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Chapter 2

Solution 2.1: Review of complex numbers. Recall that

k
∑

i=0

z k =

(

1−z k+1

1−z
for z 6= 1

N + 1 for z = 1.

Proof for z 6= 0 (for z = 1 is trivial)

s = 1+ z + z 2+ . . .+ z N ,

−z s =−z − z 2− . . .− z N − z N+1 .

Summing the above two equations gives

(1− z )s = 1− z N+1⇒ s =
1− z N+1

1− z
.

Similarly
N2
∑

k=N1

z k = z N1

N2−N1
∑

k=0

z k =
z N1 − z N2 + 1

1− z
.

(a) We have

N
∑

n=1

s [n ] =

N
∑

n=1

2−n + j

N
∑

n=1

3−n

=
1

2
· 1− 2−N

1− 2−1
+ j

1

3
· 1− 3−N

1− 3−1
= (1− 2−N )+ j

1

2
(1− 3−N ) .

Now,

lim
N→∞

2−N = lim
N→∞

3−N = 0.
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4 Chapter 2

Therefore,
∞
∑

n=1

s [n ] = 1+
1

2
j .

(b) We can write
N
∑

k=1

s [k ] =
j

3
· 1− (j /3)

N

1− j /3
.

Since

�

�

�

j

3

�

�

�=
1
3
< 1, we have limN→∞(j /3)N = 0. Therefore,

∞
∑

k=1

s [k ] =
1

3j − 1
=− 1

10
+ j · 3

10
.

(c) From z ∗ = z−1 with z ∈C, we have

z z ∗ = 1, ∀ z 6= 0.

Therefore, |z |2 = 1 and, consequently, |z | = 1. It follows that all the z

such that z ∗ = z−1 describe the unit circle.

(d) Remark that e 2kπ = 1, for all k ∈ Z. Therefore, z k = e
2kπ

3 is such that

z 3
k = 1. Now z k is periodic of period 3, i.e. z k = z k+3l , for all l ∈ Z.

Therefore the (only) three different complex numbers are

z 0 = 1, z 1 = e
2π
3 and z 2 = e

4kπ
3 .

(e) We have
N
∏

n=1

e j π
2n = e jπ

∑N
n=1 2−n

= e
jπ 1

2
· 1−2−N

1−1/2 .

Since limN→∞2−N = 0,

∞
∏

n=1

e j π
2n = e jπ =−1.

Solution 2.2: Periodic signals.

(a) Not periodic.
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(b) Not periodic.

(c) 14-periodic.

(d) 100-periodic.
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Chapter 3

Solution 3.1: Elementary operators.

(a) D{αx [n ]}=αx [n − 1] =αD{x [n ]}
D{x [n ]+ y [n ]}= x [n − 1]+ y [n − 1] =D{x [n ]}+D{y [n ]}.

(b) V is a linear combination of the original signal with the linear opera-

tor D, therefore it is also linear.

(c) S {αx [n ]}=α2x 2[n − 1] =α2S {x [n ]} 6=αS {x [n ]}.

(d) V= I−D=











1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1











.

(e) The matrix realizes an integration operation over a vector in C4.

Solution 3.2: Bases. Suppose by contradiction that the vector z ∈ S

admits two distinct representations in the basis {x(k )}k=0,...,N−1. In other

words, there exist scalars α0, . . . ,αN−1 and β0, . . . ,βN−1 with (α0, . . . ,αN−1) 6=
(β0, . . . ,βN−1) such that z = ΣN−1

k=0 αk x(k ) and also z = ΣN−1
k=0 βk x(k ). Conse-

quently

ΣN−1
k=0 αk x(k ) =ΣN−1

k=0 βk x(k )

or, equivalently,

ΣN−1
k=0
(αk −βk )x

(k ) = 0.
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Since {x(k )}k=0,...,N−1 is a basis, it is a set of independent vectors and by defi-

nition the above equation admits only the trivial solution αk −βk = 0, ∀k =

0, . . . ,N − 1. Thus, αk = βk , ∀k = 0, . . . ,N − 1.

Solution 3.3: Vector spaces and signals.

(a) It is straightforward to verify that the set of all ordered n-tuples [a 1,a 2, . . . ,a n ]

with the natural definition for the sum: [a 1,a 2, . . . ,a n ]+[b1,b2, . . . ,bn ] =

[a 1+b1,a 2+b2, . . . ,a n+bn ] and the multiplication by a scalar: α[a 1,a 2, . . . ,a n ] =

[αa 1,αa 2, . . . ,αa n ] satisfies all the properties of a vector space:

- Addition is commutative.

- Addition is associative.

- Scalar multiplication is distributive.

- There exists a null vector: [0,0, . . . ,0].

- Additive inverse: [−a 1,−a 2, . . . ,−a n ].

- Identity element for scalar multiplication: 1.

The dimension of this vector space is n and a basis is:

[1,0, . . . ,0], [0,1, . . . ,0], ..., [0,0, . . . ,1].

(b) The set of signals of the form y (x ) = a cos(x )+b sin(x ) (for arbitrary a ,

b ) with the usual addition and multiplication by a scalar form a vector

space:

- Addition is commutative.

- Addition is associative.

- Scalar multiplication is distributive.

- There exists a null vector: a ,b = 0.

- Additive inverse: −y (x ) =−a cos(x )−b sin(x ).

- Identity element for scalar multiplication: 1.

The dimension of this vector space is 2 and one possible basis is:

y1(x ) = cos(x ),y2(x ) = sin(x ).
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(c) The eight vertices of the cube can be represented by the following four

vectors:

v1 = [0,0,0], v2 = [1,0,0], v3 = [0,1,0], v4 = [1,1,0],

v5 = [0,0,1], v6 = [1,0,1], v7 = [0,1,1], v8 = [1,1,1].

and the four associated diagonals:

d 1 = {v1,v8}= v8− v1 = [1,1,1].

d 2 = {v2,v7}= v7− v2 = [−1,1,1].

d 3 = {v3,v6}= v6− v3 = [1,−1,1].

d 4 = {v4,v5}= v5− v4 = [−1,−1,1].

Two vectors are orthogonal if their inner product is zero. In this case,

< d i ,d j > 6= 0 for all i , j .

Therefore, the four diagonals of a cube are not orthogonal. Alterna-

tively, just remark that it is not possible to have 4 orthogonal vectors

in a space of dimension 3.

(d) δ[n ] = u [n ]−u [n − 1] and u [n ] = Σ∞k=0δ[n −k ].

(e) fo (t ) =
f (t )− f (−t )

2
and f e (t ) =

f (t )+ f (−t )

2
.

Solution 3.4: The Haar basis.

(a) For a square matrix to have full rank, it is enough to prove that the

determinant is nonzero.

(b) Using Matlab, we define

h=[1 -1 0 0 0 0 0 0; 0 0 1 -1 0 0 0 0;...
0 0 0 0 1 -1 0 0; 0 0 0 0 0 0 1 -1;...
1 1 -1 -1 0 0 0 0; 0 0 0 0 1 1 -1 -1;...
1 1 1 1 -1 -1 -1 -1; 1 1 1 1 1 1 1 1];

and we have that det(H) returns -128.

(c) Using Matlab, H*H’ returns a diagonal matrix.
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(d) We type H*ones(8,1) and we get the result [0 0 0 0 0 0 0 8]T . In

the Haar basis, constant signals have only nonzero coefficients in the

high end of the vector.

(e) Similarly, H*(-1).^(0:7)’ returns [2 2 2 2 0 0 0 0]T . In the Haar

basis, alternating signals have nonzero coefficients in the low end of

the vector.



Chapter 4

Solution 4.1: DFT of elementary functions. We have:

x [n ] =
e jφ

2
e j (2π/N )Ln +

e−jφ

2
e−j (2π/N )Ln

=
e jφ

2
e j (2π/N )Ln +

e−jφ

2
e−j (2π/N )Ln e j (2π/N )N n

=
e jφ

2
e j (2π/N )Ln +

e−jφ

2
e j (2π/N )(N−L)n .

Therefore we can write in vector notation:

x=
e jφ

2
w(L)+

e−jφ

2
w(N−L),

and the result follows from the linearity of the expansion formula

X [k ] = 〈w(k ), x〉

=

®

w(k ),
e jφ

2
w(L)+

e−jφ

2
w(N−L)

¸

=
e jφ

2
〈w(k ), w(L)〉+ e−jφ

2
〈w(k ), w(N−L)〉

=







N
2

e jφ if k = L
N
2

e−jφ if k =N − L

0 otherwise.

Solution 4.2: Real DFT. A sufficient condition for the DFT to be real is

that the signal is real symmetric. From the definition of symmetry for finite-

length signals (see Figure 4.14) it is enough to have b = d for the DFT to be

real.
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Solution 4.3: Limits. The limit can be “read” as the DTFT of cos(ω0n )

computed inω= 0 so that, in a signal processing sense,

lim
N→∞

N
∑

n=−N

cos(ω0n ) = δ̃(ω−ω0)|ω=0 = 0.

Solution 4.4: Estimating the DFT graphically. By simple visual inspec-

tion we can see that x [n ] = a [n ]+b [n ]+ c [n ]with

a [n ] = 2

b [n ] = 3cos(3(2π/64)n )

c [n ] = sin(7(2π/64)n ) =−cos(7(2π/64)n +π/2).

The DFT coefficients are X [k ] = A[k ]+ B [k ]+C [k ], with

A[k ] = 2Nδ[k ]

B [k ] = (3N /2)δ[k − 3]+ (3N /2)δ[k − 61]

C [k ] = −(j N /2)δ[k − 7]+ (j N /2)δ[k − 57]

and N = 64, so that in the end we have

X [0] = 128

X [3] = 96

X [7] = −32j

X [57] = 32j

X [61] = 96

and X [k ] = 0 for all the other values of k .

Solution 4.5: The structure of DFT formulas. Let f [n ] =DFT{x [n ]}. We

have:

y [n ] =

N−1
∑

k=0

f [k ]e−j 2π
N

nk

=

N−1
∑

k=0

�N−1
∑

i=0

x [i ]e−j 2π
N

i k

�

e−j 2π
N

nk

=

N−1
∑

i=0

x [i ]

N−1
∑

k=0

e−j 2π
N
(i+n )k
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Now,

N−1
∑

k=0

e−j 2π
N
(i+n )k =

¨

N for (i +n ) = 0,N ,2N ,3N , . . .

0 otherwise
=Nδ[(i +n ) mod N ]

so that

y [n ] =

¨

N x [0] for n = 0

N x [N −n ] otherwise

In other words, if x = {1,2,3,4,5} then DFT{DFT{x}}= {1,5,4,3,2}

Solution 4.6: Two DFTs for the price of one. Both X [k ] and Y [k ]

have Hermitian symmetry. If we separate real and imaginary parts so that

X [k ] = XR [k ]+ j X I [k ], we have

XR [k ] = XR [N −k ]

X I [k ] = −X I [N −k ]

and the same holds for Y [k ].

Since the DFT is a linear operator, we have

C [k ] = X [k ]+ j Y [k ]

= XR [k ]+ j X I [k ]+ j YR [k ]−YI [k ];

and by using the symmetry properties for X [k ] and Y [k ]:

C [N −k ] = XR [N −k ]+ j X I [N −k ]+ j YR [N −k ]−YI [N −k ]

= XR [k ]− j X I [k ]+ j YR[k ]+YI [k ]

and therefore

C ∗[N −k ] = XR [k ]+ j X I [k ]− j YR [k ]+YI [k ]

= X [k ]− j Y [k ].

From this,

C [k ]+C ∗[N −k ] = 2X [k ]

and

C [k ]−C ∗[N −k ] = 2j Y [k ]

Solution 4.7: The Plancherel-Parseval equality.
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(a) The inner product in l 2(Z) is defined as

〈x [n ],y [n ]〉=Σn x ∗[n ]y [n ],

and in L2([−π,π]) as

〈X (e jω),Y (e jω)〉=
∫ π

−π
X ∗(e jω)Y (e jω)dω.

Thus,

1

2π

∫ π

−π
X ∗(e jω)Y (e jω)dω=

1

2π

∫ π

−π

�

Σn x [n ]e−jωn
�∗
Σm y [m ]e−jωm dω

(1)
=

1

2π

∫ π

−π
Σn x ∗[n ]e jωnΣm y [m ]e−jωm dω

=
1

2π

∫ π

−π
ΣnΣm x ∗[n ]y [m ]e jω(n−m )dω

(2)
=

1

2π
ΣnΣm x ∗[n ]y [m ]

∫ π

−π
e jω(n−m )dω

(3)
= Σn x ∗[n ]y [n ],

where (1) follows from the properties of the complex conjugate, (2)

follows from swapping the integral and the sums and (3) from the fact

that

1

2π

∫ π

−π
e jω(n−m )dω=

¨

1 if m = n

0 if m 6= n .

(b) If x [n ] = y [n ], then 〈x [n ],x [n ]〉 corresponds to the energy of the signal

in the time domain and 〈X (e jω),X (e jω)〉 to the energy of the signal in

the frequency domain. In this case, the Plancherel-Parseval equality

illustrates an energy conservation property from the time domain to

the frequency domain. This property is known as the Parseval theo-

rem.

Solution 4.8: Numerical computation of the DFT. The spectrum of
the signal x [n ], for both frequencies, is given in the following figure that is
obtained using the matlab commands given below.
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>> N=128;fo1=21/128;fo2=21/127;
>> n=0:N-1;
>> x1=cos(2*pi*fo1*n);x2=cos(2*pi*fo2*n);
>> subplot(223),stem(n-N/2,fftshift(abs(fft(x1))))
>> subplot(224),stem(n-N/2,fftshift(abs(fft(x2))))

−50 0 50
0
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20

30

40

50

60

70

X
1
[k]

−50 0 50
0

10

20

30

40

50

60

70

X
2
[k]

Since we take the cosine wave example, we expect to see just one sample at

the frequency of the signal. This is the case in the left figure, where we have

the DFT signal spectrum for the signal with f 0 = 21/128, and the 21st DFT

coefficient represents the exact signal frequency. However, in the right fig-

ure, the frequency of the signal f 0 = 21/127 does not coincide with any DFT

frequency component. The signal energy is spread over each of the DFT

components. This is called frequency leakage. Therefore, we can conclude

that if the signal period exactly fits the measurement time (number of sam-

ples), the frequency spectrum is correct, while if the period does not match

the measurement time, the frequency spectrum is incorrect - it is broad-

ened.

Solution 4.9: DTFT vs. DFT

(a) Note that x [n ] can also be expressed as:

x [n ] = u [n ]−u [n −a ].

Using the DTFT shift property:

X (e j w ) =
1

1− e−j w
+

1

2
δ̃(w )− e−j a w

1− e−j w
− e−j a w

2
δ̃(w ).

Note that e−j a w δ̃(w ) = δ̃(w ). Therefore,

X (e j w ) =
1− e−j a w

1− e−j w
.
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0 1 2 3 4 5 6 7
0

5

10

15

20

w

|X
(e

jw
|

Figure 4.1: DTFT of x [n ].

(b) To visualize the magnitude of X (e j w ) using Matlab we generate 10000

points of one period of |X (e j w )| (from 0 to 2π) for a = 20:

>> n=1:10000;
>> w=(n.*2*pi/max(n));
>> X=((1-exp(-j.*w.*20))./(1-exp(-j.*w)));
>> plot(w,abs(X));

The result is shown in Fig. 4.1.

(c) >> N=30;
>> x1=[ones(1,20),zeros(1,N-20)];
>> X1=fft(x1);
>> plot(abs(X1));

The result for different values of N is shown in Fig. 4.2.

In Fig. 4.2 we see that, as we increase the length N of x1[n ], the DFT

becomes closer and closer to the DTFT of x [n ]. As we have seen in the

course notes, the DFT and the DFS are formally identical, and as N

grows, the DFS converges to the DTFT. Therefore, we can use Matlab

to approximate the DTFT of any signal by the DFT of a finite sequence

using a large enough length N .
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(d) N=1000

Figure 4.2: DFT of x1[n ] for different values of N .
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Chapter 5

Solution 5.1: Linearity and time-invariance (I). The system is not

time-invariant. To see this consider the following signals:

x [n ] = δ[n ]

y [n ] = δ[n − 1]

We have H {x [n ]} = w [n ] = 0 and, clearly, it is y [n ] = x [n − 1]; however,

H {y [n ]}= δ[n − 1] 6=w [n − 1] = 0.

Solution 5.2: Linearity and time-invariance (II). LTI system cannot

change the frequency of a sinusoidal input, only its magnitude and phase.

Since he input contains frequencies only at ±0.4π while the output only at

±0.5π, the system cannot be LTI.

Solution 5.3: Finite-support convolution.

(a) The signal is the triangle:

0 1 2 3 4 5 6 7-1-2-3-4-5-6-7

1.50

3.00

4.50

6.00

b

b

b

b

b

b

b

b

b

b

b

19



20 Chapter 5

(b) We know (see page 74) that, in general,

H (e jω) =
sin(ω(M + 0.5))

sin(ω/2)
;

from the convolution theorem, it is simply

X (e jω) =

�

sin(ω(M + 0.5))

sin(ω/2)

�2

;

For M = 2 we have

0 π/2 π-π/2-π

0

6.25

12.50

18.75

25.00

(c) As M grows, the spectrum will exhibit more and more ripples and its

peak will grow (it is always at (2M + 1)2):

0 π/2 π-π/2-π

0

72.25

144.50

216.75

289.00

(d) The signal has a quadratic shape:
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0 2 4 6 8-2-4-6-8

5.00

10.00

15.00

20.00

b
b

b

b

b

b

b
b

b

b

b

b

b

b
b

(e) Again, from the modulation theorem

X (e jω) =

�

sin(ω(M + 0.5))

sin(ω/2)

�3

;

The DTFT is real and its plot is like this (for M = 2)

0 π/2 π-π/2-π

0

33.75

67.50

101.25

Solution 5.4: Convolution (I).

(a) The discrete-time sequence x [n ] can be written as the convolution of

x1[n ] and x2[n ] defined as

x1[n ] = x2[n ] =

¨

1 −(M − 1)/2≤ n ≤ (M − 1)/2

0 otherwise.
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In fact,

x1[n ] ∗x2[n ] = Σk x1[k ]x2[n −k ]

(1)
= Σk x1[k ]x1[k −n ]

(2)
= x [n ]

where (1) follows from the fact that x1[n ] = x2[n ] and from the sym-
metry of x1[n ] and (2) noticing that the sum corresponds to the size of
the overlapping area between x1[k ] and its n-shifted version x1[k−n ].
When |n | ≥ M the two sequences do not overlap whereas the size of
the overlapping area reaches its maximum M when n = 0.

Using Matlab, we can easily verify the above result for M = 11 using
the following code:

>> M = 11;
>> x1 = ones(1,M);
>> x2 = x1;
>> x = conv(x1,x2);
>> stem([-M+1:M-1], x);

(b) Note that x1[n ] = u [n + (M − 1)/2]− u [n − (M + 1)/2]. We can thus

compute its DTFT as

X1(e
jω)

(1)
=

�

1

1− e−jω
+

1

2
δ̃(ω)

�

�

e jω(M−1)/2− e−jω(M+1)/2
�

(2)
=

e jω(M−1)/2− e−jω(M+1)/2

1− e−jω
=

e−jω/2(e jωM/2− e−jωM/2)

e−jω/2(e jω/2− e−jω/2)

=
sin(ωM/2)

sin(ω/2)

where (1) follows from the DTFT of u [n ] and (2) from the fact that

e j w (M−1)/2δ̃(w ) = e−j w (M+1)/2δ̃(w ) = δ̃(w ).

Using the convolution theorem, we can write

X (e j w ) = X1(e
j w )X2(e

j w )

= X1(e
j w )X1(e

j w )

=

�

sin(ωM/2)

sin(ω/2)

�2

.
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Solution 5.5: Convolution (II). We have that (x [n ])2 = (1/2)(1+ cos(3n )),

while y [n ] is the impulse response of an ideal lowpass with cutoff frequency

π/5. Therefore:

(x [n ])2 ∗ y [n ] = 1/2.

Solution 5.6: System properties.

(a) y [n ] = x [−n ]

- Linearity:H {ax1[n ]+bx2[n ]}= ax1[−n ]+bx2[−n ] = aH {x1[n ]}+
bH {x2[n ]}. Therefore,H is linear.

- Time-Invariance: H {x [n−n 0]}= x [−n−n 0] 6= y [n−n 0]. There-

fore,H is not time invariant.

- Stability: If |x [n ]| ≤ M , then |H {x [n ]}| ≤ M . Therefore, H is

BIBO stable.

- Causality:H is not causal.

- Impulse Response: H is not LTI, therefore the response to the

impulse does not characterize the system.

(b) y [n ] = e−jωn x [n ]

- Linearity:H {ax1[n ]+bx2[n ]}= e−jωn (ax1[n ]+bx2[n ]) = aH {x1[n ]}+
bH {x2[n ]}. Therefore,H is linear.

- Time-Invariance: H {x [n−n 0]}= e−jωn x [n−n 0] = e jωn 0y [n−
n 0]. Therefore,H is not time invariant (except forω= 0).

- Stability: If |x [n ]| ≤M , then |H {x [n ]}|= |x [n ]| ≤M . Therefore,

H is BIBO stable.

- Causality:H is causal.

- Impulse Response: H is not LTI, therefore the response to the

impulse does not characterize the system.

(c) y [n ] =
∑n+n 0

k=n−n 0
x [k ]

- Linearity: H {ax1[n ] + bx2[n ]} =
∑n+n 0

k=n−n 0
(ax1[k ] + bx2[k ]) =

aH {x1[n ]}+bH {x2[n ]}. Therefore,H is linear.
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- Time-Invariance:H {x [n−n 0]}=
∑n+n 0

k=n−n 0
x [k−n 0] =

∑n

k=n−2n 0
x [k ] =

y [n −n 0]. Therefore,H is time invariant.

- Stability: If |x [n ]| ≤M , thenH {x [n ]} ≤ |2n 0 + 1|M . Therefore,

H is BIBO stable

- Causality:H is not causal.

- Impulse Response: If x [n ] = δ[n ], y [n ] = h[n ]:

h[n ] =

(

1 if |n | ≤ |n 0|,
0 otherwise.

(d) y [n ] = ny [n − 1]+x [n ], such that if x [n ] = 0 for n < n 0, then y [n ] = 0

for n < n 0. SinceH is recursive, we can not use the same technique

as before. Note that all inputs x [n ] can be expressed as a linear com-

bination of delayed impulses: x [n ] =
∑∞

k=−∞x [k ]δ[n −k ]. Therefore,

to show thatH is linear or time invariant, we can restrict the input to

delayed impulses.

- Linearity: If x [n ] =δ[n ], we can obtain y [n ] by recursion:

h[n ] = y [n ] = n !u [n ].

If x [n ] = aδ[n ]+bδ[n ]:

y [n ] = (a +b )n !u [n ].

Therefore,H is linear.

- Time-Invariance: consider x [n ] = δ[n − 1]. It is easy to check

thatH {δ[n − 1]} 6= h[n − 1]. Therefore,H is not time invariant.

- Stability: The system is non stable sinceH {δ[n ]}→∞.

- Causality:H is causal.

- Impulse Response: H is not LTI, therefore the response to the

impulse does not characterize the system.

Solution 5.7: Ideal filters. Consider a lowpass filter h l p [n ] with band-

widthωb . If we consider the sequence

h = 2cos(ω0n )h l p [n ]
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the Modulation theorem tells us that its Fourier transform is

H (e jω) =Hl p (e
j (ω−ω0))+Hl p (e

j (ω+ω0)) =Hbp (e
jω)

Therefore the impulse response of the bandpass filter is

hbp [n ] = 2cos(ω0n )h l p [n ] = 2cos(ω0n )
ωb

2π
sinc

�

ωb

2π
n

�

Solution 5.8: Zero-phase filtering.

(a) Consider the sequence x [n ] = δ[n − 1]; we should haveR{x [n ]}[n ] =
R{δ[n ]}[n − 1] but instead it is

R{x [n ]}[n ] = x [−n ] = δ[−(n + 1)] =δ[n + 1]

R{δ[n ]}[n − 1] = δ[n − 1]

(b) First of all recall that the DTFT of x [−n ] is X (e−jω); if x [n ] is real, we

also have X (e jω) = X ∗(e−jω). In the frequency domain we therefore

have:

(a) S(e jω) =H (e jω)X (e jω)

(b) R(e jω) =S(e−jω) =H ∗(e jω)X (e−jω) since h[n ] is real.

(c) W (e jω) =H (e jω)R(e jω) = |H (e jω)|2X (e−jω)

(d) Y (e jω) =W (e−jω) = |H (e jω)|2X (e jω)

Therefore the chain of transformations defines an LTI filterG with fre-

quency response G (e jω) = |H (e jω)|2. The corresponding impulse re-

sponse is simply

g [n ] = h[n ] ∗h[−n ]

What is interesting to note here is that, even though R is not time

invariant, we can combine time variant operators into an overall time-

invariant transformation.

(c) G (e jω) is a real function, therefore its phase is zero.

Solution 5.9: Nonlinear signal processing.
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(a) H {δ[n ]}=δ[n ]; butH {aδ[n ]}= a 2δ[n ] 6= aH {δ[n ]}.

(b) Let y [n ] =H {x [n ]}; let w [n ] = x [n −n 0];H {w [n ]}=w 2[n ] = x 2[n −
n 0] = y [n −n 0]. QED.

(c) First of all, y [n ] = cos2(ω0n ) = (1+cos(2ω0n ))/2 from the well-known

trigonometric identity. So y [n ] contains a sinusoid at double the orig-

inal frequency (but be careful: double in the 2π-periodic sense: if ω0

is larger than π/2, then 2ω0 will wrap around the [−π,π] interval).

If ω0 = 3π/8, then y [n ] = (1+ cos((3π/4)n ))/2; since G is a highpass

with cutoff frequency π/2, it will kill the frequency components be-

low π/2 and therefore it will kill the constant. The only component

that passes through is the cosine at 3π/4. The final output is therefore

v [n ] = 1
2

cos((3π/4)n ).

(d) If ω0 = 7π/8, then 2ω0 = 7π/4 > π. We can therefore bring back the

frequency into the [−π,π] interval. We have that 7π/4= 2π−π/4 and

therefore cos((7π/4)n ) = cos((2π−π/4)n ) = cos((π/4)n ). So in the end

y [n ] = (1+ cos((π/4)n ))/2. Now the frequency of the cosine is below

π/2 and therefore v [n ] = 1+ cos((π/4)n ). Note that, as for most non-

linear systems, the frequency of the input sinusoid is different from

the frequency of the output sinusoids: sinusoids are no longer eigen-

functions!
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Solution 6.1: Interleaving.

(a) We have clearly:

X (z ) =

∞
∑

n=−∞
h[n ]z−2n + g [n ]z−(2n+1)

= H (z 2)+ z−1G (z 2)

(b) The ROC is determined by the zeros of the transform. Since the se-

quence is two sided, the ROC is a ring bounded by two poles z L and

z R such that |z L |< |z R | and no other pole has magnitude between |z L |
and |z R |. Consider H (z ); if z 0 is a pole of H (z ), H (z 2) will have two

poles at ±z 1/2; however, the square root preserves the monotonicity

of the magnitude and therefore no new poles will appear between the

circles |z | =
p

|z L | and |z | =
p

|z R |. Therefore the ROC for H (z 2) is

the ring |z L | < |z | < |z R |. The ROC of the sum H (z 2) + z−1G (z 2) is the

intersection of the ROCs, and so

ROC = 0.8< |z |< 2.

Solution 6.2: Properties of the z-transform.

(a) Let H (z ) = Σn h[n ]z−n . We have that

d

d z
H (z ) =

d

d z

�

Σn h[n ]z−n
�

=Σn (−n )h[n ]z−n−1

=−z−1Σn nh[n ]z−n

27
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and the relation follows directly.

(b) We have that

αn u [n ]
Z←→ 1

1−αz−1
.

Using (a) we find

nαn u [n ]
Z←→−z

d

d z

�

1

1−αz−1

�

=
αz−1

(1−αz−1)2
.

Thus,

(n + 1)αn+1u [n + 1]
Z←→ z

αz−1

(1−αz−1)2

and

(n + 1)αn u [n + 1]
Z←→ 1

(1−αz−1)2
.

The relation follows by noticing that

(n + 1)αn u [n + 1] = (n + 1)αn u [n ]

since when n =−1 both sides are equal to zero.

(c) The system is causal since the ROC corresponds to the outside of a

circle of radius α (or equivalently since the impulse response is zero

when n < 0). The system is stable when the unit circle lies inside the

ROC, i.e. when |α| ≤ 1.

(d) When α = 0.8, the angular frequency of the pole is ω = 0. Thus the

filter is lowpass. When α=−0.8,ω=π and the filter is highpass.

Solution 6.3: Stability.
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Figure 6.1: Pole-zero plot and ROC

(a) The transfer function can be obtained by taking the z -transform of the

CCDE:

Y (z )(1− 3.25z−1 + 0.75z−2) = X (z )(z−1 + 3z−2)

which leads to

H (z ) =
Y (z )

X (z )
=

z−1+ 3z−2

1− 3.25z−1+ 0.75z−2
=

z + 3

(z − 0.25)(z − 3)

Since the system is causal, the convergence region is |z | > 3. We can

see that the pole at z = 3 that is outside of the unit circle and therefore

the system is unstable. (Figure 6.1).

(b) the z -transform of the output signal is:

Y (z ) = H (z )X (z )

=
z−1(1+ 3z−1)

(1− 0.25z−1)(1− 3z−1)
(1− 3z−1)

=
z−1+ 3z−2

1− 0.25z−1
.

From Y (z ) we can see that the unstable pole at z = 3 is cancelled and

only the pole at z = 0.25 is left. Since the system is causal, a stable

output can be obtained with a suitable input signal. if the unstable

pole is canceled by the input signal.
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(a) (b)

Figure 6.2: Pole-zero plot and ROC

Solution 6.4: Pole-zero plot and stability (I). The transfer function can

be rewritten as

H (z ) =
1− 2.25z−2

(1− 0.5z−1)(1+ 1.5z−1)
=

1− 1.5z−1

1− 0.5z−1

There is a pole in 0.5 and a zero in 1.5; the system is therefore stable, with

the pole-zero plot and ROC as in Figure 6.2-(a).

Solution 6.5: Pole-zero plot and stability (II). The transfer function can

be rewritten as

H (z ) = 1.5z−1 1− z−1

1− (1/3)z−1

so that the zeros are z 1 = 0 and z 2 = 1/3 and the only pole is in p1 = 0.5

(of course there’s also a pole in zero, but it doesn’t affect stability so we don’t

consider it). The pole-zero plot and the ROC are shown in Figure 6.2-(b) (the

system is anticausal). The system is not stable.

Solution 6.6: Pole-zero plot and magnitude response. To obtain

the frequency response of a filter, we analyze the z -transform over the unit

circle, that is, for z = e jω. Figure 6.3 shows the magnitude response of the

three filters:
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(b) Diagram 2
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(c) Diagram 3

Figure 6.3: Zeros and Poles Diagrams

(a) The first filter is a low-pass filter. Note that there are three poles lo-

cated in low frequency (near ω = 0), while there is a zero located in

high frequency (ω=π).

(b) The second filter is just the opposite. The zero is located in low fre-

quency, while the influence of the three poles is maximum in high

frequency (ω=π). Therefore, it is a high-pass filter.

(c) In the third system, there are poles which affect low and high fre-

quency and two zeros close to w = π/2. Therefore, this system is a

band-stop filter.

Solution 6.7: Z-transform and magnitude response. We will use

Matlab to solve this exercise.
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(b) Poles and Zeros

Figure 6.4: Filter Descriptions.

(a) To compute the frequency response H (e jω) we can write:

>> B=[1/6,1/2,1/2,1/6];
>> A=[1,0,1/3];
>> [H,W]=freqz(B,A,1000);
>> plot(W,abs(H));

Fig. 6.4(a) shows the frequency response between 0 and π. Clearly,

H (e jω) is a “low-pass” filter.

(b) To compute and plote the zeros and poles:

>> zplane(B,A)

The result is shown in Fig. 6.4(b). Given that the system is causal, the

ROC extends outward from the outermost pole. Therefore, the ROC

includes the unitary circle and the system is stable.

(c) We can generate x [n ] as

>> x=[zeros(1,50),ones(1,128-50)]
>> X=fft(x);
>> plot(abs(X))

and we can compute y [n ] by filtering x [n ]:
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Figure 6.5: Filtered signal.

>> y=filter(B,A,x);
>> plot(y);

y [n ] is plotted in Fig. 6.5.

(d) y [n ] is a low-pass filtered version of x [n ], where the high frequencies

have been removed. Note that the sharp transition between zero and

one in the input has been smeared in time by the lowpass filter.

Solution 6.8: DFT and z-transform. Let X (z ) be the z -transform of the

finite-support extension of x:

X (z ) =

N−1
∑

n=0

x [n ]z−n

It is easy to see that the z -transform of the finite-support extension of xr is

simply:

Xr (z ) = z−(N−1)X (z−1);

for example, if x= [a b c ]T :

X (z ) = a +bz−1+ c z−2

Xr (z ) = c +bz−1+a z−2 = z−2(c z 2+bz +a ) = z−2X (z−1)
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Therefore we have

Xr [k ] = Xr (z )|z=W −k
N

= z−(N−1)X (z−1)|z=W−k
N

= W
(N−1)k

N X (W k
N )

= W −k
N X (W

−(N−k )
N )

=

¨

X [0] for k = 0

W −k
N X [N −k ] for k = 1, . . . ,N − 1

In other words, the DFT of the time-reversed signal xr is the reversed DFT of

x (reversed in the circular sense) and scaled by the weights W −k
N .

Solution 6.9: A CCDE. Taking the z -transform of both sides,

H (z ) =
Y (z )

X (z )
=

1

z−1+ 0.25z−2

whose pole-zero plot and ROC are shown in Figure 6.6, assuming the sys-

tem is “causal”. Note that the current value of the output (y [n ]) depends

structurally on the one-step-ahead value of the input x [n +1] and therefore

the filter is not strictly causal. It can be implemented offline by processing

the whole input and then by delaying the output by one. One easy way to

understand the concept is by computing the impulse response; if we write

H (z ) = z
1

1+ 0.25z−1

we notice that the second term in the above expression is the z -transform

of the sequence a [n ] = (−0.25)n u [n ] and that the leading z term is just an

advance operator. Therefore

h[n ] =

¨

0 for n <−1

(−2.5)n+1 for n ≥−1

which is nonzero for n =−1, i.e. not strictly causal.

Solution 6.10: Inverse transform. We have:

X (z ) = 2z + 7+ 3z−1
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Figure 6.6: Pole-zero plot and ROC

and therefore

x [n ] =











2 for n =−1

7 for n = 0

3 for n = 1

0 otherwise

Solution 6.11: Signal transforms. To efficiently evaluate X (z ) on the unit

circle first note that X (z ) is “symmetrical” around the missing term z−2 so

that we can write

X (z ) = z−2 (z 1+ z 2+ z−2+ z−1);

then remember that

[z−m + z m ]z=e jω = 2cos(mω).

Therefore,

X (e jω) = 2e−j 2ω[cosω+ cos2ω]

whose magnitude is shown in Figure 6.7.

Finally, from the definition,

y [n ] = [1 1 0 1]T .

Therefore, after a few simple calculations,

Y [k ] = [3 1 − 1 1]T
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Figure 6.7: Magnitude frequency response
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Solution 7.1: Discrete-time systems and stability.

(a)

y0[n ] = x [n ]+ y0[n − 1]

y1[n + 1] = y1[n ]+x [n ] ⇒ y1[n ] = y1[n − 1]+x [n − 1]

y [n ] = y0[n ]− y1[n ] ⇒ y [n ] = (y0[n − 1]− y1[n − 1])+x [n ]−x [n − 1]

= y [n − 1]+x [n ]−x [n − 1]

(b)

H0(z ) =
1

1− z−1

H1(z ) =
z−1

1− z−1

H (z ) =
1− z−1

1− z−1
= 1

(c) The system is BIBO stable since y [n ] = x [n ].

(d) The system is not internally stable (the subsystems have poles on the

unit circle.

(e) According to the CCDES,

y0[n ] = n u [n ]→∞
y1[n ] = (n − 1)u [n ]→∞
y [n ] = u [n ]

37
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(f) Although the transfer function is theoretically unity, the delay elements

in the system, if implemented with finite precision, will at one point

overflow since the output values of the two branches increase without

limit. If binary arithmetic is used, the system may or may not work

after an overflow according to the binary representation used. In gen-

eral, it will not work.

Solution 7.2: Filter properties (I).

- False. The inverse filter is stable only if all the zeros of G (z ) are inside

the unit circle; this is not true in general.

- False. The inverse filter is FIR only if G (z ) has no zeros; this is not true

in general.

- True. If the filter is stable, the ROC of G (z ) includes the unit circle.

- True. The poles of the cascade double their multiplicity but remain

inside the unit circle.

Solution 7.3: Filter properties (II).

- False. Zeros do not affect stability, therefore they can be anywhere for

a stable system.

- False. The ROC includes the unit circle and extends outwards, there-

fore it includes all circles of radius greater than one, but not necessar-

ily a circle of radius 0.5.

- True. Adding a zero does not affect stability.

- False. The system described does not necessarily have poles.

Solution 7.4: Fourier transforms and filtering.

(a) Starting at n = 0, a few values of the signal are

x [n ] = . . . −1, 0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0, . . .
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and it is easy to recognize that

x [n ] =−cos((π/2)n )

(b) x [n ] is 4-periodic, therefore the most appropriate Fourier representa-

tion is the DFS

X̃ [k ] =

3
∑

n=0

x [n ]e−j 2π
4

nk

= −1+ e−jπk , k = 0,1,2,3

= [0 − 2 0 − 2]T

(c) We can then use the DFS-DTFT formula to obtain:

X̃ (e jω) =
1

N

N−1
∑

k=0

X [k ]δ̃(ω− 2π

N
k )

= −1

2
δ̃(ω− π

2
)− 1

2
δ̃(ω− 3π

2
))

= −1

2
[δ̃(ω− π

2
)+ δ̃(ω+

π

2
)]

where in the last passage we have brought back the last delta onto the

[−π,π] interval. This is consistent with the definition of the DTFT of a

cosine of frequency π/2

(d) The impulse response is clearly a sinc. We know that a response of the

type

h l p [n ] =
ωc

π
sinc

�

ωc

π
n

�

.

identifies a lowpass filter with cutoff frequencyωc and passband mag-

nitude of one. In our case we can rewrite the impulse response as:

h[n ] =
1

π
sinc

�

1

π
n

�

.

which indicates a lowpass filter with cutoff frequency of one radian.

This filter will kill the deltas at frequencies aboveω= 1 and leave the

rest unchanged. Since π/2> 1, y [n ] = 0.
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Solution 7.5: FIR filters.

(a) First of all note that 1− 2−k = (2k − 1)/2k . With this we find that

z 1 = e j 1
2
π

z 2 = e j 3
4
π

z 3 = e j 7
8
π

z 4 = e j 15
16
π

which are simply four points in the second quadrant on the unit circle.

(b) Each couple of complex-conjugate zeros contributes a factor of the

form (1−2z−1 cosθ+z−2) to the transfer function, where θ is the angle

of the complex zero. We have in the end:

H (z ) = (1+ z−1)(1+ z−2)(1− 2cos(
3

4
π)z−1+ z−2)

(c) H (z ) is a 5th degree polynomial in z−1 and therefore it has at most 6

nonzero coefficients. The impulse response will have 6 nonzero taps.

(d) You don’t even need Matlab to do this. First of all, the impulse re-

sponse is real and therefore the magnitude of H (e jω) is symmetric.

Consider now the values of the frequency response at zero and π;

these are computed from the z -transform for z = 1 and z = −1 re-

spectively; we have:

H (e j 0) = H (1) = 2 ·2 ·2(1− cos(
3

4
π))≈ 13.6

H (e jπ) = H (−1) = 0

Next, you need to consider that H (z ) is zero on the unit circle at z 1 and

z 2, i.e. atω=π/2 andω= 3π/4. Now you can plot the magnitude:

(e) First of all, is the filter linear phase? You can compute the coefficient of

the transfer function and verify that h[n ] = 1,2.4142,3.4142,3.4142, 2.4142,1

for n = 0, . . . ,5. In a simpler way, you can simply notice that H (z−1) =
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z 5 H (z ) and therefore the filter is linear phase, symmetric. The filter

has an even number of taps and therefore it is Type II.

Because of the zero in π and the large value in zero, the filter is low-

pass. However, it is not equiripple since the magnitude at the peak of

the first sidelobe in the stopband is higher than the peak of the second

sidelobe.

The filter is clearly not a good filter: the transition band is very large,

it is not flat in the passband and the magnitude is rather large in the

stopband.

Solution 7.6: Linear-phase FIR filter structure.

z 1 = z ∗0

z 2 = 1/z 0

z 3 = 1/z ∗0

z 4 = 1

z 5 =−1

Solution 7.7: FIR filters analysis (I).

(a) The filter is clearly symmetric around n = 4 and therefore it is linear

phase. It has an odd number of taps (M = 9) and therefore it is Type I.
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(b) The frequency response of the filter will be of the form H (e jω) =A(e jω)e−j M−1
2
ω,

with A(e jω)∈R. The phase is thereforeϕ(ω) =−((M −1)/2)ω and the

group delay is constant and equal to (M − 1)/2= 4 samples.

(c) For the filter to be optimal in the Parks-McClellan sense, its magnitude

response must exhibit at least L+ 2 alternations between zero and π,

where L = (M −1)/2= 4. Two alternations occur at the passband edge

and at the stopband edge, and the others must occur at local maxima

of the magnitude response. In other words, in our case the magnitude

response should exhibit at least 4 local maxima distributed between

the passband and stopband. We can see from the plot, however, that

there are only two local maxima, one in ω = 0 and another one in

ω≈ 2.3. The filter is therefore not optimal.

(d) We can easily see that

g [n ] = h[n ]cos((π/2)n ).

The filter G (z ) is therefore a modulated version of the original filter.

The modulation shifts the lowpass response over to π/2 and the re-

sulting filter is passband and the magnitude response looks like this:

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

(e) The transfer function of the whole system is simply F (z ) = 1−H (z ).

From

F (z ) = 1− 0.005− 0.03z−1− 0.11z−2− 0.22z−3− 0.27z−4−
−0.22z−5− 0.11z−6− 0.03z−7− 0.005z−8

we derive the finite impulse response

f [n ] = {0.995, −0.03, −0.11, −0.22, −0.27, −0.22, −0.11, −0.03, −0.005}
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which is not symmetric and therefore is not linear phase.

(f) Since h[n ] is linear phase, we can write H (e jω) = A(e jω)e−j 4ω with

A(e jω)∈R. The resulting squared magnitude response is therefore

|F (e jω)|2 = |1−A(e jω)e−4jω|2 = 1+A2(e jω)− 2A(e jω) cos(4ω)

which is not what was intended. Indeed the magnitude looks like this:
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This is a very poor highpass filter.

(g) The correct design must take into account the delay introduced by

H (z ):

x [n ] H (z )

z−(M−1)/2

+ y [n ]
−

+

which we can easily do since M is an odd integer (M = 9) and therefore

the delay value is an integer number (four samples). The resulting

magnitude response is:

|F (e jω)|= |e−4jω−A(e jω)e−4jω|2 = |1−A(e jω)|= |1− |H (e jω)||

which is what we want and which is plotted in the following figure:
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Solution 7.8: FIR filters analysis (II).

(a) We can write

H (e jω) = e−jω N−1
2 Hr (e

jω)

(b) The filter is not extraripple and, by inspection, it has L+2= 9 alterna-

tions. Therefore the number of taps is M = 2L+ 1= 15.

(c) The filter has 14 zeros and no poles. Because of the symmetry con-

straints for Type-I FIRs, four of the zeros are at z 0,z ∗0,1/z 0, and 1/z ∗0.

The other 10 zeros correspond to the zero crossings of Hr (e jω) and

can be easily estimated by inspection. The resulting pole-zero plot is

shown below.

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

14

(d) It is H1,r (e jω) = Hr (e j (ω−π)). We can expand this as the transform of
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the noncausal impulse response hr [n ]

H1,r (e
jω) =

L
∑

n=−L

hr [n ]e
j (ω−π)n

=

L
∑

n=−L

(−1)n hr [n ]e
jωn

so that h1[n ] = (−1)n h[n ].

(e) The new filter is a Type-I highpass.

Solution 7.9: IIR filtering. The transfer function can be rewritten as:

H (z ) =
1+ z−1

(1−pz−1)(1−p ∗z−1)

with p = 0.8e jω0 ,ω0 = 2π/7.
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x [n ]

z−1

+

+

y [n ]

z−1

z−1

+

+
−0.9976

0.86

z−1

z−1

+

+

+

+x [n ] y [n ]

−0.9976 1

0.64

The first five approximate (i.e. with a 1 ≈ 1) values for the input are

y [n ] = 1,4,5.36,2.8,−0.6304

as one can easily compute from the approximate difference equation

y [n ] = x [n ]+x [n − 1]+ y [n − 1]− 0.64y [n − 2]

Solution 7.10: Generalized Linear Phase Filters
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(a) H (e jω) can easily be expressed as

H (e jω) = 2j e−jω/2

�

e jω/2− e−jω/2

2j

�

= 2sin(ω/2)e−j (ω/2−π/2).

Thus H (z ) is a generalized linear phase filter with group delay d = 1/2

and phase factor α=π/2.

(b) The filter is of type IV since it has an even number of taps (2), is anti-

symmetric, has a fractional group delay and a π/2 phase factor.

(c) The filter impulse response is given by

h[n ] = δ[n ]−δ[n − 1].

Thus,

Σn h[n ]sin(ω(n −d )+α) = sin(−ω/2+π/2)− sin(ω/2+π/2) = 0

for allω.

(d) We have that

H (e jω) = Σn h[n ]e−jω=Σn h[n ]cos(ωn )− jΣn h[n ]sin(ωn )

H (e jω) = |H (e jω)|e−j (w d−α) = |H (e jω)|cos(α−ωd )+ j |H (e jω)|sin(α−ωd ).

Thus,

tan(α−ωd ) =
sin(α−ωd )

cos(α−ωd )
=
−Σn h[n ]sin(ωn )

Σn h[n ]cos(ωn )

and

Σn h[n ] (sin(α−ωd )cos(ωn )+ cos(α−ωd )sin(ωn )) = 0.

Using trigonometric identities we obtain,

Σn h[n ]sin(ω(n −d )+α) = 0

for allω.
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Solution 7.11: Echo cancellation. The transfer function of the echo

system is

H (z ) = 1−αz−D ;

for D = 12 and α = 0.1 the transfer function has 12 zeros at the roots of

z 12 = 0.1 which are 12 points on the circle of radius 0.826 and at angles

∡z n =
2π

12
n

as shown in Figure 7.1(a). The magnitude response is plotted in Figure 7.1(b);

note the dips in correspondence to each zero.

The echo cancelling system should remove the echo so that the overall trans-

fer function is at most a simple delay. To do so, a candidate is the inverse

transfer function

G (z ) =
1

H (z )
=

1

1−αz−D

which is an IIR filter. Note that each zero in H (z ) becomes a pole for G (z ).

For D = 12 and α = 0.1 the poles are inside the unit circle so the system is

stable. The pole-zero plot and magnitude response can be easily derived

from those for H (z ).

The practical difficulty in implementing the system is the usual problem

which affects all cancellation systems: because of the limited numerical pre-

cision of digital systems it may be hard or impossible to place the poles of

the echo cancelling system exactly on top of the zeros of the natural echo. If

the poles are close but not exactly on the zeros, the echo is attenuated but

not eliminated. The structure used to implement the filter is also impor-

tant: a cascade of second order stages will allow for a finer tuning of the zero

positions as opposed to a simple transversal implementation.

Solution 7.12: FIR filter design (I). Type-III FIRs have a zero at ω = 0,

therefore they are not suitable for lowpass design.

Solution 7.13: FIR filter design (II). The Hilbert filter has an antisymmet-

ric impulse response so that it can be approximated by a a Type-III linear

phase filter. Type-III filters, however, have a zero at ±π and therefore there
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(a) Pole-zero plot
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(b) Magnitude response

Figure 7.1: Echo cancellation.

will be a non-negligible magnitude error at the band edges. The wider the

band of the input signals, the more taps will be necessary to achieve the ap-

proximation of an allpass behavior.
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Chapter 8

Solution 8.1: Filtering a random process (I). The autocorrelation of

the output is ry [n ] = h[n ] ∗h[−n ] ∗ rx [n ]. We have that h[n ] ∗ h[−n ] is the

usual triangle function with h[−1] = h[1] = 1, h[0] = 2 and zero elsewhere.

Therefore

ry [−3] = 0

ry [−2] = 0

ry [−1] = σ2

ry [0] = 2σ2

ry [1] = σ2

ry [2] = 0

ry [3] = 0

Solution 8.2: Filtering a random process (II). From the properties of

51
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the cross correlation, rX Y [n ] = h[n ] ∗ rX [n ] =σ2h[n ] and therefore:

rX Y [−3] = 0

rX Y [−2] = 0

rX Y [−1] = 0

rX Y [0] = σ2(1−λ)
rX Y [1] = σ2(1−λ)λ
rX Y [2] = σ2(1−λ)λ2

rX Y [3] = σ2(1−λ)λ3

Solution 8.3: Power Spectral Density.

(a) We first note that Y [n ] can be easily expressed as the output of a LTI

system with impulse response h[n ] defined as

h[n ] = δ[n ]+βδ[n − 1].

Thus, the power spectrum density of Y [n ] is given by

PY (e
jω) = |H (e jω)|2PX (e

jω).

We have that

H (e jω) = 1+β e−jω

|H (e jω)|2 =
�

1+β e−jω
��

1+β e−jω
�∗

= 1+β e jω+β e−jω+β 2

= 1+β 2+ 2β cos(ω)
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and

PX (e
jω) =

∑

n

RX [n ]e
−jωn

=σ2
∑

n

α|n |e−jωn

=σ2

 

0
∑

n=−∞
α−n e−jωn +

∞
∑

n=0

αn e−jωn − 1

!

=σ2

�

1

1−αe jω
+

1

1−αe−jω
− 1

�

=σ2 1−α2

(1−αe jω)(1−αe−jω)

=σ2 1−α2

1+α2− 2αcos(ω)
.

Thus,

PY (e
jω) =σ2(1−α2)

1+β 2+ 2β cos(ω)

1+α2− 2αcos(ω)
.

(b) To have a white noise, the samples of Y [n ]must uncorrelated, i.e. the

power spectrum PY (e jω)must be constant. Thus, β =−α.

Solution 8.4: Filtering a sequence of independent random vari-

ables. To generate the random outcomes, we use the Matlab function

randn that generates a normalized Gaussian random matrix (zero-mean,

variance equal to 1). Type help randn for details.

(a) X [1], . . . ,X [N ] can be obtained numerically as:

% signal’s length
N=100;
% Generate the Gaussian vector x with variance sigma^2=3
% Notice that the variance of the signal aU[n] is a^2
x=sqrt(3)*randn(1,N);

(b) To obtain Z [1], . . . ,Z [N ]note that Z [n ]has the unit variance, therefore:

z=randn(1,N);
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(c) There are different ways to perform the filtering but the simplest is to
use the Matlab function filter:

% The filter h is given by:
h=[0,1/2,1/4,1/4];
% The function filter performs zero-padding by default.
% Thus, we simulate circular convolution by extending
% the signal periodically. The extension of length(h)-1
% is added to both sides of the signal
lh=length(h); x1=[x(N-lh+2:N),x,x(1:lh-1)];
% Now, filtering...
y2=filter(h,1,x1);
% And, finally, we have to cut the extended parts
% of the convolved signal
y2=y2(lh:N+lh-1);

(d) We simulate the PSD by computing the average of the square modulus
of the Fourier transform. We approximate the true average using a
large number of realizations.

function PSD=estimate_psd(N,M)
% The length of the input vector and the number of
% iterations are given as the input arguments
% Initialize the filter h and the sum of
% the square modulus of the Fourier transform
h=[0,1/2,1/4,1/4]; PSD=zeros(1,N);
% The loop iterates the computation of the square
% modulus of the Fourier transform of different
% realizations of the variables {Y[i]}. The result
% is added to the accumulator vector PSD.
for i=1:M
% generate x
x=sqrt(3)*randn(1,N);
% filter it through h
x1=[x(N-2:N),x,x(1:3)];
y1=filter(h,1,x1);
y1=y1(4:N+3);
% generate e
e=randn(1,N);
% sum up
y=y1+e;
% compute the PSD for this iteration
% and add it to the sum
PSD=PSD+(abs(fft(y)).^2)/N;

end
% average PSD
PSD=PSD/M;
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(e) Filtering X [n ] with h[n ] produces a random signal U [n ] for which

U [n ] =
∑

k∈Z
X [n −k ]h[k ] =

1

2
X [n − 1]+

1

4
X [n − 2]+

1

4
X [n − 3]

so that

Y [n ] =U [n ]+Z [n ] =
1

2
X [n − 1]+

1

4
X [n − 2]+

1

4
X [n − 3]+Z [n ]

Remark that if X and Z are independent (which is our hypothesis)

then, by construction, U and Z are also independent.

We can now easily compute the mean of Y [n ]:

E[Y [n ]]= E[ 1
2

X [n − 1]+ 1
4

X [n − 2]+ 1
4

X [n − 3]+Z [n ]]= 0.

The covariance E[Y [n +k ]Y [n ]∗] is

E[Y [n +k ]Y [n]∗]=E[U [n +k ]U [n]∗+Z [n +k ]U [n]∗+U [n +k ]Z [n]∗+Z [n +k ]Z [n]∗]

=E[U [n +k ]U [n]∗]+E[Z [n +k ]U [n]∗]+E[U [n +k ]Z [n]∗]+E[Z [n +k ]Z [n]∗]

Since U and Z are independent, and E[U [n ]] = E[Z [n ]] = 0 for every

n :

E[Y [n +k ]Y [n ]∗]= E[U [n +k ]U [n ]∗]+E[Z [n +k ]Z [n ]∗]

Now, E[Z [n +k ]Z [n ]∗] = δ[k ]; given that all the quantities are real
(U ∗ =U) we have

E[U [n +k ]U [n]]=
1

4
E[X [n +k −1]X [n −1]]+

1

8
E[X [n +k −2]X [n −1]]+

1

8
E[X [n +k −3]X [n −1]]

+
1

8
E[X [n +k −1]X [n −2]]+

1

16
E[X [n +k −2]X [n −2]]+

1

16
E[X [n +k −3]X [n −2]]

+
1

8
E[X [n +k −1]X [n −3]]+

1

16
E[X [n +k −2]X [n −3]]+

1

16
E[X [n +k −3]X [n −3]]

Since E[X [n +k − l ]X [n − j ]]= 3δ[k − l + j ]:

E[U [n +k ]U [n ]]=
3

4
δ[k ]+

3

8
δ[k − 1]+

3

8
δ[k − 2]

+
3

8
δ[k + 1]+

3

16
δ[k ]+

3

16
δ[k − 1]

+
3

8
δ[k + 2]+

3

16
δ[k + 1]+

3

16
δ[k ]
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Finally

E[Y [n +k ]Y [n ]∗]=















9
8
+ 1 if k = 0

9
16

if k =−1,+1
3
8

if k =−2,+2

0 if k ≤−3 or k ≥ 3

While the input process X [n ] was uncorrelated, from this result we

can remark that the filtered process Y [n ] is correlated (short range

correlation).

The power spectral density is given by the DTFT of the covariance

function, therefore

f X (ω) =
17

8
+

9

16
(e−jω+ e jω)+

3

8
(e−2jω+ e 2jω)

=
17

8
+

9

8
cos(ω)+

3

4
cos(2ω).

Try now to execute the function with several different values of M .
Notice how the PSD is getting closer to the theoretical one as M grows.
Figure 8.1 shows the result of the simulation for N = 100 and several
values of M and compares them to the ideal one.

PSD=estimate_psd(N,M)
omega=[0:2*pi/(N-1):2*pi];
PSD_theo = (17/8)+((9/8)*cos(omega))+((3/4)*cos(2*omega));
figure
hold on
grid on
plot(PSD,’r--’);
plot(PSD_theo,’b-’);
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Figure 8.1: The ideal PSD and the estimations for M = 50, 500 and

5000.
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Chapter 9

Solution 9.1: Zero-order hold.

(a) We have

X0(jΩ) =

∫ ∞

−∞
x0(t )e

−jΩt d t

=

∫ ∞

−∞

∞
∑

n=−∞
x [n ]rect (t −n )e−jΩt d t

=

∞
∑

n=−∞
x [n ]

∫ ∞

−∞
rect (t −n )e−jΩt d t

=

∞
∑

n=−∞
x [n ]e−jΩn

∫ 1/2

−1/2

e−jΩτdτ

=
sin(Ω/2)

Ω/2
X (e jΩ)

= sinc(Ω/2π)X (e jΩ).

(b) Take for instance a discrete-time signal with a triangular spectrum

such as in Figure 9.1-(a). We know that the sinc interpolation will

give us a continuous-time signal which is strictly bandlimited to the

[−ΩN ,ΩN ] interval (with ΩN = π/Ts = π) and whose shape is exactly

triangular; this is shown in Figure 9.1-(d). Conversely, the spectrum

of the continuous-time signal interpolated by the zero-order hold is

shown in Figure 9.1-(b). There are two main problems in the zero-

order hold interpolation as compared to the sinc interpolation:
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Figure 9.1: Zero Order Hold Exercise

- The zero-order hold interpolation is NOT bandlimited: the 2π-

periodic replicas of the digital spectrum leak through in the continuous-

time signal as high frequency components. This is due to the

sidelobes of the interpolation function in the frequency domain

(rect in time↔ sinc in frequency) and it represents an undesir-

able high-frequency content which is typical of all local interpo-

lation schemes.

- There is a distortion in the main portion of the spectrum (that

between −ΩN and ΩN , with ΩN = π) due to the non-flat fre-

quency response of the interpolation function. This is illustrated

in detail in Figure 9.1-(c), which is simply a zoomed-in version of

Figure 9.1-(b).
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(c) Observe that X (jΩ) can be expressed as

X (jΩ) =

¨

X (e jΩ) if Ω ∈ [−π,π]

0 otherwise,

where X (e jΩ) is the DTFT of the sequence x [n ] evaluated atω=Ω. So

X (jΩ) = X (e jΩ)rect

�

Ω

2π

�

=X0(jΩ)sinc−1

�

Ω

2π

�

rect

�

Ω

2π

�

.

Hence

G (jΩ) = sinc−1

�

Ω

2π

�

rect

�

Ω

2π

�

,

which is plotted in Figure 9.2 between −π and π.
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Figure 9.2: Zero Order Hold Exercise: G (jΩ)

(d) A first solution is to compensate for the distortion introduced by G (jΩ)

in the discrete-time domain. This is equivalent to pre-filtering x [n ]

with a discrete-time filter of magnitude 1/G (e jΩ) which can even be

designed with the Parks-McClellan optimization technique. The ad-

vantages of this method is that digital filters such as this one are very

easy to design and that the filtering can be done in the discrete-time

domain. The disadvantage is that this approach does not eliminate or

attenuate the high frequency leakage outside of the baseband.
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Alternatively, one can cascade the interpolator with an analog low-

pass filter to eliminate the leakage. The disadvantage is that it is hard

to design an analog lowpass which can also compensate for the in-

band distortion introduced by G (jΩ); such a filter will also introduce

unavoidable phase distortion (no analog filter has linear phase).

Solution 9.2: A bizarre interpolator.

(a) As stated, I (t ) = r (t ) ∗ r (t ), with r (t ) = rect(2t ). The Fourier transform

of r (t ) can be derived knowing that the transform of the rect function

is the sinc, and that r (t ) has half the support of a normalized rect;

alternatively, we can directly compute the easy integral:

R(jΩ) =

∫ 1/4

−1/4

e−jΩt d t =
1

2
sinc

�

Ω

4π

�

From the convolution theorem,

I (jΩ) = [R(jΩ)]2 =
1

4
sinc2

�

Ω

4π

�

It appears that the Fourier transform of the interpolating function is

real, and its sketch is as follows (note that the first zero is at Ω= 4π):

4π 8π
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(b) From the interpolation formula x (t ) =
∑

n x [n ]I ((t −nTs )/Ts )we have

X (jΩ) = Ts X (e jΩTs ) I (jΩTs )

=
Ts

4
X (e jΩTs )sinc2

�

ΩTs

4π

�

So the Fourier transform of the interpolated signal is composed of the

products of two parts (recall that, as usual, ΩN =π/Ts )):

- The 2ΩN -periodic spectrum X (e jπΩ/ΩN )

- The Fourier transform of the interpolating function. Please note

that the first zero of I (jΩTs ) is for (ΩTs )/(4π) = 1, i.e. for Ω= 4ΩN

From this we can sketch the spectrum of the interpolated signal as

follows

Ω
N

4Ω
N

(c) There are two types of error, in-band and out-of-band:

- In-band: The spectrum between [−ΩN ,ΩN ] (the baseband) is

distorted by the non-flat response of the interpolating function

over the baseband.

- Out-of-band: The periodic copies of X (e jπΩ/ΩN )outside of [−ΩN ,ΩN ]

are not eliminated by the interpolation filter, since it is not an

ideal lowpass.
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(d) We need to undo the linear distortion introduced by the nonflat re-

sponse of the interpolation filter in the baseband. The idea is to have

a modified spectrum H (e jω)X (e jω) so that, in the [−ΩN ,ΩN ], we have

X (jΩ) = X (e jΩTs ).

If we use H (e jω)X (e jω) in the interpolation formula, we have

X (jΩ) =
Ts

4
H (e jΩTs )X (e jΩTs )sinc2

�

ΩTs

4π

�

so that

H (e jΩTs ) = [
Ts

4
sinc2

�

ΩTs

4π

�

]−1.

Therefore, the frequency response of the digital filter will be

H (e jω) =
4

Ts
sinc−2

�

ω

4π

�

, −π≤ω≤π

prolonged by 2π-periodicity over the entire frequency axis.

Solution 9.3: Another view of sampling. We have that

xs (t ) = x (t )

∞
∑

k=−∞
δ(t −k Ts )

and, by using the modulation theorem,

Xs (jΩ) = X (jΩ) ∗P(jΩ)

=

∫

R

X (j Ω̃)P(j (Ω− Ω̃))d Ω̃ = 2π

Ts

∫

R

X (j Ω̃)
∑

k∈Z
δ

�

Ω− Ω̃−k
2π

Ts

�

d Ω̃

=
2π

Ts

∑

k∈Z

∫

R

X (j Ω̃)δ

�

Ω− Ω̃−k
2π

Ts

�

d Ω̃ =
2π

Ts

∑

k∈Z
X

�

j

�

Ω−k
2π

Ts

��

.

In other words, the spectrum of the delta-modulated signal is just the pe-

riodic repetition (with period (2π/Ts ) of the original spectrum. If the latter

is bandlimited to (π/Ts ) there will be no overlap and therefore x (t ) can be

obtained simply by lowpass filtering xs (t ) (in the continuous-time domain).

Solution 9.4: Aliasing can be good!
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(a) According to our definition of bandlimited functions, the highest nonzero

frequency is 2Ω0 and therefore xc (t ) is 2Ω0-bandlimited for a total

bandwidth of 4Ω0. The maximum sampling period (i.e. the inverse of

the minimum sampling frequency) which satisfies the sampling the-

orem is therefore Ts = π/(2Ω0). Note however that the total support

over which the (positive) spectrum is nonzero is the interval [Ω0,2Ω0]

so that one could say that the total effective positive bandwidth of the

signal is just Ω0; this will be useful later.

(b) The digital spectrum will be the rescaled version of the periodized

continuous-time spectrum

X̃c (jΩ) =

∞
∑

k=−∞
Xc (j (Ω− 2kΩ0)).

The general term Xc (jΩ− j 2kΩ0) is nonzero only for

Ω0 ≤ |Ω− 2kΩ0| ≤ 2Ω0 for k ∈Z.

This translates to

(2k + 1)Ω0 ≤Ω≤ (2k + 2)Ω0

(2k − 2)Ω0 ≤Ω≤ (2k − 1)Ω0

which are non-overlapping intervals! Therefore, there will be no dis-

ruptive superpositions of the copies of the spectrum. The digital spec-

trum will be simply

X (e jω) =
1

Ts

∞
∑

k=−∞
Xc (j

ω

Ts
− j

2πk

Ts
)

and it will look like this (with 2π-periodicity, of course):

Xa (e jω)

ππ
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(c) Here’s a possible scheme (verify that it works):

- Sinc-interpolate xa [n ]with period Ts to obtain xb (t )

- Multiply xb (t ) by cos(2Ω0t ) in the continuous time domain to

obtain xp (t ) (i.e. modulate by a carrier at frequency (Ω0/π)Hz).

- Bandpass filter xp (t )with an ideal bandpass filter with (positive)

passband equal to [Ω0,2Ω0] to obtain xc (t ).

(d) The effective positive bandwidth of such a signal is Ω∆ = (Ω1 − Ω0).

Clearly, the sampling frequency must be at least equal to the effective

total bandwidth so we have a first condition on the maximum allow-

able sampling period: Tmax <π/Ω∆.

Now, to make things simpler, assume that the upper frequency Ω1 is a

multiple of the bandwidth, i.e. Ω1 =MΩ∆ for some integer M (in the

previous case, it was M = 2). In this case, the argument we made in

the previous point can be easily generalized: if we pick Ts =π/Ω∆ and

sample we have that

X̃c (jΩ) =

∞
∑

k=−∞
Xc (j (Ω− 2kΩ∆)).

The general term Xc (jΩ− j 2kΩ∆) is nonzero only for

Ω0 ≤ |Ω− 2kΩ∆| ≤Ω1 for k ∈Z.

Since Ω0 =Ω1−Ω∆ = (M − 1)Ω∆, this translates to

(2k +M − 1)Ω∆ ≤Ω≤ (2k +M )Ω∆

(2k −M )Ω∆ ≤Ω≤ (2k −M + 1)Ω∆

which are again non-overlapping intervals.

If Ω1 is not a multiple of the bandwidth, then the easiest thing to do

is to change the lower frequency Ω0 to a new frequency Ω′0 so that the

new bandwidthΩ1−Ω′0 dividesΩ1 exactly. In other words we set a new

lower frequency Ω′0 so that it will be Ω1 =M (Ω1−Ω′0) for some integer

M ; it is easy to see that

M =

�

Ω1

Ω1−Ω0

�

.
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since this is the maximum number of copies of the Ω∆-wide spec-

trum which fit with no overlap in the [0,Ω0] interval. Note also that,

if Ω∆ > Ω0 we cannot hope to reduce the sampling frequency and we

have to use normal sampling. This artificial change of frequency will

leave a small empty “gap” in the new bandwidth [Ω′0,Ω1], but that’s

no problem. Now we can use the previous result and sample with

Ts = π/(Ω1 − Ω′0) with no overlap. Since (Ω1 − Ω′0) = Ω1/M , we have

that, in conclusion, the maximum sampling period is

Tmax =
π

Ω1

�

Ω1

Ω1−Ω0

�

i.e. we can obtain a sampling frequency reduction factor of ⌊Ω1/(Ω1−
Ω0)⌋.

Solution 9.5: Digital processing of continuous-time signals.

(a) The digital frequencies are always ω = 2π(f /Fs ) so that the digitized

AM band resides in the [0.5π,0.6π] interval. Each 20KHz channel oc-

cupies a slice 0.01π-wide.

(b) the modulation moves the center frequency of the filter to π/2 so that

the lowpass characteristic becomes as in the following figure. Note

that the (positive) spectral support of the passband is π/4, i.e. twice

the cutoff frequency.

0 π-π
0

0.25

0.50

0.75

1.00

1.25

1.50

(c) The bandwidth of a digitized AM channel is 0.01π so that we need a

cutoff frequencyωc = 0.005π.
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(d) The tuning frequencies are 0.505π, 0.545π and 0.595π respectively.

(e) The same sinusoidal oscillator can be used both to modulate the pass-

band filter and to demodulated the extracted band to baseband; the

demodulation centers the channel band around zero.

cos(ωm n )

A/D h[n ] × g [n ] D/A s (t )

Here, h[n ] is used again after demodulation to remove the cross-modulation

components. The D/A operates at the same frequency as the A/D,

i.e. 4MHz; this is of course a waste, considering that the analog sig-

nal contains frequencies only up to 10KHz; clearly by using a suitable

downsampler we could reduce such frequency as will be apparent af-

ter we study Chapter 11.

(f) Assume the spectrum is empty except for the AM band. Since this

band starts at 1MHz and is 0.2MHz wide and since 1MHz is an integer

multiple of 0.2MHz, we can use bandpass sampling, i.e. we can sam-

ple at a frequency as low as twice the bandwidth of the passband sig-

nal, i.e. 0.4MHz. There will be aliasing but the copies will not overlap

with each other as can be readily seen from the figures below which

represent the original AM spectrum X (jΩ) and the intermediate peri-

odized spectrum X̃ (jΩ) as created by the sampler:

0

1

0 2MHz1MHz

0

1

0 2MHz0.2MHz
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This minimal frequency, however, will result in a swap of the posi-

tive and negative portions of the spectrum around baseband which

greatly complicates the receiver.

In order to avoid this, we can sample at Fs = 0.5M Hz , and the AM

band will be correctly downshifted to baseband as seen here in the

periodized spectrum:

0

1

0 2MHzFs/2 1MHz

After this, the scheme will proceed as before, with the following differ-

ences:

- the digitized AM band will occupy the [0,2π/3] positive band;

- each channel is (π/15)-wide;

- the tunable filter will have a cutoff frequencyωc =π/30

- the modulation frequency for both the tunable filter and the de-

modulation will start at π/15.

Note however that the spectrum is not empty outside of the AM band

and therefore, in order to use bandpass sampling, we need to filter the

signal in the analog domain with a sharp bandpass which kills every-

thing outside the 1MHz-1.2MHz interval. This custom analog filter is

precisely what one would like to avoid in a digital design.

Solution 9.6: Acoustic aliasing. Clearly a sampling rate Fs = 8 KHz is

insufficient for a sinusoid at frequency f = 10 KHz, so there will be aliasing.

The digital frequency after the sampler is ωb = 2π(f /Fs ) = 2.5π. This fre-

quency falls outside the [−π,π] interval but, modulo 2π, it is equivalent to

ωb = 0.5π. Therefore, the interpolated sinusoid will have a perceived fre-

quency of 0.5 ∗ (Fs /2) = 2 KHz.

Solution 9.7: Interpolation subtleties. The Fourier transform of xc (t ) is

Xc (jΩ) =

∫ +∞

0

e−t /Ts e−jΩ t =
Ts

1− j TsΩ
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which is not bandlimited. Therefore xc (t ) cannot be an interpolated signal.

Solution 9.8: Time and frequency. No. The signal is time-limited and

therefore it is not bandlimited. Consequently, there will always be a certain

amount of aliasing in the sampled version regardless of how high the sam-

pling frequency is.

Solution 9.9: Aliasing in time?

ỹ [n ] =
2

N

N /2−1
∑

k=0

Ỹ [k ]e
j 2π

N/2
nk

=
2

N

N /2−1
∑

k=0

X̃ [2k ]e
j 2π

N/2
nk

=
2

N

N /2−1
∑

k=0

N−1
∑

i=0

x̃ [i ]e−j 2π
N
(2k )i e

j 2π
N/2

nk

=
2

N

N−1
∑

i=0

x̃ [i ]

N /2−1
∑

k=0

e
j 2π

N/2
(n−i )k

Now

N /2−1
∑

k=0

e
j 2π

N/2
(n−i )k

=

¨

N /2 if (n − i ) is a multiple of (N /2)

0 otherwise

so that the only nonzero terms in the outer sum (that for index i ) are those

for i = n and i =n +N /2. In the end

ỹ [n ] = x̃ [n ]+ x̃ [n +N /2].

Since x̃ [n ] is N -periodic, this defines an (N /2)-periodic sequence obtained

by summing two translated versions of x̃ [n ]. It’s exactly like aliasing in the

frequency domain: since we are not using enough DFS samples for the re-

construction, then the time-domain signal gets aliased in time.
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Solution 10.1: Quantization error (I). The quantized process y [n ] =

Q{x [n ]} is i.i.d. and therefore Py (e jω) = σ2
y . The variance of the quan-

tized process is that of a discrete random variable taking values over the set

{−1,0,1}:

σ2
y = (−1)2 ·P[−1≤ x <−0.5]+ 02 ·P[−0.5≤ x ≤ 0.5]+ 12 ·P[0.5< x ≤ 1]

= 1/4+ 1/4

and so

Py (e
jω) = 1/2.

Solution 10.2: Quantization error (II). The error e [n ] at the output of the

quantizer is an i.i.d. random process. Its average power is therefore:

E[e 2[n ]] =

∫ 2

−1

(x −Q{x})2 f x (x )d x

=
1

3

∫ 0

−1

(x + 1)2d x +
1

3

∫ 2

0

(x − 1)2d x

=
1

3
.

where f x (x ) = 1/3 is the pdf of the input process (note that this is not the

variance of the process since the process does not have zero mean). The

power of the input process is

E[x 2[n ]] =

∫ 2

−1

x 2 f x (x )d x = 1

71
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and therefore

SNR= 3≈ 4.77dB.

Solution 10.3: More samples or more bits? The MSE introduced by

quantizer A is

MSEI =
σ2

x

(256)2

and that is the total MSE for coding scheme I.

For scheme II, the downsampler does not introduce distortion because of

the prefiltering, but the lowpass filtering introduces an error. Call x ′[n ] the

prefiltered signal before the downsampler; the MSE introduced by the filter

is

MSEI I ,1= E[|x [n ]−x ′[n ]|2] = 1

2π

∫ π/2

−π/2
σ2

x =
σ2

x

2

We approximate the downsampled signal as an i.i.d. signal with the same

variance as the original, i.e. σ2
x . Quantizer B will introduce an MSE of

MSEI I ,2=
σ2

x

(65536)2
.

It is therefore apparent that Scheme I introduces an overall lower MSE. In-

deed

MSEI ≈ (1.5 ·10−5)σ2
x

MSEI I =MSEI I ,1+MSEI I ,2 ≈ (0.5+ 2.3 ·10−10)σ2
x ≫MSEI
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Solution 11.1: Multirate identities. Let us denote the downsampling

by 2 and upsampling by 2 operations by D2{·} and U2{·} respectively. The

identities are best analyzed in the z -transform domain:

(a) Downsampling by 2 followed by filtering by H (z ) can be written as

Y (z ) =H (z )D2{X (z )}

=
1

2
H (z )

�

X (z 1/2)+X (−z 1/2)
�

.

Filtering by H (z 2) followed by downsampling by 2 can be written as

Y (z ) =D2{H (z 2)X (z )}

=
1

2

�

H (z )X (z 1/2)+H (z )X (−z 1/2)
�

=
1

2
H (z )

�

X (z 1/2)+X (−z 1/2))
�

.

The two operations are thus equivalent.

(b) Filtering by H (z ) followed by upsampling by 2 can be written as

Y (z ) =U2{H (z )X (z )}
=H (z 2)X (z 2).

Upsampling by 2 followed by filtering by H (z 2) can be written as

Y (z ) =H (z 2)U2{X (z )}
=H (z 2)X (z 2).

The two operations are thus equivalent.

73
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Solution 11.2: Multirate systems.

(a) Using the identities proven in the Exercise 11.1, the system can be re-

drawn as

x [n ] H2(z ) 2↑ 2↓ H1(z ) 2↑ 2↓ y [n ]

We also know that an upsampler by N followed by a downsampler by

N leave the signal unchanged and therefore the transfer function of

the above system is simply

H (z ) =
Y (z )

X (z )
=H1(z )H2(z ).

(b) Again using the previous results, the system is equivalent to

E0(z ) 2↓ 2↑

x [n ] b + y [n ]

E1(z ) 2↑ z−1 2↓

The lower branch contains an upsampler followed by a delay and a

downsampler. The output of such a system is easily seen to be 0. Thus

only the upper branch remains and the final transfer function of the

system is given by

Y (z )

X (z )
= E0(z ).
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(c) System 1 is described by the following equation:

Y (z ) =D2{H (z )G (z )U2{X (z )}}
=D2{H (z )G (z )X (z 2 )}

=
1

2

�

H (z 1/2)G (z 1/2)X (z )+H (−z 1/2)G (−z 1/2)X (z )
�

=
1

2

�

H (z 1/2)G (z 1/2)+H (−z 1/2)G (−z 1/2)
�

X (z )

=X (z ).

so that system 1 is unity.

System 2 is described by the following equation:

Y (z ) =D2{H (z )F (z )U2{X (z )}}
=D2{H (z )F (z )X (z 2)}

=
1

2

�

H (z 1/2)F (z 1/2)X (z )+H (−z 1/2)F (−z 1/2)X (z )
�

=
1

2

�

H (z 1/2)F (z 1/2)+H (−z 1/2)F (−z 1/2)
�

X (z )

= 0.

so that system 2 is zero.

Solution 11.3: Multirate Signal Processing. We have:
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π/2 π π/2 π

Y1(e jω) Y2(e jω)

π/2 π π/2 π

Y3(e jω) Y4(e jω)

Solution 11.4: Digital processing of continuous-time signals.

(a) Playing the record at lower rpm slows the signal down by a factor 33/78.

Therefore

x (t ) = s (
33

78
t ) = s (

11

26
t )

(b) From the rescaling property of the Fourier transform

X (jΩ) =
26

11
S(j

26

11
Ω)

|X (jΩ)|

2π ·6670

(c) We need to change the sampling rate so that, when y [n ] is interpo-

lated at 44.1 KHz its spectrum is equal to S(jΩ). The rational sampling

rate change factor is clearly 33/78 which is simply 11/26 after factor-

ing. The processing scheme is as follows:
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xc (t ) Samp ↑ 11 L(z ) ↓ 26 Interp yc (t )
x [n ] y [n ]

where L(z ) is a lowpass filter with cutoff frequencyπ/26 and gain L0 =

11/26; both the sampler and interpolator work at Ts = 1/44100. We

have:

Xc (jΩ) =
26

11
S(j

26

11
Ω)

X (e jω) =
1

Ts
Xc (j

ω

Ts
)

Y (e jω) = L0 X (e j 11
26
ω)

=
11

26

1

Ts
Xc (j

11

26

ω

Ts
)

=
1

Ts
S(j
ω

Ts
)

Yc (jΩ) = Ts Y (e jΩTs )

= S(jΩ)

(d) The sampling rate change scheme stays the same except that now

45/78 = 15/26. Therefore, the final upsampler has to compute more

samples than in the previous scheme. The computational load of the

sampling rate change is entirely dependent on the filter L(z ). If we

upsample more before the output, we need to compute more filtered

samples and therefore at 45rpm the scheme is less efficient.

Solution 11.5: Multirate is so useful! In the frequency domain we have:

- After the upsampler: Xu (e jω) = X (e j Mω)

- After the lowpass : X l p (e jω) =X (e j Mω) rect(ω/(2π/M ))

- After the delay: Xd (e jω) = e−j Lω X (e j Mω) rect(ω/(2π/M ))
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- After the downsampler: Y (e jω) = e−j (L/M )ω X (e jω) with no aliasing

since Xd (e jω)was bandlimited to π/M .

Therefore the net effect of the multirate processing scheme is that of a frac-

tional delay with transfer function

Hd (e
jω) = e−j (L/M )ω.

For the transmission scheme example remember that, because of interpo-

lation, we have that

Sc (jΩ) = Ts S(e jΩTs )

and therefore:

(b) Ŝc (jΩ) = e−jΩt0 Sc (jΩ)

(c) From the sampling theorem (no aliasing case)

Ŝ(e jω) =
1

Ts
Ŝc (j

ω

Ts
) = e−jω(t0/Ts ) S(e jω)

(d) If t0 = 4.6Ts , the fractional delay is 4.6 samples. We can compensate

this by introducing an additional fractional delay of 0.4 samples so

that the total delay becomes D = 5 samples. In order to do so, we

simply need to set L and M so that L/M = 0.4 or, equivalently, M =

2.5L. The minimal choice for this so that M and L are integers is

M = 5

L = 2

Solution 11.6: Multirate filtering. Call xu [n ] the signal after the first

upsampler and x f [n ] the signal after the filter. In the z -transform domain

we have

X f (z ) =H (z )Xu (z ).

The maximum nonzero frequency of X f (z ) is at most π/10, therefore for

M ≤ 10 the downsampler does not introduce aliasing. In other words,

Y (e jω) = (1/M )X f (e
jω/M );
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Since X f (e jω) =H (e jω)Xu (e jω) =H (e jω)X (e jωM ), we have

Y (e jω) = (1/M )H (e jω/M )X (e jω)

= Hd (e
jω)X (e jω)

with

Hd (e
jω) =

¨

1/M for |ω|<Mπ/10

0 otherwise

Therefore:

(a) For M = 2 the system corresponds to an ideal lowpass filter with cutoff

frequency π/5 and gain 1/2;

(b) For M = 5 the system corresponds to an ideal lowpass filter with cutoff

frequency π/2 and gain 1/5;

(c) For M = 9 the system corresponds to an ideal lowpass filter with cutoff

frequency 9π/10 and gain 9/10;

(d) For M = 10 the system corresponds to multiplication by the gain fac-

tor 1/10.

Solution 11.7: Oversampled sequences. Given that X (e jω) = 0, π
3
≤

|ω| ≤π, x [n ] can be thought of as an oversampled signal that has been sam-

pled at 3 times the Nyquist frequency. Therefore, we can downsample the

signal without losing information.

(a) The idea is to determine whether n 0 is odd or even. Then, downsam-

ple x̂ [n ] so that n 0 is discarded and then upsample back the signal to

the original frequency so that we recover x [n 0].

(b) If the value of n 0 is not known, we need to determine whether n 0 is

odd or even. x̂ [n ] can be expressed as:

x̂ [n ] = x [n ]−Aδ[n −n 0];

X̂ (e jω) = X (e jω)−Ae−jωn 0



80 Chapter 11

Now, if we compute this value atω= π
2

we have:

X̂ (e j π
2 ) = X (e j π

2 )+A(−j )n 0 .

But given that X (e j π
2 ) = 0 by hypothesis:

X̂ (e j π
2 ) =A(−j )n 0 .

Therefore, If X̂ (e j π
2 ) is real, n 0 is even and if it is imaginary, n 0 is odd.

(c) If there are k corrupted samples, the worst case is when the corrupted

samples are consecutive. Then, we need to downsample x̂ [n ] by a

factor of k and then upsample it back. To do that without losing infor-

mation (aliasing), we need:

X (e jω) = 0,
π

k
≤ |ω| ≤π.



Chapter 12

Solution 12.1: Raised cosine. The raised cosine is an ideal filter since

its frequency response is constant over finite intervals (See Example 6.2).

Typically, it is approximated with a Type-I FIR; although a Type-II would

ensure a zero at band edge, it would also introduce a half-sample delay.

Solution 12.2: Digital resampling. The ratio between CD and DVD sam-

pling rates is, after removal of common factors,

β =
160

147

which means we have to produce 160 DVD samples for every 147 CD sam-

ples. Therefore, we will need 160 fractional filters to cover all the intermedi-

ate interpolation values before a CD and DVD samples coincide again. This

number is independent of the interpolator’s length.

Solution 12.3: A quick design From the specifications, we can proceed

according to the following steps:

- the maximum bandwidth of the signal is 3300 Hz;

- leaving room for the raised cosine transitions band (say β = 0.125),

we can say that the usable bandwidth is less than 2933 Hz

- we take a bandwidth of 2800 Hz and therefore a maximum symbol

rate of 2800 Baud

- Eq (12.3) requires the internal sampling frequency to fulfill
¨

Fs ≥ 7200

Fs = K ·2800, K ∈N.
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which has a solution for K = 3 and Fs = 8400 Hz

- with this choice, the carrier isωc = 2π(300+ 3300)/(2Fs ) = 3π/7

- with pe = 10−6, the maximum number of reliable bits per symbol is

M = log2(1− (3 ·102.8)/(2ln(10−6)))≈ 6.12

- we can use a regular (fourfold symmetric) 64-point constellation

- the overall bitrate is R = 16800 bits per second.

Solution 12.4: The shape of a constellation. First of all, notice that

for both 8-point constellations the minimum distance is exactly d min = 1,

considering circular decision boundaries centered upon the constellation

points. This explains the apparently odd (1+
p

3) distance.

If we compute the intrinsic power of the two constellation we have (exploit-

ing symmetries)

σ2
α,reg =

1

8
·4(2+ 10) = 6

σ2

α,irreg
=

1

8
·4(2+(1+

p
3)2)≈ 4.73

In other words, the irregular constellation offers more than a 1 dB gain over

the regular one. This gain can be translated into a reliability gain by increas-

ing G0 while the transmitted signal remains within the power constraint.


