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Tools to facilitate rapid analysis of genome-wide chemical probing data on RNA structure

David C. Tack, Yin Tang, Laura E. Ritchey, Sarah M. Assmann, Philip C. Bevilacqua

Dependencies (Requirements) Link
╔Python 2.7.X ╔https://www.python.org/
╠BioPython ╠http://biopython.org/
╠Numpy ╠http://www.numpy.org/
╠Cutadapt ╠http://cutadapt.readthedocs.io/en/stable/index.html
╠SAMtools ╠http://samtools.sourceforge.net/
╚Bowtie2 ╚http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Recommended Link
╔FastQC ╔https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
╠R statistical language ╠https://www.r-project.org/
╠RNAstructure Package ╠https://rna.urmc.rochester.edu/RNAstructure.html
╠MEME Suite ╠http://meme-suite.org/
╚Vienna Package ╚https://www.tbi.univie.ac.at/RNA/

Introduction

StructureFold2 is a set of Python [1] scripts designed to efficiently and accurately process 
Structure-seq [2-4] or other high-throughput libraries generated to yield reverse transcription stops 
via chemically probing RNA structure into genome-wide transcript reactivity values at the single 
nucleotide resolution level (structurome). These reactivity values may be used as folding restraints 
for RNAstructure or similar software, greatly enhancing structure prediction with in vivo, genome-
wide probing data.  This package allows a user with a minimal computational or statistical 
background to execute a number of mostly automated processes that assemble the in vivo reverse 
transcriptase stops collected by any chemical probing method that blocks the processivity of reverse
transcriptase, deriving values indicative of the probability of base pair single-strandedness from 
which a reasonable facsimile of the actual in vivo RNA structurome can be obtained. Ultimately, the
final design and analysis of the data is up to the experimenter; data may be piped into RNAstructure
[5]/ Vienna packages [6] to obtain predicted folds of transcripts, or the experimenter may choose to 
analyze the derived DMS reactivity or raw RT stop values in any way that suits their experimental 
design with typical statistical packages, such as R [7]. StructureFold2 is amenable to a variety of 
chemical probes (e.g. DMS, glyoxal, SHAPE) provided as there is a negative reagent control library
included.

Before you begin…

An accurate StructureFold2 analysis hinges on a prudent selection of the transcriptome of 
interest. We highly recommend that the user take the time to carefully consider the version, quality 
of annotation, and size of the transcriptome to be used; the <.fasta> you initially choose that 
contains this information may not be changed during the course of an analysis. Some Eukaryotes 
contain an excessive number of transcript isoforms per gene, which may complicate downstream 
analyses, and it may be wise, e.g. to prune to no more than two isoforms per gene to map against. 
Selecting the most abundant isoform based on other techniques or experiments is an alternative 
approach to reduce the number of included transcripts per gene and enhance the precision of 
reactivity values and the simplicity of all downstream analyses. Ensembl [8] is a great place to look 
for transcriptome (cDNA) files if one has not already been selected to map against, although 
absolutely any <.fasta> file containing transcripts will work provided the transcripts are of 
sufficient length.
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Website Link
╔Ensemble ╔https://www.ensembl.org/info/data/ftp/index.html
╠Ensemble Plants ╠http://plants.ensembl.org/info/website/ftp/index.html
╠Ensemble Protists ╠http://protists.ensembl.org/info/website/ftp/index.html
╚Ensemble Bacteria ╚http://bacteria.ensembl.org/info/website/ftp/index.html

We recommend mapping to the whole transcripts before partitioning the resulting derived 
information into transcript features (e.g. 5'UTR, CDS, 3'UTR) in later steps so that reads 
overlapping two of these features will not encounter trouble mapping. To ensure that transcript 
annotation is sufficient to later subdivide features for individual analysis, check to ensure the start 
and stop coordinates of each of these features are included with the annotation or an associated 
<.gtf> or <.gff> file. At this time we are unable to provide an automated script to handle annotation 
and automatically perform this subdividison due to the lack of a consistent annotation file standard. 

StructureFold2 is not a computationally demanding package by itself. Bowtie 2, the 
recommended short read aligner, is likewise lightweight and not exceptionally demanding on most 
hardware, even on larger transcriptomes and data sets. During the course of data processing 
however, many intermediate files will be generated; thus, having at least 4 TB of space available is 
advised to store these files until an analysis is completed. Using RNAStructure or Vienna Package 
to interpret the restraints generated by StructureFold2 with the included scripts to batch-fold 
thousands of transcripts is computationally demanding; this can tie up multiple cores for several 
days. Thus, access to a server or a dedicated personal machine is advised if carrying out this 
particular task. We recommend running StructureFold2 on either MAC OS or any mainstream 
Linux system. It is possible to run StructureFold2 on a Windows install within an emulated 
environment, but all features may not work properly and no additional support can be given.

Installation and Support

Download the entire package from Github and place in a directory of your choosing, or you 
may use git directly to clone the repository from Github with the command:

git clone https://github.com/StructureFold2/StructureFold2

Next, set the path to the folder containing the scripts, such that they may be called from any 
directory. This may be done by adding the following to your shell profile:

PATH=$PATH:/home/path/to/new/folder/StructureFold2

File permissions to the installation folder must now be set. Typically this will entail running the 
following command on the StructureFold2 folder which will grant all users read and execute 
permissions and all permissions to the owner:

chmod -R 755 StructureFold2/

Make sure to check the dependencies (requirements) of StructureFold2 and install these according 
to any instructions provided on respective websites and documentation. Many of these packages are
commonly available from package managers or Python package managers native to either Linux or 
MacOS systems. For a listing of these dependencies, check the top of page 1. Depending how these 
are installed, permissions and the path may need to be set up for each dependency as StructureFold2
will automatically call some of these programs. To check that  you have successfully installed 
StructureFold2 and all of the core dependencies, try executing the test script, test_sf2.py,  in a new 
shell. The script will notify the user of any missing dependencies that are not available in the path 
or for which the user does not have adequate permissions to run. If you plan to customize the 
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StructureFold2 pipeline and forgo the use of cutadapt for read trimming and bowtie2 for read 
mapping, these dependencies do not need to be installed and set up.

This manual makes the best attempt possible to detail the present StructureFold2 tool set and
demonstrate its use. However, it is nearly impossible to plan for all contingencies. While the 
software is provided ‘as is’, we are eager to improve and further streamline our analysis pipeline. If 
you encounter a bug or require support, or have an idea for a feature that would improve your 
overall StructureFold2 experience, please include StructureFold2 in the subject line when writing to
David Tack (kujiratan@gmail.com).

Data and file types

File Type, Extension Contains Input for Script Number:
╔FASTQ <.fastq> ╔Illumina reads ╔1,2
╠FASTA <.fasta> ╠Nucleotide sequences ╠2,4,5,A,H,J,K,L,R
╠SAM    <.sam> ╠Aligned sequences ╠3,4
╠RTSC   <.rtsc> ╠Reverse Transcriptase stops ╠5,A,I,J,K,L,M
╠SCALE <.scale> ╠Reactivity Normalization Scale ╠5,A
╠REACT <.react> ╠Reactivity values ╠E,F,G,H,O,P,Q
╠CT <.ct> ╠Connectivity Data ╠B,C,D
╠DBN <.dbn> ╠Dot Bracket Notation ╠
╚CSV <.csv> ╚Any data, delimited by comas ╚

Contents

Core Scripts # Function
╔fastq_trimmer.py ╔1 ╔Trims <.fastq> via Cutadapt
╠fastq_mapper.py ╠2 ╠Maps <.fastq> into <.sam> via Bowtie 2
╠sam_filter.py ╠3 ╠Filters <.sam> with samtools
╠sam_to_rtsc.py ╠4 ╠Counts RT stops in <.sam> files
╚rtsc_to_react.py ╚5 ╚Takes <.rtsc> files, calculates nucleotide reactivity

Auxiliary Scripts Letter Function
╔batch_fold_rna.py ╔A ╔Drives RNAStructure or ViennaPackage
╠make_stranded_csv.py ╠B ╠Calculates single-strandedness of folded RNAs
╠make_PPV_csv.py ╠C ╠Calculates PPV between directories of structures
╠make_MFE_csv.py ╠D ╠Organizes the MFE of folded RNAs.
╠react_statistics.py ╠E ╠Creates an easy to analyze <.csv> from <.react>(s)
╠react_RMSD.py ╠F ╠Calculates RMSD between two <.react>s
╠react_maxima.py ╠G ╠Finds shared overlap of maxima between <.react>s
╠react_windows.py ╠H ╠Finds windows of changed reactivity in <.react>s
╠rtsc_combine.py ╠I ╠Combines <.rtsc> files
╠rtsc_coverage.py ╠J ╠Calculates coverage per transcript on <.rtsc>
╠rtsc_correlation.py ╠K ╠Generates a <.csv> to examine correlation
╠rtsc_specificity.py ╠L ╠Generates a <.csv> to examine stop specificity
╠rtsc_abundances.py ╠M ╠Calculates transcript abundance from <.rtsc>
╠coverage_overlap.py ╠N ╠Creates lists of transcripts above a given coverage
╠react_combine.py ╠O ╠Combines <.react> files
╠react_bins.py ╠P ╠Bins reactivity values of transcripts
╠react_delta.py ╠Q ╠Calculates change between two <.react>s
╠fasta_composition.py ╠R ╠Logs sequence composition info into a <.csv>
╚test_sf2.py ╚S ╚Checks to see if dependencies are installed
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Procedure

StructureFold2 is subdivided into two main analysis sections. The first section (Figure 1), 
uses the core scripts, takes the raw data and processes it into <.react> files, and can be thought of as
a linear data processing pipeline. The second section, which uses auxiliary scripts, is more user-
directed (Figure 2), and allows for any number of the modules to be run, each yielding a specific set
of metrics generated or extracted from <.react> files. The Blue Path analyzes reactivity patterns 
directly, while the Green Path emphasizes metrics from the predicted folds of transcripts. During 
the course of the first section, we recommend using the logging options at each step and carefully 
reviewing the details of the respective trimming, mapping, and filtering taking palace. These useful 
diagnostics allow for the early detection of potential problems and the mitigation of downstream 
errors. However, the nuanced interpretation of results in light of both the questions and the 
structurome being analyzed at each step precludes automating the entire analysis process, thus we 
encourage the user to check the results of each step before proceeding. 

◄0► Library quality control

These diagnostics are optional. The purpose of this step is to assess the quality of the user’s 
structure-probing libraries before proceeding with further analyses, and to assure data persistence. 

Validate and Archive libraries

Generate MD5 or SHA256 sums for all of your compressed sequence files and log these to a
file stored alongside the files; this will enable verification of the original data at a later date 
or after a large transfer. These hashes are unique ‘fingerprints’ that remain constant so long 
as the contents of the file remain perfectly intact. It is also prudent to keep at least two 
parallel copies of all compressed sequence files on two separate devices, such that a device 
failure will not result in data loss, as the time, money, and effort invested to generate the 
libraries and sequences greatly exceeds the cost of a modest external or internal drive. 

Check library quality

Run FastQC on your <.fastq> files. This will yield many useful diagnostics for your data. 
Things to look out for are a preponderance of low-quality scores (under 30 Phred) or 
repetitive artifacts, or excessive adapter content. Most of these issues will be sorted out by 
the next step, but it is up to the experimenter to determine if the libraries need remaking or 
re-sequencing if something looks catastrophic.

◄1► Read adapter and quality trimming 

This step prepares reads to be mapped to a reference transcriptome by removing adapter and
adapter fragment sequences from the reads, removing low-quality bases from the 3’ end, and 
removing reads that are too short. For the greatest consistency and replication, we highly 
recommend using our script to run Cutadapt [9] on your files (1.A) using the recommended 
settings, although other read-trimming packages could be substituted in at this step (1.B).

1.A Run batch trimming script (recommended)

Locate your folder where all relevant unzipped <.fastq> files are located. Run the script 
fastq_trimmer.py. This will automatically remove 5' and 3' adapters, as well as remove low 
quality bases from the 3’ end, and remove reads that have become or were too short, based 
on a user-defined threshold. Filtered files carry the same base name as the original files but 
are suffixed with '_trimmed' and saved to the same directory. Create a new folder for these 
trimmed <.fastq>s or store the raw <.fastq> files in another folder to prepare for the next 
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step. Additional options are available in the help menu of the script, which can be accessed 
with the '-h' option, including the option to use alternate adapters or change trimming 
thresholds.

①   fastq_trimmer.py

A.fastq → A_trimmed.fastq

fastq_trimmer.py drives three commands to Cutadapt: remove the 5' adapter up to twice, 
remove the 3' adapter once, remove low-quality (<30 Phred) bases from the 3’ end while 
ensuring the finished read length is > 20 nt, with the option of removing reads over a certain
length. The default settings should accommodate most experiments, and the default primers 
are those used in the Structure-seq2 protocol [4]. If you wish to retain a detailed log of what 
Cutadapt did, use the -log option; the default log name is trim_log.txt, though this is also 
modifiable (-logname). The rationale for an option to set a maximum allowed read length is 
to remove reads where no adapters have been trimmed, suggesting ambiguous read origin. 
Illumina’s NextSeq and NovaSeq will use a slightly different quality score system; thus, use 
the -nextseq flag if your sequencing was done with the new sequencing chemistry.

Options
-h, --help  show this help message and exit 

 -log  Create an explicit log of the trimming 
 -nextseq Use NextSeq/NovaSeq quality scores 
 -fp FP_ADAPT  [default = TGAACAGCGACTAGGCTCTTCA] 5' adapter 

-tp TP_ADAPT  [default = GATCGGAAGAGCACACGTCTG] 3' adapter 
-minlen MIN_LEN [default = 20] minimum accepted sequence length 
-minqual MIN_QUAL [default = 30] minumum accepted base quality 
-maxlen MAX_LEN [default = None] maximum seq length 
-suffix SUFFIX [default = trimmed] trimmed <.fastq> file suffix 
-logname LOGNAME [default = trim_log] Name of the log file

1.B Custom read trimming (not recommended)

Run any software you choose to trim and filter the reads. All trimmed files should be placed 
in a new directory for the next step, or otherwise organized for the next part of the data 
processing pipeline. Structure-Seq libraries almost always use the default linker (see 
Structure-seq2 protocol [4]), thus the automated and easy way is almost certainly the best 
way to go for Structure-seq2 libraries, as all information is already included. Adapter 
fragments left on either end of the read may prevent proper read mapping, and adapter 
fragments left on the 5’ end will render proper RT stop detection impossible. Note that we 
have as of yet not tested any other short read trimmers in the context of a StructureFold 
experiment, but they should theoretically work, although the settings may require some 
optimization.

◄2► Map <.fastq> reads to reference transcriptome

This step maps reads to a reference transcriptome to determine the transcript and position on
the transcript that best explains each sequenced read. Transcriptomes with an excessive amount of 
redundancy between transcripts or isoforms may result in a high degree of read multi-mapping; as 
noted previously, pruning such transcriptomes before mapping to them will greatly simplify both 
the data processing and downstream analyses. Bowtie 2 [10] is very efficient, and the batch script 
that drives it maintains detailed logs of mapping statistics, thus it is possible to try mapping against 
several versions of the same transcriptome until you find a comfortable optimum for your 
experiment. Custom built transcriptome assemblies are fine. 
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2.A Run batch mapping script (recommended for everyone)

Create a Bowtie 2 index for your transcriptome (bowtie2-build). Locate your folder that 
contains all trimmed <.fastq> files. Run the script called fastq_mapper.py, making sure you 
have built and input the proper path to the Bowtie2 reference you intend to map against. 
This will automatically map each <.fastq> in the directory using the recommend settings for 
a StructureFold2 analysis while keeping the same file nomenclature, as it creates <.sam> 
files suffixed with '_mapped' from <.fastq> files.  Additional options are available in the 
help menu of the script, which can be accessed with the '-h' option.

bowtie2-build my_transcripts.fa my_transcriptome

Place the four .bt2 files for that transcriptome in a convenient place, perhaps a folder called 
indexes. Thus when running the next script, the path to use that bowtie 2 index would be
/path/to/indexes/my_transcriptome

②   fastq_mapper.py

A_trimmed.fastq /path/to/indexes/my_transcriptome→ A_trimmed_mapped.sam

There are a number of options to consider when running this script. The -threads option will 
allow the use of more computing power to map faster, while the -log option will provide a 
detailed <.csv> of read mapping statistics. If you do not wish to store unmapped reads in the
<.sam> file, use the -nofails option. By default, secondary alignments of reads (multi-
mapped reads) are allowed, but may be disabled at this step with the -nomulti option. Larger
plant transcriptomes present the unique challenge of a history of nested polyploidy, while 
mammalian transcriptomes may contain an excessive amount of very similar transcript 
isoforms due to the prevalence of alternative splicing; thus, it is up to the user to determine 
the appropriate amount of multi-mapping tolerated given the transcriptome of interest. 

Options
-h, --help show this help message and exit 
-phred64 Use phred64 quality scores instead of phred33 
-nomulti Do not accept multimaps (bowtie option -a off) 
-nofails  Do not log failed mappings (bowtie option --no-unal on) 
-log Create an explicit log of the mappings 
-threads THREADS [default = 4] Number of threads to use 
-logname LOGNAME [default = batch_log.csv] name of the log file 
-suffix SUFFIX [default = mapped] SAM file suffix

2.B Run a custom short read mapper

Run any short read aligner you want and collect the <.sam> files for the next step. If your 
aligner of choice creates <.bam> files instead, use samtools to convert these files to <.sam> 
files. Note that we have as of yet not tested any other short read aligners in the context of a 
StructureFold2 experiment, but they should theoretically work, although the settings may 
require some optimization.

◄3►Filter <.sam> read mappings

This step is designed to eliminate undesirable read mappings. StructureFold2's default 
paradigm discards reads mapped to the reverse strand of the transcript, reads that have a mismatch 
on the first 5' mapping base, and reads with more than 3 total mismatches/indels from the reference 
sequence. Depending on your chosen reference transcriptome, the length and quality of your reads, 
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or any other unforeseen biology, these settings are configurable to accommodate your experiment.

3.A Run batch filtering script (recommended for everyone)

Run sam_filter.py in the directory where all of the <.sam> files generated from mapping are 
located. This will run a SAMtools command as well as manually edit the files to filter out 
reads that are undesirably mapped. New filtered files are appended with an additional suffix 
('filtered' by default). Additional options are available in the help menu of the script, which 
can be accessed with the '-h' option.

③   sam_filter.py

A_trimmed_mapped.sam → A_trimmed_mapped_filtered.sam

We highly recommend using the default settings for this step. If you do not wish to have a 
detailed log of all the filtering at this step, the -turbo flag will process the reads much faster. 
If you do not wish to work on every <.sam> in the directory, use the -sam flag to indicate 
specific files to operate on. Although the suffix may be changed with the -suffix flag, we 
recommend keeping the set pattern of suffixes, i.e. trimmed, mapped, filtered, such that the 
status and progress of every sample is readily discernible by name and extension. The 
-max_mismatch setting is configurable; longer reads or transcriptome quality may require 
relaxing this setting from its default of 3.

Options
-h, --help   show this help message and exit 
-turbo  All filter options ignored, default settings, no log 
-sam SAM [SAM …]   Specific files to operate on 
-keep_all   Keep all intermediate files 
-keep_reverse                  Keep mappings from the reverse strand 
-remove_secondary Remove secondary alignments 
-allow_bp1_mismatch Accept mappings with first base mismatches 
-logname LOGNAME [default = filter_log.csv] Name of the log file 
-suffix SUFFIX [default = filtered] filtered <.sam> file suffix 
-max_mismatch MAX_MM [default = 3] Maximum allowed mismatches/indels

3.B The Hard way

Filter your <.sam> files any way you choose. Samtools has very useful commands, and at 
the minimum you must remove un-mapped reads if there are any left over after mapping, as 
these cannot be processed by the next steps. Unless <.sam> are processed by the filter, there 
is no guarantee they will work in the next steps. However <.sam> format is universal, so 
regardless of the read mapper used, the output should be usable. At this time StructureFold2 
does not support the use of paired-end reads, and cannot filter <.sam> reads with bitflags 
from paired-end reads.

◄4►Generate <.rtsc> from filtered read mappings <.sam>

This step will use each individual <.sam> file to generate a corresponding <.rtsc> file, 
which details the number of times where reverse transcriptase stopped at each base along each 
transcript. Multiple <.rtsc> that are replicates of the same biological sample are then combined: the 
individual replicates may be compared to assess repeatability.

7



4.1 Generate <.rtsc> from filtered read mappings <.sam>

Run sam_to_rtsc.py. The easiest way to run the script is to simply move all of the unfiltered 
<.sam> files to another directory, and run the script in a directory only retaining the filtered 
<.sam> files. The second way is to provide a suffix, such that this process only operates on 
<.sam> files with that suffix, e.g.  'filtered'. Alternatively, the script may be run on an 
individual file. Finally, the -trim option allows removal of the accumulated suffix chain, 
such that further manipulating the <.rtsc> files will be more intuitive. 

④   sam_to_rtsc.py

A_trimmed_mapped_filtered.sam -trim _trimmed_mapped_filtered index.fasta→ A.rtsc

This step requires the <.fasta> file used to generate the Bowtie 2 index which the reads were
mapped against. The new <.rtsc> files should be very compact compared to the <.sam> 
files, thus more portable and easier to analyze. While not final reactivity scores, the <.rtsc> 
files may be analyzed independently to observe natural modifications and stops, e.g. in the 
minus structure-probing chemical control libraries.

Options
-h, --help show this help message and exit 
-single SINGLE Operate on this single file, rather than the directory 
-suffix SUFFIX Operate only on <.sam> with this suffix before the extension 
-trim TRIM Remove this suffix from output file name before writing

4.2 Combine <.rtsc>  replicates of a single treatment into a single <.rtsc> file

Run rtsc_combine.py, selecting the files/replicates you wish to combine, and placing them 
into the script as arguments. Although this effectively combines the <.rtsc> files, keeping 
the individual replicates will allow you to do a repeatability analysis in subsequent steps, 
plus the <.rtsc> files are small enough that it doesn't really cause problems to keep all of 
them around.

Ⓘ   rtsc_combine.py 

A1.rtsc, A2.rtsc, A3.rtsc → A.rtsc

If you wish to begin descriptively naming your files at this point, the merged <.rtsc> files 
are a good starting point; use the -name argument to specify the output filename, where the 
<.rtsc> extension will be added automatically if it is not included.

Options
-h, --help show this help message and exit 
-sort Sort output by transcript name 
-name NAME Specify output file name

4.3 Calculate transcript coverage

Run rtsc_coverage.py either in batch mode (default) or on single <.rtsc> files; it will 
calculate the number of stops that occur on every base given for a nucleotide specificity 
(default AC for DMS) divided by the number of those bases in the transcript. This requires 
supplying the script with the <.fasta> file used for making the Bowtie 2 index.
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Ⓙ   rtsc_coverage.py

A.rtsc → A_coverage.csv

The general case only requires generating coverage files for your reagent-treated libraries, 
as it is the overlap of these reagent-treated library coverages that ultimately determines 
which transcripts are 'resolvable' in downstream analyses (Figure 3). Thus generating single 
files for the reagent treated libraries to enable calculating this (+) reagent overlap in the next
step will generate a useful list for filtering, but a more authoritative <.csv> file of coverage 
information for all samples may be useful for other things. Thus it is recommended that you 
generate one file for all (+) reagent coverages.

Options
-h, --help show this help message and exit 
-single SINGLE Operate on this single file, rather than the directory 
-bases BASES [default = AC] Coverage Specificity

4.4 Generate coverage overlap list

This step will take one or more coverage files containing one or more coverage profiles and 
generate a flat list file containing only the transcripts with greater than n coverage among all
represented samples. This list may be generated at a user-defined threshold (-n option) and 
is used by downstream scripts to filter out insufficiently covered transcripts.

Ⓝ   coverage_overlap.py

A_coverage.csv, D_coverage.csv → A_D_overlap_1.txt

The script can take all coverage <.csv> files in the directory (those that end with 
coverage.csv), or take any number of individual <.csv> files with the -f option. If two files 
share any of the same named columns between them, the first instance of that column 
(alphabetical in directory mode, input order if using specific <.csv> files ) will be 
overridden by the second, i.e. if you batch-generated a coverage <.csv> file for the entire 
directory, and also generated single files with the coverage of each individual sample, there 
would be a replicated column of each single file's coverage in the larger file.

The typical case is going to be taking the coverage of all (+)DMS (or other structure-
probing reagent) libraries from both a control (no biological treatment) and any biological 
treatment sample(s), and testing for their coverage overlap over a given threshold (Figure 3),
i.e. generate a list containing the transcripts with over 1 coverage in all reagent-treated 
libraries in all conditions which are to be compared. Thus the simplest method would be to 
generate coverage files, only for (+) reagent, one library at a time in step 4.4 and test for 
overlap only of those files in this step for every contrast to be included. If you wish to 
incorporate (-) chemical reagent coverage into your criteria, simply test for those overlaps. 

Options
-h, --help show this help message and exit 
-n THRESHOLD [default = 1.0] coverage threshold to use 
-f CSVS [CSVS …] Specific <.csv>s to use 
-batchdir Use all coverage <.csv> in the directory
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4.5 Analyze replicate correlation (Optional) 

For each group of replicate <.rtsc> files, generate/reformat the data between replicates using
rtsc_correlation.py, which generates an easy to use <.csv> file. You can also calculate the 
correlation between any other <.rtsc>, or combined <.rtsc> files.

Ⓚ   rtsc_correlation.py

A.rtsc, B.rtsc, C.rtsc → A_B_C_correlation.csv

The <.csv> file is readily readable by statistical software, although we highly recommend 
the use of R. R scripts may be included in future versions of StructureFold2 for common 
analyses. You may decide to run a transcriptome-wide correlation i.e. compare the number 
of stops on every base in the transcriptome between two replicates, or you may decide to 
subdivide the correlation into transcripts; thus indicating how correlated the RT stops per 
transcript are between replicates.

Options
-h, --help show this help message and exit 
-sort Sort output by transcript name 
-name NAME Specify output file name 
-fasta FASTA <.fasta> to apply specificity 
-spec SPEC [ACGT] Nucleotide Specifictiy 
-restrict RESTRICT Filter to these transcripts via coverage file

4.6 Analyze RT stop specificity (Optional)

In order to check that both the reagent minus and reagent plus samples are displaying 
distinct modification patterns, the RT stop specificity of either individual or combined 
<.rtsc>  may be queried separately by file or together by directory. This will require the 
reference <.fasta> as a reference.

Ⓛ   rtsc_specificity.py

A.rtsc, B.rtsc, C.rtsc → A_B_C_specificity.csv

The resultant <.csv> has both raw counts and fractional percentages for the RT stops of each
nucleotide. 

Options
-h, --help show this help message and exit 
-index INDEX <.fasta> file used to generate the <.rtsc> 
-rtsc RTSC [RTSC ...] Operate on specific <.rtsc> 
-name NAME Specify output file name

4.7 Generate transcript abundance (Optional)

Although not as authoritative as a separate RNA-seq experiment, the relative abundances of 
transcripts can be approximated by summing RT stop counts per transcript, yielding RTSC 
hits per kilobase per million reads (RTPKM).

Ⓜ   rtsc_abundances.py
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The resultant <.csv> has a RTPKM value for every transcript in the <.rtsc>.

Options
-h, --help show this help message and exit 
-rtsc RTSC [RTSC …] Operate on these files, rather than the directory

◄5►Generate <.react> from RT stop counts <.rtsc>

In this step, we will take a (-)reagent and a (+)reagent combined <.rtsc> file and the 
reference transcriptome to derive per base reactivity, i.e. generate a <.react> file. This script will 
also output a <.scale> file which is necessary as a common normalization scale to be used in 
generating all subsequent <.react> files that will be compared to the first generated file. 

5.1 Generate <.react> from <.rtsc>s

Execute the script with specific -/+ reagent files and the reference transcriptome <.fasta>. 
This will yield a <.react> file and a <.scale> file. While the defaults are recommended, we 
have included several additional options for this step. When the intention is to compare 
directly measured chemical reactivity patterns between samples rather than to compare 
processed reactivity patterns or folded RNAs generated with reactivities as restraints , 
applying the 2-8% normalization scale or use of the natural log may overprocess the data.  
In such cases, disabling these options may offer a more precise look at the raw modification 
signal; The option -ln_off will remove the ln from equations (1) and (2) and without adding 
1 to the raw RT counts and -nrm_off likewise disables the 2-8% normalization. The 
-threshold option changes the reactivity cap (default 7). For alternative structure-probing 
reagents, the nucleotide specificity of the reagent may be defined with -bases; the default is 
for DMS (AC). Since the default settings use both ln and 2-8% normalization, they are 
suffixed to the output file, but will not be if these options are turned off.

⑤   rtsc_to_react.py

A.rtsc, B.rtsc seq.fasta→ A_B_ln_nrm.react, A_B_ln_nrm.scale

P (i )=
ln [ Pr ( i )+1 ]

{∑
i=0

l

ln [ Pr ( i)+1 ] }/ l
(1)

M (i )=
ln [ M r (i )+1 ]

{∑
i=0

l

ln [M r (i )+1 ] }/ l
(2)

θ (i)=max [ P (i ) − M (i ) , 0 ] (3)

Here,  Pr(i) and Mr(i) are the raw ‘r’ numbers of RT stops mapped to nucleotide i  (all four
nucleotides are included) on the transcript in the plus (P) and minus (M) chemical probing
reagent libraries, respectively, and l is the length of the transcript.  Pr(0) and Mr(0) are the
raw numbers of 5′-runoff RT reads. θ(i) is the raw DMS reactivity for nucleotide i. 

Transcripts that are unable to produce an internal normalization scale due to an insufficient
number of RT stops are not reported in the output <.react> file. A log of these transcripts
may be generated by invoking the -save_fails option. Output may be further restricted by
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providing a flat list of transcripts to include via the -restrict option.

Options
-h, --help show this help message and exit 
-threshold THRESHOLD [default = 7.0] Reactivity Cap 
-ln_off Do not take the natural log of the stop counts 
-nrm_off Turn off 2-8  ％ normalization of the derived reactivity 
-save_fails Log transcripts with zero or missing scales 
-scale SCALE Provide a normalizaiton <.scale> for calculation 
-bases BASES [default = AC] Reaction Specificity, (AGCT) for SHAPE 
-name NAME Change the name of the outfile, overrides default 
-restrict RESTRICT Limit analysis to these specific transcripts <.txt>

5.2 Generate normalized <.reacts> from <.rtsc>s

For each condition which is to be compared to the 'control' <.react> file, run the script again 
using the option to provide your own normalization scale (-scale), inputting the <.scale> file
generated under the control conditions. If a <.scale> file is provided but 
2-8% normalization is turned off (-nrm_off) transcripts missing from the scale file will be 
excluded from the output. 

⑤   rtsc_to_react.py

C.rtsc, D.rtsc seq.fasta -scale A_B_ln_nrm.scale→ C_D_ln_nrm.react

Once you have generated your <.react> files, the core StructureFold2 pipeline is finished, 
largely leaving the user to determine the exact nature of her or his analysis. Many of the 
auxiliary scripts will accelerate or augment common follow up analyses and are detailed 
later in the manual. Common or preliminary analyses include using the <.react>s as 
restraints to batch fold RNAs using the RNAStructure package [5] (or Vienna package [6]) 
via the batch_fold_RNA.py script, or looking at reactivity changes directly via the 
reactivity_statistics.py script, which creates an easy to use <.csv> file of many metrics 
between conditions. Any two <.react> files that are going to have any of their downstream 
data compared should share the same <.scale> if one is normalizing. 

◄Auxiliary Steps►

This part of the analysis is more up to the user. There are two general ways of analyzing data
from here on out that are complementary yet different (Figure 2). The top or Green Path first folds 
the RNA using the restraints generated by your chemical probing data via the RNAStructure 
package [5], then extracts metrics from folded structures. The bottom or Blue Path instead works 
directly on the transcript reactivity patterns, extracting metrics such as average reactivity, Gini of 
reactivity, or RMSD (Root Mean Square Deviation) of reactivity to probe more directly for change 
of reactivity between conditions. While some tools are shared between each analysis path, the end 
result of each path is <.csv> files, which may be easily combined and analyzed in R or any other 
mathematics/statistics suite, although they can also be used separately. Thus, both folded and raw 
metrics can be easily combined for an integrated analysis. Only reactivity_windows.py outputs 
something that is not a <.csv>, namely a <.fasta> file, which may be used in MEME [11] or other 
similar types of analyses. 

Reactivity files (<.react>) may be subdivided into separate transcript features <.react>s 
before continuing, e.g. 5'UTR, CDS, and 3'UTR. Due to the variance in both quality and formatting 
of transcript annotation, we do not have a standardized way to perform such subdividing at this 
time. We recommend that you create separate <.react> files for each gene feature you wish to 

12



analyze independently by parsing the whole transcript <.react>, while also keeping the 'whole 
transcript' files. It is inadvisable to map exclusively to features and generate files that way, as 
truncated CDS and UTR regions may not actually allow reads that span the feature border to 
accurately map. 

A - Green Path 

Folding is a computationally intensive procedure, thus one should anticipate dedicating a 
machine for at least ~12 hours to batch fold ~6000 transcripts, and transcripts will need to 
be folded once for every condition your experiment contains. Shorter transcripts will fold 
much faster. 

A.1 – Fold RNAs, predict structures

This step will require a <.react> file to be used as folding restraints, as well as the 
corresponding <.fasta> file and the list of transcripts you wish to fold – this last file is most 
often generated in step 4.4, but could be any arbitrary flat list of transcripts that are present 
in both the <.react> and the <.fasta> files. 

Ⓐ   batch_fold_RNA.py

A_coverage_1.txt transcripts.fasta 1 -r A.react → [predicted structures]

This will yield a new directory with two sub-directories; one full of <.ct> or connectivity 
tables for each transcript, and one full of <.ps> or postscripts for each transcript. CT files 
contain a matrix detailing all the predicted base pair interactions in the RNA secondary 
structure. Postscript files contain a pictorial representation of an RNA secondary structure. 
By default, every transcript is folded into exclusively the MFE or minimum free energy 
structure, for which all of the Green Path scripts are designed to work with. This saves on 
computational time and prevents overly complicating the genome-wide aspect of the 
analysis. To report all predicted structures, use the –multiple option, but the variable number
of potential structures for each transcript will make it impossible to use the subsequent 
scripts, which all assume one metric or comparative metric per transcript. However, 
exploration of all potential structures is practical for a more directed analysis on a limited 
number of candidate structures. 

Options
-h, --help show this help message and exit 

-T TEMPERATURE --Temperature TEMPERATURE 
The temperature under which the RNA structures are predicted 
[Default 310.15 K]

-r CONSTRAINT_FILE --reactivity CONSTRAINT_FILE 
Reactivity file (.react file) used as constrants from prediction 

-th THRES  --threshold THRES 
Threshold for reactivity. Any nucleotide with reactivity over 
threshold will be set as single stranded. Once threshold is set, 
reactivities will be converted into hard contraints 

-sm SLOPE --slope SLOPE 
Slope for RNA structure prediction with restrains [Default 1.8] 
(Parameter for RNAstructure, only for prediction using 
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RNAstructure) 

-si INTERCEPT, --intercept INTERCEPT 
Slope for RNA structure prediction with restrains [Default -0.6]
(Parameter for RNAstructure, only for prediction using 
RNAstructure) 

-sht N, --shift N Ignore the reactivities on the last N nucleotide of each RNA to 
be predicted [Default 0] 

-minl MINL, --minumum_length MINL 
The minumum length of the RNA required for folding 
[Default 10] 

-maxl MAXL, --maximum_length MAXL 
The maximum length of the RNA required for folding 
[Default 5000] 

-par, --PAR Calculate partition function and output base-pairing 
probabilities instead of RNA structures 

-mul, --multiple Output multiple predicted RNA structures instead of just 
outputing the MFE structure (only for RNAstructure prediction) 

-p P, --process P Number of threads for parallel computing [Default 1] 

-md MD --maxdistance MD 
Specify a maximum pairing distance between nucleotides 
[Default: no restraint]

A.2 – Calculate structure strandedness 

Running another script on the directory of <.ct> files will generate a convenient <.csv> file 
containing the percentage of bases that are double stranded in each predicted structure. This 
information may be analyzed independently or combined with other <.csv> data for an 
integrated analysis. 

Ⓑ   make_strand_csv.py

ct_directory → stranded.csv

Options
-h, --help show this help message and exit 
-name NAME Specify output file name 
-suffix SUFFIX Append given suffix to data column names

A.3 – Calculate PPV between two conditions

PPV is defined as the positive predictive value. While nominally this is designed as a metric 
to compare how close a predicted structure is to a known structure, it will assess the 
percentage of base pairs in the predicted (treatment) structure that are also present in the 
known (control) structure. Running the PPV script will take two directories of <.ct> files 
and will compare the structure of every transcript that occurs in both conditions, generating 
a comparative PPV value, and logging this information to a convenient <.csv> file. 
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Ⓒ   make_PPV_csv.py

ct_directory_1 ct_directory_2 → ppv.csv

Options
-h, --help show this help message and exit 
-n NAME [default = stats.csv] outfile 
-suffix_1 SUFFIX_1 Suffix from directory 1, if files do not share name suffix
-suffix_2 SUFFIX_2 Suffix from directory 2, if files do not share name suffix

A.4 – Gather MFEs of predicted structures

Running another script on the directory of <.ct> files will generate a convenient <.csv> file 
of all the structures’ free energies. This information may be analyzed independently or 
combined with other <.csv> data for an integrated analysis.

Ⓓ   make_MFE_csv.py

ct_directory → mfe.csv

Options
-h, --help show this help message and exit 
-name NAME [default = MFE.csv] Output file name

B - Blue Path

Calculating and combining all of the derived statistics from <.react> files is a rather 
straightforward and not computationally demanding process. Each of these steps will 
generate a <.csv> file, which may be combined together into one <.csv> file for an 
integrated analysis, or analyzed entirely by itself. Investigating patterns and changes in the 
reactivity data presents a complementary avenue to working with predicted structures.

B.1 – Calculate basic transcript reactivity statistics

To gather simple statistics, simply execute the reactivity_statistics.py script in a directory 
with one or more <.react> files. You may provide a coverage overlap file (step 4.4, Figure 3)
to filter out transcripts for which statistics should not be generated due to inadequate 
coverage. We recommend using a coverage overlap file generated with coverage at or above
1 within all (+)reagent samples that were integrated into the <.react> files being assayed. 
For more information on coverage overlap files, see Figure 3. This will yield a <.csv> file of
appropriately named columns for average reactivity, standard deviation of reactivity, Gini 
index of reactivity, and max reactivity, for every such transcript. Additional options are 
included to ignore transcripts that are too short (default 20) and ignore the extreme 3' end of 
transcripts (default 30 nt); both of these options are configurable and logged in the output 
file's name suffixes. The extreme 3’ ends of transcripts are often depleted of RT stops 
because the 5’ end of the read defines the stop, these regions tend only to lower average 
reactivity values while increasing sd and Gini across the board, hence lowering precision. 
The coverage <.csv> file of any/all samples may be combined with this <.csv> file for extra 
filtering options.

Ⓔ   react_statistics.py

control.react condition.react → statistics.csv
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Another method to do this is simply to merge a <.csv> of coverages from every sample to a 
stats file generated without any coverage overlap restrictions and do all coverage filtering 
when analyzing the downstream <.csv>, rather than when generating it. In these cases we 
still recommend using (+) probing reagent coverage as the threshold metric. More advanced 
users may find this method more to their liking as data are never really discarded, and 
iterations of thresholds can explored more readily. In this case, using the batch functionality 
in step 4.3 will yield a concise <.csv> file of coverages in all samples.

Options
-h, --help show this help message and exit 
-react REACT [REACT ...] Operate on specific <.react> files 
-restrict RESTRICT Filter to these transcripts via coverage file 
-name NAME Specify output file name 
-n TRIM [default = 20] ignore n last bp of reactivity 
-m MINLEN [default = 10] minimum length of transcript

B.2 – Calculate comparative transcript RMSD

RMSD or Root-Mean-Square Deviation is a measure that can be applied to any two vectors 
of reactivity of the same length, i.e. the same transcript in two conditions, measuring the 
amount of shift between the two vectors, or in this case, the rearrangement of reactivity 
between conditions. This is implicitly a pairwise operation, thus two <.react> files and a 
coverage overlap file (optional but highly recommended, to only perform the comparison 
between transcripts adequately covered in both conditions) are used in this step to create a 
<.csv> of RMSD values. Normalized RMSD (NRMSD), normalized by the combined 
average reactivity, may also be calculated by invoking a script option.

Ⓕ   reactivity_RMSD.py

control.react condition.react → RMSD.csv

Options
-h, --help show this help message and exit 
-normalize Normalize output RMSD values 
-name NAME Specify output file name 
-restrict RESTRICT Restrict output to these transcripts

B.3 – Compare transcript reactivity maxima

Another way to compare transcript reactivity between conditions is to see how the most 
reactive points have shifted, i.e. how many of the reactivity maxima are shared between 
conditions. This is an implicitly pairwise operation, thus two <.react> files and a coverage 
overlap file (optional but highly recommended, to only perform the comparison between 
transcripts adequately covered in both conditions) are used in this step to create a <.csv> of 
the number of shared maxima. The script may be configured to look for more or fewer 
maxima, or include a bit of 'wiggle' in allowing maxima to be off by n nucleotides. If there 
are fewer than the input number of maxima in either <.react> file of a particular transcript, 
NA will be logged for the transcript’s value of shared maxima.

Ⓖ   react_maxima.py 

control.react condition.react → maxima.csv
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Options
-h, --help show this help message and exit 
-restrict RESTRICT Limit analysis to these specific transcripts 
-maxima MAXIMA [default = 20] Number of maxima to pick from both

transcripts 
-wiggle WIGGLE [default = 3] Number of bases maxima can be off by

B.4 – Compare transcript reactivity windows 

To investigate and find particular short motifs of transcripts that change reactivity between 
conditions, use the react_windows script. This is an implicitly pairwise operation, thus two 
<.react> files and a coverage overlap file (optional but highly recommended, -restrict, to 
only perform the comparison between transcripts adequately covered in both conditions) are
used in this step. First, the script will walk across all transcripts with windows of n length 
(setting -wlen), by steps of x length (setting -wstep), gathering the net change and total 
change (absolute value of change) across each of these steps. By default it will write out all 
of these windows to a file; however, you may filter these results, taking the top y% (option 
-perc) of either the reactivity losses, gains, or total change (options -filter_loss, -filter_gain, 
-filter_delta), and the script will automatically suffix the output according to the filter(s) 
used. Additionally, the sequences may be output in a separate <.fasta> file (option -fastaout) 
which could be used in a few ways, such as for MEME analysis.

Ⓗ   react_windows.py

control.react condition.react sequences.fasta →  windows.csv, windows.fasta

Options
-h, --help show this help message and exit 
-wlen WLEN [default = 50] Window Length 
-wstep WSTEP [default = 20] Window Step 
-outname OUTNAME Change the name of the outfile, overrides default 
-restrict RESTRICT <.txt > Limit analysis to these specific transcripts 
-filter_loss Restrict output to largest reactivity losses 
-filter_gain Restrict output to largest reactivity gains 
-filter_delta Restrict output to most changed reactivity 
-perc PERC [default = 25] Filter to this percent of windows 
-fastaout Write windows to <.fasta> format as well

B.5 – Reactivity binning

Binning may find common trends of reactivity distributions along the length of one or more 
transcripts, or may be useful to compare reactivity distributions along transcripts between 
conditions to find novel differences or rearrangements. The script to help bin these values 
offers several options and strategies of binning, reducing long transcripts down into a 
number of averaged bins of a given length.

Ⓟ   react_bins.py

sample.react → single_sequence.csv OR multiple_sequences.csv OR all_sequences.csv
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Changing various settings will allow the user to highly customize this analysis. First the 
minimum required bin size (-size) and number of bins (-bins) the transcript(s) are broken 
into can be changed. A single transcript may be pulled from the <.react> file (-single), or a 
specified list of transcripts may be collectively binned together (-multi); in this case the 
average of each numbered bin is thus reported, and any transcripts in a list that fail to meet 
these criteria are not included (i.e. too few values in one or more bin). The -all_transcripts 
command will try to combine all transcripts in the <.react> file and collectively bin them. 
Thus, either by providing a specific list or by pre-filtering the <.react> file, a class of genes 
may be separated and binned to probe for reactivity patterns along their length.

Options
-h, --help show this help message and exit 
-bins BINS [default = 100] bins to create 
-size SIZE [default = 10] minimum number of values per bin 
-single SINGLE Target transcript to bin from the file 
-multi MULTI Flat <.txt> of transcripts to bin, one per line 
-all_transcripts Amalgamate all transcripts in the <.react> file

B.6 – Reactivity delta by position

Many experimenters will have questions centering around the 5' or 3’ ends of transcripts, as 
there are many interesting regulatory RNA structures in these mostly non-coding segments. 
The react_delta.py script will allow the user to examine these changes on one, several, or all
transcripts between two <.react> files, probing a set number of bases from either the 5' end 
or the 3' end of the transcript for patterns of changes in reactivity. For the transcript(s) 
analyzed, five values are reported for each base in the segment in the resultant <.csv> file:  
the relative position of the base (positive indexes for 5', negative indexes for 3'), the average
delta at that base (sum of all changes divided by total number of observations at that base 
including zeros), the average change at that base (sum of all changes divided by number of 
observations at that base excluding zeros), the average positive change at that base (sum of 
all positive changes at that base divided by the number of positive changes at that base) and 
finally the average negative change (sum of all negative changes at that base divided by the 
number of negative changes at that base).

Ⓠ   react_delta.py

control.react, experimental.react → delta.csv

There are several options available when using this script. To indicate which transcripts to 
use, -single for one specific transcript, -multi with a list of transcripts in <.txt> format, one 
transcript per line, or -all_transcripts to do this for all transcripts shared between the two 
<.react> files. By default, it will take 100 bases (configurable with -n) from the 5' end (-tp to
use the 3' end). The output <.csv> will have as many rows as base pairs being investigated, 
plus a header. 

Options
-h, --help show this help message and exit 
-n N Number of bases, default 100 
-tp Start from the 3' end (5' default) 
-raw Do not average changes 
-single SINGLE Target transcript to bin from the file 
-multi MULTI Flat <.txt> of transcripts to bin, one per line 
-all_transcripts Use all transcripts in the <.react> file
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B.7 – Transcript composition

Another aspect that can be integrated into an analysis is the nucleotide composition of each 
transcript or transcript segment being analyzed. To quickly get a convenient <.csv> of the 
nucleotide composition, simply run the script on your <.fasta> file of interest.

Ⓡ   fasta_composition.py

sequences.fasta → sequences_composition.csv

This will yield a <.csv> with the following fields: transcript, GC_content, AT_content, 
AC_content, A_content, C_content, G_content, T_content, transcript_length. 

Options
-h, --help show this help message and exit 
-single SINGLE Operate on this single file 
-suffix SUFFIX [default = composition] <.csv> file suffix

◄Concluding Remarks►

We aim to offer support and updates on a semi-regular basis as more analyses are requested 
or developed. Questions, comments, bug-fix requests, or requests for more features may be directed
to David Tack (kujiratan@gmail.com). The entire staff of StructureFold2 understands that every 
experiment is unique; while each tool has been designed to be as modular and accommodating as 
possible, we will do our best to ensure they will work for everyone.
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