sianesi (2004) suggests to re-
estimate the propensity score on the matched sample, that is only on participants
and matched non-participants and compare the pseudo-R?’s before and after match-
ing. The pseudo-R? indicates how well the regressors X explain the participation
probability. After matching there should be no systematic differences in the distri-
bution of covariates between both groups and therefore, the pseudo-R? should be
fairly low. Furthermore, one can also perform an F-test on the joint significance of
all regressors. The test should not be rejected before, and should be rejected after
matching.

Stratification Test: Finally, Dehejia and Wahba (1999, 2002) divide observa-
tions into strata based on the estimated propensity score, such that no statistically
significant difference between the mean of the estimated propensity score in both
treatment and control group remain. Then they use t-tests within each strata to
test if the distribution of X-variables is the same between both groups (for the first
and second moments). If there are remaining differences, they add higher-order
and interaction terms in the propensity score specification, until such differences no
longer emerge.

This makes clear that an assessment of matching quality can also be used to
determine the propensity score specification. If the quality indicators are not sat-
isfactory, one reason might be mis-specification of the propensity score model and
hence it may be worth to take a step back, include e.g. interaction or higher-order
terms in the score estimation and test the quality once again. If after re-specification
the quality indicators are still not satisfactory, it may indicate a failure of the CIA
(Smith and Todd, 2005) and alternative evaluation approaches should be considered.

3.5 Choice-Based Sampling

An additional problem arising in evaluation studies is that samples used are often
choice-based (Smith and Todd, 2005). This is a situation where programme par-
ticipants are oversampled relative to their frequency in the population of eligible
persons. We discuss this point briefly and suggest one correction mechanism in-
troduced by Heckman and Smith (1995). First of all, note that under choice-based
sampling weights are required to consistently estimate the probability of programme
participation. Heckman and Smith (1995) show that with weights unknown, match-
ing methods can still be applied, because the odds ratio estimated using the incorrect
weights (those that ignore the fact of choice-based samples) is a scalar multiple of
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the true odds ratio, which is itself a monotonic transformation of propensity scores.
Hence, matching can be done on the (mis-weighted) estimate of the odds ratio (or
of the log odds ratio). Clearly, with single nearest-neighbour matching it does not
matter whether matching is performed on the odds ratio or the estimated propensity
score (with wrong weights), since ranking of the observations is identical and there-
fore the same neighbours will be selected. However, for methods that take account
of the absolute distance between observations, e.g. kernel matching, it does matter.

3.6 When to Compare and Locking-in Effects

An important decision which has to be made in the empirical analysis is when to mea-
sure the effects. The major goal is to ensure that participants and non-participants
are compared in the same economic environment and the same individual lifecycle
position. For example, when evaluating labour market policies one possible problem
which has to be taken into account is the occurrence of locking-in effects. The lit-
erature is dominated by two approaches, either comparing the individuals from the
begin of the programme or after the end of the programme. To give an example let
us assume that a programme starts in January and ends in June. The latter of the
two alternatives implies that the outcome of participants who re-enter the labour
market in July is compared with matched non-participants in July. There are two
shortcomings to this approach. First, if the exits of participants are spread over
a longer time period, it might be the case that very different economic situations
are compared. Second, a further problem which arises with this approach is that it
entails an endogeneity problem (Gerfin and Lechner (2002)), since the abortion of
the programme may be caused by several factors which are usually not observed by
the researcher.!?

The above mentioned second approach is predominant in the recent evaluation
literature (see e.g. Sianesi (2004) or Gerfin and Lechner (2002)) and measures the
effects from the begin of the programme. One major argument to do so concerns the
policy relevance. In the above example the policy-maker is faced with the decision
to put an individual in January in a programme or not. He will be interested in the
effect of his decision on the outcome of the participating individual in contrast with
the situation if the individual would not have participated. Therefore comparing
both outcomes from begin of the programme is a reasonable approach. What should
be kept in mind, however, is the possible occurrence of locking-in effects for the
group of participants. Since they are involved in the programme, they do not have
the same time to search for a new job as non-participants. Following van Ours
(2004), the net effect of a programme consists of two opposite effects. First, the
increased employment probability through the programme and second, the reduced
search intensity. Since both effects cannot be disentangled, we only observe the
net effect and have to take this into account when interpreting the results. As to
the fall in the search intensity, we should expect an initial negative effect from any
kind of participation in a programme. However, a successful programme should

12Tt may be the case for example that a participant receives a job offer, refuses to participate
because he thinks the programme is not enhancing his employment prospects or because lack of
motivation. As long as the reasons for abortion are not identified, an endogeneity problem arises.
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overcompensate for this initial fall. So, if we are able to observe the outcome of the
individuals for a reasonable time after begin/end of the programme, the occurrence
of locking-in effects poses fewer problems but nevertheless has to be taken into
account in the interpretation.

3.7 Estimation of Standard Errors

Testing the statistical significance of treatment effects and computing their standard
errors is not a straightforward thing to do. The problem is that the estimated
variance of the treatment effect should also include the variance due to the estimation
of the propensity score, the imputation of the common support, and possibly also
the order in which treated individuals are matched.'® These estimation steps add
variation beyond the normal sampling variation (see the discussion in Heckman,
Ichimura, and Todd (1998)). For example, in the case of NN matching with one
nearest neighbour, treating the matched observations as given will understate the
standard errors (Smith, 2000).

Bootstrapping: One way to deal with this problem is to use bootstrapping as
suggested e.g. by Lechner (2002). This method is a popular way to estimate standard
errors in case analytical estimates are biased or unavailable.!* Even though Imbens
(2004) notes that there is little formal evidence to justify bootstrapping, it is widely
applied, see e.g. Black and Smith (2003) or Sianesi (2004). Each bootstrap draw
includes the re-estimation of the results, including the first steps of the estimation
(propensity score, common support, etc.). Repeating the bootstrapping N times
leads to N bootstrap samples and in our case N estimated average treatment effects.
The distribution of these means approximate the sampling distribution (and thus
the standard error) of the population mean. Clearly, one practical problem arises
because bootstrapping is very time-consuming and might therefore not be feasible
in some cases.

Variance Approximation by Lechner: An alternative is suggested by Lechner
(2001). For the estimated ATT obtained via NN-matching the following formula
applies:

Var(ro) — L _ (Zjen(w;)?) _
ar(Tarr) = —Var(Y(1) | D=1) + —==>"—=-Var(Y(0) | D=0), (15)
N (N1)?

where N; is the number of matched treated individuals. w; is the number of times
individual j from the control group has been used, i.e. this takes into account that
matching is performed with replacement. If no unit is matched more than once,
the formula coincides with the ‘usual’ variance formula. By using this formula to
estimate the variance of the treatment effect at time ¢, we assume independent
observations and fixed weights. Furthermore we assume homoscedasticity of the
variances of the outcome variables within treatment and control group and that the
outcome variances do not depend on the estimated propensity score. This approach

13This matters only when matching is done without replacement as discussed in subsection 3.2.
14See Brownstone and Valletta (2001) for a discussion of bootstrapping methods.
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can be justified by results from Lechner (2002) who finds little differences between
bootstrapped variances and the variances calculated according to equation (15).

3.8 Available Software to Implement Matching

The bulk of software tools to implement matching and estimate treatment effects
is growing and allows researchers to choose the appropriate tool for their purposes.
The most commonly used platform for these tools is Stata and we will present the
three most distributed tools here. Becker and Ichino (2002) provide a programme
for PSM estimators (pscore, attnd, attnw, attr, atts, attk) which includes estimation
routines for nearest neighbour, kernel, radius, and stratification matching. To obtain
standard errors the user can choose between bootstrapping and the variance approx-
imation proposed by Lechner (2001). Additionally the authors offer balancing tests
(blocking, stratification) as discussed in subsection 3.4.

Leuven and Sianesi (2003) provide the programme psmatch2 for implement-
ing different kinds of matching estimators including covariate and propensity score
matching. It includes nearest neighbour and caliper matching (with and without
replacement), kernel matching, radius matching, local linear matching and Maha-
lanobis metric (covariate) matching. Furthermore, this programme includes routines
for common support graphing (psgraph) and covariate imbalance testing (pstest).
Standard errors are obtained using bootstrapping methods.

Finally, Abadie, Drukker, Leber Herr, and Imbens (2004) offer the programme
nnmatch for implementing covariate matching, where the user can choose between
several different distance metrics.

4 Sensitivity Analysis

4.1 Unobserved Heterogeneity - Rosenbaum Bounds

We have outlined in section 2 that the estimation of treatment effects with matching
estimators is based on the CIA, that is selection on observable characteristics. How-
ever, if there are unobserved variables which affect assignment into treatment and
the outcome variable simultaneously, a ‘hidden bias’ might arise. It should be clear
that matching estimators are not robust against this ‘hidden bias’. Since it is not
possible to estimate the magnitude of selection bias with non-experimental data, we
address this problem with the bounding approach proposed by Rosenbaum (2002).
The basic question to be answered is, if inference about treatment effects may be
altered by unobserved factors. In other words, we want to determine how strongly
an unmeasured variable must influence the selection process in order to undermine
the implications of matching analysis. Recent applications of this approach can be
found in Aakvik (2001), DiPrete and Gangl (2004) or Caliendo, Hujer, and Thomsen
(2005). We outline this approach briefly, an extensive discussion can be found in
Rosenbaum (2002).
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Let us assume that the participation probability is given by P(z;) = P(D; =1 |
x;) = F(Bx;+~yu;), where x; are the observed characteristics for individual ¢, u; is the
unobserved variable and « is the effect of u; on the participation decision. Clearly,
if the study is free of hidden bias, v will be zero and the participation probability
will solely be determined by z;. However, if there is hidden bias, two individuals
with the same observed covariates z have differing chances of receiving treatment.
Let us assume we have a matched pair of individuals ¢ and j and further assume
that F' is the logistics distribution. The odds that individuals receive treatment are

then given by (155’:?21')) and (155& )J L and the odds ratio is given by:

P(z;)
T P(z;)  Px:)(1— P(x;)  exp(Br; +yuy)

Pl;) — P(z;)(1— P(z;))  exp(Bz; + yu;)
1-P(xj)

= exply(u; — )] (16)

If both units have identical observed covariates - as implied by the matching proce-
dure - the z-vector is cancelled out. But still, both individuals differ in their odds
of receiving treatment by a factor that involves the parameter + and the difference
in their unobserved covariates u. So, if there are either no differences in unobserved
variables (u; = u;) or if unobserved variables have no influence on the probability
of participating (7 = 0), the odds ratio is one, implying the absence of hidden or
unobserved selection bias. It is now the task of sensitivity analysis to evaluate how
inference about the programme effect is altered by changing the values of v and
(w; — uj). We follow Aakvik (2001) and assume for the sake of simplicity that the
unobserved covariate is a dummy variable with u; € {0,1}. A good example is the
case where motivation plays a role for the participation decision and the outcome
variable, and a person is either motivated (u = 1) or not (v = 0). Rosenbaum (2002)
shows that (16) implies the following bounds on the odds-ratio that either of the
two matched individuals will receive treatment:

1 Pa)-P@) _
o = Play) (1= Play) = (17)

Both matched individuals have the same probability of participating only if €7 = 1.
If €7 = 2, then individuals who appear to be similar (in terms of x) could differ in
their odds of receiving the treatment by as much as a factor of 2. In this sense,
€7 is a measure of the degree of departure from a study that is free of hidden bias
(Rosenbaum, 2002).

Aakvik (2001) suggests to use the non-parametric Mantel and Haenszel (MH,
1959) test-statistic, which compares the successful number of persons in the treat-
ment group against the same expected number given the treatment effect is zero.
He notes that the MH test can be used to test for no treatment effect both within
different strata of the sample and as a weighted average between strata. Under
the null-hypothesis the distribution of the outcomes Y is hypergeometric. We no-
tate Nis and Ny, as the numbers of treated and untreated individuals in stratum
s, where Ny = Ny, + Nis. Yi, is the number of successful participants, Yo, is the
number of successful non-participants, and Y, is the number of total successes in
stratum s. The test-statistic Qg = (Yis — E(Y1s)/Var(Yis)) follows the chi-square
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distribution with one degree of freedom and is given by:

U* (o (Yis — NP

Q@

(18)

To use such a test-statistic, we first have to make treatment and control group as
equal as possible since this test is based on random sampling. Since this is done by
our matching procedure, we can proceed to discuss the possible influences of €7 > 1.
For fixed €7 > 1 and u € {0,1}, Rosenbaum (2002) shows that the test-statistic
@nm can be bounded by two known distributions. As noted already, if €7 = 1 the
bounds are equal to the ‘base’ scenario of no hidden bias. With increasing e, the
bounds move apart reflecting uncertainty about the test-statistics in the presence
of unobserved selection bias. Two scenarios can be thought of. Let Q},, be the
test-statistic given that we have overestimated the treatment effect and @), the
case where we have underestimated the treatment effect. The two bounds are then
given by: N

o 25— BFOP

S Ve

(19)

where /EZ and Var(lz) are the large sample approximations to the expectation and
variance of the number of successful participants when wu is binary and for given ~.

4.2 Failure of Common Support - Lechner Bounds

In subsection 3.3 we have presented possible approaches to implement the common
support restriction. Those individuals that fall outside the region of common support
have to be disregarded. But, deleting such observations yields an estimate that
is only consistent for the subpopulation within the common support. However,
information from those outside the common support could be useful and informative
especially if treatment effects are heterogeneous.

Lechner (2000b) describes an approach to check the robustness of estimated
treatment effects due to failure of common support. He incorporates information
from those individuals who failed the common support restriction, to calculate non-
parametric bounds of the parameter of interest, if all individuals from the sample at
hand would have been included. To introduce his approach some additional notation
is needed. Define the population of interest with €2 which is some subset from the
space defined by treatment status (D = 1 or D = 0) and a set of covariates X.
QATT s defined by {(D = 1) x X} and WATT is a binary variable which equals
one if an observation belongs to Q477. Identification of the effect is desired for
Tarr(Q4TT). Due to missing common support the effect can only be estimated
for Tarp(QATT*). This is the effect ignoring individuals from the treatment group
without a comparable match. Observations within common support are denoted
by the binary variable W47T* equal one. The subset for whom such effect is not
identified is QATT.

Let Pr(WATT* = 1JWATT = 1) denote the share of participants within com-
mon support relative to the total number of participants and A} be the mean of
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Y(1) for individuals from the treatment group outside common support. Assume
that the share of participants within common support relative to the total num-
ber of participants as well as ATT for those within the common support, and A}
are identified. Additionally, assume that the potential outcome Y(0) is bounded:
Pr(Y <Y(0) < Y|WATT* = 0|WATT = 1) = 1.1% Given these assumptions, the
bounds for ATT 7477 (QATT) € [T app (QTT), T arr (QATT)] can be written as:

IATT(QATT) — TATT(QATT*>P7’(WATT* — 1|WATT ) (20>
+ (M= YV)[1 = PrwATT = qwATT = 1]
FATT(QATT) _ TATT(QATT*>P'I"(WATT* 1|WATT ) (21>

+ ()\1 )[1 o PT(WATT* — 1|WATT 1)]

Lechner (2000b) states that either ignoring the common support problem or
estimating ATT only for the subpopulation within the common support can both
be misleading. He recommends to routinely compute bounds analysis in order to
assess the sensitivity of estimated treatment effects with respect to the common
support problem and its impact on the inference drawn from subgroup estimates.

5 Conclusion

The aim of this paper was to give some guidance for the implementation of propen-
sity score matching. Basically five implementation steps have to be considered
when using PSM (as depicted in Figure 1). The discussion has made clear that a
researcher faces a lot of decisions during implementation and that it is not always
an easy task to give recommendations for a certain approach. Table 2 summarises
the main findings of this paper and also highlights sections where information for
each implementation step can be found.

The first step of implementation is the estimation of the propensity score. We
have shown, that the choice of the underlying model is relatively unproblematic
in the binary case whereas for the multiple treatment case one should either use
a multinomial probit model or a series of binary probits (logits). After having
decided about which model to be used, the next question concerns the variables
to be included in the model. We have argued that the decision should be based
on economic theory and previous empirical findings, and we have also presented
several statistical strategies which may help to determine the choice. If it is felt
that some variables play a specifically important role in determining participation
and outcomes, one can use an ‘overweighting’ strategy, for example by carrying out
matching on sub-populations.

The second implementation step is the choice among different matching algo-
rithms. We have argued that there is no algorithm which dominates in all data
situations. The performance of different matching algorithms varies case-by-case

15For example, if the outcome variable of interest is a dummy variable, Y (0) is bounded in [0, 1].
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Table 2: Implementation of Propensity Score Matching

Step Decisions, Questions and Solutions Chapter

1. Estimation of Propensity Score

Model Choice © Unproblematic in the binary treatment case (logit or probit) 3.1
¢ In the multiple treatment case multinomial probit or series of binomial 3.1
models should be preferred

Variable Choice ¢ Variables should not be influenced by participation (or anticipation) 3.1
and must satisfy CIA

— Economic Issues Choose variables by economic theory and previous empirical evidence 3.1

— Statistical Issues "Hit or miss’-method, stepwise augmentation, leave-one-out cross valida- 3.1
tion

— Key Variables ‘Overweighting’ by matching on sub-populations or insisting on perfect 3.1
match

2. Choice Among Alternative Matching Algorithms

Matching Algorithms ¢ The choice (e.g. NN matching with or without replacement, caliper 3.2
or kernel matching) depends on the sample size, the available number
of treated/control observations and the distribution of the estimated PS
— Trade-offs between bias and efficiency!

3. Check Overlap and Common Support

Common Support o Treatment effects can be estimated only over the CS region! 3.3

— Tests Visual analysis of propensity score distributions 3.3

— Implementation ‘Minima and maxima comparison’ or ‘trimming’ method 3.3
Alternative: Caliper matching

4.1 Assessing the Matching Quality

Balancing Property ¢ Is the matching procedure able to balance the distribution of relevant 3.4
covariates?
o If matching was not successful go back to step 1 and include higher- +« Step 1
order terms, interaction variables or different covariates
o After that, if matching is still not successful — Reconsider identifying
assumption and consider alternative estimators

— Tests Standardised bias, t-test, stratification test, joint significance and 3.4
Pseudo-R?

4.2 Calculation of Treatment Effects

Choice-Based Sample o Sample is choice-based? Match on the odds-ratio instead on the 3.5
propensity score

When to Compare o Compare from begin of the programme to avoid endogeneity problems! 3.6
— Pay attention to the possible occurrence of locking-in effects! 3.6

Standard Errors ¢ Calculate standard errors by bootstrapping or variance approximation 3.7

5. Sensitivity Analysis

Hidden Bias o Test the sensitivity of estimated treatment effects with respect to un- 4.1
observed covariates
— Calculate Rosenbaum-bounds. If results are very sensitive reconsider
identifying assumption and consider alternative estimators

Common Support o Test the sensitivity of estimated treatment effects with respect to the 4.2
common support problem
— Calculate Lechner-bounds. If results are very sensitive reconsider <« Step 1

variable choice

CS: Common Support, NN: Nearest Neighbour, PS: Propensity Score, CIA: Conditional Independence Assumption

and depends largely on the data sample. If results among different algorithms dif-
fer, further investigations may be needed to reveal the source of disparity.
The discussion has also emphasised that treatment effects can only be estimated
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in the region of common support. To identify this region we recommend to start
with a visual analysis of the propensity score distributions in the treatment and
comparison group. Based on that, different strategies can be applied to implement
the common support condition, e.g. by ‘minima and maxima comparison’ or ‘trim-
ming’, where the latter approach has some advantages when observations are close
to the ‘minima and maxima’ bounds and if the density in the tails of the distribution
are very thin.

Since we do not condition on all covariates but on the propensity score we have
to check in step 4 if the matching procedure is able to balance the distribution of
these covariates in the treatment and comparison group. We have presented several
procedures to do so, including standardised bias, t-tests, stratification, joint signif-
icance and pseudo-R?. If the quality indicators are not satisfactory, one should go
back to step 1 of the implementation procedure and include higher-order or inter-
action terms of the existing covariates or choose different covariates (if available).
If, after that, the matching quality is still not acceptable, one has to reconsider the
validity of the identifying assumption and possibly consider alternatives.

However, if the matching quality is satisfactory one can move on to estimate the
treatment effects. The estimation of standard errors should either be done by boot-
strapping methods or by applying the variance approximation proposed in Lechner
(2001). Another important decision is when to measure the effects. We argue that it
is preferable to measure the effects from the beginning of the programme. Clearly,
what has to be kept in mind for the interpretation is the possible occurrence of
locking-in-effects.

Finally, a last step of matching analysis is to test the sensitivity of results with
respect to ‘hidden bias’. We have presented an approach (Rosenbaum bounds) that
allows a researcher to determine how strongly an unmeasured variable must influence
the selection process in order to undermine implications of matching analysis. If the
results are sensitive and if the researcher has doubts about the CIA he should recon-
sider to use alternative identifying assumptions. Furthermore, we have presented an
approach (Lechner bounds) that allows the researcher to assess how sensitive treat-
ment effects are with respect to the common support problem.

To conclude, we have discussed several issues surrounding the implementation of
PSM. We hope to give some guidance for researchers who believe that their data is
strong enough to credibly justify CIA and who want to use PSM.
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