
 

Page 1 of 55 

 

 

 

 

 

Large Synoptic Survey Telescope (LSST) 

         LSST Service Abstraction Layer (SAL) 

                   Software SDK Users Manual 

                                        

 

 

 

 

 



 

Page 2 of 55 

Change Record  
 

Version Date Description Owner name 

V1.0 12/13/2013 Initial Draft D. Mills 

V2.0 06/06/2014 First Release D. Mills 

V2.3 06/05/2015 Added detail about large-file handling D. Mills 

V2.4 07/27/2015 Major revision to document XML schema use D. Mills 

V3.0 04/29/2016 Revisions for SAL V3 release D. Mills 

V3.5 02/23/2016 Revisions for SAL V3.5 release D.Mills 

V3.6 03/09/2018 Add lists of generic commands and events D. Mills 

    

    

    

    

    

    

    

    

 

 



 

Page 3 of 55 

 

Table of Contents 

LSST Service Abstraction Layer (SAL) 1 

Software SDK Users Manual 1 

1 Introduction 5 

2. Installation 6 

2.0.1 Installation from a tar archive release 6 

2.0.2 Installation from Git repositories 7 

2.0.3 Install location customization 7 

2.1 Installation in a virtual machine 8 

2.2 Standard usage 9 

3. Data Definition 9 

3.1 Telemetry Definition 10 

3.2 Command Definition 11 

3.3 Log Event Definition 12 

3.4 Updating the XML definitions 13 

4. Using the SDK 14 

4.1 Recommend sequence of operations 15 

4.1.1 Step 1 – Definition 16 

4.1.2 Step 2 – Validation 16 

4.1.3 Step 3 – Update Structure and documentation 16 

4.1.4 Step 4 – Code Generation 17 

4.2 salgenerator Options 22 

4.3 SAL API examples 23 

5. Testing 24 

5.1 Environment 24 

5.2 Telemetry 25 

5.3 Commands 25 

 27 

5.4 Events 28 



 

Page 4 of 55 

6. Application programming Interfaces 29 

6.1. C++ 29 

6.2 Java 30 

6.3 Python (pybind11 bindings) 31 

7.0 SAL XML Schema 32 

7.1 Telemetry 32 

7.1.1 telemetrySetType 32 

 32 

7.1.2 telemetryType 32 

 32 

7.1.3 telemetryItemType 33 

 33 

7.2 Commands 34 

7.2.1 commandSetType 34 

 34 

7.2.2 commandType 34 

 34 

7.2.3 commandItemType 35 

 35 

7.3 Events 36 

7.3.1 eventSetType 36 

7.3.2 eventType 36 

7.3.3 eventItemType 37 

8.0 Compiler Options and Link Libraries 38 

 

 

 

 



 

Page 5 of 55 

1 Introduction 
 

This document briefly describes how to use the SAL SDK to generate application 
level code to utilize the supported services (Commanding, Telemetry and Events).  

 
The SAL SDK should be installed on a modern  (x86_64) Linux computer.  
The current baseline recommended configuration is 64-bit CentOS 7.3. 

 
The following packages should also be installed prior to working with the SDK 

(use either the rpm or yum package managers for CentOS, and apt-get , dpkg, 
  or synaptic for Debian based systems). Installation of system packages must be 
done using sudo (eg  sudo yum install , or sudo apt-get install). 

 
 - gcc-c++ 

 - make 
 - ncurses-libs or ncurses-dev 
            - xterm 

            - xorg-x11-fonts-misc 
            - java-1.7.0-openjdk-devel  

            - maven 
 - python-devel 
            - swig 

            - git 
            - tk-devel 
 

The distribution includes dedicated versions of the following packages 
 

 - OpenSplice 
  
All the services are built upon a framework of OpenSplice DDS. Code may be autogenerated for 

a variety of compiled and scripting languages, as well as template documentation,  and 
components appropriate for ingest by other software engineering tools. 

 
A comprehensive description of the SAL can be found in doc/LSE74-html, navigate 
to the directory with a web browser to view the hyper-linked documentation. 

 
e.g.  

 
         firefox file:///path-to-installation/doc/LSE74-html/index.html 
 



 

Page 6 of 55 

2. Installation 
 

A minimum of 800Mb of disk space is required, and at least 1Gb is recommended 
to leave some space for building the test programs. 

 
The default OpenSplice configuration requires that certain firewall rules are added,  
alternatively, shut down the firewall whilst testing.  

 
For iptables : this can be done(as root) with the following command 

 sudo /etc/init.d/iptables stop 
 
For Ubuntu: use sudo ufw disable 

 
firewalld :  this can be done (as root) with the following commands 

First, run the following command to find the default zone: 
 firewall-cmd --get-default-zone 
 

Next, issue the following commands: 
 firewall-cmd --zone=public --add-port=250-251/udp --permanent 

 firewall-cmd --zone=public --add-port=7400-7413/udp --permanent 
 firewall-cmd --reload 
 

Replace public with whatever the default zone says,  if it is different. 
 
The location of the  OpenSplice configuration file is stored in the  

environment variable OSPL_URI, and an extensive configuration tool 
exists (osplconf), should customization be necessary. 

 

2.0.1 Installation from a tar archive release 
 

The tar archive format release includes a compatible version of OpenSplice 
as well as the SAL toolkit. 
 

Unpack the SAL tar archive in a location of choice (/opt is recommended),  
e.g.   in a terminal, replacing x.y.z with the appropriate version id 

  
 cd /opt 
 tar xzf [location-of-sdk-archive]/salSDK-x.y.z_x86_64.tgz 

  
and then add  the SDK setup command.   

 
 source /opt/setup.env 



 

Page 7 of 55 

 

to your bash login profile. 
 

2.0.2 Installation from Git repositories 
 
Use a git client of your preference to check out the required branch of the following repositories 
 

            https://github.com/lsst-ts/ts_sal 
            https://github.com/lsst-ts/ts_opensplice 

 
and then add  the SDK setup command.   
 

 source /opt/setup.env 
 

to your bash login profile. 
 

2.0.3 Install location customization 
 
If you chose to install the SDK in a location other than /opt, then you will need 
to edit the first line of the setup.env script to reflect the actual location. 

e.g.  
 LSST_SDK_INSTALL=/home/saltester 

 
The standard location for the OpenSplice package is in the same directory as the SDK,  
But you can install it elsewhere as long as you edit the OSPL_HOME environment variable to 

reference the actual path. 
 

Another important environment variable is SAL_WORK_DIR. This is the directory 
in which you will run the SAL tools, and in which all the output files and libraries 
will be generated. By default this will be the  “test” subdirectory in LSST_SDK_INSTALL, but 

you can change SAL_WORK_DIR to redefine it if required. 
 

ALL THE salgenerator STEPS MUST BE RUN FROM THE SAL_WORK_DIR DIRECTORY 
 
If you will be running SAL applications in parallel with other users on your subnet, it is 

advisable to partition your network traffic so as not to interfere with each others activities. 
This can be done by setting the environment variable LSST_DDS_DOMAIN to a unique 

string value for each user. 
 
Also retrieve ts_xml and copy the appropriate subsystem definitions to your working directory. 

e.g.     cp ts_xml-master/sal_interfaces/mysubsystem/*.xml test/. 
 

https://github.com/lsst-ts/ts_sal
https://github.com/lsst-ts/ts_opensplice


 

Page 8 of 55 

Where test is the working directory specified by the SAL_WORK_DIR environment variable. 

 
Add the invocation of setup.env to your bash login profile 
 

 source /sal-install-directory-path/setup.env 

 
 
The most common SDK usage consists of simple steps :  

 
 1) Define  Telemetry, Command or Log activity (either using the SAL VM, or manually 

     with an ascii text editor). For details of the SAL VM interface , please refer to  
      Document-xxxxx.    
 

     The current prototypes for each subsystem can be used as a baseline,  eg for the dome 
     subsystem 

      
 cd $SAL_WORK_DIR 
            cp $SAL_HOME/scripts/xml-templates/dome/*.xml   . 

             
 

2) Generate the interface code  using 'salgenerator' 
3) Modify the autogenerated sample code to fit the application required. 
4) Build if necessary, and test the sample programs 

 
Example makefiles are provided for all the test programs. The list of  

libraries required to link with the middleware can be found in section 8.0 
 
 

 

2.1 Installation in a virtual machine 
 
The SDK has been tested in a Virtual Machine environment (VirtualBox).  

To set up a VM appropriately for this usage :  
 

1. In VM configuration , choose Bridged Adaptor for the network device 
2. Add a sal user account during OS installation, the user should be an administrator 
3. Choose Gnome Desktop  + Development tools during OS installation 

4. From VM menu , install Guest Additions 



 

Page 9 of 55 

5. Once the OS has booted, enable the network 

6. Verify the network is ok. 
7. sudo yum install xterm xorg-x11-fonts-misc java-1.7.0-openjdk-devel boost-python 
              boost-python-devel maven python-devel tk-devel 

8. Configure (or disable) iptables and firewalld 
    eg    systemctl disable iptables 

            systemctl disable firewalld 
            system stop iptables 
            system stop firewalld 

 

2.2 Standard usage 
Normal usage of the SDK comprise four main steps 
 
1.Define Telemetry, Command, and Event datatypes (either using the SAL VM website 

interface, or an asci or XML editor). In some cases the XML from another subsystem might 
provide a useful bootstrap. See the ts_xml repository. 

 
2. Generate the interface code using the ‘salgenerator’ 
 

3. Modify the autogenerated sample code to fit the application required 
 

4. Build and test the sample programs 
 
Example makefiles  are provided for all the test programs. The list of libraries required to link an 

application with the middleware can be found in section 8.0 
 

3. Data Definition 

 

In all XML data definition files the IDL_Type keyword is used to specify the datatype of each 
field. The following datatypes are supported:  

 short 

 long  (this is a 4 byte integer, and is represented as int on Linux 64-bit) 

 long long (8 byte integer) 

 unsigned short 

 unsigned long  (this is a 4 byte integer, and is represented as int on Linux 64-bit) 



 

Page 10 of 55 

 unsigned long long (8 byte integer) 

 float 

 double 

 char , specify length using the Count tag 

 boolean 

 octet  (sequence of unsigned bytes) 

 string, specify length using the Count tag 

 numeric arrays, use the Count  tag with any numeric type 

If there is a time-of-data associated with an item, then it should be named “timestamp”,  

and be of type double. The time should be TAI time as returned by the getCurrentTime 

method. If more than one timestamp is needed in a topic, then they should be named 

“timestamp-name1, timestamp-name2 etc”. If an array of times is required, then the type 

should be  “double timestamp[size]”. 

3.1 Telemetry Definition 
 

A very simple XML schema is used to define a telemetry topic.  
The topic is the smallest unit of information which can be exchanged using the SAL 

mechanisms. 
 
 

The following  Reserved words may NOT be  used in names and will flag an error at 
the validation phase  (once the SAL System Dictionary is finalized, the item names 

will also be validated for compliance with the dictionary). 
 
Reserved  words :  bstract any attribute boolean case char component const consumes context 

custom dec default double emits enum eventtype exception factory false finder fixed float 
getraises home import in inout interface limit local long module multiple native object octet 

oneway out primarykey private provides public publishes raises readonly sequence setraises 
short string struct supports switch true truncatable typedef typeid typeprefix union unsigned uses 
valuebase valuetype void wchar wstring 

 

 



 

Page 11 of 55 

 

 
 
 

 
e.g. 

 
<SALTelemetry>  
<Subsystem>hexapod</Subsystem>  

<Version>2.5</Version>  
<Author>A Developer</Author>  

<EFDB_Topic>hexapod_LimitSensors</EFDB_Topic>  
      <item>  
          <EFDB_Name>liftoff</EFDB_Name>  

          <Description></Description>  
          <Frequency>0.054</Frequency> 

          <IDL_Type>short</IDL_Type>  
          <Units></Units>  
          <Conversion></Conversion>  

          <Count>18</Count> 
      </item>  

      <item>  
          <EFDB_Name>limit</EFDB_Name>  
          <Description></Description>  

          <Frequency>0.054</Frequency>  
          <IDL_Type>short</IDL_Type>  

          <Units></Units>  
          <Count>18</Count>  
      </item>  

</SALTelemetry>  
 

 
 
 

 
 

 

3.2 Command Definition 

 



 

Page 12 of 55 

The process of defining supported commands is similar to Telemetry using XML. 

The command aliases correspond to the ones listed in the relevant subsystem ICD. 
e.g. 

 

<SALCommand>  

 <Subsystem>hexapod</Subsystem>  

 <Version>2.5</Version>  
 <Author>salgenerator</Author>  

 <EFDB_Topic>hexapod_command_configureAcceleration</EFDB_Topic>  

 <Alias>configureAcceleration</Alias>  

 <Device>drive</Device>  

 <Property>acceleration</Property>  

 <Action></Action>  

 <Value></Value> 

<Explanation>http://sal.lsst.org/SAL/Commands/hexapod_command_configureAcceleration.html</Explan

ation>  

    <item>  

      <EFDB_Name>xmin</EFDB_Name>  

      <Description> </Description>  

      <IDL_Type>double</IDL_Type>  

      <Units> </Units>  

      <Count>1</Count>  

    </item>  

    <item>  

      <EFDB_Name>xmax</EFDB_Name>  

      <Description> </Description>  

      <IDL_Type>double</IDL_Type>  

      <Units> </Units>  

      <Count>1</Count>  

    </item>  

    <item>  

</SALCommand> 

 

Note : The generic lifecycle commands should NOT be included , they are automatically generated during the 

salgenerator validation and/or UML to  XML processing. The current generic command set is {start, stop, enable, 

disable, abort, enterControl, exitControl, standby,SetValue} 

 

 

 

 

3.3 Log Event Definition 

 
Events are defined in a similar fashion to commands.  e.g 

The Log Event aliases are as defined in the relevant ICD. 
 

e.g. 



 

Page 13 of 55 

<SALEvent>  

 <Subsystem>hexapod</Subsystem>  

 <Version>2.4</Version>  

 <Author>salgenerator</Author>  

 <EFDB_Topic>hexapod_logevent_limit</EFDB_Topic>  

 <Alias>limit</Alias>  

 <Explanation>http://sal.lsst.org/SAL/Events/hexapod_logevent_limit .html</Explanation>  

    <item>  

      <EFDB_Name>priority</EFDB_Name>  

      <Description>Severity of the event</Description>  

      <IDL_Type>long</IDL_Type>  

      <Units>NA</Units>  

      <Count>1</Count>  

    </item>  

    <item>  

      <EFDB_Name>axis</EFDB_Name>  

      <Description> </Description>  

      <IDL_Type>string</IDL_Type>  

      <Units> </Units>  

      <Count>1</Count>  

    </item>  

    <item>  

      <EFDB_Name>limit</EFDB_Name>  

      <Description> </Description>  

      <IDL_Type>string</IDL_Type>  

      <Units> </Units>  

      <Count>1</Count>  

    </item>  

    <item>  

      <EFDB_Name>type</EFDB_Name>  

      <Description> </Description>  

      <IDL_Type>string</IDL_Type>  

      <Units> </Units>  

      <Count>1</Count>  

    </item>  

</SALEvent>  

 

Note : The generic lifecycle events should NOT be included , they are automatically generated 
during the salgenerator validation and/or UML to  XML processing. The current generic event 
set is SettingVersions, SummaryState, DetailedState, ErrorCode, AppliedSettingsMatchStart. 

3.4 Updating the XML definitions 
 

The XML definitions of the SAL objects for each subsystem are maintained in  
a github repository (https://github.com/lsst-ts/ts_xml). 
 

https://github.com/lsst-ts/ts_xml


 

Page 14 of 55 

When subsystem developers update the XML definitions for their interfaces, they should create a 

new feature branch in the github repository and put the modified version into it. Once the 
feature(s) have been fully tested, the corresponding changes are made made to the appropriate 
ICD. Once the ICD has been approved by the Change Control Board, the modified XML will be 

merged into the master branch and assigned an official release number. The master (release) 
branch is used to generate the SAL runtime libraries which can be used by other subsystems for 

integration testing. The master branch is also used by the  Continuous Integration Unit 
Testing framework. 
 

The XML definition files for the subsystem you are developing should be checked out of the 
github repository to ensure you are working with the latest version. 

 
For convenience the full set of current definition files in also included in each SAL SDK 
Release (in lsstsal/scripts/xml-templates).  

 
The XML definition files should be copied to the SAL_WORK_DIR directory before 

using the SAL tools.  
 
The SAL tools must be run from the SAL_WORK_DIR directory. 

 

4. Using the SDK 
 
Before using the SDK , make sure that all the directories in the SAL_WORK_DIR and  
The SAL installation directory are owned by you 

 
e.g. 

 cd $SAL_WORK_DIR 
            chown –R <username>:<username>  * 
 

 
Once Telemetry/Command/Events  have been defined , either using the SAL VM or hand edited,  

 
e.g. for  skycam,  interface code and usage samples can 
       be generated using the salgenerator tool. e.g. 

 
    salgenerator skycam  validate 

    salgenerator skycam  sal cpp 

 
would generate the  c++ communications libraries to be linked with any user code which needs 

to interface with the  skycam subsystem. 



 

Page 15 of 55 

 

 
 
The "sal" keyword indicates SAL code generation is the required operation,  

the selected wrapper is cpp (GNU G++  compatible code is generated, other options 
are java, isocpp and python). 

 
C++ code generation produces a shared library for type support and another  
for the SAL API. It also produces test executables to publish and subscribe to all 

defined Telemetry streams, and to send all defined Commands and log Events. 
 

Java code generation produces a .jar class library for type support and another 
for the SAL API. It also produces .jar libraries to test publishing and subscribing to  
all defined Telemetry streams, and to send all defined Commands and log Events. 

 
The “python” option generates an import'able library. Simple example scripts to perform the 

major functions can be found later in this document. 
 
The “labview” keyword indicates that a LabVIEW compatible shared library and Monitor task 

should be built (the “sal cpp” step must previously have been run). 
 

The “maven” keyword indicates that a Maven project should be built for the subsystem. This will 
be placed in  $SAL_WORK_DIR/maven/[subsystem]_[version], The “sal java” step must 
previously have been run). 

 

4.1 Recommend sequence of operations  

 

1. Create the XML Telemetry , Command,  and Event definitions 
2. Use the salgenerator  validate operation 
3. Use the salgenerator html operation 

4. Use the salgenerator sal operation 
5. Verify test programs run correctly 

6. Build the SAL shared library / JAR for the subsystem 
7. Begin simulation/implementation and testing 

 

 



 

Page 16 of 55 

 

 

4.1.1 Step 1 – Definition 

 

Use an XML  editor to create/modify the set of subsystem xml files. Each file should be 
appropriately named and consists of a either Telemetry, Command,  
or Event definitions. The current prototypes for each subsystem can be 

found at https://github.com/lsst-ts/ts_xml. 
  

   
 
 

4.1.2 Step 2 – Validation 

 
         Run the salgenerator tool validate option for the appropriate subsystem. 

  
            e.g.      salgenerator mount  validate 

 
           The successful completion of the validation phase results in the  
           creation of the following files and directories. 

 
            idl-templates – Corresponding IDL DDS topic definitions 

            idl-templates/validated – validated and standardized idl  
            idl-templates/validated/sal – idl modules for use with OpenSplice 
            sql – database table definitions for telemetry 

            xml – XML versions of the all telemetry definitions 
 

4.1.3 Step 3 – Update Structure and documentation 

 
         Run the salgenerator  html option for the appropriate subsystem. 

         
            e.g.      salgenerator mount   html 

 
        The successful completion of the html phase results in the  
        creation of the following files and directories which may be  



 

Page 17 of 55 

        used to update the SAL online configuration website. (See SAL VM  

        documentation for upload details). 
       
        html – a set of directories, one per .idl file, with web forms for editing online 

                   a set of index-dbsimulate web page forms 
                   a set of index-simulate web page forms 

                   a set of sal-generator web page forms 
 

4.1.4 Step 4 – Code Generation 

 
         Run the salgenerator tool using the sal option for the appropriate subsystem. 

         The sal option requires at least one target language to also be specified. 
         The current target languages are cpp, isocpp, java and python. 
 

              
 

              Depending upon the target language , successful completion of the code 
              generation results in the following output directories (e.g  for mount) 
  

  e.g.    salgenerator mount  sal cpp 
 

             cpp  -  
                       mount:             - common mount support files 
 

   cpp   
   isocpp   

   java 
 
 

  mount/cpp: 
   

   ccpp_sal_mount.h    - main include file 
   libsacpp_mount_types.so   - dds type support library 
   Makefile.sacpp_mount_types    - type support makefile 

   sal_mount.cpp     - item access support 
   sal_mountDcps_impl.cpp   - type class implementation 

   sal_mount.idl     - type definition  idl 
   sal_mountDcps.cpp      - type support interface 
   sal_mountDcps_impl.h       - type implementation headers 

   sal_mountSplDcps.cpp   - type support  I/O 



 

Page 18 of 55 

   sal_mountDcps.h        - type interface headers 

   sal_mount.h                 - type support class 
   sal_mountSplDcps.h    - type I/O headers 
   src 

 
   

 
 
 

 
   mount/cpp/src: 

   
   CheckStatus.cpp      - test dds status returns 
      CheckStatus.h     - test dds status headers 

   mountCommander.cpp    - command generator  
   mountController.cpp    - command processor 

   mountEvent.cpp    - event generator 
   mountEventLogger.cpp   - event logger 
   Makefile.sacpp_mount_cmd   - command support makefile 

   Makefile.sacpp_mount_event  - event support makefile 
   sacpp_mount_cmd       - test program 

   sacpp_mount_ctl         - test program 
   sacpp_mount_event     - test program 
   sacpp_mount_eventlog     - test program 

   sal_mount.h     - SAL class headers 
   sal_mountC.h     - SAL C support 

   sal_mount.cpp      - SAL class 
    
 

  mount_TC:         -  specific to particular telemetry stream 
  

   cpp   
   isocpp   
   java   

   python 
 

  mount_TC/cpp: 
   
   src  

   standalone 
 

  mount_TC/cpp/src: 



 

Page 19 of 55 

 

   CheckStatus.cpp      - check dds status class 
   CheckStatus.h     - check dds status header 
   mount_TCDataPublisher.cpp     - Actuators data publisher 

   mount_TCDataSubscriber.cpp    - Actuators data subscriber 
   

 
 
 

 
  mount_TC/cpp/standalone: 

 
   Makefile                               
   Makefile.sacpp_mount_TC_sub    - subscriber makefile  

  
   Makefile.sacpp_mount_TC_pub    - publisher makefile 

   sacpp_mount_sub                      -  test program 
   sacpp_mount_pub                      -  test program             
   src 

 
  mount_TC/cpp/standalone/src: 

 
     
e.g.    salgenerator mount   sal java 

 
           java -  

 
  mount/java: 
 

   classes      - compiled type classes 
   mount      - generated java types 

   Makefile.saj_mount_types    - makefile fior types 
   saj_mount_types.jar     - type support classes 
   sal_mount.idl     - validated sal idl 

   src 
 

  mount/java/classes: 
 
                              full set of java .class type support files 

   
  mount  saj_mount_types.manifest 

 



 

Page 20 of 55 

  mount/java/classes/mount: 

 
                                 full set of .java type support files 
 

  mount/java/mount: 
 

 
 
 

 
 

  mount/java/src : 
 
   ErrorHandler.java 

   mount_cmdctl.run   - run command tester 
   mount_event.run   - run event tester 

   mountCommander.java  - commander source 
   mountController.java   - command processor source 
   mountEvent.java   - event generator source 

   mount_EventLogger.java  - event logger source 
   Makefile.saj_mount_cmdctl  - command class makefile 

   Makefile.saj_mount_event  - event class makefile   
  
 

 
 

 mount_TC/java:  -  specific to particular telemetry stream 
   
   Makefile   

   src   
   standalone 

 
  mount_TC/java/src:   
 

   ErrorHandler.java    - error handler class source 
   mount_TCDataPublisher.java    - publisher class source 

  
   mount_TCDataSubscriber.java    - subscriber class source 
   org 

 
  mount_TC/java/src/org: 

 



 

Page 21 of 55 

   lsst 

 
  mount_TC/java/src/org/lsst: 
 

   sal 
 

 
 
  mount_TC/java/src/org/lsst/sal: 

 
   sal_mount.java    - sal class for mount 

 
  mount_TC/java/src/org/lsst/sal/mount: 
 

   Actuators 
 

  mount_TC/java/src/org/lsst/sal/mount/Actuators: 
 
  mount_TC/java/standalone: 

 
   mount_TC.run      -  run test programs 

   Makefile   
   Makefile.saj_mount_TC_pub    - publication class makefile 
   Makefile.saj_mount_TC_sub   - subscription class makefile 

   saj_mount_TC_pub.jar   - telemetry publication class 
   saj_mount_TC_sub.jar   - telemetry subscription class 

 
 
Once the java has been generated it is also possible to create a Maven project for ease of 

distribution. Use the command  e.g. 
 

   salgenerator mount maven 
 
will create and build a maven project and save it in  

 
  $SAL_WORK_DIR/maven/mount_[sal-version-number] 

 
 
e.g.  salgenerator mount   sal python  

 
  mount/cpp/src : 

 



 

Page 22 of 55 

   Makefile_sacpp_mount_python 

   SALPY_mount.cpp    - Boost.python wrapper 
   SALPY_mount.so    - import'able python library 
 

 
 

 
 
 

 
 

 
 

4.2 salgenerator Options 

 

The salgenerator executes a variety of processes, depending upon the options  
selected. 
 

 
  validate  - check the XML files, generate validated IDL 

  html      - generate web form interfaces and documentation 
  labview   - generate LabVIEW  interface 
                        sal  [lang] - generate SAL C++,  Java, or Python wrappers 

                        lib                   - generate the SAL shared library for a subsystem 
  sim       - generate simulation configuration 

  tcl        - generate tcl interface 
  icd        - generate ICD document 
  maven  - generate a maven project (per subsystem) 

  verbose  - be more verbose ;-) 
  db         - generate telemetry database table 

 
                               for db the arguments required are 
  

          db start-time end-time interval 
 

                                where the times are formatted like “2008-11-12 16:20:01“ 
                                and the interval is in seconds 
 

 
 



 

Page 23 of 55 

 

 
 
 

 
 

 
 
 

 
 

 

4.3 SAL API examples 

 
The SAL code generation process also generates a comprehensive set of test programs so that  

correct operation of the interfaces can be verified. 

 

Sample code is generated for the C++, Java, and Python target languages currently. 

 

The sample code provides a simple command line test for  

 

 publishing and subscription for each defined Telemetry type 

 

 issuing and receiving each defined Command type 

 

 generating and logging for each defined Event type. 

 

In addition , GUI interfaces are provided to simplify the launching of Command and Event 

tests. 

 

The procedure for generating test VI’s for the LabVIEW interface is detailed in Appendix X. 

At present this is an interactive process, involving lots of LabVIEW dialogs. 

 

 

 



 

Page 24 of 55 

 

 

5. Testing 

5.1 Environment 
 

To check that the OpenSplice environment has been correctly initialized;  in a terminal, type 

 
       idlpp 

   

should produce  

 

    Usage: idlpp [-c preprocessor-path] [-b ORB-template-path] 

                [-n <include-suffix] [-I path] [-D macro[=definition]] [-S] [-C] 

                [-l (c | c++ \ cpp \ isocpp \ cs \ java)] [-j [old]:<new>] [-d directory] [-i] 

                [-P dll_macro_name[,<h-file>]] [-o (dds-types | custom-psm | no-equality)]  <filename> 

 

 

To check that the SAL environment has been correctly initialized;  in a terminal type 

 

      salgenerator 
    

should produce 

 
SAL generator tool - Usage : 

 

 salgenerator subsystem flag(s) 

 

   where flag(s) may be 

 

  validate - check the XML Telemetry/Command/LogEvent definitions 

               sal      - generate SAL wrappers for cpp, java, isocpp, python 

               lib      - generate shared library 

  tcl      - generate tcl interface 

  html     - generate web form interfaces 

  labview  - generate LabVIEW low-level interface 

  maven    - generate a maven repository 

  db       - generate telemetry database table 

 

                    Arguments required are 

  

      db start-time end-time interval 

 

                    where the times are formatted like "2008-11-12 16:20:01" 

                    and the interval is in seconds 

 

  sim      - generate simulation configuration 

  icd      - generate ICD document 

  link     - link a SAL program 



 

Page 25 of 55 

  verbose  - be more verbose ;-) 

 

 

 

 

Verify that the network interface is configured and operating correctly. 

 

Make sure that Firewalld is properly configured (or disabled by issuing 
the  systemctl stop firewalld command as root). 

 

5.2 Telemetry 

 
Once the salgenerator has been used to validate the definition files and generate the  

support libraries, there will be automatically built test programs available. 

 

In all cases , log and diagnostic output from OpenSplice will be written to the  

files  

 ospl-info.log  and  ospl-error.log 

 

in the directory where the test is run. 

 

The following locations assume code has been built for the skycam subsystem support, 

there will be separate subdirectories for each Telemetry stream type. 

 

 For C++ 

  skycam_<telemetryType>/cpp/standalone/sacpp_skycam_pub   - publisher 

  skycam_<telemetryType>/cpp/standalone/sacpp_skycam_sub   - subscriber 

 

                    start the subscriber first, then the publisher. 

 

 For java 

  skycam_<telemetryType>/java/standalone/skycam_<telemetryType>.run     

        - start publisher and subscriber 

 

5.3 Commands 
 

The following locations assume code has been built for  mount  subsystem support 

 

 For C++ 

  mount/cpp/src/sacpp_mount_[command]_commander          - to send commands 

  mount/cpp/src/sacpp_mount_[command]_controller             - to process commands 

 

                    start the controller first, wait for it to print Ready, then run the commander 



 

Page 26 of 55 

 

 For java 

  mount/java/src/mount_cmdctl.run        - starts command processor 

 

In addition a gui can be used to send  all supported subsystem commands (with am associated  

processor to demonstrate reception of same). To start the gui   e.g. for hexapod subsystem 

 

 For C++ 

  command_test_gui  hexapod 

 

This script is on the PATH, so you should be able to run it from the command line. 

 

The gui provides a window to select the command to run. If a command has optional values  

/modifiers, then a subwindow will open to allow their values to be entered. 

A terminal window show the messages from a demo command processor which simply  

prints the contents of commands as they are received. 

 

 

 

 



 

Page 27 of 55 

 

 

 

 

 

 



 

Page 28 of 55 

5.4 Events 
 

The following locations assume code has been built for mount subsystem support 

 

 For C++ 

  mount/cpp/src/sacpp_mount_[event]_send          - to generate events 

  mount/cpp/src/sacpp_mount_[event]_log            - to log the events 

 

                     start the event logger first and then the send. 

 

 For java 

  mount/java/src/mount_events.run        - starts events processor 

 

In addition a gui can be used to send  all supported subsystem commands (with an associated  

processor to demonstrate reception of same). To start the gui   e.g. for hexapod subsystem 

 

 For C++ 

  logevent_test_gui  hexapod 

 

This script is on the PATH so you should be able to run it from the command line. 

 

 



 

Page 29 of 55 

The gui provides a window to select the event to generate.. If an event  has optional values 

/modifiers, then a subwindow will open to allow their values to be entered. 
A terminal window show the messages from a demo event  processor which simply  
prints the contents of  events as they are received. 

 

 

 

 

6. Application programming Interfaces 

6.1. C++ 
    Includes : 

#include <string> 

#include <sstream> 

#include <iostream> 

#include "SAL_mount.h" 

#include "ccpp_sal_mount.h" 

#include "os.h" 

#include "example_main.h" 

using namespace DDS; 

using namespace <subssytem>; // substitute the actual subsystem name here 

 

    Public :  

 int putSample(<subsystem::telemetryType> data);    - publish telemetry sample 

 int getSample(<subsystem::telemetryTypeSeq> data);   - read next telemetry sample 

 int putSample_<telemetryType>( <subsystem::telemetryTypeC>*data); - publish telemetry sample (C) 

 int getSample_<telemetryType>(<subsystem::telemetryTypeC>*data);  -  read next telemetry sample (C) 

       void salTypeSupport(char *topicName);    - initialize type support 

       void salTelemetryPub(char *topicName);    - create telemetry publisher object 

       void salTelemetrySub(char *topicName);    - create telemetry subscriber object 

       void salEvent(char *topicName);     - create event object 

       int getResponse(<subsystem>::ackcmdSeq data);   - read command ack 

       int getEvent(<subsystem>::logeventSeq data);   - read event data 

       void salShutdown();      - tidyup 

       void salCommand();      - create command object 

       void salProcessor();      - create command processor object 



 

Page 30 of 55 

       int issueCommand( <subsystem>::command data);   - send a command 

       int issueCommandC( <subsystem>_commandC *data);   - send a command (C) 

       int ackCommand( int cmdSeqNum, long  ack,    - acknowledge a command 

                                                        long error, char *result ); 

       int acceptCommand( <subsystem>::commandSeq data);   - read next command 

       int acceptCommandC( <subsystem>_commandC *data);   - read next command (C) 

       int checkCommand( int cmdSeqNum );    - check command status  

       int cancelCommand( int cmdSeqNum );    - cancel command 

       int abortCommand( int cmdSeqNum );    - abort all commands 

       int waitForCompletion( int cmdSeqNum ,unsigned int timeout );  - wait for command to complete 

       int setDebugLevel( int level );     - change debug info level 

       int getDebugLevel( int level );     - get current debug info level 

       int getOrigin();       - get origin descriptor 

       int getProperty(stringproperty, stringvalue);    - get configuration item 

       int setProperty(stringproperty, stringvalue);    - set configuration item 

       int getPolicy(stringpolicy, stringvalue);    - get middleware policy item 

       int setPolicy(stringpolicy, stringvalue);    - set middleware policy item 

       void logError(int status);      - log middleware error 

       salTIME currentTime();      - get current timestamp 

       int logEvent( char *message, int priority );    - generate a log event 

 

6.2 Java 

 
      Includes :  

import <subsystem>.*;                               //substitute actual subsystem name here 

import org.lsst.sal.<SAL_subsystem>;      //substitute actual subsystem name here  

 

      Public :  

         public void salTypeSupport(String topicName)   - initialize type support    

 public int putSample(<telemetryType> data)   - publish a telemetry sample 

 public int getSample(<telemetryType> data)   - read next telemetry sample 

 public void salTelemetryPub(String topicName)    - create telemetry publisher 

         public void salTelemetrySub(String topicName)    - create telemetry subscriber 

 public void logError(int status)      - log middleware error 

         public SAL_<subsystem>()     - create SAL object 

 public int issueCommand( command data )    - send a command 

 public int ackCommand( int cmdId, int ack, int error, String result ) - acknowledge a command 

 public int acceptCommand( <subsystem>.command data )  - read next command 

 public int checkCommand( int cmdSeqNum )   - check command status  

 public int getResponse(ackcmdSeqHolder data)   - read command ack 

 public int cancelCommand( int cmdSeqNum )   - cancel a command 

 public int abortCommand( int cmdSeqNum )   - abort all commands 

 public int waitForCompletion( int cmdSeqNum , int timeout )  - wait for command to complete 

 public int getEvent(logeventSeqHolder data)   - read next event data 

 public int logEvent( String message, int priority )   - generate an event 

 public int setDebugLevel( int level )    - set debug info level 

 public int getDebugLevel( int level )    - get debug info level 

 public int getOrigin()      - get origin descriptor 



 

Page 31 of 55 

 public int getProperty(String property, String value)   - get configuration item 

 public int setProperty(String property, String value)   - set configuration item 

 public void salCommand()     - create a command object 

 public void salProcessor()      - create command processor object 

 public void salShutdown()     - tidyup 

 public void salEvent(String topicName)    - create event object 

 

 

 

 

 

 

 

 

 

6.3 Python (pybind11 bindings) 

 
Each Telemetry/Command/Event datatype is wrapped like this  
(arrays are mapped to numpy arrays). 

 
py::class_<atcs_command_OffsetC>(m,"atcs_command_OffsetC") 

      .def(py::init<>()) 

      .def_readwrite("device", &atcs_command_OffsetC::device) 

      .def_readwrite("property", &atcs_command_OffsetC::property) 

      .def_readwrite("action", &atcs_command_OffsetC::action) 

      .def_readwrite("value", &atcs_command_OffsetC::value) 

      .def_readwrite("offsetX", &atcs_command_OffsetC::offsetX) 

      .def_readwrite("offsetY", &atcs_command_OffsetC::offsetY) 

      ; 

 

 

Commands , Events, and Telemetry calls are wrapped like this, every C++ method has a 

corresponding python binding. 
 
.def( "issueCommand_enable",       &SAL_atcs::issueCommand_enable ) 

.def( "acceptCommand_enable",      &SAL_atcs::acceptCommand_enable ) 

.def( "ackCommand_enable",         &SAL_atcs::ackCommand_enable ) 

.def( "waitForCompletion_enable",  &SAL_atcs::waitForCompletion_enable 

) 

       



 

Page 32 of 55 

7.0 SAL XML Schema 

 

7.1 Telemetry 

7.1.1 telemetrySetType 

 

 

7.1.2 telemetryType 

 

 

 

 

 

 

 

 



 

Page 33 of 55 

7.1.3 telemetryItemType 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 34 of 55 

7.2 Commands 

7.2.1 commandSetType 

 

7.2.2 commandType 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 35 of 55 

7.2.3 commandItemType 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 36 of 55 

7.3 Events 

7.3.1 eventSetType 

 

 
 

 

7.3.2 eventType 

 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 

 

 

 



 

Page 37 of 55 

7.3.3 eventItemType 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 



 

Page 38 of 55 

8.0 Compiler Options and Link Libraries 

The following compiler options are required when compiling application code 
For subsequent linking with the SAL and DDS middleware. 

 
CFLAGS/CXXFLAGS :   -m64  -D_REENTRANT –fPIC –Wno-write-strings 
 

Subsystems with duplicate instantiations (e.g. Hexapods) also require 
 

 -DSAL_SUBSYSTEM_IS_KEYED 
 
 

 
 

 
and the following include paths will be required 
 

 -I$(OSPL_HOME)/include 
 -I$(OSPL_HOME)/include/sys 

 -I$(OSPL_HOME)/include/dcps/C++/SACPP 
 -I$(SAL_HOME)/include 
 -I$(SAL_WORK_DIR)/include  

 -I../../-subsys-/cppsrc 
 
 Where   -subsys-   is the subsystem name e.g. hexapod 

 
The following libraries are required when linking an application to use the SAL 

and DDS middleware. For an application that communicates with multiple 
subsystems, the SAL libraries for each must be included. 
 

SAL : libSAL_[subsystem-name].so , libsacpp_[subsystem-name]_types.so 
 

DDS : libdcpssacpp.so , libdcpsgapi.so , libddsuser.so , libddskernel.so ,  
           libddsserialization.so , libddsconfparser.so , libddsdatabase.so , libddsutil.so,  
           libddsos.so,  libddsconf.so 

 
Other :  libdl.so , libpthread.so 

 
Appropriate linker path directives are 
 

 -L$(OSPL_HOME)/lib  -L$(SAL_HOME)/lib 
 

 



 

Page 39 of 55 

 

9.0 LabVIEW test VI generation 

 
If you have multiple LabVIEW verisons installed, or if LabVIEW is installed in a non default 

location, you can use the environment variable LABVIEW_HOME to control where the SDK 
looks for the LabVIEW header files. 

 
e.g.     export LABVIEW_HOME=/opt/natinst 
 

                   would expect to find headers in /opt/natinst/LabVIEW_20[xx]_64 
 
Run the salgenerator steps in order  

 
 salgenerator [subsystem] validate 

 salgenerator [subsystem] sal cpp 
 salgenerator [subsystem] labview 
 

The generation of the LabVIEW test VI’s is an interactive process. The LabVIEW 
Shared library import is used to automatically generate VI’s to interact with the 

Salgenerator produced SALLV_[subsystem].so library. 
 

NOTE : It is vital to COMPLETELY DELETE the entire destination directory and it’s 

Contents so that wizard can create it’s output directory afresh. For example if you choose 
To place the results in /home/me/sal/test/tcs/labview/lib , then you should run the following command 

BEFORE starting the LabVIEW tools. 

 
     rm –fr /home/me/sal/test/tcs/labview/lib 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 



 

Page 40 of 55 

1. Start LabVIEW and select the Tools->Import->Shared Library (.so) option 

 

 
 
 

2. Choose either New or Update option and specify the path to the library 
and then click Next. Proceed through the rest of the dialogs as illustrated below. 

Generally selecting the default and clicking Next is appropriate.  
 
The only non-standard option is in the “Configure Include Paths…” dialog 

where you must enter the  
 

     BUILD_FOR_LV=1  
 
Option in the Preprocessor options section. 

 
 

 
 
 

 
 

 
 
 

 
 

 



 

Page 41 of 55 

 

 
 
 

 

 



 

Page 42 of 55 

 



 

Page 43 of 55 



 

Page 44 of 55 



 

Page 45 of 55 



 

Page 46 of 55 



 

Page 47 of 55 

 
 

 

 
 
 

 
 

 
 
 

 



 

Page 48 of 55 

Click Finish on the dialog. 

 
 

 



 

Page 49 of 55 

 



 

Page 50 of 55 

When the LabVIEW import library wizard has completed it is necessary to run another 

LSST provided VI to finish the generation process.  
 
 

Use the LabVIEW File->Open dialog to locate ts_SALLabVIEW/main.vi 
 

 
 

Click OK to run the main.vi VI. It will open a mostly empty interface.  
 



 

Page 51 of 55 

 
 
Click the Run icon.  

 

 
 
Click OK and select the subsystem IDL file. The correct file should be found in the  

[subsystem]/labview directory of the SAL_WORK_DIR tree. 
 



 

Page 52 of 55 

 
 

 
Click OK to select it.  

 

         
 
Click OK 

 
Another file dialog then appears for you to select the .lvlib containing the VI’s. 
This should be located in the [subsystem]/labview/lib directory of the SAL_WORK_DIR 

tree. 



 

Page 53 of 55 

 

 
 
Click OK. 
 

There will then be an extensive period where multiple windows flash on the screen as 
each VI is individually processed. Finally a library contents window will appear. 

 



 

Page 54 of 55 

 
 

Another extensive period will follow where each VI is processed again (you will see 
them being removed and re-added to the list one-by-one. 
Finally the process completes and the main LabVIEW window will reappear. 

 
 

Once the VI’s has been built, you can manually test them by running them against 
either each other , or against the C++/Java/Python test programs.  
 

Regardless of which option you choose, the LabVIEW environment must be 
set up first by 

 
 



 

Page 55 of 55 

1. Running the SALLV_[subsystem]_Monitor  daemon in a terminal 

(this executable manages the shared memory used to mediate 
the transfer of data to and from LabVIEW). The daemon will have been  
built in the [SAL_WORK_DIR]/[subsystem]/labview directory. 

 
 

2. Run the [subsystem]_shm_connect VI and leave it open 
 
 

3. Depending upon the required  function, an initialization VI should be run  
i.e. for command receivers , run [subsystem]_shm_salProcessor_[name],  

for event receivers , run [subsystem]_shm_salEvent_[name],  
and for Telemetry receivers , run [subsystem]_shm_salTelemetrySub. 
 

 
4. After an application has completed all it’s SAL mediated communications, it  

is essential to call the [subsystem]_shm_release VI to clean up. 
 
 


