

qlik.com

Qlik Deployment Framework

Qlik Sense Development Guide

February, 2017

Qlik Deployment Framework Qlik Deployment Framework | 2

Table of Contents

Development Guide v1.7.0 3

Why the need for a Development Guide? 3

Company Specific Development Guide 3

Platform strategy from a development perspective 3

Standards 4

Developing using QDF Containers 4

QDF Deploy Tool 4

Container Type Selector 4

Folder Naming Convention 5

Global Variables 6

Additional Variable Convention 7

Get started with Qlik Deployment Framework Containers 7

Initiate QDF in Qlik Sense 7

Linking (mount) Containers 7

Reuse of script code 8

Include files 8

Sub Functions 8

QlikView Components (QVC) 8

Pre-Defined Functions 9

Qlik Deployment Framework- Function Reference Guide 9

Data Modeling 10

Data models 11

Optimization strategy 14

Optimization Tips and Tricks 14

Other scripting best practices include: 15

Qlik Deployment Framework Qlik Deployment Framework | 3

Development Guide v1.7.0

Using development best practices and guidelines is part of the Build and Validation phase in the Qlik

Application Development process, read more in Qlik Deployment Framework-Qlik Product Delivery

process.pdf

Why the need for a Development Guide?

The Developer Guide is a reference manual for Qlik developers. Qlik developers are individuals who design

and implement applications and their areas of expertise range from data modeling to scripting to UI design.

This document is designed to facilitate much clearer understanding of the methodologies and practices that

are optimal for producing highly usable, highly optimized and highly configurable Qlik applications, whether

used by small departments or by large enterprises.

Company Specific Development Guide

This document is a high level guide on how to develop using Qlik Deployment Framework and

predefinitions. Best practice is to create an adapted company specific development guide containing your

development guidelines like:

 ETL and QVD strategy

 Security requirements

 Application Lifecycle Management

Platform strategy from a development perspective

When it comes to development, Qlik Sense offer a wide range of flexibility. For many reasons there’s a

good idea to set up a corporate developing best practice. A corporate developing standard doesn’t only

include standards for how to optimize each and every single application but does also embrace

methodologies and practices like reusability and overview.

Qlik Deployment Framework Qlik Deployment Framework | 4

Standards

It’s important to have and use standards during Qlik development. There are many ways of getting the

same result, but not all of them are efficient and understandable. Utilizing Qlik Deployment Framework in

combination with development guide lines we create consistent multi development environment. Standards

are needed for:

 Reuse of data

 Reuse of code

 Reuse of expressions and variables

 Multiple development

 Governance

 Creating and collecting understandable metadata

Using standards will result in lower cost of ownership by making governance easier and TCO lower.

Developing using QDF Containers

Qlik Deployment framework is based on the concept of resource containers. Containers are security

boundaries, isolated file structures placed side by side. A container can be moved and/or renamed without

changing any Qlik script logic. Each container has identical file structures and contains predefined script

functions.

QDF Deploy Tool

Containers are created using the QDF Deploy tool available for download on Qlik community. The container

script code is open source available on GitHub approved updated will be incorporated into the deploy tool

that also updates existing frameworks to latest standard. Read more regarding Deploy Tool in the

attached Read-me notes.

Container Type Selector

From QDF version 1.6.5 you have the possibility to select between three container layouts. This mean that

QDF Deploy tool extracts different container layout (folders) depending on the selection done in the

Container Type Selector. The different settings and correlating layout are presented below.

https://community.qlik.com/docs/DOC-5302

Qlik Deployment Framework Qlik Deployment Framework | 5

 Classic Container (default) has same container layout as traditional QDF (from version 1.0)

 Qlik Sense Only Here we have removed everything related to QlikView, for example Application

and mart folders. Extract, Transform, Load folders have also been added under the QVD structure.

 Slimmed Down is intended for smaller deployments and several folders have been removed.

Extract, Transform, Load folders have also been added under the QVD structure.

Classic Container Qlik Sense Only Slimmed Down

Deployment Framework always includes.

 Administration container it’s from here additional containers are created and managed.

 Shared folders. A fresh QDF installation always contains a shared container, this is a repository to

store scripts, configuration and data files that are shared and reusable by all applications.

 Example This is a container containing some examples and QVD files, this is used during the

exercise documentation.

Folder Naming Convention

Folder names inside the container are standardized and simplified to fit as many languages and companies

as possible. Before each container and subfolder there are a sequential number that makes it easier to

document the structures. Example 1.2.1 symbolizes the first Container (1), The QVD folder (2) and a

subfolder (1). This can also be used as name convention for reload tasks. Follow the number sequence and

never use space when creating new containers or subfolders inside the container.

Qlik Deployment Framework Qlik Deployment Framework | 6

Sense only container

Container folders Global Variables Description

0.Template Folder used for examples and templates. Only exists in the

0.Administration Container.

1.QVD vG.QVDPath QlikView Data files are stored in subfolders under 2.QVD

 1.Extract vG.ExtractPath Extract path for QVD files

 2.Transform vG.TransformPath Transform path for QVD files

 3.Load vG.LoadPath Load path for QVD files

2.Config vG.ConfigPath Configuration and language files like Excel and txt. This folders

could be shared to make configuration changes easier

3.Include vG.IncludePath Folder where QlikView Include files are stored. These are script

parts that are called from the main QlikView script.

 1.BaseVariable vG.BaseVariablePath Stores all the variables needed to use the framework, like paths

inside the container

 2.Locale vG.LocalePath Locale for different regions, used for easy migration between

regions

 3.Custom vG.CustomPath Store for custom include scripts

 4.Sub vG.SubPath Store for sub routines, this is a way to reuse code between

applications

4.Export vG.ExportPath Folder used to store from QlikView exported data, probably txt or

qvx

5.Import vG.ImportPath Folder used to store import data from external systems

6.Misc To store documentation, extension and other things related to this

container

Info.txt Information files describing the folder purpose and Path variable.

There are Info files in every folder.

Version.xx.txt Version Revision list

Container Variables

Each preinstalled folder in a container has corresponding environmental variable (Global Variable).

Scripting using these variables makes it possible to move code and applications between containers without

any script modifications, it also makes it possible to seamlessly share scripts between QlikView and Qlik

Sense. To initiate QDF and create the global variables an initiation script (InitLink.qvs) need to be added in

the beginning of the Qlik Sense load script.

Global Variables

Global variables are auto-generated by QDF during the initiation script, these variables are named Global
because they and reused between applications across a container. The name standard is vG.xxx (Variable
Global).

Custom Global variables and Universal variables

 Custom Global Variables are framework variables created manually by the developers. These

variables are also auto-generated during initiation using the CustomVariables.csv , that file exists within

each container under 3.Include\1.BaseVariable. Adding name and value in this csv file makes variables

available for the Qlik Sense applications that is using the home folder where the csv is resided.

o Global variables should only be used when variables are shared by several applications in a

Container.

 Universal Variables is similar to Custom but used across multiple containers. Universal are stored in

the Shared Folders Container creating a “single point of truth” across all containers. Universal Variables

are stored in $(SharedBaseVariablePath)\CustomVariables.csv file and loaded during the framework

initiation process.

o Universal variables should be used when variables are shared by several applications across

all Containers.

Qlik Deployment Framework Qlik Deployment Framework | 7

Additional Variable Convention

It’s important to follow a variable naming convention so that existing application variables don’t collide with

the framework variables. A name standard also makes it easier to understand and search among variables.

 Store often used expressions as Local variables

 Store reusable expressions as Global or Universal variables

 Extended name standard for Variables are possible, example:
o Local expressions variables starts with vL.Calc_
o Global expressions variables starts with vG.Calc_

 Variables defining a path should always end with a ‘\’

 Reset local variables that are only used inside the script and not in the UI.
Enter the variable name and =; example: SET vL.test =;

Get started with Qlik Deployment Framework Containers

Qlik applications need to have an initiation include script in the beginning of the load script which identifies

the current environment (within your home container) and generates global variables. These variables are

used during Qlik Script development.

Initiate QDF in Qlik Sense

To learn how to initiate QDF with Qlik Sense please read Qlik Deployment Framework-Qlik Sense

Getting Started Guide.pdf.

Linking (mount) Containers

After QDF initiation you can start using the sub function library (more documentation later in this document)

below function is important as it creates Global Variable Links other resource containers (and available

folders). The benefit of using Global Variable links in the script is to create generic, reusable and movable

code as QDF validates and regenerates the links every time the script runs.

Load Container Global Variables (LCGV)

By using LCGV function it’s possible to create Global Variable links (mounts) between containers (security

access needed).

Example: call LCGV('AcmeTravel') Will create all Global Variables linking to 2.AcmeTravel container.

Variables created will have similar name as home container but with the additional AcmeTravel prefix, like

vG.AcmeTravelQVDPath for QVD path to AcmeTravel container

call LCGV('Oracle','QVD;Include'); Will create two Global Variable links to different resources in

Oracle container, by using an additional switch and ‘;’ separator creates Global Variables

vG.OracleQVDPath and vG.OracleIncludePath (instead of linking all folders as in the first example).

Qlik Deployment Framework Qlik Deployment Framework | 8

Reuse of script code

For easier manageability and faster development, it’s recommended to reuse script code as much as

possible. By using Deployment Frameworks predefined structures and variables it’s easy to reuse script

code. There are two ways of reusing code in Qlik Script:

 Include files

 Use of functions

Include files

An include file is just a Qlik script (text file) that is included into the main script during execution. Qlik include

scripts use the prefix qvs. The entire or parts of the script can thus be put in a file for reuse.

All Include files are stored in 6.Custom folder, the global variable for 6.Custom folder is vG.CustomPath and

should always be used when accessing a custom script, meaning that it’s not a part of the Deployment

Framework initiation process. Example: $(Include=$(vG.CustomPath)\1.xyz_Calculations.qvs);

Sub Functions

Qlik have the possibility of reusing scripts and functions by using the Sub and Call commands. As

presented above with the LCGV function. The Framework contains library of nice to have functions. All sub

functions are stored under the 3.Include\4.Sub folder and are initiated during QDF initiation.

Use Call function_name(‘Input parameters or variables’) command to execute the preloaded function.

Another function example, vL.FileExist will return true of false depending on if the file exists

Call vL.FileExist ('$(vG.QVDPath)\SOE.qvd')

QlikView Components (QVC)
Optionally, the open source library QlikView Components (QVC) can be installed using the deploy tool in
addition to the built-in QDF library, read more on QVC here. If QVC been installed it can be disabled in the
script by adding this line before QDF initiation:
set vG.QVCDisable='true';

Hint. Add additional sub functions, Qlik Community is a good place to look, instead of coding everything

from scratch.

http://qlikviewcomponents.org/

Qlik Deployment Framework Qlik Deployment Framework | 9

Pre-Defined Functions

QDF contains library of functions that is loaded automatically during initiation. A copy of the function library

is stored under every container, but the primary sub function library is located under 3.Include\4.Sub in

Shared_Folders container.

If no Shared container exists, as a backup the local container sub function library will be used. Meaning as

long as a Shared folder exists all sub function additions should be stored under the Shared container

The preinstalled Sub functions that exist under 3.Include/4.Sub folder should not be deleted or

modified, this library is used by Qlik Deployment Framework initiation process.

Qlik Deployment Framework- Function Reference Guide

The function reference guide is available as a separate document Qlik Deployment Framework-Function

Reference Guide.pdf. As the sub functions are identical to both Qlik Sense and QlikView the same guide

applies to both platforms.

Qlik Deployment Framework Qlik Deployment Framework | 10

Data Modeling

Understanding

The cornerstone of Qlik is the associative in-memory search technology.

There are some very specific characteristics with this technology that you have to keep in mind.

 Two fields in different tables with exactly the same name, case sensitive, will automatically be

connected to each other and fields with exactly the same field value, case sensitive, will be

associated with each other.

 If two tables have more than one field in common, Qlik will automatically create a synthetic key a

kind of link table. The easiest way to detect a synthetic key is by opening the table viewer (Ctrl-T):

Synthetic key

Another characteristic with the associative database is that the number of distinct (unique) values in a table

is more important than the number records. By delimit the number of distinct values in a table the

performance of an application can be significantly improved.

Example: Let´s say you have a fact table with 1 billion recs, one of the fields is a timestamp field containing

date and time (measured down to fraction of seconds) with almost 800 million distinct values. Two

alternative actions will both improve the performance:

 If you don’t need to analyze on time level, simply transfer the field to a date field (use CalendarGen

function) and there will not be more than 365 distinct values for one year.

 If you need to analyze on time level, determine on what time level you need to analyze (hour,

minute) and create a new field, Time. Depending on what level you decide to analyze, hour will give

you 24 distinct values and minute will give maximum 1440 distinct values)

Qlik Deployment Framework Qlik Deployment Framework | 11

Data models

Represented below are diagrams of 3 basic data models that can be built in Qlik (along with many other

combinations). Using these 3 examples we can demonstrate some of the differences in performance,

complexity and flexibility between them.

Option 1

Snowflake

Option 2

Star Schema

Option 3

Single Table

Multiple fact tables

While star schemas are generally the best solution for fast, flexible QlikView applications, there are times

when multiple fact tables are needed. Here are the wrong and right ways to join them:

Option 1, Wrong

Does not Work!

Option 2, Right

Concatenated Fact table

Recommended by Qlik

Option 3, Right

Link Table

Works on small data sets

Qlik Deployment Framework Qlik Deployment Framework | 12

Further examples of how to build and use link tables are contained in Qlik Community on line

(http://community.qlik.com/)

To show how this could be accomplished, the section below takes us through a scenario of two facts tables

to be combined into one fact table.

A concatenation of fact tables example.

http://community.qlik.com/

Qlik Deployment Framework Qlik Deployment Framework | 13

Preceding Loads

The use of preceding load statements can simplify your script and make it easier to understand.

See the code below for an example of this.

Table1:

LOAD CustNbr as [Customer Number],

 ProdID as [Product ID],

floor(EventTime) as [Event Date],

month(EventTime) as [Event Month],

year(EventTime) as [Event Year],

hour(EventTime) as [Event Hour];

SQL SELECT

 CustNbr,

 ProdID,

EventTime

FROM MyDB;

This will simplify the SQL SELECT statement so that the developer can continue to test/augment the

statement using other tools, without the complexity of the Qlik transformations embedded in the same SQL

statement.

For more information on the Preceding LOAD feature, see the help.qlik.com.

http://help.qlik.com/

Qlik Deployment Framework Qlik Deployment Framework | 14

Optimization strategy

Qlik is known for its wide user adoption. One of the main reasons for this is its capability to manage large

data sets with short response time. Although a Qlik application most often is easy and fast to develop it’s a

very good idea to establish an optimization strategy as part of your development platform. For long term

success it is strongly recommended that you have an optimization focus in your application development,

especially when you know that the application should hold a large data set and be distributed to a large

number of users. A good idea is to have an optimization step connected to the validation/approval phase in

your development process, this of course both for new applications as well as for changed/ improved

applications.

Optimization Tips and Tricks

 Please keep in mind that what really counts when it comes to optimization of a data model is the
number of records.

 Don’t normalize data too much. Plan for 6 – 10 total tables in a typical application. This is just a
guideline, but there is a balance to be struck with data models. See the Data Model section of this
document for more details.

 Eliminate small “leaf” tables by using Mapping Load to roll code values into other dimensions or fact
tables.

 Store any possible field as a number instead of a string

 De-normalize tables with small numbers of field

 Use integers to join tables together

 Only allow 1 level of snow flaked dimensions from the fact record.(fact, dimension, snowflake,
none)

 Use Autonumber when appropriate, will reduce application size

 Split timestamp into date and time fields when date and time is needed

 Remove time from date by floor() or by date(date#(..)) when time is not needed

 Reduce wide concatenated key fields via Autonumber, when all related tables are processed in one
script (There is no advantage when transforming alphanumeric fields, when string and the resulting
numeric field have the same length)

 Use numeric fields in logical functions (string comparisons are slower)

 Is the granularity of the source data needed for analysis? If not aggregate by using aggregating
function like“sum() group by”

 Create numeric flags (e.g. with 1 or 0)

 Reduce the amount of open chart objects

 Calculate measures within the script (model size <> online performance)

 Limit the amount of expressions within chart/pivot objects, distribute them in multiple objects (use
auto minimize)

Qlik Deployment Framework Qlik Deployment Framework | 15

Other scripting best practices include:

 Use Autonumber only after development debugging is done. It’s easier to debug values with a

number in it instead of only being able to use surrogates. See Reference Manual if you are not sure

how/when to use Autonumber.

 Put subject areas on different tabs so you don’t confuse the developers with too much complexity

 Name the concatenate/join statements

 Use HidePrefix=%; to allow the enterprise developer to hide key fields and other fields which are

seldom used by the designer (this is only relevant when co-development is being done).

 When using the Applymap() function, fill in the default value with something standard like ‘Unknown’

& Value which is unknown so users know which value is unknown and can go fill it in on the source

system without the administrators having to get involved. See Reference Manual if you are not sure

how/when to use Applymap().

 Never user Underscores or slashes (or anything ‘techie’) in the field names. Instead code user

friendly names, with spaces.

 Instead of:“mnth_end_tx_ct”use:“Month End Transaction Count”

 Only use Qualify * when absolutely necessary. Some developers use Qualify * at the beginning of

the script, and only unqualify the keys. This causes a lot of trouble scripting with left join statements,

etc. It’s more work than it’s worth in the long run. See Reference Manual if you are not sure

how/when to use Qualify and Unqualify.

 Use variables for path name instead of hard-coding them throughout your script. This reduces

maintenance and also provides a simple way to find paths (assuming you put them in the first tab to

make it easy to find).

 All file references should use Container naming convention.

 Always have the Log file option turned on if you need to capture load-time information for

debugging purpose

 Comment script headings for each tab. See example below:

 Comment script sections within a tab with short descriptions. See example below:

