
RPM Installation Guide ANGRYVIPER Team

RPM Installation Guide

Version 1.3

1

RPM Installation Guide ANGRYVIPER Team

Revision History

Revision Description of Change Date
v1.0 Initial Release 2/2016
v1.1 Updated for OpenCPI Release 1.1 3/2017
v1.2 Updated for OpenCPI Release 1.2 8/2017
v1.3 Updated for OpenCPI Release 1.3 2/2018
v1.3.1 Updated for OpenCPI Release 1.3.1 4/2018

2

RPM Installation Guide ANGRYVIPER Team

Table of Contents

1 References 5

2 Document Overview 6

3 Acquiring the OpenCPI framework 6

4 Installing FPGA vendor tool prerequisites 6

5 Installing OpenCPI third-party prerequisites 7

6 Installing OpenCPI framework 8
6.1 Installing OpenCPI from RPMs . 9
6.2 Installing OpenCPI from Source . 10

7 Setting up the OpenCPI Environment 10
7.1 The opencpi Group . 11
7.2 Setup Environment . 11
7.3 Removing OpenCPI RPMs . 12

8 Testing the OpenCPI installation 12

Appendices 13

A Prerequisite Modifications 13
A.1 Analog Devices’ AD9361 no-OS Library . 13
A.2 GNU Multiple Precision Arithmetic Library (GMP) . 13
A.3 Google Test (GTEST) . 13
A.4 Liquid DSP . 13
A.5 Lempel-Ziv-Markov chain algorithm (LZMA/XZ) . 13
A.6 PatchELF . 13

B Appendix - Building OpenCPI RPMs 14
B.1 Prerequisites to Building . 14

B.1.1 Example of Required Packages . 14
B.2 Prerequisite RPMs . 15
B.3 Building Main RPMs . 15

B.3.1 Common Problems . 15
B.3.2 Debugging Your Build Process . 16

C Appendix - Building OpenCPI from Source 17
C.1 Prerequisites . 17
C.2 Git Access . 17
C.3 Building OpenCPI From Source . 18

D Appendix - Add the ANGRYVIPER IDE to Eclipse using the Plugin 19
D.1 Eclipse (Neon Release) . 19
D.2 Eclipse (Oxygen Release) . 19

3

RPM Installation Guide ANGRYVIPER Team

List of Tables

1 References . 5
2 RPM Prerequisite Descriptions . 7
3 Main RPM Decision Guide . 9
4 Main RPM Descriptions . 10
5 releng directory make targets . 15

4

RPM Installation Guide ANGRYVIPER Team

1 References

This document assumes a basic understanding of the Linux command line environment. It does not require a working
knowledge of OpenCPI. However, it is recommended that the user read the Getting Started document (up to the
“Installation of OpenCPI” section) or reference the Acronyms and Definitions document for various terms used
within.

Table 1: References

Title Published By Link
Getting Started ANGRYVIPER Team Getting_Started.pdf

Acronyms and Definitions ANGRYVIPER Team Acronyms_and_Definitions.pdf

Overview OpenCPI https://goo.gl/RskxiV

Installation Guide1 OpenCPI https://goo.gl/VWo2jX

Component Development Guide OpenCPI https://goo.gl/zBwIe0

RCC Development Guide OpenCPI https://goo.gl/0ix1E0

HDL Development Guide OpenCPI https://goo.gl/OVmRhI

FPGA Vendor Tools Installation
Guide

ANGRYVIPER FPGA_Vendor_Tools_

Installation_Guide.pdf

Managing Software with yum CentOS Project https://www.centos.org/docs/5/

html/yum/

CentOS Deployment Guide: Useful
yum commands (e.g. yum

localinstall)

CentOS Project https://www.centos.org/docs/5/

html/5.2/Deployment_Guide/

s1-yum-useful-commands.html

1The RPM installation process is quite different from the process explained in the OpenCPI Installation Guide, but the
OpenCPI Installation guide has applicable post-installation information for PCI-based boards, etc.

5

https://goo.gl/RskxiV
https://goo.gl/VWo2jX
https://goo.gl/zBwIe0
https://goo.gl/0ix1E0
https://goo.gl/OVmRhI
https://www.centos.org/docs/5/html/yum/
https://www.centos.org/docs/5/html/yum/
https://www.centos.org/docs/5/html/5.2/Deployment_Guide/s1-yum-useful-commands.html
https://www.centos.org/docs/5/html/5.2/Deployment_Guide/s1-yum-useful-commands.html
https://www.centos.org/docs/5/html/5.2/Deployment_Guide/s1-yum-useful-commands.html

RPM Installation Guide ANGRYVIPER Team

2 Document Overview

This document describes how to install OpenCPI on a development host via RPMs. The host installation allows
for local software-based execution of OpenCPI applications and components, cross-building for non-x86 platforms,
simulation of HDL, and, when available, hardware testing. It is recommended that users install from RPMs.

To allow for RPM packaging, the build system was significantly modified compared to the original OpenCPI Build
System, and the changes are still being resolved. If you are working in a branch on GitHub that includes a top-level
script ocpi-configure, and you do not want to use the RPM files, consult Appendix C.

The default host installation platform for OpenCPI development is CentOS 6 or CentOS 7 Linux x86 64 (64-bit).
Other Linux variants and 32-bit systems have been used successfully, but this document expects the OS to be
CentOS 7. Development hosts can either be actual physical systems or virtual machine installations.

This document assumes that CentOS is already installed, has the necessary packages
installed for software compilation, and proper administrative privileges have been

established.

Additional installation options exist for other target processors and technologies such as the Xilinx Zynq SoC (with
ARM processor cores and FPGA resources). Preference when targeting non-x86 architectures is given to cross-

building, rather than self-hosting development. This limits the complexity of installing tools on different development
hosts.

Installation of OpenCPI is completed in the following steps:

1. Section 3: Acquiring the OpenCPI framework

2. Section 5: Installing the OpenCPI prerequisites

3. Section 6: Installing the OpenCPI framework

4. Section 7: Setting up the OpenCPI environment

5. Section 8: Testing the OpenCPI installation

These steps result in a development system with tooling and runtime software ready to support development and
native execution of OpenCPI components and applications.

3 Acquiring the OpenCPI framework

Currently, the ANGRYVIPER Team releases DVD-Rs containing the RPMs and PDF documentation of the OpenCPI
framework. These should be available on github.io.

4 Installing FPGA vendor tool prerequisites

For HDL bitstream generation, OpenCPI requires vendor-provided tools (e.g. Xilinx Vivado, Xilinx ISE, Altera
Quartus) for FPGA bitstream compilation, as well as various other operations. Refer to FPGA_Vendor_Tools_

Installation_Guide.pdf for instruction in installing and configuring these tools for use with OpenCPI.

6

RPM Installation Guide ANGRYVIPER Team

5 Installing OpenCPI third-party prerequisites

OpenCPI development is dependent on various external packages from the Open Source community. These include:

1. Analog Devices’ AD9361 no-OS Library

2. GNU Multiple Precision Arithmetic Library (GMP)

3. Google Test (GTEST)

4. Lempel-Ziv-Markov chain algorithm (LZMA/XZ)

5. Liquid DSP

6. PatchELF

These packages have OpenCPI-specific patches and are provided as RPMs. This packaging ensures they will not
conflict with other1 installed copies by using a nonstandard installation location of /opt/opencpi/prerequisites.
Appendices A.1 – A.6 contain a synopsis of the changes that were made to these packages.

These prerequisites are packaged into multiple RPMs due to different usage configurations. Not all are required for
a standard development install; consult Table 2.

Table 2: RPM Prerequisite Descriptions

RPM Name Description
AD9361 No-OS Library

ocpi-prereq-ad9361-*.rpm1 Header file(s) and software library: ADI’s No-OS library for
AD9361 command/control.

ocpi-prereq-ad9361-platform-*.noarch.rpm2 Cross-compiled platform-specific library.
GNU Multiple Precision Arithmetic Library

ocpi-prereq-gmp-6.1.1-*.rpm1 Header file(s) and software library: GNU Multiple Precision
Arithmetic Library (GMP).

ocpi-prereq-gmp-platform-*.noarch.rpm2 Cross-compiled platform-specific library.
Google Test

ocpi-prereq-gtest-1.7.0-.rpm1 Header file(s) and software library: Google’s C++ test frame-
work.

ocpi-prereq-gtest-platform-*.noarch.rpm2 Cross-compiled platform-specific library.
Liquid DSP

ocpi-prereq-liquid-1.2.0-*.rpm3 Header file(s) and software library: Liquid DSP library.
ocpi-prereq-liquid-platform-*.noarch.rpm3 Cross-compiled platform-specific library.

LZMA / XZ
ocpi-prereq-xz-5.2.2-*.rpm1 Header file(s) and software library: “xz” utils, a set of FOSS

lossless data compressors (formerly known as “lzma”).
ocpi-prereq-xz-platform-*.noarch.rpm2 Cross-compiled platform-specific library.

Miscellaneous RPMs
ocpi-prereq-build support-inode64-*.rpm1 Shim library to allow 32-bit compilers to compile code on 64-

bit file systems
ocpi-prereq-patchelf-0.9-*.rpm1 A utility for modifying existing ELF executables and libraries.

1Only required for development
2Always required for development and deployment using matched platform name
3Required to build some components in ocpi.assets but not required for base OpenCPI usage; provided as a courtesy for RCC

Workers

For simplicity, it is recommended that the user installs all available prerequisite RPMs; this may be completed
using yum:

% sudo yum localinstall <location of prerequisite RPMs>/*rpm

1OS vendor, EPEL, other third-party-packagers, etc.

7

RPM Installation Guide ANGRYVIPER Team

6 Installing OpenCPI framework

The ANGRYVIPER Team’s recommended installation method for development is through the use of RPMs. The
framework can be built from source for a development host, but is not recommended. In either case, the prerequisites
described in section 5 must be installed prior to the following section.

The ANGRYVIPER Team provides RPMs to their direct customers and end users can consult Appendix B for
instructions on re-building them.

Understanding OpenCPI RPM naming convention

OpenCPI’s RPM naming follows that of the Red Hat Package Manager recommendations of <name>-<version>
-<release>.<dist>.<architecture>.rpm where:

1. name is the name describing the packaged software

2. version is the version of the packaged software

(a) version following the Major.Minor.Sub-minor naming schema

3. release is the number of times this version of software has been packaged

(a) this number is independent of the version

4. dist is the OS distribution that the package is built for (e.g. .el7.centos)

5. architecture is shorthand name describing the type of hardware the packaged software is to be installed on

6. “devel” is sometimes appended to the package name to indicate development RPMs which are required for
building from source

When to Install

It is recommended that the user install these packages before additional tools, e.g. ModelSim, because the devel

subpackage forces the installation of otherwise-hidden dependencies, e.g. 32-bit X11 libraries for ModelSim.

8

RPM Installation Guide ANGRYVIPER Team

6.1 Installing OpenCPI from RPMs

After installation of the OpenCPI prerequisite RPMs2, the main RPMs may be installed. Again, as with the prereq-
uisites, it is recommended that the user installs all available packages whenever possible. If limited by available disk
space, Table 3 can be used to help determine which of the packages should be installed based upon the intended use
of the target machine.

Within OpenCPI, there are two types of implementations, called Workers, that are used in this framework: Resource-
Constrained C Language (RCC) Workers and Hardware Description Language (HDL) Workers. RCC Workers are
written using either C or C++ and are designed for either x86 or ARM architecture, while HDL Workers are written
in VHDL and are designed for Field Programmable Gate Arrays (FPGAs). For further details regarding RCC and
HDL Workers see the OpenCPI RCC Development Guide and the OpenCPI HDL Development Guide.

Table 3: Main RPM Decision Guide

R
u
n
ti
m
e
R
C
C

H
os
t

R
u
n
ti
m
e
H
D
L
H
os
t

R
C
C
-O

n
ly

D
ev
el
op

m
en
t

(x
86

R
C
C

ex
cl
u
si
ve
)

R
C
C
/H

D
L
D
ev
el
op

m
en
t

(x
86

R
C
C
,
n
on

-h
y
b
ri
d
1
F
P
G
A

H
D
L
)

R
C
C
/H

D
L
D
ev
el
op

m
en
t

(T
ar
ge
ti
n
g
n
on

-x
86

H
W

/S
W

p
la
tf
o
rm

)
angryviper-ide...rpm ✓ ✓ ✓

opencpi-...rpm ✓ ✓ ✓ ✓ ✓

opencpi-devel...rpm ✓ ✓ ✓

opencpi-driver...rpm ✓ ✓ ✓

opencpi-interface-python...rpm2 ✓ ✓ ✓ ✓ ✓

opencpi-project-assets...rpm ✓ ✓ ✓

opencpi-project-bsp...rpm3 ✓ ✓ ✓

opencpi-*-platform...rpm ✓

1“Non-hybrid” meaning a standalone FPGA without an integrated processor, e.g. Xilinx ML605.
2Only required when running or developing ACIs written in python
3BSP RPMs may not be provided with the standard/basic RPMs, but represent a placeholder for

RPMs providing Board Support Package Projects. There are certain BSPs which are located in the
ocpi.assets Project and therefore do not require their own separate BSP RPMs.

The main RPMs each have specific usage. Table 4 outlines what each of the main RPMs are used for.

2All main and prerequisite RPMs can be simultaneously installed.

9

RPM Installation Guide ANGRYVIPER Team

Table 4: Main RPM Descriptions

Main RPMs Description
angryviper-ide-*.x86 64.rpm The ANGRYVIPER IDE (Eclipse with plugins). See Appendix D for

an alternative method to set up the IDE using an existing Eclipse in-
stallation.

opencpi-*.x86 64.rpm Base installation RPM includes the runtime portion of the Compo-
nent Development Kit (CDK), scripts for creating the user’s workspace,
limited documentation, and a read-only ocpi.core Project containing
framework essential components, workers, platforms, etc.

opencpi-debuginfo-*.x86 64.rpm Debug symbols needed to debug the framework.
opencpi-devel-*.x86 64.rpm Additional header files and scripts for developing new assets as HDL

and/or RCC.
opencpi-driver-*.noarch.rpm OpenCPI driver. Once installed, any subsequent kernel updates will

cause the driver to be built automatically on restart.
opencpi-hw-platform-*.noarch.rpm Additional files necessary to build the framework targeting specific hard-

ware platforms. Automatically require the appropriate sw-platform

package.
opencpi-interface-python*.x86 64.rpm This package includes SWIG bindings to allow Python-based top-level

ACI applications.
opencpi-project-assets*.noarch.rpm The ocpi.assets Project, which contains the remaining supported

OpenCPI resources, e.g. additional Platform Support, Workers, Demo
Applications, etc.

opencpi-project-bsp*.noarch.rpm A *.bsp.* Project contains a Board Support Package for a particular
platform, e.g. RCC/HDL Platform Support, Device Workers, etc. There
are certain BSPs which are located in the ocpi.assets Project and
therefore do not require their own separate BSP RPMs.

opencpi-sw-platform-*.noarch.rpm Additional files necessary to build the framework targeting specific soft-
ware platforms.

Installation may be completed using yum and the following command:

% sudo yum localinstall <location of main RPMs>/*rpm

6.2 Installing OpenCPI from Source

See Appendix C.

7 Setting up the OpenCPI Environment

Notes about installing HDL simulator(s) and/or compiler(s)

Before attempting the next section, ensure that the desired HDL simulators and HDL tools are installed. Installation
of these is outside the scope of this document.

Keep note of where the license files are, the version number of the tools, and where the tools are installed, as they
will be needed to configure the required environment variables.

10

RPM Installation Guide ANGRYVIPER Team

7.1 The opencpi Group

At this point, certain users should be added to the opencpi group. When a user creates a Project, it is likely that
the Project should be registered. Registering a Project allows other users and Projects to access its assets. The
default Registry on an RPM-configured system is located at /opt/opencpi/project-registry. In order for a user
to register Projects in this default location, the user will need to be a member of the opencpi group. To add a user
to the opencpi group, run the following command:

% sudo usermod -aG opencpi <username>

If this command is run as user <username>, the user will need to log out and back in to apply this change.

Note that users can use a non-default Project Registry. For more information on this, please visit the OpenCPI

Component Development document or the Getting Started Guide.

7.2 Setup Environment

Setting up the environment when installing from RPM requires root privileges. Navigate to $(OCPI_CDK_DIR)/env.d
and notice the following example scripts:

• altera.sh.example

• modelsim.sh.example

• site.sh.example

• xilinx.sh.example

Every time a new bash3 shell is opened, all *.sh files in /opt/opencpi/cdk/env.d are executed, and all *.sh.example
files in /opt/opencpi/cdk/env.d are ignored. To enable a script for execution, the name of the script must be changed
so that the .example suffix is removed. A simple demonstration is below:

% sudo cp altera.sh.example altera.sh

Now altera.sh will execute every time a new shell is opened.

If using the Altera tools, the altera.sh will need to be created and the variables OCPI_ALTERA_DIR, OCPI_ALTERA_
VERSION, and OCPI_ALTERA_LICENSE_FILE must be defined in altera.sh. The altera.sh script also calls another
script to set up the rest of the variables needed for the Altera tools.

If using the Modelsim tools, the modelsim.sh will need to be created and the variables OCPI_MODELSIM_DIR and
OCPI_MODELSIM_LICENSE_FILE must be defined in modelsim.sh.

If using the Xilinx tools, the xilinx.sh will need to be created and the variable OCPI_XILINX_LICENSE_FILE must
be defined in xilinx.sh. If using an installation of Xilinx Vivado that was not installed in the default /opt di-
rectory then the variable OCPI_XILINX_VIVADO_DIR must be defined in xilinx.sh. If using a version other than
the most recent one installed in that location, then the variable OCPI_XILINX_VIVADO_VERSION must be defined
in xilinx.sh. If using an installation of Xilinx ISE that was not installed in the default /opt directory then the
variable OCPI_XILINX_DIR must be defined in xilinx.sh. If not using the 14.7 version of ISE, then the variable
OCPI_XILINX_VERSION must be defined in xilinx.sh. The xilinx.sh script also calls another script to set up the
rest of the variables needed for the Xilinx tools. See the FPGA Vendor Tools Installation Guide for more information
on Xilinx license setup.

The script site.sh.example has been provided as an example central location where any other variables can be
defined globally. Remember that the names of the scripts do not matter, only the *.sh extension. More configuration
variables can be found in the Getting Started Guide.

Once all the desired scripts have been created and edited, open a new shell and check to see that the environment
is now set up.

3Some problems have been reported when the user’s shell is set to /bin/sh and not /bin/bash.

11

RPM Installation Guide ANGRYVIPER Team

7.3 Removing OpenCPI RPMs

In the event that the OpenCPI RPM needs to be uninstalled, or reinstalled, the best way to remove the OpenCPI
RPM is to use yum to erase the RPMs from Table 4 as seen below:

% sudo yum erase <RPM name>

8 Testing the OpenCPI installation

To verify the OpenCPI installation run the following command from a new terminal4:

% test-opencpi-rpm

A successful install will output “All tests passed.” at the end of the test.

4This command is only available if the -devel package was installed.

12

RPM Installation Guide ANGRYVIPER Team

Appendices

A Prerequisite Modifications

This section provides an overview of changes made to various Free and Open Source software required to be im-
plemented within the Framework. Exact diff files and various sources are available upon request. Implied with
every list are patches to the build configuration to allow the library’s final installation location to be under the
/opt/opencpi/prerequisite tree, along with cross-compilation targeting various platforms.

A.1 Analog Devices’ AD9361 no-OS Library

Source: https://github.com/analogdevicesinc/no-OS

• Patches to allow older compilers to compile (missing stdint.h includes)

• Move some top-level structs from common.h into ad9361.h to limit scope of items, e.g. “struct clk”

A.2 GNU Multiple Precision Arithmetic Library (GMP)

Source: https://ftp.gnu.org/gnu/gmp/gmp-6.1.1.tar.xz

• A wrapper file, gmp-mparam.h, replaces the original one. This wrapper file is provided by Red Hat and used
in their RPM packaging of gmp.

A.3 Google Test (GTEST)

Source: https://github.com/google/googletest/archive/release-1.7.0.zip

• Removed most tests and examples

• Removed non-gcc source

A.4 Liquid DSP

Source: https://github.com/jgaeddert/liquid-dsp.git (tied to specific git hash)

• Nothing beyond configuration modifications noted above

A.5 Lempel-Ziv-Markov chain algorithm (LZMA/XZ)

Source: https://github.com/xz-mirror/xz/releases/download/v5.2.2/xz-5.2.2.tar.xz

• CentOS 6: Lower build environment expectations to autoconf 2.63, automake 1.11, and gettext 0.17

• CentOS 7: Nothing beyond configuration modifications noted above

A.6 PatchELF

Source: https://github.com/NixOS/patchelf.git (tied to git tag 0.9)

• Add new command-line option (--ocpi-fix-soname) that removes the suffix _s.so in an ELF’s SONAME and
replaces it with .so using only string manipulations (no sections are created or modified).

13

https://github.com/analogdevicesinc/no-OS
https://ftp.gnu.org/gnu/gmp/gmp-6.1.1.tar.xz
https://github.com/google/googletest/archive/release-1.7.0.zip
https://github.com/jgaeddert/liquid-dsp.git
https://github.com/xz-mirror/xz/releases/download/v5.2.2/xz-5.2.2.tar.xz
https://github.com/NixOS/patchelf.git

RPM Installation Guide ANGRYVIPER Team

B Appendix - Building OpenCPI RPMs

This section does not cover fundamentals such as basic Linux usage, cloning the git repository, etc.

B.1 Prerequisites to Building

This document assumes that you already have:

• A working CentOS-based system (or docker container / virtual machine)

Fully updated with yum upgrade5

• A git clone of the repository

• The GCC suite (e.g. the gcc-c++ RPM)

• GNU Make (make)

• A cross-compiler for target systems

This document uses Xilinx’s EDK

• Certain packages already installed that are called out in each RPM’s specfile’s BuildRequires tag.

This can usually be resolved with sudo yum install missingpkg or the more advanced repoquery

--whatprovides /path/to/missing/file.

The build system is pretty good about indicating what is missing (cf. B.1.1 for example)

Some require the EPEL Repository (provided by the epel-release RPM)

• Both 32- and 64-bit versions of glibc-static and glibc-devel installed

sudo yum install glibc{,-static,-devel}{,.i686}

B.1.1 Example of Required Packages

As an example, to build the prerequisite RPMs on a fresh CentOS 7 docker container, the build actually took eight

iterations to get all required packages installed to build all for the host:

$ yum install -y git make

$ make prereq

$ yum install -y gcc mlocate rpm -build

$ make prereq

$ yum install -y glibc -devel.i686

$ make prereq

$ yum install -y libgcc.i686

$ make prereq

$ yum install -y ed

$ make prereq

$ yum install -y autoconf automake libtool

$ make prereq

$ yum install -y gcc -c++

$ make prereq

$ yum install -y gettext -devel

$ make prereq # Success!

5Skipping this may result in “multilib” errors in yum due to installing the latest 32-bit version of a tool when the installed 64-bit
version is out of date.

14

RPM Installation Guide ANGRYVIPER Team

B.2 Prerequisite RPMs

See Section 5 for an overview of the prerequisite RPMs that will be built and Appendices starting with A.1 for how
the source code for each is modified.

To build all prerequisite RPMs:

1. Change to the releng subdirectory

2. export CROSS FAIL OK=1

3. make prereq

If applicable, the build system will build an RPM for each target platform for each prerequisite. After the builds are
complete, the RPMs will be copied into the prereq directory and listed. If you are missing a specific cross-compiler,

that platform will be skipped unless explicitly requested (because of the CROSS_FAIL_OK).

There are other prerequisite-related make targets available (cf. Table 5); running make help in releng will present
additional information, e.g. make prereq-host will only build for the host machine.

B.3 Building Main RPMs

Note: This section assumes the prerequisite RPMs have been installed. If they were built on another machine, then
other required RPMs must be installed as well; they will be requested by the build system6.

The RPM-building Makefile has various targets which are shown by running make from within the releng subdi-
rectory. A sampling:

Table 5: releng directory make targets

Target Result
clean Remove generated files
prereq Builds the prerequisite RPMs

(described above)
cdk The CDK RPMs (base libraries and runtime)

cdk-all The CDK RPMs (all platforms)
driver The driver RPM

If you are making modifications to the framework, to rebuild for testing the command make cdk is usually sufficient.

B.3.1 Common Problems

If you are having trouble building the RPMs, please ensure:

• All of the prerequisite packages listed above are installed.

Remove any manually-installed versions if applicable.

sudo yum install releng/prereq/*rpm

• The cross-compilers can be found.

For example, if you installed the cross-compilers today, “sudo updatedb” will refresh the locate com-
mand’s database.

• Attempt your build independent of RPM building (see Appendix C).

Note: This can interfere with RPM builds and you must clean up the non-RPM build files with make

distclean or git clean -fdx.

6The ones without 1:1 direct RPM names are covered in section B.1

15

RPM Installation Guide ANGRYVIPER Team

B.3.2 Debugging Your Build Process

If you are having trouble compiling the source code there are a few options to try:

• Examine the automatically generated log file, build.log (or build-platform.log).

• Disable multithreaded building by removing %{?_smp_mflags} from the specfile.

This will help you trace the error message by processing source files serially, keeping error messages in
build.log local to each other.

16

RPM Installation Guide ANGRYVIPER Team

C Appendix - Building OpenCPI from Source

When installing OpenCPI from RPM, there is no need to build the OpenCPI Framework from source and the
ANGRYVIPER Team does not recommend this process for standard users. However, there are certain conditions
where it may be appropriate, such as:

1. Contributions to the OpenCPI architecture

2. Utilization of the latest features between releases

3. Identification and troubleshooting of bugs

This section only applies to the ANGRYVIPER Team’s branch(es) of OpenCPI.
Consult the standard Installation Guide for more information as well as commands to be

used elsewhere.

C.1 Prerequisites

Before building from source, ensure that the OpenCPI prerequisites are installed (cf. section 5). If you need to
rebuild the RPMs for the prerequisites, see appendix B.2

To build from source, there are additional packages beyond the prerequisites that need to be installed. The primary
ones are: gcc, gcc-c++, automake, autoconf, and libtool. The most efficient method to install these is through
the yum group “Development Tools”7.

% sudo yum groupinstall development

C.2 Git Access

Open a terminal window, change directories to the location the framework should be checkout in:

% git clone https://github.com/opencpi/opencpi

This will create an opencpi subdirectory and populate it with the current master branch of the OpenCPI code base.
Change into this directory before issuing further commands:

$ cd opencpi

By default, the git clone operation downloads the master branch of the git repository. The master branch points
to the latest stable release of the framework. This stable release will correlate to a git tag version.

The OpenCPI releases are identified by version numbers, as explained in section 6 OpenCPI RPM naming convention
with major.minor.subminor releases. The release compatibility policy is to maintain component binary compatibility
within the sub-minor releases, and API source compatibility (requiring rebuilding) for minor releases.
To set the release of the codebase downloaded, use the git checkout command with the release tag as an argument:

$ git checkout release_1.3_rc

7yum grouplist --verbose shows the development alias.

17

RPM Installation Guide ANGRYVIPER Team

C.3 Building OpenCPI From Source

Set the OCPI_CDK_DIR variable, from the top level of the repository:

$ export OCPI_CDK_DIR=$(pwd)/exports

The provided ocpi-configure script wraps the “usual” GNU autotools commands like reconf and configure.
From the top level of the repository, run the following:

$./ocpi-configure

$ make -j

To cross-build for a target RCC platform, instead of calling ocpi-configure, you call cross-configure. To use this
script, you must configure the variable OCPI_TARGET_PLATFORM. See the standard documentation for more details.
An example:

$ export OCPI_TARGET_PLATFORM=xilinx13_3

$./cross-configure

$ make -j

Note: To use the recently-installed CDK, you will need to add $(pwd)/exports/bin/linux-c7-x86_64/ (or ap-
propriate host platform) to your PATH variable.

18

RPM Installation Guide ANGRYVIPER Team

D Appendix - Add the ANGRYVIPER IDE to Eclipse using the Plugin

The ANGRYVIPER IDE is constructed using the Eclipse Neon release and a plugin developed by the ANGRYVIPER
team. Since the entire IDE is too large to be placed on GitHub, the following instructions may be used to obtain
the IDE by downloading Eclipse and installing the plugin as an Eclipse drop-in.

Download Plugin JAR

1. Obtain the latest ANGRYVIPER plugin jar file

wget https://opencpi.github.io/ide/av.proj.ide.plugin_1.3.jar

D.1 Eclipse (Neon Release)

1. Download the Eclipse Neon IDE for C/C++ Developers

URL: https://www.eclipse.org/neon/

2. Install Eclipse by extracting the archive in the desired location

3. Start Eclipse

Go into the folder where it was installed and click/run eclipse

4. Put the av.proj.ide.plugin_*.jar file in the eclipse/dropins folder

5. Install Sapphire via the Eclipse Marketplace

In Eclipse, navigate to “Help → Eclipse Marketplace”. Search for “Sapphire”. There should be one search
result for Sapphire. Click the “Install” button. Sapphire and its dependencies will be installed.

6. Restart Eclipse when prompted.

7. Eclipse now has the ANGRYVIPER IDE functionality.

D.2 Eclipse (Oxygen Release)

The process to construct the IDE is the same as described above using the Oxygen release for C/C++ Developers.

Note: At this time, the ANGRYVIPER Team has not been able to 100% verify using the plugin in Oxygen release.
Eclipse Oxygen changed an API that caused problems for Sapphire, and Sapphire 9.1.1 has been released to correct
the issue. The unknown part of the process is whether or not the Eclipse Marketplace will have the new version of
Sapphire. If it does not, it can be installed manually as follows:

1. In Eclipse, navigate to “Help → Install New Software”.

2. Add the Sapphire 9.1.1 repository

Click the “add” button (to add a new repository site), fill in the popup form:

name: Sapphire9.1.1

location: http://download.eclipse.org/sapphire/9.1.1/repository/

3. Click “OK” to add it

4. Select the down arrow at the end of the “work with:” input. Select the new Sapphire repository.

5. Select Sapphire. If Samples and Tests appear in the list; deselect them.

6. Install

19

	References
	Document Overview
	Acquiring the OpenCPI framework
	Installing FPGA vendor tool prerequisites
	Installing OpenCPI third-party prerequisites
	Installing OpenCPI framework
	Installing OpenCPI from RPMs
	Installing OpenCPI from Source

	Setting up the OpenCPI Environment
	The opencpi Group
	Setup Environment
	Removing OpenCPI RPMs

	Testing the OpenCPI installation
	Appendices
	Prerequisite Modifications
	Analog Devices' AD9361 no-OS Library
	GNU Multiple Precision Arithmetic Library (GMP)
	Google Test (GTEST)
	Liquid DSP
	Lempel-Ziv-Markov chain algorithm (LZMA/XZ)
	PatchELF

	Appendix - Building OpenCPI RPMs
	Prerequisites to Building
	Example of Required Packages

	Prerequisite RPMs
	Building Main RPMs
	Common Problems
	Debugging Your Build Process

	Appendix - Building OpenCPI from Source
	Prerequisites
	Git Access
	Building OpenCPI From Source

	Appendix - Add the ANGRYVIPER IDE to Eclipse using the Plugin
	Eclipse (Neon Release)
	Eclipse (Oxygen Release)

