

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

1

TMS Advanced Poly List
DEVELOPERS GUIDE

Oct 2010
Copyright © 2010 by tmssoftware.com bvba

Web: http://www.tmssoftware.com
Email: info@tmssoftware.com

http://www.tmssoftware.com/
mailto:info@tmssoftware.com

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

2

Index

Availability ... 4

Description .. 4

Architecture ... 5

Designtime Organisation ... 7

Visual components .. 7

Adding / removing items ... 8

Reordering items ... 11

Changing the appearance .. 11

Runtime Organisation ... 12

Adding / removing items ... 12

Accessing items ... 12

Reordering items ... 12

Connecting lists ... 13

List of available components and properties .. 14

Various list containers ... 14

List Properties .. 16

Various list items ... 20

Item Properties .. 25

Item Events .. 32

Interaction ... 34

Keyboard ... 34

Mouse .. 34

Scrollbars ... 34

Code ... 34

Drag & Drop ... 34

Working with the Poly List controls .. 36

Creating a new item .. 36

Expanding / Collapsing .. 44

List within List .. 45

Horizontal List within Vertical List item ... 46

Using the DropDownItem .. 48

Custom drawing items ... 50

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

3

Auto Sizing ... 53

Using the TAdvPolyPager .. 55

Creating and handling previews with the PreviewItem (Delphi 2010 only) 59

Hosting a control in an item .. 60

Creating a poly pager... 62

Fill Editor .. 63

Properties .. 63

Copying styles .. 65

Using the fill editor at runtime .. 67

GDI+ Picture Container .. 68

Using the TGDIPPictureContainer component .. 68

HTML rendering engine ... 69

Component styles and application-wide or form-wide styler components ... 72

Frequently asked questions (FAQ) .. 75

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

4

Availability

TMS Advanced Poly List is available as VCL component set for Win32 application development

VCL versions:
TMS Advanced Poly List is available for Delphi 6,7,2005,2006,2007,2009,2010,XE & C++Builder
6,2006,2007,2009,2010,XE.

Description

The TMS Advanced Poly List components offer an extremely versatile and flexible architecture to
create virtually any possible lists of items in user interfaces. This is seen typically but not limited to
the new Office 2010 application menu.

Contrary to most user interface list controls, where a list consists of items of the same type or a
collection of items of the same type, the TMS Advanced Poly List components can hold polymorph
items. All items just need to descend from the base class TCustomItem and any inherited items can
be added.

TMS Advanced Poly List components come with a large set of prebuilt list items but custom item
classes can be added by either descending of the TCustomItem base class or any of the classes
already provided. There are item classes to show as list section item, text item with HTML
formatting, text item with buttons, item with expand/collaps behaviour, item with image and many
more. Items can be added in the polymorph lists either at design time, with a rich design time
editor and at runtime via code.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

5

Architecture

All list controls in the VCL and by extension in Windows have the restriction that items in the list
are all of the same type. Other than through custom drawing, all items in a list have the same
appearance. Assigning a different behaviour for different items in a list is an even more complex
task.

One of the design goals of the architecture of the TMS Poly List controls is to offer the capability to
add different item types that can have a different appearance as well as a different behaviour.
Polymorphism is the technique applied to reach this goal.

Other than with a standard listview for example, which has a column collection of the TListColumn
class type, the poly list takes the standard TCollection a step further. The poly list controls
maintain a polymorph collection of objects in memory and manually handles the persistence and
structure of those objects in the DFM file.

Sample polymorphism as shown in the structure pane:

The base class TCustomItem implements the minimum required common mouse, keyboard, selection
and painting handling. All new classes that descend from the TCustomItem class type also inherit
the basic interaction and appearance. Each new descending item type as such can be added to the
list and are automatically recognized by the component and added at runtime or designtime. The
polymorph list is similar to a TCollection and is instantiated in different visual controls.

The classes that descend from TCustomItem can for example override the DrawText and/or
DrawInRect methods to change the appearance of the item and override DoMouseUp to implement a
new behaviour for the mouse:

 TMyExtendedItem = class(TCustomItem)

 protected

 function GetVersionNr: integer; override;

 public

 procedure Assign(Source: TPersistent); override;

 function DrawText(g: TGPGraphics; ARect: TGPRectF; ItemAppearance:

TItemAppearance; DoText: Boolean = true): TGPRectF; override;

 procedure DrawInRect(g: TGPGraphics; ItemAppearance: TItemAppearance;

R: TGPRectF); override;

 function CreateNewItem(AOwner: TComponent): TCustomItem; override;

 function GetClassType: TComponentClass; override;

 class function CustomClassName: String; override;

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

6

 procedure DoMouseUp(Sender: TObject; Button: TMouseButton; Shift:

TShiftState;

 pX, pY: Integer; Interaction: TItemInteraction; ItemAppearance:

TItemAppearance); override;

 class function Display: Boolean; override;

 procedure AssignEvents(Item: TCustomItem); override;

 end;

More details on creating descending classes of TCustomItem is provided further in the developers
guide.

This new powerful architecture provides advantages for development. When item classes are
separated in different units, only classes effectively used in the application will be linked. Item
types can be separately developed and added and will not affect the operation of other item types
used in the control. Custom item types can be created and registered and become automatically
available both at runtime and at designtime.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

7

Designtime Organisation

Visual components

After installing the package, typing “poly” or searching for the “TMS Poly” section in the toolpalette
gives you the list of available components. Each component has similar basic functionality, but has
specific features, which are preset for you, to quickly start with the correct component.

Poly list at designtime

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

8

Poly list in the object inspector

Adding / removing items

Adding an item at designtime can be done in 2 ways. Select and drag-drop an item from the
“available items” list to the “preview” list, or select an item and click the “+” button to add the
item to the list.

Removing an item at designtime can only be done by selecting the item you want to remove in the
“preview” list and clicking the “-” button.

After adding a new item, the item is also added to the list on the form and is visible in the structure
window and at the object inspector. When selecting a different item, the item selection will be
reflected in the Delphi / C++Builder environment. All item properties can be changed in the object
inspector.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

9

Poly list structure window

The structure window is an overview window of the components that are used in a new application.
The poly list can have items which can host components. When the component is a poly list, the
items of the new poly list can also hold items, in which components can be hosted, and there the
story never ends.

The structure window maintains an easy to use hierarchy and helps you to find the correct
component you wish to modify.

Poly list item object inspector

This is a sample screenshot of a TCheckItem, which is derived from TGraphicItem, and TGraphicItem
is derived from the basic TCustomItem. As you add and select multiple items, the common
properties are repeated for items of the same class or the same class they derive from. Selecting
multiple items at designtime allows you to quickly change properties for each item that is selected.

In the editor, you will notice 2 tabs, one for the items and one for the item appearance. The item
appearance is used for every item in the list. The appearance holds the layout for the font and the
fill property of the items. Items can have a different font size and color by modifying the correct
properties.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

10

Poly list editor

Poly list editor item appearance

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

11

Reordering items

When the order of the items is incorrect, reordering items can be done in 2 ways. Select an item
and drag-drop the item to the new position inside the editor. A red line will automatically appear at
the drop down position. Or click on the “up” or “down” button to move the item up or down in the
list.

Changing the appearance

Everything that is related to the poly list can have a unique look and feel. These visual
enhancements can be modified with the Fill editor which applies on the list, the items and many
other elements. Some items have separate properties to change specific visual elements of that
item such as a THeaderItem.

Starting the fill editor can be done by clicking the “Edit” button in the poly list editor or clicking

the button in the object inspector for the property which type is a TGDIPFill type.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

12

Runtime Organisation

Adding / removing items

As we have explained before, the poly list has a polymorph collection of TCustomItem classes. Each
descending class inherits all properties and can also be added to the collection. To access the
properties specifically for a descending item, the item must be added to the list and typecasted to
the correct class to gain access to the properties.

Adding an item:

 with TTextItem(AdvPolyList1.AddItem(TTextItem)) do

 begin

 Caption := 'This is a sample';

 end;

Inserting an item at a specific position in the collection:

 with TTextItem(AdvPolyList1.InsertItem(0, TTextItem)) do

 begin

 Caption := 'This is a sample';

 end;

Removing an item at a specific position:

 AdvPolyList1.RemoveItem(0);

To compile the project, the unit must manually be added to the uses list. In this case the unit is
GDIPTextItem which contains the TTextItem class.

The rule for adding the correct unit is:

 (T)CustomItem (GDIP)CustomItem

 Class Unit

When you are not sure what unit you must add to compile the project, you can always add the item
of choice at designtime, so the unit is automatically added to the uses list.

Accessing items

Items can be accessed with the “Items” property of the poly list and must be typecasted to the
correct class type:

 TTextItem(AdvPolyList1.Items[0])

Reordering items

Reordering items is as simple as setting a new index property on the item:

 AdvPolyList1.Items[0].Index := 1;

The item will automatically be moved to the new position in the collection. Typecasting is not
necessary for properties that are common and available on the base class.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

13

Connecting lists

Sometimes, a special layout needs to be separated in a second list, but needs to maintain a
“connection” with the second list. Multiple poly lists can be connected to eachother to visualize this
connection.

 AdvPolyList1.ConnectContainer(AdvPolyList2, ccRight, cmGradientBorder);

The first parameter expects the poly list which the first needs to connect to. The second parameter
is the connection type. In this case the second poly list is on the right side of the first poly list. The
thirth parameter is the border connection type which can be set to none, normal border or gradient
border.

Multiple connections are possible. You can also experiment with different border combinations and
connect positions.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

14

List of available components and properties

Various list containers

Managing the polymorph list of items in memory is one thing, for actually displaying the items, we
provide several controls. The base class that manages the list is TCustomItemsContainer. This holds
& manages the list of items. We have provided 5 controls descending from this:

TAdvVerticalPolyList: A scrollable list of items vertically (ie. under each other) organized

TAdvHorizontalPolyList: A scrollable list of items horizontally (ie. next to each other) organized

TAdvPolyList: A grid structure of items with configurable number of columns or rows

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

15

TAdvPolyBox: A control in which items can be absolutely positioned

TAdvPolyPager: A page control where a vertical list of items can be used to select a page

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

16

List Properties

Property Description

AutoSizeMode

asmControl: the width and height of
the control are automatically
resized to the total width and/or
height of the items.

asmItems: the total width and
height of the items are
automatically resized to the width
and/or height of the control.

asmNone: the automatic
calculation.

In all modes, scrollbars will be
visible if necessary.

AutoSizeType

Depending on the AutoSizeMode the
calculation will apply to:

astHeight: the total height of the
control or the items.

astWidth: the total width of the
control or the items.

astBoth: the total width and height
of the control or the items.

BorderMode

The poly list supports a
“connection” between containers.
This connection can be visualized
with a normal or gradient border.

bmNormal: Normal border.

bmTransition: Gradient border.

BorderTypes

Different bordertypes that can be
used to connect containers.

The Normal borders are used with
the bmNormal BorderMode.

The Gradient borders are used with
the bmTransition BorderMode.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

17

Columns

Rows

In the TAdvPolyList the columns and rows
properties are visible and can be used to divide
the items into columns or rows. For all other
variants the columns and rows properties are
fixed.

For the TAdvVerticalPolyList the Columns
property is 1 and the Rows property is 0.

For the TAdvHorizontalPolyList the Rows
property is 1 and the Columns property is 0.

For the TAdvPolyBox the Columns and Rows
properties are both 0.

Dragging

The dragline is visible when Reorder is true.

The dragline is a visual representation when
using drag drop to insert or move items.

Fill

The Fill is the background layout of the poly list

which is edited by clicking the button.

The Fill property has a separate editor which is
explained in the “Fill Editor” chapter.

HandleAppearance

The HandleAppearance is the appearance of the
handles. The handles are replacements for the
normal scrollbars that are visible when the item
bounds are too large for the list.

The handles can appear in horizontal and / or
vertical direction.

Clicking or holding down the mousebutton on
the handles causes the list to scroll down or up.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

18

HorizontalSpacing

VerticalSpacing

The horizontal and vertical spacing properties
are used to provide spacing between the items.

List

The List property gives access to the items in
the Custom editor.

When clicking the button, the editor is
shown.

ListMargins

The spacing between the items and the edge of
the list.

ReadOnly

Enable or disable interactions with the list.
When readonly is true, mouse interaction and
keyboard support is disabled.

Scrolling is enabled when the list is readonly.

Reorder

Enable or disable reordering of items.
Select an item and drag-drop the item on a new
position in the list. The items are automatically
moved inside the collection.

ScrollType

The type of scrollers in the list. By default the
standard scrollbars of the operating system are
used. These scrollers can be switched to
alternative handles.

ShowFocus

Show or hide the focus border around the items
when the poly list has focus.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

19

ThumbTracking

Enable or disable thumbtracking on the
scrollbars. When thumbtracking is enabled, the
list will automatically update when using the
thumb for scrolling.

When thumbtracking is disabled, the list will
update after the thumb on the scrollbar is
released.

Transparent

Enable or disable transparency on the poly list.
For performance and stability reasons, the
standard scrollbars are disabled when using
transparency.

The scrolling is still available through keyboard
and mouse wheel and with the alternative
handles.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

20

Various list items

Many behaviors are common, like mouse hovering, mouse selection, focusing, as well as many style
elements like normal state appearance, selected state appearance, and hovered state
appearance...

TCustomItem: Item with basic functionality, appearance and properties.

The TCustomItem class knows of the minimum required common mouse, keyboard, selection,
painting handling. From TCustomItem, we created already a wide range of ready to use classes:

TButtonItem: Item with associated button, text

TCheckItem: Item with checkbox, text

TRadioItem: Item with radiobutton, text

TGroupItem: Item with group caption and area that can be used to host another control

TDropDownItem: Item with text and dropdown button. A new polymorph list of items can be shown
from the dropdown

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

21

THTMLItem: Item with capability to show HTML formatted text

TImageItem: Item with image and text and various postioning methods for image versus text

TLargeButtonedItem: Item with large button with image

TImageTextItem: Item with text and image and different positioning for image versus text

TTextItem: Item with text and optional description line

TImageTextButtonItem: Item with associated button, text and image

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

22

TWedgeItem: Variation of TTextItem with selection displayed with wedge on any of the 4 sides of
the item

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

23

TExpandableImageSectionItem: Item with image and text and button that can collaps or expand
different items under the item

THTMLSectionItem: Section item with HTML formatted text

TImageSectionItem: Section item with image and text

TImageTextButtonSectionItem: Section item with image, text and additional button

TButtonBarItem: Item with collection of elements (buttons)

TFullDropDownItem: Item with text. A new polymorph list of items can be shown from the item

THeaderItem: Header item with image, text

TSplitterItem: Splitter item with line and different line gradient modes

TLargeButtonedHTMLItem: Item with large button with image and HTML formatted text

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

24

TPreviewItem: Item with the ability to show a preview of the file that is added (similar to the
preview pane in Windows Vista and Windows 7). The previewitem contains functions to extract a
thumbnail from the file which application has a preview handler.
Some of the supported files are: „wmv‟, „mp3‟, „ppt‟.

Important notice: The TPreviewItem is only available in Delphi 2010

TSplitterItem: Item that is used for dividing different categories of items such as the radioitem and
checkitem. The splitter item has a gradient line appearance.

TprogressItem: Item with integrated smooth progressbar

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

25

Item Properties

Property Item class Description

Button properties

TButtonItem
TLargeButtonItem

The button properties to
customize the button.

By default the Normal font for
the item is used, but the
ButtonCaptionColor and
ButtonCaptionSize can be used
to change the default font of
the button.

Caption properties

All Items except
SplitterItem and
ButtonBarItem

The caption properties for the
caption of the item. The font
appearance can be edited in
the custom editor.

For separate special items
with a different font size or
color the CaptionSize and
CaptionColor properties can be
used.

The caption also supports
HTML (see minihtml reference)

Control Bounds

All Items

Each item can have it‟s own x,
y, width and height.

Depending on the list autosize
mode, the width and / or
height are automatically
calculated.

Control Properties

All items

Each item can host a control.
The control property must be
of TWinControl class type.

The other properties are used
to position the control.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

26

Description

All Items except SplitterItem
and ButtonBarItem

The description properties for
the description of the item.
The font appearance can be
edited in the custom editor.

For separate special items
with a different font size or
color the DescriptionSize and
DescriptionColor properties
can be used.

The description also supports
HTML (see minihtml
reference)

Enabled

All Items

Each item can be enabled or
disabled. A different style can
be applied for disabled items.

Hint

All Items

The hint property on the
item.

Index

All Items

All items get an index to
specify a position in the
collection. When changing the
index property the item will
be moved to the new position.

ItemObject

All Items

All Items can have a reference
to an object, this can be a
button, a label, …

This can be helpful when
accessing the items and extra
functionality is necessary for
the application.

Image

All Items except

SectionItem, SplitterItem,
ButtonBarItem, TextItem,
FullDropDownItem

Supports ImageList
(ImageIndex) and GDI+
PictureContainer
(ImageName) with integrated
list of images.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

27

Level

All Items

The level property gives an
advantage for collapsing
expanding items that are
placed under an expandable
section item. When clicking
the expander, all items with
the same level and a higher
level than the expander will
be collapsed or expanded.

ReadOnly

All Items

ReadOnly can be enabled on
list level, but also on item
level. The item appearance
remains the same but has no
interaction.

Selectable

All Items

Each item has a selectable
property, which determines if
the item is selectable.

When clicking on the item or
using the keyboard, the item
will not be selected and the
selected appearance will not
be applied.

Status

All Items

Each item can have a status
indicator, which can have a
text and can be positioned on
the text or on the edge of the
item.

Tag

All Items

The Tag property is added for
the same reason as the
ItemObject property. To
contain extra information
when accessing items or
accessing special functions
that rely on extra
information.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

28

Ellipsis & Wordwrap

All Items except
SplitterItem and
ButtonBarItem

Enables or disable ellipsis or
wordwrap on the item caption
and description.

Using ellipsis requires switching
off wordwrap.

Specific properties

Layout

ButtonBarItem

The appearance of the
background and border of
the ButtonBarItem

Elements Collection

Element

ButtonBarItem

The elements (buttons) of
the ButtonBarItem. The
elements are a collection of
TButtonBarElement.

Each element has a caption
and can be connected to a
GDI+ PictureContainer or an
ImageList.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

29

Graphic Properties

RadioItem, CheckItem,
ButtonItem

The checkbox,
radiobutton and normal
button are graphics which
can be positioned left or
right.

The GraphicGlyphs
properties are used to set
a picture for the different
states of the graphic.

When no images are set,
the default drawing is
used.

Checked

RadioItem, CheckItem

The Checked property is
automatically modified
when checking the
checkbox in a CheckItem
or the radiobutton in a
RadioItem.

The RadioItem will
automatically call all
RadioItems within the
same GroupIndex to
switch off the Checked
property to act as a
normal RadioButton.

GroupIndex

RadioItem

Index of the group used to
group radioitems, when a
radioitem is checked all
radioitems within that
group are unchecked.

PreviewFile

PreviewItem

The PreviewFile property
is used to set a file that is
supported to handle a
preview thumbnail in the
operating system.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

30

DropDownAppearance

DropDownItem,
FullDropDownItem

Each
dropdownite
m has an
internal list.

These are
the
properties to
modify the
list look and
feel.

Line style

All section items

All section
items have a
separate line
that visually
splits the
section from
the other
normal
items.

Expand / Collapse

ExpandableImageSectionIte
m

The
properties to
modify the
expander
button on
the item.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

31

Group

GroupItem

Like the
HeaderItem the
groupitem has a
separate
GroupBorderColor
and a GroupColor,
but has an
additional
HeaderHeight to
control the height
of the header.

The GroupItem is
used to add a new
control inside the
group area.

Button

All items with
an extra
button

The items with an
extra button have
button properties
to control the
glow, color, image
up and down, the
type of the button
and many more.

Wedge

WedgeItem

Properties to set a
wedge on the item
in different
interaction states,
with a position and
size.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

32

Item Events

Some events are published on List level, to quickly access the correct item. The OnItemSelect
OnItemDeSelect and OnItemCompare events are published. These and other events are described
below.

Global Events

All Items

OnChange : Event called for each
property that is modified and that
needs a recalculation of the item
(position, size, control position, …)

OnItemClick: Event called when clicking
on an item.

OnItemDblClick: Event called when
double-clicking on an item.

OnItemSelect / OnItemDeSelect: Event
called when selecting / deselecting an
item.

OnItemStartDraw / OnItemEndDraw:
Events specified for custom drawing.

OnItemHint / OnItemStatusHint: Event
called on different parts of the item.

OnRefresh: Event called for each
property that is modified and that
needs a refresh of the item.

Element

ButtonBarItem

OnElementClick: Event called when
clicking on an element in the
ButtonBarItem.

Graphic

CheckItem,
RadioItem and
ButtonItem

OnDrawGraphic: Event for customized
drawing of the graphic (checkbox,
radiobutton and normal button)

Button

All Items with
a button

OnItemButtonClick: Event called when
clicking on the button.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

33

Button

All Items with a button

OnItemButtonHint: Event
called when the button is
hovered, and when the
ButtonHint property is set.

Expand

Expandable item

OnItemExpand: Event called
when the item is expanding /
collapsing.

DropDown

DropDownItem,
FullDropDownItem

OnContainerItemSelect: Event
called when an item is
selected in the list. The
events on the item self can
also be accessed through
selecting the item in the
object inspector, structure
window or the custom editor.

Caption & Description

All HTML items

When an anchor is found the
HTML caption
(OnCaptionAnchorClick) or
description
(OnDescriptionAnchorClick),
the event is triggered with the
Anchor as a parameter when
clicking on the anchor.

Checked

CheckItem, RadioItem

OnItemCheckChanged: Event
called when clicking on the
checkbox or radiobutton of
the item.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

34

Interaction

The poly list supports interaction through keyboard, mouse, scrolling and also through code. Below
is an overview of the functionality that is implemented in both the list and the items.

Keyboard

Home key: Selects the first item.
End key: Selects the last item.
Left / Up key: Selects the previous item.
Right / Down key: Selects the next item.

Mouse

When the item has extra elements such as a button or a checkbox, the interaction with those
elements is handled separately. Selecting or deselecting an item can be done by simply clicking on
the area of the item.

Using the scroll wheel of the mouse allows you to scroll up or down in the list if the list has
scrollbars.

Scrollbars

When the list is too small to maintain all items, scrollbars appear that can be used to navigate
through the list.

Code

Scrolling to an item can be done with the ScrollToItem procedure and the index of the item as
parameter:

 AdvPolyList1.ScrollToItem(1);

Selecting an item with the index as parameter:

 AdvPolyList1.SelectItem(1);

Visualize the item with scrolling and selecting combination. The first parameter is the index, the
second parameter is a Boolean which allows you to scroll to the item, and the thirth parameter is a
Boolean to allow you to select the item. Multiple combinations are possible.

 AdvPolyList1.VisualizeItem(10, true, true);

Drag & Drop

Drag & drop from one list to a second list can be done by implementing 2 events. Allowing an item
to be dropped is setting the Accept parameter true. Dropping the item can be done by calling
AddDropItem and as parameter the SelectedDragDropItem from the first list.

procedure TForm1.AdvPolyList2DragOver(Sender, Source: TObject; X, Y:

Integer;

 State: TDragState; var Accept: Boolean);

begin

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

35

 Accept := Source is TAdvPolyList;

end;

procedure TForm1.AdvPolyList2DragDrop(Sender, Source: TObject; X, Y:

Integer);

begin

 AdvPolyList2.AddDropItem((Source as TAdvPolyList).SelectedDragDropItem);

end;

Also internal drag drop is supported. This can be switched off by setting the Reorder parameter to
false. When Reorder is true, a default red line will appear that will follow the mouse and show the
insert position of the item you want to move.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

36

Working with the Poly List controls

Creating a new item

This sample covers everything to create, register and display a new item that is ready to use in the
existing collection of items.

Create a new package (In this sample we have renamed Package1 to NewCustomItem)

Add a new unit pas file to the package

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

37

Rename the unit to GDIPTriangleItem and add the following:

unit GDIPTriangleItem;

interface

uses

 GDIPCustomItem;

type

 TTriangleItem = class(TCustomItem)

 end;

implementation

end.

When compiling the package, depending on which main package you have installed, the compiler
will detect the GDIPCustomItem unit and automatically ask to add the correct dependencies. With
our test, the TMS Component Pack is installed. This main package could also be the standalone
installation of the TMS Advanced Poly List.

Referring to the basic layout of creating and registering an item, there are some functions that need
to be overridden to obtain a correct implementation.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

38

First we need to add some class functions to determine a unique layout for the item:

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

39

unit GDIPTriangleItem;

interface

uses

 GDIPCustomItem, Classes, AdvGDIP;

type

 TTriangleItem = class(TCustomItem)

 public

 function CreateNewItem(AOwner: TComponent): TCustomItem; override;

 function GetClassType: TComponentClass; override;

 class function CustomClassName: String; override;

 class function Display: Boolean; override;

 procedure DrawInRect(g: TGPGraphics; ItemAppearance:

 TItemAppearance; R: TGPRectF); override;

 end;

implementation

end.

Implementing those functions, gives you the following code:

implementation

{ TTriangleItem }

function TTriangleItem.CreateNewItem(AOwner: TComponent): TCustomItem;

begin

 Result := TTriangleItem.Create(AOwner);

end;

class function TTriangleItem.CustomClassName: String;

begin

 Result := 'Triangle Item';

end;

class function TTriangleItem.Display: Boolean;

begin

 Result := True;

end;

procedure TTriangleItem.DrawInRect(g: TGPGraphics;

 ItemAppearance: TItemAppearance; R: TGPRectF);

begin

 inherited;

end;

function TTriangleItem.GetClassType: TComponentClass;

begin

 Result := TTriangleItem;

end;

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

40

The function CreateNewItem is used in the Editor, to create a new instance of the item with the
correct owner.

The class function CustomClassName returns a friendlier name for the item that is visible in the
editor. Also, when creating a new item, this class name must be unique.

The function Display returns a Boolean whether the item should be displayed in the editor. When
the item is not display the item can only be added at runtime.

The GetClassType function returns the class type of that item. Based on the class type the correct
item is created from the editor.

The DrawInRect procedure is the visual hart of the item. When overriding from the CustomItem and
calling inherited, the item will draw all basic appearances.

When looking deeper in the CustomItem source code you will see events for mouse handling,
keyboard support and other events for createing more complex items that need special handling.
Getting a more explanatory view on complex items can be achieved by examining code from the
built-in items that were delivered with the TMS Advanced Poly List package or were present in the
TMS Component Pack package.

Building and installing this package will not change anything at designtime nor will the item be
visible or useable. One remaining important procedure must be called for the item to fully blend in
the existing collection of polymorph items.

procedure Register;

implementation

procedure Register;

begin

 RegisterPolyItem(TTriangleItem);

end;

After building and installing this package, create a new project and drop one of the poly list
variants on the form. Double-click on the list to start the editor and search for the newly created
item:

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

41

By default, in the editor, the item is a white rectangle, with an orange selection border. Adding the
item by clicking the “+” button or drag dropping the item in the preview list will add the item at
designtime in the poly list.

For this sample we have added three TriangleItems. When starting the application and interacting
with the items, the normal hover and selected states are applied.

Now, the last thing we need to do is override the DrawInRect procedure and draw a triangle, which
will change color when interacting with the items:

procedure TTriangleItem.DrawInRect(g: TGPGraphics;

 ItemAppearance: TItemAppearance; R: TGPRectF);

var

 b: TGPSolidBrush;

 c: TColor;

 path: TGPGraphicsPath;

 pts: array[0..2] of TGPPointF;

begin

 inherited;

 c := clGreen;

 case State of

 isDown: c := clRed;

 isHovered: c := clBlack;

 isSelected: c := clBlue;

 end;

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

42

 path := TGPGraphicsPath.Create;

 pts[0].X := r.X + r.Width / 2 - 10;

 pts[0].Y := R.Y + r.Height - 5;

 pts[1].X := r.X + r.Width / 2 + 10;

 pts[1].Y := R.Y + r.Height - 5;

 pts[2].X := r.X + r.Width / 2;

 pts[2].Y := R.Y + 5;

 path.AddPolygon(PGPPointF(@pts), 3);

 b := TGPSolidBrush.Create(MakeColor(255, c));

 g.FillPath(b, path);

 b.Free;

 path.Free;

end;

Below is the complete source – code for a quick sample demo:

unit GDIPTriangleItem;

interface

uses

 GDIPCustomItem, Classes, Graphics, AdvGDIP;

type

 TTriangleItem = class(TCustomItem)

 public

 function CreateNewItem(AOwner: TComponent): TCustomItem; override;

 function GetClassType: TComponentClass; override;

 class function CustomClassName: String; override;

 class function Display: Boolean; override;

 procedure DrawInRect(g: TGPGraphics; ItemAppearance: TItemAppearance;

R: TGPRectF); override;

 end;

procedure Register;

implementation

procedure Register;

begin

 RegisterPolyItem(TTriangleItem);

end;

{ TTriangleItem }

function TTriangleItem.CreateNewItem(AOwner: TComponent): TCustomItem;

begin

 Result := TTriangleItem.Create(AOwner);

end;

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

43

class function TTriangleItem.CustomClassName: String;

begin

 Result := 'Triangle Item';

end;

class function TTriangleItem.Display: Boolean;

begin

 Result := True;

end;

procedure TTriangleItem.DrawInRect(g: TGPGraphics;

 ItemAppearance: TItemAppearance; R: TGPRectF);

var

 b: TGPSolidBrush;

 c: TColor;

 path: TGPGraphicsPath;

 pts: array[0..2] of TGPPointF;

begin

 inherited;

 c := clGreen;

 case State of

 isDown: c := clRed;

 isHovered: c := clBlack;

 isSelected: c := clBlue;

 end;

 path := TGPGraphicsPath.Create;

 pts[0].X := r.X + r.Width / 2 - 10;

 pts[0].Y := R.Y + r.Height - 5;

 pts[1].X := r.X + r.Width / 2 + 10;

 pts[1].Y := R.Y + r.Height - 5;

 pts[2].X := r.X + r.Width / 2;

 pts[2].Y := R.Y + 5;

 path.AddPolygon(PGPPointF(@pts), 3);

 b := TGPSolidBrush.Create(MakeColor(255, c));

 g.FillPath(b, path);

 b.Free;

 path.Free;

end;

function TTriangleItem.GetClassType: TComponentClass;

begin

 Result := TTriangleItem;

end;

end.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

44

Expanding / Collapsing

One of the built in features is expanding and collapsing. When adding an
ExpandableImageSectionItem, all items below this item are automatically collapsed. That is, if the
level property of the item is the same. All the items are collapsed until a new section item is found.
A Section item is not collapsible.

 AdvPolyList1.AddItem(TExpandableImageSectionItem);
 AdvPolyList1.AddItem(TTextItem);

 AdvPolyList1.AddItem(TTextItem);

 AdvPolyList1.AddItem(TTextItem);

 AdvPolyList1.AddItem(TTextItem);

When the automatic expand / collapse feature is not suitable for your application, you can
implement the OnItemExpand event and manually handle the visible state of the items.

 with TExpandableImageSectionItem(AdvPolyList1.

 AddItem(TExpandableImageSectionItem)) do

 begin

 OnItemExpand := DoItemExpand;

 end;

 procedure TForm1.DoItemExpand(Sender: TObject; Item: TCustomItem);

 begin

 end;

Expanding and collapsing all items can also be done with one procedure in code:

Expanding : AdvPolyList1.List.ShowItemsByLevel(1, 1, hsAll);

Collapsing : AdvPolyList1.List.HideItemsByLevel(1, 1, hsAll);

The first parameter is the startindex. The second parameter is the level that needs to be collapsed
and the last parameter is used to hide all items, or just the items within the given level.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

45

List within List

The power of the poly list is the hierarchy, the polymorph structure, the ability to hold different
items and controls. Therefore we have prepared a simple demo of using a poly list as an embedded
container in another poly list.

First add 2 poly list containers to the form. Add some items to both of the lists.

 AdvPolyList1.AddItem(TTextItem);

 AdvPolyList1.AddItem(TTextItem);

 AdvPolyList1.AddItem(TTextItem);

 AdvPolyList1.AddItem(TTextItem);

 AdvPolyList2.AddItem(TTextItem);

 AdvPolyList2.AddItem(TTextItem);

 AdvPolyList2.AddItem(TTextItem);

 AdvPolyList2.AddItem(TTextItem);

Add a GroupItem to host to second list.

 AdvPolyList1.AddItem(TGroupItem);

To host the second list you can use any item, but the GroupItem has some preset properties to
automatically align the control within its area. Adding the second poly list is a simple as accessing
the control property and assigning the second list. Replace the above line with the following line:

 AdvPolyList1.AddItem(TGroupItem).Control := AdvPolyList2;

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

46

Horizontal List within Vertical List item

As a variant on the previous sample, this is a sample to create a vertical list, add an item and use a
horizontal list inside that item.

First add 2 lists, a vertical and a horizontal list. Then add an item in the vertical list, here we have
chosen for the GroupItem which automatically aligns the control in the area.

Select the GroupItem in the object inspector and set the control property to point to the Horizontal
list.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

47

Adding a few items to the horizontal list and the vertical list, gives you a simple application which
demonstrates the power of this component.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

48

Using the DropDownItem

The dropdownitem is an item which has an internal list of items and displays those items in a
separate dropdown list. This sample shows you how to add a dropdownitem at designtime and at
runtime and fill the dropdown list with different item types.

First add a list of choice on the form, here we have chosen a standard TAdvPolyList component.
Start the editor and add a DropDownItem. You see that there are 2 types of dropdownitems
available: the normal dropdown item with a separate dropdown button, and a full dropdown item
which displays the selected item in the item area.

For this sample we have added the full dropdown item.

Selecting the item in the object inspector shows you many properties which change the appearance
and the list of items inside the dropdown item.

To add more items to the dropdown list click on the button next to the items property.

This will show a new editor which can be used to add items at designtime to the dropdown item.

Add some items of choice and start the application and click on the item to show the list. Selecting
an item will close the dropdown list and display that item in the area of the dropdown item.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

49

Adding this in code is similar when adding normal items to the list, with a slight difference in the
structure of the code:

 with TFullDropDownItem(AdvPolyList1.AddItem(TFullDropDownItem)) do

 begin

 AddItem(TTextItem);

 AddItem(TCheckItem);

 AddItem(TRadioItem);

 AddItem(TImageItem);

 end;

The AddItem calls are present in the dropdown item which does exactly the same as the AddItem
function of the main poly list.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

50

Custom drawing items

One of the advantages of the poly list items is the ability to do custom drawing. Each item has 2
basic draw events called in the beginning and the end of the drawing. Some items have an extra
draw event for special elements inside that item. This sample shows you how to customize the
drawing of the CheckItem and the RadioItem. Other than through events, these items also have
properties to provide images for custom CheckBoxes or RadioButtons.

First add a list of choice and add several CheckItems and RadioItems. The customization can be
done with the several GraphicGlyph indexes and names for respectively the ImageList and the
PictureContainer, providing a customized glyph, or image for each state.

In this sample we will look more in depth in using the events for customized drawing. In the
structure window, select all items and implement the OnDrawGraphic event.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

51

procedure TForm1.CheckItem1DrawGraphic(Sender: TObject; g: TGPGraphics;

 Rect: TGPRectF; Item: TCustomItem; Checked: Boolean; State:

TGraphicState;

 Kind: TGraphicKind; Enabled: Boolean; var Default: Boolean);

begin

end;

There are several parameters that can be used to obtain information or to draw custom checkboxes.
The Default parameter must be set to false to block the painting of the normal checkboxes and
radiobuttons. Below is a piece of code which uses these properties and provides different drawing
for different states of the CheckBox and RadioButton.

procedure TForm1.CheckItem1DrawGraphic(Sender: TObject; g: TGPGraphics;

 Rect: TGPRectF; Item: TCustomItem; Checked: Boolean; State:

TGraphicState;

 Kind: TGraphicKind; Enabled: Boolean; var Default: Boolean);

var

 b: TGPBrush;

 p: TGPPen;

begin

 default := false;

 case Kind of

 gkRadioButton:

 begin

 if Checked then

 begin

 case State of

 gsHovered, gsDown, gsNormal:

 begin

 b := TGPSolidBrush.Create(MakeColor(255, RGB(254, 144, 0)));

 g.FillEllipse(b, MakeRect(Rect.X + 5, Rect.Y + 5, Rect.Width -

10, Rect.Height - 10));

 b.Free;

 end;

 end;

 end

 else

 begin

 case State of

 gsHovered, gsDown, gsNormal:

 begin

 p := TGPPen.Create(MakeColor(255, RGB(254, 144, 0)));

 g.DrawEllipse(p, MakeRect(Rect.X + 5, Rect.Y + 5, Rect.Width -

10, Rect.Height - 10));

 p.Free;

 end;

 end;

 end;

 end;

 gkCheckBox:

 begin

 if Checked then

 begin

 AdvVerticalPolyList8.List.Appearance.ButtonSelected.Fill(g, Rect);

 p := TGPPen.Create(MakeColor(255, clBlack));

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

52

 g.DrawLine(p, Rect.X + Rect.Width / 6 * 2, Rect.Y + Rect.Height /

2, Rect.X + Rect.Width / 4 * 2, Rect.Y + Rect.Height / 4 * 3);

 g.DrawLine(p, Rect.X + Rect.Width / 4 * 2, Rect.Y + Rect.Height / 4

* 3, Rect.X + Rect.Width / 4 * 3, Rect.Y + Rect.Height / 3);

 p.Free;

 end;

 end;

 end;

 if item.State = isNormal then

 begin

 p := TGPPEN.Create(MakeColor(255, RGB(226, 228, 231)));

 g.drawline(p, Rect.X + Rect.Width + 5, Item.Y, Rect.X + Rect.Width + 5,

Item.Y + Item.Height);

 p.Free;

 end;

end;

Applying this code and setting some properties in the AdvPolyList (to improve the drawing of the
separators) gives you the following look and feel:

Properties set to obtain the above look and feel:

- VerticalSpacing 0
- Each item spacing 10

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

53

Auto Sizing

One of the features of the poly list is autosizing of items within the control. The autosizing can be
controlled with 2 properties, AutoSizeMode and AutoSizeType. The AutoSizeMode property defines
the kind of autosizing.

asmItems: The items are resized based on the size of the control.
asmControl: The control is resized based on the size of the items.
asmNone: Autosizing is disabled.

By default the AutoSizeMode is asmItems. Also, the AutoSizeType can be set, which determines if
the AutoSizing must be applied in the height, width or both.

astBoth: Autosizing is applied in both width and height.
astWidth: Autosizing is applied in width only.
astHeight: Autosizing is applied in height only.

Below are screenshots of the different scenarios. (asmControl is basically the same as asmItems, but
the size of the control is adapted to the size of the Items.

asmItems astBoth

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

54

asmItems astWidth

asmItems astHeight

asmNone

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

55

Using the TAdvPolyPager

The TAdvPolyPager is a combination of pages and items. Starting with the TAdvPolyPager shows an
empty list and describes the actions you must take to add a new page and to link the page to an
item.

Adding a page can be done by right-clicking on the pager and choosing “New Page“.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

56

Now that the page is added, you must add a new item, to link the page and to select the page at
runtime.

To add a new item, double-click on the left side of the pager to start the editor, and add an item of
choice.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

57

The last action that must be done is linking the item to the page. When selecting the page in the
object inspector, or selecting the page at designtime, you can select the item added through the
editor in the dropdown list.

After selecting the Item, the link is visualized at designtime:

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

58

Each time a new page is added, the page must be linked to an item. The page can be linked to only
one item. When a page has no item, the page is not displayed.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

59

Creating and handling previews with the PreviewItem (Delphi 2010 only)

The previewitem is a special item. It has the same capabilities as a normal image item, but with an
extra property to display a preview of the file. This preview is based on the shell preview of the
Windows operating system.

Only file types that have a registered preview handler on Operating System level can be shown as
preview. The application that is linked to the file (ex. „.ppt‟ PowerPoint) must have a preview
handler that is registered in the operating system. In a default Windows Vista or Windows 7
operating system installation, there are some built-in preview handlers for known file types such as
„wmv‟, „mp3‟, and all image types. File types that are not recognized will not be loaded and will
show the default image that is loaded when creating the item.

To display the preview in an item, simply add the item to the list and set the PreviewFile property
to load the preview of the file.

 with TPreviewItem(AdvPolyList1.AddItem(TPreviewItem)) do

 begin

 PreviewFile := 'C:\Users\Public\Videos\Sample Videos\WildLife.wmv';

 end;

Starting the application adds the item and creates the preview, which is a frame of the video that is
added. For music files this will be a cover of the album. For PowerPoint files this will be the first
slide. For each file that has a registered preview handler, the preview thumbnail will be different.

For this application we have set the Selectable property false, to block the selection, and use the
OnItemClick event to open the file when clicking on the item.

 with TPreviewItem(AdvPolyList1.AddItem(TPreviewItem)) do

 begin

 PreviewFile := 'C:\Users\Public\Videos\Sample Videos\WildLife.wmv';

 OnItemClick := ItemClick;

 Selectable := false;

 end;

 procedure TForm1.ItemClick(Sender: TObject; Item: TCustomItem);

 begin

 (Item as TPreviewItem).Run;

 end;

In the ItemClick, the Run procedure is called which internally handles a ShellExecute to execute the
file. Ofcourse, this is a built-in function that is implemented to quickly write an application.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

60

Hosting a control in an item

Each item can host a control and has properties to align this control within the boundaries of the
item. Adding a control to an item can be done at designtime and at runtime. In this sample, we will
demonstrate how to create a new item and add a standard edit control to the item.

Start the editor, and add an item of choice. When selecting this item, you will see properties to add
and align a control.

Drop a TEdit control on the form and select the item again. You will notice that the Edit control is
added to the dropdown list in the object inspector linked to the Control property.

Selecting „Edit1‟ in our sample automatically displays the Edit control in the item.

The Edit control is displayed above the text and after modifying the control properties, the height
of the item, and the caption position we have an item with an edit which is displayed inside the
item below the caption.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

61

Connecting the same edit control to an item in code with the same Caption and Control property
settings can be done with the following code:

 with TTextItem(AdvPolyList1.AddItem(TTextItem)) do

 begin

 Control := Edit1;

 ControlLocation := tlBottomLeft;

 CaptionLocation := tlTopLeft;

 Height := 45;

 end;

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

62

Creating a poly pager

Using the poly pager at designtime and linking items to pages is simple and intuitive. But creating a
complete poly pager at runtime in code, the creation process can be a burden without a small
explanation or sample. Below is a sample code of creating a poly pager at runtime, adding items,
and linking those items to the pages.

Used units: AdvPolyPager, GDIPSectionItem, GDIPTextItem, StdCtrls;

var

 apr: TAdvPolyPager;

 app: TAdvPolyPage;

 si: TSectionItem;

 ti: TTextItem;

 lb: TListBox;

begin

 apr := TAdvPolyPager.Create(Self);

 apr.Parent := self;

 app := TAdvPolyPage.Create(apr);

 apr.AddAdvPolyPage(app);

 app := TAdvPolyPage.Create(apr);

 apr.AddAdvPolyPage(app);

 si := TSectionItem(apr.AddItem(TSectionItem));

 si.Caption := 'Section of pages';

 si.Status.Caption := '1';

 si.Status.Visible := true;

 ti := TTextItem(apr.AddItem(TTextItem));

 ti.Caption := 'First page';

 ti := TTextItem(apr.AddItem(TTextItem));

 ti.Caption := 'Second page';

 apr.AdvPolyPages[0].ItemLink := apr.Items[1];

 apr.AdvPolyPages[1].ItemLink := apr.Items[2];

 apr.ActivePageIndex := 0;

 lb := TListBox.Create(apr.AdvPolyPages[0]);

 lb.Parent := apr.AdvPolyPages[0];

 lb.Align := alClient;

 lb.Items.Add('item 1');

 lb.Items.Add('item 2');

 lb.Items.Add('item 3');

 lb.Items.Add('item 4');

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

63

Fill Editor

For the poly list appearance, a designer is provided that can be used at design-time as well as at
run-time. The editor is capable of drawing semi transparent and complex gradients. Every time you
want to change the appearance of a visual element in the poly list, this editor with built-in preview
allows you to fully customize the look of the element:

In different groups, different categories of properties of the fill can be set: properties of the
border, a shadow, the background and a foreground.

Properties

Properties to control the border:

 BorderColor: the color of the border of the fill.

 BorderOpacity: the opacity of the border of the fill.

 BorderWidth: the width of the border of the fill.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

64

 Rounding: the rounding of the fill, set Rounding = 0 to have a rectangular shape and a
higher value to have more rounded corners.

 RoundingType: the type of rounding of the fill. In some cases it can be useful to only set
the top corners of the fill to be rounded, only the bottom corners or all 4 corners.

Properties to control the background:

A background can be divided in a top and bottom part and each part can have its gradient.

 Color: the start color of the top part gradient (if the GradientType is gtSolid, Color is the only
property used).

 ColorTo: the end color of the top part gradient.

 ColorMirror: when ColorMirror is set to a color different from clNone the fill will be split up
in 2 parts: the top part and the mirror bottom part. ColorMirror is the start color of the mirror
bottom part.

 ColorMirrorTo: the end color of the mirror bottom part.

 Opacity: the opacity of the start color of the top part.

 OpacityTo: the opacity of the end color of the top part.

 OpacityMirror: the opacity of the start color of the mirror bottom part.

 OpacityMirrorTo: the opacity of the end color of the mirror bottom part.

 GradientType: the type of gradient to apply: Horizontal, Vertical, Angle, Hatch... for the top
part (or full background if mirror colors are set to clNone)

 GradientMirrorType: the type of gradient of the mirror bottom part.

 Angle: the angle of the gradient in case GradientType is set to gtAngle.

 HatchStyle: the hatchstyle in case GradientType is set to gtHatch for the top part (or full
background if mirror colors are set to clNone)

 HatchStyleMirror: the hatchstyle of the mirror bottom part.

 BackGroundPicture: the background picture in case GradientType gtTexture is chosen. The
background picture can be stretched or positioned on the fill.

 BackGroundPicturePosition: the position of the backgroundpicture.

 BackGroundPictureLeft: when the position is set to custom the left position can be set with
this property

 BackGroundPictureTop: the top position of the backgroundpicture when the position is set
to custom.

Properties to control the foreground picture:

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

65

 Picture: you can always set a picture that is not bound to the rectangle of the fill. In other
words you can draw a picture which overlaps the fill.

 PicturePosition: the position of the foreground picture.

 PictureLeft: the left position of the picture in case pictureposition is set to custom.

 PictureTop: the top position of the picture in case pictureposition is set to custom.

 PictureSize: it can be useful to resize the picture to a different size when it is too large. Set
picturesize to custom and use picturewidth and pictureheight to change the size of the
picture.

 PictureWidth: the width of the picture in case the picturesize is set to custom.

 PictureHeight: the height of the picture in case the picturesize is set to custom.

Properties to control the shadow:

 ShadowColor: the color of the shadow of the fill.

 ShadowOffset: the offset of the shadow of the fill.

Properties to control the shadow:

 GlowMode: the mode of the glow which is drawn on top of the fill, the mode can be a
gradient, a radial, or a combination.

 GlowGradientColor: the color of the glow when the glowmode is set to gradient or the
combination mode.

 GlowRadialColor: the color of the glow when the glowmode is set to radial or the
combination mode.

Some examples of fill styles:

Copying styles

At design-time or run-time, a style can be easily applied to many components or many visual
elements of components. The 2 speedbuttons in the lower left corner of the fill editor can be used
to copy and paste fills.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

66

When creating complex fills in a project with many different components that implement the
TGDIPFill class, you can copy the TGDIPFill settings on the clipboard and paste from the clipboard
for another component or visual element. To do the same in code, a TGDIPFill class can be assigned
to another TGDIPFill class:

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

67

Example:

procedure TForm1.Button1Click(Sender: TObject);

begin

 AdvPolyList1.Fill.Assign(AdvPolyList2.Fill);

end;

In this code snippet, the fill from one TAdvPolyList Fill is copied to another TAdvPolyList Fill.

Using the fill editor at runtime

It is easy to use the fill editor at runtime. To do this, add the unit AdvSmoothFillEditor to the uses
list and add following code:

var

 filldlg :TAdvSmoothFillEditorDialog;

begin

 filldlg := TAdvSmoothFillEditorDialog.Create(self);

 filldlg.Fill := AdvPolyList1.Fill;

 filldlg.Execute;

end;

With this code snippet, the TAdvPolyList fill can be edited at runtime.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

68

GDI+ Picture Container

Using the TGDIPPictureContainer component

The TGDIPPictureContainer makes it easy to use and embed PNG, JPEG, GIF, ICO, BMP and WMF
images in your applications from the IDE without needing to resort to resource files. Note that the
TGDIPPictureContainer does not require any additional library or code to handle these image
formats.

Applying this to the poly list, some items are able to display images. This can be done with the
ImageName property. When assigning a TGDIPPictureContainer at designtime, the complete list of
images comes available when selecting the ImageName property in the object inspector.

Suppose the images with names SOUNDS, SEARCH, PRINTER and MAIL have been added, then the
images can be shown via HTML formatted text with following tags :

First image , second image , etc ...

assuming of course the TGDIPPictureContainer is assigned to the HTML enabled control. When a
HTML enabled control cannot find a picture with the name referenced in the PictureContainer it will
display no image.

It is equally possible to add pictures to the TGDIPPictureContainer at run-time. Below is a code
snippet that shows how an image is loaded from file and added to the TGDIPPictureContainer:

with GDIPPictureContainer.Items.Add do

begin

 Picture.LoadFromFile('myimage.png’);

 Name := 'NEW';

end;

To remove a picture from the TGDIPPictureContainer later:

with GDIPPictureContainer.Items.Items[0].Free;

To control size of the picture displayed, additional tags WIDTH and HEIGHT can be used :

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

69

New image

HTML rendering engine

Another core technology used among many components is a small fast & lightweight HTML rendering
engine. This engine implements a subset of the HTML standard to display formatted text. It supports
following tags :

B : Bold tag
 : start bold text
 : end bold text

Example : This is a test

U : Underline tag
<U> : start underlined text
</U> : end underlined text

Example : This is a <U>test</U>

I : Italic tag
<I> : start italic text
</I> : end italic text

Example : This is a <I>test</I>

S : Strikeout tag
<S> : start strike-through text
</S> : end strike-through text

Example : This is a <S>test</S>
A : anchor tag
 : text after tag is an anchor. The 'value' after the href identifier is the anchor. This
can be an URL (with ftp,http,mailto,file identifier) or any text.
If the value is an URL, the shellexecute function is called, otherwise, the anchor value can be found
in the OnAnchorClick event : end of anchor

Examples : This is a test
This is a test
This is a test

FONT : font specifier tag
 : specifies font of
text after tag.
with

 face : name of the font

 size : HTML style size if smaller than 5, otherwise pointsize of the font

 color : font color with either hexidecimal color specification or Borland style color name, ie
clRed,clYellow,clWhite ... etc

 bgcolor : background color with either hexidecimal color specification or Borland style color
name : ends font setting

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

70

Examples : This is a test
This is a test

P : paragraph
<P align="alignvalue" [bgcolor="colorvalue"] [bgcolorto="colorvalue"]> : starts a new paragraph, with
left, right or center alignment. The paragraph background color is set by the optional bgcolor
parameter. If bgcolor and bgcolorto are specified,
a gradient is displayed ranging from begin to end color.
</P> : end of paragraph

Example : <P align="right">This is a test</P>
Example : <P align="center">This is a test</P>
Example : <P align="left" bgcolor="#ff0000">This has a red background</P>
Example : <P align="right" bgcolor="clYellow">This has a yellow background</P>
Example : <P align="right" bgcolor="clYellow" bgcolorto="clred">This has a gradient background</P>*

HR : horizontal line
<HR> : inserts linebreak with horizontal line

BR : linebreak

 : inserts a linebreak

BODY : body color / background specifier
<BODY bgcolor="colorvalue" [bgcolorto="colorvalue"] [dir="v|h"] background="imagefile specifier"> :
sets the background color of the HTML text or the background bitmap file

Example : <BODY bgcolor="clYellow"> : sets background color to yellow
<BODY background="file://c:\test.bmp"> : sets tiled background to file test.bmp
<BODY bgcolor="clYellow" bgcolorto="clWhite" dir="v"> : sets a vertical gradient from yellow to
white

IND : indent tag
This is not part of the standard HTML tags but can be used to easily create multicolumn text
<IND x="indent"> : indents with "indent" pixels

Example :
This will be <IND x="75">indented 75 pixels.

IMG : image tag
<IMG src="specifier:name" [align="specifier"] [width="width"] [height="height"] [alt="specifier:name"]
> : inserts an image at the location

specifier can be : idx : name is the index of the image in the associated imagelist
file : name is the full filename specifier
res : name of a resource bitmap (not visible at design time)
no specifier : name of image in a TGDIPPictureContainer

Optionally, an alignment tag can be included. If no alignment is included, the text alignment with
respect to the image is bottom. Other possibilities are: align="top" and align="middle"

The width & height to render the image can be specified as well. If the image is embedded in
anchor tags, a different image can be displayed when the mouse is in the image area through the
Alt attribute.

Examples : This is an image
This is an image
This is an image

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

71

This is an image

SUB : subscript tag
<SUB> : start subscript text
</SUB> : end subscript text

Example : This is ⁹/₁₆ looks like 9/16

SUP : superscript tag
<SUP> : start superscript text
</SUP> : end superscript text

UL : list tag
 : start unordered list tag
 : end unordered list

Example :
List item 1
List item 2

 Sub list item A
 Sub list item B

List item 3

LI : list item
<LI [type="specifier"] [color="color"] [name="imagename"]>: new list item specifier can be "square",
"circle" or "image" bullet. Color sets the color of the square or circle bullet. Imagename sets the
PictureContainer image name for image to use as bullet

SHAD : text with shadow
<SHAD> : start text with shadow
</SHAD> : end text with shadow

Z : hidden text
<Z> : start hidden text
</Z> : end hidden text

Special characters
Following standard HTML special characters are supported :
< : less than : <
> : greater than : >
& : &
" : "
 : non breaking space
™ : trademark symbol
€ : euro symbol
§ : section symbol
© : copyright symbol
¶ : paragraph symbol

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

72

Component styles and application-wide or form-wide styler components

While the appearance of the TMS Advanced Poly List can be fully customized, it is often desirable to

make the application look and feel consistent with Microsoft Windows or Microsoft Office. To
access the presets at design-time, right click the component and choose Styles from the context
menu. At run-time, the style can also be set in code. To do this, add the unit AdvStyleIF to the uses
clause and call:

Component.SetComponentStyle(style)

Current available styles are:

Office 2003:
tsOffice2003Blue: Office 2003 style on a blue XP theme
tsOffice2003Silver: Office 2003 style on a silver XP theme
tsOffice2003Olive: Office 2003 style on an olive XP theme
tsOffice2003Classic: Office 2003 style on a non-themed XP or pre-XP operating system

Office 2007:
tsOffice2007Luna: Office 2007 Luna style
tsOffice2007Silver: Office 2007 Silver style
tsOffice2007Obsidian : Office 2007 Obsidian style

Office 2010:
tsOffice2010Blue: Office 2010 Blue style
tsOffice2010Silver: Office 2010 Silver style
tsOffice2010Black : Office 2010 Black style

Windows:
tsWindowsXP: Windows XP dialogs style
tsWindowsVista: Windows Vista OS style
tsWindows7: Windows Seven OS Style

Custom:
tsCustom: do not force style

We have spent quite some effort to further simplify form-wide and application-wide appearance
control for TMS components and possibly also your custom controls. To do this, two new components
have been designed:

TAdvFormStyler
TAdvAppStyler

A TAdvFormStyler is supposed to be dropped on a form and it will control the style of the TMS
components on the form. A TAdvFormStyler will only affect components on the form itself. For
application-wide appearance control, in addition to a TAdvFormStyler on a form, a TAdvAppStyler
component can be dropped on a datamodule and is connected to the TAdvFormStyler components
on the forms. By setting then a single property in TAdvAppStyler on the datamodule, the complete
application appearance can change, both at design-time but also dynamically at run-time.

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

73

Scenario

The component TAdvFormStyler has a property style. Setting this style property causes all
components on the form that support the interface to set the style to change to the selected style.
Similary, setting the style property for the TAdvAppStyler on a central data module invokes all
TAdvFormStyler style changes and thus the style of all TMS controls on the form that implement the
ITMSStyle interface. The TAdvFormStyler component has an event OnApplyStyle that can be used to
prevent that for certain components a standard style is applied.

Example:

This code snippet prevents that the style will be set for any TAdvPolyList instance on the form by
the TAdvFormStyler component:

procedure TForm2.AdvFormStyler1ApplyStyle(Sender: TObject;
 AComponent: TComponent; var Allow: Boolean);
begin
 Allow := not (AComponent is TAdvPolyList);
end;

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

74

You can make your own controls also easily TAdvFormStyler, TAdvAppStyler aware so that your
controls also automatically change their appearance when the application and/or form style
changes. To do this, it is sufficient to add and implement the ITMSStyle interface to your control.
This code snippet shows a sample custom control that was made TMS style aware:

interface

uses

 Classes, AdvStyleIF;

type

 TMyCustomControl = class(TCustomControl, ITMSStyle)

 public

 procedure SetComponentStyle(AStyle: TTMSStyle);

 end;

{ TMyCustomControl }

procedure TMyCustomControl.SetComponentStyle(AStyle: TTMSStyle);

begin

 case AStyle of

 tsOffice2003Blue: // set properties correct here for the selected style

 tsOffice2003Silver:

 tsOffice2003Olive:

 tsOffice2003Classic:

 tsOffice2007Luna:

 tsOffice2007Obsidian:

 tsOffice2007Silver:

 tsOffice2010Blue:

 tsOffice2010Silver:

 tsOffice2010Black:

 tsWindowsXP:

 tsTerminal:

 tsWindowsVista:

 tsWindows7:

 tsCustom:

 end;

end;

TMS SOFTWARE
TMS Advanced Poly List

DEVELOPERS GUIDE

75

Frequently asked questions (FAQ)

Q: Is any Microsoft licensing required to use the TMS Poly list controls similar to the Office 2007
ribbon?

A: TMS Poly list controls can be used for so much more than just the Office 2010 application menu.
They extend these controls and are in several ways more versatile. Ribbon UI licensing does not
apply on such separate controls.

