
Ski IA-64 Simulator Reference Manual 1.0L Draft (9 Oct 07)

Ski IA-64 Simulator Reference Manual

Rev. 1.0L (9 Oct 07)

Copyright © 2000 Hewlett-Packard Co.

Page 1

Ski IA-64 Simulator Reference Manual 1.0L Draft (9 Oct 07)

Notice

The information in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection
with furnishing, performance, or use of this material.

This document contains information which is protected by copyright. All rights are reserved. No part of this document may
be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard.

Copyright © 2000-2007 by Hewlett-Packard Development Company, L.P.

Trademarks

Linux is a registered trademark of Linus Torvalds.

MS-DOS and Windows are registered trademarks of Microsoft Corporation. UNIX is a trademark or registered trademark of
the Santa Cruz Operation.

Intel is a registered trademark of the Intel Corporation.

Preface

This document is the Ski IA-64 Simulator Reference Manual. The goal of this document is to provide a description of the
features, commands, and simulation environment provided by the Ski IA-64 simulator. The version of the simulator
described here is Version 0.873l.

How to Use This Manual

The first chapter of this manual is a quick-start tutorial. Using only the first chapter, you can learn enough about Ski to do
useful work. If you are using Ski to simulate an IA-64 application program and are familiar with debuggers such as HP's
xdb, the first chapter and Appendix A, � Command Reference� may be all you need to read.

The remaining chapters provide information about Ski in depth. Use these chapters to learn about commands not covered in
the tutorial and to learn more about how Ski operates.

Use "Command Reference" and the on-line help command to find a list of all Ski commands and a brief description of each
command.

Use "Simulator Status and Error Messages" to understand the causes and possible solutions for each of Ski's error messages.

Font Conventions

In this manual, fonts are used as described below. Depending on how you are viewing this document (paper, a web page, a
PDF file, etc.), some distinctions may not be visible.

italic

is used for optional text including operand fields such as count, and for the names of bitfields such as psr.be.

Page 2

Ski IA-64 Simulator Reference Manual 1.0L Draft (9 Oct 07)

light italic

is used for graphical button names such as Run.

fixed-width bold

is used for literal text including commands such as dbndl, and for examples such as bski -icnt foo <bar >baz.

SMALL UPPERCASE

is used for processor instructions such as BREAK.

fixed-width regular

is used for directories and filenames such as hello, and for web URL's such as http://www.hp.com.

Syntax Conventions

In this manual, symbols are used as described below.

[italic]

Square brackets surrounding optional argument(s) indicate that the argument(s) can be omitted, as in the "Command
Reference" description of the dj command: dj [address].

italic+

A plus sign applied to an argument indicates that the argument must be supplied one or more times, as in the
"Command Reference" description of the eval command: eval expression_without_spaces+.

[italic]+

A plus sign applied to optional argument(s) in square brackets indicates that the argument(s) can be supplied zero or
more times, as in the "Command Reference" description of the load command: load filename [args]+.

Page 3

Ski IA-64 Simulator Reference Manual 1.0L

Table of Contents
1 Getting Started - A Ski Tutorial.. 10

The Ski Simulator.. 10
How to Run an IA-64 Application Program.. 10

Starting xski.. 10
Exiting Ski.. 12
Loading Your Program.. 12
Inspecting Data... 15
Viewing Data in ASCII... 18
Looking at Code.. 19
Viewing Source Code Mixed In with Assembly Code... 20
Controlling Breakpoints.. 21
Running a Program... 22
Single-stepping a Program.. 23
Changing Registers and Memory.. 24
Getting Help.. 29
Next Steps... 29

2 Overview.. 30
Introduction.. 30

Ski's Strengths... 30
Ski's Scope.. 30

What You Need to Know to Use This Manual... 30
Defects and Defect Reporting.. 31
Ski Variations... 31

Using bski for Batch Simulations... 31
Starting Ski... 33

Command Line Flags.. 33
Summary of Flags.. 34

The XSki File.. 34
Quitting Ski.. 35

Summary of the Quit Command... 35
3 Screen Presentation.. 36

Ski's Use of Windows... 36
The Register Window... 36

The User Registers Pane... 37
The General Registers Pane.. 38
The Floating Point Registers Pane.. 38
The System Registers Pane... 39
The IA-32 Registers Pane... 40

Resizing Register Window Panes with xski... 40
The Register Window and ski.. 40
The Program Window.. 41

IA-64 Instruction Display... 42
IA-32 Instruction Display... 43
Changing the Range of Locations Shown in the Program Window.. 44
Invalid Code and the Program Window.. 44

The Data Window... 46
Changing the Range of Locations Shown in the Data Window.. 47

Page 4

Ski IA-64 Simulator Reference Manual 1.0L

Invalid Code and the Data Window.. 48
The Command/Main Window.. 48

The xski Main Window... 48
The ski Command Window... 49

Other Windows... 50
4 Command Language.. 52

Command Entry... 52
Command Arguments... 52
Command Sequences, Repetition, and Abbreviation... 52
Argument Specification... 53

Numeric Arguments.. 53
Numbers and Counts.. 53
Expressions.. 53
Addresses... 55

Symbolic Arguments... 55
Program-Defined Symbols.. 56
Registers... 56
Internal Variables... 56
Labels... 57
Filenames... 57

Resolving Ambiguous Symbols and Numbers... 57
5 Screen Manipulation Commands... 59

Register Window Commands... 59
Summary of Register Window Commands... 59

xski Register Window Commands... 59
ski Register Window Commands... 59

Program Window Commands.. 60
Data Window Commands... 63

Summary of Data Window Commands.. 63
6 Program Simulation... 66

Application-Mode and System-Mode Simulation... 66
Ski Support for Application-Mode Programs.. 66

Application-Mode IA-64 Programs.. 66
Application-Mode IA-32 Programs.. 66

Ski Support for System-Mode Programs... 66
System-Mode IA-64 Programs... 67
System-Mode IA-32 Programs... 67
System-Mode TLB Simulation... 67

Summary of TLB Display Commands.. 67
Misaligned Data Access Trap... 68
Program Loading.. 68

How to Load a Program.. 69
Summary of Program Loading Commands.. 69
Notes about Program Loading.. 69

Adding Information after Loading... 69
Creating the argc, argv, and envp Parameters.. 69

Program Execution... 70
Summary of Program Execution Commands... 70

7 Linux and MS-DOS ABI Emulation.. 71
Interruptions... 71

Page 5

Ski IA-64 Simulator Reference Manual 1.0L

Linux Application Environment... 71
MS-DOS Application Environment... 73
Program I/O.. 73

8 Debugging.. 75
Changing Registers and Memory with Assignment Commands.. 75

Summary of Assignment Commands.. 75
Examples of Assignment Commands... 76
Notes on Assignment.. 78

Address Alignment.. 78
Bit-encoded Registers.. 78
Page Allocation.. 78

Evaluating Formulas and Formatting Data.. 78
Summary of The eval Command.. 78

Program Breakpoints.. 78
Setting Program Breakpoints.. 79
Deleting Program Breakpoints.. 79
Listing Program Breakpoints.. 79
Notes on Program Breakpoints... 80

How Ski Implements Breakpoints... 80
Unexpected Breakpoints.. 80

Summary of Program Breakpoint Commands.. 81
Data Breakpoints... 81
Setting Data Breakpoints.. 81
Deleting Data Breakpoints.. 81
Listing Data Breakpoints.. 82
Summary of Data Breakpoint Commands.. 82
Dumping Registers and Memory to a File.. 82
Saving and Restoring the Simulator State.. 82

Summary of Save and Restore Commands.. 82
Symbol Table Commands... 82

Summary of Symbol Commands... 83
9 Command Files.. 84

Initialization File.. 84
Labels and Control Flow in Command Files... 84

The goto Command and Labels.. 84
The if Command... 85

Comments in Command Files.. 85
An Example Command File... 85
Summary of Command File Commands.. 86

10 Command Reference.. 87
11 Register Names.. 93

IA-64 Registers.. 93
12 Internal Variable Names... 100

Internal Variables.. 100
13 Simulator Status and Error Messages.. 101
14 Licenses.. 110

Creative Commons Public License.. 110
License.. 110
Creative Commons Notice.. 113

Page 6

Ski IA-64 Simulator Reference Manual 1.0L

Illustration Index
Illustration 1: Starting xski From the Command Line.. 11
Illustration 2: The Four Primary xski Windows.. 12
Illustration 3: Loading the "hello" Program.. 13
Illustration 4: The xski Program Window... 14
Illustration 5: The xski Data Window... 14
Illustration 6: The xski Register Window.. 15
Illustration 7: Changing the Data Window Display.. 16
Illustration 8: The Data Window Showing the argv and envp Vectors.. 16
Illustration 9: The Data Window Showing argv and envp Strings in Hexadecimal.. 17
Illustration 10: The Main Window Showing Commands in the Command History... 18
Illustration 11: The Data Window Showing argv and envp Strings in ASCII... 19
Illustration 12: Jumping the Program Window to the Beginning of main().. 20
Illustration 13: The Program Window Showing Code at the Beginning of main()... 20
Illustration 14: The Program Window Showing a Breakpoint at main()... 21
Illustration 15: The Breakpoint List Window.. 22
Illustration 16: The Terminal Window After the "hello" Program is Run... 23
Illustration 17: The xski Main Window after the "hello" Program is Run.. 23
Illustration 18: The Main Window After Reaching the Breakpoint at main+10... 24
Illustration 19: The xski Register Window After Stopping at a Breakpoint at main+10..25
Illustration 20: The xski Register Window After Changing the ip Register.. 26
Illustration 21: The xski Data Window Widened to Show ASCII... 27
Illustration 22: The xski Data Window After Changing the "Hello, world" String..28
Illustration 23: The xski Main Window Showing an eval Command and Its Result..28
Illustration 24: The Curses-based ski Interface... 31
Illustration 25: The X Window System, Motif-based xski Interface... 32
Illustration 26: The Command-Line bski Interface... 33
Illustration 27:The Register Window in xski.. 37
Illustration 28: The xski User Registers Pane... 38
Illustration 29: The xski General Registers Pane.. 38
Illustration 30: The xski Floating Point Registers Pane.. 39
Illustration 31: The xski System Registers Pane... 39
Illustration 32: The xski IA-32 Registers Pane... 40
Illustration 33: An xski Pane Resizer: The Small Box Between the Scroll bars... 40
Illustration 34: The ski Register Window (at Top).. 41
Illustration 35: xski's Program Window Showing Part of an IA-64 "hello world" Program................................... 42
Illustration 36: xski's Program Window Showing IA-64 Predication and Breakpoints.. 43
Illustration 37: xski's Program Window Showing IA-32 Code, the Instruction Pointer, and a Breakpoint............44
Illustration 38: xski's Program Window Showing Illegal Instructions.. 45
Illustration 39: xski's Program Window Showing Unallocated Space or No Translation....................................... 46
Illustration 40: xski's Data Window Showing Unallocated Space Followed by Data... 47
Illustration 41: xski's Data Window Showing Data Interpreted as Instruction Bundles...47
Illustration 42: xski's Main (Command) Window... 49
Illustration 43: ski's Command Window (at Bottom).. 50
Illustration 44: xski's Symbol List Window.. 51
Illustration 45: xski Evaluating Expressions... 55
Illustration 46: xski's Symbol List Window.. 56
Illustration 47: xski's Program Window Showing IA-64 Assembly Language Code...61

Page 7

Ski IA-64 Simulator Reference Manual 1.0L

Illustration 48: xski's Program Window Showing Intermixed C and IA-64 Assembly Code62
Illustration 49: xski's Assembly Language Dump Window.. 63
Illustration 50: xski Showing Data as Instruction Bundles... 64
Illustration 51: xski Showing Data in Raw Hexadecimal and ASCII... 64
Illustration 52: xski's Hexadecimal Dump Window.. 65
Illustration 53: sdt Command Output in xski ... 68
Illustration 54: The Original Program Loaded in ski.. 77
Illustration 55: The Program After Assigning a String in ski.. 77
Illustration 56: Three Breakpoints, 0, 2, and 1, Visible in xski's Program Window...79
Illustration 57: xski's Breakpoint List Window Showing IA-64 and IA-32 Breakpoints.......................................80
Illustration 58: The symlist Output from xski... 83

Page 8

Ski IA-64 Simulator Reference Manual 1.0L

Index of Tables
Table 1: Ski Simulator Arithmetic and Logic Operators... 54
Table 2: Example Code to Simulate an External Interrupt.. 67
Table 3: Linux System Calls Supported by Ski... 72
Table 4: Linux System Calls Accepted but Ignored by Ski... 73
Table 5: MS-DOS System Calls (in Hexadecimal) Supported by Ski.. 73
Table 6: An Example Command File to Compute Fibonacci Numbers.. 86

Page 9

Ski IA-64 Simulator Reference Manual 1.0L

1 Getting Started - A Ski Tutorial
In this chapter, you learn how to use Ski by executing a brief tutorial. At the end of the tutorial, you will learn where to look
in this manual for detailed descriptions of Ski's operation and commands. Introductory information on Ski is presented in
the "Overview" on page 30.

The Ski Simulator
Ski simulates the IA-64 architecture and also has limited support for simulating IA-32 programs. Ski runs on IA-32 Linux
host systems. You can use Ski for many purposes, as described in the "Introduction" on page 30. One of the most common
uses of Ski is to test an IA-64 program in a Linux environment, and in this chapter, you will learn how to use xski, the X
Window System version of Ski, by "walking through" a sample session, in about ten minutes. Ok, twenty minutes.

You should already be familiar with the IA-64 architecture and the C programming language, have xski installed on your
Linux system, and have the XSki file in your home directory or in your X Window System app-defaults directory, typically
/usr/lib/X11/app-defaults. You will also need to have an executable Linux IA-64 program such as the classic "hello
world" program.

How to Run an IA-64 Application Program
Ski provides a Linux application environment in which an IA-64 program you provide can be simulated. The release notes
provide the most up-to-date information on Ski's support for the Linux Application Binary Interface (ABI). The following
sections provide a short tutorial which leads you through an IA-64 program session with xski. You will learn how to use the
most common Ski commands.

Starting xski

As shown in Illustration 1: Starting xski From the Command Line1, start xski by typing its name to the Linux shell, just
like any other Linux program. When running inside the IA-64 Linux Native User Environment (NUE), make sure that the
environment variable DISPLAY is set to a string of the form hostname:display (e.g., � �myhost:0'', values such as
� �unix:0'' or � �:0'' won't work) before invoking xski. If you have never run the simulator before, it will first prompt you to
read and accept the software license it is distributed under. After accepting the license, the four primary xski windows will
be displayed on your screen, as shown in Illustration 2: The Four Primary xski Windows. No IA-64 program is loaded yet,
so the Program Window and Data Window are empty. Scroll the various panes of the Register Window and note that with
few exceptions, the registers are set to zero.

Page 10 1 Getting Started - A Ski Tutorial

Ski IA-64 Simulator Reference Manual 1.0L

1 Getting Started - A Ski Tutorial Page 11

Illustration 1: Starting xski From the Command Line

Ski IA-64 Simulator Reference Manual 1.0L

Exiting Ski
You can quit xski and this tutorial with the Quit button, with the File->Quit menu selection, or with the "quit" command.
All are in the Main Window. (Don't quit now; you are just beginning!)

Loading Your Program
Use the "Command" area of the "main" Window to load your program. For example, let's say your program is the famous
"Hello, world" program, the executable file is named "hello", and the source code file is named "hello.c". Type "load
hello" in the Command area to load it into Ski, as you see in Illustration 3: Loading the "hello" Program. After a moment,
the other three windows will change appropriately: the Program Window will show the program code in assembly language
form as shown in Illustration 4: The xski Program Window, the Data Window will show global and static data as shown in

Page 12 1 Getting Started - A Ski Tutorial

Illustration 2: The Four Primary xski Windows

Ski IA-64 Simulator Reference Manual 1.0L

Illustration 5: The xski Data Window, and the Register Window will show, in r12 the value of the stack pointer, as shown in
Illustration 6: The xski Register Window. (You may need to use the scrollbar in the general registers pane of the Register
Window to see these registers.)

1 Getting Started - A Ski Tutorial Page 13

Illustration 3: Loading the "hello" Program

Ski IA-64 Simulator Reference Manual 1.0L

"

Page 14 1 Getting Started - A Ski Tutorial

Illustration 4: The xski Program Window

Illustration 5: The xski Data Window

Ski IA-64 Simulator Reference Manual 1.0L

Inspecting Data
To look at the argv and envp strings, you need to use the Data Window. Linux passes argc, argv, and envp on the
memory stack (r12). To look at this memory area, use the "dj" command ("data jump") in "Command" area of the Main
Window. Supply, as an operand, the address of the memory stack. For example, if r12 is set to 9ffffffffff780, you can
type "dj r12" or "dj 9ffffffffff780", as shown in Illustration 7: Changing the Data Window Display and the Data
Window changes to display the hexadecimal data stored at the location, as shown in Illustration 8: The Data Window
Showing the argv and envp Vectors. Find the value of r12 in your program and use "dj" now. (You might wonder why "dj"
exists, instead of a simple scroll bar. Imagine scrolling through the entire IA-64 address space� it would take a long, long
time!)

1 Getting Started - A Ski Tutorial Page 15

Illustration 6: The xski Register Window

Ski IA-64 Simulator Reference Manual 1.0L

Looking at the Data Window, you can see that the first 16 bytes of the stack are all zeros. This is a scratch storage area. The
next 8-byte word contains argc, the argument count. It has a value of 1 as the only argument passed to the program is the
program name itself. The argc count is then followed by the argv and envp vectors. All C programs receive the same kind
of data structure for argv: a variable-length vector of char * pointers whose end is marked with a NULL pointer. In
Illustration 8: The Data Window Showing the argv and envp Vectors, the first of the char * pointers is
9ffffffffffff938. (The first char * pointer may be in a different place on your system. Adjust the following

Page 16 1 Getting Started - A Ski Tutorial

Illustration 7: Changing the
Data Window Display

Illustration 8: The Data Window Showing the argv and envp Vectors

Ski IA-64 Simulator Reference Manual 1.0L

instructions accordingly.) Jump the Data Window there using the command "dj 9ffffffffffff938" (12 f's) and you will
see Illustration 9: The Data Window Showing argv and envp Strings in Hexadecimal, showing the hexadecimal codes for the
null-terminated ASCII character strings of argv and envp. (In a moment, you'll learn how to see data in ASCII translation.)

Typing hexadecimal numbers is error-prone, and Ski provides several shortcuts to avoid it. The first is xski's Command
History, an unlabeled window pane just above the "Command" area in the Main Window. As you execute commands, they
move up to the Command History. Later, you can bring them back into the Command area. A single click brings a command
back for you to edit. A double click brings the command back and re-executes it immediately. Try the Command History by
doing this: Type "dj 0" to jump the Data Window to location 0. The Main Window should look like Illustration 10: The
Main Window Showing Commands in the Command History. Then click on the "dj 9ffffffffffff938" command in the
Command History. Hit the enter/return key to execute it.

1 Getting Started - A Ski Tutorial Page 17

Illustration 9: The Data Window Showing argv and envp Strings in
Hexadecimal

Ski IA-64 Simulator Reference Manual 1.0L

Another shortcut is the * pointer-dereference operator for indirect addressing. Type "dj 0" to jump the Data Window to
location 0. Then type "dj *(r12+18)". Ski will take the contents of r12 (9ffffffffff780, remember?), add 18 (hex) and
use that as the address of the operand. The * operator fetches the contents of *(r12+18) and uses that value,
9ffffffffff938, as the address to jump to. Compare the Data Window display resulting from "dj r12+18" with the
display resulting from "dj *(r12+18)".

You will use the * operator a lot in debugging C programs because it performs the same function as C's * operator: it
dereferences pointers. Unlike C's *, however, Ski's * operator is not type-specific: you can use it in any context where any
kind of address is needed and you can use it to dereference registers like r12, memory locations, or anything that has a
value. (This doesn't always make sense, of course. For example, dereferencing a floating-point register is rarely useful
because floating-point registers don't hold pointers.)

Viewing Data in ASCII
Hexadecimal is no fun. To expose the ASCII translation, use your window manager's standard mechanism to make the Data
Window wider. (How you do this depends on the window manager you're using, but generally this can be accomplished by
grabbing the edge of the Data Window with your mouse cursor and dragging it to the right.) You should see approximately
Illustration 11: The Data Window Showing argv and envp Strings in ASCII. Now click on the Main Window, to make it the
active window again. Try the "df" ("data forwards") and "db" ("data backwards") commands without operands to move
forwards and backwards in the Data Window, one screenful each time.

Page 18 1 Getting Started - A Ski Tutorial

Illustration 10: The Main Window Showing
Commands in the Command History

Ski IA-64 Simulator Reference Manual 1.0L

Looking at Code
Initially, the Program Window shows the beginning of the program. For C programs, this isn't the first line of user code, it's
the start-up routine from crt1.o that provides an interface between the operating system environment and the ANSI C
environment. This routine is named "_start" and the ELF header in hello names it as the start of the program. That's what
Ski shows in the Program Window by default: the start of the program according to ELF.

You use the "pj" command ("program jump") to jump the program window elsewhere. For example, jump it to the first
instruction in the user's main(), as shown in Illustration 12: Jumping the Program Window to the Beginning of main(). The
Program Window now looks like Illustration 13: The Program Window Showing Code at the Beginning of main(). You can
move the Program Window forwards and backwards through program code with the "pf" ("program forwards") and
"pb" ("program backwards") commands, respectively. Try these commands, and then try using "pj" without an operand:
note how it jumps you back and forth between the previous and current locations. The "dj" command does the same thing
in the Data Window. Handy, eh?

1 Getting Started - A Ski Tutorial Page 19

Illustration 11: The Data Window Showing argv and
envp Strings in ASCII

Ski IA-64 Simulator Reference Manual 1.0L

Viewing Source Code Mixed In with Assembly Code
The Program Window shows the C source code intermixed with the IA-64 assembly code. You can turn the source code

Page 20 1 Getting Started - A Ski Tutorial

Illustration 12: Jumping the Program
Window to the Beginning of main()

Illustration 13: The Program Window Showing Code at the
Beginning of main()

Ski IA-64 Simulator Reference Manual 1.0L

display off or on using the pa ("program assembly") and pm ("program mixed") commands, respectively. Mixed code
display only works if you have the source code to the program available to Ski; the source code isn't embedded in the ELF
file. Also, you must compile your code with the appropriate compiler flags, for example, with the -g flag used by many C
compilers to generate debug line record information. If your program is composed of multiple object files, for example "cc
-o test foo.o bar.o baz.o", Ski can only show source code from the files compiled with the -g flag. Make sure the
Program Window is in mixed mode for now.

Controlling Breakpoints
You can think of Ski as a debugger that happens to work on a simulated processor rather than a real processor. Like any
good debugger, Ski provides breakpoints. To set a breakpoint in an IA-64 program, use the "bs" command ("breakpoint
set"). In the example that follows, you will want to have the Program Window display the area of code near main(). Use the
command "pj main", as you learned above.

To set a breakpoint at the beginning of main(), type "bs main" in the Main Window. The Program Window shows a "0" in
the first column of the window at the breakpoint location (the � � alloc'' instruction), because you just used breakpoint #0, as
Illustration 14: The Program Window Showing a Breakpoint at main() shows. (The first three columns are also used for line
numbers.) Set a breakpoint at main+10 and another at main+20. Ski lets you set up to ten breakpoints.

Use the "bl" command ("breakpoint list") to see a list of the breakpoints, as shown in Illustration 15: The Breakpoint List
Window. If you prefer using a mouse, use the "Breakpoints" item on the View menu instead of the "bl" command. When
you are finished viewing the breakpoint list, click its Close button to dismiss the window.

To delete breakpoints individually, use the "bd" command ("breakpoint delete"). Use the "bD" command ("breakpoint Delete
all") to delete all breakpoints at once. Delete all your breakpoints before continuing this tutorial.

1 Getting Started - A Ski Tutorial Page 21

Illustration 14: The Program Window Showing a Breakpoint
at main()

Ski IA-64 Simulator Reference Manual 1.0L

Running a Program
To run your program, type the "run" command or click the Run button in the Main Window. Ski will start the simulation
and connect the program's standard I/O ports (stdin, stdout, and stderr) to Ski's standard ports. For example, assuming there
are no breakpoints still set in hello, you will see "hello world" printed out when you run it, as Illustration 16: The Terminal
Window After the "hello" Program is Run shows, and run statistics will appear in the Main Window, as Illustration 17: The
xski Main Window after the "hello" Program is Run shows. The statistics tell you how many instructions were simulated
and how much time it took, the instructions-per-second rate, the number of IA-64 processor cycles that were consumed on
the simulated CPU, and the average number of instructions per cycle, which provides an indication of the best-case effective
parallelism of the program. (Ski simulates all the instructions in an instruction group in one cycle; a hardware
implementation may not be as capable.)

Ski will stop the simulation for three reasons: if a breakpoint is reached, if the IA-64 program attempts to access privileged
resources or non-existent memory, or if the program ends normally by calling exit() or similar functions. If simulation stops
due to a breakpoint, you can continue simulation with the "cont" command ("continue") or you can step through the
simulation with the "step" command or Step button. You cannot re-run a program, nor can you re-load it and start over.
You must exit and re-enter xski and then reload your program.

Page 22 1 Getting Started - A Ski Tutorial

Illustration 15: The Breakpoint List
Window

Ski IA-64 Simulator Reference Manual 1.0L

Single-stepping a Program
To try single-stepping (and no, this is not a kind of ethnic dance), set a breakpoint at main+10. Then use the "run"
command or Run button to simulate the program up to the breakpoint. (If you receive the error message "Nothing to
run", stop and reread the last sentence in the previous paragraph.) Ski stops at the breakpoint and notifies you with a
message in the Main Window. Ski tells you why it stopped and gives you statistics about program execution up to this point,
as you can see in Illustration 18: The Main Window After Reaching the Breakpoint at main+10. The Program Window
marks the next instruction to be fetched with a greater-than symbol in the second column. If the instruction is predicated off,

1 Getting Started - A Ski Tutorial Page 23

Illustration 16: The Terminal Window After the "hello"
Program is Run

Illustration 17: The xski Main Window after
the "hello" Program is Run

Ski IA-64 Simulator Reference Manual 1.0L

Ski uses an asterisk instead of a greater-than symbol, and shows the predication register in parentheses.

Move and resize your windows so the Main Window and Program Window don't overlap. Now use the "step" command or
Step button to execute one instruction. Note that the greater-than symbol moves down one line: Ski keeps track of IA-64
bundles and groups but it simulates individual instructions. You can follow the "step" command with a (decimal) number to
specify how many steps Ski should take, for example, "step 10" to execute ten instructions. As a shortcut, shift-clicking on
the Step button causes Ski to take ten steps. Most Ski commands can be abbreviated, as described in "Command
Reference" on page 87. The step command can be abbreviated as "s".

Changing Registers and Memory
To debug a program, you usually need to inspect and alter registers and memory. The first three panes in the Register
Window shows the registers of most concern to application programmers: user registers in the first pane, general registers in
the second pane, and floating point registers in the third pane, as you can see in Illustration 19: The xski Register Window
After Stopping at a Breakpoint at main+10.

Page 24 1 Getting Started - A Ski Tutorial

Illustration 18: The Main Window After
Reaching the Breakpoint at main+10

Ski IA-64 Simulator Reference Manual 1.0L

By changing the value of the ip register, you can change where in the program Ski will resume simulation. Enter the
command "= ip main+20" in the Main Window and observe the first line of the first pane in the Register Window: notice
that the ip register changes to reflect your command, as Illustration 20: The xski Register Window After Changing the ip
Register shows. (You may need to left-click in the Main Window to make it active.) You can make similar changes to all of
the architecturally-visible, non-hardwired IA-64 registers, which helps you debug your program. You can test your
program's behavior in exceptional cases, such as handling unusual errors.

1 Getting Started - A Ski Tutorial Page 25

Illustration 19: The xski Register Window After Stopping
at a Breakpoint at main+10

Ski IA-64 Simulator Reference Manual 1.0L

Changing registers isn't enough to debug most programs, however. Often, you need to change values in memory as well. Ski
provides several commands for this, differing in whether they modify one-byte chunks, two-byte chunks, four-byte chunks,
eight-byte chunks, or variable-length C-language text strings. For example, instead of "hello world", you can have the
program output "Ski!Ski!Ski!". You can do this by using the "=s" command ("= string") to modify the data stored at the
address "_IO_stdin_used+8". (The string may be stored at a different address in your program. If so, use the Data
Window to locate the string and then use the corresponding address instead.) Here's what to do:

First, make sure the Data Window is wide enough to show ASCII translations along with hexadecimal, as in Illustration 21:
The xski Data Window Widened to Show ASCII. To avoid confusion, make sure the Data Window doesn't overlap the Main
Window.

Page 26 1 Getting Started - A Ski Tutorial

Illustration 20: The xski Register Window After Changing
the ip Register

Ski IA-64 Simulator Reference Manual 1.0L

Next, issue the command "=s _IO_stdin_used+8 Ski!Ski!Ski!" in the Main Window. (You may need to left-click in
the Main Window to make it active.) Observe how the Data Window changes: the hexadecimal values at, and after,
_IO_stdin_used+8 have changed, as have their corresponding ASCII translations, and a null byte (the value zero) has been
added to the end of your string to make it a valid C-language string. Compare Illustration 21: The xski Data Window
Widened to Show ASCII and Illustration 22: The xski Data Window After Changing the "Hello, world" String.

1 Getting Started - A Ski Tutorial Page 27

Illustration 21: The xski Data Window Widened to
Show ASCII

Ski IA-64 Simulator Reference Manual 1.0L

The commands to change one, two, four, and eight byte quantities are =1, =2, =4, and =8, respectively. They are described in
detail in "Changing Registers and Memory with Assignment Commands" on page 75 and in "Command Reference on page
87.

Often, you will need to evaluate formulas. For example, to find the address of the first envp string, you would need to
compute the sum of the contents of r12 and 18 (hex) and then add the length of the argv vector (argc+1) multiplied by
eight (the size of a char * on IA-64). To do this, you use the "eval" command in the Main Window, as shown in
Illustration 23: The xski Main Window Showing an eval Command and Its Result. (The use of the "*" operator was
discussed in "Inspecting Data" on page 15.) As you see, the result is shown in decimal and hexadecimal.

Page 28 1 Getting Started - A Ski Tutorial

Illustration 22: The xski Data Window After
Changing the "Hello, world" String

Illustration 23: The xski Main Window
Showing an eval Command and Its
Result

Ski IA-64 Simulator Reference Manual 1.0L

Getting Help
To see what commands are available, type "help" in the Main Window or use the Help->Commands menu selection. To see
the syntax of a specific command, type "help" followed by the command name, as in "help eval".

Next Steps
Congratulations! You now know how to use xski to test an IA-64 program. In the rest of this manual, you'll find out how to
use ski and bski and the many additional commands and facilities not covered in this brief tutorial.

• The "Overview" chapter, presents the capabilities of Ski, how to start it and stop it, and a brief discussion of
installation issues. The chapter also shows how to use bski for batch simulation.

• The "Screen Presentation" chapter, discusses the various screen displays of xski and ski in depth.

• The "Command Language" chapter, defines the syntax of the language you use to control Ski's operation.

• The "Screen Manipulation Commands" chapter, presents the Ski commands for controlling Ski's screen displays.

• The "Program Simulation" chapter, introduces the concepts of Ski program simulation, shows you how to load
programs, and presents the Ski commands for simulating a program. Much of the information needed to use Ski for
firmware development and operating system simulation is in this chapter.

• The "Linux and MS-DOS ABI Emulation" chapter, discusses the Ski mechanisms and support for simulating
application programs. If you are using Ski for to develop system software, such as bootstrap firmware or operating
systems, you can skip this chapter.

• The "Debugging" chapter, presents Ski commands and facilities that are useful in debugging and tuning programs.

• The "Command Files" chapter, introduces command files, a mechanism that lets you extend Ski to meet your
particular needs.

• The remaining chapters contain summaries of the Ski command set, a list of the registers and internal variables Ski
recognizes, a description of the Ski error and status messages, their causes, and any possible solutions., and any
applicable licenses.

1 Getting Started - A Ski Tutorial Page 29

Ski IA-64 Simulator Reference Manual 1.0L

2 Overview

Introduction
The Ski simulator is a software package designed to functionally simulate the IA-64 processor architecture at the instruction
level. Ski offers an informative, screen-oriented machine state display and a friendly, powerful command interface.
Programs may be loaded from disk in executable format; they may be run from start to finish, single-stepped, and
breakpointed. Translation lookaside buffers may be simulated. Certain Linux and MS-DOS operating system functions
(system calls) are provided for simulation of application programs. These capabilities are complemented by screen-oriented
symbolic debugging to provide a view into the simulated IA-64 processor.

Ski's Strengths
Ski is particularly well-suited for:

● IA-64 application development:

Ski can simulate IA-64 programs in a Linux environment and IA-32 programs in an MS-DOS environment. Ski
provides a user interface that looks very much like a typical debugger� but the processor you are debugging on is
virtual, simulated by Ski. Ski has successfully executed the SPEC-92 and SPEC-95 benchmark suites.

● IA-64 compiler tuning:

Ski provides performance statistics that can help you tune IA-64 compiler code generators. Ski can help you
improve your compiler's use of IA-64 architectural enhancements for parallelism.

● IA-64 operating system and firmware development:

Ski can simulate a "raw" IA-64 processor, with no operating system provided. Because of this, you can use Ski to
simulate an IA-64 operating system running IA-64 and IA-32 programs. For example, Ski has been used
successfully to develop the IA-64 version of the Linux kernel.

● IA-64 processor functional hardware verification:

Ski is a true implementation of the IA-64 architecture. You can compare the behavior of code simulated with Ski to
the same code running on other IA-64 implementations. This helps you verify the correctness of those
implementations.

Ski's Scope
Many different kinds of simulators can be created: device simulators that function at the semiconductor quantum physics
level, circuit simulators that model the behavior of small numbers of transistors and other circuit elements, gate simulators
that model digital circuits at the boolean logic level, and so on. Ski is an instruction simulator, which makes it very fast. Ski
doesn't model any particular physical IA-64 implementation. Instead, it models an architecturally-compliant IA-64
processor with extensive compute resources.

What You Need to Know to Use This Manual
This manual describes the user interface of Ski in detail. In reading this manual, you will learn how to use Ski to simulate
your IA-64 and IA-32 programs. To understand this manual, you should already be familiar with the IA-64 architecture.
IA-64 abbreviations such as ip, psr, and eax are used without explanation.

Page 30 2 Overview

Ski IA-64 Simulator Reference Manual 1.0L

Defects and Defect Reporting
Ski is provided "as is", without any guarantees or warranties. However, a mailing list has been created for reporting Ski
defects and for general Ski discussions. See the release notes for details on the mailing list address and how to subscribe.

Ski Variations
The simulator is available in three varieties, distinguished by their user interfaces: ski, xski, and bski. The underlying
simulation engine is identical across all three varieties. The figures below show how each variety looks when first started.
Illustration 24: The Curses-based ski Interface shows ski, which uses a terminal-oriented, curses-based, character user
interface. Illustration 25: The X Window System, Motif-based xski Interface shows xski, using an X Window System,
Motif-based, graphical user interface. Illustration 26: The Command-Line bski Interface shows bski, which provides a
batch-oriented, command-line-driven environment and no user interface. Ski command line flags, some of which are shown
in Illustration 26: The Command-Line bski Interface are described in "Command Line Flags".

The three varieties understand the same command language. There are a few, unavoidable differences and they are pointed
out where appropriate in this manual. Most examples and sample screen displays are taken from xski sessions. All
examples have been verified in actual use.

Using bski for Batch Simulations
Because bski has no user interface, you typically control it using a command file (see "Command Files" on page 84) and
the -i command line flag (see "Command Line Flags"). ski and xski are intended for you to use interactively, while bski
excels at batch simulations that might run for a long time as background jobs on your workstation or on a higher-powered
remote simulation server. The cron and make programs work well with bski. With cron, you can schedule simulations to
run at night and on remote servers. With make, you can execute complex networks of tests quickly, letting make keep track
of the dependencies between the tests. These programs are documented in man pages.

2 Overview Page 31

Illustration 24: The Curses-based ski Interface

Ski IA-64 Simulator Reference Manual 1.0L

Page 32 2 Overview

Illustration 25: The X Window System, Motif-based
xski Interface

Ski IA-64 Simulator Reference Manual 1.0L

Starting Ski
To start the Ski simulator, type its name (ski, xski, or bski) and any necessary command line options and file redirections,
just as you would start any other Linux program. (Command line options are described in "Command Line Flags".) The
simplest invocation of the simulator is:

ski

This starts the (curses-based) ski version of the simulator with no program loaded: a "bare" IA-64 emulation is ready
for you to use.

A more sophisticated invocation would be:

xski my_program

This starts the (X/Motif-based) xski version of the simulator and loads the IA-64 executable file my_program, ready to
run. The program will not receive any command line arguments (via the argc/argv mechanism) when you run it.

To run the simulator as a batch job in the background on an all-night run, you might execute this command line:

bski -noconsole -stats -i my_commands my_program foo bar <test_data >out_stuff 2>bad_news &

This invokes the (batch) bski version of the simulator and loads the IA-64 executable file my_program, ready to run.
The -noconsole flag tells bski not to create a separate console window for the program's standard I/O. The program
will receive the command line arguments foo and bar via the argc/argv mechanism when bski runs it. Both the
simulator and the program being simulated will have standard in, standard out, and standard err redirected from/to
test_data, out_stuff, and bad_news, respectively, and the simulator will execute the commands in my_commands.
(Ski never reads from standard in, so there is no possibility of confusion.) The -stats flag specifies that at the end of
the run, collected statistics will be output to standard out (which is redirected). The ampersand ("&") runs the job in the
background.

Command Line Flags
The simulator accepts certain flags on the command line when you start it up. The flags are passed on the command line in
standard Linux fashion. The Ski command line syntax is shown below. The -i, -rest, -icnt, and -stats flags can appear
in any order.

2 Overview Page 33

Illustration 26: The Command-Line bski Interface

Ski IA-64 Simulator Reference Manual 1.0L

ski [-help] [-i filename] [-rest filename] [program_filename [args]+]

xski [-help] [-noconsole] [-i filename] [-rest filename] [program_filename [args]+]

bski [-help] [-noconsole] [-i filename] [-rest filename] [-icnt filename] [-stats] [program_filename [args]
+]

Summary of Flags
-help

A list of flags accepted by this variety of Ski (ski, xski, or bski) is printed out. No other processing is done and Ski
terminates.

-i filename

The specified file is run as a command file before the first prompt to the user. If an program_filename is provided on the
same command line, the program_filename is loaded before the command file is run. This provides a convenient way to
load a program, initialize other machine state, and then turn control over to the user.

-icnt filename

For bski only: This flag specifies instruction counts should be saved in the specified file. For each kind of instruction
executed during the simulation, the instruction count file shows five fields of information:

● The instruction mnemonic

● The total number of times the instruction was executed

● The number of executions that were predicated on

● The number of executions that were predicated off

● The number of executions that were predicated on predicate register 0, which is "hardwired" on

The value in the second field equals the sum of the values in the last three fields.

-noconsole

For xski and bski only: This flag tells Ski not to create a separate console window for the simulated program's
standard I/O. Instead, Ski will use the existing console window's for standard I/O purposes in the simulated program.

-rest filename

Restore the simulator run saved in filename. See "Saving and Restoring the Simulator State" on page 82. This flag
cannot be combined with an program_filename. If combined with a -i flag, the -i flag is accepted and the -rest flag
is silently ignored.

-stats

For bski only: specifies execution run-time and instruction rate information should be send to standard out (stdout) at
the end of the run. This information is normally displayed in the Main/Command Window of xski and ski. The
-stats flag allows users of bski to get the same information.

The XSki File
xski's screen presentation is substantially controlled by the contents of the XSki file, which uses the X Window System's
resource mechanism to provide information to xski. You can edit this file to change xski's use of graphic buttons, described
in "The xski Main Window" on page 48. The XSki file is part of the standard Ski distribution and you should put this file in
your X Window System's app-defaults directory or in your home directory. If there is no valid XSki file, the simulator
will not be usable. You can find more information on installing xski in the release notes that come with each Ski

Page 34 2 Overview

Ski IA-64 Simulator Reference Manual 1.0L

distribution.

Quitting Ski
The quit command causes the simulator to exit. If a numeric operand or expression is supplied, the value is returned to the
shell as Ski's exit status. This can be particularly useful with bski and command files (see "Command Files" on page 84),
for automated testing and regression testing. The exit status from Ski becomes the new value of your shell's $? variable (for
most shells) and can also be retrieved automatically by the make program, if you use makefiles to control batch runs.

Summary of the Quit Command
quit [expression]

Terminates the simulator and returns control to the system, setting the exit status to expression (default is 0).

2 Overview Page 35

Ski IA-64 Simulator Reference Manual 1.0L

3 Screen Presentation

Ski's Use of Windows
xski and ski generally divide the screen into four windows. (bski doesn't create any windows because it has no user
interface, only a command line interface.) xski uses Motif windows which you can move and resize using the mechanisms
provided by your window manager (WindowMaker, Englightenment, fvwm, twm, etc.) xski creates additional windows as
necessary.

ski uses the curses package to create four windows on the terminal screen. Because ski uses curses, it runs on nearly any
terminal or terminal emulator, including xterm. When ski needs to show data that isn't appropriate for one of its four
windows, it uses a pager such as "more" or "less" instead and restores the curses windows when the pager completes.

Ski uses three of the windows to display information to you. The fourth window is shared between you and Ski: You enter
commands that control Ski and Ski reports errors and other immediate information to you. You control the windows using
Ski commands (see "Screen Manipulation Commands" on page "59") and the simulator updates the windows whenever
necessary to maintain consistency with the internal state of the simulator engine. The four windows are described in more
detail below.

The Register Window
Ski divides the IA-64 processor registers into five sets. In xski, all five sets are displayed in one window, the Register
Window, with each set in its own subwindow or "pane". The panes show user registers, general registers, floating point
registers, system registers, and IA-32 registers respectively, as shown in Illustration 27:The Register Window in xski The
five panes share screen space and, unless you have a very large screen, it's not possible to see all five panes at full size
simultaneously. xski shows portions of all five panes by default, but you can toggle any panes off with commands described
in "Screen Manipulation Commands" on page 59).

xski understands the Page Up and Page Down keys and the up-arrow and down-arrow keys found on most keyboards. These
keys operate on the current pane, which is usually highlighted with a bright border. When the Register Window has the X
Window System focus, the Page Up and Page Down keys scroll the current pane one "pane-full" less one line of overlap.
The up-arrow and down-arrow keys scroll the current pane one line. The Tab and Shift+tab keys change the current pane
highlight to the next or previous pane, respectively, "wrapping around" the top and bottom of the Register Window.

Page 36 3 Screen Presentation

Ski IA-64 Simulator Reference Manual 1.0L

ski shows only a portion of a register set at a time and you use the commands described in "Register Window Commands"
on page 59 to select which portion of which set to see. The sets are described below in the order they appear in the Register
Window. Their xski realizations are shown as well.

The User Registers Pane
The user registers pane (see Illustration 28: The xski User Registers Pane) displays the Predicate Registers (prs) in binary,
the Application Registers in hexadecimal, and the Branch Registers (b0-b7) and the Instruction Pointer (ip) symbolically if
possible, otherwise in hexadecimal. Symbolic displays are limited to sixteen characters; when more than sixteen characters
are needed, the first fifteen are displayed and an asterisk ("*") is added to indicate that the symbolic display has been
abbreviated. The fields of the Current Frame Marker (cfm) register and subfields of the Previous Frame Marker field (pfm)
are displayed in decimal. For bit-encoded registers, some bits are displayed individually using their IA-64 mnemonics. If a
bit name is displayed in uppercase, the bit is currently set, and if the name is displayed in lowercase, the bit is currently
clear. For example, the psr.be bit is shown as "BE" in Illustration 28: The xski User Registers Pane, indicating that the bit is
set. The User Mask bitfield (psr.um) from the Processor Status Register (psr) is displayed in this pane; the entire psr is
shown in the System Registers pane, described in "The System Registers Pane". Predicate Registers pr16-pr63 are
displayed in their rotated form, as indicated by the rrbp field of the Current Frame Marker (cfm) register.

At the middle of the pane, the line starting "clean" shows, in decimal, the values in the internal registers that control the
Register Save Engine (rse). The IA-64 architecture requires that these registers exist but provides no program-visible
access to them.

3 Screen Presentation Page 37

Illustration 27:The Register Window in xski

Ski IA-64 Simulator Reference Manual 1.0L

The General Registers Pane
The general registers pane shows the current values of the 64-bit general (integer) data registers, four to a line, in
hexadecimal. Registers whose corresponding NaT bits are set are displayed with a leading asterisk ("*") to indicate this. The
display reflects IA-64 register stacking and rotation: only the 32 static registers and the stacked registers allocated to a
function are displayed. The allocated rotating registers are displayed in their rotated form, as indicated by the rrbg field of
the cfm register, displayed in the user registers pane. The general registers pane is shown in Illustration 29: The xski General
Registers Pane

The Floating Point Registers Pane
The floating point registers pane shows the current values of the 82-bit floating point data registers, two to a line displayed
in hex and scientific decimal notation. Floating point registers f32-f127 are displayed in their rotated form, as indicated by
the rrbf field of the cfm register, displayed in the user registers pane. The floating point registers pane is shown in
Illustration 30: The xski Floating Point Registers Pane with various values in the registers.

Due to the nature of floating point arithmetic on the host computer, the scientific decimal displays may be inaccurate for
very large and very small numbers, positive and negative. The hexadecimal display is always correct, as are all calculations
done by the simulated program.

Page 38 3 Screen Presentation

Illustration 28: The xski User Registers Pane

Illustration 29: The xski General Registers Pane

Ski IA-64 Simulator Reference Manual 1.0L

The System Registers Pane
The system registers pane shows the Processor Status Register (psr), Control Registers, Region Registers (rr0-rr7),
Protection Key Registers (pkr0-pkr15), Data Breakpoint Registers (dbr0-dbr15), Instruction Breakpoint Registers (ibr0-
ibr15), and Performance Monitor Configuration Registers (pmc0-pmc15), in hexadecimal. Application programs have
limited access to these registers. Addresses are displayed symbolically when possible. Symbolic displays are limited to
sixteen characters; when more than sixteen characters are needed, the first fifteen are displayed and an asterisk ("*") is
added to indicate that the symbolic display has been abbreviated. The iva register shown on the second text line in
Illustration 31: The xski System Registers Pane is an example of this.

3 Screen Presentation Page 39

Illustration 30: The xski Floating Point Registers Pane

Illustration 31: The xski System Registers Pane

Ski IA-64 Simulator Reference Manual 1.0L

The IA-32 Registers Pane
The IA-32 registers pane shows IA-32 registers in hexadecimal. For bit-encoded registers, the bits are named individually
using their IA-32 mnemonics. If a name is displayed in uppercase, the corresponding bit is currently set, and if the name is
displayed in lowercase, the bit is currently clear, as shown in Illustration 32: The xski IA-32 Registers Pane.

Resizing Register Window Panes with xski

As mentioned above, even a large X Window System screen is too small to display all the registers simultaneously, so you
may have to scroll a pane to see the registers you want, or resize the pane by dragging Pane Resizer, the small resize square
on the right side of the dividing line between each pair of panes, as shown in Illustration 33: An xski Pane Resizer: The
Small Box Between the Scroll bars.

The Register Window and ski

The ski simulator, as noted above, uses curses to display multiple windows on non-graphic (text) terminals and terminal
emulators. These windows are fixed in size and are not big enough to display all the data at the same time. On a
conventional, twenty four line screen, ski uses five lines for the Register Window, as shown in Illustration 34: The ski

Page 40 3 Screen Presentation

Illustration 32: The xski IA-32 Registers Pane

Illustration 33: An xski Pane Resizer: The Small Box Between the
Scroll bars

Ski IA-64 Simulator Reference Manual 1.0L

. Because of this lack of space, the Register Window shows only one of the five sets of registers at a time: user, integer,
floating point, system, or IA-32, and then only a portion of each set. If your screen is larger than twenty four lines when you
start ski, ski will make use of the extra space. (You can resize terminal emulators using command-line arguments or by
using your window manager's standard mechanisms for window resizing.)

You use the ur, gr, fr, sr, and iar commands to tell ski which set of registers to display. To see the various registers in a
set, you use the rf and rb commands to scroll the Register Window forwards and backwards, respectively. These
commands are described in "Summary of Register Window Commands" on page 59.

The Program Window
The Program Window provides a view into the program space. Whether you load a program into the simulated processor's
address space via the command line or using Ski's load, iaload, or romload commands, the program is displayed in a
format resembling a compiler's assembler listing file. For IA-64 programs compiled from a high-level language such as � C'
and linked with the appropriate options, the source code is displayed with line numbers, mixed in with the generated
assembly language as shown in Illustration 35: xski's Program Window Showing Part of an IA-64 "hello world" Program.
As an example, to compile the "hello world" program with the IA-64 compiler used in testing Ski, the command line is:

cc -o hello -g hello.c

Note that the -O (capital-O) "optimization" flag was not specified. Optimization, by definition, rearranges the object code. If
you turn on optimization, the correspondence between source code and object code will be obscured and you may find the
resulting display difficult to interpret.

IA-64 assembly code is displayed through disassembly; the original assembler source code is not displayed. Source code for
IA-32 programs, high-level and assembly, is not displayed.

Ski chooses whether to interpret the instructions as IA-64 or IA-32 encodings based on the setting of the psr.is bit. If your

3 Screen Presentation Page 41

Illustration 34: The ski Register Window (at Top)

Ski IA-64 Simulator Reference Manual 1.0L

program has a mix of IA-64 and IA-32 code, you may need to manually set or clear this bit when trying to view a part of the
program that is in a different encoding from the encoding at the current ip location. You can set the bit with the Ski
command "= psr.is 1" and you can clear the bit with "= psr.is 0". If the bit is set incorrectly, Ski will use the wrong
instruction decoder and will show IA-64 code disassembled as if it was IA-32 code or vice-versa! Remember to set the bit
back before resuming simulation.

IA-64 Instruction Display
Each IA-64 instruction bundle is labelled on the left with an hexadecimal byte-addressed offset from the nearest, preceding
symbol up to 0xffff bytes away. If the symbol name and offset are longer than sixteen characters, the first fifteen are
displayed and an asterisk ("*") is added to indicate that the symbolic display has been abbreviated. For each 128 bit bundle,
the two or three instructions are displayed in the center of the window with operands to their immediate right. The template
for the bundle is shown as a triplet of capital letters, such as "MII," to the right of the last operand of the first instruction in
the bundle. The end of each instruction group (a unit of potentially parallel execution) is marked with a pair of semicolons
(";;") after the last operand of the last instruction in the group.

Ski uses the first few columns for source code line numbers. Ski also uses the first column to show breakpoint locations for
IA-64 assembly language instructions, numbering the breakpoints "0" through "9." IA-64 breakpoint commands include bs,
bD, bd, and bl, and are described in "Program Breakpoints" on page 78. For the purpose of setting breakpoint addresses, Ski
"pretends" that the slot 0 instruction in a bundle is located at the first byte of the bundle, the slot 1 instruction is located at
the fourth byte, and the slot 2 instruction is located at the eighth byte. See "How Ski Implements Breakpoints" on page 80.

Predication is an IA-64 feature that increases the usable parallelism of user programs and allows better utilization of
functional units. Ski shows predication information in the second column of the Program Window, as shown in Illustration
36: xski's Program Window Showing IA-64 Predication and Breakpoints. If the second column of a given instruction line

Page 42 3 Screen Presentation

Illustration 35: xski's Program Window Showing Part of an IA-64 "hello world"
Program

Ski IA-64 Simulator Reference Manual 1.0L

contains an exclamation mark ("!"), the instruction is predicated on a predicate register that is currently 0: the instruction is
"predicated off". The predicate register is displayed in parenthesis immediately to the left of the instruction mnemonic. Ski
uses a different encoding for the instruction pointed to by the ip register: an asterisk ("*") indicates that the instruction is
predicated off and a greater-than symbol (">") indicates that the instruction is predicated on. (That is, the ">" symbol means
"This is the next instruction to be simulated.")

IA-32 Instruction Display
IA-32 instructions are displayed as shown in Illustration 37: xski's Program Window Showing IA-32 Code, the Instruction
Pointer, and a Breakpoint, according to the conventions for Intel assembly code. As with IA-64 instruction display, Ski uses
the first column of each assembly language instruction line to show breakpoint locations, numbering them "0" through "9."
Except for the use of iabs rather than bs, IA-32 breakpoint commands are the same as IA-64 breakpoint commands and
include iabs, bD, bd, and bl,as described in "Program Breakpoints" on page 78. In the second column, Ski puts a greater-
than symbol (">") to point to the next instruction to be executed, i.e., the location pointed to by the ip register.

Because IA-32 instructions are variable in length, it is possible to set the ip to point into the middle of an instruction. This
can happen, for example, when an instruction with prefix bytes is needed at the top of the first pass through a loop, and the
same instruction without the prefix bytes is needed at the top of subsequent passes. When this happens, Ski uses a plus-sign
("+") in column two, rather than a greater-than symbol, to warn you that ip points somewhere in the middle of the line of
code displayed on the screen. To update the display, use the command "pj ip". This will cause Ski to reinterpret the
instruction stream and to display the variable length instructions with the new interpretation.

3 Screen Presentation Page 43

Illustration 36: xski's Program Window Showing IA-64 Predication and Breakpoints

Ski IA-64 Simulator Reference Manual 1.0L

Changing the Range of Locations Shown in the Program Window
xski doesn't place a scroll bar in the Program Window. Instead, like ski, xski provides the pf and pb commands, described
in "Program Window Commands" on page 60. You use these commands to scroll the Program Window forwards and
backwards, respectively, through the assembly language program display. Ski also provides the pj command which lets you
"jump" the Program Window to any location in the address space. In addition, xski understands the Page Up and Page
Down keys and the arrow keys. When the Program Window has the X Window System focus, the Page Up, Page Down, up-
arrow, and down-arrow keys emit the "pb", "pf", "pb 1", and "pf 1" commands, respectively.

You can control the size of xski's Program Window using your window manager's standard mechanisms. If you are using
ski, the window is fixed in size; on a twenty four line terminal, the window will be nine lines tall.

Invalid Code and the Program Window
Ski will disassemble the area of memory it is displaying in the program window, regardless of whether the area contains
program code or data. If you tell Ski to display non-program memory, Ski attempts to display the (non-existent) instructions.
When Ski finds bit encodings that don't represent valid instructions, it displays the word "illegalOp" instead, as shown in
Illustration 38: xski's Program Window Showing Illegal Instructions. Sometimes, Ski may display x's, indicating that you
asked Ski to show a page of memory that doesn't exist, as shown in Illustration 39: xski's Program Window Showing
Unallocated Space or No Translation. There are three cases to consider:

● In application-mode, x's indicate a page of memory that hasn't been accessed by the program and therefore hasn't
been allocated by Ski.

● In system-mode with instruction address translation enabled (the psr.it bit is on), x's indicate a page of memory
for which no entry exists in the Translation Lookaside Buffer (TLB) or in the Virtual Hash Page Table

Page 44 3 Screen Presentation

Illustration 37: xski's Program Window Showing IA-32 Code, the Instruction Pointer, and a
Breakpoint

Ski IA-64 Simulator Reference Manual 1.0L

(VHPT).

● In system-mode with instruction address translation disabled (the psr.it bit is off), x's indicate a page of memory
that has not yet been accessed by the program.

Application-mode and system-mode programming are discussed in more detail in Program Simulation on page 66.

3 Screen Presentation Page 45

Illustration 38: xski's Program Window Showing Illegal Instructions

Ski IA-64 Simulator Reference Manual 1.0L

The Data Window
In the Data Window, xski and ski present data in hexadecimal format, sixteen bytes to a line, as shown in Illustration 40:
xski's Data Window Showing Unallocated Space Followed by Data. The data are displayed as four groups of eight
hexadecimal digits each, with an ASCII character translation on the right and the data address on the left. (The endianness
of the displayed bytes is determined by the current value of the psr.be bit which may change by the time the simulated IA-64
processor actually loads the bytes.) The address is expressed as a symbol from the executable file's symbol table or as a
sixteen digit hexadecimal number.

With the dbndl command, Ski can display data formatted as IA-64 instruction bundles in hexadecimal, as shown in
Illustration 41: xski's Data Window Showing Data Interpreted as Instruction Bundles. (The figure was generated by loading
a program and then issuing the command "dj main-10" followed by the dbndl command.) This is useful when you need
to see the raw hexadecimal instruction encodings. The first column displays the address of each bundle. The second column
displays the template field. The remaining three columns are the 41-bit instructions from slots 0, 1, and 2. Note: for the
purpose of setting breakpoint addresses, Ski "pretends" that the slot 0 instruction is located at the first byte of the bundle, the
slot 1 instruction is located at the fourth byte, and the slot 2 instruction is located at the eighth byte. See "How Ski
Implements Breakpoints" on page 80 for more information.

Page 46 3 Screen Presentation

Illustration 39: xski's Program Window Showing Unallocated Space or No Translation

Ski IA-64 Simulator Reference Manual 1.0L

Changing the Range of Locations Shown in the Data Window
As with the Program Window, xski doesn't place a scroll bar in the Data Window. Instead, like ski, xski provides the df,
db, and dj commands, described in "Data Window Commands on page 63. Use these commands to scroll the Data Window
forwards and backwards and to "jump" the Data Window. In addition, xski understands the Page Up and Page Down keys
and the arrow keys. When the Data Window has the X Window System focus, the Page Up, Page Down, up-arrow, and
down-arrow keys emit the "db", "df", "db 1", and "df 1" commands, respectively.

You can control the size of xski's Data Window with your window manager's standard mechanisms. If you are using ski,
the window is fixed in size; on a twenty four line terminal, the window will be two lines tall.

3 Screen Presentation Page 47

Illustration 41: xski's Data Window Showing Data
Interpreted as Instruction Bundles

Illustration 40: xski's Data Window Showing Unallocated Space Followed by Data

Ski IA-64 Simulator Reference Manual 1.0L

Invalid Code and the Data Window
If you tell Ski to display non-existent memory, Ski will display x's instead, as shown in Illustration 40: xski's Data Window
Showing Unallocated Space Followed by Data. Non-existent memory is defined for the Data Window similarly to its
definition for the Program Window, described in the "Invalid Code and the Program Window" section, except that the
relevant bit for system-mode programs is psr.dt.

The Command/Main Window
xski and ski are command-driven simulators. Most of your interaction with them is done by typing commands. Your
commands are typed in a window titled "main" in xski (see Illustration 42: xski's Main (Command) Window and
"Command" in ski (see Illustration 43: ski's Command Window (at Bottom)).

The xski Main Window
xski divides the Main Window into five areas:

● Menus: File, View, Configure, and Help. The File menu provides a "Quit" selection for you to exit the program.
The View menu lets you choose which windows to see. The Configure menu is currently non-functional. The
Help menu provides a "Commands" selection that displays the commands Ski recognizes and a "Product
Information" selection that displays information about xski.

● Buttons: Step, Run, Prog, Data, Regs, Cache, TLB, and Quit. Clicking on the Step button executes the
command "step 1", single-stepping the simulated program. Shift-clicking the button executes the command
"step 10", stepping the simulated program through ten instructions. The Run, Prog, Data, and TLB buttons
execute the run, pj, dj, and sdt commands respectively. If the Program Window has been closed (removed
from the screen, not merely minimized to an icon), the Prog button recreates it. The Data button operates
similarly with respect to the Data Window. The Regs and Cache buttons are currently non-functional.

xski's buttons are configurable. Using the X Window System resource mechanism, you can change the
number of buttons, the button labels, and the commands the buttons emit. The easiest way to do this is to edit
the XSki file, described in "The XSki File" on page 34. Much of xski's user interface behavior is controlled by
this file but you should be careful in making changes to any elements other than button descriptions; xski may
change in the future in ways that are not backwards-compatible with changes you make.

● Command History: commands you've already entered.

● Command: where you type commands to xski.

● Responses: responses and error messages from xski.

The Menu, Button, and Command History areas provide shortcuts for typing commands. The Step button is particularly
useful: when you are single-stepping through a program, you can click on the Step button instead of repeatedly typing the
"step" command. The Command History area provides another way to avoid typing: you can double-click on a command
in the Command History to run the command again, or single-click on the command to move it to the Command area where
you can edit and then re-run it. The Command area is where you type commands to the simulator, but, as mentioned above,
you can use the menus, buttons, and Command History as shortcuts. Two useful commands to know are "help", which
causes a window listing all the commands to be displayed, and "help command" which causes information about the
command to be shown in the Responses area. The Responses area is also used by the simulator to give you feedback when it
can't execute one of your commands.

xski understands the Prev and Next keys and the arrow keys found on many HP keyboards. When the Main Window has the
X Window System focus, the current area is highlighted, usually with a bright outline. You can make a different area current
with Tab and Shift-tab. The Prev, Next, up-arrow, and down-arrow keys scroll through the current area, allowing you to
easily edit and re-run previous commands from the Command History and review previous messages in the Response area.

Page 48 3 Screen Presentation

Ski IA-64 Simulator Reference Manual 1.0L

In addition, you can use the Alternate key ("alt") like a Shift key, along with the underlined letter in each menu name as a
shortcut to access the menu, rather than using the mouse. For example, Alt+F brings up the File menu. This lets you spend
less time shuttling between the keyboard and mouse, and more time doing productive work.

The ski Command Window
ski's Command Window is simpler, as shown in Illustration 43: ski's Command Window (at Bottom). There are no menus,
buttons, or Command History. Instead, you enter commands when you see a * prompt in the 4-line Command Window at
the bottom of the screen. ski displays its responses in this window as well. The window scrolls so that information lost off
the top of the window may be recovered using the up and down arrows on your keyboard (for Emacs fans, Ctrl-P and Ctrl-N
serve the same function). As a typing shortcut, if you hit the enter/return key, ski will repeat the last command you entered.

3 Screen Presentation Page 49

Illustration 42: xski's Main (Command) Window

Ski IA-64 Simulator Reference Manual 1.0L

Other Windows
Some commands, such as help, isyms, and symlist, cause xski and ski to create additional windows. When xski creates
an additional window, it adds scroll bars if there is more information than will fit. As an example, the output window created
by xski for the symlist command is shown in Illustration 44: xski's Symbol List Window. xski understands the Page Up
and Page Down keys and the arrow keys. The Page Up and Page Down keys scroll through the window a windowful at a
time, with one line of overlap. The up-arrow and down-arrow keys scroll through the window a line at a time.

When ski needs to display additional information, it does so by overwriting the four standard windows. ski sends the
information through a pager, using less by default. When the pager finishes, ski refreshes the screen with the standard ski
windows. If you prefer to use a different pager, for example more or page, set the PAGER environment variable
accordingly, before starting the simulator.

Page 50 3 Screen Presentation

Illustration 43: ski's Command Window (at Bottom)

Ski IA-64 Simulator Reference Manual 1.0L

3 Screen Presentation Page 51

Illustration 44: xski's Symbol List Window

Ski IA-64 Simulator Reference Manual 1.0L

4 Command Language
The Ski command language is simple, efficient, and easy to learn. It consists of commands you can invoke from the
keyboard or from a command file (see "Command Files" on page 84). Each command is given with an appropriate set of
arguments (some optional) to further qualify the command. Commonly-used commands may be abbreviated as described in
"Command Reference" on page 87 and commands may be repeated easily. A limited on-line help facility (the help
command) is provided for quick reference. This chapter presents the syntax of the command language. Information about
specific commands (command semantics) is in later chapters and in "Command Reference" on page 87.

Command Entry
xski and ski provide similar mechanisms for controlling the simulator. Both provide for direct keyboard entry of
commands. In addition, xski offers buttons, menus, and the Command History to minimize typing, as described in "The
xski Main Window" on page 48, and ski provides the command repetition mechanism for the same purpose, as described in
"The ski Command Window" on page 49. You give a command to Ski by typing the command name at the keyboard
followed by operands and the enter/return key. (Use the help command to see a menu of available commandsor help
followed by the command name to see the command syntax.) xski displays the command you typed in the Command area
of the Main Window. ski displays the command in the Command Window at the bottom of the screen following the *
prompt. Commands are case sensitive. When you hit the enter/return key, Ski acts on your command and updates the screen
to reflect any changes caused by the command. For example, the command

db

causes the Data Window to show the contents of lower addresses in memory.

Command Arguments
Some commands, such as save, require additional information. If you don't provide the information, Ski displays an error
message. Some commands have optional arguments. As described in "Syntax Conventions" on page 3, command summaries
in this manual show optional arguments surrounded by square brackets [like this]. If you don't specify an optional
argument, Ski uses a suitable default value. For example,

pf 3

causes the Program Window to advance three bundles after the last bundle in the Program Window, while

pf

alone moves the Program Window ahead one windowful. Some arguments can be supplied in a list, one or more times; these
are shown by putting a plus sign ("+") after the argument name like this+. For example, the syntax description for the =1
command is:

=1 address_or_symbol value+

which suggests that the command

=1 __data_start 12 56 90 cd

assigns the hexadecimal values 12, 56, 90, and cd to the four bytes starting at the location specified by the symbol
__data_start. Brackets and plus signs can be combined, [like this]+, to signify optional arguments that can be supplied
zero or more times.

Command Sequences, Repetition, and Abbreviation
You can type multiple commands on a single command line by separating the individual commands with semicolons (";").

Page 52 4 Command Language

Ski IA-64 Simulator Reference Manual 1.0L

This is called a "command sequence". Command sequences make re-executing a series of commands easy, using the
Command History mechanism of xski (see "The xski Main Window" page 48) or the command repetition mechanism of
ski (see "The ski Command Window" on page 49). For example, you might want to repeatedly execute the commands
"step 100" and "eval my_buffer". This pair of commands would execute one hundred instructions and then print the
value of (your) variable named "my_buffer". By combining these two commands into one command sequence, i.e., "step
100 ; eval my_buffer", you can use the Command History or command repetition mechanism to run these commands
over and over. (The spaces around the semicolon are optional but improve readability.)

There is no grouping construct in Ski. This can be important when you write command files: when you want to execute
commands conditionally using the if command, you cannot use the semicolon to group several commands into the "then"
or "else" clauses. Instead, you must use labels and the goto command. The "Command Files" on page 84 discusses
command files in depth.

Most commands may be abbreviated, some to a single letter. A command may be abbreviated to the shortest prefix which is
not also a prefix of a command which precedes it in the command menu. (See "Command Reference" on page 87.)

Argument Specification
The arguments which are given with commands are, in general, obvious and natural. The description which follows should
clarify those cases which are not. The terms defined here are used in the command summaries throughout the remainder of
this manual.

Numeric Arguments
Many commands accept numeric arguments. The argument may be an address, a value, an execution count, or some other
variable which is best expressed numerically.

Numbers and Counts
Some commands take arguments that are naturally expressed in hexadecimal: addresses, for example. Other commands take
arguments that are naturally expressed in decimal, such as the number of instructions to simulate with the step command.
To make using Ski easier, some Ski commands default to interpreting their arguments as (hexadecimal) numbers and some
default to interpreting their arguments as (decimal) counts. You can always override the default interpretation by specifying
a radix override, as described below.

Hexadecimal digits may be upper or lower case. The default radix may be overridden by preceding the number or count
with 0D or 0d for decimal, 0X or 0x for hexadecimal, 0O or 0o (zero-oh) for octal, and 0B or 0b for binary. Since both the
decimal and binary prefixes look like hexadecimal, hexadecimal values such as 0d600000 and 0b100000 must be specified
either with an explicit hexadecimal prefix, as in 0x0d600000 and 0x0b100000, or without the leading 0, as in d600000 and
b100000.

Expressions
Wherever a number or count is needed, you can use a numeric expression instead, with parenthesis as needed for grouping.
No spaces are allowed in an expression. In an expression whose result will be used as a number, numbers not preceded by a
radix override are assumed to be hexadecimal. If the result will be used as a count, numbers not preceded by a radix
override are assumed to be decimal. For example, the step command expects a count operand, so the command

step r0+10

steps (decimal) ten instructions. On the other hand, the pj command expects an address operand, which is a number, so the
command

pj r0+10

4 Command Language Page 53

Ski IA-64 Simulator Reference Manual 1.0L

displays (hexadecimal) address 0x10 in the Program Window. (r0 is hardwired to always return a zero when read.)

The available operators are shown in order from higher to lower precedence in Table 1: Ski Simulator Arithmetic and Logic
Operators. Operator precedence rules follow the C language rules.

Operator Description

() group operators with operands

! ~ + - * opposite truth value, logical one's complement,
unary plus, unary minus, dereference: treat as an
address and read eight bytes

* / multiply, divide

+ - add, subtract

<< >> logical left shift, logical right shift

< <= > >= less than, less than or equal to, greater than,
greater than or equal to

== != equal to, not equal to

& bitwise and

^ bitwise exclusive or

| bitwise or

&& logical and

|| logical or

Table 1: Ski Simulator Arithmetic and Logic Operators

As an example, in xski,

eval 64 0d64 0o64 0b100000 *main ~(((0D1234+0X10EF0)*4)<<6)+0B10001001

prints the values of the six expressions in the Main Window, as shown in Illustration 45: xski Evaluating Expressions. The
first expression is taken as a hexadecimal number, the second as a decimal number, the third as an octal number, and the
fourth as a binary number. The fifth expression is the value at the location specified by the symbol "main" (the first 64 bits
of the code bundle at that location), and the sixth expression is the result of some arithmetic.

Page 54 4 Command Language

Ski IA-64 Simulator Reference Manual 1.0L

Addresses
An address is specified by a 64 bit hexadecimal number. For example, the command

pj 1000

repositions ("jumps") the Program Window to address 0x1000. As discussed in "Application-Mode and System-Mode
Simulation" on page 66, Ski supports generic addresses in application-mode programs (that is, the concept of "virtual
memory" doesn't apply to application mode programs), and physical and virtual addresses in system-mode programs. For
system-mode programs, the psr.dt and psr.it bits control whether Ski interprets addresses as physical or virtual. In some
cases, you may need to change the value of one or both of these bits temporarily, so that Ski will interpret addresses the way
you want. You should restore the bit values before resuming simulation, of course. You can set the psr.dt bit with the Ski
command "= psr.dt 1" and clear the bit with "= psr.dt 0". The corresponding commands for the psr.it bit are "=
psr.it 1" and "= psr.it 0", respectively.

Addresses may be computed using expressions. For example, the command

dj 1000+0d50

repositions ("jumps") the Program Window to address 1032, because 1000 (hexadecimal) added to 50 (decimal) is 1032
(hexadecimal). Address expressions are particularly useful in symbolic constructs, as described below.

Symbolic Arguments
A symbol is a sequence of characters (a "name"). Examples of symbols are program-defined symbols, registers, internal
variables, labels, and filenames. Arguments may (and sometimes must) be expressed symbolically.

4 Command Language Page 55

Illustration 45: xski Evaluating Expressions

Ski IA-64 Simulator Reference Manual 1.0L

Program-Defined Symbols
A program-defined symbol is an identifier which can be used as a mnemonic for a memory location. Program-defined
symbol names are defined in the executable file for the program being simulated. Some symbols are common, well-known
names (e.g. printf, main), and others are defined by the programmer (e.g. foo, bar). The symlist command shows you
the symbols sorted by address, as Illustration 46: xski's Symbol List Window shows.

Registers
A register name is a predefined mnemonic for a processor register. The general registers, for example, are referred to as r0,
r1, ..., r127. (The register names Ski recognizes are listed in "Register Names" on page 93.) For example, the command

= r31 ip

assigns the value contained in the ip register to general register 31. (For a description of the = command, see "Changing
Registers and Memory with Assignment Commands" on page 75.) Wherever the simulator expects you to supply a numeric
argument, you can use a register instead. You may only refer to currently-visible registers, according to the stacking and
rotation mechanisms of the IA-64 architecture.

Internal Variables
The simulator provides internal variables for you to use in command files (see "Command Files" on page 84). These internal
variables are read-only; you cannot change their values. You can refer to an internal variable in any context where you could
refer to an IA-64 register. Ski has four internal variables:

$cycles$

The total number of "virtual cycles" simulated. A virtual cycle is a cycle on a machine with an very large number of
execution units and very fast memory; a real IA-64 processor may take more cycles. In a command file, you might use
this variable to gather statistics about the efficiency of a particular compiler optimization algorithm. The value of

Page 56 4 Command Language

Illustration 46: xski's Symbol List Window

Ski IA-64 Simulator Reference Manual 1.0L

$cycles$ is always equal to the value of $insts$ for IA-32 programs.

$exited$

The value 0 until the simulated program exits. Then the variable takes the value 1. In a command file, you would use
$exited$ to detect a program termination. Program termination is defined for IA-64 application-mode programs as a
call to the exit() function or the receipt of an unhandled signal. For IA-64 system-mode programs, normal
termination is defined to be a call to the Simulator System Call exit function or execution of BREAK 0 instruction. This
variable is not supported for IA-32 programs in application-mode or system-mode. (See "Application-Mode and
System-Mode Simulation" on page 66 for details on these modes.)

$heap$

This variable has meaning only for IA-64 programs running in application-mode, as described in "Application-Mode
and System-Mode Simulation" on page 66. $heap$ marks the address past the "far end" of the simulated heap, that is,
the end farthest from the end of the data section. The heap starts at the first sixteen-byte-aligned address after the data
section. Ski updates the $heap$ variable as the program being simulated malloc's memory (for programs written in C;
adapt accordingly for other programming languages). You can use the $heap$ variable to debug wild pointer problems:
if your program has a pointer that allegedly points to a malloc'ed data structure, but the pointer value exceeds $heap$,
the pointer is invalid. For system-mode programs and IA-32 programs, this variable is meaningless, as there is no
malloc support.

$insts$

The number of instructions that have been simulated so far (including any faulting instructions, for programs running
in system-mode, described in "Application-Mode and System-Mode Simulation" on page 66 . In a command file, you
might use this variable to stop simulation after a certain number of instructions. The value of $insts$ is always equal
to the value of $cycles$ for IA-32 programs.

Labels
Labels (see "Labels and Control Flow in Command Files" on page 84) are names which consist of an alpha (upper or lower
case alphabetic, $, or _), followed by a sequence of alphas or digits (e.g., abc123, $foo_bar, etc.) and ending with a colon
(":"). They may be up to 132 characters long. Labels are used in command files as targets of the goto command.

Filenames
Filenames are subject to the restrictions of the underlying Linux operating system. Ski performs tilde ("~") expansion: if
you provide a pathname whose first word starts with a tilde, Ski assumes the word is a username and tries to replace it (and
the tilde) with the user's home directory. For example, "~david/hello" might be expanded to "/home/david/hello".

Resolving Ambiguous Symbols and Numbers
Some character sequences can be interpreted in more than one way. For example, the character sequence "b3" can be
interpreted as a branch register, a program-defined symbol, or a hexadecimal number. To resolve the ambiguity, Ski looks
first in its symbol tables for program-defined symbols and internal variables (which includes register names). If a match is
found, the matching value is used, otherwise the character sequence is taken as a number. You can force the numeric
interpretation by putting a "0x" or "0X" prefix in front of the number, such as "0xb3". It is undefined whether Ski searches
the symbol table for program-defined symbols before or after the internal variable symbol table. Because of this, it is wise to
avoid naming global variables and functions with names duplicating any of Ski's internal variables. In practice, this means
you should avoid using register names as names of variables and functions in your programs.

4 Command Language Page 57

Ski IA-64 Simulator Reference Manual 1.0L

Page 58 4 Command Language

Ski IA-64 Simulator Reference Manual 1.0L

5 Screen Manipulation Commands
Ski provides several commands to manipulate windows. These commands let you make major changes of context or fine
adjustments. xski provides more flexibility: you can change the location and size of xski windows using the mechanisms
provided by your window manager, and xski provides scrollbars in some windows, for minor adjustments.

Register Window Commands
As described in "The Register Window" on page 36, xski shows all five sets of registers in the Register Window, with scroll
bars and pane resizers so you can select what registers to see within each set and how much screen space should be devoted
to each set. The fr, gr, iar, sr, and ur commands allow you to toggle display of individual sets on and off. Illustration 47:
xski's Program Window Showing IA-64 Assembly Language Code on page 61 shows the xski Register Window.

ski has much less screen space available and therefore shows only one set and only a part of it at a time. The fr, gr, iar,
sr, and ur commands allow you to choose which register set to see. The rf and rb commands let you choose what part of
the chosen register set to see Illustration 47: xski's Program Window Showing IA-64 Assembly Language Code in "The
Register Window" on page 36, which shows the ski Register Window.

Summary of Register Window Commands
rd [filename]

Dump the Register Window to the screen in a new window (xski) or using a pager (ski), or, if filename is provided, to
the file given by filename. The mnemonic stands for "register dump".

xski Register Window Commands
fr

Toggles display of the floating point registers (fr) pane in the Register Window. See Illustration 50: xski Showing Data
as Instruction Bundles on page 64.

gr

Toggles display of the general registers (gr) pane in the Register Window. See Illustration 49: xski's Assembly
Language Dump Window on page 63.

iar

Toggles display of the IA-32 registers (eax, ebx, esp, etc.) pane in the Register Window. See Illustration 52: xski's
Hexadecimal Dump Window on page 65.

sr

Toggles display of the system registers (cr, rr, pkr, dbr, ibr, pmc, and pmd) pane in the Register Window. See
Illustration 51: xski Showing Data in Raw Hexadecimal and ASCII on page 64.

ur

Toggles display of the user registers (pr, br, ar, ip, psr.um) pane in the Register Window. See Illustration 48: xski's
Program Window Showing Intermixed C and IA-64 Assembly Code on page 62

ski Register Window Commands
fr

5 Screen Manipulation Commands Page 59

Ski IA-64 Simulator Reference Manual 1.0L

Displays the floating point registers (fr) in the Register Window.

gr

Displays the general registers (gr) in the Register Window.

iar

Displays the IA-32 (eax, ebx, esp, etc.) registers in the Register Window.

sr

Displays the system registers (cr, rr, pkr, dbr, ibr, pmc, and pmd) in the Register Window.

ur

Displays the user registers (pr, br, ar, ip, psr.um) in the Register Window.

rf [count]

Moves the Register Window "forward" (scrolls down) through the currently-displayed register set. The Register
Window is scrolled count lines. If count is omitted, the Register Window scrolls down one windowful less one line, i.e.
the last line of the old window is displayed as the first line of the new window.

rb [count]

Moves the Register Window "backward" (scrolls up) through the currently-displayed register set. The Register Window
is scrolled count lines. If count is omitted, the Register Window scrolls up one windowful less one line, i.e. the first line
of the old window is displayed as the last line of the new window.

Program Window Commands
The Program Window displays disassembled instructions, one instruction per line. (See "The Program Window" on page
41.)

pj [address]

If address is specified, repositions ("jumps") the Program Window so that the IA-64 bundle or IA-32 instruction
containing the specified address is second in the window. If no address is given, jumps to the previous location. The
mnemonic stands for "program jump".

pf [count]

Moves the Program Window forward count IA-64 bundles or IA-32 instructions. If count is not specified, moves the
Program Window forward one windowful less one bundle or instruction. The mnemonic stands for "program forward".

pb [count]

Moves the Program Window backward count IA-64 bundles or IA-32 instructions. If count is not specified, moves the
Program Window backward one windowful less one bundle or instruction. The mnemonic stands for "program
backward".

pa

Display the program being simulated in assembly language only, as shown in Illustration 47: xski's Program Window
Showing IA-64 Assembly Language Code. This command is valid for IA-64 code only. The mnemonic stands for
"program display assembly".

Page 60 5 Screen Manipulation Commands

Ski IA-64 Simulator Reference Manual 1.0L

pm

Display the program being simulated in its source code form with the assembly language translation mixed in, as shown
in Illustration 48: xski's Program Window Showing Intermixed C and IA-64 Assembly Code . The source code display
is for your convenience only; you cannot interact with the source code, e.g., modify the source code, click on a variable
name to see its value in the Data Window, and so on. The source code is not embedded in the executable file. Instead,
the compiler and linker place into the executable file a record of the location and filename of the source code. The
source code file must be available to Ski in the location recorded in the executable file. In practice, this means you will
want to run xski or ski from the directory where the program was compiled. (See "The Program Window" on page 41
for more information on source code compilation.) This command is valid for IA-64 code only. The mnemonic stands
for "program display mixed".

5 Screen Manipulation Commands Page 61

Illustration 47: xski's Program Window Showing IA-64 Assembly Language Code

Ski IA-64 Simulator Reference Manual 1.0L

pd starting_address ending_address [filename]

Dump the assembly language translation of the program in the area between the two addresses (inclusive) to the screen
(ski) or to a window (xski) if no filename is given, or to the specified file if one is. Source code will not be dumped
along with the assembly language, even if the pm command is given. Illustration 49: xski's Assembly Language Dump
Window shows an example of an assembly language dump of the program in Illustration 47: xski's Program Window
Showing IA-64 Assembly Language Code and Illustration 48: xski's Program Window Showing Intermixed C and
IA-64 Assembly Code . The mnemonic stands for "program dump".

Page 62 5 Screen Manipulation Commands

Illustration 48: xski's Program Window Showing Intermixed C and IA-64 Assembly Code

Ski IA-64 Simulator Reference Manual 1.0L

Data Window Commands
The Data Window displays an area of memory in hexadecimal format and, if the window is wide enough, an ASCII
translation. (See "The Data Window" on page 46.) The commands to adjust the Data Window are similar to those for the
Program Window and are described below.

Summary of Data Window Commands
dj [address]

If address is specified, repositions ("jumps") the Data Window so that the bytes containing the specified address are
first in the window. If no address is given, jumps to the previous location. The mnemonic stands for "data jump".

df [count]

Moves the Data Window forward count display lines or one windowful if count is not specified. The mnemonic stands
for "data forward".

db [count]

Moves the Data Window backward count display lines or one windowful if count is not specified. The mnemonic stands
for "data backward".

dbndl

Displays the data as hexadecimal instruction bundles, as shown in Illustration 50: xski Showing Data as Instruction
Bundles and in on page . It is your responsibility to ensure that the Data Window is actually positioned on instructions;
if not, Ski will dutifully display nonsense. The first column displays the address. The second column displays the
template field. The remaining three columns display the 41-bit instructions from slots 0, 1, and 2, with the least-
significant bit to the right. The mnemonic stands for "data window bundle".

5 Screen Manipulation Commands Page 63

Illustration 49: xski's Assembly Language Dump Window

Ski IA-64 Simulator Reference Manual 1.0L

dh

Displays the data as raw hexadecimal with an ASCII translation, as shown in Illustration 51: xski Showing Data in Raw
Hexadecimal and ASCII. The mnemonic stands for "data window hexadecimal".

dd starting_address ending_address [filename]

Dump the memory area between the two addresses (inclusive) to the screen (ski) or window (xski) if no filename is
given or to the specified file if one is. The dump will be in the format selected by the most recent dbndl or dh
command. An example of a hexadecimal dump is shown in Illustration 52: xski's Hexadecimal Dump Window. The
mnemonic stands for "data dump".

Page 64 5 Screen Manipulation Commands

Illustration 50: xski Showing Data as Instruction
Bundles

Illustration 51: xski Showing Data in Raw Hexadecimal and ASCII

Ski IA-64 Simulator Reference Manual 1.0L

5 Screen Manipulation Commands Page 65

Illustration 52: xski's Hexadecimal Dump Window

Ski IA-64 Simulator Reference Manual 1.0L

6 Program Simulation
Ski's main responsibility is to simulate IA-64 instructions and programs built from these instructions. Many commands and
features are supplied to provide you with a great deal of flexibility in using Ski.

Application-Mode and System-Mode Simulation
Ski supports two instruction sets and two modes of simulation. The two instruction sets supported by Ski are the IA-64
instruction set and a subset of the traditional IA-32 instruction set, often called the "Intel x86" instruction set.

Ski's two simulation modes let you simulate an application program ("application-mode") or an operating system or
firmware ("system-mode"). For IA-64 programs, Ski determines the mode based on the presence or absence of the _atexit
symbol. (If you strip symbols from your IA-64 program, Ski will not find _atexit and will assume your program is a
system-mode program.) For IA-32 programs, you select the mode, using the iaload command for application-mode
simulation and the romload command for system-mode simulation. Program loading is discussed in "Program Loading".

Ski Support for Application-Mode Programs
To support application-mode programs, Ski emulates a Linux operating system (for IA-64 programs) or an MS-DOS
operating system (for IA-32 programs).

Application-Mode IA-64 Programs
For IA-64 programs, Ski provides (simulated) memory for the text and data portions of the program's address space. Ski
also manages a growable heap for the C language's malloc() function, a growable Register Save Engine area, and a growable
stack. As your program runs, Ski tracks the memory references emitted by the program. Ski tries to distinguish between
reasonable references and ridiculous references indicative of wild pointers. To track stack-based data structures, Ski adds
stack pages when it notices a reference to a location just past the end of the stack. To track heap-based data structures, Ski
provides an implementation of the malloc() family of functions. ("Linux and MS-DOS ABI Emulation" on page 71
discusses Ski's pseudo-operating system in detail.) Ski tracks pages used by the Register Save Engine as well.

Application program calls to Linux system functions are emulated by the simulator or passed to the host Linux operating
system; unsupported calls cause simulation to stop. Registers are initialized according to Linux calling conventions.
Application mode programs can't access (simulated) I/O devices or privileged registers. Application mode programs can't
execute privileged instructions or receive interrupts; any interruptions cause Ski to stop simulation and generate an error
message. Application-mode programs never see virtual memory page faults or TLB faults and therefore the sit and sdt
simulator commands (see "System-Mode TLB Simulation") are disabled when simulating application-mode programs.

Application-Mode IA-32 Programs
For IA-32 programs, Ski's support is more limited. Ski provides a subset of MS-DOS " int 21 " functions. Ski does not
simulate Microsoft Windows. Loadable libraries (DLL's), config.sys , and autoexec.bat are not supported.
Environment variables are not available to MS-DOS programs. Registers and memory are initialized according to MS-DOS
conventions.

Ski Support for System-Mode Programs
A system-mode program is, as far as Ski is concerned, running on a "bare" IA-64 processor. No operating system emulation
is provided and the system-mode program has complete access to the simulated IA-64 processor.

Page 66 6 Program Simulation

Ski IA-64 Simulator Reference Manual 1.0L

System-Mode IA-64 Programs
A system-mode IA-64 program "sees" a more complete simulated environment: writeable registers are initialized to zero,
page and TLB faults are simulated and cause a transfer to the interruption vector table (IVT), privileged instructions can be
executed, privileged registers can be accessed, and so on. A tricky issue for system-mode simulation is handling I/O because
there are no real I/O devices to simulate! Instead, Ski provides a special interface using BREAK instructions to implement
Simulator SystemCalls (SSC's), which provide access to the console, keyboard, SCSI disk and Ethernet devices. A system-
mode IA-64 program can't access the underlying operating system; it "thinks" it's running on a real IA-64 computer.

A system-mode IA-64 program must provide interruption handlers. The program must create a valid Interruption Vector
Table (IVT) and set the Interruption Vector Address (IVA) accordingly. You can test your interruption code by creating code
that generates conditions corresponding to internal faults, traps, and interrupts, such as divide-by-zero and page-not-present.
To test code for external interrupts, use the inter-processor interruption mechanism, as defined by the IA-64 architecture
manual. Example assembly code for this is shown in Table 2: Example Code to Simulate an External Interrupt. Timer
interruptions can be simulated using the Simulator System Call mechanism.

ssm 0x6000 // Set psr.i and psr.ic to 1
mov cr.lid=r0 // For processor 0
movl r4=0xfee00000 // Interrupt block base for proc 0
mov r5=0x10 // Interrupt vector 16
st8 [r4]=r5 // Code branches to iva+0x3000 (the
external
 // interrupt handler). irr0{16} is set
to 1,
 // ivr = 0x10

Table 2: Example Code to Simulate an External Interrupt

System-Mode IA-32 Programs
Ski does not support IA-32 programs running in system-mode.

System-Mode TLB Simulation
The simulator provides facilities for modeling the TLB's (Translation Lookaside Buffers) for system-mode programs.

Summary of TLB Display Commands
sit

sdt

When a system-mode IA-64 program is loaded, these commands display information from the Instruction Translation
Lookaside Buffer (ITLB) and Data Translation Lookaside Buffer (DTLB), respectively. The simulator displays the
entire selected TLB (Translation Registers and the Translation Cache) on the screen, as shown in Illustration 53: sdt
Command Output in xski

The " V " and " RID " columns represent the V (valid) bit and Region Identifier, respectively, for each TLB entry. The "
Virtual Page " and " Physical Page " columns show the actual address translation handled by each TLB entry.
The " PgSz ", " ED ", " AR ", " PL ", " D ", " A ", " MA ", and " P " columns represent the Page Size, Exception
Deferral, Access Rights, Privilege Level, Dirty Bit, Accessed Bit, Memory Attribute, and Present fields, respectively, for
each TLB entry. Finally, the " KEY " column represents the Protection Key for each TLB entry. A blank line separates

6 Program Simulation Page 67

http://simulate.htm/#42532

Ski IA-64 Simulator Reference Manual 1.0L

the Translation Registers (TR's) from the Translation Cache (TC). The number of TR's and the size of the TC is
implementation-dependent. Current versions of Ski provide 16 TR's and 128 entries for the TC but this may change. If
the precise value is important, check the release notes.

Misaligned Data Access Trap
If the psr.ac bit is set, the IA-64 architecture requires alignment checks on memory accesses; i.e., when data accesses are
made to items larger than a byte, the appropriate number of low-order address bits must be zero. If the bit is clear, the IA-64
implementation may choose whether or not to make such checks; Ski chooses to make the checks for references from IA-64
code. When an IA-64 program attempts an misaligned access, the behavior of the simulator depends on whether it is
running in application-mode or system-mode. In application-mode, the simulator stops the program and displays an error
message. In system-mode, the simulator traps to the unaligned access vector.

Program Loading
The Ski simulator supports loading IA-64 programs in the standard IA-64 ELF executable format and in MS-DOS .com and
.exe formats. ELF files contain enough information to allow the simulator not only to load the program and its data, but
also to build a symbol table, properly structure virtual memory, and initialize the screen and ip with the proper values. For
IA-64 Linux programs, the psr.be bit is always initialized to zero, indicating that the program will run with little-endian
byte-order.

The MS-DOS formats do not include symbol table information. Instead, you must supply the information in the form of a
mapfile compatible with those created by Microsoft's "ML" linker. If you don't provide Ski with a mapfile, no program-
defined symbols will be available. The MS-DOS formats do not specify where to place the program in memory. You must
provide this information to Ski yourself. The .com format is very basic and is supported with the iaload and romload
commands, described in "Summary of Program Loading Commands" The .exe format contains header information that is
used by the iaload command and ignored by the romload command. For this reason, .exe files are not useful in system-
mode simulation. For IA-32 programs, only IA-32 (little-endian) byte ordering is supported.

Page 68 6 Program Simulation

Illustration 53: sdt Command Output in xski

Ski IA-64 Simulator Reference Manual 1.0L

How to Load a Program
There are two ways to load a file. The first way is to run the simulator with a IA-64 (not IA-32) executable program
filename as an argument. The file will be loaded immediately after the simulator initializes itself and before any command
file specified with the -i flag is executed. (see "Command Files" on page 84 and "Command Line Flags" on page 33.) An
example is " xski my_program ". The second way is to use the load , iaload , or romload commands, which take the
filename as the first argument, for example, " load my_program ".

Summary of Program Loading Commands
load filename [args] +

Prepare for IA-64 application-mode simulation: Load the file specified by filename and prepares to pass the program
args encoded using the C-language argc/argv mechanism. The file must be an IA-64 ELF file.

iaload filename address [mapfile [args]+]

Prepare for IA-32 application-mode simulation: Load the IA-32 executable file specified by filename , which must be
an MS-DOS .com or .exe file and prepare to pass the program args encoded using MS-DOS command line argument
conventions. The address specifies where Ski should load the program. This should be a physical address; virtual
addressing is only supported for system-mode programs. The value you provide is used, along with information from
the .exe file or MS-DOS defaults for a .com file, to setup the IA-32 execution environment, such as segment
descriptors, the stack pointer, etc. The mapfile is an ASCII text file providing the mappings between symbols and
addresses; it must be compatible in format with the mapfile produced by the Microsoft "ML" linker. The psr.is bit is set.

romload filename address [mapfile]

Prepare for IA-64, IA-32, or mixed system-mode simulation: Load the MS-DOS .com -format file specified by
filename . (The MS-DOS .com format is essentially raw binary.) Address and mapfile are as described for the iaload
command above. The address can be physical or virtual, depending on the setting of the psr.it bit, as described in
"Addresses" on page 55.

Notes about Program Loading

Adding Information after Loading
Sometimes, the load file doesn't contain enough information. In this case, you can use a command file (see "Command
Files" on page 84) to add more information. You execute the command file at the appropriate time, generally after loading
the program. For example, perhaps you want to test how an application program handles error conditions that are hard to
create in a "real" hardware environment. You could load the program and use a command file to create the error condition.
Then you would run the program and test its behavior.

As another example, perhaps you want to simulate the transfer of control from a bootstrap program, an interrupt, or an
application program to the operating system. You could load the operating system as a system-mode program and use a
command file to set up memory and registers to their appropriate state at the instant of the control transfer.

Creating the argc, argv, and envp Parameters
The first time an application-mode simulated program starts, it receives command line parameters and environment
variables using the C language argc/argv/envp mechanism. (IA-32 application-mode programs do not receive environment
variables.) By default, the program receives the same command line parameters you gave to Ski when you started it. For
example, if you invoked Ski as " xski my_program foo bar ", Ski would start up using the X Window System
interface, load the executable IA-64 program my_program , and use " foo ", " bar ", and environment variables to

6 Program Simulation Page 69

Ski IA-64 Simulator Reference Manual 1.0L

initialize the argc, argv and envp parameters passed on the memory stack. The environment variables are a copy of the
variables Ski received from the shell when it started.

Instead of specifying the executable program on Ski's invocation line as in the example above, you can use the load or
iaload commands to load the executable program. You can add extra arguments to load and iaload . Later, when you
invoke the run command, Ski will pass the extra arguments to the simulated program as command line parameters. For
example, you could issue the command " load my_program foo bar ". When you run the program, Ski would pass "
foo " and " bar " to the program as command line parameters using the argc/argv/envp mechanism. Note that IA-32
application-mode programs must be loaded with the iaload command; they cannot be loaded from the Ski invocation line.

Program Execution
Programs may be run in their entirety without interruption, they may be stopped at appropriate places (see "Program
Breakpoints" on page 78) and continued, or they may be single-stepped for debugging purposes. The different program
execution choices are described below.

You can stop a running simulation in ski at any time with your interrupt character (usually ^C). The interrupt will be
honored at the beginning of simulation of the next instruction. xski and bski do not have interrupt handlers; if you use your
interrupt character while they are running, they will be terminated by the operating system.

Summary of Program Execution Commands
run

Starts / restarts execution of a program at the current ip value. Generally used after a breakpoint is encountered.

cont

Same function as the run command. The mnemonic stands for "continue".

step [count]

With no argument, executes a single instruction. If a count is specified, executes count instructions.

step until expression

Page 70 6 Program Simulation

Ski IA-64 Simulator Reference Manual 1.0L

7 Linux and MS-DOS ABI Emulation
As discussed in "Application-Mode and System-Mode Simulation" on page 66, Ski can provide application programs with a
Linux-compatible or MS-DOS-compatible environment. The environments aren't full-blown operating system emulations,
however. The most common OS functions are provided, as described below.

Interruptions
The IA-64 architecture defines a large set of interruption types, including faults, traps, and interrupts. Interruptions may
happen asynchronously, during an instruction, or between instructions. Like application programs running on a "real" Linux
machine, IA-64 application-mode programs in Ski never see interruptions. Instead, Ski translates interruptions into the
signal that a real IA-64 Linux kernel would generate. For example, a memory access violation gets translated into the
SIGSEGV signal. Similarly, if Ski receives a keyboard signal such as the SIGINT generated (usually) by control-C, it passes
this signal on to the IA-64 application. Ski does not accurately simulate the siginfo and sigcontext structures that a real
IA-64 Linux kernel would pass to a signal handler. Thus, applications relying on either of these parameters cannot be
simulated in Ski application mode.

Linux Application Environment
Ski provides a commonly-used subset of the Linux environment to IA-64 application-mode programs. Both statically linked
and dynamically linked programs are supported. The argc, argv, and envp parameters are created on the stack as described in
"Creating the argc, argv, and envp Parameters" on page 69. Ski initializes the IA-64 registers like this:

sp points to the top of the stack.

bsp, and bspstore are initialized in the same way the IA-64 version of Linux is likely to do.

rsc.pl is initialized to 3.

rsc.be and psr.be are cleared.

Ski supports the Linux system calls shown in Table 3: Linux System Calls Supported by Ski. This list is subject to change;
consult the release notes for the latest information. The data passed between the application program and the simulated
Linux environment is interpreted as 64 bit (LP64) quantities.

7 Linux and MS-DOS ABI Emulation Page 71

Ski IA-64 Simulator Reference Manual 1.0L

accept access acct adjtimex

bind brk chdir chmod

chown chroot clone (fork & vfork) close

connect dup dup2 execve (IA-32 & IA-64)

exit fchdir fchmod fchown

fcntl fdatasync flock fstat

fstatfs fsync ftruncate getcwd

getdents getegid geteuid getgid

getgroups getitimer getpagesize (4KB) getpeername

getpgid getpid getppid getpriority

getresgid getresuid getrlimit getrusage

getsid getsockname getsockopt gettimeofday

getuid ioctl ioperm kill

lchown link listen lseek

lstat mkdir mknod mmap

mmap2 mount mprotect mremap

msgget msgrcv msgsnd msync

nanosleep open personality pipe

poll pread (not atomic) pwrite (not atomic) read

readlink readv (not atomic) reboot recv

recvfrom recvmsg rename rmdir

rt_sigaction rt_sigpending rt_sigprocmask rt_sigsuspend

sched_get_priority_max sched_get_priority_min sched_getparam sched_getscheduler

sched_rr_get_interval sched_setparam sched_setscheduler sched_yield

select semget semop send

sendmsg sendto setdomainname setfsgid

setfsuid setgid setgroups sethostname

setitimer setpgid setpriority setregid

setresgid setresuid setreuid setrlimit

setsid setsockopt settimeofday setuid

shmat shmdt shmget shutdown

sigalstack socket socketpair stat

statfs swapoff swapon symlink

sync syslog times truncate

umask umount uname unlink

ustat utimes vhangup wait4

write writev (not atomic)

Table 3: Linux System Calls Supported by Ski

Page 72 7 Linux and MS-DOS ABI Emulation

Ski IA-64 Simulator Reference Manual 1.0L

Ski accepts but ignores the system calls shown in Table 4: Linux System Calls Accepted but Ignored by Ski. For those that
return an error indication, the errno code is shown in parentheses. All other ignored system calls return with a success
indication, having done nothing.

_sysctl (ENOSYS) bdflush (ENOSYS) capget capset

create_module (ENOSYS) delete_module (ENOSYS) get_kernel_syms (ENOSYS) getpmsg

init_module (ENOSYS) msgctl (ENOSYS) munlockall nfsservctl

prctl ptrace (EOPNOTSUPP) putpmsg query_module (ENOSYS)

quotactl (ENOSYS) rt_sigqueueinfo rt_sigtimedwait semctl (ENOSYS)

sendfile shmctl (ENOSYS) sysfs (ENOSYS) sysinfo (ENOSYS)

Table 4: Linux System Calls Accepted but Ignored by Ski

All other system calls are unsupported. When an IA-64 application-mode program makes an unsupported system call, the
simulator stops the simulation and displays an error message.

MS-DOS Application Environment
IA-32 application-mode programs "see" a limited MS-DOS environment. The MS-DOS environment is emulated by
creating and initializing an MS-DOS Program Segment Prefix (PSP) and by setting up the stack pointer (iasp) and
segmentation registers. The arguments you gave with the iaload command, such as "iaload my_program foo bar
baz", are placed in the PSP as if they were command line parameters.

Ski supports the MS-DOS "INT 20" call to terminate the simulated program and the "INT 21" system calls shown in Table
5: MS-DOS System Calls (in Hexadecimal) Supported by Ski. When an IA-32 program makes an INT 21 call that's not
supported, the simulator stops the simulation and displays an error message.

00: terminate program 02: display character 08: read keyboard without echo

09: display string 2a: get date 2c: get time

30: get version number 3c: create file with handle 3d: open file with handle

3e: close file with handle 3f: read file or device 40: write file or device

44: device status control 44, sub-function 0: get device data 4c: end program

51: get PSP address 62: get PSP address (same as 51)

Table 5: MS-DOS System Calls (in Hexadecimal) Supported by Ski

Program I/O
Your program may need to read from standard in (stdin: file descriptor 0) and write to standard out (stdout: file descriptor 1)
and standard err (stderr: file descriptor 2). As with all Linux programs, these file descriptors are connected, by default, to
your keyboard and screen. You can redirect them in the usual way: when you invoke Ski, use the < and > operators
recognized by most Linux shells. For example, "bski -noconsole my_program foo bar baz < test_input
>simulated_output" runs bski, loading the IA-64 program file my_program and passing it the arguments foo , bar and
baz via the argc/argv mechanism. Because no command file was provided via the -i flag (described in "Command Line
Flags" on page 33), bski internally generates a run command followed by a quit command. The (simulated) program

7 Linux and MS-DOS ABI Emulation Page 73

Ski IA-64 Simulator Reference Manual 1.0L

reads on standard in from the file test_input and writes on standard out to the file simulated_output. Having not been
redirected, writes to standard err go to the default place, normally the terminal screen.

Page 74 7 Linux and MS-DOS ABI Emulation

Ski IA-64 Simulator Reference Manual 1.0L

8 Debugging
The simulator provides many facilities to help you debug your programs. You can modify the current state of the simulated
processor, set program breakpoints, trace program execution, and dump a memory image into a file.

Changing Registers and Memory with Assignment Commands
Use the = command to assign a value to a register. The = command takes two arguments: the first is the name of a register
and the second is the value to be assigned.

To change the contents of memory, you use one of five different commands, depending on whether you want to set a byte,
two bytes, four bytes, eight bytes, or a C-language string (a sequence of bytes terminated by a byte with the value zero, the
"null" byte). The commands are =1, =2, =4, =8, and =s respectively. Each command takes at least two arguments (some take
more): an address or symbol or expression resolving to an address, and the new value you want placed there.

Summary of Assignment Commands
= register_name value

The value is assigned to the register specified by register_name. The old value is lost. Unless a modifying prefix such as 0d,
0b, or 0o is used, value will be treated as a hexadecimal number. Floating point registers must be set piecewise, using the
register name (f2 through f127) followed by a .s to set the sign, .m to set the mantissa, or .e to set the exponent. The first
general register, r0, is "hardwired" to 0 and any attempt to assign to it will be rejected. Similarly, floating registers f0 and
f1 are "hardwired" to be 0.0 and 1.0, respectively, and predicate register p0 is "hardwired" to 1 and they too cannot be
changed. Some IA-64 registers are read-only according to the IA-64 architecture specification, but all non-hardwired
registers are writable with Ski's = command to assist your debugging.

=1 address value+

=2 address value+

=4 address value+

=8 address value+

The value is assigned to the specified location in memory. The old value at the location is lost. The location may be on
any allocated page, including instruction pages, as discussed in "Page Allocation". Multiple values, separated by spaces,
may be supplied; if so, they will be assigned to sequential memory addresses. Unless a modifying prefix such as 0d, 0b,
or 0o is used, value will be treated as a hexadecimal number.

The =1 command truncates any extra high-order bytes of the value to make a single byte. The =2 command truncates or
pads (with zero) the high order bytes of the value as necessary to make a two-byte quantity. Similarly, the =4 and =8
commands truncate or pad high order bytes to make four- and eight-byte quantities, respectively.

The =2, =4, and =8 commands respect the current value of the psr.be bit, which controls whether multi-byte data
memory references are big-endian (if the bit is set) or little-endian (if the bit is clear). The bit also controls the format of
data display in the Data Window (see "The Data Window" on page 46). You can set the psr.be bit with the command "=
psr.be 1" and you can clear it with "= psr.be 0".

Ski supports physical and virtual addressing. For more information, see "Addresses" on page 55.

=s address string_without_spaces+

The string_without_spaces is assigned to memory locations starting at the location specified by address. A null byte is
added to the end of the string automatically. The old value at the location is lost. The location may be on any allocated
page, including instruction pages, as discussed in "Page Allocation". Multiple values may be supplied, separated by a

8 Debugging Page 75

Ski IA-64 Simulator Reference Manual 1.0L

space. The strings may not contain spaces and quoting it is not a workaround.

Examples of Assignment Commands
= r1 1234

The hexadecimal value 0x1234 is assigned to general register 1. The six upper (more significant) bytes are padded with
zeroes.

= r1 ip+10

The value in ip added to 0x10 is assigned to general register 1.

= f2.m 1234 ; = f2.s 1 ; = f2.e 10033

The hexadecimal value 0x300330000000000001234 is assigned to floating register 2. The register now encodes the
decimal value of -2.2754, approximately. The "= f2.m 1234" part sets the mantissa (the 64 low-order bits). The "=
f2.s 1" part encodes the mantissa sign (the most significant of the 82 bits). The "= f2.e 10033" encodes the 17
exponent bits (which fit between the sign bit and mantissa bits), using a bias of 65,535 (0xffff).

=4 __data_start+30 0d10 13feffff b3

The decimal value 10 is assigned to the four bytes starting 48 bytes past the location of the symbol "__data_start".
Because the value 10 occupies only one byte, three high-order zero bytes will be padded in, so the actual value assigned
will be 0x0000000a. The value 13feffff is assigned to the four bytes starting 52 bytes past the location of
__data_start. The lower four bytes of branch register 3 will be copied into the four bytes starting 56 bytes past the
location of __data_start. (To assign the value 0xb3, use the 0x prefix.)

=s main ThisProgramIsBroken

The string "ThisProgramIsBroken" with a null byte appended is placed in memory overwriting the instructions at the start
of the program, as shown in the "before" and "after" views of Illustration 54: The Original Program Loaded in ski and
Illustration 55: The Program After Assigning a String in ski. (The symbol "main" traditionally marks the first instruction of
a user program written in the C language.) The instructions previously at that location are lost. If you attempt to run the
program, it will almost certainly fail! Note that the string is not quoted and has no whitespace.

Page 76 8 Debugging

Ski IA-64 Simulator Reference Manual 1.0L

8 Debugging Page 77

Illustration 54: The Original Program Loaded in ski

Illustration 55: The Program After Assigning a String in ski

Ski IA-64 Simulator Reference Manual 1.0L

Notes on Assignment

Address Alignment
Ski aligns addresses on natural boundaries: two-byte quantities are aligned on addresses divisible by two, four-byte
quantities are aligned on addresses divisible by four, and eight-byte quantities are aligned on addresses divisible by eight.
For example, the command

=4 __data_start+1 0x12345678

results in the message

Non word-aligned address. Aligned to 0x6000000000001000

and the value is assigned starting one byte before the requested address. ("__data_start" is a program-defined symbol for
0x6000000000001000.)

Bit-encoded Registers
Many registers are bit-encoded. You can assign to individual bits or to entire registers. For example, you can set the psr.it bit
with this:

= psr.it 1

and you can set the entire Processor Status Register (psr) with this:

= psr 1234567890abcdef

A complete list of the registers and bits Ski recognizes is in "Register Names" on page 93.

Page Allocation
Virtual memory is simulated only for system-mode programs. In system-mode, your program is responsible for page
allocation. In application-mode, Ski handles page allocation for you. Either way, if you try to assign data to a non-existent
page using the assignment commands, Ski will refuse, with an error message. The assignment commands never cause a TLB
miss or replacement.

Evaluating Formulas and Formatting Data
The eval command evaluates one or more expressions and prints the result(s) in decimal, and hexadecimal. An example of
the eval command and a more complete discussion are in "Expressions" on page 53.

Summary of The eval Command
eval expression+

Evaluate the expression(s) and print the result(s) on the screen. If the expression is simply a register name, the value is
display in the appropriate format: decimal, hexadecimal, or symbolically, depending on the kind of register. If the
expression has any operators, the result is displayed in decimal and hexadecimal. For example, "eval ip" causes the
current value of the ip register to be displayed symbolically or in hexadecimal. But "eval +ip" causes the value to be
printed out in hexadecimal and decimal.

Program Breakpoints
Program breakpoints are "marks" within the executable code of a program that cause simulation to halt when they are

Page 78 8 Debugging

Ski IA-64 Simulator Reference Manual 1.0L

encountered in the normal flow of a running program. When simulation stops because of a breakpoint, the instruction
pointer (ip) is pointing to the instruction at which the breakpoint is set (before the instruction is executed) and control is
returned to you.

The simulator provides several commands to let you manipulate program breakpoints. These commands are explained in
detail below.

Setting Program Breakpoints
To set a breakpoint in IA-64 code, use the bs command. For IA-32 code, use the iabs command. If given with no
arguments, these commands set a breakpoint at the instruction pointed to by the ip register. If an address is given following
the command, the breakpoint is set at that address. The address must be valid when Ski resumes simulation; Ski will refuse
to simulate code if any breakpoints are set at non-existent addresses. You can set breakpoints in system-mode programs
using physical or virtual addresses. See "Application-Mode and System-Mode Simulation" on page 66 for information
about system-mode programming and "Addresses" on page 55 for information on physical vs. virtual addressing.

Up to ten breakpoints may be set at any one time. They are indicated by the digits "0" through "9" in the first column of the
program window, as the example in Illustration 56: Three Breakpoints, 0, 2, and 1, Visible in xski's Program Window shows.

Deleting Program Breakpoints
Two commands delete program breakpoints. The bd command deletes a specified breakpoint. The bD command deletes all
breakpoints currently set.

Listing Program Breakpoints
The bl command causes a list of currently set program breakpoints to be displayed on the screen, symbolically if possible,

8 Debugging Page 79

Illustration 56: Three Breakpoints, 0, 2, and 1, Visible in xski's Program Window

Ski IA-64 Simulator Reference Manual 1.0L

as shown in Illustration 57: xski's Breakpoint List Window Showing IA-64 and IA-32 Breakpoints. The first column of the
display shows the breakpoint number, for use with the bd command. The second column displays a "P" for physically-
addressed breakpoints and "V" for virtually-addressed breakpoints. The column labelled "Address" is, of course, the
breakpoint address. In the next column, "IA-64" indicates a breakpoint in IA-64 code and "IA-32" indicates a breakpoint in
IA-32 code. The "Command" column is currently unused.

Notes on Program Breakpoints

How Ski Implements Breakpoints
Program breakpoints are implemented by replacing the instruction at the address of each breakpoint with an IA-64 BREAK
instruction or an IA-32 INT3 instruction. The replacement is done at the time the program is started or restarted (e.g., with
cont) and the original instructions are replaced when the program halts. Thus, if your program reads the location where a
breakpoint is set, it will retrieve the BREAK or INT3 instruction instead. Ski detects if your program attempts to write new
data into the breakpoint location and automatically reinstalls the breakpoint after such an update.

You need to tell Ski where to set your IA-64 breakpoints but the IA-64 architecture doesn't provide for addressability of
individual instructions. Instead, instructions are bundled. To work around this, Ski "pretends" that the slot 0 instruction of a
bundle is in the first four bytes of the bundle's location, the slot 1 instruction is in the second four bytes of the bundle, and
the slot 2 instruction is in the third four bytes of the bundle. You can only set breakpoints at these "pretend" locations. For
example, setting a breakpoint at "main", "main+1", "main+2", and "main+3" all result in the breakpoint being set on the
first instruction in the bundle at "main". Similarly, "main+5", "main+6", and "main+7" all correspond to "main+4", and
"main+9", "main+a", and "main+b" all correspond to "main+8", If you try to set a breakpoint at the remaining bytes in the
bundle ("main+c", "main+d", "main+e", and "main+f" in this example), Ski will generate the error message "Illegal
slot field in breakpoint address". Ski can place IA-32 breakpoints at any byte address. If the breakpoint address
doesn't correspond to the beginning of an IA-32 instruction, Ski's behavior is undefined.

Unexpected Breakpoints
The IA-64 breakpoint mechanism uses BREAK.M 0, BREAK.I 0, BREAK.B 0, and BREAK.F 0, and BREAK.X 0 instructions.

Page 80 8 Debugging

Illustration 57: xski's Breakpoint List Window
Showing IA-64 and IA-32 Breakpoints

Ski IA-64 Simulator Reference Manual 1.0L

These are special cases and executing these instructions will not cause "BREAK instruction trap" interrupts for system-mode
programs. The same is true for INT3 instructions in IA-32 code. However, if Ski finds BREAK or INT3 instruction at a
location which doesn't correspond to a breakpoint, Ski's behavior depends on whether the program is simulating in
application-mode or system-mode. Application-mode programs should never generate, or expect to receive, interrupts. If Ski
reaches a BREAK or INT3 instruction in an application-mode program at a location which doesn't correspond to a
breakpoint, simulation halts and Ski displays an error message. System-mode IA-64 programs will receive the BREAK
interrupt.

Summary of Program Breakpoint Commands
bs [address]

Sets an IA-64 breakpoint at the specified address or, if no address is given, at the location pointed to by ip.

iabs [address]

Sets an IA-32 breakpoint at the specified address or, if no address is given, at the location pointed to by ip.

bd breakpoint_number

Deletes the breakpoint numbered by breakpoint_number.

bD

Deletes all breakpoints.

bl

Displays a list of currently set breakpoints.

Data Breakpoints
Data breakpoints can be viewed as temporary access restrictions on an area of data. Access of a datum within the specified
area causes a running program to halt at the instruction which attempted the access. Control is then returned to the user at
command level.

The simulator allows up to ten areas to be specified within which data breakpoints may be set. They may vary in size from
one byte to an entire region. Further, the area may be specified to cause a break either only on reads, writes, or on both reads
and writes. Several commands apply to the manipulation of these data breakpoints.

Setting Data Breakpoints
The dbs command sets data breakpoints. The command requires two arguments and accepts an optional third argument. The
first argument is the starting address of the area which is associated with the break. The second argument specifies the
length of the area (in bytes). The third argument, if present, is the string rw (default), which indicates that the break is to
occur on both reads or writes, r, which indicates that only reads cause breaks, or w, which indicates that only writes cause
breaks.

Deleting Data Breakpoints
Two commands delete data breakpoints. The dbD command deletes all data breakpoints currently set. It takes no arguments
and requires no verification from the user. The dbd command deletes the data breakpoint with the number specified by the
argument.

8 Debugging Page 81

Ski IA-64 Simulator Reference Manual 1.0L

Listing Data Breakpoints
The dbl command causes a list of currently set data breakpoints to be displayed on the screen, symbolically if possible.

Summary of Data Breakpoint Commands
dbs address length [type]

Sets a data breakpoint at the specified address. The length of the area (in bytes) is set to length. Type is the string rw
(default) specifying breaks on reads or writes, r, specifying breaks on reads only, or w, specifying breaks on writes only.

dbd number

Deletes the data breakpoint numbered by number.

dbD

Deletes all data breakpoints.

dbl

Displays on the screen a list of currently set data breakpoints.

Dumping Registers and Memory to a File
You can dump the registers to a file with the "rd" command, described in "Register Window Commands" on page 59. You
can dump a block of memory into a file in two forms: in hexadecimal or in symbolic disassembled form, corresponding
(roughly) to the formats in the Data Window and the Program Window, respectively. The commands to do this are "dd" and
"pd" and are described in "Data Window Commands" on page 63 and "Program Window Commands" on page 60,
respectively.

Saving and Restoring the Simulator State
You may need to interrupt a simulation session and continue it later. For example, you might be tracking down a difficult
bug and want to save the state of the simulator just before the bug occurs so you can replay the problem and try different
strategies. The save command saves the state of the currently executing program to a named disk file. Later, you restore the
saved file with the rest command or the -rest command line flag (described in "Command Line Flags" on page 33).

The save command saves the state of the simulated IA-64 processor, including the overlaid IA-32 registers, the symbol
table for program-defined symbols, and memory. Certain simulator state information, in particular the values of internal
variables and window-related information, is not saved. Linux and MS-DOS state information such as open file handles and
fseek pointers is not currently saved; this will probably change, so you should check the release notes.

Summary of Save and Restore Commands
save filename

Saves an image of the machine state (IA-64 and IA-32) in the specified file.

rest filename

Restores an image of the machine state (IA-64 and IA-32) from the specified file.

Symbol Table Commands
Ski supports two kinds of symbols: program-defined symbols, which are identifiers provided by a compiler, linker, or

Page 82 8 Debugging

Ski IA-64 Simulator Reference Manual 1.0L

human programmer (see "Program-Defined Symbols" on page 56), and internal symbols, which include register names and
internal variables (see "Registers" on page 56 and "Internal Variables" on page 56). Ski places program-defined symbols in
one symbol table; you can see the contents with the symlist command. For IA-64 programs, the ELF executable file
always contains symbols, regardless of whether you used your compiler's debug symbols flag (typically -g), unless you
stripped the symbols. Internal symbols are stored in a second symbol table along with the register names Ski recognizes,
listed in "Register Names" on page 93. The isyms command displays the contents of this table.

Summary of Symbol Commands
symlist [filename]

Shows the list of program-defined symbols sorted by ascending address, as seen in Illustration 58: The symlist Output
from xski. If filename is given, the list is written to the named file, otherwise the list is written to the screen.

isyms [filename]

Writes the list of internal variables to filename if given, otherwise to the screen.

8 Debugging Page 83

Illustration 58: The symlist Output from xski

Ski IA-64 Simulator Reference Manual 1.0L

9 Command Files
The dot (" . ") command temporarily redirects command input to the simulator so that input is taken from the file provided
as an argument to the command. Into this file (a "command file"), you put commands as if you had typed them from the
keyboard. Several commands are specifically applicable to command files and are described below. Command files may be
nested; i.e., one command file may invoke another. The maximum nesting depth is operating-system-dependent.

Some syntax rules that apply to keyboard input don't make sense or would be cumbersome in command files. Most notably,
in ski , a shortcut for re-executing the previous command is to hit the enter/return key on an empty line. This rule is
removed in command files, so you are free to put in blank lines for readability. You can also indent lines as necessary.

The ability to assign values to registers and memory and the flow control features provide the simulator with a powerful
Church-Turing-complete command language; i.e., tasks which can be accomplished in any programming language, subject
to memory constraints, can be accomplished in the command language of the simulator. Command files are particularly
appropriate for initializing the state of the simulator and for implementing complex facilities on top of Ski's native
commands. For example, you can write command files to setup the machine state just before an I/O interrupt, to create
sophisticated breakpointing, and to take complex performance measurements.

Initialization File
If you start Ski with a -i option followed by a filename, the named file will be executed as a command file before the first
prompt (see "Command Line Flags" on page 33). This feature is particularly important for bski , because without a
command file to guide it, bski will only run your program and then quit . If you want to do anything else, you need a
command file. When you combine the -i option with Ski's ability to load a program on the command line, you can create a
powerful debugging environment. For example, this command line:

bski -i test.init -stats -icnt instruction_counts

combined with this test.init command file:

load ia_test 0x26c50

romload test.com etext test.map

uses the command file test.init to load an IA-64 Platform Support File named ia_test (filling in Ski's symbol table for
program-defined symbols), and then loads the IA-32 system-mode program test.com , putting it at the location
corresponding to the symbol " etext " in ia_test . The command file finishes and bski automatically executes a run
command followed by a quit command. To start the run, the ia_test program receives 0x26c50 as its argv[1] value. This
corresponds to the value of the symbol " etext " and tells ia_test where test.com was loaded. The IA-64 program
completes its initialization and transfers control to the IA-32 program, setting the psr.is bit appropriately. When the IA-32
program completes, bski prints out end-of-run performance statistics and writes an instruction frequency count to the file
instruction_counts .

Labels and Control Flow in Command Files
Command files are useful as macro sequences of simple commands and, more interestingly, to create small programs that do
useful things for you: create formatted displays of data structures, create complete breakpoints, and gather run-time
statistics, for example. Two commands provide the ability to change the flow of control in a command file: goto and if .

The goto Command and Labels
A label identifies a particular line in a command file. Labels are defined in "Labels" on page 57. No other text can appear on
a label line.

Page 84 9 Command Files

Ski IA-64 Simulator Reference Manual 1.0L

The goto command takes a label as an argument and searches the command file for a line with that label. Execution
resumes at the first command after the label. There is no good reason to have a label appear more than once in a particular
command file; if this condition occurs, only the first occurrence of the label will be noticed and all subsequent occurrences
will be ignored. The goto command can only be executed in a command file. A goto may go forward or backward. An
example of using goto and a label is:

loop:

... other commands ...

goto loop

The if Command
The if command allows for conditional execution. If the expression following the command evaluates to nonzero, the
remainder of the line is executed; otherwise it is ignored. (No spaces are allowed in the expression.) For example, this
command file steps through a IA-64 application-mode simulation 600 instructions at a time until the program finishes,
printing the contents of general register 32 after each step:

loop:

step 600

eval r32

if !$exited$ goto loop

quit

If a colon surrounded by spaces is present on the line, the remainder of the line is taken to be an "else" clause. That is, if the
if expression evaluates to nonzero, the remainder of the line up to but not including the colon is executed; if zero, that part
of the line is ignored and execution continues immediately following the colon. For example, the following command file
line sets the contents of general register 4 to zero or one depending on whether the sum of the contents of general integer 1
and 2 are equal to the contents of the location pointed to by general register 13.

if (r1+r2)==*r13 = r4 0 : = r4 1

Comments in Command Files
To document command files, you can add comments� any characters following an octothorpe (also called a "pound sign" or
"sharp sign" and shown, typically, as " # ") are ignored by the command interpreter. Examples of comments are in Table 6:
An Example Command File to Compute Fibonacci Numbers

An Example Command File
Command files are easy to write. The command file in Table 6: An Example Command File to Compute Fibonacci Numbers
for computing Fibonacci numbers was written in less than five minutes and most of that time was spent making the
comments correct.

9 Command Files Page 85

Ski IA-64 Simulator Reference Manual 1.0L

Compute and print Fibonacci numbers from 1 to 50.
Initialize variables
= r10 1 # Hold n-2� th value
= r11 1 # Hold n-1� th value
= r12 0 # Temporary holding place for n-1� th value
= r13 0 # Loop counter
Print out first two Fibonacci numbers (initial values of r10 & r11)
eval r10
eval r11
Calculate and print the rest of the numbers. The last line has the
stopping value of the loop index. (This is a simple counting loop.)
loop:
 eval +r11 # � +� makes an expression: decimal and hex printing
 = r12 r11 # Compute n� th Fibonacci term
 = r11 r11+r10
 = r10 r12
 = r13 r13+1 # Increment loop counter
 if r13<0d50 goto loop # Loop again?

Table 6: An Example Command File to Compute Fibonacci Numbers

Summary of Command File Commands
. filename

Executes commands in the given command file. The file is opened and its contents are executed as if they were entered
from the keyboard. When the contents of a non-nested command file are exhausted, xski and ski resume keyboard
input and bski executes a run command followed by a quit command. When a nested command file is exhausted,
control returns to the next-higher-level command file.

if expression-without-spaces true-command

if expression-without-spaces true-command : false-command

In the first form, causes the rest of the line to be ignored if expression-without-spaces evaluates to zero. Otherwise,
true-command is executed. In the second form, if expression-without-spaces evaluates to nonzero, the true-command is
executed. Otherwise, the false-command is executed.

The if command may be executed from the keyboard. In combination with xski 's Command History (see "The xski
Main Window" on page 48) or ski 's command repetition mechanism (see "The ski Command Window" on page 49),
this can be quite powerful.

goto label

In a command file (only), causes execution to continue following the first line in the file which contains the label .
Goto's may be forward or backward.

comment

The " # " and all characters following it until the next newline are ignored.

label :

The colon (" : ") command marks a goto label. All characters following the " : " and preceding the next newline are
ignored.

Page 86 9 Command Files

Ski IA-64 Simulator Reference Manual 1.0L

10 Command Reference
In the command descriptions that follow, this face indicates literal text you should type, this face indicates operand text
you should modify, [bracketed text] indicates text you may choose to omit (never type the brackets), and the + symbol
indicates items you may repeat. The syntax of the command language is described in "Command Language" on page 52.

The order in which commands appear here is the order in which they may be abbreviated: any command may be abbreviated
to as few letters as are needed to distinguish it from all commands preceding it in the list below. For example, the "step"
command may be spelled out in full or abbreviated as "ste", "st", or "s". The "save" command can be spelled out in full
or abbreviated as "sav" or "sa". It can't be abbreviated as "s" because it follows "step" in the list below.

. filename

Execute commands from the command file specified by filename. The file is opened and its contents are executed as if
they were entered from the keyboard. When the contents are exhausted, ski and xski resume reading commands from
the keyboard. bski, on the other hand, executes a run command and then a quit command (unless, of course, the
command file already executed a quit command). Command files can be nested to a reasonable level. See "Command
Files" on page 84.

comment

Comments may be used to help document the design and implementation of command files. A comment is any part of
a line following an octothorpe ("#"). The octothorpe and everything following it on the line are ignored. See
"Comments in Command Files" on page 85.

label:

Labels are targets for goto commands and are valid only in command files. See "Labels and Control Flow in
Command Files" on page 84

= register_name value

Assign value to the register specified by register_name. Unless a modifying prefix such as 0d, 0o, or 0b is used, value
will be treated as a hexadecimal number. See "Changing Registers and Memory with Assignment Commands" on page
75. The register names recognized by Ski are listed in "Register Names" on page 93.

=1 address value+

=2 address value+

=4 address value+

=8 address value+

The value is assigned to the specified location in memory. The old value at the location is lost. The location may be on
any allocated page, including instruction pages. Multiple values separated by whitespace may be supplied; if so, they
will be assigned to sequential memory addresses. Unless a modifying prefix such as 0d, 0o, or 0b is used, value will be
treated as a hexadecimal number. See "Changing Registers and Memory with Assignment Commands" on page 75.

The =1 command truncates any extra high-order bytes of the value to make a single byte. The =2 command truncates
or pads (with zero) the high order bytes of the value as necessary to make a two-byte quantity. Similarly, the =4 and =8
commands truncate or pad high order bytes to make four- and eight-byte quantities, respectively. The psr.be bit
controls whether the data is stored in big-endian or little-endian format.

=s address string_without_spaces

10 Command Reference Page 87

Ski IA-64 Simulator Reference Manual 1.0L

The string_without_spaces is assigned to memory locations starting at the location specified by address. A null byte is
added to the end of the string automatically. The old value at the location is lost. The location may be on any allocated
page, including instruction pages. Multiple values may not be supplied. The string may not contain spaces and quoting
it is not a workaround. See "Changing Registers and Memory with Assignment Commands" on page 75.

bs [address]

Set breakpoint at the location specified by the current value of ip or at the specified address. (IA-64 code only). See
"Setting Program Breakpoints" on page 79.

bD

Delete all breakpoints. See "Deleting Program Breakpoints" on page 79.

bd breakpoint_number

Delete breakpoint breakpoint_number. Use the bl command to get a list of all breakpoints and their corresponding
numbers. See "Deleting Program Breakpoints" on page 79.

bl

Display a list of current breakpoints. See "Listing Program Breakpoints" on page 79.

cont

Continue simulating the program from the current ip value. Most commonly used after the simulator stops at a
breakpoint. See "Program Execution" on page 70.

dj [address]

Jump the Data Window display to the specified address. If no address is given, the window display changes to the
previous location, providing a handy way to swap the display between two different parts of memory. See "Data
Window Commands" on page 63.

db [count]

Move the Data Window backward count lines or one windowful if no count is given. See "Data Window Commands"
on page 63.

dbndl

Display the Data Window contents as instruction bundles. See "Data Window Commands" on page 63.

dbs address length [r|w|rw]

Set data breakpoint covering the memory area of length bytes starting at address. See "Setting Program Breakpoints"
on page 79

dbD

Delete all data breakpoints. See "Deleting Program Breakpoints" on page 79.

dbd breakpoint_number

Delete data breakpoint breakpoint_number. Use the dbl command to get a list of all breakpoints and their
corresponding numbers. See "Deleting Program Breakpoints" on page 79.

dbl

Page 88 10 Command Reference

Ski IA-64 Simulator Reference Manual 1.0L

Display a list of current data breakpoints. See "Listing Program Breakpoints" on page 79

dd starting_address ending_address [filename]

Dump memory contents to the screen or to the file given by filename. The range dumped is between starting_address
and ending_address inclusive. The dump is formatted as hexadecimal. See "Data Window Commands" on page 63.

df [count]

Move the Data Window forward count lines or one windowful if no count is given. See "Data Window Commands" on
page 63.

dh

Display Data Window contents in hexadecimal format. See "Data Window Commands" on page 63.

eval expression_without_spaces+

Evaluate one or more expression_without_spaces and print the result in an appropriate format, typically hexadecimal,
and/or decimal, or symbolically. An expression_without_spaces can include numbers, registers, internal variables,
program-defined symbols, operators, and parentheses for grouping. See "Evaluating Formulas and Formatting Data" on
page 78.

fr

ski: Show the floating point registers in the Register Window. See "Register Window Commands" on page 59.

xski: Toggle the display of the floating point registers pane. See "Register Window Commands" on page 59.

goto label

Causes execution to continue following the first line in the file which contains the label. Goto's may be forward or
backward. Goto's are valid only in command files. See "The goto Command and Labels" on page 84.

gr

ski: Show the general registers in the Register Window. See "Register Window Commands" on page 59.

xski: Toggle the display of the general registers pane. See "Register Window Commands" on page 59.

help [command_name]

Display a list of the commands Ski recognizes, or, if a command_name is specified, a syntax description for that
command. See "Command Entry" on page 52.

iar

ski: Show the IA-32 registers in the Register Window. See "Register Window Commands" on page 59.

xski: Toggle the display of the IA-32 registers pane. See "Register Window Commands" on page 59.

iabs [address]

Set IA-32 breakpoint at address or at the current value of ip if address is omitted. (IA-32 code only) See "Setting
Program Breakpoints" on page 79.

iaload filename address [mapfile [args]+]

10 Command Reference Page 89

Ski IA-64 Simulator Reference Manual 1.0L

Prepare for IA-32 application-mode simulation: Load an IA-32 executable file (.com or .exe) and prepare to pass the
program args using the MS-DOS command line parameter mechanism. address specifies where to load the program.
mapfile provides Ski with the mapping between program-defined symbols and their addresses and must specify an
ASCII text file exactly compatible with mapfiles produced by the Microsoft "ML" linker. See "How to Load a
Program" on page 69.

if expression_without_spaces true_command [: false_command]

Execute true_command if the expression_without_spaces evaluates to a non-zero value, false_command if it evaluates
to zero. See "The if Command" on page 85.

isyms [filename]

Write internal symbols to the screen or to the file given by filename. See "Symbol Table Commands" on page 82.

load filename [args]+

Prepare for IA-64 application-mode simulation: Load the IA-64 ELF executable program file given by filename and
prepare to pass the program args using the C language argc/argv parameter mechanism. See "How to Load a Program"
on page 69.

pj [address]

Jump the Program Window display to the specified address. If no address is given, the window display changes to the
previous location, providing a handy way to swap the display between two different parts of the program. See
"Summary of Program Loading Commands" on page 69.

pa

Display the program in assembly language format only. (IA-64 only) See "Summary of Program Loading Commands"
on page 69.

pb [count]

Move the Program Window backward count IA-64 bundles or IA-32 instructions, or one windowful less one bundle or
instruction if no count is given. See "Summary of Program Loading Commands" on page 69.

pd starting_address ending_address [filename]

Dump memory to the screen or to the file given by filename. The range dumped is between starting_address and
ending_address inclusive. The dump is formatted as disassembled instructions, without source code. See "Summary of
Program Loading Commands" on page 69..

pf [count]

Move the Program Window forward count IA-64 bundles or IA-32 instructions, or one windowful less one bundle or
instruction if no count is given. See "Summary of Program Loading Commands" on page 69.

pm

Display an IA-64 program in both source and assembly form. The source code file must be available to the simulator in
the location recorded in the executable file when this command is issued. The source code is displayed for
convenience; it cannot be modified or interacted with. Mixed display may not be useful if a high degree of
optimization was applied during compilation. (IA-64 only) See "Summary of Program Loading Commands" on page
69.

quit [return_value_for_shell]

Page 90 10 Command Reference

Ski IA-64 Simulator Reference Manual 1.0L

Quit the simulator. If no return_value_for_shell is given, a zero value is returned to the shell. Return values are useful
in shell script programming. See "Quitting Ski" on page 35.

run

Simulate the program. Using the C language argc/argv mechanism, Ski will pass the program a copy of the command
line parameters Ski received on its command line, or, if specified, the command line parameters provided with the
load and iaload commands. See "Program Execution" on page 70.

rest filename

Restore the state of a simulated processor from the specified file and prepare to resume a suspended simulation. Only
the registers and memory of the simulated processor are restored; state information private to the simulator such as
cycle counts is not restored. See "Saving and Restoring the Simulator State" on page 82.

rf [count]

Moves the Register Window "forward" (scroll down) through the currently-displayed register set. The Register
Window is scrolled count lines. If count is omitted, the Register Window scrolls down one windowful less one line, i.e.
the last line of the old window is displayed as the first line of the new window. (ski only) See "ski Register Window
Commands" on page 59.

rb [count]

Moves the Register Window "backward" (scroll up) through the currently-displayed register set. The Register Window
is scrolled count lines. If count is omitted, the Register Window scrolls up one windowful less one line, i.e. the first
line of the old window is displayed as the last line of the new window. (ski only) See "ski Register Window
Commands" on page 59.

rd [filename]

Dump the Register Window to the screen or to the file given by filename. See "Register Window Commands" on page
59.

romload filename address [mapfile]

Load an MS-DOS .com-format file for IA-64, IA-32, or mixed system-mode simulation. address specifies where to
load the program. mapfile provides Ski with the mapping between program-defined symbols and their addresses and
must specify an ASCII text file exactly compatible with mapfiles produced by the Microsoft "ML" linker. See "How to
Load a Program" on page 69.

step [count

Execute count instructions or, if no count is specified, one instruction. See "Program Execution" on page 70.

step until expression_without_spaces

Execute instructions until the expression_without_spaces has a non-zero value. See "Program Execution" on page 70.

save filename

Save the state of a simulated processor in the file given by filename. Only the registers and memory of the simulated
processor are saved; state information private to the simulator such as cycle counts is not saved. See "Saving and
Restoring the Simulator State" on page 82.

sdt

10 Command Reference Page 91

Ski IA-64 Simulator Reference Manual 1.0L

Show the Data Translation Lookaside Buffer (DTLB) (system-mode only). See "Symbol Table Commands" on page
82.

sit

Show Instruction Translation Lookaside Buffer (ITLB) (system-mode only). See "Symbol Table Commands" on page
82.

sr

ski: Show the system registers (Control Registers, Region Registers, Debug Registers, Protection Key Registers, Data
Breakpoint Registers, Instruction Breakpoint Registers, Performance Monitor Configuration Registers, Performance
Monitor Data Registers) in the Register Window. See "Register Window Commands" on page 59.

xski: Toggle the display of the system registers pane. See "Register Window Commands" on page 59.

symlist [filename]

Write program-defined symbols to the screen or to the file given by filename. See "Symbol Table Commands" on page
82.

ur

ski: Show the user registers (Predicate Registers, Branch Registers, Application Registers, Instruction Pointer, User
Mask) in the Register Window. See "Register Window Commands" on page 59.

xski: Toggle the display of the user registers pane. See "Register Window Commands" on page 59.

Page 92 10 Command Reference

Ski IA-64 Simulator Reference Manual 1.0L

11 Register Names
IA-64 registers are fully described in other documents. This chapter provides a list for convenience only. The register names
are documented here as recognized by Ski and, in a few cases, don't exactly match the names in other documents due to
program limitations. For example, the floating point registers must be accessed in three pieces: the mantissa part, the sign
part, and the (biased) exponent part. Similarly, the "Not a Thing" bits of the various registers are separate entities for Ski.
Individual bits of complex registers such as the psr are documented here as well, corresponding to the names by which Ski
recognizes them.

IA-64 Registers

al, ah, ax, eax IA-32 Registers: al and ah are byte-wide, ax is al and ah taken together as two bytes, eax is four bytes
wide with ax as the two least significant bytes.

ar0 - ar127 IA-64 Application Registers

b0 - b7 IA-64 Branch Registers

bl, bh, bx, ebx IA-32 Registers: bl and bh are byte-wide, bx is bl and bh taken together as two bytes, ebx is four bytes
wide with bx as the two least significant bytes.

bp, ebp IA-32 Base Pointers: bp is two bytes wide, ebp is four bytes wide with bp as the two least significant
bytes.

bsp IA-64 Register Save Engine (RSE) Backing Store Pointer Register

bspst IA-64 Register Save Engine (RSE) Backing Store Pointer Register for memory stores

ccv IA-64 Compare and Exchange Value Register

cl, ch, cx, ecx IA-32 Registers: cl and ch are byte-wide, cx is cl and ch taken together as two bytes, ecx is four bytes
wide with cx as the two least significant bytes.

cmcv IA-64 Corrected Machine Check Vector Register

cr0 - cr127 IA-64 Control Registers

cs IA-32 Code Segment Register

csd IA-32 Code Segment Register Descriptor

dbr0 - dbr15 IA-64 Data Breakpoint Registers

dcr IA-64 Default Control Register

dl, dh, dx, edx IA-32 Registers: dl and dh are byte-wide, dx is dl and dh taken together as two bytes, edx is four bytes
wide with dx as the two least significant bytes.

di, edi IA-32 Arithmetic Registers: di is two bytes wide, edi is four bytes wide with di as the two least significant

11 Register Names Page 93

Ski IA-64 Simulator Reference Manual 1.0L

bytes.

ds IA-32 Data Segment Register

dsd IA-32 Data Segment Register Descriptor

ec IA-64 Epilog Count Register

eflags IA-32 Flags Register

eflags.ac IA-32 Alignment Check bit

eflags.af IA-32 Auxiliary Carry Flag bit, also called the IA-32 Adjust Flag bit

eflags.be IA-32 Below Equal Flag bit

eflags.cf IA-32 Carry Flag bit

eflags.df IA-32 Direction Flag bit

eflags.id IA-32 ID Flag bit

eflags.if IA-32 Interruption Flag bit

eflags.iopl IA-32 I/O Privilege Level bit

eflags.le IA-32 Less Equal Flag bit

eflags.lt IA-32 Less Than Flag bit

eflags.nt IA-32 Nested Task bit

eflags.of IA-32 Overflow Flag bit

eflags.pf IA-32 Parity Flag bit

eflags.rf IA-32 Resume Flag bit

eflags.sf IA-32 Sign Flag bit

eflags.tf IA-32 Trap Flag bit

eflags.vm IA-32 Virtual 8086 Mode bit

eflags.zf IA-32 Zero Flag bit

eoi IA-64 End of Interrupt

es IA-32 "Extra" Segment Register

esd IA-32 "Extra" Segment Register Descriptor

Page 94 11 Register Names

Ski IA-64 Simulator Reference Manual 1.0L

esp IA-32 four byte Stack Pointer; see "iasp" below

f0.e, f1.e, & f127.e
IA-64 Floating-point Register exponent parts

f0.m, f1.m, & f127.m
IA-64 Floating-point Register mantissa parts

f0.s, f1.s, & f127.s
IA-64 Floating-point Register sign bits

fpsr IA-64 Floating-point Status Register

fpsr.traps IA-64 FPSR Trap Bits

fpsr.sf0 IA-64 FPSR Status Field 0

fpsr.sf0.ftz IA-64 FPSR Status Field 0, Flush-to-Zero mode bit.

fpsr.sf0.wre IA-64 FPSR Status Field 0, Widest range exponent mode bit

fpsr.sf0.pc IA-64 FPSR Status Field 0, Precision control bits

fpsr.sf0.rc IA-64 FPSR Status Field 0, Rounding control bits

fpsr.sf0.v IA-64 FPSR Status Field 0, IEEE Invalid Operation status bit

fpsr.sf0.d IA-64 FPSR Status Field 0, Denormal/Unnormal Operand status bit

fpsr.sf0.z IA-64 FPSR Status Field 0, IEEE Zero Divide status bit

fpsr.sf0.o IA-64 FPSR Status Field 0, IEEE Overflow status bit

fpsr.sf0.u IA-64 FPSR Status Field 0, IEEE Underflow status bit

fpsr.sf0.i IA-64 FPSR Status Field 0, IEEE Inexact status bit

fpsr.sf1 IA-64 FPSR Status Field 1

fpsr.sf2 IA-64 FPSR Status Field 2

fpsr.sf2.pc IA-64 FPSR Status Field 2, Precision control bits

fpsr.sf2.rc IA-64 FPSR Status Field 2, Rounding control bits

fpsr.sf2.v IA-64 FPSR Status Field 2, IEEE Invalid Operation status bit

fpsr.sf2.d IA-64 FPSR Status Field 2, Denormal/Unnormal Operand status bit

fpsr.sf2.z IA-64 FPSR Status Field 2, IEEE Zero Divide status bit

11 Register Names Page 95

Ski IA-64 Simulator Reference Manual 1.0L

fpsr.sf2.o IA-64 FPSR Status Field 2, IEEE Overflow status bit

fpsr.sf2.u IA-64 FPSR Status Field 2, IEEE Underflow status bit

fpsr.sf2.i IA-64 FPSR Status Field 2, IEEE Inexact status bit

fpsr.sf3 IA-64 FPSR Status Field 3

fs IA-32 additional extra Segment Register

fsd IA-32 additional extra Segment Register Descriptor

gdtd IA-32 Global Descriptor Table Descriptor

gp IA-64 Global Pointer, a synonym for r1

gp.nat IA-64 Global Pointer Not-a-Thing bit, a synonym for r1.nat

gs IA-32 additional extra Segment Register

gsd IA-32 additional extra Segment Register Descriptor

iasp, esp IA-32 Stack Pointer: iasp is two bytes wide, esp is four bytes wide with iasp as the two least significant
bytes. (The x86 mnemonic for the iasp register is "sp" but that conflicts with the IA-64 Stack Pointer of
the same name, hence the name change for IA-32.)

ibr0 - ibr15 IA-64 Instruction Breakpoint Registers

ifa IA-64 Interruption Faulting Address Register

ifs IA-64 Interruption Function State

iha IA-64 Interruption Hash Address

iim IA-64 Interruption Immediate Register

iip IA-64 Interruption Instruction Bundle Pointer

iipa IA-64 Interruption Instruction Previous Address

ip IA-64 Instruction Pointer

ipsr IA-64 Interruption Processor Status Register

irr0-irr3 IA-64 Interrupt Request Registers

isr IA-64 Interruption Status Register

itc IA-64 Interval Time Counter

itir IA-64 Interruption TLB Insertion Register

Page 96 11 Register Names

Ski IA-64 Simulator Reference Manual 1.0L

itm IA-64 Interval Timer Match Register

itv IA-64 Interval Timer Vector

iva IA-64 Interrupt Vector Address

ivr IA-64 Interrupt Vector Register

k0 - k7 IA-64 Kernel Registers

lc IA-64 Loop Count Register

ldt IA-32 Local Descriptor Table

ldtd IA-32 Local Descriptor Table Descriptor

lid IA-64 Local Interrupt ID

lrr0-lrr1 IA-64 Local Redirection Registers

p0 - p63 IA-64 Predicate Registers

pfs IA-64 Previous Function State

pkr0 - pkr15 IA-64 Protection Key Registers

pmc0 - pmc15 IA-64 Performance Monitor Configuration Registers

pmd0 - pmd15 IA-64 Performance Monitor Data Registers

pmv IA-64 Performance Monitoring Vector

psr IA-64 Processor Status Register

psr.ac IA-64 PSR Alignment Check bit

psr.be IA-64 PSR Big-Endian bit

psr.bn IA-64 PSR Register Bank bit

psr.cpl IA-64 PSR Current Privilege Level

psr.da IA-64 PSR Disable Access and Dirty-bit faults bit

psr.db IA-64 PSR Debug Breakpoint fault bit

psr.dd IA-64 PSR Data Debug fault disable bit

psr.dfh IA-64 PSR Disabled Floating-point High bit

psr.dfl IA-64 PSR Disabled Floating-point Low bit

11 Register Names Page 97

Ski IA-64 Simulator Reference Manual 1.0L

psr.di IA-64 PSR Disable Instruction set transition bit

psr.dt IA-64 PSR Data address Translation bit

psr.ed IA-64 PSR Exception Deferral bit

psr.i IA-64 PSR Interrupt unmask bit

psr.ic IA-64 PSR Interrupt Collection bit

psr.id IA-64 PSR Instruction Debug fault disable bit

psr.is IA-64 PSR Instruction Set bit

psr.it IA-64 PSR Instruction address Translation bit

psr.lp IA-64 PSR Lower Privilege transfer trap bit

psr.mfh IA-64 PSR Floating-point High modified bit

psr.mfl IA-64 PSR Floating-point Low modified bit

psr.mc IA-64 PSR Machine Check abort mask bit

psr.pk IA-64 PSR Protection Key enable bit

psr.pp IA-64 PSR Privileged Performance monitor enable bit

psr.ri IA-64 PSR Restart Instruction slot number

psr.rt IA-64 PSR Register stack Translation bit

psr.si IA-64 PSR Secure Interval timer bit

psr.sp IA-64 PSR Secure Performance monitors bit

psr.ss IA-64 PSR Single Step enable bit

psr.tb IA-64 PSR Taken Branch trap bit

psr.um IA-64 PSR User Mask bits

psr.up IA-64 PSR User Performance monitor enable bit

pta IA-64 Page Table Address

r0, r1, & r127 IA-64 General Registers

r0.nat, & r127.nat
IA-64 General Register Not-a-Thing bits

Page 98 11 Register Names

Ski IA-64 Simulator Reference Manual 1.0L

rnat IA-64 Register Save Engine (RSE) Not-a-Thing (NaT) Collection Register

rp IA-64 Return Pointer, a synonym for b0

rr0 - rr7 IA-64 Region Registers

rrbf IA-64 CFM Register Rename Base for floating-point registers

rrbg IA-64 CFM Register Rename Base for general registers

rrbp IA-64 CFM Register Rename Base for predicate registers

rsc IA-64 Register Stack Configuration Register

si, esi IA-32 Arithmetic Registers: si is two bytes wide, esi is four bytes wide with si as the two least significant
bytes.

sof IA-64 CFM Size of Stack frame

sol IA-64 CFM Size of Locals Portion of Stack frame

sor IA-64 CFM Size of Rotating Portion of Stack frame

sp IA-64 Stack Pointer, a synonym for r12. For the IA-32 equivalent of the x86 "sp" register, see the
description of "iasp" above.

sp.nat IA-64 Stack Pointer Not-a-Thing bit, a synonym for r12.nat.

ss IA-32 Stack Segment Register

ssd IA-32 Stack Segment Register Descriptor

tpr IA-64 Task Priority Register

unat IA-64 User Not-a-Thing (NaT) Collection Register

11 Register Names Page 99

Ski IA-64 Simulator Reference Manual 1.0L

12 Internal Variable Names
Ski has one combined symbol table for registers and internal variables. (See "Registers" on page 56 and "Internal Variables"
on page 56.) A separate symbol table describes program-defined symbols.

Internal Variables

$cycles$ Number of "virtual cycles" simulated.

$exited$ The value 0 until the simulated program exits. Then the variable takes the value 1.

$heap$ The address of the bottom of the simulated heap.

$insts$ The number of instructions simulated so far.

Page 100 12 Internal Variable Names

Ski IA-64 Simulator Reference Manual 1.0L

13 Simulator Status and Error Messages
The following is a description of some of the status and error messages which can be produced by the simulator. "Fault" and
"Trap" messages are usually the result of a program trying to do something that, under Linux, would cause a signal to be
generated.

The "%" constructs are printf() substitutions. Where "%s" appears, a string will be substituted in the error message at
runtime. Where "%llx" appears, a 64-bit hexadecimal integer will be substituted in the error message at runtime. See the
printf() man page for more information on % substitutions.

All breakpoints deleted

You executed the bD command. Ski is confirming that it has deleted all the breakpoints. This is a status message, not an
error message. See See "Deleting Program Breakpoints" on page 79.

All breakpoints in use

You tried to set a breakpoint but all ten are in use. Use the bl command to list them and then the bd or bD commands
to free up some for you to use. See "Setting Program Breakpoints" on page 79.

Assignment failed

You tried to use the =1, =2, =4, =8, or =s commands to write data to an invalid location. Ski creates new pages of
memory when the simulated program needs them; Ski will not create new pages in response to the assignment
commands. See "Changing Registers and Memory with Assignment Commands" on page 75.

Bad breakpoint number. (Use 0-9)

You tried to specify a breakpoint but used an invalid specifier. There are ten breakpoints, numbered 0 through 9. See
"Deleting Program Breakpoints" on page 79.

Break instruction fault

A non-Ski-breakpoint BREAK instruction was executed. One possible cause is a wild branch to page with all zeroes.
This can only happen for application-mode programs; system-mode programs handle this fault through the interruption
mechanism. See "How Ski Implements Breakpoints" on page 80 and "Interruptions" on page 71.

Breakpoint already set at that location

You tried to set a breakpoint at an address where there already is a breakpoint. Your request is ignored; Ski will not set
two breakpoints at one address. See "Setting Program Breakpoints" on page 79.

Breakpoint #%d at %s (%s) deleted

You used the bd command to delete a specific breakpoint. Ski is confirming that it has deleted the breakpoint. This is a
status message, not an error message. See "Deleting Program Breakpoints" on page 79.

Breakpoint (IA-64) at %s

An IA-64 breakpoint has been reached. This is a status message, not an error message. See "Program Breakpoints" on
page 78.

Breakpoint (IA-32) at %s

An IA-32 breakpoint has been reached. This is a status message, not an error message. See "Setting Program

13 Simulator Status and Error Messages Page 101

Ski IA-64 Simulator Reference Manual 1.0L

Breakpoints" on page 79.

Breakpoint #%d wasn't set

You used the bd command to delete a specific breakpoint but that breakpoint doesn't exist. Did you specify the right
breakpoint? Use the bl command to list the breakpoints. See "Deleting Program Breakpoints" on page 79 and perhaps
"Listing Program Breakpoints" on page 79.

Cannot access registers outside current frame

You tried to use the = command to assign a new value to a register that isn't in the set of registers currently visible to
your program. The only registers for which this can occur are the General Registers (gr) and their NaT bits. Ski
faithfully implements IA-64 register stacking and rotation. Look at the most recent ALLOC instruction.

Cannot open file %s (%s) for %s

This generic error message indicates that Ski tried to open a file and failed. The first %s field is replaced with the
filename you provided, the second %s field is replaced with the filename Ski tried to use after tilde expansion, and the
third %s field is replaced with the mode Ski tried to use, either "reading", "writing", or "appending". Check that
you typed the filename correctly and that the directories you specified are accessible. Is there a permissions problem or
a network failure, perhaps? See "Filenames" on page 57.

Construct DWARF image: can't find .debug_info section

You told Ski to load a program. Ski couldn't find the part of the executable file containing source code line number
information. As a result, Ski won't be able to show source code in the Program Window. See "Program Window
Commands" on page 60.

Could not open %s for reading

You told Ski to load a program but Ski couldn't open the file you specified. Perhaps you specified a file that is doesn't
exist or a pathname that includes non-existent or inaccessible directories? See "Program Loading" on page 68.

couldn't find label %s

A command file tried to use the goto command but Ski can't find the label to which the goto refers. The %s field is
replaced with the label. Perhaps the label is spelled incorrectly? See "The goto Command and Labels" on page 84.

Couldn't open file � %s'. Was ski started in the right directory?

Ski loaded a program to simulate, per your request, and tried to access source code pointed to by that program. But, for
some reason, Ski couldn't open the specified file. This can happen, for example, if files have been moved after
compilation. See "Program Window Commands" on page 60.

Couldn't open instruction count file

You started bski with the -icnt option but bski couldn't open the file you specified. Perhaps you specified a file that
is write-protected or a pathname that includes non-existent or inaccessible directories? See "Using bski for Batch
Simulations" on page 31 and "Command Line Flags" on page 33.

Data larger than a %s. Truncated to 0x%llx

You used the =, =1, =2, =4, or =8 commands to write data to a register or to memory. You provided more data than
would fit, so Ski truncated the excess most significant part away and used the least significant part. The %s field on the
left is how many bytes Ski needed. The %llx field on the right is the value after truncation. See "Changing Registers

Page 102 13 Simulator Status and Error Messages

Ski IA-64 Simulator Reference Manual 1.0L

and Memory with Assignment Commands" on page 75.

Error reading � %s' line: %d

Ski tried to display the source code corresponding to an IA-64 program you loaded. For some reason, it failed to read a
line from the file represented by the %s field, at the line number represented by the %d field. Perhaps the file
permissions are wrong or a remote file has suddenly become inaccessible? See "The Program Window" on page 41 and
the discussion of the pm command in "Program Window Commands" on page 60.

Error: unrecognized restore file tag: %s

You are trying to restore a saved simulator state and either the save file is corrupt or Ski is broken. See "Saving and
Restoring the Simulator State" on page 82.

Expression aligned to (mod %lld) boundary

You tried to assign an address to a register that requires an address on a specific boundary, but the address you
specified isn't on that boundary. Ski has adjusted the address for you, but you should check to make sure the
adjustment matches your intent. See "Changing Registers and Memory with Assignment Commands" on page 75.

Expression > 47

You tried to assign a value greater than 47 to the rrbp register.

Expression > 95

You tried to assign a value greater than 95 to the rrbf or rrbf register.

File size > Memory size

You tried to load an IA-64 program but the library Ski uses to parse ELF files can't make sense of the file. Are you sure
it's an IA-64 program and not an IA-32 program, an object file, or something completely different? See "Program
Loading" on page 68.

Following values could not be assigned:

You supplied multiple values in an =1, =2, =4, or =8 command. Some of the values overflowed on to the next page of
memory but that page hasn't been allocated. Ski creates new pages of memory when the simulated program needs
them; Ski will not create new pages in response to assignment commands. See "Changing Registers and Memory with
Assignment Commands" on page 75.

FP exception fault

An IA-64 application-mode program attempted to execute a floating point operation that doesn't make sense, such as
divide by zero or square root of a negative number. This can only happen for IA-64 application-mode programs; IA-64
system-mode programs handle this fault through the interruption mechanism. See "Program Simulation" on page 66
and "Interruptions" on page 71.

FP exception trap

An IA-64 application-mode program caused a floating-point trap. This trap, like all traps, stops simulation of
application-mode programs. A trap is different from a fault: faults are detected before the machine state is changed, for
example when an attempt is made to divide by zero. Traps are detected after the machine state is changed, for example,
when numeric overflow occurs. This can only happen for application-mode programs; system-mode programs handle
this trap through the interruption mechanism. See "Program Simulation" on page 66 and "Interruptions" on page 71.

13 Simulator Status and Error Messages Page 103

Ski IA-64 Simulator Reference Manual 1.0L

goto only allowed inside a command file

You tried to execute the goto command from the keyboard. The command is only legal within command files. See
"The goto Command and Labels" on page 84.

Halting Simulation

Your IA-64 system-mode program executed a BREAK 0 instruction at a place where there is no Ski breakpoint. See
"How Ski Implements Breakpoints" on page 80 and "System-Mode IA-64 Programs" on page 67.

help: Unknown command: %s

You asked Ski to tell you about a particular command but the command you asked for doesn't exist. Try the help
command alone to get a list of all of the commands Ski understands. See "Command Entry" on page 52.

IA-32 program terminated

An IA-32 application-mode program finished executing and invoked an MS-DOS system function to terminate itself.
The function it used doesn't provide a way for the program to return a completion status. See "Application-Mode
IA-32 Programs" on page 66.

IA-32 program terminated with status %d

Your IA-32 application-mode program finished execution in the normal fashion and invoked an MS-DOS system
function to terminate itself and indicate a completion status. See "Application-Mode IA-32 Programs" on page 66.

Ignored attempt to write a Read-Only symbol

Some registers and symbols recognized by Ski are read-only. You tried to modify one of them. See "Symbolic
Arguments" on page 55 and "Changing Registers and Memory with Assignment Commands" on page 75.

Illegal expression: %s

You used an expression that can't be parsed. Check parentheses, variable names, and the matching of operands and
operators. See "Expressions" on page 53.

%s: Illegal number of arguments < %d >:

You passed too few or too many operands with a Ski command. The command appears in the %s field on the left and
the number of operands you passed appears in the %d field on the right. Use the help command for information about
the command of interest or see "Command Reference" on page 87.

Illegal operation fault

An attempt was made to execute an invalid instruction; probably a wild pointer in a jump table caused a wild branch.
This can only happen for application-mode programs; system-mode programs handle this fault through the interruption
mechanism. See "Program Simulation" on page 66.

Illegal slot field in breakpoint address

You used the bs command to set an IA-64 breakpoint, but you specified an address in the last four bytes of a bundle.
Because the IA-64 architecture provides for bundle-level, but not instruction-level, addressing, Ski "pretends" that the
first instruction of the bundle is in the first four bytes, the second instruction is in the second four bytes, and the third
instruction is in the third four bytes. You specified a location in the fourth four bytes of a bundle and that isn't allowed
by Ski. See "Setting Program Breakpoints" on page 79 and "How Ski Implements Breakpoints" on page 80.

Page 104 13 Simulator Status and Error Messages

Ski IA-64 Simulator Reference Manual 1.0L

Interrupting simulation

Ski received a SIGINT signal while simulating, probably because you hit control-C (or whatever key you have
configured to interrupt a running program.) This is a status message, not an error message. See "Interruptions" on page
71 and the first few paragraphs of "Command Files" on page 84.

missing command

You used the "if expression true_command : false_command" command. Either you left the true_command blank and
the expression evaluated to a non-zero value, or you left the false_command blank and the expression evaluated to zero.
See "The if Command" on page 85.

Missing ELF header

See "File size > Memory size".

Missing file version number

You are trying to restore a saved simulator state and the first non-blank, non-comment line of the file doesn't begin
with "file_ver", the file version string. Is the file a Ski simulator state save file? See "Saving and Restoring the
Simulator State" on page 82.

missing value for option %s

You specified a command line option that requires an argument. See "Command Line Flags" on page 33.

More than %d characters in expression: %s

You gave Ski an expression that is too long for it to parse. Try a shorter expression. See "Expressions" on page 53.

Nesting overflow

You invoked a command file from within another command file, and another command file from within there, and
again and again... and you did it too much. Do you have an recursive loop, where a command file invokes itself? See
"Command Files" on page 84.

No breakpoints set

You tried to list all breakpoints with the bl command but there aren't any. See "Listing Program Breakpoints" on page
79.

No breakpoints to delete

You tried to delete all breakpoints with the bD command but there aren't any. See "Deleting Program Breakpoints" on
page 79.

No previous command

You tried to re-run the previous command in ski but you haven't executed any commands yet there is nothing to re-run.
See "The ski Command Window" on page 49.

No such command

You typed a command to Ski that Ski doesn't understand. Either you mis-typed, or Ski is broken, or the rules that
underpin the basic functioning of our universe have ceased to operate properly. In the first case, try typing your
command correctly; use the "help" command or see "Command Reference" on page 87 to find out what the

13 Simulator Status and Error Messages Page 105

Ski IA-64 Simulator Reference Manual 1.0L

commands are. In the third case, you're on your own; bring film.

No such user %s

You specified a filename with a leading tilde ("~"), causing Ski to try to expand the first word into the home directory
for the corresponding user. Ski wasn't able to the find the user. Perhaps you mis-typed the filename or specified a user
that doesn't exist? See "Filenames" on page 57.

Non %s-aligned address. Aligned to 0x%llx

You used the =2, =4, or =8 commands to write data to memory but you specified an improperly-aligned address. The
%s field on the left tells what kind of alignment was needed and the %llx field on the right is the address that Ski used.
This may not be the address you want! See "Changing Registers and Memory with Assignment Commands" on page
75.

Not an ELF file

Not an IA-64 file

See "File size > Memory size".

Nothing to run

No program has been loaded. Use the load, iaload, or romload command, depending on what kind of program you
want to simulate or load an IA-64 program by naming it on Ski's command line. See "Program Loading" on page 68.

Out of memory

Ski needed to get more memory to run but couldn't get it. You need more virtual memory swap space or you've found a
Ski defect. See your local Linux specialist.

Page not allocated

When Ski loads an IA-64 application-mode program, Ski allocates pages for the fixed-size parts of the program and
allocates a small stack. As the program runs, Ski allows the stack to grow. If the program tries to access a page which
isn't in one of those areas, Ski detects the error and prints the message. The most likely cause is a wild pointer. See
"Application-Mode IA-64 Programs" on page 66.

Pager %s not found

You executed a ski command that sends output through a pager and there was a problem. Did you set the PAGER
environment variable to point to a program that's not reachable through your PATH shell variable? Did you set the
PAGER variable to point to a non-executable program? If your pager is on a remote file system, is there a problem with
accessing that system? Did your pager program return a failure status for some reason? If none of these reasons is
applicable, you may have found a Ski defect. See "Other Windows" on page 50.

popen failed

A call to the Linux system routine popen() failed, that is, a -1 was returned from the call. This is unusual and, while it
doesn't indicate an internal Ski error, it may suggest that your Linux operating system is corrupt, perhaps due to some
other program. ski uses popen() when it needs to invoke a pager to display a large amount of text to you, for example,
when you use the help and symlist commands. The popen() function might fail if you have the maximum allowed
number of processes running on your computer or if you have run out of swap space.

Privileged operation fault

Page 106 13 Simulator Status and Error Messages

Ski IA-64 Simulator Reference Manual 1.0L

Your IA-64 application-mode program tried to execute a privileged instruction. This can only happen for application-
mode programs; system-mode programs handle this fault through the interruption mechanism. See "Program
Simulation" on page 66 and "Interruptions" on page 71.

Privileged register fault

Your IA-64 application-mode program tried to access a privileged register. This can only happen for application-mode
programs; system-mode programs handle this fault through the interruption mechanism. See "Program Simulation" on
page 66 and "Interruptions" on page 71.

program exited with status %d

Your IA-64 program finished execution in the normal fashion. This is a status message, not an error message.

Register NaT Consumption fault

Your IA-64 application-mode program tried to reference the contents of a register that didn't contain a valid value. This
can only happen for application-mode programs; system-mode programs handle this fault through the interruption
mechanism. See "Program Simulation" on page 66 and "Interruptions" on page 71.

Reserved register/field fault

Your IA-64 application-mode program tried to access a reserved register or portion of a register. This can only happen
for application-mode programs; system-mode programs handle this fault through the interruption mechanism. See
"Program Simulation" on page 66 and "Interruptions" on page 71.

screen size is %dx%d -- minimum is %dx%d

ski uses the curses package to create a multi-window interface on a terminal. Curses requires a terminal of the
specified minimum size but your terminal is smaller than that. See "Ski Variations" on page 31.

Starting address > ending address

You used the dd or pd command to dump data or program code to a file but the starting address you passed is greater
than the ending address. Perhaps you have them reversed? Are you are using symbolic addresses that don't bind to the
locations you think they bind to? See "Program Window Commands" on page 60 and "Data Window Commands" on
page 63.

Stopping at %s due to IA-32 halt instruction

An IA-32 HALT instruction was reached; simulation has stopped. This is a status message, not an error message. See
"Application-Mode IA-32 Programs" on page 66 and "System-Mode IA-32 Programs" on page 67.

Stopping at %s due to reserved IA-32 instruction

An attempt was made to execute an IA-32 instruction whose encoding has been reserved by Intel. Ski recognizes the
encoding but doesn't know what to do with it. See "Application-Mode IA-32 Programs" on page 66 and "System-Mode
IA-32 Programs" on page 67.

Stopping at %s due to unimplemented IA-32 instruction

An attempt was made to execute an IA-32 instruction that isn't implemented by Ski. See "Application-Mode IA-32
Programs" on page 66 and "System-Mode IA-32 Programs" on page 67.

Stopping at %s due to unimplemented instruction

13 Simulator Status and Error Messages Page 107

Ski IA-64 Simulator Reference Manual 1.0L

Your program tried to execute an IA-64 instruction that isn't implemented by Ski.

Symbol � %s' not found

You referred to a symbol that Ski doesn't know about. Did you spell the symbol correctly, with leading underscores as
needed? Is the symbol a C++ mangled name? Have you loaded the right program? See the section "Argument
Specification" on page 53, particularly "Symbolic Arguments" on page 55.

%s: Too many arguments (> %d)

You passed too many operands with a Ski command. Ski's internal parser can handle a maximum number of arguments
(currently 64) and you tried to pass more than that number. This could happen with the =1, =2, =4, and =8 assignment
commands, the eval and if commands, and the load and iaload program loading commands. See "Changing
Registers and Memory with Assignment Commands" on page 75, "Evaluating Formulas and Formatting Data" on page
78, "The if Command" on page 85, and the section "Program Loading" on page 68.

Too many commands in a line (> %d)

You can type multiple commands on a line by separating them with semicolons. But there's a limit, as shown, to the
number of commands you can do this to... and you exceeded it. See "Command Sequences, Repetition, and
Abbreviation" on page 52.

Unable to open console window

Your system-mode program tried to open a console with the appropriate Simulator System Call but Ski wasn't able to
spawn the corresponding xterm program. First, verify that environment variable DISPLAY is set to the proper
hostname:displaynumber string. If this does not help, perhaps there is no xterm available via your PATH environment
variable? Perhaps you have hit the process limit or used all the pseudo-tty devices on your Linux system? See "System-
Mode IA-64 Programs" on page 67.

Unaligned Data fault

An attempt was made to access data on an unnatural boundary. Two-byte quantities must be on addresses evenly
divisible by two; four-byte quantities must be on addresses evenly divisible by four, and so on. See "Misaligned Data
Access Trap" on page 68 and "Interruptions" on page 71.

Unexpected end of file

You are trying to restore a saved simulator state and either the save file is corrupt or Ski is broken. See "Saving and
Restoring the Simulator State" on page 82.

unrecognized option %s

You specified a command line option that Ski doesn't understand. Different varieties of Ski (xski, ski, and bski)
understand different flags. See "Command Line Flags" on page 33.

Unrecognized symbol name: %s

You tried to refer to a symbol in an expression but Ski doesn't know about that symbol. Perhaps you mis-typed it? Or
perhaps it is a program-defined symbol in a file that wasn't compiled with debugging symbol generation enabled (the -
g flag on many compilers)? Or perhaps you referred to an IA-64 register using a mnemonic that Ski doesn't recognize?
See "Symbolic Arguments" on page 55, "Symbol Table Commands" on page 82, and "Register Names" on page 93.

unsupported DOS int 21 function %02x%02x

Page 108 13 Simulator Status and Error Messages

Ski IA-64 Simulator Reference Manual 1.0L

Your IA-32 application-mode program tried to invoke an MS-DOS function that Ski doesn't emulate. The first
hexadecimal number is the MS-DOS function code and the second number is the sub-function code. See "Application-
Mode IA-32 Programs" on page 66 and "MS-DOS Application Environment" on page 73.

Unsupported SSC: %d

Your IA-64 system-mode program invoked a Simulator System Call that Ski doesn't support. Either your program has
a bug or Ski is broken. See "System-Mode IA-64 Programs" on page 67.

unsupported system call %d

Your IA-64 application-mode program tried to invoke an Linux system call that Ski doesn't emulate. See "Linux
Application Environment" on page 71 and "Application-Mode IA-64 Programs" on page 66.

Usage: %s [options] [file [args]]

Ski's generic command line help message.

13 Simulator Status and Error Messages Page 109

Ski IA-64 Simulator Reference Manual 1.0L

14 Licenses
This chapter lists the applicable licenses for Ski.

Creative Commons Public License
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL SERVICES.
DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE
COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO
WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES
RESULTING FROM ITS USE.

License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS
PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE
A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF
YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

"Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work
in its entirety in unmodified form, along with one or more other contributions, constituting separate and
independent works in themselves, are assembled into a collective whole. A work that constitutes a
Collective Work will not be considered a Derivative Work (as defined below) for the purposes of this
License.

"Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works,
such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound
recording, art reproduction, abridgment, condensation, or any other form in which the Work may be
recast, transformed, or adapted, except that a work that constitutes a Collective Work will not be
considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the
Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with
a moving image ("synching") will be considered a Derivative Work for the purpose of this License.

"Licensor" means the individual, individuals, entity or entities that offers the Work under the terms of this
License.

"Original Author" means the individual, individuals, entity or entities who created the Work.

"Work" means the copyrightable work of authorship offered under the terms of this License.

"You" means an individual or entity exercising rights under this License who has not previously violated the
terms of this License with respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use,

Page 110 14 Licenses

Ski IA-64 Simulator Reference Manual 1.0L

first sale or other limitations on the exclusive rights of the copyright owner under copyright law or other
applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights
in the Work as stated below:

to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the
Work as incorporated in the Collective Works;

to create and reproduce Derivative Works provided that any such Derivative Work, including any translation
in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that changes
were made to the original Work. For example, a translation could be marked "The original work was
translated from English to Spanish," or a modification could indicate "The original work has been
modified.";;

to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a
digital audio transmission the Work including as incorporated in Collective Works;

to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a
digital audio transmission Derivative Works.

e. For the avoidance of doubt, where the Work is a musical composition:

Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect,
whether individually or, in the event that Licensor is a member of a performance rights society
(e.g. ASCAP, BMI, SESAC), via that society, royalties for the public performance or public digital
performance (e.g. webcast) of the Work.

Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect,
whether individually or via a music rights agency or designated agent (e.g. Harry Fox Agency),
royalties for any phonorecord You create from the Work ("cover version") and distribute, subject
to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the
equivalent in other jurisdictions).

Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound
recording, Licensor waives the exclusive right to collect, whether individually or via a performance-rights
society (e.g. SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work,
subject to the compulsory license created by 17 USC Section 114 of the US Copyright Act (or the
equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised. The
above rights include the right to make such modifications as are technically necessary to exercise the rights in
other media and formats. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the
terms of this License, and You must include a copy of, or the Uniform Resource Identifier for, this
License with every copy or phonorecord of the Work You distribute, publicly display, publicly perform, or
publicly digitally perform. You may not offer or impose any terms on the Work that restrict the terms of
this License or the ability of a recipient of the Work to exercise the rights granted to that recipient under
the terms of the License. You may not sublicense the Work. You must keep intact all notices that refer to
this License and to the disclaimer of warranties. When You distribute, publicly display, publicly perform,

14 Licenses Page 111

Ski IA-64 Simulator Reference Manual 1.0L

or publicly digitally perform the Work, You may not impose any technological measures on the Work that
restrict the ability of a recipient of the Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as incorporated in a Collective Work, but
this does not require the Collective Work apart from the Work itself to be made subject to the terms of
this License. If You create a Collective Work, upon notice from any Licensor You must, to the extent
practicable, remove from the Collective Work any credit as required by Section 4(b), as requested. If You
create a Derivative Work, upon notice from any Licensor You must, to the extent practicable, remove
from the Derivative Work any credit as required by Section 4(b), as requested.

If You distribute, publicly display, publicly perform, or publicly digitally perform the Work (as defined in
Section 1 above) or any Derivative Works (as defined in Section 1 above) or Collective Works (as
defined in Section 1 above), You must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to the medium or means You are
utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the
Original Author and/or Licensor designate another party or parties (e.g. a sponsor institute, publishing
entity, journal) for attribution ("Attribution Parties") in Licensor's copyright notice, terms of service or by
other reasonable means, the name of such party or parties; the title of the Work if supplied; to the extent
reasonably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associated
with the Work, unless such URI does not refer to the copyright notice or licensing information for the
Work; and, consistent with Section 3(b) in the case of a Derivative Work, a credit identifying the use of
the Work in the Derivative Work (e.g., "French translation of the Work by Original Author," or "Screenplay
based on original Work by Original Author"). The credit required by this Section 4(b) may be
implemented in any reasonable manner; provided, however, that in the case of a Derivative Work or
Collective Work, at a minimum such credit will appear, if a credit for all contributing authors of the
Derivative Work or Collective Work appears, then as part of these credits and in a manner at least as
prominent as the credits for the other contributing authors. For the avoidance of doubt, You may only use
the credit required by this Section for the purpose of attribution in the manner set out above and, by
exercising Your rights under this License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties,
as appropriate, of You or Your use of the Work, without the separate, express prior written permission of
the Original Author, Licensor and/or Attribution Parties.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE
WORK AS-IS AND ONLY TO THE EXTENT OF ANY RIGHTS HELD IN THE LICENSED WORK BY THE
LICENSOR. THE LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT
LIMITATION, WARRANTIES OF TITLE, MARKETABILITY, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR
THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION
MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE
OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

This License and the rights granted hereunder will terminate automatically upon any breach by You of the
terms of this License. Individuals or entities who have received Derivative Works (as defined in Section 1
above) or Collective Works (as defined in Section 1 above) from You under this License, however, will

Page 112 14 Licenses

Ski IA-64 Simulator Reference Manual 1.0L

not have their licenses terminated provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the
applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at any time; provided, however that
any such election will not serve to withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this License will continue in full force and
effect unless terminated as stated above.

8. Miscellaneous

Each time You distribute or publicly digitally perform the Work (as defined in Section 1 above) or a Collective
Work (as defined in Section 1 above), the Licensor offers to the recipient a license to the Work on the
same terms and conditions as the license granted to You under this License.

Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the recipient a
license to the original Work on the same terms and conditions as the license granted to You under this
License.

If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity
or enforceability of the remainder of the terms of this License, and without further action by the parties to
this agreement, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

No term or provision of this License shall be deemed waived and no breach consented to unless such
waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.

This License constitutes the entire agreement between the parties with respect to the Work licensed here.
There are no understandings, agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that may appear in any communication
from You. This License may not be modified without the mutual written agreement of the Licensor and
You.

Creative Commons Notice
Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with
the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special, incidental or consequential damages
arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and obligations
of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL,
Creative Commons does not authorize the use by either party of the trademark "Creative Commons" or
any related trademark or logo of Creative Commons without the prior written consent of Creative
Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark
usage guidelines, as may be published on its website or otherwise made available upon request from
time to time. For the avoidance of doubt, this trademark restriction does not form part of the License.

Creative Commons may be contacted at http://creativecommons.org/.

14 Licenses Page 113

Ski IA-64 Simulator Reference Manual 1.0L

Page 114 14 Licenses

	1 Getting Started - A Ski Tutorial
	The Ski Simulator
	How to Run an IA-64 Application Program
	Starting xski
	Exiting Ski
	Loading Your Program
	Inspecting Data
	Viewing Data in ASCII
	Looking at Code
	Viewing Source Code Mixed In with Assembly Code
	Controlling Breakpoints
	Running a Program
	Single-stepping a Program
	Changing Registers and Memory
	Getting Help
	Next Steps

	2 Overview
	Introduction
	Ski's Strengths
	Ski's Scope

	What You Need to Know to Use This Manual
	Defects and Defect Reporting
	Ski Variations
	Using bski for Batch Simulations

	Starting Ski
	Command Line Flags
	Summary of Flags and Parameters

	The XSki File

	Quitting Ski
	Summary of the Quit Command

	3 Screen Presentation
	Ski's Use of Windows
	The Register Window
	The User Registers Pane
	The General Registers Pane
	The Floating Point Registers Pane
	The System Registers Pane
	The IA-32 Registers Pane

	Resizing Register Window Panes with xski
	The Register Window and ski
	The Program Window
	IA-64 Instruction Display
	IA-32 Instruction Display
	Changing the Range of Locations Shown in the Program Window
	Invalid Code and the Program Window

	The Data Window
	Changing the Range of Locations Shown in the Data Window
	Invalid Code and the Data Window

	The Command/Main Window
	The xski Main Window
	The ski Command Window

	Other Windows

	4 Command Language
	Command Entry
	Command Arguments
	Command Sequences, Repetition, and Abbreviation
	Argument Specification
	Numeric Arguments
	Numbers and Counts
	Expressions
	Addresses

	Symbolic Arguments
	Program-Defined Symbols
	Registers
	Internal Variables
	Labels
	Filenames

	Resolving Ambiguous Symbols and Numbers

	5 Screen Manipulation Commands
	Register Window Commands
	Summary of Register Window Commands
	xski Register Window Commands
	ski Register Window Commands

	Program Window Commands
	Data Window Commands
	Summary of Data Window Commands

	6 Program Simulation
	Application-Mode and System-Mode Simulation
	Ski Support for Application-Mode Programs
	Application-Mode IA-64 Programs
	Application-Mode IA-32 Programs

	Ski Support for System-Mode Programs
	System-Mode IA-64 Programs
	System-Mode IA-32 Programs
	System-Mode TLB Simulation
	Summary of TLB Display Commands

	Misaligned Data Access Trap
	Program Loading
	How to Load a Program
	Summary of Program Loading Commands
	Notes about Program Loading
	Adding Information after Loading
	Creating the argc, argv, and envp Parameters

	Program Execution
	Summary of Program Execution Commands

	7 Linux and MS-DOS ABI Emulation
	Interruptions
	Linux Application Environment
	MS-DOS Application Environment
	Program I/O

	8 Debugging
	Changing Registers and Memory with Assignment Commands
	Summary of Assignment Commands
	Examples of Assignment Commands
	Notes on Assignment
	Address Alignment
	Bit-encoded Registers
	Page Allocation

	Evaluating Formulas and Formatting Data
	Summary of The eval Command

	Program Breakpoints
	Setting Program Breakpoints
	Deleting Program Breakpoints
	Listing Program Breakpoints
	Notes on Program Breakpoints
	How Ski Implements Breakpoints
	Unexpected Breakpoints

	Summary of Program Breakpoint Commands
	Data Breakpoints
	Setting Data Breakpoints
	Deleting Data Breakpoints
	Listing Data Breakpoints
	Summary of Data Breakpoint Commands
	Dumping Registers and Memory to a File
	Saving and Restoring the Simulator State
	Summary of Save and Restore Commands

	Symbol Table Commands
	Summary of Symbol Commands

	9 Command Files
	Initialization File
	Labels and Control Flow in Command Files
	The goto Command and Labels
	The if Command

	Comments in Command Files
	An Example Command File
	Summary of Command File Commands

	10 Command Reference
	11 Register Names
	IA-64 Registers

	12 Internal Variable Names
	Internal Variables

	13 Simulator Status and Error Messages
	14 Licenses
	Creative Commons Public License
	License
	Creative Commons Notice

