

qlik.com

Qlik Deployment Framework

Function Reference Guide

October, 2017

Qlik Deployment Framework Qlik Deployment Framework | 2

Table of Contents

Function Reference Guide v1.7 3

Container Initiation 3

Clear Initiation Cache 3

Sub Function Library 4

99.LoadAll.qvs 4

QlikView Components (QVC) 5

Execute Functions 5

QDF Pre-Defined Functions 6

FileExist 6

LoadVariableCSV 6

LoadContainerGlobalVariables / LCGV 7

DoDir 8

CreateFolder 9

CalendarGen 10

QVFileInfo 11

QVDMigration 12

QVDLoad 13

DynamicContainerGlobalVariables / DCGV 14

Index Functions 15

IndexAdd 16

IndexLoad 18

IndexDel 19

Internal Functions 20

LoadContainerMap 20

Qlik Deployment Framework Qlik Deployment Framework | 3

Function Reference Guide v1.7

Using a Sub function library during development is a part of the Build and Validation phase in the Qlik

Application Development process, read more in Qlik Deployment Framework-Qlik Product Delivery

process.pdf

Container Initiation

Qlik Applications working in a container environment need to have an initiation string in the beginning of the

Load Script to initiate QDF. The initiation lines are different between Qlik Sense and QlikView, but after

initiation load scripts are identical between the two platforms. Read more in the getting started guides for

Qlik Sense and QlikView.

Qlik Sense Single Mount

For single mount add a Sense folder connection (LIB) with the name Root pointing to the framework starting

point, add this line to the load script:

$(Include=lib://Root\InitLink.qvs);

QlikView

QlikView application must be stored under (preferably in a subfolder) under 1.Application folder in a

container. Paste in the initiation script code below into the first tab.

Let vL.InitLinkPath = Left(DocumentPath(), Index(DocumentPath(), '\1.Application'))&

'InitLink.qvs';

$(Must_Include=$(vL.InitLinkPath));

Clear Initiation Cache

To speed up initiation, a variable cache function has been introduced (v1.7 and later). The cache will validate

the Home and shared container root path, if path is the same as last initiation then old global variables will be

used. When the cache is used, these lines appear in log and output window.

'### QDF Info, Global Variables using cache'

'### QDF Info, Shared Global Variables using cache'

To override and clear cache, add this line before the initiation script.

set vG.BasePath=;

Qlik Deployment Framework Qlik Deployment Framework | 4

Sub Function Library

Qlik have the possibility of reusing scripts and functions by using the Sub and Call commands the Framework

contains library of functions that is loaded in automatically during initiation.

Sub function library loaded during initiation is in Shared Folders container located under

99.Shared_Folders\3.Include\4.Sub.

Shared container is missing the local container sub function library will be used as a backup. Meaning as long

as a Shared folder exists all sub function additions should be stored under the Shared container

Preinstalled Sub functions under 3.Include/4.Sub folder should not be deleted or modified, this library

is used by Qlik Deployment Framework initiation process.

99.LoadAll.qvs

The 99.LoadAll.qvs include scrip calls in the sub function library last during QDF initiation (1.InitLink.qvs). To

automatic load in personal sub functions modify 99.LoadAll.qvs in shared folders sub library as this is the

default execution path. The global variable used in 99.LoadAll.qvs when loading the sub function library is

vG.SharedSubPath with vG.SubPath.as the backup (if shared folder missing).

Hint. Add additional sub functions, Qlik Community is a good place to look, instead of coding everything from

scratch.

Qlik Deployment Framework Qlik Deployment Framework | 5

QlikView Components (QVC)
QlikView Components (QVC) is an open source library of reusable script that provides:

• Rapid script development

• Quality script development

• Implementation of best practices

QVC functionality consists of

• Calendars, AsOf

• Incremental (Delta) load

• Data modeling – Link Tables, Generic re-Join

• Utility functions – min/max values, loading variables

• Diagnostics & Logging

QVC is installed using the deploy tool and becomes an addition to the built-in QDF library, Qvc.qvs is initiated
last in the 99.LoadAll.qvs script. After QVC been installed it can be disabled in the script by adding this line
before QDF initiation:
set vG.QVCDisable='true';

You can also remove QVC completely by unchecking the QVC option in the Deploy Tool or manually
remove by deleting Qvc.qvs in both the Shared and active container.

For full QVC Documentation and Examples, download the qvc-nn.zip release package from
http://QlikViewComponents.org

Execute Functions

To execute a sub function use Call function_name(‘Operator1’,’Operator2’); A function statement must

always end with a semicolon.

If for example operator one and three is used, operator two needs to be “blank” within quotas, example

Call function_name(‘Operator1’,’’,’Operator3’);

Examples:

• vL.FileExist will return true of false depending on if the file exists

Call vL.FileExist ('$(vG.QVDPath)\SOE.qvd');

• DoDir will list files on the file system into a table. Example below will list all files available in current

container.

Call DoDir(‘$(vG.BasePath)’);

• LoadVariableCSV loads in variables stored in csv files, in this case all the HR tagged variables that is

available in the Shared container. Note that the first operator need to be included but blank.

Call LoadVariableCSV(’’,’HR’,’Shared’);

• CALL Qvc.Routine(param1, param2, ...); To execute a QVC function use qvc.name as seen here.

http://qlikviewcomponents.org/

Qlik Deployment Framework Qlik Deployment Framework | 6

QDF Pre-Defined Functions

Below is description and syntax for all of the predefined Sub functions available in QDF, these functions are

pre-loaded when running the initiation script.

FileExist

This sub function validates if a file or folder exists, can be used before load to avoid errors during script load.

Call vL.FileExist('Folder or file to validate');

Returns variable vL.FileExist with true or false.

Operator

• Folder or file to validate URL to folder of folders to validate wildcards is supported

Example

• Call vL.FileExist ('$(vG.QVDPath)\1.NorthWind);

Will Check if1.NorthWind folder exists and return vL.FileExist = true or false

• Call vL.FileExist ('$(vG.QVDPath)\SOE.qvd');

if vL.FileExist = 'false' then; trace '### Did not find file, exit script'; exit script; endif;

• Use * with caution as this could return a false true if a variable in the statement is missing for

Call vL.FileExist ('$(NullVariable)*);

Will return true as the function will search for * in the application location using relative path as

$(NullVariable) returns null.

LoadVariableCSV

SUB routine used for loading variables stored in csv files into the Qlik Script.

This file is used by 1.Init to load Custom Global Variables.

Execute (Call) the Sub inside the script:

Call LoadVariableCSV('[My Variable File.csv]', [‘Search Tag’], [‘Container Prefix’], [‘Comments as variables’]

[‘Container Map Mode’]);

Operators:

• My Variable File Is the Variable File name to load, wild cards is possible. the function will by default try to
find the variable file in $(vG.BaseVariablePath) (your container)

• Search Tag Is optional, will load variables based on tag’s managed by the variable editor

• Container Prefix Is optional, will load variables from any container by using the prefix

• Comments as variables Is optional, will create a _comment variable for every real variable (if comments
exist), this is nice way to add meta-data into expressions. Comments as variables can also be activated
by setting the variable SET vL.CommentsAsVariables=True; before the 1.Init.qvs Initiation script.

• Container Map Mode is a special mode to create variables based on the Container Map, this is used
internally by the Variable Editor.

Qlik Deployment Framework Qlik Deployment Framework | 7

Examples:

call LoadVariableCSV('*') Load all variables within my home container

call LoadVariableCSV(’’,’HR’,’Shared’) Load all the HR tagged variables stored in Shared container

call LoadVariableCSV('MyVariables',’HR’) Open MyVariables file and Load HR tagged variables

call LoadVariableCSV('MyVariables.csv',’’,’’,’True’) Load variables and Variable Comments

call LoadVariableCSV('',’HR’,AcmeHR’) Load all HR tagged variables within AcmeHR container

LoadContainerGlobalVariables / LCGV

The LoadContainerGlobalVariables or LCGV function generates (mounts) Global Variable to other containers

based on the Container Map. This function is intended to be used inside the Qlik scripts and is designed for

easy use.

Call LCGV (‘Container Prefix’, [' Specific folder; Additional folders separated by ;],[Alias]);

Call LoadContainerGlobalVariables (‘Container Prefix’, [' Specific folder; Additional folders separated

by ;] ,[Alias]);

Operators:

• Container Prefix This is container prefix name (Tag) added when creating the container, in Qlik Sense

this name is usually also the same as a valid folder connection

• Specific folder This is used to select folder/folders that should retrieve variables, these are separated by

“;” without this setting all valid global variables will be fetched.

• Alias uses the added alias name instead of prefix in the generated global variables

Examples:

• Creates global variables to all valid resources in the AcmeTravel Container:

Call LoadContainerGlobalVariables('AcmeTravel'); or

Call LCGV('AcmeTravel');

Output: vG.AcmeTravelBasePath, vG.AcmeTravelQVDPath, vG.AcmeTravelIncludePath…

• Load a single global variable, in this case Acme Travel QVD path $(vG.AcmeTravelQVDPath).

Call LCGV('AcmeTravel','QVD');

Output: vG.AcmeTravelQVDPath

• Generate several global path variables by use ‘;’ as separator,

in this case vG.OracleQVDPath, vG.OracleIncludePath variables will be created

Call LCGV('Oracle', 'QVD;Include');

Output: vG.OracleQVDPath, vG.OracleIncludePath

• Change name of generated global variables by using (3) Alias switch. This example will treat AcmeTravel

as a Shared container, generating shared global variables

Call LCGV('AcmeTravel','','Shared');

Output: vG.SharedBasePath, vG.SharedQVDPath, vG.SharedIncludePath…

Qlik Deployment Framework Qlik Deployment Framework | 8

DoDir

DoDir is simple to use but powerful function that will index selected folder/file structure and return a table

containing file name and path under selected file system. First include the script:

Call DoDir (Scan Path, [Table Name], [Folders Only], [Single Folder], [Qualified Felds], [Hide QDF

Templates])

Operators:

Scan Path It the folder/file structure to scan

Table Name Is the Table name, optional default name is DoDirFileList

Folders Only Is an optional switch if set to 'true' only folders will be returned

Single Folder Is an optional switch if set to 'true' only one single folder will be indexed

Qualified Felds Is an optional switch if set to 'true' all field named will be Qualified based on the Table Name

Hide QDF Templates Is an optional switch if set to 'true' Template folders that starts with 0. Or incudes a # in

QDF will be excluded. This switch is primarily used by the DynamicContainerGlobalVariables function.

Examples:

• Call DoDir ('$(vG.IncludePath)'); Simple Example, returns all files under vG.IncludePath

• Call DoDir ('$(vG.IncludePath)*.qvs'); Will only return files with file type qvs under vG.IncludePath

• Call DoDir ('$(vG.IncludePath)', 'IncludeFileTable)'); Change Table name to IncludeFileTable

• Call DoDir ('$(vG.IncludePath)', '', 'true'); Returns folder names only under vG.IncludePath

• Call DoDir ('$(vG.QVDPath)\HR.qvd'); Returns a line for this single file

• Call DoDir ('$(vG.QVDPath)', 'Tmp_Field', '' , '', 'true'); adds qualification on fields, example

Tmp_Field.DoDirFileTime

Output Table and fields:

• DoDirFileName is the File Name without path

• FullyQualifiedName is the file name and complete path

• DoDirFileSize is the file size

• DoDirFileTime is file date and time

• DoDirContainerPath lists the files in relationship with the current container

• DoDirFileExtension Contains the File Extension in upper case, perfect to use when searching for types

• DoDirFileNameCount Counts file name (DoDirFileName) duplications.

Qlik Deployment Framework Qlik Deployment Framework | 9

CreateFolder

Create Folder function will -as the name says- create a folder (if non existing) or a folder structure.

sub CreateFolder (vL.FolderName)

Operators:

vL.FolderName Is the folder name or folder structure to create

Examples:

• Call CreateFolder(' $(vG.QVDPath)1.Northwind'); Will create 1.Northwind folder under vG.QVDPath

• Cal CreateFolder (' $(vG.QVDPath)1.Extract\1.Northwind'); Will create 1.Northwind folder under
vG.QVDPath\1.Extract

Qlik Sense

CreateFolder works with Qlik Sense 3.2 and later.

QlikView Developer

When executing this function in and creating a folder one of these popup boxes will appear:

Press Override Security to execute the folder creation, next run the folders are already created and the box

will not return. Recommendation is to activate Can Execute External Programs this will also allow Publisher

to run the function.

Qlik Deployment Framework Qlik Deployment Framework | 10

CalendarGen

Master calendar function created by Jonas Valleskog, enhancements added by Qlik. Generic calendar

enables scalable handling of creating and navigating multiple date fields. Calendar Gen also have native Qlik

Sense calendar support, meaning that calendar will be dynamic and selectable within Qlik Sense.

CALL CalendarGen('Date Field',['Calendar Table'] [,‘Months Left Fiscal Date’] [,‘Min Date’, ‘Max Date’][,’Link

Table’][,’DateFormat’];

Operators:

• Date Field is the date field to link calendar. Generated Calendars are based on the added fields as
multiple fields are supported (separated by ,) a master calendar will be created for each entry.

• Calendar Table (Optional) is the master calendar table name default is the same name as Date Field

• Months Left Fiscal Date (Optional) to activate Fiscal Dates, set no of months left of the Calendar year
the month the Fiscal year begins. E g ‘3’ if the first month of the Fiscal year is October, -3 negative fiscal
year

• Min Date (Optional) Set hard Minimum calendar date ex. '11/7/1996' (depending on locale settings)

• Max Date (Optional) Set hard Maximum calendar date ex.'8/13/1999'(depending on locale settings)

• Link Table (Optional) By default link table is identified based on Date Field use this setting if need to
override

• Date Format (Optional) Sets date format, default is to use environmental $(DateFormat) variable,
multiple date formats are supported (separated by ,).

Examples:

• Creates a OrderDate master calendar and auto determin min and max date

Call CalendarGen('OrderDate');

• Create master calendars for both OrderDate and ShippingDate

Call CalendarGen('OrderDate,ShippingDate');

• Fiscal Dates and rename to OrderDateCalendar

Call CalendarGen('OrderDate','OrderDateCalendar' ,’3’);

• Min and Max date

Call CalendarGen('OrderDate','' ,’’,'11/7/1996','8/13/1999');

The sub function will return table with the standard fields below:

• Table Name – The Date Field table name used as key field to data model

• Table Name Week – Week number field Ex. 32,33,34

• Table Name Year – Year field Ex. 2001, 2002

• Table Name Month – Month field Ex. Jul, Aug

• Table Name Day – Day number field Ex. 1,2,3,4

• Table Name WeekDay – Weekday short name field Ex. Mon, Tue, Wen

• Table Name Quarter – Quarter field Ex Q1, Q2, Q3, Q4

• Table Name MonthYear – Concatenated month and year field Ex. 08-2002, 09-2002

• Table Name QuarterYear– Concatenated quarter year field Ex. Q3-2002, Q4-2002

• Table Name WeekYear– Concatenated week year field Ex. 32-2002, 33-2002

• Table Name YTD Flag – Year to Date Flag field shows 1 if current year

• Table Name PYTD Flag - Past Year to Date flag field shows 1 if last year

• Table Name CurrentMonth Flag– Current Month flag shows 1 if historical month is same as current
month

• Table Name LastMonth Flag- Last Month flag shows 1 if historical month is same as last month

• num Table Name- Autonumber field based on rows ex. 1,2,3,4,5,6…700,701,702

• Table Name numMonthYear – Autonumber field based on MonthYear field ex. 2, 28, 59, 89

• Table Name numQuarterYear – Autonumber field based on QuaterYear field ex. 2, 89, 181

• Table Name numWeekYear – Autonumber field based on WeekYear field ex. 2, 4, 11, 18, 25

Qlik Deployment Framework Qlik Deployment Framework | 11

Calendar Tips and tricks:

• Check out 6.Calendar-Example to get inspiration. Copy or re-create the calendar objects (time related list
boxes) laid out in the front-end of the example application.

• Use DateFormat variable when formatting date, this creates flexibility when changing locale.
ex. Date(OrderDate,'$(DateFormat)') AS OrderDate

• To avoid potentially slow queries against large in-memory tables, contemplate storing out the date field to
QVD first and use the QVD store as the input source to the MinMax: table creation.

• If gaps in calendars for missing dates are not an issue, consider replacing AUTOGENERATE() logic for
generating the calendar table with a distinct list of each date seen in the source table instead.

QVFileInfo

QvFileInfo sub function returns information (in table format) regarding Qlik files that stores metadata at the

moment QVW and QVD file formats (qvf files are not supported).

Call QVFileInfo('Fully Qualified file Name',['Table Name'])

Operators:

• Fully Qualified file Name is the path and name of qvd or qvw file.

• Table Name (Optional) is name of the table returning the result default table name is QVFileInfo linked

with QVFileInfo_field (field details table)

Examples:

• Will extract meta-data for Customer.qvd

Call QVFileInfo('$(vG.QVDPath)\Customer.qvd')

• Will extract meta-data for Customer.qvd to table QVFileTable

Call QVFileInfo('$(vG.QVDPath)\Customer.qvd','QVFileTable')

• Below example combines QVFileInfo and DoDir to index the Qlik files and use FullyQualifiedName field

as link to the QVFileInfoTable

Call DoDir('$(vG.BasePath)');

for vL.LoopDoDirRows = 1 to NoOfRows('DoDirFileList')

 LET vL.FullyQualifiedName = peek('FullyQualifiedName',$(vL.LoopDoDirRows),'DoDirFileList');

Call QVFileInfo ('$(vL.FullyQualifiedName)');

next

Returned table QVFileInfo contains below meta-data:

• FullyQualifiedName is the file name and complete path, use as link to DoDir Table

• QVTablesKey Table link key to QVFileInfo_Fields table

• QVTableName Name of tables in an QVW file or name of Table in a QVD file

• QVFileTime Data reload date

• QVTableNbrRows Total number of rows in QVTableName

• QVTableNbrFields Total number of fields in QVTableName

• QVTableNbrKeyFields Total number of Key fields in QVTableName only used by QVW files

• QVTableComment Table Comments, only used by QVW files

• QVFileName Name of the qvd file

• QVTableCreator Name of qvf or qvw application that created the qvd

QVFileInfo_Fields is a help table, containing Field information regarding QVD and QVW files:

• QVTablesKey Table link key to QVFileInfo table

• QVFieldName Name of Fields in a Table

• QVFieldComment Field Comments, only used by QVW files

Qlik Deployment Framework Qlik Deployment Framework | 12

QVDMigration

QVDMigration sub function migrates and consolidates qvd data between containers, using fixed file names or

wildcard (*) migrating a qvd folder in one single statement. QVDMigration can optionally migrate selected

fields and scramble fields if needed. The sub function is primarily designed for data migration into a self-

service (sandbox) environment. Needed subfolders in destination path will automatically be created by use of

CreateFolders function.

Call QVDMigration (QVD Source File, QVD Destination File, [Select specific fields (, separator) leave blank

for all fields], [Scrambled fields (, separator)], [Table Name Suffix], [Include Subfolders], [Format-Spec], [No of

Records]);

Operators:

• QVD Source File is the QVD source file or folder

• QVD Destination File is QVD destination path. Optionaly, to rename file add filename

• Fields to select (Optional) used when selecting specific fields from the Source QVD. Multiple fields are
separated with (,).

• Scrambled fields (Optional) used when scrambling fields from the Source QVD. Multiple fields are
separated with (,). Scramble overrides Fields to select parameter if dual entries found. Scrambling will
have performance impact so carefully select fields to scramble.

• Table Name Suffix (Optional) primarily used as meta-data separator between source and destination
this by adding a suffix on the destination qvd table names. The difference will be exposed in Governance
Dashboard as shown below.

Separating Table Name (Meta Data) by using Table Name Suffix, shown in Governance Dashboard

• Include Subfolders (Optional) If set to true subfolders under Source Files will also be migrated, needed
subfolders in destination path will automatically be created by use of CreateFolders function

• Format-Spec (Optional) export to other formats than qvd, options are txt or qvx

• No of Records (Optional) limit number of records migrated

Examples:

• Migrate Customer.qvd to shared QVD folder without any manipulation

Call QVDMigration ('$(vG.QVDPath)\Customer.qvd','$(vG.SharedQVDPath)');

• Migrate Customer.qvd to shared QVD folder and changing name to Customer_new.qvd

Call QVDMigration ('$(vG.QVDPath)\Customer.qvd','$(vG.SharedQVDPath)\Customer_new.qvd');

• Migrate fields CustomeID and CompanyName in all Customer*.qvd files to shared QVD folder

Call QVDMigration

('$(vG.QVDPath)\Customer*.qvd','$(vG.SharedQVDPath)','CustomeID,CompanyName');

• Migrate fields CustomeID and CompanyName in Customer.qvd to shared QVD folder scramble

CustomerID field

Call QVDMigration ('$(vG.QVDPath)\Customer.qvd','$(vG.SharedQVDPath)',

'CustomerID,CompanyName','CustomerID');

• Migrate all Customer qvd files to shared QVD folder, scrambling CustomerID field in all the qvd’s

Call QVDMigration

('$(vG.QVDPath)\Customer*.qvd','$(vG.SharedQVDPath)\Customer.qvd','','CustomerID');

Qlik Deployment Framework Qlik Deployment Framework | 13

QVDLoad

QVDLoad will load up qvd files into a data model based on the meta-data headers in the qvd files. Also qvd

files stored in subfolders can optional be loaded. QVDLoad is based on QVDMigration and have the same

code and switches except for destination path.

Call QVDLoad(QVD Repository, [Select specific fields (, separator) leave blank for all fields], [Scrambled

fields (, separator)], [Table Name Suffix], [Include Subfolders], [No of Records]);

Operators:

• QVD Repository is the QVD source file or folder storage

• Fields to select (Optional) used when selecting specific fields from Repository. Multiple fields are
separated with (,).

• Scrambled fields (Optional) used when scrambling fields from Repository into the application. Multiple
fields are separated with (,). Scramble overrides Fields to select parameter if dual entries found.
Scrambling will have performance impact so carefully select fields to scramble.

• Table Name Suffix (Optional) will add a suffix on all tables in the data model

• Include Subfolders (Optional) If set to true qvd files in subfolders will also be loaded

• No of Records (Optional) limit number of records loaded

Examples:

• Load in all qvd files in vG.QVDPath folder and create a data-model based on table headers

Call QVDLoad ('$(vG.QVDPath)');

• Load in all qvd files stored in every subfolder under vG.QVDPath

Call QVDLoad ('$(vG.QVDPath)',’’,’’,’’,’true’);

• Load in fields CustomeID and CompanyName in all qvd files.

Call QVDLoad ('$(vG.QVDPath)','CustomeID,CompanyName');

• Loads fields CustomeID and CompanyName and scramble CustomerID field from Customer.qvd

Call QVDLoad ('$(vG.QVDPath)\Customer.qvd', 'CustomerID,CompanyName','CustomerID');

Qlik Deployment Framework Qlik Deployment Framework | 14

DynamicContainerGlobalVariables / DCGV

DynamicContainerGlobalVariables or DCGV “mounts” folders and creates GlobaLVariable links in similar way

to LCGV. The difference is that DCGV’s global variables are created from folders names within other

containers instead of using the container folder mapping table (stored in 1.Init.qvs). DCGV can also be used

to create “Global Variable mounts” to optional folder structures and not only within a container. Use-case is

when converting to a QDF environment and “mask” the old environment as a container.

Call DCGV(‘Container Name or URL’, [' Specific Folder [; Additional folders separated by ;]'] , [’Override

Prefix’]);

Operators:

• Container Name or URL (Optional) Container prefix name (identifier) or a URL to folder structure to
retrieve global path variables under. If empty current home container will be used.

• Specific Folder (Optional) This is used to select specific folder/folders that should retrieve Global
Variables. Add additional folders separated by ;

• Override Prefix (Optional) Uses fixed Global Variable prefix in variable names instead of the container
name. This is neat to use when pointing Container Path Name to a file structure or containers not included
in the map.

There are some naming conventions needed to be obliged to identify and create global variables within a

container, this to keep the amount of potential global variables down to a minimum. The below conventions

are not used when Container Path Name and Specific Folder are used in combination.

• Only folders containing an initial number will be identified as a Container folder and get a variable.
Example: Folder 1.Extract will get the global variable vG.xxxExtractPath where xxx is the container prefix
name if plausible.

• Folders with a starting 0. are discarded as this marks template folders.
Example: Folder 0.Templates will not get a correlating global path variable

• The global variable name is the name (without space) between first and second dot (.) or between first
dot and file name end if there’s only one dot. Text after the second dot is treated as descriptive
information.
Example:
Folder 1.Extract.QVDFiles will have the global variable vG.xxxExtractPath

Folder 1.Extract will have the global variable vG.xxxExtractPath

Folder 1.Extract QVDFiles will have the global variable vG.xxxExtractQVDFilesPath (space is removed)

Qlik Deployment Framework Qlik Deployment Framework | 15

Examples:

• Load all global path variables to the AcmeTravel Container:

call DCGV(’AcmeTravel’);

• Load a single global path variable, in this case linking to a folder named 7.Data in the AcmeTravel

container. The Global Variable becomes (vG.AcmeTravelDataPath)

call DCGV('AcmeTravel','Data');

• Load several global path variables by use ‘;’ as separator,

in this case vG.OracleDataPath, and vG.OracleApplicationPath variables will be created

call DCGV('Oracle','Data;Application');

• Retrieve global path variables from folders under c:\temp that have Data in the name will create the

Global Variable vG.DataPath pointing to c:\temp\Data folder

QlikView: call DCGV(’c:\temp’, ’Data’);

Qlik Sense: call DCGV('lib://MyStuff','Data');

• Add the optional Prefix name Oracle on the above example will create the Global Variable

vG.OracleDataPath

call DCGV(’c:\temp’, ’Data’, ’Oracle’);

Index Functions

Index is functions that creates and maintains a set of indexes for Qlik Data files (QVD). These indexes are

used when searching for data types across multiple qvd files this means that developers and power users

select needed data using a simple command. Finding the data is done autonomously by the system in the

background. The index is stored in one single location, under vG.SharedConfigPath while the qvd’s can be

spread out across the environment depending on security or organizational considerations.

There are three index functions implemented:

• IndexAdd Will create the QVD indexes, should be done during qvd creation.

• IndexLoad Loads Qlik data based on combination of index criteria’s like file name, tags, table, fiels…

• IndexDel Delete index and optionally referring qvd file (need legacy mode activated).

Use the Index Monitor application under 0.Administration/3.IndexMonitor to monitor Indexes and QVD files.

Qlik Deployment Framework Qlik Deployment Framework | 16

IndexAdd

IndexAdd creates a QVD index. The index is based on meta-data and tags collected from the QVD header.

The index can thereby be recreated if need be. The index default location is $(vG.SharedConfigPath)/Index

location can be modified if needed.

Call IndexAdd([‘QVD path and name’],['Index folder name'] ,['Container name'] ,['Tags'] ,['Alternative Index

path'])

Operators:

• QVD path and name (Optional) Path and name of QVD file to Index, wild card (*) is supported

• Index folder name (Optional) Place the Index in a specific folder, default is to use qvd folder name

• Container name (Optional) Specify the QVD files container name, this is usually identified automatically

• Tags (Optional) Add index tag, recommendation is to use the comment table function instead as this will
be more persistent.

• Alternative Index path (Optional) will change the default Index path ($(vG.SharedConfigPath)/Index)
This is not recommended as all functions would need the alternative path specified

Examples:

Call IndexAdd(‘vG.QVDPath\Customers.qvd’); Will add an index for Customers.qvd file

Call IndexAdd(‘vG.QVDPath*.qvd’); Will add an index for all qvd files in vG.QVDPath path

Using Comment field to tag QVD data

It is strongly recommended to add tags into your Qlik data files, these tags will identify what data to load. For

example, if we create an aggregated QVD data layer it could be tagged -for example- as Level2 (where level

1 is un-aggregated). This is done by adding tag (or tags) into the qvd meta-data header using the Comment

Table function. This should be done before storing the QVD, creating the index using IndexAdd should be

done after Store into qvd command.

Example:

Comment Table [$(vL.TableName)] with 'Level2';

Store [$(vL.TableName)] into '$(vG.QVDPath)\Folder\$(vL.TableName).qvd';

Call IndexAdd('$(vG.QVDPath)\Folder\$(vL.TableName).qvd');

Several tags can be added using comma (,) as separator as shown below:

Comment Table [$(vL.TableName)] with 'Level2,SalesAgg';

QVD naming conventions

When using the Index functionality, it’s important to have a god qvd naming convention as IndexLoad function

will use the qvd name as primary search criteria, example:

$(vG.QVDPath)\Orders\01-02-2015.qvd [Table Name]\[Day]-[Month]-[Year]

In this case orders are stored according to date, and the QVD folder is the same as table name. The date and

folder name can be used during search.

Qlik Deployment Framework Qlik Deployment Framework | 17

Security requirements

Orders folder will be automatically created in the Index by using the CreateFolder function, for this the qvw

file should have Can Execute External Programs switch checked.

Qlik Sense limitations

Qlik Sense Native mode does not allow the execution command, thereby creation of index folders will not

work (Indexing of Qlik qvd files works in Sense). Qlik Sense qvd files is in a different format and have no

meta-tags just yet, so IndexAdd function will not work against this qvd format.

Index fields

IndexAdd will create a tiny index file for every qvd file. The index file contains descriptive meta-data of the

Qlik Data File (QVD). Almost all the index fields are searchable when using the IndexLoad function. Below is

a list of the Index fields:

• QVDFileName Name of the added qvd file

• QVTableName Table name

• QVDSourcePath URL to the qvd file (only used as backup for Container + relative path)

• QVDSourceContainerName Name of qvd container (used when retrieving the qvd)

• RelativePath Relatively where in the container is the qvd stored

• QVDTag Tags that is referred to this qvd (created by Comment Table)

• QVDIndexStorageName Index storage sub folder name (usually the same as qvd folder name)

• QVDTimestamp Time of qvd creation taken from meta-data (not the same as file time).
Convert timestamp to date: Let vL.Date = timestamp(QVDTimestamp,'$(DateFormat)');

• QVDFields Field that the qvd contains

• QVDTableCreator qvd creator file name (qvw)

• QVDNbrRecords Number of records the qvd contains

• QVDNbrFields Number of fields the qvd contains

Qlik Deployment Framework Qlik Deployment Framework | 18

IndexLoad

IndexLoad loads qvd data based on index search criteria’s like tags and field names. The qvd fieldname is

the primary search criteria so it’s strongly recommended to have a qvd naming convention like day-month-

year-TableName.qvd.

Call IndexLoad([‘QVD file name’],['Table Name'] ,['Index Folder Name'] ,['Tags'] ,['Fields'] ,['Index

Only'] ,['Load Max Rows'] ,[['Alternative Index path'],[‘Load Expressions’])

Operators:

• QVD file name (Optional) Name of QVD to load, wild cards (*01-2015*) is supported

• Table Name (Optional) Load in a table, can be combined with QVD file name

• Index Folder Name (Optional) use this specific index only, can be combined with QVD file name

• Tags (Optional) load data containing a specific tag, can be combined with QVD file name

• Fields (Optional) load selected fields separated by comma (,) can be combined with QVD file name

• Index Only (Optional) will only load in the Index, true will use default table name (vL._QVDIndexTable).
Type table name from default vL._QVDIndexTable. This is used when developing apps where the Index
is needed.

• LoadMaxRows (Optional) will limit how many rows that can be loaded. This will only stop sequential
QVD file to load a big QVD will probably load above this limit.

• Alternative Index path (Optional) will change the default Index path ($(vG.SharedConfigPath)/Index)
This is not recommended as all functions would need the alternative path specified

• Load Expressions (Optional) If set to true it will load related expressions based on tags and container
collected from Index, this operator calls the LoadVariableCSV function.

Examples:

Call IndexLoad('2014'); Load all qvd files that contains the name 2014

Call IndexLoad('','Customers'); Load all qvd files that contains the customer table

Call IndexLoad('', '','Orders'); Load all qvd’s in the Orders Index

Call IndexLoad('','','','Level2'); Load all Level2 tagged qvd files

Call IndexLoad('','','','','CustomerID,ContactName,Fax'); Load all QVD’s that contains these three fields

Call IndexLoad('','','','','','IndexTable'); Will not load any data, just the Index table as IndexTable

Call IndexLoad('', '', '', '', '', '', '30000'); Load all qvd’s until reaching about 30000 records

These different criteria’s can be combined, Examples:

Call IndexLoad('2014','Customers','','','CustomerID,ContactName,Fax','30000'); Loads year 2014 containing

the table

Customers and fields [CustomerID,ContactName,Fax] also we should not load more than 30000 records.

Call IndexLoad('2014','','','Level2'); Will load level 2 data from year 2014

Qlik Deployment Framework Qlik Deployment Framework | 19

IndexDel

IndexDel delete indexes and optionally associated qvd files. This could be needed keeping a consistent qvd

strategy. Example, Storing 24 month of history indexes and qvd files older than 24 month should be removed

else history will keep on growing infinite. IndexDel will search for the qvd fieldname (from the index) so it’s

strongly recommended to have a qvd file naming convention, like TableName\day-month-year-

TableName.qvd.

Call IndexDel(‘Index file name’,['Delete associated QVD files'] ,['Index Folder Name'] ,['Alternative Index

path'])

Operators:

• Index file name Name of index to delete, wild cards (*) is supported

• Delete associated QVD files (Optional) if true qvd files associated to the indexes will also be deleted

• Index Folder Name (Optional) use this specific index only, can be combined with Index file name

• Alternative Index path (Optional) will change the default Index path ($(vG.SharedConfigPath)/Index)
This is not recommended as all functions would need the alternative path specified

Call IndexDel(‘2011-12*’); Deletes all Index files that starts with the name 2011-12

Call IndexDel(‘2011-12*’,’true’); deletes all index and associated qvd files that starts with the name 2011-12

Qlik Sense limitation

Qlik Sense Native mode does not allow the execution command thereby IndexDel will not work in Sense

unless legacy mode is enabled.

QlikView security requirements

IndexDel uses the execution command in Qlik to delete files, for this the qvw file need to have Can Execute

External Programs switch checked in.

Qlik Deployment Framework Qlik Deployment Framework | 20

Internal Functions

Below are functions used internally by the framework, these could be accessed in the script but usually not needed.

LoadContainerMap

LoadContainerMap function is used for loading in the Container Map csv file and return information for a

specific container. This function is mainly used internally by other functions like LCGV to create Global

Variable links (mount) to other containers

sub LoadContainerMap(‘Container Map file’, ’Container name’, [' Optional $(vG.BasePath)']);

Operators:

• Container Map file Is the name and path of the container map that should be validated

• Container name Is the prefix name of the container that should be validated

• $(vG.BasePath) Optional specially designed to identify Root Path (vG.RootPath). This is done by

opening the container map, validate where I am and the Root Path in relation to my container. The

operator must be global variable base path (vG.BasePath). If this process fails, the Root Path will be

set to one folder above your container. When using this switch the Container name parameter is not

used.

These variables are returned by LoadContainerMap:

• vL.ContainerFolderName This is the Container folder name

vL.ContainerPathName This is the Container prefix name

• vL.Comment Comments regarding the container

vL.LoadContainerMapCount Returns a result (Variable prefix name) only if Variable prefix

duplication found. This so that Variable Editor can alert operator to remove duplication.

• vL.RootPath (Optional) returns the Global Variable vG.RootPath

