
SIDnet-SWANS Manual

Oliviu C. Ghica - Northwestern University

March 3, 2010

Valid for SIDnet-SWANS v.1.4.7 and later.

Contents

1 LICENSE 4

2 Installation Instructions 7
2.1 Getting the Software . 7
2.2 Setting up a Project . 7

2.2.1 Establish a SIDnet-SWANS project 7
2.2.2 Configure the project dependencies 8
2.2.3 Create a user-defined stack 9

2.3 Run SIDnet-SWANS application 9
2.3.1 Alternative I. From command line 9
2.3.2 Alternative II. From within NetBeans IDE 10

3 Sample Application (”Hello World”) 11

4 SIDnet Architecture 13
4.1 Code Structure . 13
4.2 Sensor Field GUI . 14

4.2.1 Utility Views . 15
4.2.2 Simulation Control Interface 15
4.2.3 Progress Bar . 15

4.3 Internal Operational Architecture 15

5 Navigating through SIDnet-SWANS’s network stack 18

6 SIDnet Operations and Tools 22
6.1 SIDnet Node - coloring (applicable to SIDnet-SWANS v.1.4.3 and

newer) . 22
6.1.1 Note . 22
6.1.2 Intro . 22
6.1.3 How to create my own color profile? 22
6.1.4 How does it work . 23

1

6.1.5 Priorities. Does order matter? 23
6.1.6 NULL Colors . 23
6.1.7 Temporal-validity of a color-scheme 23
6.1.8 Run-time usage . 24

6.2 SIDnet Node - coloring (up to SIDnet-SWANS v.1.4.2, inclusive) 25
6.2.1 NULL Colors . 26
6.2.2 Temporal-validity of a color-scheme 27
6.2.3 What is the simplest way to define my own color profile? 27
6.2.4 Run-time usage . 27

7 Debugging Tools 29
7.1 TopologyGUI . 29

7.1.1 Configuration . 29
7.2 Usage . 30

7.2.1 Examples . 31
7.2.2 Menu Interface . 32

7.3 Transmit/Receive FX . 32
7.3.1 Configuration . 32
7.3.2 Usage . 33
7.3.3 Notes . 33

8 SIDnet Run Modes 35

9 Collecting Run-Time information: The ”StatsCollector” utility
view (for SIDnet-SWANS v.1.4.3 and newer) 36
9.1 StatsCollector instantiation . 37
9.2 StatsCollector Configuration . 37

9.2.1 Generic Event Monitor . 39
9.2.2 Statistics Monitoring Scope 39
9.2.3 Program calls . 39

9.3 Register StatCollector with SIDnet 40

10 Batching (for SIDnet-SWANS v.1.4.4 and newer) 41

11 Batching (for SIDnet-SWANS v.1.4.3 and older) 41
11.1 Configure Environment . 42
11.2 Build the parameters file . 42
11.3 Configure the Driver file . 43
11.4 Launch the Batching Mechanism 43
11.5 Interrupting a SIDnet Batched Run 44
11.6 Processing the Experimental Results 45

11.6.1 What is it and Why . 45
11.6.2 Syntax . 45
11.6.3 Example . 46

12 Q & A 48

2

13 Troubleshooting 49

3

1 LICENSE

Copyright (c) 2008 Northwestern University, Inc. All rights reserved. Authors:
Oliviu C. Ghica, Goce Trajcevski, Peter Scheuermann, Zachary Bischof, Nikolay
Valtchanov

The following information refers exclusively to the SIDnet-SWANS soft-
ware package, excluding the content of /importedpackages (JiST-SWANSv1.0.6)
where separate, specific licenses apply. SIDnet-SWANS uses the JiST-SWANSv1.0.6
for non-commercial purposes.

This software is licensed by Northwestern University for non-commercial
academic purposes only. By using this software, you hereby enter into the
following licensing agreement with Northwestern University.

Legal Notice concerning the following included package (since SIDnet-SWANS
version 1.1.0 and later) sidnet.mac.mac802 15 4 /* * Copyright (c) 2003-2004
Samsung Advanced Institute of Technology and * The City University of New
York. All rights reserved. * * Redistribution and use in source and binary
forms, with or without * modification, are permitted provided that the follow-
ing conditions * are met: * 1. Redistributions of source code must retain the
above copyright * notice, this list of conditions and the following disclaimer. *
2. Redistributions in binary form must reproduce the above copyright * no-
tice, this list of conditions and the following disclaimer in the * documentation
and/or other materials provided with the distribution. * 3. All advertising
materials mentioning features or use of this software * must display the fol-
lowing acknowledgement: * This product includes software developed by the
Joint Lab of Samsung * Advanced Institute of Technology and The City Uni-
versity of New York. * 4. Neither the name of Samsung Advanced Institute
of Technology nor of * The City University of New York may be used to en-
dorse or promote * products derived from this software without specific prior
written * permission. * * THIS SOFTWARE IS PROVIDED BY THE JOINT
LAB OF SAMSUNG ADVANCED INSTITUTE * OF TECHNOLOGY AND
THE CITY UNIVERSITY OF NEW YORK “AS IS” AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT
SHALL SAMSUNG ADVANCED INSTITUTE OR THE CITY UNIVERSITY
OF NEW YORK * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. */ End of Legal Notice concern-
ing the following included package (since SIDnet-SWANS version 1.1.0) sid-
net.mac.mac802 15 4

4

Software License Terms and Conditions
1. SOFTWARE shall mean SIDnet code, or portions thereof, or related

documentation, made available on the project web site. SOFTWARE includes,
but is not limited to, SIDnet source code, object code and executable code.
SOFTWARE excludes the content of /importedpackages (JiST-SWANSv.1.0.6)
and /libs where separate licenses apply.

2. Northwestern University and Oliviu C. Ghica holds all intellectual prop-
erty rights in SOFTWARE, including but not limited to copyright, trademark
and patent rights.

3. LICENSEE means the party to this Agreement and the user of SOFT-
WARE. By using SOFTWARE, LICENSEE enters into this Agreement with
Northwestern University.

4. SOFTWARE is made available under this Agreement to allow certain
non-commercial academic use. Northwestern University reserves all commer-
cial and non-academic rights to SOFTWARE and these rights may be licensed
by Northwestern University to third parties. License for the /importepackages
(JiST-SWANS distribution) must be also obtained from CRF & Cornell Uni-
versity according to JiST-SWANSv1.0.6 separate licenses)

5. LICENSEE is hereby granted permission to download, compile, execute,
copy, and modify SOFTWARE for non-commercial academic purposes provided
that this notice accompanies all copies of SOFTWARE. Copies of modified
SOFTWARE may be distributed only for non-commercial academic purposes
(a) if this notice accompanies those copies, (b) if said copies carry prominent
notices stating that SOFTWARE has been changed, and (c) the date of any
changes are clearly identified in SOFTWARE.

6. Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met: 1. Re-
distributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer. 2. Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with
the distribution. 3. All advertising materials mentioning features or use of this
software must display the following acknowledgement: ”This product includes
software developed by Northwestern University”. 4. Neither the name of North-
western University may be used to endorse or promote products derived from
this software without specific prior written permission.

7. LICENSEE agrees that the export of SOFTWARE from the United
States may require approval from the U.S. government and failure to obtain
such approval will result in the immediate termination of this license and may
result in criminal liability under U.S. laws.

8. Northwestern University provides SOFTWARE on an ”as is” basis.
Northwestern University does not warrant, guarantee, or make any representa-
tions regarding the use or results of SOFTWARE with respect to its correctness,
accuracy, reliability or performance. The entire risk of the use and performance
of SOFTWARE is assumed by LICENSEE. ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, ANY WARRANTY OF FITNESS FOR A PAR-

5

TICULAR PURPOSE OR MERCHANTABILITY AND ANY WARRANTY
OF NONINFRINGEMENT OF PATENTS, COPYRIGHTS, OR ANY OTHER
INTELLECTUAL PROPERTY RIGHT ARE HEREBY EXCLUDED.

9. LICENSEE understands and agrees that neither Northwestern University
nor Oliviu C. Ghica is under any obligation to provide maintenance, support or
update services, notices of latent defects, correction of defects, or future versions
for SOFTWARE.

10. Even if advised of the possibility of damages, under no circumstances
shall Northwestern University and Oliviu C. Ghica individually or jointly be
liable to LICENSEE or any third party for damages of any character, including,
without limitation, direct, indirect, incidental, consequential or special damages,
loss of profits, loss of use, loss of goodwill, computer failure or malfunction.
LICENSEE agrees to indemnify and hold harmless Northwestern University for
any and all liability Northwestern University may incur as a result of use of
SOFTWARE by LICENSEE.

6

2 Installation Instructions

2.1 Getting the Software

1. Java Integrated Development Environment We recommend, in order, the
following two, most popular java IDEs (* following instructions will be
made with respect to NetBeans 5.5.1 IDE):

• NetBeansIDE (”http://www.netbeans.org/”)

• EclipseIDE (”http://www.eclipse.org/”)

2. Java Development Kit 5.x (6.x has not been tested yet)
”http://java.sun.com/javase/downloads/index.jsp”

3. SIDnet-SWANS distribution package (reading this assumes that you have
already done so)

The kit includes the JiST/SWANS components.
Un-archive the contents of the files in a directory of your choice.

2.2 Setting up a Project

The following instructions refer to NetBeansIDE 5.5.1. These should be some-
how analogous to other IDE environments.

2.2.1 Establish a SIDnet-SWANS project

1. Open NetBeansIDE

2. File → New Project

(a) Categories: General

(b) Projects: Java Project with Existing Sources

(c) Choose a project name (e.q. ”SIDnet”)

(d) Indicate the project folder (it should be /SIDnet-SWANS - the in-
stallation directory)

(e) Click Finish

The Project will appear on the left panel. Under the ”Files” tab, you may
browse through its files.

7

2.2.2 Configure the project dependencies

1. Right-click on the project icon in the left panel, and click Properties

2. Under Categories frame, click Sources

(a) Make sure that the Source Level is 1.5 (JDK 5). Newer source level
might work, but it has never been tested for.

(b) Under Source Package Folders:

i. Add Folder : ”SIDnet-SWANS/importedpackages/jist-swans-1.0.6/src”

ii. Add Folder : ”SIDnet-SWANS/src”

iii. Add Folder - : ”SIDnet-SWANS/libs/opencsv-1.8/src”

3. Under Categories frame, click Libraries

4. Add the following list of JAR/Folders (libraries)

(a) SIDnet-SWANS/libs/BCEL/org/apache/bcel-5.2/bcel-5.2.jar

(b) SIDnet-SWANS/libs/jaxb-ri-2.1.8/lib/jaxb-api.jar

(c) SIDnet-SWANS/libs/jaxb-ri-2.1.8/lib/jaxb-impl.jar

(d) SIDnet-SWANS/libs/jaxb-ri-2.1.8/lib/jsr173 1.0 api.jar

(e) SIDnet-SWANS/libs/apache-log4j-1.2.15/log4j-1.2.15.jar

(f) SIDnet-SWANS/libs/junit-4.4.jar

(g) SIDnet-SWANS/importedpackages/jist-swans-1.0.6/libs/bsh.jar

(h) SIDnet-SWANS/importedpackages/jist-swans-1.0.6/libs/checkstyle-all.jar

(i) SIDnet-SWANS/importedpackages/jist-swans-1.0.6/libs/jargs.jar

(j) SIDnet-SWANS/importedpackages/jist-swans-1.0.6/libs/jython.jar

5. Make sure that the Java Platform is selected as JDK 1.5

6. Add the following Library: Swing Layout Extensions

7. Under Categories frame, click Run

(a) Main Class: ”jist.runtime.Main”

(b) Arguments: ”jist.swans.Main sidnet.stack.users.sample p2p.driver.Driver SampleP2P
300 4000 1000000”

(c) Working Directory: ”SIDnet-SWANS/”

(d) Click OK

8. Do a complete build: Menu→Build→Build Main Project

8

2.2.3 Create a user-defined stack

• Navigate to SIDnet-SWANS/src/sidnet/stack/users

• Create a folder with an appropriate name for the application you will
develop

• Inside that folder create the stack folders, such as /app, /routing, /driver,
/mac, depending at which layers you will place your implementation. Note
that this directory structure is not mandatory, but it is recommended for
better organization of larger projects

• Create and place the java files under the appropriate directories. The best
way to start a project is to modify an existing one. For example, you may
copy/paste the driver file (e.g. from stack/users/sample p2p/driver/) into
your own /driver directory. Same for the application (e.g. stack/users/app/)
or routing (e.g. stack/std/routing/dummyroute).

• !!! Make sure you change the package information for every java file you
transfer to reflect the new directory structure. Otherwise, implementation
from other network stack’s might be accidentally used.

2.3 Run SIDnet-SWANS application

2.3.1 Alternative I. From command line

The environment variables need to be properly cofigured. SIDnet includes a
batch script to serve this purpose (setenv.cmd), which is found in the root
directory of the SIDnet-SWANS distribution. First, edit it to indicate the path
where your SIDnet-SWANS distribution is installed. Then, open a command
line console and execute it:

> setenv.cmd

From the same console, assuming the you have previously built the entire SIDnet
package, now execute:

> java jist.runtime.Main jist.swans.Main Package_Name.Driver_Name N# L# T#

where:

• N#: number of nodes

• L#: width [ft] of the simulation field (assumes square field)

• T#: simulation time constant (long-valued) at which the simulator to stop automati-
cally

For example:

> java jist.runtime.Main jist.swans.Main

sidnet.stack.users.sample_p2p.driver.Driver_SampleP2P 300 4000 10000000

9

2.3.2 Alternative II. From within NetBeans IDE

1. Compile: From Menu Build → Compile File (F9)

2. Build : From Menu Build → Build Main Project (F11)

3. Run : From Menu Run → Run Main Project (F6)

If everything was set-up correctly, the GUI-window should show up on the screen.
If you encountered problems, make sure you have followed this steps precisely. You may

also consider the Troubleshooting section.

10

3 Sample Application (”Hello World”)
This chapter will walk you through the set-up, execution and run-time interaction with a
”hello world”-like application.

The scenario is as follows: N wireless sensor nodes are being randomly deployed in a
square area of length L. The simulation will self-terminate after T seconds. A user walks
through this area, connects to one of the nodes through a terminal (i.e., laptop, PDA) and
submits a simple query. Through the query, the user asks for measurements of a particular
phenomenon from a particular sub-region. The user is interested in achieving 60 samples over
an one hour interval.

To build this application, we need the following three files

1. Application Layer implementation
(sidnet/stack/users/sample p2p/app/AppSampleP2P.java)

2. Routing algorithm
(sidnet/stack/users/sample p2p/routing/ShortestGeographicalPathRouting.java)

3. Driver
(sidnet/stack/users/sample p2p/driver/Driver SampleP2P.java)

The application layer implements the barebones for this scenario to work: awaits for
user interaction, sends the query request and processes an incoming query by sampling the
underlying phenomenon and submitting the measurements back to the user. The node that
the user connects and submits the query through becomes the sink node. The node that
samples the data becomes the source node.

The routing algorithm implements the path-construction between the sink and the source
nodes. At a minimum, this can be achieved through a P2P-type protocol. If we assume (and
we do for this scenario) that location-information is available (i.e, GPS equipped nodes) then
the algorithm is quite simple: every node on the ”path” forwards the data-packet to the node
that is closest to the sink. Ultimately, the data-packets will reach the sink. We won’t cover
exceptions for this sample application.

The ”driver” binds all the information together and represents the entry point in a SIDnet
application. In a driver you specify the network stack of each sensor node, the implementing
algorithms at each layer, the phenomena that will be measured, the placement of the nodes
in the area of interest, etc.

To run this application, type the following at the command line
java java.runtime.Main java.swans.Main sidnet.stack.users.sample p2p.driver.Driver SampleP2P

500 5000 100000
(N = 500, L = 5000, T = 100000)
Simply put, the SIDnet driver runs on top of SWANS, which runs on top of JiST engine,

which in turn runs on top of the JVM (Java Virtual Machine).
The GUI should pop-up. Initially, there will be an one-hour ”boot” period in which nodes

discover their neighboring nodes. We have programmatical accelerated this section of code.
After one-hour, simulator slows down to quasi-real time awaiting for user’s interaction.

Pick up a node of your choice, right-click on it and select ”Connect Terminal to ...”. A
terminal window will show up just like in Figure 1. It will show you the node’s ID (integer
representation of its IP) to which you have connected along with its battery status. We use
infinite battery energy reserves for this example. On the left-side there is a region-drawing
specification, allowing the user to create a region of interest from which samples will be
acquired. The small cross existent gives you a visual cue of the relative position of ”this”
node relative to the deployment area. A region may be defined with a single point, at a
minimum, which means that only the node closest to the region will respond to the query. Go
ahead and draw a region. Make sure to click ”End Region” at the end of your drawing. The
regions are automatically indexed and can be referred through the SQL-like builder in the
right-hand side of the terminal. Region 0 is already built and designates the entire network.
Once the region definition is completed, specify the following query

SELECT ALL
FROM REGION 1 HOURS
SI 1 MINUTE

11

Figure 1: Terminal Window

and click ”Submit Query”. Don’t close the terminal, as you may want to visualize the
result of the query as it unfolds. Look at the simulation GUI to see it developing. You may
want to speed it up a little bit from the bottom-right speed-control module. The samples will
arrive every 1 minute. If you want to visualize the phenomenon that is being sampled, right
click on an empty region in the SIDnet GUI, and click ”Show/Hide Phenomena Layer”.

Once you have familiarized yourself with the run-time interaction, you may want to look
at the driver, application and routing files to see how the simulation is put together. You may
use these files as ”templates” to develop other applications. These files are commented so you
should be able to roughly get a better idea how the SIDnet and application development goes
from within.

12

4 SIDnet Architecture

4.1 Code Structure
SIDnet’s package is placed under $SIDNETHOME$/src directory, and the source code direc-
tory structure is organized in the following way:

../sidnet/stack - placeholder for all the network stack implementations

../sidnet/stack/std - a collection of standardized network stack implementations

(such as MAC802.11, MAC802.15.4, ROUTING: HeartbeatProtocol)

../sidnet/stack/users - directory/package for user-developed network stack implementations

../sidnet/stack/users/PROJECT_NAME/app

- implement here the code logically

corresponding to the application layer of

the ISO network stack

../sidnet/stack/users/PROJECT_NAME/routing

- network/routing algorithms

../sidnet/stack/users/PROJECT_NAME/mac

- MAC protocol implementations

../sidnet/stack/users/PROJECT_NAME/driver

- entry-point to a simulation, where the

user constructs the network stack by

indicating the corresponding algorithmic

implementations, plug-in tools and

utility-views to be used at run time,

along with node-specific parameters,

such as energy consumption model,

battery model, phenomena model, etc.

../sidnet/models/deployment - contains deployment models

../sidnet/models/energy - energy consumption and battery models

../sidnet/senseable/ - sensing phenomenon and moving objects

models

../sidnet/utilityviews - user-defined utility views (v1.0

distribution includes an energy-map and

statistical collector view)

../sidnet/core - the SIDnet program

../sidnet/core/gui - contains core-elements of SIDnet GUI

experience

../sidnet/core/terminal - contains the code associated to the

SIDnet’s run-time "terminal"

../sidnet/core/misc - contain core, non-graphical elements of

SIDnet simulator

../sidnet/core/interfaces - contain core, architectural elements

of SIDnet

../sidnet/core/simcontrol - contain the core simulation manager

../sidnet/batch - contains the batching mechanism, which

can be used when complex and extended

simulations are to be performed in an

automatic fashion.

../sidnet/colorprofiles - contains user-defined color-profiles

for the SIDnet nodes colorings

The physical/radio layers are implemented in $SIDNETHOME$/importedpackages/jist-
swans-1.0.6/ as part of the swans distribution

13

The main GUI window, which is illustrated in Figure 2, consists in the following elements:

• Sensor Field

• 2 x Utility Views

• Simulation Control interface

• Progress bar

Figure 2: Main SIDnet GUI window

These components will be discusses in the following sections. A run-time sample with 500
nodes, energy map and statistical information is illustrated in Figure 3

4.2 Sensor Field GUI
The Sensor Field represents the container where the nodes, through their associated GUI,
will be placed. Additional GUIs and plug-in tools can be integrated through the sensor field
GUI, such as, for example, the group selection tool, which allows you to select a group of
sensors and perform an action over them, or phenomena models, topology visualization tools,
etc, which will be discussed later on in the manual.

A sensor node is represented as a small circular object of various colors. A user can
interact with the sensor node through the menu (mouse)-actions. The Sensor Field handles
users’ mouse interactions and forwards their actions to the appropriate listeners. If a mouse
(right) click takes place over a sensor node symbol, the user will interact only that particular
node through its internal menu system. If a mouse (right) click takes place outside of a sensor
node symbol, the registered plug-in tools will respond to it through their own menu system.
Go ahead an try to right click on the mouse symbol and then outside the mouse symbol.

14

Figure 3: Sample SIDnet GUI

4.2.1 Utility Views

The Utility Views are placeholders for various (user-defined) tools, such as energy map display,
statistical information, etc.

4.2.2 Simulation Control Interface

The Simulation Control Interface allows the user to control the speed of the simulator. It is
part of the core simulation manager and cannot be modified.

4.2.3 Progress Bar

The Progress Bar represents a convenience function which allow the user to set visual feedback
regarding the progress of a particular, probably intensive, operation.

4.3 Internal Operational Architecture
Figure 4 illustrates the connection between the network stack and the GUI-side, along with
other components of the SIDnet.

The central abstraction in the SIDnet-SWANS simulator is the ”NODE”, as we will refer
to as the ”SIDnet Node”. The SIDnet node represents the interface between the network stack
and all the other components of the simulator, including GUI, sensorial field, location services,
energy management, etc. Each application and network/routing implementation must keep a
reference to its corresponding SIDnet node. Node also represents a placeholder for information
that is to be shared amongst network stack element, such as neighboring nodes list, energy
levels, etc.

The overall -application programmer’s interface- structure of the SIDnet node is given in
Figure 5. The SIDnet node has two main components:

15

Node

Energy Management

ColorCode

NodeGUIimpl

Location2D

PopupMenus

Node

Statistics

Sensors

SimGUI

jFieldPanel

jUtilityPanel1

jUtilityPanel2

jSimManagerPanel

Query List
TerminalDataSet

Field

Application

Routing

MAC

Radio

Network

Node
Stack

Node
Stack

Node
Stack

Node
Stack

JiST

SWANS

jRegionPanel

Query

Formulation Area

Terminal

Console

Node

EnergyMap

TopologyGUI

GenericDynamic
Phenomenon

x

x

SNSim

NodeAPI
N

o
d

e
G

U
I

Node

Stack

Node

IP, ID

TYPE

Location2D

Figure 4: Operational Architecture of SIDnet

• Network stack related component

• GUI-related component

The network stack level component contains information such as:

• IP of a node (IPv4)

• ID of a node (the numerical - integer - equivalent of the IP)

• TYPE of a node (type gives the means of identifying the category-type of a node in a
heterogeneous network)

• Location (x, y) of the node in the field of sensor nodes

• Access to sensor boards for sensor readings

• Access to energy management for battery-level readings

The access to the network stack level components is done by means of two interfaces:

• NodeAPI

• NodeHardwareInterface

16

SIDnet

Node

NodeAPINodeHardwareInterface

SIDnet

Node

GUI

Component

ColorCode

Location2D

PopupMenus

TerminalDataSet

IP, ID

TYPE

Energy Management

Query List

Location2D

Sensor-Measurement NodeGUI

Neigbors List

Figure 5: The API-structure of the SIDnet Node

The NodeAPI interface allows the users to access, but not modify (except the TYPE
and neighbors list) the data stored on behalf of the network stack level component. Each
application and network layer implementations must hold a reference to a NodeAPI node.

The NodeHardwareInterface allows the users to configure the node, i.e. setting the IP
address, the sensor boards, changing/refilling the battery, changing the location, etc. The
contents of the Node should be accessed for modification through the NodeHardwareInterface
only through the Driver file.

The GUI-related component contains information related to GUI only. Such information
includes:

• Location (x, y) of the node on the SCREEN !!! (not in the field), expressed in pixels

• ColorCode - controls the ”color” of the node as it is displayed on the screen

• Menus

• Terminal interface

Please refer to the JAVADOC references on the webpage. Specifically, look for:

• sidnet.core.interfaces.NodeAPI

• sidnet.core.interfaces.NodeHardwareInterface

The related implementing classes are the following:

• sidnet.core.misc.Node

• sidnet.core.gui.NodeGUIImpl

17

5 Navigating through SIDnet-SWANS’s network
stack

The SIDnet-SWANSs network stack, which is illustrated in Figure 6, is a subset of the typical
network stack found in wired networks and also in SWANS. Given the specifics of the wireless
sensor network however, the Transport Layer, which was present in the original JiST-SWANS
distribution, was not inherited in SIDnet-SWANS.

Application Layer

Network Layer

Mac Layer

Physical Layer

RoutingRoutingRouting

Sensor Node

Figure 6: SIDnet-SWANS’s network stack

The Network Layer represents a switchboard between packets coming from the upper
layers (Application Layer), lower layers (Mac Layers) and the Routing paradigms, and based
on the destination address of the messages, it forwards the packets accordingly. Figure 7
illustrates the overall message flow between the Application Layer, Mac Layer, Network Layer
and Routing.

Application Layer

Mac Layer

Sensor Node

RoutingRoutingRouting

NetEntity.send(Message msg, NetAddress
FinalDest, short protocol, byte priority, byte

ttl)

If (destIp)
=

NetAddress.ANY

Yes
(broadcast)

No
(unicast)

Routing.send(NetMessage.Ip msg)

Network Layer

NetEntity.send(NetMessage.Ip msg,
interfaceId, MacAddress nextHopMac)

Figure 7: Overview of the message flow in the upper layers of the network stack

As it can be observed, most of the messages are flowing through the Routing element.

18

Imagine that a users application may need to send a data-packet to a distant node, located
couple of hops away. The application may know the IP address of the destination node, but
not the means of reaching it (the route). The Network Layer will let the Routing compute
and retrieve the address of one (or more) of the neighboring (1-hop) nodes to which the
message to be sent immediately in its route to the destination. The single exception to this
rule applies to outgoing Broadcast messages, which are detected by the Network Layer and
forwarded directly to the Mac Layer (there is no need for routing since broadcasting means
transmitting to whoever can hear the message within communication range). But since routes
may be built considering all types of messages, ALL the incoming messages however (both
unicast and broadcast ones) are sent directly to the Routing algorithm, where they may be
used either for updating the routing information, finding the next-hop node if the packet has
not reached its final destination, or passed up, to the Application Layer, if and only if the
message destination is the node itself.

Figure 8 gives a detailed description of the outgoing flow of messages and the associated
methods that are being called within the corresponding .java files.

Application Layer

Mac Layer

Sensor Node

RoutingRoutingRouting

NetEntity.send(Message msg, NetAddress
FinalDest, short protocol, byte priority, byte

ttl)

If (destIp)
=

NetAddress.ANY

Yes
(broadcast)

No
(unicast)

Routing.send(NetMessage.Ip msg)

Network Layer

NetEntity.send(NetMessage.Ip msg,
interfaceId, MacAddress nextHopMac)

Figure 8: Outgoing message flow in the upper network stack

In order to send a message from the Application Layer, the following parameters are
needed:

• Message: a user defined pojo containing the data to be transmitted (the payload)

• NetAddress: the IP of the node that represents the FINAL destination of this packet

• Protocol: if there are several routing protocols implemented, this is used to specify
the routing protocol that is to be used for routing the packet

• Priority: indicate if some packets have a higher priority than others

• TTL: time to leave: in a congested network, indicate the amount of time a packet will
be held before being dropped if continuous attempts of forwarding the data fail.

The application layer will call NetEntity.send() with the above parameters specified.
For example, broadcasting a message can be specified as:
NetEntity.send(myMessage, NetAddress.ANY, Constants.MY PROTOCOL, 1, (byte)100)

Or, unicasting to a known IP (net) address:
NetEntity.send(myMessage, destinationNetAddress, ...)

If the outgoing message represents a broadcast, it will be sent directly to the MAC layer,
bypassing any routing primitives. However, if it is a unicast message, it will be passed to

19

the Routing algorithm to be handled. In the latter case, the NetEntity will call the following
method member of the Routing class:
Routing.send(NetMessage.Ip ipMsg)

The user must decide what to do with the message at the routing layer. Most likely,
it needs to find the 1-hop neighbors MAC address to forward the packet toward its final
destination. Note that the NetEntity will ship a wrapped version of the original message the
application layer has sent. To obtain the content, use the .getPayload() method
MyMessage myMessage = ipMsg.getPayload()

Once the MAC of the next-hop neighbor has been retrieved, the routing layer can proceed
sending the packet down the stack to the MAC layer. However, since it does not have access
directly to the MAC Layer, it must rely on the following method of the Network Layer
netEntity.send(ipMsg, interfaceId, MacAddress)

Do note that the Network Layer will require the wrapped version of the payload, not
the payload itself (that is, a NetMessage.Ip formatted message, which will contain also in-
formation about the original source of the message and its final destination). The user
needs to use for the interfaceId parameter the default interface, which is indicated through
Constants.NET INTERFACE DEFAULT. The MacAddress corresponds to the next-hop node the
packet will be forwarded to. If the IP address of the neighbor to forward the data-packet is
known , you may use the neighboursList (NodesList) to retrieve the associated Mac address
as follows:
neighboursList.get(nextHopDestIP).mac

where the neighboursList is automatically preloaded by the hearbeat protocol that is
executed in the first hour of simulation time.
WARNING! The following method may be also called from the Routing Layer

NetEntity.send(myMessage, NetAddress.ANY, Constants.MY PROTOCOL, 1, (byte)100)

Since it is a broadcasting message, it will be send immediately to the Mac layer. However,
if it wouldn’t be a broadcasting message, the Network Layer will NOT send the packet to the
MAC Layer. Instead, since the Network Layer is unaware of the origins of the call, it will
handle the message back to the Routing Layer, just as if the Application Layer has called
it, risking creating an infinite message-passing loop between the Routing and Network Layer.
Figure 9 represents a detailed illustration of the incoming flow of messages and the associated
methods that are being called in the corresponding .java files.

The Network Layer, upon receiving a message from the Mac Layer, will check to see if
the hosting node represents the final destination of the packet. If it is not, meaning that the
current node is just a relay of the packet in its way to the final destination, the Network Layer
will ask the routing protocol to send the packet again (aka, forward). If this node represents
the final destination of the packet, it will be treated through the receive method of the Routing
Layer, in which the packet must be treated, and, in most cases, sent to the application layer
as well. Note that, the Network Layer will not forward any packet to the application layer by
itself. Here is the receive method syntax the Network Layer will call the following method of
the Routing class:

Routing.Receive(Message msg, NetAddress src, MacAddress lastHop, byte macId, NetAddress

dst, byte priority, byte ttl)

The send() method is the same one called when unicasting a packet from the Application
Layer. Indicating the content of the message, the IP of the original producer of the message,
the last hop Mac address the message is coming from, the Mac interface it has been received
through and the final destination of the packet. These may be used by the Routing layer to
decide if the packet has reached its final destination. The routing layer will decide whether
the incoming data packet is to be forwarded again, and/or update its routing information
if necessary. If the hosting node does not represent the final destination (represents just

20

Routing.sendToAppLayer(Message

msg, NetAddress src)

Application Layer

Mac Layer

Sensor Node

RoutingRoutingRouting

Network Layer

Is it for me?

Yes

No

Routing.Receive(Message msg, NetAddress src,
MacAddress lastHop, byte macId, NetAddress dst,
byte priority, byte ttl)

appInterface.receive(Message msg,

NetAddress src, MacAddress lastHop, byte

macId, NetAddress dst, byte priority, byte ttl)

Routing.send(NetMessage.Ip msg)

Figure 9: Incoming message flow in the upper network stack

an intermediate node on the route) of the data packet, the Routing Layer must forward
the message to the next node on the route following the indication for outgoing messages.
Otherwise, it should pass the message to the Application Layer, which can be done directly
by calling the following locally defined method:
Routing.sendToAppLayer(Message msg, NetAddress src)

In turn, the Application Layer will be notified by the incoming message by being called
its local method, which follows:
appInterface.receive(Message msg, NetAddress src, MacAddress lastHop, byte macId, NetAddress

dst, byte priority, byte ttl)

21

6 SIDnet Operations and Tools

6.1 SIDnet Node - coloring (applicable to SIDnet-SWANS
v.1.4.3 and newer)

6.1.1 Note

The way a user can specify a ColorProfile has changed since SIDnet-SWANS v.1.4.3. The
goals of this change are as follows:

• Ease the way the color profiles are specified

• Allow multiple color profiles to properly coexist. For example, different implementation
at various layers of the network stack were force to use the color profile specified in
the driver file. Reutilization of these implementations were problematic since, whenever
they were included in a new application, they needed to be rewritten to use the possible
new color profile specified in a new driver. If not rewritten, SIDnet was not reporting
an error, but was mapping these colors to the ones in the new driver’s color profile,
ending with unexpected results, such as plotting on the screen color they were never
specified.

6.1.2 Intro

A SIDnet node is represented in the GUI through a circular symbol. While you cannot
control the size of this icon, you can control its color. Two elements of this symbol can be
independently colored: the contour line and body of the symbol, as illustrated in Figure 10:

Contour Line

Body

Figure 10: (Color)-Controllable elements of the SIDnet node symbol

User can define a set of possible colors and their meanings through a color-profile that
you can associate with your application. For example, you may want to establish a convention
that a sink node should have a color, while a relay node another color, or to try to distinguish
between a node that is transmitting or receiving data.

6.1.3 How to create my own color profile?

User-defined color profiles can be created programmatically, by writing a .java class that
extends the following abstract class:

sidnet.core.interfaces.ColorProfile

For example, have a look at the ”generic” color code profile can be found under

22

sidnet/colorprofiles/ColorProfileGeneric.java

You may use this one in your code, or you may define your own profile.

6.1.4 How does it work

A ColorProfile defines an ordered list of ColorBundles. A ColorBundle stores a pair of
inner(body) and outer(contour) colors, along with a TAG that allows the user to identify a
certain ColorBundle. The TAG is defined as a non-empty ”String”. A color is defined through
a java.awt.Color object. Here is an example of a ColorBundle:

TAG inner(body) outer(contour)

ColorBundle("SINK" , Color.YELLOW , Color.YELLOW)$

A ColorProfile, in fact, extends the list of ColorBundles already defined in the ColorProfile

class. It is, therefore, imperative to call super() as the first line of code in the constructor for
your ColorProfile. Obviously, all the TAG-ed ColorBundles are inherited by the user’s new
ColorProfile and can be accessed through it.

6.1.5 Priorities. Does order matter?

Various colors and color profiles may concur for the display-estate of the node symbol at the
same time. For example, a node that is a source node (and colored on the screen to according
to the ColorBundle for a SOURCE node) may also attempt to TRANSMIT (hence you may
want to color it to indicate a transmission). Both the SOURCE-tagged and the TRANSMIT-
tagged ColorBundles may attempt to color the node concurrently, but only one can succeed,
and that is the one of a higher priority.

As we have said earlier, a ColorProfile represents an ordered list of ColorBundles.
The order in which they are added defines their priority. The first ColorBundles added are
considered of higher priority.

The ColorProfile that the user’s ColorProfile extends define ColorBundles of the high-
est priority. We call this ”Class-1 priority color bundles”. The user’s defined ColorProfile,
define, in fact, a ”Class-2 priority color bundles”, and must be also specified in the Driver file.
If the user’s code is using already defined code, with its own color profile (say, MAC802 15 4),
the color profile used in that code becomes a ”Class-3 priority color bundle”. Therefore, mul-
tiple color profiles can coexist in the same run. Obviously, Class-3 priority color bundles have
the lowest priority of all.

6.1.6 NULL Colors

You may also define ”NULL” colors. Null colors act as ”transparent” colors. If, for example,
you don’t care what should be the color of the contour line when performing an action, specify
it as null. The next ColorBundle of lower priority that is invoked at the same time will color
that. For example:

ColorBundle(RECEIVE, Color.GREEN, null)

6.1.7 Temporal-validity of a color-scheme

You can specify the period of time a particular color-scheme applies to the node. For example,
you may indicate by a brief ”blink” of a color when a node receives a message. The coloring-
time is entirely controlled by the SIDnet simulator. It is up to you, however, to specify the
”amount” of time. The following are the time-markers associated to a color-scheme:

• ALWAYS - apply the color-scheme from now-on for an undefined amount of time

• CLEAR - cancels the effect of the ”ALWAYS”

23

• ms-value : the interval of time, expressed in milliseconds for which the corresponding
color-scheme is valid. The SIDnet will deactivate the color-scheme automatically when
the interval of time expires

The temporal-markers are specified in the

sidnet.core.interfaces.ColorCode.java

interface.

6.1.8 Run-time usage

Once you have properly defined a color-profile, you can access these profiles as follows:

node.getNodeGUI().getColorProfile().mark(new ColorProfileUser(), ColorProfileUser.SINK , ColorProfileUser.ALWAYS)

node.getNodeGUI().getColorProfile().mark(new ColorProfileUser(), ColorProfileUser.TRANSMIT, 500 /*ms*/)

node.getNodeGUI().getColorProfile().mark(new ColorProfileUser(), ColorProfileUser.DEAD , ColorProfileUser.CLEAR)

followed by:

myNode.getNodeGUI().repaint();

for instantaneous color update.

24

6.2 SIDnet Node - coloring (up to SIDnet-SWANS v.1.4.2,
inclusive)

A SIDnet node is represented in the GUI through a circular icon. You cannot
control the size of this icon, but you can control its coloring-scheme. Namely,
you can control the colors of the contour line and body of the icon, as illustrated
in Figure 11:

Contour Line

(outerColorList[])

Body

(innerColorList[])

Figure 11: (Color)-Controllable elements of the SIDnet node icon

User can define a set of possible colors and their meanings through a color-
profile that you can associate with your application. The color-profile can be
assigned in the Driver file.

The user-defined color-profiles must be placed under

sidnet.colorprofile

package. A ”generic” color code profile can be found under

sidnet/colorprofile/ColorProfileGeneric.java.

User-define color profiles can be created programmatically, by writing a .java
class that extends the following abstract class:

sidnet.core.interfaces.ColorProfile
A color-profile contains a set (array) of color-schemes. A minimum set of

colors are already hardcoded in the ColorProfile.java classs. At a minimum, a
color profile should associate colors for the following operations:

• color of the node that is dead (default: black/black (line/body))

• color of the node that is alive and listening (default: black/white)

• transmitting node (red/red)

• receiving node (green/null)

25

• ...

A user can overwrite these colors and define its own coloring schemes.
The (possible) colors are stored as two (java.awt.Color) arrays, as illustrated

in Figure 11 (see also the sidnet.colorprofiles.ColorProfileGeneric.java):

• Color[] innerColorList - corresponds to the body color

• Color[] outerColorList - corresponds to the contour line color of the node
icon

The index in these lists, which can be statically defined (i.e., public static
final int DEAD = 0;), designate the meaning of a particular color-scheme.
Clearly, this means that the contour/body color combination for the node being
dead can be retrieved from innerColorList[DEAD] and outerColorList[DEAD]
respectively.

The rank of the colors in the arrays define the ”priority” of the colors-
schemes. Lower indexes have higher priorities. Higher priorities ”overwrite” (or
mask) lower priority color-schemes. This is useful when you apply two color-
schemes to the node in the same time and decide which one of the two will be
seen on the screen. Obviously, you cannot have two colors of the contour line
applied in the same time. For example, let’s say you have a a sink-node, repre-
sented as black/red combinations. If your sink-node is receiving a message, you
may want to see that node temporarily being colored as black/green to visually
indicate the receival of a message. This can happen if you place the black/green
combination at an index that is lower than the index of the sink-node color-
scheme in the array. Otherwise, the black/green will not be seen on the screen.
For example, consider the following code-association:

innerColorList[RECEIVE] = Color.GREEN;
outerColorList[RECEIVE] = Color.BLACK;

innerColorList[SINK] = Color.RED;
outerColorList[SINK] = Color.BLACK;

If the RECEIVE is 1 and SINK is 2 (RECEIV E < SINK), then you will
see when the sink node receives a message. If the RECEIVE is 2 and SINK is 1
(RECEIV E > SINK) you will not see when the sink node receives a message.

You must always have a DEFAULT color-scheme, which should have the low-
est priority. The color-schemes indexes must be defined in consecutive numeric
order, from 0 to (DEFAULT − 1)

6.2.1 NULL Colors

You may also define ”NULL” colors. Null colors act as ”transparent” colors. If,
for example, you don’t care what should be the color of the contour line when
performing an action, specify it as null.

26

6.2.2 Temporal-validity of a color-scheme

You can specify the period of time a particular color-scheme applies to the node.
For example, you may indicate by a brief ”blink” of a color when a node receives
a message. The coloring-time is entirely controlled by the SIDnet simulator. It
is up to you, however, to specify the ”amount” of time. The following are the
time-markers associated to a color-scheme:

• ALWAYS - apply the color-scheme from now-on for an undefined amount
of time

• CLEAR - cancels the effect of the ”ALWAYS”

• ms-value : the interval of time, expressed in milliseconds for which the
corresponding color-scheme is valid. The SIDnet will deactivate the color-
scheme automatically when the interval of time expires

The temporal-markers are specified in the

sidnet.core.interfaces.ColorCode.java interface.

6.2.3 What is the simplest way to define my own color profile?

First, create a copy of the ColorProfileGeneric.java and rename as you wish.
Then modify its content and define the colors that you need for your application.
You can increase the number of tags and follow the instructions included in the
ColorProfileGeneric.java file.

You can permanently assign a color profile to a node in the Driver file through

node.setColorProfile() function.

and retrieve it later through

node.getColorProfile() function

Or, you can just access it directly. For example, to color a node, you can
use the following code:

node.getNodeGUI().colorCode.mark(ColorProfileUser.DEAD, ColorProfileUser.FOREVER).

6.2.4 Run-time usage

Once you have properly defined a color-profile, you can access these profiles as
follows:

node.getNodeGUI().getColorProfile().mark(SINK, ALWAYS)
node.getNodeGUI().getColorProfile().mark(RECEIVING, 500 /*ms*/)

27

node.getNodeGUI().getColorProfile().mark(DEAD,ColorProfile.ALWAYS)

See the sidnet.core.interfaces.ColorProfile API on the website for the
outline of the possible functions.

28

7 Debugging Tools

A major advantage of a graphical-oriented simulator such as SIDnet-SWANS is
that visual inspection can give quick cues of misbehavior of an implementation
that would otherwise go unnoticed or require lengthy log-files to be inspected.
Here are some of the tools built-in SIDnet-SWANS to aid with debugging.

7.1 TopologyGUI

WHAT IS IT?
TopologyGUI is a built-in SIDnet tool that allows you do display, on the main
GUI, connectivity/topology information, such as communication structures be-
tween nodes. Figure 12 illustrates the outcome of using this tool.

Figure 12: Sample connectivity graph: aggregation tree using TopologyGUI tool

HOW TO USE IT?
Two steps:

1. Configuration

2. Usage

7.1.1 Configuration

TopologyGUI can be used at any layer (App, Network - Routing, Link, etc) in
the networking stack. To add it, follow these steps:

1. Declare the following public member within the class file from which you
will be using the tool

public static TopologyGUI topologyGUI = null;

29

2. Declare the following private member in the Driver file for your setup.

public static TopologyGUI topologyGUI = new TopologyGUI();

3. In the Driver file, under the createSim() function, write (somewhere, to-
wards the end) the following:

simManager.register(topologyGUI, simGUI.getSensorsPanelContext());

topologyGUI.setNodeList(myNode);

4. In the same Driver file, under the createNode(...) function, right after
the point you create an instance of the network layer from which you want
to use this tool (say, myRoutingLayer), add the following line:

if (myRoutingLayer.topologyGUI == null)

myRoutingLayer.topologyGUI = topologyGUI;

7.2 Usage

TopologyGUI maintains (and displays) a list of ”arches”. The only elements
you need to provide are the following:

• The two end points coordinates (as NCS locations) of an arch
OR
The ids of two nodes in between which you want to draw an arch

• A numerical identifier

• A color

[SYNTAX]

topologyGUI.addLink(int oneNodeID,

int theOtherNodeID,

int groupId,

java.awt.Color groupColor,

[TopologyGUI.HeadType])

topologyGUI.addLink(NCS_Location2D fromNCSLocation,

NCS_Location2D toNCSLocation,

int groupId,

java.awt.Color groupColor,

[TopologyGUI.HeadType])

30

Note: check the sidnet.core.gui.TopologyGUI javadoc for more information on this tool.\\

Note: The [TopologyGUI.HeadType] option available as of SIDnet v1.4.1.

7.2.1 Examples

If you want to draw a connection line between two sensor nodes for which you
know their ids (say, node #3 and node #5), then:

topologyGUI.addLink(3,

5,

0,

Color.RED);

To draw a red line (arch) between the current node and one of my neighboring
nodes based on their known locations, rather than their ids, you may use the
following line:

topologyGUI.addLink(myNode.getNCS_Location2D(),

myNode.neighboursList.getAsLinkedList().getFirst().getNCS_Location2D(),

0,

Color.RED);

These arches need not originate, nor terminate at a sensor node. They may be
used for other purposes as well. For example, if you just want to draw a blue
diagonal line on the screen, from the left-top corner to the right-bottom corner,
you may use:

topologyGUI.addLink(new NCS_Location2D(0,0),

new NCS_Location2D(1,1),

0,

Color.BLUE);

Additionally, as of SIDnet v.1.4.1, you are also able to configure the end-
points of the topology line, as shown in Figure 13

From

To

LEAD_ARROW

(default)

TRAIL_ARROW

BOTH_ARROW

NO_ARROW

Figure 13: TopologyGUI end-points options

Example:

31

topologyGUI.addLink(new NCS_Location2D(0,0),

new NCS_Location2D(1,1),

0,

Color.BLUE,

TopologyGUI.HeadType.LEAD_ARROW);

7.2.2 Menu Interface

This tool has a menu option associated with: ”Show/Hide Topology Visualiza-
tion”, which will allow you to toggle on/off the display of the topology informa-
tion. It is accessible, at run-time, by pressing right-click over the sensor field
(not over a sensor node).

7.3 Transmit/Receive FX

WHAT IS IT?

It is a tool that shows screen animations corresponding to the events of a
node (attempting) transmitting and (successfully) receiving packets. Figure 14
illustrates the outcome of using this tool.

Figure 14: Sample outcome of using the Transmit/Receive FX

WHICH PACKETS IT SHOWS?
Only the packets you want to show. It is not integrated by default in any of
the network layers of SWANS, hence it requires the coder/user to use its API
to indicate a packet that is being transmitted just before the packet is actually
being sent to the lower stack-layers, and use the same API to indicate that a
packet has been already received at another layer of the network stack, wherever
you need (typically, it may be in the Application Layer or Network/Routing
Layer).

7.3.1 Configuration

Decide whether you are going to use this tool at the APP-layer or Routing-layer.
Without loss of generality, let’s suppose we’ll use this in the APP-layer, such as

32

in the demo file AppSampleP2P.java. Do the following:

• 1. DEFINITION: Define

public static TransmitReceiveFX transmitReceiveFX;

as member variable in YourApp.java

• 2. INITIALIZATION: In the Constructor of your app- file, add these lines:

if (transmitReceiveFX == null) {

transmitReceiveFX = new TransmitReceiveFX();

transmitReceiveFX.configureGUI(myNode.getNodeGUI().getPanelContext().getPanelGUI());

}

7.3.2 Usage

In the same file you have configured this tool, use the followings at appropriate
locations

• TRANSMITTING:

NCS_Location2D fromLoc = myNode.getNCS_Location2D();

NCS_Location2D toLoc = destLoc.toNCS(myNode.getLocationContext());

int someValue; // some value such as ... payload? It will show on the screen

transmitReceiveFX.transmit(fromLoc, toLoc , someValue);

• RECEIVING:

NCS_Location2D fromLoc = myNode.neighboursList.get(src).getNCS_Location2D();

NCS_Location2D toLoc = myNode.getNCS_Location2D();

transmitReceiveFX.receive(fromLoc, toLoc);

• SETTING-ANIMATION-SPEED:

transmitReceiveFX.setDelay(100); // in milli-seconds

7.3.3 Notes

A good place to put the RECEIVING section is in the body of the receive
function:

public void receive(Message msg, NetAddress src, MacAddress lastHop,

byte macId, NetAddress dst, byte priority, byte ttl) { ... }

You may place the TRANSMITTING section anywhere you want just before sending an actual
packet, i.e. before a line like this:

33

transmitReceiveFX.transmit(myNode.getNCS_Location2D(),

destLoc.toNCS(myNode.getLocationContext()),

0);

netEntity.send(msgSGP, ip,

routingProtocolIndex /* (SGP) */,

Constants.NET_PRIORITY_NORMAL, (byte)100);

Be warned that this tool may severely limit the simulation speed (when used, not when only
configured), so a good practice is to use it only when simulation speeds are slower than X10.
You may do so by programmatically checking the simulation speed:

if (myNode.getSimControl().getSpeed() == SimManager.X1)

transmitReceiveFX.transmit(myNode.getNCS_Location2D(),

destLoc.toNCS(myNode.getLocationContext()),

0);

netEntity.send(msgSGP, ip,

routingProtocolIndex /* (SGP) */,

Constants.NET_PRIORITY_NORMAL, (byte)100);

If you want to monitor the transmital/receiption of only certain messages, you may do so by
checking the type of message that you transmit/receive, for example:

if (msg instanceof TemperatureReadingMessage) {

NCS_Location2D fromLoc = myNode.neighboursList.get(src).getNCS_Location2D();

NCS_Location2D toLoc = myNode.getNCS_Location2D();

transmitReceiveFX.receive(fromLoc, toLoc);

}

34

8 SIDnet Run Modes
SIDnet can run in three modes:

• DEBUG

• DEMO

• EXPERIMENTS

By convention:

• ”DEBUG” mode should be used to display both GUI and command-line debugging
information

• ”DEMO” mode should be used to ”hide” most of the unnecessary, cluttered debugging
information, retaining only what is necessary to do a ”slow-speed” demonstration

• ”EXPERIMENTS” mode should be used for high-speed experimental evaluation. Un-
der this mode, you should programmatically set the simulator speed to MAX (disables
graphics)

These modes are only conventions and must be implemented programmatically. They can
be set as system variables in Java.

35

9 Collecting Run-Time information: The ”StatsCol-
lector” utility view (for SIDnet-SWANS v.1.4.3

and newer)

Package: sidnet.utilityvies.statscollector

What is it?

The ”StatsCollector” is an utility view (aka plug-in) for SIDnet which allows you to visu-
alize and collect (log) run-time information regarding the experiment that is currently being
performed. It typically shows on the lower-right corner of the SIDnet’s GUI.

What type of information can be collected?

The StatsCollector can collect the following information:

• Time (time-stamps)

• Number of data packets sent

• Number of data packets received (at their destination)

• Percentage of data packets that have been received (considering the ones that have
been sent),

• Number and percentage of data packets that have been lost/dropped

• Packet delivery latency information (average, minimum, maximum)

• Number and percentage of nodes alive/dead

• Energy left (average, minimum, maximum, stdev)

• Number of 1-hop neighbors discovered (average, minimum, maximum) both network-
wide or within a specified region.

The scope of these measurements can cover

• Entire network

• Regions/Sectors of the network

• Discrete sets of nodes

36

How do I use/configure it?

You must define it in the Driver file of your experiment, within the the public static

Field createSim(...) function.

It is a three step process:

1. Instantiate the StatsCollector;

2. Configure it

3. Register it with SIDnet interface

9.1 StatsCollector instantiation
You need to provide the following information to StatsCollector’s constructor:

• Node[] - the array of nodes. StatsCollector needs this to query the status of each of
the nodes. Remember, each sensor node (and its stack) have a Node associated with
it.

• battery capacity (assuming you are running a energy-aware application; otherwise
set this to 0);

• field length [fts] - the length of the (assumed-squared) field in which you deploy the
nodes. This parameter it is usually supplied as a command line argument to the driver.

• sampling interval - the interval of time you wish data to be logged. It is expressed
in SIDnet atomic time. A typical value is 30 minutes (30 * Constants.MINUTE)

Note: since SIDnet v.1.4.3, the user may supply an instance of a class that implements
the sidnet.utilityviews.statscollector.ExperimentData, which will contain the information
about the field length and sampling interval. The experimentData object can be supplied by
the SIDnet’s batching mechanism (see Section 11).

Example (non-batching):

Assume that Node[] nodesList was created. Then,

statistics = new StatsCollector(nodelist, (int)battery.getCapacity(), length, 30 * Constant.MINUTE);

If batching is used, then:

statistics = new StatsCollector(nodelist, (int)battery.getCapacity(), experimentData);

9.2 StatsCollector Configuration

The StatsCollector adopts a highly modular design. A StatsCollector is, in
fact, a placeholder and manager of a set of ”StatEntry”-es, each of which
having a clear functionality. The various statEntry-es can be inspected in
sidnet/utilityviews/statscollector/.

Here is the list of StatEntry classes (as in SIDnet v.1.4.3):

• StatEntry Time

• StatEntry AliveNodesCount

37

• StatEntry AverageEnergyLeftPercentage

• StatEntry AverageNeighborsCount

• StatEntry DeadNodesCount

• StatEntry DeadNodesPercentage

• StatEntry EnergyLeftPercentage

• StatEntry EnergySTDEV

• StatEntry EventDetectedContor

• StatEntry EventMissedRatio

• StatEntry EventMonitor

• StatEntry EventOccurredContor

• StatEntry GeneralPurposeContor

• StatEntry MaximumEnergyLeftPercentage

• StatEntry MaximumNeighborsCount

• StatEntry MessagesContor

• StatEntry MinimumEnergyLeftPercentage

• StatEntry MinimumNeighborsCount

• StatEntry PacketDeliveryLatency

• StatEntry PacketReceivedContor

• StatEntry PacketReceivedPercentage

• StatEntry PacketSentContor

More StatEntry-es may be added, so you may want to check
SIDnet-SWANS/src/sidnet/utilityviews/statscollector folder. Verify the
API for these StatEntry-es for usage.

The user can configure in the Driver which StatEntry-es he desires to mon-
itor. To do this, the user needs to create instances of these StatEntry-es
and ”add” them to the monitoring list of the StatCollector by means of its
monitor(...) member function. At the minimum, the StatEntry T ime should
be used to track time-progress, and it should be the very first one to be added
to the monitoring list.

Example:

statistics.monitor(new StatEntry Time());

38

statistics.monitor(new StatEntry PacketSentContor(”TAG”));
statistics.monitor(new StatEntry PacketReceivedContor(”DATA”));
statistics.monitor(new StatEntry PacketReceivedPercentage(”USER DEFINED TAG”));

Note: The order in which you add to .monitor(...) is the order in which it
will appear both on the screen and also in the log-files.

You may have multiple instance of the same class of StatEntry. For exam-
ple, you may want to track the packet delivery of more than one type of packets
(say, TEMPERATURE DATA PACKETS and LIGHT DATA PACKETS). We
have added this capability in SIDnet v1.4.3. To define the scope of a particular
StatEntry, a ”TAG” can be provided to it. For example:

statistics.monitor(new StatEntry PacketReceivedPercentage("TEMPERATURE"));

statistics.monitor(new StatEntry PacketReceivedPercentage("LIGHT DATA"));

9.2.1 Generic Event Monitor

All the StatEntry-es that target monitoring packet delivery are based on an
event-monitoring engine. The idea is that there is a distinction between the
time a particular event has occurred and the time the event is actually detected.
For example, packet-delivery monitor associates the markPacketSent() func-
tion with the event occurrence (statsCollector.markEventOccurred) and the
markPacketReceived()with the event detection (statsCollector.markEventDetected).
Therefore, one may use this event-mechanism directly to monitor other elements
of interest, for example, the time interval from the detection of a fire until the
fire-information is received at a sink node.

9.2.2 Statistics Monitoring Scope

Starting with SIDnet v.1.4.3 a user may select a subset of nodes (or sub-region)
in which a specific monitoring entry applies (default covers the entire net-
work). For example, a user may want to monitor the energy consumption
in certain hot-spots areas of the network, or the energy consumption along
a particular route only. This is now possible. For this, each individual node
can be set to participate, or to be left-out otherwise, to monitoring functions
of a particular StatEntry. This can be done explicitly through the statsCol-
lector.excludeFromMonitoring(...) and statsCollector.includeInMonitoring(...).
Some statEntry-es allows for the specification of the inclusion/exclusion ”Re-
gion”, case in which all the nodes within the Region are included and the other
excluded from monitoring, for an inclusion Region, and vice-versa for an exclu-
sion Region.

9.2.3 Program calls

Some of the StatEntry-es are designed to operate without any additional user
intervention (for example, energy-related monitorings). Others, however, do re-

39

quire additional programmatical guidance from the user, as it is the case with
packet-monitoring statistics. For example, if you want to monitor the packet
delivery of a DATA PACKET, then you need to indicate programaticaly when
a certain packet is being transmitted (sent) and when received. You may do so
right before sending the packet down the network stack and right after receiving
the packet up from the stack respectively. For example:

stats.markPacketSent("DATA PACKET", sequenceNumber);

stats.markPacketReceived("DATA PACKET", sequenceNumber);

stats.markPacketSent("TEMPERATURE DATA PACKET", sequenceNumber);

stats.markPacketReceived("TEMPERATURE DATA PACKET", sequenceNumber);

Note that each packet must have a sequence number associated with it, in
order to properly matched the received packet to the sent one. This is especially
important for packet-delivery latency computations.

9.3 Register StatCollector with SIDnet

This last step that MUST be done for the StatCollector to receive timing-
calls and record data appropriately. It also specified in which (of the two)
utility-views windows in the SIDnet GUI to appear.

If you want the statistics to appear on the lower-right window of SIDnet
GUI (recommended), use this:

simManager.registerAndRun(statistics, simGUI.getUtilityPanelContext2());

or, for the upper right cornet, use this:

simManager.registerAndRun(statistics, simGUI.getUtilityPanelContext1());

40

10 Batching (for SIDnet-SWANS v.1.4.4 and newer)

TODO

11 Batching (for SIDnet-SWANS v.1.4.3 and older)

Nomenclature:

• SIDnet experiment: The execution of a single SIDnet instance, which is
parameterized (and thus configured) through the driver file

• SIDnet run : The execution of a set of SIDnet distinct experiments. By
distinct experiments we mean either

– having different driver files, or

– having the same driver file whose parameters are changed.

How does it help me?

The SIDnet Batching mechanism allows you to perform quickly (over-night),
without your explicit intervention, a large number of SIDnet experiments (hun-
dreds, maybe thousands).

Where are the Batching-related files?

Under the SIDnet-SWANS/src/sidnet/batch directory
(sidnet.batch package)

How does it work?

The Batching mechanism configures each SIDnet experiment by feeding com-
mand line arguments to the driver file for the current SIDnet experiment which
is going to launch. Upon termination of a SIDnet experiment, the Batching
mechanism will launch a new SIDnet experiment with a new set of parameters.

It works in conjunction with the ”Statistics” utility views (see Section 9)
which is in charge of storing run-time information to log-files.

OK, how do I do all these?

Follow these steps:

• Configure Environment

• Build the parameters file

• Configure the Driver file

• Launch the Batching Mechanism

41

11.1 Configure Environment

1. Make sure java.exe is in the PATH 1

2. Create an empty folder anywhere you wish (for example, ”C:/experiments”).
This is were all the results and run-time log data will be stored and orga-
nized

3. Copy ”setenv.cmd” and ”checkenv.cmd” from

4. Edit ”setenv.cmd”. Namely, change the ”SIDNETSWANSDIR"=C:/your
installation path/SIDnet-SWANS”

5. Open a command-line window

6. Navigate to your /experiments directory

7. Set your environment (launch ”setenv.cmd” from the command-line)

8. Leave the command-line window opened.

11.2 Build the parameters file

The easiest (and recommended) way is to use Excel (or similar tabular spread-
sheet software).

Conventions:

Columns: hold various parameters of a given experiment

Rows : each row contains the parameters of a SIDnet experiment

First ROW is a header row and should contain the name of each of the pa-
rameters underneath. The Batching mechanism will start picking up run-time
parameters and executing SIDnet experiments starting with the second row.

First three (3) columns MUST contain the following information

• Col #0: ”Driver Filename”

• Col #1: ”expId” (experiment Id).

• Col #2: ”runMode”

1See Q & A on how to set this if you don’t know how

42

Table 11.2 contains a sample (template) for writing the parameter file
Driver Filename expId runMode Nodes Area[ft] timeout other params ...

sidnet.stack.driver.DriverS ampleP2P 1 experiments 500 5000 1000000 ...
sidnet.stack.driver.DriverS ampleP2P 2 experiments 400 5000 1000000 ...
sidnet.stack.driver.DriverS ampleP2P 3 experiments 1000 7000 1000000 ...
sidnet.stack.driver.DriverS ampleP2P 4 experiments 700 6000 1000000 ...

... 1000000 ...

When done, export the file to .csv format and save it under the /experiments

directory.

11.3 Configure the Driver file

The Batching mechanism will parse the .csv file, line by line, and supply the arguments
(starting with the second column) to your Driver file. YOU MUST modify your driver
file to configure local variables according to the supplied command line arguments.

11.4 Launch the Batching Mechanism

In your command-line window, which now has the environment set-up, assuming you
are still under the /experiments directory, use the following command to launch the
batcher

>java sidnet.batch.SIDnetCSVRunner <fileName>.csv [-runid=#] [-experimentid=#]

[-demo | -experiment] -parallelism=#

where

• <filename.csv> is the .csv filename you have created

• -runid=# - OPTIONAL, specify an integer number that will help you identify
this run. If you do not specify one, the batching mechanism will generate one
for you. The experimental results associated to a given run will be stored under
/experiments/run#, which will be automatically created for you.

• -experimentid=# - OPTIONAL, use this only if you want to run ONE exper-
iment out of the many specified in the .csv file. Each SIDnet experiment will
have a unique file created for it under the /experiments/run#

• -demo | -experiment - refer to Section 8

• -parallelism=# - indicate the number of SIDnet experiments that you allow to
run in parallel. This is a good feature to use when having a multi-core machine.
The rule of thumb is to specify the number of cores you processor has.

examples:

java sidnet.batch.SIDnetCSVRunner myExperiments.csv -parallelism=1

java sidnet.batch.SIDnetCSVRunner myModifiedExperiments -runid=2 -parallelism=2

A GUI window will pop-up. Verify that the information is correct, then click
START. Sit back and relax.

43

11.5 Interrupting a SIDnet Batched Run

The SIDnet batching mechanism has been designed that it can be interrupted whenever
you need. All the finished experiments will be saved. All the information (logs)
corresponding to the experiments that were ”still” running (unfinished) will be deleted.
You may resume the experiments by re-launching the Batching mechanism (but make
sure you specify the same run# you specified - or has been assigned - to the run that
was previously interrupted). The batching mechanism will not replace already saved
log-files and will proceed from where it was previously interrupted. If you specify a
different run#, a new directory will be created under the /experiments directory and
experiments will start from the beginning. This is useful when you want to repeat the
same experiments a couple of times and ”average” the results.

44

11.6 Processing the Experimental Results

11.6.1 What is it and Why

The experimental data it is stored as a collection of ASCII-files at the:

currentDirectory/run#/

where the currentDirectory represents the directory from where the SIDnet batcher
has been launched, or the SIDnet-SWANS installation directory, if run within the IDE.

We call such an ASCII file an ”experiment-log-file” (ELF), each of which cor-
responding to a unique experiment. The name of the ELF encodes the run num-
ber (run#−), repeat number (rpt#−) and experiment number (exp#-) as a way to
uniquely identify the experiment configuration the respective ELF corresponds to.

In real experimental work the number of ELFs can easily reach the order of thou-
sands, hence in order to extract the meaningful information from such a large exper-
imental base requires specialized software tools (and we provide). Surely, one may
decide to write scripts to extract the data, but we have preferred to give a java-based
alternative.

The tool that can be used to extract meaningful data from a database of ELFs can
be executed from the command line (if the environment, c.f. Section 11.1 is properly
configured) as:

java sidnet.batch.ExtractData

To understand the following syntax of operation, open an ELF and briefly study
its contents. You will see that it contains a ”table” of data values, and a set of ”tags”.
The tags describe some configuration properties the respective ELF contains the results
for. ExtractData is designed to allow you to obtain a single chart (or, better yet, the
data-row for a chart). More charts can be obtained by running ExtractData multiple
times with different configurations. A chart may have one, two, or more ”plots”, or
lines, showing how different ”implementations” compare.

11.6.2 Syntax

ExtractData <path> <outputFilename> <xAxisTag> <yAxisTag> <average> [[<-groupBy=...>]]

where

• <path> - the path (absolute or relative from currentDirectory) to the /run#/

folder which contains the experiments

• <outputFilename> - the name of the file where the processing results are going
to be stored

• <xAxisTag> - the tag of the column who’s data will be used for the X-axis of
the final plot

• <yAxisTag> - same, but for the Y-axis

• <average>, or <min> or <max> - the mathematical operation that is to be per-
formed among columns coming from different ELFs. Typically, this is average
(average of all results, i.e. average energy left, etc)

45

• <groupBy = ... > - Allows user to specify an experimental property based on
which he can obtain a breakdown representation of the charts. See example
below. If this is not specified, the final chart will have a single plot (line).

11.6.3 Example

Let’s consider the following example: we have run experiments comparing energy
consumption performance of three distinct algorithms A1, A2 and A3. And let’s
suppose that this is a sample ELF for A1:

run1-rpt1-exp16-A1-log2009-03-10--12-17-42.log

StatsCollector Log Time: 2009-03-10--12-17-42

SIDnet-SWANS Simulation Log File

GroupBy parameters:

<experimentTargetDirectory>.\run1\

<runId> 1

<experimentId> 16

<experimentTag> A1

<nodesCount> 1000

....

<header> Time DATA_PacketSentContor EnergyLeftPercentage

0 0 100

1 10 95

2 20 90

3 30 86

4 50 77

which contains data samples of a 4-hour long simulation, sampled every 1 hour. We
want to obtain a plot comparing the EnergyLeftPercentage among the three algo-
rithms. Remark that the ELF snapshot that we have considered is for algorithm A1
(indicated by its < experimentTag >). To do so, we run the following command:

java sidnet.batch.ExtractData ./run1 Results EnergyLeftPercentage.log Time

EnergyLeftPercentage average -groupBy=experimentTag

ExtractData will produce (or overwrite) the Results EnergyLeftPercentage.log

which will have the following content:

Time EnergyLeftPercentage(A1) EnergyLeftPercentage(A2) EnergyLeftPercentage(A3)

0 100.00 100.00 100.00

1 96.78 93.10 70.00

2 94.32 88.70 40.00

3 93.40 79.70 20.10

4 90.00 71.80 0.00

46

which can be imported into a specialized software (i.e., Excel, GNU Plot, etc) for
obtaining the final plot, as illustrated in Figure 15

0

20

40

60

80

100

120

0 1 2 3 4

En
e
rgy Le
ft
 [%
]

Time [h]

(A1)

(A2)

(A3)

E
n

e
rg

y
 L

e
ft

 [
%

]

Figure 15: Sample Plot

One may one to plot a breakdown of the energy consumption based on other fac-
tors, say, for the number of nodes in the network. Supposedly we have run these
experiments in two different network settings: 500 nodes and 1000 nodes scenarios.
Then, we can execute the following line to obtain a chart with 6 plots, instead of 3,
showing for each algorithm A1, A2 and A3 the performance for both 500 and 1000
nodes cases:

java sidnet.batch.ExtractData ./run1 Results EnergyLeftPercentage.log Time

EnergyLeftPercentage average -groupBy=experimentTag -groupBy=nodesCount

Note: the groupBy arguments must match EXACTLY the tags that appear in a ELF.

47

12 Q & A

1. Q: What java version do I need? A: 1.5 or later
2. Q: How do I know if (or the correct version of) ”java.exe” is in the PATH?

A: Launch a command-line terminal (WindowsXP: Click START-¿Run-¿Type ”cmd”-
¿Hit Enter). Type ”java -version”-¿Hit Enter at the command prompt. If everything
is configured correctly, you should see the version of the java that you are currently
using.

3. Q: I have installed the correct java jdk version, and I know location where
it was installed. How do I add it to the path? A: You have to perform this op-
eration only once. Under WindowsXP: START-¿Settings-¿Control Panel-¿System-
¿Advanced-¿Environment Variables-¿Under ”System Variables” locate the ”Path” en-
try (or create one if not present)-¿Edit. Add at the end of it ”;” followed by the full
path to the ”java.exe” file. Hit OK and close all the windows.

48

13 Troubleshooting

• Problem: At run-time, I get a ”class not found” error messages.
Solution:

1. Is the *.java file in the build path?

2. Check the build directory (typically ”SIDnet-SWANS\ build”) and try to
locate manually the *.java. If you cannot locate the file, check the (1). If you
can locate the file, go to (3)

3. Is the *.class in the CLASSPATH? Check your environment variables (setenv.cmd)
to point correctly to the source of the sidnet package. If the CLASSPATH is
correct, then goto(4)

4. Is the error similar to the following:

JiST class loader: class not found [Lsidnet.utilityviews.StatsCollector$ITEM]

then, you might be using an old ”BCEL” library. Make sure your environment
is set up to use the ”BCEL v5.2” which is under ”SIDnet-SWANS\libs”, and
not the ”BCEL v5.1” which is part of the JiST-SWANS distribution (”SIDnet-
SWANS\importedpackages\ jist-swans-1.0.6\libs\bcel.jar”). The older version
of BCEL is known to create this type of problems at run-time.

• Problem: I have also downloaded and installed NetBeens IDE for testing
SIDnet-SWANS with it. But after building project according to your instruc-
tions manual, I have got the following errors:

init:

deps-jar:

Compiling 267 source files to E:/SIDnet-SWANS/build/classes

E:/SIDnet-SWANS/importedpackages/jist-swans-1.0.6/src/jist/runtime/JistAPI.java:92:
package org.apache.bcel.classfile does not exist

org.apache.bcel.classfile.JavaClass process(org.apache.bcel.classfile.JavaClassjcl)
throwsClassNotFoundException;

E:/SIDnet-SWANS/importedpackages/jist-swans-1.0.6/src/jist/runtime/JistAPI.java:92:
package org.apache.bcel.classfile does not exist

org.apache.bcel.classfile.JavaClass process(org.apache.bcel.classfile.JavaClassjcl)
throwsClassNotFoundException;

E:/SIDnet-SWANS/importedpackages/jist-swans-1.0.6/src/jist/runtime/Rewriter.java:12:
package org.apache.bcel does not exist

import org.apache.bcel.*;

....

Solution

You somehow forgot to add the following library in NetBeans, which is tied to
the above errors:

SIDnet-SWANS/libs/BCEL/org/apache/bcel-5.2/bcel-5.2.jar

49

• Problem: I am trying to configure the SIDnet-SWANS simulator version 1.4.5
using Eclipse and MacOS.

Unfortunately, I receive the following ”Simulation exception!”:

java.lang.UnsatisfiedLinkError: initNativeCoreUI

at apple.laf.CoreUIControl.initNativeCoreUI(Native Method)

at apple.laf.CoreUIControl.initCoreUI(CoreUIControl.java:50)

at apple.laf.CUIAquaLookAndFeel.initialize(CUIAquaLookAndFeel.java:117)

Solution: (Thanks & Credits to Davide Merico, University of Milano-Bicocca)

The issue is related to the default MacOS implementation of LookAndFeel
(AquaLookAndFeel). Therefore, I forced to use the cross-platform implementa-
tion of LookAndFeel giving the following command line parameter to the VM

-Dswing.defaultlaf=javax.swing.plaf.metal.MetalLookAndFeel

as shown here:

http://java.sun.com/docs/books/tutorial/uiswing/lookandfeel/plaf.html#commandLine

50

