
RTA-RTE V6.3.0
User Guide

RTA-RTE V6.3.0
User Guide

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this doc-
ument. The software described in it can only be used if the customer is in possession
of a general license agreement or single license. Using and copying is only allowed in
concurrence with the specifications stipulated in the contract. Under no circumstances
may any part of this document be copied, reproduced, transmitted, stored in a retrieval
system or translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2017 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

Document: 10666-UG-001 EN - 10-2017

Revision: 68240 [RTA-RTE 6.3.0]

This product described in this document includes software developed by the Apache
Software Foundation (http://www.apache.org/).

2 Copyright

RTA-RTE V6.3.0
User Guide

Contents

1 About this Manual 7
1.1 Document Conventions . 9
1.2 Acronyms and Abbreviations . 9

I Introduction and Overview 11

2 Introduction to the RTE 12
2.1 What is a Run-Time Environment (RTE)? 13
2.2 Software Components . 14
2.3 Interfaces . 18
2.4 Software Component Behavior . 21
2.5 Services . 25

3 Introduction to RTE Configuration 26
3.1 Understanding XML . 26
3.2 Understanding AUTOSAR XML . 27
3.3 ECU Configuration Description . 33

4 Working with the RTE Generator 36
4.1 Contract Phase . 37
4.2 RTE Phase . 39
4.3 Basic Software Phase . 41
4.4 The Development Process . 42
4.5 Samples . 42

II Developing Software Components 45

5 Type System 46
5.1 Application Data Types . 46
5.2 Base Types . 50
5.3 Implementation Data Types . 51
5.4 Type Mappings . 60
5.5 Application Types And Numerical Representations 61
5.6 Expressing Values in Physical Units or Numerical Representation . . 66

6 Interfaces 69
6.1 Sender-Receiver . 69
6.2 Nv-Data . 70
6.3 Mode-Switch . 71
6.4 Client-Server . 72
6.5 Calibration . 73
6.6 Trigger . 74

7 Software Component Types 75
7.1 Ports . 76
7.2 Communication Specifications . 77

Contents 3

RTA-RTE V6.3.0
User Guide

8 Internal Behavior 83
8.1 RTE Events . 84
8.2 Runnable Entities . 86
8.3 Responding to Periodic Events . 87
8.4 Sending to a Port . 88
8.5 Receiving from a Port . 90
8.6 Responding to a Server Request on a Port 94
8.7 Making a Client Request on a Port 95
8.8 Direct Trigger of a Runnable Entity 100
8.9 Exclusive Areas . 102
8.10 Inter-Runnable Variables . 106
8.11 Accessing Modes . 107
8.12 Per-instance Memory . 107
8.13 Port Options . 108
8.14 Supporting Multiple Instantiation . 109
8.15 Memory Allocation . 110

9 Modes 111
9.1 Defining Modes . 111
9.2 Mode Communication . 111
9.3 Using Modes . 115
9.4 Understanding Mode Instances . 118
9.5 Fast Init . 119
9.6 Synchronizing Modes . 120
9.7 Non-AUTOSAR Functionality . 120

10Implementing Software Components 122
10.1 Basic Concepts . 122
10.2 Application Source Code . 124
10.3 Single and Multiple Instances . 125
10.4 Runnable Entities . 126
10.5 Sender-Receiver Communication . 132
10.6 Client-Server Communication . 135
10.7 Using Inter-Runnable Variables . 136
10.8 Accessing Parameters . 136
10.9 Accessing Per Instance Memory . 137
10.10 Concurrency Control with Exclusive Areas 137
10.11 Starting and Stopping the RTE . 139

11NVRAM 140
11.1 NV-Block Software Component Types 140
11.2 Interaction with Application SWC . 143
11.3 Interaction with the NVRAM Manager 143

III Developing Basic Software 145

12Basic Software 146
12.1 Basic Software Modules . 146

4 Contents

RTA-RTE V6.3.0
User Guide

12.2 Interaction with the RTE . 147
12.3 API . 152

IV Composition 154

13Composing Software Components 155
13.1 Composition Type Definition . 155
13.2 Component Instances . 156
13.3 Connector Prototypes . 156
13.4 FlatMaps . 167
13.5 Data Conversion . 173

14Composing Basic Software 180
14.1 Instantiation . 180
14.2 BSW Scheduler . 181
14.3 Connections . 181

15Synchronizing BSW and SWC 183
15.1 Configuration . 183
15.2 Synchronized Mode Groups . 185
15.3 Synchronized Triggers . 186
15.4 Synchronized Runnable Entities . 187

16Accessing NVRAM 189
16.1 Configuration . 189
16.2 Access from Application SWCs . 191
16.3 Access from the NVRAM manager 193

V Deployment 196

17Defining the ECUs and the Networks 197
17.1 ECU Type Definition . 198
17.2 ECU Instances . 199

18Mapping Software Components to ECUs 200
18.1 Mapping Component Prototypes . 200
18.2 SWC Implementation Selection . 201
18.3 Configuring Service Components on an ECU 202
18.4 Mapping Runnable Entities to Tasks 203
18.5 How Runnables get activated . 205

19Inter-ECU Communication 210
19.1 System Communications . 210
19.2 Inter-ECU Sender-Receiver Communication 215
19.3 Inter-ECU Client-Server Communication 218

20Using the OS and COM Configurations 223
20.1 Operating System Configuration . 224
20.2 Communication Stack Configuration 226

Contents 5

RTA-RTE V6.3.0
User Guide

21Debugging Implementations with VFB Tracing 228
21.1 Enabling Tracing . 228
21.2 Supported Trace Events . 228
21.3 Configuration . 231
21.4 Trace Event Header File . 231
21.5 Implementing Hook Functions . 231

22Data Transformation 233
22.1 Extent of support . 233
22.2 Enabling data transformation in an input configuration 236
22.3 Working with data transformation 239

VI Advanced Concepts 240

23RTE Generation 241
23.1 Identifier length . 241

24Operating System Considerations 242
24.1 OS Trigger Selection . 242
24.2 Task Recurrence . 242
24.3 Schedule Points . 243
24.4 Basic and Extended Tasks . 244
24.5 Forced-basic semantics . 245

25Understanding Deployment Choices 248
25.1 Intra-task . 248
25.2 Inter-task . 250
25.3 Inter-task Client-Server . 252
25.4 Inter-ECU . 253

26Optimization 260
26.1 Buffers for Inter-ECU Reception . 260
26.2 Direct invocation of the RTE API . 260
26.3 Sender-Receiver Communication . 261
26.4 Client-Server Communication . 262
26.5 Function Elision . 263
26.6 Init Runnables . 264
26.7 Data Consistency . 265
26.8 Tips . 266

27RTE Architecture 267
27.1 Component Data Structure . 267
27.2 Component Instance Handle . 268
27.3 The RTE API Implementation . 269

VII Support 272

28Contact, Support and Problem Reporting 273

6 Contents

RTA-RTE V6.3.0
User Guide

1 About this Manual

The RTA-RTE User Guide describes how to install the ETAS AUTOSAR Run-Time Environ-
ment (RTE) generation tools and how to configure, build and deploy RTE-based software
components on electronic control units.

The RTA-RTE User Guide is structured along the lines of a top-down development using
the RTE, taking users from software component configuration and development with
the RTE, through system configuration and software component deployment to final
integration of an RTE-based ECU.

• Part I, Introduction and Overview

• Chapter 2 introduces the fundamental building blocks for applications designed
for the AUTOSAR software architecture. The chapter explains how the RTE pro-
vides the environment by which AUTOSAR applications run, interact and ex-
change data at runtime.

• Chapter 3 outlines the key aspects of the RTA-RTE configuration language.

• Chapter 4 explains the wider scope of an AUTOSAR development process and
how RTA-RTE supports the process.

• Part II, Developing Software Components presents a guide to the RTE for Software
Component Engineers.

• Chapter 5 explains the AUTOSAR type system and how implementation and
application types interact.

• Chapter 6 explains how to define sender-receiver and client-server interfaces
that use the data types and can be used by software components to communi-
cate.

• Chapter 7 describes how to define the external view of a software component.

• Chapter 8 shows how to define the threads of control, called runnable entities,
that will be executed to trigger or respond to RTE communication.

• Chapter 9 explains how to use the RTA-RTE provided support for AUTOSAR
application modes and how software components can trigger activity when a
mode changes.

• Chapter 10 shows how to write code to interface with the RTE, use the RTE API
in application code to communicate with other applications, build in run-time
fault tolerance and protect critical data.

• Chapter 11 shows how to write code to create non-volatile data and to interface
with the AUTOSAR NVRAM manager module.

• Part III, Developing Basic Software presents a guide to the development of Basic
Software using RTA-RTE.

• Chapter 12 explains how to create Basic Software modules for use with the
RTA-RTE.

About this Manual 7

RTA-RTE V6.3.0
User Guide

• Part IV, Composition presents a guide to the RTE for Software System Integrators.

• Chapter 13, Composing Software Components explains how to create instances
of software components, configure instance attributes like the number of
queued data elements that can be received and compose the instances of soft-
ware components to create a logical software system.

• Chapter 14, Composing Basic Software explains how to create basic software
module instances and how to configure their connections.

• Chapter 15, Synchronizing Basic Software explains how to synchronize
runnables, modes and triggers between basic software module instances and
SWC instances.

• Chapter 16, Accessing NVRAM explains how to access non-volatile data from
application software.

• Part V, Deployment presents a guide to the RTE for ECU and Vehicle Integrators.

• Chapter 17 shows how to define the types of ECU, protocol and communication
frames that will be present in your system.

• Chapter 18 describes how to map the software architecture created during
the composition stage onto the hardware architecture created in the previ-
ous chapter and how to map the runnables of a software component into tasks
provided by the AUTOSAR OS.

• Chapter 19 describe how to map sender-receiver and client-server communica-
tion between software components located on different ECUs onto the underly-
ing AUTOSAR COM communication basic software module.

• Chapter 20 shows how to use the generated OS and COM configuration files in
your application.

• Chapter 21 explains how to use the hook calls embedded within a generated
RTE to trace RTE events and communication.

• Chapter 22 explains how to serialize and transform communication between
software components.

• Part VI, Advanced Concepts

• Chapter 23 explains additional configuration options for generation of RTEs us-
ing RTA-RTE.

• Chapter 24 explains Basic and Extended tasks, and how the RTE interacts with
these OS features.

• Chapter 25 explains how the RTE API calls work when software components are
mapped to the same task, the same ECU or different ECUs.

• Chapter 26 explains how the RTA-RTE optimizes the generated RTE and how
application mapping can affect the scope for optimization.

• Chapter 27 explains how the RTE application specific headers provide the ab-
stractions that make the RTE work and how they encapsulate optimizations.

• Part VII, Support

8 About this Manual

RTA-RTE V6.3.0
User Guide

• Chapter 28 explains how to contact ETAS to obtain technical support for RTA-
RTE.

1.0.1 Related Documents

The RTA-RTE Reference Manual provides a complete reference for the RTE including:

• The syntax of the RTE configuration language.

• The features and functionality of the RTE Generation tool.

• The RTE naming conventions.

• A complete RTE API call reference.

• Dependencies on AUTOSAR Basic Software Modules.

1.0.2 Who Should Read this Manual?

You should read the RTA-RTE User Guide if you need to configure, generate or use a run-
time environment for an embedded electronic control unit (ECU). Basic familiarity with
the concepts of the AUTOSAR software architecture and knowledge of C programming
are assumed.

Readers of this document are assumed to be familiar with the RTA-RTE Getting Started
Guide.

First time users of the RTE should read this document for a detailed description of what
features and facilities the RTE provides to software components.

1.1 Document Conventions

Notes that appear like this contain important information that you need to
be aware of. Make sure that you read them carefully and that you follow any
instructions that you are given.

Notes that appear like this describe things that you will need to know if you
want to write code that will work on any target processor.

In this guide you’ll see that program code, header file names, C type names, C functions
and API call names all appear in the monospaced typeface. When the name of an object
is made available to the programmer the name also appears in the courier typeface,
suitably modified in accordance with the RTE naming conventions. So, for example, a
runnable called Runnable1 appears as a handle called Runnable1.

1.2 Acronyms and Abbreviations

About this Manual 9

RTA-RTE V6.3.0
User Guide

AUTOSAR AUTomotive Open System ARchitecture - a standard-
ized software architecture targeted at automotive ap-
plications aimed at fostering the reuse of applica-
tion software over multiple vehicle platforms. See
http://www.autosar.org.

BSW AUTOSAR Basic Software, see Chapter 12.

C/S Client-server communication, see Section 6.4.

ECUC AUTOSAR ECU Configuration

IOC Inter-OsApplication Communication

RTA-OS An AUTOSAR SC1-SC4 and OSEK 2.2.3 compatible operat-
ing system from ETAS GmbH.

RTA-OSEK An AUTOSAR SC1 and OSEK 2.2.3 compatible operating
system from ETAS GmbH.

RTE AUTOSAR Run-Time Environment. See “Introduction to the
RTE” (Chapter 2) for further details.

RTA-RTE The ETAS AUTOSAR RTE Generator Product. This includes
the AUTOSAR RTE Generator Tool responsible for reading
the AUTOSAR XML configuration and generating the RTE
and associated C header files. RTA-RTE distributions also
include the RTE library, all user documentation and an ex-
ample application.

SchM BSW Scheduler (a BSW module defined by AUTOSAR).

S/R Sender-receiver communication, see Section 6.1.

SWC An AUTOSAR Software component, see Chapter 7.

VFB Virtual Function Bus. See “Introduction to the RTE” (Chap-
ter 2) for further details.

XML eXtensible Markup Language used to describe AUTOSAR
configurations. RTA-RTE processes the input configuration
to generate the required RTE

10 About this Manual

RTA-RTE V6.3.0
User Guide

Part I

Introduction and Overview

11

RTA-RTE V6.3.0
User Guide

2 Introduction to the RTE

The RTE forms part of a layered software architecture based on the AUTOSAR layered
software architecture shown in Figure 2.1.

AUTOSAR
Software

Component 1

AUTOSAR
Software

Component n

AUTOSAR
Sensor/Actuator
Component 1

AUTOSAR
Sensor/Actuator
Component n

RTE

Memory Services
Communication

Services

I/O Hardware
Abstraction

Complex Drivers
Onboard Device

Abstraction

Memory
Hardware

Abstraction

Communication
Hardware

Abstraction

Microcontroller
Drivers

Memory Drivers
Communication

Drivers
I/O Drivers

ECU Hardware

System Services

Figure 2.1: Overview of the AUTOSAR software architecture

Application software is the name given in AUTOSAR to vehicle functions, e.g. braking
system, window wiper, seat control etc. Each application is decomposed into one or
more software components that provide a cohesive part of the application.

Software components are the atomic unit of application distribution in AUTOSAR. When
an AUTOSAR system is built, all the constituent parts of a component (the code, data
etc.) must live on the same ECU.

AUTOSAR defines two principle types of application software components:

• AUTOSAR software component—generic application-level software components
that are designed to be both CPU and location neutral. An AUTOSAR application
software component can be mapped to any available ECU during system configu-
ration, subject to constraints imposed by the system designer. The AUTOSAR soft-

12 Introduction to the RTE

RTA-RTE V6.3.0
User Guide

ware component is therefore the atomic unit of distribution in an AUTOSAR system.

• AUTOSAR Sensor/Actuator component—software components that are closely cou-
pled to some aspect of ECU hardware and are therefore typically not re-locatable
(onto a different ECU) due to their high degree of dependence on features of a
specific ECU.

In an AUTOSAR system, software component interaction is designed against a Virtual
Function Bus (VFB). The VFB provides a design abstraction that allows interacting soft-
ware components to be specified and built without detailed knowledge about which
ECU they will be allocated at integration time, how ECUs in the vehicle network com-
municate, the vehicle network topology etc.

In the VFB model, software components interact though ports which are typed by in-
terfaces. The interface controls what can be communicated and the semantics of com-
munication. The port provides the software component access to the interface. The
combination of port and interface is known as an AUTOSAR interface. Software compo-
nents are characterized by component type attributes that define how the components
interact with a interface over a port. Attributes might allow you to specify things like:

• A software component waits for data to be provided on a port.

• A software component polls a port for new data periodically.

• Acknowledgment of receipt of a sent message is required.

The VFB provides sufficient information about the logical interaction of software compo-
nents to allow software systems to be integrated and tested before system integrators
have decided on the allocation of software components to ECUs. This means that the
entire functional behavior of a system can be prototyped before the electrical architec-
ture of a vehicle, in terms of ECUs on networks, is known.

The next stage in development is system integration where software components are
allocated to ECUs and the abstract notions of communication embedded in their VFB
design are mapped to signals sent over the vehicle network. Software components
must also be bound onto the computing platform, for example, integrated into tasks
for scheduling by an operating system.

2.1 What is a Run-Time Environment (RTE)?

The VFB provides the abstraction that allows components to be reusable. The RTE
encapsulates the mechanisms required to make the VFB abstraction work at runtime.
The RTE is therefore, in the simplest case, an implementation of the VFB. However,
the RTE must provide the necessary interfacing and infrastructure to allow software
components to:

1. be implemented without reference to an ECU (the VFB model); and

Introduction to the RTE 13

RTA-RTE V6.3.0
User Guide

2. be integrated with the ECU and the wider vehicle network once this is known (the
Systems Integration Model) without changing the application software itself.

More specifically, the RTE must:

• Provide a communication infrastructure for software components.

This includes both communication between software components on the same ECU
(intra-ECU) and communication between software components located on different
ECUs (inter-ECU).

• Arrange for real-time scheduling of software components.

This typically means mapping software components onto tasks provided by an op-
erating system according to timeliness constraints specified at design time.

Application software components have no direct access to the basic software below
the abstraction implemented by the RTE. This means that components cannot, for ex-
ample, directly access operating system or communication services. So, the RTE must
present an abstraction over such services that remains consistent irrespective of where
the software components are located. All interaction between software components
therefore happens through standardized RTE interface calls.

The RTE also binds the software component architecture onto one or more ECUs. To
make the RTE efficient, this binding is done statically at build time. The standardized
RTE interfaces are automatically implemented by an RTE generation tool that makes
sure that interface behaves in the correct way for the specified component interaction
and the specified component allocation.

For example, if two software components reside on the same ECU they can use internal
ECU communication, but if one is moved to a different ECU, communication now needs
to occur across the vehicle network.

The generated RTE therefore encapsulates the variability in the software that arises
from different mappings of components to ECUs by:

• Presenting a consistent interface to the software components so they can be
reused—they can be designed and written once but used multiple times.

• Binding that interface onto the underlying AUTOSAR basic software implement the
VFB design abstraction.

2.2 Software Components

Within the two broad types outlined above, AUTOSAR defines multiple sub-types of
software component:

• Application software components.

14 Introduction to the RTE

RTA-RTE V6.3.0
User Guide

• Sensor/actuator software components.

• Service components.

• Complex device driver components.

• ECU abstraction components.

From the perspective of the RTE, however, the multiple types are largely identical and
hence, for reasons of brevity, the term “software component” is used to refer to all
types.

Software components interact through ports. There are two classes of Port:

• PPorts are used by a software component to provide data or services to other
software components. Provided ports implement senders and servers.

• RPorts are used by a software component to require data or services from other
software components. Required ports implement receivers and clients.

Figure 2.2 shows a software component with PPorts and RPorts.

Atomic
[or Sensor/Actuator]

Software
Component

Type

Sender
PPORT characterised by a SENDER-RECEIVER interface

Receiver
RPORT characterised by a SENDER-RECEIVER interface

Client
RPORT characterised by a CLIENT-SERVER interface

Server
PPORT characterised by a CLIENT-SERVER interface

Figure 2.2: Software Component with PPorts and RPorts

2.2.1 Types

All configuration items in AUTOSAR are typed. Before any particular object can be
created it is first necessary to define its type.

Each type defines the fixed characteristics of the object. In a simple case you might
define a numeric type called MyNumberType that has a range 0 to 10. This then allows
you to create a MyNumberType which can take the values in the underlying type.

The same concept applies to AUTOSAR software-components. Before you can create a
software component you must first define its component type that identifies the fixed
characteristics of a component, e.g. the port names and how ports are typed by inter-
faces, how the component behaves etc. The component type is named and the name

Introduction to the RTE 15

RTA-RTE V6.3.0
User Guide

must be unique within the system. Component type names are typically assigned when
you create components.

2.2.2 Component Types and Instances

To allow the same component to be used it needs to be instantiated at configuration
time. Furthermore, it is possible to configure a software component so that multiple in-
stantiation is possible. For example, you might write a software component to calculate
a rolling average that is used many times by different applications but with different
data set sizes. Each application could use its own instance of the same core algorithm.

Figure 2.3 shows the relationship between a component type and its instance. Here the
type is ETASoffice. Multiple instances of the ETASoffice can be defined and each one
is an instance.

ETASoffice
Atomic Software
Component Type

Stuttgart
Software

Component Instance

York
Software

Component Instance

Figure 2.3: Component Types and Instances

The distinction between type and an instance is analogous to types and variables in
convention programming languages. You would define an application wide unique type
name (the component type) and you would declare one or more uniquely named vari-
ables of the type (one or more component prototypes). For example, where we would
have int x, in a programming language we have component type instance in the RTE.

When there are multiple instances of a software component all instances of a compo-
nent type share the same code, but each instance may have private state that is not

16 Introduction to the RTE

RTA-RTE V6.3.0
User Guide

shared between different instances of the component. Consequently, each instance
you declare is given a “copy” of the private state to which it has exclusive access
through an instance handle that is generated by the RTE. Each time you call an RTE
service you must pass in the instance handle so that the component type code knows
which component instance data it should use as shown in Figure 2.4. The idea of com-
mon code and private state that is passed to functions in the RTE is analogous to the
concept of abstract data types provided by some programming languages.

User Code

RTE

Rte_APICall(Instance_Handle)

RunnableA

Figure 2.4: Passing a Component Instance handle to the RTE

All software component instances mapped to a given ECU share the same code, but
the presence of multiple runnable entities means that a software component is multi-
threaded and there exists the possibility for multiple runnable entities to be simultane-
ously executing within the same component.

For example, two software component prototypes mapped to different ECUs may both
attempt to invoke operations in the same server in a third software component in-
stance. This implies some form of concurrency control.

The RTE controls potentially conflicting access to shared resources through two mech-
anisms:

• Serialization

• Exclusive areas

Serialization is implemented automatically within RTA-RTE generated code and provides
a coarse grained mechanism that prevents concurrent execution of certain runnable
entities, such as servers.

Introduction to the RTE 17

RTA-RTE V6.3.0
User Guide

Exclusive areas provide a mechanism that allows users to have fine control over con-
currency. All exclusive areas must be defined at configuration time and are either:

• Explicitly entered and exited in user code using an RTE API; or,

• Implicitly entered and exited in RTA-RTE generated code.

The scope of exclusive areas is the component instance and they cannot therefore be
used to control concurrency between different instances of the same component type
or between instances of different component types. Consequently, exclusive areas
cannot be used to prevent concurrent access to a non-AUTOSAR resource on an ECU. If
such a mechanism is required, then a complex device driver should be implemented.

2.3 Interfaces

When an application consists of multiple software components, it may be necessary
for the software components to communicate, either to exchange data or to trigger
some function. Software components from different applications may also need to
communicate, for example a climate control system will need to communicate with
an engine management system to set the engine idle speed sufficiently high that the
engine does not stall when the air conditioning compressor is switched on.

Communication between AUTOSAR application software components is designed in
terms of ports and interfaces. The following interface types are available:

1. Sender-receiver (signal passing)

2. Client-Server (function invocation)

3. Calibration

4. Trigger

These communication models are known as interfaces in AUTOSAR. Each port on a
software component type must define the type of interface it provides or requires.

Software-component types can define individual attributes, for example the maximum
number of data elements buffered on a receiver interface, so the same interface may
have different behavior for each port in which it is used.

When a system is composed from component instances, the ports of component in-
stances are connected with an assembly connector. The assembly connector must
connect a sender to a receiver and a client to a server. Each assembly connector can
also specify attributes for the behavior between two components.

2.3.1 Sender-Receiver

Sender-receiver communication involves the transmission and reception of signals con-
sisting of atomic data elements sent by one component and received by one or more
components.

18 Introduction to the RTE

RTA-RTE V6.3.0
User Guide

An AUTOSAR configuration can define multiple sender-receiver interfaces and a soft-
ware component can reference a different interface from each port.

Each sender-receiver interface can contain multiple data elements each of which can
be sent and received independently. Data items within the interface can be simple
types like integer, float, natural etc. or more complex types like records, arrays etc. to
support simultaneous transmission where atomic transmission of related data values
is required.

Figure 2.5 shows the sender side of a sender-receiver interface that includes three
simple data elements.

Sender
Software

Component

Element1: IntegerType
Element2: FloatingPointType

ElementN: RecordType

Figure 2.5: Sender-Receiver Interface Data Elements (Sender Side)

Sender-receiver communication is one way—any reply sent by the receiver must be
sent as a separate sender-receiver communication.

An RPort of a component that requires an AUTOSAR sender-receiver interface can read
the data elements described in the interface and a PPort that provides the interface
can write the data elements.

Sender-receiver communication can be “1:n” (single sender, multiple receivers) and
“n:1” (multiple senders, single-receiver) communication shown in Figure 2.6 and Fig-
ure 2.7 respectively.

Sender-receiver “1:n” communication provides a multicast mechanism in the RTE.
When the sender transmits a signal, it is available at each receiver.

When signals are sent by multiple senders to a single receiver (“N:1” communication),
as illustrated in Figure 2.7, there is no synchronization imposed on the senders.

Application Modes

An AUTOSAR system can be configured to operate in one or more application modes
and can configure runnable entities that are activated on either entry or exit from a
mode.

Introduction to the RTE 19

RTA-RTE V6.3.0
User Guide

Sender

P1

Receiver A

R1

Receiver B

R2

Figure 2.6: Sender-Receiver 1:N Communication

Modes are communicated using sender-receiver communication and are thus defined
within a SENDER-RECEIVER interface.

2.3.2 Client-Server

Client-server communication involves a component invoking a defined “server” func-
tion in another component which may or may not return a reply.

A component type can define multiple ports categorized by client-server interfaces.

Each client-server interface can contain multiple operations each of which can be in-
voked separately. A port of a component that requires an AUTOSAR client-server in-
terface to the component can independently invoke any of the operations defined in
the interface, by making a client-server call to a port providing the service. A port that
provides the client-service interface provides implementations of the operations.

Figure 2.8 shows the server side of a client-server interface that serves trigonometric
functions to clients.

RTA-RTE supports multiple clients invoking the same server (i.e. “N:1” communication
where N > 0) illustrated in Figure 2.9.

Note that it is not possible for a client to invoke multiple servers with a single request
(i.e. “1:N” communication). A client can, or course, call more than one server by
making more than one request.

2.3.3 Calibration

Calibration interfaces are used for communication with Calibration components.

20 Introduction to the RTE

RTA-RTE V6.3.0
User Guide

Sender A

P1

Receiver A

R1

Sender B

P2

Sender C

P3

Figure 2.7: Sender-Receiver N:1 Communication

Each calibration interface can contain multiple calibration parameters. A port of a
software-component that requires an AUTOSAR calibration interface to the component
can independently access any of the parameters defined in the interface, by using
the RTE API generated for that calibration parameter on the required port. Calibration
components provide the calibration interface and thus provide implementations of the
calibration parameters.

2.4 Software Component Behavior

The software component description we have looked at so far only describes the ex-
ternal interfaces—i.e. those required for component integration. It does not define
how the code that implements the component interacts with the ports. The description
of this is called the software component’s internal behavior and defines what trigger-
ing events the component responds to and how threads of execution (called Runnable
Entities) execute when events occur.

A runnable entity, or simply runnable, is a piece of code in a software component that
is triggered by the RTE at runtime1.

Figure 2.10 shows the internal behaviour for a software component. Note that a

1A runnable is similar in concept to a task in an OSEK Operating System.

Introduction to the RTE 21

RTA-RTE V6.3.0
User Guide

Server
Software

Component

 Sin(DegreeType D)

 Cosine(DegreeType D)

 Tangent(DegreeType D)

Figure 2.8: Client-Server Interface Operation (Server Side)

runnable may do multiple things, for example receive from one interface and send
on another, or act as a server but receive from an interface in order to complete server
processing.

A software component comprises one or more runnable entities and each runnable
entity must have a unique handle so that the RTE can access it at runtime

Runnable entities are triggered by three classes of events:

• Timing events represent some periodic scheduling event, e.g. a periodic timer
tick. The runnable entity provides the entry point for component execution for
things that need to be executed on a regular basis. For example, a component may
want to poll its port for incoming data and would use a runnable triggered by a
timing event to do this.

• Communication events provide a link between the external (port) view of the
software component and the runnable entities internal to the software component.
For example, when a software component needs to respond to a client request on
a server port it will use a runnable to perform the server operation. Similarly, if
a software component needs to perform processing every time a new data item is
received then it will use a runnable that responds to a data received communication
event.

• Mode switch events are the third class of events that trigger runnable entities.
When a mode switch is triggered at runtime, the RTE can invoke a runnable entity in
the software component to perform the function associated with the mode switch.

Runnable Categories

As well as knowing how a runnable entity is triggered, we must also know how the
runnable entity behaves once triggered. This is captured by the runnable entity cate-

22 Introduction to the RTE

RTA-RTE V6.3.0
User Guide

Client1
Software

Component

Server
Software

Component

ClientN
Software

Component

Client2-N-1
Software

Component

Figure 2.9: Client-Server N:1 Communication

gory. RTA-RTE supports two categories of runnable entity:

• Category 1 runnable entities must be non-blocking (start, execute, terminate) and
have a finite execution time. A Category 1 runnable entity has limited access to RTE
facilities – for example, it is not permitted to make RTE calls that can block such as
synchronous client-server calls to components located on other ECUs. A Category 1
runnable entity is similar in concept to a basic task in the OSEK Operating System.

The Category 1 runnable entities are further split into categories 1a and 1b. Only
category 1b runnable entities can use explicit communication.

• Category 2 entities are permitted to block (start, execute, wait for interaction and
(optionally) terminate) and need not have a finite execution time. A Category 2

Introduction to the RTE 23

RTA-RTE V6.3.0
User Guide

Software Component Type

Receive

Receiver

Client

Sender

Server

RunnableA

RunnableB

RunnableC

RunnableD

Send

Figure 2.10: Software Component Internal Behaviour

runnable entity is similar in concept to an extended task in the OSEK Operating
System.

Implementing Runnable Entities

You must implement the entry points (similar to task bodies in an OSEK operating
system) of all the runnable entities defined for your component. You must also map
runnable entities onto operating system tasks at ECU deployment time.

When a runnable entity is part of a software component that supports multiple instanti-
ation, the runnable must know the component instance on which it operates at runtime.
The RTE does this by passing the component instance handle to the runnable entity at
runtime when it is activated by the RTE.

The instance handle that is passed to the runnable entity by the RTE is passed back
to the RTE through each API call made from the runnable entities thread of execution.
This mechanism is shown in Figure 2.11 where Instance_handle represents the same
handle in both communications between user code and the RTE.

24 Introduction to the RTE

RTA-RTE V6.3.0
User Guide

User Code

RTE

Rte_APICall(Instance_Handle)

RunnableA(Instance_Handle)

RunnableA

Figure 2.11: Instance handle flow

2.5 Services

Services provide standardized functionality to AUTOSAR applications through an AU-
TOSAR interface. A service can thus be seen as a hybrid between application software
components and the basic software modules that provide access to low-level ECU-wide
services.

An AUTOSAR application component makes use of services by connecting to them in
the same way that it does to other software-components within the application, i.e.
using ports characterized by interfaces. A service component may present provider or
requirer ports (or both), and may participate in either sender-receiver or client-server
communications. The interfaces that characterize the ports of a service component are
marked as “Service” Interfaces to indicate their standardized status.

In common with application components, service components have internal behaviors
and are triggered by RTE events. In fact, the RTE treats service components in much the
same way as application software components with the following important exceptions:

• There is at most only a single instance of each service component type on one ECU,

• Service components are not mapped to ECUs via the SYSTEM mapping.

Introduction to the RTE 25

RTA-RTE V6.3.0
User Guide

3 Introduction to RTE Configuration

The RTE generator generates the RTE from one or more XML files that define the entire
required behaviour. The structure of the XML files is standardized by AUTOSAR.

This chapter gives a short overview of XML in general and then a description of the key
concepts in AUTOSAR XML that you will need to understand to write RTE configuration
files.

3.1 Understanding XML

XML is a mark-up language for documents that uses a series of tags to convey struc-
tured information.

XML does not define either the name of the tags or the semantics of the data enclosed
by the tags. Instead, the names and structure of the tags is defined in by an XML
schema.

Each XML document you write needs to specify the schema that is used for processing
the remaining file content.

With schema definitions it is possible to define a namespace for the tags which allows
you to create a single XML file that references configuration from multiple schemas.

There are basically three types of mark-up that you need to understand to work with
AUTOSAR configuration:

• Elements

• Attributes

• Comments

3.1.1 Elements

An element is delimited using angle brackets and is the most common construct you will
see. For elements that contain content, including sub-elements, the general structure
is:

<ELEMENT-TAG>
...

</ELEMENT-TAG>

An element can be empty which means that it has no content, this is represented using
the following shorthand:

<EMPTY-ELEMENT-TAG/>

3.1.2 Attributes

An attribute is a name-value pair that occurs inside start-tags after the element name.
For example,

26 Introduction to RTE Configuration

RTA-RTE V6.3.0
User Guide

<ELEMENT-TAG SOME-ATTRIBUTE="some value">

All attribute values must be quoted.

3.1.3 Comments

Sometimes you will need to add comments to your XML document. Comments begin
with <!-- and end with --> and can contain any data except the literal string “––”.
You can place comments between mark-up anywhere in your document.

<!-- This is a comment in XML -->

Comments are not part of the textual content of an XML document and are ignored by
the XML processor.

3.2 Understanding AUTOSAR XML

AUTOSAR defines the tags and their semantics using an XML schema definition.

3.2.1 Namespace declaration

AUTOSAR XML descriptions (XML files describing all or part of an AUTOSAR configura-
tion) must declare the AUTOSAR namespace as the default namespace. A namespace
is declared using an xmlns attribute on the root element of an XML file.

The AUTOSAR namespace for all AUTOSAR releases in the 4.x series is
http://autosar.org/schema/r4.0.

RTA-RTE will reject a configuration if any of its input files do not declare the
AUTOSAR 4.x namespace.

3.2.2 Schema Validation

RTA-RTE validates each XML input file that declares the AUTOSAR 4.x namespace
against an AUTOSAR XML schema.

Each 4.x schema from AUTOSAR is a superset of all previous 4.x schemas, allowing all
instance documents to be validated against the latest schema. Due to the relaxation of
some constraints, configurations that would have been rejected when validated against
earlier AUTOSAR schema versions may be accepted when validated against a later
version.

The schema version used by RTA-RTE for input validation is AUTOSAR 4.3.0.

RTA-RTE will reject a configuration if any of its input files fail to validate
against the supplied AUTOSAR 4.3.0 schema.

Validating against a newer AUTOSAR revision than supported

If you are using a schema newer than RTA-RTE’s current supported schema, input files
may not validate against the supported AUTOSAR 4.3.0 schema. If you do not require

Introduction to RTE Configuration 27

RTA-RTE V6.3.0
User Guide

the use of RTE-relevant features from the new schema version, you can override the
schema RTA-RTE uses for validation, allowing these files to be accepted.

Overriding the schema used for validation may cause RTA-RTE to raise un-
expected errors, or may cause errors in the generated RTE source code. The
schema must only be overridden during the development stage of a project.
The code produced using an overridden validation schema must never be
used in production.

To override the validation schema, you must edit the RTEGen.ini file to supply the
location of the new schema file. For more details see Overriding the validation schema
in the RTA-RTE Reference Manual.

3.2.3 Object Names

All objects are named using the <SHORT-NAME> tag:

<SHORT-NAME>ThisIsMyNamedObject</SHORT-NAME>

The names allocated in the configuration for software component prototypes, ports,
runnable entities, interfaces etc. are used by the RTE generator to generate object
handles and customized API calls for use at runtime. This means that names you give
objects in the RTE configuration must be valid C identifiers.

The AUTOSAR schema restricts the maximum permitted length of short
names to 127 characters. A short name may only begin with an alphabetic
character (a-z and A-Z).

3.2.4 Packages

The <AUTOSAR> element is a container for exactly one top level packages
<AR-PACKAGES> element. The top-level packages element represents the root of an
XML object tree from which all objects in all configuration files can be accessed.

The top-level packages itself then contains one or more packages each defined with the
<AR-PACKAGE> element. Each <AR-PACKAGE> defines a group of AUTOSAR elements.

A package definition is named using the <SHORT-NAME> element. Each package should
have a unique name so that the elements contained within the package can be refer-
enced by other packages, for example:

<AUTOSAR>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>MyPackage</SHORT-NAME>
<DESC>This is one of my packages</DESC>

</AR-PACKAGE>
...
<AR-PACKAGE>
<SHORT-NAME>MyOtherPackage</SHORT-NAME>
<DESC>This is another</DESC>

</AR-PACKAGE>

28 Introduction to RTE Configuration

RTA-RTE V6.3.0
User Guide

</AR-PACKAGES>
</AUTOSAR>

The <AR-PACKAGE> element is used to define the package name as well as acting as a
container for the <ELEMENTS> descriptions. <ELEMENTS> is a container for the compo-
nents of an AUTOSAR configuration including:

• The definition of atomic software component types

• The description of component internal behavior

• The composition descriptions including software component prototype instantia-
tion

• The definition of ECU types

• The system description including ECU instantiation

The <SUB-PACKAGES> element permits a hierarchical arrangement of packages to be
formed:

<AUTOSAR>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>MyPackage</SHORT-NAME>
<DESC>This is one of my packages</DESC>
<SUB-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>SWCs</SHORT-NAME>
...

</AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>Interfaces</SHORT-NAME>
...

</AR-PACKAGE>
...

AUTOSAR does not permit an arbitrary split of XML definitions between files. Instead,
files can only be split at the top-level packages level. When you need to work with
multiple XML files you must therefore split them at the top-level packages level.

In the previous example, we might have decided to split this file into two different files,
in which case in File 1 we would have:

<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>MyPackage</SHORT-NAME>
<DESC>This is one of my packages</DESC>
...

Introduction to RTE Configuration 29

RTA-RTE V6.3.0
User Guide

</AR-PACKAGE>
</AR-PACKAGES>

</AUTOSAR>

In File 2 we would have the second AR-PACKAGE:

<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>MyOtherPackage</SHORT-NAME>
<DESC>This is another</DESC>
...

</AR-PACKAGE>
</AR-PACKAGES>

</AUTOSAR>

With the exception of Module and ECU configuration elements within the ECUC Descrip-
tion and some “splittable” elements, RTA-RTE will reject configurations that have the
elements with the same name at the same level in the package hierarchy.

3.2.5 Referencing Objects

The elements in AUTOSAR XML define a hierarchical structure that is rooted at the top-
level packages element. Each <SHORT-NAME> named object within this structure can be
referenced.

The AUTOSAR XML makes extensive use of this referencing concept – objects are cre-
ated using a set of elements and then referenced from other objects. For example,
when defining the ports of a software component you will need to reference interface
descriptions.

All references are indicated by XML elements with a tag ending *REF.

AUTOSAR XML allows references to be made using either absolute or relative paths.
An absolute path references an object from top of the XML tree and must start with a
forward-slash. For example:

<*REF>/MySystem/MyComponent/MyObject</*REF>

The following example shows the use of absolute referencing:

<AR-PACKAGE>
<SHORT-NAME>PackageA</SHORT-NAME>
<ELEMENTS>
<ELEMENT>
<SHORT-NAME>X</SHORT-NAME>
...

</ELEMENT>
...

</ELEMENTS>
</AR-PACKAGE>

30 Introduction to RTE Configuration

RTA-RTE V6.3.0
User Guide

<AR-PACKAGE>
<SHORT-NAME>PackageB</SHORT-NAME>
<ELEMENTS>
<ANOTHER-ELEMENT>
<SHORT-NAME>X</SHORT-NAME>
<!-- Absolute reference to X in PackageA -->
<ELEMENT-REF>/PackageA/X</ELEMENT-REF>
...

</ANOTHER-ELEMENT>
<YET-ANOTHER-ELEMENT>
<SHORT-NAME>Y</SHORT-NAME>
<!-- Absolute reference to X in PackageB -->
<ANOTHER-ELEMENT-REF>/PackageB/X</ANOTHER-ELEMENT-REF>
...

</YET-ANOTHER-ELEMENT>
</ELEMENTS>

</AR-PACKAGE>

3.2.6 Relative References

A relative reference can be distinguished from an absolute reference since
the latter always start with the ’/’ character. See the RTA-RTE Reference
Manual for more details on the use of absolute references within RTA-RTE.

The relative reference mechanism defines optional reference bases for each AUTOSAR
package. Each reference base defines the prefix to be used for relative references that
are associated with the reference base. For example, assume a package defines the
following reference base:

<REFERENCE-BASE>
<SHORT-LABEL>types</SHORT-LABEL>
<IS-DEFAULT>false</IS-DEFAULT>
<PACKAGE-REF DEST=’AR-PACKAGE’>/autosar_types</PACKAGE-REF>

</REFERENCE-BASE>

Subsequently, within the package, relative references can be used that are associated
with base “types”. For example, the relative reference within the package that defines
reference base “types” above:

<TYPE-TREF BASE=’types’>my_type</TYPE-TREF>

Is equivalent to the absolute reference:

<TYPE-TREF>/autosar_types/my_type</TYPE-TREF>

At most one reference base can be marked as the default for the package. The de-
fault reference base is used when a relative reference does not explicitly define the
associated base, e.g.:

<TYPE-TREF>my_type</TYPE-TREF>

Introduction to RTE Configuration 31

RTA-RTE V6.3.0
User Guide

3.2.7 Instance References

There is a special type of reference in AUTOSAR called an instance reference that is
used whenever you need to refer to a particular instance of an element. Instance
references are indicated with tags of the form <*-IREF>.

An instance reference itself comprises multiple reference elements each of which de-
fines one part of the instance reference. The composite references depend on context;
for example they might include a reference to a component prototype, a port prototype
and a data element prototype.

When resolving an instance reference, RTA-RTE indirects through each context refer-
ence in turn to complete the reference. For example, the following instance reference:

<DATA-IREF>
<R-PORT-PROTOTYPE-REF>
/system/SWC/InputPort

</R-PORT-PROTOTYPE-REF>
<DATA-ELEMENT-PROTOTYPE-REF>
/interfaces/SR/InputValue

</DATA-ELEMENT-PROTOTYPE-REF>
</DATA-IREF>

Is interpreted as “find the context InputPort in software component SWC in AR-
PACKAGE system then look for a <DATA-ELEMENT-PROTOTYPE> called InputValue in
the interface categorizing the port”. An instance reference is important to the cor-
rect operation of RTA-RTE since it enables the RTE generator to extract multiple pieces
of information from a reference, e.g. in the above example both the port prototype and
data element prototype can be located.

3.2.8 AUTOSAR Elements

The <ELEMENTS> element provides the encapsulating element used to assemble all AU-
TOSAR definitions within an <AR-PACKAGE> definition.

The <ELEMENTS> element is not named since it is merely a container for other, named,
elements. There are essentially six sets of <ELEMENTS> definitions:

1. Those that define basic types for the system.

2. Those that define the software components.

3. Those that define a logical software architecture built from the components inde-
pendently of any hardware.

4. Those that define the physical hardware including the types of ECUs and how they
are connected to busses.

5. Those that define the network communication frames and protocols on busses
between ECUs.

32 Introduction to RTE Configuration

RTA-RTE V6.3.0
User Guide

6. Those that define how software components from the logical software architec-
ture are mapped to ECUs and how logical communication is mapped into network
communication.

<AR-PACKAGE>
<SHORT-NAME>MyPackage</SHORT-NAME>
<DESC>My AUTOSAR Test</DESC>
<ELEMENTS>
<!-- Type definitions -->
<!-- Software component elements -->
<!-- Communication Interfaces -->
<!-- Software Components -->
<!-- Mode -->
<!-- Software (Logical) System Topology -->
<!-- Hardware (Physical) System Topology -->
<!-- Network Communication -->
<!-- Software/Hardware/Network Mapping -->

</ELEMENTS>
</AR-PACKAGE>

The definition of AUTOSAR primitive and complex types is considered in Chapter 5.

The <SENDER-RECEIVER-INTERFACE> and <CLIENT-SERVER-INTERFACE> elements are
used to define AUTOSAR interface types—see Chapter 6.

The application SWC-type <APPLICATION-SW-COMPONENT-TYPE> and
<SENSOR-ACTUATOR-COMPONENT-TYPE> elements describe software components and
are considered in detail in Chapter 7. The <INTERNAL-BEHAVIOR> of the components,
which includes which runnable entities exist, how they are triggered with RTE events,
how they define exclusive areas etc., is discussed in Chapter 8. Application modes
for software components and their interaction use <MODE-DECLARATION-GROUPS>
discussed in Chapter 9.

The software component types defined using the SWC-type element are instantiated
when a <COMPOSITION-TYPE> element is defined – see Chapter 13.

The <ECU> and <ECU-INSTANCE> combine to define the hardware components that are
used to build a vehicle network. These are discussed in Chapter 17.

The <SYSTEM> element maps the software component instances on the composition
onto the hardware topology instance. This is covered in Chapter 18. However, this
is not the final stage in configuration. When a mapping is such that communication
between software components occurs between ECUs (inter-ECU communication) you
need to provide additional configuration to tell the RTE how to achieve this using AU-
TOSAR COM. This is discussed in Chapters 19 and 20.

3.3 ECU Configuration Description

RTA-RTE makes use of AUTOSAR OS for executing threads of control, providing time-
outs, signaling events etc., and AUTOSAR COM for communication between ECUs.

Introduction to RTE Configuration 33

RTA-RTE V6.3.0
User Guide

For the RTE to be generated, RTA-RTE needs to know a small set of configuration data
for these AUTOSAR basic software modules.

AUTOSAR basic software uses a different configuration concept from the rest of AU-
TOSAR that is held in the ECU configuration description file. This file is also an XML file,
but the use of XML is significantly different from the rest of AUTOSAR configuration.

Rather than define a dedicated configuration for each basic software module, the ECU
configuration description defines how to structure a ECUC module configuration with
containers that hold configuration data. An ECUC Container element can hold sub-
containers and thus a hierarchy of configuration containers is formed.1

<ELEMENTS>
<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>...</SHORT-NAME>
<DEFINITION-REF>
<!-- Reference to module config description -->
...

</DEFINITION-REF>
<CONTAINERS>
<ECUC-CONTAINER-VALUE>
<CONTAINER>
<!-- Some configurable item -->
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<!-- Some nested configurable item -->
</ECUC-CONTAINER-VALUE>

</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

</CONTAINERS>
</ECUC-MODULE-CONFIGURATION-VALUES>

</ELEMENTS>

Each ECUC Module Configutation container contains a <DEFINITION-REF> that defines
what containers there are and how many of each type are needed for the referenced
basic software module.

All definition references have the form /AUTOSAR/<ModuleName>. For the RTE configu-
ration you will use:

• /AUTOSAR/Com

• /AUTOSAR/Os

• /AUTOSAR/Rte

ECU configuration descriptions are verbose, so for clarity this user guide will de-
scribe ECU configuration description in terms of which parameters referenced by the

1The ECU configuration description is basically a meta-language embedded within XML that is instanti-
ated for each basic software module.

34 Introduction to RTE Configuration

RTA-RTE V6.3.0
User Guide

<DEFINITION-REF> are needed, for example: “An /AUTOSAR/Os/OsTask must be cre-
ated for each RTE task you require.” /AUTOSAR/Os tells you the module for which con-
figuration is needed and OsTask tells you that an OS task needs to be created. This is
equivalent to the following configuration:

<ELEMENTS>
<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>Os</SHORT-NAME>
<DEFINITION-REF>/AUTOSAR/Os</DEFINITION-REF>
<CONTAINERS>
...
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>RTE_Task1</SHORT-NAME>
<DEFINITION-REF>/AUTOSAR/Os/OsTask</DEFINITION-REF>
<PARAMETER-VALUES>
...

</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>

</CONTAINERS>
</ECUC-MODULE-CONFIGURATION-VALUES>

</ELEMENTS>

Introduction to RTE Configuration 35

RTA-RTE V6.3.0
User Guide

4 Working with the RTE Generator

The separation of the development and integration phases in AUTOSAR is reflected in
a two-phase software component development process:

1. Software Component Development: the specification, design and implementation
of software components; then

2. Software Component Deployment: the allocation of components to ECUs and the
integration of components with the basic software on the ECU.

The two phases of operation allow for initial software component configurations to be
made and integrated onto the VFB (through some auxiliary design and development
process) then the RTE interface to be generated so that the software components can
be implemented before the prototypes are defined and their particular allocation onto
an ECU are known.

AUTOSAR R4.0 also defines a third development phase for integration of basic software
into an ECU. The basic software phase enables the creation of a “Basic Software Sched-
uler” that invokes multiple basic software modules at the correct time and integrates
their execution with application software components.

The phased development process means that there can be some time between the
development of a component type and the allocation of its component prototypes to
an ECU. A component could be developed once and re-used multiple times over many
generations of vehicles. The component could also be supplied to an integrator in
binary form for integration in an ECU with other components that have not yet been
written.

The RTE generator supports the phased process by allowing the interface to the RTE
to be generated before the component prototype/ECU allocation has been decided.
Given a software component description, the RTE generator has enough information
to generate interface definition files, allowing engineers to start developing software
components. The interface defines the contract between the RTE and the component,
that is, what that component must provide if future integration work is to happen easily.
This is known as contract phase.

When the system is integrated, and the mapping of software components to ECUs is
known, the RTE itself can be generated. However, we now know how many instances
of a software component exist, where runnable entities are executing, which commu-
nication is local to an ECU and which must be routed across the network etc. The RTE
generator can use this information to re-generate the interface definition files to include
optimizations based on this additional context. This is known as “RTE phase”.

The following sections discuss the contract and RTE phases in more detail.

36 Working with the RTE Generator

RTA-RTE V6.3.0
User Guide

4.1 Contract Phase

In AUTOSAR, the interface to a software component is captured in a “software compo-
nent description” written in XML.

The component description is a promise that a software component will have certain
properties, for example:

• It will provide a set of ports.

• The ports are typed by defined interfaces.

• It will provide a set of runnable entities.

• It will respond to certain RTE events.

The software component description also contains obligations for the ECU integrator,
that is, the person who will create instances of the software component prototype and
integrate those prototypes with the basic software on an ECU. For example:

• RTE events must be scheduled at the specified rates.

• Only ports that use the same, compatible, or convertible interfaces can be con-
nected.

The software component description must contain enough information to generate an
RTE interface that encapsulates the functional aspects of the contract.

The component descriptions are generated early in the process and can be used with
the RTE generation tools to build a framework for developing the components. The
“Software Component Descriptions” form the input to the first part of the RTE genera-
tion process where the interface contracts, in the form of C header files, can be gener-
ated without reference to the final system or to the allocation of specific components
to ECUs.

In the contract phase, the RTE generator produces header files to be used in the com-
ponents you write.

Type Definitions
(Rte_Type.h)

Configuration
(XML)

RTEGen
Application Header

File

Figure 4.1: Contract Phase

Working with the RTE Generator 37

RTA-RTE V6.3.0
User Guide

4.1.1 Generation

In contract phase, RTA-RTE generates software component-specific application header
files in their most general form. The header files define the contract between the com-
ponent and the system as a whole, and are suitable for both binary-code and source-
code components. When running in the contract phase, the RTE generator only needs
access to the software component description file(s). It is not necessary to have any
information about system deployment.

During contract phase, the RTE is generated for a named software component with the
following command line:

RTEGen -c <component> [options] <files>.arxml

Where <component> must be an absolute reference to a software-component type de-
fined in the input. For details on additional options please see the RTA-RTE Reference
Manual.

Each execution of the RTE generator in contract phase produces the application header
file for a single component.

4.1.2 Software Component-Specific Header Files

Access to the RTE API for each declared component type is provided by a component
type-specific “application header file”. This file will be generated twice during your
system development process:

1. During the contract phase where a generic version of the file is generated.

2. During the RTE phase where an optimized version is generated.

The name of the application header file is derived from the component type name
assigned by the vendor, rather than the name assigned by the system integrator to the
component prototype during deployment.

The header file names have the following format:

Rte_<ComponentTypeName>.h

The component type name is used for two reasons:

1. The same component code is used for all component prototypes.

2. Object-code software components may be compiled before the number, or
names, of all the component prototypes used in the ECU are known.

The definitions in the XML file are used to define the APIs, so only valid runnable entities
may be declared without an error occurring when the component is compiled.

38 Working with the RTE Generator

RTA-RTE V6.3.0
User Guide

The RTE generator also generates an “application types file” that defines types specific
to a particular SW-C type. The name of this file is

Rte_<ComponentTypeName>_Type.h

Component Type & Instance Declarations

For each component type declaration, the RTE generator creates a component data
structure type. The definition of this type is unique for each component and is written
to the component type header file.

When the RTE generator is run in the RTE phase, the RTE implementation includes
optimizations that can reduce the run-time cost of the instance handle to zero. For
example, when only one prototype of a component is mapped to an ECU, the instance
handle is not needed and can be elided.

4.1.3 Object-code Support

The RTE supports both application software components where the source is available
(“source-code software components”) and application software components where
only the object code (“object-code software components”) is available.

The header files generated in contract phase contain sufficient detail to allow a com-
ponent to be developed and shipped as object files to the ECU integrator.

The only effect of shipping components in object-code format is that they cannot make
use of the optimizations that the RTE generator may make when the allocation of com-
ponent instances to ECU instances is known.

4.2 RTE Phase

Before using RTA-RTE in RTE phase, a significant amount of system engineering will be
needed. The AUTOSAR development process assumes that there are several inputs to
the system engineering process:

• “Software component descriptions” that define the software components, their
ports, internal behaviors, implementation characteristics, and the interfaces pro-
vided and required by their ports. These are the same descriptions as used in
contract phase.

• “ECU resource descriptions” that define the ECU hardware characteristics (e.g.
communication ports).

• A “System constraint description” that defines aspects of the system (e.g. commu-
nication protocols).

To build an AUTOSAR system (i.e. a set of software components mapped to ECUs that
communicate over a network) you must define:

• “ECU configuration description” that defines which software components are
mapped to which ECUs, the resources available on the ECU, and so on.

Working with the RTE Generator 39

RTA-RTE V6.3.0
User Guide

• “System configuration description” that defines the network topology, how inter-
ECU communication is mapped to the physical network, and so on.

• “ECU Configuration” that defines the mapping between elements; for example, the
mapping of runnable entities to AUTOSAR Operating System tasks and the mapping
of AUTOSAR signals to AUTOSAR COM signals.

Once you have configured your AUTOSAR system with an allocation of component pro-
totypes to ECU instances the RTE generator is used in “RTE Generation” phase to create:

1. The implementation of the RTE itself, Rte.c, and the generated library Rte_lib.c.

2. Optimized component header files that exploit mapping knowledge provided by
your configuration.

3. Operating system tasks that package your runnable entities.

4. (optional) An operating system configuration file for the RTE- generated objects
and required behavior.

5. (optional) A communication stack configuration file for inter-ECU communication
configuration.

Figure 4.2 illustrates the basic process.

The AUTOSAR configuration process includes tools for the generation of
RTE and generation/configuration of the OS and the communication stack.
Within RTA-RTE all three steps are integrated into the single RTE generator.

4.2.1 Generation

In RTE phase, the RTA-RTE generator generates optimized application header files suit-
able for compiling source-code components and, optionally, configuration files for the
communication stack and operating system. When running in RTE phase, the RTE gen-
erator needs access to all system deployment information.

For RTE phase, the RTE is generated for a named ECU instance with the following com-
mand line:

RTEGen -r <ecu instance> [options] <files>.arxml

The RTE is generated for each software component and each ECU specified in the con-
figuration file using the command-line RTE generator tool. Each execution of the RTE
generator in RTE phase produces the generated RTE for a single ECU instance.

4.2.2 RTE Implementation File

The RTE is generated as one or more C modules. Each module must be compiled ac-
cording to the dependency information created by the RTE.

The module Rte.c contains the core of the generated RTE and, when the RTE generator
is operating in compatibility mode, the generated task bodies.

40 Working with the RTE Generator

RTA-RTE V6.3.0
User Guide

Type Definitions
(Rte_Type.h)

Configuration
(XML)

Application Header
Files

Generated RTE
(Rte.c)

Task bodies

OS and COM
configuration

RTEGen

Figure 4.2: RTE Phase

4.2.3 Task Bodies

During “RTE Generation” phase, the RTA-RTE RTE generator creates task bodies and
assigns runnable entities to them based on the mapping specified in the ECU configu-
ration.

The names of the tasks are used verbatim from the configuration file. If a task called
MyTask is declared then a task called MyTask will be generated. All task names in an
ECU must be unique.

In compatibility mode, all RTE tasks are generated in the Rte.c source code
file. When using vendor mode Each task body is written to a separate file
named <taskname>.c. You must ensure that the tasks generated by the RTE
generator are compiled and linked with the rest of your ECU code.

The generated task bodies are appropriate for the selected OS, e.g. for AUTOSAR OS
the task is declared using the TASK macro and the body includes the TerminateTask
API call.

4.3 Basic Software Phase

The primary inputs within this phase are the “Basic Software descriptions” that define
the basic software modules’ internal behavior and implementation characteristics, in-

Working with the RTE Generator 41

RTA-RTE V6.3.0
User Guide

cluding the interfaces provided and required by the module.

The Basic Software Phase generates the APIs and code to support BSW code only. If
the input XML contains Software Component configuration then the configuration is
rejected by RTEGen.

4.4 The Development Process

Figure 4.3 shows the five key stages in the generation of an RTE-based ECU:

1. The initial “contract” phase of RTE generation defines the interface (component-
specific “application header” files) for each software component based on infor-
mation from the software component descriptions. A software component com-
piled with a contract phase application header can be delivered to the integrator
as object-code.

2. The “RTE” phase generates an RTE for a specific ECU, configured from the “ECU
Extract”. The ECU Extract is a slice of the System Configuration Description, con-
taining only information related to a single ECU. This can be distributed to the
developers of the ECU without the risk of disseminating confidential information
about other ECUs.

A software component compiled with an RTE phase application header can be
delivered to the integrator as source-code.

3. The RTE generator (optionally) creates configuration files for the ECU, including
OS configuration and dependency information for the creation of “makefiles” or
build scripts for building the RTE.

4. The generated RTE is compiled along with application software components using
build information created by the RTE generator.

5. The RTE library file is compiled and linked with the other application code to form
the executable ECU image.

4.5 Samples

RTA-RTE can generate sample application source files using the --samples=swc
command-line option. The name of the generated sample file is Rte_<swc>.c where
swc is the software component’s short name.

The generated sample file contains an empty function for each runnable entity. For
example, given a software component swcA that supports multiple instantiation and
contains a single time triggered runnable with entry point swcA_re_te1, the generated
sample file would contain:

/** @file Rte_swcA.c

*
* @brief RTE Sample SWC implementation skeleton file

*/

42 Working with the RTE Generator

RTA-RTE V6.3.0
User Guide

#include "Rte_swcA.h"

FUNC(void, RTE_APPL_CODE) swcA_re_te1(CONSTP2CONST(Rte_CDS_swcA,
AUTOMATIC, RTE_CONST) self)

{
/* ... */

}

The --samples=swc option is most useful in contract phase before starting implemen-
tation of a software component.

Working with the RTE Generator 43

RTA-RTE V6.3.0
User Guide

Basic SW

configuration

OS Config

RTEGen

Contract Phase

RTEGen

RTE

Phase

SWC

description
ECU Extract

OS

Configuration

tool

OS

(library)

Application

header files

Source-code

SWCs

Generated

RTE

Application

header file

Object-code

SWCs Basic SW

Build
RTA-RTE

library

ECU

1 2

3

4

5

Figure 4.3: AUTOSAR Design Flow—Supplier based RTE Development

44 Working with the RTE Generator

RTA-RTE V6.3.0
User Guide

Part II

Developing Software
Components

45

RTA-RTE V6.3.0
User Guide

5 Type System

AUTOSAR defines three layers of data type abstraction as illustrated in Figure 5.1.

Application Types

Implementation Types

Base Types

Figure 5.1: Abstraction Levels for Describing Data Types

ApplicationDataTypes are defined in physical terms, i.e. by reference to some
CompuMethod, Unit and PhysicalDimension. This allows Application authors to cre-
ate Software Components without deciding the C data type too early in the lifecycle.
ApplicationDataTypes also support automatic conversion of values from one Unit to
another. (See section 5.5 and section 13.5 for more information.)

ImplementationDataTypes model C types in the generated code. AUTOSAR specifies
a set of common ImplementationDataTypes known as the Platform Types, to make
platform-independent modeling and design easier.

Finally, Base Types describe the hardware-specific aspect of the data type, e.g. the
width, the alignment and the encoding. In particular, the shortName of the SwBaseType
element does not appear in the generated code.

The following sections expand these topics.

5.1 Application Data Types

Application data types are defined in physical terms, i.e. by reference to some Unit
which, in turn, references some PhysicalDimension. It is recommended to model
VariableDataPrototypes by referencing ApplicationDataTypes:

• Using ApplicationDataTypes allows the System Integrator to choose the
ImplementationDataType later in the development cycle,

• RTE supports data conversion of values between different ApplicationDataTypes
(Section 5.5, section 13.5),

• ApplicationDataTypes contain the necessary information to support measure-
ment and calibration tools.

The shortName of an ApplicationDataType is only used within the scope of a
SoftwareComponentType, so it is supported to have multiple ApplicationDataTypes
with the same name when integrating several SWCTs on a single ECU (but not within a
single SWCT).

46 Type System

RTA-RTE V6.3.0
User Guide

The shortName of an ApplicationDataType is not used in generated code. In par-
ticular, the RTE APIs are defined in terms of the mapped ImplementationDataTypes
(according to the DataTypeMapping—see Section 5.4).

The attributes of ApplicationDataTypes include the range of physical values, the re-
lationship to physical space (i.e. references to CompuMethod and/or Unit) and, for com-
plex types, the data structure. The definition of an ApplicationDataType does not
consider implementation details such as width in bits, endianness, etc.

For example, an ApplicationPrimitiveDataType might be declared as follows:

<PHYSICAL-DIMENSION>
<SHORT-NAME>length_in_metres</SHORT-NAME>
<LENGTH-EXP>1</LENGTH-EXP>

</PHYSICAL-DIMENSION>
<UNIT>
<SHORT-NAME>metres</SHORT-NAME>
<FACTOR-SI-TO-UNIT>1</FACTOR-SI-TO-UNIT>
<OFFSET-SI-TO-UNIT>0</OFFSET-SI-TO-UNIT>
<PHYSICAL-DIMENSION-REF DEST=’PHYSICAL-DIMENSION’>/package/

length_in_metres</PHYSICAL-DIMENSION-REF>
</UNIT>
<COMPU-METHOD>
<SHORT-NAME>cm_id_metres</SHORT-NAME>
<CATEGORY>IDENTICAL</CATEGORY>
<UNIT-REF DEST=’UNIT’>/package/metres</UNIT-REF>

</COMPU-METHOD>
<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT-NAME>MyMetresType</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<SW-CALIBRATION-ACCESS>NOT-ACCESSIBLE</SW-CALIBRATION-ACCESS>
<COMPU-METHOD-REF>/package/cm_id_metres</COMPU-METHOD-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>

Starting at the top, we have a PhysicalDimension representing e.g. Length or lumi-
nosity or temperature or speed etc.

Below that we have a Unit. For this example, we show the SI unit for length, the metre.
Similarly we could model the kilometre by setting FactorSIToUnit at 1000.

The CompuMethod is of Category IDENTICAL which means that the value on the ECU at
runtime is the same as the value of the physical quantity.

Additionally, we might define another application type like below:

<COMPU-METHOD>

Type System 47

RTA-RTE V6.3.0
User Guide

<SHORT-NAME>cm_centimetres</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<UNIT-REF DEST=’UNIT’>/package/metres</UNIT-REF>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>
<COMPU-SCALE>
<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR>
<V>0</V>
<V>1</V>

</COMPU-NUMERATOR>
<COMPU-DENOMINATOR>
<V>100</V>

</COMPU-DENOMINATOR>
</COMPU-RATIONAL-COEFFS>

</COMPU-SCALE>
</COMPU-SCALES>

</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>
<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT-NAME>MyCMType</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<SW-CALIBRATION-ACCESS>NOT-ACCESSIBLE</SW-CALIBRATION-ACCESS>
<COMPU-METHOD-REF>/package/cm_centimetres</COMPU-METHOD-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>

Here the CompuMethod cm_centimetres contains a CompuDenominator of 100. Since
it also references Unit metres a VariableDataPrototype of type MyCMType, it can be
connected to a VariableDataPrototype of type MyMetresType and RTA-RTE will create
the necessary code so that, e.g. a transmission of 100cm will arrive on the receiver as
1m.

To support more complex data types, an ApplicationDataType can be composed of
other ApplicationDataTypes. This form of recursive definition permits records and
arrays to be defined.

When the RTE is generated, any used Application Data Types must be mapped to im-
plementation types. See Section 5.3 and 5.4 for details.

5.1.1 Arrays

To configure an array type in the application domain, create an
ApplicationArrayDataType that contains a reference to the desired
ApplicationDataType of the elements and the ArraySize set to the number of
elements required.

48 Type System

RTA-RTE V6.3.0
User Guide

This release of RTA-RTE does not support dynamic-sized arrays. ArraySize-
Semantics must therefore be set to FIXED-SIZE.

For example an array of four lengths in centimetres could be represented with the
following type:

<APPLICATION-ARRAY-DATA-TYPE>
<SHORT-NAME>MyCMArrayType</SHORT-NAME>
<CATEGORY>ARRAY</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<SW-CALIBRATION-ACCESS>NOT-ACCESSIBLE</SW-CALIBRATION-ACCESS>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
<ELEMENT>
<SHORT-NAME>element</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<TYPE-TREF DEST=’APPLICATION-PRIMITIVE-DATA-TYPE’>/package/MyCMType</

TYPE-TREF>
<ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>
<MAX-NUMBER-OF-ELEMENTS>4</MAX-NUMBER-OF-ELEMENTS>

</ELEMENT>
</APPLICATION-ARRAY-DATA-TYPE>

Arrays of complex types can also be created, by referencing an
ApplicationArrayDataType or ApplicationRecordDataType as the element type
and setting the element Category to ARRAY or STRUCTURE respectively.

5.1.2 Structures (also known as Record types)

To configure a record type in the application domain, to be mapped to a struct in
the implementation domain, create an ApplicationRecordDataType that contains
an ApplicationRecordElement for each structure member, referencing the desired
ApplicationDataType.

For example, the coordinates, in centimetres, of a point on a surface could be repre-
sented with the following type:

<APPLICATION-RECORD-DATA-TYPE>
<SHORT-NAME>MyPointType</SHORT-NAME>
<CATEGORY>STRUCTURE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<SW-CALIBRATION-ACCESS>NOT-ACCESSIBLE</SW-CALIBRATION-ACCESS>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
<ELEMENTS>
<APPLICATION-RECORD-ELEMENT>
<SHORT-NAME>x</SHORT-NAME>

Type System 49

RTA-RTE V6.3.0
User Guide

<CATEGORY>VALUE</CATEGORY>
<TYPE-TREF DEST=’APPLICATION-PRIMITIVE-DATA-TYPE’>/package/MyCMType</

TYPE-TREF>
</APPLICATION-RECORD-ELEMENT>
<APPLICATION-RECORD-ELEMENT>
<SHORT-NAME>y</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<TYPE-TREF DEST=’APPLICATION-PRIMITIVE-DATA-TYPE’>/package/MyCMType</

TYPE-TREF>
</APPLICATION-RECORD-ELEMENT>

</ELEMENTS>
</APPLICATION-RECORD-DATA-TYPE>

Record elements can themselves be complex types. Simply reference
an ApplicationArrayDataType or ApplicationRecordDataType as the
ApplicationRecordElement type and set the ApplicationRecordElement Cate-
gory to ARRAY or STRUCTURE respectively.

5.2 Base Types

SwBaseTypes describe data types in hardware terms (size in bits, memory alignment,
encoding). They form the basis on which the Implementation Data Types are built. A
base type can be referenced by several Implementation Data Types. In this way, the
C declarations of Implementation Data Types can be adjusted for different hardware
platforms by changing only the attributes of the referenced Base Type.

For example, the semantics of two 8-bit integer base types might be modeled as fol-
lows:

<SW-BASE-TYPE>
<SHORT-NAME>my_sint8</SHORT-NAME>
<BASE-TYPE-SIZE>8</BASE-TYPE-SIZE>
<BASE-TYPE-ENCODING>2C</BASE-TYPE-ENCODING>
<MEM-ALIGNMENT>1</MEM-ALIGNMENT>
<NATIVE-DECLARATION>char</NATIVE-DECLARATION>

</SW-BASE-TYPE>
<SW-BASE-TYPE>
<SHORT-NAME>my_uint8</SHORT-NAME>
<BASE-TYPE-SIZE>8</BASE-TYPE-SIZE>
<BASE-TYPE-ENCODING>NONE</BASE-TYPE-ENCODING>
<MEM-ALIGNMENT>1</MEM-ALIGNMENT>
<NATIVE-DECLARATION>unsigned char</NATIVE-DECLARATION>

</SW-BASE-TYPE>

The base type’s shortName never appears in the generated code; it is
only used as a reference target within the input model. Only Imple-
mentation Data Types are present in the generated code along with the
nativeDeclaration of the referenced basetype.

The encoding attribute can be either NONE, for unsigned types, or 2C, 1C or SM for signed
types.

50 Type System

RTA-RTE V6.3.0
User Guide

The nativeDeclaration attribute is optional but strongly recommended. It is usually
an error to omit the nativeDeclaration, except as part of a deprecated scheme for
suppressing the generation of a typedef. (See 5.3).

If present, it contains a raw C type-expression necessary to produce a type of the same
width and signedness as the SwBaseType itself. This text will typically be written on the
left hand side of a typedef of a referencing ImplementationDataType, e.g.

typedef unsigned int myImplementationDataType;

It is not correct to write the name of a PlatformType in the
nativeDeclaration, only raw C like unsigned int, signed long,
etc. If you really think you need to do this, consider defining an
ImplementationDataType of Category TYPE_REFERENCE instead (See 5.3.6)

5.3 Implementation Data Types

ImplementationDataTypes represent types in the generated C code. The shortName
of an ImplementationDataType defines the symbol used in C to access the type, e.g.
in APIs and in user code.

Typically, ImplementationDataTypes have their typeEmitter attribute set to RTE and
result in typedef declarations being written to the file Rte_Type.h.

Some ImplementationDataTypes need to be modeled in the input but it is not desirable
to generate corresponding typedefs in the RTE code, for example the Platform Types,
whose C declarations are present in a standard header file not generated by the RTE
Generator (see 5.3.1). To suppress the typedef, specify the typeEmitter attribute with
a value other than RTE.

For backward compatibility, RTA-RTE also includes a deprecated mechanism
for suppressing typedefs. If there is no typeEmitter attribute on the
ImplementationDataType, the generation of the typedef depends on the
SwBaseType.nativeDeclaration. If the nativeDeclaration is absent or empty, and
there is no typeEmitter present on the corresponding ImplementationDataType, no
typedef is written.

It is an error to have a missing or empty SwBaseType.nativeDeclaration if
the ImplementationDataType.typeEmitter is set to RTE.

It is supported to define VariableDataTypes in SWCTs by reference to Application Data
Types or Implementation Data Types, and it is supported to mix them freely. However
it is recommended to use only Application Data Types in SWCTs for the reasons already
given:

• Avoid deciding the C type too early in the lifecycle,

• Allow data conversion between values that represent the same physical quantity,

• Support measurement and calibration tools.

Type System 51

RTA-RTE V6.3.0
User Guide

RTA-RTE always uses Implementation Data Types in generated APIs. If the correspond-
ing VariableDataPrototype is defined by reference to an ApplicationDataType, the
mapped ImplementationDataType is used in the API signature.

AUTOSAR data types must be declared in the XML input configuration if they
are to be used in Interfaces, ARTypedPerInstanceMemorys, etc. In addition, all
PlatformTypes must be declared on the input regardless of whether they are used
in the input model. This is because RTA-RTE depends on PlatformTypes to create its
internal types.

It is supported that multiple ImplementationDataTypes in the input XML have the same
name, provided that the resulting definitions in the generated code are identical. This
makes it easier to integrate packages from different third parties, which may for exam-
ple include (re)definitions of Platform Types.

This section explains how to configure RTA-RTE to make types available to the C pro-
gram and to the rest of the configuration input.

5.3.1 Platform Types

AUTOSAR specifies a set of platform types for use in C code. These are
ImplementationDataTypes whose purpose is to provide a set of types with the same
semantics across different target hardware. RTA-RTE uses PlatformTypes when it
needs to create types for internal variables.

Unlike most ImplementationDataTypes, the PlatformTypes are also defined in C lan-
guage in the file PlatformTypes.h. To support this, they reference SwBaseTypes with
empty or missing nativeDeclaration attributes (See 5.2).

AUTOSAR (from R4.0.3) also specifies the correct definitions and pack-
age name of the Platform Types. RTA-RTE expects to find the package
AUTOSAR_Platform/ImplementationDataTypes on the input, and it will look in
that package for any Platform Types that it needs. RTA-RTE will reject the configuration
if it does not include such a package.

RTA-RTE ships with a suitable Platform Types package (in the file
External/AUTOSAR/AUTOSAR_MOD_PlatformTypes.arxml). Note that
the corresponding SwBaseTypes are defined in a separate file
External/AUTOSAR/AUTOSAR_MOD_PlatformBaseTypes.arxml.

The Platform Types defined in AUTOSAR Specification of Platform Types and in the stan-
dard header file Platform_Types.h are:

• sint8 – 8-bit signed integer.

• uint8 – 8-bit unsigned integer.

• sint16 – 16-bit signed integer.

• uint16 – 16-bit unsigned integer.

52 Type System

RTA-RTE V6.3.0
User Guide

• sint32 – 32-bit signed integer.

• uint32 – 32-bit unsigned integer.

• float32 – single precision floating point.

• float64 – double precision floating point.

• uint8_least – at least 8-bit unsigned integer.

• uint16_least – at least 16-bit unsigned integer.

• uint32_least – at least 32-bit unsigned integer.

• sint8_least – at least 7-bit signed integer (plus sign bit).

• sint16_least – at least 15-bit signed integer (plus sign bit).

• sint32_least – at least 31-bit signed integer (plus sign bit).

• boolean – for use with TRUE/FALSE.

When a platform type is used in the input model, e.g. in an Interface, it might be
referenced in the standard location (/AUTOSAR_Platform/ImplementationDataTypes)
or the definition of the platform type might be repeated in another
ImplementationDataType element with the same shortName. Both styles are
supported, provided the ImplementationDataTypes do not give rise to conflicting
definitions. In particular, the SwBaseTypes should both have empty or missing
nativeDeclaration, they should have matching baseTypeWidth and matching
encoding.

The correct way to represent a platform type in the XML input is by using
an ImplementationDataType of Category VALUE with the ShortName equal
to the name of the AUTOSAR Platform Type, which refers to a SwBaseType
element that does not have a nativeDeclaration.

<AR-PACKAGE>
<SHORT-NAME>pkg</SHORT-NAME>
<ELEMENTS>
<DATA-CONSTR>
<SHORT-NAME>dcI_uint8</SHORT-NAME>
<DATA-CONSTR-RULES>
<DATA-CONSTR-RULE>
<INTERNAL-CONSTRS>
<LOWER-LIMIT>0</LOWER-LIMIT>
<UPPER-LIMIT>255</UPPER-LIMIT>

</INTERNAL-CONSTRS>
</DATA-CONSTR-RULE>

</DATA-CONSTR-RULES>
</DATA-CONSTR>

<SW-BASE-TYPE>
<SHORT-NAME>bt_null_uint8</SHORT-NAME>

Type System 53

RTA-RTE V6.3.0
User Guide

<BASE-TYPE-SIZE>8</BASE-TYPE-SIZE>
<MEM-ALIGNMENT>1</MEM-ALIGNMENT>
<!-- does not have NATIVE-DECLARATION -->

</SW-BASE-TYPE>

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>uint8</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<BASE-TYPE-REF>/pkg/bt_null_uint8</BASE-TYPE-REF>
<COMPU-METHOD-REF>/pkg/cm_id</COMPU-METHOD-REF>
<DATA-CONSTR-REF>/pkg/dcI_uint8</DATA-CONSTR-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE>

</ELEMENTS>
</AR-PACKAGE>

Note that the ShortName of the SwBaseType never appears in the generated code in
any circumstances. It is only ever used as a means of referencing the SwBaseType in
the XML.

5.3.2 Custom Primitive Implementation Data Types

It is supported to configure new ImplementationDataTypes, either by reference to ex-
isting platform types (recommended) or completely from scratch (not recommended).
Enumeration (text table) types can be modeled in this way. The configured types are
written to the file Rte_Type.h.

It is not always necessary to define a completely new type just to give a semanti-
cally significant name to a type. Instead, an ImplementationDataType can be cre-
ated with Category TYPE_REFERENCE in order to emit a typedef from an existing
ImplementationDataType to the more useful name, and to provide a single point at
which the actual type of the chosen typename can be changed.

For example, the following definition of type MyCommandIdType:

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>MyCommandIdType</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<IMPLEMENTATION-DATA-TYPE-REF>/AUTOSAR_Platform/

ImplementationDataTypes/uint8</IMPLEMENTATION-DATA-TYPE-REF>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

</IMPLEMENTATION-DATA-TYPE>

54 Type System

RTA-RTE V6.3.0
User Guide

Results in the following typedef in Rte_type.h:

typedef uint8 MyCommandIdType;

The new TYPE_REFERENCE type can then be referenced in Interfaces,
ARTypedPerInstanceMemorys, InterRunnableVariables, etc.

It is possible (but not recommended) to define a new ImplementationDataType that
is not defined by reference to an existing ImplementationDataType but instead refer-
ences a SwBaseType that has a nativeDeclaration.

To do that, set the Category to VALUE and use a BaseTypeRef pointing to the cho-
sen SwBaseType. The emitted typedef in Rte_type.h uses the nativeDeclaration
of the SwBaseType as in the following example, where the nativeDeclaration is
unsigned int:

typedef unsigned int MyMaskType;

This method is not recommended because the type may become hardware-
platform dependent.

The <DATA-CONSTR-REF> reference within a new ImplementationDataType declaration
defines the constraints of the type. In particular, RTA-RTE needs to know the type limits:

<DATA-CONSTR>
<SHORT-NAME>myDataConstraint</SHORT-NAME>
<DATA-CONSTR-RULES>
<DATA-CONSTR-RULE>
<INTERNAL-CONSTRS>
<LOWER-LIMIT>0</LOWER-LIMIT>
<UPPER-LIMIT>6000</UPPER-LIMIT>

</INTERNAL-CONSTRS>
</DATA-CONSTR-RULE>

</DATA-CONSTR-RULES>
</DATA-CONSTR>

RTA-RTE does not validate that the range specified by the constraints is com-
patible with the specified native declaration.

5.3.3 Enumerated Types

To declare an enumerated type, create a new ImplementationDataType of cate-
gory TYPE_REFERENCE and add an ImplementationDataTypeRef referencing a suitable
PlatformType to store the enumeration values.

Create a CompuMethod of category TEXTTABLE and reference the CompuMethod from the
new ImplementationDataType. The CompuMethod supplies the symbolic and numeric
values for the enumerated type, for example:

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>myEnum</SHORT-NAME>

Type System 55

RTA-RTE V6.3.0
User Guide

<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<COMPU-METHOD-REF DEST=’COMPU-METHOD’>myEnumValues</COMPU-METHOD-

REF>
<IMPLEMENTATION-DATA-TYPE-REF DEST=’IMPLEMENTATION-DATA-TYPE’>/

AUTOSAR_Platform/ImplementationDataTypes/sint8</IMPLEMENTATION-
DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE>
<COMPU-METHOD>
<SHORT-NAME>myEnumValues</SHORT-NAME>
<CATEGORY>TEXTTABLE</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>
<COMPU-SCALE>
<LOWER-LIMIT>0</LOWER-LIMIT>
<UPPER-LIMIT>0</UPPER-LIMIT>
<COMPU-CONST><VT>ZERO</VT></COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>
<LOWER-LIMIT>1</LOWER-LIMIT>
<UPPER-LIMIT>1</UPPER-LIMIT>
<COMPU-CONST><VT>ONE</VT></COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>
<LOWER-LIMIT>2</LOWER-LIMIT>
<UPPER-LIMIT>2</UPPER-LIMIT>
<COMPU-CONST><VT>TWO</VT></COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>
<LOWER-LIMIT>3</LOWER-LIMIT>
<UPPER-LIMIT>3</UPPER-LIMIT>
<COMPU-CONST><VT>THREE</VT></COMPU-CONST>

</COMPU-SCALE>
</COMPU-SCALES>

</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

RTA-RTE will reject invalid CompuMethods, for example, those with duplicate labels
and/or numeric values with different lower- and upper-limits.

Now when the type is used within a SWC-type RTA-RTE creates definitions for use by
the SWC implementation. In the Type Header File Rte_Type.h:

typedef uint8 myEnum;

And in the Application Type Header File Rte_<SWC>_Type.h:

56 Type System

RTA-RTE V6.3.0
User Guide

#define ZERO ((myEnum)0)
#define ONE ((myEnum)1)
#define TWO ((myEnum)2)
#define THREE ((myEnum)3)

5.3.4 Arrays

To configure a fixed-size array, create an ImplementationDataType of category ARRAY
that contains an ImplementationDataTypeElement having an ArraySizeSemantics of
FIXED-SIZE and an ArraySize set to the number of elements you wish to have in the
array. The shortName of the ImplementationDataTypeElement does not appear in the
generated C.

This release of RTA-RTE does not support dynamic-sized arrays.

The category and configuration of the ImplementationDataTypeElement dictates the
type of the array element.

Rather than use Category VALUE, it is recommended to use
TYPE_REFERENCE. (See Section 5.3.6).

Arrays as Function Parameters

AUTOSAR specifies that arrays used in API calls shall be passed as “pointer to base
type”. This does not refer to SwBaseType but rather to the type information of the
ImplementationDataTypeElement. RTA-RTE creates a formal parameter of a pointer to
that type, for example:

typedef unsigned short myValueType;
typedef myValueType myArrayType[4];
...
// Write of the array type is by pointer to ’base type’
FUNC(Std_ReturnType, RTE_CODE) Rte_Write_myPort_myArrayData(P2CONST(

myValueType, AUTOMATIC, RTE_APPL_DATA) data);

If the array is defined using an ImplementationDataTypeElement of a category other
than TYPE_REFERENCE, there is no typedef for myValueType, which may cause the gen-
erated code to fail MISRA advisory rule 6.3:

typedef unsigned short myArrayType[4];
...
// Write of the array type is by pointer to ’base type’
FUNC(Std_ReturnType, RTE_CODE) Rte_Write_myPort_myData(P2CONST(

unsigned short, AUTOMATIC, RTE_APPL_DATA) data);
// MISRA advisory 6.3: unsigned used outside of a typedef
// MISRA advisory 6.3: short used outside of a typedef

Type System 57

RTA-RTE V6.3.0
User Guide

5.3.5 Structures (also known as Record types)

To configure a struct type, create an ImplementationDataType of category
STRUCTURE that contains an ImplementationDataTypeElement for each structure
member. The ShortName of the ImplementationDataTypeElement becomes the name
of the structure member.

For example, the declaration of structure MyStructType in the input configuration:

<SW-BASE-TYPE>
<SHORT-NAME>myuint8bt</SHORT-NAME>
<BASE-TYPE-SIZE>8</BASE-TYPE-SIZE>
<MEM-ALIGNMENT>1</MEM-ALIGNMENT>
<NATIVE-DECLARATION>unsigned char</NATIVE-DECLARATION>

</SW-BASE-TYPE>

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>MyStructType</SHORT-NAME>
<CATEGORY>STRUCTURE</CATEGORY>
<SUB-ELEMENTS>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>member_a</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<IMPLEMENTATION-DATA-TYPE-REF>
/pkg/uint8

</IMPLEMENTATION-DATA-TYPE-REF>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

</IMPLEMENTATION-DATA-TYPE-ELEMENT>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>member_b</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<BASE-TYPE-REF>/custom_types/myuint8bt</BASE-TYPE-REF>
<COMPU-METHOD-REF>/compu_methods/cm_id</COMPU-METHOD-REF>
<DATA-CONSTR-REF>/data_constrs/dcI_uint8</DATA-CONSTR-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>

</SUB-ELEMENTS>
</IMPLEMENTATION-DATA-TYPE>

Produces the following struct definition in Rte_Type.h:

typedef struct {
uint8 member_a; /* recommended */

58 Type System

RTA-RTE V6.3.0
User Guide

unsigned char member_b; /* Not so safe */
} MyStructType

The category and configuration of each ImplementationDataTypeElement dictates the
type of the corresponding member.

Rather than use Category VALUE, it is recommended to use
TYPE_REFERENCE. (See Section 5.3.6).

5.3.6 Declaring the elements of Complex Types

The category of an ImplementationDataTypeElement can be any of TYPE_REFERENCE,
STRUCTURE, UNION or ARRAY. VALUE, HOST, DATA_REFERENCE and FUNCTION_REFERENCE
are also allowed according to the AUTOSAR specification, but are not recommended as
noted in the following subsections.

TYPE_REFERENCE This is the recommended category for
ImplementationDataTypeElement instead of VALUE or HOST. By creating a
separate ImplementationDataType for the VALUE or HOST type, and referencing
it from the ImplementationDataTypeElement, you create a shortname that is
used in the declaration and therefore makes the definition clear.

typedef uint8 MyElementType;
typedef MyElementType MyArrayType[4];

STRUCTURE / UNION / ARRAY By declaring an ImplementationDataTypeElement
that is itself of a complex type, you can create nested complex types, e.g. an
array of structs, a struct containing an array and a union, etc. This nesting can
be continued without limitation, but remember that using a TYPE_REFERENCE can
help to keep the configuration clearer.

VALUE / HOST An ImplementationDataTypeElement of category VALUE or HOST cre-
ates the element anonymously, i.e. there is no named type that char-
acterizes the element. If the ImplementationDateTypeElement refers to a
SwBaseType with a nativeDeclaration, the native declaration is written to
the generated C. This approach is not recommended because it carries a
risk of becoming hardware-dependent. Instead it is recommended to use an
ImplementationDataTypeElement of category TYPE_REFERENCE and refer to a
named, platform-safe ImplementationDataType.

If an ImplementationDataTypeElement references a SwBaseType with no
nativeDeclaration, the configuration is rejected because there is not enough
information to create the declaration in C. (Remember that the ShortName of a
SwBaseType never appears in the C as the name of a type, only the short names
of ImplementationDataTypes or the native declarations of SwBaseTypes.)

Type System 59

RTA-RTE V6.3.0
User Guide

When an ImplementationDataTypeElement is of category
other than TYPE_REFERENCE, it causes the C declaration (e.g.
nativeDeclaration) to be written directly to the generated C
where the type is used, e.g. in struct declarations and in API parame-
ters, leading to the use of keywords like unsigned or short appearing
outside of typedefs. This violates MISRA advisory rule 6.3.

DATA_REFERENCE / FUNCTION_REFERENCE These result in pointer types. It is gen-
erally dangerous and forbidden to use a pointer for any communication between
SWCs or Runnables within a SWC. It is not recommended to use DATA_REFERENCE
or FUNCTION_REFERENCE for communication.

5.4 Type Mappings

5.4.1 Data types

A SWC-specific data type mapping is used to map application types onto implemen-
tation types. The use of a separate mapping means that different SWC types can
use different implementations of the same application type and permits, for exam-
ple, changing data type characteristics if a SWC is moved to a new hardware platform
without changing the SWC itself.

RTA-RTE requires a data type mapping for each application type that is used
in the model in order to be able to generate the RTE.

The data type mapping for a SWC is held within a data type mapping set element:

<DATA-TYPE-MAPPING-SET>
<SHORT-NAME>dts1</SHORT-NAME>
<DATA-TYPE-MAPS>
...

</DATA-TYPE-MAPS>
</DATA-TYPE-MAPPING-SET>

The data type mapping is associated with a SWC type via a reference to the mapping
set from the SWC’s internal behavior. If required, one type mapping could be reused
for multiple SWCs, or the mapping could be modified without modifying the SWC itself.

A data type mapping contains one or more data type maps. Each map references a
single application data type and a single implementation data type.

<DATA-TYPE-MAP>
<APPLICATION-DATA-TYPE-REF>
/pkg/ApplType1

</APPLICATION-DATA-TYPE-REF>
<IMPLEMENTATION-DATA-TYPE-REF>
/pkg/SInt16

</IMPLEMENTATION-DATA-TYPE-REF>
</DATA-TYPE-MAP>

60 Type System

RTA-RTE V6.3.0
User Guide

As well as mappings within an individual SWC-type, RTA-RTE also supports a data type
mapping for the root composition SWC-type. This means that mappings for a configu-
ration can be specified, and changed, without modification of the individual SWCs.

5.4.2 Mode types

Mode type mappings are used to map mode declaration groups onto implementation
types.

RTA-RTE requires a mode type mapping for each used mode declaration
group in order to be able to generate the RTE.

As with data type mappings, a mode type mapping is contained within a data type
mapping set element:

<DATA-TYPE-MAPPING-SET>
<SHORT-NAME>dts1</SHORT-NAME>
<MODE-REQUEST-TYPE-MAPS>
...

</MODE-REQUEST-TYPE-MAPS>
</DATA-TYPE-MAPPING-SET>

The mode type mapping is associated with a SWC type via a reference to the mapping
set from the SWC’s internal behavior.

A mode type mapping contains one or more mode request type maps. Each map refer-
ences a single implementation data type and a single mode declaration group.

<MODE-REQUEST-TYPE-MAP>
<IMPLEMENTATION-DATA-TYPE-REF>
/pkg/SInt16

</IMPLEMENTATION-DATA-TYPE-REF>
<MODE-GROUP-REF>
/pkg/mdg1

</MODE-GROUP-REF>
</MODE-REQUEST-TYPE-MAP>

Multiple mode type mapping elements can reference the same implementation data
type.

5.5 Application Types And Numerical Representations

5.5.1 Concepts

RTA-RTE Supports AUTOSAR Data Conversion (see 13.5), where a connection may be
made between data items (or the sub-elements of complex-typed data items) of dif-
ferent, but related, ApplicationPrimitiveDataTypes. This depends on the correct
modelling of ApplicationPrimitiveDataTypes and how their numerical values relate
to physical quantities.

Type System 61

RTA-RTE V6.3.0
User Guide

Linear Data Conversion

When DataPrototypes with incompatible, but related,
ApplicationPrimitiveDataTypes are explicitly connected via a
PortInterfaceMapping (see section 13.3.4), RTA-RTE seeks to generate a lin-
ear conversion (rescaling and offset) of values between them. It evaluates the
CompuMethods and Units for both DataPrototypes, or for the primitive sub-elements if
the DataPrototypes have complex type, to derive what data transformation is needed.

Linear data conversion is also attempted between the primitive sub-elements of
DataPrototypes with complex ApplicationDataTypes, provided that they are shape-
compatible.

Conceptually, the data conversion function is a functional composition of the individ-
ual transformations from the transmitted value x, through the Physical representation,
to the SI representation, to the Physical representation in the receiver’s Unit, to the
internal received value y:

f = cmrx ◦ unitrx ◦ unittx ◦ cmtx

or

y = cmrx(unitrx(unittx(cmtx(x))))

Where cmtx, unittx, unitrx and cmrx represent each step of the conversion as a linear
function that maps the input value to an intermediate output value. Figure 5.2 illus-
trates a linear function.

0
0 input

ou
tp

ut

txval

rxval

Figure 5.2: Linear data conversion

62 Type System

RTA-RTE V6.3.0
User Guide

Since each function is linear it can be expressed as a line of the form y = (m × x) + c

where m is the gradient and c the offset. RTA-RTE derives the values for m and c from
the transformations specified in the CompuMethods and in the Units:

cmrx is the function represented by the CompuMethod of the receiving type in the
“physical-to-internal” direction.

The cmrx function is “linear” and is derived from the <COMPU-PHYS-TO-INTERNAL>
element’s numerators num0 and num1 within the <COMPU-NUMERATOR> element
and the denominator denom from the <COMPU-DENOMINATOR> element. The cmrx

function can then be defined as:

cmrx(x) =
num0 + (num1 × x)

denom

unitrx is the function represented by the FactorSIToUnit and OffsetSIToUnit of the
receiving type in the “physical-to-internal” direction.

As with the cmrx function, the unitrx function is “linear” but the gradient,
m, and offset, c, are derived from the Unit’s <FACTOR-SI-TO-UNIT> and
<OFFSET-SI-TO-UNIT> elements. The unitrx function can then be defined as:

unitrx(x) = (m× x) + c

unittx is the function represented by the FactorSIToUnit and OffsetSIToUnit of the
transmitting type in the “internal-to-physical” direction.

The unittx function is “linear” and the gradient, m, and offset, c, are derived
from the Unit’s <FACTOR-SI-TO-UNIT> and <OFFSET-SI-TO-UNIT> elements. The
unittx function can then be defined as:

unittx(x) = (m× x) + c

The unittx function is the inverse of the unitrx function.

cmtx is the function represented by the CompuMethod of the transmitting type in the
“internal-to-physical” direction.

The cmtx function is “linear” and is derived from the <COMPU-INTERNAL-TO-PHYS>
element’s numerators num0 and num1 within the <COMPU-NUMERATOR> element
and the denominator denom from the <COMPU-DENOMINATOR> element. The cmtx

function can then be defined as:

cmtx(x) =
num0 + (num1 × x)

denom

Note that the above description of the conversion functions, e.g. cmrx etc., is expressed
in the same direction as data flow. This is not required: RTA-RTE will derive the inverse
function as and when necessary.

Type System 63

RTA-RTE V6.3.0
User Guide

5.5.2 Modelling Application Types

By correctly modelling Application Data Types with regard to PhysicalDimensions,
RTA-RTE can automatically derive any data conversion code needed to transmit values
between different numerical representations of the same physical dimension.

PhysicalDimension

A PhysicalDimension represents the notion of length, or speed, or temperature, etc.

<PHYSICAL-DIMENSION>
<SHORT-NAME>length_in_metres</SHORT-NAME>
<LENGTH-EXP>1</LENGTH-EXP>

</PHYSICAL-DIMENSION>

Unit

Units express their relationship to a PhysicalDimension by means of FactorSIToUnit
and OffsetSIToUnit. For example, a Unit representing the kilometre might have the
FactorSIToUnit of 0.001.

FactorSIToUnit and OffsetSIToUnit are specified as decimal literals:

<UNIT>
<SHORT-NAME>centimetres</SHORT-NAME>
<FACTOR-SI-TO-UNIT>0.01</FACTOR-SI-TO-UNIT>
<OFFSET-SI-TO-UNIT>0</OFFSET-SI-TO-UNIT>
<PHYSICAL-DIMENSION-REF DEST=’PHYSICAL-
DIMENSION’>/package/length_in_metres</PHYSICAL-DIMENSION-REF>

</UNIT>

An ApplicationDataType may directly reference a Unit, or the Unit may instead be
referenced by a CompuMethod (below). If the CompuMethod and ApplicationDataType
reference conflicting Units, the configuration will be rejected.

CompuMethod

The CompuMethod container in the input configuration has a ShortName, a Category,
and optionally a reference to a Unit.

If the Category is IDENTICAL, there is nothing more to specify.

If the Category is LINEAR, you must supply the coefficients for a linear conversion
function, either a CompuInternalToPhys for the “internal-to-physical” direction, a
CompuPhysToInternal for the “physical-to-internal” direction, or both.

If both are specified, CompuInternalToPhys and CompuPhysToInternal
must be the inverse of one another.

If only one of CompuInternalToPhys and CompuPhysToInternal is supplied, RTA-RTE
calculates the inverse automatically. If both are provided, RTA-RTE honors them both
but does not check that one is truly the inverse of the other.

64 Type System

RTA-RTE V6.3.0
User Guide

When specified in a CompuMethod with category LINEAR, the
CompuInternalToPhys and CompuPhysToInternal must contain exactly
one CompuScale element containing exactly one CompuRationalCoeffs
element.

The CompuRationalCoeffs element contains a CompuNumerator element that specifies
two values, num0 and num1, and a CompuDenominator with one value, denom. The
meaning of these values is as follows:

f(x) =
num0 + (num1 × x)

denom

where num0 is the first value in the CompuNumerator element, num1 is the second value
in the CompuNumerator element, and denom is the value in the CompuDenominator.

All numerators and denominators in CompuRationalCoeffs must be integers. For ex-
ample, to represent (0.5 + x) use coefficients 1, 2, 2 which give the mathematically-
equivalent 1+2x

2 .

As an example, consider the conversion of centimetres to metres:

<COMPU-METHOD>
<SHORT-NAME>compuMethod_centimetres</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<UNIT-REF DEST=’UNIT’>/package/metres</UNIT-REF>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>
<COMPU-SCALE>
<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR>
<V>0</V>
<V>1</V>

</COMPU-NUMERATOR>
<COMPU-DENOMINATOR>
<V>100</V>

</COMPU-DENOMINATOR>
</COMPU-RATIONAL-COEFFS>

</COMPU-SCALE>
</COMPU-SCALES>

</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

The above XML expresses the relationship metres(cm) = 0+(1×cm)
100 , or more simply,

metres(cm) = cm
100 .

Alternatively, the relationship can be expressed in the “physical-to-internal” direction:

<COMPU-METHOD>
<SHORT-NAME>compuMethod_centimetres</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<UNIT-REF DEST=’UNIT’>/package/metres</UNIT-REF>

Type System 65

RTA-RTE V6.3.0
User Guide

<COMPU-PHYS-TO-INTERNAL>
<COMPU-SCALES>
<COMPU-SCALE>
<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR>
<V>0</V>
<V>100</V>

</COMPU-NUMERATOR>
<COMPU-DENOMINATOR>
<V>1</V>

</COMPU-DENOMINATOR>
</COMPU-RATIONAL-COEFFS>

</COMPU-SCALE>
</COMPU-SCALES>

</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

In this case RTA-RTE will generate an “identical” conversion. That is, no conversion will
take place.

5.6 Expressing Values in Physical Units or Numerical Representation

The initial values of DataPrototypes and the invalid values of DataTypes are ex-
pressed using various classes of ValueSpecification. Values for primitive types
may be specified directly in the numerical representation required by the implemen-
tation (i.e. the value that will appear in the initializer in the generated C code) or,
for ApplicationPrimitiveDataTypes, a physical value can be specified in a particular
unit and the corresponding numerical representation will be computed.

A NumericalValueSpecification is used for a primitive value already in the neces-
sary numerical representation. If used for an ApplicationPrimitiveType, the value is
interpretted in the context of the mapped ImplementationType.

An ApplicationValueSpecification is used for a physical value in a particular unit
and can be used only for ApplicationPrimitiveTypes. Data conversion occurs at
generation time, from the given unit to the unit of the ApplicationPrimitiveType,
then to the numerical representation in the mapped ImplementationDataType. The
resulting value is used in the initializer in the generated C code.

For complex types, complex ValueSpecifications are used and aggregate further
ValueSpecifications for the elements. The layout of the ValueSpecifications must
match the layout of the DataType, with RecordValueSpecifications used for record
data types and ArrayValueSpecifications used for array data types. The leaves,
that are of primitive type, are given values using NumericalValueSpecifications or
ApplicationValueSpecifications as described above.

Suppose that the ApplicationPrimitiveDataType MyCMArrayType from the earlier ex-
ample is mapped to an ImplementationDataType that is an array of four 16-bit un-
signed integers. The following example shows an initializer for an array of four lengths,
some specified in metres and some in centimetres, stored as 16-bit unsigned integers

66 Type System

RTA-RTE V6.3.0
User Guide

giving the number of centimetres.

<ARRAY-VALUE-SPECIFICATION>
<ELEMENTS>
<NUMERICAL-VALUE-SPECIFICATION>
<VALUE>17</VALUE>

</NUMERICAL-VALUE-SPECIFICATION>
<NUMERICAL-VALUE-SPECIFICATION>
<VALUE>0</VALUE>

</NUMERICAL-VALUE-SPECIFICATION>
<APPLICATION-VALUE-SPECIFICATION>
<CATEGORY>VALUE</CATEGORY>
<SW-VALUE-CONT>
<UNIT-REF DEST=’UNIT’>/package/metres</UNIT-REF>
<SW-VALUES-PHYS>
<V>5</V>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
<APPLICATION-VALUE-SPECIFICATION>
<CATEGORY>VALUE</CATEGORY>
<SW-VALUE-CONT>
<UNIT-REF DEST=’UNIT’>/package/centimetres</UNIT-REF>
<SW-VALUES-PHYS>
<V>145</V>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>

The first two array elements are initialized with the numerical representation and the
values given are used directly in the generated C code. The third element is given the
value 5 m which is converted to 500 cm and the numerical representation is 500. The
fourth element is given the value 145 cm with numerical representation 145.

5.6.1 Reusing Values

As well as specifying initial and invalid values directly where they are needed, it
is also possible to create free-standing ConstantSpecifications that can be ref-
erenced multiple times in the model, using a ConstantReference in place of a
ValueSpecification.

The following example shows a reusable value that could be used as the initial value
for several DataPrototypes of type MyPointType (from an earlier example) where the
point at two metres by three is the desired initial point:

<CONSTANT-SPECIFICATION>
<SHORT-NAME>MyInitialPoint</SHORT-NAME>
<VALUE-SPEC>
<RECORD-VALUE-SPECIFICATION>
<FIELDS>

Type System 67

RTA-RTE V6.3.0
User Guide

<APPLICATION-VALUE-SPECIFICATION>
<CATEGORY>VALUE</CATEGORY>
<SW-VALUE-CONT>
<UNIT-REF DEST=’UNIT’>/package/metres</UNIT-REF>
<SW-VALUES-PHYS>
<V>2</V>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
<APPLICATION-VALUE-SPECIFICATION>
<CATEGORY>VALUE</CATEGORY>
<SW-VALUE-CONT>
<UNIT-REF DEST=’UNIT’>/package/metres</UNIT-REF>
<SW-VALUES-PHYS>
<V>3</V>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
</FIELDS>

</RECORD-VALUE-SPECIFICATION>
</VALUE-SPEC>

</CONSTANT-SPECIFICATION>

This can be referenced as follows, either for a DataPrototype in its entirety or for an
element of a complex type by placing within a complex ValueSpecification:

<CONSTANT-REFERENCE>
<CONSTANT-REF DEST=’CONSTANT-SPECIFICATION’>/package/MyInitialPoint</

CONSTANT-REF>
</CONSTANT-REFERENCE>

Since ValueSpecifications are not directly tied to data types it is even possible to
reuse ConstantSpecifications for different types, provided they are compatible. For
example, a numerical value of 7 can be used to initialize a signed 8-bit integer type
and an unsigned 16-bit integer type, but a value of 1000 cannot be used to initialize
a signed 8-bit integer type. Similarly a RecordValueSpecification containing the
numerical values 1 and 2 can be used to initialize any record type with two elements
of some integer type, regardless of the names of the elements, but cannot be used to
initialize a record type with three elements, for example.

68 Type System

RTA-RTE V6.3.0
User Guide

6 Interfaces

All ports of a software component (whether a provided or a required port) are typed by
a specific interface. The definition of interfaces is considered in detail in this section.

Note that how the software component interacts with the interface is defined by the
<INTERNAL-BEHAVIOR> element that references a software component. This is dis-
cussed in Chapter 8.

6.1 Sender-Receiver

The <SENDER-RECEIVER-INTERFACE> element is used to define a sender-receiver inter-
face as follows:

<SENDER-RECEIVER-INTERFACE>
<SHORT-NAME>SRInterface</SHORT-NAME>
...
<DATA-ELEMENTS>
...

</DATA-ELEMENTS>
</SENDER-RECEIVER-INTERFACE>

The name of the sender-receiver interface definition is given by the <SHORT-NAME>.
The name is used within other elements that need to reference the interface type,
for example a software component may specify that it uses sender-receiver interface
SRInterface.

The short-name of a sender-receiver interface should be a valid C identifier.

A sender-receiver interface can be used to communicate data (using data element pro-
totypes within the <DATA-ELEMENTS> element) or modes (using mode declaration group
prototypes within the <MODE-GROUPS> element).

6.1.1 Data Element Prototypes

Each sender-receiver interface can specify zero or more data elements that constitute
the AUTOSAR signals communicated over the interface. Each data item defines a pro-
totype of a specific type and can be a primitive data type, a RECORD or an ARRAY type.
See Chapter 5 for details of defining data types.

The declaration of data elements within a sender-receiver interface definition has the
following structure:

<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>Speed</SHORT-NAME>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<SW-IMPL-POLICY>QUEUED</SW-IMPL-POLICY>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
<TYPE-TREF>/types/SInt16</TYPE-TREF>

Interfaces 69

RTA-RTE V6.3.0
User Guide

</VARIABLE-DATA-PROTOTYPE>

A data element is defined using either a <DATA-ELEMENT-PROTOTYPE> or
<VARIABLE-DATA-PROTOTYPE> element and all elements must be defined within
an encapsulating <DATA-ELEMENTS> element.

Each data element must specify:

• The <SHORT-NAME> that you will use to refer to the item.

• A <TYPE-TREF> reference to the type of the data item.

• The <SW-IMPL-POLICY> is specified for queued communication and omitted for un-
queued.

Unqueued communication means that a newly received value over-writes the pre-
vious value of the data item. If a value is sent multiple times before it is received
then the receiver can only access the last transmitted value.

Queued communication means that the sender-receiver interface queues arrivals
of the data item on the receiver side.

6.2 Nv-Data

<NV-DATA-INTERFACE> elements are used to define an interface used by an Nv-block
software component type (see Chapter 11). Each interface contains one or more Nv-
Data elements as follows:

<NV-DATA-INTERFACE>
<SHORT-NAME>NVInterface</SHORT-NAME>
...
<NV-DATAS>
...

</NV-DATAS>
</NV-DATA-INTERFACE>

The name of the Nv-Data interface definition is given by the <SHORT-NAME>. The name
is used within other elements that need to reference the interface type, for example an
Nv-Block software component may specify that it uses Nv-Data interface NVInterface.

The short-name of a Nv-Data interface should be a valid C identifier.

6.2.1 Nv-Data Elements

Each Nv-Data interface can specify zero or more Nv-data elements that constitute the
AUTOSAR signals communicated over the interface. Each Nv-data item defines a pro-
totype of a specific type and can be a primitive data type, a RECORD or an ARRAY type.

The declaration of data elements within a Nv-Data interface definition has the following
structure:

70 Interfaces

RTA-RTE V6.3.0
User Guide

<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>DTC</SHORT-NAME>
<TYPE-TREF>/types/SInt16</TYPE-TREF>

</VARIABLE-DATA-PROTOTYPE>

An Nv-data element is defined using a <VARIABLE-DATA-PROTOTYPE> element and all
elements must be defined within an encapsulating <NV-DATAS> element.

Each Nv-data element must specify:

• The <SHORT-NAME> that you will use to refer to the item.

• A <TYPE-TREF> reference to the type of the data item.

6.3 Mode-Switch

The <MODE-SWITCH-INTERFACE> element is used to define a mode-switch interface in a
configuration as follows:

<MODE-SWITCH-INTERFACE>
<SHORT-NAME>SRInterface</SHORT-NAME>
...
<MODE-GROUP>
...

</MODE-GROUP>
</MODE-SWITCH-INTERFACE>

The name of the mode-switch interface definition is given by the <SHORT-NAME>. The
name is used within other elements that need to reference the interface type.

The short-name of a mode-switch interface should be a valid C identifier.

A mode-switch interface can contain exactly one mode group.

6.3.1 Mode Groups

Each mode-switch interface can specify exactly one mode group that defines applica-
tion modes.

The declaration of each mode group prototype within a mode-switch interface definition
has the following structure:

<MODE-GROUP>
<SHORT-NAME>Speed</SHORT-NAME>
<TYPE-TREF>/autosar/mg1</TYPE-TREF>

</MODE-GROUP>

A mode group prototype is defined using the <MODE-GROUP> element. Each mode group
prototype must specify:

• the <SHORT-NAME> that you will use to refer to the item.

Interfaces 71

RTA-RTE V6.3.0
User Guide

• the <TYPE-TREF> reference to mode declaration group.

The declaration of mode group prototypes and the use of mode declaration prototypes
within interfaces is considered in detail in Chapter 9.

6.4 Client-Server

The <CLIENT-SERVER-INTERFACE> element is used to define a client-server interface
as follows:

<CLIENT-SERVER-INTERFACE>
<SHORT-NAME>CSInterface</SHORT-NAME>
<OPERATIONS>
...

</OPERATIONS>
</CLIENT-SERVER-INTERFACE>

A client-server interface is named using the <SHORT-NAME> element. The name is used
within other elements that need to reference the interface type. The short-name of a
client-server interface should be a valid C identifier.

A client-server interface consists of one or more operations defined using the
<OPERATIONS> container element.

6.4.1 Operations

The <OPERATIONS> element encapsulates one or more <CLIENT-SERVER-OPERATION>
elements each of which defines a single operation in the client-server interface.

<OPERATIONS>
<CLIENT-SERVER-OPERATION>
<SHORT-NAME>MaximumValue</SHORT-NAME>
<ARGUMENTS>
...
</ARGUMENTS>

</CLIENT-SERVER-OPERATION>
</OPERATIONS>

Each operation is named using the <SHORT-NAME> element. The name you specify here
will form part of the name used by the RTE to refer to the operation in your code.

The <ARGUMENTS> element encapsulates one or more argument prototypes using
<ARGUMENT-DATA-PROTOTYPE> elements that define each argument (parameter) of the
operation.

Each argument prototype definition must define:

• the <SHORT-NAME> of the parameter.

• a <TYPE-TREF> reference to the type of the parameter. The referenced type must
correspond to a defined type – see Chapter 5.

72 Interfaces

RTA-RTE V6.3.0
User Guide

• the <DIRECTION> of the parameter as “IN” (read only), “OUT” (write only) or “IN-
OUT” readable and writable by the component.

The following XML definition shows the arguments for our MaximumValue operation that
we assume takes two parameters of type SInt16 and returns the maximum of the two
parameters in an out parameter called result:

<ARGUMENTS>
<ARGUMENT-DATA-PROTOTYPE>
<SHORT-NAME>InputA</SHORT-NAME>
<TYPE-TREF>/types/SInt16</TYPE-TREF>
<DIRECTION>IN</DIRECTION>

</ARGUMENT-DATA-PROTOTYPE>
<ARGUMENT-DATA-PROTOTYPE>
<SHORT-NAME>InputB</SHORT-NAME>
<TYPE-TREF>/types/SInt16</TYPE-TREF>
<DIRECTION>IN</DIRECTION>

</ARGUMENT-DATA-PROTOTYPE>
<ARGUMENT-DATA-PROTOTYPE>
<SHORT-NAME>OutputMaximum</SHORT-NAME>
<TYPE-TREF>/types/SInt16</TYPE-TREF>
<DIRECTION>OUT</DIRECTION>

</ARGUMENT-DATA-PROTOTYPE>
</ARGUMENTS>

6.5 Calibration

The <PARAMETER-INTERFACE> element is used to define a calibration interface as fol-
lows:

<PARAMETER-INTERFACE>
<SHORT-NAME>if1</SHORT-NAME>
<PARAMETERS>
...

</PARAMETERS>
</PARAMETER-INTERFACE>

The name of the calibration interface definition is given by the <SHORT-NAME>. The
name is used within other elements that need to reference the interface type.

The short-name of a calibration interface should be a valid C identifier.

6.5.1 Calibration Prototypes

Each calibration interface can specify zero or more calibration prototypes that con-
stitute the AUTOSAR parameters communicated over the interface. Each calibration
prototype defines a prototype of a specific type.

The declaration of calibration prototypes within a calibration interface definition has
the following structure:

<PARAMETER-DATA-PROTOTYPE>

Interfaces 73

RTA-RTE V6.3.0
User Guide

<SHORT-NAME>Speed</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<TYPE-TREF>/types/SInt16</TYPE-TREF>

</PARAMETER-DATA-PROTOTYPE>

6.6 Trigger

A trigger interface is defined with the <TRIGGER-INTERFACE> element as follows:

<TRIGGER-INTERFACE>
<SHORT-NAME>ifSingle</SHORT-NAME>
<TRIGGERS>
...

</TRIGGERS>
</TRIGGER-INTERFACE>

Each trigger interface can specify one or more triggers. The declaration of triggers
within a trigger interface definition has the following structure:

<TRIGGER>
<SHORT-NAME>Name</SHORT-NAME>

</TRIGGER>

A trigger is defined using only its name; no other information is necessary.

74 Interfaces

RTA-RTE V6.3.0
User Guide

7 Software Component Types

Each software component you want to use must have its component type declared in
the RTE generator’s configuration. The component type makes the component avail-
able for composition into a larger software system

An atomic software component type is defined using the
<APPLICATION-SW-COMPONENT-TYPE> element:

<*-TYPE>
<SHORT-NAME>AtomicSoftwareComponent</SHORT-NAME>
<PORTS>
...

</PORTS>
</*-TYPE>

Additional component types are also possible. For example, a sensor-actuator compo-
nent types uses the <SENSOR-ACTUATOR-SW-COMPONENT-TYPE> element:

<SENSOR-ACTUATOR-SW-COMPONENT-TYPE>
<SHORT-NAME>SensorActuatorComponent</SHORT-NAME>
<PORTS>
...

</PORTS>
</SENSOR-ACTUATOR-SW-COMPONENT-TYPE>

Whatever the component type it must be named using the <SHORT-NAME> element. The
name must be system-wide unique and is used within other elements to reference the
software component type.

The short-name of a software-component should be a valid C identifier.

7.0.1 Service Components

In order for a service to be used by application components, “service component” types
must also be declared.

Service components are defined using the <SERVICE-SW-COMPONENT-TYPE> element:

<SERVICE-SW-COMPONENT-TYPE>
<SHORT-NAME>ServiceComponent</SHORT-NAME>
<PORTS>
...

</PORTS>
</SERVICE-SW-COMPONENT-TYPE>

7.0.2 NVRAM

AUTOSAR makes NVRAM blocks visible to to application components and to the AU-
TOSAR NVRAM manager through instances of “NV Block software component” types.

NV Block components are defined using the <NV-BLOCK-SW-COMPONENT-TYPE>:

<NV-BLOCK-SW-COMPONENT-TYPE>

Software Component Types 75

RTA-RTE V6.3.0
User Guide

<SHORT-NAME>nv1</SHORT-NAME>
<PORTS>
...

</PORTS>
</NV-BLOCK-SW-COMPONENT-TYPE>

Each Nv-Block software component declares one or more Nv-blocks. See Chapter 11
for more details.

7.1 Ports

The ports of a software component are defined within the <PORTS> element, for exam-
ple:

<PORTS>
<*-PORT-PROTOTYPE>
...

</*-PORT-PROTOTYPE>
</PORTS>

Within the <PORTS> element, the <P-PORT-PROTOTYPE> and the <R-PORT-PROTOTYPE>
elements are used to define provided and required ports respectively.

7.1.1 Provided Ports

A provided port within a software component type definition is named using the
<SHORT-NAME> element. The name is used within other elements to reference the soft-
ware component type.

The short-name of a provided port should be a valid C identifier.

Each provided port definition must specify the interface type over which it will commu-
nicate with other ports using the <PROVIDED-INTERFACE-TREF>:

<P-PORT-PROTOTYPE>
<SHORT-NAME>Sender</SHORT-NAME>
<PROVIDED-INTERFACE-TREF>/interfaces/SRInterface
</PROVIDED-INTERFACE-TREF>

</P-PORT-PROTOTYPE>

This <PROVIDED-INTERFACE-TREF> element must identify the required interface – see
Chapter 6.

7.1.2 Required Ports

The definition of a required port takes the same form as that of a provided port with
the exception that the <R-PORT-PROTOTYPE> element is used.

A required port within a software component type definition must be named using the
<SHORT-NAME> element. The name is used within other elements to reference the soft-
ware component type.

76 Software Component Types

RTA-RTE V6.3.0
User Guide

The short-name of a required port should be a valid C identifier.

The required port definition must reference an interface definition defined using the
<REQUIRED-INTERFACE-TREF> element:

<R-PORT-PROTOTYPE>
<SHORT-NAME>Receiver</SHORT-NAME>
<REQUIRED-INTERFACE-TREF>
/interfaces/SRInterface

</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>

In the simplest scenario, the provided and required ports at the endpoints of a con-
nection reference the same interface definition – this guarantees that they are com-
patible. However, it is also possible to connect a require port to a provide port
whose Interface is a superset of the require port Interface, or to connect ports with
Interfaces that are compatible except for differing names for the interface elements
using PortInterfaceMappings (see section 13.3.4) to explicitly specify the connec-
tions and furthermore to connect data items that are not directly compatible via Data
Conversion – see Section 13.5.

7.1.3 Service Components

All the ports of a service component must be characterized by interfaces with the ser-
vice flag set:

<R-PORT-PROTOTYPE>
<SHORT-NAME>ServiceReceiver</SHORT-NAME>
<REQUIRED-INTERFACE-TREF>
/interfaces/ServiceSRInterface

</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>
...
<SENDER-RECEIVER-INTERFACE>
<SHORT-NAME>ServiceSRInterface</SHORT-NAME>
...
<IS-SERVICE>true</IS-SERVICE>

</SENDER-RECEIVER-INTERFACE>

7.2 Communication Specifications

When a port prototype is created it can optionally define attributes that control how the
port will behave. Provided port prototypes define attributes in <PROVIDED-COM-SPECS>
element whereas required ports use a <REQUIRED-COM-SPECS> element.

<!-- Providing...-->
<P-PORT-PROTOTYPE>
<SHORT-NAME>name</SHORT-NAME>
<PROVIDED-COM-SPECS>
...
</PROVIDED-COM-SPECS>
<PROVIDED-INTERFACE-TREF ...

Software Component Types 77

RTA-RTE V6.3.0
User Guide

</P-PORT-PROTOTYPE>

<!-- Requiring...-->
<R-PORT-PROTOTYPE>
<SHORT-NAME>name</SHORT-NAME>
<REQUIRED-COM-SPECS>
...
</REQUIRED-COM-SPECS>
<REQUIRED-INTERFACE-TREF ...

</R-PORT-PROTOTYPE>

7.2.1 Sender-Receiver

Acknowledgment Request

A sender (the provider of a sender-receiver interface) can optionally request that re-
ceivers acknowledge the transmission for one or more of the data elements commu-
nicated on the interface. The configuration depends on whether the data element is
queued or not.

<P-PORT-PROTOTYPE>
<SHORT-NAME>pa</SHORT-NAME>
<PROVIDED-COM-SPECS>
<!-- Enable TxAck -->
<UNQUEUED-SENDER-COM-SPEC>
<DATA-ELEMENT-IREF>
<P-PORT-PROTOTYPE-REF ...
<DATA-ELEMENT-PROTOTYPE-REF ...

</DATA-ELEMENT-IREF>
<TRANSMISSION-ACKNOWLEDGE>
<TIMEOUT>0.5</TIMEOUT>

</TRANSMISSION-ACKNOWLEDGE>
</UNQUEUED-SENDER-COM-SPEC>

</PROVIDED-COM-SPECS>
<PROVIDED-INTERFACE-TREF ...

</P-PORT-PROTOTYPE>

Acknowledgment is enabled if the timeout is greater than zero.

For a sender, the only acknowledgment that can be requested is on transmission. It is
not possible to request acknowledgement on reception by the receiver since there may
be multiple receivers of the data item and it would be impossible to determine what
the semantics of successful reception were (would it be one receiver has received, all
receivers have received, some receivers have received etc.)

When a software component sends data over a port and acknowledgment requests are
defined then your application code can request transmission acknowledgment. This is
done by requesting feedback from the RTE with the following API call:

Rte_StatusType
Rte_Feedback_<Port>_<Data/Event>(Rte_Instance Self)

78 Software Component Types

RTA-RTE V6.3.0
User Guide

The call can be made irrespective of whether the receiving software component is lo-
cated locally on the same ECU as the sender or on a remote ECU.

The call will block for <TIMEOUT> seconds if a <WAIT-POINT> in the calling runnable
entity references a <DATA-SEND-COMPLETED-EVENT>, otherwise it will not block.

The following code shows how to request feedback for a transmission assuming that a
blocking variant is configured:

FUNC(void, RTE_APPL_CODE)
Runnable(Rte_Instance self)
{
Rte_StatusType status;

status = Rte_Send_Port_Value(self, 42);
if (status != RTE_E_OK)
{
// Handle error

}
else
{
status = Rte_Feedback_Port_Value(self);
// Call blocks for up to TIMEOUT seconds
switch (status) {
case RTE_E_TRANSMIT_ACK:
// COM service transmitted data...

case RTE_E_TIMEOUT:
// Transmission request timedout

}
}

}

Rte_Feedback applies only to writes/sends that use the “explicit” form of the
sender-receiver communication API. Furthermore, when multiple transmis-
sions are made then it is not possible to determine which is acknowledged
first. You should serialize calls and check each individually if you need this
behavior.

There is also an additional form of the feedback API, Rte_IFeedback, that applies to
the “implicit” form of sender-receiver communication. This API will never block.

Initial Values

Non-queued data elements can optionally specify whether they have an initial value
that is used when a receiver attempts a receive operation on a software component
that has not yet made its first send or when the sender has invalidated the signal.

<R-PORT-PROTOTYPE>
<SHORT-NAME>ra</SHORT-NAME>

Software Component Types 79

RTA-RTE V6.3.0
User Guide

<REQUIRED-COM-SPECS>
<NONQUEUED-RECEIVER-COM-SPEC>
<DATA-ELEMENT-REF>...</DATA-ELEMENT-REF>
<INIT-VALUE>
<CONSTANT-REFERENCE>
<CONSTANT-REF>/pkg/constant_857</CONSTANT-REF>

</CONSTANT-REFERENCE>
</INIT-VALUE>

</NONQUEUED-RECEIVER-COM-SPEC>
</REQUIRED-COM-SPECS>
<REQUIRED-INTERFACE-TREF ...

</R-PORT-PROTOTYPE>

Invalidation

Non-queued data elements can optionally enable invalidation so that a sender can send
a data item that has an invalidated value.

Invalidation is enabled through the interface’s invalidation policy element. This ensures
that all uses of the interface have the same invalidation state.

<INVALIDATION-POLICYS>
<INVALIDATION-POLICY>
<DATA-ELEMENT-REF>/pkg/if/element</DATA-ELEMENT-REF>
<HANDLE-INVALID>KEEP</HANDLE-INVALID>

</INVALIDATION-POLICY>
...

</INVALIDATION-POLICYS>

Invalidation is used to indicate whether a data item is invalid on transmission. When
the attribute is set at a sender, RTE API calls generated for that can be used by the
sender to set a signal value as invalid. There are two types of invalidation:

• Implicit communication invalidation using the Rte_IInvalidate API.

• Explicit Communication Invalidation using the Rte_Invalidate API.

Setting invalidity can only be made at the point of transmission – once the data item is
sent, the invalidate attribute cannot be modified. The receiver of an invalidated value
receives the specified initial value.

Queued Data Buffering

Recall that the RTE allows data to be queued and this is specified on the interface. Data
is always queued on the receiver software component. To avoid unnecessary use of
buffer space, the number of elements queued can be configured.

<R-PORT-PROTOTYPE>
<SHORT-NAME>ra</SHORT-NAME>
<REQUIRED-COM-SPECS>
<QUEUED-RECEIVER-COM-SPEC>

80 Software Component Types

RTA-RTE V6.3.0
User Guide

<DATA-ELEMENT-REF>...</DATA-ELEMENT-REF>
<QUEUE-LENGTH>3</QUEUE-LENGTH>

</QUEUED-RECEIVER-COM-SPEC>
</REQUIRED-COM-SPECS>
<REQUIRED-INTERFACE-TREF ...

</R-PORT-PROTOTYPE>

Only data elements that are specified as <IS-QUEUED> can be buffered.

Alive Timeout

When communication is between ECUs it can be useful to know whether a sender is
still alive and sending data. This is configured using an alive timeout that specifies the
maximum time between receives that the receiver considers to indicate the sender is
not alive.

If the alive timeout is exceeded then the receiver is informed through a
<DATA-RECEIVE-ERROR-EVENT>. Therefore, the internal behavior of a software com-
ponent that wishes to use the alive timeout must ensure that a runnable entity that
responds to a <DATA-RECEIVE-ERROR-EVENT> is configured.

The alive timeout is specified in seconds.

<REQUIRED-COM-SPECS>
<NONQUEUED-RECEIVER-COM-SPEC>
<DATA-ELEMENT-REF>...</DATA-ELEMENT-IREF>
<ALIVE-TIMEOUT>1.5</ALIVE-TIMEOUT>

</NONQUEUED-RECEIVER-COM-SPEC>
</REQUIRED-COM-SPECS>

Filter

In some cases a receiver may only want to receive a value when the sent data
has a specific property, for example the value has changed. This is especially
useful for reducing the load in systems where runnable entities are triggered by
<DATA-RECEIVED-EVENTS> since filtering can reduce the number of events that get
passed to the receiver and therefore the amount of time consumed processing signals
that are not deemed useful.

<NONQUEUED-RECEIVER-COM-SPEC>
<DATA-ELEMENT-REF>...</DATA-ELEMENT-REF>
<FILTER>...</FILTER>

</NONQUEUED-RECEIVER-COM-SPEC>

The valid filter specifications are described in the RTA-RTE Reference Manual.

7.2.2 Client-Server

Buffering for the server side of client-server communication is configured using the
<SERVER-COM-SPEC> element.

<P-PORT-PROTOTYPE>

Software Component Types 81

RTA-RTE V6.3.0
User Guide

<SHORT-NAME>Server</SHORT-NAME>
<PROVIDED-COM-SPECS>
<SERVER-COM-SPEC>
<OPERATION-REF>...</OPERATION-REF>
<QUEUE-LENGTH>2</QUEUE-LENGTH>

</SERVER-COM-SPEC>
</PROVIDED-COM-SPECS>
<PROVIDED-INTERFACE-TREF ...

</P-PORT-PROTOTYPE>

7.2.3 Client Component Instance Attributes

This release of RTA-RTE does not use the <CLIENT-COM-SPEC>.

82 Software Component Types

RTA-RTE V6.3.0
User Guide

8 Internal Behavior

In Chapter 6 you saw how to define the external interface of a software component. In
this chapter you will see how to configure the internal behavior of the component.

Internal behavior elements are used to define how the software component will interact
with the RTE at runtime.

The internal behavior of a software component specifies many aspects of how it be-
haves, including:

• The runnable entities that belong to the software component and how they interact
(if at all) with the ports of the software component

• The events that cause runnable entities to be activated at runtime.

• The exclusive areas that exist so runnable entities can execute all or part of their
code in mutual exclusion from other runnable entities.

• Variables that belong to the software component that are accessed by multiple
runnable entities.

• Port argument lists for accessing AUTOSAR Basic Software Modules.

The following example illustrates the internal behavior description for software compo-
nent “SoftwareComponent”:

<INTERNAL-BEHAVIOR>
<SHORT-NAME>behavior</SHORT-NAME>
<COMPONENT-REF>SoftwareComponent</COMPONENT-REF>

<!-- Events that cause runnable activation -->
<EVENTS>
...

</EVENTS>

<!-- Specification of mutual exclusion areas -->
<EXCLUSIVE-AREAS>
...

</EXCLUSIVE-AREAS>

<!-- Variables shared by multiple runnable entities -->
<INTER-RUNNABLE-VARIABLES>
...

</INTER-RUNNABLE-VARIABLES>

<!-- Variables unique to SW-C instance -->
<PER-INSTANCE-MEMORYS>
...

</PER-INSTANCE-MEMORYS>

<!-- Arguments for accessing BSW modules -->

Internal Behavior 83

RTA-RTE V6.3.0
User Guide

<PORT-ARGUMENT-LISTS>
...

</PORT-ARGUMENT-LISTS>

<!-- Runnable entities -->
<runnable entities>
...

</runnable entities>

<!-- Flag; if true SW-C can exist more than once -->
<SUPPORTS-MULTIPLE-INSTANTIATION>
...

</SUPPORTS-MULTIPLE-INSTANTIATION>
</INTERNAL-BEHAVIOR>

An internal behavior must be named using the <SHORT-NAME> element. The name is
used within other elements to reference the behavior.

The short-name of an internal behavior does not need to be a valid C identifier (but it
must pass the syntactic checks enforced by the XML Schema).

The way in which the configuration of RTE events within the <EVENTS> element and
runnable entities defines the receive mode communication attributes is shown in Sec-
tion 8.5. The following sections first outline the basic framework for RTE events and
runnable entities before showing how to configure the RTE to achieve different types of
runnable entity/interface interaction.

8.1 RTE Events

Events control how runnable entities are triggered by the generated RTE at runtime.
These events are termed RTE Events to distinguish them from OS events.

RTA-RTE supports the following RTE Event types:

• TIMING-EVENT – activate a runnable entity periodically. The TIMING-EVENT allows
you to execute a runnable entity to poll an RPort to check if data has been received,
periodically call a server (ie be a client), periodically send data on a PPort or simply
to execute some internal software component functionality. Runnable entities that
are activated in response to a timing event are said to be “time-triggered”.

• DATA-RECEIVED-EVENT – activate a runnable entity when data is received on a
RPort/data element. Runnable entities that are activated in response to a data
received event are “event-triggered”.

• DATA-RECEIVE-ERROR-EVENT – activate a runnable entity when either invalidated
data is received or an “alive timeout” has failed.

• ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT – activate a runnable entity when
the result from an earlier call to a server is available.

84 Internal Behavior

RTA-RTE V6.3.0
User Guide

• OPERATION-INVOKED-EVENT – activate a runnable entity to handle a server call for
an operation on a provided port characterized by a client-server interface.

• DATA-SEND-COMPLETED-EVENT – activate a runnable entity when a transmission ac-
knowledgement is available (explicit communication).

• DATA-WRITE-COMPLETED-EVENT – activate a runnable entity when a transmission
acknowledgement is available (implicit communication).

• MODE-SWITCH-EVENT – activate a runnable entity on either entry to, or exit from an
application mode. AUTOSAR also permits mode switch events to be triggered on
the transition between two application modes.

• MODE-SWITCHED-ACK-EVENT – activate a runnable when a mode switch transition is
complete.

• BACKGROUND-EVENT – activate a runnable within the “idle” task.

• INTERNAL-TRIGGER-OCCURRED-EVENT – activate a runnable within the SW-C, possi-
bly by direct function call, without passing data.

• EXTERNAL-TRIGGER-OCCURRED-EVENT – activate a runnable within the SW-C by an
external entity without passing data.

A <TIMING-EVENT> is used to indicate that a runnable entity will be activated periodi-
cally by the Operating System. The RTE generator will use this information to generate
an appropriate schedule table that must be ticked from application code.

The <DATA-RECEIVED-EVENT> and <ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT> el-
ements implicitly provide the XML configuration of the RECEIVE_MODE VFB communica-
tion attribute.

The structure for specifying RTE events is:

<EVENTS>
<*-EVENT>
<!-- Elements for event/runnable relationship -->

</*-EVENT>
</EVENTS>

The <EVENTS> element can encapsulate any number of RTE events. RTE events can be
listed in any order.

An RTE event can be used to activate a runnable entity when the event oc-
curs. The <ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT>, <DATA-RECEIVED-EVENT>
and <DATA-SEND-COMPLETED-EVENT> can also be waited upon by a runnable entity.

An RTE event references the runnable entity that is to be activated when the event
occurs. Similarly, when a runnable entity waits on one of the RTE events, the runnable
entity must reference the event(s) upon which it waits. Each of the RTE events can be
used in both ways and by more than one runnable entity but it is not possible for the
same event to simultaneously activate a runnable entity and to be waited upon.

Internal Behavior 85

RTA-RTE V6.3.0
User Guide

8.2 Runnable Entities

Each software component will require at least one runnable entity. All runnable entities
must be defined within the runnable entities definition in a <SWC-INTERNAL-BEHAVIOR>
element.

<runnable entities>
<RUNNABLE-ENTITY>
<SHORT-NAME>RunnableEntity</SHORT-NAME>
<!-- Elements defining behavior of entity -->
<SYMBOL>CFunctionName</SYMBOL>

</RUNNABLE-ENTITY>
</runnable entities>

A <RUNNABLE-ENTITY> must be named using the <SHORT-NAME> element. The name is
used within other elements to reference the runnable entity.

The <SHORT-NAME> denotes the name of the runnable entity in the XML namespace,
but it does not tell the RTE what the associated function body you will provide in your
code is called. This information is provided by the <SYMBOL> declaration that links
the runnable entity to the C function name you will use in your implementation. The
<SYMBOL> element defines the name of the function that implements the runnable en-
tity. The <SYMBOL> name must be a valid C identifier.

This declaration is sufficient if your runnable entity does not need to interact with the
software component’s ports. However, if a runnable entity needs to interact then you
will need to specify additional information that allows the RTE generator to generate
APIs to allow interaction to take place, for example:

1. What data items the runnable entity can send.

2. What data items the runnable entity can receive.

3. What mode instances the runnable entity can switch.

4. What RTE events the runnable entity waits upon.

5. Which servers the runnable entity calls and how it expects the result to be re-
turned.

You can use the same runnable entity to receive data on one interface and send data
on another interface, or to receive data on a port and then call a server port to process
the received data. For example, you may create a runnable entity that reads an integer
value from an RPort, multiplies it by two and sends it out on a PPort.

8.2.1 Specifying Maximum Arrival Rate

AUTOSAR permits the specification of the minimum time between executions by specif-
ing a minimum start interval to place a limit on the rate at which activations can occur.
RTA-RTE manages runnable activation to ensure that the minimum start interval is not
violated.

86 Internal Behavior

RTA-RTE V6.3.0
User Guide

A minimum start interval cannot be specified for a runnable entity that is invoked by
an OperationInvokedEvent.

The RTE API function Rte_MainFunction must be invoked when minimum
start intervals are used. The period at which the function will be invoked is
specified by a command-line option.

8.3 Responding to Periodic Events

If your software component includes runnable entities that are not triggered by com-
munication through the ports of the component you need to make sure that the
runnable entities are executed at runtime. This is achieved by associating them with a
<TIMING-EVENT> or <BACKGROUND-EVENT> that specifies how the runnable entity should
execute.

8.3.1 Timing events

Each <TIMING-EVENT> element specifies the <PERIOD> of occurrence in seconds and
must reference a runnable entity defined in the component’s internal behavior using a
<START-ON-EVENT-REF> element. A period of zero is illegal.

The runnable entity declaration itself needs only to declare a name for the runnable
entity.

The following example shows how to configure the RTE to activate a runnable entity
every second.

<EVENTS>
<TIMING-EVENT>
<SHORT-NAME>EverySecond</SHORT-NAME>
<!-- Runnable to activate -->
<START-ON-EVENT-REF>
/pkg/ib/RunnableEntity

</START-ON-EVENT-REF>
<PERIOD>1.0</PERIOD> <!-- Every second -->

</TIMING-EVENT>
</EVENTS>

<RUNNABLE-ENTITY>
<SHORT-NAME>RunnableEntity</SHORT-NAME>
<SYMBOL>MyFunctionName</SYMBOL>

</RUNNABLE-ENTITY>

A timing event must be named using the <SHORT-NAME> element. The name is used
within other elements to reference the timing event. The short-name of a timing event
does not need to be a valid C identifier.

8.3.2 Background events

RTA-RTE also supports Background events. These events are similar to TimingEvents
in that they are recurring but unlike timing events have no fixed period.

Internal Behavior 87

RTA-RTE V6.3.0
User Guide

RTA-RTE supports two mechanisms for activating background events:

• Via invocation from an “idle” task.

• Via an external OsAlarm or schedule table (see Section 24.1).

When all events mapped to a task are background events and no event has an exter-
nally declared OsAlarm or OsScheduleTable reference then RTA-RTE generates a task
body that uses ChainTask instead of TerminateTask.

In accordance with AUTOSAR requirements, RTA-RTE rejects configura-
tions where a background triggered event is not triggerend by an external
OsAlarm or schedule table and is not mapped to the lowest priority task in
the system (the “idle” task).

8.4 Sending to a Port

If your software component provides a sender-receiver interface then you should define
at least one runnable entity that sends data over the interface.

The runnable can send data in two ways:

Explicitly – The RTE generates an explicit API call (that may be optimized to a macro).
The sent data item may be either queued or unqueued by the receiver.

Implicitly – The RTE generates an implicit API call that will be optimized to a macro.
The sent data item must not be queued.

8.4.1 Explicit Communication

Runnable entities that send data must define a <DATA-SEND-POINT> that each of which
specifies the data item that will be sent for a given interface.

The <DATA-SEND-POINT> specifies the port and data element using
<P-PORT-PROTOTYPE-REF> and <DATA-ELEMENT-PROTOTYPE-REF> elements:

<RUNNABLE-ENTITY>
<SHORT-NAME>Sender</SHORT-NAME>
<DATA-SEND-POINTS>
<DATA-SEND-POINT>
<SHORT-NAME>SendPoint</SHORT-NAME>
<DATA-ELEMENT-IREF>
<P-PORT-PROTOTYPE-REF ...
<DATA-ELEMENT-PROTOTYPE-REF ...

</DATA-ELEMENT-IREF>
</DATA-SEND-POINT>

</DATA-SEND-POINTS>
</RUNNABLE-ENTITY>

88 Internal Behavior

RTA-RTE V6.3.0
User Guide

The <DATA-SEND-POINT> specifies access to an AUTOSAR variable – the access
declaration includes the port and data element using <PORT-PROTOTYPE-REF> and
<TARGET-DATA-PROTOTYPE-REF> elements:

<RUNNABLE-ENTITY>
<SHORT-NAME>Sender</SHORT-NAME>
<DATA-SEND-POINTS>
<VARIABLE-ACCESS>
<SHORT-NAME>dsp_p1_di1</SHORT-NAME>
<ACCESSED-VARIABLE>
<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF ...
<TARGET-DATA-PROTOTYPE-REF ...

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
</DATA-SEND-POINTS>

</RUNNABLE-ENTITY>

For senders, it does not matter how the runnable entity is triggered, so any EVENT can
be used to activate the runnable entity.

A <DATA-SEND-POINT> must be named using the <SHORT-NAME> element. The name is
used within other elements to reference the data send point. The short-name does not
need to be a valid C identifier.

8.4.2 Implicit Communication

Runnable entities can also communicate using implicit data read/write access. Such
configuration is guaranteed to be implemented as a simple macro that accesses global
storage defined in the RTE rather than through a C function call. Configuration is almost
identical to the <DATA-SEND-POINT>.

The <DATA-SEND-POINT> specifies access to an AUTOSAR variable – the access
declaration includes the port and data element using <PORT-PROTOTYPE-REF> and
<TARGET-DATA-PROTOTYPE-REF> elements:

<RUNNABLE-ENTITY>
<SHORT-NAME>Sender</SHORT-NAME>
<DATA-WRITE-ACCESSS>
<VARIABLE-ACCESS>
<SHORT-NAME>dwa_p1_di1</SHORT-NAME>
<ACCESSED-VARIABLE>
<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF ...
<TARGET-DATA-PROTOTYPE-REF ...

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
</DATA-WRITE-ACCESSS>

</RUNNABLE-ENTITY>

Internal Behavior 89

RTA-RTE V6.3.0
User Guide

For senders, it does not matter how the runnable entity is triggered, so any EVENT can
be used to activate the runnable entity.

8.5 Receiving from a Port

Similarly, if your software component requires a sender-receiver interface then you
must define at least one runnable entity that receives data over the interface. Data
can be received in three ways:

Implicit data read acces — your runnable is activated by some RTE event, e.g. a
TimingEvent, and makes an RTE API call to read data

Explicit Data read access — your runnable entity is activated by an event and
makes an RTE API call to read/receive the data. The receiver uses a non-blocking
API to poll for the data.

Prior to R4.0 data was read via an OUT parameter of the generated API call. R4.0
introduced an additional form that performs the read using the generated APIs
return value.

Activation of Runnable Entity — your runnable entity is activated when data is re-
ceived on the software component’s port and makes a non-blocking RTE API call
to read/receive the data.

Wake up of Wake Point — your runnable entity makes a call to the RTE API to re-
ceive data. If the data has not yet been received the call will block and your
runnable entity will continue to execute only after the event occurs or a config-
ured timeout occurs, whichever happens first. When using this receive mode the
invoking runnable entity may block and therefore must be a Category 2 runnable
entity.

These receive modes are configured by defining specific combinations of runnable en-
tity elements and RTE events. The required configurations for each receive mode are
shown in the sections below.

8.5.1 Explicit Data Read Access

Runnable entities that are required to receive data with the “data read access” re-
ceive mode must define a <DATA-RECEIVE-POINT-BY-VALUES> element that specifies
the data item they will receive.

The <DATA-RECEIVE-POINT-BY-ARGUMENTS> element specifies access to an AU-
TOSAR variable – the access declaration includes the port and data element using
<PORT-PROTOTYPE-REF> and <TARGET-DATA-PROTOTYPE-REF> elements:

<RUNNABLE-ENTITY>
<SHORT-NAME>Receiver_DataReadAccess</SHORT-NAME>
<DATA-RECEIVE-POINT-BY-ARGUMENTS>
<VARIABLE-ACCESS>
<SHORT-NAME>drp_r1_di1</SHORT-NAME>
<ACCESSED-VARIABLE>

90 Internal Behavior

RTA-RTE V6.3.0
User Guide

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF ...
<TARGET-DATA-PROTOTYPE-REF ...

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
</DATA-RECEIVE-POINT-BY-ARGUMENTS>

</RUNNABLE-ENTITY>

Using data read access implies that the runnable entity is polling the RPort for the
specified data item. It is common, therefore, that a runnable entity which defines a
data receive point will be activated by a <TIMING-EVENT> that specifies the required
polling period.

A data receive point element must be named using the <SHORT-NAME> element. The
name is used within other elements to reference the data receive point. The short-
name does not need to be a valid C identifier.

Direct Read

AUTOSAR also supports reading data via the generated API’s return value rather than
via arguments. In this case an <DATA-RECEIVE-POINT-BY-VALUES> is used instead of
the <DATA-RECEIVE-POINT-BY-ARGUMENTS> element.

As with the <DATA-RECEIVE-POINT-BY-ARGUMENTS> element the
<DATA-RECEIVE-POINT-BY-VALUES> element specifies access to an AUTOSAR
variables – the access declaration includes the port and data element using
<PORT-PROTOTYPE-REF> and <TARGET-DATA-PROTOTYPE-REF> elements:

<DATA-RECEIVE-POINT-BY-VALUES>
<VARIABLE-ACCESS>
<SHORT-NAME>drv_R1_di2</SHORT-NAME>
<ACCESSED-VARIABLE>
<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF ...
<TARGET-DATA-PROTOTYPE-REF ...

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
</DATA-RECEIVE-POINT-BY-VALUES>

8.5.2 Implicit Data Read Access

Receivers may also use “implicit” data read access to access a receive port using im-
plicit communication. The APIs generated for “implicit” access are guaranteed to be
resolved to macros.

The <DATA-READ-ACCESSS> element specifies access to one or more AUTOSAR
variables – the access declaration includes the port and data element using
<PORT-PROTOTYPE-REF> and <TARGET-DATA-PROTOTYPE-REF> elements:

<RUNNABLE-ENTITY>

Internal Behavior 91

RTA-RTE V6.3.0
User Guide

<SHORT-NAME>Receiver_DataReadAccess</SHORT-NAME>
<DATA-READ-ACCESSS>
<VARIABLE-ACCESS>
<SHORT-NAME>dra_r1_di1</SHORT-NAME>
<ACCESSED-VARIABLE>
<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF ...
<TARGET-DATA-PROTOTYPE-REF ...

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
</DATA-READ-ACCESSS>

</RUNNABLE-ENTITY>

8.5.3 Activation of Runnable Entity

If you require the receive mode to be “activation of runnable entity” then you must de-
fine a <DATA-RECEIVED-EVENT> as the RTE event that will activate the runnable entity
when the data is received.

The following XML fragment shows how the “data read access” example above is con-
verted to “activation of runnable entity”:

<EVENTS>
<DATA-RECEIVED-EVENT>
<SHORT-NAME>ActivationOfRunnableEntity</SHORT-NAME>
<!-- Runnable to activate -->
<START-ON-EVENT-REF>
/pkg/internal/ReceivePort_DataItem

</START-ON-EVENT-REF>
<DATA-IREF>
...

</DATA-IREF>
</DATA-RECEIVED-EVENT>

</EVENTS>

<RUNNABLE-ENTITY>
<SHORT-NAME>ReceivePort_DataItem</SHORT-NAME>
<DATA-RECEIVE-POINTS>
<!-- as above -->

</DATA-RECEIVE-POINTS>
</RUNNABLE-ENTITY>

With this receive mode, the runnable entity still needs to define a data receive point
(as above) to ensure that an API is created to read the data once the runnable entity
has been activated by the RTE.

No <WAIT-POINT> should be specified since the combination of activated runnable en-
tity and blocking API is forbidden by AUTOSAR.

92 Internal Behavior

RTA-RTE V6.3.0
User Guide

8.5.4 Wake up of Wait Point

If you need to receive with receive mode of “wake up of wait point” then your runnable
entity must define the <WAIT-POINT> at configuration time. Any runnable entity that
defines one or more wait points automatically becomes a Category2 runnable entity.

Before the runnable entity can wait you will need to make sure that the runnable entity
is triggered initially. This can be done by defining another RTE event.

For example, if you want the runnable entity to run periodically but to wait during
execution for data then you would use a <TIMING-EVENT> to trigger the periodic ex-
ecution. Alternatively, you might want the runnable entity to be triggered by one
data item and then wait for another data item to arrive. In this case you would use
a <DATA-RECEIVED-EVENT> that includes a reference to the runnable entity to trigger
the initial execution.

A <WAIT-POINT> must be named using the <SHORT-NAME> element. The name is used
within other elements to reference the wait point. The short-name does not need to be
a valid C identifier.

Each <WAIT-POINT> must specify the RTE events by which it can be triggered. This is
done with the <TRIGGER-REFS> element. For a receiver, this reference must be to the
EVENT called <DATA-RECEIVED-EVENT>.

Each <WAIT-POINT> must also specify a <TIMEOUT> which is the maximum time that
the receiver will wait for wake-up.

The following XML fragment shows how the “activation of runnable entity” example
above is converted to “wake up of wait point”:

<EVENTS>
<DATA-RECEIVED-EVENT>
<SHORT-NAME>WakeUpOfWaitPoint</SHORT-NAME>
<!-- Note the runnable reference is removed -->
<DATA-IREF>
<!-- as above -->

</DATA-IREF>
</DATA-RECEIVED-EVENT>

</EVENTS>

<RUNNABLE-ENTITY>
<SHORT-NAME>ReceivePort_DataItem</SHORT-NAME>
<DATA-RECEIVE-POINTS>
... as above ...

</DATA-RECEIVE-POINTS>
<WAIT-POINTS>
<WAIT-POINT>
<SHORT-NAME>WaitPoint</SHORT-NAME>
<TRIGGER-REFS>
<TRIGGER-REF>
/pkg/internal/WakeUpOfWaitPoint

</TRIGGER-REF>

Internal Behavior 93

RTA-RTE V6.3.0
User Guide

</TRIGGER-REFS>
<TIMEOUT>0.5</TIMEOUT> <!-- 500ms -->

</WAIT-POINT>
...

</WAIT-POINTS>
</RUNNABLE-ENTITY>

8.5.5 Accessing Calibration Parameters

When an RPort is categorized by a calibration interface (see Section 6.5) RTA-RTE can
create APIs to access the calibration prototypes.

Prior to R4.0 an Rte_CalPrm API was created for each parameter in the RPort. This could
lead to many unused, and undesired, APIs and therefore AUTOSAR R4.0 introduced the
concept of a ParameterAccess point to control when and how runnable entities access
a mode using the Rte_Prm API.

<RUNNABLE-ENTITY>
...
<PARAMETER-ACCESSS>
<PARAMETER-ACCESS>
<SHORT-NAME>pap_rCal1_cp_value1</SHORT-NAME>
<ACCESSED-PARAMETER>
<AUTOSAR-PARAMETER-IREF>
<PORT-PROTOTYPE-REF ...
<TARGET-DATA-PROTOTYPE-REF ...

</AUTOSAR-PARAMETER-IREF>
</ACCESSED-PARAMETER>

</PARAMETER-ACCESS>
...

The <PARAMETER-ACCESS> element references the required calibration prototype using
the <PORT-PROTOTYPE-REF> and <TARGET-DATA-PROTOTYPE-REF> elements. The refer-
enced port should be declared within the context of the runnable entity’s SWC-type.

A ParameterAccess point must be declared for each required Rte_Prm API.

8.6 Responding to a Server Request on a Port

If your software component provides a client-server interface then you must define a
runnable entity for each operation in the interface. These runnable entities are the
servers for the client-server PPorts on your software component.

Each PPort that is characterized by a client-server interface must provide a runnable
entity for each operation defined by the interface.

For the runnable entity to be regarded by the RTE as a server it must be tied to an
<OPERATION-INVOKED-EVENT>. This RTE event allows the RTE to call the runnable en-
tity at runtime in response to client requests. The <OPERATION-INVOKED-EVENT> must
specify what operation request on the server interface will result in the runnable entity
being activated. The following example shows how to configure runnable “ServerOper-

94 Internal Behavior

RTA-RTE V6.3.0
User Guide

ation”:

<EVENTS>
<OPERATION-INVOKED-EVENT>
<SHORT-NAME>ActivateServerRunnable</SHORT-NAME>
<START-ON-EVENT-REF>
/pkg/internal/ServerOperation

</START-ON-EVENT-REF>
<OPERATION-IREF>
...

</OPERATION-IREF>
</OPERATION-INVOKED-EVENT>

</EVENTS>

<RUNNABLE-ENTITY>
<SHORT-NAME>ServerOperation</SHORT-NAME>
<SYMBOL>...</SYMBOL>

</RUNNABLE-ENTITY>

An <OPERATION-INVOKED-EVENT> must be named using the <SHORT-NAME> element.
The name is used within other elements to reference the event. The short-name does
not need to be a valid C identifier.

8.6.1 Concurrent Invocation of Servers

When a runnable acting as a server is written to be re-entrant then the RTE can optimize
invocation by clients on the same ECU to a direct function call. This means that no
queuing is required (or possible) and therefore multiple invocations of the server can
occur concurrently.

The RTE generator needs to know which runnable entities can be called in this way.
Concurrent invocation is defined within the server’s runnable entity definition as fol-
lows:

<CAN-BE-INVOKED-CONCURRENTLY>
true
</CAN-BE-INVOKED-CONCURRENTLY>

The runnable must be written to be re-entrant. If this is not the case then
data consistency is not guaranteed when there is more than one client si-
multaneously requesting the server.

8.7 Making a Client Request on a Port

Similarly, if your software component requires a client-server interface then you must
define at least one runnable entity that acts as the client.

Clients can access servers either synchronously or asynchronously.

Synchronous —the client will be blocked while the server processes the request.
When the server has processed the request the result is passed back to the client
and the client continues to execute.

Internal Behavior 95

RTA-RTE V6.3.0
User Guide

A synchronous client is specified using a SynchronousServerCallPoint.

Asynchronous —the client makes the request then continues to execute. When the
server has serviced the request, the client can collect the result. The mechanism
by which the result is collected by the client is configured statically at configura-
tion time by configuring a VFB RECEIVE_MODE. When using asynchronous com-
munication, a client may have at most one outstanding request of any one server
(but may make multiple simultaneous requests to different servers).

An asynchronous client is specified using an AsynchronousServerCallPoint.

In the case of synchronous access, the client will block until the server completes and
the result of the operation will be returned by the API call. In the case of asynchronous
access, the client does not block and simply continues to execute. The client can then
receive the server result in one of three receive modes:

Data read access —the client uses a non-blocking read API to poll for the server’s
result. If the receive mode attribute is not specified, RTA-RTE assumes data read
access by default. This mode is only valid for asynchronous client-server commu-
nication.

If only an AsynchronousServerCallPoint is specified then RTA-RTE assumes data
read access by default.

Activation of runnable entity —the client runnable entity is activated by RTA-RTE
whenever new data is available. RTA-RTE creates a non-blocking read API to ac-
cess the result. This mode is only valid for asynchronous client-server communi-
cation.

This receive mode is specified using a combination of an AsynchronousServer-
CallPoint an AsynchronousServerCallReturnsEvent.

Wake up of wait point —the client suspends execution via a blocking read API call
until either a timeout occurs or the server’s result is available. The client uses a
blocking read API to read data. When using this receive mode the runnable entity
may block and therefore must be a Category 2 runnable entity.

A client that communicates synchronously implies that the receive mode is “wake
up of wake up point”.

This receive mode is specified using a combination of an AsynchronousServer-
CallPoint, an AsynchronousServerCallReturnsEvent and a WaitPoint.

These receive modes are configured by defining specific combinations of runnable
entity elements and EVENTS. The required configurations for each receive mode are
shown in the sections below.

You can use the same runnable entity as a server on one interface and client on another
interface. For example, you may create a runnable entity that handles a server request
for sorting on a PPort and uses an auxiliary operation on an RPort.

96 Internal Behavior

RTA-RTE V6.3.0
User Guide

8.7.1 Synchronous Clients

Runnable entities that need to call a server synchronously (i.e. block when
handling an RPort characterized by a client-server interface) must define a
<SYNCHRONOUS-SERVER-CALL-POINT>.

The <SYNCHRONOUS-SERVER-CALL-POINT> defines which operations the client can call
and specifies a global <TIMEOUT> value for all the called operations. The <TIMEOUT>
specified the maximum time that the client will wait for any of the servers providing an
operation.

A <SYNCHRONOUS-SERVER-CALL-POINT> must be named using the SHORT-NAME ele-
ment. The name is used within other elements to reference the call point. The short-
name does not need to be a valid C identifier but must pass the syntactic checks im-
posed by the AUTOSAR schema.

<RUNNABLE-ENTITY>
<SHORT-NAME>SynchronousClient</SHORT-NAME>
<SERVER-CALL-POINTS>
<SYNCHRONOUS-SERVER-CALL-POINT>
<SHORT-NAME>SyncCallPoint<SHORT-NAME>
<OPERATION-IREFS>
<OPERATION-IREF>
...

</OPERATION-IREF>
</OPERATION-IREFS>

</SYNCHRONOUS-SERVER-CALL-POINT>
<TIMEOUT>0.500</TIMEOUT> <!-- 500ms -->
...

</SERVER-CALL-POINTS>
<SYMBOL>...</SYMBOL>

</RUNNABLE-ENTITY>>

When a client has a client mode of synchronous, this means that the client will be
blocked until the server call returns. Implicitly this means the client is using a receive
mode of “wake up of wait point”.

You will have to ensure that the client is triggered by an RTE event.

8.7.2 Asynchronous Clients

Runnable entities that need to call a server asynchronously (i.e. handle an
RPort characterized by a client-server interface without blocking) must define an
<ASYNCHRONOUS-SERVER-CALL-POINT>.

When a client is synchronous, it will be blocked while the server executes. However,
when a client is asynchronous the client is not blocked while the server executes. Once
the server has completed it is the client’s responsibility to get the result of the operation
back from the server.

Server results are collected by clients using one of the same three receive modes used

Internal Behavior 97

RTA-RTE V6.3.0
User Guide

for receivers in sender-receiver communication:

• data read access

• activation of runnable entity

• wake up of wait point

In all cases, the framework for the client request is the same and is shown in the fol-
lowing example where a runnable entity called Client is configured to make an asyn-
chronous call on “CSInterface” to “Operation”:

<RUNNABLE-ENTITY>
<SHORT-NAME>AsynchronousClient</SHORT-NAME>
<SERVER-CALL-POINTS>
<ASYNCHRONOUS-SERVER-CALL-POINT>
<SHORT-NAME>AsyncCallPoint<SHORT-NAME>
<OPERATION-IREFS>
<OPERATION-IREF>
...

</OPERATION-IREF>
</OPERATION-IREFS>

</ASYNCHRONOUS-SERVER-CALL-POINT>
...

</SERVER-CALL-POINTS>
<SYMBOL>...</SYMBOL>

</RUNNABLE-ENTITY>

An <ASYNCHRONOUS-SERVER-CALL-POINT> must be named using the <SHORT-NAME> el-
ement. The name is used within other elements to reference the call point. The short-
name does not need to be a valid C identifier but must pass the syntactic checks im-
posed by the AUTOSAR schema.

Collecting the Result by Data Read Access

If the client does not specify any <WAIT-POINTS> that reference an
<ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT> then the receive mode for the
server results defaults to “data read access” and the RTE generator will provide a
non-blocking Rte_Result API call for accessing the server result.

Collecting the Result by Activation of Runnable Entity

When you want the server result to be communicated back to the client software com-
ponent through receive mode “activation of runnable entity” then, in addition to defin-
ing an <ASYNCHRONOUS-SERVER-CALL-POINT> in the client runnable entity, the following
elements are required:

• a runnable entity to capture the result (this may or may not be the same runnable
entity that makes the client request);

• an RTE event to trigger this runnable entity when the server completes.

98 Internal Behavior

RTA-RTE V6.3.0
User Guide

The trigger is configured using the RTE event called
<ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT> that references both the client’s
server call point and the runnable entity to activate when the call returns:

<EVENTS>
<ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT>
<SHORT-NAME>ServerCallReturnsEvent</SHORT-NAME>
<START-ON-EVENT-REF>
/pkg/internal/CollectResult

</START-ON-EVENT-REF>
<EVENT-SOURCE-REF>
/pkg/internal/RE1/AsyncCallPoint
</EVENT-SOURCE-REF>

</ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT>
</EVENTS>

<RUNNABLE-ENTITY>
<SHORT-NAME>CollectResult</SHORT-NAME>
...

</RUNNABLE-ENTITY>

Like data read access, a non-blocking Rte_Result API call is generated to enable the
activated runnable entity to collect the server result.

Collecting the Result by Wake up of Wake Point

When you want the server result to be communicated through receive mode “wake up
of wait point” then, in addition to defining an ASYNCHRONOUS-SERVER-CALL-POINT in
the client runnable entity the following additional configuration is needed:

• declaration of an <ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT> that specifies for
which call the RTE event will occur.

• a <WAIT-POINT> in the client runnable entity that waits on the
<ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT>.

The following example shows the declaration of the RTE event and the additional con-
figuration required by the client:

<EVENTS>
<ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT>
<SHORT-NAME>ServerCallReturns</SHORT-NAME>
<EVENT-SOURCE-REF>
/pkg/internal/Client/AsyncCallPoint

</EVENT-SOURCE-REF>
</ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT>

</EVENTS>

<RUNNABLE-ENTITY>
<SHORT-NAME>Client</SHORT-NAME>
<!-- Server call point as before -->

Internal Behavior 99

RTA-RTE V6.3.0
User Guide

<SERVER-CALL-POINTS>
<ASYNCHRONOUS-SERVER-CALL-POINT>
<SHORT-NAME>AsyncCallPoint<SHORT-NAME>
<OPERATION-IREFS>

...
</OPERATION-IREFS>

</ASYNCHRONOUS-SERVER-CALL-POINT>
</SERVER-CALL-POINTS>

<!-- Additional WAIT-POINT configuration -->
<WAIT-POINTS>
<WAIT-POINT>
<SHORT-NAME>WaitForServerResult</SHORT-NAME>
<TRIGGER-REFS>
<TRIGGER-REF>
/pkg/internal/ServerCallReturns

</TRIGGER-REF>
</TRIGGER-REFS>
<TIMEOUT>0.5</TIMEOUT> <!-- 500ms -->

</WAIT-POINT>
</WAIT-POINTS>

</RUNNABLE-ENTITY>

As with waiting on events in sender-receiver interface interaction, the <WAIT-POINT>
must specify a <TIMEOUT> with the maximum allowed amount of time in seconds for
which wait can occur.

A timeout of 0 will cause an infinite wait.

A <WAIT-POINT> must be named using the <SHORT-NAME> element. The name is used
within other elements to reference the wait point. The short-name does not need to be
a valid C identifier.

8.8 Direct Trigger of a Runnable Entity

As we have seen, port based communication provides an effective mechanism for
transmitting an “event” that combines both data and the notification that the event
has occurred. However such a mechanism may be more than is required; a software
component may want to transmit just the fact that the event has occurred and have
no associated data. AUTOSAR R4.0 introduced the concept of Trigger Events to handle
this situation.

Internal Trigger

An Internal Trigger Occurred Event is used within a SW-C instance to activate one or
more runnables when the event occurs. Since the event is internal to a component no
ports are required and hence no connections are necessary during integration.

An internal trigger requires a Triggering Point to be declared within the runnable that
will make the Rte_IrTrigger API call.

<RUNNABLE-ENTITY>

100 Internal Behavior

RTA-RTE V6.3.0
User Guide

<SHORT-NAME>re_te1</SHORT-NAME>
...
<INTERNAL-TRIGGERING-POINTS>
<INTERNAL-TRIGGERING-POINT>
<SHORT-NAME>itp3</SHORT-NAME>

</INTERNAL-TRIGGERING-POINT>
...

Then RTA-RTE will create Rte_IrTrigger_re1_itp3 API based on the short name of the
triggering point. The short name is also used to identify the internal trigger point as
the event source within an Internal Trigger Occurred Event element:

<INTERNAL-TRIGGER-OCCURRED-EVENT>
<SHORT-NAME>itp3</SHORT-NAME>
<START-ON-EVENT-REF ...
<EVENT-SOURCE-REF>/pkg/swc/ib/re_te1/itp3</EVENT-SOURCE-REF>

</INTERNAL-TRIGGER-OCCURRED-EVENT>

Multiple Internal Trigger Occurred events can reference the same triggering point and
thus one internal trigger API can start multiple runnables. The runnables to be started
are specified by in response to an internal triggering event are specified using one or
more Internal Trigger Occurred Event elements.

When a SW-C indicates the event has occurred by invoking the Rte_IrTrigger API
created for the internal triggering point RTA-RTE activates all runnables specified by
Internal Trigger Occurred events that reference the triggering point. For runnables
without a minimum start inteval and without a task referenced in the event’s
RteEventMapping this activation is by a direct function call.

External Trigger

In contrast to internal triggering, External Trigger Occurred Event is used by entities
external to a SW-C instance to activate runnables. Since the event is external to a
component ports categorized by a trigger interface are used hence must be connected
during integration.

An external trigger requires a port categorized by a Trigger Interface (see Section 6.6)
to be declared within the SW-C. For SW-Cs that indicate the event has occurred by
invoking the Rte_Trigger API call a provided port is necessary whereas SW-Cs that
respond to the event use a required port.

<R-PORT-PROTOTYPE>
<SHORT-NAME>r2</SHORT-NAME>
<REQUIRED-INTERFACE-TREF>/pkg/itf</REQUIRED-INTERFACE-TREF>

</R-PORT-PROTOTYPE>

Where itf is a trigger interface, for example:

<TRIGGER-INTERFACE>
<SHORT-NAME>itf</SHORT-NAME>
<TRIGGERS>

Internal Behavior 101

RTA-RTE V6.3.0
User Guide

<TRIGGER>
<SHORT-NAME>trig1</SHORT-NAME>

</TRIGGER>
<TRIGGER>
<SHORT-NAME>trig2</SHORT-NAME>

</TRIGGER>
</TRIGGERS>

</TRIGGER-INTERFACE>

The short name of the port and the short name of the trigger within the interface are
used to form the name of the Rte_Trigger API. Within a SW-C, multiple External Trigger
Occurred Events can reference the same port/trigger and thus one external trigger API
can start multiple runnables. The provided port can be connected to multiple ports in
different SW-Cs.

<EXTERNAL-TRIGGER-OCCURRED-EVENT>
<SHORT-NAME>etp2</SHORT-NAME>
<START-ON-EVENT-REF>/pkg/swc/IB/re</START-ON-EVENT-REF>
<TRIGGER-IREF>
<CONTEXT-R-PORT-REF>/pkg/swc/rPort</CONTEXT-R-PORT-REF>
<TARGET-TRIGGER-REF>/pkg/itf/trig1</TARGET-TRIGGER-REF>

</TRIGGER-IREF>
</EXTERNAL-TRIGGER-OCCURRED-EVENT>

When a SW-C with a provide trigger port indicates the event has occurred by invoking
the Rte_Trigger API created for the external trigger RTA-RTE activates all runnables
specified by connected External Trigger Occurred events that reference the triggering
port/trigger. For runnables without a minimum start inteval and without a task refer-
enced in the event’s RteEventMapping this activation is by a direct function call.

8.9 Exclusive Areas

Software components that need to provide mutual exclusion over data shared by two
(or more) of their runnable entities do so by configuring exclusive areas

The RTE generator uses exclusive area configuration to create operating system con-
figuration files and to optimize exclusive areas. For example, if the only components
that access a region are mapped to the same task then the entire region can be elided.

Exclusive areas are defined in the XML configuration and are associated with the
runnable entities that use them.

8.9.1 Configuration

Each <SWC-INTERNAL-BEHAVIOR> element must name the <EXCLUSIVE-AREAS> it uses.
Note that this means that the scope of any exclusive areas that you define is the soft-
ware component instance. It is not possible to define exclusive areas that cross soft-
ware component boundaries1.

1Data that is shared between multiple software-component instances which can potentially be accessed
concurrently should be encapsulated in its own component and then normal Sender-Receiver or Client-

102 Internal Behavior

RTA-RTE V6.3.0
User Guide

Each exclusive-area defined within an internal behavior definition must be named using
the <SHORT-NAME> element. The name is used within other elements to reference the
software component type and to form the “handle” by which the exclusive area is ac-
cessed at run-time. The short-name of an exclusive area should be a valid C identifier.

<INTERNAL-BEHAVIOR>
<EXCLUSIVE-AREAS>
<EXCLUSIVE-AREA>
<SHORT-NAME>ExclusiveArea</SHORT-NAME>

</EXCLUSIVE-AREA>
...

</EXCLUSIVE-AREAS>
<INTERNAL-BEHAVIOR>

RTA-RTE can be informed how to implement the exclusive area with an
RteExclusiveAreaImplementation element within the ECUC description.

You should create an exclusive area implementation element for each ex-
clusive area. If omitted RTA-RTE defaults to “OS resource” implementation
strategy.

A different exclusive area implementation method can be set for each exclusive area
and SWC instance.

The InterruptBlocking method will cause all OS interrupts to be blocked
in the worst case for the longest execution time of the protected critical
section.

8.9.2 Usage

Each runnable entity in your <INTERNAL-BEHAVIOR> section can declare if it uses one
of your named exclusive areas and how it uses the area at runtime with the following
elements:

• Explicit access—a <RUNNABLE-ENTITY-CAN-ENTER-EXCLUSIVE-AREA> element
defines exclusive areas accessed using an explicit API. The area’s name forms part
of the generated API (explicit access is similar to a standard resource in OSEK OS).

• Implicit access—a <RUNNABLE-ENTITY-RUNS-IN-EXCLUSIVE-AREA> element de-
fines an exclusive area that is locked automatically before the runnable entity exe-
cutes and is released when the runnable entity terminates or waits for an RTE event
(similar to an internal resource in OSEK OS). In this case there is no user accessible
way of explicitly entering and leaving the defined exclusive area.

The configuration of both types of the exclusive area is shown below:

<RUNNABLE-ENTITY>
<SHORT-NAME>NeedsExclusiveAreas</SHORT-NAME>
<RUNNABLE-ENTITY-CAN-ENTER-EXCLUSIVE-AREAS>

Server communication used to access the data.

Internal Behavior 103

RTA-RTE V6.3.0
User Guide

<RUNNABLE-ENTITY-CAN-ENTER-EXCLUSIVE-AREA>
<EXCLUSIVE-AREA-REF>
/pkg/internal/ExclusiveArea

</EXCLUSIVE-AREA-REF>
</RUNNABLE-ENTITY-CAN-ENTER-EXCLUSIVE-AREA>

</RUNNABLE-ENTITY-CAN-ENTER-EXCLUSIVE-AREAS>
<RUNNABLE-ENTITY-RUNS-IN-EXCLUSIVE-AREAS>
<RUNNABLE-ENTITY-RUNS-IN-EXCLUSIVE-AREA>
<EXCLUSIVE-AREA-REF>

/pkg/internal/AnotherExclusiveArea
</EXCLUSIVE-AREA-REF>

</RUNNABLE-ENTITY-RUNS-IN-EXCLUSIVE-AREA>
</RUNNABLE-ENTITY-RUNS-IN-EXCLUSIVE-AREAS>

<RUNNABLE-ENTITY>

8.9.3 Implementation Methods

RTA-RTE supports the following implementation mechanisms for exclusive areas:

• OS resource locking.

• OS interrupt blocking.

• All interrupt blocking.

• Cooperative Runnable Placement.

OS Resource

When the OS resource implementation method is selected for an exclusive area in-
stance RTA-RTE will attempt to use an OS resource is used to implement the exclusive
area.

If an exclusive area implementation element explicitly references an OsResource in the
input then RTA-RTE will use that resource unless access can be optimized. However if no
OsResource is selected then RTA-RTE will create a suitable standard/internal resource.
The naming of this resource is described in the RTA-RTE Reference Manual.

When using OS resources RTA-RTE will attempt to optimize the implementation of
Rte_Enter and Rte_Exit APIs to try and eliminate use of the resource entirely. This
optimization is possible when RTA-RTE observes that data consistency is guaranteed by
other means, namely:

• All accessors are located in the same task, or

• All accessing tasks are non-preemptive, or

• All accessing tasks have the same priority, or

• All accessing tasks are declared in the input as accessing the same internal re-
source.

104 Internal Behavior

RTA-RTE V6.3.0
User Guide

When an accessing runnable is declared as having implicit (“run inside”) access to
the exclusive area RTA-RTE will insert resource access around runnable calls in the
generated task body or use an internal resource if all accessors use implicit access and
no other runnables are mapped to the relevant tasks.

OS Interrupt Blocking

When the OS interrupt implementation method is selected for an exclusive area in-
stance RTA-RTE will use suspend/resume of OS interrupts to implement the exclusive
area.

When using OS interrupt blocking RTA-RTE optimizes the APIs to null access if data
inconsistency cannot occur.

Avoid using any RTE APIs when OS interrupts are blocked. Failure to adhere
to this restriction may result in context switches not being recognized by the
OS when interrupt handling is resumed.

All Interrupt Blocking

AUTOSAR allows an exclusive area to block all interrupts, not just OS interrupts, When
the All interrupt implementation method is selected for an exclusive area instance.

When using all interrupt blocking RTA-RTE will optimize API calls to null access if data
inconsistency cannot occur.

Avoid using any RTE APIs when OS interrupts are blocked. Failure to adhere
to this restriction may result in context switches not being recognized by the
OS when interrupt handling is resumed.

Non-preemptive Tasks

When the non-preemptive task implementation method is selected for an exclusive
area instance RTA-RTE assumes that data consistency is guaranteed by external means
and that therefore all access to the exclusive area can be optimized to null access.

Cooperative Runnable Placement

When the cooperative runnable placement implementation method is selected for an
exclusive area instance RTA-RTE ensures that tasks containing runnables accessing an
exclusive area with implementation method cooperative runnable placement cannot
preempt other tasks with runnables accessing the same exclusive area instance when
a runnable is active. Unlike the non-preemptive tasks implementation method preemp-
tion is allowed when runnables are not running, e.g. between runnables.

If required to implement data consistency and no OsResource is explicit selected within
an EA implementation element in the ECUC then RTA-RTE will create a suitable stan-
dard/internal resource. The naming of this resource is described in the RTA-RTE Refer-
ence Manual.

Internal Behavior 105

RTA-RTE V6.3.0
User Guide

When using cooperative runnable placement RTA-RTE will optimize the implementation,
e.g. when all accessors are located in the same task or all accessing tasks are non-
preemptive, to null access since data consistency is then assured by external means.
The decision on whether to optimize is the same as for the OS resource implementation
method.

The cooperative runnable placement is best used when the accessing runnables are
declared as having implicit (“run inside”) access the exclusive area since RTA-RTE will
then insert resource access around runnable calls in the generated task body or use
internal resources as appropriate. If accessing runnables are declared as explicit access
(“can enter”) the exclusive area, i.e. will use the Rte_Enter API, then RTA-RTE cannot
use an internal resource to implement cooperative runnable placement since this would
block access for the entire runnable.

8.10 Inter-Runnable Variables

The RTE allows the configuration of inter-runnable variables that provide a way for
runnable entities to communicate between themselves. While this is possible through
user code and shared variable access (protected by exclusive areas - see Section 8.9)
this can be inefficient when handling primitive data types since the exclusive area API
calls are typically mapped onto the underlying Operating System’s resource control
mechanism.

Therefore, the RTE provides lightweight mechanisms for inter-runnable communication
that is equivalent in semantics to implicit/explicit sender-receiver communication but
within the scope of the software component instance.

8.10.1 Defining Variables

Each software component can define a number of variables at the scope of the com-
ponent and how access is provided to the variable at runtime, either using explicit or
implicit communication:

8.10.2 Declaring Read and Write Access

Each runnable must explicitly specify whether it reads or writes a variable at runtime.
Access is declared using <READ-LOCAL-VARIABLES> and <WRITTEN-LOCAL-VARIABLES>
elements that reference an inter-runnable variable defined within the SWC-type, for
example:

<WRITTEN-LOCAL-VARIABLES>
<VARIABLE-ACCESS>
<SHORT-NAME>xx</SHORT-NAME>
<ACCESSED-VARIABLE>
<LOCAL-VARIABLE-REF>/pkg/swc/IB/irvex1</LOCAL-VARIABLE-REF>

</ACCESSED-VARIABLE>
</VARIABLE-ACCESS>

</WRITTEN-LOCAL-VARIABLES>

106 Internal Behavior

RTA-RTE V6.3.0
User Guide

8.11 Accessing Modes

A mode user/manager can query the current application mode for a mode instabce
using the Rte_Mode API as well as have runnable entities activated as a result of a
mode switch event.

Prior to R4.0 a Rte_Mode API was created by RTA-RTE for all possible mode accesses.
This could lead to many unused, and undesired, APIs and therefore in R4.0 AUTOSAR in-
troduced the concept of a ModeAccessPoint to control when and how runnable entities
access a mode using the Rte_Mode API.

A ModeAccessPoint is declared using the <MODE-ACCESS-POINT> element within the
context of the runnable that will invoke the API:

<MODE-ACCESS-POINTS>
<MODE-ACCESS-POINT>
<MODE-GROUP-IREF>
<R-MODE-GROUP-IN-ATOMIC-SWC-INSTANCE-REF>
<CONTEXT-R-PORT-REF>/pkg/swc/r1</CONTEXT-R-PORT-REF>
<TARGET-MODE-GROUP-REF>/pkg/if/mdgp1</TARGET-MODE-GROUP-REF>

</R-MODE-GROUP-IN-ATOMIC-SWC-INSTANCE-REF>
</MODE-GROUP-IREF>

</MODE-ACCESS-POINT>
</MODE-ACCESS-POINTS>

A ModeAccessPoint must be declared for each required Rte_Mode API. The access point
can reference either required or provided mode groups.

8.12 Per-instance Memory

Software component instances may have state that has a lifetime that is longer than
the execution of any of its constituent runnable entities. Global variables cannot be
used for maintaining state because more than one instance of a software component
may be integrated onto the same ECU and there is no concurrency control mechanism
between instances of software components.

Per-instance memory allows software components to define one or more typed regions
of memory that can be accessed by the runnable entities at runtime.

The configuration of a per-instance memory section is shown below:

<INTERNAL-BEHAVIOR>
...
<PER-INSTANCE-MEMORYS>
<PER-INSTANCE-MEMORY>
<SHORT-NAME>VAL</SHORT-NAME>
<TYPE>dataType</TYPE>
<TYPE-DEFINITION>uint8</TYPE-DEFINITION>

</PER-INSTANCE-MEMORY>
</PER-INSTANCE-MEMORYS>
...

</INTERNAL-BEHAVIOR>

Internal Behavior 107

RTA-RTE V6.3.0
User Guide

Each per-instance memory must be named using the <SHORT-NAME> element. The
name allocated at configuration is the same name you will use to access the per-
instance memory in your code. The short-name of a per-instance memory should be a
valid C identifier.

The <TYPE> and <TYPE-DEFINITION> elements are used to, respectively, name and
define the data type created by RTA-RTE for the per-instance memory. The short-name
of a per-instance memory should be a valid C identifier. The type definition must be a
valid C type definition suitable for direct inclusion in a type definition as follows:

typedef ...TYPE-DEFINITION... ...TYPE...;

The example per-instance memory definition results on the following type definition:

typedef uint8 dataType;

Within the generated RTE, RTA-RTE allocates RAM for each per-instance memory. If the
ECUC specifies an NVRamAllocation container that references a per-instance mem-
ory then the name is the RamBlockLocationSymbol. Otherwise, RTA-RTE constructs a
unique name.

8.13 Port Options

The port options element permits:

• Enable/disable indirect API for a port.

• Port-defined arguments to be specified for client-server communication.

• Enabling application code to take the “address” of RTE API functions generated for
a port.

8.13.1 Indirect API

If the indirect API generated is not required for a port it can be disabled through “port
options” within the internal behavior:

<PORT-API-OPTIONS>
<PORT-API-OPTION>
<INDIRECT-API>false</INDIRECT-API>
<PORT-REF DEST="...">/pkg/component/port</PORT-REF>

</PORT-API-OPTION>
<PORT-API-OPTIONS>

Disabling the indirect API can reduce the size of the component data structure (and
hence save ROM) when a SWC does not support multiple instances.

8.13.2 Port-defined Arguments

When the same runnable is used as the server for multiple ports it is necessary to be
able to identify which is the port that has caused the server invocation. Port-defined

108 Internal Behavior

RTA-RTE V6.3.0
User Guide

arguments permit a server to be supplied with default arguments based on the port
through which it is invoked.

<PORT-API-OPTIONS>
<PORT-API-OPTION>
<PORT-ARG-VALUES>
<INTEGER-LITERAL>
<SHORT-NAME>pdav_1</SHORT-NAME>
<TYPE-TREF DEST="...">/pkg/SInt16</TYPE-TREF>
<VALUE>1</VALUE>

</INTEGER-LITERAL>
...

</PORT-ARG-VALUES>
<PORT-REF DEST="...">/pkg/component/pport</PORT-REF>

</PORT-API-OPTION>
...

8.13.3 Enable “Take Address”

A port option can be used to ensure that RTE APIs are generated in a way that their
address can be taken at run-time:

<PORT-API-OPTIONS>
<PORT-API-OPTION>
<ENABLE-TAKE-ADDRESS>true</ENABLE-TAKE-ADDRESS>
<PORT-REF DEST="...">/pkg/component/port</PORT-REF>

</PORT-API-OPTION>
<PORT-API-OPTIONS>

If not specified, RTA-RTE assumes that <ENABLE-TAKE-ADDRESS> is false.

8.14 Supporting Multiple Instantiation

By default, software components will only support the creation of a single software
component instance. If you want to support multiple instantiation then this must be
declared in the <INTERNAL-BEHAVIOR> clause:

<SUPPORTS-MULTIPLE-INSTANTIATION>
true

</SUPPORTS-MULTIPLE-INSTANTIATION>

The element takes the values of “true” indicating that multiple instantiation is sup-
ported or “false” indicting that multiple instantiation is not supported.

If the <SUPPORTS-MULTIPLE-INSTANTIATION> element is omitted, RTA-RTE assumes
that the software-component does not support multiple instantiation.

The AUTOSAR 4.x feature of STATIC-MEMORYS is only available in Internal-
Behaviors that are single-instantated. See errors 2469 and 2470 for more
information.

Internal Behavior 109

RTA-RTE V6.3.0
User Guide

8.15 Memory Allocation

RTA-RTE uses the AUTOSAR memory abstraction scheme when declaring
RunnableEntitys. A Memory Allocation Keyword is chosen according to the
SwAddrMethod for the RunnableEntity. If the RunnableEntity on the input ref-
erences a swAddrMethod then its shortName is used for the Memory Allocation
Keyword; otherwise RTA-RTE uses the AUTOSAR specified SwAddrMethod CODE.

For example:

<RUNNABLE-ENTITY>
<SHORT-NAME>re2</SHORT-NAME>
<SW-ADDR-METHOD-REF>/pkg/METHOD1</SW-ADDR-METHOD-REF>
<SYMBOL>swcA_re1</SYMBOL>
...

The resultant definition of the runnable generated by RTA-RTE in the SWC type’s appli-
cation header file then uses the appropriate section start/stop definitions:

#define swcA_START_SEC_METHOD1
#include "swcA_MemMap.h"
FUNC(void, swcA_METHOD1) swcA_re1(void);
#define swcA_STOP_SEC_METHOD1
#include "swcA_MemMap.h"

This applies to ASW only; this behaviour is not specified for BSW.

110 Internal Behavior

RTA-RTE V6.3.0
User Guide

9 Modes

The previous chapters have explored how an AUTOSAR software-component type can
be defined and configured. In this chapter you will learn how to define application
modes that can be used by software-components to control the execution of runnable
entities.

9.1 Defining Modes

Modes are declared within a <MODE-DECLARATION-GROUP> contained within an
<AR-PACKAGE> element.

<AR-PACKAGE>
<SHORT-NAME>MyModes</SHORT-NAME>
<ELEMENTS>
<MODE-DECLARATION-GROUP>
...

</MODE-DECLARATION-GROUP>
</ELEMENTS>

</AR-PACKAGE>

The <MODE-DECLARATION-GROUP> element is used to declare one or more modes that
are subsequently used by interface declarations.

<MODE-DECLARATION-GROUP>
<SHORT-NAME>Modes</SHORT-NAME>
<INITIAL-MODE-REF>/pkg/Modes/iMode</INITIAL-MODE-REF>
<MODE-DECLARATIONS>
<MODE-DECLARATION>
<SHORT-NAME>iMode</SHORT-NAME>

</MODE-DECLARATION>
<MODE-DECLARATION>
<SHORT-NAME>runMode</SHORT-NAME>

</MODE-DECLARATION>
</MODE-DECLARATIONS>

</MODE-DECLARATION-GROUP>

One mode within a <MODE-DECLARATION-GROUP> element is marked as the group’s ini-
tial mode through the <INITIAL-MODE-REF>. Mode switch events that are attached to
the ENTRY of an initial mode are triggered by RTA-RTE when the RTE is started using
Rte_Start.

A <MODE-DECLARATION-GROUP> can be used (referenced) by multiple sender-receiver
interfaces and therefore inherently used by multiple software-components.

9.2 Mode Communication

Modes are communicated using mode-switch interfaces. Each mode-switch interface
can specify exactly one mode declaration group prototype that defines the AUTOSAR
modes communicated over the interface.

<MODE-SWITCH-INTERFACE>
<SHORT-NAME>ModeInterface</SHORT-NAME>

Modes 111

RTA-RTE V6.3.0
User Guide

<MODE-GROUP>
<SHORT-NAME>mdg1</SHORT-NAME>
<TYPE-TREF DEST="...">/MyModes/Modes</TYPE-TREF>

</MODE-GROUP>
...

<MODE-SWITCH-INTERFACE>

A mode-switch interface can contain exactly one mode declaration group prototype
defined using the <MODE_GROUP> element.

Each <MODE-DECLARATION-GROUP-PROTOTYPE> or <MODE_GROUP> element must specify:

• the <SHORT-NAME> that you will use to refer to the item within references from other
elements.

• a <TYPE-TREF> reference to the mode declaration group.

9.2.1 Mode Managers and Mode Users

A software-component can be either1 a mode manager responsible for requesting a
switch to a new mode or a mode user activated in response to a mode switch.

A software-component declares itself as a mode manager by providing a port catego-
rized by a sender-receiver interface containing a mode declaration group prototype and
declaring a mode switch point. The software-component can then use the Rte_Switch
API to request that a mode switch occurs as well as have runnable entities activated as
a result of a mode switch event.

A software-component declares itself as a mode user by requiring a port categorized
by a sender-receiver interface containing a mode declaration group prototype.

A mode manager is connected, using assembly connectors, to the mode users.

9.2.2 Mode Queues

When a mode manager initiates a mode switch RTA-RTE will being processing the re-
quest immediately as long as no mode switch is currently in progress for the mode
instance. However if the switch cannot begin then is is placed in a queue of mode
switch requests and handled when the current switch is complete.

RTA-RTE eliminates queues when they are not required; for example if no
ModeSwitchEvents are defined for the mode instance.

The length of the queue can be defined for each mode manager. For SWCs the length
is defined by the provided port’s com-spec element, for example to specify a queue
length of three entries:

<PROVIDED-COM-SPECS>
<MODE-SWITCH-SENDER-COM-SPEC>

1It possible for the same software-component to be simultaneously a mode manager and a mode user
if it contains both provided and required ports.

112 Modes

RTA-RTE V6.3.0
User Guide

<MODE-GROUP-REF>/pkg/if/mdgp1</MODE-GROUP-REF>
<QUEUE-LENGTH>3</QUEUE-LENGTH>

</MODE-SWITCH-SENDER-COM-SPEC>
</PROVIDED-COM-SPECS>

The queue length can be specified for a BSW module by a <BSW-MODE-SENDER-POLICY>
element within the module’s <MODE-SENDER-POLICYS> element.

<BSW-MODE-SENDER-POLICY>
<PROVIDED-MODE-GROUP-REF>/pkg/module/group</PROVIDED-MODE-GROUP-REF>
<QUEUE-LENGTH>3</QUEUE-LENGTH>

</BSW-MODE-SENDER-POLICY>

The Rte_Switch API returns RTE_E_LIMIT error if the mode queue overflows. The equiv-
alent BSW API returns SCHM_E_LIMIT in the same circumstances.

9.2.3 Accessing Modes

A mode user/manager can query the current mode using the Rte_Mode API as well as
have runnable entities activated as a result of a mode switch event.

ModeAccessPoints are used to control when and how runnable entities access
a mode using the Rte_Mode API. A ModeAccessPoint is declared using the
<MODE-ACCESS-POINT> element within the context of the runnable that will invoke the
API:

<MODE-ACCESS-POINTS>
<MODE-ACCESS-POINT>
<MODE-GROUP-IREF>
<R-MODE-GROUP-IN-ATOMIC-SWC-INSTANCE-REF>
<CONTEXT-R-PORT-REF>/pkg/swc/r1</CONTEXT-R-PORT-REF>
<TARGET-MODE-GROUP-REF>/pkg/if/mdgp1</TARGET-MODE-GROUP-REF>

</R-MODE-GROUP-IN-ATOMIC-SWC-INSTANCE-REF>
</MODE-GROUP-IREF>

</MODE-ACCESS-POINT>
</MODE-ACCESS-POINTS>

A ModeAccessPoint must be declared for each required Rte_Mode API. The access point
can reference either required or provided mode groups.

9.2.4 Interface Compatibility

For a provider to be successfully connected to a receiver the interfaces categorizing the
ports must have compatible interfaces – for modes this means that each Mode Decla-
ration Group Prototype in the required interface must have the same name2 as a Mode
Declaration Group Prototype in the provided reference (this is analogous to the re-
quirement for matching name and data-type for connecting interfaces containing Data
Element Prototypes). The Mode Declaration Group Prototypes must have compatible
modes.

2Port interface mapping can be used to map mode declaration prototypes with dissimilar names.

Modes 113

RTA-RTE V6.3.0
User Guide

It is permitted for a provider to provide more Mode Declaration Group Prototypes than
are required.

9.2.5 Synchronous and Asynchronous Mode Switch

The Rte_Switch API supports both synchronous and asynchronous mode switches.
RTA-RTE uses the synchronous mode unless all mode users explicitly enable support
for asynchronous mode switches.

Synchronous Mode Switch

When synchronous mode switches are used the Rte_Switch API activates the task con-
taining triggered mode switch runnables (all such runnables for a given mode instance
must be mapped to the same task). The execution of mode switch runnables is syn-
chronized with the termination of any executing runnables with mode disabling depen-
dencies and thus is is guaranteed that such runnables will have terminated when the
mode switch runnables are invoked.

Asynchronous Mode Switch

Support for asynchronous mode switches is enabled or disabled using a
ModeSwitchReceiverComSpec element within the requiring port prototype or a
BswModeReceiverPolicy within the BSW’s internal behaviour.

<MODE-SWITCH-RECEIVER-COM-SPEC>
<SUPPORTS-ASYNCHRONOUS-MODE-SWITCH>true</SUPPORTS-ASYNCHRONOUS-MODE-

SWITCH>
</MODE-SWITCH-RECEIVER-COM-SPEC>

<BSW-MODE-RECEIVER-POLICY>
<REQUIRED-MODE-GROUP-REF DEST="...">
...

</REQUIRED-MODE-GROUP-REF>
<SUPPORTS-ASYNCHRONOUS-MODE-SWITCH>true</SUPPORTS-ASYNCHRONOUS-MODE-

SWITCH>
</BSW-MODE-RECEIVER-POLICY>

All mode users must explicitly enable asynchronous mode switch for it to
take effect. No warning is issued if a subset of mode users enable asyn-
chronous mode switch.

When asynchronous mode switches are used the Rte_Switch or SchM_Switch API can
directly invokes the mode switch runnables (unless the runnable has a minimum start
interval or is in a different OS Application) and thus these run in the context of the caller.
The execution of mode switch runnables is thus not synchronized with the termination
of any executing runnables with mode disabling dependencies and such runnables may
not have terminated when the mode switch runnables are invoked.

RTA-RTE supports direct invocation of the mode switch runnable if the relevant RTE
event mappings does not specify a task. If the mode switch runnable entry point func-
tion is to be directly invoked then the input configuration must still provided an RTE

114 Modes

RTA-RTE V6.3.0
User Guide

event mapping for the associated event. The mapping must specify the position in the
task (for ordering purposes within the Switch API) but must not specify a task.

9.2.6 Mode Switch Management

RTA-RTE provides APIs for requesting a mode switch within a mode instance graph and
for reading the current mode. All mode switch management occurs either within the
generated switch API itself or within the task containing the mode switch event trig-
gered runnable entities.

9.3 Using Modes

9.3.1 Software Component Initialization & Finalization

AUTOSAR modes can be used to execute code when the RTE is started, e.g. to initial-
ize internal data structures etc. Similarly, when a system is shut down your software
component may need to store data, log operational details etc.

Each mode declaration group describes an initial mode—to activate a
runnable when the system is started created by a <MODE-SWITCH-EVENT> or
<SWC-MODE-SWITCH-EVENT> element for entry to the initial mode.

A runnable entity within a software-component can be started when the RTE is started
by declaring a mode-switch event for entry to an initial mode.

Within the mode switch event definition the particular mode instance is se-
lected using <R-PORT-PROTOTYPE-REF>, <MODE-DECLARATION-GROUP-PROTOTYPE-REF>,
<CONTEXT-PORT-REF> and <TARGET-MODE-DECLARATION-REF> elements:

<INTERNAL-BEHAVIOR>
<SHORT-NAME>Behaviour</SHORT-NAME>
<EVENTS>
<SWC-MODE-SWITCH-EVENT>
<SHORT-NAME>mse1</SHORT-NAME>
<START-ON-EVENT-REF>
/pkg/internal/init

</START-ON-EVENT-REF>
<ACTIVATION>ON-ENTRY</ACTIVATION>
<MODE-IREFS>
<MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF ...
<CONTEXT-PORT-REF ...
<TARGET-MODE-DECLARATION-REF ...

</MODE-IREF>
</MODE-IREFS>

</SWC-MODE-SWITCH-EVENT>
</EVENTS>
...
<RUNNABLES>
<RUNNABLE-ENTITY>
<SHORT-NAME>init</SHORT-NAME>
<SYMBOL>InitializationFunction</SYMBOL>

Modes 115

RTA-RTE V6.3.0
User Guide

</RUNNABLE-ENTITY>
</RUNNABLES>

</INTERNAL-BEHAVIOR>

Once the mode switch event has been configured an initialization runnable entity must
be written that has the following structure:

FUNC(void, RTE_APPL_CODE)
InitalizeFunction(Rte_Instance Self)
{
/* user code */

}

The initialization runnable entity must be a Category 1 runnable entity and hence must
not make any (blocking) RTE calls nor access other application components.

Similarly, when a system is shut down your software component may need to store
data, log termination etc. The principle is the same as initialization, except that final-
ization is simply a transition to a new mode that is simply associated with shutdown.

9.3.2 Triggering a Runnable Entity on a Mode Switch

A runnable entity can be activated on either entry, transition or exit from a mode using
a Mode Switch Event configured, like all other events, in the <INTERNAL-BEHAVIOR>
element of a software-component.

The <MODE-SWITCH-EVENT> selects the mode by the <R-PORT-PROTOTYPE-REF>,
<MODE-DECLARATION-GROUP-PROTOTYPE-REF> and <MODE-DECLARATION-REF> ele-
ments:

<MODE-SWITCH-EVENT>
<SHORT-NAME>mse1</SHORT-NAME>
<START-ON-EVENT-REF>/pkg/IB/initialize</START-ON-EVENT-REF>
<ACTIVATION>ENTRY</ACTIVATION>
<MODE-IREF>
<R-PORT-PROTOTYPE-REF ...
<MODE-DECLARATION-GROUP-PROTOTYPE-REF ...
<MODE-DECLARATION-REF ...

</MODE-IREF>
</MODE-SWITCH-EVENT>

Finally, the declaration of the <SWC-MODE-SWITCH-EVENT> can reference one or two
modes within its <MODE-IREFS> element. One referenced mode is required for en-
ter/exit mode switch events and two referenced modes for transition events.

<SWC-MODE-SWITCH-EVENT>
<SHORT-NAME>mse1</SHORT-NAME>
<START-ON-EVENT-REF>
/pkg/internal/init

</START-ON-EVENT-REF>
<ACTIVATION>ON-ENTRY</ACTIVATION>

116 Modes

RTA-RTE V6.3.0
User Guide

<MODE-IREFS>
<MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF ...
<CONTEXT-PORT-REF ...
<TARGET-MODE-DECLARATION-REF ...

</MODE-IREF>
</MODE-IREFS>

</SWC-MODE-SWITCH-EVENT>

A mode-switch event element defines three things:

1. The <START-ON-EVENT-REF> element defines the runnable entity to activate. The
reference must be to a runnable entity within the same software-component type.

2. The <ACTIVATION> element defines the activation for the mode switch event, i.e.
when the runnable entity is triggered. A Mode Switch Event can apply to one
activation condition. If multiple activation conditions are required for a runnable
then more than one Mode Switch Event should be defined.

RTA-RTE supports “ENTRY”, “EXIT” or “ON-TRANSITION” activation conditions. A
mode switch event with one of these activation conditions is triggered whenever
the referenced mode is entered or exited.

Mode switch events using “ON-TRANSITION” activation are triggered by RTA-RTE
when the mode instance moves from the first referenced mode to the second
referenced mode.

3. The <MODE-IREF> defines the mode associated with the mode switch event. The
<MODE-IREF> element must contain three references (the port prototype, the
mode declaration group prototype and the mode declaration group that types
the declaration group prototype).

A mode switch event with an “ON-TRANSITION” activation condition requires two
modes to be referenced from the mode switch event’s <MODE-IREFS> element.
Both referenced modes must be within the same mode instance.

One mode within a <MODE-DECLARATION-GROUP> element is marked as the group’s ini-
tial mode. Any mode switch events that are attached to the “ENTRY” of an initial mode
within any group are triggered by RTA-RTE when the RTE is started using Rte_Start.

The order of execution of runnable entities when more than one runnable
entity is triggered by the same mode entry (or exit) is not defined by the
SWC-type. For portability, therefore, a system should not rely on a particular
execution order since it may be redefined in the runnable to task mapping
(see Section 18.4.4).

9.3.3 Disabling RTE Events

A <MODE-DEPENDENCY> permits the behavior of an RTE event to be different in differ-
ent modes. This allows such use-cases as the activation of a runnable entity to be
suppressed when a certain mode is active.

Modes 117

RTA-RTE V6.3.0
User Guide

A mode dependency declaration can be added to any RTE event (other than Opera-
tionInvokedEvents). A single RTE event can contain multiple mode dependency decla-
rations in which case it is disabled in all the specified modes.

The <DISABLED-MODE-IREF> element selects the mode using the
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF>, <CONTEXT-PORT-REF> and
<TARGET-MODE-DECLARATION-REF> elements:

<DISABLED-MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF ...
<CONTEXT-PORT-REF ...
<TARGET-MODE-DECLARATION-REF ...

</DISABLED-MODE-IREF>

When the mode specified within the dependency is active, RTA-RTE will not activate
the runnable (the activation is discarded — it is not queued).

When a runnable activation triggered by, for example a DataReceivedEvent
with queued communication, is suppressed, RTA-RTE also suppresses the
write to the runnable entity’s queue – this prevents the queue filling up with-
out corresponding runnable activations to process the events.

9.4 Understanding Mode Instances

A unique ’current mode’ is maintained by RTA-RTE for each connected graph of com-
patible Mode Declaration Group Prototypes. If an interface contains multiple prototypes
that reference different Mode Declaration Groups then the RTE defines a unique ’cur-
rent mode’ value for each prototype. If the Mode Declaration Group Prototypes refer-
ence the same Mode Declaration Group then each ’current mode’ can take one of the
same set of modes but their state remains independent.

As an example, assume we have SW-C swcA with provided port P1 and swcB with re-
quired port R1 both categorized by the same interface. An Assembly Connector that
connects instances of swcA and swcB (e.g. A1.P1 to B1.R1) will result in a unique ’cur-
rent mode’ maintained by RTA-RTE.

A1 P1 B1R1

Mode 1
swcA swcB

Figure 9.1: Single mode manager and mode user

Furthermore, another Assembly Connector that connects different instances of swcA
and swcB (e.g. A2.P1 to B2.R1) will result in RTA-RTE maintaining two independent
’current modes’ since the graphs formed by the connections do not intersect.

118 Modes

RTA-RTE V6.3.0
User Guide

A1 P1 B1R1

Mode 1

A2 P1 B2R1

Mode 2
swcA

swcA swcB

swcB

Figure 9.2: Multiple distinct mode managers and mode users

However if the additional Assembly Connector connects the same instance of swcA to
a new instance of swcB (e.g. A1.P1 to B2.R1) then a new ’current mode’ is not created
by RTA-RTE but instead an additional mode user can access the same mode.

B1R1

Mode 1

B2R1

swcB

swcB

A1

swcA

P1

Figure 9.3: Single mode manager and multiple mode users

Multiple mode managers for the same mode instance are not supported by
AUTOSAR.

9.5 Fast Init

RTA-RTE supports a “fast init” activation method for Mode Switch Events that bypasses
the normal AUTOSAR activation method for events that are triggered only once at sys-
tem startup. This mechanism is useful for a runnable that only runs once at system
start where the infrastructure code created by RTA-RTE to support the mode changes

Modes 119

RTA-RTE V6.3.0
User Guide

at run-time is superfluous.

The “fast init” activation method is unique to RTA-RTE and therefore non-
portable.

An individual ModeSwitchEvent is made subject to “fast init” activation through a
command-line option (see RTA-RTE Reference Manual). It is also possible to make all
ModeSwitchEvents for a SWC subject to “fast init” through the same command-line
option.

When a ModeSwitchEvent is “fast init” then the implementation created by RTA-RTE
within the task is a simple function call — the use of a FastInit task both simplifies
the activation code necessary for the runnable associated with the event as well as
removing the normal infrastructure code created by RTA-RTE to support the AUTOSAR
mode mechanism.

It is the user’s responsibility to ensure that all FastInit tasks are activated at the appro-
propriate time.

An event that is specified as FastInit will not be activated by RTA-RTE during
a user-triggered mode switch. Instead the FastInit task must be activated
by user code at the appriopriate time.

9.6 Synchronizing Modes

RTA-RTE supports the synchronization of modes between SWC components and BSW
modules. Synchronizing mode groups permits both events in both AUTOSAR software
components and basic software modules to be triggered by a single mode manager.
RTA-RTE supports synchronization where the referenced BSW provides or releases (re-
quires) the mode group.

The synchronization of mode groups is covered in detail in Chapter 15.

9.7 Non-AUTOSAR Functionality

9.7.1 Shared Mode Queues

When enabled with the --deviate-shared-mode-queue command-line option a shared
mode queue means that all mode instances mapped to a task share a single (common)
queue.

Shared mode queues do not support timeouts for ModeSwitchAck events
nor can they be mixed with distributed mode users.

A Shared Mode Queue results in a more predicable mode transition than is possible
with AUTOSAR compliant mechanisms since for mode instances assigned to the task it
is guaranteed that the transition for one mode instance will be complete before another
is started.

120 Modes

RTA-RTE V6.3.0
User Guide

9.7.2 Distributed Mode Users

When enabled with the --mode-policy command-line option different mode switch
events for a mode instance can be mapped to different tasks.

Dequeue Synchronization

When multiple mode switch tasks exist for a single mode instance then any task
can be responsible for performing the dequeue. RTA-RTE provides a callback,
Rte_ModeDequeueCbk_<index>, for each mode instance that controls within which task
the dequeue occurs.

The callback is called from each mode switch task after the mode switch has completed
for the calling task. When it returns TRUE the generated code dequeues the mode
switch.

The callback is only invoked when a mode switch instance is in a transition.

During each transition the callback must return TRUE for exactly one of the mode switch
tasks but which task is selected may vary between transitions. For example the call-
back might return TRUE for the last task to finish the mode switch and enter the call-
back, which could be timing-dependent, especially if the tasks run on different cores.

The name of the callback includes the mode instance index “<index>”. RTA-RTE makes
this index available within the Rte_Const.h generated header file for each provide
mode port (i.e. mode manager) using the RTE_DMU macro:

#define RTE_DMU_<swci>_<port>_<modegroup> ...

Where “<swci>” is the SWC instance name (which can be set using a flatmap, see
Section 13.4), “<port>” is the name of the provided mode port and “<modegroup>” is
the name of the mode declaration prototype within the mode interface categorizing the
port.

The “RTE_DMU_...” macro can be used with the C-preprocessor to construct the name
of the callback function.

Modes 121

RTA-RTE V6.3.0
User Guide

10 Implementing Software Components

This section shows how to write software components so that the objects required by
the RTE are declared and how to use the RTE API generated by the RTE generator.

10.1 Basic Concepts

10.1.1 Namespace

All RTE symbols (e.g. function names, global variables etc.) that are visible in the global
namespace use either the prefix Rte_ or the prefix RTE_.

You must not create symbols that use either the prefix Rte_ or the prefix
RTE_ to remove the possibility of namespace clashes.

10.1.2 Runnable Naming Convention

RTE generator generates code that activates your runnable entities. To do this, the
RTE’s internal mechanisms need to be able to access your code through defined inter-
faces.

Each of the named runnable entities defined in your runnable entity <SYMBOL> declara-
tions must be implemented. Failure to define all runnable entities will be detected at
compile time when your application is linked to form the ECU’s executable image. The
linker error message will reference the missing runnable entity entry point.

Runnable entities are executed by RTE generated code when required. The function
providing an entry point for a runnable entity should not be invoked directly by an
application software-component.

10.1.3 API Naming Convention

The RTE API calls are generated for each software component using names derived
from the the RTE generator’s input. The RTE API provides a consistent interface to each
software component but allows the RTE generator to provide different implementations
of the API functionality.

Each API call name is formed from:

• An AUTOSAR defined prefix. For RTE API functions this is “Rte_” and, for BSW
functions, “SchM_”.

• The call functionality (Read, Write, etc.).

• Either

• The port name and data item name (sender-receiver) or operation name (client-
server) through which the API operates.

• The name of the object (e.g. trigger, exclusive area, per-instance memory etc)
upon which the API operates.

122 Implementing Software Components

RTA-RTE V6.3.0
User Guide

Thus RTE API calls involving communication through ports have the format:

Rte_StatusType
Rte_<API call name>_<port>_<dataitem/operation>

Whereas other RTE APIs have the format:

Rte_StatusType
Rte_<API call name>_<object name>

10.1.4 API Parameter Passing Mechanisms

RTE API calls and runnable entities may be invoked from multiple component proto-
types. In both cases, the RTE expects that the first parameter to an API call or to a
runnable entity to indicate the prototype upon which the function operates.

Every RTE API call or runnable entity that can operate on different proto-
types of a component must pass in the instance handle as the first formal
parameter.

The second and subsequent API parameters (if any) fall into one of three classes:

“In” Parameters —All “in” parameters that are AUTOSAR primitive data types (with
the exception of a string) are passed by value. Strings and other “in” parameters
that are a complex data type (i.e. a record or an array) are passed by reference.

Note that while AUTOSAR defines a string as a primitive data type, its inherent
size makes it inefficient to pass by value and is therefore treated the same as a
complex data type.

“In” parameters are strictly read-only.

“Out” Parameters —All “out” parameters are passed to RTE API functions by refer-
ence. This is required to ensure that the API functions can modify the parameter.

“Out” parameters are strictly write-only.

“In/Out” Parameters —‘All “in/out” parameters are passed to the RTE API functions
by reference except for an asynchronous client-server call when primitive data
types (other than strings) are passed by value to Rte_Call and by reference to
Rte_Result.

“In/out” parameters can be read and written by the API function being called.

10.1.5 API Forms

RTA-RTE supports two forms of API; direct and indirect. The direct API form includes
the instance handle as the first parameter of all API calls whereas the indirect form
operates through a port handle. The direct form is subject to a higher potential level
of optimization than the indirect form but the latter supports iteration over ports typed
by the same interface.

Implementing Software Components 123

RTA-RTE V6.3.0
User Guide

Both direct and indirect forms of the RTE API are equivalent and result in the same
generated RTA-RTE function being invoked. The direct and indirect forms of the RTE API
can be mixed within a program – even within the same software-component.

Direct API

The direct API form is the most efficient mechanism for invoking RTA-RTE generated
functions since, depending on the configuration, RTA-RTE is capable of optimizing the
API form to bypass the component data structure to produce direct invocation of gen-
erated functions. Furthermore, for source-code components the direct API form can
potentially be further optimized to elide the RTA-RTE generated function completely.

Indirect API

The indirect API form of API invocation that uses indirection through a port handle to
invoke RTA-RTE API functions.

The indirect form is less efficient than the direct form since the indirection cannot be
optimized away but supports iteration over ports typed by a similar interface. For ex-
ample, when using the indirect API, an array of port handles of the same interface and
provide/require direction is provided by RTE and the same RTE API can be invoked for
multiple ports by iterating over the array.

If the indirect API generated is not required for a port it can be disabled through “port
options” within the internal behaviour:

<PORT-API-OPTIONS>
<PORT-API-OPTION>
<INDIRECT-API>false</INDIRECT-API>
<PORT-REF DEST="...">/pkg/component/port</PORT-REF>

</PORT-API-OPTION>
<PORT-API-OPTIONS>

10.2 Application Source Code

10.2.1 Supported Programming Languages

RTA-RTE supports components written in C and C++. The same application header file
can be used for C and C++.

The generated RTE is independent of the programming language used to create the
components since an individual RTE may be required to simultaneously support com-
ponents written in different languages. RTA-RTE always generates the RTE in C.

10.2.2 Application Header Files

Each component you write must reside in its own C or C++ source code file(s) and include
the relevant application header file created during RTE configuration.

#include "Rte_ComponentName.h"

/* Component Implementation for "ComponentName" */

124 Implementing Software Components

RTA-RTE V6.3.0
User Guide

The RTE API is specific to each software component type and therefore you
must include only the component’s application header file for each source
code file defines a component (whether completely or partially).

A single source module must not include multiple application header files as the API
mappings they contain may be different for different software-components. The header
files generated by the RTE generator protect against such multiple file inclusion.

The component type specific header file defines the component’s RTE API and provides
access to the type definition through a component instance handle that is used to iden-
tify particular prototypes of a component.

10.3 Single and Multiple Instances

When a software component is configured to support a single instance it is known at
integration time that there will only be one instance of each software component type.

However, it is possible to configure a software component to support multiple in-
stances. When this is configured, the RTE provides an instance handle for each compo-
nent instance.

The instance handle is passed to a software component as the first parameter of the
component’s runnable entity (or entities).

Each time an API is made from the runnable entity then you must pass the same in-
stance handle back to the RTE as the first parameter of API calls.

If a software component type supports only a single instance then an instance handle
is not passed to runnable entities and therefore cannot be passed back to API calls.

The following code example assumes a single instance:

#include Rte_Component.h’’

FUNC(void, RTE_APPL_CODE)
RunnableEntity(void)
{
UInt16 Result = 0;

// ...
Rte_Send_FromPort_MyData(42};
// ...
Result = SomeOtherFunction(42);
// ...

}

Now, if the same example is re-written for a software component that supports multiple
instances we get:

#include Rte_Component.h’’

Implementing Software Components 125

RTA-RTE V6.3.0
User Guide

FUNC(void, RTE_APPL_CODE)
RunnableEntity(Rte_Instance Self)
{
UInt16 Result = 0;

...
Rte_Send_FromPort_MyData(Self, 42};
...
Result = SomeOtherFunction(42);
...

}

Note that if runnable entities need take different actions for different instances then
per-instance calibration parameters can be used to identify each instance—the in-
stance name/handle is not visible to the component (i.e. there is information hiding)
and hence is not suitable. Access to the state of an instance is only possible through
the Rte_Pim API call (see Section 10.9).

The following sections all show examples with multiple instance support configured,
however the conversion to single instance is trivial (as shown above).

10.4 Runnable Entities

You are responsible for providing the implementations of all the runnable entities re-
quired to make a software component work at runtime.

You must provide an entry point (i.e. a C function) for each <RUNNABLE-ENTITY> you
have declared in the component description. It is possible for multiple runnable entities
to share the same entry point function.

If the software component supports multiple instantiation, all its runnable entities are
passed the instance handle as a function parameter when it is activated by the RTE so
the code you write must expect an instance handle as its first parameter. If the runnable
entity is triggered by an <OPERATION-INVOKED-EVENT> then additional parameters cor-
responding to the configuration of the client-server operation may be required.

RTA-RTE supports components written in C++. However, the generated RTE, including
the generated task bodies, is created in C and therefore all runnable entity entry point
functions must be exported with C linkage:

extern "C"
FUNC(void, RTE_APPL_CODE)
re_entry_point(Rte_Instance self)
{
...

}

126 Implementing Software Components

RTA-RTE V6.3.0
User Guide

10.4.1 Entry Point Signature

With the exception of a runnable entity invoked as a result of an “Operation Invoked”
RTE event, the signature of a runnable entity entry point function must follow the fol-
lowing implementation rules:

• There is a single formal parameter (the instance handle) only if the internal be-
haviour of the software component supports multiple instantiation.

• There are no user-defined parameters.

• There is no return value (i.e. a return type of void must be specified) unless a
server specifies application errors in which case Std_ReturnType is used.

The signature of a runnable entity that responds to an “Operation Invoked” RTE event
must conform to the following additional rules:

• Formal parameters in addition to the instance handle are the operations IN, IN/OUT
and OUT parameters. These parameters are passed by value or reference depend-
ing on the type.

10.4.2 Sample Runnable Implementations

RTA-RTE can generate sample application source files using the --samples=swc
command-line option. The name of the generated sample file is Rte_<swc>.c where
swc is the software component’s short name.

The generated file contains an empty function for each runnable entity.

The --samples=swc option is most useful in contract phase before starting implemen-
tation of a software component.

10.4.3 Examples

The following examples present the configurations and resultant obligations on
software-component implementation of different RTE events triggering runnable en-
tities.

Basic Configuration

All RTE events other than “Operation Invoked” RTE events use the same basic signa-
ture for runnable entity entry points irrespective of the event that actually triggers the
runnable entity.

For example, given the following declaration of two runnable entities in the XML config-
uration file for software-component Component:

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>Behaviour</SHORT-NAME>
<RUNNABLES>

Implementing Software Components 127

RTA-RTE V6.3.0
User Guide

<RUNNABLE-ENTITY>
<SHORT-NAME>A</SHORT-NAME>
<SYMBOL>Runnable_A</SYMBOL>

</RUNNABLE-ENTITY>
<RUNNABLE-ENTITY>
<SHORT-NAME>B</SHORT-NAME>
<SYMBOL>Runnable_B</SYMBOL>

</RUNNABLE-ENTITY>
</RUNNABLES>

</SWC-INTERNAL-BEHAVIOR>

Then, following the rules defined above, the following runnable entry point functions
would be required:

#include Rte_Component.h’’

FUNC(void, RTE_APPL_CODE)
Runnable_A(Rte_Instance Self)
{
/* Implementation of Runnable A */

}

FUNC(void, RTE_APPL_CODE)
Runnable_B(Rte_Instance Self)
{
/* Implementation of Runnable B */

}

Data Receiver

A sender-receiver receiver runnable entity will be invoked by RTA-RTE when a port re-
ceives data (or events) and a <DATA-RECEIVED-EVENT> is specified that references a
runnable entity.

The signature of the runnable entity must conform to the rules defined above, i.e.:

• There must be no return value.

• The first and only parameter is the instance handle

• The memory class must be RTE_APPL_CODE (this can be modified, see Section 8.15).

Server Operation

A runnable entity will be invoked by RTA-RTE each time a request is made for an oper-
ation on the server’s port. Each component that defines a port that uses an interface
with the type SERVER must implement this type of runnable entity.

The signature of the runnable entity must conform to the rules defined above, i.e.:

128 Implementing Software Components

RTA-RTE V6.3.0
User Guide

• There must be no return value (unless application errors are used).

• The first parameter is the instance handle.

• Other parameters are the operation’s IN, OUT and INOUT parameters.

• The memory class must be RTE_APPL_CODE (this can be modified, see Section 8.15).

Assuming the following interface declaration in the configuration:

<CLIENT-SERVER-INTERFACE>
<SHORT-NAME>CSInterface</SHORT-NAME>
<OPERATIONS>
<OPERATION-PROTOTYPE>
<SHORT-NAME>Mod8</SHORT-NAME>
<ARGUMENTS>
<ARGUMENT-PROTOTYPE>
<SHORT-NAME>InputVal</SHORT-NAME>
<TYPE-TREF>/types/UInt16</TYPE-TREF>
<DIRECTION>in</DIRECTION>

</ARGUMENT-PROTOTYPE>
<ARGUMENT-PROTOTYPE>
<SHORT-NAME>OutputVal</SHORT-NAME>
<TYPE-TREF>/types/UInt16</TYPE-TREF>
<DIRECTION>out</DIRECTION>

</ARGUMENT-PROTOTYPE>
</ARGUMENTS>

</OPERATION-PROTOTYPE>
</OPERATIONS>

</CLIENT-SERVER-INTERFACE>

And a software component Component that includes a provide port Calculate catego-
rized by interface CSInterface then the internal behavior can define the runnable (and
hence C function) implementing the server:

<INTERNAL-BEHAVIOR>
<SHORT-NAME>Behaviour</SHORT-NAME>
<COMPONENT-REF>/pkg/Component</COMPONENT-REF>
<EVENTS>
<OPERATION-INVOKED-EVENT>
<SHORT-NAME>ActivateServer</SHORT-NAME>
<START-ON-EVENT-REF>
/pkg/Behaviour/CalculateMod8

</START-ON-EVENT-REF>
<OPERATION-IREF>
...

</OPERATION-IREF>
</OPERATION-INVOKED-EVENT>
<EVENTS>
<RUNNABLES>
<RUNNABLE-ENTITY>
<SHORT-NAME>CalculateMod8</SHORT-NAME>
<SYMBOL>Mod8Function</SYMBOL>

Implementing Software Components 129

RTA-RTE V6.3.0
User Guide

</RUNNABLE-ENTITY>
</RUNNABLES>

</INTERNAL-BEHAVIOR>

The component source must then define a runnable entity to be invoked by the RTE
when a request is received for operation “Mod8” on port “Calculate”:

#include Rte_Component.h’’

FUNC(void, RTE_APPL_CODE)
Mod8Function(Rte_Instance Self,

UInt16 InputVal,
UInt16* OutputVal,

{
/* Implementation of Mod8 */

*OutputVal = InputVal % 8;
}

Servers may be invoked from multiple sources, for example through a request from a
client received via the communication service or directly via intra-task communication.
Unless marked as concurrently executable within the runnable’s configuration the RTE
will serialize access to the server, queuing requests on a first-in/first-out basis.

Asynchronous Server Result

When an <ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT> references a runnable entity
then the runnable entity will be invoked by RTA-RTE each time the corresponding server
runnable returns. Each port that uses a client interface with the CLIENT_MODE attribute
set to asynchronous requires this type of runnable entity to be implemented by the
user.

The server’s result is itself collected using the Rte_Result API call; however the signa-
ture of the runnable entity must conform to the rules defined above, i.e.:

• There must be no return value.

• The first and only parameter is the instance handle

• The memory class must be RTE_APPL_CODE (this can be modified, see Section 8.15).

Assuming a software component MyComponent that includes a require port Client
categorized by client-server interface CSInterface then the component can asyn-
chronously access a server and collect the result as follows:

<INTERNAL-BEHAVIOR>
<SHORT-NAME>Behaviour</SHORT-NAME>
<EVENTS>
<ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT>
<SHORT-NAME>ServerCallReturns</SHORT-NAME>

130 Implementing Software Components

RTA-RTE V6.3.0
User Guide

<START-ON-EVENT-REF>
/pkg/Behaviour/CollectResult

</START-ON-EVENT-REF>
<ASYNCHRONOUS-SERVER-CALL-POINT-REF>
/pkg/Behaviour/CallServer/AsyncCallPoint

</ASYNCHRONOUS-SERVER-CALL-POINT-REF>
</ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT>

</EVENTS>
<RUNNABLE-ENTITY>
<SHORT-NAME>CallServer</SHORT-NAME>
<SERVER-CALL-POINTS>
<ASYNCHRONOUS-SERVER-CALL-POINT>
<SHORT-NAME>AsyncCallPoint<SHORT-NAME>
<OPERATION-IREFS>
<OPERATION-IREF>
...

</OPERATION-IREF>
</OPERATION-IREFS>

</ASYNCHRONOUS-SERVER-CALL-POINT>
</SERVER-CALL-POINTS>
<SYMBOL>...</SYMBOL>

</RUNNABLE-ENTITY>
<RUNNABLE-ENTITY>
<SHORT-NAME>CollectResult</SHORT-NAME>
<SYMBOL> CalledWhenServerReturns </SYMBOL>

</RUNNABLE-ENTITY>
</INTERNAL-BEHAVIOR>

Where the interface MyCSInterface is defined as:

<CLIENT-SERVER-INTERFACE>
<SHORT-NAME>CSInterface</SHORT-NAME>
<OPERATIONS>
<OPERATION-PROTOTYPE>
<SHORT-NAME>Function</SHORT-NAME>
<ARGUMENTS>
<ARGUMENT-PROTOTYPE>
<SHORT-NAME>Param1</SHORT-NAME>
<TYPE-TREF>/types/MonthType</TYPE-TREF>
<DIRECTION>IN</DIRECTION>

</ARGUMENT-PROTOTYPE>
<ARGUMENT-PROTOTYPE>
<SHORT-NAME>Result</SHORT-NAME>
<TYPE-TREF>/types/UInt8</TYPE-TREF>
<DIRECTION>OUT</DIRECTION>

</ARGUMENT-PROTOTYPE>
</ARGUMENTS>

</OPERATION-PROTOTYPE>
</OPERATIONS>

</CLIENT-SERVER-INTERFACE>

The runnable to handle the results coming back from the server would have the follow-

Implementing Software Components 131

RTA-RTE V6.3.0
User Guide

ing structure:

#include Rte_MyComponent.h’’

boolean February;

FUNC(void, RTE_APPL_CODE)
CalledWhenServerReturns(Rte_Instance Self)
{
UInt8 Result;
/* Collect and use the result from the server */
Rte_StatusType err;

err = Rte_Result_Client_MyFunction(Self, &Result);

if (err == RTE_E_OK) {
if (Result == 28 || Result == 29) {
February = True;

} else {
February = False;

};
};
return;

}

10.5 Sender-Receiver Communication

The RTE API calls for handling sender-receiver communication differ for the type of
information that is being communicated:

• Non-queued communication

• Send with Rte_Write

• Receive with Rte_Read

• Queued communication

• Send with Rte_Send

• Receive with Rte_Receive

Furthermore, for non-queued data a secondary pair of API calls can be used to ac-
cess the data called the “implicit” API. The implicit API should be used when you need
to guarantee that every access to a data item in a runnable entity will provide the
same result irrespective of how many times it is accessed during an invocation of the
runnable entity.

• Non-queued data (Implicit)

132 Implementing Software Components

RTA-RTE V6.3.0
User Guide

• Send with Rte_IWrite

• Read with Rte_IRead

The following sections show how to use these calls in your application.

10.5.1 Non-Queued Communication

Explicit API

Components communicate data to other components using the Rte_Write call. The
call is defined per port and interface data item for each component and therefore has
the following signature:

Rte_StatusType
Rte_Write_<Port>_<DataItem>(Rte_Instance Self,

DataItemType Data)

Similarly, components receive communicated data items from other components using
the Rte_Read call:

Rte_StatusType
Rte_Read_<Port>_<DataItem>(Rte_Instance Self,

DataItemType* Data)

The runtime behaviour of Rte_Read depends on how you have configured the internal
behaviour:

• Data Read Access: Rte_Read is non-blocking even if no data is present to read.
If no data is present, the return value from the call is RTE_E_NO_DATA.

• Activation of runnable entity: The RTE activates the specified runnable entity
and generates a non-blocking Rte_Read.

• Wake up of wait point: This combination is not permitted.

Implicit API

The implicit API uses a locally cached copy of data to preserve consistency over a
calling runnable entity invocation. Data is read into a global cache before the runnable
entity starts executing and is written from the global cache after the runnable entity
terminates. Data writes are done once, no matter how many times it is written.

The RTE guarantees cached data does not change during execution of the runnable
entity.

The implicit API includes a reference to the runnable entity that is declared as accessing
the data in the API name. Care should be taken when writing a runnable entity to invoke
the correct API. The Rte_IRead API reads data:

Implementing Software Components 133

RTA-RTE V6.3.0
User Guide

DataItemType
Rte_IRead_<Runnable>_<Port>_<DataItem>(Rte_Instance Self)

The Rte_IWrite API writes data

Rte_StatusType
Rte_IWrite_<Runnable>_<Port>_<DataItem>(Rte_Instance Self,

DataItemType Data)

As explained above, the implicit API calls access a cached copy of the data. The cache
is updated before the runnable entity starts and therefore within a single execution
of a runnable entity the value returned by Rte_IRead is guaranteed not to change.
Likewise, Rte_IWrite writes data to a cached copy and changes are only made visible
after the runnable entity terminates irrespective of the number of times the data is
written.

10.5.2 Queued Communication

Components communicate events to other components using the Rte_Send call. The
call is defined per port and interface data item for each component type and therefore
has the following signature:

Rte_StatusType
Rte_Send_<Port>_<DataItem>(Rte_Instance Self,

EventType Event)

Similarly, component prototypes receive events that are communicated from other
components using the Rte_Receive call:

Rte_StatusType
Rte_Receive_<Port>_<DataItem>(Rte_Instance Self,

EventType Event)

The behaviour of the Rte_Receive API depends on how you configured the
RECEIVE_MODE interface attributes:

• Data Read Access: Rte_Receive is non-blocking even if no data is present to
read. If no data is present, the return value from the call is RTE_E_NO_DATA.

• Activation of runnable entity The RTE activates the specified runnable entity
and generates a non-blocking Rte_Receive.

• Wake up of wait point: Rte_Receive blocks if no data is available. If no data
is received within the specified timeout value, the return value from the call is
RTE_E_TIMEOUT.

134 Implementing Software Components

RTA-RTE V6.3.0
User Guide

10.6 Client-Server Communication

Client-server communication is initiated using the Rte_Call API call. There are two
forms that the call can take depending on the configuration of the CLIENT_MODE at-
tribute.

If CLIENT_MODE is set to synchronous then Rte_Call returns after the operation has
been completed by the server. This means that your code will not continue to execute
until the server returns the result. Once the result has been computed it is passed back
to the component by the return value of the Rte_Call.

Rte_StatusType
Rte_Call_<Port>_<Operation>(Rte_Instance Self,

InParam1Type InParam1,
InParam2Type InParam1,
...
InParamNType InParamN,
OutParam1Type OutParam1,
OutParam2Type OutParam2,
...
OutParamNType OutParamN)

If CLIENT_MODE is asynchronous then Rte_Call needs only specify the in and inout
parameters.

Rte_StatusType
Rte_Call_<Port>_<Operation>(Rte_Instance Self,

InParam1Type InParam1,
InParam2Type InParam1,
...
InParamNType InParamN)

The result(s) of the server operation are accessed using the asynchronous
client result runnable entity that you define (see Section 8.7.2) or the
Rte_Result_<port>_<operation> API call.

The behaviour of the call returns depends on whether the
<ASYNCHRONOUS-SERVER-CALL-RETURNS-EVENT> is referenced by a <WAIT-POINT>
or not. If there is no wait point then the call returns immediately, otherwise the call will
block until the server returns

Rte_StatusType
Rte_Result_<Port>_<Operation>(Rte_Instance Self,

OutParam1Type OutParam1,
OutParam2Type OutParam1,
...
OutParamNType OutParamN)

Implementing Software Components 135

RTA-RTE V6.3.0
User Guide

10.6.1 Client-Server Serialization

The targets of client-server communications (i.e. the runnable entities that are invoked
to produce the required result) are serialized. A serialized server only accepts and
processes requests atomically and thus avoids the potential for conflicting concurrent
access.

10.7 Using Inter-Runnable Variables

Runnable entities in software components that use inter-runnable variables access the
variable through an API call. Since the API calls are generated in the software compo-
nent’s header file each API call must include the name of the runnable itself.

The type of API call generated depends on whether the variable is declared as implicit
or explict. Implicit variables are accessed through an API of the form:

Rte_IrvI[Read|Write]_<Runnable>_<Variable>(...);

Explicit variables are accessed with an API call of the form:

Rte_Irv[Read|Write]_<Runnable>_<Variable>(...);

The following code example illustrates usage:

FUNC(void, RTE_APPL_CODE)
RunnableA(Rte_Instance self)
{
Unit16 ExplictlyRead = 0;
Unit32 ImplicitlyRead = 0;
Sint8 ExplicitlyWritten = 42;
Boolean ImplicitlyWritten = True;

/* Read inter-runnable variables */
ExplicitlyRead = Rte_IrvRead_RunnableA_VarP(self);
ImplicitlyRead = Rte_IrvIRead_RunnableA_VarQ(self);

/* Write inter-runnable variables */
Rte_IrvWrite_RunnableA_VarR(self, ExplicitlyWritten);
Rte_IrvIWrite_RunnableA_VarS(self, ImplicitlyWritten);

}

10.8 Accessing Parameters

A software component declares calibration parameters (whether shared
or per-instance) then each parameter is accessed at runtime using the
Rte_CData_<calprm_name> API call. The call returns either the calibration data
(primitive types) or a pointer to the data (complex types).

As the data is specific to each software component instance, the instance handle must
be supplied to each call if multiple instantiation is configured.

136 Implementing Software Components

RTA-RTE V6.3.0
User Guide

FUNC(void, RTE_APPL_CODE)
YourRunnable(Rte_Instance Self)
{
uint8* config
config = Rte_CData_TrimValue(Self);
/* user code */

}

10.9 Accessing Per Instance Memory

Component types are standard programs. The RTE only interacts with components
through ports at runtime by the activation of associated runnable entities. Ports are
handled by defined runnable entities, so as a minimum an implementation of a software
component must include an implementation of all runnable entities for the software
component.

All instances of an application software component share the same code, but each
instance may have private state that is not shared with other instances. Consequently,
each software component instance has a “copy” of the private state to which it has
exclusive access.

The Rte_Pim API is used to access the component state for a particular instance and,
like all RTE API calls, takes the component instance handle as its first parameter.

The function returns a handle to a per-instance memory section. The type of the return
value depends on the per-instance memory declaration.

The Rte_Pim call has the signature:

Rte_Pim_<name>(Rte_Instance Self)

The state information returned by Rte_Pim can be used by a component instance to
store information with a lifetime greater than that of any one runnable entity. You
should not use “traditional” global variables since these are shared by all prototypes of
the component mapped to the ECU.

The Rte_Pim API does not impose concurrency control on a component’s prototype
state and therefore concurrent write access to prototype state may result in inconsis-
tent state information.

10.10 Concurrency Control with Exclusive Areas

Where a component has multiple runnable entities that require concurrent write access
to the same prototype state then the Rte_Enter and Rte_Exit API calls must be used
to ensure that data consistency is maintained.

A component includes multiple runnable entities each of which can be active simultane-
ously. The potential exists for concurrent access to private global data (e.g. elements
in the data memory sections) and/or non-reentrant functions.

Implementing Software Components 137

RTA-RTE V6.3.0
User Guide

Operating system concurrency control mechanisms are hidden from components. How-
ever the RTE API implements explicit access to exclusive areas by exposing an appro-
priate OS mechanism to components:

• Rte_Enter_<exclusive area name> enters an exclusive area.

• Rte_Exit_<exclusive area name> exits an exclusive area.

Where components declare exclusive areas, the generated RTE API for the component
includes these API calls to allow you to control concurrent access to shared data.

A component can use the Rte_Enter and Rte_Exit API calls for any exclusive area ID
you define at configuration time.

For example, assuming the following configuration:

<INTERNAL-BEHAVIOR>
<EXCLUSIVE-AREAS>
<EXCLUSIVE-AREA>MyExclusiveArea</EXCLUSIVE-AREA>

</EXCLUSIVE-AREAS>
<INTERNAL-BEHAVIOR>

The following code shows how the calls are used:

Rte_Enter_MyExclusiveArea();
/* Code protected from concurrent execution */
Rte_Exit_MyExclusiveArea();

It is not permitted to place RTE API calls between a call to Rte_Enter and its corre-
sponding call to Rte_Exit.

Attempting RTE API calls while an exclusive area is locked may result in
delayed response to task activations by the OS.

Software components must use the Rte_Enter and Rte_Exit calls in a strictly nested
manner. Exclusive areas must be exited in the reverse order in which they were entered
as shown below:

Rte_Enter_Outer();
/* Code protected by Outer */
Rte_Enter_Inner();
/* Code protected by Inner & Outer */

Rte_Exit_Inner();
/* Code protected by Outer */

Rte_Exit_Outer();

138 Implementing Software Components

RTA-RTE V6.3.0
User Guide

The scope of an exclusive area is the software component prototype and
not the software component type or system wide and hence exclusive areas
only provide concurrency control within a software component. Wider scope
can be achieved using an AUTOSAR component to control access to shared
data.

10.11 Starting and Stopping the RTE

The RTE itself is started using the Rte_Start API call. You must not make this call from
a software component.

Rte_Start is typically called from the idle task since this ensures that runnable entities
triggered on entry to the initial mode are activated and dispatched (based on the task
priority to which they are mapped) before the API returns. For example:

OS_MAIN()
{
/* Initialize hardware */
StartOS(OSDEFAULTAPPMODE);

/* RTA-OSEK: OS_MAIN is now the idle task */
Rte_Start();
for (;;}
{
/* Do background processing */

}
}

The Rte_Start call returns to the callee once the RTE is initialized.

The RTE must not be started before the operating system. If not using the
ECU state manager, the recommended start order is to initialize/start the
lowest elements of the AUTOSAR architecture (e.g. OS) first and then pro-
ceed “upwards” (i.e. communication drivers, PDU Router, COM and finally
RTE).

The RTE is stopped by calling the Rte_Stop API call. This API call stops any operat-
ing system schedules that release time-triggered runnable entities and then calls any
software component finalization runnable entities that you have defined.

The RTE must be stopped before the operating system. The recommended
shutdown order is to stop the higher elements of the AUTOSAR architecture
(e.g. RTE) first and then proceed “downwards” (i.e. RTE, COM, PDU Router,
communication drivers and finally OS).

Implementing Software Components 139

RTA-RTE V6.3.0
User Guide

11 NVRAM

11.1 NV-Block Software Component Types

In Chapter 7 we discussed how AUTOSAR application software is partitioned using AU-
TOSAR software components. The use of NVRAM within AUTOSAR adds another soft-
ware component type to the list of supported types, an NvBlock software component
type, that can declare ports used for NVRAM communication.

An Nv-Block software component type is described using a
<NV-BLOCK-SW-COMPONENT-TYPE> element. This element describes the component
type name, its ports and Nv-blocks, for example:

<NV-BLOCK-SW-COMPONENT-TYPE>
<SHORT-NAME>nv1</SHORT-NAME>
<PORTS>
...

</PORTS>
<NV-BLOCK-DESCRIPTORS>
...

</NV-BLOCK-DESCRIPTORS>
<INTERNAL-BEHAVIORS>
...

</INTERNAL-BEHAVIORS>
</NV-BLOCK-SW-COMPONENT-TYPE>

11.1.1 Ports

Like an application software component, an NvBlock software component type declares
ports for communication with other component instances. However, unlike a general
application SWC, ports within an NvBlock SWC can only be categorized by the following
interface types:

Nv-Data – permits read and/or write access by application software components to a
ram-block within a Nv-block. A block mapping (see below) is used to associate
the port and the ram-block.

Client-Server – permits notifications from the NVRAM manager to application SWCs
and for the invocation of NVRAM manager API functions by application SWCs.

RTA-RTE will raise an error if any other interface types is used to categorize a port
declared by an Nv-Block software component type.

11.1.2 Nv-Blocks

A Nv-Block software component type declares one or more Nv-Blocks using the
<NV-BLOCK-DESCRIPTOR> element. Each block declares a RAM-based mirror of non-
volatile data.

<NV-BLOCK-DESCRIPTOR>
<SHORT-NAME>block1</SHORT-NAME>

140 NVRAM

RTA-RTE V6.3.0
User Guide

<CLIENT-SERVER-PORTS>
...

</CLIENT-SERVER-PORTS>
<NV-BLOCK-DATA-MAPPINGS>

...
</NV-BLOCK-DATA-MAPPINGS>
<RAM-BLOCK>
<SHORT-NAME>myRamBlock2</SHORT-NAME>
...

</RAM-BLOCK>
</NV-BLOCK-DESCRIPTOR>

Each NvBlock descriptor must declare:

1. Exactly one ram-block element. The ram-block is instantiated by RTA-RTE and
acts as the mirror of the NVRAM data that is read and/or written by application
SWC.

2. Zero or more NvBlock Data Mappings that connect ports categorized by Nv-Data
interfaces with the ram-block.

3. Zero or more Client-Server Ports that connect ports categorized by client-server
interfaces, the ram-block and the NVRAM manager.

In addition, an Nv-block descriptor can optionally describe a ROM initializer for the ram-
block.

ROM initializers are partially supported by this release of RTA-RTE. The
rom-block is optionally used by RTA-RTE to initialize the ram-block during
Rte_Start.

11.1.3 NVRAM Mirrors

Each Nv-block descriptor within an Nv-Block SWC declares exactly one ram-block. The
ram-block forms the data that is read and/or written by application SWC through ports
decalred by the Nv-Block SWC.

RTA-RTE provides APIs for the NVRAM manager to initially set the mirror data before the
RTE is started and to get the final mirror state after the RTE is terminated.

The ram-block instance is created by the RTE generator. The ram-block instance name
is based on the ram-block name and therefore each block must have a unique name
within the context of the NvBlock software component type.‘

11.1.4 Port Mappings

A port within an Nv-Block SWC categorized by an Nv-Data interface (see Section 6.2)
can be connected to a ram-block so that it can be read/written through the port. This
connection is achieved through Nv-Data mappings declared within the Nv-block de-
scriptor:

NVRAM 141

RTA-RTE V6.3.0
User Guide

<NV-BLOCK-DATA-MAPPING>
<NV-RAM-BLOCK-ELEMENT>
<LOCAL-VARIABLE-REF ...

</NV-RAM-BLOCK-ELEMENT>
<READ-NV-DATA>
...

</READ-NV-DATA>
<WRITTEN-NV-DATA>
...

</WRITTEN-NV-DATA>
</NV-BLOCK-DATA-MAPPING>

The mapping’s <NV-RAM-BLOCK-ELEMENT> references the ram-block. RTA-RTE supports
a reference made using, for example, the <LOCAL-VARIABLE-REF> element.

The connection with the port and Nv-data element is through either the
<WRITTEN-NV-DATA> element for rPorts and the <READ-NV-DATA> element for pPorts.
For example:

<WRITTEN-NV-DATA>
<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF ...
<TARGET-DATA-PROTOTYPE-REF ...

</AUTOSAR-VARIABLE-IREF>
</WRITTEN-NV-DATA>

A data mapping element can declare both read and write mappings for the same ram-
block. Since read mappings reference pPorts and write mappings reference rPorts then,
clearly, different ports must be specified for the mappings.

11.1.5 Fan-out and Fan-in

RTA-RTE does not support the use of data mappings to specify data fan-out from one
rPort to multiple ram-blocks – it is not possible to write the same data to multiple Nv-
Block mirrors from a single rPort.

R1

NvBlkSwcswcA

P1

blk1

blk2

R1

NvBlkSwcswcA

P1

blk1

blk2R2

Not supported Supported

Figure 11.1: Supported and unsupported fan-out of NVRAM communication

Likewise the fan-in from multiple ram-blocks to a single pPort is not supported since
it is not possible to collapse the contents of multiple disparate ram-blocks onto a single
data read.

However RTA-RTE does support multiple rPorts being mapped to the same ram-block

142 NVRAM

RTA-RTE V6.3.0
User Guide

(sub-element) and hence being written simultaneously by multiple sources. This is
required to support the mapping of a port to an element of a ram-block when the latter
uses a complex (record or array) type.

11.2 Interaction with Application SWC

Having created an Nv-Block software component type with a declared Nv-block and
data mappings it needs to be accessed by application SWC. This access occurs between
ports within the SWCs:

• An application SWC writes data to an Nv-block by declaring a Sender-receiver or
Nv-data pPort (with an appropriate interface) and connecting it to an rPort on the
Nv-Block SWC categorized by an Nv-Data interface.

• An application SWC reads data from an Nv-block by declaring a Sender-receiver or
Nv-data rPort (with an appropriate interface) and connecting it to a pPort on the
Nv-Block SWC categorized by an Nv-Data interface.

Accessing NVRAM from application SWC is considered in detail in Chapter 16.

11.3 Interaction with the NVRAM Manager

The NVRAM manager can interact with an NvBlock SWC, and hence with application
SWCs, via API functions and runnable entity bodies generated by RTA-RTE.

Two API functions are generated by RTA-RTE for each NvBlock descriptor:

Rte_GetMirror – Generated for each NvBlock descriptor and enables the NVRAM man-
ager to read the contents of the ram-block.

Rte_SetMirror – Generated for each NvBlock descriptor and enables the NVRAM man-
ager to write the contents of the ram-block.

In addition to the Rte_GetMirror and Rte_SetMirror APIs, RTA-RTE can also gener-
ate additional APIs and runnable entity bodies based on declared role based port as-
signments depending on whether the assignment references a provided or required
client-server port:

Require port – RTA-RTE generates an API to be invoked by the NVRAM manager. The
name of the API is based on the declared role, the NvBlock SWC component pro-
totype name and the NvBlock descriptor name.

The generated API invokes the server through the referenced require port. If
multiple role based assignments have the same “role” then the generated API
aggregates invocation of all referenced servers.

The generated API invokes servers synchronously. To avoid use of OsEvents in the
generated code it is strongly recommended to use direct function invocation by
omitting the task reference the relevant RTE event mapping.

NVRAM 143

RTA-RTE V6.3.0
User Guide

Provide port – RTA-RTE generates the runnable entity body for all connected provide
ports that have a configured OperationInvokedEvent.

The generated runnable entity body uses the symbol name from the runnable
entity declaration – this must therefore be globally unique. The formal argument
list consists of three elements:

1. An optional instance handle (included only when the NvBlock SWC is de-
clared as supporting multiple instances, see Section 8.14).

2. The port-defined arguments (for the referenced server port, see Sec-
tion 8.13.2).

3. The operation arguments from the operation in the server’s ports interface
with the same name as the “role”.

The generated body for the runnable invokes the C-based API of the NVRAM man-
ager based on the declared “role”. All runnable parameters, apart from the in-
stance handle, are passed directly to the invoked NVRAM API.

144 NVRAM

RTA-RTE V6.3.0
User Guide

Part III

Developing Basic Software

145

RTA-RTE V6.3.0
User Guide

12 Basic Software

12.1 Basic Software Modules

In Chapter 7 we discussed how application software is partitioned using AUTOSAR soft-
ware components. Similarly, AUTOSAR basic software (BSW) is partitioned into BSW
modules.

A BSW module is closely related to a software component, and, just like a software
component, has both an internal behaviour and an implementation. The module is
described using a <BSW-MODULE-DESCRIPTION> element. This element describes the
module name and its internal behaviour, for example:

<BSW-MODULE-DESCRIPTION>
<SHORT-NAME>Can</SHORT-NAME>
<MODULE-ID>23</MODULE-ID>
<INTERNAL-BEHAVIORS>
<BSW-INTERNAL-BEHAVIOR>

...
</BSW-INTERNAL-BEHAVIOR>

</INTERNAL-BEHAVIORS>
</BSW-MODULE-DESCRIPTION>

The module’s name and, optionally the BSW implementation’s <VENDOR-ID> and
<VENDOR-API-INFOX>, are used when RTA-RTE generates API names for the module.
The combination ensures that each module instance receives unique generated APIs.

AUTOSAR configurations can specify multiple internal behaviors for a BSW
module and then select the appropriate behavior using pre-build variability.
This release of RTA-RTE does not support pre-build variability and therefore
at most one internal behavior can be specified.

12.1.1 Internal Behaviour

A basic software module’s internal behaviour is similar to the SWC’s internal behavior
described in Chapter 8 however reflecting the differing requirements different XML tags
are used so specifying conceptually similar elements.

The internal behavior describes one or more <BSW-SCHEDULABLE-ENTITY>s which are
analogous to runnable entities in a SWC and one or more BSW events that are analo-
gous to RTE events. RTA-RTE supports the following BSW events:

BSW-TIMING-EVENT – Specifies a periodic activity within a basic software module.

BSW-BACKGROUND-EVENT

BSW-EXTERNAL-TRIGGER-OCCURRED-EVENT – permits triggering of a schedulable
entity by an external SWC or BSW instance. RTA-RTE supports synchronization of
BSW and SWC trigger instances enabling either SWCs to activate schedulable
entities or BSWs to activate runnable entities in response to a external trigger
occurred event.

146 Basic Software

RTA-RTE V6.3.0
User Guide

BSW-INTERNAL-TRIGGER-OCCURRED-EVENT – permits triggering of a schedulable
entity by the same BSW instance.

BSW-MODE-SWITCH-EVENT – enables BSW schedule entities to be activated in re-
sponse to a mode switch. RTA-RTE supports synchronization of BSW and SWC
mode instances enabling either SWCs to activate schedulable entities or BSWs to
activate runnable entities in response to a mode switch event.

BSW-MODE-SWITCHED-ACK-EVENT – enables a BSW schedule entity to be acti-
vated when a mode switch is complete.

These events and the interaction of basic software modules with the RTE are discussed
in this chapter.

12.2 Interaction with the RTE

The mechanisms by which BSW modules interact with the RTE and through it with other
application elements are closely related to the facilities that are available for software
components. In fact, apart from not possessing ports, many of the RTE features for
software components have direct analogues in BSW modules.

This section explains the facilities RTA-RTE provides for BSW modules.

12.2.1 Schedulable Entity

A BSW schedulable entity is closely related to a software component’s runnable entity
since they are both representations of an entry point within the application software
that can be started executing by the RTE.

<BSW-SCHEDULABLE-ENTITY>
<SHORT-NAME>BSWTicked</SHORT-NAME>
<IMPLEMENTED-ENTRY-REF DEST=’...’>/pkg/Ticked</IMPLEMENTED-ENTRY-REF>

</BSW-SCHEDULABLE-ENTITY>

The <IMPLEMENTED-ENTRY-REF> references a <BSW-MODULE-ENTRY> that defines the en-
try point for the BSW schedulable entity. For example:

<BSW-MODULE-ENTRY>
<SHORT-NAME>Ticked</SHORT-NAME>
<IS-REENTRANT>true</IS-REENTRANT>
<IS-SYNCHRONOUS>true</IS-SYNCHRONOUS>
<CALL-TYPE>SCHEDULED</CALL-TYPE>
<EXECUTION-CONTEXT>TASK</EXECUTION-CONTEXT>
<SW-SERVICE-IMPL-POLICY>STANDARD</SW-SERVICE-IMPL-POLICY>

</BSW-MODULE-ENTRY>

The BSW module entry defines the execution context of the schedulable entity which
should be TASK. BSW module entries are not defined within the context of the BSW
module description and thus can be in a different AUTOSAR package if necessary.

Multiple BSW modules can reference the same BSW module entry, e.g. multiple mod-
ules can each reference the same MainFunction module entry. RTA-RTE will use the

Basic Software 147

RTA-RTE V6.3.0
User Guide

defined BSW module name, vendor API infix and module ID to ensure that each module
implementation receives a unique API.

A BSW schedulable entity is started by the RTE triggering a BSW event. RTA-RTE
supports multiple event types for BSW schedulable entities including time and mode
switches.

12.2.2 Periodic Events

A BSW schedulable entity is started periodically using a <BSW-TIMING-EVENT>. Similarly
to an SW-C’s <TIMING-EVENT> the BSW event defines a period (in seconds) and an
optional minimum start interval (also in seconds).

<BSW-TIMING-EVENT>
<SHORT-NAME>BSWTick</SHORT-NAME>
<STARTS-ON-EVENT-REF DEST=’...’>/pkg/mod/ib/entity</STARTS-ON-EVENT-REF>
<PERIOD>1.0</PERIOD>

</BSW-TIMING-EVENT>

The <STARTS-ON-EVENT-REF> references the schedule entity to be started when the
trigger occurs. It must therefore reference an entity within the basic software module
description. For clarity the DEST attribute has been omitted in the example above but
would normally have the value BSW-SCHEDULABLE-ENTITY.

12.2.3 Background Events

RTA-RTE supports BSW background events. As with <BSW-TIMING-EVENT>s these
events are directly analogous to an SW-C’s <BACKGROUND-EVENT>.

12.2.4 External Trigger Events

Section 8.8 covered the configuration of internal and external trigger events for SW-Cs.
BSW modules can trigger such events and also define responses that are triggered by
either SW-Cs or by other BSW modules.

A basic software module declares an external trigger event using the
<BSW-EXTERNAL-TRIGGER-OCCURRED-EVENT> event:

<BSW-EXTERNAL-TRIGGER-OCCURRED-EVENT>
<SHORT-NAME>BSWTrigger</SHORT-NAME>
<STARTS-ON-EVENT-REF DEST=’...’>/pkg/bsw/ib/entity</STARTS-ON-EVENT-REF>
<TRIGGER-REF DEST=’...’>/pkg/bsw/trigger</TRIGGER-REF>

</BSW-EXTERNAL-TRIGGER-OCCURRED-EVENT>

The short name of the external trigger event is only significant for referencing and does
not form part of the generated API.

The <STARTS-ON-EVENT-REF> references the schedule entity to be started when the
trigger occurs. It must therefore reference an entity within the basic software module
description. For clarity the DEST attribute has been omitted in the example above but
would normally have the value BSW-SCHEDULABLE-ENTITY.

148 Basic Software

RTA-RTE V6.3.0
User Guide

The <TRIGGER-REF> references a required <TRIGGER> declared within the
<BSW-MODULE-DESCRIPTION>. For clarity the DEST attribute has been omitted in
the example above but would normally have the value TRIGGER.

<REQUIRED-TRIGGERS>
<TRIGGER>
<SHORT-NAME>reqTrigger</SHORT-NAME>

</TRIGGER>
</REQUIRED-TRIGGERS>

Multiple external trigger events can reference the same required <TRIGGER> and RTA-
RTE will ensure that all are referenced schedulable entities are started when the trigger
fires.

The source for an external trigger is a schedulable entity that references a release
<TRIGGER>.

<BSW-SCHEDULABLE-ENTITY>
...
<ISSUED-TRIGGERS>
<TRIGGER-REF-CONDITIONAL>
<TRIGGER-REF DEST=’TRIGGER’>/pkg/mod/relTrigger</TRIGGER-REF>

</TRIGGER-REF-CONDITIONAL>
</ISSUED-TRIGGERS>

</BSW-SCHEDULABLE-ENTITY>

The short name of the referenced release <TRIGGER> is used to form the SchM_Trigger
API name.

The connection between the release and require triggers is made within the ECUC, see
Section 14.3.1 for details. In addition, both released and required BSW external triggers
can be synchronized with SWC external triggers, see Section 15.3.

12.2.5 Internal Trigger Events

Section 8.8 covered the configuration of internal and external trigger events for SW-Cs.
BSW modules can trigger such events and also define responses that are triggered by
either SW-Cs or by other BSW modules.

A basic software module declares an internal trigger event using the
<BSW-INTERNAL-TRIGGER-OCCURRED-EVENT> event:

<BSW-INTERNAL-TRIGGER-OCCURRED-EVENT>
<SHORT-NAME>BSWTrigger</SHORT-NAME>
<STARTS-ON-EVENT-REF DEST=’...’>/pkg/mod/ib/entity</STARTS-ON-EVENT-REF>
<EVENT-SOURCE-REF DEST=’...’>/pkg/mod/ib/trigPoint</EVENT-SOURCE-REF>

</BSW-INTERNAL-TRIGGER-OCCURRED-EVENT>

The short name of the internal trigger event is only significant for referencing and does
not form part of the generated API.

Basic Software 149

RTA-RTE V6.3.0
User Guide

The <STARTS-ON-EVENT-REF> references the schedule entity to be started when the
trigger occurs. It must therefore reference an entity within the basic software module
description. For clarity the DEST attribute has been omitted in the example above but
would normally have the value BSW-SCHEDULABLE-ENTITY.

The <EVENT-SOURCE-REF> references a <BSW-INTERNAL-TRIGGERING-POINT> de-
clared within the <BSW-MODULE-DESCRIPTION>. For clarity the DEST attribute
has been omitted in the example above but would normally have the value
BSW-INTERNAL-TRIGGERING-POINT.

<INTERNAL-TRIGGERING-POINTS>
<BSW-INTERNAL-TRIGGERING-POINT>
<SHORT-NAME>trigPoint</SHORT-NAME>

</BSW-INTERNAL-TRIGGERING-POINT>
</INTERNAL-TRIGGERING-POINTS>

Multiple internal trigger events can reference the same required
<BSW-INTERNAL-TRIGGERING-POINT> and RTA-RTE will ensure that all are referenced
schedulable entities are started when the trigger fires.

Internal triggers must have a source within the BSW module. The source
schedule entity references the <BSW-INTERNAL-TRIGGERING-POINT> using a
<BSW-INTERNAL-TRIGGERING-POINT-REF-CONDITIONAL> element:

<ACTIVATION-POINTS>
<BSW-INTERNAL-TRIGGERING-POINT-REF-CONDITIONAL>
<BSW-INTERNAL-TRIGGERING-POINT-REF DEST=’...’>/pkg/mod/ib/trigPoint</

BSW-INTERNAL-TRIGGERING-POINT-REF>
</BSW-INTERNAL-TRIGGERING-POINT-REF-CONDITIONAL>

</ACTIVATION-POINTS>

The <BSW-INTERNAL-TRIGGERING-POINT-REF> references a
<BSW-INTERNAL-TRIGGERING-POINT> declared within the
<BSW-MODULE-DESCRIPTION>. For clarity the DEST attribute has been omitted in the
example above but would normally have the value BSW-INTERNAL-TRIGGERING-POINT.

12.2.6 Mode Switch Events

Chapter 9 described how a SW-C accessed modes through a provided or required cate-
gorized by an interface containing mode declaration group prototypes. Basic software
does not have ports however accessed modes are still described using mode declara-
tion group prototypes but for basic software these are contained within the BSW module
description.

<BSW-MODULE-DESCRIPTION>
<SHORT-NAME>Can</SHORT-NAME>
...
<PROVIDED-MODE-GROUPS>
<MODE-DECLARATION-GROUP-PROTOTYPE>
<SHORT-NAME>bmdgp</SHORT-NAME>
<TYPE-TREF DEST=’...’>/pkg/mdg1</TYPE-TREF>

150 Basic Software

RTA-RTE V6.3.0
User Guide

</MODE-DECLARATION-GROUP-PROTOTYPE>
</PROVIDED-MODE-GROUPS>

The <TYPE-TREF> references a previously declared <MODE-DECLARATION-GROUP>. For
clarity the DEST attribute has been omitted in the example above but would normally
have the value MODE-DECLARATION-GROUP.

A schedulable entity declares itself as the mode manager using a reference within
<MANAGED-MODE-GROUPS> to the provided mode group prototype.

<MANAGED-MODE-GROUPS>
<MODE-DECLARATION-GROUP-PROTOTYPE-REF-CONDITIONAL>
<MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST=’...’>/pkg/mod/bmdgp</MODE-

DECLARATION-GROUP-PROTOTYPE-REF>
</MODE-DECLARATION-GROUP-PROTOTYPE-REF-CONDITIONAL>

</MANAGED-MODE-GROUPS>

The <MODE-DECLARATION-GROUP-PROTOTYPE-REF> references the previously de-
clared <MODE-DECLARATION-GROUP-PROTOTYPE>. For clarity the DEST attribute
has been omitted in the example above but would normally have the value
MODE-DECLARATION-GROUP-PROTOTYPE.

A BSW mode manager can optionally specify the length of the mode switch queue, see
Section 9.2.2 for details. If omitted, RTA-RTE assumes a queue length of one.

A mode user requires access to a mode and this is configured through the
<REQUIRED-MODE-GROUPS> within a basic software module description.

<REQUIRED-MODE-GROUPS>
<MODE-DECLARATION-GROUP-PROTOTYPE>
<SHORT-NAME>bmdgr2</SHORT-NAME>
<TYPE-TREF DEST=’...’>/pkg/mdg1</TYPE-TREF>

</MODE-DECLARATION-GROUP-PROTOTYPE>
</REQUIRED-MODE-GROUPS>

The <TYPE-TREF> references a previously declared <MODE-DECLARATION-GROUP>. For
clarity the DEST attribute has been omitted in the example above but would normally
have the value MODE-DECLARATION-GROUP.

A schedulable entity can be triggered as a result of a mode switch using a
<BSW-MODE-SWITCH-EVENT> that references a required mode group prototype using a
<CONTEXT-MODE-DECLARATION-GROUP-REF>.

<BSW-MODE-SWITCH-EVENT>
<SHORT-NAME>BSWmodeSwitchEvent</SHORT-NAME>
<STARTS-ON-EVENT-REF DEST=’...’>/pkg/mod/ib/BSWmse</STARTS-ON-EVENT-REF>
<MODE-IREFS>
<MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-REF DEST=’...’>/pkg/mod/bmdgr2</

CONTEXT-MODE-DECLARATION-GROUP-REF>
<TARGET-MODE-REF DEST=’MODE-DECLARATION’>/pkg/mdg1/implicit</TARGET-

MODE-REF>

Basic Software 151

RTA-RTE V6.3.0
User Guide

</MODE-IREF>
</MODE-IREFS>

</BSW-MODE-SWITCH-EVENT>

The <STARTS-ON-EVENT-REF> references the schedule entity to be started when the
mode switch occurs. It must therefore reference an entity within the basic software
module description. For clarity the DEST attribute has been omitted in the example
above but would normally have the value BSW-SCHEDULABLE-ENTITY.

The connection between the provided and requires mode group prototypes is made
within the ECUC, see Section 14.3.2 for details. In addition, both provided and required
BSW mode declaration groups can be synchronized with provided SWC mode declara-
tion groups, see Section 15.2.

12.2.7 Mode Switch Ack Events

The configuration of mode switch acknowledge events within basic software is similar
to the process described above for mode switched events. The only significant differ-
ence is how schedule entities are triggered using a <BSW-MODE-SWITCHED-ACK-EVENT>
element rather than a <BSW-MODE-SWITCH-EVENT> element.

<BSW-MODE-SWITCHED-ACK-EVENT>
<SHORT-NAME>BSWmodeSwitchAckEvent</SHORT-NAME>
<STARTS-ON-EVENT-REF DEST=’...’>/pkg/mod/ib/BSWmsae</STARTS-ON-EVENT-REF>
<MODE-GROUP-REF DEST=’...’>/pkg/mod/bmdgp</MODE-GROUP-REF>

</BSW-MODE-SWITCHED-ACK-EVENT>

The <STARTS-ON-EVENT-REF> references the schedule entity to be started when the
mode switch is acknowledged. It must therefore reference an entity within the basic
software module description. For clarity the DEST attribute has been omitted in the
example above but would normally have the value BSW-SCHEDULABLE-ENTITY.

The connection between the provided and requires mode group prototypes is made
within the ECUC, see Section 14.3.2 for details.

12.3 API

RTA-RTE forms the names of generated BSW API functions using a the module’s
name which is optionally combined with each BSW implementation’s <VENDOR-ID> and
<VENDOR-API-INFIX>. Each generated name, therefore, as the following form:

SchM_<root>_<mp>[_<vi>_<ai>]_<name>

Where <mp> is the the name of the BSW module (AUTOSAR terms this the “module
prefix”), <vi> the <VENDOR-ID> and <ai> the <VENDOR-API-INFIX>. The <root> and
<name> components of the API name vary depending on the API.

For example, assuming the following BSW module description and BSW implementa-
tion:

<BSW-MODULE-DESCRIPTION>

152 Basic Software

RTA-RTE V6.3.0
User Guide

<SHORT-NAME>Can</SHORT-NAME>
...

</BSW-MODULE-DESCRIPTION>

<BSW-IMPLEMENTATION>
<SHORT-NAME>MyCanDrv</SHORT-NAME>
<VENDOR-ID>25</VENDOR-ID>
...
<VENDOR-API-INFIX>Dev0815</VENDOR-API-INFIX>

</BSW-IMPLEMENTATION>

RTA-RTE would generate API names of the form SchM_<root>_Can_25_Dev0815_<name>.

The specification of the <VENDOR-ID> and <VENDOR-API-INFIX> elements are op-
tional. AUTOSAR defines that if the <VENDOR-API-INFIX> is omitted then both the
<VENDOR-ID> and <VENDOR-API-INFIX> elements are omitted from the generated
names.

Basic Software 153

RTA-RTE V6.3.0
User Guide

Part IV

Composition

154

RTA-RTE V6.3.0
User Guide

13 Composing Software Components

In Part II you saw how to define software components, their internal behaviour and
their implementation characteristics. In this chapter you will see how to assemble,
or compose, applications from the components you have defined (or that have been
defined for you).

AUTOSAR uses a <COMPOSITION-TYPE> to define which prototypes, of which software
component types, you will have in your system and how their ports are connected at the
abstract level. Each composition therefore represents a logical assembly of interacting
software components.

Each composition creates a logical software system for deployment on one or more
ECUs. Every system that you need to deploy will have at least one “master” com-
position that defines how all software component prototypes are connected as shown
below.

However, it may be the case you need to define one or more compositions to logically
partition your vehicle system. For example, you might define compositions for body,
chassis and powertrain. This will allow you to define how these groups of component
prototypes are deployed if you need to allocate components from some applications
onto specific ECUs.

13.1 Composition Type Definition

All composition information is contained in an <AR-PACKAGE> element.

<AR-PACKAGE>
<SHORT-NAME>MyComposition</SHORT-NAME>
<ELEMENTS>
<COMPOSITION-TYPE>
...

</COMPOSITION-TYPE>
</ELEMENTS>

</AR-PACKAGE>

The <COMPOSITION-TYPE> element is used to instantiate one or more software compo-
nent types and the connections between the component prototypes.

<COMPOSITION-TYPE>
<SHORT-NAME>MyComposition</SHORT-NAME>
<PORTS>
...

</PORTS>
<COMPONENTS>
...

</COMPONENTS>
<CONNECTORS>
...

</CONNECTORS>
</COMPOSITION-TYPE>

Composing Software Components 155

RTA-RTE V6.3.0
User Guide

The <COMPONENTS> element is used to instantiate one or more SWC-type definitions.
The <CONNECTORS> element is used to create connections between ports defined on
component prototypes. The <PORTS> element is used to create ports for use with dele-
gation connectors.

A composition defines a group of connected software component prototypes and pro-
vides a mechanism for hierarchical composition of systems. However, the individual
component prototypes within the composition can be allocated onto different ECU in-
stances at system definition time (see Section 17.1).

13.2 Component Instances

The <COMPONENTS> element within a <COMPOSITION-TYPE> is used to instantiate one or
more SWC-type definitions.

Each component type can be instantiated multiple times, but each instance must be
given a unique name.

The <SW-COMPONENT-PROTOTYPE> element provides a name for the component instance
and provides a reference to the type description. The following description:

<COMPONENTS>
<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>John</SHORT-NAME>
<TYPE-TREF>/pkg/PersonType</TYPE-TREF>

</SW-COMPONENT-PROTOTYPE>

<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>Jane</SHORT-NAME>
<TYPE-TREF>/pkg/PersonType</TYPE-TREF>

</SW-COMPONENT-PROTOTYPE>

<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>Cafe</SHORT-NAME>
<TYPE-TREF>/pkg/BusinessType</TYPE-TREF>

</SW-COMPONENT-PROTOTYPE>
</COMPONENTS>

Creates the instances shown in Figure 13.1.

13.3 Connector Prototypes

As well as defining component prototypes, a <COMPOSITION-TYPE> element includes
the <ASSEMBLY-CONNECTOR> definitions that connect ports between component proto-
types and the <DELEGATION-CONNECTOR> elements that connect ports within a compo-
sition to elements outside the composition.

13.3.1 Assembly Connectors

An assembly connector is used to connect provided and required ports within a com-
position.

<CONNECTORS>

156 Composing Software Components

RTA-RTE V6.3.0
User Guide

PersonType

John

Jane

<ATOMIC-SOFTWARE-COMPONENT-TYPE>

<COMPONENT-PROTOTYPES>

BusinessType

<ATOMIC-SOFTWARE-COMPONENT-TYPE>

Cafe

<COMPONENT-PROTOTYPE>

<COMPONENT-PROTOTYPE>

<COMPONENT-PROTOTYPE>

In
st

an
tia

tio
n

Figure 13.1: Creating Component Instances

<ASSEMBLY-SW-CONNECTOR>
...

</ASSEMBLY-SW-CONNECTOR>
</CONNECTORS>

Each assembly connector prototype defines one connection between a provided and
required port on two component prototypes. Thus each connector prototype creates a
link from a single port data item or operation source to a single destination. If either
multiple sources or destinations are required then multiple connectors must be defined.

Figure 13.2 shows a producer software component instance being connected to a con-
sumer software component instance:

The provided port is referenced within the connector using the <PROVIDER-IREF> ele-
ment and the required port using the <REQUESTER-IREF> element.

<ASSEMBLY-CONNECTOR-PROTOTYPE>
<SHORT-NAME>MyConnector</SHORT-NAME>
<PROVIDER-IREF>
<CONTEXT-COMPONENT-REF ...
<TARGET-P-PORT-REF ...

</PROVIDER-IREF>
<REQUESTER-IREF>
<CONTEXT-COMPONENT-REF ...
<TARGET-R-PORT-REF ...>

</REQUESTER-IREF>
</ASSEMBLY-CONNECTOR-PROTOTYPE>

Composing Software Components 157

RTA-RTE V6.3.0
User Guide

COMPOSITION-TYPE

Consumer
[ConsumerType]

ProducerType

Producer
[ProducerType]

ConsumerType

Instantiate

<ASSEMBLY-CONNECTOR-PROTOTYPE>

<ATOMIC-SOFTWARE-COMPONENT-TYPE>

<ATOMIC-SOFTWARE-COMPONENT-TYPE>

OutputPort InputPort

Instantiate

Figure 13.2: Assembly Connectors

Note that since the connection is made between different component prototypes then
each component prototype can have different connectors defined.

13.3.2 Delegation Connectors

A delegation connector is used to connect a port within a composition to a port on the
composition boundary. The composition port can then be used to connect compositions
together using an assembly connector.

AInst2
[AType]

BInst
[BType]

AInst1
[AType]

COMPOSITION-TYPE

<DELEGATION-CONNECTOR-PROTOTYPE>

<P-PORT-PROTOTYPE>

Figure 13.3: Delegation Connectors

To create and use a delegation connector, one must first create a port prototype within
the composition type — this port will form one “end” of the connector. The port is
created in a form that is identical when port prototypes are created within a software
component.

158 Composing Software Components

RTA-RTE V6.3.0
User Guide

<COMPOSITION-TYPE>
...
<PORTS>
<P-PORT-PROTOTYPE>
<SHORT-NAME>ServerPortonComposition</SHORT-NAME>
<PROVIDED-INTERFACE-TREF>/interface/one_op</PROVIDED-INTERFACE-TREF>

</P-PORT-PROTOTYPE>
...

</PORTS>
...

</COMPOSITION-TYPE>

Once the port-prototype has been defined the delegation connector can be created.
A <DELEGATION-CONNECTOR-PROTOTYPE> element references a port on a component
prototype and the port on the composition type:

<DELEGATION-CONNECTOR-PROTOTYPE>
<SHORT-NAME>ServerPortDelegator</SHORT-NAME>
<INNER-PORT-IREF>
<CONTEXT-COMPONENT-REF ...
<PORT-PROTOTYPE-REF ...

</INNER-PORT-IREF>
<OUTER-PORT-REF ...

</DELEGATION-CONNECTOR-PROTOTYPE>

The <INNER-PORT-IREF> refers to the port on the software component prototype within
the composition. The <OUTER-PORT-REF> refers to the port configured on the composi-
tion itself.

13.3.3 Services and Service Connectors

Service components are added to an application by creating instances of the required
service component types, in a similar manner to the way that atomic software compo-
nents are created.

However, while application software component instances are based within software
compositions, service components are allocated on an ECU-wide basis, outside the
compositions.

Consequently, the set of services available on an ECU is defined as part of the ECU’s
configuration. The following figure shows two application software components con-
nected to the same service component via different ports.

Figure 13.4 shows a service instance being used by two software component instances
via different ports. The first component instance is connected to the service’s requester
port; the second to its provider port. In the resulting software composition there are
two instances of the component SWC-Type, but only a single instance of the service
Service-type.

The ECU’s software composition also contains <SERVICE-CONNECTOR> elements, which
connect a port on an application software component prototype to a port on a service

Composing Software Components 159

RTA-RTE V6.3.0
User Guide

SWCInst2
[SWCType]

ServiceInst
[ServiceType]

SWCInst1
[SWCType]

COMPOSITION-TYPE

<SERVICE-CONNECTOR-PROTOTYPE>
<R-PORT-PROTOTYPE>

<P-PORT-PROTOTYPE>

ECU-SW-COMPOSITION

<SERVICE-CONNECTOR-PROTOTYPE>

Figure 13.4: Service Connectors

component.

Service connectors are broadly similar to assembly connectors, but differ slightly in
their format: rather than referring to the endpoints are a PROVIDER and REQUESTER,
the endpoints are referred to as APPLICATION port and the SERVICE port. This help to
prevent a service component being connected to another service component, which is
not permitted.

As with assembly connectors, a service connector must connect exactly one
provided port and one required port. However, either the application port or
the service port may be the provided port, and the other must then be the
required port.

<SERVICE-CONNECTOR-PROTOTYPE>
<SHORT-NAME>SvcConnector</SHORT-NAME>
<APPLICATION-PORT-IREF>
<COMPONENT-PROTOTYPE-REF ...>
<PORT-PROTOTYPE-IREF ...>

</APPLICATION-PORT-REF>
<SERVICE-PORT-IREF>
<SERVICE-COMPONENT-PROTOTYPE-REF ...>
<PORT-PROTOTYPE-REF ...>

</SERVICE-PORT-IREF>
</SERVICE-CONNECTOR-PROTOTYPE>

It is also possible to use a service connector between a port on a service component
and a port on a software composition.

13.3.4 Port Interface Mapping

Prior to AUTOSAR R4.0 the compatibility of connected ports was verified by matching
elements based on name, for example, a provided port with elements “A”, “B” and “C”
would be compatible with a require port with compatible elements “A” and “B” (since

160 Composing Software Components

RTA-RTE V6.3.0
User Guide

the set of elements in the provider could be a superset of the requirer’s elements)
however it would not be compatible with a required port containing element “D”. To
resolve this problem R4.0 introduced the Port Interface Mapping element.

B

D

C

B

D

F

E

A

Figure 13.5: Port interface map for an interface containing A, B, C and D connected to
an interface containing B, E, F and D.

Figure 13.5 illustrates a port interface map for a provider categorized by an interface
containing elements “A”, “B”, “C”, “D” mapped to an interface containing elements “B”,
“E”, “F”, “D”. The mapping resolves the incompatibility by explicitly specifying the
mapping, namely “A” to “E”, “B” to “B”, “C” to “F” and “D” to “D”.

A port interface mapping must explicitly associate all pairs of elements that
are to be connected; when a port interface mapping is applied to a connector
the automatic mapping by matching name no longer occurs.

This release of RTA-RTE supports port mapping for Client-server operations
and arguments, Sender-Receiver data elements, Calibration parameters,
Mode declaration groups and external Triggers.

Once a port mapping between interfaces is defined then it can be applied to a particular
assembly connector using a <MAPPING-REF>.

<ASSEMBLY-SW-CONNECTOR>
<SHORT-NAME>Connector1</SHORT-NAME>
<MAPPING-REF DEST=’...’>/pkg/pif/map</MAPPING-REF>
<PROVIDER-IREF>
...

</PROVIDER-IREF>
<REQUESTER-IREF>
...

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>

If desired, a port interface mapping can be reused for multiple connectors, subject
to the provider and requirer ports of the connector being categorized by the same
interfaces as mapped in the port interface mapping.

Composing Software Components 161

RTA-RTE V6.3.0
User Guide

Port interface mappings merely express pairings of elements within a pair
of interfaces; the “first” interface may be the interface of the provide port
and the “second” the interface of the require port or vice versa. It is not
therefore possible to use a port interface mapping on a connector between
ports with the same interface.

RTA-RTE supports nested compositions where possible and port interface mappings can
be used on DelegationConnectors as well as AssemblyConnectors in most cases. At the
time of writing this does not include client-server port interface mappings; these can
only be used on AssemblyConnectors in this release of RTA-RTE.

Mapping Data Elements and Parameters

A port mapping for Sender-Receiver interfaces or a Parameter interface is defined us-
ing a <VARIABLE-AND-PARAMETER-INTERFACE-MAPPING> element which maps elements
from one interface to elements of another interface. The mapping is performed by
reference to the data element (parameter) prototypes and therefore elements with dif-
ferent names can be mapped.

<PORT-INTERFACE-MAPPING-SET>
<SHORT-NAME>pif</SHORT-NAME>
<PORT-INTERFACE-MAPPINGS>
<VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
<SHORT-NAME>map</SHORT-NAME>
<DATA-MAPPINGS>
<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST=’...’>/pkg/ifa/a</FIRST-DATA-

PROTOTYPE-REF>
<SECOND-DATA-PROTOTYPE-REF DEST=’...’>/pkg/ifb/b</SECOND-DATA-

PROTOTYPE-REF>
</DATA-PROTOTYPE-MAPPING>

</DATA-MAPPINGS>
</VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
...

If a pair of connected data (or parameter) prototypes have incompatible complex
types a remapping of the sub-elements of those types can be defined by including
<SUB-ELEMENT-MAPPING> elements in the <DATA-PROTOTYPE-MAPPING>.

<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST=’...’>/pkg/ifa/dia</FIRST-DATA-PROTOTYPE-

REF>
<SECOND-DATA-PROTOTYPE-REF DEST=’...’>/pkg/ifb/dib</SECOND-DATA-PROTOTYPE

-REF>
<SUB-ELEMENT-MAPPINGS>
<SUB-ELEMENT-MAPPING>
<FIRST-ELEMENTS>
<IMPLEMENTATION-DATA-TYPE-SUB-ELEMENT-REF>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<CONTEXT-DATA-PROTOTYPE-REFS/>
<TARGET-DATA-PROTOTYPE-REF DEST=’IMPLEMENTATION-DATA-TYPE-

ELEMENT’>/pkg/RecordTypeTx/a</TARGET-DATA-PROTOTYPE-REF>

162 Composing Software Components

RTA-RTE V6.3.0
User Guide

</IMPLEMENTATION-DATA-TYPE-ELEMENT>
</IMPLEMENTATION-DATA-TYPE-SUB-ELEMENT-REF>

</FIRST-ELEMENTS>
<SECOND-ELEMENTS>
<IMPLEMENTATION-DATA-TYPE-SUB-ELEMENT-REF>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<CONTEXT-DATA-PROTOTYPE-REFS/>
<TARGET-DATA-PROTOTYPE-REF DEST=’IMPLEMENTATION-DATA-TYPE-

ELEMENT’ INDEX=’0’>/pkg/ArrayTypeRx/element</TARGET-DATA-
PROTOTYPE-REF>

</IMPLEMENTATION-DATA-TYPE-ELEMENT>
</IMPLEMENTATION-DATA-TYPE-SUB-ELEMENT-REF>

</SECOND-ELEMENTS>
</SUB-ELEMENT-MAPPING>
...

</SUB-ELEMENT-MAPPINGS>
</DATA-PROTOTYPE-MAPPING>

The above example maps the record element RecordTypeTx.a to the array element
ArrayTypeRx[0]. In nested complex types nested elements can be mapped by includ-
ing references under <CONTEXT-DATA-PROTOTYPE-REFS> to give the path down the tree
of elements. It is also possible to specify a mapping between elements that themselves
have complex types, provided those types are compatible, without having to provide
explicit mappings for all their leaves.

Mapping Operations and Arguments

A port mapping for Client-Server interfaces is defined using a
<CLIENT-SERVER-INTERFACE-MAPPING> element which maps operations from one
interface to operations of another interface and, optionally, arguments within the
operations. The mapping is performed by reference to operations prototypes and
therefore operations with different names can be mapped.

<PORT-INTERFACE-MAPPING-SET>
<SHORT-NAME>pif</SHORT-NAME>
<PORT-INTERFACE-MAPPINGS>
<CLIENR-SERVER-INTERFACE-MAPPING>
<SHORT-NAME>map</SHORT-NAME>
<OPERATION-MAPPINGS>
<CLIENT-SERVER-OPERATION-MAPPING>
<FIRST-OPERATION-REF DEST=’...’>/pkg/ifa/a</FIRST-OPERATION-REF>
<SECOND-OPERATION-REF DEST=’...’>/pkg/ifb/b</SECOND-OPERATION-REF

>
</CLIENT-SERVER-OPERATION-MAPPING>

</OPERATION-MAPPINGS>
</CLIENT-SERVER-INTERFACE-MAPPING>
...

Once a port mapping between interfaces is defined then it can be referenced from an
assembly connector using an <MAPPING-REF>.

<ASSEMBLY-SW-CONNECTOR>

Composing Software Components 163

RTA-RTE V6.3.0
User Guide

<SHORT-NAME>Connector1</SHORT-NAME>
<MAPPING-REF DEST=’...’>/pkg/pif/map</MAPPING-REF>
<PROVIDER-IREF>
...

</PROVIDER-IREF>
<REQUESTER-IREF>
...

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>

If desired, a port interface mapping can be reused for multiple connectors (subject
to the provider and requirer ports of the connector being categorized by the same
interfaces as mapped in the port interface mapping).

In addition to mapping two operations a <CLIENT-SERVER-OPERATION-MAPPING> el-
ement can be used to map individual parameters within the two referenced opera-
tions. Unmapped arguments are mapped by position. All arguments, whether explicitly
mapped by an operation mapping or implicitly mapped by position, must be compatible
(e.g. have compatible data types).

<CLIENT-SERVER-OPERATION-MAPPING>
<ARGUMENT-MAPPINGS>
<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST=’...’>/pkg/ifa/a/a</FIRST-DATA-

PROTOTYPE-REF>
<SECOND-DATA-PROTOTYPE-REF DEST=’...’>/pkg/ifb/b/b</SECOND-DATA-

PROTOTYPE-REF>
</DATA-PROTOTYPE-MAPPING>
<DATA-PROTOTYPE-MAPPING>
...

</DATA-PROTOTYPE-MAPPING>
</ARGUMENT-MAPPINGS>
<FIRST-OPERATION-REF DEST=’...’>/pkg/ifa/a</FIRST-OPERATION-REF>
<SECOND-OPERATION-REF DEST=’...’>/pkg/ifb/b</SECOND-OPERATION-REF>

</CLIENT-SERVER-OPERATION-MAPPING>

Within a <DATA-PROTOTYPE-MAPPING> the first referenced prototype must be
contained within the first referenced operation and the second referenced
prototype must be contained within the second referenced operation.

At the time of writing, RTA-RTE does not permit <SUB-ELEMENT-MAPPING>
elements to be used to map the elements of incompatible com-
plex types for a <DATA-PROTOTYPE-MAPPING> element within a
<CLIENT-SERVER-OPERATION-MAPPING>.

Mapping Triggers

A port mapping for Trigger interfaces is defined using a
<TRIGGER-INTERFACE-MAPPING> element which maps elements from one inter-
face to elements of another interface. The mappings is performed by reference to the

164 Composing Software Components

RTA-RTE V6.3.0
User Guide

triggers themselves and therefore elements with different names can be mapped.

<PORT-INTERFACE-MAPPING-SET>
<SHORT-NAME>pif</SHORT-NAME>
<PORT-INTERFACE-MAPPINGS>
<TRIGGER-INTERFACE-MAPPING>
<SHORT-NAME>map</SHORT-NAME>
<TRIGGER-MAPPINGS>
<TRIGGER-MAPPING>
<FIRST-TRIGGER-REF DEST=’...’>/pkg/ifa/a</FIRST-TRIGGER-REF>
<SECOND-TRIGGER-REF DEST=’...’>/pkg/ifb/b</SECOND-TRIGGER-REF>

</TRIGGER-MAPPING>
</TRIGGER-MAPPINGS>

</TRIGGER-INTERFACE-MAPPING>
...

Once a port mapping between trigger interfaces is defined then it can be referenced
from an assembly connector using an <MAPPING-REF>. This is the same reference tag
as the reference for mapping data elements but since an port cannot be categorized
by multiple interfaces no ambiguity results.

<ASSEMBLY-SW-CONNECTOR>
<SHORT-NAME>Connector1</SHORT-NAME>
<MAPPING-REF DEST=’...’>/pkg/pif/map</MAPPING-REF>
<PROVIDER-IREF>
...

</PROVIDER-IREF>
<REQUESTER-IREF>
...

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>

If desired, a port interface mapping can be reused for multiple connectors (subject
to the provider and requirer ports of the connector being categorized by the same
interfaces as mapped in the port interface mapping).

Mapping Mode Declaration Groups

A port mapping for Mode interfaces is defined using a <MODE-INTERFACE-MAPPING>
element which maps elements from one interface to elements of another interface.
The mappings is performed by reference to the mode declaration group prototypes
and therefore elements with different names can be mapped.

<PORT-INTERFACE-MAPPING-SET>
<SHORT-NAME>pif</SHORT-NAME>
<PORT-INTERFACE-MAPPINGS>
<MODE-INTERFACE-MAPPING>
<SHORT-NAME>map</SHORT-NAME>
<MODE-MAPPINGS>
<MODE-MAPPING>
<FIRST-MODE-GROUP-REF DEST=’...’>/pkg/ifa/a</FIRST-MODE-GROUP-REF

>

Composing Software Components 165

RTA-RTE V6.3.0
User Guide

<SECOND-MODE-GROUP-REF DEST=’...’>/pkg/ifb/b</SECOND-MODE-GROUP-
REF>

</MODE-MAPPING>
</MODE-MAPPINGS>

</MODE-INTERFACE-MAPPING>
...

Once a port mapping between mode interfaces is defined then it can be referenced
from an assembly connector using an <MAPPING-REF>. This is the same reference tag
as the reference for mapping data elements and triggers but since an port cannot be
categorized by multiple interfaces no ambiguity results.

<ASSEMBLY-SW-CONNECTOR>
<SHORT-NAME>Connector1</SHORT-NAME>
<MAPPING-REF DEST=’...’>/pkg/pif/map</MAPPING-REF>
<PROVIDER-IREF>
...

</PROVIDER-IREF>
<REQUESTER-IREF>
...

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>

If desired, a port interface mapping can be reused for multiple connectors (subject
to the provider and requirer ports of the connector being categorized by the same
interfaces as mapped in the port interface mapping).

13.3.5 Partial Record Mappings

AUTOSAR has the concept of partial record mappings. These mappings extend the
normal type compatibility rules such that a providing Sender-receiver data element
that is typed by a record type can contain a super-set of the elements in the receiver’s
record data type.

Elements in the providing and requiring type are matched by name; thus the two types
do not need to have the same elements in the same order.

A

A

C

B

B

Provider Requirer

Figure 13.6: Valid Partial Record Mapping

Figure 13.6 illustrates a valid mapping between two record types where the providing

166 Composing Software Components

RTA-RTE V6.3.0
User Guide

type contains the three data elements “A”, “B” and “C” whereas the requiring type
contains data elements “A” and “B” in a different order.

A

DC

B B

Provider Requirer

A

?

Figure 13.7: Invalid Partial Record Mapping

However Figure 13.7 illustrates an invalid mapping between two record types where
the requring type contains a record element, “D” not included in the providing record
type. The providing type must be a super-set of the requiring type.

Partial record mappings are not supported in R4.0 but the same effect can
be achieved by using SubElementMappings. See section 13.3.4.

13.4 FlatMaps

FlatInstanceDescriptors are used in AUTOSAR 4.0 to create readable names for
instances in the input model.

FlatInstanceDescriptors are aggregated into a FlatMap which is refer-
enced by the RootSwCompositionPrototype . Thus, for an ECU_EXTRACT
the FlatInstanceDescriptors provide unique names for the instances of
VariableDataPrototypes and SwcPrototypes.

At the time of writing, for historical reasons RTA-RTE also takes the
shortName of the FlatInstanceDescriptor as the C-symbol of the mea-
surement buffer in generation phase. This should not be relied upon and
may be removed in a future release.

At the time of writing, FlatInstanceDescriptors cannot reference
ConstantMemorys or StaticMemorys. This is because there is no generated
API for accessing ConstantMemorys or StaticMemorys, so the renaming of
the buffer cannot be supported.

13.4.1 Configuration

A flatmap contains one or more flatmap instance elements that are used to contain the
information for the ECU being configured.

<FLAT-MAP>
<SHORT-NAME>Flatmap</SHORT-NAME>

Composing Software Components 167

RTA-RTE V6.3.0
User Guide

<INSTANCES>
<FLAT-INSTANCE-DESCRIPTOR>
...

</FLAT-INSTANCE-DESCRIPTOR>
</INSTANCES>

</FLAT-MAP>

A flatmap instance contain an instance references, the “ecu-extract” reference to the
associated element (data element, inter-runnable variable, etc.) instance.

<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>my_argument_buffer</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>
...

</ECU-EXTRACT-REFERENCE-IREF>
</FLAT-INSTANCE-DESCRIPTOR>

The ECU extract instance reference within a flatmap instance may require multiple
CONTEXT nodes to identify the correct element. For example, when referencing a data
element as well as the component prototype reference an additional two references
are required to specify the port prototype and the data element.

A flatmap is associated with the ECU extract by a reference defined within the
<ROOT-SW-COMPOSITION-PROTOTYPE> element:

<ROOT-SW-COMPOSITION-PROTOTYPE>
<SHORT-NAME>mySWComp</SHORT-NAME>
...
<FLAT-MAP-REF>/pkg/flatmap</FLAT-MAP-REF>
...

</ROOT-SW-COMPOSITION-PROTOTYPE>

All flatmap instances must exist within the same flatmap since the root composition
element only contains a single element. However the flatmap element is splittable and
therefore RTA-RTE allows it to be distributed across multiple files.

13.4.2 Renaming a SW-C instance

Within RTA-RTE the second reference, to the associated system element, is optional.
When omitted RTA-RTE uses the name of the flatmap instance as the internal name of
the SW-C instance.

All internal names must be unique. RTA-RTE will raise an error if this con-
straint is violated by, for example, using a flatmap to assign a duplicate
name to a SW-C instance.

The following flatmap instance renames the internal name of SW-C component proto-
type /pkg/Compo/swcA1 to “swcAinst”.

<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>swcAInst</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>

168 Composing Software Components

RTA-RTE V6.3.0
User Guide

<TARGET-REF DEST=’SW-COMPONENT-PROTOTYPE’>/pkg/Compo/swcA1</TARGET-REF>
</ECU-EXTRACT-REFERENCE-IREF>

</FLAT-INSTANCE-DESCRIPTOR>

When referencing a SW-C prototype the ECU extract reference <TARGET-REF> must use
a DEST attribute of SW-COMPONENT-PROTOTYPE.

13.4.3 Measurement Buffers

As well as renaming a SW-C instance a flatmap instance can also be used to set the
name used for a measurement buffer. When specified the short name of the flatmap
instance is used instead of the RTE generated name.

The following flatmap instance renames the measurement buffer of data element “di1”
in port prototype “swcA/ra” for SW-C instance “swcA1” to “my_measurement_buffer”.

<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>my_measurement_buffer</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>
<CONTEXT-ELEMENT-REF DEST=’SW-COMPONENT-PROTOTYPE’>/pkg/Compo/swcA1</

CONTEXT-ELEMENT-REF>
<CONTEXT-ELEMENT-REF DEST=’R-PORT-PROTOTYPE’>/pkg/swcA/ra</CONTEXT-

ELEMENT-REF>
<TARGET-REF DEST=’VARIABLE-DATA-PROTOTYPE’>/pkg/if1/di1</TARGET-REF>

</ECU-EXTRACT-REFERENCE-IREF>
</FLAT-INSTANCE-DESCRIPTOR>

In the example the ECU extract reference contains three elements:

1. The first <CONTEXT-ELEMENT-REF> element uses a DEST attribute of
SW-COMPONENT-PROTOTYPE since it references the component prototype. This
attribute is required by RTA-RTE.

2. The second <CONTEXT-ELEMENT-REF> element uses a DEST attribute of
R-PORT-PROTOTYPE since it references the port prototype.

3. The final <TARGET-REF> uses a DEST attribute of VARIABLE-DATA-PROTOTYPE since
it references the data element.

13.4.4 Receive Buffers

To minimize RAM usage RTA-RTE will use an assigned measurement buffer name for
the receive buffer where possible. This renaming occurs even if measurement is not
enabled for the data element and thus a flatmap instance can be used to give the RTE’s
receive buffer a meaningful name.

Care must be taken to ensure that names assigned using flatmap instances
are unique and do not conflict with names used for parameters within RTE
API calls (“data”) or return values (“rtn”).

Composing Software Components 169

RTA-RTE V6.3.0
User Guide

RTA-RTE will use an name supplied via a flatmap instance for either the provide or
require port. However to avoid potential double writes (one to the measurement buffer
and one to the receiver) it is recommended to apply the flatmap instance to provider’s
port. Applying the flatmap to the provider also means that the same name is used for
the buffer for all non-filtered receivers on the same ECU.

13.4.5 Inter-Runnable Variables

A flatmap instance can also be used to set the name used for the global buffer used
for an inter-runnable variable. When specified the shortName of the flatmap instance
is used instead of the RTE generated name.

The following flatmap instance renames the buffer of IRV “irv1” for SW-C instance
“swcA1” to “my_irv_buffer”.

<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>my_irv_buffer</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>
<CONTEXT-ELEMENT-REF DEST=’SW-COMPONENT-PROTOTYPE’>/pkg/Compo/swcA1</

CONTEXT-ELEMENT-REF>
<TARGET-REF DEST=’VARIABLE-DATA-PROTOTYPE’>/pkg/IBswcA/irv1</TARGET-REF

>
</ECU-EXTRACT-REFERENCE-IREF>

</FLAT-INSTANCE-DESCRIPTOR>

In the example the ECU extract reference contains two elements:

1. The <CONTEXT-ELEMENT-REF> element uses a DEST attribute of
SW-COMPONENT-PROTOTYPE since it references the component prototype. This
attribute is required by RTA-RTE.

2. The <TARGET-REF> element uses a DEST attribute of VARIABLE-DATA-PROTOTYPE
since it references the inter-runabble variable.

A flatmap instance must also use a DEST attribute of VARIABLE-DATA-PROTOTYPE
rather than IRV-HANDLE. This is dictated by the AUTOSAR R4.0 schema that also
defines the format of the flatmap instancess used by RTA-RTE when processing
flatmaps.

13.4.6 Calibration Parameters

The calibration method “None” uses the flatmap name as the name of the instantiated
calibration parameter (if no flatmap is available the name of the calibration parameter
is used instead).

The following flatmap instance names the instantiated calibration parameter
“cp_value1” for calibration component instance “cpcData1” in provided port “pSys1”
to “cv1”.

<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>cv1</SHORT-NAME>

170 Composing Software Components

RTA-RTE V6.3.0
User Guide

<ECU-EXTRACT-REFERENCE-IREF>
<CONTEXT-ELEMENT-REF DEST=’SW-COMPONENT-PROTOTYPE’>/pkg/Compo/cpcData1<

/CONTEXT-ELEMENT-REF>
<CONTEXT-ELEMENT-REF DEST=’P-PORT-PROTOTYPE’>/pkg/cpcData/pSys1</

CONTEXT-ELEMENT-REF>
<TARGET-REF DEST=’PARAMETER-DATA-PROTOTYPE’>/pkg/if_cp1/cp_value1</

TARGET-REF>
</ECU-EXTRACT-REFERENCE-IREF>

</FLAT-INSTANCE-DESCRIPTOR>

The instance reference contains three elements:

1. The first <CONTEXT-ELEMENT-REF> element uses a DEST attribute of
SW-COMPONENT-PROTOTYPE since it references the component prototype. This
attribute is required by RTA-RTE.

2. The second <CONTEXT-ELEMENT-REF> element uses a DEST attribute of
R-PORT-PROTOTYPE since it references the port prototype.

The ECU extract reference includes a contextualizing port prototype for param-
eters in calibration SW-Cs only; for shared or per-instance parameter prototypes
no port reference is required.

3. The final <TARGET-REF> uses a DEST attribute of PARAMETER-DATA-PROTOTYPE
since it references the data element.

13.4.7 McSupportData

McSupportData is the AUTOSAR 4.0 format for exporting information for use in Mea-
surement and Calibration tools. In practice, this is usually converted to A2L by a down-
stream tool that merges information from the linker map file to calculate the actual
memory addresses of the various measurable data items.

The McSupportData is generated every time an RTE is generated. It is written to the file
Rte_McSupportData.arxml and placed in a folder according to the --output option.

For a variable data instance to measurable, and hence to appear in the McSupportData,
three conditions must be met:

• RteMeasurementSupport must be true in the ECU Value File.

• The effective SwCalibrationAccess for the VariableDataPrototype must be
READ-ONLY

• There must be a FlatInstanceDescriptor referencing the
VariableDataPrototype in the context of the desired SwComponentInstance

If a VariableDataPrototype for a data instance is marked as READ-ONLY
but no FlatInstanceDescriptor references it, then a comment is written
to the McSupportFile explaining why the McDataInstance is missing and a
warning is written to the error stream.

Composing Software Components 171

RTA-RTE V6.3.0
User Guide

McSupportData Structure

The generated McSupportData file is structured according to the AUTOSAR
Generic Structure Template, that is, elements are placed in subpackages ac-
cording to their tag. The subpackages are placed in top-level package
AUTOSAR_Rte. For example, the BswImplementation element is placed in subpack-
age /AUTOSAR_Rte/BswImplementations, and SwBaseType elements are placed in sub-
package /AUTOSAR_Rte/SwBaseTypes).

Measurables appear in the McSupportData in the form of a <MC-DATA- INSTANCE> ele-
ment having at least the following children:

• <SHORT-NAME>

• <CATEGORY>

• <FLAT-MAP-ENTRY-REF>

• <SYMBOL>

<SYMBOL> matches the C identifier used in the generated RTE, which may be used to
query the compiler’s map file to find the memory location of the measurable or char-
acteristic.

In the case of a simple measurable value (<CATEGORY> is VALUE), then there will be a
ResultingProperties container containing references to the SwBaseType, DataConstr,
CompuMethod, Unit etc. giving the size, encoding, and relation to the physical world
required for extraction and display of the data instance.

In the case of a complex measurable value of Category STRUCT, the McDataIn-
stance contains a <SUB-ELEMENTS> container containing a further McDataInstance
for each structure member. If the member is itself a STRUCT, then this break-
down continues recursively until the leaf items of Category VALUE are reached. The
<FLAT-MAP-ENTRY-REF> is at the top level, since the structure itself is the actual mea-
surable / characteristic.

In the case of Calibration Parameters (characteristics in A2L), these are placed into
groups in AUTOSAR, according to their addressing method. RTA-RTE achieves this
grouping by creating the individual characteristics as members of a C struct repre-
senting the group. In the McSupportData, this is represented by a McDataInstance
representing the group, having a SubElements container, which contains the individual
characteristics. Note that the <FLAT-MAP-ENTRY-REF> in this case does not appear at
the top level, since the actual characteristics are one level deeper. The <SYMBOL> how-
ever DOES appear at the top level, as this is the item that will appear in the mapfile.
Calculating the exact offset of each characteristic is outside the scope of AUTOSAR and
RTA-RTE. The downstream custom tooling must use knowledge of the particular com-
piler along with the information in the SwBaseTypes of the McSupportData to calculate
the offsets.

172 Composing Software Components

RTA-RTE V6.3.0
User Guide

Limits of Implementation

AUTOSAR specifies how and where type-information (’Effective DataDefProps’) should
be gathered. RTA-RTE currently implements the following (the list describes the order
in which containers are interrogated for the given information - earlier containers take
precedence over later containers):

BaseTypeRef – ImplementationDataType.

DataConstr – ImplementationDataType; ApplicationDataType.

CompuMethod – ImplementationDataType; ApplicationDataType.

Unit – ApplicationDataType.

SwCalibrationAccess – DataPrototype.

SwDataDefProps not mentioned above are not implemented.

13.5 Data Conversion

13.5.1 Purpose

Data Conversion allows the system integrator to connect Ports of Software Compo-
nents with different but “convertible” data types by means of a PortInterfaceMapping
(see section 13.3.4). RTA-RTE generates the C code to convert values from one numer-
ical space to the other.

PortInterfaceMappings allow the connection of Ports typed by Interfaces that
are not “AUTOSAR Compatible” by specifying how the incompatibility is to be re-
solved. The explicit connection of a pair of DataPrototypes in the Interfaces by
a DataPrototypeMapping within a PortInterfaceMapping causes RTA-RTE to seek
to generate a runtime conversion if their types are not “AUTOSAR Compatible”.
PortInterfaceMappings must therefore be used when data conversion is necessary.

Data Conversion is attempted for ApplicationPrimitiveDataTypes and for the prim-
itive sub-elements of complex ApplicationDataTypes. The necessary conversion
code is automatically generated from the configured relationships between the im-
plementation representation and the physical quantity or semantic meaning for the
ApplicationPrimitiveDataTypes involved; see section 5.5.

AUTOSAR R4.0 and RTA-RTE support two types of Data Conversion: TextTable and Lin-
ear.

13.5.2 TextTable

Purpose

TextTable Data Conversion allows DataPrototypes of enumerated type (or of complex
type with primitive elements of enumerated type) to be connected when they have the
same or similar semantics but different numerical and/or symbolic representations of
those semantics.

Composing Software Components 173

RTA-RTE V6.3.0
User Guide

Enabling

RTA-RTE attempts Text Table Data Conversion whenever a TextTableMapping is
present in a VariableAndParameterInterfaceMapping referenced by the MappingRef
of a Connector.

Configuration

For illustration we will consider two Enumerated types Enum1 and Enum2 which have the
same symbolic point ranges but with different numerical values:

Symbol Enum1 Enum2

MY_SUCCESS 0 0

MY_WARNING 1 -1

MY_ERROR 2 1

We have a SenderReceiverInterface sr1 containing a single
VariableDataPrototype a1, typed by Enum1; and SenderReceiverInterface sr2
contains a single VariableDataPrototype a2 typed by Enum2.

SofwareComponentType swcTx aggregates provide port p1 characterized by sr1 and
SofwareComponentType swcRx aggregates require port r1 characterized by sr2.

These components are instantiated as swcTx1 and swcRx1 and an assembly connector
connects the ports.

So now we have a data flow from an type of Enum1 to a type of Enum2.

The example below shows a suitable TextTableMapping for use in this scenario

<VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
short_name
<DATA-MAPPINGS>
<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST=’VARIABLE-DATA-PROTOTYPE’>myPackage/

sr1/a1</FIRST-DATA-PROTOTYPE-REF>
<SECOND-DATA-PROTOTYPE-REF DEST=’VARIABLE-DATA-PROTOTYPE’>myPackage/

sr2/a2</SECOND-DATA-PROTOTYPE-REF>
<TEXT-TABLE-MAPPINGS>
<TEXT-TABLE-MAPPING>
<MAPPING-DIRECTION>BIDIRECTIONAL</MAPPING-DIRECTION>
<VALUE-PAIRS>
<TEXT-TABLE-VALUE-PAIR>
<FIRST-VALUE>0</FIRST-VALUE>
<SECOND-VALUE>0</SECOND-VALUE>

</TEXT-TABLE-VALUE-PAIR>
<TEXT-TABLE-VALUE-PAIR>
<FIRST-VALUE>1</FIRST-VALUE>
<SECOND-VALUE>-1</SECOND-VALUE>

</TEXT-TABLE-VALUE-PAIR>

174 Composing Software Components

RTA-RTE V6.3.0
User Guide

<TEXT-TABLE-VALUE-PAIR>
<FIRST-VALUE>2</FIRST-VALUE>
<SECOND-VALUE>1</SECOND-VALUE>

</TEXT-TABLE-VALUE-PAIR>
</VALUE-PAIRS>

</TEXT-TABLE-MAPPING>
</TEXT-TABLE-MAPPINGS>

</DATA-PROTOTYPE-MAPPING>
</DATA-MAPPINGS>

</VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>

Because this mapping is 1:1, i.e. all FirstValues are
unique and all SecondValues are unique, it is declared with a
MappingDirection of BIDIRECTIONAL. This means that the same
VariableAndParameterInterfaceMapping might be used where Enum2
is the transmitted type and Enum1 is the received type. In that case, we say
that the communication flow is going “second-to-first”.

Generated Code

When Text Table Data Conversion is configured, RTA-RTE alters its writes to receive
buffers to include a call to conversion code that translates values in the direction of
data flow (in our case, left-to-right from Enum1 to Enum2.

13.5.3 Linear

Purpose

Linear Data Conversion allows the system integrator to connect data items which
represent the same physical quantity even though they may be expressed in differ-
ent numerical terms. This is expressed by means of Units, in FactorSIToUnit and
OffsetSIToUnit; and by CompuMethods, in CompuRationalCoefficients. Linear data
conversion encompasses CompuMethods of Category LINEAR and also CompuMethods of
Category IDENTICAL, which is just treated as a special case of Linear.

Functional Composition

Conceptually, linear data conversion consists of the functional composition of the four
linear functions to move from the transmitted value x through the physical representa-
tion in the sender’s unit, to the SI unit, to the physical representation in the receiver’s
unit, to the received value y:

f = cmrx ◦ unitrx ◦ unittx ◦ cmtx

or

y = cmrx(unitrx(unittx(cmtx(x))))

Composing Software Components 175

RTA-RTE V6.3.0
User Guide

Where cmtx, unittx, unitrx and cmrx represent each step of the conversion as a lin-
ear function that maps the input value to an intermediate output value. See sec-
tion 5.5 for more details about configuring the numerical and physical representations
of ApplicationPrimitiveDataTypes.

Functional composition means that RTA-RTE only writes one expression in the gener-
ated code rather than nesting function calls corresponding to each of the four potential
transformations. Even in the worst case, an entire data transformation of four applied
transformations results in a single expression that performs one multiplication, one ad-
dition, and one division. In the best case, data conversion is optimized away to a simple
assignment.

In addition, RTA-RTE simplifies the terms in the data conversion to remove highest com-
mon factors. This step simpifies the resultant expression and can mean that terms are
eliminated entirely and avoid needlessly large intermediate values.

Enabling

RTA-RTE attempts to configure Linear Data Conversion whenever a
PortInterfaceMapping connects DataPrototypes that are typed by
ApplicationPrimitiveDataTypes which are not “AUTOSAR Compatible” or com-
plex ApplicationDataTypes that are shape compatible but whose primitive elements
are not “AUTOSAR Compatible”.

For each primitive value subject to Linear Data Conversion, RTA-RTE extracts from the
configuration the data conversions expressed by the transmitter’s CompuMethod, the
transmitter’s Unit, the receiver’s Unit and the Receiver’s CompuMethod. It then com-
bines the four conversion functions using functional composition to arrive at one con-
version to be expressed in C.

Configuration

Configuration of Linear Data Conversion is achieved by expressing each
ApplicationPrimitiveDataType’s relationship to some PhysicalDimension. Then,
when data flows from one DataPrototype to another, RTA-RTE automatically in-
serts the necessary code to convert one numerical representation of a physical
quantity to another. See section 5.5 to read about the correct declaration of
ApplicationPrimitiveDataTypes.

The decision of whether an application data type is convertible to another application
data type is based on their CompuMethods, Units, and PhysicalDimensions:

• Every data type, CompuMethod, Unit, or PhysicalDimension is compatible with
itself.

• A PhysicalDimension is compatible with another PhysicalDimension if the Short-
Name and all the exponents match.

• A Unit is compatible with another Unit if both units reference a compatible
PhysicalDimension.

176 Composing Software Components

RTA-RTE V6.3.0
User Guide

If the physical dimension referenced by two units is compatible, then a conversion
between them is possible.

• A CompuMethod is “Linear” if its Category is LINEAR. A CompuMethod is also “Linear”
if its Category is IDENTICAL.

A CompuMethod is compatible with another CompuMethod if, either:

• Both CompuMethods are Linear and they reference compatible Units, or,

• Both CompuMethods are Linear and neither of them references a Unit.

• A CompuMethod of Category TEXTTABLE is also convertible with the input configura-
tion supplying a mapping between numeric values.

• An ApplicationDataType is convertible to another ApplicationDataType if the
types have compatible CompuMethods.

Generated Code

Linear Data Conversion code is inlined near to the receiver-buffer write in generated
code. Zero-effect operations are elided, e.g. division-by-one and add-zero result in
no code being generated. So in the extreme case, if the transmitter and receiver’s
conversion functions match then no conversion takes place and no conversion code is
visible.

RTA-RTE also performs worst-case calculations to determine the potential size of
the intermediate values in the generated C expression. If no Platform Type is
large enough to hold some intermediate value then an error is raised (but see
--have-64bit-int-types).

13.5.4 Rational Functions

The ASAM documents, which informed a portion of the AUTOSAR design, include many
other categories of CompuMethod besides IDENTICAL, LINEAR and TEXTTABLE, for ex-
ample RATFUNC.

AUTOSAR does not support data conversion via these categories of CompuMethod and
neither does RTA-RTE. However RTA-RTE does accept models that may contain other
categories of CompuMethod provided they conform with “AUTOSAR Compatibility” rules.
That is, before attempting any Data Conversion, RTA-RTE performs a comparison of the
Units and CompuMethods referenced by the sender and receiver, and if they match
according to the AUTOSAR 4.0.3 rules, then the IDENTITY transformation is selected,
i.e. no conversion code is written.

RTA-RTE cannot ignore “AUTOSAR Compatible” CompuMethods in a data
path where the references Units are not “AUTOSAR Compatible”. An un-
supported Category of CompuMethod in that case would cause the input
model to be rejected.

Composing Software Components 177

RTA-RTE V6.3.0
User Guide

13.5.5 Implementation Details

13.5.6 Internal Precision

Any data conversion represented by a CompuPhysToInternal, CompuInternalToPhys,
or Unit (FactorSiToUnit and OffsetSiToUnit) is stored internally as three 64-bit
signed integers.

When the data conversions are combined due to data flow through more than one Unit
or CompuMethod, a functional composition takes place resulting in a composite data
conversion, which is itself linear. This is also stored as three 64-bit signed integers.
This is simplified using Highest Common Factor analysis to avoid unnecessarily large
numbers being handled internall or appearing on the target hardware.

In the case of a Unit, the configuration input is expressed in two decimal numbers
rather than three integers. RTA-RTE represents the two numbers internally as rationals,
expressed in the same manner as for CompuMethods. This avoids the need for floating-
point arithmetic internally or on the target. For example, a FactorSIToUnit of 0.01 results
in an internal DataConversion object with num0 = 0, num1 = 1 and denom = 100, giving
0+(1∗x)

100 .

The conversion of decimals to 64-bit signed integers places a limit of 18 decimal places
on the FactorSiToUnit and OffsetSiToUnit, as well as a limit of 18 significant figures.

13.5.7 In Generated Code

When generating the C functions to perform Data Conversion, RTA-RTE tracks the min-
imum (closest to negative infinity) and maximum (closest to infinity) values that can
be represented by the incoming type, by each constant, and by the result of each op-
eration. For each operation, RTA-RTE chooses a suitable Platform Type and casts the
arguments to each operation to that type. This ensures that the C compiler allows a
sufficiently large working location for each operation and truncation will not happen on
the target.

For example, consider the following C extract:

uint16 argument;
...
uint16 result = ((65534 * argument) / 65532);

The result of this will rarely be correct, since C only allows a uint16 for the intermediate
value. To overcome this, RTA-RTE uses casts like in the following example:

uint16 argument;
...
uint16 result = (((uint32)65534 * argument) / 65532);

In fact, RTA-RTE generates many more casts than this, as a way of ensuring that C’s
promotion rules do not introduce any counterintuitive effects.

178 Composing Software Components

RTA-RTE V6.3.0
User Guide

If the intermediate value requires 64 bits, then the configuration is rejected, since
AUTOSAR does not provide a 64-bit type. If you wish to use 64 bit integers, then
specify --have-64bit-int-types on the command line and provide definitions in
Platform_Types.h for uint64 and sint64.

13.5.8 Composition and Delegated Ports

In a configuration containing a nested heirarchy of composition software components
the connection between the provide port of one atomic software component instance
and the require port of another may consist of a number of DelegationConnectors
from the inner provide port to delegated ports on the enclosing compositions, an
AssemblyConnector and a number of DelegationConnectors from delegated require
ports on compositions down to the inner require port. In this case a functional compo-
sition of the notional data conversion steps along each Connector between the inner
provide port and the inner require port occurs; the intermediate representations in the
types for the intermediate delegated ports are not explicitly calculated at runtime but
rather the overall conversion is performed in one step.

Composing Software Components 179

RTA-RTE V6.3.0
User Guide

14 Composing Basic Software

In Chapter 13 we discussed how application software is partitioned using AUTOSAR soft-
ware components and how these components are composed into a system. However,
unlike a software component, BSW modules are not prototyped within a composition
but are instead instantiated within the ECUC file.

14.1 Instantiation

The creation of an RteBswModuleInstance ECUC container within the RTE’s ECUC
module configuration defines an instance of the BSW module that can then contain the
mapping from schedulable entities to tasks.

In the same way that a software component type can have multiple prototypes a BSW
module description can have multiple instances. For example a CAN driver module may
have an instance for each CAN controller. The BSW module instance within the ECU
configuration therefore references a BSW implementation which in turn references the
BSW module description rather than directly referencing the BSW module description.

BSW modules do not support a “supports multiple instantiation” flag and
therefore RTA-RTE assumes this attribute is true for all BSW modules.

The instantiation of a BSW module instance is illustrated in Figure 14.1.

ECU Configuration

RTE
Configuration

BSW Module Instance Ref
BSW

Implementation
BSW Module
Description

Figure 14.1: BSW Module Instantiation

In addition to referencing the relevant BSW module description the BSW implementa-
tion also optionally defines two items that are of interest to RTA-RTE. When defined the
<VENDOR-ID> and <VENDOR-API-INFIX> are used when generating BSW APIs to ensure
that each BSW instance has unique names for the generated APIs.

As an example, consider a BSW implementation for a CAN driver with vendor ID of
“25” and API infix of “Dev0815”. RTA-RTE would then generate API names of the form
SchM_Can_Dev0815_25_<XXX> and thus ensure that the API was uniquely generated for
the specific BSW instance.

If the <VENDOR-ID> and <VENDOR-API-INFIX> are not defined within the
BSW module’s implementation then the APIs of multiple instances of the
same BSW module will conflict.

180 Composing Basic Software

RTA-RTE V6.3.0
User Guide

14.2 BSW Scheduler

Starting with AUTOSAR R4.0, the generation of a scheduler for basic software has been
integrated into RTE generation rather than being available as a separate module as in
previous releases. The basic software scheduler is reponsible for ensuring that code
within BSW modules runs at the correct times and that APIs for ensuring data consis-
tency across multiple BSW modules are available.

RTA-RTE supports generation of a common task framework; BSW schedulable entities
can be freely mixed with runnable entities from software components and the RTE gen-
erator will create the appropriate glue code to ensure that all are executed at the right
time.

This release of RTA-RTE does not support the generation of shared exclusive
areas and thus the SchM_Enter and SchM_Exit APIs are not supported.

14.2.1 Task Mapping

A BSW module instance within the ECU configuration can contains zero or more RteB-
swEventToTaskMapping sub-containers that define the task and position of the
schedulable entity associated with a BSW event. As with SW-C runnable entities all
BSW events that can start a schedulable entity must have a defined task mapping.

RTA-RTE supports the mixing of BSW schedulable entities and SW-C runnable entities
within the same task. This support includes the creation of basic or extended tasks
as necessary; if extended tasks are to be avoided then the the same precautions de-
scribed in Section 24.4 apply.

14.3 Connections

BSW triggers and modes are not related to ports and therefore cannot be connected
in the same way as the analogous entities within SWCs. Instead the connections are
made within the ECUC using specific containers.

14.3.1 Triggers

An external trigger used by a BSW module must have the “release” and “required” trig-
gers connected using a RteBswRequiredTriggerConnection element in the ECUC
file.

Each RteBswRequiredTriggerConnection element includes three references:

1. A RteBswReleasedTriggerModInstRef that references the BSW module in-
stance.

2. A RteBswReleasedTriggerRef that references the released trigger. When com-
bined with the RteBswReleasedTriggerModInstRef reference this uniquely
identifies the released trigger.

3. A RteBswRequiredTriggerRef that references the required trigger.

Composing Basic Software 181

RTA-RTE V6.3.0
User Guide

14.3.2 Modes

An mode used by a BSW module must have the “provided” and “required” mode dec-
laration group prototypes connected using a RteBswRequiredModeGroupConnec-
tion element in the ECUC file.

Each RteBswRequiredModeGroupConnection element includes three references:

1. A RteBswProvidedModeGrpModInstRef that references the BSW module in-
stance.

2. A RteBswProvidedModeGroupRef that references the provided mode decla-
ration group prototype. When combined with the RteBswProvidedModeGrp-
ModInstRef reference this uniquely identifies the providing mode instance.

3. A RteBswRequiredModeGroupRef that references the required mode declara-
tion group prototype.

182 Composing Basic Software

RTA-RTE V6.3.0
User Guide

15 Synchronizing BSW and SWC

The previous chapter introduced BSW components. This chapter covers how RTA-RTE
supports the synchronization of BSW and SWC instances.

15.1 Configuration

Synchronization configuration consists of two steps: first, one or more SwcBswMapping
elements must be defined that associate elements in the SWC and BSW together, and
second, the created mappings must be associated with SWC/BSW instances.

15.1.1 SWC to BSW Mapping

The SwcBswMapping element defines the synchronized elements of a SWC type and
a BSW module description. The element “associates” elements of two internal be-
haviors; we’ll see later how the mapping is subsequently referenced from either a
SwcImplementation or a BswImplementation and thus associated with SWC or BSW
instances.

The simplest SwcBswMapping element simply refers to the two internal behaviors, e.g.:

<SWC-BSW-MAPPING>
<SHORT-NAME>sbm1</SHORT-NAME>
<BSW-BEHAVIOR-REF DEST=’BSW-INTERNAL-BEHAVIOR’>
...

</BSW-BEHAVIOR-REF>
<RUNNABLE-MAPPINGS/>
<SWC-BEHAVIOR-REF DEST=’SWC-INTERNAL-BEHAVIOR’>
...

</SWC-BEHAVIOR-REF>
<SYNCHRONIZED-MODE-GROUPS/>
<SYNCHRONIZED-TRIGGERS/>

</SWC-BSW-MAPPING>

One of the referenced internal behaviors must belong to a SWC and one to a BSW
module. It is not possible to synchronize two SWCs or two BSW modules with a
SwcBswMapping element. Within the SwcBswMapping element one can list synchronized
runnable entities, mode groups and (external) triggers.

The <RUNNABLE-MAPPINGS> element encapsulates zero or more runnable-entity to
executable-entity mappings, e.g.:

<RUNNABLE-MAPPINGS>
<SWC-BSW-RUNNABLE-MAPPING>
<BSW-ENTITY-REF DEST=’BSW-SCHEDULABLE-ENTITY’>
...

</BSW-ENTITY-REF>
<SWC-RUNNABLE-REF DEST=’RUNNABLE-ENTITY’>
...

</SWC-RUNNABLE-REF>
</SWC-BSW-RUNNABLE-MAPPING>

</RUNNABLE-MAPPINGS>

Synchronizing BSW and SWC 183

RTA-RTE V6.3.0
User Guide

Each <SWC-BSW-RUNNABLE-MAPPING> synchronizes a SWC runnable entity with a BSW
executable entity (either a <BSW-SCHEDULABLE-ENTITY>, <BSW-INTERRUPT-ENTITY> or
<BSW-CALLED-ENTITY>). The referenced runnable or executable entity must be de-
clared within the referenced internal behaviors.

AUTOSAR forbids the synchronization of an SWC’s runnable entity with a
category 1 interrupt entity (or with a called entity invoked by a category 1
interrupt entity).

The <SYNCHRONIZED-MODE-GROUPS> element encapsulates zero or more synchronized
mode group declarations, e.g.:

<SYNCHRONIZED-MODE-GROUPS>
<SWC-BSW-SYNCHRONIZED-MODE-GROUP-PROTOTYPE>
<BSW-MODE-GROUP-REF DEST=’MODE-DECLARATION-GROUP-PROTOTYPE’>
...

</BSW-MODE-GROUP-REF>
<SWC-MODE-GROUP-IREF>
<CONTEXT-P-PORT-REF DEST=’P-PORT-PROTOTYPE’>
...

</CONTEXT-P-PORT-REF>
<TARGET-MODE-GROUP-REF DEST=’MODE-DECLARATION-GROUP-PROTOTYPE’>
...

</TARGET-MODE-GROUP-REF>
</SWC-MODE-GROUP-IREF>

</SWC-BSW-SYNCHRONIZED-MODE-GROUP-PROTOTYPE>
</SYNCHRONIZED-MODE-GROUPS>

Each <SWC-BSW-SYNCHRONIZED-MODE-GROUP-PROTOTYPE> synchronizes a provided or
required BSW mode declaration group with a particular provided SWC mode decla-
ration group. The referenced BSW mode declaration group must be declared within the
BSW type of the referenced BSW internal behavior and the referenced port prototype
within the SWC type of the referenced SWC internal behavior.

The <SYNCHRONIZED-TRIGGERS> element encapsulates zero or mode synchronized trig-
ger declarations, e.g.:

<SYNCHRONIZED-TRIGGERS>
<SWC-BSW-SYNCHRONIZED-TRIGGER>
<BSW-TRIGGER-REF DEST=’TRIGGER’>
...

</BSW-TRIGGER-REF>
<SWC-TRIGGER-IREF>
<CONTEXT-P-PORT-REF DEST=’P-PORT-PROTOTYPE’>

...
</CONTEXT-P-PORT-REF>
<TARGET-TRIGGER-REF DEST=’TRIGGER’>

...
</TARGET-TRIGGER-REF>

</SWC-TRIGGER-IREF>
</SWC-BSW-SYNCHRONIZED-TRIGGER>

</SYNCHRONIZED-TRIGGERS>

184 Synchronizing BSW and SWC

RTA-RTE V6.3.0
User Guide

Each <SWC-BSW-SYNCHRONIZED-TRIGGER> synchronizes a released or required BSW
trigger with a particular provided SWC trigger. The referenced BSW trigger must be
declared within the BSW type of the referenced BSW internal behavior and the refer-
enced port prototype within the SWC type of the referenced SWC internal behavior.

Neither a synchronized mode group element nor a synchronized trigger can reference
a required mode declaration group in the SWC. However as we’ll see in the following
sections this restrictions does not affect the expressive power – it’s still possible to
create associations that enable either the SWC or the BSW to be the mode manager
and to trigger events in either (or both) the SWC and BSW module.

15.1.2 Associating a Mapping and an Instance

When a SwcBswMapping has been defined mapping it is associated with SWC/BSW types
via the referenced internal behaviors. However the mapping must also be associated
with instances of the SWC and BSW via one or more implementation references.

The SwcImplementation or BswImplementation elements can include a reference to a
mapping, e.g.:

<SWC-IMPLEMENTATION>
...
<SWC-BSW-MAPPING-REF DEST=’SWC-BSW-MAPPING’>
...

</SWC-BSW-MAPPING-REF>
...

</SWC-IMPLEMENTATION>

If an SWC/BSW’s implementation does not include a mapping reference then RTA-RTE
attempts to infer the affected instance from the referenced internal behaviors. This
inference is only possible if the SWC/BSW’s are instantiated exactly once and therefore
when multiple instantiation is used the SwcBswMapping references within the imple-
mentations are mandatory.

15.2 Synchronized Mode Groups

Synchronizing mode groups permits both events in both AUTOSAR software compo-
nents and basic software modules to be triggered by a single mode manager. RTA-RTE
supports synchronization where the referenced BSW provides or requires the mode
declaration group.

15.2.1 Mode Users

Synchronizing a required BSW mode group with a provided SWC mode group results
in the BSW attaching to the mode instance defined by the SWC as a mode user. Any
BSW events (e.g. ModeSwitchEvents) attached to the required BSW mode group will be
triggered when the SWC mode manager changes mode.

The synchronized mode group element within the SwcBswMapping element references
a provided port/mode group in the SWC. RTA-RTE supports supports synchronization
configurations where RTE events are triggered as a result of the mode switch as well as

Synchronizing BSW and SWC 185

RTA-RTE V6.3.0
User Guide

R1

swcBswcA

P1

CAN

BSW Module

Mode1

RMG1

Figure 15.1: Synchronized SWC/BSW mode users

BSW events.

15.2.2 Mode Managers

Synchronizing a provided BSW mode group with a provided SWC mode group results in
the BSW attaching to the mode instance defined by the SWC as a mode manager.

When synchronizing provided mode declarations groups then both the SWC
and BSW become mode managers for the mode instance. AUTOSAR nor-
mally forbids multiple mode managers for a mode instance but RTA-RTE al-
lows them if they are synchronized.

When provided BSW and SWC triggers are synchronized it is possible to suppress gen-
eration of the Rte_Switch API by omitting the <MODE-SWITCH-POINT> element or to
suppress generation of the SchM_Switch API by omitting the <MODE-ACCESS-POINT>
element.

The mode queue length for a synchronized provided BSW mode declaration group is
derived from the associated provided SWC port/mode group.

15.3 Synchronized Triggers

Synchronizing SWC and BSW triggers permits both events in both AUTOSAR software
components and basic software modules to be triggered by either SWCs or BSW. RTA-
RTE supports synchronization where the referenced BSW releases or releases (requires)
a trigger.

All synchronized SWC triggers are external triggers. RTA-RTE also supports internal
triggers for SWCs but it is not possible to synchronize internal and BSW triggers.

15.3.1 Trigger Consumers

Synchronizing a required BSW trigger with a provided SWC trigger results in any
<BSW-EXTERNAL-TRIGGER-OCCURRED-EVENT> events in the BSW being activated when
the SWC’s Rte_Trigger API is invoked.

186 Synchronizing BSW and SWC

RTA-RTE V6.3.0
User Guide

The synchronized trigger element within the SwcBswMapping element references a pro-
vided port/trigger in the SWC.

15.3.2 Trigger Producers

Synchronizing a provided BSW trigger with a provided SWC trigger results in the gen-
erated BSW SchM_Trigger activating the same events as the Rte_Trigger API.

When provided BSW and SWC triggers are synchronized it is possible to suppress gener-
ation of the Rte_Trigger API by omitting the <EXTERNAL-TRIGGERING-POINT> element.

If the SWC includes an ExternalTriggeringPoint for the provided trigger
then both the SWC’s Rte_Trigger and the BSW’s SchM_Trigger APIs are
created. AUTOSAR normally forbids multiple trigger providers but RTA-RTE
allows them if they are synchronized.

15.4 Synchronized Runnable Entities

Synchronizing a SWC runnable entity to a BSW executable entity allows the executable
entity to use SWC-API calls such as those related to port-based communication. The
SWC is also able to use BSW-API calls.

15.4.1 Sender/Receiver

RTA-RTE supports the synchronization of both Sender and Receiver runnable entitys
with an executable entity, thus an executable entity will be able to make calls to the
Sender/Receiver APIs (e.g. Rte_Write/Rte_Read).

Since it is not possible to associate an executable entity with a
<DATA-RECEIVED-EVENT>, a receiver executable entity must be started us-
ing another event type.

15.4.2 Client/Server

RTA-RTE supports synchronization of executable entities with client runnables only
(Synchronizing an executable entity with a server runnable makes no sense as there is
no way for the executable entity to gain access to the server arguments). A synchro-
nized executable entity can therefore call the client API available to the synchronized
client runnable.

15.4.3 Exclusive Areas

RTA-RTE supports the synchronization of SWC runnable entities that access an exclusive
area with executable entities. When synchronized the executable entity will be able to
make calls to the Enter/Exit APIs (e.g. Rte_Enter/Rte_Exit) and thus “share” access
to the same shared data.

Figure 15.2 illustrates a runnable Re2 that both accesses exclusive area EA and is
synchronized with schedulable entity SE. RTA-RTE will generate Rte_Enter_EA and
Rte_Exit_EA that can be used to control access to the shared data governed by “EA” –
depending on the selected implementation mechanism for the exclusive area and the

Synchronizing BSW and SWC 187

RTA-RTE V6.3.0
User Guide

BSW

SWC

S ERe2

E A

Re1

E v1 Ev2

Synchronized

Figure 15.2: Synchronized runnable and executable accessing an Exclusive Area

configured task mappings this could be access to an OS resource, interrupt blocking or
a null implementation.

188 Synchronizing BSW and SWC

RTA-RTE V6.3.0
User Guide

16 Accessing NVRAM

We saw in Chapter 11 how to create an Nv-block SWC type that containing descriptions
of one or more Nv-blocks. In this chapter we’ll look at how application SWC can access
declared Nv-blocks using port-based communication.

16.1 Configuration

Communication between application software components occurs over ports and there-
fore before accessing Nv-data mirrors from an application SWC suitable ports must be
declared within the Nv-block SWC and mapped to the required Nv-data ram-block.

16.1.1 Ports

Access to non-volatile data by application SWCs occurs through one or more ports de-
clared by the NvBlock software component type. These ports are categorized by Nv-
data interfaces – see Section 6.2.

16.1.2 Mapping

As well as declaring the ram-block, an Nv-block descriptor also declares
the mappings that associate rPort or pPorts within the Nv-Block SWC type
and the NvBlockDescriptor’s ram-block. The mapping is created using an
NV-BLOCK-DATA-MAPPING element:

<NV-BLOCK-DATA-MAPPING>
<NV-RAM-BLOCK-ELEMENT>
<LOCAL-VARIABLE-REF ...

</NV-RAM-BLOCK-ELEMENT>
<READ-NV-DATA>
...

</READ-NV-DATA>
<WRITTEN-NV-DATA>
...

</WRITTEN-NV-DATA>
</NV-BLOCK-DATA-MAPPING>

The mapping’s <NV-RAM-BLOCK-ELEMENT> references the Nv-block descriptor’s ram-
block. RTA-RTE supports a reference made using the following elements.

• <LOCAL-VARIABLE-REF> – maps the port Nv-data to an entire ram-block. The ram-
block can be typed by either an application or an implementation data type.

• <AUTOSAR-VARIABLE-IN-IMPL-DATATYPE> – maps the port Nv-data to a ram-block
and, optionally, defines a specific implementation data type sub-element within the
ram-block for the mapping.

• <AUTOSAR-VARIABLE-IREF> – maps the port Nv-data to a ram-block using an appli-
cation data type.

Using a sub-element mappings enables efficient use of large Nv-blocks since a sin-
gle structure representing the entire block can be accessed from multiple ports each

Accessing NVRAM 189

RTA-RTE V6.3.0
User Guide

with a mapping to one sub-element of the large single structure. The multiple
NV-BLOCK-DATA-MAPPING elements for the ram-block means that individual SWCs can
independently update just parts of the large Nv-data block.

The mapped sub-element can be a any member of a record – it does not have to be a
leaf element and can be typed by either a primitive type (e.g. an integer) or can itself
be a record.

The association with the port and datum that an application SWC uses to read/write
to the ram-block is through either the <WRITTEN-NV-DATA> element (for rPorts) or the
<READ-NV-DATA> element (for pPorts). For example:

<WRITTEN-NV-DATA>
<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF ...
<TARGET-DATA-PROTOTYPE-REF ...

</AUTOSAR-VARIABLE-IREF>
</WRITTEN-NV-DATA>

A data mapping element can declare both read and write mappings for the same ram-
block. Since read mappings reference pPorts and write mappings reference rPorts then,
clearly, different ports can be specified for the mappings.

Example

To illustrate how NVRAM block data mappings and ports interact consider the fol-
lowing NvBlockDescriptor within NvBlockSwComponentType “swc_nvblock” that de-
clares ram-block “myRam1”:

<NV-BLOCK-DESCRIPTOR>
<SHORT-NAME>block1</SHORT-NAME>
<NV-BLOCK-DATA-MAPPINGS>
...

</NV-BLOCK-DATA-MAPPINGS>
<RAM-BLOCK>
<SHORT-NAME>myRam1</SHORT-NAME>
<TYPE-TREF>/Types/Struct1</TYPE-TREF>

</RAM-BLOCK>
</NV-BLOCK-DESCRIPTOR>

Where Struct1 contains two members “A” and “B”. Furthermore, assume that the
NvBlockSwComponentType has a require port “r1” containing an Nv-data item “datum”
with the same type as structure member “A”. An NvBlockDataMapping can then be
established from “r1” to “A” as follows:

<NV-BLOCK-DATA-MAPPING>
<NV-RAM-BLOCK-ELEMENT>
<AUTOSAR-VARIABLE-IN-IMPL-DATATYPE>
<ROOT-VARIABLE-DATA-PROTOTYPE-REF>
/pkg/swc_nvblock/block1/myRam1

</ROOT-VARIABLE-DATA-PROTOTYPE-REF>
<TARGET-DATA-PROTOTYPE-REF>

190 Accessing NVRAM

RTA-RTE V6.3.0
User Guide

/Types/Struct1/A
</TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IN-IMPL-DATATYPE>
</NV-RAM-BLOCK-ELEMENT>
<WRITTEN-NV-DATA>
<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF>/pkg/swc_nvblock/r1</PORT-PROTOTYPE-REF>
<TARGET-DATA-PROTOTYPE-REF>/pkg/itf/datum</TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</WRITTEN-NV-DATA>

</NV-BLOCK-DATA-MAPPING>

When the mapping is established any writes to the ram-block through required port
“r1” and datum “datum” will write directly to structure member “A” and not affect any
other element of the ram-block structure.

16.1.3 Composition

The ports on the Nv-block SWC are connected to sender-receiver or Nv-data ports on
the application SWC. The two ports must be either typed by compatible interfaces (the
provider can contain a superset of the requirer’s elements) or a port-interface mapping
provided to associate elements within the two interfaces.

16.2 Access from Application SWCs

Using appropriate port connections application SWC can read and/or write Nv-data ram-
blocks.

All accessing SWCs must be mapped to the same partition (i.e. OsApplica-
tion).

16.2.1 Reading NVRAM data

An application SWC reads data from an Nv-block by:

1. Declare a Sender-receiver rPort (with an appropriate interface) and connecting it
to a pPort on the Nv-Block SWC categorized by an Nv-Data interface.

2. Establish a data-read point or data-access point to create the RTE API to read the
NV data.

The RTE generator will then create Rte_Read, Rte_DRead, etc. API calls that will directly
read the ram-block.

As an example, assume that the configuration contains an NvBlockSwComponentType
“swc_nvblock” declaring a single NvBlockDescriptor “block1”. The Nv-block soft-
ware component can then declare a provide port “p1” that permits read access to the
ram-block by application SWCs as follows.

Accessing NVRAM 191

RTA-RTE V6.3.0
User Guide

First, an NvDataInterface is created; this will be used by the NvBlock SWC to type the
provided port:

<NV-DATA-INTERFACE>
<SHORT-NAME>ifnv1</SHORT-NAME>
<NV-DATAS>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>diN1</SHORT-NAME>
<TYPE-TREF>/Types/UInt16</TYPE-TREF>

</VARIABLE-DATA-PROTOTYPE>
</NV-DATAS>

</NV-DATA-INTERFACE>

Next, the NvBlock SWC is configured with the provide port “p1” typed by interface
“ifnv1”:

<NV-BLOCK-SW-COMPONENT-TYPE>
<SHORT-NAME>swc_nvblock</SHORT-NAME>
<PORTS>
<P-PORT-PROTOTYPE>
<SHORT-NAME>p1</SHORT-NAME>
<PROVIDED-INTERFACE-TREF>/pkg/ifnv1</PROVIDED-INTERFACE-TREF>

</P-PORT-PROTOTYPE>
</PORTS>
<NV-BLOCK-DESCRIPTORS>
...

</NV-BLOCK-DESCRIPTORS>
</NV-BLOCK-SW-COMPONENT-TYPE>

Finally, the <NV-BLOCK-DESCRIPTOR> can be configured to both declare ram-block
“myRamBlock1” and to map provide port “p1” to read the ram-block.

<NV-BLOCK-DESCRIPTOR>
<SHORT-NAME>block1</SHORT-NAME>
<NV-BLOCK-DATA-MAPPINGS>
<NV-BLOCK-DATA-MAPPING>
<NV-RAM-BLOCK-ELEMENT>
<LOCAL-VARIABLE-REF’>/pkg/swc_nvblock/block1/myRamBlock1</LOCAL-

VARIABLE-REF>
</NV-RAM-BLOCK-ELEMENT>
<READ-NV-DATA>
<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF>/pkg/swc_nvblock/p1</PORT-PROTOTYPE-REF>
<TARGET-DATA-PROTOTYPE-REF>/pkg/ifnv1/diN1</TARGET-DATA-PROTOTYPE

-REF>
</AUTOSAR-VARIABLE-IREF>

</READ-NV-DATA>
</NV-BLOCK-DATA-MAPPING>

</NV-BLOCK-DATA-MAPPINGS>
<RAM-BLOCK>
<SHORT-NAME>myRamBlock1</SHORT-NAME>
<TYPE-TREF>/Types/UInt16</TYPE-TREF>

</RAM-BLOCK>

192 Accessing NVRAM

RTA-RTE V6.3.0
User Guide

</NV-BLOCK-DESCRIPTOR>

The port “p1” can then be connected to require ports on application SWCs to enable the
ram-block data to be read. Multiple application SWCs can connect to the same provided
port on an NvBlockSwComponentType to share read-access to the same Nv-block.

16.2.2 Writing NVRAM data

An application SWC writes data to an Nv-block by:

1. Declare a Sender-receiver pPort (with an appropriate interface) and connecting
it to an rPort on the Nv-Block SWC categorized by an Nv-Data interface.

2. Establish a data-send point or data-write point to create the RTE API to write the
NV data.

The RTE generator will then create Rte_Write or Rte_IWrite API calls that will update
the ram-block.

16.3 Access from the NVRAM manager

RTA-RTE creates two APIs for the ram-block in each NvBlockDescriptor that enable
the AUTOSAR NVRAM Manager to read from, and write to, the ram-block.

The generated API names include the component prototype name and thus
do not appear in the application header file as they cannot form part of the
Nv-block SWC’s contract.

16.3.1 Reading the Ram-block

The NVRAM manager can use the created Rte_GetMirror API to read the current ram-
block contents to a defined location. The generated signature of the API is:

FUNC(VAR(Std_ReturnType, AUTOMATIC), RTE_CODE)
Rte_GetMirror_<c>_<n>(P2VAR(uint8, AUTOMATIC, RTE_DATA) NVMBuffer)

The NVMBuffer parameter defines to where the data is written. The <c> element of
the name is the component prototype name and the <n> element the name of the
NvBlockDescriptor name.

16.3.2 Writing the Ram-block

The NVRAM manager can use the created Rte_SetMirror API to update the current
ram-block contents from a defined location. The generated signature of the API is:

FUNC(VAR(Std_ReturnType, AUTOMATIC), RTE_CODE)
Rte_SetMirror_<c>_<n>(P2VAR(uint8, AUTOMATIC, RTE_DATA) NVMBuffer)

The NVMBuffer parameter defines from where the data is copied. The <c> element
of the name is the component prototype name and the <n> element the name of the
NvBlockDescriptor name.

Accessing NVRAM 193

RTA-RTE V6.3.0
User Guide

16.3.3 Notifications from the NVRAM Manager

In addition to the Rte_GetMirror and Rte_SetMirror APIs, RTA-RTE can also generate
additional APIs used by the NVRAM manager to pass notifications to applications SWCs.

The APIs are generated in response to declared role based port assignments for re-
quired client-server ports. For each such assignment, RTA-RTE generates an API to be
invoked by the NVRAM manager. The name of the API is based on the declared role, the
NvBlock SWC component prototype name and the NvBlockDescriptor name.

FUNC(VAR(Std_ReturnType, AUTOMATIC), RTE_CODE)
Rte_<role>_<c>_<n>(<args>);

The <role> element of the API name is declared within the role based assignment. The
<c> element of the name is the component prototype name and the <n> element the
name of the NvBlockDescriptor name.

The API’s formal argument list, <args>, is derived from the first operation in
the interface referenced by the require port with the exception of the roles
NvMNotifyJobFinished and NvMNotifyInitBlock in which case the formal argument
list is standardized by AUTOSAR.

The generated role API invokes the server through the referenced require client-server
port. If multiple role based assignments have the same “role” then the generated API
aggregates invocation of all referenced servers.

The generated API invokes all servers synchronously. To avoid use of
OsEvents it is strongly recommended to use direct function invocation by
omitting the task reference the relevant RTE event mapping.

The generated API takes no action if the RTE is not started or if the RTE has been
stopped.

16.3.4 Invocations of the NVRAM Manager by SWCS

As well as the APIs for passing notifications from the NVRAM manager to applica-
tion SWCs, RTA-RTE also supports the invocation of NVRAM manager APIs from SWCs
through generated server runnables for provided client-server ports..

RTA-RTE generates the runnable entity body for all connected provide ports that have
a configured OperationInvokedEvent. The generated runnable entity body uses the
symbol name from the runnable entity declaration – this must therefore be globally
unique. The formal argument list consists of three elements:

1. An optional instance handle (included only when the NvBlock SWC is declared as
supporting multiple instances, see Section 8.14).

2. The port-defined arguments (for the referenced server port, see Section 8.13.2).

3. The operation arguments from the operation in the server’s ports interface with
the same name as the “role”.

194 Accessing NVRAM

RTA-RTE V6.3.0
User Guide

The generated body for the runnable invokes the C-based API of the NVRAM manager
based on the declared “role”. All runnable parameters, apart from the instance handle,
are passed directly to the invoked NVRAM API.

Accessing NVRAM 195

RTA-RTE V6.3.0
User Guide

Part V

Deployment

196

RTA-RTE V6.3.0
User Guide

17 Defining the ECUs and the Networks

Before any composition can be mapped to ECUs on a vehicle network we need to de-
fine the components from which the physical system is created. We will do this in
Chapter 18. In this chapter we show how to define the parts from which it will be built.

This is the same AUTOSAR mechanisms as we saw when building the software system
as a composition: first we had to define the types of the object we could use (our
software components) before the composition could be built from instances of those
objects (software component instances).

ETASoffice
Atomic Software

Component
Type

Stuttgart
Software

Component
Instance

York
Software

Component
Instance

Instantiation

Figure 17.1: Instances for Hardware Mapping

For the ECU and the network we must define:

• What types of ECU exist and their physical characteristics.

• What ECU instances exist.

This information is contained in <ECU>, <ECU-INSTANCE> elements. A reference from
the <ECU-CONFIGURATION> element identifies the appropriate <SYSTEM> element which
in turn references the associate <ECU-INSTANCE> element.

<AR-PACKAGE>
<SHORT-NAME>pkg</SHORT-NAME>
<ELEMENTS>
<ECU>
<SHORT-NAME>eType</SHORT-NAME>
...

</ECU>
<ECU-INSTANCE>
<SHORT-NAME>eInst</SHORT-NAME>
...

</ECU-INSTANCE>
<!-- System element references from ECU-CONFIGURATION

using an ECU-EXTRACT-REF -->
<SYSTEM>
...
<ECU-INSTANCE-REF>/pkg/eInst</ECU-INSTANCE-REF>

</SYSTEM>
</ELEMENTS>

</AR-PACKAGE>

Defining the ECUs and the Networks 197

RTA-RTE V6.3.0
User Guide

While it possible to put software component configurations and system deployment
elements in the same AUTOSAR XML file, it is more common to separate the distinct
aspects of system engineering into (at least) two separate files. This means that mul-
tiple different software component allocations can be managed easily from a single
“repository” of software components.

17.1 ECU Type Definition

Every configuration you make will need to define at least one ECU type. An ECU is con-
ceptually similar to an SWC-type in that it defines the general properties of an abstract
ECU. Similarly, it is an instance of the ECU onto which software component prototypes
are allocated.

The definition provides a name for the ECU type so that it can be referenced from
the <SYSTEM> description as well as including a reference to a <COMPOSITION-TYPE>
definition that indicates the mapped software component prototypes and their types.

<ECU>
<SHORT-NAME>ECUType</SHORT-NAME>
<PORTS>
...

</PORTS>
</ECU>

17.1.1 Communication Ports

When the ECU is not stand alone it must provide the opportunity to create instances
of communication ports. <PORTS> element allows the specification of the physi-
cal ECU interface(s) provided by the ECU, for example, <ECU-COMMUNICATION-PORT>,
<PERIPHERAL-HW-PORT> etc.

Only the <ECU-COMMUNICATION-PORT> definitions are relevant for RTE configuration as
they provide the definition of which physical communication interfaces exist on the
ECU.

Note that the communication port does not specify that an ECU has a port. The declara-
tion simply states that an instance of the ECU can be created that can create instances
of the defined port. In this regards, the communication port is analogous to a type.

It is only necessary to define an <ECU-COMMUNICATION-PORT> for each different class
of communication port on the ECU. For example, if your ECU has 4 CAN channels
but all the channels have the same properties then you would only define a single
<ECU-COMMUNICATION-PORT>.

Each communication port is named and defined the <NUMBER>, <SIZE> and <TYPE> of
the physical buffers as well as their <DIRECTION>. These are not required for the RTE
but are mandatory in the ECU configuration description XML so must be provided. The
following example shows the general configuration:

<ECU-COMMUNICATION-PORT>
<SHORT-NAME>CANPortType</SHORT-NAME>

198 Defining the ECUs and the Networks

RTA-RTE V6.3.0
User Guide

<!-- Remaining configuration mandatory
but not used by RTE -->

<DIRECTION>IN</DIRECTION>
<BUFFERS>
<BUFFER>
<NUMBER>1</NUMBER>
<SIZE>5</SIZE>
<TYPE>input</TYPE>

</BUFFER>
</BUFFERS>

</ECU-COMMUNICATION-PORT>

It is outside the scope of this user document to describe how additional ECU
hardware is defined in XML.

17.2 ECU Instances

The <ECU-INSTANCE> element instantiates an ECU type (defined within the ECU
description—see Section 17.1):

<ECU-INSTANCE>
<SHORT-NAME>ECUI</SHORT-NAME>
<CONNECTORS>
<COMMUNICATION-CONNECTOR>
<SHORT-NAME>comCon1</SHORT-NAME>
<ECU-COMM-PORT-INSTANCES/>

</COMMUNICATION-CONNECTOR>
</CONNECTORS>

</ECU-INSTANCE>

Although this is documented in the AUTOSAR Specification, it does not refer to an ECU
type, and RTA-RTE does not attempt to process this element.

Defining the ECUs and the Networks 199

RTA-RTE V6.3.0
User Guide

18 Mapping Software Components to ECUs

A <SYSTEM> element is used to map the software component model defined by a
<COMPOSITION-SW-COMPONENT-TYPE> onto the physical system defined by the refer-
enced <ECU-INSTANCE>.

RTA-RTE does not provide support for determining an appropriate system
definition. This information must be known by the ECU Integrator before the
RTE Generation phase.

The <SYSTEM> specifies how component prototypes in the
<COMPOSITION-SW-COMPONENT-TYPE> are mapped into an <ECU-INSTANCE>.

<SYSTEM>
<SHORT-NAME>MySystem</SHORT-NAME>
<MAPPING>
<SHORT-NAME>MyMapping</SHORT-NAME>
<DATA-MAPPINGS />
<SW-MAPPINGS>
<SWC-TO-ECU-MAPPING>
<SHORT-NAME>map_ECU1</SHORT-NAME>
<COMPONENT-IREFS>

<!-- component instances are mapped to the ECU here -->
</COMPONENT-IREFS>
<ECU-INSTANCE-REF DEST=’ECU-INSTANCE’>/MyPackage/ECUInstance1</ECU-

INSTANCE-REF>
</SWC-TO-ECU-MAPPING>

</SW-MAPPINGS>
</MAPPING>
<ROOT-SOFTWARE-COMPOSITION>
<SHORT-NAME>MyCompositionInstance</SHORT-NAME>
<SOFTWARE-COMPOSITION-TREF DEST=’COMPOSITION-SW-COMPONENT-TYPE’>/MyPackage

/MyCompositionType</SOFTWARE-COMPOSITION-TREF>
</ROOT-SOFTWARE-COMPOSITION>

</SYSTEM>

Note that the <SYSTEM> element contains a <ROOT-SOFTWARE-COMPOSITION> el-
ement, which represents an instance of the CompositionType refered to in its
<SOFTWARE-COMPOSITION-TREF>.

18.1 Mapping Component Prototypes

The <SYSTEM-MAPPING> element encapsulates one or more <SWC-TO-ECU MAPPING> el-
ements. Each <SWC-TO-ECU MAPPING> element defines a mapping of software compo-
nent prototypes to an ECU instance. For a particular RTE generation phase there is only
one relevant ECU instance.

<SWC-TO-ECU-MAPPING>
<SHORT-NAME>map_ECU1</SHORT-NAME>
<!-- Map these component instances...-->
<COMPONENT-IREFS>
<COMPONENT-IREF>

200 Mapping Software Components to ECUs

RTA-RTE V6.3.0
User Guide

<CONTEXT-COMPOSITION-REF DEST=’SOFTWARE-COMPOSITION’>/MyPackage/
MyCompositionInstance</CONTEX-COMPOSITION-REF>

<TARGET-COMPONENT-REF DEST=’COMPONENT-PROTOTYPE’>/MyPackage/
MyCompositionType/SenderPrototype</TARGET-COMPONENT-REF>

</COMPONENT-IREF>
<COMPONENT-IREF>
<CONTEXT-COMPOSITION-REF DEST=’SOFTWARE-COMPOSITION’>/MyPackage/

MyCompositionInstance</CONTEXT-COMPOSITION-REF>
<TARGET-COMPONENT-REF DEST=’COMPONENT-PROTOTYPE’>/MyPackage/

MyCompositionType/ReceiverPrototype</TARGET-COMPONENT-REF>
</COMPONENT-IREF>

</COMPONENT-IREFS>
<!-- Onto this ECU instance -->
<ECU-INSTANCE-REF DEST=’ECU-INSTANCE’>/MyPackage/ECUInstance1</ECU-INSTANCE-

REF>
</SWC-TO-ECU-MAPPING>

A <COMPONENT-IREF> specifies an atomic software component prototype in the full con-
text of the (possibly nested) software composition.

An atomic software component prototype is one whose type is not a soft-
ware composition, i.e. its <TYPE-TREF> indicates an application software
component type.

The first element within a <COMPONENT-IREF> is the <CONTEXT-COMPOSITION-REF>,
which points to the top-level software composition—the
<ROOT-SOFTWARE-COMPOSITION> element within the <SYSTEM>. Each of the fol-
lowing elements is a reference to a component prototype within the composition type
corresponding to the previous reference.

If the composition is nested, it may be necessary to insert one or more
<CONTEXT-COMPONENT-REF> elements. Each component prototype ref specifies a
component prototype which is itself an instance of a composition type. One such
<CONTEXT-COMPONENT-REF> is needed for each level of nesting until we reach the com-
position type containing the atomic software component instance.

Finally there must be a <TARGET-COMPONENT-REF>. This refers to the component pro-
totype that is an instance of an application software component type. This completely
specifies the software component instance and completes the <COMPONENT-IREF>.

The <ECU-INSTANCE-REF> references the <ECU-CONFIGURATION> element to which the
mapping applies.

18.2 SWC Implementation Selection

RTA-RTE supports the SwcToImplMapping element to choose which (of potentially
many) implementations applies to a SW-C type.

Each SW-C to implememtation mapping selects an implementation for one or more
SW-C instances and hence, indirectly, for the SW-C type. For example, to select im-

Mapping Software Components to ECUs 201

RTA-RTE V6.3.0
User Guide

plementation “impl” for instance “swcA” one could use:

<SWC-TO-IMPL-MAPPING>
<SHORT-NAME>impl_A</SHORT-NAME>
<COMPONENT-IMPLEMENTATION-REF>/pkh/impl</COMPONENT-IMPLEMENTATION-REF>
<COMPONENT-IREFS>
<COMPONENT-IREF>
<CONTEXT-COMPOSITION-REF>/pkg/sys/SWComp</CONTEXT-COMPOSITION-REF>
<TARGET-COMPONENT-REF>/pkg/Compo/swcA</TARGET-COMPONENT-REF>

</COMPONENT-IREF>
</COMPONENT-IREFS>

</SWC-TO-IMPL-MAPPING>

The SW-C to implememtation mappings are contained within the System Mapping ele-
ment. See Section 18.1 for detailed information on mapping SW-C prototypes to ECUs.

18.3 Configuring Service Components on an ECU

Application software components are mapped to ECUs, as described above, using
the <SW-MAPPINGS> element. In contrast, service components are assigned to ECUs
as part of the ECU configuration process. This is done using the XML element
<ECU-SW-COMPOSITION>, which is referenced from the ECU configuration itself.

<ECU-CONFIGURATION>
<SHORT-NAME>ECU1Config</SHORT-NAME>
<ECU-EXTRACT-REF>/autosar/system1 </ECU-EXTRACT-REF>
<ECU-SW-COMPOSITION-REF>/pkg/ECU1SwComp</ECU-SW-COMPOSITION-REF>
...

</ECU-CONFIGURATION>

<ECU-SW-COMPOSITION>
<SHORT-NAME>ECU1SwComp</SHORT-NAME>
<COMPONENTS>
...

</COMPONENTS>
<CONNECTORS>
...

</CONNECTORS>
</ECU-SW-COMPOSITION>

The <ECU-SW-COMPOSITION> element is very similar to the
<ROOT-SOFTWARE-COMPOSITION> described in Section 13.1, except that it only contains
the service components and service connectors.

<COMPONENTS>
<SERVICE-COMPONENT-PROTOTYPE>
<SHORT-NAME>myService</SHORT-NAME>
<SERVICE-COMPONENT-TREF>/pkg/svcType</SERVICE-COMPONENT-TREF>

</SERVICE-COMPONENT-PROTOTYPE>
</COMPONENTS>

A connection between a service component prototype and an application component
prototype is established using a <SERVICE-CONNECTOR-PROTOTYPE> element.

202 Mapping Software Components to ECUs

RTA-RTE V6.3.0
User Guide

<CONNECTORS>
<SERVICE-CONNECTOR-PROTOTYPE>
<SHORT-NAME>serviceConnector1</SHORT-NAME>
<APPLICATION-PORT-IREF.../>
<SERVICE-PORT-IREF.../>

</SERVICE-CONNECTOR-PROTOTYPE>
</CONNECTORS>

This <ECU-SW-COMPOSITION> element of the ECU configuration is used by RTA-RTE to
determine which services are required in an application, and to establish the connec-
tions between these services and the application software components.

18.4 Mapping Runnable Entities to Tasks

Mapping software component instances to ECU instances does not provide sufficient
information for the ECU to be integrated. Recall that a software component is multi-
threaded because it can contain multiple runnables.

The model of concurrency represented by runnable entities in software components
needs to be mapped to the model of concurrency supported by the ECU. In AUTOSAR,
this means that runnable entities must be mapped to tasks in the AUTOSAR OS.

The RTE generator uses the mapping information in the ECU configuration description
to map runnable entities into named tasks which are then created automatically by
RTA-RTE.

The process involves three parts:

1. Defining the Os tasks within the Os module configuration and their mutual con-
currency.

2. Mapping the runnable entities into the defined tasks. This is done in the Rte
module configuration.

3. Defining any supporting Os objects that the RTE needs as a consequence of the
mapping. For example it may need Os objects to schedule the tasks, to execute
only the activated runnables in each task execution and to serialize access to
application / BSW module code and/or internal state. RTA-RTE optionally provides
this additional OS configuration as an output, see Chapter 20.

18.4.1 Task Definition

RTA-RTE uses the OS module configuration within your ECU-Configuration description
to determine the available tasks. Tasks into which runnable entities are mapped will
have their bodies generated by the RTA-RTE RTE generator.

Each task is declared in the ECU configuration description for the OS within an instance
of the container type:

/AUTOSAR/Os/OsTask

Mapping Software Components to ECUs 203

RTA-RTE V6.3.0
User Guide

You can create as many tasks as required for the RTE, up to a maximum of 256 or the
limit imposed by your AUTOSAR OS whichever is the smaller.

18.4.2 Configuration

The mapping of a runnable entity instance to an OS tasks occurs within an instance of
the container type:

/AUTOSAR/EcucDefs/Rte/RteSwComponentInstance/RteEventToTaskMapping

.

The runnable entity mapping container defines the parameters related to the mapping
and references the appropriate runnable entity:

• PositionInTask—The position of the runnable entity within the task (this must be
specified as an unsigned integer).

• RTEEventRef—The RTE Event responsible for activating the runnable entity name.
This must be specified as a single, absolute, target reference to the RTE Event
within the SW-C internal behaviour definition.

• MappedToTaskRef—The OS task to which the runnable entity is mapped (this must
be specified as an absolute reference to the OS Task definition within the OS con-
figuration container).

A single task may execute one or more runnable entities.

The relevant SoftwareComponentInstanceRef is taken from the
/AUTOSAR/EcucDefs/Rte/RteSwComponentInstance that encapsulates the runnable
entity mapping.

To avoid ambiguity, all runnable entities mapped to a task must have unique positions
within the task. The positions specified for runnable entities within a task need not be
contiguous.

18.4.3 Hints for Mapping

Multiple Category 1 (Basic) runnable entities can be mapped to the same task as they
cannot block and have a finite execution time. It is assumed that an AUTOSAR appli-
cation will contain multiple tasks, each of which is dedicated to running several basic
runnable entities.

Mapping multiple Category 2 (Extended) runnable entities to a single task is not rec-
ommended since they can block and therefore significantly affect the timing (jitter) of
subsequent runnable entities mapped to the task. For this reason it is recommended
to map each Category 2 runnable entity to a single OS task.

A single task may perform multiple roles; e.g. executing different event-triggered
runnable entities or executing several runnable entities in sequence.

204 Mapping Software Components to ECUs

RTA-RTE V6.3.0
User Guide

When defining the mapping of runnable entities to tasks the following rules should be
followed:

• Category 1 runnable entities can be mapped to either “basic” or “extended” tasks.

• There should be a 1:1 mapping between Category 2 runnable entities and “ex-
tended” tasks.

• To minimize RTE generated code within task bodies, time-triggered runnable enti-
ties with different periods should be mapped to different tasks and time-triggered
and communication-triggered runnable should be mapped to different tasks.

• All tasks should be mapped to the same OS application.

18.4.4 Mode Switch events

AUTOSAR requires that all runnables triggered by ModeSwitchEvents for the same
mode instance must be mapped to the same task. The runnables must be positioned
within the task such that all “on-exit” runnables are occur first, followed by all “on-
transition” runnables, and finally all “on-exit” runnables.

The order in which ModeSwitchEvent triggered runnables are mapped to
tasks defines the order in which they are invoked at run-time.

18.4.5 Avoiding Category 2 (Extended) Tasks

The RTE generator is required to generate task bodies that contain the invocations of
runnable entities. Depending on the runnable placement within tasks the generated
body can use OS events which mean that the task is an “extended” task.

It may be desired to avoid the creation of extended tasks. These can be avoided by:

• Do not use WaitPoints within runnable entities.

• Do not use synchronous inter-task or inter-ECU client-server calls.

• Do not map runnable entities triggered by timing events and runnable entities trig-
gered by other events (other than OperationInvokedEvent when the client is in the
same task) to the same task. When such a mapping exists, the RTA-RTE RTE gener-
ator uses extended tasks and OS events to ensure the correct runnable is executed
in response to each RTE event.

• Do not map multiple alarm-triggered runnable entities to the same task.

18.5 How Runnables get activated

There are subtle differences between how task activation works in the AUTOSAR OS and
how runnable-entity activation works in AUTOSAR RTE and ETAS RTA-RTE. This section
explains the issues.

Mapping Software Components to ECUs 205

RTA-RTE V6.3.0
User Guide

18.5.1 Task Activation in AUTOSAR OS

AUTOSAR OS specifies a counted, limited task-activation scheme where the
ActivateTask API increments an activation counter (up to a pre-configured limit) and
the counters are used to decide what task should be executed next whenever a Dis-
patch Point is encountered (e.g. call to certain OS APIs, termination of a Task). Impor-
tantly, the activation count is not decremented until the task has run to termination.

In particular:

• If the activation limit for a task is set to 1, then an attempt to activate a task while
it is already running will fail with E_OS_LIMIT.

• If the activation limit for the task is set to n, then effectively the activations are
queued up to n activations. Note that while the task is executing that execution
occupies one of these ‘queue’ positions.

18.5.2 Runnable Activation in AUTOSAR RTE 4.0.3

Runnable activation is complicated by the fact that an activation should not be lost if it
occurs during execution of the runnable [AR 4.0.3 SWS_RTE Figure 4.17]. Additionally,
multiple runnables can be mapped to a single task and AUTOSAR 4.0.3 specifies that
each RteEvent has an independent state-machine [AR4.0.3 SWS_RTE Page 113].

General Case: Sender-receiver, etc.

Aside from the special cases of OperationInvokedEvent and ModeSwitchEvent (see
below), AUTOSAR 4.0.3 specifies an uncounted runnable-activation scheme whereby
a runnable becomes eligible to run when any of the relevant configured events oc-
curs. Notionally, a flag is set when the RteEvent occurs, then tested-and-reset in Rte-
generated task body before calling the C-function that implements the runnable.

In particular:

• If a runnable is activated multiple times before it enters, it is entered once.

• If a runnable is activated while it is executing, the activation is not lost, and the
runnable is eligible to run again.

Special Case: OperationInvokedEvent

Server runnables (i.e. those started by OperationInvokedEvent) participate in a queued
activation scheme [AR 4.0.3 SWS_RTE Page 113]. Here, subsequent client calls can be
made before previous calls are resolved, and RTE will activate the server runnable
multiple times, once per client request (subject to the configured queue length).

Special Case: ModeSwitchEvent

ModeSwitchEvents participate in a batched activation scheme [AR 4.0.3 SWS_RTE Sec-
tion 4.4.4] whereby all the runnables configured for a particular mode transition (in-

206 Mapping Software Components to ECUs

RTA-RTE V6.3.0
User Guide

cluding OnExit, OnTransition or OnEnter) are executed in strict PositionInTask order
after the mode transition conditions are met.

In particular:

• If a mode transition is initiated when a task containing the relevant Mode Switch
runnables is already executing and has passed the point of checking the conditions
for some runnable relevant to that transition, no runnable for that transition will be
executed on that pass through the task body. The task body will be re-executed
when the outstanding mode transition is detected and the runnables will all be
executed in that execution.

Activation Flags may still be required for ModeSwitchEvents to support Min-
imumStartInterval or ModeDisablingDependencies.

Special Case: Queued Sender-Receiver

In fact, queued sender-receiver is activated in the same pattern as the general case,
that is, Activation is not queued. It is expected that the code within the runnable itself
will loop until the queue is empty [AR 4.0.3 SWS_RTE Section 4.4.4].

18.5.3 Runnable Activation in ETAS RTA-RTE

Depending on the nature of the RteEvents mapped to a given OsTask, ETAS RTA-RTE
may employ a variety of mechanisms in the task glue code to ensure that the runnables
are activated correctly.

When all Mapped RteEvents are Periodic

In this case the OsTask need only be Basic with an Activation Limit of 1. If the periods
of the mapped runnables differ then prescalers are implemented as necessary.

When Periodic and Sporadic RteEvents are mapped or some Category 2 runnable is
mapped

In this case the OsTask must be Extended and auto-started at OS start-up. The glue
code does not terminate and the notional Activation Flags are implemented by OsEv-
ents.

Sporadic RteEvents only

When only category 1 runnables started by sporadic events are mapped to a task,
the OsTask need only be Basic and RTA-RTE uses a system of Activation Flags to keep
track of what runnables are eligible to run. When the task to which an RteEvent has
been mapped executes, RTE glue code in the task body tests and resets the flag before
executing the runnable body. Even in the case where exactly one RteEvent is mapped
to the task, the flag is necessary to support the case where the runnable is activated
while it is executing [AR 4.0.3 SWS_RTE Figure 4.17].

• When this scheme is used, RTA-RTE requires that the Activation Limit of the OsTask

Mapping Software Components to ECUs 207

RTA-RTE V6.3.0
User Guide

is 2, and will write a warning message if the OS configuration does not satisfy this.

The Activation limit of 2 is used so that a task activation is not lost if the runnable is
activated during the task’s execution. If the task is executing and has passed the point
of testing the runnable’s entry conditions, then a runnable activation results in setting
the runnable activation flag in the RTE, and incrementing the Task’s Activation Count in
the OS (remember, the Activation Count is already 1 if the Task is executing). When the
Task terminates, the Activation Count becomes 1, and the task will be executed again
at the first opportunity according to its priority.

Advantage:

• If a runnable is activated again soon after it already began executing, then it is
entered again with minimum delay.

Disadvantage:

• If a runnable is activated multiple times before the entry condition test in the task
body, then the runnable will correctly be executed once, but after the runnable is
completed and the task has terminated the Activation Count in the OS will still be
1. So the Task will enter again at the first opportunity, even though there may be
nothing to do. (“Empty Execution Problem”)

Variant Case: –deviate-prefer-no-empty-executions

In the case where all the runnables in the Task have the same entry conditions, then
an optimization can be made that eliminates the Empty Execution Problem.

If the option --deviate-prefer-no-empty-executions=on is supplied and all the
runnables in the Task have the same entry conditions, then the optimization is made
and the OsTask’s Activation Limit must be 1. RTA-RTE will warn if the Os configuration
does not conform.

Advantages:

• Tasks satisfying the conditions above will not execute when there is nothing to do
(no Empty Execution Problem).

• RTA-RTE will avoid generating the Activation Flag(s) and supporting code for tasks
satisfying the conditions above.

Disadvantage:

• A runnable activation occurring soon after the runnable is started may be lost.

208 Mapping Software Components to ECUs

RTA-RTE V6.3.0
User Guide

This is because, now that the Activation Flag has been removed, runnable activation
behaves exactly the same as Task Activation (documented above). If the runnable
activation occurs during the Task execution, the corresponding task activation is lost
(because Activation Count remains at 1 during the Task execution). The Task will not
be activated until the RteEvent occurs again after Task termination.

Activation Limit and error hook

It is required to set the Activation Limit according to the messages written by RTA-RTE
in order to preserve the documented activation semantics.

Regardless of the Activation Limit, a burst of RteEvents can exceed the limit. This is
correct, designed behavior of RTA-RTE. When the Activation Limit is exceeded, RTA-RTE
will ignore the E_OS_LIMIT return status from the OS ActivateTask API, and will manage
the entry of runnables by means of generated flags.

• If you have configured ErrorHook in the OS then it may be executed as a result of
RTE’s attempts to activate tasks over their limit. Make sure that your ErrorHook
handles E_OS_LIMIT, at least from ActivateTask.

• It is a mistake to increase the Activation Limit to avoid E_OS_LIMIT because this
will make the Empty Execution Problem worse.

Mapping Software Components to ECUs 209

RTA-RTE V6.3.0
User Guide

19 Inter-ECU Communication

Once software components are mapped to ECUs, and their runnables are mapped to
tasks, you know which inter-Software Component communication is local to an ECU and
which is remote.

For remote (inter-ECU) communication you need to map the data items communicated
between software components (which will be data elements for sender-receiver com-
munications or parameter values for client-server operations) into system signals com-
municated by the AUTOSAR COM and the sub-COM communication stack.

This chapter first describes how to set up the general framework for inter-ECU com-
munications, and then describes how to configure data mappings for sender-receiver
communication and for client-server operations.

19.1 System Communications

Inter-ECU sender-receiver or client-server communication requires the XML configura-
tion for the RTE to include the entire network configuration for inter-ECU communica-
tion. This means you will need to configure:

• <SYSTEM-SIGNAL> and <SYSTEM-SIGNAL-GROUP> elements that hold data that is
communicated between ECUs. These are abstract representations of AUTOSAR
COM signals and signal groups in the AUTOSAR system description.

• <I-SIGNAL-I-PDU> elements which indicate how one or more signals may be
packed into a single PDU for concurrent transmission.

There are different types of PDU corresponding to the different layers of the com-
munication network, but only the I-PDU (Interaction Layer Protocol Data Unit) type
is relevant to the RTE, as IPDUs are the units of data used by COM.

• A bus-specific frame element is used to transmit data between ECUs in a communi-
cation channel and is composed of one or more PDUs, which in turn are composed
of individual signals.

Communications based on the CAN or LIN protocols a frame is limited to containing
only a single PDU.

Figure 19.1 illustrates the RTE relevant elements of the mapping of an AUTOSAR sender-
receiver signal to an IPdu.

19.1.1 Signals and Signal Groups

A signal, or message, is the basic unit of communication between ECUs, usually car-
rying a single logical item of data, such as a value representing engine temperature.
AUTOSAR distinguishes between three kinds of signal: system signals, interaction layer
signals (i-signals) and COM signals, all of which may refer to the same data item. To un-
derstand inter-ECU communication within RTA-RTE, it is important to understand what
is referred to by the different types of signal.

210 Inter-ECU Communication

RTA-RTE V6.3.0
User Guide

Sender

P1

Receiver A

R1

SYSTEM-SIGNAL

 I-SIGNAL I-SIGNAL

`Optional mapping
for “fan -out”

SYSTEM-SIGNAL-REF

 I-SIGNAL

I-SIGNAL-I-PDU

Optional
aggregation

of multiple
I-Signals in
one I -PDU

I-SIGNAL-REF

System
SENDER-RECEIVER-TO-SIGNAL-MAPPING

Figure 19.1: RTE-relevant Inter-ECU Mappings

System Signal —the most abstract representation of a message used to carry data,
and is the kind of signal referred to when data mappings are configured (see
below).

I-Signal —an instance of a system signal in a particular interaction layer PDU. A sep-
arate class is used in order to support “fan-out”, enabling a single system signal
to be referred to in multiple PDU instances, sent to different destinations. Conse-
quently, there may be n I-Signals corresponding to a single system signal.

Com signal —an element of the COM module configuration, representing a concrete
instance of a signal. Com signals correspond directly to i-signals, i.e. for every
i-signal in the system definition that is required for the ECU being generated,
there should be a Com signal. The configuration of Com signals includes detailed
information about the communication stack that is not included in the high-level
system definition, such as repetition counts, filters, etc.

Each <SYSTEM-SIGNAL> represents an abstract block of data that is to be transmit-
ted. It contains only the name by which the system signal can be referred. A
<SYSTEM-SIGNAL> is therefore an abstract representation of a signal in AUTOSAR COM.
However, the relationship between a <SYSTEM-SIGNAL> and a Com signal is not a sim-

Inter-ECU Communication 211

RTA-RTE V6.3.0
User Guide

ple one-to-one mapping, as system signal may be included in multiple frames each of
which will require separate COM signals.

<SYSTEM-SIGNAL>
<SHORT-NAME>Signal_gen_pa_rec_speed</SHORT-NAME>

</SYSTEM-SIGNAL>

An <I-SIGNAL> is an instance of a system signal in a particular interaction layer PDU.
The <I-SIGNAL> refers to a system signal.

<I-SYSTEM>
<SHORT-NAME>isig</SHORT-NAME>
<SYSTEM-SIGNAL-REF>/signals/sig1</SYSTEM-SIGNAL-REF>

</I-SYSTEM>

Several signals can be collected into a signal group to ensure their simultaneous
transmission. This technique is used to map complex data types into signals for com-
munication. A signal group contains only a name and a list of references to basic system
signals.

The following example maps multiple system signals into a signal group. Note that the
packing of signals within the group into IPDUs is not specified as part of the signal group
specification.

<SYSTEM-SIGNAL-GROUP>
<SHORT-NAME>SignalGroup_gen_pa_rec</SHORT-NAME>
<SYSTEM-SIGNALS-REFS>
<SYSTEM-SIGNAL-REF DEST="SYSTEM-SIGNAL">
/signals/Signal_gen_pa_rec_speed

</SYSTEM-SIGNAL-REF>
<SYSTEM-SIGNAL-REF DEST="SYSTEM-SIGNAL">
/signals/Signal_gen_pa_rec_freq

</SYSTEM-SIGNAL-REF>
...

</SYSTEM-SIGNALS-REFS>
</SYSTEM-SIGNAL-GROUP>

An <I-SIGNAL=GROUP> is an instance of a system signal group in a particular interaction
layer PDU. The <I-SIGNAL-GROUP> refers to a system signal group.

<I-SYSTEM-GROUP>
<SHORT-NAME>isig</SHORT-NAME>
<SYSTEM-SIGNAL-GROUP-REF DEST="SYSTEM-SIGNAL-GROUP">
/signals/sigGroup1

</SYSTEM-SIGNAL-GROUP-REF>
</I-SYSTEM-GROUP>

19.1.2 PDU Types

An <I-SIGNAL-I-PDU> element represents a collection of (system) signals for transfer
between nodes in a communications network via references to I-Signals.

212 Inter-ECU Communication

RTA-RTE V6.3.0
User Guide

There are different types of PDU corresponding to the different layers of the com-
munication network, but only the I-PDU (Interaction Layer Protocol Data Unit) type is
relevant to the RTE, as IPDUs are the units of data used by COM. Specifically, only
<I-SIGNAL-I-PDUs> are considered, as these carry application data between software
components. (The terms “IPDU” hereafter refers to a I-Signal IPDUs).

As with other AUTOSAR elements, PDUs use a “type” and “prototype” method where
an <I-SIGNAL-I-PDU> element defines a PDU structure and instances of the type are
used as the <PDU-TO-FRAME-MAPPING> element.

An <I-SIGNAL-I-PDU> element defines the overall length (in bits) and contains one or
more references to its included I-Signals and their mapped bit position.

<I-SIGNAL-I-PDU>
<SHORT-NAME>IPdu_p2m_value</SHORT-NAME>
<LENGTH>16</LENGTH>
<SIGNAL-TO-PDU-MAPPINGS>
<I-SIGNAL-TO-I-PDU-MAPPING>
<SHORT-NAME>is2ipdu_p2m_value</SHORT-NAME>
<I-SIGNAL-REF DEST=’I-SIGNAL’>/TOptimizeRTE/isig_p2m_value</I-SIGNAL-

REF>
<PACKING-BYTE-ORDER>MOST-SIGNIFICANT-BYTE-LAST</PACKING-BYTE-ORDER>
<START-POSITION>0</START-POSITION>

</I-SIGNAL-TO-I-PDU-MAPPING>
...

</SIGNAL-TO-PDU-MAPPINGS>
</SIGNAL-I-PDU>

The <LENGTH> element defines tha size of the I-PDU in bits. Note that the length of the
PDU can be greater that the sum of the included signal lengths.

The <I-SIGNAL-I-PDU> element is independent of the physical bus over which data
may be transferred.

19.1.3 Communication Clusters

A communication describes a set of physical channels used to connect ECUs and hubs.
An ECU belongs to a communication cluster if one of its communications ports is con-
nected to one of the physical channels of the cluster. The content of a communication
cluster depends of the type of bus used for a system; for example, it may just contain
a description of a CAN bus.

The separate communication cluster types are used for different bus types, for exam-
ple, a <CAN-CLUSTER> might define:.

<CAN-CLUSTER>
<SHORT-NAME>bob</SHORT-NAME>
<CAN-CLUSTER-VARIANTS>
<CAN-CLUSTER-CONDITIONAL>
<PHYSICAL-CHANNELS>
<CAN-PHYSICAL-CHANNEL>
<SHORT-NAME>CHAN0</SHORT-NAME>

Inter-ECU Communication 213

RTA-RTE V6.3.0
User Guide

<FRAME-TRIGGERINGS>
<CAN-FRAME-TRIGGERING>
<SHORT-NAME>trig0</SHORT-NAME>
<FRAME-REF DEST="CAN-FRAME">/pkg/frame</FRAME-REF>
<CAN-ADDRESSING-MODE>EXTENDED</CAN-ADDRESSING-MODE>
<IDENTIFIER>456</IDENTIFIER>

</CAN-FRAME-TRIGGERING>
</FRAME-TRIGGERINGS>

</CAN-PHYSICAL-CHANNEL>
</PHYSICAL-CHANNELS>
<SPEED>500000</SPEED>
</CAN-CLUSTER-CONDITIONAL>
</CAN-CLUSTER-VARIANTS>

</CAN-CLUSTER>

RTA-RTE does not use information present in communication clusters.

19.1.4 Frames

Each frame represents a communication protocol independent assembly of PDUs (and
hence system signals) that will be transmitted across the network. A frame is therefore
the AUTOSAR XML equivalent of an IPDU in AUTOSAR COM.

Each frame has a length and a set of <PDU-TO-FRAME-MAPPINGS>. Different bus types
have different frame definitions, for example, a CAN frame might be defined as:

<CAN-FRAME>
<SHORT-NAME>frame0</SHORT-NAME>
<FRAME-LENGTH>4</FRAME-LENGTH>
<PDU-TO-FRAME-MAPPINGS>
<PDU-TO-FRAME-MAPPING>
<SHORT-NAME>f1</SHORT-NAME>
<PDU-REF DEST="I-SIGNAL-I-PDU">/signals/ipdu1</PDU-REF>
<START-POSITION>0</START-POSITION>

</PDU-TO-FRAME-MAPPING>
</PDU-TO-FRAME-MAPPINGS>

</CAN-FRAME>

The <FRAME-LENGTH> specifies the length of the frame in bytes. The length can be of
arbitrary size1, but you must be aware that the decision of which signals are located
in which frames and their corresponding length will be influenced by the physical com-
munication system you use between ECUs.

19.1.5 COM OIL Generation

The RTE generator uses information from the system description to generate the COM
API calls used to initiate communication and to respond to communication events indi-
cated by COM.

For compatibility with previous AUTOSAR releases versions of the COM stack, the

1AUTOSAR currently restricts frame lengths to 8 bytes.

214 Inter-ECU Communication

RTA-RTE V6.3.0
User Guide

RTE generator can optionally also output a COM OIL configuration file suitable for
a COM generator. This maps objects in the system description into the MESSAGEs,
NETWORKMESSAGEs and IPDUs understood by COM.

The generation of COM configuration is not part of the AUTOSAR RTE speci-
fication. RTA-RTE supports generation of a COM 1.0 OIL configuration.

The generation of COM OIL in this release of RTA-RTE is limited to simple configurations
featuring one-off, triggered transmission only, and does not take into account more
complex features like cyclic timing or repetition counters. For more complex configura-
tions it is necessary to configure the COM stack separately.

19.2 Inter-ECU Sender-Receiver Communication

For remote (inter-ECU) sender-receiver communication you need to map the data ele-
ment prototypes transferred between software components into system signals com-
municated by the AUTOSAR COM and the sub-COM communication stack. This is done
in the <DATA-MAPPINGS> section of the system mapping (see Section 18) element.

<SYSTEM>
<SHORT-NAME>MySystem</SHORT-NAME>
<MAPPINGS>
<SYSTEM-MAPPING>
<SHORT-NAME>mapping</SHORT-NAME>
<DATA-MAPPINGS>
<!-- Map data prototypes to signals -->
...

</DATA-MAPPINGS>
...

</MAPPING>
<!-- Other SYSTEM elements -->

</SYSTEM>

Primitive data types are mapped to a single signal using a SenderReceiverToSignalMap-
ping; complex data types are mapped to several signals in a signal group using a
SenderReceiverToSignalGroupMapping.

Whether an AUTOSAR signal is primitive or complex depends on the Category of the
ImplementationDataType used to represent the signal:

• VALUE — primitive. Use SenderReceiverToSignalMapping and see 19.2.1

• STRUCTURE — complex. Use SenderReceiverToSignalGroupMapping and see
19.2.2

• ARRAY — either. If the array is fixed-length and is small enough to fit in a single
signal then it may be treated as primitive and mapped to a single signal. In any
case it is permitted to treat an array as complex and map it to multiple, grouped
signals.

• TYPE_REFERENCE — effectively has the same category as the referenced type.

Inter-ECU Communication 215

RTA-RTE V6.3.0
User Guide

In a full system description, data mappings are described for provider (sender) ports
only; the connectors in the software composition indicate which receiver ports are con-
nected to these, which allows the mapping of received data elements to signals to
be inferred also. In an ECU extract of a system description, in which only the software
components relevant to a given ECU are included, it may be necessary to describe map-
pings for a requirer port. For example, the receiver side data mappings are needed if
the corresponding provider port is not included in the ECU extract.

Both primitive and complex mapping element types follow the same basic pattern; an
instance reference to a data element prototype that specifies the data to be sent inter-
ECU and a mapping that specifies the system signal(s) used to carry the data.

19.2.1 Primitive Types

VariableDataPrototypes mapped to primitive ImplementationDataTypes are mapped
using the SenderReceiverToSignalMapping element. One element must be configured
for each AUTOSAR signal.

<SENDER-RECEIVER-TO-SIGNAL-MAPPING>
<DATA-ELEMENT-IREF>
<CONTEXT-COMPONENT-REF ... >
/pkg/composition/producer

</CONTEXT-COMPONENT-REF>
<CONTEXT-PORT-REF ...>
/pkg/swctype/pa

</CONTEXT-PORT-REF>
<TARGET-DATA-PROTOTYPE-REF ... >
/pkg/interface/value

</TARGET-DATA-PROTOTYPE-REF>
</DATA-ELEMENT-IREF>
<SYSTEM-SIGNAL-REF ... >
/signals/Signal_gen_pa

</SYSTEM-SIGNAL-REF>
</SENDER-RECEIVER-TO-SIGNAL-MAPPING>

The SenderReceiverToSignalMapping’s <DATA-ELEMENT-IREF> specifies the component
instance, port and data element from which the communication originates. If you use
hierarchical composition, i.e. with delegation connectors, then you will need to ref-
erence each level in the hierarchy using multiple <COMPONENT-PROTOTYPE-REF> ele-
ments.

19.2.2 Complex Types

Complex types, which may be either records or arrays, are mapped using the Sender-
ReceiverToSignalGroupMapping element. One element must be configured for each
complex AUTOSAR signal. All signals for a single complex type are mapped to a signal
group and therefore benefit from atomic transmission.

The SenderReceiverToSignalGroupMapping is similar to the mapping element for primi-
tive types in that it contains a DATA-ELEMENT-IREF to select the AUTOSAR signal. How-
ever, unlike the primitive mapping the selection of system signals is more involved

216 Inter-ECU Communication

RTA-RTE V6.3.0
User Guide

since a recursive mapping of the record/array elements to system signals is required.

<SENDER-RECEIVER-TO-SIGNAL-GROUP-MAPPING>
<DATA-ELEMENT-IREF>
<CONTEXT-COMPONENT-REF ... >
/pkg/composition/producer

</CONTEXT-COMPONENT-REF>
<CONTEXT-PORT-REF ...>
/pkg/swctype/pa

</CONTEXT-PORT-REF>
<TARGET-DATA-PROTOTYPE-REF ... >
/pkg/interface/value

</TARGET-DATA-PROTOTYPE-REF>
</DATA-ELEMENT-IREF>
<SIGNAL-GROUP-REF ... >
/signals/SignalGroup

</SIGNAL-GROUP-REF>
<TYPE-MAPPING>
...

</TYPE-MAPPING>
</SENDER-RECEIVER-TO-SIGNAL-GROUP-MAPPING>

As with the mapping for primitive types, the <DATA-ELEMENT-IREF> specifies the com-
ponent instance, port and data element from which the communication originates. If
you use hierarchical composition, i.e. with delegation connectors, then you will need
to reference each level in the hierarchy using multiple <CONTEXT-COMPONENT-REF> ele-
ments.

A group mapping includes the <TYPE-MAPPING> element that is the root for
the recursive mapping of system signals within the signal group referenced by
<SIGNAL-GROUP-REF>. The example will map the following C structure R1 to signals
where R1 is defined as:

struct R1 {
UInt8 Speed;
UInt8 Freq;

};

As explained above, the mapping of a complex type can be recursive since complex
data types can themselves be defined recursively; for example, a structure R2 could
be defined in terms of structure R1 as well as additional primitive data elements. The
recursive mapping can produce very large, very complex, mappings and therefore to
ease understanding the type mapping for R1 uses a flat definition only.

<TYPE-MAPPING>
<SENDER-REC-RECORD-TYPE-MAPPING>
<RECORD-ELEMENT-MAPPINGS>
<!-- Mapping for member Speed’’ -->
<!-- Mapping for member Freq’’ -->

</RECORD-ELEMENT-MAPPINGS>
</SENDER-REC-RECORD-TYPE-MAPPING>

Inter-ECU Communication 217

RTA-RTE V6.3.0
User Guide

</TYPE-MAPPING>

First, the <RECORD-ELEMENT-MAPPINGS> element must define the mapping for structure
member “Speed” which has type UInt8:

<SENDER-REC-RECORD-TYPE-MAPPING>
<RECORD-ELEMENT-MAPPINGS>
<!-- Mapping for member "Speed" (R1.Freq) -->
<SENDER-REC-RECORD-ELEMENT-MAPPING>
<RECORD-ELEMENT-REF>/types/R1/Speed</RECORD-ELEMENT-REF>
<SYSTEM-SIGNAL-REF>/pkg/sig_a</SYSTEM-SIGNAL-REF>

</SENDER-REC-RECORD-ELEMENT-MAPPING>
<!-- Mapping for member "Freq" (R1.Freq) -->
<SENDER-REC-RECORD-ELEMENT-MAPPING>
<RECORD-ELEMENT-REF>/types/R1/Freq</RECORD-ELEMENT-REF>
<SYSTEM-SIGNAL-REF>/pkg/sig_b</SYSTEM-SIGNAL-REF>

</SENDER-REC-RECORD-ELEMENT-MAPPING>
</RECORD-ELEMENT-MAPPINGS>

</SENDER-REC-RECORD-TYPE-MAPPING>

The structure R1 uses only simple types and therefore contains a single mapping
level. If it contained a nested structure then the definition would uses nested
<SENDER-REC-RECORD-ELEMENT-MAPPING> elements.

The example above illustrates the mapping of a record type; arrays are mapped sim-
ilarly, using the <SENDER-REC-ARRAY-TYPE-MAPPING> element within a complex type
mapping.

19.3 Inter-ECU Client-Server Communication

For remote (inter-ECU) client-server communication you need to map the operation
argument prototypes passed between the client and server software components into
system signals communicated by the AUTOSAR COM and the sub-COM communication
stack. As with sender-receiver communication, this is done in the DataMapping section
of the system’s Mapping element (see Section 19.2).

Unlike the data mappings for sender-receiver communications, which may use individ-
ual signals for primitive data elements or signal groups for complex elements, client-
server data mappings always require a signal group. This is because all the parameters
of an operation are transmitted in an atomic transfer operation. A mapping for one op-
eration, including both the parameters and other meta-data, is encapsulated within a
<CLIENT-SERVER-TO-SIGNAL-GROUP-MAPPING> element. This will contain some or all
of the following sub-elements:

• A <MAPPED-OPERATION-IREF> which identifies the software component instance,
port and operation defining this client-server communication. If you use hierarchi-
cal composition, i.e. with delegation connectors, then you will need to reference
each level in the hierarchy using multiple <CONTEXT-COMPONENT-REF> elements.

• Either a <REQUEST-GROUP-REF> or a <RESPONSE-GROUP-REF>, which identifies the

218 Inter-ECU Communication

RTA-RTE V6.3.0
User Guide

system signal group to be used to collect the signals for the request (call) or re-
sponse of the operation.

• A set of <PRIMITIVE-TYPE-MAPPINGS> which provide mappings for any arguments
with simple types. These are described in more detail below.

• A set of <COMPOSITE-TYPE-MAPPINGS> which provide mappings for any arguments
with complex types (records or arrays). These are described in more detail below.

• An optional <APPLICATION-ERROR> element which identifies the system signal used
to carry an application-defined error code returned from the server.

• An optional <EMPTY-SIGNAL> used for operations with no parameters. This is nec-
essary to avoid the transfer of signal groups which contain no signals.

• An optional <SEQUENCE-COUNTER> mapping which identifies a signal used to pass a
counter for tracking request-to-response pairings.

For each inter-ECU client-server operation you must specify a pair of mappings, using
separate <CLIENT-SERVER-TO-SIGNAL-GROUP-MAPPING> elements. One of these maps
arguments of the calling side of the operation, the other maps those of the response.
The presence of either a <REQUEST-GROUP-REF> or a <RESPONSE-GROUP-REF> indicates
the direction (client-to-server or server-to-client) of a particular signal group mapping.

<CLIENT-SERVER-TO-SIGNAL-GROUP-MAPPING>

<APPLICATION-ERROR>
<SYSTEM-SIGNAL-REF DEST="SYSTEM-SIGNAL">
/system/signal_srv_reply1_appError

</SYSTEM-SIGNAL-REF>
</APPLICATION-ERROR>

<MAPPED-OPERATION-IREF>
<CONTEXT-COMPONENT-REF DEST="... ">
/composition/Test552/client

</CONTEXT-COMPONENT-REF>
<CONTEXT-PORT-REF DEST="R-PORT-PROTOTYPE">
/client/cswc/ra

</CONTEXT-PORT-REF>
<TARGET-OPERATION-REF DEST="OPERATION-PROTOTYPE">
/interfaces/simple_if1/op_async

</TARGET-OPERATION-REF>
</MAPPED-OPERATION-IREF>

<PRIMITIVE-TYPE-MAPPINGS>
...

</PRIMITIVE-TYPE-MAPPINGS>

<RESPONSE-GROUP-REF DEST="SYSTEM-SIGNAL-GROUP">
/system/signal_srv_reply1_group

</RESPONSE-GROUP-REF>

Inter-ECU Communication 219

RTA-RTE V6.3.0
User Guide

<SEQUENCE-COUNTER>
<SYSTEM-SIGNAL-REF DEST="SYSTEM-SIGNAL">
/system/signal_srv_reply1_seqCount

</SYSTEM-SIGNAL-REF>
</SEQUENCE-COUNTER>

</CLIENT-SERVER-TO-SIGNAL-GROUP-MAPPING>

The element used to map argument prototypes to system signals depends on whether
the communicated argument’s data type is primitive or complex. These mappings are
described in the following sections.

19.3.1 Primitive Argument Types

Primitive types are mapped using the <CLIENT-SERVER-PRIMITIVE-TYPE-MAPPING> el-
ement. One element must be configured for each operation argument. If there is
more than one primitive argument, their mappings should be grouped together inside
a <PRIMITIVE-TYPE-MAPPINGS> element.

<PRIMITIVE-TYPE-MAPPINGS>
<CLIENT-SERVER-PRIMITIVE-TYPE-MAPPING>
<ARGUMENT-REF DEST="ARGUMENT-PROTOTYPE">
/interfaces/simple_if1/op_sync/a

</ARGUMENT-REF>
<SYSTEM-SIGNAL-REF DEST="SYSTEM-SIGNAL">
/system/signal_cli_request1_pA

</SYSTEM-SIGNAL-REF>
</CLIENT-SERVER-PRIMITIVE-TYPE-MAPPING>

</PRIMITIVE-TYPE-MAPPINGS>

The ‘client-server primitive type mapping <ARGUMENT-REF> specifies the argument pro-
totype from which the communication originates (and which implicitly lies within the
referenced operation).

19.3.2 Complex Argument Types

This release of RTA-RTE does not support interECU transmission of complex
types using client-server communication.

Complex types, which may be either records or arrays, are mapped within a
<COMPOSITE-TYPE-MAPPINGS> block, using a set of XML structures very similar to those
used for sender-receiver mappings. One element must be configured for each complex
argument prototype. The only significant difference is that in the client-server case
no signal group is required for a complex mapping, as all the signals associated with
an operation are always mapped to a dedicated signal group for either the request or
response.

The <CLIENT-SERVER-RECORD-ELEMENT-MAPPING> is similar to the mapping element
for primitive types in that it contains an <ARGUMENT-PROTOTYPE-REF> to select the ar-
gument. However, unlike the primitive mapping, the selection of system signals is more

220 Inter-ECU Communication

RTA-RTE V6.3.0
User Guide

involved since a recursive mapping of the record/array elements to system signals is
required.

<COMPOSITE-TYPE-MAPPINGS>
<CLIENT-SERVER-RECORD-TYPE-MAPPING>
<RECORD-ELEMENT-MAPPINGS>

<!-- Element 1: Speed -->
<CLIENT-SERVER-RECORD-ELEMENT-MAPPING>
<RECORD-ELEMENT-IREF>
<COMPONENT-PROTOTYPE-REF DEST="COMPONENT-PROTOTYPE">
/composition/Test705/Client

</COMPONENT-PROTOTYPE-REF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">
/client/swClient/ra

</PORT-PROTOTYPE-REF>
<ARGUMENT-PROTOTYPE-REF DEST="ARGUMENT-PROTOTYPE">
/interface/client_server/op_sync/b

</ARGUMENT-PROTOTYPE-REF>
<RECORD-ELEMENT-REF DEST="RECORD-ELEMENT">
/test_types/R2/Speed

</RECORD-ELEMENT-REF>
</RECORD-ELEMENT-IREF>
<SIGNAL-REF DEST="SYSTEM-SIGNAL">
/system/signal_cli2bnc_B_Speed

</SIGNAL-REF>
</CLIENT-SERVER-RECORD-ELEMENT-MAPPING>

<!-- Element 2: Freq -->
<CLIENT-SERVER-RECORD-ELEMENT-MAPPING>
<RECORD-ELEMENT-IREF>
<COMPONENT-PROTOTYPE-REF DEST="COMPONENT-PROTOTYPE">
/composition/Test705/Client

</COMPONENT-PROTOTYPE-REF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">
/client/swClient/ra

</PORT-PROTOTYPE-REF>
<ARGUMENT-PROTOTYPE-REF DEST="ARGUMENT-PROTOTYPE">
/interface/client_server/op_sync/b

</ARGUMENT-PROTOTYPE-REF>
<RECORD-ELEMENT-REF DEST="RECORD-ELEMENT">
/test_types/R2/Freq

</RECORD-ELEMENT-REF>
</RECORD-ELEMENT-IREF>
<SIGNAL-REF DEST="SYSTEM-SIGNAL">
/system/signal_cli2bnc_B_Freq

</SIGNAL-REF>
</CLIENT-SERVER-RECORD-ELEMENT-MAPPING>

</RECORD-ELEMENT-MAPPINGS>
</CLIENT-SERVER-RECORD-TYPE-MAPPING>

</COMPOSITE-TYPE-MAPPINGS>

Inter-ECU Communication 221

RTA-RTE V6.3.0
User Guide

The mapping of an array argument prototype is similar to the record type shown here,
but uses the <CLIENT-SERVER-ARRAY-ELEMENT-MAPPING> element. As with inter-ECU
sender-receiver communications, nested types can also be mapped, again with the
exception that arrays of arrays are currently not supported.

222 Inter-ECU Communication

RTA-RTE V6.3.0
User Guide

20 Using the OS and COM Configurations

The OS and COM modules for a particular ECU must provide the RTE for that ECU with
all the services it requires in order to fulfil the requirements of the software components
and BSW modules on the ECU. For instance the RTE may require particular OsResources
for serialization of access to application / BSW module code and/or internal state and
may require particular COM signals for communication with software components on
other ECUs. The configurations of the OS and COM modules must therefore eventually
contain all the required configuration objects for the RTE, in addition to configuration
for the ECU environment (e.g. OS target) and Os objects for other BSW modules.

As mentioned in section 18.4 the RTE generator in RTE phase uses part of the OS con-
figuration to determine the execution contexts of runnables, the concurrency model for
the system and the task bodies it must generate. It is possible to supply just this part of
the OS configuration at RTE generation time and subsequently add the other required
configuration before the OS generation or configuration step. Similarly it is possible
to supply just part of the COM configuration at RTE generation time and add the rest
before generating or configuring COM.

The RTE generator optionally outputs two configuration files that can be useful when
taking this approach:

1. An Operating System configuration file containing both additional configuration
for Os objects that were in the input configuration but need particular proper-
ties for the RTE to function correctly and additional Os objects required for the
scheduling and serialization of the Os tasks by the RTE. Depending on the se-
lected OS (RTE option --operating-system) this could be an AUTOSAR XML file
or a legacy OIL file. The default name of the file depends on the OS used; for
example, for the AUTOSAR R4.0 OS plug-in it is osNeeds.arxml, for the AUTOSAR
R1.0 plug-in it is rta-osek.oil, for the OSEK v2.2.3 plug-in it is osek.oil. The
name can be changed using the command-line option --os-file.

2. A COM v1.0 configuration file called rta-com.oil.

These configuration files are not complete; they must be combined with other config-
uration files, not generated by RTA-RTE, before being passed to the operating system
and communication service configuration tools.

These files contain partial configuration information for the respective mod-
ules. The scope of the generated configuration data are those parts of con-
figuration necessary for the RTE to work, namely Os tasks and supporting
Os objects and COM signals and signal groups. If additional OS/COM config-
uration is provided as input to the RTE generator then this is ignored.

The output of OS and COM configuration can be ignored if not required or
not suitable. The plug-ins should not be removed from the the RTE generator
configuration file.

Using the OS and COM Configurations 223

RTA-RTE V6.3.0
User Guide

It is possible and sometimes necessary to supply more than the minimum OS con-
figuration on the input to the RTE generator. In particular, in a partitioned system it
is necessary to supply the OsApplications and the mapping of tasks to them; in this
case the additional OS configuration for the RTE that is generated by the RTE gener-
ator does not place the additional Os objects in OsApplications and cannot be used
directly. For R4.0 it is possible to disable the generation of additional OS configuration
and have the RTE generator check that the supplied configuration is sufficient, using
the --strict-config-check option.

When the OS and/or COM configuration output by the RTE generator is ig-
nored (and the strict configuration check is not enabled) it is important that
all the Os and COM objects that the generated RTE uses are configured with
the expected names, at latest by the OS and COM generation or configura-
tion step, otherwise compilation or link errors will result. It is also important
to ensure that all Os tasks and ISRs in which RTE code may execute are con-
figured as accessing the necessary Os objects used by the RTE, otherwise
runtime errors may occur. Details of the Os objects typically required by the
RTE may be found in the OS Configuration section of the RTA-RTE Reference
Manual.

20.1 Operating System Configuration

All AUTOSAR application software components’ access to the OS occurs via the RTE.
The RTE insulates application software components from the need to access OS API
calls directly and hence RTA-RTE provides no mechanism for them to do so.

20.1.1 Scheduling Policy

By default, all runnable entities are scheduled pre-emptively based on priorities speci-
fied during configuration.

Runnable entities that must guard against access to an exclusive area at runtime can
use the RTE concurrency control API to force non-preemption by declaring an exclusive
area around relevant code regions. All runnable entities in a prototype of a component
that specify the same explicit exclusive area are scheduled non pre-emptively.

20.1.2 OS Counters

The generated RTE uses OS objects, either periodic alarms or schedule tables, to trig-
ger runnable entities activated by timing events. The alarm/table is driven by a counter
Rte_Tick_Counter. The rate at which the counter must be driven depends on config-
ured timing events – for convenience the output file Rte_Const.h contains the required
period (in microseconds) as RTE_PERIODIC_COUNTER_TICK_INTERVAL_US.

The generated RTE uses OS alarms for sporadic events such as timeouts. If such alarms
are required then the counter Rte_TOut_Counter is created in the OS configuration.
To avoid unacceptable jitter on timeouts the Rte_TOut_Counter is always ticked at
1ms. For convenience the output file Rte_Const.h contains the required period (in
microseconds) as RTE_ALARM_COUNTER_TICK_INTERVAL_US.

224 Using the OS and COM Configurations

RTA-RTE V6.3.0
User Guide

Because the AUTOSAR OS and OSEK OS forbid SetEvent and ActivateTask API calls
within an alarm callback, it is necessary not to directly tick Rte_Tout_Counter but
instead to call the generated function Rte_Tick_Timeouts. The Rte_Tick_Timeouts
API ticks Rte_Tout_Counter and then performs any RTE state maintenance needed if
timeouts occurred.

20.1.3 Scheduling Periodic Runnable Entities

The RTE generator uses the periodicity information from the RTE configuration files
to generate one or more schedule tables to execute periodic runnable entities (those
triggered by TimingEvent). The schedule table specifies when each runnable entity is
executed within the table hyper-period (the point at which the sequence of runnable
entities on the table repeats).

As an example of how the RTE generator builds schedule tables, consider two runnable
entities, A and B, with periods of 3ms and 4ms respectively. The periodic schedule
generated by the RTE generator has a hyper-period of 12ms and would invoke the
runnable entities as follows:

Time Action

0ms Invoke A, invoke B

3ms Invoke A

4ms Invoke B

6ms Invoke A

8ms Invoke B

9ms Invoke A

12ms Repeat

The schedule may result in the execution of one or more tasks depending on the jitter
requirements and category of runnable entities contained in the schedule. Typically
only a single task is required since Category 1 runnable entities cannot block and must
have finite execution time. However, multiple tasks may be required to meet the jitter
requirements.

For example consider two runnable entities, each with an execution time of 7ms, exe-
cuted at 5ms and 10ms offsets into a schedule. If each runnable entity has an accept-
able start jitter of 5ms then a single task can be used to invoke the runnable entities—
the first will start at 5ms, the second at 12ms. However if the acceptable start jitter is
reduced to 1ms then two tasks are now required since the first will now execute at 5ms
and the second task will execute at 10ms and hence the jitter requirements are met
even though the response time of the first runnable entity is extended.

20.1.4 OsResources

The generated RTE uses an OsResource for the serialization of access to internal state.
In a multi-core system a different OsResource is used for each core. OsResources can

Using the OS and COM Configurations 225

RTA-RTE V6.3.0
User Guide

also be used to serialize access to application / BSW module code, depending on the
configured protection requirements and the possible concurrency of runnables implied
by the task mappings and task configuration.

Any task or ISR in whose context RTE code may run must be marked as locking the
RTE-internal OsResource, or the RTE-internal OsResource for the core on which it exe-
cutes in a multi-core system. This includes tasks whose bodies are generated by the
RTE generator, i.e. that have runnable entities and/or schedulable entities mapped to
them, and tasks and ISRs from which BSW modules may call RTE generated notification
functions, such as COM reception notifications for example.

Similarly, tasks and ISRs in whose context protected application / BSW module code
executes must be marked as locking the corresponding OsResources used by the RTE
to provide the protection.

See the OS Configuration section of the RTA-RTE Reference Manual for details.

20.1.5 Using the OS Configuration

The OS configuration generated by the RTE generator contains only the task configu-
ration for the tasks you defined at system deployment time, the schedule tables for
runnable entities triggered with periodic TimingEvents and OsResources needed for
serializing access to application code or internal state. You will need to include the
generated XML / OIL file with the other XML / OIL files that define other aspects of your
system, for example:

• message/task mappings generated by the COM configuration process

• a driver interrupt for the schedule table

• other interrupt handlers

• other tasks for non-RTE managed ECU functionality

• additional counters, alarms etc.

For OIL configuration files you can use the #include mechanisms to integrate the RTE
OS configuration with your other OS configuration files. You should consult your OS
documentation for further information or for details of how to merge XML configuration
files.

20.2 Communication Stack Configuration

When component prototypes that communicate are allocated to different ECU in-
stances, the RTE generator will generate an OIL configuration file for the communi-
cation stack.

20.2.1 Using the COM Configuration

The rta-com.oil configuration file generated by the RTE generator contains the mes-
sages and network messages (messages packed into COM IPDUs) and the IPDU frame

226 Using the OS and COM Configurations

RTA-RTE V6.3.0
User Guide

types. The configuration also contains the declaration of which OS tasks access the
specified messages.

You will need to include the rta-com.oil file with any additional configuration you might
have. The following example shows the general structure:

CPU MyECU {
OS dummyOS {
};

COM Somename {
COMTIMEBASE = 0.001;
COMAPPMODE = "COMAppMode1";
COMSTATUS = COMEXTENDED;

};

#include "rta-com.oil"
};

The COM configuration should be processed with the COM configuration tool to gener-
ate the data structures for the communication layer. Please consult your COM docu-
mentation for details.

The configuration of the COM layer does not include configuration of the net-
work drivers (e.g. CAN drivers, FlexRay drivers etc.) or the PDU Router. This
must be done independently using your AUTOSAR XML files and network
driver configuration tools.

Using the OS and COM Configurations 227

RTA-RTE V6.3.0
User Guide

21 Debugging Implementations with VFB Tracing

Virtual Function Bus (VFB) Tracing permits the monitoring of AUTOSAR signals as they
are sent and received across the VFB.

VFB tracing is implemented as a series of hook functions that are invoked automatically
by the generated RTE when interesting events within the RTE occur. Each hook func-
tion corresponds to a single trace event, for example task dispatch or runnable entity
invocation.

The trace events supported by RTA-RTE are defined in Section 21.2. RTA-RTE provides a
means by which VFB tracing can either be globally enabled or disabled (if disabled, VFB
tracing has no run-time effect) as well as the enabling or disabling of individual trace
events. Configuration of VFB tracing for RTA-RTE is described in Section 21.3.

21.1 Enabling Tracing

The creation of VFB Tracing hook calls within the generated code is controlled by either
a command-line option or an RTE configuration parameter within the ECUC.

If VFB Tracing is disabled then no hook calls are created in the generated code.

Even if hook calls are generated they will have no runtime effect unless
definitions in Rte_Cfg.h are in place to globally enable VFB tracing to enable
the required individual hook calls.

21.2 Supported Trace Events

RTA-RTE supports the following VFB Trace events:

• RTE API call start and return.

• Inter-ECU signal transmission, reception and reception notification.

• Runnable entity invocation and termination.

• OS Event set, wait and return.

• OS Task activation and dispatch.

21.2.1 RTE API Start

RTE API Start is invoked by the RTA-RTE when an API call is made by a software compo-
nent. The hook function must have the name:

Rte_<api>Hook_<swc>_<ap>_Start

Where <api> is the API root name (Write, Call, Feedback, etc.), <swc> the software-
component type name and <ap> the access point (combination of port name and data
item name/operation name separated by an underscore).

228 Debugging Implementations with VFB Tracing

RTA-RTE V6.3.0
User Guide

21.2.2 RTE API Return

RTE API Return is invoked by the RTA-RTE just before an API call returns control to a
component. The hook function must have the name:

Rte_<api>Hook_<swc>_<ap>_Return

Where <api> is the API root name (Write, Call, Feedback, etc.), <swc> the software-
component type name and <ap> the access point (combination of port name and data
item name/operation name separated by an underscore).

21.2.3 COM Signal Transmission

A trace event indicating a transmission request of an Inter-ECU signal or signal group
by the RTE. The hook function is invoked by the RTA-RTE just before Com_SendSignal
or Com_SendSignalGroup is invoked. The hook function must have the name:

Rte_ComHook_<signal>_SigTx

Where <signal> is the system signal name.

21.2.4 COM Signal Reception

A trace event indicating an attempt to read Inter-ECU signal by the RTE. The hook
function is invoked by the RTA-RTE after successful return from Com_ReceiveSignal.
The hook function must have the name:

Rte_ComHook_<signal>_SigRx

Where <signal> is the system signal name.

21.2.5 COM Notification

A trace event indicating the start of a COM notification. Invoked by RTA-RTE generated
code on entry to the COM call-back. The hook function must have the name:

Rte_ComHook_<signal>

Where <signal> is the system signal name.

21.2.6 OS Task Activation

A trace event invoked by RTA-RTE generated code immediately before activating the
specified task. The hook function must have the name:

Rte_Task_Activate

The Rte_Task_Activate hook is passed the task handle of the activated task.

21.2.7 OS Task Dispatch

A trace event invoked by the RTA-RTE immediately on dispatch of the specified gen-
erated task (provided it contains runnable entities). The hook function must have the
name:

Debugging Implementations with VFB Tracing 229

RTA-RTE V6.3.0
User Guide

Rte_Task_Dispatch

The Rte_Task_Dispatch hook is passed the task handle of the activated task.

21.2.8 OS Task Set Event

A trace event invoked immediately before generated RTA-RTE code attempts to set an
OS Event. The hook function must have the name:

Rte_Task_SetEvent

The parameters of the hook call define the task for which the event is being set and the
event mask.

21.2.9 OS Task Wait Event

A trace event invoked immediately before generated RTA-RTE code attempts to wait for
an OS Event. The hook function must have the name:

Rte_Task_WaitEvent

The parameters of the hook call define the task waiting for the event and the event
mask.

21.2.10 OS Task Wait Event Return

A trace event invoked immediately before generated RTE code returns from waiting for
an OS Event. The hook function must have the name:

Rte_Task_WaitEventRet

The parameters of the hook call define the task returning from the wait and the event
mask.

21.2.11 Runnable Entity Invocation

A trace event invoked by the RTE just before execution of a runnable entry starts via
its entry point. This trace event occurs after any copies of data elements are made to
support the Rte_IRead API Call. The hook function must have the name:

Rte_Runnable_<swc>_<reName>_Start

Where <swc> is the software-component type name and <reName> the runnable entity
name.

21.2.12 Runnable Entity Termination

A trace event invoked by the RTE immediately after execution returns to RTE code from
a runnable entity. This trace event occurs before write-back of data elements is made
to support the Rte_IWrite API Call. The hook function must have the name:

Rte_Runnable_<swc>_<reName>_Return

230 Debugging Implementations with VFB Tracing

RTA-RTE V6.3.0
User Guide

Where <swc> is the software-component type name and <reName> the runnable entity
name.

21.3 Configuration

When generation of VFB trace hooks is enabled, RTA-RTE always places hook calls in the
generated RTE. However unless both VFB Tracing is globally enabled and the individual
trace event(s) enabled the generated hooks will have no run-time effect.

The RTE configuration header file, Rte_Cfg.h, contains user definitions that globally
enable or disable VFB tracing and enable individual trace events.

21.3.1 Enabling VFB Tracing

VFB Tracing is globally enabled when the RTE configuration header file defines
RTE_VFB_TRACE as a non-zero integer, for example:

#define RTE_VFB_TRACE (1)

If RTE_VFB_TRACE is not defined in the RTE configuration header file VFB Tracing is
globally disabled.

21.3.2 Enabling VFB Trace Events

Using definitions in the RTE configuration header file it is possible to enable or disable
individual trace events, for example, it is possible to enable just “Task dispatch” events
and to ignore all others.

Individually enabled trace events have no effect if VFB tracing is globally
disabled.

An individual trace event is enabled when there is a #define in the RTE configuration
header file for the hook function name. The following example enables VFB Tracing for
“Task Dispatch” events

#define Rte_Task_Dispatch (1)

The name of the #define must be the same as the hook name.

21.4 Trace Event Header File

RTA-RTE creates a header file, Rte_Hook.h, that defines the signature of each hook
function and is responsible for disabling the trace event so that its hook call has no
run-time effect if the hook function name is not defined in the RTE configuration header
file.

21.5 Implementing Hook Functions

For each enabled trace event RTA-RTE will invoke a hook function. The implementation
of the function is not provided by RTA-RTE but instead must be supplied by the user.
The implementation is free to perform any actions required within the hook function,
e.g. log the invocation.

Debugging Implementations with VFB Tracing 231

RTA-RTE V6.3.0
User Guide

The Rte_Hook.h header file should be included in any user code that implements hook
functions. Additional header files, such as Rte_Type.h, may be necessary depending on
the enabled trace events and the data types used within the program.

The following example implements a hook function for “Task Dispatch”:

#include <Os.h>
#include "Rte.h"
#include "Rte_Hook.h"

FUNC(void, RTE_APPL_CODE)
Rte_Task_Dispatch(TaskType t)
{

if (t == taskA)
{

/* Log dispatch of taskA */
}

}

232 Debugging Implementations with VFB Tracing

RTA-RTE V6.3.0
User Guide

22 Data Transformation

RTA-RTE supports data transformation, introduced in AUTOSAR 4.2, for sender/receiver
communications. When data transformation is requested for a signal, RTA-RTE will
transform any data items that are sent or received via the Rte_Write and Rte_Read
APIs associated with that signal.

On the transmission side of a communication, the generated Rte_Write API calls the
configured sequence of BswModuleEntrys to convert the port data to a byte array (ar-
ray of uint8) and passes the resulting array to COM_SendSignal for transmission.

On the reception side of a communication, the data is received from COM as a byte
array (array of uint8), and the generated Rte_Read API calls the configured sequence
of BswModuleEntrys to convert the byte array back into port data.

22.1 Extent of support

Data transformation in RTA-RTE is based on the specification in AUTOSAR version 4.2.2.
The scenarios supported are described in Section 22.1.1.

RTA-RTE does not support the complete AUTOSAR specification for data transformation.
Section 22.1.2 outlines the limitations in the support for data transformation in the
current implementation.

There are a number of differences between the implementation of data transforma-
tion in RTA-RTE and the published AUTOSAR 4.2.2 specification. These differences are
highlighted in Section 22.1.3.

22.1.1 Supported scenarios

The following are supported by RTA-RTE:

Configurations supplied as an ECU_EXTRACT: RTA-RTE supports data transforma-
tion for configurations containing an AUTOSAR System of category ECU_EXTRACT,
where signals are mapped to delegation ports on the RootSwComposition.

Explicit unqueued sender/receiver communications: RTA-RTE supports data
transformation for explicit sender/receiver communications using the Rte_Read
and Rte_Write APIs.

Serialization with SOME/IP plus optional end-to-end protection: RTA-RTE sup-
ports serialization of the input data using the SOME/IP transformer, optionally
followed by end-to-end protection using the E2E transformer.

Out-of-place buffering: RTA-RTE supports the use of the E2E transformer when it is
configured for out-of-place buffering.

Reporting of transformer errors to calling SWC: RTA-RTE supports extending the
Rte_Read and Rte_Write APIs with the optional transformerError parameter to
provide transformer error information to the calling SWC.

Data Transformation 233

RTA-RTE V6.3.0
User Guide

22.1.2 Limitations

RTA-RTE does not currently support data transformation for these configurations:

• Transformer chains (DataTransformations) of length 3 or more.

• Transformer chains containing TransformationTechnologys of SECURITY or
CUSTOM classes.

• Transformers using in-place buffering (where BufferProperties.inPlace is TRUE)

• Transformers requiring access to the original data (where the needsOriginalData
attribute is TRUE)

• Transformer chains that use the COM-based transformer for serialization

RTA-RTE does not currently support data transformation for these types of communica-
tion:

• Implicit sender/receiver communication (Rte_IWrite and Rte_IRead APIs)

• Queued sender/receiver communication (Rte_Send and Rte_Receive APIs)

• Client/server communication (Rte_Call and Rte_Result APIs)

• External trigger communication (Rte_Trigger API)

• Any form of intra-ECU communication

RTA-RTE does not currently support transformation in the following APIs used for un-
queued explicit sender/receiver communication:

• Rte_Invalidate

• Rte_DRead

• Rte_Feedback

RTA-RTE does not support the use of data transformation for any inter-ECU communica-
tion where the same data element is sent or received via multiple signals. This includes
configurations where multiple SystemSignals or SystemSignalGroups are mapped to
the same data element, as well as signal fan-in and fan-out as a result of multiple
ISignals referencing the same SystemSignal.

22.1.3 Deviations from AUTOSAR

The implementation of data transformation in RTA-RTE deviates from the AUTOSAR
specification in the following ways:

234 Data Transformation

RTA-RTE V6.3.0
User Guide

Buffer Size

To eliminate problems caused by different interpretations of the AUTOSAR stan-
dard, and to minimize the cost of corrections to the configuration, RTA-RTE
does not attempt to calculate the buffer size from the input type size and the
bufferProperties.BufferComputation.

Instead, RTA-RTE requires that an XfrmBufferSizeInBytes be supplied for each
XfrmImplementationMapping. This specifies the size of the buffer for the transformed
data, i.e. the output buffer on the sending side and the input buffer on the receiv-
ing side. The specified buffer size must include an allowance for any header that the
transformer function may add.

XfrmBufferSizeInBytes is a mandatory integer parameter that must be between 1
and 65535, since the C-type of bufferLength in the calling protocol is uint16. If any
XfrmImplementationMapping does not contain a parameter XfrmBufferSizeInBytes,
RTA-RTE raises error 2968.

Prototypes for transformer functions

When a transformer function is called, RTA-RTE forward declares the function by writ-
ing the function prototype to Rte.c. The declaration is generated without the use of
compiler abstraction macros (FUNC, CONSTP2VAR etc.).

Version 4.2.2 of the AUTOSAR specification is ambiguous as to how transformer func-
tions should be declared. According to SWS_Rte 07283, the declaration should be gen-
erated in the Module Interlink Header File (MIHF), however there is no requirement to
include MIHFs in Rte.c, nor any mechanism to know what MIHFs might be appropriate
for a given transformer (given only a reference to a BswModuleEntry, RTA-RTE does not
know which BSW Module’s ExecutableEntity it belongs to).

RTA-RTE does not currently implement RfC 73044 (adopted in AUTOSAR ver-
sions 4.3.0 and later), which adds a new attribute to bswModuleEntrys to
determine whether or not RTE is responsible for generating the function pro-
totype in the MIHF.

22.1.4 Unsupported feature combinations

When data transformation is in use, the use of these features is not supported:

• Data conversion

• Signal fan-in and fan-out

• MEMORY optimization strategy

The use of these features combined with data transformation may result in RTA-RTE
exiting with an error, or other unexpected behaviour.

Data Transformation 235

RTA-RTE V6.3.0
User Guide

22.2 Enabling data transformation in an input configuration

To enable data transformation, the input configuration must contain the following ele-
ments:

• An AUTOSAR system of category ECU_EXTRACT with signals mapped via delegation
ports (section 22.2.1)

• System model elements associated with transformation (section 22.2.2)

• Mappings to transformer implementation functions(section 22.2.3)

• BSW entries corresponding to transformer functions (section 22.2.4)

• COM signals to send the transformed data (section 22.2.5)

22.2.1 System category and signal mapping

RTA-RTE only supports data transformation for AUTOSAR Systems that are of cate-
gory ECU_EXTRACT. The use of any System category other than ECU_EXTRACT when-
ever XfrmImplementationMappings are present in the input configuration (see sec-
tion 22.2.3) will cause RTA-RTE to exit with an error.

The signals that transport transformed data must be mapped to delegation ports on
the RootSwComposition. RTA-RTE will exit with an error if transformation is enabled
for a signal that is mapped directly to an inner port on a SWC contained within the
RootSwComposition.

Each delegation port to which a transformed signal is mapped must be connected to
a single port on an atomic SWC. RTA-RTE will raise errors if a delegation port on the
RootSwComposition that is ultimately associated with a transforming ISignal is refer-
enced by multiple DelegationSwConnectors or if the inner port is a delegation port on
a CompositionSwComponentType

The port interfaces through which transformed data is communicated must be
directly compatible so that the DelegationSwConnector does not reference a
PortInterfaceMapping - RTA-RTE does not support the use of data conversion
in combination with data transformation. RTA-RTE will raise an error when a
DelegationSwConnector that is ultimately associated with a transforming ISignal ref-
erences a PortInterfaceMapping.

RTA-RTE does not support the mapping of multiple SystemSignals to a data element in
a port interface when transformation is in use for that data element. RTA-RTE will raise
an error when multiple SystemSignals are mapped to the same data element across a
delegation port or a connected inner port and any of those signals are associated with
a transforming ISignal .

RTA-RTE does not support the use of signal fan-in or fan-out (by referencing the same
SystemSignal from multiple ISignals) when transformation is in use. RTA-RTE will

236 Data Transformation

RTA-RTE V6.3.0
User Guide

raise an error if multiple ISignals reference the same SystemSignal and any of those
ISignals reference a DataTransformation .

22.2.2 System model elements

For each transformation, the input model must contain the required model elements:

• A DataTransformation referencing the required TransformationTechnologys

• TransformationTechnologys, each referencing a BufferProperties

Data transformation is enabled on an ISignal-by-ISignal basis. To enable data trans-
formation for an ISignal, it must reference a DataTransformation which in turn must
reference at least one TransformationTechnology.

Each TransformationTechnology referenced from a DataTransformation must
in turn reference a valid BufferProperties. RTA-RTE does not require the
bufferComputation attribute to be present inside BufferProperties as it uses the
alternative XfrmBufferSizeInBytes to determine the transformer buffer size. RTA-RTE
ignores any bufferComputation that may be present.

If the requested DataTransformations or TransformationTechnologys are invalid or
are not found in the input model, RTA-RTE will reject the configuration with an error.

RTA-RTE will not raise errors when a configuration contains
DataTransformations or TransformationTechnologys that are invalid
or missing if they are not referenced from any ISignal (and so are not
required to perform data transformation).

22.2.3 Mapping in the ECU Value File

When transformation is enabled for an ISignal, the input configuration
must contain XfrmImplementationMappings referencing that ISignal and the
TransformationTechnologys aggregated by the requested DataTransformation.

Zero or more XfrmImplementationMappings are provided in an
EcucModuleConfigurationValues with DefinitionRef Xfrm. Each
XfrmImplementationMapping identifies the BswModuleEntry that will implements
a single TransformationTechnology on the data transported by an ISignal.

An XfrmImplementationMapping can contain two references to BswModuleEntrys -
one for the sending-side transformer implementation and one for the receiving side
inverse transformer implementation. In cases where the same ISignal is both sent
and received on the same ECU and so both references are required, these must be
supplied in the same XfrmImplementationMapping container. Supplying separate
XfrmImplementationMappings for the same ISignal and TransformationTechnology
pair will cause RTA-RTE to raise an error.

Each XfrmImplementationMapping must include an XfrmBufferSizeInBytes
parameter that specifies the size of the transformer buffer for that

Data Transformation 237

RTA-RTE V6.3.0
User Guide

ISignal/TransformationTechnology combination. RTA-RTE will raise an error
when an input configuration contains an XfrmImplementationMapping that does not
include the XfrmBufferSizeInBytes parameter.

RTA-RTE will issue a warning if an input configuration contains any
XfrmImplementationMappings that are not required to perform data trans-
formation. To prevent this warning, you should remove all unused
XfrmImplementationMappings from the ECU value file.

RTA-RTE will reject a configuration with an error if it detects an invalid
XfrmImplementationMapping, even if that XfrmImplementationMapping is
not required to perform transformation in the system. To prevent this,
you should remove all invalid XfrmImplementationMappings from the ECU
value file.

22.2.4 BSW module entries for transformer functions

The functions that are called to perform transformation must be defined as
BswModuleEntrys. RTA-RTE uses the BswModuleEntry.shortName as the name of the
function that it calls to perform the transformation.

RTA-RTE calls transformer functions based entirely on the
BswModuleEntry.shortName. It does check for compliance with the
naming scheme detailed in AUTOSAR requirement [SWS_Xfrm_00062].

Prototypes for the transformer functions are declared in the generated Rte.c file before
they are used.

RTA-RTE raises error 2972 when a configuration requires it to generate mul-
tiple incompatible function prototypes for a C function that is used as a
transformer implementation.

22.2.5 COM signals

The COM configuration changes when data transformation is used, as data is transmit-
ted in the form of a byte array regardless of its underlying data type. When transformed
data is transmitted or received via a ‘ComSignal‘, the user must configure that signal
as type UINT8_N, not the original data type.

The length of the COM signal must be sufficient to convey the data in its transformed
format. On the sending side of a communication, the COM signal must be the same size
as the transformed data produced by the the last transformer in the chain (by execution
order). On the receiving side, the signal must be the same size as the transformed data
that is provided to the first transformer in the chain (by execution order).

In both cases, the size of the COM signal will be the same value that is supplied for the
XfrmBufferSizeInBytes in the XfrmImplementationMapping that references both the
final TransformationTechnology in the chain and the associated ISignal.

238 Data Transformation

RTA-RTE V6.3.0
User Guide

22.3 Working with data transformation

22.3.1 Serialization and data types

Data transformation is used to serialize complex data into, which simplifies the process
of transmitting it via COM. The first transformer in a chain (on the sender side) is always
of class SERIALIZER, and it produces output as a byte array. Subseqent transformers in
the chain (such as the E2E transformer) perform further transformation on the serialized
data in this byte-array form before it is sent via COM.

RTA-RTE supports serialization of primitive, array and struct data, each of which
may be typed by an ApplicationDataType or an ImplementationDataType. Data
to be serialized is passed to the serializing transformer function as a pointer to the
ImplementationDataType associated with the VariableDataPrototype. The type of
the pointer is determined either directly from its typeTRef or via the DataTypeMapping
associated with its ApplicationDataType.

With array data, the data to be transformed is passed to the transformer function as an
array reference, i.e. as a pointer to the ImplementationDataType of the array element.
When serializing arrays whose element type is an array or struct, RTA-RTE must be
able to declare an argument to the transformer function of a type that is a pointer
to that element type. The array element must therefore be defined as a separate
ImplementationDataType, and then used in an ImplementationDataTypeElement of
category TYPE_REFERENCE.

RTA-RTE will reject any configuration where data transformation is used with
an array if the ImplementationDataTypeElement is not a TYPE_REFERENCE.

22.3.2 Transformer error reporting

RTA-RTE can provide detailed transformer error feedback to callers of Rte_Read and
Rte_Write APIs, enabling them to react to specific failures of individual transformers in
a chain. The error information is transmitted by extending these APIs with an additional
OUT parameter named transformerError.

The Rte_Read and Rte_Write APIs are extended for a port whenever its PortPrototype
is referenced by a PortAPIOption that has the attribute errorHandling set to
TRANSFORMER-ERROR-HANDLING.

The APIs are extended even when transformation is not requested for any
of the data elements provided or required by that port, in which case, the
error information provided always indicates that no transformation error oc-
curred.

If the APIs are not extended, RTA-RTE provides basic notification that a transformer
error has occurred to the callers of the Rte_Read and Rte_Write APIs via the return
codes for those APIs, but detailed information is not be available.

Data Transformation 239

RTA-RTE V6.3.0
User Guide

Part VI

Advanced Concepts

240

RTA-RTE V6.3.0
User Guide

23 RTE Generation

23.1 Identifier length

AUTOSAR R4.0 increased the maximum identifier length to 127 characters from the 31
characters allowed in previous releases.

Additionally a new RTE generation parameter can be defined in the ECU configuration
that sets the maximum number of characters that are significant from the perspective
of the toolchain. If two identifiers generated by RTA-RTE are not distinguishable within
the specified limit then a warning is issued.

The default value of the RteToolChainSignificantCharacters parameters is 31. The
default can be changed using either the --toolchain-significant-len or via the
RteToolChainSignificantCharacters parameter within the ECUC file.

RTE Generation 241

RTA-RTE V6.3.0
User Guide

24 Operating System Considerations

24.1 OS Trigger Selection

By default RTA-RTE creates OS objects, e.g. a schedule table or alarms, to implement
periodic events. In case this is not desired, RTA-RTE supports the AUTOSAR OS Inter-
action mechanism where the ECU configuration can define an existing OS object to
schedule periodic RTE and BSW events.

24.1.1 Alarms

To use an existing OsAlarm to schedule a periodic event the ECU configuration must ref-
erence the alarm in the event’s task mapping (see Section 18.4 for details on runnable
to task mapping).

If the task mapping also specifies an OsEvent to use then the generated RTE code will
use the OS event to trigger the RTE event.

If the task mapping also specifies an OsEvent then the alarm expiry must
actually set the event!

RTA-RTE’s use of an existing alarm is subject to the following constraints:

• The alarm expiry must either activate the task containing the runnable or set an
OS event in the task. RTA-RTE does not explicitly check this – if the alarm fails to
activate the task or set the event then the RTE event will not be triggered.

• The alarm period must be the same as the periodic event’s period.

If multiple timing events with the same period are mapped to the same task and all are
triggered by the same OsAlarm then RTA-RTE will optimize the generated task body.
The level of optimization possible depends on whether or not expiry of an alarm sets
an event or activates a task. In the best case when all runnables are Category 1 and all
are activated by the same alarm then RTA-RTE will add no additional code to the task
body.

24.1.2 Schedule Table

One or more AUTOSAR schedule tables can also be used to trigger runnables. As with
OS alarms the runnable’s task mapping must specify the schedule table entry which
either activates the runnables task or sets an event.

24.2 Task Recurrence

RTA-RTE can construct Os mechanisms, typically either periodic alarms or schedule
tables, to activate periodic runnables. If this is not the desired behaviour and you want
to use alarms or schedule tables that already exist in your wider OS configuration then
the --task-recurrence command-line option can be used to both disable RTA-RTE’s
generation of OS-based mechanism and to specify the recurrence rate for each task or
OsEvent used for periodic runnables.

242 Operating System Considerations

RTA-RTE V6.3.0
User Guide

RTA-RTE does not validate that the specified task or OsEvent occurs at the
rate specified using the --task-recurrence command-line option.

As an example, assume that task taskA contains two mapped RTE events with periods
10ms and 20ms. The --task-recurrence command-line option can be used to specify
the rate (in seconds) at which the task will be activated as follows:

--task-recurrence taskA=0.01

When given the above option RTA-RTE can accept runnable mappings whose period is
an integral multiple of 0.01s. If this constraint is violated, for example with an RteEvent
triggering a runnable with a period of 0.005s, then a build-time error is raised.

If Os events are required to schedule runnables within a task (e.g. when periodic and
sporadically triggered runnables are mixed in a task) then the --task-recurrence
command-line option can be used to specify the recurrence rate for an individual event.
For example, assuming a 10ms RteEvent is triggered by OsEvent evA in taskA one could
use:

--task-recurrence taskA.evA=0.01

When the --task-recurrence command-line option is used once then it disables RTA-
RTE’s generation of OS-based mechanisms for all periodic runnables and therefore the
option should give a recurrence rate for all tasks that contain periodic runnables. This
can be either by specifying the option multiple times or by specifying the option’s pa-
rameter as a comma-separated list of task/rate pairs, for example:

--task-recurrence taskA.evA=0.01,taskA.evB=0.01

24.3 Schedule Points

RTA-RTE supports the specification of schedule points within generated tasks. When a
schedule point is reached execution of a non-preemptive task is suspended if there is a
higher priority non-preemptive task waiting. Schedule points can be specified for each
instance of an RTE event; thus it is possible to have a schedule point only within certain
tasks when runnables from different SW-C instances are mapped to different tasks.

As with the selection of use OS alarm the configuration of a schedule point occurs
within the ECU configuration’s runnable to task mapping. The mapping has an extra
parameter, RteOsSchedulePoint, that defines whether the schedule point is omitted
(NONE) or included (CONDITIONAL or UNCONDITIONAL).

A conditional schedule point only occurs if the runnable is executed. An unconditional
schedule point is always inserted after the runnable’s position within the task.

The addition of task schedule points is RTA-RTE specific .

Operating System Considerations 243

RTA-RTE V6.3.0
User Guide

24.4 Basic and Extended Tasks

The RTE generator generates the task bodies based on the RunnableEntityMappings in
the ECU description file. The RTE generator creates “glue” code in the task bodies to
ensure that the correct runnable is executed only in the correct conditions, e.g. if two
TimingEvents with different periods are mapped to the same task, then pre-scalers are
implemented so that the runnables do not enter every time the task enters.

In OS Terminology, a task that may wait on an event is an Extended Task . The RTE
must use an extended task when a Runnable Entity may wait, e.g. there is a WaitPoint
configured in the configuration file, or the RunnableEntity is a synchronous client.

If all the RunnableEntityMappings for a given task refer only to periodic RTEEvents
(TimingEvents), then the RTE Generator configures an efficient periodic activation of
the task, e.g. by Schedule Table or Alarms.

If all the RunnableEntityMappings for a given task refer only to sporadic RTEEvents
(events that are not TimingEvents) then the task is activated by the RTE when the
conditions are detected, e.g. in the COM callback for received data.

If the RunnableEntityMappings for a given task refer to a mixture of periodic and spo-
radic RTE Events, then the RTE generator uses OS Events to handle the independent
activation of the Runnables, and the task becoms an Extended Task, regardless of
whether or not a Runnable contains a WaitPoint.

For some projects it might not be possible to use extended tasks; e.g. your chosen
Operating System does not support them. To prevent the RTE generator from using OS
events in generated code the following steps should be taken:

• Do not map periodic and sporadic runnable entities to the same task.

When such a mapping exists, the RTE generator uses extended tasks and OS events
to ensure the correct runnable is executed in response to each RTE event (but see
24.5 below). This restriction does not apply to server runnables that are pure since
RTA-RTE simply uses a direct function call.

• Do not use WaitPoints (i.e. blocking RTE API calls).

The implementation of a WaitPoint requires the use of OS Events and therefore any
task to which the runnable is mapped becomes an extended task.

• Avoid synchronous inter-task client-server communication unless the server is
marked as subject to concurrent execution.

The implementation of synchronous inter-task client-server communication uses
an OS Event so that the client can wait for the server’s reply therefore the client’s
task becomes an extended task. This restriction does not apply if the server is pure
since RTA-RTE simply uses a direct function call.

The efficiency of generated tasks can be maximized by adhering to the following map-
ping suggestions:

244 Operating System Considerations

RTA-RTE V6.3.0
User Guide

• Do not map runnable entities triggered by timing events with different periods to
the same task.

While the RTE generator supports arbitrary mapping of runnable entities triggered
by timing events to the same tasks it does this by implementing counters within
the glue code so that slower triggered runnable entities are executed at the correct
rate. If all runnable entities mapped to the task have the same period then these
counters are not required.

Note that the period of the task is related to the greatest common divisor of the
period of the mapped runnables, e.g. runnables at 200ms and 100ms may result in
the task being activated every 100ms, but runnables at 200ms and 180ms result
in the task being activated every 20ms.

If a task contains only periodic runnables and those runnables all have the same pe-
riod, the the task is activated at that period and the Runnables are unconditionally
entered—no counters are required.

• Avoid explicitly associating an OS event with an RTE Event mapping for a
TimingEvent in the ECU configuration.

When the creation of OS event for TimingEvent mappings is entirely within the
domain of RTA-RTE then it can optimize the event usage for events with the same
period. This can reduce the number of OS events compared to the one-OS-event-
per-mapping approach of the ECU configuration.

24.5 Forced-basic semantics

This is a vendor-specific feature not present in the AUTOSAR standards

To support users who cannot use extended tasks, e.g. because their selected OS does
not support them, RTA-RTE supports forced-basic semantics. This allows the mixture
of periodic and sporadic runnables on the same task without the use of OS Events by
means of a special Runnable activation scheme.

This feature does not allow Runnables with WaitPoints to be mapped to basic
tasks. A Category 2 Runnable still requires an Extended Task.

The configuration of forced-basic semantics can be set for specific tasks using vendor-
specific configuration items in the RTE Module Configuration, or set globally for all tasks
on the command line (see RTA-RTE Reference Manual).

When a task is marked with forced-basic semantics, and it contains a mixture of peri-
odic and sporadic runnables, then the task’s activation policy is the same as if it only
contained periodic runnables. The sporadic runnables are placed in the task guarded by
activation flags, which are set by the RTE when a Runnable becomes due for activation.

As an example, assume that a task contains two runnable entities, a sporadic (e.g.
DataReceivedEvent) and periodic (TimingEvent) runnable entity, where the periodic
runnable is mapped at position 1 within the task. Figure 24.1 shows conventional

Operating System Considerations 245

RTA-RTE V6.3.0
User Guide

AUTOSAR-compliant activation and dispatch. In this case the sporadic runnable runs
as soon as it is activated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Timing Event
(period 4)

Sporadic
event

Figure 24.1: Runnable activation without “force basic” semantics.

Figure 24.2 shows the same activation pattern as Figure 24.1 but this time “force basic”
semantics are enforced for the task containing the two runnables. Note that while the
activation of the sporadic runnable happens at the same point in time the dispatch
(execution) of the runnable is delayed until the periodic runnable has run.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Timing Event
(period 4)

Sporadic
event

Figure 24.2: Runnable activation using “force basic” semantics.

Mixing periodic and sporadic events on a basic task introduces latency on
the sporadic events between the conditions occuring and the event being
recognized.

Figure 24.2 shows task taskA with forced-basic semantics containing a Runnable
re_te1 started by TimingEvent with a 4s period, and a Runnable re_dre1 started by
DataReceiveEvent. At runtime, taskA is started every 4s and re_te1 is always entered.
When data is received on the relevant port and dataitem, the RTE runtime sets a flag
to record that re_dre1 is due to run, but does not activate taskA because that would
disturb the timing characteristics of re_te1. Thus, in this example, re_dre1 might
experience up to nearly 4s of lag between the data arriving and the Runnable entering.

Note that in these circumstances, you can take advantage of prescalers for periodic
runnables. If taskA in the example above also contained a Runnable started by
TimingEvent with a period of 100ms, then taskA would enter every 100ms rather than
4s, and the lag of re_dre1 would be reduced (although the overhead of activating
taskA more frequently must also be considered).

246 Operating System Considerations

RTA-RTE V6.3.0
User Guide

It is not recommended to use forced-basic semantics if your OS supports Extended
Tasks.

Operating System Considerations 247

RTA-RTE V6.3.0
User Guide

25 Understanding Deployment Choices

Your choice of component deployment at ECU integration time can have a large effect
on overall vehicle system performance. In this chapter you will learn what effects your
choices have on the behaviour of the RTE generator when it creates task bodies and on
the behaviour of the RTE API for users.

Communicating components may be distributed across a physical network or co-
located on the same ECU. There are three possible distribution patterns:

• Intra-task — communication occurs between components executed by the same
task (and is therefore serialized).

• Inter-task — communication occurs between notionally concurrent tasks in the
same ECU.

• Inter-ECU — communication occurs between concurrently executing components
located on physically distinct ECUs.

In all cases, RTA-RTE is responsible for managing the communication between software
components.

The following sections describe, in terms of message sequence charts, how RTA-RTE
manages the communication for each of the allocations and each communication
paradigm.

25.1 Intra-task

Intra-task communication occurs between runnable entities executed by the same task.
There is low overhead and it is easy to reason about the sequence of execution.

25.1.1 Intra-task Sender-Receiver

RTA-RTE implements intra-ECU communication itself—COM is only used when the des-
tination is located on a remote ECU. This means that:

Requests received from local and remote components are combined into a single queue
so starvation of either local or remote requests cannot occur.

The implementation of intra-ECU communication is more efficient since it avoids the
expense of passing signals to COM only for COM to return the signal to the RTE as it is
for a local destination.

Figure 25.1 illustrates the sequence of steps the thread of control executing a runnable
entity in an application software component takes when performing intra-task sender-
receiver communication.

In detail, the steps illustrated in Figure 25.1 are:

1. The sending component initiates communication via the RTE API call Rte_Send (or
Rte_Write API call if the data is unqueued).

248 Understanding Deployment Choices

RTA-RTE V6.3.0
User Guide

sd SR Intra-task

RT ERunnable wi thin

Sender SWC

Runnable wi thin

Receiver SWC

RT E activated

task

T im ingEvent()

Rte_Send()

Wri teQueue()

T im ingEvent()

Rte_Receive()

ReadQueue()

Figure 25.1: Intra-Task sender-receiver communication

2. The generated RTE function places the data into the receiver’s queue and returns
control to the sender. Note that the “queue” may consist of a single element if
the data is un-queued.

3. The system switches from executing a runnable entity in the sending component
to executing a runnable entity in the receiving component. Since both runnables
are mapped to the same task no context switch is required.

4. The receiving component reads the data from the queue using the Rte_Receive
API call (or Rte_Read if the data is unqueued).

5. The RTE returns the data and the receiving component processes the data.
If queued communication is used and no data is present in the queue then
RTE_E_NO_DATA is returned.

25.1.2 Intra-task Client-Server

Figure 25.2 illustrates a single prototype of the intra-task client-server communication
model that has been specified using the “CLIENT_MODE synchronous” attribute.

The steps involved in Figure 25.2 are:

Understanding Deployment Choices 249

RTA-RTE V6.3.0
User Guide

sd CS Intra-task

RT E activated

task

Runnable wi thin

cl ient SWC

RT E Runnable wi th in

Server SWC

<<invoke>>()

Rte_Cal l ()

<<invoke>>()

Figure 25.2: Inter-task sender-receiver

1. The client invokes the server via the Rte_Call API call.

2. The generated RTE function directly invokes the runnable entity specified by the
user in the server component. This is “safe” with regard to re-entrancy since
the server, which is mapped to the same task as the caller, cannot otherwise be
executing.

3. The return value (if present) is passed to the RTE generated code.

4. The RTE returns control to the client.

25.2 Inter-task

Inter-task communication occurs between components that have been mapped to the
same ECU but are executed by different threads of control (tasks).

For inter-task communication the RTE performs the role of the physical network, e.g. a
CAN bus, present in inter-ECU communication and transports signals and data between
tasks. Since communication occurs within an ECU, and not over a real network, it is
intrinsically reliable (data can be neither lost nor corrupted) and instantaneous (data
arrive immediately it is sent).

25.2.1 Inter-task Sender-Receiver

Figure 25.3 illustrates the sequence of steps the thread of control executing a runnable
entity in an application software component takes when performing inter-task sender-
receiver communication. The example uses reliable, buffered and blocking communi-
cation.

In detail, the steps illustrated in Figure 25.3 are:

250 Understanding Deployment Choices

RTA-RTE V6.3.0
User Guide

sd SR Inter-task

RT ERT E activa ted

task

RT E activa ted

task

Runnable wi th in

Sender SWC

Runnable wi th in

Receiver SWC

<<invoke>>()

Rte_Receive()

ReadQueue()

Wa itEven t()

<<invoke>>()

Rte_Send()

Wri teQueue()

SetEvent()

Figure 25.3: Inter-task sender-receiver (Queued reception with wake-up-of-wait-point
receive mode)

1. Receiver indicates that it is ready to read data by invoking the Rte_Receive API
call. The Receive API is mapped by the RTE API mapping onto a generated func-
tion in the RTE (the function call is shown as a transfer of flow of control from
component to RTE).

2. The RTE generated function translates the read request into a fetch from an RTA-
RTE managed queue. The calling thread of control will be suspended if the queue
is empty otherwise data is returned immediately and execution continues at the
final step.

3. The sending component sends the data. This occurs independently of the receiver
attempting to read and process data.

4. RTA-RTE appends the data to an RTE managed queue using the internal Write-
Queue function at which point the suspended thread of control (the receiver) is
resumed automatically.

5. RTA-RTE returns control to the sender.

6. The read from the OS queue returns via the return from RTA-RTE’s invocation of

Understanding Deployment Choices 251

RTA-RTE V6.3.0
User Guide

the ReadQueue function. The suspended thread resumes execution of RTE gener-
ated code.

7. Control returns to the receiver’s thread of control.

The sequence in Figure 25.3 demonstrates a queued reception using “wake up of wait
point” receive mode. Using a different combination of attributes the following behav-
iors are possible:

• Un-queued reception—the receiver “polls” the buffer for the current data by in-
voking the generated Rte_Read function which will always return immediately with
the most recent data available. If the “poll” is scheduled to occur at regular inter-
vals, i.e. from an event-triggered runnable entity, the receiver is said to be cyclic.

• “Activation of runnable entity” receive mode—the receiver is activated (dis-
patched) when data is placed in the buffer. The receiver always consumes a single
data item that is passed as the parameters of the runnable entity. In this case the
component is only executed when data is available and the runnable entity is the
receiver’s task.

25.3 Inter-task Client-Server

AUTOSAR COM does not support remote function invocation. Therefore inter-task (and
inter-ECU) client-server communication is implemented using paired sender-receiver
communications. The initial communication sends the server invocation request (and
parameters) to the server component. The server subsequently uses a second trans-
mission to return the reply (if any).

The transformation of inter-ECU client-server into paired sender-receiver communica-
tions is illustrated in Figure 25.4.

The translation from client-server to paired sender-receiver communication is per-
formed automatically by the RTA-RTE generator. The RTE generator creates API func-
tions that perform the communication between the client and server and map the
client-server communication to the necessary internal RTE and COM calls necessary
for the paired sender-receiver communication. These functions form part of the in-
frastructure that is generated to permit communication to occur between application
software components.

The RTE generated functions also marshal arguments and, if necessary, interact with
the communication service to send the request and data over the network.

Figure 25.5 illustrates inter-task client-server communication using the asynchronous
invocation. In detail, the steps illustrated in Figure 25.5 are:

1. The client component invokes the server using the generated Rte_Call API call.

2. The RTE appends the request parameters to the server’s RTE-managed queue of
client requests and activates the task mapped to the server’s runnable entity.

252 Understanding Deployment Choices

RTA-RTE V6.3.0
User Guide

RTERTE

ServerClient

Client Server

Request

Reply

Figure 25.4: Client-server implemented as paired sender-receiver communication

3. The RTE returns control to the client component.

4. The task assigned by the RTE to the server’s runnable entity executes and RTA-
RTE generated code within the task reads from the RTE-managed queue of client
requests.

5. The RTE generated code invokes the server’s runnable entity passing the request
parameters to the server.

6. The server processes the request and returns the reply. Since the communication
is inter-task there is no physical network involved.

7. The RTE writes the reply to the client’s result queue. The client runnable
(or, another runnable in the component) can then access the result using the
Rte_Result API.

25.4 Inter-ECU

Inter-ECU communication occurs between application software components that are
located on physically separate ECUs and therefore each component can be executed
concurrently. All Inter-ECU communication operates over a physical network (e.g. CAN
bus, LIN, MOST, etc.) and as well as communication between ECUs in a vehicle is
considered to include the following cases:

One of the “ECUs” is located in an off car computer, e.g. on the Internet, and is ac-
cessed via a wireless network.

Multiple CPUs within a single ECU that communicate via a communications mechanism
internal to the ECU such as dual-ported RAM.

The semantics of inter-ECU communication is set by the specified communication at-
tributes.

Understanding Deployment Choices 253

RTA-RTE V6.3.0
User Guide

sd CS Inter-task Async

RT E activa ted

task

RT E activa ted

task

Runnable wi th in

cl ien t SWC

Runnable wi th in

Server SWC

RT E

Rte_Cal l ()

Wri teQueue()

ReadQueue()

<<invoke>>()

Wri teQueue()

Figure 25.5: Inter-task asynchronous client-server communication

25.4.1 Inter-ECU Sender

The sequence of steps the thread of control executing a runnable entity in an applica-
tion software component takes when it initiates a sender-receiver Inter-ECU communi-
cation using reliable asynchronous communication is illustrated in Figure 25.6.

In detail, the steps illustrated in Figure 25.6 are:

1. The sending component sends a signal using the Rte_Send (or Rte_Write API call
if data is un-queued). The send is mapped by the RTE generator onto a generated
RTE API function.

2. The RTE invokes the communication service to queue the data from the signal.
The communications layer queues the data for transmission over the network
and returns.

3. The generated RTE function returns control to the software component. Note that
at this stage transmission is neither necessarily complete nor acknowledged.

4. The COM module’s MainFunction performs the network transmission and invokes
a callback defined within the RTE to indicate successful transmission.

5. The RTE’s callback activates the runnable entity defined within the SW-C’s RTE
event definition.

254 Understanding Deployment Choices

RTA-RTE V6.3.0
User Guide

sd SR Inter-ECU(sender)

RT E activa ted

task

Runnable with in

Sender SWC

Runnable

"Feedback"

RT E COM

<<invoke>>()

Rte_Send()

Com _SendSigna l ()

Send()

Com _Cal lback()

Activa teT ask()

<<invoke>()

Rte_Feedback()

Figure 25.6: Inter-ECU sender-receiver (Sender-side) with transmission acknowledg-
ment.

6. The “feedback” runnable entity is invoked and in turn invokes the generated RTE
function to reed the feedback status.

25.4.2 Inter-ECU Receiver

Figure 25.7 illustrates the opposite end of the communication where the receiving
runnable entity accepts data from the network and processes it. The example in Fig-
ure 25.7 uses queued buffering with “wake up of wait point” receive mode. All steps
occur within the same ECU.

In detail, the steps illustrated in Figure 25.7 are:

1. The receiving component attempts to read existing queued data. The
Rte_Receive API is mapped by the RTE API mapping generator onto a generated
function in the RTE.

2. The RTE attempts to read data from an RTA-RTE managed queue. The RTE gen-
erated API function will behave differently depending on the communication at-
tributes:

If the “wake up of wait point” receive mode is specified then a blocking read
is required and execution of the calling thread will be suspended if no data is
available.

Understanding Deployment Choices 255

RTA-RTE V6.3.0
User Guide

sd SR Inter_ECU(Receiver)

RT E activated

task

Runnable wi thin

Receiver SWC

RT E COM

<<invoke>>()

Rte_Receive()

ReadQueue()

Waitevent()

Receive()

Com _Cal lback()

SetEvent()

Figure 25.7: Inter-ECU sender-receiver (Receiver-side) with queued reception and
“wake_up_of_wait_point” receive mode.

Otherwise a non-blocking read is required and RTE_E_NO_DATA will be returned if
no data is available.

3. For the purposes of this example we assume no data is available and so the calling
thread of control is suspended. If data were available the attempt to read data
from the queue would succeed and the call would return immediately without
voluntarily relinquishing control of the CPU.

4. AUTOSAR COM on the receiving ECU receives data from the network—in this case
synchronously with a call to the COM module’s MainFunction—and notifies RTA-
RTE that new data has been received using a callback.

5. The RTE sets the OS event associated with the RTA-RTE managed queued which
causes the suspended Rte_Receive API to resume.

6. Once the suspended task has been resumed, it returns control to the generated
RTE which in turn returns the newly received data to the original caller.

256 Understanding Deployment Choices

RTA-RTE V6.3.0
User Guide

25.4.3 Inter-ECU Client

Figure 25.8 illustrates the client-side actions for synchronous inter-ECU client-server
communication. Figure 25.8 illustrates the server-side actions.

sd CS

RT E activated

task

Runnable wi th in

cl ient SWC

RT E COM

<<invoke>>()

Rte_Cal l ()

Com_SendSignalGroup()

ReadQueue()

Wai tEvent()

Send()

Receive()

Com _Cal lback()

SetEvent()

Figure 25.8: Inter-ECU synchronous client-server (Client-side).

1. The client “invokes” the server—this is mapped to the invocation of the generated
Rte_Call function within the RTE.

2. The call parameters are marshaled (i.e. serialized) by the RTE and passed to the
communication service for transmission as a signal group. The communication
service queues the data for transmission and returns control to the generated
RTE function.

Understanding Deployment Choices 257

RTA-RTE V6.3.0
User Guide

3. The RTE attempts to immediately read the server’s reply. However since the reply
is not available the task is suspended.

4. The COM main function is invoked and transmits the client’s request.

5. At some point in the future, COM detects reception of the server’s reply and in-
vokes the appropriate callback in the RTE. The callback sets the OS event associ-
ated with the client’s reply queue and returns control to COM.

6. The suspended task resumes and returns the server’s reply to the caller.

25.4.4 Inter-ECU Server

Figure 25.9 illustrates the server-side actions for synchronous inter-ECU client-server
communication.

1. The server’s COM receives the request and invokes an RTE generated callback.

2. The RTE callback reads the client request and writes the data to a queue managed
by the RTE. The callback then activates the task mapped by the RTE to trigger
the server’s runnable entity. The RTE then returns control to the communication
service.

3. The task assigned by the RTE to the server’s runnable entity starts, reads the
request from the queue and executes the server runnable entity.

4. The reply from the server runnable entity is collected. The reply from the server
runnable entity is sent to the client using COM. The task mapped to the server’s
runnable entity terminates.

The above examples uses synchronous communication so an OS event is used to block
the client until the return value is available. The RTE also supports asynchronous com-
munication these require only minor changes to the sequence, for example:

• The wait on the OS event does not occur and hence the caller is resumed immedi-
ately after the client’s request has been passed to COM.

• The setting of the OS event when the server’s reply is available may not occur de-
pending on the configuration of the client’s AsynchronousServerCallReturn event.
For example, configuration of activation of the runnable entity receive mode may
require the RTE to activate a task instead.

258 Understanding Deployment Choices

RTA-RTE V6.3.0
User Guide

sd CS Inter-ECU (server)

RT E activated

task

Runnable wi th in

Server SWC

RT E COM

Receive()

Com _Cal lback()

Com_ReceiveSignalGroup()

Wri teQueue()

ActivateT ask()

ReadQueue()

<<invoke>>()

Wri te back()

Com _SendSignalGroup()

Send()

Figure 25.9: Inter-ECU synchronous client-server (server-side).

Understanding Deployment Choices 259

RTA-RTE V6.3.0
User Guide

26 Optimization

Several optimizations are possible to influence the memory usage and runtime of the
generated RTE.

26.1 Buffers for Inter-ECU Reception

The --optimize option tunes RTE generation for runtime or memory use.

--optimize=speed (the default) generates an RTE that uses RTE-managed buffers for
inter-ECU communication. This is faster when there are multiple readers, but requires
a separate memory allocation.

--optimize=size generates an RTE that invokes the COM API each time the value is
read by the application. This is slower when there are multiple readers, but but reduces
RAM usage and, if the value is only accessed once, code size.

For any individual data element, direct access to COM is enabled if all of the following
are true:

• The data element prototype is unqueued (a queued data element requires an RTE
managed queue).

• Reception is explicit (implicit reception requires an RTE managed buffer).

• There are no intra-ECU transmitters (an inter-ECU transmitter requires an RTE man-
aged buffer into which the data is written and to ensure that inter-ECU and intra-
ECU data is coordinated then the former must use the same buffer).

• Transmission is 1:1.

Direct access to COM for a data item is disabled if:

• The data element has “keep” invalidation policy, the invalid value is equal to the
initial value and “handle never received” is false, or

• The data item has “handle never received” enabled.

The optimize option has no effect on Contract phase execution of RTA-RTE.

26.2 Direct invocation of the RTE API

The API mapping created in the application header file will directly invoke the generated
RTE API functions if the software-component is known not to be multiply instantiated
(see Section 8.14).

For example, consider a simple Rte_Write API:

Std_ReturnType Rte_SWCa_Write_p1_d1(uint8 data)
{

Rte_000000 = data;

260 Optimization

RTA-RTE V6.3.0
User Guide

return RTE_E_OK;
}

RTA-RTE can inline the API to a C comma-expression within the SWC’s application
header file and thus avoid the function call overhead:

extern uint8 Rte_000000;
#define Rte_Write_p1_d1(data) ((Rte_00000 = (data)), RTE_E_OK)

The inline comma-expression can be used in the same way as a call to the generated
RTE function but without the overhead of the function call.

This optimization occurs in both Contract and RTE generation phases.

In addition to examining the input XML, in RTE generation phase RTA-RTE also counts
the number of actual instances on the ECU for which the RTE is being generated and
if this is one applies the optimization even if the software-component is potentially
multiply instantiated.

26.3 Sender-Receiver Communication

26.3.1 Direct Read and Write

Direct invocation of the RTE API does not eliminate the function call overhead of the
RTE API. Therefore RTA-RTE includes an additional optimization in RTE phase that in-
lines the generated functions for explicit sender-receiver communication and explicit
inter-runnable variable access into the RTE API mapping.

The optimization occurs if RTA-RTE judges that the generated API function is sufficiently
simple for in-lining to be beneficial; the function body must consist of a simple assign-
ment with or without concurrency control. Optimization is therefore dependent on:

• Communication uses primitive types.

• The number of destination components; ideally one.

• The runnable to task mapping of the sender and receiver. RTA-RTE eliminates ex-
plicit data consistency mechanism if the task mapping guarantees protection. Thus
ideally the sender and receiver will be in the same task or mapped to tasks at the
same priority.

Optimization to direct read/write occurs in both vendor and compatibility operating
modes

26.3.2 Implicit Communication

AUTOSAR requires task-specific copies of the data read/written by implicit communica-
tion to ensure that values remain stable during the execution of a runnable entity and
to ensure that they are not visible to other runnables until after the writing runnable
has terminated.

Optimization 261

RTA-RTE V6.3.0
User Guide

The task-specific copies consume RAM and therefore RTA-RTE includes the
--implicit-use-global-buffers command-line option to directly use global buffers
where possible.

When enabled (option parameter ‘1’ or ’2’) the global buffer is accessed directly by the
Implicit API calls provided all of the following constraints are met:

• A shared buffer is required (if separate buffers for reader and writer are required
then optimization to use global buffers will occur for readers only).

• No “status” information is required.

• There are no COM mappings for the data instance. This restriction is required to
ensure data stablity – if COM mappings exist then COM can preempt the runnable
and disturb the global buffer during runnable execution.

• There is a single destination buffer – i.e. one global buffer shared by all receivers.
For intra-ECU communication this will typically be the case unless filters are applied
by one or more receivers. This restriction is necessary to ensure that the generated
implicit API macros have a single value to write.

In addition one of the following constraints must also be met:

• All events in the task are ’fast init’. Such events are executed once only before the
periodic runnables hence there can be no conflict so global buffers can be directly
accessed.

• Receivers can directly access the global buffer if the provider cannot preeempt
any receiver (in which case the receiver’s data cannot be changed by the provider
during its execution and the required data stability during runnable execution is
preserved).

• The provider can directly access the global buffer if no requirer can preeempt (and
no receiver will see the value written to the global until the provider runnable ter-
minates and thus the require implicit semantics are preserved).

26.4 Client-Server Communication

26.4.1 Direct Function Invocation

RTA-RTE includes an additional optimization in RTE phase that inlines the invocation of
server runnable entities.

The optimization to direct invocation only occurs if the generated API function is suit-
able for in-lining. Optimization is therefore dependent on:

• All client-server communication with the server must be synchronous.

262 Optimization

RTA-RTE V6.3.0
User Guide

• The server is mapped as “pure” (see Section 8.6.1), or the client and server are
mapped to the same task.

Optimization to direct function invocation occurs in RTE phase in both vendor and com-
patibility operating modes.

26.5 Function Elision

The application of the above optimizations is automatic when the RTE is generated—
there are no specific optimizations to enable or disable optimizations. However in-lining
functions does not, in itself, reduce the code size of the generated RTE since RTA-RTE is
required to emit the functions to support object-code delivery of software-components.

Therefore to enable elision of function bodies from the generated RTE:

• Ensure the SWC is delivered as source code.

• Disable indirect API for all ports of the software-component.

• Disable ’take address’ for the ports of the software-component.

26.5.1 Return Code Optimization

Many AUTOSAR RTE API functions return an Std_ReturnType status using the function
return value. When RTA-RTE optimizes the API to an inline macro it uses a C comma-
expression to both perform the function’s actions and to set the return value as the
final value in the expression.

If we again consider the simple simple Rte_Write API:

Std_ReturnType Rte_SWCa_Write_p1_d1(uint8 data)
{

Rte_000000 = data;
return RTE_E_OK;

}

However now assume that port “p1” is unconnected and therefore the Write API is
defined as discarding the data. The generated API function is now simply:

Std_ReturnType Rte_SWCa_Write_p1_d1(uint8 data)
{

return RTE_E_OK;
}

The RTE generator can still inline the function but now uses a simpler comma-
expression containing a single element:

#define Rte_Write_p1_d1(data) ((Std_ReturnType)RTE_E_OK)

Optimization 263

RTA-RTE V6.3.0
User Guide

The inline comma-expression can again be used in the same way as a call to the gen-
erated RTE function but without the overhead of the function call. However when the
macro replacement occurs the statement is now a C null-statement and the compiler
may now complain about a “...statement has no effect.”. To disable this warning/error
from the compiler ensure that one of the following occurs:

1. The return value is assigned to a variable.

2. The return value is tested (e.g. for equality) in a condition.

3. The return value is cast to void if not used.

For example, if the caller is not interested in the return value use a cast to void:

(void)Rte_Write_p1_d1(5u);

26.6 Init Runnables

The AUTOSAR mode mechanism provides ModeSwitchEvents that can be used to trig-
ger runnable execution when an application mode is entered. This feature can be used
to provide “init” runnables that are executed when the RTE starts and perform neces-
sary initialization for a SWC instance.

However for a runnable that only runs once at system start the infrastructure code cre-
ated by RTA-RTE to support the AUTOSAR mode mechanism is superfluous. Therefore
RTA-RTE provides a mechanism to optimize activation for specified ModeSwitchEvents
by mapping them to specified FastInit tasks. The use of a FastInit task both simplifies
the activation code necessary for the runnable associated with the event as well as
removing the normal infrastructure code created by RTA-RTE to support the AUTOSAR
mode mechanism.

An event that is specified as FastInit will not be activated by RTA-RTE during
a user-triggered mode switch. Instead the FastInit task must be activated
by user code at the appriopriate time.

The command-line option --fast-init specifies an absolute reference to either a SWC
type or to a ModeSwitchEvent within an internal behaviour. A reference to a Mod-
eSwitchEvent causes that event to be activated by a non-AUTOSAR compliant mecha-
nism (a function call from a task body where the task is activated externally from the
RTE). This avoids the complexity inherent in AUTOSAR compliant activation for mode
switch activations. A reference to an SWC type causes all ModeSwitchEvents in the
type to be subject to FastInit.

The command-line option --fast-init can be specifed multiple times to apply FastInit
to multiple ModeSwitchEvents.

RTA-RTE places no restrictions on the mapping of ModeSwitchEvents within FastInit
tasks other than events subject to normal AUTOSAR-compliant activation cannot be
mapped to the same task. As a consequence it is possible to map all “init” runnables
from all mode instances to the same FastInit task.

264 Optimization

RTA-RTE V6.3.0
User Guide

It is permitted to map ModeSwitchEvents for different mode transitions (e.g.
both entry to “init_mode” and entry to “run_mode”) to the same FastInit
task. When this is done care must be taken since all runnables will be acti-
vated when the task is dispatched irrespective of the current mode.

26.7 Data Consistency

The RTE generator uses RTE_ATOMICxxx macros to apply data consistency mechanisms
to ensure that assignments are atomic. Since the RTE generator has no knowledge
of target capabilities it is not possible for it to exploit platform specific knowledge to
eliminate use of RTE_ATOMICxxx macros. However the RTE generator supports two
mechanisms where the integrator can apply such knowledge to improve efficiency of
generated core.

26.7.1 Atomic assignments

The --atomic-assign can be used to specify one or more platform types that are
always subject to atomic assignment. When specified the RTE generator will not gener-
ate RTE_ATOMICxxx macros for the types which can then subsequently enable further
optimizations of the API mapping.

The following types can be specified with the -aa option:

• uint8, uint16 and uint32 (includes the AUTOSAR char and opaque metatypes and
the Std_ReturnType).

• sint8, sint16 and sint32.

• boolean.

• float32 and float64

26.7.2 Macro elision

After RTE generation individual RTE_ATOMICxxx macros can be elided by appropriate
definitions when compiling RTE generated code (including application header file).

For example, defining RTE_16BIT_ATOMIC forces the RTE_ATOMIC16 macro to have no
run-time effect.

For more information on eliminating the effect of RTE_ATOMIC macros please consult
the RTA-RTE Toolchain Integration Guide.

26.7.3 Inline Functions

RTA-RTE can use either an OS resource or interrupt blocking to implement an exclusive
area. RTA-RTE can optimize access to the OS resource or the locking of interrupts in the
RTE Enter/Exit API call by inlining the API mapping in the application header file. When
this inlining occurs the applications access to exclusive area is as efficient as possible
since RTA-RTE imposes no run-time overhead.

Optimization 265

RTA-RTE V6.3.0
User Guide

However the inlining of the access to the OS resource or the locking of interrupts means
that the application header file now includes OS API calls within the API mapping and
therefore the SWC application code must include Os.h.

When an Enter/Exit API call is inlined within the API mapping the SWC imple-
mentation must include Os.h.

26.8 Tips

The optimization potential of the generated RTE is maximized by:

• Use 1:1 sender-receiver communication.

• Use primitive types for explicit sender-receiver communication.

• Map provider and requirer to the same task or to tasks that cannot preempt.

• Use source-code delivery with disabled indirect API when possible.

• Wherever possible, mark a server as “pure”.

• Avoid software-components delivered as object-code.

• Where possible uses single-instantiated software-components.

266 Optimization

RTA-RTE V6.3.0
User Guide

27 RTE Architecture

The RTE itself is a passive entity and thus does not have any of its own threads
of control. RTE code is only executed when an external entity—such as a software
component—invokes generated code in the RTE.

Software components are given access to API calls through the software component’s
application header file which is custom generated for each software component type.
All API calls use the form:

Rte_<Call_Name>_<Discriminator>(instance, args)

Where <Discriminator> can be either the port and data item/operation name or,
where this is not approproate, an identifier extracted from the input. The application
header file performs an important role for the RTE because it binds the API call names
onto specific implementations depending on how component prototypes are mapped
to an ECU.

The implementations of the RTE API calls themselves are custom generated by the RTE
generator for each software component. The functionality of the RTE is provided mainly
by the code written to the Rte.c file at generation time.

The RTE API has been designed so that calls can be made efficiently at runtime. This
is achieved by providing an API mapping for each software component that binds the
component’s API to permit the direct invocation or even mapping calls to managed
reads and writes to global data.

The following sections outline how these mechanisms work.

27.1 Component Data Structure

The component data structure defines the RTE API calls that a particular component
instance can invoke based on the component type’s declaration (i.e. ports) and internal
behavior (per-instance memories, exclusive areas, etc.).

The declaration of the component data structure data type is created by the RTE gen-
erator and is internal to the RTE—application software should only access members
within the structure via RTA API definitions in the component’s application header file.

The component data structure data type is the same for all instances of a compo-
nent type. Hence the structure can be uniquely named using only the name of the
component type irrespective of the number of times the component is actually instan-
tiated, e.g. for SWC type MyComponent the component data structure data would be
Rte_CDS_MyComponent.

typedef struct
{

/* Structure definition for MyComponent */
} Rte_CDS_MyComponent;

RTE Architecture 267

RTA-RTE V6.3.0
User Guide

The component data structure includes all information necessary for the generated RTE
API mapping within the application header file to invoke the correct function for the par-
ticular instance. Information within the component data structure includes a function
table used for indirect invocation of generated custom functions and definitions of state
that is not shared between component prototypes.

The component data structure function table is used for indirect invocation of gener-
ated custom functions (see Section 27.3) for details of the API mapping).

When an instance of the component data structure is declared in software component
header file, the generated function table is initialized to point to the correct generated
custom functions for the component. The functions themselves and the instance of the
component data structure are generated by RTA-RTE in the Rte.c file.

The component data structure is instantiated within Rte.c once for each component
instance that is mapped to the ECU instance for which the RTE is being generated. For
a software-component that can be multiple instantiated, the component data structure
instances are named using an RTA-RTE generated instance name as follows:

Rte_Instance_<InternalComponentInstanceName>

However, for a software-component that can only be instantiated once per ECU in-
stance, AUTOSAR requires that the single instance of the component data structure
created within Rte.c is named as follows:

Rte_Inst_<SWCTypeName>

The names of software-component types must be globally unique to avoid type conflicts
within the generated code.

27.2 Component Instance Handle

When multiple prototypes of the same software component type are mapped to the
same ECU, then the RTE must be able to disambiguate access to their individual state.
When the RTE is generated in the RTE phase, each prototype is assigned a unique RTE
instance handle that is used to identify the component prototype data structure.

Each component prototype that is mapped to an ECU instance has an instance of the
component data structure written to Rte.c.

All activity within a software component is handled by runnable entities and in each
case the RTE can identify the correct instance of the relevant component data structure
and pass the appropriate handle to the runnable entity when it is activated.

When runnable entities make calls back to the RTE they pass in their “self” parameter
that identifies the prototype (i.e. the current Rte_Instance handle) to the generated
RTE API functions. The handle identifies the instance to the RTE and enables selection
of the correct functionality.

268 RTE Architecture

RTA-RTE V6.3.0
User Guide

27.3 The RTE API Implementation

The Rte.c file contains the implementations of all custom RTE API calls required by
component instances mapped to the ECU instance. Each call takes the form:

Rte_<call>_<prototype>_<port>_<data/op>(<args>)

Where <call> is an RTE API name (e.g. Call, Send), <prototype> is the component
prototype, <port> is the port on which the call operates and <args> are the interface
arguments.

27.3.1 API Mapping

The RTE API names are based on a root names, such as Rte_Call, combined with both
the port name and data item or operation name as suffixes. The RTE API names do not
include the component type or instance name. This omission permits the component
to be developed before its deployed (and hence the instance name) is known.

Two different components can define identically named ports (as well as identically
named operations or data items) and thus have the same RTE API names for accessing
the data items or operations. However, the generated RTE API functions for the differ-
ent components must be unique since they can be radically different, for example, one
may be intra-ECU and highly optimized whereas another may be inter-ECU and use the
communication service. The RTE API functions are created during the “RTE” phase of
RTE generation at which point the component deployment, and hence instance name,
as been determined. The RTE generator can therefore use the component instance
name to ensure that generated functions can be uniquely identified.

Since the RTE API name as seen by the location neutral software component and the
generated API function are different the RTE generator defines an API mapping in the
component’s application header file from the RTE API to the names of the generated
API functions defined in the RTE module.

The API mapping written to the component’s application header file is cre-
ated automatically by the RTE generator—the same RTE API is therefore
available to a component irrespective of the number of instances deployed
and whether or not source-code is available.

All RTE API call names are formed from a root name and the port name and operation/-
data item name as a suffixes. The RTE API mapping is responsible for mapping the RTE
API name to the correct implementation of the RTE function in Rte.c. The API mapping
permits an RTE generator to include targeted optimization as well as removing the need
to implement functions that act as de-multiplexers from generic API calls to particular
functions within the generated RTE.

The API mapping is implemented as a set of macros. The API mapping is uniquely
generated for each component and written to the component header file.

There are typically two kinds of mappings:

RTE Architecture 269

RTA-RTE V6.3.0
User Guide

• Indirect mappings

• Direct mappings

27.3.2 Indirect Mapping

Indirect is the most general form and is implemented in the API mapping by the RTE
generator when optimizations cannot be applied; for example the instance name of a
component is not known or a component may be multiple instantiated.

The RTE API mapping from API name to generated function is defined in the application
header files that are created during the first “contract” phase of RTE generation will
always invoke the generated API functions via the component’s instance handle. This
provides the necessary level of indirection to support binary-code software components
as well as supporting multiple component instances.

When indirect invocation is used, execution of the generated API functions occurs via
the appropriate entry in the function table defined in the component data structure (see
Section 20.1). The fields within the function table are initialized by the RTE generator.

Indirect invocation permits both binary-code software components and multiple in-
stances of components to be supported since the component instance name does not
need to be fixed when the component is compiled and the RTE can initialize a different
function table for each instance therefore invoking different generated API functions
for each instance.

An indirect mapping is used when only a multiple prototypes of a software component
are mapped to a single ECU instance. The basic form of the mapping in this case is:

#define Rte_<Call>_<p>_<d/op> (self, data) \
((self)-><Call>_<p>_<d/op>(data))

Where <Call> is the RTE API call type (Call, Send, Write etc.), <p> the port name and
<d/op> is the port data item/operation name.

27.3.3 Direct Mapping

It is possible to perform a number of optimizations on the API mapping that can elimi-
nate the run-time costs of indirect invocation when both the component instance name
is known and it is known a priori that only a single instance of the component will be
mapped to an ECU. Direct invocation also requires that the component is available in
source-code form since the optimization can only be applied after component deploy-
ment has occurred.

With direct invocation it is possible to completely elide the instance handle and there-
fore impose zero run-time overhead. However, it remains in the RTE API signature for
compatibility with the requirements of indirect invocation.

A direct mapping is used when only a single (source code) prototype of a software
component is mapped to an ECU instance. The basic form of the mapping in this case

270 RTE Architecture

RTA-RTE V6.3.0
User Guide

is:

#define Rte_<call>_<p>_<d/op>(self,data) \
Rte_<call>_<c>_<p>_<d/op>(data)

Where <call> is the RTE API call type (Call, Send, Write etc.), <p> the port name and
<d/op> is the port data item/operation name

Note in the direct case that the call through the instance handle self has been elided
since only a single instance is in use.

For intra-task communication made by “source-code” components the call may be fur-
ther mapped to a direct write to an OS-managed queue or global data item.

RTE Architecture 271

RTA-RTE V6.3.0
User Guide

Part VII

Support

272

RTA-RTE V6.3.0
User Guide

28 Contact, Support and Problem Reporting

For details of your local sales office as well as your local technical support team and
product hotlines, take a look at the ETAS website:

ETAS subsidiaries www.etas.com/en/contact.php

ETAS technical support www.etas.com/en/hotlines.php

The RTA hotline is available to all RTA-RTE users with a valid support contract.

rta.hotline.uk@etas.com
+44 (0)1904 562624. (0900-1730 GMT/BST)

Please provide support with the following information:

• Your support contract number.

• Your AUTOSAR XML and/or OS configuration files.

• The command line that results in an error message.

• The version of the ETAS tools you are using.

Contact, Support and Problem Reporting 273

www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

RTA-RTE V6.3.0
User Guide

Index
Symbols
C++, 124
--atomic-assign, 265
--deviate-shared-mode-queue, 120
--fast-init, 264
--have-64bit-int-types, 177, 179
--implicit-use-global-buffers, 262
--mode-policy, 121
--operating-system, 223
--optimize, 260
--os-file, 223
--output, 171
--strict-config-check, 224
--task-recurrence, 242, 243
--toolchain-significant-len, 241

A
A2L, see also McSupportData, 171
Acknowledgement request, 78
Activation of Runnable Entity, 92
Alive timeout, 81
API

Direct, 124, 270
Explicit, 133
Implicit, 133
Indirect, 108, 109, 124, 270
Mapping, 269
Parameter passing, 123

Application Header, 124
API Mapping, 269
Contract Phase, 38

ApplicationArrayDataType
Example of, 49

ApplicationPrimitiveDataType
Example of, 47, 48

ApplicationRecordDataType
Example of, 50

ApplicationValueSpecification
Example of, 67

Array Type
As function parameter, 57

ArrayValueSpecification
Example of, 67

Assembly Connectors, 156
Port Mapping, 160

Asynchronous Server Call Returns Event, 84, 99, 130

274 Index

RTA-RTE V6.3.0
User Guide

Atomic Assignment, 265
AUTOSAR, 10

Basic Software, 146
Data Types, 46
Development Process, 42
Element, 32
NVRAM, 140
Package, 28

B
Background Event, 85
Background event, 87
Base type

Native Declaration, 53
BSW, 10

API Name generation, 152
Background event, 148
Connections, 181
External Trigger event, 148
Instantiation, 180
Internal Trigger event, 149
Mode Sender Policy, 113
Mode Switch Ack event, 152
Mode Switch event, 150
Modules, 146
Periodic event, 148
Schedulable Entity, 147
Scheduler, 181
Task Mapping, 181

BSW Phase, 41

C
C, 124
C/S, 10
Calibration, 136

Access Point, 94
export in McSupportData, 171
Interface, 73
Parameters, 170
Prototype, 73

Category
ARRAY, 59
DATA_REFERENCE, 60
FUNCTION_REFERENCE, 60
HOST, 59
STRUCTURE, 59
TYPE_REFERENCE, 59

Index 275

RTA-RTE V6.3.0
User Guide

UNION, 59
VALUE, 59

Characteristic, see also Calibration Parameter
Client

Asynchronous, 97, 130
Synchronous, 97

COM
Module configuration, 34, 226

Command-line option
samples, 42, 127

Communication
Calibration, 20
Client-server, 20, 135, 218, 249
Explicit, 88
Implicit, 89
Inter-ECU, 210
Modes, 111
Sender-receiver, 18, 78, 81, 215, 248

Complex Type
Inter-ECU, 216

Component Data Structure, 267
Component Instance Handle, 17, 268
Composition

BSW, 180
Connectors, 156
Instantiation, 156
SWCs, 155
Type, 155

CompuMethod
Example of, 47, 48, 65, 66

CompuRationalCoeffs, 65
Precision of, 65

ConstantReference
Example of, 68

ConstantSpecification
Example of, 68

Contract Phase, 37
Conventions, 9

D
Data Conversion

Compatible versus Convertible, 176
Concepts, 62, 173
Modelling Application Types, 61
Precision of, 178

Data Element, 69

276 Index

RTA-RTE V6.3.0
User Guide

Data Receive Error Event, 84
Data Received Event, 84, 128
Data Send Completed Event, 85
Data Write Completed Event, 85
Delegation Connector, 158
Development Process, 42

E
ECU

Instantiation, 199
Mapping Services, 202
Mapping SWCs, 200
Ports, 198
Type, 198

ECUC, 10
ECUC Description, 33
Exclusive Area, 102, 137

Configuration, 102
Explicit, 103
Implementation Method, 104
Implicit, 103

extended task, 244
External Trigger Occurred Event, 85, 101

F
FactorSIToUnit, 63
FactorSiToUnit

Precision of, 178
Fast Init, 264
Filter, 81
FlatInstanceDescriptor, 167
FlatMap, 167
Flatmap, 167
forced-basic semantics, 245

I
Identifier Length, 241
Initial Value, 79
Inline functions, 260, 265
Inter-ECU

Behavior, 253
Configuration, 210
Signal Mapping, 215, 218

Inter-runnable Variable, 106, 136
Interface, 18, 69

Calibration, 73
Client-server, 72

Index 277

RTA-RTE V6.3.0
User Guide

Mode group, 71, 113
Mode-Switch, 71
Nv-Data, 70
Sender-receiver, 69
Trigger, 74

Internal Behavior, 83
Events, 84
Exclusive Area, 102
Inter-runnable Variable, 106

Internal Trigger Occurred Event, 85, 100
Invalidation, 80
IOC, 10

M
McSupportData, 171

Structure of, 172
McSupportFile

Location of, 171
Measurement

export in McSupportData, 171
Memory Abstraction

Runnable, 110
Minimum Start Interval, 86
MISRA

6.3, 57, 60
Mode

Access Point, 107, 113
Mode Dependency, 117
Mode Graph, 118
Mode Instance, 118
Mode Manager, 112
Mode Switch

Asynchronous, 114
Synchronous, 114

Mode Switch Event, 85, 116
Mode Switched Ack Event, 85
Mode USer, 112
Modes, 111

Configuration, 111
Distributed Mode Users, 121
Fast init, 119
Queue length, 112
Shared Mode Queue, 120
Switch management, 115

N
Namespace, 122

278 Index

RTA-RTE V6.3.0
User Guide

NumericalValueSpecification
Example of, 67

Nv-Block, 140
Nv-Data Element, 70
NVRAM

Configuration, 189
GetMirror, 193
NvMNotifyInitBlock, 194
NvMNotifyJobFinished, 194
SetMirror, 193

NVRAM mirror, 141

O
Object-code delivery, 39
OffsetSIToUnit, 63
OffsetSiToUnit

Precision of, 178
Operation, 72

Call, 95
Inter-ECU, 218

Operation Invoked Event, 85, 94, 128
Optimization, 260
OS

Category 2 Tasks, 205, 244
Counters, 224
Module configuration, 34, 224
Schedule Table, 225
Tasks, 41, 203

Os Interaction
Alarm, 242
Schedule Point, 243
Schedule Table, 242
Task Recurrence, 242

P
Package, 28

Merge, 29
Partial Record Mappings, 166
PDU

Instantiation, 214
Type, 212

Per-instance Memory, 137
periodic RteEvents, 244
PhysicalDimension

Example of, 64
Port

Defined Arguments, 108

Index 279

RTA-RTE V6.3.0
User Guide

Options, 108
Port Mapping, 160
pre-scalers, 244
Precision

CompuRationalCoeffs, 65
FactorSiToUnit, 178
OffsetSiToUnit, 178
Unit, 178

Primitive Type
Inter-ECU, 216

Provided Port, 76, 88

Q
Queue

Configuration, 80

R
RecordValueSpecification

Example of, 68
References, 30

Absolute, 30
Instance, 32
Relative, 31

Required Port, 76, 90
ResultingProperties, 172
Role

NvMNotifyInitBlock, 194
NvMNotifyJobFinished, 194

RootSwCompositionPrototype, 167
RTA-OS, 10
RTA-OSEK, 10
RTE, 10

Architecture, 267
Module configuration, 34
Namespace, 122
Output, 40
Start, 139
Stop, 139

RTE Phase, 39
RteEvents

periodic, 244
sporadic, 244

Runnable entity, 86
Activation, 92
Arrival rate, 86
Category, 22
Configuration, 127

280 Index

RTA-RTE V6.3.0
User Guide

Direct Trigger, 100
Implementation, 24, 126
Initialization, 115, 264
Sample, 42, 127
Symbol, 86, 127
Task Mapping, 203

S
S/R, 10
SchM, 10
Server

Concurrent, 95
Invocation by client, 95

Service Connector, 159
Services, 25

Mapping, 202
sporadic RteEvents, 244
SWC

Behavior, 21, 83
Implementation, 122
Implementation selection, 201
Initialization, 115, 264
Instantiation, 16, 39, 109, 125, 156
Mapping to ECUs, 200
NvBlock, 75, 140
Type, 14, 75

Synchronization
Configuration, 183
Mode Groups, 185
Runnable Entities, 187
Triggers, 186

System Signal, 210

T
task

bodies, 244
extended vs basic, 244

TEXTTABLE, 55
Timing Event, 84, 87, 225
Types

Application, 46
Arrays, 48, 57
Base, 50
Conversion between, 173
Enumerated, 55
Implementation, 51
Mapping, 60

Index 281

RTA-RTE V6.3.0
User Guide

PhysicalDimension, 64
Platform, 52
Records, 49, 58
Reference, 54
Structures, 49, 58

Types, modeling with CompuMethod, 64
Types, modeling with Unit, 64

U
Unit

Example of, 64

V
VFB, 10, 13
VFB Tracing, 228

Enable, 228, 231
Events, 228

W
Wake up of Wait Point, 93, 99

X
XML, 10, 26

282 Index

	Contents
	1 About this Manual
	1.1 Document Conventions
	1.2 Acronyms and Abbreviations

	I Introduction and Overview
	2 Introduction to the RTE
	2.1 What is a Run-Time Environment (RTE)?
	2.2 Software Components
	2.3 Interfaces
	2.4 Software Component Behavior
	2.5 Services

	3 Introduction to RTE Configuration
	3.1 Understanding XML
	3.2 Understanding AUTOSAR XML
	3.3 ECU Configuration Description

	4 Working with the RTE Generator
	4.1 Contract Phase
	4.2 RTE Phase
	4.3 Basic Software Phase
	4.4 The Development Process
	4.5 Samples

	II Developing Software Components
	5 Type System
	5.1 Application Data Types
	5.2 Base Types
	5.3 Implementation Data Types
	5.4 Type Mappings
	5.5 Application Types And Numerical Representations
	5.6 Expressing Values in Physical Units or Numerical Representation

	6 Interfaces
	6.1 Sender-Receiver
	6.2 Nv-Data
	6.3 Mode-Switch
	6.4 Client-Server
	6.5 Calibration
	6.6 Trigger

	7 Software Component Types
	7.1 Ports
	7.2 Communication Specifications

	8 Internal Behavior
	8.1 RTE Events
	8.2 Runnable Entities
	8.3 Responding to Periodic Events
	8.4 Sending to a Port
	8.5 Receiving from a Port
	8.6 Responding to a Server Request on a Port
	8.7 Making a Client Request on a Port
	8.8 Direct Trigger of a Runnable Entity
	8.9 Exclusive Areas
	8.10 Inter-Runnable Variables
	8.11 Accessing Modes
	8.12 Per-instance Memory
	8.13 Port Options
	8.14 Supporting Multiple Instantiation
	8.15 Memory Allocation

	9 Modes
	9.1 Defining Modes
	9.2 Mode Communication
	9.3 Using Modes
	9.4 Understanding Mode Instances
	9.5 Fast Init
	9.6 Synchronizing Modes
	9.7 Non-AUTOSAR Functionality

	10 Implementing Software Components
	10.1 Basic Concepts
	10.2 Application Source Code
	10.3 Single and Multiple Instances
	10.4 Runnable Entities
	10.5 Sender-Receiver Communication
	10.6 Client-Server Communication
	10.7 Using Inter-Runnable Variables
	10.8 Accessing Parameters
	10.9 Accessing Per Instance Memory
	10.10 Concurrency Control with Exclusive Areas
	10.11 Starting and Stopping the RTE

	11 NVRAM
	11.1 NV-Block Software Component Types
	11.2 Interaction with Application SWC
	11.3 Interaction with the NVRAM Manager

	III Developing Basic Software
	12 Basic Software
	12.1 Basic Software Modules
	12.2 Interaction with the RTE
	12.3 API

	IV Composition
	13 Composing Software Components
	13.1 Composition Type Definition
	13.2 Component Instances
	13.3 Connector Prototypes
	13.4 FlatMaps
	13.5 Data Conversion

	14 Composing Basic Software
	14.1 Instantiation
	14.2 BSW Scheduler
	14.3 Connections

	15 Synchronizing BSW and SWC
	15.1 Configuration
	15.2 Synchronized Mode Groups
	15.3 Synchronized Triggers
	15.4 Synchronized Runnable Entities

	16 Accessing NVRAM
	16.1 Configuration
	16.2 Access from Application SWCs
	16.3 Access from the NVRAM manager

	V Deployment
	17 Defining the ECUs and the Networks
	17.1 ECU Type Definition
	17.2 ECU Instances

	18 Mapping Software Components to ECUs
	18.1 Mapping Component Prototypes
	18.2 SWC Implementation Selection
	18.3 Configuring Service Components on an ECU
	18.4 Mapping Runnable Entities to Tasks
	18.5 How Runnables get activated

	19 Inter-ECU Communication
	19.1 System Communications
	19.2 Inter-ECU Sender-Receiver Communication
	19.3 Inter-ECU Client-Server Communication

	20 Using the OS and COM Configurations
	20.1 Operating System Configuration
	20.2 Communication Stack Configuration

	21 Debugging Implementations with VFB Tracing
	21.1 Enabling Tracing
	21.2 Supported Trace Events
	21.3 Configuration
	21.4 Trace Event Header File
	21.5 Implementing Hook Functions

	22 Data Transformation
	22.1 Extent of support
	22.2 Enabling data transformation in an input configuration
	22.3 Working with data transformation

	VI Advanced Concepts
	23 RTE Generation
	23.1 Identifier length

	24 Operating System Considerations
	24.1 OS Trigger Selection
	24.2 Task Recurrence
	24.3 Schedule Points
	24.4 Basic and Extended Tasks
	24.5 Forced-basic semantics

	25 Understanding Deployment Choices
	25.1 Intra-task
	25.2 Inter-task
	25.3 Inter-task Client-Server
	25.4 Inter-ECU

	26 Optimization
	26.1 Buffers for Inter-ECU Reception
	26.2 Direct invocation of the RTE API
	26.3 Sender-Receiver Communication
	26.4 Client-Server Communication
	26.5 Function Elision
	26.6 Init Runnables
	26.7 Data Consistency
	26.8 Tips

	27 RTE Architecture
	27.1 Component Data Structure
	27.2 Component Instance Handle
	27.3 The RTE API Implementation

	VII Support
	28 Contact, Support and Problem Reporting

