

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

1 | P a g e

TMS TPLANNER – TDBPLANNER
DEVELOPERS GUIDE

Documentation: January, 2011
Copyright © 1999 – 2011 by tmssoftware.com bvba

Web: http://www.tmssoftware.com
Email : info@tmssoftware.com

http://www.tmssoftware.com/
mailto:info@tmssoftware.com

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

2 | P a g e

Table of contents

Table of contents .. 2
Welcome .. 4
TPlanner / TDBPlanner availability ... 5

VCL versions ... 5
Web planner solutions .. 6
TPlanner / TDBPlanner use .. 7
TPlanner / TDBPlanner organisation ... 8

Non visual organisation of TPlanner / TDBPlanner ... 8
Visual organisation of TPlanner / TDBPlanner .. 8

Settings of TPlanner / TDBPlanner visual elements ... 11
TPlanner Caption ... 11
TPlanner Header .. 11
TPlanner navigator buttons ... 15
TPlanner Sidebar ... 15
Non visible item indicators in the sidebar ... 18
TPlanner footer ... 19
TPlanner position display control .. 20
TPlanner modes ... 21
TPlanner time axis display control .. 23

Inside the TPlannerItem .. 26
TPlannerItem position control ... 26
Overlapping TPlannerItems ... 27
Using TPlannerItems in 3 dimensions ... 28
Controlling moving and sizing of TPlannerItems at runtime .. 29
Editing items with popup editor or inplace editor ... 29
Other properties that control the PlannerItem appearance .. 31
Displaying multiple images in the TPlannerItem caption ... 33
Using HTML formatted text in a TPlannerItem .. 33
HTML formatting related events ... 36
Highlighting & marking text in TPlannerItems ... 37
Using TPlannerItem alarms ... 38
TPlannerItem objects .. 40
Using a custom TPlannerItem class.. 41

The TPlannerItems collection ... 44
Searching items in the planner .. 44
Item selection in the planner .. 45
Clipboard support .. 46
Moving, sizing & removing items .. 46

Saving and loading items in non data-aware TPlanner .. 48
Printing of the TPlanner component ... 49
Saving the TPlanner to HTML .. 51
Saving the TPlanner to a bitmap .. 52
Drag & drop in TPlanner .. 53
Planner themes .. 56
Export & import of TPlannerItems .. 58
Additional TPlanner / TDBPlanner methods and properties ... 60

Cell selection .. 60
Cells, mouse coordinates and TPlannerItems ... 61
Position handling ... 62
Position properties ... 62
Balloon tooltips ... 64

TDBPlanner architecture ... 65
Database requirements ... 67

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

3 | P a g e

Setting up TDBPlanner, TDBItemSource and the database ... 69
Performance guidelines ... 71
TDBPlanner and database synchronisation .. 72
The standard TDBItemSource components .. 73

TDBDaySource ... 73
TDBMonthSource .. 74
TDBPeriodSource ... 75
TDBHalfDayPeriodSource .. 75
TDBActiveDayPeriodSource ... 75
TDBMultiMonthSource.. 75
TDBTimeLineSource .. 75
TDBDisjunctDaySource ... 75
TDBActiveDaySource ... 76
Using the TDBItemSource.ResourceMap .. 76
Using a ResourceDataSource ... 77
Writing custom database interface components .. 77
Using SQL to update/delete/insert Planner Items ... 78
Using HTML templates in items in TDBPlanner .. 78

TBDPlanner Recurrency support .. 80
Frequency .. 81
Interval ... 81
Count ... 81
Until .. 81
ByDay, ByMonth ... 81
Optional specifier for ByDay .. 82
Exceptions ... 82
Working directly with recurrency ... 82

Advanced TPlanner / TDBPlanner techniques .. 84
Linking TPlannerItems ... 84
Setting background color for individual grid cells .. 87
Overlappable background items ... 87
Using a non-linear time axis in TPlanner ... 89
Disjunct selection in the planner .. 90
Skinning planner items .. 91

TPlannerWaitList component .. 94
TPlannerMonthView & TDBPlannerMonthView component ... 96

Overview ... 96
General operation .. 96
DB PlannerMonthView operation... 97

Using TPlannerExport to export to Excel files ... 100
Installing .. 100
Basic use .. 100
Controlling how export is done ... 101
Customizing the exported file... 101

Syncing two Planner instances ... 103

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

4 | P a g e

Welcome

Welcome to the TPlanner/TDBPlanner Developer's Guide, created by tmssoftware.com.
At tmssoftware.com, we strive to produce world class software components that enable developers
to produce quality software for the most demanding of environments.
Our innovative component suites are designed to be extensible, easy to use and design time rich.
We provide full source code to enable seamless integration of our components with our customers'
projects.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems - without the written permission of the publisher.
Products that are referred to in this document may be either trademarks and/or registered
trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.
While every precaution has been taken in the preparation of this document, the publisher and the
author assume no responsibility for errors or omissions, or for damages resulting from the use of
information contained in this document or from the use of programs and source code that may
accompany it. In no event shall the publisher and the author be liable for any loss of profit or any
other commercial damage caused or alleged to have been caused directly or indirectly by this
document.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

5 | P a g e

TPlanner / TDBPlanner availability

VCL versions

TPlanner and TDBPlanner are available as VCL components.

TPlanner is available for Delphi 5, 6, 7, 2005, 2006, 2007, 2009, 2010, XE and
C++Builder 5, 6, 2006, 2007, 2009, 2010, XE.

TDBPlanner is available for Delphi 5, 6, 7, 2005, 2006, 2007, 2009, 2010, XE and
C++Builder 5, 6, 2006, 2007, 2009, 2010, XE.

TPlanner and TDBPlanner have been designed for and tested with: Windows 98, ME, NT4, 2000,
2003, 2008, XP, Vista and Windows 7.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

6 | P a g e

Web planner solutions

VCL for the Web (IntraWeb)

For creating web interfaces for scheduling applications, TMS software has developed a version for
IntraWeb (the framework for web application development from AtoZed software
(www.atozedsoftware.com) It can be used with Delphi 5,6,7,2005,2006,2007,2009,2010,XE or
C++Builder 5,6,2006, 2007,2009,2010,XE. Details can be found at
http://www.tmssoftware.com/site/tmsiwplan.asp

ASP.NET

For web servers with ASP.NET support, TMS software has also developed an ASP.NET version of the
Planner that can be used with Microsoft Visual Studio .NET 2003, 2005, 2008 & 2010. The TMS
WebPlanner components for ASP.NET can be found at
http://www.tmssoftware.com/site/webplanner.asp

Silverlight

With the TMS Silverlight Planner, browser based RIA scheduling applications can be created based
on Microsoft‟s Silverlight platform. The TMS Silverlight Planner can be found at:
http://www.tmssoftware.com/site/slplanner.asp

http://www.atozedsoftware.com/
http://www.tmssoftware.com/site/tmsiwplan.asp
http://www.tmssoftware.com/site/webplanner.asp
http://www.tmssoftware.com/site/slplanner.asp

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

7 | P a g e

TPlanner / TDBPlanner use

The TMS TPlanner and TDBPlanner components are designed to be used in the most broad types of
planning and scheduling type of applications. This can range from the typical single person PIM
application to schedulers of activities for a group of persons, time planning for resources such as
hotel rooms, car rental, university courses and so much more. As such, the TPlanner and TDBPlanner
are very highly configurable components to suite all these various types of applications. The
underlying framework of TPlanner therefore has an open interface towards the coupling to time or
resources. Standard modes include day time view, week view, month view, day period view, half-
day period view, multi-month view while at the same time custom modes allow to view any type of
timescale. Multi day and multi resource views can be combined as well.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

8 | P a g e

TPlanner / TDBPlanner organisation

Non visual organisation of TPlanner / TDBPlanner

The TPlanner holds a collection of TPlannerItem objects. A TPlannerItem fully specifies how an
event or appointment is displayed in the TPlanner grid. TPlannerItem objects can be added or
inserted in the TPlannerItems collection and the TPlanner takes care of the visualisation of the
TPlannerItem objects in the grid. At the same time, it takes care that TPlannerItem objects are
modified when edited, moved or resized at run-time. It is thus key that only items that should be
displayed in the TPlanner are added.
In the not data-aware version TPlanner, it is the responsibility of the programmer to save and load
these TPlannerItem objects to file for persistence. With TDBPlanner, a TDBItemSource descendent
component takes care of the streaming of TPlannerItem objects to and from the TDBPlanner from a
dataset and updating for appropriate records in the database when TPlannerItem objects are
changed at run-time. Currently, TDBItemSource based interfaces exist for many modes of the
Planner: day, month, period, disjunct day, timeline, active day period, half day period and multi-
month mode.

Visual organisation of TPlanner / TDBPlanner

Visually the TPlanner consists of various elements shown here:

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

9 | P a g e

1 TPlanner caption
Settings are controlled through the Planner.Caption property. It can be selected whether
the caption is visible or not.

2 TPlanner navigator buttons
Settings are controlled through the Planner.NavigatorButtons property. It can be selected
whether the Navigator buttons are visible or not.

3 TPlanner sidebar
Settings are controlled through the Planner.Sidebar property. The Sidebar can be visible
or not. It can be at the left side, right side, left and right side, or top side of the grid. In
addition, or it can be repeated between columns in the grid.

4 TPlanner header
Settings are controlled through the Planner.Header property. It can be selected whether
the header is visible or not.

5 TPlanner grid
Various settings are controlled through the Planner properties as well as Planner.Display
property

6 TPlannerItem
Normal text TPlannerItem with caption with time indication.

7 TPlannerItem
Rich text TPlannerItem with fixed text caption.

8 TPlannerItem
HTML formatted TPlannerItem with gradient caption. The TPlannerItem can hold links to
URLs or application handled anchors.

9 TPlanner footer
Zone where completion of a resource can be displayed by a progress bar.

10 TPlannerItem
In header displayed TPlannerItem.

11 TPlannerItem
Background TPlannerItem.

12 TPlanner header custom drawing.

TPlanner supports a vertical view (as shown above) as well as a horizontal view. In the horizontal
view, all elements of the TPlanner simply rotated. This means that the Sidebar here at left is
displayed on top and the header and navigator buttons are displayed at the left side in horizontal
mode. The position coordinates of TPlannerItem objects along vertical and horizontal axis in
vertical mode become the coordinates along horizontal and vertical axis respectively in horizontal
mode.
The TPlanner component can be easily switched from vertical view to horizontal view by setting the
TPlanner.Sidebar.Position property to spTop.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

10 | P a g e

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

11 | P a g e

Settings of TPlanner / TDBPlanner visual elements

TPlanner Caption

The TPlanner caption is the most simple visual element of the TPlanner. It‟s properties are
controlled through the TPlanner.Caption property :

Alignment Sets alignment of caption text.

Background Sets background color.

BackgroundSteps Sets the number of steps to draw the gradient with

BackgroundTo If different from clNone, draws a gradient background
from BackgroundColor to BackgroundColorTo.

Font Sets the font for the caption text.

GradientDirection Sets the gradient direction of the caption background.

Height Sets the height of the caption.

Title Sets the caption text. Caption text can have HTML
formatting.

Visible Sets the visibility of the TPlanner caption.

The caption only triggers events for handling anchors (<A> tags with HTML formatted text) through
the events: OnCaptionAnchorClick, OnCaptionAnchorEnter, OnCaptionAnchorExit.

TPlanner Header

The header consists of various sections which automatically adapt to the size of the columns
(vertical mode) or rows (horizontal mode) in the planner grid.

1: First header section covering the sidebar space

2: Normal header section text as defined through the stringlist Planner.Header.Captions

3: Placeholder for items in the header

4: Image associated with the header section

5: Custom drawn item in the header

6: Normal drawn item in the header

Planner.Header properties:

ActiveColor, ActiveColorTo Sets the background gradient color used for drawing the
header of the column that has the active cell.

Alignment Sets the text alignment of normal header captions.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

12 | P a g e

AllowPositionResize Allow resizing of a single position in the planner with the
mouse.

AllowResize Allows resizing with mouse of the header (height in vertical
mode, width in horizontal mode).

AutoSize When set to true, the header height automatically sizes to
make sure that all items in the header can be displayed.

AutoSizeGroupCaption When set to true, the part of the header that displays
position groups will auto size

Captions Stringlist holding header captions (note that the caption with
Index zero (0) is usually occupied by the sidebar).

Color Sets the background color of the normal header section.

ColorTo Sets the end gradient color for the gradient in the header.
When clNone, a solid color is used in the header.

CustomGroups Allows to define header groups with different column span
per column.

DragDrop When true, sections can be rearranged through drag & drop.

Flat When true the header is displayed in flat style.

Font Sets the font of the normal header caption text.

GroupCaptions When the planner has grouping, captions for the grouped
sections are set through this stringlist.

GroupFont Sets the font for the header groups

GroupHeight Sets the height of the header group part. When 0, the group
height and title height are equal, being ½ of the total header
height.

Height Sets the total height of the header.

ImagePosition Sets the position of images displayed in the header to either
left or right of the caption text.

Images Imagelist to be used for the header caption. First section
uses image 0, second section image 1 and so on …

ItemColor Sets the background color of the zone in the header where
items are placed.

ItemHeight Sets the height of the part of the header where items are
displayed.

LineColor Sets the line color of the divider line between header
sections.

PopupMenu Assigns the popup menu to be used for the header.

ReadOnly When true, header caption text cannot be edited at runtime.

ResizeAll When Header.AllowResize = true and the user resizes a
specific postion, all positions will automatically resize to the
new size of the last position that was resized.

RotateGroupOnLeft When header position groups are shown on a left positioned
header, the group text is rotated 90 degrees.

RotateOnLeft Uses a rotated font for header caption display when the
planner is in horizontal mode. Note that this requires that
the header font is a TrueType font.

RotateOnTop When true, the header caption text is rotated over 90
degrees when the header is on top. Note that this requires
that the header font is a TrueType font.

ShowHint Controls whether hints are displayed or not for the Planner
header.

TextHeight Sets the height of the normal header caption text.

VAlignment Sets the vertical alignment of header caption text.

Visible Sets the visibility of the header.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

13 | P a g e

WordWrap When true, text in the header is drawn wordwrapped.

Note about Height, ItemHeight and TextHeight: As TextHeight is the height from top for of the
normal caption text and ItemHeight is the height of the space for items under below the normal
caption text, make sure that total Header height is larger or equal or larger than TextHeight +
ItemHeight.

Identical settings apply when the header is displayed on the left side of the TPlanner when
horizontal mode is chosen. Note that the meaning of a height property should in this case
be interpreted as a width setting.

Programmatically setting captions:

The planner header above shows normal header captions and group captions (settings of grouping is
discussed later in the documentation)

Example:

Programmatically, this can be set by filling the Planner.Header.Captions and
Planner.Header.GroupCaptions stringlists in following way:

 with Planner1.Header do

 begin

 Captions.Clear;

 GroupCaptions.Clear;

 Captions.Add(''); // take first sidebar header section into account

 Captions.Add('A1');

 Captions.Add('A2');

 Captions.Add('A3');

 GroupCaptions.Add('Group A');

 Captions.Add('B1');

 Captions.Add('B2');

 Captions.Add('B3');

 GroupCaptions.Add('Group B');

 end;

Note:
At design time it is easy to enter multiline header captions by using „\n‟ as line separator. Setting at
design time in the Captions stringlist editor : „This is line 1\n and here line2‟ will
result in a caption with:

This is line1
and here line 2

In the example above, the header group size is equal for all groups and is set by the property
Planner.PositionGroups. In order to show different group sizes for different columns, the
Planner.Header.CustomGroups can be used. To use custom position groups, set
Planner.PositionGroups to 1. The code snippet below produces a header with 3 groups with
respectively a span of 2 positions, span of 3 positions and span of 1 position:

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

14 | P a g e

var

 i: Integer;

begin

 with planner1.Header do

 begin

 CustomGroups.Clear;

 with CustomGroups.Add do

 begin

 Caption := 'Group 1';

 Span := 2;

 end;

 with CustomGroups.Add do

 begin

 Caption := 'Group 2';

 Span := 3;

 end;

 with CustomGroups.Add do

 begin

 Caption := 'Group 3';

 Span := 1;

 end;

 Captions.Clear;

 Captions.Add('');

 for i := 1 to 6 do

 Captions.Add('Col '+inttostr(i));

 end;

end;

The events triggered from the header are straightforward and related to mouse actions:

OnHeaderAnchorClick Triggered when a hyperlink in a HTML formatted header text
is clicked.

OnHeaderAnchorEnter Triggered when the mouse enters a hyperlink in HTML
formatted header text.

OnHeaderAnchorExit Triggered when the mouse leaves a hyperlink in HTML
formatted header text.

OnHeaderClick Triggered when mouse is left clicked on the header.

OnHeaderDblClick Triggered when mouse is double clicked on the header.

OnHeaderDragDrop Triggered when header sections are moved through drag &
drop.

OnHeaderDraw Triggered for each header item when it repaints to allow
custom drawing of the header.

OnHeaderDrawProp Triggered for each header item when it repaints to allow
overriding the default color & font of the header item.

OnHeaderEndEdit Event triggered when editing ends in the header.

OnHeaderHeightChange Event triggered when the height of the header changed
through resizing with mouse.

OnHeaderHint Queries the hint to be displayed for a given position in the
header.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

15 | P a g e

OnHeaderRightClick Triggered when mouse is right clicked on the header.

OnHeaderSized Event triggered when the size of a header column changed
through resizing with mouse.

OnHeaderStartEdit Event triggered before editing starts in the header.

Identical settings apply when the header is displayed on the left side of the TPlanner when
horizontal mode is chosen. Note that the meaning of a height property should in this case
be interpreted as a width setting.

TPlanner navigator buttons

The navigator buttons are sitting left and right of the planner header in vertical mode. The
navigator buttons are treated as a Previous (left or top) and Next (right or bottom) button. Settings
of the navigator buttons are simple:

TPlanner.NavigatorButtons :

Flat When true, navigator buttons are displayed in flat style.

NextHint Sets the button hint for the Next button.

PrevHint Sets the button hint for the Previous button.

ShowHint When true, navigator button hints are displayed.

Visible When true, the navigator buttons are visible.

A click on the TPlanner navigator buttons will trigger the event OnPlannerNext or OnPlannerPrev. In
the TDBPlanner, a click on these buttons will automatically update the time-axis for the specified
amount of time, of example in a multiday view, it will move forward or backward one day.

TPlanner Sidebar

The sidebar is the time indicating visual element also referred to as time axis in the TPlanner
component. It can sit in various positions in the TPlanner. The height of the sidebar sections
automatically adapts to the row height in the planner grid.

This is a left positioned sidebar showing the occupied
time zones in a different color.

TPlanner.Sidebar has following properties to control display of the sidebar :

ActiveColor When different from clNone, the active cell in the planner grid is

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

16 | P a g e

displayed in the sidebar as well with the background color defined
by ActiveColor.

ActiveColorTo Sets the gradient end color for indicating active cells with a
gradient.

Alignment Sets the alignment of the sidebar text.

AMPMPos Sets the position of the AM/PM string (when TPlanner.HourType is
htAMPM0 or htAMPM1). This can be either under the minutes (as
in picture above) or on after the minutes.

Background Sets the background color of the sidebar.

BackgroundTo When different from clNone, the sidebar is drawn with a gradient
with colors ranging from Background to BackgroundTo.

Border When true, a 3D border effect is displayed on the sidebar.

DateTimeFormat Date / time format string that can be used to set the format of
the text in the SideBar. Refer to the Delphi / C++Builder
FormatDateTime format specifier for options.

Flat When true, the sidebar is displayed in flat style.

Font Sets the font for the sidebar.

HourFontRatio Sets the ratio of the hour font size versus the minute font size. A
HourFontRatio of 2 will cause the hour font to be twice as large as
the minute font. This is applicable for a day mode time axis only.

LineColor Sets the color of splitter lines in the sidebar.

Occupied Sets the color to show occupied time zones in the planner.

OccupiedFontColor Sets the font color for the occupied time zones.

OccupiedTo Sets the end gradient color of occupied time zones in the planner.
When set to clNone, a solid color is used.

Position Sets the sidebar position relative to the grid, it can be set to the
left, the right, the top, or both the left and the right of the grid.
Setting the position to the top of the grid, rotates the whole grid
90 degrees, exchanging columns/rows and width/height
settings.to left from the TPlanner, on top or on both left and
right side.

RotateOnTop When true, text is 90 degrees rotated in the sidebar when
positioned on top. Note that this requires a TrueType font to be
used.

SeparatorLineColor Sets the color of the small separator lines between two sidebar
sections.

ShowDayName Adds the name of day in month and period planner mode to day.

ShowInPositionGap When true, the sidebar will also be display can be repeated in the
gaps between all positions in the planner. In this case the
Planner.PositionGap property controls the width of the sidebar
between each the position.

ShowOccupied When true, occupied time zones are displayed in the sidebar in
the Occupied / OccupiedFontColor.

ShowOtherTimeZone When true, a second time zone is shown in the SideBar. The hour
offset between the default timezone (current machine time) and
other displayed time zone is set with TimeZoneMinDelta.

TimeIndicator When true, a small marker is shown in the time axis to show the
current machine time.

TimeIndicatorColor Sets the color for the small marker in the SideBar indicating the
current machine time.

TimeIndicatorGlyph Sets an optional glyph to show in the SideBar at the position of
the current machine time.

TimeIndicatorType Sets the type of current time indicator in the SideBar. This can
be:
tiLine: a small line is drawn

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

17 | P a g e

tiGlyph: the glyph set with TimeIndicatorGlyph is drawn
tiLineGlyph: both a small line and the glyph are drawn

TimeZoneMinDelta Sets the delta in minutes between the first time zone and the
second time zone. The delta in minutes can be a positive or
negative value.

Visible Sets the visibility of the sidebar (note that when Visible is False,
ShowInPositionGap can still be True).

Width Sets the width of the sidebar (or height if the Position is at the
top of the grid).

What is displayed in the sidebar depends on the mode of the TPlanner (see
TPlanner.Mode.PLannerType) This can be the hours of the day, when mode is set to plDay, or the
dates in plMonth, plPeriod, plMultiMonth, and plWeek modes.
If the TPlanner is in day mode, then the time of the day is displayed in the sidebar. The range and
unit of the timescale in the sidebar is determined by the TPlanner.Display property (see under
TPlanner display) It consists of 3 parts:

1: hour text
2: minutes text
3: optional AM/PM string

It is possible to override what is displayed in the sidebar by using the TPlanner.OnGetSideBarLines
event, which queries these 3 parts for each section of the sidebar.

If the TPlaner.Mode.PlannerType is plWeek, then the sidebar shows day names. Those can be
configured in the Tplanner.DayNames property.

If the TPlanner.Mode.PlannerType is plMultiMonth, then the sidebar shows day numbers within the
month.

If the TPlanner.Mode.PlannerType is plDayPeriod, plMonth, or plPeriod, plMultiMonth, plWeek, then
the sidebar shows the date (range of dates is also set through the TPlanner.Mode property) The
formatting of the date displayed is according to the DateTimeFormat property, and Day names are
taken from the SysUtils. ShortDayNames variable.

Example:

When setting Planner.Sidebar.DateTimeFormat is equal to: „ddd m mmm / yyyy‟, the date 7/7/2002
is displayed as „Fri 7 Jul / 2002‟

Finally, full custom draw of the sidebar is possible. To achieve this, the OnPlannerSideDraw event
can should be used:

Example:

procedure TForm1.Planner1PlannerSideDraw(Sender: TObject;

 Canvas: TCanvas; Rect: TRect; Index: Integer);

begin

 Canvas.TextOut(Rect.Left,Rect.Top,IntToStr(Index));

end;

This simple procedure just displays the section index in the sidebar.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

18 | P a g e

To draw something on top of a default drawn Planner SideBar, the event OnPlannerSideDrawAfter
can be used. This event is triggered for every row (column) in the sidebar.

Non visible item indicators in the sidebar

When the Planner can be scrolled, little arrow indicators in the sidebar can indicate the presence of
events in the non-visible regions of the planner grid. In the example screenshot below, this means
that more items are present in the grid on the right side of the currently visible item.

The feature is enabled by setting Planner.IndicateNonVisibleItems = true. The indicators are
automatically displayed and updated when items are created or when the planner grid is scrolled.
Whenever items are programmatically created, an update of the non visible item indicators can be
forced with:

Planner.UpdateNVI;

Example: programmatically add an item and update non visible item indicators

 with Planner.CreateItem do

 begin

 itembegin := 33;

 itemend := 37;

 completiondisplay := cdHorizontal;

 completion := 80;

 end;

 Planner.UpdateNVI;

The events triggered from the SideBar are:

OnPlannerSideDraw Triggered when a timeslot on the SideBar is about to be
painted. Allows to perform custom drawing of a timeslot on
the time-axis.

OnPlannerSideDrawAfter Triggered after a timeslot on the SideBar is painted. Allow to
do custom painting on top of the default timeslot.

OnPlannerSideProp Triggered when a timeslot on the SideBar is about to be
painted. Allows to override the default color, brush and font
that will be used to paint the timeslot.

OnSideBarClick Triggered when a timeslot on the SideBar is left clicked.

OnSideBarDblClick Triggered when a timeslot on the SideBar is double clicked.

OnSideBarHint Triggered to dynamically set a hint text when the mouse
hovers over the SideBar.

OnSideBarRightClick Triggered when a timeslot on the SideBar is right clicked.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

19 | P a g e

TPlanner footer

The planner footer is similar to the planner header and can display text through setting the
Captions. In addition to simple text display, the footer can also be used to show the position
completion by a progress bar. The position completion represents the percentage of the number of
time slots in a position that are occupied. The completion automatically dynamically updates as
items are sized or moved around in the planner, always giving an instantaneous feedback on
occupation level of a position. Extensive control over progressbar appearance is possible with
different colors that can be used for different completion levels.

A full list of planner footer properties is:

Alignment Sets the horizontal text alignment of the footer text.

Captions Stringlist holding the text for each position in the footer.

Color Background footer color.

ColorTo Sets the end gradient color of the footer background. When set to
clNone, a solid background is displayed.

Completion Holds various settings for progress bar colors and levels.

CompletionFormat Holds the formatting string for the completion text in the progress
bar. A number with percentage is specified with a formatting string
%d%%. For more formatting string possibilities, see Borland Help file
under Format() function.

CompletionType Selects whether the completion is calculated based on the full time
or only the active time along the time axis.

CustomCompletionValue When true, the completion value is not automatically calculated but
can be programmatically set with:
Planner.Footer.CompletionValue[position]: Integer;

Flat When true, the footer is painted in flat style.

Font Sets the font for the footer text

Height Sets the height of the footer.

ImagePosition The ImagePosition controls whether the image is shown left or right
from the footer text.

Images When the imagelist is assigned to Images, images are displayed in
each position in the footer. Position 0 will display the first image in
the imagelist, position 1 will display the second image in the
imagelist etc…

LineColor Sets the footer separator line color.

ShowCompletion When true, a progressbar is displayed in the footer indicating
automatically the position completion.

VAlignment Sets the vertical alignment of the footer text.

Visible When true, the footer is visible.

The Planner footer triggers following events:

OnFooterHint Triggered to dynamically set a hint text when the mouse hovers over
a footer item.

OnPlannerFooterDraw Triggered when an item on the footer is about to be painted. Allows
to perform custom drawing of a footer item.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

20 | P a g e

TPlanner position display control

The TPlanner introduces the concept of Positions. This can be considered as an orientation
independent name for columns in vertical mode and rows in horizontal mode. So Position zero
corresponds to the first column, Position 1 to the second column and so on.
In day mode, the Positions are typically used to represent TPlannerItem objects for several days or
resources. In week of month mode, the Positions typically represent multiple resources.
Finally, in multi-month mode the number of positions controls the number of months displayed
simultaneously.

At design-time these visualisation settings can be controlled with:

PositionGap: sets the empty distance in pixels between columns (vertical mode) or rows (horizontal
mode) Note that when Planner.Sidebar.ShowInPositionGap is true, the sidebar display is repeated
between each column or each row in this space.

PositionGapColor: sets the background color of position gaps

GroupGapOnly: when true, the positiongap as described above is only displayed between the groups
to make different position groups more visually clear in the planner.

ShowOccupiedInPositionGap: when true, occupied time is indicated in the positiongap in the color
set by planner.TrackColor

PositionGroup: sets the number of positions that are displayed in a group as shown in the picture
below.. This view is typically used when multiple resources are displayed for multiple days or
multiple days are displayed for multiple groups. Note that when PositionGroup is different from
zero, the TPlanner header starts displaying GroupCaptions.

In this sample, the PositionGroup is set to 3. That is, each group holds 3 positions, meaning also that
only for every 3 position captions in the header a group caption needs to be set. The code for this
example is a few pages back.

PositionProps: This is a collection holding optional display properties such as colors for each
position. The use of PositionProps is discussed later.

Positions: this sets the total number of positions in the planner. In the example above, the number
of positions was is 6.

PositionWidth: This determines the width of a position. When zero, the width of each position is
automatically calculated depending on the sized with of the grid in order to allow that all positions
are displayed at a glance once without requiring a scrollbar. When PositionWidth is different from
zero, each position is displayed with this width, possible possibly requiring scrollbars or leaving
empty white space in the planner grid. Note that the width of the PositionGap is substracted from
the PositionWidth in order to get the actual width.

PositionZoomWidth: This determineswhen different from zero, this sets the width in pixels to
which positions a position can be zoomed. When zero, positions cannot be zoomed, but when
different from zero, this sets the width in pixels of the zoomed positionsto which a position can
zoomed.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

21 | P a g e

At run-time, when PositionZoomWidth is different from zero a magnifying glass cursor is used shown
when the mouse moves over the header. By clicking this header, the position width toggles between
the values PositionZoomWidth and PositionWidth. In the sample image below, the PositionWidth was
set to 30 while the PositionZoomWidth was 100. Clicking on the possitionheaders toggles the width
of the positions between 30 and 100.

At runtime, further control is possible with:

TPlanner.PositionsWidths[positionindex: Integer]: Integer
This sets the width of each position in the grid. Note that this setting does not have effect when
TPlanner.PositionWidth is zero, as in this mode, all positions are automatically sized to fit in the
planner.

TPlanner.ZoomPosition(position: Integer) & TPlanner.UnZoomPosition(position: Integer)
This is the programmatical access to the capabilities as described above that allows zooming of
positions. Zoom and UnZoom toggles widths of positions between the property values PositionWidth
and PositionZoomWidth.

TPlanner modes

The main TPlanner mode settings that control the relationship between displayed items and time
are centralized under TPlanner.Mode. The key property is TPlanner.Mode.PlannerType which can
currently be :

plDay: day mode
- the time axis represents hours of a day
- active & non-active cells are set through the TPlanner.Display property
- positions can represent multiple days or multiple resources, coupling is not predefined
plWeek: week mode
- the time axis represents days for one or more weeks
- active & non-active cells are set per day. By default Saturday & Sunday are considered as non-
active days but this can be overridden with the TPlanner.InActiveDays property
- positions represent multiple resources
- first day displayed is set by TPlanner.Mode.WeekStart. 0 is Saturday … 6 is Sunday.
- first date is first week of month set by TPlanner.Mode.Month / TPlanner.Mode.Year

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

22 | P a g e

plMonth: month mode
- the time axis represents all days of a selected month
- active & non-active cells are set per day. By default Saturday & Sunday are considered as non-
active days but this can be overridden with the TPlanner.InActiveDays property
- positions represent multiple resources
- month displayed is set by TPlanner.Mode.Month

plActiveDayPeriod: configurable period mode
- the time axis represents days of a selected period
- only active days for the selected period are displayed. The active days are specified with the
TPlanner.InActiveDays property
- period displayed is between PeriodStartDay / PeriodStartMonth / PeriodStartYear and
PeriodEndDay / PeriodEndMonth / PeriodEndYear

plDayPeriod: configurable period mode
- the time axis represents days of a selected period
- active & non-active cells are set per day. By default Saturday & Sunday are considered as non-
active days but this can be overridden with the TPlanner.InActiveDays property
- period displayed is between PeriodStartDay / PeriodStartMonth / PeriodStartYear and
PeriodEndDay / PeriodEndMonth / PeriodEndYear

plHalfDayPeriod: configurable half day period mode
- the time axis represents half days of a selected period
- active & non-active cells are set per day. By default Saturday & Sunday are considered as non-
active days but this can be overridden with the TPlanner.InActiveDays property
- period displayed is between PeriodStartDay / PeriodStartMonth / PeriodStartYear and
PeriodEndDay / PeriodEndMonth / PeriodEndYear

plMultiMonth: multi month mode
- time axis represents days of the month, positions represent multiple months
- active & non-active cells are set per day. By default Saturday & Sunday are considered as non-
active days but this can be overridden with the TPlanner.InActiveDays property
- first month displayed is set by TPlanner.Mode.Month, number of months displayed is controlled by
the number of positions set by TPlanner.Positions

plTimeLine: timeline mode
- time axis represents multiple days with days divided in units defined by TPlanner.
Display.DisplayUnit
- starting day is set by TPlanner.Mode.TimeLineStart
- number of days is defined by number of units to display set by TPlanner.Display.DisplayEnd

Example:

Suppose we want to display a timeline of 5 days, with each day divided in 4 hour blocks. The first
day to be displayed is set with the TPlanner.Mode.TimeLineStart property.
TPlanner.Display.DisplayUnit is set to 240, representing the 4 hour blocks.
TPlanner.Display.DisplayStart is set to 0 and TPlanner.Display.DisplayEnd is set to 29 (to show 5 days
of 6 blocks of 4 hours). The resulting timeline looks like:

As can be seen, by default, a day on the timeline is fully divided in blocks of desired number of
minutes set by TPlanner.Display.DisplayUnit. Often, it is not desirable to display a full day but
rather only display active or used time of the day. Suppose it makes only sense to show the part of

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

23 | P a g e

the day from 8h00 to 20h00. In that case, two additional properties come to help:
TPlanner.Mode.TimeLineNVUBegin and TPlanner.Mode.TimeLineNVUEnd. By default these property
values are 0. With NVU meaning “non visible units”, it can be specified that TimeLineNVUBegin is 2
to hide the block from 0h00 to 4h00 and 4h00 to 8h00. By setting TimeLineNVUEnd to 1, the block
from 20h00 to 0h00 is hidden. The resulting timeline looks like:

plCustom: custom mode
- no fixed relationship between time axis and planner grid
- no predefined active &non-active cells
- number of cells displayed is controlled by TPlanner.Display.DisplayStart /
TPlanner.Display.DisplayEnd

plCustomList: custom mode with timelist
- the relationship between time axis and planner grid is set through the list TPlanner.DateTimeList
(this is a list of TDateTime values)
- each entry in the DateTimeList corresponds to the start time of a row (in vertical mode) or column
(in horizontal mode)

TPlanner time axis display control

Through the TPlanner.Display property, several settings can be done to control the display of the
grid along the time axis. In the above image, 1 is considered the first inactive zone, 2 is the active
zone and 3 is the second inactive zone. Distance a is the scale of the time axis and is set through
the property TPlanner.Display.DisplayScale in pixels. Distance b is the width (or height in horizontal
mode) of a position and is set by the property TPlanner.PositionWidth. In day mode, the time
difference between 2 rows is set by the property TPlanner.Display.DisplayUnit. This value is
expressed in minutes and can be any value starting from 1.

A complete overview of the TPlanner.Display property is here:

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

24 | P a g e

ActiveEnd Sets the end of the active time zone. This is expressed in number
of cells from the top of the grid.

ActiveStart Sets the start of the active time zone. This is expressed in the
number of cells from the top of the grid.

BrushNonSelect This sets the brush to be used to paint not selectable cells. In
multimonth mode for example, a time axis of 31 timeslots is
displayed and for months with less than 31 days, non selectable
cells are displayed with this brush and color set with
ColorNonSelect.

ColorActive Sets the color of the active time zone.

ColorCurrent Sets the color of the cells that are in the current time zone. When
the computer‟s internal clock time is in the time zone, these cells
are displayed with the ColorCurrent color. Note that an internal
timer takes care to always indicate the current time this way when
the property TPlanner.Display.ShowCurrent is true.

ColorCurrentItem Sets the background color of TPlannerItem objects displayed in the
grid that fall within the current internal clock time. When
TPlanner.Display.ShowCurrentItem is true, the items that fall
within the current time are automatically displayed in this special
color. An internal timer in TPlanner takes care to continuously
update the current items in the planner.

ColorNonActive Sets the color of the non active time zone.

ColorNonSelect Sets the color of non selectable cells. See also BrushNonSelect.

CurrentPosFrom,
CurrentPosTo

When different from -1, only items in positions between
CurrentPosFrom, CurrentPosTo can displayed as 'current' items.

DisplayEnd Sets the end of the displayed time zone. This is expressed in
number of display units.

DisplayOffset Sets the offset in minutes for a day mode time axis when the first
time slot does not start on a multiple of DisplayUnit.
Example: if a day time-axis is divided in slots of 30minutes starting
at 7h15, the DisplayOffset would be 15 when DisplayUnit is 30.

DisplayScale Sets the height (or width) in pixels of a single time unit.

DisplayStart Sets the start of the displayed time zone. This is expressed in the
number of display units.

DisplayText Sets the interval where text is displayed in the sidebar. When
DisplayText is zero, this is ignored and for every position in the
sidebar, the text is displayed. For example: setting DisplayText = 2,
will show the text in the sidebar only on every other position.

DisplayUnit In Day mode sets the time in minutes that corresponds to a single
row (in vertical mode) or column (inhorizontal modeview) in the
planner. For the other modes, it scales the displayed number of
rows (or columns in horizontal view).

HourLineColor Sets the color of the cell divider line on full hours. Other cell
border colors are set with Planner.GridLineColor

ScaleToFit When the property is set to true, the DisplayScale property is
automatically adapted to make sure all cells along the time axis fit
in the grid without the need to display scrollbars.

ShowCurrent When true, cells in current time are displayed in the ColorCurrent
color.

ShowCurrentItem When true, items in the current time are displayed in the
ColorCurrentItem color.

Example 1:

In the above image, the ColorCurrent is set to clYellow and the internal computer clock is 15h17.
The highlighted cells will remain highlighted as such till 15h59

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

25 | P a g e

Example 2:

The planner needs to display an active time between 9 AM and 5 PM in 15 minute intervals. The
total time displayed is from 6AM to 22PM. The settings for Planner.Display are:

var

 RowsPerHour: integer;

begin

 with Planner1.Display do

 begin

 DisplayUnit := 15;

 RowsPerHour := (60 div DisplayUnit);

 DisplayStart := 6 * RowsPerHour;

 DisplayEnd := 22 * RowsPerhour;

 ActiveStart := (9 - 6) * RowsPerHour;

 ActiveEnd := (17 - 6) * RowsPerHour;

 end;

end;

Example 3:

The planner needs to display a time-axis from 7h15 and 16h15 in 30 minute intervals. The settings
for Planner.Display are:

var

 RowsPerHour: integer;

begin

 with Planner1.Display do

 begin

 DisplayUnit := 30;

 RowsPerHour := (60 div DisplayUnit);

 DisplayStart := 7 * RowsPerHour;

 DisplayEnd := 16 * RowsPerhour;

 DisplayOffset := 15;

 end;

end;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

26 | P a g e

Inside the TPlannerItem

The TPlannerItem is the central object that stores all information for display of events and
appointments in the TPlanner. TPlannerItems are inserted into the TPlanner.Items collection and
TPlanner takes care of showing these at the correct place in the TPlanner. The TPlanner has a
property DefaultItem through which default properties for newly created items are defined. When
calling TPlanner.CreateItem: TPlannerItem or TPlanner.CreateItemAtSelection: TPlannerItem, all
initial property settings are taken from the default item. This allows to define a standard look for
the TPlannerItem and only set some specific properties that are unique for the created
TPlannerItem. First a brief overview is given of the TPlannerItem properties and then the methods
that are available in the TPlannerItems collection to add, find, move items and more ...

TPlannerItem position control

The most important properties of the TPlannerItem are the properties that control the position of
the TPlannerItem within the planner grid. As the base framework of the TPlanner is time
independent, the most simple properties with which the TPlannerItem position can be set are :

TPlannerItem.ItemBegin: Integer;
TPlannerItem.ItemEnd: Integer;
TPlannerItem.ItemPos: Integer;

The ItemBegin / ItemEnd properties set the cell index of start of the item and end of the item along
the time axis, ie. either the row indexes when the TPlanner is in vertical mode (sidebar on left) or
the column indexes in horizontal mode (sidebar on top) The ItemPos property then sets the position
index. This is the or column index in vertical mode or and the row index in horizontal mode. Note
that ItemBegin, ItemEnd and ItemPos are independent of the TPlanner.Display.DisplayUnit.

When a TPlanner mode is choosen such as plDay, plMonth, or plPeriod, the position of the
TPlannerItem can be set in a more convenient way through public properties:

TPlannerItem.ItemStartTime: TDateTime;
TPlannerItem.ItemEndTime: TDateTime;

Setting or getting the position through these properties take the TPlanner mode and Display settings
into account to convert a TDateTime to a row and column position of the item in the planner grid.

Example:

Imagelist image
Gradient caption

HTML referenced

image

HTML formatted
item text with email

hyperlink

Website

hyperlink

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

27 | P a g e

In day mode, a TPlannerItem can be created from 8 AM to 9 AM in following way :

 with Planner1.CreateItem do

 begin

 ItemStartTime := EncodeTime(8,0,0,0); // 08:00 AM

 ItemEndTime := EncodeTime(9,0,0,0); // 09:00 AM

 end;

Suppose the TPlanner.Display property settings have the TPlanner configured to display a time axis
in units of 30 minutes starting from 0h, the equivalent code for using TPlanner.ItemBegin and
TPlannerItem.ItemEnd would be :

 with Planner1.CreateItem do

 begin

 ItemBegin := 8 * (60 div Planner.Display.DisplayUnit);

 ItemEnd := 9 * (60 div Planner.Display.DisplayUnit);

 end;

When setting item positions through ItemBegin / ItemEnd, the time of the item is of course always
set or returned on boundaries of currently selected TPlanner.Display.DisplayUnit. When changing
from one DisplayUnit to another DisplayUnit, it is preferred that the full time precision is kept when
switching from a small DisplayUnit to a large DisplayUnit and back. This is where the properties
TPlannerItem.ItemBeginPrecis and TPlannerItem.ItemEndPrecis can be used. These properties set
the TPlannerItem position by minutes starting from 0h in day mode. Creating the same item from 8
AM to 9 AM through these properties becomes :

 const

 MinutesPerHour = 60;

 with Planner1.CreateItem do

 begin

 ItemBeginPrecis := 8 * MinutesPerHour;

 ItemEndPrecis := 9 * MinutesPerHour;

 ItemPos := 3;

 end;

Thus, like using ItemBegin and ItemEnd, the setting of the position through ItemBeginPrecis and
ItemEndPrecis is again independent of the choosen DisplayUnit. When creating a TPlannerItem this
way and switching the display unit, ItemBeginPrecis / ItemEndPrecis and ItemStartTime and
ItemEndTime will always keep the full time resolution.

A similar approach can be used for a TPlanner in month or period mode. The TPlannerItem position
can be set by:

 with Planner1.CreateItem do

 begin

 ItemStartTime := EncodeDate(2002,7,15);

 ItemEndTime := EncodeDate(2002,7,16);

 end;

The TPlannerItem.ItemPos: Integer property is simpler and just sets the column (vertical mode) or
row (horizontal mode)

Overlapping TPlannerItems

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

28 | P a g e

Within a given cell by default TPlannerItems can overlap. Creating 2 items at the same time will
show these as overlapped in a cell.

Overlapping can be turned of of in TPlanner by the Overlap property or for each TPlannerItem
separately with the TPlannerItem.AllowOverlap property.
This will prevent at run time that users can at run time move or drag items into positions that
already have non-overlappable items.
It will not prevent though that programmatically items are created in positions that already have
items. It is the responsibility of the programmer to ensure that no items are available in the
position where the TPlannerItem is created. This can be checked with the function
TPlanner.Items.HasItem and an appropriate message can be shown to the user if it is not allowed to
create overlapping items.

If overlapping items are allowed, multiple items are displayed in a single cell. The properties
TPlannerItem.Conflicts: Integer returns the number of conflicting or overlapping items that exist for
this item and TPlannerItem.ConflictPos: Integer returns in which position the overlapping item is
displayed in the cell.

In the sample above, each item will return 3 for the readonly property TPlannerItem.Conflicts while
Item 1 will return 0 for TPlannerItem.ConflictPos, Item 2 will return 1 for TPlannerItem.ConflictPos
and Item 3 will return 2 for TPlannerItem.ConflictPos.

Using TPlannerItems in 3 dimensions

TPlanner has support to use different layers. This means items can be assigned to a layer in the
TPlanner and the TPlanner can be instructed to show all, a single or a combination of different
layers. Therefore, each TPlannerItem has a Layer property. The TPlanner component itself also has
a Layer property.

Layer selection is done in a binary way. Layer numbers are 1,2,4,8,16 … (i.e. all powers of 2).
 If a TPlannerItem.Layer is 2, it will be displayed in the TPlanner if TPlanner.Layer is 2. If
TPlanner.Layer is 0, this means all layers are displayed. To display items from 2 layers in the
TPlanner, this can be done by a logical OR of the layer numbers in the TPlanner.Layer property.

Example:

3 TPlannerItems are in the TPlanner, TPlannerItem A has a Layer property 1, and TPlannerItem B
has a Layer property 2 and TPlannerItem C has a Layer property 4.
If TPlanner.Layer is 0, items A,B,C are displayed in the TPlanner. If TPlanner.Layer is 1, only item A
will be displayed in the TPlanner. If TPlanner.Layer is 2, only item B is displayed in the TPlanner.
When items from both layer 1 and layer 2 need to shown in the TPlanner, this can be done by
setting the TPlanner.Layer property to 3 (= 1 OR 2)

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

29 | P a g e

Controlling moving and sizing of TPlannerItems at runtime

With default properties, all items shown in the planner grid can be sized and moved at runtime
without limitations. It might be desirable to limit what can be done with a TPlannerItem at runtime.
This is done through following properties :

FixedPos: Boolean : When true, prevents that items are moved in the TPlanner
FixedSize: Boolean : When true, prevents that items are sized in the TPlanner
FixedTime: Boolean : When true, items can only be moved between positions (position being a
column in vertical mode or row in horizontal mode) and the item cannot be moved so that the start
time and end time would change.
FixedPosition: Boolean : When true, items can only be moved within the same position (position
being a column in vertical mode or row in horizontal mode)
Background: Boolean : When true, the item cannot be selected, moved or sized

Further finer control is possible through the events:

OnItemMove: triggered after the item has been moved
OnItemMoving: triggered while the item is moving, the allow parameter can enable / disable the
moving.
OnItemSize: triggered after the item has been sized
OnItemSizing: triggered while the item is sized, the Allow parameter can enable / disable the sizing

Editing items with popup editor or inplace editor

The TPlannerItem.ReadOnly property controls whether the item can be edited at runtime or not.
Editing behaviour is controlled with following properties and events:

Editor : TCustomItemEditor

This Property sets the popup editor to be used for the item. If the property is not assigned, then
default inplace editing is assumed.
The TCustomItemEditor class is an interface between the TPlanner and a popup form that can be
used for editing the TPlannerItem. TPlanner currently comes with 3 popup editors:
TSimpleItemEditor, TPeriodItemEditor, and TDefaultItemEditor.
The dialog components expose all text in controls on the dialog as string properties for easy
localization. Default, two events are available:

OnBeforeEditShow

Triggered just before the dialog is created, allowing to dynamically customize properties of the
dialog based on the item that is about to be edited.

OnEditDone

Triggered when the dialog is closed.

Example:

This code snippet defines the DefaultItemEditor1 instance as inplace editor for the item and

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

30 | P a g e

implements the OnBeforeEditShow event to customize the caption of the dialog with the start &
end time of the event:

procedure TForm1.DefaultItemEditor1BeforeEditShow(Sender: TObject;

 APlannerItem: TPlannerItem);

begin

 DefaultItemEditor1.Caption := 'Edit item : ' +

APlannerItem.ItemSpanTimeStr;

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

 Planner1.DefaultItem.Editor := DefaultItemEditor1;

 with Planner1.CreateItem do

 begin

 itemBegin := 2;

 itemEnd := 10;

 itemPos := 0;

 CaptionType := TCaptionType.ctText;

 end;

end;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

31 | P a g e

As each TPlannerItem has an Editor property, different items can have different popup editors. As
the TCustomItemEditor has a simple interface, it is easy to create a descendent component for
other types of popup editors.

 TCustomItemEditor = class(TComponent)

 public

 function QueryEdit(APlannerItem: TPlannerItem): Boolean; virtual;

 procedure CreateEditor(AOwner: TComponent); virtual;

 procedure DestroyEditor; virtual;

 function Execute: Integer; virtual;

 procedure PlannerItemToEdit(APlannerItem: TPlannerItem); virtual;

 procedure EditToPlannerItem(APlannerItem: TPlannerItem); virtual;

 property Planner: TPlanner read FPlanner;

 published

 property Caption: string;

 end;

Override the TCustomItemEditor methods to hook another popup editor. When the item is clicked to
start edit, first the QueryEdit function is called. If this returns true, editing starts by first calling
CreateEditor (to allow creating the popup editor form). After this PlannerItemToEdit is called to
allow setting the various popup editor form controls according the current TPlannerItem properties.
Next, the Execute method should show the popup editor and return mrOK if changes can be
accepted. If changes can be accepted, the EditToPlannerItem method is called to transfer editor
form values to the TPlannerItem.

InplaceEdit : TPlannerItemEdit (peMemo, peEdit, peMaskEdit, peRichText, peCustom, peForm)

If no Editor is assigned, inplace editing is assumed. Depending on the value of the InplaceEdit
property inplace editing can be done with a memo control, simple or masked edit control, rich text
editor, a custom editor or a HTML form. Inplace editing happens inside the boundaries of the item
in the planner grid.

The event TPlanner.OnItemStartEdit is called before editing starts, the TPlanner.OnItemEndEdit is
called when editing ends. If copy & paste is used in the inplace edit memo or edit control, this is
notified by the event OnItemClipboardAction.

Other properties that control the PlannerItem appearance

Additional properties that control the appearance of a TPlannerItem in the grid are:

Alignment: sets the alignment of text in the TPlannerItem
Attachement: string that can point to an attachement. If Attachement is a non-empty string, this is
indicated by a clip in the TPlannerItem caption
Background: when true, the item is displayed without selectable border and cannot be moved or
sized as such.
BorderColor: sets the color of the border of the TPlannerItem
BrushStyle: sets the background brush style of the TPlannerItem
CaptionAlign: sets the alignment of the TPlannerItem caption text
CaptionBkg: sets the background color of the TPlannerItem caption. This property has no effect
when UniformBkg is true, as the TPlannerItem will always have a full uniform color
CaptionBkgTo: when different from clNone and UniformBkg is false, the caption is drawn with a
gradient from CaptionBkg color to CaptionBkgTo color
CaptionBkgDirection: sets the caption background gradient direction

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

32 | P a g e

CaptionFont: sets the font for the TPlannerItem caption
CaptionText: sets the text for the caption. This text is only displayed when CaptinTupe is either
ctText or ctTimeText
CaptionType: can be
- ctNone : no caption is displayed
- ctText : CaptionText is displayed
- ctTime : time of item is displayed
- ctTimeText : time and CaptionText are displayed at the same time
Color: sets the background color of the TPlannerItem
ColorTo: sets the gradient end color for the background of the TPlannerItem. When set to clNone,
the background is drawn in a solid color.
ColorDirection: sets the item background gradient direction
Completion: sets the completion of the item. This is a value between 0 and 100.
CompletionDisplay: sets where to display the completion. The value can be : cdNone, cdVertical,
cdHorizontal.
Cursor: sets the cursor that is used when mouse is over the item. If Cursor is -1, default cursors are
used.
DrawTool: this assigns a component that encapsulates custom drawing for the TPlannerItem. If a
drawtool component is assigned, this component will draw the item in the planner.
Editor: sets the instance of the editor component that will be used to edit the item.
EditMask: sets the edit mask that will be used when the inplace editor type is peEditMask.
Font: sets the font of the TPlannerItem
HintIndicator: When true, a small triangle is displayed in the top right corner of the item to
indicate that a hint is available for the item. When HintIndicator is shown only when the Hint
property is also a non-empty string.
HintIndicatorColor: Sets the color of the small triangle indicating a hint exists of the item.
ImageID: sets the index of the image from an attached imagelist to display in the TPlannerItem
ImagePosition: sets the position of the associated image(s) to display.
InHeader: when true, the item is displayed inside the TPlanner header
SelectColor: sets the color of the item when it is selected
SelectColorTo: sets the gradient end color of the item when it is selected
SelectFontColor: sets the font color of the item when it is selected
Shadow: when true, the TPlannerItem is displayed with a shadow. The shadow color is set with the
property TPlanner.ShadowColor
Shape: sets the shape of the TPlannerItem to rectangle, hexagon, rounded rectangle or skinned.
When skinned, the Planner Skin is used to draw the item.
ShowDeleteButton: when true, a delete button is displayed in the upper right corner of the planner
item.
ShowLinks: when true, a chain icon is displayed to show the item is linked to another TPlannerItem
ShowSelection: when true, selected items are displayed with SelectColor and SelectFontColor
Text: the stringlist through which the TPlannerItem text is set
TrackBrushStyle: sets the brush to be used for painting the trackbar of the item
TrackColor: sets the color of the trackbar. The trackbar is the small colored bar with which the
item can be dragged and moved inside the planner grid.
TrackSelectColor: sets the color of the trackbar when the item is selected
TrackLinkColor: sets the color of the trackbar when a linked item is selected.
TrackVisible: when true, the trackbar is visible on the TPlannerItem
Unicode: when true, a Unicode caption and text is displayed for the TPlannerItem. The Unicode
caption and text is set with WideCaption and WideText properties. Only used in non-Unicode Delphi
versions!
UniformBkg: when true, CaptionBkg color has no effect
URL: string that can point to an URL. If URL is a non-empty string a link icon is displayed in the
TPlannerItem caption
Visible: sets the visibility state of the TPlannerItem
WideCaption: sets the caption as Unicode (widestring) text. Set Unicode = true in order to see the
Unicode text in the caption. Only used in non-Unicode Delphi versions!
WideText: sets the TPlannerItem text as Unicode. Only used in non-Unicode Delphi versions!

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

33 | P a g e

WordWrap: when true, TPlannerItem text is displayed with wordwrapping.

Displaying multiple images in the TPlannerItem caption

Images in the TPlannerItem caption should be stored in the imagelist assigned to the
TPlanner.PlannerImages property. Any number of images can be displayed in the caption by adding
the image indexes to the public property TPlannerItem.ImageIndexList. This is a TList of integer
values. To set image 2 and image 4 of the imagelist in the caption, following code can be used :

PlannerItem.ImageIndexList.Add(2);

PlannerItem.ImageIndexList.Add(4);

Using HTML formatted text in a TPlannerItem

The text of a TPlannerItem has support for various HTML tags through which fine control of the
display is possible. These tags form a subset of the HTML tags and are further named as mini html.

Supported tags

 B : Bold tag
 : start bold text
 : end bold text

Example : This is a test

 U : Underline tag
<U> : start underlined text
</U> : end underlined text

Example : This is a <U>test</U>

 I : Italic tag
<I> : start italic text
</I> : end italic text

Example : This is a <I>test</I>

 S : Strikeout tag
<S> : start strike-through text
</S> : end strike-through text

Example : This is a <S>test</S>

 A : anchor tag
 : text after tag is an anchor. The 'value' after the href identifier is the
anchor. This can be an URL (with ftp,http,mailto,file identifier) or any text. If the value is
an URL, the shellexecute function is called, otherwise, the anchor value can be found in the
OnAnchorClick event
 : end of anchor

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

34 | P a g e

Examples :
This is a test
This is a test
This is a test

 FONT : font specifier tag
 : specifies
font of text after tag.
with
- face : name of the font
- size : HTML style size if smaller than 5, otherwise pointsize of the font
- color : font color with either hexidecimal color specification or Borland style color name,
ie clRed,clYellow,clWhite ... etc
- bgcolor : background color with either hexidecimal color specification or Borland style
color name
 : ends font setting

Examples :
This is a test
This is a test

 P : paragraph
<P align="alignvalue" [bgcolor="colorvalue"]> : starts a new paragraph, with left, right or
center alignment. The paragraph background color is set by the optional bgcolor parameter.
</P> : end of paragraph

Example : <P align="right">This is a test</P>
Example : <P align="center">This is a test</P>
Example : <P align="left" bgcolor="#ff0000">This has a red background</P>
Example : <P align="right" bgcolor="clYellow">This has a yellow background</P>

 HR : horizontal line
<HR> : inserts linebreak with horizontal line

 BR : linebreak

 : inserts a linebreak

 BODY : body color / background specifier
<BODY bgcolor="colorvalue" background="imagefile specifier"> : sets the background color of
the HTML text or the background bitmap file

Example :
<BODY bgcolor="clYellow"> : sets background color to yellow
<BODY background="file://c:\test.bmp"> : sets tiled background to file test.bmp

 IND : indent tag
This is not part of the standard HTML tags but can be used to easily create multicolumn text
<IND x="indent"> : indents with "indent" pixels

Example :
This will be <IND x="75">indented 75 pixels.

 IMG : image tag
<IMG src="specifier:name" [align="specifier"] [width="width"] [height="height"]
[alt="specifier:name"] > : inserts an image at the location

mailto:myemail@mail.com

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

35 | P a g e

specifier can be :
idx : name is the index of the image in the associated imagelist
ssys : name is the index of the small image in the system imagelist or a filename for which
the corresponding system imagelist is searched
lsys : same as ssys, but for large system imagelist image
file : name is the full filename specifier
res : name of a resource bitmap (not visible at design time)
no specifier : name of image in an PictureContainer

Optionally, an alignment tag can be included. If no alignment is included, the text
alignment with respect to the image is bottom. Other possibilities are : align="top" and
align="middle"

The width & height to render the image can be specified as well. If the image is embedded
in anchor tags, a different image can be displayed when the mouse is in the image area
through the Alt attribute.

Examples :
This is an image
This is an image and another one
This is an image
This is an image
This is an image

 SUB : subscript tag

<SUB> : start subscript text
</SUB> : end subscript text

Example : This is ⁹/₁₆ looks like 9/16

 SUP : superscript tag

<SUP> : start superscript text
</SUP> : end superscript text

 BLINK : blink tag (supported in TAdvStringGrid and descendants and THTMListbox)

<BLINK> : start blinking text
</BLINK> : stop blinking text

Example : This is <BLINK>blinking red</BLINK>text.

 UL : list tag
 : start unordered list tag
 : end unordered list

Example :

List item 1
List item 2

 Sub list item A
 Sub list item B

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

36 | P a g e

List item 3

 LI : list item
<LI [type="specifier"] [color="color"] [name="imagename"]> : new list item
specifier can be "square" or "circle" or "image" bullet color sets the color of the square or
circle bullet imagename sets the PictureContainer image name for image to use as bullet

 SHAD : text with shadow
<SHAD> : start text with shadow
</SHAD> : end text with shadow

 Z : hidden text

<Z> : start hidden text
</Z> : end hidden text

 HI : hilight

<HI> : start text hilighting
</HI> : stop text hilighting

 E : Error marking

<E> : start error marker
</E> : stop error marker

 Special characters

Following standard HTML special characters are supported :

< : less than : <
> : greater than : >
& : &
" : "
 : non breaking space
™ : trademark symbol
€ : euro symbol
§ : section symbol
© : copyright symbol
¶ : paragraph symbol

HTML formatting related events

The hyperlinks that can be added inside TPlannerItems cause following events when the mouse is
over or clicked on hyperlink. The events are:

OnItemAnchorClick: triggered when a hyperlink is clicked on a TPlannerItem

OnItemAnchorEnter: triggered when the mouse enters a hyperlink

OnItemAnchorExit: triggered when the mouse leaves a hyperlink

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

37 | P a g e

Example:

A hyperlink is added with

TPlannerItem.Text.Text :=

 ‘This is a hyperlink<a>’;

When the mouse clicked on the hyperlink, the OnItemAnchorClick is called with a reference to the
TPlannerItem and the Anchor parameter is „myhyperlink‟

Highlighting & marking text in TPlannerItems

The Planner component offers a convenient way to highlight or mark (red curly underlining) specific
text in items to focus attention in the user interface on specific words. This is done via a series of
methods that will highlight or mark text in one specific item, in all items or in items within one
specific position in the Planner. The methods have a parameter DoCase to perform this highlighting
or marking with a case sensitive or non case sensitive match.

Example:

 with Planner1.CreateItem do

 begin

 itemBegin := 2;

 itemEnd := 10;

 itemPos := 0;

 Text.Text := 'Meeting with TMS software

 about a new Planner scheduling component version.';

 end;

Planner1.HilightInItem(Planner1.Items[0],'TMS',false);

Planner1.MarkInItem(Planner1.Items[0],'Planner',false);

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

38 | P a g e

procedure MarkInItem(APlannerItem: TPlannerItem; AText: string; DoCase: Boolean);

Marks the text AText in item APlannerItem when it exists.

procedure MarkInPositon(Pos: Integer; AText: string; DoCase: Boolean);

Marks the text AText in all items in position Pos when it exists.

procedure MarkInItems(AText: string; DoCase: Boolean);

Marks the text AText in all items in the Planner when it exists.

procedure UnMarkInItem(APlannerItem: TPlannerItem);

Remove any previously marked text in APlannerItem.

procedure UnMarkInPositon(Pos: Integer);

Remove any previously marked text in all PlannerItems at position Pos.

procedure UnMarkInItems;

Remove any previously marked text in all PlannerItems in the Planner

procedure HilightInItem(APlannerItem: TPlannerItem; AText: string; DoCase: Boolean);

Highlights the text AText in item APlannerItem when it exists.

procedure HilightInPositon(Pos: Integer; AText: string; DoCase: Boolean);

Highlights the text AText in all items in position Pos when it exists.

procedure HilightInItems(AText: string; DoCase: Boolean);

Highlights the text AText in all items in the Planner when it exists.

procedure UnHilightInItem(APlannerItem: TPlannerItem);

Remove any previously highlighted text in APlannerItem.

procedure UnHilightInPositon(Pos: Integer);

Remove any previously highlighted text in all PlannerItems at position Pos.

procedure UnHilightInItems;

Remove any previously highlighted text in all PlannerItems in the Planner

Using TPlannerItem alarms

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

39 | P a g e

Through the Alarm property in a TPlannerItem and alarm handlers, all types of alarms can be
triggered by the TPlannerItem. Note that alarms are enabled in the TPlanner by the property
TPlanner.EnableAlarms. Different alarm handlers that play sound, send email, show a message, run
a script, execute a program can be downloaded from http://www.tmssoftware.com/planaddon.htm
The setup of the alarm handler is discussed later, first the properties are explained for the alarm
settings for each TPlannerItem.

Properties in TPlannerItem.Alarm:

Active:Boolean; When true the alarm is active for the TPlannerItem.

Address: string; Destination where the alarm should be sent to.

Handler : TPlannerAlarmHandler; Refers to the component handling the alarm.

ID : Integer; Alarm identification number.

Message: string; Message sent to the alarm handler.

NotifyType: TAlarmNotifyType; (anCaption,anNotes,anMessage) selects what to send to the
alarm handler, the TPlannerItem caption, the TPlannerItem
text or the Alarm.Message

Tag: Integer; Free to use integer property.

Time Selects whether to use the TimeAfter or TimeBefore
property to control the alarm.

TimeAfter :TDateTime; Time after the TPlannerItem ends the alarm should trigger.

TimeBefore: TDateTime; Time before the TPlannerItem starts the alarm should
trigger.

Example:

Following example creates a TPlannerItem in a day mode TPlanner that starts at 2AM and triggers
an alarm message 30 minutes before the TPlannerItem starts :

 with Planner1.CreateItem do

 begin

 ItemStartTime := EncodeTime(2,0,0,0); // 02:00 AM

 ItemEndTime := EncodeTime(3,0,0,0); // 03:00 AM

 CaptionText := 'Item 1';

 Text.Text := 'This message tells the item starts in 30 minutes';

 CaptionType := ctText;

 Alarm.Active := True;

 Alarm.Handler := AlarmMessage1;

 Alarm.TimeBefore := EncodeTime(0,30,0,0); // 30 minutes

 Alarm.NotifyType := anNotes;

 end;

The item inserted in the TPlanner will thus trigger an alarm at 1.30AM . The AlarmMessage1 is a
simple alarm handler that displays a message box. The selected text for the alarm message is the
text of the TPlannerItem itself as selected by the NotifyType which is anNotes. At 1.30AM the
message displayed is:

http://www.tmssoftware.com/planaddon.htm

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

40 | P a g e

Alarm handlers are easy to write. An alarm handler descends for the TPlannerAlarmHandler class
which is defined as:

TPlannerAlarmHandler = class(TComponent)

public

 function HandleAlarm(Address,Message:string; Tag, ID: Integer;

 Item: TPlannerItem): Boolean; virtual;

end;

One single function should thus be defined. The result of the function indicates whether the alarm
has been successfully handled or not. If the user selects for example to snooze the alarm for a given
amount of time, return false, update the TPlannerItem.Alarm.TimeBefore property to the new time
of the alarm and it will be triggered again. The Address, Message, Tag and ID parameters of this
function are taken from the TPlannerItem.Alarm property.

The TAlarmMessage alarm handler defines this function in the following way:

{ TAlarmMessage }

function TAlarmMessage.HandleAlarm(Address, Message: string; Tag,

 ID: Integer; Item: TPlannerItem): Boolean;

begin

 MessageDlg('Alarm for' +Item.CaptionText+#13+

 HTMLStrip(Item.Text.Text),mtInformation,[mbok],0);

 Result := True;

end;

TPlannerItem objects

It is possible to assign an object to a TPlannerItem class instance. This object can hold additional
information for example that belongs to the PlannerItem. This can be done by creating an object
and assigning it to PlannerItem.ItemObject. Normally it is the responsibility of the application code
that created the instance of the object to assign to the PlannerItem that should also destroy it.
This can make the code more complex as the PlannerItem might be destroyed by the user, loosing
the reference to its ItemObject. When PlannerItem.OwnsItemObject is set to true, the PlannerItem
will itself take care of destroying the associated item when the PlannerItem is being destroyed.

Example:

procedure TForm4.FormCreate(Sender: TObject);

begin

 with Planner1.CreateItem do

 begin

 itemBegin := 2;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

41 | P a g e

 itemEnd := 10;

 itemPos := 0;

 OwnsItemObject := true;

 ItemObject := TStringList.Create;

 (ItemObject as TStringList).Add('Some additional text');

 end;

 ReportMemoryLeaksOnShutdown := true;

end;

In this example, when OwnsItemObject is set to false, a memory leak will be reported on
application shutdown.

Using a custom TPlannerItem class

For maintaining custom data with each planner item you can assign any TObject descendent class to
the PlannerItem's public Object property. However there is a more convenient way to create a
descendent class from TPlanner that has a TPlannerItem with new custom properties which can be
used at design time and at run time to hold any additional values with each planner item. The code
involved comes down to:

1. Write your descendent class of TPlannerItem and add the additional properties. Override the
assign procedure to copy the extra properties added.

2. Write your descendent class of the TPlannerItems collection and override the GetItemClass
method to instruct the collection to create collection items from your descendent TPlannerItem
class.

3. Write your descendent class of TPlanner and override the protected CreateItems method to let
the planner use your descendent TPlannerItems collection.

Following code where a new property MyProperty was added to the TPlannerItem, makes this clear:

Example:

unit MyPlanner;

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

 Dialogs, Planner;

type

 TMyPlannerItem = class(TPlannerItem)

 private

 FMyProperty: string;

 public

 procedure Assign(Source: TPersistent); override;

 published

 property MyProperty: string read FMyProperty write FMyProperty;

 end;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

42 | P a g e

 TMyPlannerItems = class(TPlannerItems)

 public

 function GetItemClass: TCollectionItemClass; override;

 end;

 TMyPlanner = class(TPlanner)

 private

 { Private declarations }

 protected

 { Protected declarations }

 function CreateItems: TPlannerItems; override;

 public

 { Public declarations }

 published

 { Published declarations }

 end;

procedure Register;

implementation

procedure Register;

begin

 RegisterComponents('TMS', [TMyPlanner]);

end;

{ TMyPlannerItems }

function TMyPlannerItems.GetItemClass: TCollectionItemClass;

begin

 Result := TMyPlannerItem;

end;

{ TMyPlanner }

function TMyPlanner.CreateItems: TPlannerItems;

begin

 Result := TMyPlannerItems.Create(Self);

end;

{ TMyPlannerItem }

procedure TMyPlannerItem.Assign(Source: TPersistent);

begin

 inherited Assign(Source);

 if Assigned(Source) then

 FMyProperty := TMyPlannerItem(source).MyProperty;

end;

end.

Note: the same method can be used for creating custom TPlannerItem classes with the TDBPlanner.
In some events, such a TDBItemSource.OnFieldsToItem or TDBItemSource.OnItemToFields, the extra
properties of the custom TPlannerItem class can be accessed by casting the Item parameter to the
custom TPlannerItem class.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

43 | P a g e

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

44 | P a g e

The TPlannerItems collection

The collection that holds all TPlannerItem objects features a whole array of methods and functions
that allow manipulating the items inside the planner.

Important note:
When making changes that affect a lot of items in the planner or when adding or removing a lot of
items, performance will vastly improve when enclosing the operations with

TPlanner.Items.BeginUpdate;

// do update, adding, removing of items here

TPlanner.Items.EndUpdate;

Searching items in the planner

function HasItem(ItemBegin, ItemEnd, ItemPos: Integer): Boolean;

Returns if the planner cell has items at a given position

function FindFirst(ItemBegin, ItemEnd, ItemPos: Integer): TPlannerItem;

Returns the first item at a given cell

function FindNext(ItemBegin, ItemEnd, ItemPos: Integer): TPlannerItem;

Returns the next item at a given cell

function FindText(StartItem:TPlannerItem;s: string; Param: TFindTextParams):TPlannerItem;

Finds text in all TPlannerItem Object‟s Text property in the planner grid

function HeaderFirst(ItemPos: Integer): TPlannerItem;

Returns the first item in a planner header at position ItemPos

function HeaderNext(ItemPos: Integer): TPlannerItem;

Returns the first item in a planner header at position ItemPos

function ItemsAtPosition(Pos: Integer): Integer;

Returns the number of items in a given position

function ItemsAtIndex(Idx: Integer): Integer;

Returns the number of items at a given index along the time axis

function ItemsAtCell(ItemBegin, ItemEnd, ItemPos: Integer): Integer;

Returns the number of items at a specific cell in the Planner

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

45 | P a g e

Example:

This code fragment searches all items in the TPlanner for the word „Meeting‟:

var

 plIt: TPlannerItem;

begin

 plIt := nil;

 repeat

 plIt :=

 Planner1.Items.FindText(plIt,'Meeting',[fnAutoGoto,fnText]);

 if Assigned(plIt) then

 ShowMessage('Found appointment');

 until plIt = nil;

 ShowMessage('No more items found');

end;

Item selection in the planner

Item selection is by default single selection. Selecting an item automatically unselects the
previously selected item. If the property TPlanner.MultiSelect is true, multiple items can be
selected by Ctrl – Left Click.

function SelectNext: TPlannerItem;

Selects the next item in the list

function SelectPrev: TPlannerItem;

Selects the previous item in the list

procedure UnSelect;

Unselects the currently selected item

procedure UnSelectAll;

Unselects all items in the planner

procedure Select(Item: TPlannerItem);

Selects the TPlannerItem programmatically

property Selected: TPlannerItem;

Returns the currently selected item.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

46 | P a g e

Clipboard support

Items can be cut, copied to the clipboard with all properties and pasted afterwards

procedure CopyToClipboard;

Copy selected TPlannerItem to the clipboard

procedure CutToClipboard;

Cut selected TPlannerItem to the clipboard

procedure PasteFromClipboard;

Paste item from the clipboard. It is inserted at its original position in the planner

procedure PasteFromClipboardAtPos;

Paste item from the clipboard at the current selected cells in the planner.

Example:

Programmatically selecting & copying an item to the next position in the planner :

Planner1.Items.Select(APlannerItem);

Planner1.Items.CopyToClipboard;

Planner1.SelectCells(Planner1.SelItemBegin,Planner1.SelItemEnd,

 Planner1.SelPosition + 1);

Planner1.Items.PasteFromClipboardAtPos;

Moving, sizing & removing items

procedure MoveAll(DeltaPos, DeltaBegin: Integer);

Moves all items with DeltaPos for Position and DeltaBegin for ItemBegin

procedure MoveSelected(DeltaPos, DeltaBegin: Integer);

Moves selected items only with DeltaPos for Position and DeltaBegin for ItemBegin

procedure SizeAll(DeltaStart, DeltaEnd: Integer);

Sizes all items with DeltaStart for ItemBegin and DeltaEnd for ItemEnd

procedure SizeSelected(DeltaStart, DeltaEnd: Integer);

Sizes selected items only with DeltaStart for ItemBegin and DeltaEnd for ItemEnd

procedure ClearPosition(Position: Integer);

Removes all items in a given position

procedure ClearLayer(Layer: Integer);

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

47 | P a g e

Removes all items in a given layer

procedure ClearAll;

Removes all items

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

48 | P a g e

Saving and loading items in non data-aware TPlanner

Several methods exist to save and load TPlannerItem objects to a stream or to a file. Using these
methods, all properties of the TPlannerItem objects are saved on a stream or file. The format of the
TPlannerItem‟s on the stream or in the file is both a binary format.

The methods can be summarized as:

Save and load all TPlanner items to a stream or file:
procedure SaveToStream(Stream: TStream);
 procedure LoadFromStream(Stream: TStream);
 procedure SaveToFile(FileName: string);
 procedure LoadFromFile(FileName: string);

Save and load only items in a given position to a stream or file:
 procedure SavePositionToStream(Stream: TStream; Position: Integer);
 procedure LoadPositionFromStream(Stream: TStream; Position: Integer);
 procedure SavePositionToFile(FileName: string; Position: Integer);
 procedure LoadPositionFromFile(FileName: string; Position: Integer);

Save and load only items of a given layer to a stream or file:
 procedure SaveLayerToStream(Stream: TStream; Layer: Integer);
 procedure LoadLayerFromStream(Stream: TStream; Layer: Integer);
 procedure SaveLayerToFile(FileName: string; Layer: Integer);
 procedure LoadLayerFromFile(FileName: string; Layer: Integer);

Add items from from a stream or file to the existing TPlannerItems
 procedure InsertFromFile(FileName: string);
 procedure InsertFromStream(Stream: TStream);

Example:

If there are 2 TPlanner components are on a form, the method below makes a copy of all
TPlannerItem objects from Planner1 to Planner2 by a memory stream:

procedure TForm1.Save(Sender: TObject);

var

 ms: TMemoryStream;

begin

 ms := TMemoryStream.Create;

 Planner1.SaveToStream(ms);

 ms.Position := 0;

 Planner2.LoadFromStream(ms);

 ms.Free;

end;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

49 | P a g e

Printing of the TPlanner component

TPlanner has built-in support for printing. The TPlanner.PrintOptions property controls various
options for the printout. At the same time, different methods exist for printing the TPlanner :

procedure Print;

Prints the TPlanner as is on a single page

procedure PrintPages(NrOfPages: Integer);

Spreads the printing of the TPlanner on the selected number of pages

procedure PrintSelection(FromPos, ToPos: Integer);

Prints only positions FromPos to ToPos

procedure PrintRange(FromPos, ToPos, FromItem, ToItem: Integer);

Prints only positions FromPos to Top and cells along the time axis FromItem to ToItem

procedure PrintTo(ACanvas:TCanvas);

Prints the TPlanner on the selected canvas.

procedure PrintSelectionTo(ACanvas:TCanvas;FromPos, ToPos: Integer);

Prints only positions FromPos to ToPos on the selected canvas

procedure PrintRangeTo(ACanvas:TCanvas;FromPos, ToPos, FromItem, ToItem: Integer);

Prints only positions FromPos to Top and cells along the time axis FromItem to ToItem on the
selected canvas.

The TPrintOptions property of TPlanner has following properties through which further control of
the printout is possible:

CellHeight: Integer; When different from zero, sets the number of pixels to
use during printout for the height of a cell. When zero,
this is autocalculated for fitting the TPlanner onto a
page.

CellWidth: Integer; When different from zero, sets the number of pixels to
use during printout for the height of a cell. When zero,
this is autocalculated for fitting the TPlanner onto a
page.

FitToPage: Boolean; When true, the TPlanner tries to fit the printout on a
single page.

Footer: TStrings; Sets the footer text to print.

FooterAlignment: TAlignment; Sets the alignment of the footer text.

FooterFont: TFont; Sets the font of the footer text.

FooterSize: Integer; Sets the number of pixels to use for the footer height.

Header: TStrings; Sets the header text to print.

HeaderAlignment : TAlignment; Sets the alignment of the header text.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

50 | P a g e

HeaderFont: TFont; Sets the font of the header text.

HeaderSize: Integer; Sets the number of pixels to use for the header height.

JobName: string; Sets the job name in the print spooler.

LeftMargin: Integer; Sets the number of pixels to indent from left for the
printout.

LineWidth: Integer; Sets the width of lines during printing

Orientation: TPrinterOrientation; Sets the printer orientation to either landscape or
portrait.

RightMargin: Integer; Sets the number of pixels to indent from right.

SidebarWidth: Integer; Sets the width of the sidebar during printout. When
zero, the sidebar width is automatically calculated to fit
on the page.

TopMargin: Integer; Sets the number of pixels to indent from top.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

51 | P a g e

Saving the TPlanner to HTML

The SaveToHTML method generates a HTML file of the TPlanner with all its TPlannerItem objects.
This is done with:

procedure SaveToHTML(FileName: string);

The HTMLOptions property consists of following subproperties :

BorderSize: Integer; Sets the border size of the HTML table containing the
TPlanner.

CellFontStyle: TFontStyles; Sets the font styles for each cell of the planner grid.

CellFontTag: string; Sets additional font tags for each cell of the planner
grid.

CellSpacing: Integer; Sets the cell spacing of the HTML table containing
the TPlanner.

FooterFile: string; Specifies a HTML file that can be inserted after the
TPlanner HTML output.

HeaderFile: string; Specifies a HTML file that can be inserted beforethe
TPlanner HTML output.

HeaderFontStyle: TFontStyles; Sets the font styles for the TPlanner header output.

HeaderFontTag: string; Sets additional font tags for the TPlanner header
output.

PrefixTag: string; Sets additional tags that precede the TPlanner HTML
output.

ShowCaption: Boolean; When true, a TPlannerItem caption is also saved in
the HTML output.

SidebarFontStyle: TFontStyles; Sets additional font styles for the TPlanner sidebar
output.

SidebarFontTag: string; Sets additional font tags for the TPlanner sidebar
output.

SuffixTag: string; Sets additional tags after the TPlanner HTML output.

TableStyle: string; Sets extra tag information for the main <TABLE> tag.

Width: Integer; Specifies the width in % of the table.

Example:

This example outputs the TPlanner in HTML in a table that has 80% width, centered on the page
with bold header and sidebar font. It shows the output in a browser:

uses

 ShellAPI;

Planner1.HTMLOptions.Width := 80;

Planner1.HTMLOptions.SidebarFontStyle := [fsBold];

Planner1.HTMLOptions.HeaderFontStyle := [fsBold];

Planner1.HTMLOptions.PrefixTag := '<CENTER>';

Planner1.HTMLOptions.SuffixTag := '</CENTER>';

Planner1.SaveToHTML('myHTML.htm');

ShellExecute(0,'open','myHTML.htm',nil,nil,SW_NORMAL);

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

52 | P a g e

Saving the TPlanner to a bitmap

procedure SaveToBMP(FileName: string; Size: TSize);

The SaveToBMP method saves the planner to a bitmap. The size parameters set the width and
height to be used for the generated bitmap.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

53 | P a g e

Drag & drop in TPlanner

Via drag & drop it is possible to do anything from dragging text onto a TPlannerItem, drag a
TPlannerItem to and from a TPlanner and drag & drop items between multiple TPlanner
components,a TPlannerWaitList or other components.
Note that clicking and moving items within the Planner itself is not using drag & drop. With standard
moving of items, items are constrained by the Planner area. To perform an actual drag & drop of
the item to other controls or to the Planner header for example, set Planner.DragItem = true and
select the item and then do a Ctrl-drag of the item. The mouse cursor will change to a drag cursor.
If it is needed that the items are always dragged, irrespective of the Ctrl key, set
Planner.DragItemAlways = true. Note that the normal internal item moving by simply click and
mouse-drag will no longer work as in this case, always a regular VCL drag & drop operation will
start. Optionally, for VCL drag & drop, it can be selected to have a drag image. When
Planner.DragItemImage is set to true, the item will be shown at cursor position during the drag
operation:

To handle drag & drop on the TPlanner from any component or within the Planner internally, it
sufficient to handle the events:

OnDragOver: event triggered when mouse is over the TPlanner during a drag & drop.
OnDragOverCell: event triggered when mouse is over a planner grid cell during a drag & drop.
OnDragOverHeader: event triggered when mouse is over a planner header cell during a drag &
drop.
OnDragOverItem: event triggered when mouse is over a TPlannerItem during drag & drop

OnDragDrop: general event triggered when drop operation on the TPlanner happens.
OnDragDropCell: event triggered when a drop operation in a planner grid cell happens.
OnDragDropHeader: event triggered when a drop operation in a planner header cell happens
OnDragDropItem: event triggered when a drop operation on a TPlannerItem happens.

Example:

In this example, a listbox contains descriptions for appointments. A drag & drop of these
descriptions is enabled from the listbox on TPlannerItem objects in the planner that have not yet a
description set in their Text property.

For the TListBox component on the form, the DragMode is set to dmAutomatic and the listbox items
is filled with some descriptions for events.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

54 | P a g e

To allow only a drag & drop of a description for a TPlannerItem that has an empty Text property,
the OnDragOverItem is defined in following way:

procedure TForm1.Planner1DragOverItem(Sender, Source: TObject; X,

 Y: Integer; APlannerItem: TPlannerItem; State: TDragState;

 var Accept: Boolean);

begin

 Accept := APlannerItem.Text.Text = '';

end;

The drop operation is handled by following event code for OnDragDropItem:

procedure TForm1.Planner1DragDropItem(Sender, Source: TObject; X,

 Y: Integer; PlannerItem: TPlannerItem);

begin

 with SourCe as TListBox do

 PlannerItem.Text.Text := Items[ItemIndex];

end;

If the drag and drop operation is over an empty cell in the TPlanner, it is possible to create a new
appointment. Thus, two cases need to be handled : either the drop occurs on an existing item and
the appointment text must be updated if it is empty or the drop operation occurs on a empty
planner grid cell and a new appointment must be created. The full source becomes:

procedure TForm1.Planner1DragOverItem(Sender, Source: TObject; X,

 Y: Integer; APlannerItem: TPlannerItem; State: TDragState;

 var Accept: Boolean);

begin

 // Allow drop on item only when Text is empty

 Accept := APlannerItem.Text.Text = '';

end;

procedure TForm1.Planner1DragDropItem(Sender, Source: TObject; X,

 Y: Integer; PlannerItem: TPlannerItem);

begin

 // For drop on item, update its Text property

 with Source as TListBox do

 PlannerItem.Text.Text := Items[ItemIndex];

end;

procedure TForm1.Planner1DragDropCell(Sender, Source: TObject; X,

 Y: Integer);

begin

 // Create new item only when no items are in the cell

 if Planner1.CellToItemNum(X,Y) = 0 then

 begin

 with Planner1.CreateItem do

 begin

 ItemBegin := Y;

 ItemEnd := Y + 1;

 itemPos := X;

 with Source as TListBox do

 Text.Text := Items[ItemIndex];

 end;

 end;

end;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

55 | P a g e

procedure TForm1.Planner1DragOverCell(Sender, Source: TObject; X,

 Y: Integer; State: TDragState; var Accept: Boolean);

begin

 // Accept this only when no items are in this cell

 Accept := Planner1.CellToItemNum(X,Y) = 0;

end;

In the next example, drag & drop of full TPlannerItem objects between two TPlanner components is
discussed. To differentiate between drag and drop inside the TPlanner itself for moving the item to
a different time and drag and drop inter components, the Ctrl key is used while moving the item
with the trackbar. This is enabled by setting the global property TPlanner.DragItem = true. In this
example, a second planner is put on the form and through the events OnDragOverCell,
OnDragDropCell, drag and drop of TPlannerItem‟s from the first Planner1 to the second Planner2 is
enabled.

Example:

procedure TForm1.Planner2DragOverCell(Sender, Source: TObject; X,

 Y: Integer; State: TDragState; var Accept: Boolean);

begin

 // Do not accept that items are dropped

 Accept := Planner2.CellToItemNum(X,Y) = 0;

end;

procedure TForm1.Planner2DragDropCell(Sender, Source: TObject; X,

 Y: Integer);

var

 Delta: Integer;

begin

 with Planner2.CreateItem do

 begin

 // Copy selected item of drag drop operation to new created item

 Assign(Planner1.Items.Selected);

 // Get duration of item and make sure duration is identical

 Delta := ItemEnd - ItemBegin;

 ItemBegin := y;

 ItemEnd := y + delta;

 ItemPos := x;

 end;

 // Delete item in drag & drop source component

 Planner1.FreeItem(Planner1.Items.Selected);

end;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

56 | P a g e

Planner themes

The Planner has different built-in themes that automatically preset the various color properties of
the Planner in different styles. These built-in themes make the Planner visually consistent with
various Windows and/or Office versions. The supported styles are:

Office 2003 Classic
Office 2003 Blue
Office 2003 Olive
Office 2003 Silver
Office 2007 Luna
Office 2007 Obsidian
Office 2007 Silver
Office 2010 Blue
Office 2010 Black
Office 2010 Silver
Windows XP
Windows Vista
Windows 7
Terminal

At design time, the style can be choosen by right-clicking on the component and choosing any of the
styles shown. At runtime, the style can be programmatically set with:

Planner.SetComponentStyle(style:TTMSStyle);

The TTMSStyle type is defined in AdvStyleIF.pas and is currently:

 TTMSStyle = (tsOffice2003Blue, tsOffice2003Silver, tsOffice2003Olive,

 tsOffice2003Classic,tsOffice2007Luna, tsOffice2007Obsidian,

 tsWindowsXP, tsWhidbey, tsCustom, tsOffice2007Silver,

 tsWindowsVista,tsWindows7, tsTerminal, tsOffice2010Blue,

 tsOffice2010Silver, tsOffice2010Black);

The method SetComponentStyle is defined in the interface ITMSStyle. This means that it is
compatible with components TAdvFormStyler / TAdvAppStyler that allow to change the theme of an
application with changing a single component property. How TAdvFormStyler and TAdvAppStyler
work is explained at: http://www.tmssoftware.com/site/atbdev3.asp

In addition, when Planner.AutoThemeAdapt = true, the theme of the Planner will automatically
adapt to the theme defined in Windows XP (blue, silver, olive, non-themed) or the theme choosen
in the installed Office 2007 or Office 2010 version. This means that the theme will not only
automatically adapt on startup of the application to the choosen user theme but also at runtime as
soon as the user changes a theme setting (similar as Office 2003 applications automatically adapt
when the XP theme changes and all different Office 2007 or Office 2010 apps change when the
theme is changed in one instance via the Options dialog:

http://www.tmssoftware.com/site/atbdev3.asp

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

57 | P a g e

As such, applications using a Planner can have a theme changing behavior identical to Microsoft
Office.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

58 | P a g e

Export & import of TPlannerItems

Through an easy interface, it is possible to either use existing import and export add-on components
or write custom import / export add-on components. For export, items that should be handled in
the export, have a public property TPlannerItem.DoExport = True. It is the task of the TPlanner
export handler to write all items to the destination. Different examples are available at
http://www.tmssoftware.com/site/planaddon.asp
TPlanner provides functions to mark automatically a series of TPlannerItems for export with:

procedure ExportItem(APlannerItem); mark a single item for export
procedure ExportItems; marks all items for export
procedure ExportPosition(Pos: Integer); marks all items in a position for export
procedure ExportLayer(Layer: Integer); marks all items in a layer for export
procedure ExportClear; resets all marked items for export

A very simple export handler to export TPlannerItem objects to XML descends from
TPlannerExchange and overrides the DoExport function. The TPlannerExchange base class provides a
function NumItemsForExport which returns the number of items that should be exported and a
property Planner: TPlanner that is the instance of the TPlanner component to which it is connected.
The DoExport routine becomes:

procedure TPlannerXMLExchange.DoExport;

var

 i,j: Integer;

 f: TextFile;

 xml: TStringList;

begin

 if NumItemsForExport = 0 then

 Exit;

 xml := TStringList.Create;

 try

 AssignFile(f,FFilename);

 {$i-}

 Rewrite(f);

 {$i+}

 if IOResult <> 0 then

 raise Exception.Create('Cannot Create file ' + FFileName);

 writeln(f,'<?xml version="1.0"?>');

 writeln(f,'<' + FListName + '>');

 for i := 1 to Planner.Items.Count do

 begin

 if Planner.Items[i - 1].DoExport then

 begin

 writeln(f,'<' + FItemName + '>');

 write(f,'<' + FStartTimeName + '>');

 write(f,FormatDateTime(DateTimeFormat,

 Planner.Items[i - 1].ItemStartTime));

 writeln(f,'</' + FStartTimeName + '>');

 write(f,'<' + FEndTimeName + '>');

 write(f,FormatDateTime(DateTimeFormat,

 Planner.Items[i - 1].ItemEndTime));

 writeln(f,'</' + FEndTimeName + '>');

http://www.tmssoftware.com/site/planaddon.asp

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

59 | P a g e

 writeln(f,'<' + FCaptionName + '>' +

 Planner.Items[i - 1].CaptionText + '</'

 + FCaptionName + '>');

 writeln(f,'<' + FTextName + '>' +

 Planner.Items[i - 1].Text.Text+ '</' + FTextName + '>');

 xml.Clear;

 if Assigned(FOnItemToXML) then

 FOnItemToXML(Self,Planner.Items[i - 1], xml);

 for j := 1 to xml.count do

 begin

 writeln(f,xml.Strings[j - 1]);

 end;

 writeln(f,'</' + FItemName + '>');

 end;

 end;

 writeln(f,'</' + FListName + '>');

 CloseFile(f);

 finally

 xml.Free;

 end;

end;

For importing, the routine DoImport is defined. It is the task of the custom TPlannerExchange
descendent component to handle reading or getting the appointment information and create the
items in the TPlanner component.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

60 | P a g e

Additional TPlanner / TDBPlanner methods and
properties

Cell selection

Several functions exist to get the selected cells in the planner grid, to set the selected cells or to
convert date & time to cell coordinates and vice versa.

The selected cells in the planner grid can be retrieved with:

SelPosition: Integer; retrieves the index of the position where the selected cell is
SelItemBegin: Integer; retrieves the index along the time axis where the cell selection starts
SelItemEnd: Integer; retrieves the index along the time axis where the cell selection ends

In a vertical oriented grid, the SelPosition thus indicates the column index of the selected cell and
SelItemBegin, SelItemEnd indicate the row indexes where the selection starts and ends.

Selecting cells programmatically in the planner grid can be done with:

procedure SelectCells(SelBegin,SelEnd,SelPos: Integer);

Conversion of absolute time to cell index along the time axis depends of the mode of the TPlanner
and can be done with:

procedure CellToAbsTime(x: Integer;var dtStart,dtEnd: TDateTime);

and vice versa:

function AbsTimeToCell(DateTime: TDateTime): Integer;

Conversion of a timeslot index along the time axis to a time:

procedure IndexToTime(Index: Integer): TDateTime;

and vice versa:

function TimeToIndex(DateTime: TDateTime): Integer;

Getting the start & end time of the selected cells:

procedure SelectionToAbsTime(var dtStart, dtEnd: TDateTime);

Example:

If the planner is in day mode, the following code selects the cells from 14h PM to 15h30 PM and
adapts the scrolling of the grid to make sure the selected cells are visible.

var

 sb,se: Integer;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

61 | P a g e

begin

 sb := Planner1.AbsTimeToCell(EncodeTime(14,0,0,0));

 se := Planner1.AbsTimeToCell(EncodeTime(15,30,0,0));

 Planner1.SelectCells(sb,se - 1,0);

 Planner1.GridTopRow := sb;

end;

If the planner is in month mode, the following code selects the day span from 15/7/2002
to20/7/2002 :

var

 sb,se: Integer;

begin

 sb := Planner1.AbsTimeToCell(EncodeDate(2002,7,15));

 se := Planner1.AbsTimeToCell(EncodeDate(2002,7,20));

 Planner1.SelectCells(sb,se - 1,0);

 Planner1.GridTopRow := sb;

end;

Other methods available for cell selection are:

function IsSelected(AIndex, APosition: Integer): Boolean;

This function returns true if the cell is within the range of selected cells.

procedure HideSelection; hides the selection of cellsprocedure UnHideSelection; unhides the
selection of cells

Cells, mouse coordinates and TPlannerItems

The conversion between mouse coordinates and cell coordinates and/or TPlannerItem objects can
be done with :

function XYToCell(X,Y: Integer): TPoint;

Returns the cell coordinates of the cell in which mouse coordinates X,Y are.

function XYToItem(X,Y: Integer): TPlannerItem;

Returns the planneritem under the mouse at coordinates X,Y. If no TPlannerItem objects are at
mouse coordinates X,Y, nil is returned.

function CellToItem(X,Y: Integer): TPlannerItem;

Returns the planneritem at cell coordinates X,Y. If no TPlannerItem objects are at cell coordinates
X,Y, nil is returned.

function CellToItemNum(X,Y: Integer): Integer;

Returns the number of items in cell X,Y. The result will only be higher than 1 if items can be
overlapped in the TPlanner.

function CellToItemIndex(X,Y,Index: Integer): TPlannerItem;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

62 | P a g e

If multiple overlapped TPlannerItem objects are at cell X,Y, this function returns item Index a this
cell.

function CellInCurrTime(X,Y: Integer): Boolean;

Returns true if the current time is within the time span of cell X,Y.

Position handling

As explained earlier, the number of positions is either the number of columns (in vertical mode,
Sidebar is on left or right) or the number of rows (in horizontal mode, Sidebar is on top) The number
of positions can be set with TPlanner.Positions. When TPlanner.PositionWidth is zero, positions are
scaled to fit in the TPlanner either vertically and horizontally. If TPlanner.PositionWidth is different
from zero, this width is applied for all positions. The TPlanner provides 3 additional methods to
move, delete and insert positions and 2 methods to zoom and unzoom :

procedure MovePosition(FromPos, ToPos: Integer);

Moves a position from one position FromPos to a new position ToPos.

procedure DeletePosition(Position: Integer);

Deletes a position from the planner.

procedure InsertPosition(Position: Integer);

Inserts a new position in the planner at Position index in the planner.

procedure ZoomPosition(Position: Integer);

Applies the PositionZoomWidth to position Position

procedure UnZoomPosition(Position: Integer);

Resets the position width to normal width PositionWidth

Position properties

As the TPlanner.Display settings normally apply to the full planner and thus all positions, the
PositionProps offer the capability to override these global settings per position. The PositionProps
property is a collection of TPositionProp objects that control Active / Non Active colors, selection
color and ActiveStart / ActiveEnd per position. When inserting TPositionProp objects in the
PositionProps collection, these control properties of consecutive positions in the planner, ie. the
first PositionProp object controls position 0, the second position 1 and so further. The PositionProp
only has effect when its Use property is set true. The full list of PositionProp properties is:

ActiveEnd: Integer; Sets the end of the active time zone.

ActiveStart: Integer; Sets the start of the active time zone.

Background: TBitmap; If a bitmap is specified, the bitmap is used as background for
the position.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

63 | P a g e

BrushNoSelect: TBrushStyle; Sets the brush style for the non selectable cells.

ColorActive: TColor; Sets the color of the active time zone.

ColorNonActive: TColor; Sets the color of the non active time zone.

ColorNoSelect: TColor; Sets the color of the non selectable cells in the position. This
has effect only when MinSelection / MaxSelection are set.

MaxSelection: Integer; If different from zero, sets the maximum selectable cell.

MinSelection: Integer; If different from zero, sets the minimum selectable cell.

ShowGap: Boolean; If true and the global planner PositionGap is different from
zero, the position gap is displayed for this position.

Use: Boolean; When true, the PositonProp settings are used, otherwise
global Display settings apply.

Example:

Suppose the TPlanner is in day mode with 5 positions and each position represents a day of the
week. On Monday and Friday office hours are from 9AM to 17PM while on other days the office hours
are from 8AM to 17PM. To indicate the office hours as active hours in each position, following code
is used:

 with Planner1.PositionProps.Add do

 begin

 ActiveStart := Planner1.AbsTimeToCell(EncodeTime(9,0,0,0));

 ActiveEnd := Planner1.AbsTimeToCell(EncodeTime(17,0,0,0));

 ColorActive := clYellow;

 end;

 with Planner1.PositionProps.Add do

 begin

 ActiveStart := Planner1.AbsTimeToCell(EncodeTime(8,0,0,0));

 ActiveEnd := Planner1.AbsTimeToCell(EncodeTime(17,0,0,0));

 end;

 with Planner1.PositionProps.Add do

 begin

 ActiveStart := Planner1.AbsTimeToCell(EncodeTime(8,0,0,0));

 ActiveEnd := Planner1.AbsTimeToCell(EncodeTime(17,0,0,0));

 end;

 with Planner1.PositionProps.Add do

 begin

 ActiveStart := Planner1.AbsTimeToCell(EncodeTime(8,0,0,0));

 ActiveEnd := Planner1.AbsTimeToCell(EncodeTime(17,0,0,0));

 end;

 with Planner1.PositionProps.Add do

 begin

 ActiveStart := Planner1.AbsTimeToCell(EncodeTime(9,0,0,0));

 ActiveEnd := Planner1.AbsTimeToCell(EncodeTime(17,0,0,0));

 ColorActive := clYellow;

 end;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

64 | P a g e

Balloon tooltips

In addition to support for normal hints, the planner has support for showing balloon tooltips. Note
that in order to be able to show balloons, application theming must be enabled. In older Delphi
versions, this can be done by adding the TMS unit WinXP to the uses list of the main form. In recent
Delphi versions, set this under Project Options.

The settings for the balloon tooltips are available through TPlanner.Balloon with properties:

AutoHideDelay: integer; Sets the delay in milliseconds to auto hide the
balloon.

BackgroundColor: TColor; Sets the background color of the balloon tooltip.

Enable: Boolean; When true, displaying balloon tooltips is enabled.

InitialDelay: integer; Sets the delay in milliseconds to wait before the
first balloon tooltip is shown.

ReshowDelay: integer; Sets the delay in milliseconds to wait before a
new balloon tooltip is shown.

TextColor: TColor; Sets the text color of the balloon tooltip.

Transparency: integer; Sets the transparency of the balloon tooltip.

Balloon tooltips can be displayed for items in the planner or for planner grid cells. By default, the
balloon tooltips for planner items display the item‟s caption and item‟s text. No balloon tooltips are
shown by default for grid cells. The balloon tooltip can be customized by two events:

procedure OnItemBalloon(Sender: TObject; APlannerItem: TPlannerItem; var

ATitle, AText: String; var AIcon: Integer);

This event is triggered before the balloon tip is about to be displayed. The parameters ATitle, AText
are preset with default values of the item for which the balloon tip is displayed. The AIcon can be:

0: no icon
1: information icon
2: warning icon
3: cancel icon

procedure OnPlannerBalloon(Sender: TObject; X, Y: Integer;

var ATitle, AText: String; var AIcon: Integer);

This event is triggered when a balloon tooltip is about to be displayed for a normal empty grid
planner cell. By default, the ATitle, AText parameters are blank strings. Only when ATitle is a non
blank string, the balloon tooltip will be displayed.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

65 | P a g e

TDBPlanner architecture

TDBPlanner provides a seamless connection to a dataset for a codeless solution to store events,
appointments, allocations to a database. By using standard Borland database connectivity
technology, the TDBPlanner component can successfully connect to all well known databases
supported in Borland Delphi, C++Builder and Kylix. TDBPlanner has been used and tested for using
BDE dBase & Paradox, ADO MS Access and SQL server, DBIsam, Apollo, Flashfiler, Interbase, mySQL,
TurboDB …

As TDBPlanner is a multi-purpose scheduling viewer and user interface handling component, the
database connectivity is abstracted in the TDBItemSource that handles all communication with a
TDataSource as in the diagram below

The TDBItemSource component is an abstract class for communication handling between TDBPlanner
and the database. Descendent classes of TDBItemSource handle specific TDBPlanner scheduler
setups for a given database of appointment, events, … records. TDBPlanner comes standard with
following descendent components of TDBItemSource :

TDBActiveDaySource Daysource for displaying active days only.

TDBDaySource Day mode connection between database and TDBPlanner.

TDBDisjunctDaySource Daysource for displaying selected days only.

TDBHalfDayPeriodSource Period mode connection between database and TDBPlanner
showing two half day time slots per day in the selected period

TDBActiveDayPeriodSource Period mode connection between database and TDBPlanner
showing only active days (set with Planner.InactiveDays) in the
time axis.

TDBMonthSource Month mode connection between database and TDBPlanner.

TDBMultiMonthSource Multi month mode connection between database and
TDBPlanner.

TDBPeriodSource Period mode connection between database and TDBPlanner.

TDBTimeLineSource Timeline based connection between database and TDBPlanner.

TDBWeekSource Week mode connection between database and TDBPlanner.

To display appointments or events in a database in different ways, this can be achieved by replacing
the TDBItemSource with a new appropriate interface.

Case 1: day mode view:

TDBPanner

TDBItemSource TDataSource

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

66 | P a g e

Case 2: month mode view:

In case 2, the TDBDaySource is simply replaced by a TDBMonthSource. Programmatically, a
TDBDaySource and TDBMonthSource can be on the form or datamodule and upon need connected to
the TDBPlanner with:

case Mode of

monthmode: DBPlanner1.ItemSource := DBMonthSource1;

daymode: DBPlanner1.ItemSource := DBDaySource1;

end;

As such, it is relatively easy to write custom TDBItemSource descendents to accommodate special
needs for mapping between the database and the TDBPlanner.

TDBDaySource

TDBPlanner
Database

TDBMonthSource

TDBPlanner
Database

TDBPlanner
Database

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

67 | P a g e

Database requirements

The minimum requirement is that 3 fields exist in the database:

- Start time: full date/time field (can be a 20 char field for databases not supporting datetime
fields)

- End time: full date/time field (can be a 20 char field for databases not supporting datetime fields)

- Key: 40 char unique item key field (or other key field type when the ItemSource.OnCreateKey
event is used) When no OnCreateKey event handler is assigned the unique key to identify an
appointment is a GUID. If the OnCreateKey event handler is used any other scheme that guarantees
a unique key creation can be used such as auto increment fields.

Other fields are optional. TDBItemSource has built-in support for mapping following fields to a
TPlannerItem

- Notes field: memo field or character field holding the planner item text

- Subject field: character field holding the planner item caption text

- Resource field: numeric field holding the planner item position in dmMultiResource mode

- Recurrency field: string field that holds the recurrency specifier. This is an optional field only
used when recurrency capabilities are required in the application. See chapter on TDBPlanner
recurrency.

- MinTimeField: full date/time field that holds the first occurrence start date of an event. This is
an optional field only used when recurrency capabilities are required in the application. See chapter
on TDBPlanner recurrency.

- MaxTimeField: full date/time field that holds the last occurrence end date of an event. This is an
optional field only used when recurrency capabilities are required in the application. See chapter on
TDBPlanner recurrency.

Any other fields that link to planner item properties can be added with field type of choice. Use the
DBItemSource.OnFieldsToItem and DBItemSource.OnItemToFields event for setting field values to
Item properties and vice versa.

Example:

Following code maps additional database fields COLOR to the TPlannerItem.Color, IMAGE field to
the TPlannerItem.ImageID and CAPTION field to captiontype of the TPlannerItem:

procedure TForm1.DBDaySource1FieldsToItem(Sender: TObject; Fields: TFields;

 Item: TPlannerItem);

begin

 Item.Color := TColor(Fields.FieldByName('COLOR').AsInteger);

 Item.CaptionBkg := Item.Color;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

68 | P a g e

 Item.ImageID := Fields.FieldByName('IMAGE').AsInteger;

 if Fields.FieldByName('CAPTION').AsBoolean then

 Item.CaptionType := ctTime

 else

 Item.CaptionType := ctNone;

end;

procedure TForm1.DBDaySource1ItemToFields(Sender: TObject; Fields: TFields;

 Item: TPlannerItem);

begin

 Fields.FieldByName('COLOR').AsInteger := Integer(Item.Color);

 Fields.FieldByName('CAPTION').AsBoolean := Item.CaptionType = ctTime;

 Fields.FieldByName('IMAGE').AsInteger := Item.ImageID;

end;

Note: in some cases, it might be necessary to store the start and end times of an event in a
different way. This could be a starttime field and a duration field. In this case, the events
OnFieldsToTime and OnTimeToFields can be used. The definition for OnFieldsToTime is:

procedure TForm1.DBDaySource1FieldsToTime(Sender: TObject; Fields:

TFields;var dtS, dtE: TDateTime);

With this event, the fields required can be read and the start and end time can be set in the dtS and
dtE parameters.

The inverse operation is done with:

procedure TForm1.DBDaySource1TimeToFields(Sender: TObject; Fields:

TFields;dtS, dtE: TDateTime);

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

69 | P a g e

Setting up TDBPlanner, TDBItemSource and the
database

Drop a database table or query component with datasource on the form. Add a TDBItemSource
component on the form and assign a datasource component to your used database.

Set the applicable fields to the TDBItemSource fields properties.

It is required that the KeyField, StartTimeField, EndTimeField properties are defined.

The TDBItemSource can be:

TDBDaySource component for a day mode planner
TDBWeekSource component for a month mode planner
TDBMonthSource component for a month mode planner
TDBPeriodSource component for a day period mode planner
TDBHalfDayPeriodSource component for a half-day period mode planner
TDBActiveDayPeriodSource component for active day period mode planner
TDBMultiMonthSource component for a month mode planner
TDBTimeLineSource component for a timeline mode planner
TDBDisjunctDaySource : component for planner with selected days only
TDBActiveDaySource : component for planner with displaying active days only

or any custom derived TDBItemSource component…

There is only a single connection between the TDBPlanner and the TDBItemSource. Each TDBPlanner
must have as such its unique TDBItemSource. A datasource component can have multiple
TDBItemSource components connected though.

Example:

An Access database is used with following fields:

KEYFIELD: 40 char field
STARTTIME: datetime field
ENDTIME: datetime field
SUBJECT: 40 char field
NOTES: memo field
COLOR: long integer field
IMAGE: long integer field
CAPTION: boolean field

On the form, a TADOTable with connection to the Access database is dropped, a TDataSource
component and a TDBDaySource. The TDBDaySource component is assigned to the
TDBPlanner.ItemSource property. The DataSource component is connected to the
TDBDaySource.DataSource property:

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

70 | P a g e

Next, the fields that are defined in the TDBDaySource component properties:

When making the ADO table active, the database is searched for all items that should be displayed
in the TDBPlanner for the date(s) selected by TDBDaySource and these are displayed appropriately
in the TDBPlanner.

Important note:

As the TDBItemSource is the interface that has the knowledge of how to map and display the items
in the TDBPlanner, it is the TDBItemSource that sets TDBPlanner properties automatically for
selecting modes and display. As such, in the above example, connecting a TDBDaySource to the
TDBPlanner.ItemSource property will automatically put the TDBPlanner.Mode.PlannerType into
plDay. Depending on what each TDBItemSource component visualises, other TDBPlanner properties
might be automatically set by the TDBItemSource component.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

71 | P a g e

Performance guidelines

The TDBItemSource will search all records of the dataset for items that should be displayed in the
TDBPlanner. As such, it is important that the number of records that must be searched through is as
small as limited to minimum number possible. This can be achieved by using a TQuery with a SQL
statement that returns only a minimum set of records to search through or by applying a filter. This
filter or query can be set at any time, but a good place would be to do this as well as just before
the TDBItemSource searches through the records, using the TDBItemSource events OnSetFilter and
OnChangeQuery.. The TDBItemSource will therefore trigger the events OnSetFilter and
OnChangeQuery to allow updating filter or query before it needs to do a new search.

Example:

When using a TDBDaySource for a single day and a single resource in a database with appointments
for multiple resources and multiple days, it is recommend to specify a query or set a filter to return
only a dataset of records for this single day and single resources in order to avoid useless needless
searches of the TDBDaySource through records of appointments for other days and other resources.
This is a good design method for databases applications in general: always try to minimize the
amount of data that you load from the database.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

72 | P a g e

TDBPlanner and database synchronisation

Records can be added either directly in the database as well as via the TDBPlanner component.
When the TDBPlanner is connected to a database via a TDBItemSource component, following
interactions happen:

TDBPlanner.CreateItem and TDBPlanner.CreateItemAtSelection:

A new record is created in the database.

TDBPlanner.FreeItem(APlannerItem: TPlannerItem);

The record associated in the database with APlannerItem is deleted.

Whenever planner item properties are changed, the property changes are reflected in the database
by calling the PlannerItem's Update method.

When records from the database that are displayed in the TDBPlanner are changed through other
DB-aware controls, the field changes are immediately updated in the TDBPlanner by changes in the
planner item properties. When a record is deleted or inserted from the database through another
DB-aware component or programmatically, the TDBPlanner must be synchronized. This
synchronization is achieved by calling the TDBItemSource SynchDBItems method in the dataset
AfterDelete or AfterInsert event.

Example:

This creates a one hour appointment now in a TDBPlanner with TDBDaySource connected to a
database :

 DBDaySource1.Day := Now;

 with DBPlanner1.CreateItem do

 begin

 ItemStartTime := Now;

 ItemEndTime := ItemStartTime + EncodeTime(1,0,0,0);

 CaptionText := 'Auto created';

 Text.Text := 'This item is auto created';

 Update;

 end;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

73 | P a g e

The standard TDBItemSource components

TDBPlanner comes default with ready to use TDBItemSource components for several modes of the
TPlanner:

TDBDaySource component for a day mode planner
TDBWeekSource component for a month mode planner
TDBMonthSource component for a month mode planner
TDBPeriodSource component for a day period mode planner
TDBMultiMonthSource component for a month mode planner
TDBTimeLineSource component for a timeline mode planner
TDBDisjunctDaySource : component for planner with selected days only
TDBActiveDaySource : component for planner with displaying active days only

These different TDBItemSource components have properties that are specific for each mode which
is discussed here.

TDBDaySource

The TDBDaySource is the interface for handling a database connection in 4 different TDBPlanner
modes. The main setting for these capabilities is the TDBDaySource.Mode property with can be:

dmMultiday : Single or multiple days for a single resource
dmMultiResource : Single or multiple resources for a single day
dmMultiDayRes : Multiple days for multiple resources
dmMultiResDay : Multiple resources for multiple days

The first 2 modes are the most simple modes:

dmMultiDay
The number of days shown in the TDBPlanner is set with the TDBDaySource.NumberOfDays property.
Multiple days will be displayed in multiple positions of the TDBPlanner. As such, this NumberOfDays
property sets the TDBPlanner.Positions property. The first day displayed is set with the property
TDBDaySource.Day. The date difference between 2 positions is set by the
TDBDaySource.DayIncrement property. Setting this property to 7 for example can show only a given
day of the week for multiple weeks in the TDBPlanner.
This This TDBDaySource component can also automatically fill the TDBPlanner Header captions with
the dates displayed. This is done when its property AutoHeaderUpdate is true. The format of the
displayed dates is set with the TDBDaySource.DateFormat property.

dmMultiResource
In this mode, multiple resources (identified by the RESOURCEFIELD) can be displayed in different
positions in the TDBPlanner. The date for which the resources are displayed is set by the
TDBDaySource.Day property. The number of resources displayed (and thus also the number of
positions that will be in the TDBPlanner) is set by TDBDaySource.NumberOfResources. The normal
mapping between the resource field in the database and the positions in the TDBPlanner is that an
integer value of 0 in the resource field maps to position 0 in the TDBPlanner. However, the resource
identification might be different in particular cases, when used for example as employee or room
numbers. Therefore, the TDBDaySource component has 2 events that allows the mapping of the
resource field value to a position in the TDBPlanner and vice versa. The 2 events are:

OnResourceToPosition(Sender: TObject; Field: TField; var Position: Integer;

var Accept: Boolean);

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

74 | P a g e

This event is triggered for each appointment or event that can be shown in the TDBPlanner. The
field values can used to determine the appropriate position for this record and through the Accept
parameter, setting it to false can disable loading the particular appointment or event in the
TDBPlanner. The OnResourceToPosition event will be triggered when the TDBPlanner is loading
items from the database.

OnPositionToResource(Sender: TObject; Field: TField; Position: Integer);

This event allows to set a field value according to the position in the Fields collection of the record.
This event is triggered whenever a TPlannerItem is updated or moved in the TDBPlanner and needs
to be written back to the database.

Finally, as with the dmMultiDay mode, the TDBDaySource component can automatically update the
TDBPlanner header captions with the resource names displayed. An event
TDBDaySource.OnGetResourceName is used to query this resource name for each position. Each
time the TDBPlanner reloads items from the database it will query the resource names again to
update its header captions.

dmMultiDayRes

Displays multiple days for multiple resources. This combines both multi day and multiresource
modes. The comments for previous are thus applicable for the dmMultiDayRes mode. The difference
is that now the TDBPlanner positions and header are setup to show multiple days and multiple
resources. In the dmMultiDayRes mode, the number of groups created is equal to the
TDBDaySource.NumberOfDays property while each day is divided in
TDBDaySource.NumberOfResources positions. The image below makes this clear :

dmMultiResDay

This is the inverse setup of the dmMultiDayRes mode and organises the TDBPlanner as in the image
below :

TDBMonthSource

The TDBMonthSource shows appointments and events from the database in for a month in the
TDBPlanner. Mapping of the fields to the TPlannerItem object is identical as in the TDBDaySource
component. If multiple resources are used, these can be mapped on multiple positions in the
TDBPlanner. Custom mapping between resource fields and position index is also possible with the
events TDBMonthSource.OnResourceToPosition and TDBMonthSource.OnPositionToResource.

The month that is displayed in the TDBPlanner is selected by the properties TDBPlanner.Month and
TDBPlanner.Year properties.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

75 | P a g e

TDBPeriodSource

The TDBPeriodSource is similar to the TDBMonthSource but allows viewing any period between the
dates set by its properties TDBPeriodSource.StartDate and TDBPeriodSource.EndDate properties.

TDBHalfDayPeriodSource

The TDBHalfDayPeriodSource is similar to the TDBPeriodSource but allows viewing any period
between the dates set by its properties TDBHalfDayPeriodSource.StartDate and
TDBHalfDayPeriodSource.EndDate properties with a halfday resolution.

TDBActiveDayPeriodSource

The TDBActiveDayPeriodSource is similar to the TDBPeriodSource but allows viewing only active
days in a period between the dates set by its properties TDBActiveDayPeriodSource.StartDate and
TDBActiveDayPeriodSource.EndDate properties. The active days are determined by the settings
under DBPlanner.InactiveDays. By default, Saturday and Sunday are considered as in active days and
thus the TDBPlanner time axis will show for all days from Monday to Friday, skipping Saturday and
Sunday.

TDBMultiMonthSource

This database interface component puts the TDBPlanner into multimonth mode. This means that
multiple months are displayed in the TDBPlanner in multiple positions. Mapping of the database
fields to the TPlannerItem properties is identical as with the TDBDaySource. The
TDBMultiMonthSource component does not support a multiresource view though as the positions are
used to show multiple months. A mapping to the ResourceField is thus ignored.
The months displayed are selected with these properties :

TDBMultiMonthSource.StartMonth : first month to display in TDBPlanner position 0
TDBMultiMonthSource.NumberOfMonths : number of months to display and thus number of
positions shown in the TDBPlanner
TDBMultiMonthSource.Year : year of the first month displayed.

As some items in multimonth mode can be displayed in 2 or more positions when the start and end
date of the appointment or event are in different months, the TDBMultiMonthSource displays part of
the appointment in one month while the other part in another month. For such events, the
TDBMultiMonthSource creates fixed size and fixed position items. Repositioning of such events
should thus happen by editing the start and / or end date through a popup editor. Events that have
start and end date in the same month can be sized or moved in the TDBPlanner but can of course be
edited with a popup editor as well.

TDBTimeLineSource

The TDBTimeLineSource is a database interface for a timeline mode planner. In a timeline mode
planner, the days between StartDate and EndDate are displayed with a time resolution set by the
property TPlanner.Display.DisplayUnit.

TDBDisjunctDaySource

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

76 | P a g e

The TDBDisjunctDaySource component displays different selected days only. With such component,
it is possible to display each Friday for four weeks for example. This is done by putting the days to
view in the TDBDisjunctDaySource.Dates collection. To update the days to be viewed in the
planner, set the TDBDisjunctDaySource.Active property to false, fill the Dates collection with dates
that should be displayed in the planner and set the TDBDisjunctDaySource.Active to true again.

TDBActiveDaySource

The TDBActiveDaySource is very similar to the TDBDaySource. The difference with the
TDBDaySource is that this TDBActiveDaySource only displays the active days in the planner. If
Sunday and Saturday are marked as inactive days, the TDBActiveDaySource will skip these days and
only display Monday through Friday. If the Day property of TDBActiveDaySource is set to a day that
is indicated as an inactive day, it will show only the first active day as first day in the planner.

Using the TDBItemSource.ResourceMap

If the field values that identify resources in the database do not match the indexes of the positions
where resources are displayed, the events OnResourceToPosition and OnPositionToResource can be
used. Using the TDBItemSource.ResourceMap makes it easier by avoiding to have to use these events
and implement there in code the mapping between the resource indexes and the position indexes.
The ResourceMap is a collection of TResourceMapItem objects. This object has following properties:

 property ResourceIndex: Integer;
 property PositionIndex: Integer;

 property DisplayName: string;

The ResourceIndex is the value of the resource in the database, the PositionIndex is the value of the
position where this resource should be displayed. The DisplayName is an optional property with
which the display name of the resource can be set.

Example:

Suppose that three employees have tasks scheduled in the planner. Employee John has an internal
company employee number assigned of 515. Employee Bill has number 264 and employee Richard
177. In the database, these employee numbers are used in each record to identify to who the task is
assigned. In the planner, we want to display these employees in the sequence: Bill, Richard and
John. The TDBItemSource.ResourceMap is configured with:

with DBItemSource.ResourceMap.Add do

begin

 ResourceIndex := 264;

 PositionIndex := 0;

 DisplayName := 'Bill';

end;

with DBItemSource.ResourceMap.Add do

begin

 ResourceIndex := 177;

 PositionIndex := 1;

 DisplayName := 'Richard';

end;

with DBItemSource.ResourceMap.Add do

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

77 | P a g e

begin

 ResourceIndex := 515;

 PositionIndex := 2;

 DisplayName := 'John';

end;

Note: the first item in the ResourceMap collection maps to the first logical resource position in the
Planner, the second item to the second logical resource position etc… This means that in the most
simple case of a TDBDaySource in multi resource mode, the first position in the Planner will hold
items allocated by the resource mapped in the first ResourceMap entry. When positions can be
reordered through drag & drop (by setting Planner.Header.DragDrop = true) and these positions are
bound the resources from the ResourceMap, the ResourceMap items will also be reordered.

Using a ResourceDataSource

The base class for TDBItemSource also implements the ResourceDataSource. Using the
ResourceDataSource, it is possible to load ResourceMap entries automatically from a database table.
This replaces the programmatic or design time configuring of the ResourceMap. To do this, set the
TDBItemSource.ResourceDataSource.DataSource to the datasource holding the resource name and
resource ID fields. Assign these resource name field and resource ID fields to
TDBItemSource.ResourceDataSource.ResourceIDField and
TDBItemSource.ResourceDataSource.ResourceNameField respectively. Note that this will load the
resources into the ResourceMap and also Planner header (when TDBItemSource.AutoHeaderUpdate
is set to true) automatically and in the order of the datasource. For proper use, make sure that the
order of the resource table is always controlled in the way required for the application.

Writing custom database interface components

This can be done by creating a descendent class from TDBItemSource and overriding a set of
methods that perform the interfacing between database and TDBPlanner and vice versa. These
methods are listed here :

 procedure SynchDBItems; override;

 procedure ReadDBItems; override;

 procedure WriteDBItem; override;

 procedure ReadDBItem; override;

 procedure AddDBItem; override;

 procedure GotoDBItem; override;

 procedure DeleteDBItem(APlanner: TPlanner); override;

 procedure ItemChanged(DBKey:string); override;

 procedure Next; override;

 procedure Prev; override;

The TDBItemSource makes a reference to the connected TDBPlanner available through the property
TDBItemSource.Planner.

For single item methods such as ReadDBItem, WriteDBItem, GotoDBItem, AddDBItem, DeleteDBItem
and ItemChanged, the TDBPlanner always puts a reference to the TPlannerItem in the property
TDBPlanner.Items.DBItem: TPlannerItem.

Thus, when writing a method for ReadDBItem, set all properties read from DB fields to the
TPlannerItem provided by TDBItemSource.Planner.Items.DBItem. The same is applies for

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

78 | P a g e

WriteDBItem which should write the property settings of the TPlannerItem in
TDBItemSource.Planner.Items.DBItem to the current database record. In the methods ReadDBItems
and SynchDBItems, the full TDBItemSource.Planner.Items collection can be manipulated.

Using SQL to update/delete/insert Planner Items

Sometimes an automatic updateable query is not available or supported for the selected database
engine and all update, delete and inserts need to be implemented using SQL commands. The
TDBItemSource components provide support for this. Three events are provided to hook into the
automatic update/insert/delete and replace this SQL commands or calls to stored procedures:

OnDeleteItem: event called when an item is deleted, can be used to call a SQL DELETE
OnInsertItem: event called when an item is created, can be used to call a SQL INSERT
OnUpdateItem: event called when an item is updated, can be used to call a SQL UPDATE

Example:

The code shows a possible implementation of a full SQL command based database interface

 procedure TForm1.DBDaySource1UpdateItem(Sender: TObject;

 APlannerItem: TPlannerItem);

begin

 adoquery2.SQL.Text := 'UPDATE Schedules '

 + 'SET STARTTIME = '''+ FormatDateTime('yyyy-mm-dd hh:nn',

APlannerItem.ItemStartTime)+''' '

 + ', ENDTIME = ''' + FormatDateTime('yyyy-mm-dd hh:nn',

APlannerItem.ItemEndTime)+''' '

 + ', NOTES = ''' + APlannerItem.NotesText + ''' '

 + ', SUBJECT = ''' + APlannerItem.CaptionText + ''' '

 + 'WHERE KEYFIELD = '''+ APlannerItem.DBKey + '''';

 adoquery2.ExecSQL;

end;

procedure TForm1.DBDaySource1DeleteItem(Sender: TObject;

 APlannerItem: TPlannerItem);

begin

 adoquery2.SQL.Text := 'DELETE FROM Schedules WHERE KEYFIELD = '''+ APlannerItem.DBKey

+ '''';

 adoquery2.ExecSQL;

end;

procedure TForm1.DBDaySource1InsertItem(Sender: TObject;

 APlannerItem: TPlannerItem);

begin

 adoquery2.SQL.Text := 'INSERT INTO SCHEDULES (KEYFIELD, STARTTIME, ENDTIME, NOTES,

SUBJECT) VALUES('

 + '''' + APlannerItem.DBKey + ''','

 + '''' + FormatDateTime('yyyy-mm-dd hh:nn',APlannerItem.ItemStartTime)+''','

 + '''' + FormatDateTime('yyyy-mm-dd hh:nn',APlannerItem.ItemEndTime)+''','

 + '''' + APlannerItem.NotesText + ''','

 + '''' + APlannerItem.CaptionText + ''')';

 adoquery2.ExecSQL;

end;

Using HTML templates in items in TDBPlanner

Each TPlannerItem can display HTML formatted text for the Notes displayed. Normally, this Notes
text is set directly from the DB NotesField. This means that the DB field normally needs to hold the
entire content to be displayed in the item. Using templates, it is possible that the Notes text
displayed in the item is dynamically created from multiple DB fields or possibly other data. The

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

79 | P a g e

HTML template is set via TPlannerItem.HTMLTemplate. In this template, insert tags <#FIELDNAME>
and this tag will be automatically replaced by the DB field text value upon retrieving records from
the dataset.

Example:

In the DBPlanner.DefaultItem, the HTML template is configured as:

DBPlanner1.DefaultItem.HTMLTemplate.Text :=

'<#STARTTIME>
<#MEMONOTES>
<#DYN>';

Upon retrieving the item from the database, DBPlanner will replace the placeholder tag
<#STARTTIME> and <#MEMONOTES> with the text values for these 2 database fields named
„STARTTIME‟ and „MEMONOTES‟. There is no DB field named „DYN‟. The data for this tag is retrieved
dynamically via the event DBPlanner.OnGetHTMLTemplateData:

procedure TForm1.DBPlanner1GetHTMLTemplateData(Sender: TObject;

 APlannerItem: TPlannerItem; Field: TField; HTMLTag: string;

 var Value: string);

begin

 if HTMLTag = 'DYN' then

 Value := '#'+IntToHex(APlannerItem.Color,6);

end;

Here the HTML tag placeholder DYN is dynamically replaced by the HEX formatted color value of the
item, just for the purpose of demonstrating.

The result is:

Normally the HTML template is a one-time setup in DBPlanner.DefaultItem.HTMLTemplate. In the
case where a different template needs to be set for different items dynamically, this can also be
done by implementing the DBPlanner.OnGetHTMLTemplate event:

procedure TForm1.DBPlanner1GetHTMLTemplate(Sender: TObject;

 APlannerItem: TPlannerItem; var HTMLTemplate: string);

begin

 // modify a template dynamically here to have different templates for

different items

 HTMLTemplate :=

end;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

80 | P a g e

TBDPlanner Recurrency support

The TDBPlanner component has built-in support for recurrency. Recurring events can be mixed with
non recurring events. If an event is recurring, this means that an event in a single database record
can have multiple occurrences in the Planner. Recurrency is specified via a recurrency formula that
is based on an implementation of the the RFC 2445 iCalendar spec. The recurrency formula is a
string and therefore stored as a stringfield in the database. Note that recurrency formulas can
become long for complex recurrency specifications. It is therefore recommended (but not
mandatory) to use a memo field. For simple recurrencies without recurrency exceptions, a 60
character field should be sufficient. Note that for scheduling applications that do not need
recurrency, no recurrency field is required in the database.
In addition to the recurrency field, 2 additional fields are required: MinTimeField and
MaxTimeField. These fields hold the start time of the first occurrence of the event and the end time
of the last occurrence of the event. When MinTimeField and MaxTimeField are used, these are also
automatically maintained to the event start time and event end time for non recurring events. Note
that for events with an infinite recurrency, the end time will be specified as start time + 100 years.
When recurrency is used, the MinTimeField and MaxTimeField should be used to specify queries for
events that should be displayed in the viewed Planner timespan. The StartTimeField and
EndTimeFields will hold the start time and end time of the first event in a recurring series only.

The TDBPlanner comes with a recurrency editor so it should not be necessary to write recurrency
formulas directly. The recurrency editor can be used by dropping it on the form and the following
code:

var

 RE: TPlannerRecurrencyEditor;

procedure TForm1.RecurrEditClick(Sender: TObject);

begin

 if Assigned(DBPlanner1.Items.Selected) then

 begin

 RE.Recurrency := DBPlanner1.Items.Selected.Recurrency;

 if RE.Execute then

 begin

 DBPlanner1.Items.Selected.Recurrency := RE.Recurrency;

 DBPlanner1.Items.Selected.Update;

 end;

 end

 else

 ShowMessage('No item selected');

end;

To programmatically create recurrent items, the structure of the recurrency string is built from a
series of specifiers SPECIFIER=value, separated by a „;‟ delimiter. The rule is prefixed by RRULE:
while the exceptions are prefixed by EXDATES:

Example:
RRULE:FREQ=MONTHLY;COUNT=5;BYDAY=2WE

Possible specifiers:

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

81 | P a g e

Frequency

FREQ=MONTHLY

The frequency specifier can be : HOURLY, DAILY, WEEKLY, MONTHLY, YEARLY

Interval

INTERVAL=2

The default interval is 1. When the interval is 1, this does not need to be specified in the recurrency
formula. The interval sets the number of time blocks between two recurring events. If the interval
is set to 2 for a hourly recurring event of 1 hour duration, this will create a recurring series of
events with one hour blocks between the events.

Count

COUNT=3

Sets the number of occurencies of the event

Until

UNTIL=end date

Sets the date of the last occurrence of the time. Note that the time specification is in ISO format,
ie: YYYYMMDD‟T‟HHMMSS. So, Sep 21, 2004 16h30 is written as 20040921T163000

Note, a recurrency without COUNT or UNTIL specifier is considered an inifinite recurrency.

ByDay, ByMonth

BYDAY=series of days

BYMONTH=series of months

The ByDay and ByMonth specifiers set for which days or months the recurrency rule is applicable.
The series of days or months is a comma delimited series of the names of days using the 2 first
letters for days or month numbers.

BYDAY=MO,TU,WE,TH,FR,SA,SU
BYMONTH=1,2,3,4,5,6,7,8,9,10,11,12

Example:
RRULE:FREQ=WEEKLY;COUNT=9;BYDAY=TU,TH

This rule specifies a recurrencies for 9 occurencies weekly repeated on every Tuesday and Thursday
of the week.

RRULE:FREQ=DAILY;UNTIL=20051231T000000;BYMONTH=1,2

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

82 | P a g e

This rule specifies daily recurring events during the months january and february till Dec 31, 2005.

Optional specifier for ByDay

An optional specifier can be used for the day of weeks to indicate in what day of a month an event
should occur. This is done by prefixing the day name by the occurrency number of the day in the
month.
Example:
RRULE:FREQ=MONTHLY;COUNT=5;BYDAY=2WE

This specifies a recurrent event, every month, for 5 months on the 2nd Wednesday of the month.

Exceptions

Exceptions to recurrency rules are a list of dates for which the rule is not applicable. The
exceptions can be specified by adding these to the recurrency string as comma delimited ISO start
and end dates:

EXDATES:startdate1/enddate1,startdate2/enddate2, ….

Example:

EXDATES:20040913T000000/20040913T235959,20040914T000000/20040914T235959

The recurrency support in TDBPlanner is transparent. Recurring planner items have the same DBKey,
a public property TPlannerItem.Recurrent indicates whether an item is recurrent and the property
TPlannerItem.Recurrency holds the recurrency formula. The properties
TPlannerItem.RecurrentStart: TDateTime and TPlannerItem.RecurrentEnd hold the start and end
times of the first event in the recurrent series. When moving one of the items in a recurrent series,
all items in the series move along the same delta time.

Working directly with recurrency

The Planner components include a class to handle recurrency that can also be used directly to
calculate recurrency series. The TRecurrHandler class can be found in the unit PlanRecurr.pas. It
has properties to set the recurrency formula and recurrency series start and end time. It has the
method Parse to parse the recurrency formula and the method Generate to generate the series of
dates. The series of dates can be retrieved with the Dates collection. The Dates collection is a
collection of TDateItem that holds StartTime and EndTime of each item in the recurrent series. The
following code shows how it is used to fill a listbox with all dates in a recurrent series:

var

 pr: TRecurrencyHandler;

begin

 pr := TRecurrencyHandler.Create;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

83 | P a g e

 pr.Recurrency :=

'RRULE:FREQ=DAILY;UNTIL=20051231T000000;BYMONTH=1,2';

 pr.StartTime := EncodeDate(2005,1,1) + EncodeTime(10,0,0,0);

 pr.EndTime := EncodeDate(2005,1,1) + EncodeTime(12,0,0,0);

 pr.Parse;

 pr.Generate;

 listbox.Items.Assign(pr.DatesAsStrings);

 pr.Free;

end;

If the full recurrent series of a PlannerEvent needs to be calculated, ie. starting from a
TPlannerItem, this can be done with:

var

 pr: trecurrencyhandler;

 plIt: TPlannerItem;

 i: Integer;

begin

 pr := TRecurrencyHandler.Create;

 plIt := Planner.Items[itemindex];

 pr.Recurrency := plIt.Recurrency;

 pr.StartTime := plIt.RecurrentOrigStart;

 pr.EndTime := plIt.RecurrentOrigEnd;

 pr.Parse;

 pr.Generate;

 for i := 1 to pr.Dates.Count do

 begin

 listbox.Items.Add(FormatDateTime('dd/mm/yyyy hh:nn',pr.Dates[i -

1].StartDate) + ' to ' +

 FormatDateTime('dd/mm/yyyy hh:nn',pr.Dates[i - 1].EndDate));

 end;

 pr.Free;

end;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

84 | P a g e

Advanced TPlanner / TDBPlanner techniques

Linking TPlannerItems

A TPlannerItem can be linked in various ways to another TPlannerItem. Linking two items means
that if the user will move or size one item, the linked item can also move or size, depending on the
link type. A link is a relationship between two items. It is not possible to link one item to more than
one other item but chained linking is possible, even circular chained linking. Linking is achieved
through 2 TPlannerItem properties:

TPlannerItem.LinkedItem: TPlannerItem; defines to which the item is linked
TPlannerItem.LinkType: TPlannerLinkType; defines the type of the link

The LinkType can be:

ltLinkFull: both ItemBegin and ItemEnd are linked. This means that item duration is always
synchronised between the items. When the item moves or sizes, both begin and end of the linked
item will do the same move or size.
ltLinkBeginEnd: ItemBegin of the item is linked to the ItemEnd of the linked item. This means that
if the ItemBegin of the item changes, the ItemEnd of the linked item will change with the same
delta
ltLinkEndBegin: ItemEnd of the item is linked to the ItemBegin of the linked item
ltLinkEndEnd: ItemEnd of the item is linked to the ItemEnd of the linked item
ltLinkBeginBegin: ItemBegin of the item is linked to the ItemBegin of the linked item
ltLinkNone: the items are linked but in a loose relationship. This means that moving or sizing of
linked items will not affect the size or position of other items.

With linked items, it is possible that when selecting one item in a chain of linked items, all linked
items will become selected automatically. To enable this, set Planner.MultiSelect = true combined
with Planner.AutoSelectLinkedItems = true.

Example:

In this example, two events need to be planned: a release of the software and the shipping of
software to distributors. It is clear that shipping to distributors can only happen after the software
release and that if the software release is delayed, the shipping will be delayed as well. Therefore,
the two events are added in the planner with a link between the ItemEnd of the software release to
the ItemBegin of the software shipping.

var

 plIt1,plIt2: TPlannerItem;

begin

 plIt1 := planner1.CreateItem;

 with plIt1 do

 begin

 ItemStartTime := EncodeDate(2002,7,15);

 ItemEndTime := EncodeDate(2002,7,20);

 ItemPos := 0;

 Text.Text := 'Release of version 1.0';

 end;

 plIt2 := planner1.CreateItem;

 with plIt2 do

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

85 | P a g e

 begin

 ItemStartTime := EncodeDate(2002,7,21);

 ItemEndTime := EncodeDate(2002,7,22);

 ItemPos := 1;

 Text.Text := 'Ship CD and manuals';

 end;

 plIt1.LinkedItem := plIt2;

 plIt1.LinkType := ltLinkBeginEnd;

end;

The result in the planner grid is:

delaying the software release by 3 days automatically moves and delays the shipping:

Some additional methods are available on Planner level to facilitate handling item linking:

procedure LinkItems(par: TPlannerItemArray; Circular: boolean = false; LinkType:
TPlannerLinkType = ltLinkNone);

Sets up a link between all items in the array. By default, this is a chained link from item 0 in the

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

86 | P a g e

array to the last item. When parameter Circular = true, a circular chained link is created. The last
parameter sets the link type.

procedure LinkItems(par: TPlannerItemArray);

Breaks the link between all items in the array.

procedure SelectedLinkedItems(APlannerItem: TPlannerItem)

Selects all items that are linked (in chain) to APlannerItem

function FindItemLinkedTo(APlannerItem: TPlannerItem): TPlannerItem;

Returns the item that is linked to APlannerItem.

Optionally, the Planner can also visually show linked items by drawing an interconnection line
between linked items. This featured is enabled by setting Planner.ShowLinks = true. The color of
the interconnectionline between two items is set by PlannerItem.LinkColor.

Example:

var

 par: TPlannerItemArray;

begin

 Planner1.ShowLinks := true;

 with Planner1.CreateItem do

 begin

 itembegin := 2;

 itemend := 8;

 itempos := 0;

 Text.Text := 'Item 0';

 end;

 with Planner1.CreateItem do

 begin

 itembegin := 10;

 itemend := 14;

 itempos := 1;

 Text.Text := 'Item 1';

 end;

 with Planner1.CreateItem do

 begin

 itembegin := 16;

 itemend := 20;

 itempos := 0;

 Text.Text := 'Item 2';

 end;

 SetLength(par, 3);

 par[0] := Planner1.Items[0];

 par[1] := Planner1.Items[1];

 par[2] := Planner1.Items[2];

 Planner1.MultiSelect := true;

 Planner1.LinkItems(par);

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

87 | P a g e

 Planner1.AutoSelectLinkedItems := true;

 Planner1.SelectLinkedItems(Planner1.Items[0]);

end;

Setting background color for individual grid cells

If there is an additional need to set colors of planner grid cells other than through the Display
settings of PositionProps, this can be done with the property :

TPlanner.BackGroundColor[ACol, ARow: Integer]: TColor;

This sets the color for a given cell in the planner grid.

Overlappable background items

Normally, when adding a background item, this is by default a non overlappable item. Setting the
Background property to true automatically also sets the AllowOverlap property to false. A
background item cannot be selected, moved or sized. Background items are normally used to
indicate fixed time allocations, such as a time for lunch:

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

88 | P a g e

It can be convenient though to override this behaviour and create background items that only give a
visual hint, cannot be selected or edited and over which other items can be positioned. To create
such items, it is sufficient to reset the AllowOverlap property back to true after settting the
Background property to true. (Note that this is not possible at design time) The code for this is:

 with Planner1.CreateItemAtSelection do

 begin

 Background := True;

 // reset AllowOverlap to create overlapable background item

 AllowOverlap := True;

 Text.Text := '

This is background that can be ' +

 'overlapped !';

 Alignment := taCenter;

 Color := clYellow;

 end;

The yellow item created as such can be overlapped with normal TPlannerItem and its only function
is a visual hint as background in the planner grid:

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

89 | P a g e

Using a non-linear time axis in TPlanner

In some situations, it is not desirable that the time axis is divided in equal units. Image a school
where in the morning, lessons of 90 minutes are given, a 1 hour break follow and in the afternoon,
excersise courses are given in blocks of 1h 15 minutes. While the planner could be used in 30 minute
display mode to handle this, it leaves the possibility to schedule a lesson at invalid times or with
invalid lengths. With the TPlanner put in plCustomList mode, the possible times for scheduling an
event can be defined to avoid this.

To handle the plCustomList mode, the TPlanner has a property TPlanner.DateTimeList.

Following methods are defined:

TPlanner.DateTimeList.Clear; clears all datetime info from the list.
TPlanner.DateTimeList.Add(dt: TDateTime); adds a datetime value to the list.
TPlanner.DateTimeList.Insert(Index: Integer; dt: TDateTime); inserts a datetime value to the list.
TPlanner.DateTimeList.Delete(Index: Integer); deletes the datetime at position Index from the list.
TPlanner.DateTimeList.Items[Index]: TDateTime; returns the datetime values in the list.

Example: setup the TPlanner through the DateTimeList in plCustomList mode

// setup of the DateTimeList

with Planner.DateTimeList do

begin

 Add(encodetime(8,0,0,0));

 Add(encodetime(9,30,0,0));

 Add(encodetime(11,00,0,0));

 Add(encodetime(12,30,0,0));

 Add(encodetime(13,30,0,0));

 Add(encodetime(14,45,0,0));

 Add(encodetime(16,00,0,0));

 Add(encodetime(17,15,0,0));

end;

// setup of the number of cells to display and cellheight

with Planner.Display do

begin

 DisplayStart := 0;

 DisplayEnd := 7;

 DisplayScale := 60;

end;

This results in the planner as

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

90 | P a g e

When programmatically inserting an item, this can be done with:

 with Planner.CreateItem do

 begin

 itemstarttime := encodetime(11,0,0,0);

 itemendtime := encodetime(12,30,0,0);

 end;

Disjunct selection in the planner

It is possible to allow the user to select multiple disjunct cells in the planner. This enables the user
to insert multiple events in one go on different places in the planner.

Disjunct selection is enabled by setting Planner.DisjunctSelect to true and disjunct selected cells

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

91 | P a g e

are created by Ctrl & mouse click and drag in the planner. The disjunct selected cells can be
marked in a different color by setting the property DisjunctSelectColor.

After disjunct selection, the selected time spans in the planner can be retrieved with
Planner.Selections

This is a collection of TPlannerSelection objects. The TPlannerSelection object holds:

 property SelBegin: Integer;

 property SelEnd: Integer;

 property SelPos: Integer;

as such, each item in this collection holds the coordinates of the selected time spans.

Example:

This example code creates planner items for each disjunct selected time zone in the planner

procedure TForm1.Button1Click(Sender: TObject);

var

 i: integer;

begin

 for i := 1 to planner1.Selections.Count do

 with planner1.CreateItem, planner1.Selections[i - 1] do

 begin

 ItemBegin := selbegin;

 ItemEnd := selend;

 ItemPos := selpos;

 end;

end;

Skinning planner items

Through skins, it is possible to apply a skin for a planneritem. If the TPlannerItem.Shape property is
set to plSkin, it is displayed with the skin assigned to the planner.

A skin can be loaded from a file with

Planner.Skin.LoadFromFile(filename);

A planner skin file has the default extension .plskin and has the structure of an INI file.

Example:

This is an example skin file

[NORMAL]
TOP=tubeh.bmp
CENTER=tubec.bmp
BOTTOM=tubeb.bmp

[SELECTED]

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

92 | P a g e

TOP=tubehs.bmp
CENTER=tubec.bmp
BOTTOM=tubeb.bmp

[MARGIN]
X=4
Y=4
CAPTIONX=4
CAPTIONY=0

As can be seen from this file, the skin consists of minimum 3 bitmap files. A top bitmap that is used
for the item caption, a center bitmap that is used for the body of the item and a bottom bitmap
that is used for the bottom border. Different bitmaps can be set to show the item when it is
selected under the [SELECTED] section.

In addition, margins can be set for displaying the item text and item caption. These margins are the
extra space (in pixels) that the border of the skin bitmaps take.

The skin bitmaps are scaled in an intelligent way to fit the size of the planner items.

The caption skin bitmap and bottom border skin bitmap are scaled in following way:

The left half of the bitmap is drawn on the left side of the caption, the middle 2 pixels of the
bitmap are stretched to fill the full size of the caption between the left and right part of the
bitmap and the right half of the skin bitmap is drawn on the right side of the planner item.

To illustrate this:

The center bitmap is scaled both in vertical direction. The middle rectangle is filled with the skin
center bitmap middle pixel color.

Skin bitmap

Scaled to planner caption

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

93 | P a g e

Center skin bitmap

Scaled to planner item

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

94 | P a g e

TPlannerWaitList component

The TPlannerWaitList is a component that serves as a container for unallocated events. The
TPlannerWaitList is organised as a list that shows all items it contains. The items contained in the
component are in the Items collection that holds TPlannerItem class objects that are as such fully
compatible with TPlanner items.

This means that the items in the TPlannerWaitList will be displayed identical in the
TPlannerWaitList as in the TPlanner. The preferred way to move items from the TPlannerWaitList to
the TPlanner is by mouse drag & drop although scenarios with moving items by toolbar or menus
would be equally possible.

In order to implement drag & drop between TPlanner and TPlannerWaitList, a few events must be
implemented:

1) Making the TPlanner accept items dragged from the TPlannerWaitList

procedure TForm1.Planner1DragOver(Sender, Source: TObject; X, Y: Integer;

 State: TDragState; var Accept: Boolean);

begin

 Accept := (Source is TPlannerWaitList);

end;

2) Handling the drop on the TPlanner

procedure TForm1.Planner1DragDrop(Sender, Source: TObject; X, Y: Integer);

begin

 if (Source is TPlannerWaitList) then

 begin

 (Source as TPlannerWaitList).MoveToPlanner((Sender as TPlanner),(Source as

TPlannerWaitlist).ItemIndex,x,y);

 end;

end;

This code shows the TPlannerWaitList‟s method MoveToPlanner that transfers the item in the
waitlist to the planner at the coordinate x,y where the mouse was dropped. This method
MoveToPlanner will create a new event in the planner at mouse coordinates and assign all
properties of the waitlist item to it and finally destroy the waitlist selected item.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

95 | P a g e

The inverse operation requires no code. The TPlannerWaitList will automatically sense a drag
operation from the TPlanner component and when dropping the item, will take the necessary steps
to move the item from the planner to the waitlist.

Normally, during drag & drop the regular VCL drag cursor is shown. In addition, it is possible to show
the PlannerItem itself during the drag operation at the mouse cursor. To enable this, set
PlannerWaitList.DragItemImage = true.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

96 | P a g e

TPlannerMonthView & TDBPlannerMonthView
component

Overview

The TPlannerMonthView and TDBPlannerMonthView components are very similar and very
compatible with the TPlanner and TDBPlanner components. The TPlanner and TDBPlanner
components offer a one dimensional time axis, where the T(DB)PlannerMonthView offers the typical
monthly by week organised calendar view. Similar to the TPlanner, central to the
TPlannerMonthView operation is the collection of events: Items. This is a collection of TPlannerItem
objects (fully identical and compatible with TPlanner‟s TPlannerItem objects)

General operation

The Items collection is where the planner events are stored. The Items collection can hold events
for the current displayed month as well as months that are not being displayed. For optimum
performance, it is recommended for performance though that this Items collection is kept to a
minimal set of displayed items.

Creating an event in the PlannerMonthView can be done with:

 with PlannerMonthView1.CreateItem do

 begin

 ItemStartTime := Now;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

97 | P a g e

 ItemEndTime := Now + 2;

 Text.Text := '3 days holiday';

 end;

or creating the event on the selection date(s) with:

 with PlannerMonthView1.CreateItemAtSelection do

 begin

 Text.Text := '3 days holiday';

 end;

Deleting an event can be done with:

 PlannerMonthView1.FreeItem(myPlannerItem)

The properties of a TPlannerItem control the appearance and its behaviour in the planner. This
appearance and behaviour is identical as in the TPlanner and can be found in the chapter: „Inside
the TPlannerItem‟

DB PlannerMonthView operation

As the TDBPlannerMonthView can only display items in a month calendar, there is no need to
separate the DB interface in a different component like it is the case with TDBPlanner and its
TDBxxxSource components. The interfacing to the database in TDBPlannerMonthView is controlled
by the property DataBinding.

This class exposes following properties in the TDBPlannerMonthView:

AutoIncKey: Boolean : when true, the TDBPlannerMonthView does not generate unique keys for
items but uses the database autoincrement field value.

StartTimeField: string : fields that holds the start time of an event.
EndTimeField: string : field that holds the end time of an event
KeyField: string : field that holds the unique key value for an event
SubjectField: string : field that holds the subject of the event
NotesField: string : field that holds the description of the event
UpdateByQuery: Boolean : when true, TDBPlannerMonthView does not use its built-in direct DB
updating capabilities but requires that DB updates are performed by SQL commands from events.
These events are : OnInsertItem, OnUpdateItem, OnDeleteItem. This is for databases that can only
be updated through SQL commands.

Using the TDBPlannerMonthView with a database is as such easy. Connect the datasource and set
the fields with the DataBinding property. Activate the dataset and the events that should be
displayed in the current displayed month should appear.

Just like in the TDBPlanner with its TDBxxxSource components, events OnItemToFields,
OnFieldsToItem, OnTimeToFields, OnFieldsToTime are exposed to allow customizing how DB fields
are mapped on TPlannerItem properties and start or end time. These TDBPlannerMonthView events
are identical to equivalent TDBxxxSource events and the detailed use can be found in the section on
„TDBItemSource‟.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

98 | P a g e

Additional TPlannerMonthView capabilities

The PlannerMonthView has a few additional display capabilities explained here.

Week number display

When ShowWeeks is set to true, the week number is shown in a left column (width is controlled by
WeekWidth) The week number calculation starts from what is considered the first day of the year.
As this can be different for different countries and organisations, what is considered as the first day
of the year can be customized with the YearStartAt property. When week numbers are shown, full
weeks can be selected with a single click on the week number when the property WeekSelect is set
to true.

Maximum overlapped number of items

The property MaxItemsDisplayed controls how much overlapped events are displayed in a day cell.
By setting this value, it can be assured that events always have a minimum size and this visibility.
When more overlapping items are in a day cell, only MaxItemsDisplayed items will be visible at a
time. The other non displayed items can be made visible by scroll buttons. These scroll buttons
appear automatically for each week where days with more items are overlapping than can be
displayed. The scroll buttons appear in a right side column, made visible with ShowScrollColumn set
to true.

In this example, day 19 has 4 overlapping events where MaxItemsDisplayed is set to 3. As such scroll
buttons appear in the scroll column with the scroll button indicating that scrolling down is possible.

After clicking the scroll down button, the fourth overlapping item appears and the scroll up button
becomes highlighted indicating the scrolling up is possible:

Days before and days after the current month

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

99 | P a g e

By default, days in the month before the current displayed month and days in the month after the
current displayed month are shown. This can be disabled by setting ShowDaysAfter or
ShowDaysBefore to false. Also by default, clicking on days before the current month and days after
the current month, change the planner to the previous or next month. This can be disabled by
setting AutoChangeMonth to false.

Multiselect and disjunct selection

Selecting multiple days in a range or selecting disjunct days (with Ctrl – left click) is possible by
setting MultiSelect = true or DisjunctSelect = true.
The selected days in the PlannerMonthView can be retrieved through the Dates collection. This
example shows all selected days in a listbox:

 var

 i: integer;

 begin

 for i := 1 to PlannerMonthView1.Dates.Count do

 begin

 with Listbox1.Items do

 Add(DateToStr(PlannerMonthView1.Dates[i - 1].Date));

 end;

 end;

As such, it is possible to automatically create events at all selected dates with:

 var

 i: integer;

 begin

 for i := 1 to PlannerMonthView1.Dates.Count do

 begin

 with PlannerMonthView1.CreateItem do

 begin

 ItemStartTime := PlannerMonthView1.Dates[i - 1].Date;

 ItemEndTime := PlannerMonthView1.Dates[i - 1].Date;

 end;

 end;

 end;

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

100 | P a g e

Using TPlannerExport to export to Excel files

The TPlannerExport component is a component that is an interface between the T(DB)Planner
component and the Flexcel component suite to create Excel sheets from the information visualized
in the T(DB)Planner. If you have not installed the Flexcel component suite, it can be obtained from
http://www.tmssoftware.com/site/flexcel.asp

The TPlannerExport component encapsulates all code required to use Flexcel to create rich Excel
files representing as close as possible what is visually displayed in the T(DB)Planner and offers a
great way to share schedules with other people who might not have access to the application using
the T(DB)Planner component.

Installing

When you have installed both T(DB)Planner and the Flexcel component suite, add the file
PlannerExportReg.pas to your T(DB)Planner package file. Delphi or C++Builder should be smart
enough to add a reference to the Flexcel package in the requires list. If not, add a reference to this
package file as well. After compiling, the TPlannerExport should appear on the component palette
in the TMS Planners tab.

Basic use

Drop TPlannerExport on the form, set its Planner property to the T(DB)Planner on the form and call
following code to generate the XLS file:

 plannerexport1.BeginExport;

 plannerexport1.Export('schedule',1,1,false);

 plannerExport1.Save('myplanner.xls', ExportType_Xls);

 plannerExport1.EndExport;

Alternatively, the TPlannerExport could also be created & used fully runtime like the code:

var

 Wpe: TPlannerExport;

begin

 Wpe := TPlannerExport.Create(nil);

 Wpe.AllowOverwritingFiles := true;

 try

 Wpe.Planner := Planner1;

 Wpe.BeginExport;

 try

 Wpe.Export('MySchedule', 1, 1, true);

 try

 Wpe.Save('Planner.xls', ExportType_Xls);

 ShellExecute(0, 'open','Planner.xls','','',SW_SHOWNORMAL);

 finally

 DeleteFile('Planner.xls');

 end;

 finally

 Wpe.EndExport;

 end;

http://www.tmssoftware.com/site/flexcel.asp

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

101 | P a g e

 finally

 Wpe.Free;

 end;

end;

Controlling how export is done

There are a few properties that you can set on the TPlannerExport to change its behaviour. This is a
brief summary of how you can use them.

First of all, you can set where on the generated file the planner will go. This is set by the
parameters on the line: exporter.Export("2005 Plan", 1, 1, true);

Here we are exporting to cell (1,1) (A1) but we could send the exported planner to any cell on the
spreadsheet. With the last parameter, you can also control if you want to insert the planner into a
spreadsheet (moving the rest of the sheet down) or just replace the existing cells.

You could export two different planners to the same sheet, by calling this line more than once:

exporter.Export("2005 Plan", 1, 1, true);

exporter2.Export("2005 Plan", 1, 1, true);

Important Note: When you export a planner to excel, columns are created and resized to fit the
events. For example, a planner column with three overlapping events would have three
corresponding columns on Excel, while the next planner column might have only one corresponding
column on Excel.

If you try to put two planners one above the other, exporting the second planner will probably
break the first one, as columns will be resized again. One way to avoid this is to set the
MinimumColumnCount property of the TPlannerExport to the maximum expected overlapping
events. On a more general case, the best solution is probably to export the planners to different
worksheets:

exporter.Export("sheet1", 1, 1, true);

exporter2.Export("sheet2", 1, 1, true);

Other properties you might want to look for are ZoomX and ZoomY. On normal use, TPlannerExport
tries to match the pixels on the planner to the pixels on Excel. But sometimes this is no good
enough, because not the browser nor Excel use real pixels as their basic units, and the result might
depend of the resolution, big fonts, etc. Or you just might want to make the exported planner
smaller/larger than the original. By changing these two properties you can easily achieve this. And,
since we are speaking of xls files, you can also fit the planner on one page for example, as it is
discussed on the next section.

Customizing the exported file

As it has been mentioned before, we try not to cut corners on what you can do on the exported file,
so the original FlexCel objects used by the TPlannerExport are available for you to do further
customization.

There are actually two places where you can customize the output:

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

102 | P a g e

1) Before exporting.

One of the easiest ways to customize the export is not to start from a blank file. If you use:

exporter.BeginExport("template.xls");

instead of

exporter.BeginExport();

TPlannerExport will draw the planner over an existing template. You could have the company logo
on that template, define headers and footers, or do a lot of work that might have to be done
manually by code.

One often overlooked big advantage of using a starting template is that your users might be able to
modify it without modifying the code. If for example the company logo changes, the only thing you
need to do is to edit the template and change it, no need to touch the code.

Important Note: When you export, the columns and rows on the template will be resized to match
the needed sizes for the planner. This might alter the look of your template, so it is a good idea to
place things on column A, and export the planner to column B.

2) After exporting the xls file.

You can use the XlsFile object published by TPlannerExport to further modify the template once it
has been generated.

For example, the following code would customize the exported xls file so it prints on one sheet
wide by one sheet tall:

var

 Wpe: TPlannerExport;

begin

 Wpe := TPlannerExport.Create;

 Wpe.AllowOverwritingFiles := true;

 Wpe.Planner := Planner1;

 Wpe.BeginExport;

 Wpe.Export("2005 Plan", 1, 1, true);

 Wpe.Xls.PrintNumberOfHorizontalPages := 1;

 Wpe.Xls.PrintNumberOfVerticalPages := 1;

 Wpe.Xls.PrintToFit := true;

 Wpe.EndExport();

end;

Note that this is equivalent to using a template (as in method 1) where the template has been
configured on the Page->Setup dialog from Excel.

You have the full XlsFile object exposed here so you can do virtually anything with the file, insert
cells, modify values, delete sheets, etc. The XlsFile object is documented on FlexCel
documentation.

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

103 | P a g e

Syncing two Planner instances

Sometimes it can be useful to use more than one Planner and bind some information with one
Planner and other information with a second instance of a Planner. Then it can still be desirable to
treat the view as a single Planner. That means when the user scrolls in one Planner along the time
axis, a second Planner instance automatically scrolls the same way along the time axis. With a
simple configuration, it is possible to synchronize two Planners this way. The settings need to be
done under Planner.SyncPlanner. Set the instance of the second Planner to synchronize with via:
Planner.SyncPlanner.Planner and the type of synchronization by enabling one of the 4 options:

ScrollVertical: when true, both controls will synchronously scroll vertical
ScrollHorizontal: when true, both controls will synchronously scroll horizontal
SelectionColumn: when true, the selection will be synchronously in the same column
SelectionRow: when true, the selection will be synchronously in the same row

This code sets up the synchronisation between two Planner instances.

begin

 planner1.SyncPlanner.Planner := planner2;

 planner1.SyncPlanner.ScrollVertical:= true;

 planner1.SyncPlanner.SelectionColumn := true;

 planner1.SyncPlanner.SelectionRow := true;

 planner2.SyncPlanner.Planner := planner1;

 planner2.SyncPlanner.ScrollVertical:= true;

 planner2.SyncPlanner.SelectionColumn := true;

 planner2.SyncPlanner.SelectionRow := true;

end;

With some further customization with code:

begin

 planner1.ScrollBars := ssNone;

 planner2.ScrollBars := ssVertical;

 planner2.Sidebar.Visible := false;

 planner1.NavigatorButtons.Visible := false;

 planner2.NavigatorButtons.Visible := false;

 planner1.Caption.GradientDirection := gdVertical;

 planner2.Caption.GradientDirection := gdVertical;

end;

this now results in:

TMS SOFTWARE
TPLANNER - TDBPLANNER

DEVELOPERS GUIDE

104 | P a g e

