
ROS-Gazebo-ErleRover & Evo-ROS

Installation and Usage Guide

Michigan State University

Glen Simon
Philip McKinley
Jared Moore
Anthony Clark

January 17, 2018

Contents

1 Introduction 3

2 Installation 4
2.1 Configuring your Ubuntu Machine . 4

2.1.1 Install base packages . 4
2.1.2 Install dependencies for MAVProxy . 4
2.1.3 Install MAVProxy . 4
2.1.4 Download and install ArUco . 4
2.1.5 Install ROS Indigo . 5
2.1.6 Install Gazebo . 5

3 Configuring User Workspace 6
3.1 Download Ardupilot . 6

3.1.1 Compile a specific branch of ardupilot . 6
3.2 Download ErleRover Scripts directory . 6

3.2.1 Getting permission to push commits to the remote repo 6
3.3 Download ros gazebo python directory, which contains the BasicBot work. Optional 6

3.3.1 Getting permission to push commits to the remote repo 6
3.4 Create ROS workspace . 6

3.4.1 Make workspace . 6
3.4.2 Initialize the workspace . 6
3.4.3 Download ros catkin ws src which contains the development work for the MSU rover

project . 7
3.4.4 Compile the ros catkin ws workspace . 7

3.5 Download Gazebo models . 7
3.6 Configuring .bashrc . 7

3.6.1 Add ROS setup to bash . 7
3.6.2 Add ros catkin ws setup to bash . 7

4 Basic Simulation Usage 8
4.1 Basic Erle-Rover simulation . 8

4.1.1 Manually starting all needed processes . 8
4.1.2 Using scripts to start simulation . 9

4.2 Starting MAVProxy via a script . 9
4.3 Basic obstacle avoidance simulation using Erle Robotics script 9

4.3.1 Manually starting all needed processes . 10
4.3.2 Using scripts to start simulation . 10

5 Evo-ROS 12
5.1 Motivation . 12
5.2 Usage . 13

5.2.1 Selecting and Configuring the GA . 13
5.2.2 Evo-ROS Configuration Options . 13

1

5.2.3 Starting Evo-ROS . 14
5.2.4 Using Evo-ROS . 15

6 Troubleshooting 16
6.1 Rover is not responding to either manual or scripted commands 16

2

Chapter 1

Introduction

We introduce Evo-ROS, a framework combining evolutionary search and ROS/Gazebo-based simulation.
The framework provides researchers in evolutionary robotics access to the extensive support for real-world
components and capabilities developed by the ROS community. Conversely, Evo-ROS enables developers in
the ROS community, and more broadly robotics researchers, to take advantage of evolutionary search during
design. Evolutionary algorithms can be applied to many aspects of development, including optimal configu-
ration and placement of sensors and actuators, generation of compensatory behavior in case of failed/faulty
components, and detection of unlikely-but-possible situations that might cause system failure.

The Evo-ROS framework separates the GA and simulation through a socket-based interface. Messages
are sent from the GA to ROS/Gazebo instances, where the robot is evaluated. A fitness score is then returned
through another socket back to the GA, where the generational loop is processed. In comparison to a typical
ROS/Gazebo simulation, the primary extension a user needs to implement is mapping a genome into the
robotic system. In our sample code, we show how to implement this approach for a simple Roomba-like
robotic system as well as the more complex Erle-Rover robot.

To address performance concerns, Evo-ROS can exploit multiple levels of parallelism, including: deploying
to (1) several physical machines; (2) several VMs on the same physical machine; (3) multiple ROS instances
in the same VM; (4) multiple Gazebo simulations per ROS master; and (5) multiple, separate evaluations
per Gazebo simulation (e.g., two robots completing tasks in separate zonesnot interacting). The current
Github repositories contain implementations of (2) with an Ardupilot based controller and (4) with a state
machine based controller.

3

Chapter 2

Installation

These installation directions are derived from the instructions provided by Erle Robotics found at
http://docs.erlerobotics.com/simulation/configuring your environment.

It is recommended that this software be used on a machine running Ubuntu 14.04 64 bits.

2.1 Configuring your Ubuntu Machine
These steps only have to be done once per machine.

2.1.1 Install base packages

sudo apt-get update

sudo apt-get install gawk make git curl cmake -y

2.1.2 Install dependencies for MAVProxy

sudo apt-get install g++ python-pip python-matplotlib python-serial python-wxgtk2.8 python-

scipy -y

sudo apt-get install python-opencv python-numpy python-pyparsing ccache realpath libopencv-

dev -y

2.1.3 Install MAVProxy

sudo pip install future

sudo apt-get install libxml2-dev libxslt1-dev -y

sudo pip2 install pymavlink catkin_pkg --upgrade

sudo pip install -I MAVProxy==1.5.2

2.1.4 Download and install ArUco

1. Download ArUco 1.3.0 from here https://sourceforge.net/projects/aruco/files/1.3.0/aruco-1.3.0.tgz/download

2. Install ArUco

cd ~/Downloads # Replace this with your Download directory

tar -xvzf aruco-1.3.0.tgz

cd aruco-1.3.0/

mkdir build && cd build

cmake ..

make

sudo make install

4

http://docs.erlerobotics.com/simulation/configuring_your_environment
https://sourceforge.net/projects/aruco/files/1.3.0/aruco-1.3.0.tgz/download

2.1.5 Install ROS Indigo

Setup your computer to accept software from packages.ros.org, setup your keys and install
(make sure your Debian package index is up-to-date):

sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt

/sources.list.d/ros-latest.list’

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net --recv-key 0xB01FA116

sudo apt-get update

Install ROS package, build, and communication libraries:

sudo apt-get install ros-indigo-ros-base -y

Initialize rosdep. Before you can use ROS, you will need to initialize rosdep, which enables
you to easily install system dependencies for source you want to compile and is required to
run some core components in ROS.

sudo rosdep init

rosdep update

It’s convenient if the ROS environment variables are automatically added to your bash session
every time a new shell is launched:

echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc

source ~/.bashrc

Get rosinstall and some additional dependencies

sudo apt-get install python-rosinstall \

ros-indigo-octomap-msgs \

ros-indigo-joy \

ros-indigo-geodesy \

ros-indigo-octomap-ros \

ros-indigo-mavlink \

ros-indigo-control-toolbox \

ros-indigo-transmission-interface \

ros-indigo-joint-limits-interface \

unzip -y

Get RQT graph

sudo apt-get install ros-indigo-rqt

sudo apt-get install ros-indigo-rqt-common-plugins

2.1.6 Install Gazebo

Setup your computer to accept software from packages.osrfoundation.org

sudo sh -c ’echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable ‘lsb_release -

cs‘ main" > /etc/apt/sources.list.d/gazebo-stable.list’

Setup keys

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -

Install gazebo7

sudo apt-get update

sudo apt-get remove .*gazebo.* ’.*sdformat.*’ ’.*ignition-math.*’ && sudo apt-get update &&

sudo apt-get install gazebo7 libgazebo7-dev drcsim7 -y

5

Chapter 3

Configuring User Workspace

These steps will have to be done for each user on a machine if they would like their own local copies of the
source files.

3.1 Download Ardupilot
The ArduPilot project is an open source autopilot for drones, rovers, and other platforms. We’ll be using
its code to simulate the Unmanned ground vehicles (UGVs), specifically the Erle-Rover:

3.1.1 Compile a specific branch of ardupilot

mkdir -p ~/simulation; cd ~/simulation

git clone https://github.com/erlerobot/ardupilot -b gazebo

3.2 Download ErleRover Scripts directory
This was created to ease the process of starting all of the required processes used to simulate the Erle Rover.

cd ~/simulation

git clone https://github.com/gsimon2/ErleRover-Scripts.git

3.2.1 Getting permission to push commits to the remote repo

The above ErleRover-Scripts directory is a public repo and can freely be copied, but for access to submit
changes please contact Glen Simon at glen.a.simon@gmail.com.

3.3 Download ros gazebo python directory, which contains the
BasicBot work. Optional

cd ~/simulation

git clone https://github.com/jaredmoore/ros_gazebo_python.git

3.3.1 Getting permission to push commits to the remote repo

The ros gazebo python directory is a public repo and can freely be copied, but for access to submit changes
please contact Jared Moore at swiftfoottim@gmail.com.

3.4 Create ROS workspace
3.4.1 Make workspace

mkdir -p ~/simulation/ros_catkin_ws/src

3.4.2 Initialize the workspace

6

cd ~/simulation/ros_catkin_ws/src

catkin_init_workspace

cd ~/simulation/ros_catkin_ws

catkin_make

source devel/setup.bash

3.4.3 Download ros catkin ws src which contains the development work for the
MSU rover project

cd ~/simulation/ros_catkin_ws

git clone https://github.com/gsimon2/ros_catkin_ws_src.git

Delete default src directory and replace with the downloaded one

cd ~/simulation/ros_catkin_ws

rm -r src

mv ros_catkin_ws_src src

Getting permission to push commits to the remote repo
This is a public repo and can freely be copied, but for access to submit changes please contact Glen Simon
at glen.a.simon@gmail.com.

3.4.4 Compile the ros catkin ws workspace

cd ~/simulation/ros_catkin_ws

source devel/setup.bash

catkin_make --pkg mav_msgs mavros_msgs gazebo_msgs

catkin_make -j 4

3.5 Download Gazebo models

mkdir -p ~/.gazebo/models

git clone https://github.com/erlerobot/erle_gazebo_models

mv erle_gazebo_models/* ~/.gazebo/models

3.6 Configuring .bashrc
3.6.1 Add ROS setup to bash

It’s convenient if the ROS environment variables are automatically added to your bash session every time a
new shell is launched.

echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc

source ~/.bashrc

3.6.2 Add ros catkin ws setup to bash

For ROS to find the packages provided in ros catkin ws we need to source the setup file every time. This is
easier if we also add this to the bash file.

echo "source ~/simulation/ros_catkin_ws/devel/setup.bash" >> ~/.bashrc

source ~/.bashrc

7

Chapter 4

Basic Simulation Usage

4.1 Basic Erle-Rover simulation
This process will bring up the Erle-Rover in a blank world and allow you to manually enter throttle and yaw
commands via the MAVProxy terminal.

4.1.1 Manually starting all needed processes

The process of starting all processes can be found in more detail at:
http://docs.erlerobotics.com/simulation/vehicles/erle rover/tutorial 1, but will be covered briefly here.

Executing APMrover2
This process requires two active terminals.

In terminal one enter:

source ~/simulation/ros_catkin_ws/devel/setup.bash

cd ~/simulation/ardupilot/APMrover2

../Tools/autotest/sim_vehicle.sh -j 4 -f Gazebo

once MAVProxy has launched completely, load the parameters

param load /[path_to_your_home_directory]/simulation/ardupilot/Tools/Frame_params/3DR_Rover.

param

NOTE: replace [path_to_your_home_directory] with the actual path to your home directory.

Example: param load /home/john/simulation/ardupilot/Tools/Frame_params/3DR_Rover.param

In terminal two enter:

source ~/simulation/ros_catkin_ws/devel/setup.bash

roslaunch ardupilot_sitl_gazebo_plugin rover_spawn.launch

This should start the Gazebo GUI and you should be able to see that the rover spawned in a blank world
appearing similar to figure 4.1.

Controlling Erle-Rover using MAVProxy
Make the rover move forward. In the first terminal execute:

in the MAVProxy prompt:

mode MANUAL

param set SYSID_MYGCS 255

rc 3 1900

Or backwards:

in the MAVProxy prompt:

rc 3 1200

What we are doing here is overriding the 3rd channel of the RC, which corresponds to the throttle. Values
are from 1100 to 1900. 1500 is to stop the throttle; so values above 1500 will make the rover move forward,
and values above 1500 backwards. The same principle applies to the yaw, which is in the 1st channel of the
RC. Values above 1500 will make it turn right, and below 1500 left. For instance:

8

http://docs.erlerobotics.com/simulation/vehicles/erle_rover/tutorial_1

Figure 4.1: Erle-Rover model in Gazebo simulator

in the MAVProxy prompt:

rc 1 1400

Note that first we had to use “param set SYSID MYGCS 255”. This tell MAVProxy where the source
for rover commands are coming from. To control the rover manually via the MAVProxy terminal, this value
must be set to 255. When using scripts to control the rover, this value must be set to 1.

4.1.2 Using scripts to start simulation

The above simulation can also be started using a script to make the start up process easier. To run the
script enter the following commands:

cd ~/simulation/ErleRover-Scripts/

./basic_sim.sh

This script also runs the “start FPV” script, which will bring up a window displaying a first person view
from the rover’s perspective. The “start FPV” script can be ran on its own anytime a simulation is running
to show the first person view by running the following commands:

cd ~/simulation/ErleRover-Scripts/

./start_FPV.sh

4.2 Starting MAVProxy via a script
MAVProxy is required when running any simulation of the rover and generally must manually be started
prior to anything else. To make starting simulations easier, MAVProxy can be started via a script by using
the following commands:

cd ~/simulation/ErleRover-Scripts/

./start_MAVProxy.sh

This will open an xterm window that sources the setup.bash file required to launch the Ardupilot SiTL
software and execute Ardupilot’s sim vehicle script with the rover parameters already loaded into it. The
sim vehicle script will then launch MAVProxy in the xterm window and Ardupilot in a separate window,
generally also xterm, but may vary depending on your system.

4.3 Basic obstacle avoidance simulation using Erle Robotics script
This process will bring up the rover in a basic maze and start a node running a basic obstacle avoidance
algorithm provide by Erle Robotics which will lead the rover through the maze without crashing into the
walls.

The process of starting all processes can be found in more detail at:
http://docs.erlerobotics.com/simulation/vehicles/erle rover/tutorial 2, but will be covered briefly here.

9

http://docs.erlerobotics.com/simulation/vehicles/erle_rover/tutorial_2

4.3.1 Manually starting all needed processes

To run this simulation three processes must be started:

1. MAVProxy - This can be started manually, see terminal one in section 4.1.1, or with a script, see
section 4.2.

2. The launch file - This can be done with the following command:

roslaunch ardupilot_sitl_gazebo_plugin rover_maze.launch

3. The controller node - This can be done with the following command:

rosrun erle_rover_explorer erle_rover_explorer.py

If this is done correctly you should see the rover spawn in a simple maze as can be seen in figure 4.2a.
An overview of the maze can be seen in figure 4.2b.

(a) Erle-Rover in simple maze (b) Simple maze overview

Notes
1. There is no stopping condition for this simulation and the rover will just continue to drive straight

once it has exited the maze.

2. If the everything appears to have started correctly, but the rover is standing still in the maze, check
to make sure MAVProxy is listening for commands on the right channel. For help with this issue see
section 6.1.

3. The provided obstacle avoidance script also displays a window that represents the lidar scan and shows
the current heading of the rover. An example of this can be seen in figure 4.3.

4. A first person view of the rover can be brought up by running the script. See section 4.1.2.

4.3.2 Using scripts to start simulation

The above simulation can also be started using a script to make the start up process easier. To run the
script enter the following commands:

cd ~/simulation/ErleRover-Scripts/

./explorer_sim.sh

10

Figure 4.3: Lidar scan representation and current heading

11

Chapter 5

Evo-ROS

5.1 Motivation
Evolutionary robotics (ER) applies the basic principles of genetic evolution to the design of robots through
the application of the genetic algorithm (GA). An artificial genome specifies the robots control system and
possibly aspects of its morphology (body). Individuals in a population are evaluated (typically in simulation)
with respect to one or more tasks, with the best performing individuals selected to pass their genes to the
next generation. Evolutionary approaches have yielded effective controllers and physical designs for a variety
of crawling, swimming, and flying robots [1, 5]. Our own research has applied evolutionary algorithms to
optimize both morphology and control in aquatic and terrestrial robots. Evolving robot behavior and
morphology is interesting in its own right, but from an engineering perspective, a major advantage of
evolutionary search is the possible discovery of solutions (as well as potential problems) that the engineer
might not otherwise have considered.

Simulation is an essential component of evolutionary robotics, greatly reducing the time to evolve solutions
while avoiding possible damage to physical robots. The ER community typically creates one-off simulation
environments from a few different physics engines (e.g., ODE, Bullet, VoxCAD, Simulink) to conduct an
experiment. Environments are sparse, generally featuring the robot and possibly a few obstacles. Tasks
typically comprise locomotion, navigation, and basic problem solving. Robots themselves contain only a
few sensors, most often developed for the specific experiment being conducted. Hence, ER tasks are often
limited by the scope of the simulation environment and how much time a developer has to code obstacles,
sensors, and the platform itself. Models are not necessarily shareable between developers due to a lack of
standardization. While many research questions can, and have, been answered by simple simulations, it
becomes difficult to address more complex questions in these environments.

In contrast, the broader robotics community can address very complex tasks; the robotic systems utilize
many sensor modalities to build a coherent understanding of their environment. By providing tested models
of commercially available hardware, ROS/Gazebo provides a platform to study high-level behaviors while
saving developer time during the design phase. Additionally, results have been shown to transfer to real
robots, potentially addressing the reality-gap often encountered in ER.

In the Evo-ROS project, we have developed an evolutionary framework that integrates ROS-based sim-
ulations for robot evaluation. Our current prototype includes ROS, Gazebo, Ardupilot and MAVROS. The
primary goals of the project are twofold. First, the framework enables researchers in ER to take advantage
ROS and related simulation tools. Second, it enables robot developers to employ evolutionary search during
the design process.

12

5.2 Usage
5.2.1 Selecting and Configuring the GA

Figure 5.1: The sonar positioning search space
for the example GA. The search space is limited
to the outside borders of the front half of the
rover, so that there is ample room in the center
for other sensors. For now, there is no need for
sensing behind the rover, since it will only be
moving forward.

There are currently several different GA options that can
be selected. For this example we are going to use the
script “symmetric variable number sonar GA server.py”.
This script is used to explore the optimal placement of
sonar sensors on an Erle-Rover. This particular does have
some limitations to the search space. First, placement of
the sensors is limited to the front half of the rover and
must be pointed towards the front. This restriction is be-
cause for the controller that we are using, the rover will
only be driving in the forward direction and thus will have
no need for rear facing sensors. The second limitation, is
that sensors are limited to the outside border of the front
half. This limitation is to allow ample room in the center
of the rover for the placement of the battery and other
electronics. Lastly, since the evoluation of symmetric pat-
terns is seen often in nature, the GA will force symmetry
over the Y-axis of the rover for the placement of any sen-
sors. That is, if there is a sensor selected to be placed at
the front right corner of the rover at a 10 degree angle,
then there will be a matching sensor placed at the front
left corner of the rover at a -10 degree angle.

Once the GA is selected there are a few configuration
options that should be observed. The configuration file can be opened by using the following commands:

cd ~/simulation/ros_catkin_ws/src/evo_ros/config/

vim default_config.yml

This file contains the default configuration options for many aspects of Evo-ROS, but currently we are
only interested in those that deal with the GA portion. The “ga server” section can be found towards the
top of the file and contains different parameters for the GA, such as: the tournament size, population size,
generation count, log file name, and others.

After you are satisfied with the parameters being used the GA can be started by navigating to the GA
directory by using the following commands:

cd ~/simulation/ros_catkin_ws/src/evo_ros/GA/

Next you can see the running options for the GA by using the “-h” flag as shown below:

python symmetric_variable_number_sonar_GA_server.py -h

Or you can start the GA in debugging mode with the following command:

python symmetric_variable_number_sonar_GA_server.py -d -ip 127.0.0.1

It is recommend to start the GA in debugging mode so that extra output is printed to the terminal, which
allows to verify parameters and track progression better. Since the GA uses a comparatively low amount of
CPU time as compared to the evaluation software, the extra printed output has a negligible effect to running
time.

Also note that we specified the IP address that the GA should use to send out the genomes. By default,
if this parameter is left blank, the GA will auto-assign it to be the IP address of the current machine.

If all is running correctly, the terminal output should appear close to what is shown in figure 5.2.

5.2.2 Evo-ROS Configuration Options

There are a number of other Evo-ROS configuration options that can be found in the configuration file
descripbed in section 5.2.1. The configuration file is broken into sections, each corresponding to a major
part of the Evo-ROS framework. These sections include:

13

Figure 5.2: Expected output from starting the GA with the debugging options turned on.

• sonar filter

This process is responsible for collecting all raw data from the sonar sensors in Gazebo and relying
the information onto a “/sonar# filtered” topic. This allows different filters to be applied to the raw
data. One use of this is to apply different failure models to the sensors before the information is passed
onto the robot’s controller.

• software manager

The software manager process is responsible for spawning and managing all of the other required
processes within Evo ROS. It is in this set of configuration options that most of the customizations
will be made. Here you can select things like: what launch files to use, as well as, which simulation
managers and robotic controllers to use.

• transporter

The transporter process creates and maintains the connection to the external GA process.

• sim manager

The sim manager (short for simulation manager) is the process that is responsible

5.2.3 Starting Evo-ROS

The process of starting Evo-ROS is relatively simple once the configuration options have been set. For
this example, no configuration options have to be changed. To start Evo-ROS, just has to start the “soft-
ware manager” script and the rest will be managed automatically. The “software manager” script can be
started by entering the following command into a new instance of the terminal:

rosrun evo_ros software_manager.py -ip 127.0.0.1 -d -gui

Please note that the “-ip” flag is being passed to the software manager with the same IP address that
we that gave the GA so that the two will be connected.

The debugging option (“-d” flag) is also set so that each process will spawn in it own window. This
allows for easier understanding of what is all happening, but should not be used in production runs as it
goes have an impact on the running time.

The “-gui” flag is set as well. This option tell Gazebo that it should bring up its full GUI when it is
launched, allowing you to view the rover in the simulated environment. This option should not be used in
production runs, as it also impacts the running time.

As with any Evo-ROS process, the software manager can be started with the “-h” help flag to display
all possible options.

After the software manager has started, one additional terminal should spawn running the Evo-ROS
transporter. At this point you should have terminals open for the GA, software manager, and the transporter.
The Evo-ROS processes should be waiting to receive information for the GA, while the GA is waiting for
you to give it the okay to start sending information.

14

Figure 5.3: Expected output of the transporter terminal.

Figure 5.4: Expected output of the software manager terminal.

5.2.4 Using Evo-ROS

Once both the GA and the software manager have been started, you simply have the give the GA permission
to start sending information by pressing “enter” in that terminal. Upon pressing “enter” you should see
the genomes from the GA being sent out. In the transporter window you will see one being received and
being passed to the software manager. The software manager will then begin its process of setting up the
simulated evaluation environment. This setup process includes spawning multiple xterm instances as well
as a Gazebo instance (assuming the “-d” and “-gui” flags are set). This spawning process could take up to
several minutes.

After the set up process has been completed, you should be able to view the rover in the Gazebo
environment. The controller for the rover will automatically be started and after 10-20 seconds the rover
should start its mission. During this time the simulation manager process will be monitoring its progression
through the maze and monitoring for ending criteria, such as: a crash, mission completion, or a max time
limit is reached. When an ending criteria is met, the results of the evaluation will be sent back the to GA,
where a fitness can be assigned to the individual.

This instance of Evo-ROS will continue to receive individuals to be evaluated until the GA is either
finished or canceled.

15

Chapter 6

Troubleshooting

6.1 Rover is not responding to either manual or scripted com-
mands

The most common issue for the rover not responding to commands as expected is that MAVProxy is listening
for commands on the wrong channel. To check for this enter the following command into the MAVProxy
terminal to check which channel is currently being listened to for commands:

param show SYSID_MYGCS

If the returned value is 1.0, MAVProxy is listening for commands from a scripted controller comminicating
using a ROS topic.

If the returned value is 255.0, MAVProxy is waiting for commands manually entered into the MAVProxy
terminal.

To change the channel that MAVProxy is listening on use the following command:

param set SYSID_MYGCS {value}

where value is between 1 and 255.

Note: MAVProxy must be connected to the rover, either a physical rover or a ROS node acting as the
rover, for these commands to work.

Figure 6.1: Checking MAVProxy command source

16

	Introduction
	Installation
	Configuring your Ubuntu Machine
	Install base packages
	Install dependencies for MAVProxy
	Install MAVProxy
	Download and install ArUco
	Install ROS Indigo
	Install Gazebo

	Configuring User Workspace
	Download Ardupilot
	Compile a specific branch of ardupilot

	Download ErleRover_Scripts directory
	Getting permission to push commits to the remote repo

	Download ros_gazebo_python directory, which contains the BasicBot work. Optional
	Getting permission to push commits to the remote repo

	Create ROS workspace
	Make workspace
	Initialize the workspace
	Download ros_catkin_ws_src which contains the development work for the MSU rover project
	Compile the ros_catkin_ws workspace

	Download Gazebo models
	Configuring .bashrc
	Add ROS setup to bash
	Add ros_catkin_ws setup to bash

	Basic Simulation Usage
	Basic Erle-Rover simulation
	Manually starting all needed processes
	Using scripts to start simulation

	Starting MAVProxy via a script
	Basic obstacle avoidance simulation using Erle Robotics script
	Manually starting all needed processes
	Using scripts to start simulation

	Evo-ROS
	Motivation
	Usage
	Selecting and Configuring the GA
	Evo-ROS Configuration Options
	Starting Evo-ROS
	Using Evo-ROS

	Troubleshooting
	Rover is not responding to either manual or scripted commands

