

 1

Table of Contents
Introduction
Overview
Sectors

Static and Dynamic
Children and Bounds
“Shared” Children
Membership

Portals
Connections
Geometry
Flags

Members
Useful Applications
Children and Bounds
Static and Dynamic
Membership

Portal Determined Membership
Core Libraries

Sector/Portal Graph
Geometry Routines

Optimization
Marking Objects as Static
Using Member Bounds Modes

Advanced Bounds Controls
Extra Bounds
Bounds Override
Bounds Update Mode

Working With Terrain
Single Terrain Sectorization
Single Terrain Split Sectorization
Multi-Tile Sectorization with Terrain Composer
Automatically Including Objects

Questions or problems?

support@makecodenow.com

 2

mailto:support@makecodenow.com

Introduction
SECTR CORE is the foundation of the SECTR suite of Unity extensions. It includes
all of the tools necessary to quickly and easily add Sectors and Portals to your
Unity-based game, as well as full source code that you can build your own unique
features.

SECTR CORE is offered to the Unity community free of charge. If you like the
quality of the tools and code in SECTR CORE, we encourage you to check out our
paid modules:

● SECTR Audio: Brings the latest, cutting edge audio production tools and
technologies to Unity, including an unparalleled suite of editor extensions and
runtime components that let you create rich, complex soundscapes with ease
and play them back with a minimum of CPU overhead.

● SECTR Stream: Makes it easy to save memory, increase performance, and
decrease load times by splitting your scene into multiple chunks and
streaming them in realtime.

● SECTR Vis: A high performance, low memory, fully dynamic occlusion culling
solution for Unity, with support for the complete set of Unity rendering
primitives including lights, shadows, particles, meshes, and terrain.

● SECTR Complete: All of our current (and future!) SECTR modules and some
unique components besides. Cheaper than buying each module separately.

All SECTR modules include complete source code, online support, and are fully

compatible with Unity, Unity Pro, and Unity Version Control.

 3

Overview
Game developers know that most levels can be broken down into spaces (Sectors)
and the connections between them (Portals). This pattern works for indoor games,
but also hybrid-indoor games, where exteriors are really just large rooms (i.e. Dead
Space, Metroid Prime, Gears of War, etc). Over the years, AAA developers have
learned how to use this structure to create games that run faster, sound more
realistic, and look better than they otherwise could. Unfortunately, Unity doesn’t
have any built in tools for creating these kinds of logical spaces, which is why we
created SECTR.

As the foundation of the SECTR framework, SECTR CORE provides all of the tools
and code necessary to add Sectors and Portals to Unity scenes. SECTR CORE
also includes a suite of libraries for interacting with and extending this framework,
including graph traversal and geometric operations.

The building blocks of SECTR CORE are Sectors (spaces), Portals (connections),
and Members (objects in Sectors). When Sectors are connected through Portals,
they form a graph, called the Sector/Portal Graph. Each of these key components
are discussed in their own section below.

 4

Sectors
A Sector represents a volume of space, and the objects within that space. In most
games, Sectors will be rooms and hallways, but Sectors can represent anything
from a section of an outdoor level to a bonus area in a side scroller. Sectors are
connected by Portals (described below).

Static and Dynamic
Sectors can be marked as Static or Dynamic, but default to being Static (since
most games do not have moving rooms). When marked as Static, the Sector will
save some CPU time by not computing its bounds every frame. Generally speaking,
any children of a Static Sector either be Static themselves, have a Member
component on, or otherwise be guaranteed to stay within the bounds of their
Sector.

 5

Children and Bounds
Sectors are defined by their Renderer components and those of their children (i.e.
the objects parented underneath them). In the case that a Sector has a child that is
a Member, the Sector will ignore that child and all of its children for the purposes
of computing the Sector's. The basic idea is that if a Sector finds that one of its
children is a Member, then it ignores it, and assumes that child Member can and
will take care of itself. The base Member will still act as a parent in every other
way, in keeping with Unity conventions. This behavior is very useful if you want to
have objects that are "part of" the Sector (like lights or particle systems) but which
need to move within that sector, or change their bounds dynamically, or extend
outside the bounds of that Sector.

See the Optimization chapter for information about how to reduce the CPU cost of
bounds computation.

“Shared” Children
Because the bounds of a Sector are defined by the its Renderers, it’s possible for
some children (like Lights) to extend beyond the bounds of their parent Sector and
overlap other Sectors. This may or may not be a problem, depending on the
specifics of your scene. To help highlight these items, if you select a Sector and
with Sector Gizmos enabled, any “shared” children will be highlighted in red. You can
ignore them, fix them yourself, or press the Fix Shared Children button in the
inspector. If you press the Fix Shared Children button, each shared child will be
given a SECTR Member component. In general, though, you don’t need to do
anything unless you see a problem when testing your scene.

Membership
Sector membership is not exclusive. Members may be in multiple Sectors at once,
so Sectors may overlap and even be nested in one another. Sectors should never
be parented to one another. If this happens some assumptions will break, and
strange things may begin to happen, especially in SECTR Stream and SECTR Vis.
All of the SECTR editor UI will enforce this conventions, so just be careful when
manually adding Sector components.

 6

Portals
Portals represent the connections between Sectors. If a Sector is a room, then a
Portal is like a doorway or window. Like a doorway, Portals have geometry that
defines their shape, though in some applications the actual geometry is not strictly
necessary. Because they connect Sectors, they should never be parented to a
Sector, but be left at the same level of the scene hierarchy as the Sectors that they
connect.

Connections
The most important thing that Portals do is connect two Sectors to one another.
To do this, each Portal has two properties: a Front and a Back Sector. When both
properties are filled out, the Portal forms a line between those two Sectors.

For many applications, it's important to know which side of the Portal the Sector is
on, which is why the attributes are named as they are. The in-editor visualization
will show you where the front and back sides are, but they are generally +Z for
front and -Z for back, and the normal of the portal always points forward. When
connecting Portals its important to get the sides correct, but if you get them
backwards, you can simply press the "Swap Sectors" button.

 7

Geometry
The shape of a Portal is defined by a Mesh resource. This is to allow users to
create Portals both within Unity (using the included Portal drawing tools) and in
external programs like Max or Maya. Portals are required to be planar (i.e. flat) and
to be convex. They can, however, have as many sides as necessary.

For most applications, Portal geometry does not need to perfectly fit the visual
geometry of the level. Portals can almost always be left a simple shapes that
extend a bit past the "real" opening that players see. As long as the Portal
geometry is fairly close, everything will work fine. This is important, because some
operations require more CPU the more sides a Portal has, so generally use the
fewest number of sides necessary to accomplish the goal.

Flags
As the connections between Sectors, it's often useful for Portals to have some
state associated with them, like being Open or Closed. SECTR provides some built
in flags, but you are encouraged to add your own based on the needs of your
game. All of the Sector/Graph algorithms will work with any flags you add, as well
as the standard flags.

Standard Flags

● Pass Through: Ignores the geometry when computing visibility.
● Closed: Treats the portal as inactive for the purposes of visibility calculations.
● Locked: Identifies the portal as logically locked. Currently unused.

 8

Members
While Sectors and Portals define the spaces and their connections, most objects in
a game are neither Sectors nor Portals. These game objects often want to know
which Sector(s) they are currently in, where the nearest portals are, etc. The
Member component is designed to meet this need, keeping track every frame of
which Sectors its a part of, and publishing that information to anyone who wants to
know about it.

Useful Applications
Members serve many useful roles in the different SECTR modules, but the most
basic idea is that if an object needs to know about Sectors but is not itself a Sector,
then it should have a Member component added to it. Many components in other
SECTR modules recognize this, and will add Member components for you
automatically.

 9

Children and Bounds
Like Sectors, Members can have children and their bounds are defined by the
components in their children. Unlike Sectors, the bounds of Members are the union
of all Renderer and all Light components, which ensures that any visual influence
they have is fully represented by their bounds.

In the case that a Member has a child that is also a Member, the base member will
ignore that child and all of its children for the purposes of computing its bounds,
Sector memberships, etc. The basic idea is that if a Member finds that one of its
children is also a Member, then it ignores it, and assumes that child Member can
and will take care of itself. The base Member will still act as a parent in every other
way, in keeping with Unity conventions.

See the Optimization chapter for information about how to reduce the CPU cost of
bounds computation.

Static and Dynamic
Like Sectors, members may be static or dynamic, and may or may not have
children. If a Member is static, it will save some CPU time and do fewer calculations
each frame. If a Member is static, all of its children should be static too. If a static
Member has dynamic children, the Member may not give the right information
about which Sectors it's in.

Membership
Sector membership is not exclusive. Members can handle being in multiple Sectors
at once, and every system in SECTR that needs a Member is designed to work with
multiple Sector membership.

By default, Members are included in every Sector whose Bounds overlap with the
Member Bounds. While simple and fast, this approach does not work well for some
games with complex, interior geometry. For games with a significant amount of
Sector overlap, nesting, or convexity, see the Portal Determined Membership
section below.

 10

Portal Determined Membership
As described above, by default Member components belong to all of the Sectors
whose Bounds they overlap. For some games with complex scenes, this behavior
may be undesirable, as Members may be part of too many Sectors. One simple
example of this is a room nested inside another room. Some games may want the
Member to only be part of the inner or the outer room, not both (which would be the
case by default when the player is in the inner room).

SECTR provides a solution to this problem with the Portal Determined flag. This
flag changes the membership computation so that it only changes when a Member
passes through the Portal leading from one Sector to another. When the Member’s
transform position passes through the Portal geometry, the Member will leave the
old Sector and enter the new one.

To support this feature, Member also includes a Force Start Sector feature, which
allows you to specific a specific Sector to be used when the Member is first
created/enabled. If not specified, the initial membership will be determined by the
default bounds logic. Force Start Sector is useful for cases where the default
behavior is undesirable, for example if the Member started in the inner room
described above.

If using Portal Determined Membership, remember that the change happens when
the transform position passes through the Portal, not the Member bounds. If your
game has Members whose object position is at the bottom of the object, make sure
that all of your portals extend at least a little bit below the floor so that the
Member transform does not accidentally “slip under” the portal due to numerical
precision issues.

 11

Core Libraries
In addition to the components and tools described above, SECTR includes libraries
that perform basic functions related to Sectors and Portals. These routines are
foundational to many SECTR algorithms, and are used in CORE and the other
modules.

Sector/Portal Graph
When Sectors and connected by Portals, they form a graph, called the
Sector/Portal Graph. In SECTR we think of the Sectors as nodes of the graph, and
Portals as the edges between them. The Graph library includes many useful
functions for easily exploring the graph including:

● Relationships: This includes information on how the Sectors and Portals are
connected, like which Sectors are the neighbors of the current sector, or how
many Portals there are between one sector and another.

● Traversal: The Graph can be traversed in a variety of ways. The
Sector/Portal graph is cyclic, so some care must be taken to not-revisit
nodes unless desired, which the included traversal routines demonstrate.

● Pathfinding: Should you want to find the shortest path between two points,
the Graph includes pathfinding routines, which are based on a well optimized
A* based pathfinding routine that should be sufficient for most needs.

Geometry Routines
SECTR is, at its core, a spatial library. Much of its value comes from doing
interesting things in 3D (or 2D) space. Many of these routines require access to a
common suite of geometric functions, which SECTR CORE provides through the
SECTR_Geometry library including:

● Spatial Queries: Determine which Sectors contain a particular point or
volume.

● Bounds: Compute the extends of different kinds of objects (like lights) and
evaluate their intersections.

● Geometry: Evaluate meshes for planarity, convexity, and the like.

 12

Optimization
SECTR CORE is designed to be easy and correct by default, while also being as
efficient as possible. As you become more familiar with SECTR and how you use it
in your game, you can use the following techniques to further reduce the CPU cost
of SECTR components.

Marking Objects as Static
If you know that an object like a Sector, Portal, or Member will not move during
gameplay, you should mark it as Static. When marked as Static, SECTR objects will
precompute as much data as possible on Start, saving CPU time during regular
gameplay. SECTR components on static objects can be safely enabled, disabled,
created, and destroyed during gameplay.

Using Member Bounds Modes
In order to work correctly, Sectors and Members need to compute information
about their children and their bounds. For games with a large number of non-static
Sectors or Members, this CPU time can add up. However, you can significantly
reduce the amount of time spent in SECTR_Member.LateUpdate by using the
Bounds Update Mode attribute.

● Static: Makes the object behave as if its Game Object was marked static. Use
this when marking the entire object as static causes problems.

● Always: Updates all children and bounding information every frame. This will
always give the correct results for dynamic objects, but it’s the most
expensive, and is often overkill.

● Movement: Updates all children and bounding information when the object
moves, but does nothing while the object is stationary. Much cheaper than
Always for objects that move around periodically, but are mostly stationary.

● Start: A hybrid of Static and Movement, this computes the children only at
Start and updates the bounds when that object moves. This is the fastest
Bounds Update Mode, and is ideal for objects that are always on the move,
like NPCs, but whose children don’t change significantly during their lifetime.

 13

Advanced Bounds Controls
Much of the behavior Sector and Member are determined by their Bounds. SECTR
does everything it can to efficiently compute the correct, most useful Bounds by
default, but sometimes you simply need more control. SECTR provides the
following controls for refining or overriding the default Bounds logic.

Extra Bounds
Extra bounds allows you to specify a certain amount of extra “padding” to the
Bounds of a Sector or a Member. SECTR uses a small amount of padding by
default to work around numerical precision issues, but you can use more (or less) if
you want to quickly grow or shrink the default computed bounds.

Bounds Override
There are occasions where the default computed bounds are simply insufficient
and need to be overridden. In these cases, you can specify your own bounds by
ticking the Bounds Override check box and entering in your own bounding volume.
Note that the bounding volume is in world space and will not update if the Sector
transform is moved around.

Bounds Update Mode
Member includes a number of algorithms for how and when the recompute the
Bounds, algorithms that trade accuracy for efficiency. These options are described
in greater detail in the Optimization section.

 14

Working With Terrain
For games that are primarily built out of Unity Terrain (like open world or RTS
games), SECTR CORE includes a custom Terrain window. This tool makes it easy to
automatically create Sectors and Portals for Unity Terrain, and also includes
support for multi-tile terrains created by Terrain Composer.

Single Terrain Sectorization
The simplest way to build Sectors and Portals on a Terrain is to Sectorize a single
terrain. This mode can create any number of Sectors and Portals in length, width,
and height. However, the terrain itself will not be in any Sector, because it is too
large. This mode works well for games that want the objects on the Terrain to be in
Sectors, but for the Terrain itself to be “global”.

Single Terrain Split Sectorization
In cases where you want a single Terrain to be contained within individual Sectors,
the Terrain Window provides a split option which will split a single terrain into
multiple, smaller terrains while preserving the geometry, splats, trees, and other
important information. Because this split mode will create multiple Unity terrains,
the options are more limited. Specifically, the number of Sectors in width and
length must match, must be powers of two, and must not create any terrains
smaller than 32x32. The Terrain GUI will automatically disable Sectorization if
these criteria are not met.

Multi-Tile Sectorization with Terrain Composer
The Terrain window also supports multi-tile terrains created by the popular Unity
extension, Terrain Composer. If you have created a multi-tile Terrain in Terrain
Composer, simple select the “Include Connected” option in the Terrain Window and
it will automatically create Sectors and Portals for all Terrain pieces connected to
the currently selected Terrain. Note that when Include Connected is Selected,
splitting is not enabled, and the number of Sectors in length, width, and height must
be 1.

 15

Automatically Including Objects
Games often include many objects placed on top of the Terrain. The Terrain window
can automatically include static and/or dynamic objects during the Sectorization
process. Note that only objects whose bounds are entirely included by a Sector will
be parented. Any objects that overlap more than one Sector will be left in the global
set.

 16

