Python Testing

Beginner's Guide

An easy and convenient approach to testing your
Python projects

Daniel Arbuckle

PUBLISHING

BIRMINGHAM - MUMBAI

Python Testing
Beginner's Guitde

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2010
Production Reference: 1120110

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847198-84-6

www . packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@egmail.com)

Author
Daniel Arbuckle

Reviewers

Réman Joost
Andrew Nicholson

Herjend Teny

Acquisition Editor

Douglas Paterson

Development Editor
Ved Prakash Jha

Technical Editors
Aditya Belpathak

Charumathi Sankaran

Indexer

Monica Ajmera Mehta

Proofreader

Lesley Harrison

Production Editorial Manager

Abhijeet Deobhakta

Editorial Team Leader

Aanchal Kumar

Project Team Leader

Lata Basantani

Project Coordinator

Srimoyee Ghoshal

Graphics

Geetanjali Sawant

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

Daniel Arbuckle received his Ph. D. in computer science from the University of Southern
California in 2007. He is an active member of the Python community and an avid unit tester.

I would like to thank Grig, Titus, and my family for their companionship and
encouragement along the way.

Rdman Joost is a professional Python software developer and a free software enthusiast,
currently living in Australia. Since 2003, he has been contributing to the GNU Image
Manipulation Program (GIMP) by writing documentation and contributing to the source
code. He uses testing frameworks and test-driven methodologies extensively, when writing
new components for the Z Object Publishing Environment (Zope) in Python.

Andrew Nicholson is a software engineer with over 12 years of professional commercial
experience in a broad range of technologies. He is passionate about free and open source
software (FOSS) and has actively participated in contributing code, ideas, and passion in the
open source community since 1999.

Nicholson's biography can be read at http://infiniterecursion.com.au/people/.

Herjend Teny is an electrical engineering graduate from Melbourne who has come to love
programming in Python after years of programming in mainline programming languages,
such as C, Java, and Pascal.

He is currently involved in designing web application using Django for an Article Repository
project on http://www.havingfunwithlinux.com/. The project would allow users to
post their article for public view and bookmark it onto their favorite blog.

Tahle of Contents

Preface 1
Chapter 1: Testing for Fun and Profit 7
How can testing help? 8
Types of testing 9
Unit testing 9
Integration testing 9
System testing 9
You've got Python, right? 10
Summary 10
Chapter 2: Doctest: The Easiest Testing Tool 11
Basic doctest 11
Time for action — creating and running your first doctest 12
The syntax of doctests 13
Time for action — writing a more complex test 14
Expecting exceptions 15
Time for action — expecting an exception 16
Expecting blank lines in the output 17
Using directives to control doctest 17
Ignoring part of the result 17
Time for action — using ellipsis in tests 17
Ignoring whitespace 18
Time for action — normalizing whitespace 19
Skipping an example entirely 19
Time for action — skipping tests 20
Other doctest directives 21
Execution scope 21
Embedding doctests in Python docstrings 24
Time for action — embedding a doctest in a docstring 24

Doctest directives

25

Table of Contents

Execution scope 26
Putting it in practice: an AVL tree 26
English specification 27
Node data 28
Constructor 30
Recalculate height 30
Make deletable 32
Rotation 33
Locating a node 34
Testing the rest of the specification 34
Summary 35
Chapter 3: Unit Testing with Doctest 37
What is Unit testing and what it is not? 37
Time for action - identifying units 38
Unit testing throughout the development process 40
Design phase 41
Time for action — unit testing during design 41
Development phase 44
Time for action — unit testing during development 44
Feedback phase 47
Time for action — unit testing during feedback 47
Back to the development phase 51
Time for action — unit testing during development... again 51
Maintenance phase 53
Time for action — unit testing during maintenance 53
Reuse phase 55
Time for action — unit testing during reuse 55
Summary 59
Chapter 4: Breaking Tight Coupling by using Mock Objects 61
Installing Python Mocker 61
Time for action - installing Python Mocker 62
The idea of a mock object 62
Python Mocker 63
Time for action — exploring the basics of Mocker 63
Mocking functions 67
Mocking containers 68
Parameter matching 69
ANY 69
ARGS 70
KWARGS 70

IS 71

Table of Contents

IN 71
CONTAINS 72
MATCH 72
Mocking complex expressions 73
Returning iterators 73
Raising exceptions 74
Calling functions via a mock 74
Specifying that an expectation should occur multiple times 75
Replacing library objects with mocks 77
Mocking self 80
Time for action — passing a mock object as self 80
Summary 82
Chapter 5: When Doctest isn't Enough: Unittest to the Rescue 83
Basic unittest 83
Time for action — testing PID with unittest 84
Assertions 89
assertTrue 89
assertFalse 90
assertEqual 90
assertNotEqual 90
assertAlmostEqual 90
assertNotAlmostEqual 92
assertRaises 92

fail 93
Test fixtures 94
Time for action — testing database-backed units 95
Integrating with Python Mocker 100
Summary 100
Chapter 6: Running Your Tests: Follow Your Nose 101
What is Nose? 101
Installing Nose 102
Organizing tests 103
Time for action — organizing tests from previous chapters 104
Finding doctests 108
Customizing Nose's search 109
Nose and doctest 110
Time for action — creating a fixture for a doctest 111
Nose and unittest 112
Time for action — creating a module fixture 113
Time for action — creating a package fixture 114

Nose's own testing framework 116

Table of Contents

Time for action — using Nose-specific tests 116
Summary 118
Chapter 7: Developing a Test-Driven Project 119
Writing the specification 119
Time for action — what are you going to do? 125
Writing initial unit tests 125
Time for action — nailing down the specification with unit tests 139
Coding planner.data 139
Using the tests to get the code right 143
Fixing the code 143
Time for action — writing and debugging code 146
Writing persistence tests 147
Writing persistence code 148
Finishing up 151
Summary 153
Chapter 8: Testing Web Application Frontends using Twill 155
Installing Twill 155
Exploring the Twill language 156
Time for action — browsing the web with Twill 156
Time for action — Twill scripting 159
Twill commands 160
help 160
setglobal 160
setlocal 161
add_auth 161
add_extra_header 161
clear_extra_headers 162
show_extra_headers 162
agent 162
back 162
clear_cookies 162
code 162
config 163
debug 163
echo 163

exit 163
extend_with 164

find 164
notfind 164
follow 164
formaction 164
formclear 165
formfile 165

Table of Contents

formvalue 165
getinput 165
getpassword 165

go 166

info 166
save_cookies 166
load_cookies 166
show_cookies 166
redirect_error 166
redirect_output 166
reset_error 166
reset_output 167
reload 167
reset_browser 167

run 167
runfile 167
save_html 167
show 167
showforms 167
showhistory 168
showlinks 168
sleep 168
submit 168
tidy_ok 168
title 168

url 168
Calling Twill scripts from tests 169
Time for action — running Twill script files 169
Time for action — running Twill script strings 170
A nifty trick 171
Integrating Twill operations into unittest tests 172
Time for action — using Twill's browser object 172
Browser methods 173
get_code 174
get_html 174
get_title 174
get_url 174
find_link 174
follow_link 175
get_all_forms 175
get_form 175
get_form_field 175
clicked 176
submit 176

Summary 176

Table of Contents

Chapter 9: Integration Testing and System Testing 177
Integration tests and system tests 177
Time for action - figuring out the order of integration 178
Automation with doctest, unittest, and Nose 180
Time for action — writing integration tests for the time planner 181
Summary 202

Chapter 10: Other Testing Tools and Techniques 203
Code coverage 203

coverage.py 204
Time for action — using coverage.py 205
Version control hooks 207

Bazaar 208
Time for action — installing Nose as a Bazaar post-commit hook 208

Mercurial 210
Time for action — installing Nose as a Mercurial 210
post-commit hook 210

Git 211
Time for action — installing Nose as a Git post-commit hook 212

Darcs 213
Time for action - installing Nose as a Darcs post-record hook 213

Subversion 215
Time for action — installing Nose as a Subversion 216
post-commit hook 216
Automated continuous integration 219

Buildbot 219
Time for action — using Buildbot with Bazaar 219
Summary 223

Appendix: Answers to Pop Quizes 225

Chapter 2 225

Pop quiz — doctest syntax 225
Chapter 3 225
Pop quiz — understanding units 225
Pop quiz — unit testing during design 226
Pop quiz — unit testing 226
Chapter 4 226
Pop quiz — Mocker usage 226
Chapter 5 227
Pop quiz — basic unittest knowledge 227
Pop quiz — text fixtures 227
Chapter 6 227

Table of Contents

Pop quiz — testing with Nose
Chapter 7

Pop quiz — test-driven development
Chapter 8

Pop quiz — the Twill language

Pop quiz — browser methods
Chapter 9

Pop quiz — diagramming integration

Pop quiz — writing integration tests
Chapter 10

Pop quiz — code coverage

Pop quiz — version control hooks

Index

227
227
227
228
228
228
228
228
229
229
229
229

231

Like any programmer, you need to be able to produce reliable code that conforms to a
specification, which means that you need to test your code. In this book, you'll learn how to
use techniques and Python tools that reduce the effort involved in testing, and at the same
time make it more useful—and even fun.

You'll learn about several of Python's automated testing tools, and you'll learn about the
philosophies and methodologies that they were designed to support, like unit testing and
test-driven development. When you're done, you'll be able to produce thoroughly tested
code faster and more easily than ever before, and you'll be able to do it in a way that doesn't
distract you from your "real" programming.

Chapter 1: Testing for Fun and Profit introduces Python test-driven development and various
testing methods.

Chapter 2: Doctest: The Easiest Testing Tool covers the doctest tool and teaches you how
to use it.

Chapter 3: Unit Testing with Doctest introduces the ideas of unit testing and test-driven
development, and applies doctest to create unit tests.

Chapter 4: Breaking Tight Coupling by using Mock Objects covers mock objects and the
Python Mocker tool.

Chapter 5: When Doctest isn't Enough: Unittest to the Rescue introduces the unittest
framework and discusses when it is preferred over doctest.

Chapter 6: Running Your Tests: Follow Your Nose introduces the Nose test runner, and
discusses project organization.

Preface

Chapter 7: Developing a Test-Driven Project walks through a complete test-driven
development process.

Chapter 8: Testing Web Application Frontends using Twill applies the knowledge gained from
previous chapters to web applications, and introduces the Twill tool.

Chapter 9: Integration Testing and System Testing teaches how to build from unit tests to
tests of a complete software system.

Chapter 10: Other Testing Tools and Techniques introduces code coverage and continuous
integration, and teaches how to tie automated testing into version control systems.

Appendix: Answers to Pop Quizes contains the answers to all pop quizes, chapter-wise.

To use this book, you will need a working Python interpreter, preferably one of the 2.6 version
series. You'll also need a source code editor, and occasional access to the internet. You will
need to be comfortable enough using your operating system's textual interface—your DOS
prompt or command shell—to do basic directory management and to run programs.

If you are a Python developer and want to write tests for your applications, this book will get
you started and show you the easiest way to learn testing.

You need to have sound Python programming knowledge to follow along. An awareness of
software testing would be good, but no formal knowledge of testing is expected nor do you
need to have any knowledge of the libraries discussed in the book.

Conventions

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action - heading

1. Actionl
2. Action?2
3. Action 3

[2]

Preface

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

These are short multiple choice questions intended to help you test your own understanding.

These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use
of the include directive."

A block of code is set as follows:

if node.right is not None:
assert isinstance (node.right, AVL)
assert node.right.key > node.key
right height = node.right.height + 1

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

if node.right is not None:
assert isinstance(node.right, AVL)
assert node.right.key > node.key
right height = node.right.height + 1

[3]

Preface

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr mysql.conf.sample

/etc/asterisk/cdr mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an email to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for the book
a1

~ Visithttp://www.packtpub.com/files/code/8846 Code.zipto
directly download the example code.

The downloadable files contain instructions on how to use them.

[4]

Preface

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration, and help us to improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the let us know link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata added to any

list of existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or web site name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[5]

Testing for Fun and Profit

You're a programmer: a coder, a developer, or maybe a hacker! As such, it's
almost impossible that you haven't had to sit down with a program that you
were sure was ready for use—or worse yet, a program you knew was not
ready—and put together a bunch of tests to prove it. It often feels like an
exercise in futility, or at best a waste of time. We'll learn how to avoid that
situation, and make testing an easy and enjoyable process.

This book is going to show you a new way to test, a way that puts much of the
burden of testing right where it should be: on the computer. Even better, your
tests will help you to find problems early and tell you just where they are, so
that you can fix them easily. You'll love the easy, helpful methods of automated
testing and test-driven development that you will learn about in this book.

The Python language has some of the best tools available, when it comes to
testing. As a result, we'll learn how to make testing something that is easy,
quick, and fun by taking advantage of those tools.

In this book, we'll:

* & o o

Study popular testing tools such as doctest, unittest, and Nose
Learn about testing philosophies like unit testing and test-driven development
Examine the use of mock objects and other useful testing secrets

Learn how to integrate testing with the other tools that we use, and with
our workflow

Introduce some secondary tools that make it easier to use the major testing tools

Testing for Fun and Profit

How can testing help?

This chapter started with a lot of grandiose claims, such as: You'll enjoy testing. You'll rely on
it to help you kill bugs early and easily. Testing will stop being a burden for you, and become
something that you want to do. You may be wondering how this is possible?

Think back to the last annoying bug that you had to deal with. It could have been anything;
a database schema mismatch, or a bad data structure.

Remember what caused the bug? The one line of code with a subtle logic error? The function
that didn't do what the documents said it would do? Whatever it was, keep it in mind.

Imagine a small chunk of code that could have caught the bug, if it had been run at the right
time, and informed you about it.

Now imagine that all of your code was accompanied by those little chunks of test code, and
that they are quick and easy to execute.

How long would your bug have survived? Not very long at all.

That gives you a basic understanding of what we'll be talking about in this book. There are
many tools and refinements that can make the process quicker and easier. The basic idea is
to tell the computer what you expect, using simple and easily-written chunks of code, and
then have the computer double-check your expectations throughout the coding process.
As expectations are easy to describe, you can write them down first, allowing the computer
to shoulder much of the burden of debugging your code. As a result, you can move on to
interesting things while the computer keeps a track of everything else.

When you're done, you'll have a code base that is highly tested and that you can be
confident in. You will have caught your bugs early and fixed them quickly. The best part
is that your testing was done by the computer based on what you told it you wanted the
program to do. After all, why should you do it, when the computer can do it for you?

| have programmed simple automated tests to catch everything from minor typos, to
instances of database access code being left dangerously out of date after a schema change,
and pretty much any other bug you can imagine. The tests caught the errors quickly, and
pinpointed their locations. A great deal of effort and bother was avoided because they

were there.

Imagine the time that you'll save or spend on writing new features, instead of chasing old
bugs. Better code, written more quickly, has a good cost/benefit ratio. Testing the right way
really is both more fun and more profitable.

Chapter 1

Tynes of testing

Testing is commonly divided into several categories, based on how complex the component
being tested is. Most of our time will be focused on the lowest level—unit testing—because
tests in the other categories operate on pretty much the same principles.

Unit testing is testing of the smallest possible pieces of a program. Often, this means
individual functions or methods. The keyword here is individual; something is a unit if it
there's no meaningful way to divide it up further.

Unit tests are used to test a single unit in isolation, verifying that it works as expected,
without considering what the rest of the program would do. This protects each unit from
inheriting bugs from mistakes made elsewhere, and makes it easy to narrow down on the
actual problem.

By itself, unit testing isn't enough to confirm that a complete program works correctly, but
it's the foundation upon which everything else is based. You can't build a house without
solid materials, and you can't build a program without units that work as expected!

In integration testing, the boundaries of isolation are pushed further back, so that the tests
encompass interactions between related units. Each test should still be run in isolation, to
avoid inheriting problems from outside, but now the test checks whether the tested units
behave correctly as a group.

Integration testing can be performed with the same tools as unit testing. For this reason,
newcomers to automated testing are sometimes lured into ignoring the distinction between
unit testing and integration testing. Ignoring this distinction is dangerous, because such
multipurpose tests often make assumptions about the correctness of some of the units that
they involve. This means that the tester loses much of the benefit which automated testing
would have granted. We're not aware of the assumptions we make until they bite us, so we
need to consciously choose to work in a way that minimizes assumptions. That's one of the
reasons why | refer to test-driven development as a discipline.

System testing extends the boundaries of isolation even further, to the point where they
don't even exist. System tests check parts of the program, after the whole thing has been
plugged together. In a sense, system tests are an extreme form of integration tests.

Testing for Fun and Profit

System tests are very important, but they're not very useful without integration tests and
unit tests. You have to be sure of the pieces before you can be sure of the whole. If there's a
subtle error somewhere, system testing will tell you that it exists, but not where it is or how
to fix it. The odds are good that you've experienced that situation before; it's probably why
you hate testing.

You've got Python, right?

This book assumes that you have working knowledge of the Python programming
language, and that you have a fully functional Python interpreter available. The
assumption is that you have at least version 2.6 of Python, which you can download
from http://www.python.org/. If you have an earlier version, don't worry: there
are sidebars that will help you navigate the differences. You'll also need your favorite
text editor.

Summary

In this chapter, we learned what this book is about and what to expect from it. We took a
glance at the philosophy of automated testing and test-driven development.

We talked about the different types of tests that combine together to form a complete
suite of tests for a program, namely: unit tests, integration tests, and system tests. We
learned that unit tests are related to the fundamental components of a program (such as
functions), integration tests cover larger swaths of a program (like modules), and system
tests encompass testing a program in its entirety.

We learned about how automated testing can help us, by moving the burden of testing
mostly onto the computer. You can tell the computer how to check your code, instead of
having to do the checks for yourself. That makes it convenient to check your code earlier and
more often, saves you from overlooking the things that you would otherwise miss, and helps
you quickly locate and fix bugs.

We shed some light on test-driven development, the discipline of writing your tests first, and
letting them tell you what needs to be done, in order to write the code you need.

We also discussed the development environment that you'll need, in order to work through
this book.

Now that we've learned about the lay of the land (so to speak), we're ready to start writing
tests—which is the topic of the next chapter.

1101

Doctest: The Easiest Testing Tool

This chapter will introduce you to a fantastic tool called doctest. Doctest is a
program that ships with Python that lets you write down what you expect from
your code in a way that's easy for both people and computers to read. Doctest
files can often be created just by copying the text out of a Python interactive
shell and pasting it into a file. Doctest will often be the fastest and easiest way
to write tests for your software.

In this chapter, we shall:

¢ Learn the doctest language and syntax
¢ Write doctests embedded in text files
¢ Write doctests embedded in Python docstrings

Doctest will be the mainstay of your testing toolkit. You'll be using it for tests, of course,
but also for things that you may not think of as tests right now. For example, program
specifications and APl documentation both benefit from being written as doctests and
checked alongside your other tests.

Like program source code, doctest tests are written in plain text. Doctest extracts the
tests and ignores the rest of the text, which means that the tests can be embedded in
human-readable explanations or discussions. This is the feature that makes doctest
so suitable for non-classical uses such as program specifications.

Doctest: The Easiest Testing Tool

Time for action - creating and running your first doctest

We'll create a simple doctest, to demonstrate the fundamentals of using doctest.

1.
2.

Open a new text file in your editor, and name it test . txt.

Insert the following text into the file:

This is a simple doctest that checks some of Python's arithmetic
operations.

>>> 2 4+ 2
4

>>> 3 * 3

10

We can now run the doctest. The details of how we do that depend on which
version of Python we're using. At the command prompt, change to the directory
where you saved test . txt.

If you are using Python 2.6 or higher, type:
$ python -m doctest test.txt

If you are using python 2.5 or lower, the above command may seem to work, but it
won't produce the expected result. This is because Python 2.6 is the first version in
which doctest looks for test file names on the command line when you invoke it
this way.

If you're using an older version of Python, you can run your doctest by typing:

$ python -c¢ " import ('doctest').testfile('test.txt')"

When the test is run, you should see output as shown in the following screen:

c ok e ok o ke o ok ok ofe ok o ok ok o o

FEESFEE RS R

***Tast Failed

3 |

[121

Chapter 2

What just happened?

You wrote a doctest file that describes a couple of arithmetic operations, and executed it to
check whether Python behaved as the tests said it should. You ran the tests by telling Python
to execute doctest on the files that contained the tests.

In this case, Python's behavior differed from the tests because according to the tests, three
times three equals ten! However, Python disagrees on that. As doctest expected one thing
and Python did something different, doctest presented you with a nice little error report
showing where to find the failed test, and how the actual result differed from the expected
result. At the bottom of the report, is a summary showing how many tests failed in each file
tested, which is helpful when you have more than one file containing tests.

Remember, doctest files are for computer and human consumption. Try to write the
test code in a way that human readers can easily understand, and add in plenty of plain
language commentary.

The syntax of doctests

You might have guessed from looking at the previous example: doctest recognizes tests by
looking for sections of text that look like they've been copied and pasted from a Python
interactive session. Anything that can be expressed in Python is valid within a doctest.

Lines that start with a >>> prompt are sent to a Python interpreter. Lines that start with a
... prompt are sent as continuations of the code from the previous line, allowing you to
embed complex block statements into your doctests. Finally, any lines that don't start with
>>>0r ..., up tothe next blank line or >>> prompt, represent the output expected from
the statement. The output appears as it would in an interactive Python session, including
both the return value and the one printed to the console. If you don't have any output
lines, doctest assumes it to mean that the statement is expected to have no visible result
on the console.

Doctest ignores anything in the file that isn't part of a test, which means that you can place
explanatory text, HTML, line-art diagrams, or whatever else strikes your fancy in between
your tests. We took advantage of that in the previous doctest, to add an explanatory
sentence before the test itself.

1131

Doctest: The Easiest Testing Tool

Time for action — writing a more complex test

We'll write another test (you can add it to test . txt if you like) which shows off most of the
details of doctest syntax.

1. Insert the following text into your doctest file(test . txt), separated from the
existing tests by at least one blank line:

Now we're going to take some more of doctest's syntax for a spin.

>>> import sys

>>> def test write():
sys.stdout.write ("Hello\n")
return True

>>> test write()

Hello

True

Think about it for a moment: What does this do? Do you expect the test to pass, or
to fail?

2. Run doctest on the test file, just as we discussed before. Because we added
the new tests to the same file containing the tests from before, we still see the
notification that three times three does not equal ten. Now, though, we also
see that five tests were run, which means our new tests ran and succeeded.

e o o o o o ok e o o ok o o ok ok o ok e ok e

(14l

Chapter 2

What just happened?

As far as doctest is concerned, we added three tests to the file.

The first one says that when we import sys, nothing visible should happen.

The second test says that when we define the test_write function, nothing visible
should happen.

¢ The third test says that when we call the test _write function, Hello and True
should appear on the console, in that order, on separate lines.

Since all three of these tests pass, doctest doesn't bother to say much about them. All it did
was increase the number of tests reported at the bottom from two to five.

That's all well and good for testing that things work as expected, but it is just as important to
make sure that things fail when they're supposed to fail. Put another way; sometimes your
code is supposed to raise an exception, and you need to be able to write tests that check
that behavior as well.

Fortunately, doctest follows nearly the same principle in dealing with exceptions, that it does
with everything else; it looks for text that looks like a Python interactive session. That means
it looks for text that looks like a Python exception report and traceback, matching it against
any exception that gets raised.

Doctest does handle exceptions a little differently from other tools. It doesn't just
match the text precisely and report a failure if it doesn't match. Exception tracebacks
tend to contain many details that are not relevant to the test, but which can change
unexpectedly. Doctest deals with this by ignoring the traceback entirely: it's only
concerned with the first line—Traceback (most recent call last)—which tells it that you
expect an exception, and the part after the traceback, which tells it which exception you
expect. Doctest only reports a failure if one of these parts does not match.

That's helpful for a second reason as well: manually figuring out what the traceback would
look like, when you're writing your tests would require a significant amount of effort, and
would gain you nothing. It's better to simply omit them.

[151]

Doctest: The Easiest Testing Tool

This is yet another test that you can add to test . txt, this time testing some code that
ought to raise an exception.

1. Insert the following text into your doctest file (Please note that the last line of this
text has been wrapped due to the constraints of the book's format, and should be a
single line):

Here we use doctest's exception syntax to check that Python is
correctly enforcing its grammar.

>>> def faulty():
yield 5
.. return 7
Traceback (most recent call last):
SyntaxError: 'return' with argument inside generator
(<doctest test.txt[5]>, line 3)

2. The test is supposed to raise an exception, so it will fail if it doesn't raise the
exception, or if it raises the wrong exception. Make sure you have your mind
wrapped around that: if the test code executes successfully, the test fails,
because it expected an exception.

3. Run the tests using doctest and the following screen will be displayed:

1 failures.

What just happened?

Since Python doesn't allow a function to contain both yield statements and return
statements with values, having the test to define such a function caused an exception. In
this case, the exception was a SyntaxError with the expected value. As a result, doctest
considered it a match with the expected output, and thus the test passed. When dealing
with exceptions, it is often desirable to be able to use a wildcard matching mechanism.
Doctest provides this facility through its ellipsis directive, which we'll discuss later.

1161

Chapter 2

Doctest uses the first blank line to identify the end of the expected output. So what do you
do, when the expected output actually contains a blank line?

Doctest handles this situation by matching a line that contains only the text <BLANKLINE> in
the expected output, with a real blank line in the actual output.

Using directives to control doctest

Sometimes, the default behavior of doctest makes writing a particular test inconvenient.
That's where doctest directives come to our rescue. Directives are specially formatted
comments that you place after the source code of a test, which tell doctest to alter its
default behavior in some way.

A directive comment begins with # doctest :, after which comes a comma-separated list of
options, that either enable or disable various behaviors. To enable a behavior, write a + (plus
symbol) followed by the behavior name. To disable a behavior, white a - (minus symbol)
followed by the behavior name.

lgnoring part of the result

It's fairly common that only part of the output of a test is actually relevant to determining
whether the test passes. By using the +ELLIPSIS directive, you can make doctest treat the
text . . . (called an ellipsis) in the expected output as a wildcard, which will match any text in
the output.

When you use an ellipsis, doctest will scan ahead until it finds text matching whatever comes
after the ellipsis in the expected output, and continue matching from there. This can lead to
surprising results such as an ellipsis matching against a 0-length section of the actual output,
or against multiple lines. For this reason, it needs to be used thoughtfully.

Time for action - using ellipsis in tests

We'll use the ellipsis in a few different tests, to get a better feel for what it does and how to
use it.

1. Insert the following text into your doctest file:
Next up, we're exploring the ellipsis.

>>> sys.modules # doctest: +ELLIPSIS
{...'sys': <module 'sys' (built-in)>...}

>>> 'This is an expression that evaluates to a string'
doctest: +ELLIPSIS
'This is ... a string'

(171

Doctest: The Easiest Testing Tool

>>> 'This is also a string' # doctest: +ELLIPSIS
'This is ... a string'

>>> import datetime
>>> datetime.datetime.now() .isoformat () # doctest: +ELLIPSIS

o ohe o ohe o o o ok ok ok o ok o o ok ok b o o of ok ok o

ilur
11 in test.txt
1 failures.

3. None of these tests would pass without the ellipsis. Think about that, and then try
making some changes and see if they produce the results you expect.

What just happened?

We just saw how to enable ellipsis matching. In addition, we saw a couple of variations on
where the doctest directive comment can be placed, including on a block continuation line
by itself.

We got a chance to play with the ellipsis a little bit, and hopefully saw why it should be used
carefully. Look at that last test. Can you imagine any output that wasn't an ISO-formatted
time stamp, but that it would match anyway?

Sometimes, whitespace (spaces, tabs, newlines, and their ilk) are more trouble than they're
worth. Maybe you want to be able to break a single line of expected output across several
lines in your test file, or maybe you're testing a system that uses lots of whitespace but
doesn't convey any useful information with it.

Doctest gives you a way to "normalize" whitespace, turning any sequence of whitespace
characters, in both the expected output and in the actual output, into a single space. It then
checks whether these normalized versions match.

1181

Chapter 2

Time for action — normalizing whitespace

We'll write a couple tests that demonstrate how whitespace normalization works.

1. Insert the following text into your doctest file:
Next, a demonstration of whitespace normalization.
>>> [1, 2, 3, 4, 5, 6, 7, 8, 9]

... # doctest: +NORMALIZE WHITESPACE
(1, 2, 3,

4/ 5/ 6/
7, 8, 9]
>>> gys.stdout.write("This text\n contains weird spacing.")

doctest: +NORMALIZE WHITESPACE
This text contains weird spacing.

2. Run the tests using doctest and the following screen is displayed:

3. Notice how one of the tests inserts extra whitespace in the expected output,
while the other one ignores extra whitespace in the actual output. When you
use +NORMALIZE WHITESPACE, you gain a lot of flexibility with
regard to how things are formatted in the text file.

On some occasions, doctest would recognize some text as an example to be checked, when
in truth you want it to be simply text. This situation is rarer than it might at first seem,
because usually there's no harm in letting doctest check everything it can. In fact, it is usually
helpful to have doctest check everything it can. For those times when you want to limit what
doctest checks, though, there's the +SKIP directive.

1191

Doctest: The Easiest Testing Tool

Time for action - skipping tests

This is an example of how to skip a test:

1. Insert the following text into your doctest file:
Now we're telling doctest to skip a test
>>> 'This test would fail.' # doctest: +SKIP
If it were allowed to run.

2. Run the tests using doctest and the following screen will be displayed:

sfe ok ok of o ofe ok ok of of o ofe o o of o

sfe ok ok of o ofe ok ok of of o ofe o o of o

#*+Test Failed

Y |

3. Notice that the test didn't fail, and that the number of tests that were run did
not change.

What just happened?

The skip directive transformed what would have been a test, into plain text(as far as doctest
is concerned). Doctest never ran the test, and in fact never counted it as a test at all.

There are several situations where skipping a test might be a good idea. Sometimes, you
have a test which doesn't pass (which you know doesn't pass), but which simply isn't
something that should be addressed at the moment. Using the skip directive lets you
ignore the test for a while. Sometimes, you have a section of human readable text that
looks like a test to the doctest parser, even though it's really only for human consumption.
The skip directive can be used to mark that code as not for actual testing.

1201

Chapter 2

Other doctest directives

There are a number of other directives that can be issued to adjust the behavior of
doctest. They are fully documented at http://docs.python.org/library/doctest.
html#option-flags-and-directives, but hereis a quick overview:

¢ +DONT ACCEPT TRUE FOR_1, which makes doctest treat True and 1 as different
values, instead of treating them as matching as it normally does.

¢ +DONT ACCEPT BLANKLINE, which makes doctest forget about the special
meaning of <BLANKLINE>.

¢ +IGNORE EXCEPTION DETAIL, which makes doctest treat exceptions as
matches if the exception type is the same, regardless of whether the rest of
the exception matches.

¢ +REPORT UDIFF, which makes doctest use unified diff format when it displays
a failed test. This is useful if you are used to reading the unified diff format,
which is by far the most common diff format within the open source community.

¢ +REPORT CDIFF, which makes doctest use context diff format when it displays
a failed test. This is useful if you are used to reading the context diff format.

¢ +REPORT NDIFF, which makes doctest use ndiff format when it displays a failed
test. This is usefull if you are used to reading the ndi £ £ format.

¢ +REPORT ONLY FIRST FAILURE makes doctest avoid printing out failure reports
on those tests after it is applied, if a failure report has already been printed. The
tests are still executed, and doctest still keeps track of whether they failed or not.
Only the report is changed by using this flag.

When doctest is running the tests from text files, all the tests from the same file are run in
the same execution scope. That means that if you import a module or bind a variable in one
test, that module or variable is still available in later tests. We took advantage of this fact
several times in the tests written so far in this chapter: the sys module was only imported
once, for example, although it was used in several tests.

That behavior is not necessarily beneficial, because tests need to be isolated from each
other. We don't want them to contaminate each other, because if a test depends on
something that another test does, or if it fails because of something that another test does,
those two tests are in some sense turned into one test that covers a larger section of your
code. You don't want that to happen, because knowing which test has failed doesn't give you
as much information about what went wrong and where it happened.

[21]

Doctest: The Easiest Testing Tool

So, how can we give each test its own execution scope? There are a few ways to do it. One
would be to simply place each test in its own file, along with whatever explanatory text that
is needed. This works beautifully, but running the tests can be a pain unless you have a tool
to find and run all of them. We'll talk about one such tool (called nose) later.

Another way to give each test its own execution scope, is to define each test within a
function, as shown below:

>>> def testl():

import frob
.. return frob.hash('qux')
>>> testl ()
77

By doing that, the only thing that ends up in the shared scope is the test function
(named test1 here). The frob module, and any other names bound inside the
function, are isolated.

The third way is to exercise caution with the names you create, and be sure to set them
to known values at the beginning of each test section. In many ways this is the easiest
approach, but it's also the one that places the most burden on you, because you have
to keep track of what's in the scope.

Why does doctest behave this way, instead of isolating tests from each other? Doctest
files are intended not just for computers to read, but also for humans. They often form a
sort of narrative, flowing from one thing to the next. It would break the narrative to be
constantly repeating what came before. In other words, this approach is a compromise
between being a document and being a test framework, a middle ground that works for
both humans and computers.

The other framework that we study in depth in this book (called simply unittest) works at a
more formal level, and enforces the separation between tests.

Pon guiz - doctest syntax

There is no answer key for these questions. Try your answers in doctest and see if
you're right!
1. How does doctest recognize the beginning of a test expression?

2. How does doctest know where the expected output of a text expression begins
and ends?

3. How would you tell doctest that you want to break a long expected output across
multiple lines, even though that's not how the test actually outputs it?

4. Which parts of an exception report are ignored by doctest?

[22]

Chapter 2

5. When you bind a variable in a test file, what code can "see" that variable?
6. Why do we care what code can see a variable created by a test?

7. How can we make doctest not care what a section of output contains?

Have a go hero - from English to doctest

Time to stretch your wings a bit! I'm going to give you a description of a single function,
in English. Your job is to copy the description into a new text file, and then add tests that
describe all the requirements in a way in which the computer can understand and check.

Try to make the doctests that are not just for the computer. Good doctests tend to clarify
things for human readers as well. By and large, that means that you present them to human
readers as examples interspersed with the text.

Without further ado, here is the English description:

The fib(N) function takes a single integer as its only parameter N. If
N is 0 or 1, the function returns 1. If N is less than 0, the function
raises a ValueError. Otherwise, the function returns the sum of fib (N
- 1) and fib(N - 2). The returned value will never be less than 1.

On versions of Python older than 2.2, and if N is at least 52, the
function will raise an OverflowError. A naive implementation of this
function would get very slow as N increased.

I'll give you a hint and point out that the last sentence—about the function being slow—isn't
really testable. As computers get faster, any test you write that depends on an arbitrary
definition of "slow" will eventually fail. Also, there's no good way to test the difference
between a slow function and a function stuck in an infinite loop, so there's no point in trying.
If you find yourself needing to do that, it's best to back off and try a different solution.

Not being able to tell whether a function is stuck or just slow is called the
Halting Problem by computer scientists. We know that it can't be solved
% unless we someday discover a fundamentally better kind of computer. Faster
’ computers won't do the trick, and neither will quantum computers, so don't
hold your breath!

1231

Doctest: The Easiest Testing Tool

Embedding doctests in Python docstrings

Doctests aren't confined to simple text files. You can put doctests into Python's docstrings.

Why would you want to do that? There are a couple of reasons. First of all, docstrings are an
important part of the usability of Python code (but only if they tell the truth). If the behavior
of a function, method, or module changes and the docstring doesn't get updated, then the
docstring becomes misinformation, and a hindrance rather than a help. If the docstring
contains a couple of doctest examples, then the out-of-date docstrings can be located
automatically. Another reason for placing doctest examples into docstrings is simply that

it can be very convenient. This practice keeps the tests, documentation and code all in the
same place, where it can all be located easily.

If the docstring becomes home to too many tests, this can destroy its utility as documentation.
This should be avoided; if you find yourself with so many tests in the docstrings that they
aren't useful as a quick reference, move most of them to a separate file.

Time for action - embedding a doctest in a docstring

We'll embed a test right inside the Python source file that it tests, by placing it inside
a docstring.

1. Create afile called test . py with the following contents:

def testable(x):
rll nn
The “testable™ function returns the square root of its
parameter, or 3, whichever is larger.
>>> testable(7)

3.0

>>> testable(16)

4.0

>>> testable (9)

3.0

>>> testable(10) == 10 ** 0.5
True

nnn

if x < 9:

return 3.0
return x ** 0.5

2. At the command prompt, change to the directory where you saved test .py and
then run the tests by typing:

$ python -m doctest test.py

[24]

Chapter 2

_ As mentioned earlier before, if you have an older version of
% Python, this isn't going to work for you. Instead, you need to type
S python -c " import ('doctest').testmod(

import__ ('test'))"

3. If everything worked, you shouldn't see anything at all. If you want some
confirmation that doctest is doing something, turn on verbose reporting
by changing the command to:

python -m doctest -v test.py

For older versions of Python, instead use python -c¢ "

import ('doctest') .testmod(import ('test'),

verbose=True) "

What just happened?

You put the doctest right inside the docstring of the function it was testing. This is a

good place for tests that also show a user how to do something. It's not a good place

for detailed, low-level tests (the above example, which was quite detailed for illustrative
purposes, is skirting the edge of being too detailed), because docstrings need to serve as API
documentation. You can see the reason for this just by looking back at the example, where
the doctests take up most of the room in the docstring, without telling the readers any more
than they would have learned from a single test.

Any test that will serve as good APl documentation is a good candidate for including in
the docstrings.

Notice the use of a raw string for the docstring (denoted by the r character before the
first triple-quote). Using raw strings for your docstrings is a good habit to get into, because
you usually don't want escape sequences—e.g. \n for newline—to be interpreted by the
Python interpreter. You want them to be treated as text, so that they are correctly passed
on to doctest.

Embedded doctests can accept exactly the same directives as doctests in text files can, using
exactly the same syntax. Because of this, all of the doctest directives that we discussed
before can also be used to affect the way embedded doctests are evaluated.

1251

Doctest: The Easiest Testing Tool

Doctests embedded in docstrings have a somewhat different execution scope than doctests
in text files do. Instead of having a single scope for all of the tests in the file, doctest creates
a single scope for each docstring. All of the tests that share a docstring, also share an
execution scope, but they're isolated from tests in other docstrings.

The separation of each docstring into its own execution scope often means that we don't
need to put much thought into isolating doctests, when they're embedded in docstrings.
That is fortunate, since docstrings are primarily intended for documentation, and the tricks
needed to isolate the tests might obscure the meaning.

Putting it in practice: an AVL tree

We'll walk step-by-step through the process of using doctest to create a testable
specification for a data structure called an AVL Tree. An AVL tree is a way to organize
key-value pairs, so that they can be quickly located by key. In other words, it's a lot like
Python's built-in dictionary type. The name AVL references the initials of the people who
invented this data structure.

As its name suggests, an AVL tree organizes the keys that are stored in it into a tree structure,
with each key having up to two child keys—one child key that is less than the parent key by
comparison, and one that is more. In the following picture, the key Elephant has two child
keys, Goose has one, and Aardvark and Frog both have none.

"Aardvark"

Lesser Greater

The AVL tree is special, because it keeps one side of the tree from getting much taller
than the other, which means that users can expect it to perform reliably and efficiently no
matter what. In the previous image, an AVL tree would reorganize to stay balanced if Frog
gained a child.

1261

Chapter 2

We'll write tests for an AVL tree implementation here, rather than writing the
implementation itself. Therefore, we'll elaborate over the details of how an AVL
tree works, in favor of looking at what it should do when it works right.

If you want to know more about AVL Trees, you will find many good

references on the Internet. Wikipedia's entry on the subject is a good place
’ to start with: http://en.wikipedia.org/wiki/AVL tree.

We'll start with a plain language specification, and then interject tests between
the paragraphs.

M You don't have to actually type all of this into a text file; it is here for you
Q to read and to think about. It's also available in the code download that
accompanies this book.

The first step is to describe what the desired result should be, in normal language. This might
be something that you do for yourself, or something that somebody else does for you. If
you're working for somebody, hopefully you and your employer can sit down together and
work this part out.

In this case, there's not much to work out, because AVL Trees have been fully described for
decades. Even so, the description here isn't quite like one you'd find anywhere else. This
capacity for ambiguity is exactly the reason why a plain language specification isn't good
enough. We need an unambiguous specification, and that's exactly what the tests in a
doctest file can give us.

The following text goes in a file called AVL. txt, (which you can find in its final form in the
accompanying code archive. At this stage of the process, the file contains only the normal
language specification.):

An AVL Tree consists of a collection of nodes organized in a binary
tree structure. Each node has left and right children, each of which
may be either None or another tree node. Each node has a key, which
must be comparable via the less-than operator. Each node has a value.
Each node also has a height number, measuring how far the node is from
being a leaf of the tree -- a node with height 0 is a leaf.

The binary tree structure is maintained in ordered form, meaning that
of a node's two children, the left child has a key that compares

less than the node's key and the right child has a key that compares
greater than the node's key.

1211

Doctest: The Easiest Testing Tool

The binary tree structure is maintained in a balanced form, meaning
that for any given node, the heights of its children are either the
same or only differ by 1.

The node constructor takes either a pair of parameters representing
a key and a value, or a dict object representing the key-value pairs
with which to initialize a new tree.

The following methods target the node on which they are called, and
can be considered part of the internal mechanism of the tree:

Each node has a recalculate_height method, which correctly sets the
height number.

Each node has a make deletable method, which exchanges the positions
of the node and one of its leaf descendants, such that the the tree
ordering of the nodes remains correct.

Each node has rotate_ clockwise and rotate counterclockwise methods.
Rotate clockwise takes the node's right child and places it where
the node was, making the node into the left child of its own former
child. Other nodes in the vicinity are moved so as to maintain

the tree ordering. The opposite operation is performed by rotate
counterclockwise.

Each node has a locate method, taking a key as a parameter, which
searches the node and its descendants for a node with the specified
key, and either returns that node or raises a KeyError.

The following methods target the whole tree rooted at the current
node. The intent is that they will be called on the root node:

Each node has a get method taking a key as a parameter, which locates
the value associated with the specified key and returns it, or raises
KeyError if the key is not associated with any value in the tree.

Each node has a set method taking a key and a value as parameters, and
associating the key and value within the tree.

Each node has a remove method taking a key as a parameter, and
removing the key and its associated value from the tree. It raises
KeyError if no values was associated with that key.

The first three paragraphs of the specification describe the member variables of a AVL

tree node, and tell us what the valid values for the variables are. They also tell us how tree
height should be measured and define what a balanced tree means. It's our job now to take
up those ideas, and encode them into tests that the computer can eventually use to check
our code.

1281

Chapter 2

We could check these specifications by creating a node and then testing the values, but that
would really just be a test of the constructor. It's important to test the constructor, but what
we really want to do is to incorporate checks that the node variables are left in a valid state
into our tests of each member function.

To that end, we'll define a function that our tests can call to check that the state of a node is
valid. We'll define that function just after the third paragraph:

Notice that this test is written as if the AVL tree implementation already existed.
It tries to import an avl_tree module containing an AVL class, and it tries
Al to use the AVL class is specific ways. Of course, at the moment there is no
avl tree module, so the test will fail. That's as it should be. All that the failure
means is that, when the time comes to implement the tree, we should dosoin a
module called avl tree, with contents that function as our test assumes. Part
of the benefit of testing like this is being able to test-drive your code before you
even write it.

>>> from avl tree import AVL

>>> def valid state(node) :

if node is None:
return

if node.left is not None:
assert isinstance (node.left, AVL)
assert node.left.key < node.key
left height = node.left.height + 1

else:
left height

I
o

if node.right is not None:
assert isinstance (node.right, AVL)
assert node.right.key > node.key
right height = node.right.height + 1
else:
right height = 0

assert abs(left height - right height) < 2
node.key < node.key
node.value

>>> def valid tree (node) :
if node is None:
return
valid state (node)
valid tree(node.left)
valid tree(node.right)

129]

Doctest: The Easiest Testing Tool

Notice that we didn't actually call those functions yet. They aren't tests, per se, but tools
that we'll use to simplify writing tests. We define them here, rather than in the Python
module that we're going to test, because they aren't conceptually part of the tested code,
and because anyone who reads the tests will need to be able to see what the helper
functions do.

Constructor

The fourth paragraph describes the constructor for an AVL node: The node constructor takes
either a pair of parameters representing a key and a value, or a dict object representing the
key-value pairs with which to initialize a new tree.

The constructor has two possible modes of operation:

it can either create a single initialized node

or it can create and initialize a whole tree of nodes. The test for the single node
mode is easy:

>>> valid state (AVL(2, 'Testing is fun'))

The other mode of the constructor is a problem, because it is almost certain that it will be
implemented by creating an initial tree node and then calling its set method to add the

rest of the nodes. Why is that a problem? Because we don't want to test the set method
here: this test should be focused entirely on whether the constructor works correctly, when
everything it depends on works.

% In other words, the tests should be able to assume that everything
s outside of the specific chunk of code being tested works correctly.

However, that's not always a valid assumption. So, how can we write tests for things that call
on code outside of what's being tested?

There is a solution for this problem, about which we'll learn in Chapter 4. For now, we'll just
leave the second mode of operation of the constructor untested.

Recalculate height

The recalculate height method is described in the fifth paragraph.

To test it, we'll need a tree for it to operate on, and we don't want to use the second mode
of the constructor to create it. After all, that mode isn't tested at all yet, and even if it
were, we want this test to be independent of it. We would prefer to make the test entirely
independent of the constructor, but in this case we need to make a small exception to the
rule(since it's difficult to create an object without calling its constructor in some way).

Chapter 2

What we'll do is define a function that builds a specific tree and returns it. This
function will be useful in several of our later tests as well. Using this function, testing
recalculate height will be easy.

>>> def make test tree():
root = AVL(7, 'seven')
root.height = 2
root.left = AVL(3, 'three')
root.left.height =1
root.left.right = AVL(4, 'four')
root.right = AVL(10, 'ten')
return root

>>> tree = make test tree()

>>> tree.height = 0

>>> tree.recalculate height ()

>>> tree.height

2

Themake test tree function builds a tree by manually constructing each part of it and
hooking it together into a structure that looks like this:

311

Doctest: The Easiest Testing Tool

You can't delete a node that has children, because that would leave the node's children
disconnected from the rest of the tree. If we delete the Elephant node from the bottom of
the tree, what do we do about Aardvark, Goose, and Frog? If we delete Goose, how do we
find Frog afterwards?

"sardvark”

Lesser Greater

The way around that is to have the node swap places with it's largest leaf descendant on the
left side (or its smallest leaf descendant on the right side, but we'll not do it that way).

We'll test this by using the same make test tree function that we defined before to
create a new tree to work on, and then checking that make deletable swaps correctly:

Each node has a make deletable method, which exchanges the positions
of the node and one of its leaf descendants, such that the the tree
ordering of the nodes remains correct.

>>> tree = make test tree()

>>> target = tree.make deletable()
>>> (tree.value, tree.height)
('four', 2)

>>> (target.value, target.height)
('seven', 0)

Something to notice here is that the make deletable functionisn't
supposed to delete the node that it's called on. It's supposed to move
@@j%‘\ that node into a position where it could be safely deleted. It must do this
’ reorganization of the tree, without violating any of the constraints that
define an AVL tree structure.

1321

Chapter 2

The two rotate functions perform a somewhat tricky manipulation of the links in a tree.

You probably found the plain language description of what they do, a bit confusing. This is
one of those times when a little bit of code makes a whole lot more sense than any number
of sentences.

While tree rotation is usually defined in terms of rearranging the links between nodes in
the tree, we'll check whether it worked by looking at the values (rather than by looking
directly at the left and right links). This allows the implementation to swap the contents of
nodes—rather than the nodes themselves—when it wishes. After all, it's not important to
the specification which operation happens, so we shouldn't rule out a perfectly reasonable
implementation choice.

The first part of the test code for rotation just creates a tree and verifies that it looks like we
expect it to:

>>> tree = make test tree()
>>> tree.value

'seven'

>>> tree.left.value

'three!

Once we have a tree to work with, we try a rotation operation and check that the result still
looks like it should:

>>> tree.rotate counterclockwise ()
>>> tree.value

'three!

>>> tree.left

None

>>> tree.right.value
'seven'

>>> tree.right.left.value
'four!

>>> tree.right.right.value
'ten'

>>> tree.right.left.value
'four!

>>> tree.left is None

True

Doctest: The Easiest Testing Tool

Finally, we rotate back in the other direction, and check that the final result is the same as
the original tree, as we expect it to be:

>>> tree.rotate clockwise ()
>>> tree.value

'seven'

>>> tree.left.value

'three!

>>> tree.left.right.value
'four!

>>> tree.right.value

'ten'

>>> tree.right.left is None
True

>>> tree.left.left is None
True

Locating a node

The 1locate method is expected to return a node, or raise a KeyError exception,
depending on whether the key exists in the tree or not. We'll use our specially built
tree again, so that we know exactly what the tree's structure looks like.

>>> tree = make test tree()

>>> tree.locate (4) .value

'four!

>>> tree.locate(17) # doctest: +ELLIPSIS
Traceback (most recent call last):
KeyError:

The 1locate method is intended to facilitate insertion, deletion, and lookup of values
based on their keys, but it's not a high-level interface. It returns a node object, because

it's easy to implement the higher-level operations, if you have a function the finds the right
node for you.

Testing the rest of the specification

Like the second mode of the constructor, testing the rest of the specification involves testing
code that depends on things outside of itself, which we'll cover in Chapter 4.

1341

Chapter 2

Summary

We learned the syntax of doctest, and went through several examples describing how

to use it. After that, we took a real-world specification for the AVL tree, and examined
how to formalize it as a set of doctests, so that we could use it to automatically check the
correctness of an implementation.

Specifically, we covered doctest's default syntax, and the directives that alter it, how to write
doctests in text files, how to write doctests in Python docstrings, and what it feels like to use
doctest to turn a specification into tests.

Now that we've learned about doctest, we're ready to talk about how to use doctest to do
unit testing—which is the topic of the next chapter.

Unit Testing with Doctest

Okay, so we've talked about what doctest does, and how to make it behave the
way we want. We've talked about testing things with doctest too. What's left
to talk about in this chapter, then? In this chapter, we'll be talking about the
programming discipline called Unit testing. We'll still be using doctest, but this
time the focus is on what you're doing and why, rather than on the details of
how to do it.

In this chapter we shall:

¢ Discuss in detail what Unit testing is
¢ Talk about the ways in which Unit testing helps various stages of development

¢ Work with examples that illustrate Unit testing and its advantages

So, let's get on with it!

The title of this section, begs another question: "Why do | care?" One answer is that Unit
testing is a best practice that has been evolving toward its current form over most of the
time that programming has existed. Another answer is that the core principles of Unit testing
are just good sense; it might actually be a little embarrassing to our community as a whole
that it took us so long to recognize them.

Alright, so what is Unit testing? In its most fundamental form, Unit testing can be defined as
testing the smallest meaningful pieces of code (such pieces are called units), in such a way
that each piece's success or failure depends only on itself. For the most part, we've been
following this principle already.

Unit Testing with Doctest

There's a reason for each part of this definition: we test the smallest meaningful pieces
of code because, when a test fails, we want that failure to tell where the problem is us
as specifically as possible. We make each test independent because we don't want a test
to make any other test succeed, when it should have failed; or fail when it should have
succeeded. When tests aren't independent, you can't trust them to tell you what you
need to know.

Traditionally, automated testing is associated with Unit testing. Automated testing makes

it fast and easy to run unit tests, which tend to be amenable to automation. We'll certainly
make heavy use of automated testing with doctest and later with tools such as unittest and
Nose as well.

Any test that involves more than one unit is automatically not a unit test. That matters
because the results of such tests tend to be confusing. The effects of the different units get
tangled together, with the end result that not only do you not know where the problem is
(is the mistake in this piece of code, or is it just responding correctly to bad input from some
other piece of code?), you're also often unsure exactly what the problem is this output is
wrong, but how does each unit contribute to the error? Empirical scientists must perform
experiments that check only one hypothesis at a time, whether the subject at hand is
chemistry, physics, or the behavior of a body of program code.

Time for action - identifying units

Imagine that you're responsible for testing the following code:

class testable:
def methodl (self, number) :
number += 4
number **= 0.5
number *= 7

return number

def method2 (self, number) :
return ((number * 2) ** 1.27) * 0.3

def method3 (self, number) :
return self.methodl (number) + self.method2 (number)

def method4 (self) :
return 1.713 * gelf.method3 (id(self))

1. Inthis example, what are the units? Is the whole class a single unit, or is each
method a separate unit. How about each statement, or each expression? Keep
in mind that the definition of a unit is somewhat subjective (although never bigger
than a single class), and make your own decision.

Chapter 3

2. Think about what you chose. What would the consequences have been if you chose
otherwise? For example, if you chose to think of each method as a unit, what would
be different if you chose to treat the whole class as a unit?

3. Consider methoda. Its result depends on all of the other methods working correctly.
On top of that, it depends on something that changes from one test run to another,
the unique ID of the self object. Is it even possible to treat method4 as a unit in
a self-contained test? If we could change anything except method4, what would
we have to change to enable method4 to run in a self-contained test and produce
a predictable result?

What just happened?

By answering those three questions, you thought about some of the deeper aspects of
unit testing.

The question of what constitutes a unit, is fundamental to how you organize your tests. The
capabilities of the language affects this choice. C++ and Java make it difficult or impossible

to treat methods as units, for example, so in those languages each class is usually treated

as a single unit. C, on the other hand, doesn't support classes as language features at all, so
the obvious choice of unit is the function. Python is flexible enough that either classes or
methods could be considered units, and of course it has stand-alone functions as well, which
are also natural to think of as units. Python can't easily handle individual statements within a
function or method as units, because they don't exist as separate objects when the test runs.
They're all lumped together into a single code object that's part of the function.

The consequences of your choice of unit are far-reaching. The smaller the units are, the
more useful the tests tend to be, because they narrow down the location and nature of bugs
more quickly. For example, one of the consequences of choosing to treat the testable class
as a single unit is that tests of the class will fail if there is a mistake in any of the methods.
That tells you that there's a mistake in testable, but not (for example) that it's in method?2.
On the other hand, there is a certain amount of rigmarole involved in treating method4 and
its like as units, to such an extent that the next chapter of the book is dedicated to dealing
with such situations. Even so, | recommend using methods and functions as units most of the
time, because it pays off in the long run.

In answering the third question, you probably discovered that the functions id and
self.method3 would need to have different definitions, definitions that produced a
predictable result, and did so without invoking code in any of the other units. In Python,
replacing the real function with such stand-ins is fairly easy to do in an ad hoc manner,
but we'll be discussing a more structured approach in the next chapter.

Unit Testing with Doctest

Pop quiz- understanding units

Consider this code and then try to answer the questions:

class class_one:
def _ init_ (self, argl, arg2):
self.argl = int (argl)
self.arg2 = arg2

def methodl (self, x):
return x * self.argl

def method2 (self, x):
return self.methodl (self.arg2) * x

1. Assuming that methods are units, how many units exist in the above code?

2. Which units make assumptions about the correct operation of other units? In other
words, which units are not independent?

3. What would you need to do to create a test for method2 that was independent of
other units?

Unit testing throughout the development process

We'll walk through the development of a single class, treating it with all the dignity of a real
project. We'll be strictly careful to integrate unit testing into every phase of the project. This
may seem silly at times, but just play along. There's a lot to learn from the experience.

The example we'll be working with is a PID controller. The basic idea is that a PID controller
is a feedback loop for controlling some piece of real-world hardware. It takes input from a
sensor that can measure some property of the hardware, and generates a control signal that
adjusts that property toward some desired state. The position of a robot arm in a factory
might be controlled by a PID controller.

If you want to know more about PID controllers, the Internet is

rife with information. The Wikipedia entry is a good place to start:

http://en.wikipedia.org/wiki/PID controller.

1401

Chapter 3

Our notional client comes to us with the following (rather sparse) specification:

We want a class that implements a PID controller for a single
variable. The measurement, setpoint, and output should all be real
numbers.

We need to be able to adjust the setpoint at runtime, but we want
it to have a memory, so that we can easily return to the previous
setpoint.

Time for action - unit testing during design

Time to make that specification a bit more formal—and complete—by writing unit tests that
describe the desired behavior.

1. We need to write a test that describes the PID constructor. After checking our
references, we determine that a PID controller is defined by three gains, and
a setpoint. The controller has three components: proportional, integral and
derivative (hence the name PID). Each gain is a number that determines how
much one of the three parts of the controller has on the final result. The setpoint
determines what the goal of the controller is; in other words, to where it's trying
to move the controlled variable. Looking at all that, we decide that the constructor
should just store the gains and the setpoint, along with initializing some internal
state that we know we'll need due to reading up on the workings of a PID controller:

>>> import pid
>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0)

>>> controller.gains

(0.5, 0.5, 0.5)

>>> controller.setpoint

[0.0]

>>> controller.previous_time is None
True

>>> controller.previous_ error

0.0

>>> controller.integrated error

0.0

14l

Unit Testing with Doctest

2. We need to write tests that describe measurement processing. This is the controller
in action, taking a measured value as its input and producing a control signal that
should smoothly move the measured variable to the setpoint. For this to work
correctly, we need to be able to control what the controller sees as the current
time. After that, we plug our test input values into the math that defines a PID
controller, along with the gains, to figure out what the correct outputs would be:

>>> import time

>>> real_time = time.time

>>> time.time = (float(x) for x in xrange(l, 1000)) .next
>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0)
>>> controller.measure (12)

-6.0

>>> controller.measure (6)
-3.0

>>> controller.measure (3)
-4.5

>>> controller.measure(-1.5)
-0.75

>>> controller.measure(-2.25)
-1.125

>>> time.time = real time

3. We need to write tests that describe setpoint handling. Our client asked for
a setpoint stack, so we write tests that check such stack behavior. Writing
code that uses this stack behavior brings to our attention that fact that a PID
controller with no setpoint is not a meaningful entity, so we add a test that
checks that the PID class rejects that situation by raising an exception.

>>> pid = reload(pid)
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0)

>>> controller.push setpoint(7)
>>> controller.setpoint
[0.0, 7.0]

>>> controller.push setpoint(8.5)
>>> controller.setpoint
[0.0, 7.0, 8.5]

>>> controller.pop setpoint ()
8.5
>>> controller.setpoint

[42]

Chapter 3

>>> controller.pop setpoint ()
7.0

>>> controller.setpoint

[0.0]

>>> controller.pop setpoint ()
Traceback (most recent call last):
ValueError: PID controller must have a setpoint

What just happened?

Our clients gave us a pretty good initial specification, but it left a lot of details to assumption.
By writing these tests, we've codified exactly what our goal is. Writing the tests forced us to
make our assumptions explicit. Additionally, we've gotten a chance to use the object, which
gives us an understanding of it that would otherwise be hard to get at this stage.

Normally we'd place the doctests in the same file as the specification, and in fact that's what
you'll find in the book's code archive. In the book format, we used the specification text as
the description for each step of the example.

You could ask how many tests we should write for each piece of the specification. After
all, each test is for certain specific input values, so when code passes it, all it proves is that
the code produces the right results for that specific input. The code could conceivably

do something entirely wrong, and still pass the test. The fact is that it's usually a safe
assumption that the code you'll be testing was supposed to do the right thing, and so a
single test for each specified property fairly well distinguishes between working and
non-working code. Add to that tests for any boundaries specified—for "The X input may
be between the values 1 and 7, inclusive" you might add tests for X values of 0.9 and

7.1 to make sure they weren't accepted—and you're doing fine.

There were a couple of tricks we pulled to make the tests repeatable and independent. In
every test after the first, we called the reload function on the pid module, to reload it
from the disk. That has the effect of resetting anything that might have changed in the
module, and causes it to re-import any modules that it depends on. That latter effect is
particularly important, since in the tests of measure, we replaced time. time with a
dummy function. We want to be sure that the pid module uses the dummy time function,
so we reload the pid module. If the real time function is used instead of the dummy, the
test won't be useful, because there will be only one time in all of history at which it would
succeed. Tests need to be repeatable.

1431

Unit Testing with Doctest

The dummy time function is created by making an iterator that counts through the integers
from 1 to 999 (as floating point values), and binding t ime . t ime to that iterator's next
method. Once we were done with the time-dependent tests, we replaced the original
time.time.

Right now, we have tests for a module that doesn't exist. That's good! Writing the tests
was easier than writing the module will be, and it gives us a stepping stone toward getting
the module right, quickly and easily. As a general rule, you always want to have tests ready
before the code that they test is written.

1. Why should we care whether tests are independent of each other, when the code
they're testing is imaginary and the tests can't even be run?

2. Why are you, as a programmer, writing tests during this phase? Should this be part
of the job of the people writing the specification instead?

3. Tests at this phase try to make use of code that hasn't been written yet, and so they
end up—in a sense—defining that code. What advantages and disadvantages does
this have?

Try this a few times on your own: Describe some program or module that you'd enjoy having
access to in real life, using normal language. Then go back through it and try writing tests,
describing the program or module. Keep an eye out for places where writing the test makes
you aware of ambiguities in your prior description, or makes you realize that there's a better
way to do something.

With tests in hand, we're ready to write some code. The tests will act as a guide to us, a
specification that actively tells us when we get something wrong.

Time for action - unit testing during development

1. Thefirst step is to run the tests. Of course, we have a pretty good idea of what's
going to happen; they're all going to fail. Still, it's useful to know exactly what the
failures are, because those are the things that we need to address by writing code.

1441

Chapter 3

e ok ok e ok ok e ke ok

1, in __run

le>

e named pid

There are many more failing tests after that, but you get the idea.

Taking our cue from the tests, and our references on PID controllers, we write the
pid.py module:

from time import time

class PID:
def init (self, P, I, D, setpoint):
self.gains = (float(P), float(I), float (D))
self.setpoint = [float (setpoint)]
self.previous_ time = None
self.previous_error = 0.0
self.integrated error = 0.0

def push setpoint (self, target):
self.setpoint.append (float (target))

def pop setpoint (self):
if len(self.setpoint) > 1:
return self.setpoint.pop()
raise ValueError ('PID controller must have a setpoint')

def measure(self, wvalue):

now time ()

P, I, D = self.gains
err = value - self.setpoint[-1]
result = P * err
if self.previous time is not None:
delta = now - self.previous time
self.integrated error +g= err * delta
result += I * self.integrated error
result += D * (err - self.previous error) / delta

self.previous_error = err

self.previous_time = now

return result

1451

Unit Testing with Doctest

3. Next we run the tests again. We're hoping that they will all pass, but unfortunately
the measure method seems to have some sort of bug.

sk o e b ok o o ok ok ok o o o ok ok o o b ok ok ok o ok ok ok o ok ok ok ok ok ok

e sk s e obe b ke e obe e ok e obeobe ok ke obeobe e ok ok oo of ok o ook ok ok she ok o ok o ok ok ke ok ok

There are several more reports showing similar things (five tests in total should fail).
The measure function is working backwards, returning positive numbers when it
should be returning negative, and vice-versa.

4. We know we need to look for a sign error in the measure method, so we don't
have too much trouble finding and fixing the bug. The measured value should be
subtracted from the setpoint, not the other way around, on the fourth line of
the measure method:

err = gself.setpoint[-1] - value

After fixing that, we find that all the tests pass.

What just happened?

We used our tests to tell us what needed to be done and when our code was finished. Our
first run of the tests gave us a list of things that needed to be written; a to-do list, of sorts.
After we wrote some code, we ran the tests again to see if it was doing what we expected,
which gave us a new to-do list. We keep on alternating between running the tests and
writing code until the tests all passed. When all the tests pass, either we're done, or we
need to write more tests.

Whenever we find a bug that isn't already caught by a test, the right thing to do is to add a
test that catches it, and then to fix it. That way, you not only have a fixed bug, you have a test
that covers some aspect of the program that wasn't tested before. That test may well catch
other bugs in the future, or tell you if you accidentally re-introduced the original bug.

1461

Chapter 3

This "test a little, code a little" style of programming is called Test-Driven Development, and
you'll find that it's very productive.

Notice that the pattern in the way the tests failed was immediately apparent. There's no
guarantee that this will always be the case, of course, but it's quite common. Combined with
the ability to narrow your attention to the specific units that are having problems, debugging
is usually a snap.

Another thing to think about is test isolation. The methods of the PID class make use of
variables stored in self, which means that in order for the tests to be isolated, we have to
make sure that none of the changes to self variables made by any method propagate to
any other method. We did that by just reloading the pid module and making a new instance
of the PID class for each test. As long as the test (and the code being tested) doesn't invoke
any other methods on self, that's all that we need.

So, we have a PID controller, and it passes all the tests. We're feeling pretty good. Time to
brave the lions, and show it to the client!

Luckily for us, for the most part they like it. They do have a few requests, though: They
want us to let them optionally specify the current time as a parameter to measure, instead
of just using time. time to figure it out. They also want us to change the signature of the
constructor so that it takes an initial measurement and optional time as parameters. Finally,
they want us to rename the measure function to calculate response, because they
think that more clearly describes what it does.

Time for action - unit testing during feedback

So, how are we going to deal with this? The program passes all the tests, but the tests no
longer reflect the requirements.

1. Add the initial parameter to the constructor test, and update the expected results.

2. Add a second constructor test, which tests the optional time
parameter that is now expected to be part of the constructor.

3. Change the measure method's hame to calculate response in all tests.

4. Add the initial constructor parameter in the calculate response test
—while we're doing that, we notice that this is going to change the way
the calculate response function behaves. We contact the client for
clarification, and they decide it's okay, so we update the expectations
to match what we calculate should happen after the change.

1471

Unit Testing with Doctest

5. Addasecond calculate response test, which checks its behavior when the
optional time parameter is supplied.

6. After making all those changes, our specification/test file looks like the following.
Lines that have been changed or added are formatted differently, to help you
spot them more easily.
We want a class that implements a PID controller for a single
variable. The measurement, setpoint, and output should all be real

numbers. The constructor should accept an initial measurement
value in addition to the gains and setpoint.

>>> import time

>>> real time = time.time

>>> time.time = (float (x) for x in xrange(l, 1000)) .next

>>> import pid

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0,
initial=12)

>>> controller.gains

(0.5, 0.5, 0.5)

>>> controller.setpoint

[0.0]

>>> controller.previous time
1.0

>>> controller.previous error
-12.0

>>> controller.integrated error
0.0

>>> time.time = real time

The constructor should also optionally accept a parameter
specifying when the initial measurement was taken.

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=1,
initial=12, when=43)

>>> controller.gains

(0.5, 0.5, 0.5)

>>> controller.setpoint

[1.0]

>>> controller.previous_ time

43.0

>>> controller.previous_ error

-11.0

1481

Chapter 3

>>> controller.integrated error

0.0
>>> real_time = time.time
>>> time.time = (float(x) for x in xrange(l, 1000)) .next

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0,
initial=12)

>>> controller.calculate response(6)

-3.0

>>> controller.calculate response(3)

-4.5

>>> controller.calculate_response(-1.5)

-0.75

>>> controller.calculate response(-2.25)

-1.125

>>> time.time = real time

The calculate response method should be willing to accept a
parameter specifying at what time the call is happening.

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0,
initial=12, when=1)

>>> controller.calculate response (6, 2)

-3.0

>>> controller.calculate response (3, 3)

-4.5

>>> controller.calculate response(-1.5, 4)

-0.75

>>> controller.calculate response(-2.25, 5)

-1.125

We need to be able to adjust the setpoint at runtime, but we want
it to have a memory, so that we can easily return to the previous
setpoint.

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0,
initial=12)

>>> controller.push setpoint(7)

>>> controller.setpoint

[0.0, 7.0]

>>> controller.push setpoint(8.5)

1491

Unit Testing with Doctest

>>> controller.setpoint

[0.0, 7.0, 8.5]

>>> controller.pop setpoint ()
8.5

>>> controller.setpoint

[0.0, 7.0]

>>> controller.pop setpoint ()
7.0

>>> controller.setpoint

[0.0]

>>> controller.pop setpoint ()
Traceback (most recent call last):

ValueError: PID controller must have a setpoint

What just happened?

Our tests didn't match the requirements any more, so they had to change.

Well and good, but we don't want them to change too much, because our collection of tests
helps us avoid regressions in our code. Regressions are changes that cause something that
used to work, to stop working. One of the best ways to avoid them is to avoid deleting tests.
If you still have tests in place that check for every desired behavior and every bug fixed, then
if you introduce a regression you find out about it immediately.

That's one reason why we added new tests to check the behavior when the optional time
parameters are supplied. The other reason is that if we added those parameters to the
existing tests, we wouldn't have any tests of what happens when you don't use those
parameters. We always want to check every code path through each unit.

Sometimes, a test just isn't right any more. For example, tests that make use of the measure
method are just plain wrong, and need to be updated to call calculate response
instead. When we change these tests, though, we still change them as little as possible. After
all, we don't want the test to stop checking for old behavior that's still correct, and we don't
want to introduce a bug in the test itself.

The addition of the initial parameter to the constructor is a big deal. It not only changes
the way the constructor should behave, it also changes the way the calculate response
(née measure) method should behave in a rather dramatic way. Since this is a change in the
correct behavior (a fact which we didn't realize until the tests pointed it out to us, which in
turn allowed us to get confirmation of what the correct behavior should be from our clients
before we started writing the code), we have no choice but to go through and change the
tests, recalculating the expected outputs. However, doing all that work has a benefit over
and above the future ability to check that the function is working correctly; it makes it

much easier to comprehend how the function should work when we actually write it.

Chapter 3

Well, it's time to go back into development. In real life, there's no telling how often
we'd have to cycle back and forth between development and feedback, but we would
want to keep the cycle short. The more often we switch back and forth, the more in
contact we are with what our clients really want, and that makes for a more productive,
more rewarding job.

Time for action - unit testing during development... again

We've got our updated tests, so now it's time to get back into a state where all of our
tests pass.

1. First off, let's run the tests, and so get a new list of things that need to be done.

in _

TypeError: __init () ord argument 'initial’

There are several more error reports after this, of course. Doctest reports a total of
32 failing examples, although that's not particularly meaningful since none of the
tests are able to even construct a PID object right now. Fixing that constructor would
be a reasonable place to start.

2. Using the doctest report as a guide, we set about adjusting the PID class. This is
going to work best as an iterative process, where we make a few changes, then
run the tests, then make a few changes, and so on. In the end, though, we'll end
up with something like the following (the push setpoint and pop_setpoint
methods are unchanged, so they've been omitted here to save space):

from time import time

class PID:
def init_ (self, P, I, D, setpoint, initial, when=None) :
self.gains = (float(P), float(I), float (D))
self.setpoint = [float (setpoint)]

if when is None:

511

Unit Testing with Doctest

self .previous_time = time()
else:
self.previous_ time = float (when)
self.previous error = self.setpoint[-1] - float (initial)

self.integrated error = 0.0

def calculate response(self, value, now=None) :
if now is None:
now = time()
else:

now float (now)

P, I, D = self.gains

err = self.setpoint[-1] - wvalue
result = P * err

delta = now - self.previous time
self.integrated error += err * delta
result += I * self.integrated error

result += D * (err - self.previous error) / delta

self.previous error = err

self.previous_time = now

return result

We check the tests again, and they all pass.

What just happened?

This wasn't very different from our first time through the development phase. Just as before,
we had a set of tests, and the error report from those tests gives us a checklist of things we
need to fix. As we work, we keep an eye out for things that need to be tested, but aren't yet,
and add those tests. When all the tests pass, we check with our client again (which means
we go back to the feedback phase). Eventually the client will be satisfied. Then we can move
on to releasing the code, and then into the maintenance phase.

As we're working, the tests give us a nice, fast way to get a sense of whether what we're
doing works, and how far along we are. It makes it easy for us to see that the code we're
writing does something, which in turn makes the coding process flow better, and even makes
it more fun. Writing code that just sits there is boring and bug-prone, but because we have
the tests, our code doesn't just sit there. It's active, and we can see the results at any time.

521

Chapter 3

Now that we've passed on our work to our client, we have to make sure that they stay happy
with it. That means fixing any bugs that may have slipped past our tests (hopefully not many)
and making small improvements on request.

Time for action - unit testing during maintenance

Our client has come to us with a change request: they don't want the PID class to accept
negative gain values in its constructor, because negative gains make its output push things
further away from the setpoint, instead of pulling them toward it.

1.

We add new tests that describe what should happen when negative gains are
passed to the constructor. We're testing something that the old tests don't
describe, so we get to leave the old tests alone and just add new tests. That's
a good thing, because it means that the old tests will be certain to catch

any regressions that we might introduce while we're working on this.

It's important that the P, I and D gains not be negative.

>>> pid = reload(pid)

>>> controller = pid.PID(P=-0.5, I=0.5, D=0.5, setpoint=0,
initial=12)

Traceback (most recent call last):

ValueError: PID controller gains must be non-negative

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=-0.5, D=0.5, setpoint=0,
initial=12)

Traceback (most recent call last):

ValueError: PID controller gains must be non-negative

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=-0.5, setpoint=0,
initial=12)

Traceback (most recent call last):

ValueError: PID controller gains must be non-negative

Unit Testing with Doctest

2. Run the tests to see what needs doing. As we might expect in this case, doctest
reports three failures, one for each of the tests we just added — The PID class
didn't raise the expected valueErrors.

e e e b b bbbk

‘= pid.PID(P = 0.5,
initial

ns must be non-negative

e e e b b bbbk

e o e e e o oo ook

3 51 in p
*++Tegt Falle

3. Now we write the code that will make the PID class pass the tests. That's easily
done by adding the following to the constructor:

if P< 0 or I < 0 or D < O:
raise ValueError ('PID controller gains must be non-negative')

4. We run the tests again, and when they all pass, we can report to our client that
the change has been implemented.

4 Remember, if doctest doesn't print anything, then all the tests

passed. It only tells you about errors, unless you pass -v on its

command line.

1541

Chapter 3

What just happened?

That looked pretty straightforward, but the fact is that our body of tests was a big help to

us here. When we're mucking around in a codebase, trying to update its behavior, or to fix

a bug that we've never even considered might exist, it's easy to break other parts of the
program. This is doubly so when the codebase is one that we haven't worked with for a
while, as is often the case with maintenance requests. Thanks to the expertise stored in

the tests that we wrote, we don't have to worry about forgetting details of what constitutes
correct behavior, or what might go wrong in various parts of the code. We don't have to
waste time or effort re-learning those details when we come back to the code. Instead,

we can just execute the tests.

Our clients don't necessarily know about our testing process, but they appreciate the fast
turnaround time we can give them because of it.

Eventually, there comes a time when—if the code we wrote is useful—we'll want to use it
again in a different project. That means we're going to be putting it in a context where the
assumptions made in the code may no longer be valid.

Time for action — unit testing during reuse

Our client wants to use a PID controller in a new project, but there's a twist: The value
that's going to be measured and controlled is represented as a complex number. When we
wrote the PID controller, there was an implicit assumption that the values would always be
representable as floating point numbers. What do we have to do to re-use this code? Let's
find out.

By the way, if you don't know what complex numbers are, don't

worry. They're not actually complicated; a complex number is just

a pair of coordinates, much like latitude and longitude.

1. Write some tests that use complex numbers for setpoint, initial and the
measurements. Since we want to make sure we don't break code that still uses
floating point numbers, we don't replace the older tests, we just add more.

Unit Testing with Doctest

% we used the value 12, we now use the value of 12 * complex (cos(0.25
Lo

You'll notice that we're using some very random-looking numbers here.
They're not random at all. Complex numbers can be thought of as representing
coordinates; they represent the same values that we used in our earlier tests,
except rotated 45 degrees and translated by 1+17. For example, where before

* pi), sin(0.25 * pi))+ (1+13j),whichis9.4852813742385
695+9.48528137423856957. If you don't understand, or don't care, it's
enough to know that the same expression can be used to calculate the value of
every complex number in this example: just substitute the appropriate number
in place of the 12. You can find sin, cos and pi in the math module.

(Some of the input lines here are very long, and have to be wrapped to fit onto the
page. They shouldn't be wrapped in the doctest file.)

We want to be able to use complex numbers as the measurement and
setpoint for the PID controller.

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5,
setpoint = 1 + 173,
initial = 9.4852813742385695+9.48528137423856957,
when = 1)

>>> controller.calculate response(5.2426406871192848+5.24264068711
928487, 2)

(-2.1213203435596424-2.12132034355964247)

>>> controller.calculate response(3.1213203435596424+3.12132034355
964247, 3)

(-3.1819805153394638-3.18198051533946387)

>>> controller.calculate response(-0.060660171779821193-
0.0606601717798211935, 4)

(-0.53033008588991093-0.530330085889910937)

>>> controller.calculate response(-0.5909902576697319-
0.5909902576697319j, 5)

(-0.79549512883486606-0.795495128834866067)

Okay, the correct behavior has been calculated and the tests have been
written. Let's run them and see what doesn't work. We run the doctests,
and the first thing that comes out of it is an exception raised in the
constructor. It looks like our floating point assumption is already causing
trouble. There are several more error reports after this, but since the
constructor didn't work, we can't expect them to make much sense.

Chapter 3

s sk oo ook ke ok

in _

initial 8 L when = 1)
File

nt)]
)y float; use abs(z)

The problems in the constructor arise from passing complex numbers into
the constructor for the £1oat class, which is not allowed. Do we really
need to call float there? Sometimes we do, because we don't want to
use integers for setpoint and initial. Integer division doesn't work
the same way as floating point division in versions of Python less than
3.0, so integers could severely mess up the behavior of the system.

So, we want to call the f1oat constructor on initial and setpoint, unless they
are complex numbers. That makes the constructor look like this (again, watch out for
the wrapping of long lines):

def init (self, P, I, D, setpoint, initial, when=None) :
self.gains = (float(P), float(I), float (D))

if P< 0 or I < 0 or D < 0:

raise ValueError ('PID controller gains must be
non-negative')

if not isinstance (setpoint, complex) :

setpoint = float (setpoint)

if not isinstance(initial, complex) :

initial = float (initial)
self.setpoint = [setpoint]

if when is None:

self .previous_time = time()
else:

self.previous_time = float (when)
self.previous error = self.setpoint[-1] - initial

self.integrated error = 0.0

1571

Unit Testing with Doctest

4. Okay, we've fixed the constructor. We run the tests again, and all the tests pass!
Somewhat surprisingly, perhaps, the calculate response function is already
compatible with complex numbers.

What just happened?

Writing our tests originally helped us to determine what assumptions we were making, and
the tests check those assumptions explicitly. Furthermore, even the assumptions that we
didn't know we were making have a tendency to be checked by our tests, because they are
implicit in our expectations. An example of this is the floating point results that the tests
expected. If we had just removed the calls to float in the constructor entirely, all of those
tests that were expecting a float would have failed, telling us that we'd violated an implicit
assumption about the behavior of the code.

Our tests give us confidence that our code is correct (even when its operating on complex
numbers), and that we haven't broken anything else by changing the code. No muss, no fuss;
it works. If one of the tests had failed, that would have told us where the problems lay. Either
way, we know where we are in the project and what needs to be done next, which lets us
keep the process rolling along.

1. When you write a test, should you do it while referring to the code being tested, or
should you do it based on your expectations of what correct behavior should be,
before the code is even written?

2. True or false: You should avoid changing or deleting tests whenever possible,
and prefer changing them to deleting them when you aren't able to keep them
untouched.

3. How often do you think your tests should be run? Can you think of any particularly
good times to execute the tests?

4. If your development process is test driven, you as a programmer will spend most of
your time doing what?

Chapter 3

Have a go hero - test-driven development

Try using the methods that we've talked about in this chapter to implement this plain
language specification:

The library consists of three classes, one representing bank accounts,
one representing people, and one representing monetary transactions.
Person objects should be able to draw on zero or more accounts,

and account objects should be accessible to one or more people.
Transactions should represent the transfer of a certain amount of
money between one person and another, by transferring the money from
an account accessible by the first person to an account accessible by
the second.

Attempts to create invalid transactions should fail.

After having been created, it should be possible to execute a
transaction to perform the actual transfer between accounts.

All monies should be represented as fixed point numbers, not floating
point.

Summary

We learned a lot in this chapter about Unit testing and Test-Driven Development, which are
best-practice disciplines for quickly building reliable programs.

Specifically, we covered the definition of Unit testing, how unit testing can help during each
stage of the development process, what it feels like to use unit testing to drive development,
and how it can make the process quicker and more pleasant.

Now that we've learned about Unit testing, we're ready to talk about making it easier to
isolate tests with the help of mock objects—which is the topic of the next chapter.

Breaking Tight Coupling hy
using Mock Objects

Several times in the previous chapters, we've run across cases where we needed
to go out of our way to make sure that units didn't contaminate each others'
tests. Now we're going to look at a formalization of how to handle those
situations—mock objects—and also at a specific mock object toolkit called
Python Mocker.

In this chapter, we shall:

¢ Examine the ideas of mock objects in general
¢ Learn how to use Python Mocker

¢ Learn how to mock the "self" parameter of a method

So let's get on with it!

Installing Python Mocker

For the first time, we're using a tool that isn't included in the standard Python distribution.
That means that we need to download and install it.

Breaking Tight Coupling by using Mock Objects

Time for action - installing Python Mocker

1. At the time of this writing, Python Mocker's home page is located at
http://labix.org/mocker, while its downloads are hosted at
https://launchpad.net/mocker/+download. Go ahead and
download the newest version, and we'll see about installing it.

2. The first thing that needs to be done is to unzip the downloaded file. It's a
.tar.bz2, which should just work for Unix, Linux, or OSX users. Windows users
will need a third-party program (7-Zip works well: http://www.7-zip.org/) to
uncompress the archive. Store the uncompressed file in some temporary location.

3. Once you have the files unzipped somewhere, go to that location via
the command line. Now, to do this next step, you either need to be
allowed to write files into your Python installation's site-packages
directory (which you are, if you're the one who installed Python in the
first place) or you need to be using Python version 2.6 or higher.

4. If you can write to site-packages, type

$ python setup.py install
5. If you can't write to site-packages, but you're using Python 2.6 or higher, type

$ python setup.py install --user

Sometimes, a tool called easy install can simplify the installation
R process of Python modules and packages. If you want to give it a try,
% download and install setuptools fromhttp://pypi.python.org/
o pypi/setuptools, according to the directions on that page, and then run
the command easy install mocker. Once that command is done, you
should be ready to use Nose.

Once you have successfully run the installer, Python Mocker is ready for use.

The idea of a mock object

"Mock" in this sense means "imitation," and that's exactly what a mock object does. Mock
objects imitate the real objects that make up your program, without actually being those
objects or relying on them in any way.

1621

Chapter 4

Instead of doing whatever the real object would do, a mock object performs predefined
simple operations that look like what the real object should do. That means its methods
return appropriate values (which you told it to return) or raise appropriate exceptions
(which you told it to raise). A mock object is like a mockingbird; imitating the calls of
other birds without comprehending them.

We've already used one mock object in our earlier work when we replaced time. time with
an object (in Python, functions are objects) that returned an increasing series of numbers.
The mock object was like t ime . t ime, except that it always returned the same series of
numbers, no matter when we ran our test or how fast the computer was that we ran it

on. In other words, it decoupled our test from an external variable.

That's what mock objects are all about: decoupling tests from external variables. Sometimes
those variables are things like the external time or processor speed, but usually the variables
are the behavior of other units.

The idea is pretty straightforward, but one look at that mock version of time . t ime from
the previous chapter shows that creating mock objects without using a toolkit of some sort
can be a dense and annoying process, and can interfere with the readability of your tests.
This is where Python Mocker (or any of several other mock object toolkits, depending on
preference) comes in.

Time for action — exploring the hasics of Mocker

We'll walk through some of the simplest—and most useful—features of Mocker. To
do that, we'll write tests that describe a class representing a specific mathematical
operation (multiplication) which can be applied to the values of arbitrary other
mathematical operation objects. In other words, we'll work on the guts of a
spreadsheet program (or something similar).

We're going to use Mocker to create mock objects to stand in place of the real
operation objects.

1. Create up atext file to hold the tests, and add the following at the beginning
(assuming that all the mathematical operations will be defined in a module
called operations):
>>> from mocker import Mocker

>>> import operations

Breaking Tight Coupling by using Mock Objects

2.

We've decided that every mathematical operation class should have a
constructor accepting the objects representing the new object's operands.
It should also have an evaluate function that accepts a dictionary of variable
bindings as its parameter and returns a number as the result. We can write
the tests for the constructor fairly easily, so we do that first (Note that we've
included some explanation in the test file, which is always a good idea):
We're going to test out the constructor for the multiply

operation, first. Since all that the constructor has to do is
record all of the operands, this is straightforward.

>>> mocker = Mocker ()

>>> pl = mocker.mock ()

>>> p2 = mocker.mock ()

>>> mocker.replay ()

>>> m = operations.multiply(pl, p2)
>>> m.operands == (pl, p2)

True

>>> mocker.restore ()

>>> mocker.verify ()

The tests for the evaluate method are somewhat more complicated, because
there are several things we need to test. This is also where we start seeing the real
advantages of Mocker:

Now we're going to check the evaluate method