
RASPBERRY PI SETUP GUIDE
BEFORE YOU START

Download and install Etcher from etcher.io. Etcher is among the easiest options for writing a Pi
OS image to a microSD.

WINDOWS USERS

Download and install Bonjour Print Services for Windows (current version 2.0.2) from Apple.
Microsoft is only beginning to embrace standard Zeroconf protocols, such as multicast DNS
(mDNS). Bonjour services fill in the gaps and streamlines the process of connecting to your
Raspberry Pi.

Install an SSH client. You'll already have SSH if you have installed Git for Windows with the Git
BASH environment.

Install a text editor that supports Unix-style line endings, e.g., Atom or Notepad++.

LINUX USERS

Using your default package manager, install Avahai MDNS services.

INSTALL RASPBIAN

The Raspberry Pi is built with Linux distributions in mind. The official distribution, which we'll use in
our labs is known as Raspbian and is based on Debian. If you're familiar at all with Ubuntu, you
should be mostly at home working in Raspbian. Don't worry if Linux is not your jam. We'll provide
plenty of guidance so that you can focus your energy on the network concepts.

INSTALL RASPBIAN

Download a current image of Raspbian from http://www.raspberrypi.org/downloads. If access
to a graphical Linux desktop is not important to you, I'd recommend Raspbian Jessie Lite.
Otherwise, download the larger image including the PIXEL desktop environment.

Use Etcher to write the image you've downloaded to a microSD. Depending on how you
downloaded Raspbian, you may need to unzip the image file. The correct file extension for the
disk image is .img.

Be aware that this process will overwrite any data you currently have stored on the card.

UPDATE CONFIGURATION

Etcher will eject the microSD when the image is completely rewritten. Since we want to edit
some files on the SD, you will need to briefly remove the card before inserting it again.

On macOS or Windows, you'll be limited to accessing the boot partition of the card. Use Explorer
or Finder to locate and open the partition.

ENABLE SSH

Due to security considerations, the newest versions of Raspian disable SSH by default, but it's
easy to turn the feature on so that we can use it for initial setup.

To enable SSH on the first boot, add an empty file named ssh to /boot. An easy way to create
this file from the terminal (Git BASH on Windows) is to navigate to the boot volume (may show up
as a drive letter on Windows) and to run touch ssh. On the Mac, this looks like:

cd /Volumes/boot
touch ssh

Raspbian will check for this file during the first startup and proceed to configure the SSH daemon
start automatically. The term daemon, by the way, is the name Unix operating systems use to
describe a network service.

CONFIGURE USB ETHERNET FOR PI ZERO

The Pi Zero does not have a physical Ethernet port, but it can be configured to operate in
Ethernet Device mode over USB. Since we're building our networking skillset, we'll rely on this
feature along with a variety of remote console/desktop protocols to access the Pi.

Open /boot/config.txt in a text editor that supports Unix-style line endings. Navigate to the
end of the file and add the following statement on its own line:

dtoverlay=dwc2

Now open /boot/cmdline.txt and look for the keyword rootwait. Immediately after
rootwait, insert the following statement:

modules-load=dwc2,g_ether

The boot process on the Pi is sensitive to formatting. Confirm that you entered the preceding
statements exactly as shown without any additional whitespace surrounding the equal sign or
comma. The modules-load statement should be separated from surrounding commands with a
single leading and trailing space.

INITIAL BOOT

It's time to boot the Pi for the first time. Close your editor and any windows that are open to the
microSD so that you can eject the card gracefully from your OS. Remove the card insert into the
card slot on your Raspberry Pi.

Connect power to the designated micro-USB port on the Pi. Connect Ethernet (Pi 3) or USB (Pi
Zero) and get ready to launch an SSH connection.

From terminal (Git BASH on Windows), connect to the Pi for the first time by running the following
command:

ssh pi@raspberrypi.local

SSH will ask you to accept the connection of an unknown device before presenting you with a
password prompt. The default password for the pi user is raspberry.

Before proceeding further with setup, you should change the default password and configure a
unique hostname. Both options are available in Raspbian's menu-based configuration utility.

To access this utility, run sudo raspi-config from SSH. Review basic and advanced options
and make changes as needed.

CONNECT TO WIFI

To complete this guide, you will need to establish Internet connectivity for your Pi. Since the Pi 3
and Pi Zero W, we can solve the problem by connecting to local wifi. This approach is not the
only solution.

We could modify the settings for the wired connection to obtain a local address from DHCP and
attach the Pi directly to an open switch port on our LAN. We'll still be able to SSH using the
hostname with the .local suffix. The same physical connection will also provide access to
Internet routable addresses.

Another option is to configure your workstation to share its Internet connection with the link
we've established to the Pi. This process can be a bit confusing, as it requires us to enable
Internet connection sharing and to set up static IP addresses on each end of the physical link.

Our wifi solution blends the advantages of the first option with the freedom of wireless. Likewise, it
will pave the way for future projects.

CONFIGURE DHCP FOR WLAN0

When we connect to our wireless network, we want to ensure that it obtains an IP address
automatically through DHCP. We can enable DHCP for the wireless interface by modifying the
default settings for wlan0 stored in /etc/network/interfaces. If you're new to working in the
Linux terminal, you can edit this file using nano.

CONFIGURE WPA_SUPPLICANT

Wireless settings for the Pi are controlled by a service called wpa_supplicant, which stores
network connection settings inside /etc/wpa_supplicant.conf.

A minimal network entry contains the ESSID, i.e., the name of the network, and the passphrase (if
configured) as in the following example:

network={
 ssid="My Fancy Wifi"
 psk="super secret squirrels"
}

If you don't feel comfortable storing the password in plaintext, you can use a utility called
wpa_passphrase to generate the raw encryption key for the network as follows:

wpa_passphrase "My Fancy Wifi" "super secret squirrels"

Some networks don't have encryption enabled. When configuring such a network, you will
replace the psk variable with key_mgmt=NONE.

Once you've determined the appropriate setup for the file, add it to the end of the existing
wpa_supplicant.conf using nano. The network connection should be established
automatically once you save the file. You can check by running ifconfig wlan0 and checking
that a proper IP address has been configured. It is sometimes necessary to reset the underlying
process by calling sudo wpa_cli reconfigure.

UPDATE SOFTWARE PACKAGES

Let's finalize the initial setup by checking for updates to Raspbian and its default packages (this
can take awhile).

sudo apt-get update
sudo apt-get upgrade
sudo apt-get dist-upgrade

ENABLE REMOTE EDITING

Editing configuration files is something we need to do quite often. We can always work with files
using nano or other CLI-based editors, but these tools do have a steep learning curve. You may
not be aware that some of the most popular text editors support network-based editing of
remote files through SSH. While this configuration can be mildly confusing, the payoff is typically
worth the effort.

Remote editing will rely on a Pi-based client that connects to a server running inside your local
text editor. The client and server communicate through an application protocol called rmate
that piggybacks on the SSH connection between two endpoints.

We'll approach setup in three parts. First, we'll configure a local text-editor to run an rmate
server. Once the server is running, we will establish an SSH-tunnel between workstation and Pi.
Finally, we'll install the client script on the Pi and use it to load a file. Pay close attention to this
process. While the installation of the server and client is a one-time process, you must launch the
server and initiate the SSH tunnel each time you want to edit remote files.

INSTALL AND LAUNCH SERVER

To get started, open a new window in an editor that supports the rmate protocol. Rmate is
natively supported in TextMate, but can be added through third-party plugins for a variety of
popular editors, including: Atom, Sublime Text, and Visual Studio Code. I'll use Atom, a cross-
platform editor from Github that can be downloaded from Atom.io.

Plugins in Atom are managed from preferences. Launch Atom, open preferences and look for
remote-atom in the plugin repository. Once the plugin is installed, you'll be able to configure
further preferences to change the port on which the server listens or to launch automatically
with Atom.

You can manually start the server from the Packages Menu, by extending sub-menus for Remote
Atom and selecting Start Server. By default, the server will listen to port 52698 on the loopback
network of your workstation.

LAUNCH REVERSE SSH

The loopback network is not accessible from external hosts, including your Raspberry Pi. As
mentioned before, we use SSH to build a path from the Pi back to the server. The SSH process will
redirect new rmate sessions to the listening server on our loopback network. Close your existing
SSH session by running the exit command from within the session, and use the following
command to launch a reverse SSH connection that forwards rmate packets to the server on the
loopback:

ssh 52698:127.0.0.1:52698 pi@raspberrypi.local

INSTALL CLIENT

Finally, we need to install an rmate client on the Pi. The following commands will download the
the rmate script from Github to /usr/local/bin and update its file permissions to allow it to
execute:

wget -O /usr/local/bin/rmate
https://raw.githubusercontent.com/aurora/rmate/master/rmate

sudo chmod a+x /usr/local/bin/rmate

START EDITING

You can now edit a file by calling rmate from within the SSH session you've established to the Pi
and passing the name of a file as an argument. If everything works as intended, Atom will open
a new tab to edit your file. As long your network connection remains healthy, changes you save
from Atom will be pushed directly to storage on the Pi.

As always, you should save changes regularly. You may also consider creating a backup of
important configuration files before making changes. Finally, don't forget to use sudo if the file
you are editing requires elevated privileges.

The following example demonstrates these concepts and launches a remote editing session to
modify network interfaces configuration:

sudo cp /etc/network/interfaces ~/interfaces.bak
sudo rmate /etc/network/interfaces

Be sure to save and close the file from Atom when you're finished working.

GRACEFUL SHUTDOWN

Don't just yank the power from your Pi when it's time to quit. You should always issue a proper
shutdown via SSH before to prevent data loss or corruption of the microSD.

From an SSH connection, run sudo shutdown -h now. If you ever need to reboot the Pi, you
can use the same command in conjunction with the -r option.

After halting the Pi, wait about 20 - 30 seconds to allow the Pi to complete the process before
disconnecting the power.

TROUBLESHOOTING

Make sure that you've installed an mDNS client as described early in this document. Though
mDNS is now a draft standard, Microsoft has not included a full implementation yet as of
Windows 10.1. If you are missing mDNS, you are likely to receive an error the first time you
connect to the Raspberry Pi.

If you are sure that mDNS is installed correctly, you will need to check the configuration of the
Ethernet port or USB device on your local computer. Run ipconfig on Windows or ifconfig on
other devices to confirm that the port registers a network connection. The local IPv4 address for
this port should begin with 169.254.x.x.

If you are connecting the Raspberry Pi Zero via USB or using a USB Ethernet port for the first time
on your computer, it's possible that your first attempt to connect will be unsuccessful. Many of
these issues are resolved by disconnecting the USB briefly and trying after you have plugged
everything back in. If issues persist, search online to determine whether your computer is missing
a driver needed for the Ethernet adapter.

At some point, you are likely to receive an error or warning related to SSH. In most cases, what
you are seeing is expected behavior. The first time you connect to a host, SSH will bind a
cryptographic signature to the hostname, e.g., raspberrypi.local. SSH will let us know if
another host provides the same name with a different signature. Most of the time, SSH will tell us
how to resolve the problem. Likely, you will need to edit the known_hosts file and remove the
specified line number.

