
c

Incident Response Platform

PYTHON INTEGRATION DEVELOPMENT GUIDE v29.0

Resilient Incident Response Platform Python Integration Development Guide

Page 2

Licensed Materials – Property of IBM

© Copyright IBM Corp. 2010, 2017. All Rights Reserved.

US Government Users Restricted Rights: Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Resilient Incident Response Platform Python Integration Development Guide

Version Publication Notes

29.0 December 2017 Initial release.

28.0 August 2017 Initial release.

Resilient Incident Response Platform Python Integration Development Guide

Page 3

Table of Contents

1. Overview .. 5

1.1. Architecture .. 5

1.2. Download Locations ... 6

2. Installation ... 6

2.1. Core Packages .. 7

2.2. Component Packages .. 7

3. Configuration ... 8

3.1. Create the Configuration File and Log Directory .. 8

3.2. Edit the Configuration File .. 9

3.3. Pull Configuration Values ..10

3.4. Add Values to Keystore ..10

4. Run Resilient Circuits ..11

4.1. Run Multiple Instances ..11

4.2. Monitor Config File for Changes ...11

4.3. Override Configuration Values ..11

5. Create a Resilient Circuits Component ..12

5.1. Get Started ...12

5.2. Start Building...12

5.3. Run During Development ..13

5.4. Add Functionality with Decorators ...13

5.4.1. required_field ...13

5.4.2. required_action_field ..14

5.4.3. defer ...14

5.4.4. debounce ...15

5.5. Long-Running Actions ...16

5.6. Web UI and Restful Components ..17

5.6.1. Build a Web Component ..17

6. Package a Resilient Circuits Integration ..18

7. Test a Resilient Circuits Integration ...19

7.1. res-action-test ...19

7.2. Write and Run Tests Using pytest ...20

7.2.1. Resilient Pytest Fixtures ...20

7.2.2. Run Tests ...21

7.3. Run Tests with tox ..21

7.4. Mock Resilient API ..22

8. Run as a Service on Windows ...23

9. Run as a Service on Linux ...24

Resilient Incident Response Platform Python Integration Development Guide

Page 5

1. Overview
Based on a knowledgebase of incident response best practices, industry standard frameworks,
and regulatory requirements, the Resilient Incident Response Platform helps make incident
response efficient and compliant.

You can quickly and easily integrate the Resilient platform with your organization’s existing
security and IT investments. It makes security alerts instantly actionable, provides valuable
intelligence and incident context, and enables adaptive response to complex cyber threats.

1.1. Architecture

There are a number of elements involved with an integration:

 REST API. The Resilient platform has a full-featured REST API that sends and receives
JSON formatted data. It has complete access to almost all Resilient features, including
but not limited to; creating and updating incidents and tasks, managing users and groups,
and creating artifacts and attachments.

The Resilient appliance has a fully-functional Rest API browser that lets you try out any
endpoint on the system. When logged into the Resilient platform, click on your account
name at the top right and select Help/Contact. Here you can access the complete
Reference guide, including schemas for all of the JSON sent and received by the API,
and the interactive Rest API.

 Resilient helper module. A Python library to facilitate easy use of the Rest API for several
popular programming languages.

 Action Module. An extension to the Resilient platform that allows implementation of
custom behaviors beyond what is possible in the Resilient internal scripting feature. It is
built on Apache ActiveMQ. The STOMP message protocol is used for Python based
integrations. Custom behaviors are triggered by adding a message destination to a rule
defined in the Resilient platform and subscribing your integration code to that message
destination. For additional information, see the Action Module Programmer's Guide on
the Customer Success Hub.

 Resilient Circuits. A Python circuits framework that automatically manages authenticating
and connecting to the STOMP connection and REST API in the Resilient platform. It
simplifies creating custom integrations by allowing you to focus on writing the behavior
logic. It is the preferred method for writing integrations with the Action Module.

The following diagram shows the relationship between the integration component, REST API,
Action Module and Resilient platform.

https://success.resilientsystems.com/hc/en-us/articles/115004321189-Action-Module-Programmer-s-Guide-v28

Resilient Incident Response Platform Python Integration Development Guide

Page 6

1.2. Developer Website

The Resilient developer web site contains the core Resilient helper module and Resilient Circuit
packages, additional integration packages, documentation and examples. The links are provided
below.

 Resilient Success Hub. If you have not already, use this link request access.

 IBM Resilient Developer website. Provides overview information and access to various
areas of development, such as developing playbooks and publishing integrations.

 IBM Resilient Github. Provides access to library modules, community-provided
extensions, example scripts, and developer documentation. Also accessible from the
developer website reference page.

 Releases. Lists the apps by Resilient Incident Response Platform release. You can also
download from this page.

This guide uses the rc-webserver app as an example. You can find this app by clicking the
resilient-community-apps link on the Github page. The rc-webserver app is useful for
implementing a threat service.

https://success.resilientsystems.com/hc/en-us/articles/206751927-Submit-a-Request-for-API-info-via-GitHub
https://developer.ibm.com/security/resilient/reference
https://github.com/ibmresilient
https://github.com/ibmresilient/resilient-python-api/releases

Resilient Incident Response Platform Python Integration Development Guide

Page 7

2. Installation
Typically, you would install everything on your Resilient appliance; however, you can install the
Resilient helper module and Resilient circuits framework, and manage your integration from a
different system. Using a different system is useful if you have multiple Resilient integration
packages in your environment.

If using a different system, it must be a Debian Linux or Windows system with Python 2.7 or later,
or Python 3.4 or later, and have access to the Resilient appliance.

The installation procedures in this guide assume that all the packages are to be installed on the
Resilient appliance.

2.1. Core Packages

Install the Resilient helper module and Resilient Circuits framework as follows:

1. Use ssh to connect to your Resilient appliance.

2. Go to the folder where the installers are located.

3. Update your pip version using this command:

sudo pip install --upgrade pip

4. Update your setup tools using this command:

sudo pip install --upgrade setuptools

5. Log out of your system and log in with a new session to ensure your environment is correct.

6. Install the Resilient helper module using the instructions in the readme file.

7. Install the Resilient Circuits package using the instructions in the readme file.

You should see a “successfully installed” message for each component, Resilient helper module,
Resilient Circuits.

2.2. Component Packages

Once you install the Resilient Circuits and helper module, you can install components to perform
customized behaviors in the Resilient platform. Some are available for download from GitHub and
you can write your own as well. Use the following procedure to install and configure a component.

1. Use ssh to connect to your Resilient appliance.

2. Go to the folder where the installers are located.

3. Install your chosen component using the following command:

pip install <package_name>-x.x.x.tar.gz

4. Verify that the component installed using the resilient-circuits list command.

bash-3.2$ resilient-circuits list

5. Follow the instructions in the component’s readme file to configure the component.

Resilient Incident Response Platform Python Integration Development Guide

Page 8

3. Configuration
The Resilient Circuits package requires a configuration file and logging directory.

The configuration file defines essential configuration settings for all resilient-circuits components
running on the system. If you have multiple Resilient integration packages, they will use the same
configuration file.

Other integration components may have additional requirements.

Note to Windows Users: To run integration commands on a Windows system, use resilient-
circuits.exe. For example, “resilient-circuits.exe run” rather than “resilient-circuits run”.

3.1. Create the Configuration File and Log Directory

Perform the following to create the configuration file:

1. Create a directory on the system where Resilient Circuits can write log files.

2. Use one of the following commands to generate a base configuration file.

 Option 1: Create a directory ‘.resilient’ in your home directory with a file in it
called app.config, which is the default and preferred option.

resilient-circuits config -c

 Option 2: Sometimes it is necessary to create a configuration file in a different
location or give it a different name. You need to store the full path to the
environment variable, APP_CONFIG_FILE.

resilient-circuits config -c /path/to/<filename>.config

If APP_CONFIG_FILE is not set, then the application looks for a file called
“app.config” in the local directory where the run command is launched from. This
can be useful during development of a new component.

NOTE: The examples in this guide use the default name, app.config, as the name of the Resilient
Circuits configuration file.

Resilient Incident Response Platform Python Integration Development Guide

Page 9

3.2. Edit the Configuration File

The [resilient] section of the configuration file controls how the core resilient_circuits and Resilient
packages access the Resilient platform.

Open the configuration file in the text-editor of your choice and update the [resilient] section with
your Resilient appliance hostname/IP and credentials and the absolute path to the logs directory
you created. The following table describes all the required and optional values that can be
included in this section.

NOTE: If on a Windows system and you edit the file with Notepad, please ensure that you save it
as type All Files to avoid a new extension being added to the filename, and use UTF-8 encoding.

Parameter Required? Description

logfile N Name of rotating logfile that is written to logdir. Default is app.log.

logdir N Path to directory to write log files. If not specified, program checks
environment variable DEFAULT_LOG_DIR for path. If that is not set, then
defaults to a directory called “log” located wherever Resilient Circuits is
launched.

log_level N Level of log messages written to stdout and the logfile. Levels are: CRITICAL,
ERROR, WARN, INFO (default), and DEBUG.

host Y IP or hostname for the Resilient appliance.

org Y, if
multiple
orgs

Name of the Resilient organization. This is required only if the user account is
used with more than one Resilient organization.

email Y User account for authenticating to the Resilient platform. It is recommended
that this account is dedicated to integrations.

password Y Password for the Resilient user account.

no_prompt_password N If set to False (default) and the “password” value is missing from this config
file, the user is prompted for a password.

If set to True, the user is not prompted.

stomp_port N Port number for STOMP. Default is 65001.

componentsdir N Path to directory containing additional Python modules. Resilient Circuits load
the components from this directory.

noload N Comma-separated list of:

 Installed components that should not be loaded.

 Module names in the componentsdir that should not be loaded.

Example: my_module, my_other_module, InstalledComponentX

proxy_host N IP or Host for Proxy to use for STOMP connection. By default, no proxy is used.

proxy_port N Port number for Proxy to use for STOMP connection. By default, no proxy is
used.

proxy_user N Username for authentication to Proxy to use for STOMP connection. If a
proxy_host is specified and no proxy_user specified, then assumed no
authentication is required.

Resilient Incident Response Platform Python Integration Development Guide

Page 10

Parameter Required? Description

proxy_password N Password for authentication to Proxy to use for STOMP connection. Used in
conjunction with proxy_user.

cafile N Path and file name of the PEM file to use as the list of trusted Certificate
Authorities for SSL verification when the Resilient platform is using untrusted
self-signed certificates.

If there is a PEM file, use a second instance of cafile to set to True or False. If
set to False, certificate verification is not performed and the PEM file is used. If
set to True (default), allow only trusted certs.

Whenever you install a new components package for Resilient Circuits, you need to update your
app.config file to include any required section(s) for the new component(s). After installing the
package, run:

resilient-circuits config –u

If using an alternate file location for your app.config file, you need to specify it when you update.

resilient-circuits config –u /path/to/app.config

This adds a new section to your existing config file with default values. Depending on the
requirements of the component, you may need to modify those defaults to fit your environment
(e.g., credentials to a 3rd party system).

3.3. Pull Configuration Values

Values in the config file can be pulled from a compatible keystore system on your OS. This is
useful for values like password that you would prefer not to store in plain text. To retrieve a value
from a keystore, set it to ^<key>. For example:

[resilient]

password=^resilient_password

Values in your config file can also be pulled from environment variables. To retrieve a value from
the environment, set it to $<key>. For example:

[resilient]

password=$resilient_password

3.4. Add Values to Keystore

The Resilient package includes a utility to add all of the keystore-based values from your
app.config file to your system's compatible keystore system. Once you have created the keys in
your app.config file, run res-keyring and you are prompted to create the secure values to store.

bash-3.2$ res-keyring

Configuration file: /Users/kexample/.resilient/app.config

Secrets are stored with 'keyring.backends.OS_X'

[resilient] password: <not set>

Enter new value (or <ENTER> to leave unchanged):

Resilient Incident Response Platform Python Integration Development Guide

Page 11

4. Run Resilient Circuits
Once configuration is complete, you can run Resilient Circuits with the following command:

resilient-circuits run

If everything has been successful, you should see lots of output to your shell, including a
components loaded message. For example:

<load_all_success[loader] ()>

 2017-03-06 11:04:35,525 INFO [app] Components loaded

You can stop the application running with ctrl+c.

4.1. Run Multiple Instances

Running the application creates a hidden file called “resilient_circuits_lockfile” in a “.resilient”
directory in your home directory. This is to prevent multiple copies of the application from running
at once. If your particular situation requires running multiple instances of Resilient Circuits, you
can override this behavior by specifying an alternate location for the lockfile via an
“APP_LOCK_FILE” environment variable.

4.2. Monitor Config File for Changes

You can configure Resilient Circuits to monitor the app.config file for changes. When it detects a
change has been saved, it updates its connection to the Resilient appliance and notifies all
components of the change. To enable this option, install the “watchdog” package.

pip install watchdog

Now you can run with:

resilient-circuits run –r

Without the –r option, changes to the app.config file have no impact on a running instance of
Resilient Circuits. Note that not all components currently handle the reload event and may
continue using the previous configuration until Resilient Circuits is restarted.

4.3. Override Configuration Values

Sometimes it is necessary to override one or more values from your app.config file when running
Resilient Circuits. For example, you may want to temporarily run with the log level set to DEBUG.
To accomplish this, run Resilient Circuits with:

resilient-circuits run --loglevel DEBUG

You can also use optional parameters to run the application when the values being overridden
are required and missing from the config file.

 For a complete list of optional arguments for overrides, run:

resilient-circuits run -- --help

Resilient Incident Response Platform Python Integration Development Guide

Page 12

5. Create a Resilient Circuits
Component

You can create your own python module that contains your integration code.

5.1. Get Started

To develop a new custom component for Resilient Circuits to load, perform the following:

1. Create a directory to load it from. Create a directory called something like “components”
and then add a values for “componentsdir” to your app.config file set to the absolute path
of this components directory.

2. Create a python module in your components directory that contains your integration
code. You can use any of the example resilient-circuits component modules as a starting
point.

3. The module name and component class name may be anything you wish, but it is
advisable to give them a name reflective of their behavior or purpose.

5.2. Start Building

Assuming you are working from the template component, perform the following steps to start
building your integration:

1. Create a queue message_destination in your Resilient Organization and add your
integrations account as an authorized user of that message destination.

2. In the __init__ method of your component class, set the “channel” member to
“actions.<message_destination>” with <message_destination> being swapped out for the
programmatic name of the queue you just created.

3. Create a new rule in the Resilient platform, either Automatic or Menu Item, and add your
queue as a message destination for that rule.

4. Rename the _framework_function method of your class to something descriptive for what
the action should do, and then update the @handler decorator above it to match the
programmatic name of the rule you created in the Resilient platform. For example, if you
created a new rule called “Do Something” then your decorator should look like:
@handler(“do_something”)

5. Add a section to your app.config file with a name that is reflective of your component to
store configuration values, such as [do_something]. Put any configuration values you
need here.

6. Update the CONFIG_DATA_SECTION variable in your module with the name of the
section you created. For example: CONFIG_DATA_SECTION = “do_something”

7. Update the handler code to perform your desired actions. You can update incident fields,
add tasks or artifacts, or anything else supported by the Resilient REST API. There are
many examples of API usage on GitHub. Make sure to end your logic by yielding a status
string. This is used for the action status message in the Resilient platform. For example:

yield “Task added successfully”

8. Run your integration with “resilient-circuits run” and your component should be loaded
and run whenever your rule is triggered.

Resilient Incident Response Platform Python Integration Development Guide

Page 13

5.3. Run During Development

During development, it would be very inconvenient to have to re-install your package every time
you want to test a change. Fortunately, you can install your project in “unbuilt” mode, which links
directly against the source code in your project directory rather than installing a copy in site-
packages. Now your changes take effect immediately with no need to re-install. There are two
ways to do this. From within your project directory (at the same level as your setup.py script), run
one of the following commands:

python setup.py develop

or

pip install -e .

This creates an “egg-info” directory in your project directory and links your site-packages to it.

While developing your Resilient Circuits integration, it is very useful to be able to run it from your
IDE (PyCharm, etc) so you can use tools like a debugger.

In lieu of the “resilient-circuits run” that you would normally use at the command line, have your
IDE run Resilient Circuits with the command “python resilient-circuits/resilient_circuits/app.py”.
This is best used in combination with the “develop” installation mode. If you haven’t packaged
your integration, make sure the “componentsdir” parameter is set correctly in your app.config file
to point to the directory containing the component you are developing.

5.4. Add Functionality with Decorators

Resilient Circuits provides various Python “decorators” that you can use to add functionality to the
handler functions in your component.

5.4.1. required_field

This class decorator allows you to require that a custom field with a particular name is present in
the Resilient platform. If that field does not exist, then the component fails to load and provides an
appropriate error message.

Sample Usage:

@required_field("last_updated")

class SetLastUpdated(ResilientComponent):

 """Set a last updated timestamp on incident"""

 @handler("incident_updated")

 def _set_last_updated(self, event, source=None, headers=None,

message=None):

 inc_id = event.message["incident"]["id"]

 timestamp = int(headers.get("timestamp"))

 def update_func(inc):

 inc["properties"]["last_updated"] = timestamp

 return inc

 self.rest_client().get_put("/incidents/%d" % inc_id, update_func)

 yield "last_updated set"

Resilient Incident Response Platform Python Integration Development Guide

Page 14

5.4.2. required_action_field

This class decorator allows you to require that an activity field with a particular name is present in
the Resilient platform. If that field does not exist, then the component fails to load and provides an
appropriate error message. Its usage is the same as for the required_field decorator.

5.4.3. defer

This method decorator allows you to postpone handling an action for a specified number of
seconds. This is useful for situations where you need to accommodate a delay in the availability
of a resource. For example, allowing time for incident updates to be reflected in the Resilient
newsfeed before querying that API endpoint. The defer decorator should be placed ABOVE the
handler decorator on your method.

The defer decorator only works with handlers that specify the action they are handling. Methods
that are being used as a default handler, with @handler(), are called for all types of circuits
events, most of which don’t relate to the Resilient Action Module. There is an alternate method to
defer action handling in these types of handlers which is accessed by calling a defer method on
the event itself.

Sample Usage:

@defer(delay=3)

@handler("my_action")

def _do_deferred_action1(self, event, source=None, headers=None,

message=None):

 # Code to handle action here!

 return "action handled"

@handler()

def _do_deferred_action2(self, event, *args, **kwargs):

 """Defer handling action on generic handler"""

 if not isinstance(event, ActionMessage):

 # Some event we are not interested in

 return

 if event.defer(self, delay=3):

 return

 # Code to handle action here!

 return "action handled"

Resilient Incident Response Platform Python Integration Development Guide

Page 15

5.4.4. debounce

There are times when an action handler is likely to be triggered multiple times in quick
succession, but you don’t want to handle the events until they are all done firing. The debounce
method decorator allows you to “accumulate” these events and defer handling them until they
stop firing. Similar to the defer decorator, a delay value is specified. If another event with the
same key occurs within that delay period, then the timer is reset. All events are processed once
the timer expires.

In most scenarios, it is only the last event in the series that is of interest. If the “discard” option is
specified, then only the most recent event is handled when the timer expires and any earlier ones
are discarded. This is useful in cases where all the events would have triggered the same action,
resulting in “noise” on an incident’s newsfeed.

The defer decorator only works with handlers that specify the action they are handling. Methods
that are being used as a default handler, with @handler(), can’t use this feature.

Sample usage:

@debounce(delay=30, discard=True)

@handler("task_changed")

def _who_owns_next_task(self, event, source=None, headers=None,

message=None):

 inc_id = event.message["incident"]["id"]

 url = '/incidents/{0}/tasks?handle_format=names'.format(inc_id)

 tasks = self.rest_client().get(url)

 for _task in tasks:

 if _task['status'] == 'O':

 owner_fname = _task["owner_fname"] or ""

 owner_lname = _task["owner_lname"] or ""

 break

 else:

 owner = "All Tasks Complete"

 def update_func(inc):

 inc["properties"]["next_task_owned_by"] = "%s %s" % (owner_fname,

owner_lname)

 return inc

 self.rest_client().get_put("/incidents/%d" % inc_id, update_func)

 yield "next_task_owned_by set"

Resilient Incident Response Platform Python Integration Development Guide

Page 16

5.5. Long-Running Actions

Some types of actions, like running a database query in another system, can take a long time to
complete. A resilient-circuits handler is blocking, meaning it can only handle one action at a time.
To free up the handler to take care of the next incoming event, you can user a circuits “worker” to
run the lengthy task. A worker can be a separate thread or a separate process, depending on
your needs.

The original action handler method is triggering a secondary task to do the real work of running
the action and then returning (which acks the event in the Resilient Action Module). This results in
the Action Status in the Resilient platform showing up as “complete” even though the action is still
being run.

Example:

def do_expensive_thing(incident_id):

 time.sleep(60)

 return "finished"

class expensive_thing(circuits.Event):

 pass

class MyComponent(ResilientComponent):

 def __init__(self, opts):

 super(MyComponent, self).__init__(opts)

 circuits.Worker(process=False, workers=5,

channel=self.channel).register(self)

 @handler("expensive_thing")

 def _do_expensive_thing(self, inc_id):

 yield self.call(circuits.task(do_expensive_thing, inc_id))

 @handler("my_action")

 def _start_expensive_action(self, event, source=None, headers=None,

message=None):

 """ Handler that kicks off long-running task """

 inc_id = event.message["incident"]["id"]

 self.fire(expensive_thing(inc_id))

 yield "Started expensive action"

Resilient Incident Response Platform Python Integration Development Guide

Page 17

5.6. Web UI and Restful Components

The circuits framework comes with a built-in web framework and webserver to create your own
REST API or Web UI.

Some applications, particularly ticketing systems, utilize webhooks as a means of integrating with
other applications. These types of integrations work by allowing a user access to a URL that data
is posted to when certain events occur, such as ticket creation and ticket update. A circuits based
REST API is well suited to this use case.

Another use case for the circuits web framework is building a custom webform to facilitate
incident creation by people who are not direct users of the Resilient platform. Refer to the
circuits.web documentation for more information.

5.6.1. Build a Web Component

The first step in building a web component for Resilient Circuits is to install the rc-webserver
package. From the same directory where you downloaded the package, run:

pip install rc-webserver --find-links .

The webserver requires a few configuration items in your app.config file, so next run:

resilient-circuits config -u

This adds the required configuration section with functional defaults, but you may wish to change
them.

Your web component must inherit from the circuits class BaseController. If you need access to
the Resilient REST API, you need to inherit from the ResilientComponent class. The “channel”
your component listens on corresponds to the first path element from your URL. For example, if
you set “self.channel=”/example”, then all requests starting with
www.<hostname>:<port>/example are routed to your component for handling.

The ‘exposeWeb’ decorator is then applied to methods to handle routes more specifically. For
example, putting “@exposeWeb(“test”)” above your method causes it to be called for all requests
to www.<hostname>:<port>/example/test.

http://circuits.readthedocs.io/en/latest/web/index.html

Resilient Incident Response Platform Python Integration Development Guide

Page 18

6. Package a Resilient Circuits
Integration

Once you have finished developing your component, you can package it so that it is installable
and automatically discoverable by Resilient Circuits. Your project structure should look similar to
the following:

my-circuits-project/

|-- setup.py

|-- README

|-- MANIFEST.in

|-- my_circuits_project/

| |-- data/

| | |-- LICENSE

| | |-- sample_data.txt

| |-- components/

| | |-- my_custom_component.py

| |-- lib/

| | |-- helper_module1.py

| | |-- helper_module2.py

Your setup.py file should look very similar to the one in taskadd example on GitHub mentioned
previously, so you can use it as an example. Swap out “taskadd” for the name of your integration.
The name of each project always has an “rc-“ prefix. That is for convenience so that they are
readily identifiable as Resilient Circuits integrations, but is not required.

The “entry_points” section of setup.py makes your integration discoverable by Resilient Circuits
as a component to run. The “resilient.circuits.components” key should be a set to a list of all
component classes defined in your integration. The “resilient.circuits.configsection” key should
point to a function in your integration package that returns a string containing a sample config
section. This is called to generate data for a config file when a user runs “resilient-circuits config –
u app.config”.

Once your integration is packaged, you can share it with other Resilient users on the Resilient
community examples GitHub repo.

.

https://github.com/ibmresilient/resilient-community-apps
https://github.com/ibmresilient/resilient-community-apps

Resilient Incident Response Platform Python Integration Development Guide

Page 19

7. Test a Resilient Circuits
Integration

Testing a Resilient Circuits component begins during development. Once you have a minimal
component running, you can use the standalone res-action-tool to submit test action data to your
component to quickly test changes to your logic. Support for running a suite of unit and/or
integration tests using the Pytest framework is also provided.

7.1. res-action-test

The res-action-test tool is an interactive command-line tool for manually submitting actions to a
component outside of a Resilient rule. The most common use case for this is to record real action
data from a Resilient rule, and then “replay” it via the command line tool.

To record a session interacting with the Action Module, first make a directory to log the data.
Then, run resilient-circuits with the –log-http-responses option.

mkdir logged_responses

resilient-circuits run -r --log-http-responses logged_responses/

Trigger the rule you want to record. Once you have seen the action received by the application,
you can kill Resilient Circuits. In the logged_responses directory, you should see a filename that
starts with “ActionMessage”.

bash-3.2$ ls logged_responses/ActionMessage*

logged_responses/ActionMessage_AddTask_2017-03-07T09:24:41.822231

Now, run resilient-circuits again with the –test-actions option so that it listens for test actions to be
submitted.

resilient-circuits run --test-actions

When Resilient Circuits is running, start the res-action-test tool in another shell. In the example
below, the saved action message is submitted as if it came in from the “add_task” queue. The
response that would have gone to the Resilient platform over the STOMP connection instead
displays in the test tool.

bash-3.2$ res-action-test

Welcome to the Resilient Circuits Action Test Tool. Type help or ? to list

commands.

(restest) submitfile add_task logged_responses/ActionMessage_AddTask_2017-

03-07T09:24:41.822231

(restest)

Action Submitted<action 1>

(restest)

RESPONSE<action 1>: {"message": "action complete. task posted. ID

2253452", "message_type": 0, "complete": true}

Because the res-action-test tool is a separate process running independently from the main
Resilient Circuits application, it keeps running when the Resilient Circuits process is killed or
otherwise terminated. You see a “disconnected” message appear. As soon as Resilient Circuits
starts back up with the –test-actions option, it automatically reconnects. This makes it easy to
submit a test action, make a change to your component and restart Resilient Circuits, and quickly
re-run the test action.

For a complete list of actions available in rest-action-test, type “help”. For usage of any individual
command, type “help <command>”.

Resilient Incident Response Platform Python Integration Development Guide

Page 20

7.2. Write and Run Tests Using pytest

Once an integration is packaged as an installable component, you can create a suite of tests for
your integration package. Several of our example components have tests written using the pytest
framework. Learn about using pytest by reading the documentation here. IBM Resilient provides
a plugin for pytest with several test fixtures that make writing Resilient Circuits tests easier.

The pytest plugin can be downloaded from the Resilient GitHub repository and installed with:

pip install pytest_resilient_circuits-x.x.x.tar.gz

7.2.1. Resilient Pytest Fixtures

Once the plugin is installed, it makes several fixtures available in pytest. Each of these fixtures is
“class-scoped”, so it is initialized once per class of tests. The following describes each fixture:

 circuits_app: Starts up Resilient Circuits with the specified appliance and credentials. The
appliance location and credentials are pulled from the following environment variables if they
are set. Otherwise, they must be provided as command line options when the test is run, as
described in the Run Tests section.

o test_resilient_appliance

o test_resilient_org

o test_resilient_user

o test_resilient_password

 configure_resilient: Clears out all existing configuration items from the organization and
then automatically creates new ones as defined by your test class. Class members should be
set as follows to describe required configuration elements. Any that are not necessary can be
excluded.

destinations = ("<destination1 name>", "<destination2 name>", ...)

action_fields = {"<programmatic_name>": ("<number, text, etc...>",

 "<display_name>", None),

 "<programmatic_name>": ("select", "<display_name>",

 ("<option1>", "<option2>")), ...}

custom_fields = {"<programmatic_name>": ("<number, text, etc...>",

 "<display_name>", None),

 "<programmatic_name>": ("select", "<display_name>",

 ("<option1>", "<option2>")), ...}

automatic_actions = {"<display_name>": ("<destination name>",

 "<Incident, Artifact, Task, etc>", (condition1, condition2, etc)),

 "<display_name>": ("<destination name>", "<Incident, Artifact,

 Task, etc>", (condition1, condition2, etc))}

 *note that conditions are a dict in ConditionDTO format

manual_actions ={"<display_name>": ("<destination name>",

 "<Incident, Artifact, Task, etc>", ("<action field1>",

 "<action field2>", ...)),

 "<display_name>": ("<destination name>",

 "<Incident, Artifact, Task, etc>", ("<action field1>",

 "<action field2>", ...))}

 new_incident: Provides a python dictionary containing data suitable for doing a PUT against
the /incidents endpoint in the Resilient platform. It has something valid populated for all
required fields and simplifies creating test data in the Resilient platform.

The task_add example mentioned previously has a single test included that shows usage of each
of these fixtures.

http://docs.pytest.org/en/latest/

Resilient Incident Response Platform Python Integration Development Guide

Page 21

7.2.2. Run Tests

All test modules should be in a “tests” directory at the top level of your package.

Assuming you have configured a “test” command in your setup.py as shown in the task_add
example, you should now be able to start your tests with the “setup.py test” command. This runs
setup and your test suite in your current python environment. Use of a python virtual environment
is recommended.

python setup.py test -a "--resilient_email <user email> --

resilient_password <password> --resilient_host <ip or hostname> --

resilient_org '<org name>' tests"

If you have already installed your plugin, and thus don’t need to run setup, you can kick off pytest
directly with:

pytest –s --resilient_email <user email> --resilient_password <password> -

-resilient_host <ip or hostname> --resilient_org “<org name>” tests

7.3. Run Tests with tox

Running with “setup.py test” runs your test suite in your current environment. Tox is a great way
to test your package in a clean environment across all supported python versions. It generates a
new virtual environment for each supported Python version and run setup and your tests. Read
more about tox here and install it with:

pip install tox

To get started, create a tox.ini file in your package at the same level as the setup.py script. The
example in the task_add project is a good starting point. Set “envlist” to all the python versions
you want to support. Note that it can only run tests for those versions you actually have installed
on your system. Because the “Resilient”, “resilient_circuits”, and “pytest_resilient_circuits”
packages are all dependencies, make sure they are listed in the “deps” section. Copy those
packages to a pkgs directory and set an environment variable so that pip can find them.

export PIP_FIND_LINKS=”/path/to/pkgs/"

Your package should now look something like this:

my-circuits-project/

|-- setup.py

|-- tox.ini

|-- README

|-- MANIFEST.in

|-- my_circuits_project/

| |-- data/

| | |-- LICENSE

| | |-- sample_data.txt

| |-- components/

| | |-- my_custom_component.py

| |-- lib/

| | |-- helper_module1.py

| | |-- helper_module2.py

|-- tests/

| |-- tests_for_my_project.py

Now run your tests with:

tox -- --resilient_email <user email> --resilient_password <password> --

resilient_host <ip or hostname> --resilient_org '<org name>' tests

https://tox.readthedocs.io/en/latest/

Resilient Incident Response Platform Python Integration Development Guide

Page 22

7.4. Mock Resilient API

It is not always practical or possible to run tests against a live Resilient instance. The Resilient
package includes a simple framework built on Requests-Mock to enable mocking a subset of the
Resilient REST API. Only the endpoints used by your component need to be mocked. Some
endpoints, like /session, always needs to be mocked because the Resilient helper module and
resilient-circuits packages use them.

The add_task example contains a very basic mock that returns just the data logged from a saved
session for the minimum number of endpoints to support the AddTask component. A mock to
support actual tests would need to alter the responses based on the contents of POST/PUT
requests.

Create a class derived from co3.resilient_rest_mock.ResilientMock. Define a function for each
endpoint you wish to mock, returning a requests.Response object. To register which endpoint you
are mocking, use the @resilient_endpoint decorator on the function, passing it the request type
and a regex that matches the desired URL.

In this example, the /incident/<inc_id>/members endpoint is mocked for PUT and GET requests:

from requests_mock import create_response

from co3.resilient_rest_mock import ResilientMock, resilient_endpoint

class MyMock(ResilientMock):

 def __init__(self, *args, **kwargs):

 super(MyResilientMock,self).__init__(*args, **kwargs)

 self.members = []

 @resilient_endpoint("GET", "/incident/[0-9]+/members$")

 def get_members(self, request):

 member_data = {"members": self.members, "vers": 22}

 return create_response(request, status_code=200, json=member_data)

 @resilient_endpoint("PUT", "/incident/[0-9]+/members$")

 def put_members(self, request):

 data = request.json()

 if "members" not in data or "vers" not in data or not

isinstance(data.get("members"), list):

 error_data = {"success": False, "message": "Unable to process

the supplied JSON."}

 return create_response(request, status_code=400,

json=error_data)

 self.members = data["members"]

 member_data = {"members": self.members, "vers": 22}

 return create_response(request, status_code=200, json=member_data)

Resilient Incident Response Platform Python Integration Development Guide

Page 23

8. Run as a Service on Windows
Resilient Circuits can be configured to run as a service. It requires the pywin32 library, which
should be downloaded from sourceforge. Instructions for downloading and installing the correct
package are at the bottom of the screen and must be followed carefully. Do not use the pypi/pip
version of pywin32.

Installation of the wrong version of the pywin32 library will likely result in a Resilient service that
installs successfully but is unable to start.

Now run:

resilient-circuits.exe service install

Once installed, you can update the service to start up automatically and run as a user account.

It is recommended that you log in as whichever user account the service will run as to generate
the config file and confirm that the integration runs successfully with “resilient-circuits.exe run”
before starting the service.

Commands to start, stop, and restart the service are provided as well.

resilient-circuits.exe service start

resilient-circuits.exe service stop

resilient-circuits.exe service restart

https://sourceforge.net/projects/pywin32/files/pywin32/

Resilient Incident Response Platform Python Integration Development Guide

Page 24

9. Run as a Service on Linux
Resilient Circuits can be configured to run as a service on Linux with supervisord.

If you do not have supervisord on your Debian Linux platform, you can download it using the
following command.

sudo apt-get install supervisor

If you had supervisord on your platform, make sure you have the latest version:

sudo apt-get update

Install supervisord:

sudo apt-get install supervisor

Locate the supervisord configuration file then review and edit as necessary. The configuration file
defines the following properties:

 A name to identify the program for supervisord.

 OS user account to use.

 Directory from where it should run.

 Any required environment variables.

 Command to run the integrations, such as: resilient-circuits run

 Location for the logfile.

Here is an example of a configuration file:

[program:resilient_circuits]

user=integration

directory=/usr/share/integration/

environment=LANG=en_US.UTF-8,LC_ALL=en_US.UTF-8

command=resilient-circuits run

stdout_logfile=/var/log/resilient_circuits.log

redirect_stderr=true

autorestart=true

You may need to add additional environment variables to the configuration file, such as
APP_CONFIG_FILE.

The program to run is defined in the configuration file. Copy this to the configuration directory and
restart the service:

sudo cp actions_supervisor.conf /etc/supervisor/conf.d/

sudo service supervisor restart

The supervisor service logs its activity to /var/log/supervisor/supervisord.log.

To restart the supervisor service, use:

sudo service supervisor restart

