217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

TALON SRX / Victor SPX Software
Reference Manual

Revision 2.0

LTR

EI.EI:TEI:INII:E

Cross The Road Electronics

wWww.ctr-electronics.com

Cross The Road Electronics Page 1 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

Table of Contents

1. CAN DUS DEVICE BASICS ...ceeviiiiiiiiiiiiiiiiiiiiie ittt ettt ettt et e e e e e e e e e e e e e e e eeeeees 10
1.1. Supported Hardware PlatfOrmMsoouiiiiiii i aae s 11
1.1.1. Cross The Road Electronics HERO Control SYstemccccceeivieeiiiiiiiiiiieii e, 11
1.1.2. robORIO FRC CONtrol SYSTEMccevviiiiiiiiiiiiiiiieeiee ettt 11
2. roboRIO Web-based Configuration: Firmware and diagnoStiCSccuvvvieiiiieeeiiiviiicieee e, 12
2.1. DEVICE ID TBNGES. ... a e 13
2.2. COMMON ID TAIONS ...ttt e e e e e e e e e e e e e r e e e e e e e aaae 14
2.2.1 — LIGNT DEVICE LEDeutiiiiiiiiiiiiieiiiiiiti et 15
2.3. Firmware Field-upgrade a Talon SRX / VIiCtor SPXooviiiiiiiieecciiee e 16
2.3.1. When | update firmware, | get “You do not have permissions...”cccevvvvvvvnnnnn. 18
2.3.2. What if Firmware Field-upgrade is interrupted?...........ooviiiiiiieeiiieeieeee e, 20
2.3.3. Other Field-upgrade Failure MOUES...........oovvuiiiiiii e 21
2.3.4. Where t0 get CRF fll@S7uuiiiiiiiiiiiiiiiti b eeennnnnene 22
2.4, SEIF-TESE ettt e et e e e e e e e e e e 23
2.4.1. Clearing SHCKY FAUITSuuuuumiiiiiiiiiiiiiiiiiii e seeeeeneennne 25
2.5, CUSEOM NAIMIES ...ttt ettt e e et e e et e e e e e e e e rrr s e aees 26
2.5.1. Re-default CUSTOM NAMEuiiiiiiiiiiiiiiiii bbb ebnennennnnes 27
3. Creating a Talon Object (and the DASICS)covuiiiiii i 28
3.1. Programming APl and DEVICE ID.......cccooiiiiiieeeeeeeee e 28
3.1.1 Including LibrarieS (FRC) ... 28
3.1.2 ConfiIguration APlo e 29
3.2. New Classes/Virtual INStIUMENTS.......coooieeeee s 30
3.2. 1 WPILIB Class iNtegrationccuuuuieiiieeeiieiiiieie e e e eeeeeettee s e e e e s e eeartaa e s e e e e e e eeeraeaanans 30
R J 2 - 1o Y4 | PP 30
I T O o PP PPTTRTUPPPPTRRPPIN 31
Bu204, JAVA ... et a et e e e 31
3.3. Setting Output Mode and VAIUEcooo i 32
G0 Tt R I= Yo Y41 PP 32
T T O e PP 32
TG TR T - |- LU PP UPPPTTROPPIN 32
3.3.4. Check Control Mode With Self-TeST.........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 32
3.4. WPILID RODOIDIIVE ClaSSo 33

Cross The Road Electronics Page 2 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

70t O = Y | Y PR 33
K B O PP PP PP PP R PPPPPPN 33
B3, JAVA et et e et e e et e et et e e et e aaaa e aaaes 33
4. Limit Switch and Neutral Brake MOE.............ocuiiiiiiiiiiiii e 34
4.1, DEfAUIL SEEINGS ..o i 34
4.2. roboRIO Web-based Configuration: Limit Switch and Brakecccoooi, 35
4.3. Overriding Brake and Limit SWitch With APL.............oooiiiii e 36
2 0t O 1= Y Y PP 37
R J R O OO PP PP PP PPPPPPN 37
G T T - |- LU TT R UPPPRTRROPPIN 38
5. Getting Status and SIgNalS.........ccooiiiiiiiiiii e 39
LG 00 O 1=V)Y 4 S 40
I O TSP 40
R TN - AV PSPPSR 40
6. Setting the RAMIP RALEo 41
8.1, LADVIEWV ..ttt 41
L O o - Y - U 41
6.3. Web-based configuration lImitationS..............oouiiiiiiii e 42
7. Feedback Device (Sensor FEEdDACK)cooioiiiieeeeeeeee e 43
4% T = 1o)Y TR 43
A O O 43
A TN - AV PP PP 44
7.4. Correcting sensor direction, Dest PractiCes.ccoooeeoioieeeiee e 45
7.5. Supported FEedbDaCK DEVICEScccooiieieeeeeee e 46
A T T O TN = To | -1 (U YU UUPPPPPRPTRR 46
7.5.2. Analog (Potentiometer / ENCOUEN)uuuuuriiiiiiiiiiiiiiiiiiiiiieiiiiiiiieeeeeeeeseeeeeeeeeeieeneeneee 46
7.5.3. PUISE Width DECOUEN........eiiiiiiiieeiiiiii ettt e e e e e e e 47
7.5.4. Cross The Road Electronics Magnetic Encoder (Absolute and Relative).................. 47
7.6. Multiple Talon SRXS and SiNGIE SENSOToeuiiiiiiiee e e e 49
7.7. Pulse Width - Checking Sensor Health............coooo oo, 49
7.8. VelOCItY MEASUIEMENT.ttt e ettt e e e e e e e e eaata e e e e e e e e eeeeennaaeeeaaens 50
7.8.1. Changing Velocity Measurement Parameters.oooouuiiiiiiieeeiieiiicaee e 50
7.8.2. RecOMMENEU PrOCEAUIEuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieebeaeb bbb eseaeesesessesnnnnnees 52

Cross The Road Electronics Page 3 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

7.8.3. Self-TesSt VElOCItY SEHNGSuuuuuiiriiiiiiiiiiiiiiiiiiiiieiii e 53
7.9. Tachometer MEASUIEMIENTuiiiiiiieiiiiiit ittt e e e e e s r e e e e e e aaes 54
7.9.1. Tachometer Measurement — LADVIEWuuiiiiiiiiiiiiiiiiiiiiiiiiineiiiiniieeeneeneeeees 54
7.9.2. Tachometer MeasUIrEmMENT — JAVAuuiiiiiiiiiiiiiiiiiieeee e ettt e e e e e e a e e e e 54
7.9.2. Tachometer MeasuremMeENt — CH. ... uuuuiuiiiiiiiiiiiiiiiiiiieiie bbb eneeanennne 55
8. SOTt LIMITS .. 56
8. L. LADVIEWV L. 57
C J R O TP UPPTRT 57
8.3, JAVA 57
9. SPECIAI FRAIUIMNES ... e e e e e e e e e 58
O.1. FOUOWET IMOTE ...ttt ettt e e e e e et e e e e e e et e e e e e e e e aaans 58
S 00 IRt I 1= Yo Y 1 PP 58
8 I R O TP TP UPPPPTR 58
S TR G O - 1 - PP 58
9.1.4. Correcting FOIOWET DIF€CHIONuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieb bbb aeeeeeeeeeeeeennne 59
IV o] |- To [@do] 1 41 01T aTST=1 1 o] o [P 60
S Nt R I- Vo)Y 1 PP 60
S I O TP P PRSPPI 61
S I T - |V PP PPURPPPPPRPTTR 61
0.2.4, Self-T S ittt e e e e e e e e 61
0.3, CUITEINTE LTS .. a e aaeas 62
9.3.1. Current Limit — LADVIEWoooiiiiiiiie et 62
9.3.2. CUITENT LIMIE — Crbrh oottt 62
9.3.3. CUITENT LIMIT — JAVA ...ttt 62
10. Control Modes (ClOSEA-LOO0OP) ... i e e e e e e e e eaaeaaaas 63
10.1. Position Closed-Loop CONrOl MOUEcoviiiiiiiiiiiiiiiiiiiiiieeeeeeeeee ettt 64
10.2. Current Closed-Loop CONtrol MOGE..........ciiieiiiiiecee e 64
10.3. Velocity Closed-Loop Control MOAEcoviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 65
10.4. Motion Profile CoNtrol MOUEooviiiiiiiiiiiieiieeeeeee ettt 65
10.5. Peak/NOMINGI OULPULeviiiiiiiiiiiiiiiiieiiee ettt ettt ettt e e e e e e e e eeeeees 66
10.5.1. Peak/Nominal Closed-Loop Output — LabVIEWcoooiiiiiiiiiiiieiice e 67
10.5.2. Peak/Nominal Closed-Loop OUIPUE — Ct..oeiiiiiiiiiii e 67
10.5.3. Peak/Nominal Closed-Loop OUIPUL — JAVA..........ccuvriiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeee 67

Cross The Road Electronics Page 4 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

10.5.4. Peak/Nominal Closed-Loop Output — Web based Configuration Self-Test 67
10.6. Allowable CloSEU-LOOP EITOr.......ccciiiieiiie e e e e e e e e e e eaneeaas 68
10.6.1. Allowable Closed-Loop Error — LADVIEWcoooviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee 68
10.6.2. Allowable ClosSed-Lo0P EOr — CH ..uuuiii et e e e e aanees 69
10.6.3. Allowable Closed-Loop ErfOr — JAVAccovvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 69
10.6.4. Allowable Closed-Loop Error — Web based Configuration Self-Test....................... 69
OBV, fo]To] g W\Y, F=To [l @do] a1 (o] N 1Yo o [TP 70
11. Motor Control Profile PArametersoeivviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee ettt 72
11.1. Persistent storage and Reset/Startup behaviorccoviviiiiiiii e, 73
i B 1] o =Tod 1] g To RS (o 4 F= L PP PPPPPPPPPPPP 75
12. Closed-Loop Code Excerpts/Walkthroughs............couuiiiiiiiiiicci e 76
12.1. Setting Motor Control Profile Parametersouvvvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 76
2 0 O = o A | PP 76
N R O o PSPPSR 77
Nt G T -\ 7 PSPPSR 77
12.2. Setting/Clearing Integral Accumulator (I ACCUM)cooieieiiiiiiiiiiie e 77
12.2. 0. LABVIEW ...t ettt e e e e e ettt a e e e e e e e e e aat i a e e e e e e aannes 77
12.2.3. JAV@ .. enne 78
R O PSSP PP P PP PPRPPPPPRTPTN 78
12.2.3. Is Integral Accum cleared any other time?..........ccccoeii i e, 78
12.3. Current Closed-Loop Walkthrough — LADVIEWccooiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeee 79
12.3.1. Current Closed-Loop Walkthrough — Collect Sensor Data — LabVIEW 79
12.3.2. Current Closed-Loop Walkthrough — Calculating Feed Forward— LabVIEW 79
12.3.3. Current Closed-Loop Walkthrough — Dialing Proportional Gain — LabVIEW 82
12.4. Velocity Closed-Loop Walkthrough —Javacccceeiiiiiiiiiiiici e 84
12.4.1. Velocity Closed-Loop Walkthrough — Collect Sensor Data — Java..............ccccccc..... 84
12.4.2. Velocity Closed-Loop Walkthrough — Calculating Feed Forward— Java.................. 85
12.4.3. Velocity Closed-Loop Walkthrough — Dialing Proportional Gain — Java.................. 87
12.5. Velocity Closed-Loop Example — LabVIEWooouiiiiii e 88
12.6. Motion Magic Closed-Loop Walkthrough — Java.............cceeeviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeee 89
12.6.1. Motion Magic Closed-Loop Walkthrough — General Requirements......................... 90
12.6.2. Motion Magic Closed-Loop Walkthrough — Collect Sensor Data — Java 91
12.6.3. Motion Magic Closed-Loop Walkthrough — Calculate F-Gain — Java....................... 93

Cross The Road Electronics Page 5 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.6.4. Motion Magic Closed-Loop Walkthrough — Initial Cruise-Velocity/Acceleration —

JAVA e 94
12.6.5. Motion Magic Closed-Loop Walkthrough — P-Gain — Java...........cccccevvvviviiiinnnnnnnnn. 96
12.6.6. Motion Magic Closed-Loop Walkthrough — D-Gain — Javaccccevvvvvvniieeennn.. 100
12.6.7. Motion Magic Closed-Loop Walkthrough — I-Gain —Java..........cccccvvvveiiiiinnnnnnnnn. 101
13. Setting SENSOr POSILIONcuuiiiiii i e e e e et e e e e e e eeeaaa s 102
13.1. Setting Sensor Position — LADVIEWcooiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 102
13.2. Setting SeNSOr POSItION — CHF ..o e e e e e e e e e aaaaas 102
13.3. Setting SeNSOr POSItION — JAVA.........cuuuiiiiiiiieeeieeiiies e et e e e e e e e e e e eaeeaaas 102
13.4. Auto Clear Position using INAeX PiNcoooiviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 102
13.4.1. Setting Sensor Position — LADVIEWccoooi i 103
13.4.2. Setting SEeNSOr POSITION — JAVA........ccviiiiiiiiiiiiiiiiiiiiieeeiieeee ettt 103
13.4.3. Setting SeNSs0or POSItION — CH ..o 103
I e 10 | = Vo L PP P PP PPPPPPPPPPPP 104
14.1. Fault Flags - LADVIEWcouii ettt e et e e e e e e e eaaaa s 104
I - 10 | o F= o RS O PP PPPPPPPPPPPPPPP 105
I B = TH]| o = To TR - Y- USSP 106
I e TN || o = Vo SR O 1= = T o o S 106
15. CAN bus Utilization/ErTOr MELICSevveiiieiiiiiiiiiiiiiiieeeeee ettt 107
15.1. HOW Many TalONS CAN WE USE?......coeeiiiiieiieeeeeeeetiie e e e e e e e e eetttas s e e e e e e e eeattaa e e e e eeeesassaannnns 108
16. Troubleshooting Tips and CommMON QUESHIONS...........cuvviiiiiiiiiiiiiiiiiiiieiiieeee et 109
16.1. When | press the B/C CAL button, the brake LED does not change, neutral behavior does
MO CRANGE. .ttt 109
16.2. The robot is TeleOperated/Autonomous enabled, but the Talon SRX continues to blink
0range (AISADIEA). ... 109
16.3. When | attach/power a particular Talon SRX to CAN bus, The LEDs on every Talon SRX
occasionally blink red. Motor drive SEemMS NOIMALccooiiiiiieeeeeeeeee e 109
16.4. If | have a slave Talon SRX following a master Talon SRX, and the master Talon SRX is
disconnected/unpowered, what will the slave Talon SRX dO?.........cccovvviiiiiiiiiieeeceeiiee e, 109
16.5. Is there any harm in creating a software Talon SRX for a device ID that’s not on the CAN
bus? Will removing a Talon SRX from the CAN bus adversely affect other CAN devices?.....110
16.6. Driver Station log says “Firm Vers could not be retrieved”.ccoooiiiiiiiiiiiiiiineen. 110
16.7. Driver Station log says “Firmware too old”..............cccciiiiiiiiii 110

16.8. Why are there multiple ways to get the same sensor data?
GetSensorCollection () .GetEncoder () versus GetSelectedSensor () ?.vivveevenenne. 110

Cross The Road Electronics Page 6 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

16.9. All CAN devices have red LEDs. Recommended Preliminary checks for CAN bus. 111

16.10. Driver Station reports “MotorSafetyHelper.cpp: A timeout...”, motor drive no longer
works. roboRIO Web-based Configuration says “No Drive” mode? Driver Station reports error -

O PRSPPI 112
16.11. Motor drive stutters, misbehaves? Intermittent enable/disable?ccoviiiinnnnnnn. 112
16.12. What to expect when devices are disconnected in roboRIO’s Web-based Configuration.
= 1 L=T0 BT = =T PR 113
16.13. How do | get the raw ADC value (or voltage) on the Analog Input pin?ccoevvvnnnnn. 114
16.14. Recommendation for using relative SENSOIS.cvviviviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 114
16.15. Does anything get reset or lost after firmware updates?........cccooeevvviiiiiiiiii e, 115
16.16. Analog Position seems to be stuck around ~100 UNItS?uievieeeiiiiiiiiiiine e 115
16.17. Limit switch behavior doesn’t match expected settings..........ccccooeeeiiiiiiiiii s 116
16.18. How fast can | control just ONE Talon SRX?........covviiiiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeee 117
16.19. Expected symptoms when there is excessive signal reflection.ccccoooeeiiiiiiiiinnnnnn. 117
16.20. LabVIEW application reads incorrect Sensor Position. Sensor Position jumps to zero or
IS MUSSING COUNES. ..eiititii i e e ee i ettt s e e e e e ettt s s e e e e e e e e ettt e e e e eeeeeeas et e e e eeaeesesssena s eeeaeeesssnennnnnns 117
16.21. CAN devices do not appear in the roboRIO Web-based config.cccccevvviiviiiiiinnnnnnn. 118
16.22. When | make a change to a setting in the roboRIO Web-based configuration and
immediately flash firmware into the Talon, the setting does not stick?...............cccccviiiiiiiiinnns 118
16.23. My mechanism has multiple Talon SRXs and one sensor. Can | still use the closed-
[0OP/MOLION-PrOfile MOAEST ... ettt senees 119
16.24. My Closed-Loop is not working? NOW WNat?ccooiieeiiiiiiiiiiee e 119
16.24.1. Make sure Talon has latest firmMWare.ooouviiiiiiieeeeceec e 119
16.24.2. Confirm sensor is in phase With MOtOr. ... 119
16.24.3. Confirm Slave/Follower Talons are drivingccccceeieeeiiiiiiiiiiiine e 119
16.24.4. Drive (Master) Talon manually ... 119
16.24.5. Re-enable CloSEA-LO0OP ...uuuiiiiiiiiiieeiee e 119
16.24.6. Start with @ SIMPIE QaIN SEL.......coevviiiiiiiiiiiiiiiiii e 120
16.24.7. CoNfirM gAINS @re SBL.....uuuuiii i e e e e e e 121
16.25. Where can | find application @XampleS?ouuviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 121
16.26. Can RobotDrive be used with Talon SRXs? What if there are six Talons? 122
16.27. How fast does the closed-100p rUN? ... 123
16.28. Driver Station log reports: The transmission queue is full. Wait until frames in the queue
have been SENt and TrY GQAIN.u i nanne 123
17. Units and Term DefiNitiONSii it e e e e e e e ara s 124

Cross The Road Electronics Page 7 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

17.1. Signal Definitions and SENSOI UNIESooiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee et 124
17.1.1. (Quadrature) Encoder POSItION............uuiiiiii e 124
17.1.2. Analog (ENcoder/POtENLIOMELEN)covvviiiiiiiiiiiiiiiiieieeeeeeee ettt 124
A0t G TR 1V T (o] o U o 11 | PP 124
17.1.4. (OPEN-LOOP) RAMP .oeiiiiiiiiiiiieiiiiee ettt e 125
17.1.5. (CloSEd-LO0P) RAMP ..coiiiiiiiiiiiiiiiiieeee ettt ettt 125
17.1.6. Integral ZONE (I ZONE)......ouuuiiiii e e e e e e et e e 125
17.1.7. Integral Accumulator (I ACCUMY)ovvviiiiiiiiiiiiiiiieeee ettt 125
17.0.8. MOTOT INVEIT...coiiiiiiiiiiiiiiiiiiiieeeeeeeeee et 125
17.1.9. SENSON PRESE ...cooiiiiiiiiiiiiieieeeeeeeeee ettt 125
A T O I @ o 7= To I o o] o I = 1 o) (PSSP 125
17.1.11. ClOSEA-LOOP QAINS ...ceviiiiiiiiiiiiiiiiiiiiiiieee ettt ettt ettt e e e e e e e e e e e e e eeees 126

17.2. SENSON RESOIULIONS ...ttt e e e e e e e e e e e e e e anennees 126

18. How is the closed-100p implemMENTEA?ovvviiiiiiiiiiiiiiiieeeeeeee e 127

19. MOLOr SAFELY HEIPETceiiiiiiiiiiiieeieeee ettt 129

19,1, BESE PIrACLCES ..ovvuuiiii i e e et e e e e e e e e e et e e e e e e e e e ettt a e e e e e e arrr 129

19.2. CH4 @XAMPIE...coeiiiiiiiiiiiieeee e 130

19.3. JAVA EXAMPIE ..o e e e e e e e a 130

19.4. LADVIEW EXGMPIE ...ccoiiiiiiiiiiiiiiiiieeeeeeeee ettt 130

19.5. RODOIDIIVE ...ttt e e e e e e e e e e e e 130

20. Going deeper - How does the framing WOIK?ccooooiioiioeeeeeeeeeeee e 131

20.1. GENETAI STALUS Leeeiiiiiiiiiiiii ettt e e e et e e e e e e e e e e e e e e e e s s b nr e e e e e e e e aann 131

20.2. FEEADACKOD STAUS 2 ... 131

20.3. Quadrature ENCOUEI StAtUS 3........uuuiiiiieeiiiieiiiiss e ettt e e e e e e eeetna e e e e e e e eeaaeeaaaaaeees 131

20.4. Analog Input / Temperature / Battery Voltage Status 4...........ccoovvviiiiiiieeeecceeiiceee e, 132

20.5. PUISE WL STATUS 8o 132

20.6. Targets Status 10 (Motion Profile and Motion MagicC)cccooeeeiiiiiiiiiiiiiiceee e, 132

DA o 1T O 0 = 1 10t I PP 132

20.8. Modifying Status Frame Perioqcooo e 133
PO TR O RN 133
20.8.2. JAVA .t e et et a e e e et e eaa e naaans 133
20.8.3. LADVIEW ...ttt ettt e e e et eaaeaeeaee 133

20.9. Control Frame (CONMIOl 3) ... 134

Cross The Road Electronics Page 8 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

20.10. Modifying the Control Frame Perioduuuiiiii i 134
20.10.1. Modifying the Control Frame Rate — CH+ciiiiiiiiiiieiiiiie e e 134
20.10.2. Modifying the Control Frame Rate — Javauuuuiiimiiiiiiiiiiiiiiiiiiiiiiiiiinnnnennnes 134
20.10.3. Modifying the Control Frame Rate — LabVIEWcccoiiiiiiiiiiiiiiieie e, 134

A B e ¥ [Tt T = | T] = o g U 135

21.1. roboRIO power up: User should manually refresh the web-based configuration after

reDOOLING FODORIO. ... 135

21.2. Phoenix 5.1.3.1: Motion profile disabled in 2018 kickoff firmware.cccccceeeenneni. 135

21.3. Two sets of Param declarations for auto-clear position parameters.............ccccccceeeeeeenn.n. 135

21.4. getClosedLoopTarget() return miliampPeres.cccooeiiiiiiieee e 135

21.5. Auto-clear position feature on Quadrature Idx only works for rising edges. 136

22. CRF Firmware Version INfOrmMationoeuuuueiiiie i e e e e e 137

23. Document ReVision INfOrMAtioNccooeiiiiiiiieeeeeeeeee e 137

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation
possible to ensure successful use of your CTRE products. To this end, we will
continue to improve our publications, examples, and support to better suit your
needs.

If you have any questions or comments regarding this document, or any CTRE
product, please contact support@crosstheroadelectronics.com

To obtain the most recent version of this document, please visit
www.ctr-electronics.com.

Cross The Road Electronics Page 9 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

1. CAN bhus Device Basics

Talon SRX, when used with CAN bus, has similar functional requirements with other FRC
supported CAN devices. Specifically, every Talon SRX requires a unique device ID for typical
FRC use (settings, control and status). The device ID is usually expressed as a number
between ‘0’ and ‘62’, allowing use for up to 63 Talon SRXs at once. This range does not
intercept with device IDs of other CAN device types. For example, there is no harm in having a
Pneumatics Control Module (PCM) and a Talon SRX both with device ID ‘0’. However, having
two Talon SRXs with device ID ‘0’ will be problematic.

Talon SRXs are field upgradable, and the firmware shipped with your Talon SRX will predate
the “latest and greatest” tested firmware intended for FRC use. Firmware update can be done
easily using the FRC roboRIO Web-based Configuration.

Talon SRX provides two pairs of twisted CANH (yellow) and CANL (green) allowing for daisy
chaining. Unlike previous seasons, the CAN termination resistors are built into the FRC robot
controller (roboRIO) and in the Power Distribution Panel (PDP) assuming the PDP’s termination
jumper is in the ON position.

More information on wiring and hardware requirements can be found in the Talon SRX User’s
Guide.

This guide references Talon SRX in most of the content, however much of this content also
relates to Victor SPX.

Cross The Road Electronics Page 10 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

1.1. Supported Hardware Platforms

1.1.1. Cross The Road Electronics HERO Control System
The CTR HERO Control System board allows developers to utilize all features of the Talon
SRX. Itis meant for education, custom development, and integration of Talon SRX into existing
applications.
The HERO also provides a method for field upgrading Talons to non-FRC firmware. Itis the
ideal development kit for learning and integrating the Talon into custom applications!

Applications are developed in Visual Studio 2017 (C#) using .NETMF framework.

-
Be sure to look for the “w™ for HERO related tips.

1.1.2. roboRIO FRC Control System
The only legal robot controller for FRC competition. This requires the FRC version of Talon
SRX firmware. The roboRIO supports CAN bus and provides a Web-based configuration for re-
flashing and diagnostics.

Be sure to look for the A‘> for FRC related tips.

Cross The Road Electronics Page 11 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

2. roboRIO Web-based Configuration: Firmware and
diagnostics

A useful diagnostic feature in the FRC Control system is the roboRIO’s Web-based
Configuration and Monitoring page. This provides diagnostic information on all discovered CAN
devices, including Talon SRXs. Talon SRXs can also be field-upgraded using this interface.

&* HERO LifeBoat Imager — O X

e oo This feature is accessible by entering the mDNS name

Step 1: Insert USB to roboRI0.

This section of the tool wil install the Web-based

configurtion e mbRIO. e gl il of your robot in a web browser, typically roborio-XXXxX-
a .,“3@";;.,, ilesystem, and can be restored with the . .
e frc.local where XXXX is the team number (no leading

roboRIO. This is necessary for Talon SRX.W;:S):‘E P
ChNr and Pt MU zeros for three digit team numbers).

Be sure to not changs the default admin credertials of the
roboRIO {usemame is “admin®, password s an empty sting ")

Sep 2 Fos Ul o oot Web-based Configuration is not installed by default.
O — User must install Phoenix Framework and run the

e e yaniocarl & Robot Controller is Updated —] X ” . . .
tents o o e roboRIO-Upgrade procedure in Phoenix LifeBoat. The

Wikten file: AVar/1ocal/l prasnis ey e
Wiiden file: /var/0Cal/] crermmare sce o addes

Wit i Aar GGl .y s s cogeoss i FRC 3ppticatio ol s s P installer can be found at ctr-electronics.com

itten fle: fustocald] oo

w’!ﬂe"ﬂe ;Wﬂ“a:z This can be dane by...

U"é‘:‘" ‘Th “5" ‘f" * Reprogrammingthe Rabot Contraller,

ating o s *+ Restart Robot Code in DriverStation
g Tor resp(Power cycla tha Robot Controller.

sopprguebarics | 24 Because Chrome no longer supports NPAPI,

watting for response...
frot Silverlight will not function.
Eriufired Internet Explorer functions adequately though

Starting web servics
waiting for response

Slaring ystemiebSersr dore refreshing the page (F5 or CNTRL+R) often leaves an

\Web service restarted. Clase/Refresh already opened browsers to update the reboRIO canfiguration page

reboRIC updaled succesaluly. empty page. The workaround is to simple create a new
tab with the same URL.

roboRIO detected Version (0.9.10.0) DLL (0.9.90) .:
N - o X
e"\:.}f‘ ‘E http://roborio-469-frc.local/#Home p~c ” (& roboRIO-469-FRC : NI Web-... % | ‘ e @
: . NATIONAL
roboRIO-469-FRC : System Configuration Restarl Login Help INSTRUMENTS
[ﬁ] ‘Saan:h Refresh Self-Test FeRd
; ey 13l0n SHX (Wevice 1L 13) E A
P“&\ alon SRX Setiings
/ Talon SRX (Device ID 15) —
al Hame Talon SRX (Device I)
) alon SRX Device ID 0
Talon SRX (Device ID 17)
[~ 1 [Light Device LED
{ J 'I'alun SRX Software Status Running Application.
— Talon SRX (Device 10 7) A Hardware Revision 1.4
% alon SRX Manufacture Date Nov 3, 2014
— Talon SRX (Device 1D 5) Bootloader Revision 2.6
HH Alon SRX Vendor Cross The Road Electronics
p— Telon SRX (Device ID 11) Model Talon SRX
@ Firmware Version 2.0
alon SRX
- - Talon SRX (Device 1D 16) Status Present
{ g J alon SRX Update Firmware
= Telon SRX 56
alon SRX Motor Controller Startup Setti |
r 1 my10TALONSRX T Controfler LIS S
= — prke Hode
Talon SRX (Device 1D 14) Forward Limit-Switch
Reverse Limit-Switch Normally Opened -
alon SRX
my12
alon SRX Soft Limits.
Telon SRX (Device ID 8)

[Forward Soft Limit Enable

EllE 5 Forward Soft Limit
Telon SRX (Device ID 0)

NI roboRIO
B10n

I

|__| Reverse Soft Limit Enable
- Reverse Soft Limit o | -

Cross The Road Electronics Page 12 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

2.1. Device ID ranges
A Talon SRX can have a device ID from 0 to 62. 63 is reserved for broadcast.
If you select an invalid ID, you will get an immediate prompt.

Sawe | Revert Self-Test

m There was a problem saving the settings for this device.
Device ID must be in the range 0 - 62

Settings

Nams |.Ta|on SR (Davice ID 3)]

Device ID |[53 l |

|_| Light Device LED
Software Status Running Application.

Cross The Road Electronics Page 13 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

2.2. Common ID Talons
During initial setup (and when making changes to your robot), there may be occasions where
the CAN bus contains multiple running Talon SRXs with the same device ID. “Common ID”
Talon SRXs are to be avoided since they prevent reliable communication and prevents your
robot application from being able to distinguish one Talon SRX from another. However, the
roboRIO’s Web-based Configuration and Talon SRX firmware is designed to be tolerant of this
problem condition to a degree.

No two Talon SRXs should have the same ID. No two Victor SPXs should have the same ID.
However, a Talon and Victor can have the same ID.

If there are “common ID” Talons, they will reveal themselves as a single tree element (see
image below). In this example, there is only one “Talon SRX (Device ID 0)” graphical element
on the left, however the software status shows that there are three detected Talon SRXs with
that device ID. If the number of “common ID” Talon SRXs is small (typically five or less) you will
still be able to firmware update, modify settings, and change the device ID. This makes solving
device ID contentions possible without having to isolate/disconnect “common ID” Talon SRXs.

roboRIO-217 : System Configuration

| Search Refresh Self-Test
i
) : I roboRIO
= roboRIO-217 Settings
.
MNama Talon SRX (Device ID 0
e . CAN Interface ()
= cand Device ID 0
PCM __| Light Device LED
o PCH (Davice 1D 0) Software Status I Thare are 2 davices with this Device ID. Running Application. I
Hardware Revision 1.3
PDP
PDP (Device ID 0) Manufacture Date Sept 10, 2014
Bootloader Revision 2.3
Talon SRX
Talon SRX (Devica 1D 10) Wendor Cross The Road Electronics

Model Talon SRX

Talon SRX .
Firmvrare Revision 1.1
Talon SRX (Device ID 19)
Status Prasant
Talon SRX
Talon SRX (Devica 1D 16) Update Firmware

.
;:g- Talon SRX
L J Talon SRX (Device ID 6)
Motor Controller Startup Settings

Talon SRX
Talon SRX (Devics ID 12) Braks Mode | Brake x)

Forward Limit-Switch Mormally Opened -

Talon SRX R
. Reverse Limit-Switch Mormally Opened =

Talon SRX (Device ID 14) _—
Talon SRX
Talon SR (Device ID 17) Soft Limits
Talon SRX (] Forward Soft Limit Enable
Talon SRX (Device ID 15)

Forward Soft Limit]
Talon SRX | Reverse Soft Limit Enable
Talon SRX (Device 1D 13} .

Reverse Soft Limit o

Talon SRX
Talon SRX (Device ID 11)
Motor Controller Closed-Loop Control Parameters Slot 0

Talon SRX
Talon SRX (Device ID 8) P Gain
| 1 Gain
Talon SRX
Tzlon SRX (Device ID 0} D Gain
Feed-Forward Gain
i NI roboRIO .

o

o lalla

)

Cross The Road Electronics Page 14 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

When “common ID” Talon SRXs are present, correct this condition by changing the device ID to
a “free” number, (one not already in use) before doing anything else. Then manually refresh the
browser. This allows the web page to re-populate the left tree view with a new device ID.

Since the web page allows control of one Talon SRX at a time, you may need to determine
which “common ID” Talon SRX you are modifying. Checking the “Light Device LED” and
pressing “Save” can be used to identify which physical Talon SRX is selected, and therefore
which one will be modified. This will cause the selected Talon SRX to blink its LEDs uniquely
(fast orange blink) for easy identification. In the unlikely event the device is in boot-loader
(orange/green LED), it will still respond to this by increasing the blink rate of the orange/green
pattern. The “Light Device LED” will uncheck itself after pressing “Save”.

2.2.1 - Light Device LED

Save Revert Self-Test
Settings
MName Talon SRX (Device ID 3)

Device ID 3

+| Light Device LED
Software Status Running Application.

Hardwara Revision 1.4

Tip: Since the default device ID of an “out of the box” Talon SRX is device ID ‘0’, start assigning
device IDs at’1’. That way you can, at any time, add another default Talon to your bus and
easily identify it.

Tip: Light Device LED can also be used to clear sticky faults.

Cross The Road Electronics Page 15 1/13/2018

217-8080

TALON SRX / Victor SPX Software Reference Manual

1/13/2018

2.3. Firmware Field-upgrade a Talon SRX/ Victor SPX
Talon SRX firmware file is a CRF file. To firmware flash a Talon SRX, navigate to the
following page and select it in the left tree view.

To get the latest firmware files see Section 2.3.4. Where to get CRF files?

roboRIO-217: NIl Web-b

&8l ‘| roborio-217.local/#Home

poRIO-217 - System Configuration

Talon SRX

Talon SRX (Devica ID 2}
Talon SRX

Talon SRX (Device ID 15)
Talon SRX

Talon SRX (Devica ID 11)
Talon SRX

Talon SRX (Devica ID 17)

-
—
—~
—
=
L
-]

| Search Refrash
|
. TT CAN Interface A
cand Settings
PCM N
BCM (Davice 1D 0] am=
Device ID

Software Status
Hardware Revision
Manufacture Date
Bootloader Revision
endor

Model

Firmwrare Revision

Status

Press “Update Firmware”.

Sattings

Name

Device ID

Saoftware Status
Hardwars Revision
Manufacture Date
Bootloader Ravision
Wendor

Model

Firmware Revision

Status

Cross The Road Electronics

‘Talan SRX (Davice ID 3) |
R

_| Light Device LED

Running Application.

1.4

Mow 3, 2014

2.6

Cross The Road Electronics
Talon SRX

1.1

Prasant

Update Firmware

Page 16

Self-Test

Talon SRX (Device ID 3)
2 |

| Light Devica LED
Running Application.

1.4

Mowv 3, 2014

2.6

Cross The Road Electronics
Talon SRX

1.1

Present

1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

Select the firmware file (*.crf) to flash.

®© = 4 L » ThisPC » OS(C) » temp » v ¢ | | Searchtemp ¥
Organize » Wew folder =« [@
A Mame Date modified Type o
8 This PC
nTI[P = . £ TalonSnc-Application-1.1.crf 12/7/201412:05AM _ CRF File
ct -
® ::m_"”_' ' (. TALONSRXSoftwareReferenceManual 12/14/20146:56 PM__ File folder
strator (ct
® Mmf"f " °r(B Log Files 12/14/20143:05PM File folder
strator (ct
ministrator) New folder (35) 12/13/2014 1511 . File folder
[ctrl (etr-1) 0 _ v
 acrdf 12/R7IN1A 1-AR DRA File frldar
® davidq (ctr-1) v < >
File name: |TalonSn(-Application-'I.1.cn‘ v | | Firmware Image Files (*.crf) v |
| Open | | Cancel |

You will be prompted again, press “Begin Update”.

Update Firmware

The current firmware version is 1.1.

Selected firmware file

TalonSrx-Application-1.1.crf H Browse I

Begin Update Cancel

A progress bar will appear and finish with the following prompt. Total time to field-upgrade a

Talon SRX is approximately ten seconds. The progress bar will fill quickly, then pause briefly at
the near end, this is expected.

9‘ The firmmware update completed successfully.

Sattings
Mama |. Talon SRX (Device ID 3} |
Mimaeimm Ty | > I
Cross The Road Electronics Page 17 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

2.3.1. When | update firmware, | get “You do not have permissions...”
If you get the following error...

Refresh Self-Test

B You do not have permission to modify the firmwara. Log in with an account that has permission to perform a firmware update.

Settings
MNamea | Talon SRX (Device ID 3) |
Device ID 3

I | liakt Neviea | FN

...then log into the web interface using the username “admin”.

Restart Login Help

Save ‘ Refresh H Self-Test |

3 You do not have permission to medify the ware. Log in with an account that has [
permission to perform a firmware updatg

Settings
MName PCM (3rd device found)

The user name is “admin” and the password is blank “”. Don’t enter any keys for password.

Additionally, you can modify permissions to allow field upgrade without being asked for login
every single time. If security isn’t a concern, then modify the permissions so that “anyone” can
access “FirmwareUpdate” features.

Click on the key/lock icon in the left icon list.

NI-roboRIO-030498A1 : Security Configuratic

Users Groups Permissions
. admin
L—& User Name
Comments
@ Password La!
) This user bel
g administrator:
everyone
@ This uger has

Cross The Road Electronics Page 18 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

Then click on the “Permissions” tab. Select “FirmwareUpdate”, then press “Add” button.
[-roboRIO-030498A1 : Security Configuration

Users Groups Permissions

FirmwrareUpdate:
FSRead Permission Name | FirmwareUpdate |

FSWrite
GetDE
GetSystemConfiguration These users have this permission:
GetWSAPIKey admin

ManageExiensions
ManageWs
MIWehCer

Reboot | Add | [M]
RemoteShell

SetDBE

SetRTLockPassword administrators
ZetSystemConfiguration
SetWSAPIKey
SSLAdminModifyCerts
SSLAdminReadCerts
ViewConsoleQuiput
WIFConfigureAppServer

Comments | |

Thesze groups have this permission:

B) 5] (&) (& [\ |] [[2]

Remove

Select everyone, then OK.

E
B

everyone

POWEINUSErs

USErSs

|

Click “Save” to save changes.

/1, You have unsaved changes. [Save] [Revert]

Cross The Road Electronics Page 19 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

2.3.2. What if Firmware Field-upgrade is interrupted?
Because ten seconds is plenty of time for power or CAN bus to be disconnected, it is always
possible for a field-update to be interrupted. An error code will be reported if the firmware field-
update is interrupted or fails. Additionally, the Software Status will report “Bootloader” and
Firmware Revision will be 255.255 (blank).

If a Talon SRX has no firmware, its boot-loader will take over and blink green/yellow on the
device’s corresponding LED. It will also keep its device ID, so the roboRIO can still be used to
change the device ID or (re)flash a new application firmware (crf). This means you can
reattempt field-upgrade using the same web interface. There is no need for any sort of recovery
steps, nor is it necessary to isolate no-firmware Talon SRXs.

Example capture of disconnecting the CAN bus in the middle of a firmware-upgrade...

| Search

|

g] roboRIO
roboRIO-217

. CAN Interface

=g
cand
PCM
PCM (Device ID 0)
PDP
PDP (Device ID 0)
Talon SRX
Talon SRX (Device ID 3}
Talon SRX
Talon SRX (Device ID 15)
Talon SRX
Talon SRX (Device ID 11)

‘ Talon SRX

Cross The Road Electronics

Refresh Self-Test

i

There was a problem updating the firmware for this device.
Talon SRX (Device ID 3} : CTRE_DI_CouldMotSendFlash

Settings
Name I:T-EI'I:I-I'I SRX (Device ID 3) |
Device ID 13 J
_| Light Devica LED
Software Status I Bootloader, LED is blinking green/cranga. I
Hardwara Revision 1.4
Manufacture Date Mow 2, 2014
Bootloader Revision 2.6
Wendor Cross The Road Electronics
Madel Talon SRX
Firmware Revision | 255.255 (No firmware) |
Status Present

Page 20 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

2.3.3. Other Field-upgrade Failure Modes
Here’s an example error when trying to flash the wrong CRF into the wrong product.
The device will harmlessly stay in boot-loader, ready to be (re)flashed again.

Refresh Self-Test

G There was a problem updating the firmmware for this device.
Talon SRX [Device ID 3) : Selected CRF is for the wrong product

Settings
Mamsa l.Talun SRX (Device ID 3)
Device ID |2 J

|| Light Devica LED

Here’s what to expect if your CRF file is corrupted (different errors depending on where the file
is corrupted). The device will harmlessly stay in boot-loader, ready to be (re)flashed again. Re-
downloading the CRF firmware file is recommended if this is occurring persistently.

e There was a problem updating the firmware for this devica.
Talon SRX {Device ID 3) : Invalid CRF File : File Size is invalid

e There was a problem updating the firmware for this device.
Talon SRX (Device ID 3) : CTRE_DI_CouldMotValidate

e There was a problem updating the firmware for this devica.
Talon SRX (Device ID 2} : Invalid CRF File : Bad Header

Here’s what to expect if you flash the wrong product’s CRF. For example, if you try to flash the
CREF for the Power Distribution Panel (PDP) into a Talon SRX, you will get an error prompt.

G There was a problem updating the firmware for this device.
Talon SRX (Device ID 12) : Selactad CRF is for the wrong product

Cross The Road Electronics Page 21 1/13/2018

217-8080

TALON SRX / Victor SPX Software Reference Manual

1/13/2018

2.3.4. Where to get CRF files?
The FRC Software installer will create a directory with various firmware files/tools for many
control system components. Typically, the path is “C:\Users\Public\Documents\FRC”.

Home Share

@BOL
: [Copy path

Copy Paste

Clipboard

Ll
& OneDrive
|\ Documents
| Pictures

Homegrou
group

View

' =1
W 2 X =0
- Move Copy Delete Rename
[2] Paste shortcut to~ to- -

Organize

-
Mame

B2 TalonSrc-Application-1.01.crf
H RobotUsageData.txt
B PDP-Application-1.37.crf

B2 pCM-Application-1.62.crf
LI R TR L

Mew item ~
aEasyaccess <

Mew

(3) ~ 1 . » ThisPC » OS(C) » Users » Public » Public Documents » FRC »

Date modified

12/16/2014 9:30 PM
12/5/2014 3:10 PM
12/16/2014 9:30 PM
12/16/2014 %:30 PM
B

£/ A AN R A

Properties

J

&1 e

Ope

Type

CRF File
TXT File
CRF File
CRF File

Rk

When the path is entered, the browser may fix-up the path into “C:\Users\Public\Public
Documents\FRC”. This is typical in Windows.

In this directory are the initial release firmware CRF files for all CTRE CAN bus devices, including
the Talon SRX.

The latest firmware to be used at time of writing is version 3.X (where X is the minor version).

- TIP: Additionally, newer updates may be provided online at http://www.ctr-electronics.com.

@ FRC: Be sure to watch for team updates for what is legal and required!

Cross The Road Electronics Page 22 1/13/2018

http://www.ctr-electronics.com/

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

2.4. Self-Test
Pressing Self-Test will display data captured from CAN bus at the time of press. This can
include fault states, sensor inputs, output states, measured battery voltage, etc.

At the bottom of the Self-Test results, the build time of the library that implements web-based
CAN features is also present.

Here’s an example of pressing “Self-Test” with Talon SRX. Be sure to check if Talon SRX is
ENABLED or DISABLED. If Talon SRX is DISABLED, then either the robot is disabled or the
robot application has not yet created a Talon SRX object (see Section 3. Creating a Talon SRX
Object (and basic drive) .

(& roboRIO-3539-FRC : NI We.. % |||

roboRIO-3539-FRC : System Configuration

g | search || seve | Refresh || self-Test
= roboRIO o The self test completed successfully.
L-(i roboRIO-3535-FRC Device NOT ENABLED!
Mode:0:PercentOutput | Output:0.00% [0.00 V]
— CAN Interface Motor Leads (Inverted): M+:0V M-:0
o B Brake during neutral
i cand -
WCompEn:0 CurrLimited:0
) ’pDP] Slot Selects:PIDO: 0 PID1: 0
PDP (Device ID 0) SelFeedback0:0:Quad/MagEnc(rel)|Pos:2718u Vel:0u/100r
I SelFeedbackl:0:Quad/MagEnc{rel)|Pos:0u Vel:0u/100ms
= alon SRX PIDO err: 0 iaccum:0 derr:0
- Talon SRX (Device ID 0) PID1 err: 0 iaccum:0 derr:0
NI roboRIO Quad/MagEnc{rel)
RIOO Pos:-2718u \el:0u/100ms
Pins: A=1 B=0 Id=0 IdEdges:0
ASRL1::INSTR
@ ASRLL:INSTR Analog Input Pos:9%u Vel:0u/100ms|ADC:99(0.3 V
e PulseWidth/MagEnc(abs) Per(us):4180.0
ASRL2::INSTR deEin e s
TachVel: 24457 u/100ms | 14354.00 RPM
- ASRLZ::INSTR PasEncPulse Pos:1377u Vel:0u/100ms
ﬁ LimSwiF/R):0pen,Open
Sl ZeroPosOn Idx=0ff LimF=0ff LimR=0ff
E (Fault) (Now) (Sticky)
UnderVbat: 0O 1
Reset Dur En : i} 1

Curr(A):0.12 | Bus{V):8.44 | Temp{C):23

MNominal %:0,0

Peak %:-100,100

Closed Loop AllowedErr:Slot0=0,5lot1=0
Wel Sampling Per{ms): 100, AvgWin:64
VCompSat:0.0

Cross The Road Electronics Page 23 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

After enabling the robot and repressing “Self-Test” we see the Talon SRX is enabled.

Additionally, we see there is a sticky fault asserted for low battery voltage and reset during
enable (talon was powered cycled during robot enable).

Sticky faults persist across power cycles for identifying intermittent problems after they occur.
They can be cleared via robot API, or via the “Light Device ID” checkbox.

& roboRI0-3539-FRC : NI We... |||

roboRI0-3539-FRC : System Configuration

g ‘ Search ‘ Save | Refresh ‘ | Self-Test
- roboRIO 0 The self test completed successfully.
L—(i roboRIO-3539-FRC Device enabled
Mode:0:PercentOutput | Output:-1.55% [-0.12 V]
— Motor Leads (Inverted): M+:0.12V M-:0V
) E CAN Interface Brake during neutral
o can e
WCompEn:0 CurrLimited:0
) ’PDP , Slot Selects:PIDO: 0 PID1: 0
PDP (Device ID 0) SelFeedback0: 0:Quad/MagEnc(rel}|Pos:2718u Vel:0w/100ms
B SelFeedback1:0:Quad/MagEnc(rel)|Pos:0u Vel:0u/100ms
= alon SRX PIDO err: 0 iaccum:0 derr:0
1 Talon SRX (Device ID 0) PID1 err: 0 iaccum:0 derr:0
13 NI roboRIO Quad/MagEnc(rel)
RIDO Pos:-2718u VWel:0u/100ms
Pins: A=1 B=0 Id=1 IdEdges:2
ASRL1::INSTR
@ ASRLIL::INSTR Analog Input Pos:87u Vel:Ou/100ms|ADC:97|0.3 V
ASRL2::INSTR PulseWidth/MagEnc(abs) Per(us):4181.2
. TachWel: 244530 uf100ms | 14349.00 RPM
= ASRLZ::INSTR PosEncPulse Pos:1378u Vel:5u/100ms
ﬁ LimSw(F/R): 0pen,Open

ZeroPosOn Idx=0ff LimF=0ff LimR=0ff

(Fault) (Now)) || (Sticky)
Under Vbat : 0 1
Reset Dur En : a 1

B

Curr(A):0.12 | Bus(\):8.44 | Temp(C):22
Mominal %:0,0

Peak %::-100,100
Closed Loop AllowedErr:Slot0=0,5lot1=0

DR J

Cross The Road Electronics Page 24 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

2.4.1. Clearing Sticky Faults
Use the “Light Device LED” checkbox to clear the sticky faults and illuminate the device LEDs
(rapid orange blink).

o The self test completed successfully.
Device NOT ENABLED!
Mode:0:PercentOutput | Qutput:0.00% [0.00 V]
Motor Leads: M+/M- off
Coast during neutral
VCompEn:0 CurrLimited:0

Slot Selects:PIDO: 0 PID1: O
SelFeedback0:0:Quad/MagEnc(rel}|Pos:0u Vel:0u/100ms
SelFeedbackl:0:Quad/MagEnc(rel}|Pos:0u Vel:0u/100ms
PIDO err: 0 iaccum:0 derr:0
PID1 err: 0 iaccum:0 derr:0

Quad/MagEncirel)
Pos:0u Vel:0u/100ms
Pins: A=1 B=0 Id=0 IdEdges:1

Analog Input Pos:97u Vel:0w/100ms|ADC:97(|0.3 W

PulseWidth/MagEnc{abs) Per{us):4112.8
TachVel: 24897 u/100ms | 14588.00 RPM
PosEncPulse Pos: 35680 Vel:2u/100ms

LimSw(F/R):Open,0pen
ZeroPosOn Idx=0ff LimF=0ff LimR=0ff

Curr(A):0.00 | Bus(Vv):12.39 | Temp{C):21

Mominal %:0,0

Peak %%:-100,100

Closed Loop AllowedErr:Slot0=0,5lot1=0
Vel Sampling Per{ms):100,8vgWin:64
VCompSat: 0.0

"Light Device LED" clears sticky faults.

CTRE Build:Jan 1 2018 13:08:40
Press "Refresh” to close.

Cross The Road Electronics Page 25 1/13/2018

217-8080

TALON SRX / Victor SPX Software Reference Manual

1/13/2018

2.5. Custom Names
Another feature made available by the Web-based Configuration is the ability to rename Talon
SRXs with custom string descriptions. A Talon SRX’s custom name is saved persistently inside
the Talon. To modify the default name, highlight the contents of the “Name” text entry.

Refresh

Settings

MName

Device ID

Salf-Test

alon SRX (Device ID 7)

EA—

| Liaht Devics LED

...then replace with a custom text description and press “Save”.

roboRIO-217 : System Configuration

PCM
PCM (Device ID 0)

PDP
PDR (Device 1D 0)

Talon SRX

Talon SR (Device ID 7)
Talon SRX

Talon SRX (Dewvice ID 15)

‘ Talon SRX

@) & [V =]+

e

|5‘ealrr-‘t J Save Revert
.
g roboRIO —
roboRIO-217 Settings
Name
P CAN Interface
cand Device ID

Software Status
Hardware Revision
Manufacture Date
Bootloader Revision
Vendor

Model

Firmware Revision

Status

Self-Test

| Top Side Shaoter Wheel | I
[EA

| Light Device LED

Running Application.

1.3

Sept 10, 2014

2.3

Cross The Road Electronics
Talon SRX

1.4

Present

The new description will appear in the left tree view.

robor|1O-, . Sysiem connguration

PCM
PCM (Device Il 0)

POP
PP {Device ID O]

Talon SRX
Top Side Shooter Wheal

o/ 6 (&) [v][]~

‘ Talon SRX

Cross The Road Electronics

| Search J 3 Refresh
-
g roboRIO —
roboR1O-217 Settings
Name
P CAN Interface
cand Device ID

Software Status
Hardwara Revision
Manufacturs Date
Bootloader Revision
Wendor

Model

Firrmiara Bavizicn

Page 26

Self-Test

| Top Side Shoater Whel
A

| Light Device LED

Running Application.

1.2

Sept 10, 2014

2.2

Crass The Road Electronics

Talon SRX

14

1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

2.5.1. Re-default custom name
To re-default the custom name, clear the “Name” text entry and press “Save”.

Save Revert Self-Test
Settings
Name l
Device ID | 7
|| Light Devics LED
Software Status Running Application.

Left tree view will update with a temporary name until the “Refresh” button is pressed.
-

Talon SRX
frccan3

-

After pressing “Refresh” the default name will appear.

l.S‘E.ar'c.Fr J Save Refrash Self-Test
-
g roboRIO -
roboRIO-217 Settings
Name Talon SRX (Device ID 7)
. = CANInterface [|
cand Device ID 7
PCM | Light Devica LED
PCM (Device 1D 0) Software Status Running Application.
Hardware Revision 1.3
FDP
PDP {Davice ID 0) Manufacture Date Sapt 10, 2014
Bootloader Revision 2.3
Talon SRX
Talon SRY (Device ID 7) Wendor Cross Tha Road Electronics
. . Model Talon SRX

Cross The Road Electronics Page 27 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

3. Creating a Talon Object (and the basics)

3.1. Programming APl and Device ID
Regardless of what language you use on the FRC control system (LabVIEW/C++/Java), the
method for specifying which Talon SRX you are programmatically controlling is the device ID.
Although the roboRIO Web-based Configuration is tolerant of “common ID” Talon SRXs to a
point, the robot programming API will not enable/control “common ID” Talons reliably. For the
robot to function properly, there CANNOT BE “COMMON ID” Talon SRXs. See Section 2.2.
Common ID Talons for more information.

TIP: Example projects for Talon SRX can also be found in the CTR GitHub account.
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

Additional documentation may be found here...
https://github.com/CrossTheRoadElec/Phoenix-Documentation

3.1.1 Including Libraries (FRC)
To use Talon SRX libraries, FRC Teams need to download and install the Phoenix Framework
v5, which can be found on the CTR Electronics website.

Once the libraries have been installed, users can simply add them to their project using
standard import/include statements.

For Java, users should add an import statement as follows:
import com.ctre.phoenix.motorcontrol.can.TalonSRX;

|f using Eclipse |DE, typ|ca”y the IDE W|” public class Robot extends IterativeRobot {

TalonSRY talon = new ITalonsSBX(3):

recommend imports as class names are Joystick _joy = mew Jo o ricor e resolved to s type
. . StringBuilder _sk = ne - - -
typed into the Java source. Click on 4 quickfixes available
|mp0r‘t ‘TalonSRX; tO au'[O Insert the é i:lw:ac;:-'ll':lcn{:l“ [com.ctre.phoenix.motorcontrol.cank

impOI’t Iine @ Change to 'Talon' (edu.wpi.firstwpilibj)
@ Fix project setup...

el

For C++, users should add the single include for Phoenix.

#include "ctre/Phoenix.h"

LabVIEW users will find the CAN Talon SRX Vls in a new CTRE subpalette.

Cross The Road Electronics Page 28 1/13/2018

https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
https://github.com/CrossTheRoadElec/Phoenix-Documentation

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

3.1.2 Configuration API
Talon SRX and Victor SPX have many configuration functions / VIs.
These are recognizable as having the config* prefix, and a trailing parameter called timeoutMs.

These functions manipulate parameters that are persistent within the motor controller, and
therefore do not need to be called periodically unless the parameter value is genuinely changing
as a requirement of the robot (which is not typical).

As an example, functions such as configopenloopRamp and configClosedloopRamp €Xist to
allow for once-on-boot configuration without having to continually change the ramp depending
on use.

3.1.2.1. Configuration API - timeoutMs
Since most config* calls occur during the robot boot sequence, the recommended value for
timeoutMs is 10 (ms). This ensures that each config will wait up to 10ms to ensure the
configuration was applied correctly, otherwise an error message will appear on the Driver
station.

This is also the case for setting/homing sensor values.
For configuration calls that are done during the robot loop, the recommended value for

timeoutMs is zero, which ensures no blocking or checking is performed (identical to the
implementation in previous seasons).

3.1.2.2. Factory Default
The configuration values can be factory defaulted by holding the B/C CAL on power boot and
confirming rapid green LEDs.

This will default all configurable parameters except for device ID and neutral brake.

This should be done when replacing/swapping TalonSRXs/VictorSPXs, otherwise the developer
will need to set every config routine to ensure all parameters are set to the desired values.

Cross The Road Electronics Page 29 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

3.2. New Classes/Virtual Instruments
C++/Java now contains a new class TalonSRX (.h/.cpp/.java). CANTalon has been replaced
with TalonSRX.

Java TalonSRX and parent class is documented....
http://www.ctr-electronics.com/downloads/api/java/html/com/ctre/phoenix/motorcontrol/can/TalonSRX.html
http://www.ctr-electronics.com/downloads/api/java/html/com/ctre/phoenix/motorcontrol/can/BaseMotorController.html

C++ TalonSRX and parent class is documented....

http://www.ctr-electronics.com/downloads/api/cpp/html/classctre_1 1phoenix 1 1motorcontrol 1 1can 1 1 talon_s_r x.html
http://www.ctr-electronics.com/downloads/api/cpp/html/classctre_1 1phoenix 1 1motorcontrol 1 1can 1 1 base motor_ controller.html

3.2.1 WPILIB Class integration
Note: To use the various WPILIB features (Motor-safety, drive train classes, LiveWindow, etc),
developers should use the WPI_TalonSRX and WPI_VictorSPX classes. These are
subclasses that implement the various WPILIB interfaces. This also includes a single
parameter set() that defaults the motor controller into PercentOutput mode.

LabVIEW contains a new palette for Victor SPX and Talon SRX.
The VI locations are documented here....
https://github.com/CrossTheRoadElec/Phoenix-Documentation#labview---where-are-the-vis

|+ WPl Robotics Library
L Third Party
LcTre

7w

3.2.2. LabVIEW
Creating a “bare-bones” Talon SRX or Victor SPX object is similar to previously supported
motor controllers. Start by using the OPEN VI and register a unique motor description.

[Create a Talon SRX 1]

- TALOH
|Same ID as web-based c-:unﬂg| ITaIn:nn Description| @

|Create a Victor S5P¥ 2|

VICTOR: T

{Victor Description f-3
Create a constant for the “Device Number. The control mode is set later via the SET vi. Enter
the appropriate Device ID that was selected in the roboRIO Web-based Configuration.

[Same ID as web-based config|

Also, similarly to other motor controllers, you may register a custom string reference to
reference the motor controller by description in other block diagrams.

Cross The Road Electronics Page 30 1/13/2018

http://www.ctr-electronics.com/downloads/api/java/html/com/ctre/phoenix/motorcontrol/can/TalonSRX.html
http://www.ctr-electronics.com/downloads/api/java/html/com/ctre/phoenix/motorcontrol/can/BaseMotorController.html
http://www.ctr-electronics.com/downloads/api/cpp/html/classctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_talon_s_r_x.html
http://www.ctr-electronics.com/downloads/api/cpp/html/classctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_base_motor_controller.html
https://github.com/CrossTheRoadElec/Phoenix-Documentation#labview---where-are-the-vis

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

3.2.3. C++
When using a programming language, the API classes for the CAN Motor controllers are called
TalonSRX/ VictorSPX (.cpp/.h/.java). When the object is constructed, the device ID is the
single parameter.

Note: use WPI_TalonSRX/WPI_VictorSPX instead, when using WPILIB features such as
motor-safety or drivetrain objects.

& #include <iostream>

9 #include <string:>

10

1l #include <TimedBRobot.h>

12 $include "ctre/Phoenix.h"™

13 #include "Joystick.h"

14

15 class Robot: public fro::TimedRobot {

le public:

17

18 TalonSEX * talon = new TalonSRX(4):
15

20 Joystick * joy = mew Joystick(0):
21

228 void TeleopPeriodic() {

23

24 talon->Set (ControlMode: : PercentOutput, Jjoy->GetY()):
25

26 }

27

28 private:

29 }:

20 |

31 START ROBOT CLASS (Robot)

3.2.4. Java
When a TalonSRX/VictorSPX object is constructed in Java, the device ID is the first parameter.

Note: use WPI_TalonSRX/WPI_VictorSPX instead, when using WPILIB features such as
motor-safety or drivetrain objects.

public class Robot extends IterativeRobot {

TalonSRX talon = new TalonSRX (4);
Joystick joy = new Joystick(0);

/**
* This function is called periodically during operator control.
*/
@Override
public void teleopPeriodic() {
talon.set (ControlMode.PercentOutput, joy.getY());
}

Cross The Road Electronics Page 31 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

3.3. Setting Output Mode and Value
After a Talon software object is created, the Talon SRX mode and output can be changed using
the Set routine/VI. This season’s set routine takes both the Control Mode and the output
parameter. Because the output value is dependent on the control mode, the user must specify
both. This produces cleaner robot code that is simpler to troubleshoot.

3.3.1. LabVIEW
The control mode and output is specified using the same SET VI. Select PercentOutput to
directly control the output. The SET value is the percent output with a range of [-1,1].

PercentCutput =

[Drive in reverse, 20%| |-0.2

Note when using the standard Set Output VI, the control mode is set to PercentOutput. This is
because the Set Output VI was designed for “simple” motor controllers.

Mlatar

F'E.rceptf]utp ut, 02 Df:;ut
Dirive in reverse, 20% :
3.3.2. C++

The function set () can be used to change the Talon SRX mode and output value.
talon.Set (ControlMode.PercentOutput, Jjoy.get¥());

3.3.3. Java

The function set () can be used to change the Talon SRX mode and output value.
talon.set (ControlMode.PercentOutput, joy.get¥Y()):;

3.3.4. Check Control Mode with Self-Test

The Self-Test can be used to confirm the desired mode of the Talon SRX (PercentOutput,
Follower, Position Closed-Loop, Velocity Closed-Loop, etc.).
Example Self-Test

Refresh Self-Test

The self test completed successfully.
Device MO MARLEDI

Coast during neutral
WCompEn:0 CurrLimited:0

Cross The Road Electronics Page 32 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

3.4. WPILib RobotDrive Class

The Robotdrive class is maintained by WPILib. Any source intended to use these classes
should create WPI_TalonSRX and WPI_VictorSPX objects. These classes inherit the
TalonSRX and Victor SPX classes, and implement the various WPILIib interfaces.

3.4.1. LabVIEW
The RoboDrive Vis are typically located in WPI Robotics Library -> RobotDrive.
To use Talon SRX with either the 2 or 4 motor options, first use a Talon SRX Open Motor VI.

The RefNum output is then wired to the input of the Open 2/4 Motor VI when the “Existing
Motors” drop-down option is selected. The RobotDrive RefNum Set is then used as normal.

fLeft and Right Motors|

TALOH

g

Dirivi Drive Dirive
i QFEH £ - ZAFETY
TALOH Sy wo = = MOTOR _}@ Enable CONFIG

SET
IHVERT

|Exi5ting Motors '"

2 orer

3.4.2. C++
RobotDrive is included in WPILib.h. Construct the appropriate we1 Talonsrx objects and pass
them to the RobotDrive constructor.

FrontLeftMotor = new WPI TalonSRX(1)
FrontRightMotor = new WPI TalonSRX (2
)

)
RearLeftMotor = new WPI TalonSRX(3)
RearRightMotor = new WPI TalonSRX(4);

drive = new RobotDrive (FrontLeftMotor, RearLeftMotor, FrontRightMotor,
RearRightMotor) ;

3.4.3. Java
RobotDrive is included in WPILib. Construct the appropriate wet Talonsrx objects and pass
them to the RobotDrive constructor.

FrontRightMotor = new WPI TalonSRX(2);
RearLeftMotor = new WPI_TalonSRX(3

FrontLeftMotor = new WPI TalonSRX(1)
)
RearRightMotor = new WPI TalonSRX(4);

drive = new RobotDrive (FrontLeftMotor, RearLeftMotor, FrontRightMotor,
RearRightMotor) ;

Cross The Road Electronics Page 33 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

4. Limit Switch and Neutral Brake Mode

4.1. Default Settings

An “out of the box” Talon will default with the limit switch setting of “Normally Open” for both
forward and reverse. This means that motor drive is allowed when a limit switch input is not
closed (i.e. not connected to ground). When a limit switch input is closed (is connected to
ground) the Talon SRX will disable motor drive and individually blink both LEDs red in the
direction of the fault (red blink pattern will move towards the M+/white wire for positive limit fault,
and towards M-/green wire for negative limit fault).

An “out of the box” Talon SRX will typically have a default brake setting of “Brake during
neutral”. The B/C CALL button will be illuminated red (brake enabled).

Since an “out of the box” Talon will likely not be connected to limit switches (at least not initially)
and because limit switch inputs are internally pulled high (i.e. the switch is open), the limit switch
feature is default to “normally open”. This ensures an “out of the box” Talon will drive even if no
limit switches are connected.

For more information on Limit Switch wiring/setup, see the Talon SRX User’s Guide.

Forward Limit Limit Limit Motor Drive Motor Drive *Voltage *Voltage
Limit Switch Switch Switch Switch Switch open Switch closed (Switch (Switch
Mode NO pin NCpin COM pin Fwd. output Fwd. output Open) Closed)
Normally
Open pin4 pinl0 Y N ~2.5V oV
Normally
Closed pin4 pinl0 N Y oV ~2.5V
Disabled Y Y
Reverse Limit Limit Limit Motor Drive Motor Drive *Voltage *Voltage
Limit Switch Switch Switch Switch Switch open Switch closed (Switch (Switch
Mode NO pin NCpin COM pin Rev.output Rev. output Open) Closed)
Normally
Open pin8 pinl0 Y N ~2.5V oV
Normally
Closed pin8 pinl0 N Y oV ~2.5V
Disabled Y Y

*Measured voltage at the Talon SRX Limit Switch Input pin.
Limit Switch Input Forward Input - pin4 on Talon SRX

Limit Switch Input Reverse Input - pin8 on Talon SRX

Limit Switch Ground - pin10 on Talon SRX

Cross The Road Electronics Page 34 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

4.2. roboRIO Web-based Configuration: Limit Switch and Brake
Limit switch features can be disabled or changed to “Normally Closed” in the roboRIO Web-
based Configuration. Similarly, the neutral brake mode can be selected.

roboRIO-217 : System Configuration Restart Login Help

NATIONAL

g | search l Refresh Self-Test el
- A
| _,dk PDP Settings
PDP (Device ID 0)
? Name | Talon SRX (Device 1D 0) |
Talon SRX | R
Talen SRX (Device 1D 16) St |°—|
Q) || Light Device LED
Talon SRX : _—
Talon SRX (Device ID 12) Softwiare Status Running Application.
— Hardware Revision 1.4
lﬂ Talon SRX Manufacture Date Mov 3, 2014
Talon SRX (Device ID 0)
——y ~ Bootleader Revisien 2.6
@ Talon SRX Vendor Cross The Road Electronics
)) Talon SRX (Device ID &) Model Talon SRX
@ Talon SRX Firmware Revision 1.1
) Talon SRX (Device ID 10) Status Prasant
! Talon SRX — |. Update Firmware I
: . Talen SRX (Device 1D 14)
Talon SRX
Talen SRX (Device ID 19) Motor Controller Startup Settings
’ Talon SRX Brake Mode | Brake v |
p Talon SRX (Device ID 2) Forward Limit-Switch lNormall‘y Opened b }
Talon SRX Reverse Limit-Switch [Norrnally Opened =]
Talon SRX (Device ID 17)

Changing the settings will take effect once the “Save” button is pressed. The settings are saved
in persistent memory.

If the Brake or Limit Switch mode is changed in the roboRIO Web-based Configuration, the
Talon SRX will momentarily disable then resume motor drive. All other settings can be changed

without impacting the motor drive or enabled-state of the Talon SRX.

Additionally, the brake mode can be modified by pressing the B/C CAL Button on the Talon SRX
itself, just like with previous generation Talons.

Cross The Road Electronics Page 35 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

4.3. Overriding Brake and Limit Switch with API
The Brake and Limit Switch can be changed programmatically (during a match). A great
example of this would be for dynamic braking.

The programming API allows for overriding the active neutral brake mode. When this is done
the Brake/Coast LED will reflect the overridden value (illuminated red for brake, off for coast)
regardless of the startup brake mode specified in the roboRIO Web-based Configuration (i.e.
what’s saved in persistent memory).

Similarly, the enabled states of the limit switches (on/off) for the forward and reverse direction
can be enabled/disabled by overriding them with programming API.

The brake and limit switch overrides can be confirmed in the Self-Test results. If limit switches
are overridden by the robot application, the forced states are displayed as “forced ON” or
“forced OFF”. The currently active brake mode is also in the Self-Test results.

o The self test completed successfully.
TALON is enabled.
Mode : 0 : Throttle (duty cycle)

lied Throttle : -7
I Brake during neutral I

CloseLoopError : 0
ProfileSlotSelect : 0

Selected Device for Close Loop : 0 : Quad Encoder
Pos: 0
Velocity: 0

Quad Encoder
Pos: 0
Velocity : 0
APin:1
BPin:1

Idx Pin: 1

Idx rise edges : 0

Analog Input

ADC : 1023

Pos (with overflows) : 1023
Velocity : 0

Fiwd Limit Switch is Open
Rev Limit Switch is Open
Fwd Limit Switch is forced OFF
Rev Limit Switch is forced OFF

(Fault) Naw) (Stickv)
(Self-test format has changed in 2018 since screenshot)

Cross The Road Electronics Page 36 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

4.3.1. LabVIEW
The VIs below can be used to configurate and override the limit switches. Select “Feedback
Connector” when using the Limit Switch pins on the Talon’s Gadgeteer pinout.

Fb Feedback Connectaor ¥ F> Feedback Connector "I—

MG
CustomMotor

REW
LIMIT

|Se1 to false to force-off limit switch fe,alursl"E

The neutral brake mode can also be overridden to Brake or Coast. If “EEPROMSetting” is
selected, then the Startup Brake Mode is used (B/C Cal button)

Mz
CustormMotor -
|E|—>

 EEPROMSetting
Chwerride to Coast
Chwerride to Brake

4.3.2. C++
Limit Switches and neutral brake can be configured using the functions below.

talon.ConfigForwardLimitSwitchSonree |
LimitSwitchSource::LimitSvitchSource FeedbackConnector,
LimitSwitchNormal: :LimitSwvitchNormal NermallyOpen, 0):

talon.ConfigReverselimitSwitchSonroe

LimitSwitchSource::LimitSwvitchSource FeedbackConnsctor,
LimitSwitchMormal::LimitSvitchNormal NormallwyOpen, 0):

talon.OverridelimitSwitchesEnable (troe): // pass false to force disable the limit switch features

lenum NeutralMode neutr.iMnlIe|
talon,.SetNeutralMode (HeutralMode ! I}l
|

o Brake
o Coast
o EEPROMSetting

Cross The Road Electronics Page 37 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

4.3.3. Java
Limit Switches and neutral brake can be configured using the functions below.

talon.configForwardLimitSwitchSource |
LimitSwitchSource . FeedbackCaonnector,
LimitSwitchMNormal . NormallyOpen, 0);

talon.configReverselimitSwitchSource |
LimitSwitchSource.FeedbackConnector,

LimitSwitchMormal.NormallyOpen, 0):

talon.overrideLimitSwitchesEnable (true); // pass false to force disable the limit switch features

talon.setNeutralMode (NeutralMode |

“F Brake : NeutralMode - NeutralMode
o Coast : NeutralMode - NeutralMode
W EEPROMSetting : MeutralMode - MeutralMode

Cross The Road Electronics Page 38 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

5. Getting Status and Signals

The Talon SRX transmits most of its status signals periodically, i.e. in an unsolicited fashion.
This improves bus efficiency by removing the need for “request” frames, and guarantees the
signals necessary for the wide range of use cases Talon supports, are available.

These signals are available in API regardless of what control mode the Talon SRX is in.
Additionally, the signals can be polled in the roboRIO Web-based Configuration (see Section
2.4. Self-Test).

Included in the list of signals are...

- Quadrature Encoder Position, Velocity, Index Rise Count, Pin States (A, B, Index)

- Analog-In Position, Analog-In Velocity, 10bit ADC Value,

- Battery Voltage, Current, Temperature

- Fault states, sticky fault states,

- Limit switch pin states

- Applied output (duty cycle) regardless of control mode.

- Applied Control mode: Voltage % (duty-cycle), Position/Velocity closed-loop, or slave follower.
- Brake State (coast vs brake)

- Closed-Loop Error, the difference between closed-loop set point and actual position/velocity.
- Sensor Position and Velocity, the signed output of the selected Feedback device (robot must
select a Feedback device, or rely on default setting of Quadrature Encoder).

Cross The Road Electronics Page 39 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

5.1. LabVIEW
The GET VI can be used to retrieve the latest value for the signals Talon SRX periodically
transmits. Choose the correct signal group from the drop down.

Voltage
Current

CustomMotor

Sensor
Closed-Loop
Limit Switch
Analog
Cuadrature
Pulze Width
Cuad Pins
Temp (C)

5.2. C++

Various get functions are available in C++. Here are a few examples....

double currentAmps = talon.GetOutputCurrent();
double outputV = talon.GetMotorOutputVoltage();
double busV = talon.GetBusVoltage();

double outputPerc = talon.GetMotorOutputPercent();

int quadPos
int quadvel

= talon.GetSensorCollection().GetQuadraturePosition();
= talon.GetSensorCollection().GetQuadratureVelocity();
int analogPos
int analogVel

talon.GetSensorCollection().GetAnalogIn();
talon.GetSensorCollection().GetAnalogInVel();

int selectedSensorPos = talon.GetSelectedSensorPosition(@); /* sensor selected for PID Loop © */
int selectedSensorVel = talon.GetSelectedSensorVelocity(@); /* sensor selected for PID Loop © */
int closedLoopErr = talon.GetClosedLoopError(0); /* sensor selected for PID Loop 0 */

double closedLoopAccum = talon.GetIntegralAccumulator(®); /* sensor selected for PID Loop © */
double derivErr = talon.GetErrorDerivative(®); /* sensor selected for PID Loop 0 */

5.3. Java

Various get functions are available in Java. Here are a few examples....

double currentAmps = talon.getOutputCurrent();
double outputV = talon.getMotorOutputVoltage();
double busV = talon.getBusVoltage();

double outputPerc = talon.getMotorOutputPercent();

int quadPos
int quadvVel

= talon.getSensorCollection().getQuadraturePosition();
= talon.getSensorCollection().getQuadratureVelocity();
int analogPos
int analogVel

talon.getSensorCollection().getAnalogIn();
talon.getSensorCollection().getAnalogInVel();

int selectedSensorPos = talon.getSelectedSensorPosition(@); /* sensor selected for PID Loop @ */
int selectedSensorVel = talon.getSelectedSensorVelocity(@); /* sensor selected for PID Loop @ */
int closedLoopErr = talon.getClosedLoopError(@); /* sensor selected for PID Loop @ */

double closedLoopAccum = talon.getIntegralAccumulator(®); /* sensor selected for PID Loop © */
double derivErr = talon.getErrorDerivative(®); /* sensor selected for PID Loop 0 */

Cross The Road Electronics Page 40 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

6. Setting the Ramp Rate

The Talon SRX can be set to honor a ramp rate to prevent instantaneous changes in output.
This ramp rate is in effect regardless of which mode is selected (PercentOutput, Follower, or
closed-loop).

Typically closed loop ramp is zero (off) or quite small as this can introduce oscillations.

6.1. LabVIEW
Use the ramp VIs to specify the ramp rate in seconds (from neutral to full).

|secum:|smeI'~.leutraITuFull|-h m LOGF

|secc-ndsmeMeutlal'l'uFull|
FAMF

6.2. C++/ Java
configOpenloopRamp and configClosedloopRamp can be used to ramp the motor output in
the respective modes. Having two global configs allows users to avoid having to set and clear
the ramp when switching between open-loop and closed-loop use. Since these settings are
persistent, they can be typically set once on robot boot.

secondsFromMeutral ToFull s
& derivErr
& closedLoophccum
O selectedSensoriel
O selectedSensorPos

& analogVel

& analogPos

& quadVel

& quadPos

& outputPerc

& busY b

Cross The Road Electronics Page 41 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

6.3. Web-based configuration limitations
The individual ramp rate inside the closed-loop slot has been replaced with
configOpenloopRamp and configClosedloopRamp. Instead use these routine as the web-
based config entry will always read zero.

Motor Controller Closed-Loop Control Parameters Slot 0

P Gain
I Gain
D Gain 22

Feed-Forward Gain

1l

I Zone

|

Ramp Rate

Setting has been removed. Instead use the Open-loop and Closed-loop ramp config functions.

Cross The Road Electronics Page 42 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

7. Feedback Device (Sensor Feedback)

Although the analog and quadrature signals are available all the time, the Talon SRX requires
the robot application to “pick” a “Feedback Device” for soft limit and closed-loop features.

The selected “Feedback Device” defaults to Quadrature Encoder.

Once a “Feedback Device” is selected, the “Sensor Position” and “Sensor Velocity” signals will
update with the output of the selected feedback device. It may be multiplied by (-1) to ensure
sensor is in phase with the motor.

7.1. LabVIEW
CustomMaotor

Use CONFIG SENSOR to select
which Feedback Sensor to use for
soft limits and closed-loop features.
The supported selections include:

Quadrature, Analog, and PIDLoop O far prima
Tachometer. fimesuths][7]

QuadEncoder ¥

[Flip until selected sensor velocity is positive when Talon LEDs are green|

7.2. C++
SetFeedbackDevice () can be used to select Quadrature, Analog, or Tachometer (velocity).

/* analog signal with no wrap-around (0-3.3V) */
talon.ConfigSelectedFeedbackSensor (FeedbackDevice: :Analog, 0, 0); /* PIDLoop=0,timeoutMs=0 */
/* eFeedbackNotContinuous 1, subValue/ordinal/timeoutMs 0x/

talon.ConfigSetParameter (ParamEnum: : eFeedbackNotContinuous, 1, 0x00, 0x00, 0x00);

/* analog signal with wrap-arounds tracked (0-3.3V) */
talon.ConfigSelectedFeedbackSensor (FeedbackDevice: :Analog, 0, 0); /* PIDLoop=0,timeoutMs=0 */
/* eFeedbackNotContinuous 0, subValue/ordinal/timeoutMs 0x/

talon.ConfigSetParameter (ParamEnum: : eFeedbackNotContinuous, 0, 0x00, 0x00, 0x00);

/* quadrature */
talon.ConfigSelectedFeedbackSensor (FeedbackDevice: : QuadEncoder, 0, 0); /* PIDLoop=0,timeoutMs=0 */

/* CTRE Magnetic Encoder relative, same as Quadrature */
talon.ConfigSelectedFeedbackSensor (FeedbackDevice: :CTRE MagEncoder Relative, 0, 0); /* PIDLoop=0,timeoutMs=0 */

/* CTRE Magnetic Encoder absolute (within one rotation), same as PulseWidthEncodedPosition */
talon.ConfigSelectedFeedbackSensor (FeedbackDevice: :CTRE MagEncoder Absolute, 0, 0); /*PIDLoop=0,timeoutMs=0 */

/* PulseWidthEncodedPosition, LIDAR for example */
talon.ConfigSelectedFeedbackSensor (FeedbackDevice: : PulseWidthEncodedPosition, 0, 0); /*PIDLoop=0,timeoutMs=0 */

/* Tachometer (for velocity closed loop) */
talon.ConfigSelectedFeedbackSensor (FeedbackDevice: : Tachometer, 0, 0); /* PIDLoop=0, timeoutMs=0 */

SetSensorPhase () can be used to keep the sensor and motor in phase for proper limit switch
and closed loop features.

/* flip input until sensor is in phase */
talon.SetSensorPhase (true) ;

Cross The Road Electronics Page 43 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

7.3. Java
setFeedbackDevice () can be used to select Quadrature, Analog, or Tachometer (velocity).

/* analog signal with no wrap-around (0-3.3V) */

talon.configSelectedFeedbackSensor (FeedbackDevice.Analog, 0, 0); /* PIDLoop=0, timeoutMs=0 */
/* eFeedbackNotContinuous = 1, subValue/ordinal/timeoutMs = 0%/
talon.configSetParameter (ParamEnum. eFeedbackNotContinuous, 1, 0x00, 0x00, 0x00);

/* analog signal with wrap-arounds tracked (0-3.3V) */

talon.configSelectedFeedbackSensor (FeedbackDevice.Analog, 0, 0); /* PIDLoop=0, timeoutMs=0 */
/* eFeedbackNotContinuous = 0, subValue/ordinal/timeoutMs = 0%/

talon.configSetParameter (ParamEnum.eFeedbackNotContinuous, 0, 0x00, 0x00, 0x00);

/* quadrature */
talon.configSelectedFeedbackSensor (FeedbackDevice.QuadEncoder, 0, 0); /* PIDLoop=0, timeoutMs=0

*/

/* CTRE Magnetic Encoder relative, same as Quadrature */
talon.configSelectedFeedbackSensor (FeedbackDevice.CTRE MagEncoder Relative, 0, 0); /* PIDLoop=0,
timeoutMs=0 */

/* CTRE Magnetic Encoder absolute (within one rotation), same as PulseWidthEncodedPosition */
talon.configSelectedFeedbackSensor (FeedbackDevice.CTRE MagEncoder Absolute, 0, 0); /* PIDLoop=0,
timeoutMs=0 */

/* PulseWidthEncodedPosition, LIDAR for example */
talon.configSelectedFeedbackSensor (FeedbackDevice.PulseWidthEncodedPosition, 0, 0); /* PIDLoop=0,

timeoutMs=0 */

/* Tachometer (for velocity closed loop) */
talon.configSelectedFeedbackSensor (FeedbackDevice.Tachometer, 0, 0); /* PIDLoop=0, timeoutMs=0 */

setSensorPhase () can be used to keep the sensor and motor in phase for proper limit switch
and closed loop features.

/* flip input until sensor is in phase */
talon.setSensorPhase (true);

Cross The Road Electronics Page 44 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

7.4. Correcting sensor direction, best p

ractices.

For limit switches and closed-loop features to function correctly the sensor and motor must be
“in-phase”. This means that the sensor position must move in a positive direction as the motor
controller drives positive motor output. To test this, first drive the motor manually (using
gamepad axis for example). Watch the sensor position either in the roboRIO Web-based
Configuration Self-Test, or by calling GetSelectedSensorPosition () and printing it to console.
If the “Sensor Position” moves in a negative direction while Talon SRX motor output is positive

(blinking green), then use the setSensorPhase ()

routine/VI to multiply the sensor position by (-

1). Then retest to confirm “Sensor Position” moves in a positive direction with positive motor

drive. Additionally, the sensor-out-of-phase sticky

fault will assert if the motor output exceeds

25% and the sensor is traveling in the wrong direction.

The self test completed successfully.

Device enabled

Mode:0:PercentOutput | Output:31.95% [3.96 V]
Motor Leads: M+:3.96 V M-:0V

Brake during neutral

VCompEn:0 CurrLimited: 0

Slot Selects:PIDO: 0 PID1: O
SelFeedback0:0:Quad/MagEnc(rel)|Pos:115946u Vel:994u=‘100m5
SelFeedback1:0:Quad/MagEnc(rel)|Pos:0u Vel:0u/100ms

PIDO err: -1358 iaccum:0 derr:0

PID1 err: 0 iaccum:0 derr:0

Quad/MagEnc(rel)
Pos:-115380u Vel:-969u/100ms
Pins: A=1 B=0 Id=1 IdEdges:0

If the sensor is out of phase, typically the self-test
will reveal a sensor velocity and motor output with
mismatched signs. Additionally, the sensor out of
phase fault will appear.

Note: sticky faults can be cleared via Light Device
LED checkbox.

Settings
Name | Master Right 3
Device ID 3

|_| Light Device LED

When using the Self-Test, be sure to track the
selected feedback position and velocity, which
is above the Quadrature Encoder signals.
Only these signals will reflect changes to the
sensor phase.

The self test completed successfully.

I Mode:G:PercentDuteut | Output:49.95% [6.11v] f
Motor Leads: M+:6.11 WV M-:0V

Brake during neutral
VCompEn:0 CurrLimited:0

=:PIDO: 0 PID1: O
SelFeedback0:0: Quad/MagEnc(rel)|Pos:-77565u Vel:-1636u/100ms

PIDO err: -1368 iaccum:0 derr:0
PID1 err: O iaccum:0 derr:0

Quad/MagEnc{rel)
Pos:-75412u Vel:-1434u/100ms
Pins: A=0 B=1 Id=1 IdEdges:3

Analeg Input Pos:50u Vel:-6u/100ms|ADC:50|0.2 v
PulseWidth/MagEnc(abs) Per(us):4160.2

TachVel: 24613 u/100ms | 14422.00 RPM
PosEncPulse Pos:-377443u Vel:-1333u/100ms

LimSw(F/R):0Open,Open
ZeroPosOn Idx=0ff LimF=0ff LimR=0ff

(Fault) {Now) (Sticky)
Sens Out Of Phase: 1 1

Curr(A):3.00 | Bus(V):12.25 | Temp{C):22

Nominal %:0,0

Peak %:-100,100

Closed Loop AllowedErr:Slot0=0,Slot1=0
Vel Sampling Per({ms): 100, AvgWin:64
VCompSat:14.6

"Light Device LED" clears sticky faults.

Cross The Road Electronics Page 45 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

In the special case of using the “Tachometer” feedback device, the measured velocity is always
signed to match the motor output. This ensures the sensor is in-phase despite the inability of a
Tachometer signal to determine direction.

7.5. Supported Feedback Devices
Many feedback back interfaces are supported. The complete list is below.

7.5.1. Quadrature
The Talon directly supports Quadrature Encoders. If Quadrature is selected, the decoding is
done in 4x mode. This means that each pulse will correspond to four counts.

In this example pulse

HIGH train, the Talon would
Channel A LOwW decode 12 counts (each
HIGH of the three pulses
LOW contributes four edges).
Channel B ———— ——

7.5.2. Analog (Potentiometer / Encoder)
Analog feedback sensors, or sensors that provide a variable voltage to represent position, are
also supported. Some devices are continuous despite the voltage signal wrapping around from
3.3V back to OV. For these sensors, the Talon will detect and count these wrap arounds.
Despite the base analog measurement holding 10 bits [0,1023], the sensor position will continue
from 1023 -> 1024.

7.5.2.1. Potentiometer (Discontinuous) Sensor
For other sensors (like potentiometers) that do not wrap the voltage signal and therefore must
not track the overflow, the Talon can be configured to wrap the position (1023 -> 0). This can be
done by setting the eFeedbackNotContinuous configurable parameter to ‘1°.

7.5.2.2. LabVIEW Example

|Configure analog senser to not be continuous |

: - -
{eFeedbackMotContinuous i
1 will wrap 1023-=0, 1 -P"'R""*‘
0 will allow 1023-=1024,

7.5.2.2. C++ Example

/* analog signal with no wrap-around (0-3.3V) */
talon.ConfigSelectedFeedbackSensor (FeedbackDevice: :Analog, 0, 0); /* PIDLoop=0, timeoutMs=0 */
/* eFeedbackNotContinuous = 1, subValue/ordinal/timeoutMs = 0*/

talon.ConfigSetParameter (ParamEnum: : eFeedbackNotContinuous, 1, 0x00,0x00, 0x00);

7.5.2.3. Java Example

/* analog signal with no wrap-around (0-3.3V) */
talon.configSelectedFeedbackSensor (FeedbackDevice.Analog, 0,0); /* PIDLoop=0, timeoutMs=0 */
/* eFeedbackNotContinuous = 1, subValue/ordinal/timeoutMs = 0 */

talon.configSetParameter (ParamEnum.eFeedbackNotContinuous, 1, 0x00, 0x00, 0x00);

Cross The Road Electronics Page 46 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

7.5.3. Pulse Width Decoder
For sensors that encode position as a pulse width, this sensor type can be used to decode the
position. The pulse width decoder is 1us accurate and the maximum time between edges is
120ms, which is wide enough to support many LIDAR distance sensors.

7.5.4. Cross The Road Electronics Magnetic Encoder (Absolute and Relative)
The CTRE Magnetic Encoder is composed of two sensor interfaces packaged into one (pulse
width and quadrature encoder). Therefore, the sensor provides two modes of use: absolute and
relative.

:

The advantage of absolute mode is having a solid reference to where a mechanism is without
re-tare-ing or re-zero-ing the robot. The advantage of the relative mode is the faster update
rate. However, both values can be read/written at the same time. So, a combined strategy of
seeding the relative position based on the absolute position can be used to benefit from the
higher sampling rate of the relative mode and still have an absolute sensor position.

Parameter Absolute Mode Relative Mode

Update rate (period) 4ms 100 us

Max RPM 7,500 RPM 15,000 RPM

Accuracy 12 bits per rotation 12 bits per rotation
(4096 steps per rotation) (4096 steps per rotation)

Software API Use Pulse Width API Use Quadrature API

7.5.4.1. Selecting the Magnetic Encoder
Selecting the Magnetic Encoder for closed-loop / soft-limit features is no different than selecting
other sensor feedback devices. Depending on language, there are two new feedback types:
CTRE Magnetic Encoder (absolute) and CTRE Magnetic Encoder (relative). Alternatively, the
user can select Quadrature or PulseWidthEncodedPosition to select between relative and
absolute.

Cross The Road Electronics Page 47 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

Additionally, the position and velocity can be retrieved without selecting the Magnetic Encoder
as the selected feedback device. One method is to utilize the self-test in the roboRIO web-
based configuration.

Save | Refresh ‘ |Se|f—Test |

The self test completed successfully. .
@ pevice enabled g Note the purple entries are
Mode:0:PercentOutput | Output:49.95% [6.11 V] .
Motor Leads: M+:6,11 V M-:0V always available
Brake during neutral
VCompEn:0 CurrLimited:0 regardless of robot-code
: 0 PID1: O status.

SelFeedback0:0:Quad/MagEnc(rel)|Pos:-7756%u Vel:-1636u/100ms Selected feedback device will report

SelFee ckl:0:Quad/MagEnc(rel}|Pos:0u Vel:0u/100ms Quad/MagEncl:rel] if selected.
PIDO err: -1368 iaccum:0 derr:0
PID1 err: 0 iaccum:0 derr:0

Quad/MagEnc(rel) Quadrature/MagEnc(relative)
Pos:-75412u Vel:-1434u/100ms [| IS always decoded, even if
Pins: A=0 B=1 Id=1 IdEdges:3 robot has no code.

Analog Input Pos:50u Vel:-6u/100ms|ADC:50[0.2 W

PulseWidth/MagEnc(abs) Per(us):4160.2 PulseWidPosition/MagEnc|absolute)/Tach is
TachVel: 24613 u/100ms | 14422.00 RPM always decoded, even if robot has no code.
PosEncPulse Pos:-377443u Vel:-1333u/100ms

To programmatically read the absolute and relative position and velocities, the robot API
provides get routines for pulse width decoding and quadrature, which can be read any time
without sensor selection.

7.5.4.2. CTR Magnetic Encoder (absolute) — C++

/* get the decoded pulse width encoder position, 4096 units per rotation */
int pulseWidthPos = talon.GetSensorCollection () .GetPulseWidthPosition () ;
/* get the pulse width in us, rise-to-fall in microseconds */
int pulseWidthUs = talon.GetSensorCollection () .GetPulseWidthRiseToFallUs () ;
/* get the period in us, rise-to-rise in microseconds */
int periodUs = talon.GetSensorCollection () .GetPulseWidthRiseToRiseUs () ;
/* get measured velocity in units per 100ms, 4096 units is one rotation */
int pulseWidthVel = talon.GetSensorCollection () .GetPulseWidthVelocity () ;
/* is sensor plugged in to Talon */
bool sensorPluggedIn = false;
if (periodUs != 0) {
sensorPluggedIn = true;

}

7.5.4.3. CTR Magnetic Encoder (absolute) — Java

/* get the decoded pulse width encoder position, 4096 units per rotation */

int pulseWidthPos = talon.getSensorCollection().getPulseWidthPosition();

/* get the pulse width in us, rise-to-fall in microseconds */

int pulseWidthUs = _talon.getSensorCollection().getPulseWidthRiseToFallUs();
/* get the period in us, rise-to-rise in microseconds */

int periodUs = talon.getSensorCollection().getPulseWidthRiseToRiseUs();

/* get measured velocity in units per 100ms, 4096 units is one rotation */
int pulseWidthVel = talon.getSensorCollection().getPulseWidthVelocity();

/* is sensor plugged in to Talon */

boolean sensorPluggedIn = false;

if (periodUs != 0) {
sensorPluggedIn = true;

}

Cross The Road Electronics Page 48 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

7.6. Multiple Talon SRXs and single sensor

There are many uses where a mechanism requires multiple Talon SRXs but a single sensor.
For example, a single-side of a tank-drive or a shooter-wheel powered by two motors.
The recommended strategy for these mechanisms is to...

Connect the sensor to one of the Talons. This Talon will be referred to the “master”
Talon.

Set the supplemental Talon(s) to follower mode and follow the device ID of the “master”
Talon. See Section 9.1 for details.

Select PercentOutput Mode on the “master” Talon. Write a test robot application to
drive the “master” Talon manually and confirm proper direction. Use setInverted() to
correct direction if need be. Note: A talon’s LEDs will not change when inverted, but the
motor output voltage will. Consult Talon User’s Guide to avoid damaging Talons by
incorrectly wiring inputs/outputs.

Next, connect motor to first follower Talon and disconnect master Talon from master
motor. Consult Talon User’s Guide to avoid damaging Talons by incorrectly
wiring inputs/outputs. Test follower direction. If follower direction is incorrect, use
Setlnverted() on follower Talon to correct it. Repeat for each follower motor controller.

For example, when drive a shooter wheel, the motors may be oriented to require each
motor to drive in opposite directions. If this is the case signal the slave Talon to invert
its output (Section 9.1.4). Do not use excessive motor output. Otherwise you may
stall your motors if the follower and master Talon are driving against each other.
Instrument the Sensor Position or Velocity using the roboRIO Web-based Configuration
Page Self-Test, or print/plot the values. Ensure that sensor moves in a positive
direction when master Talon is given positive forward motor output (green LEDS).

Now that the motor(s) and sensor orientation has been confirmed, select the desired
control mode of the master Talon. Any of the closed-loop/motion-profile control modes
can be used.

When using Velocity Closed-Loop, Current Closed-Loop, or MotionProfile Control Mode,
be sure to calculate the F gain when all slave Talon/motors are connected and used.

7.7. Pulse Width - Checking Sensor Health

When using the PulseWidthEncoded sensor, the health of the sensor can be determined by
polling the measured period. The period will read zero 120ms after the last received valid pulse.

Cross The Road Electronics Page 49 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

7.8. Velocity Measurement
The Talon SRX measures the velocity of all supported sensor types as well as the current
position. In the case of quadrature and analog, every 1ms, a velocity sample is measured and
inserted into a rolling average.

The velocity sample is measured as the change in position at the time-of-sample versus the
position sampled 100ms-prior-to-time-of-sample. The rolling average is sized for 64 samples.
Though these settings can be modified, the (100ms, 64 samples) parameters are default.

7.8.1. Changing Velocity Measurement Parameters.
The two characteristics for the Talon Velocity Measurement are...
e Sample Period (Default 100ms)

These settings are also persistent across power cycles.
Each can be modified through programming API, and through HERO LifeBoat (hon-FRC).

NOTE — When the sample period is reduced, the units of the native velocity measurement is
still change-in-position-per-100ms. In other words, the measurement is up-scaled to normalize
the units. Additionally, a velocity sample is always inserted every 1ms regardless of setting
selection.

NOTE — The Velocity Measurement Sample Period is selected from a fixed list of pre-supported
sampling periods [1, 5, 10, 20, 25, 50, 100(default)] milliseconds.

NOTE - The Velocity Measurement is selected from a fixed list of pre-
supported sample counts: [1, 2, 4, 8, 16, 32, 64(default)]. If an alternative value is passed into
the API, the firmware will truncate to the nearest supported value.

7.8.1.1. Changing Parameters — HERO C#

_talon.ConfigVelocityMeasurementPeriod(CTRE.TalonSrx.VelocityMeasurementPeriod.Period_10Ms, 0);
_talon.ConfigVelocityMeasurementWindow (20, ©);

Cross The Road Electronics Page 50 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

7.8.1.2. Changing Parameters — Hero LifeBoat

&* HERO LifeBoat Imager - O X When using the HERO Development
image HERO | CANbus Devices | rboRI0 Lpgrads | Console Ovput Board, the Sample Period and Rolling
Step 1:Inset LUSE Ado-A cable Average can be modified through the

|HEHD (2.1) Ser:34343430353451090046001E MAC:00:1E:C0:F2:B2:F5: App:0.11.2.0 |
One CAN Device found.

Name ID Fimware Status Bootloader Manu Rev Manu Date Model
rearsft2_drv 0 1022 Running App... 26 14 Now3,2014 Talon SRX

graphical interface.

Step 2: Select a CAN Device to peform these operations.
Device |D/Fimware Configuration

Mator Controller Statup Settings Soft Limits:
Newtral Forward Limit-Switch: | Nomally Open ~ | Forward Limi: [Enable
Reverse Limit-Switch: | Nomally Open ~ Reverse Limit: [] Enable

Closed-Loop Control P: Slot O Closed-Loop Control P: Slot 1

PGan: (0008000 3] FGain: [0010100 |3 PGain: (0000000 3] FGain: [0.000000 |4
|Gain: (0000050 = | Zone: |&II] = |Gain: (0.00D0DD R | Zone: 0 =
D Gain: 0300000 2| Allowable Em: |U = D Gain: |0.000000 2| Allowable Em: |0 =
Closed-Loop Ramp: |0 EI Closed-Loop Ramp: |0 EI

Velocity Sensor Filtter Cloged-Loop Voltage Compensation

Velocty Sample Period {ms): |1 ms ~ g‘;ﬁ;ﬁ?;;ﬂiﬁﬁnﬁfse 90 EI
Rolling Average: |Z] Velocity Samples e Set to zero to disable (Default).

Closed-Loop Output

Apply

Settings read successfully.

Reverse Peak Output -1023
Reverse Nominal Output: |0

Forward Peak Output: 1023
Forward Nominal Qutput: |0

o[

o | T

Version (0.9.9.0) DLL (0.940) .

7.8.1.3. Changing Parameters — FRC Java

talon.ConfigVelocityMeasurementPeriod(VelocityMeasPeriod.Period 100Ms, O0);
talon.ConfigVelocityMeasurementWindow (64, 0);

7.8.1.4. Changing Parameters — FRC C++

_talon.ConfigVelocityMeasurementPeriod (VelocityMeasPeriod::Period 100Ms, 0);
_talon.ConfigVelocityMeasurementWindow (64, 0);

7.8.1.5. Changing Parameters — FRC LabVIEW

Velocity Sample Window

Cross The Road Electronics Page 51 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

7.8.2. Recommended Procedure

The general recommended procedure is to first set these two parameters to the minimal value
of ‘1’ (Measure change in position per 1ms, and no rolling average). Then plot the measured
velocity while manually driving the Talon SRX(s) with a joystick/gamepad. Sweep the motor
output to cover the expected range that the sensor will be expected to cover.

Unless the sensor velocity is considerably fast (hundreds of sensor units per sampling period)
the measurement will be very coarse (visual stair-stepping as the motor output is increased).
Increase the sampling period until the measured velocity is sufficiently granular.

At this point the sensor velocity will have minimal stair-stepping (good) but will be quite noisy.

Increase the rolling average window until the velocity plot is sufficiently smooth, but still
responsive enough to meet the timing requirements of the mechanism.

Cross The Road Electronics Page 52 1/13/2018

217-8080

TALON SRX / Victor SPX Software Reference Manual

1/13/2018

The current Velocity Measurement Settings can

7.8.3. Self-Test Velocity Settings

be confirmed by performing the Self-Test in the
roboRIO Web-based configuration page.

In this screenshot the Sampling Period is set to
100ms and the Rolling Average Window is setto 1

sample.

alon SRX
LEFT MASTER &
alon SRX
Talonz_Pigeon
alon SRX
LeftSlaved pig
alon SRX
Unuseds

alon SRX
RIGHT MASTER 3
alon SRX
RightSlavel

NI roboRIO
RIOO
ASRLL:INSTR
D psrLLsInsTR
ASRLZ::INSTR
D pspLzinsTR

Magnetic Encoder (Relative)

Pos (rot): 0.000 Velocity (RPM): 0.00
Pos:0 Velocity:0

Pins: A=1 B=1 Idx=0

1dx rise edges:25829

Analog Input
ADC: 101
Pos:101 Velocity:0

Pulse Width / CTRE MagEnc (abs)
Pos (rot): 0.039 Velocity (RPM): 0.00
Pos:158 Velocity:0

Fwd Limit Switch is Open.
Rev Limit Switch is Open.

(Fault) (Now) (Sticky)
Under Vbat : 0 1

Current{A):0.00 Battery(V):12.05

Nom Output:0,0
Peak Output:-1023,1023

Closed Loop Allowed Err:Slot0=0,Slot1=0
Encoder CPR:0

Pot Num Turns:0

Volt Comp Rate (V/s):0

Vel Sampling Period (ms):0, Avg Window:0

Closed-Loop Voltage Comp is off.

Double click "Self-Test” to clear sticky faults.

Cross The Road Electronics

VPCM (Device 1D 0)

PDP
PDP (Device ID 0)

Pigeon
Pigeon connected to Talon SRX (Dev

alon SRX
LEFT MASTER &

alon SRX
Talon2_Pigeon

alon SRX
LeftSlaved pig
alon SRX
Unuseds

alon SRX
RIGHT MASTER 3
alon SRX
Rightslavel

NI roboRIO
RIOO

ASRL1::INSTR
ASRL1:INSTR

ASRL2::INSTR
ASRLZ::INSTR

7.8.3.1. Self-Test reads 0 for Period and Window.

Selected Device:6:CTRE MagEnc (rel)
Pos (rot): 62.848 Velocity (RPM): 0.00
Pos:257430 Velocity:0

Magnetic Encoder (Relative)

Pos (rot): -62.848 Velocity (RPM): 0.00
Pos:-257430 Velocity:0

Pins: A=1 B=0 Idx=1

:ldx nise edges: 37638

;ﬂ.na\o-g Input
ADC: 100
IPos:lGO Velocity:1

Pulse Width / CTRE MagEnc (abs)

Pos (rot): -452.355 Velocity (RPM): 0.00

Pos:-1853013 Velocity:0

:i’wd Limit Switch is Open.
Rev Limit Switch is Open.

(Fault) (Mow) (Sticky)
Undervbat: 0 1

Current{A):0.00 Battery(v):12.00
iNom Output:0,0
Peak Output:-1023,1023
Closed Loop Allowed Err:5lot0=0,Slot1=0
IEnouder CPR:0
Pot Num Turns:0
Volt Comp Rate (\

mp Ra
Vel Sampling Penod (ms):100, Avg Window:1

If the firmware is too old to allow

configuration of the velocity measurement
settings, then the self-test will report ‘0’ for
both. In this configuration, the firmware is
hardcoded to use 100ms and 64 samples.

Temp(C):24.84

Page 53

1/13/2018

Te

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

7.9. Tachometer Measurement
Talon SRX also supports decoding a Tachometer for sensing velocity.
Typically, this is used with velocity control mode.

The Talon SRX was tested using a CTRE Talon Tach
http://www.ctr-electronics.com/talon-tach-tachometer-new-limit-switch.html

Select Tachometer as the sensor type and use Self-test to review the measured values.
The base unit of a Tachometer measured velocity is in units per 100ms, such that...
1024 units per 100ms = 1 rotations per 100ms.
OR
1024 units per 100ms = 600RPM

For the sensor decoder to function correctly, users can...
- Ensure Talon is aware how many edges per rotation there are.
- Optionally select a rolling average to smooth measurement (typically not necessary).

7.9.1. Tachometer Measurement — LabVIEW
Use the general SET PARAM VI to adjust the Tachometer decoding parameters.

Set PulseWidthPeriod_EdgesPerRot (430) to a
value within [1,6], (default value is 1).

This should match the number of edges marked on
the wheel being measured.

[ePulseWidthPeriod_EdgesPerRot]

[ePulseWidthPeriod_EdgesPerRot : [1,6]] |2

If filtering is required, set the filter window size (431)
to a value within [1,8], (default is 1). This represents
the number of cells in a rolling average.

[ePulseWidthPeriod_FilterWindowSz|

[ePulseWidthPeriod_FilterWindowSz : [1,8]] 1

7.9.2. Tachometer Measurement — Java
Use the general SET PARAM VI to adjust the Tachometer decoding parameters.

/* ePulseWidthPeriod EdgesPerRot : [1,6] */
int edgesPerRotation = 2;

/* ePulseWidthPeriod FilterWindowSz : [1,8] */
int filterWindowSize = 1;

talon.configSetParameter (430, edgesPerRotation, 0x00, 0x00, 0);
talon.configSetParameter (431, filterWindowSize, 0x00, 0x00, 0);

Set PulseWidthPeriod_EdgesPerRot (430) to a value within [1,6], (default value is 1).
This should match the number of edges marked on the wheel being measured.

Cross The Road Electronics Page 54 1/13/2018

http://www.ctr-electronics.com/talon-tach-tachometer-new-limit-switch.html

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

If filtering is required, set the filter window size (431) to a value within [1,8], (default is 1). This
represents the number of cells in a rolling average.

7.9.2. Tachometer Measurement — C++
Use the general SET PARAM VI to adjust the Tachometer decoding parameters.

/* ePulseWidthPeriod EdgesPerRot : [1,6] */
int edgesPerRotation = 2;

/* ePulseWidthPeriod FilterWindowSz : [1,8] */
int filterWindowSize = 1;

talon.ConfigSetParameter (430, edgesPerRotation, 0x00, 0x00, 0);
talon.ConfigSetParameter (431, filterWindowSize, 0x00, 0x00, 0);

Set PulseWidthPeriod_EdgesPerRot (430) to a value within [1,6], (default value is 1).
This should match the number of edges marked on the wheel being measured.

If filtering is required, set the filter window size (431) to a value within [1,8], (default is 1). This
represents the number of cells in a rolling average.

Cross The Road Electronics Page 55 1/13/2018

217-8080

TALON SRX / Victor SPX Software Reference Manual

1/13/2018

8. Soft Limits

Soft limits can be used to disable motor drive when the “Sensor Position” is outside of a
specified range. Forward motor output will be disabled if the “Sensor Position” is greater than
the Forward Soft Limit. Reverse motor output will be disabled if the “Sensor Position” is less
than the Reverse Soft Limit. The respective Soft Limit Enable must be enabled for this feature

to take effect.

The settings can be set and confirmed in the roboRIO Web-based Configuration.

[search

J

Refresh

roboRIO
roboRIO-217

” CAN Interface
cand

PCM
PCM (Device ID 0)

FOP
PDP (Device 1D 0)

Talon SRX

Talon SRX (Device 1D 3)
Talon SRX

Talon SRX (Device 1D 15)
Talon SRX

Tslon SRX (Device 1D 11)
Talon SRX

Talon SRX (Device 1D 17)
Talon SRX

Talon SRX (Device 1D 1)

Hardware Revision
Manufacture Date
Bootloader Revision
Vendor

Model

Cross The Road Electronics

Talon SRX

Motor Controller Startup Settings

Brake Mode
Forward Limit-Switch

Reverse Limit-Switch

EBrake A
Normally Opened -
Normally Opened -

|| Forward Soft Limit Enable

Forward Soft Limit o
Talon SRX] Reverse Soft Limit Enable
l Talon SRX (Device 1D 8) Reverse Soft Limit o
Talon SRX
’ Talon SRX (Device 1D 13) — ——a e et et
Cross The Road Electronics Page 56 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

8.1. LabVIEW
The soft limits can also be set up programmatically. In LabVIEW, Soft Limit enables and
thresholds can be set using the following Vis.

|Set the thresholds, generally this is done once.l
Forward Soft Limit |Dptionall)r the soft limits can be overridden OFF despite being configured.|

timeoutMs Override Soft Limit Enable?

|Set the enables, generally this is dene once,
Forward Soft Limit Enable

Reverse Soft Limit Enable

8.2. C++
The limit threshold and enabled states can be individually specified using:

/* +14 rotations forward when using CTRE Mag encoder */
talon.ConfigForwardSoftLimitThreshold (+14*4096, 10);

/* =15 rotations reverse when using CTRE Mag encoder */
talon.ConfigReverseSoftLimitThreshold (-15%4096, 10);

talon.ConfigForwardSoftLimitEnable (true, 10);
talon.ConfigReverseSoftLimitEnable (true, 10);

/* pass false to FORCE OFF the feature. Otherwise the enable flags above are honored */
talon.OverridelLimitSwitchesEnable (true) ;

8.3. Java
The limit threshold and enabled states can be individually specified using:

/* +14 rotations forward when using CTRE Mag encoder */
talon.configForwardSoftLimitThreshold (+14%*4096, 10);

/* =15 rotations reverse when using CTRE Mag encoder */
talon.configReverseSoftLimitThreshold(-15%4096, 10);

talon.configForwardSoftLimitEnable (true, 10);

talon.configReverseSoftLimitEnable (true, 10);

/* pass false to FORCE OFF the feature. Otherwise the enable flags above are honored */
talon.overrideLimitSwitchesEnable (true) ;

Cross The Road Electronics Page 57 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

9. Special Features

9.1. Follower Mode

Any given Talon SRX on CAN bus can be instructed to “follow” the drive output of another Talon
SRX. This is done by putting a Talon SRX into “follower” mode and specifying the device ID of
the “Master Talon” to follow. The “Slave Talon” will then mirror the output of the “Master Talon”.
The “Master Talon” can be in any mode: closed-loop, percentOutput, motion profile control
mode, or even following yet another Talon SRX.

9.1.1. LabVIEW

The follow VI can be used to set up a
| CTRE/VEX CAN motor controller to
m ' follow another CTRE/VEX CAN motor

|Create a Victor SPX 2] |‘u‘ictl:|rwi||fu:ullu:uwTaInr1

VICTOR:

[Create a Talon SRX 1] controller.

PercentOutput =

TALON Sessesees qc

T aen|

9.1.2. C++

Followers can be set up by...

using the follow routine.

passing the device ID of the Master motor controller into set () if the follower product
model is the same as the master. The device ID should be between 0 and 62
(inclusive).

/* recommended method: use Follow routine */

victor.Follow(talon);

/* alternative method : victor will follow another Victor 7 - assume same model */
victor.Set (ControlMode: :Follower, 7);

/* alternative method : talon will follow another Talon 7 - assume same model */
talon.Set (ControlMode: :Follower, 7);
9.1.3. Java

Followers can be set up by...

using the follow routine.

passing the device ID of the Master motor controller into set () if the follower product
model is the same as the master. The device ID should be between 0 and 62
(inclusive).

/* recommended method: use follow routine */
victor.follow(talon) ;

/* alternative method : victor will follow another Victor 7 - assume same model */

victor.set (ControlMode.Follower, 7);

/* alternative method : talon will follow another Talon 7 - assume same model */
talon.set (ControlMode.Follower, 7);

Cross The Road Electronics Page 58 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

9.1.4. Correcting Follower Direction
If a follower motor controller must drive in the opposite direction use the motor controller invert
to correct this.

9.1.4.1. Correcting Follower Direction — C++
talon.SetInverted (true);

9.1.4.2. Correcting Follower Direction — Java
talon.setInverted (true);

9.1.4.3. Correcting Follower Direction — LabVIEW

H SET

Cross The Road Electronics Page 59 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

9.2. Voltage Compensation
When voltage compensation is enabled, the output duty cycle is calculated to meet the desired
output voltage. This is done by sampling the battery voltage and scaling the output duty cycle to
match the desired output voltage. If the desired output voltage exceeds battery voltage, then
Talon will drive full available voltage.

This feature affects all control modes, including...
e Position Closed-Loop Control Mode
¢ Velocity Closed-Loop Control Mode
e Current Closed-Loop Control Mode
e Motion Profile Control Mode
¢ Motion Magic Control Mode

As an example, if the Position Closed-Loop Control Mode calculates an output of 512 units
(50% motor output), then instead of applying 50% of max voltage, the Talon will apply 50% of
the specified Nominal Battery Voltage. This is accomplished by scaling the motor output
against the measured battery voltage.

If the measured battery voltage is below the necessary voltage to reach the calculated output of
the compensated closed-loop control mode, 100% motor output is applied.

This is done every 1ms synchronous with the closed-loop controller.
The setting is persistent across power cycles and has a default value of 0.0.

Enabling this feature requires setting the saturation voltage and the feature enable. If either is
O/false, the feature is disabled.

Additionally, the voltage filter (rolling average) may be modified to tune out oscillations caused
by the voltage compensation. The Rolling average window defaults to 32 samples (each
sampled every millisecond).

Valid values for the rolling average window are {1,2,4,8,16, and 32}

9.2.1. LabVIEW

Enable Yoltage Compensation?

MG
[Full output will scale to this voltage: [10 [Rolling Average Window]|[32]

[l '

Cross The Road Electronics Page 60 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

9.2.2. C++

/* "full" output will scale to 11 volts */
talon.ConfigVoltageCompSaturation(11.0, 10);
talon.EnableVoltageCompensation (true); /* turn on the feature */
/* tweak the voltage bus measurement filter,

* default is 32 cells in rolling average (lms per sample) */
talon.ConfigVoltageMeasurementFilter (32, 10);

9.2.3. Java

/* "full" output will scale to 11 volts */
talon.configVoltageCompSaturation (11.0, 10);
talon.enableVoltageCompensation (true); /* turn on the feature */
/* tweak the voltage bus measurement filter,

* default is 32 cells in rolling average (lms per sample) */
talon.configVoltageMeasurementFilter (32, 10);

9.2.4. Self-Test

o The self test completed successfully. The feature enable can be checked via the

Device NOT ENABLED! Self-Test.
Mode:0: PercentOutput | Qutput:0.00% [0.00 V]
Maotor Leads: M+/M- off

Coast during neutral
VCompEn:ORCurrLimited: 0

Cross The Road Electronics Page 61 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

9.3. Current Limits
Talon SRX can limit the output current to a specified maximum threshold. This functionality is
available in all control modes. This feature is not available on Victor SPX.

Regardless of language or mode, there are two parameters that must be set — the numeric
current threshold (in amps) and the boolean flag to enable or disable the feature.

Additionally, a peak current and time threshold may be specified to allow excessive current
before enforcing the continuous current limit.

9.3.1. Current Limit — LabVIEW
The Talon SRX palette in LabVIEW contains a ConfigCurrentLimit VI for setting the current limit

parameters.
Peak Current and Duration must be exceeded before current limit is activated.
When activated, current will be limited to Continuous Current.
Set Peak Current params to 0 if desired behavior is to immedietely current-limit.
Peak Current (Armps)
Peak Current Maximum Duration {ms)
Continuous Current Limit (Amps)
I CONFIG | {[EHAELE
H FEAE AHF
i AFFE LIMIT
COHFIG
[timeouths][o] :
Enable Current Limit?
9.3.2. Current

Limit — C++
/* Peak Current and Duration must be exceeded before current limit is activated.

When activated, current will be limited to Continuous Current.
Set Peak Current params to 0 if desired behavior is to immediately current-limit. */

talon.ConfigPeakCurrentLimit (35, 10); /* 35 A */
talon.ConfigPeakCurrentDuration (200, 10); /* 200ms */
talon.ConfigContinuousCurrentLimit (30, 10); /* 30A */
talon.EnableCurrentLimit (true); /* turn it on */

9.3.3. Current Limit — Java

/* Peak Current and Duration must be exceeded before current limit is activated.

When activated, current will be limited to Continuous Current.

Set Peak Current params to 0 if desired behavior is to immediately current-limit. */
talon.configPeakCurrentLimit (35, 10); /* 35 A */
talon.configPeakCurrentDuration (200, 10); /* 200ms */
talon.configContinuousCurrentLimit (30, 10); /* 30A */
talon.enableCurrentLimit (true); /* turn it on */

Cross The Road Electronics Page 62 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

10. Control Modes (Closed-Loop)

Talon SRX supports position closed-loop, velocity closed-loop, current closed-loop, Motion
Profiling, and Motion Magic. The actual implementation can be seen in Section 18. How is the
closed-loop implemented?

All closed-loop modes update every 1ms (1000Hz).

)

1|

= TIP: While tuning the closed-loop, use the roboRIO web-based configuration to quickly
change the gains “on the fly”. Once the PID is stable, set the gain values in code so that Talons
can be swapped/replaced easily. Below is an example of tweaking the gains in the roboRIO
Web-based configuration.

Motor Controller Closed-Loop Control Parameters Slot 0

P Gain 0.3

I Gain o '
O Gain o
Feed-Forward Gain .D.DZE |
I Zone o

Ramp Rate o

@ TIP: Example code of the parameters in Java once initial tweaking is done. Parameters
can also be tweaked “on the fly” using the roboRIO Web-based configuration or reading values

from a file.
/* set closed loop gains in slot0 - see documentation */
_talon.selectProfileSlot (kSlotIdx, O0);
_talon.config kF(kSlotIdx, 0.2, kTimeoutMs):;
_talon.config kP(kSlotIdx, 0.2, kTimeoutMs):;
_talon.config kI(kSlotIdx, 0, kTimeoutMs);
_talon.config kD(kSlotIdx, 0, kTimeoutMs);
_talon.config IntegralZone (0, 100, Constants.kTimeoutMs) ;

Cross The Road Electronics Page 63 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

10.1. Position Closed-Loop Control Mode
The Talon’s Closed-Loop logic can be used to maintain a target position. Target and sampled
position is passed into the equation in Section 18 in native units.

TIP: A simple strategy for setting up a closed loop is to zero out all Closed-Loop
Control Parameters and start with the Proportional Gain.

For example, if you want your mechanism to drive 50% motor output when the error is
4096, then the calculated Proportional Gain would be (0.50 X 1023) / 4096 = ~0.125.

To check our math, take an error (native units) of 4096 X 0.125 => 512 (50% motor
output).

Tune this until the sensed value is close to the target under typical load. Many prefer to
simply double the P-gain until oscillations occur, then reduce accordingly.

If the mechanism accelerates too abruptly, Derivative Gain can be used to smooth the
motion. Typically start with 10x to 100x of your current Proportional Gain.

If the mechanism never quite reaches the target and increasing Integral Gain is viable,
start with 1/100" of the Proportional Gain.

See Section 12.5 for HERO C# complete example of Position Closed-Loop. The functions used
are comparable to the WPILIB C++/Java API.

10.2. Current Closed-Loop Control Mode

The Talon’s Closed-Loop logic can be used to approach a target current-draw. Target and
sampled current is passed into the equation in Section 18 in milliamperes. However, the robot
API expresses the target current in amperes.

Note: Current Control Mode is separate from Current Limit. See Section 9.3 for Current Limit.

TIP: A simple strategy for setting up a current-draw closed loop is to zero out all Closed-
Loop Control Parameters and start with the Feed-Forward Gain. Tune this until the current-
draw is close to the target under typical load. Then start increasing P gain so that the closed-
loop will make up for the remaining error. If necessary, reduce Feed-Forward gain and increase
P Gain so that the closed-loop will react more strongly to the ClosedLoopError.

See Section 12.3 for a walk-through in LabVIEW. Though the example is written in LabVIEW,
the procedure is the similar for all supported languages.

Cross The Road Electronics Page 64 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

10.3. Velocity Closed-Loop Control Mode

The Talon’s Closed-Loop logic can be used to maintain a target velocity. Target and sampled
velocity is passed into the equation in Section 18 in native units per 100ms. See Section 17.1
for information regarding native units.

TIP: A simple strategy for setting up a closed loop is to zero out all Closed-Loop Control
Parameters and start with the Feed-Forward Gain. Tune this until the sensed value is close to
the target under typical load. Then start increasing P gain so that the closed-loop will make up
for the remaining error. If necessary, reduce Feed-Forward gain and increase P Gain so that
the closed-loop will react more strongly to the ClosedLoopError.

TIP: Velocity Closed-Loop tuning is similar to Current Closed-Loop tuning in their use of
feed-forward. Begin by measuring the sensor velocity while driving the Talon at a large motor
output.

A complete Java example is available in Section 12.4.

10.4. Motion Profile Control Mode

A recent addition to the Talon SRX is the motion profile mode. With this, a savvy developer can
stream motion profile trajectory points into the Talon’s internal buffer (even while executing the
profile). This allows fine control of position and speed throughout the entire movement. Since
this is an advanced feature addition, a separate document will be provided shortly to cover this.

Cross The Road Electronics Page 65 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

10.5. Peak/Nominal Output
Since firmware 2.0, The Talon SRX supports bounding the output of the Closed-Loop modes.
These settings are in effect during...

e Position Closed-Loop Control Mode

e Velocity Closed-Loop Control Mode

e Current Closed-Loop Control Mode

e Motion Profile Control Mode

e Motion Magic Control Mode

To clearly communicate what these parameters accomplish, the following terms are introduced.
o Peak Output- The “maximal” or “strongest” motor output allowed during closed-loop.
These settings are useful to reduce the maximum velocity of the mechanism, and can
make tuning the closed-loop simpler.

The “Positive Peak Output” or “Forward Peak Output” refers to the “strongest” motor
output when the Closed-Loop motor output is positive. If the Closed-Loop Output
exceeds this setting, the motor output is capped.

This value is typically positive or zero. The default value is +1023 as read in the web-
based configuration Self-Test.

The “Negative Peak Output” or “Reverse Peak Output” refers to the “strongest” motor
output when the Closed-Loop motor output is negative. If the Closed-Loop Output
exceeds this setting, the motor output is capped.

This value is typically negative or zero. The default value is -1023 as read in the web-
based configuration Self-Test.

e Nominal Output- The “minimal” or “weakest” motor output allowed during closed-loop if
the “Closed-Loop Error” is nonzero and outside of the “Allowable Closed-Loop Error”.

This is expressed using two signals: “Positive Nominal Output” and “Negative Nominal
Output”, to uniquely describe a limit for each direction.

If the Closed-Loop is calculating a motor-output that is too “weak”, the robot application
can use these signals to promote the motor-output to a minimum limit. With this the
robot application, can ensure the motor-output is large enough to drive the mechanism.
Typically, this is accomplished with Integral gain, however this method may be a simpler
alternative as there is no risk of Integral wind-up.

Cross The Road Electronics Page 66 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

10.5.1. Peak/Nominal Closed-Loop Output — LabVIEW

. . FEAK HaM
These signals can be set using [2uTFu1] gand |eutrur

Peak and nominal values range from -1.0 (full reverse) to +1.0 (full forward).

[Deadband 0.1% (typically 4%)]|
QAUTFUT

[Nominal forward 10%] -1 EDM 0.001}| 25
OUTFUT|

-0.05

|Peak forward 80%| |0.8

[Peak reverse -70%||-0.7

fimeoutts]]

[Meminal reverse -5%

10.5.2. Peak/Nominal Closed-Loop Output — C++

The parameters are expressed in voltage where +12V represents full forward, and -12V

represents full reverse.
/* set
_talon.
_talon.

the peak and nominal outputs, 1.0 means full */
ConfigNominalOutputForward (0, kTimeoutMs) ;
ConfigNominalOutputReverse (0, kTimeoutMs) ;
_talon.ConfigPeakOutputForward(l, kTimeoutMs) :;
_talon.ConfigPeakOutputReverse (-1, kTimeoutMs) ;

/* 0.001 represents 0.1% - default value is 0.04 or 4% */

_talon.ConfigNeutralDeadband(0.001, kTimeoutMs) :;

10.5.3. Peak/Nominal Closed-Loop Output — Java
The parameters are expressed in voltage where +12V represents full forward, and -12V

represents full reverse.
1.0 means full */

/* set

_talon.
_talon.
_talon.

the peak and nominal outputs,
configNominalOutputForward (0, kTimeoutMs) ;
configNominalOutputReverse (0, kTimeoutMs) ;
configPeakOutputForward(l, kTimeoutMs) ;

_talon.configPeakOutputReverse (-1, kTimeoutMs) ;
/* 0.001 represents 0.1% - default value is 0.04 or 4% */
_talon.configNeutralDeadband (0.001, kTimeoutMs) :;

10.5.4. Peak/Nominal Closed-Loop Output — Web based Configuration Self-Test
The parameters are also available for review in the Self-Test.

Mominal %:0,0

Peak %:-100,100

Closed Loop AllowedErr:Slot0=0,5lot1=0
Vel Sampling Per{ms):100,AvgWin: 64
VCompSat: 0.0

"Light Device LED" clears sticky faults.

CTRE Build:Jan 1 2018 18:08:40
Press "Refresh” to close,

Cross The Road Electronics Page 67 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

10.6. Allowable Closed-Loop Error
Since firmware 2.0, The Talon SRX supports specifying an Allowable Closed-Loop Error
whereby the motor output is neutral regardless of the calculated result. This signal affects...
e Position Closed-Loop Control Mode
e Velocity Closed-Loop Control Mode
e Current Closed-Loop Control Mode
e Motion Profile Control Mode
e Motion Magic Control Mode

When the Closed-Loop Error is within the Allowable Closed-Loop Error
e P, I, Dterms are zeroed. In other words, the math that uses P, |, and D gains is
disabled. However, F term is still in effect.
e Integral Accumulator is cleared.

Allowable Closed-Loop Error defaults to zero, and is persistently saved.

10.6.1. Allowable Closed-Loop Error — LabVIEW
Use the VI to set this signal. The Allowable Closed-Loop error is in the same units as

Closed-Loop Error. See Section 17.1 for more information. Each Closed-Loop Motor Profile slot
has a unique Allowable Closed-Loop Error. Select ‘0’ or ‘1’ for slot 0 or slot 1 respectively.

|F'ick the max Integral Accumulator Value (error units X 'Ims]| m

[tim eoutMs - wait up to 10ms for confirmation|

Cross The Road Electronics Page 68 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

10.6.2. Allowable Closed-Loop Error — C++

The Allowable Closed-Loop error is in the same units as Closed-Loop Error. See Section 17.1
for more information. Each Closed-Loop Motor Profile slot has a unique Allowable Closed-Loop
Error. This function affects the currently selected slot/profile.

/* Slot 0 => allowable error 409 units (10% or a rotation if using CTRE MagEncoder) */
talon.ConfigAllowableClosedloopError (0, 409, 10);

In this example, 409 corresponds to 9.985% of a rotation or 35.95 degrees (assuming 4096
units per rotation, such as 1024CPR encoder or CTRE Mag Encoder).

10.6.3. Allowable Closed-Loop Error — Java

The Allowable Closed-Loop error is in the same units as Closed-Loop Error. See Section 17.1
for more information. Each Closed-Loop Motor Profile slot has a unique Allowable Closed-Loop
Error. This function affects the currently selected slot/profile.

/* Slot 0 => allowable error = 409 units (10% or a rotation if using CTRE MagEncoder) */
talon.configAllowableClosedloopError (0, 409, 10);

In this example, 409 corresponds to 9.985% of a rotation or 35.95 degrees (assuming 4096
units per rotation, such as 1024CPR encoder or CTRE Mag Encoder).

10.6.4. Allowable Closed-Loop Error — Web based Configuration Self-Test

Nominal %:0,0 The Allowable Closed-Loop Error for both slots can be read

et e using the roboRIO Web based configuration Self-Test.
Closed Loop AllowedErr:Slot0=40,Slot1=0

Vel Sampling Per{ms):100,AvgWin:64

VCompSat:0.0 The values are in the same units as Closed-Loop Error.
"Light Device LED" clears sticky faults.

In this example 40 corresponds to 0.9767% of a rotation or
3.52 degrees (assuming 4096 units per rotation, such as
1024CPR encoder or CTRE Mag Encoder).

CTRE Build:Jan 1 2018 18:08:40
Press "Refresh” to close.

Cross The Road Electronics Page 69 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

10.7. Motion Magic Control Mode

Motion Magic is a control mode for Talon SRX that provides the benefits of Motion Profiling
without needing to generate motion profile trajectory points. When using Motion Magic, Talon
SRX will move to a set target position using a Trapezoidal Motion Profile, while honoring the
user specified acceleration and maximum velocity (cruise velocity).

The benefits of this control mode over “simple” PID position closed-looping are...
e Control of the mechanism throughout the entire motion (as opposed to racing to the end
target position).
e Control of the mechanism’s inertia to ensure smooth transitions between set points.
e Improved repeatability despite changes in battery voltage.
¢ Improved repeatability despite changes in motor load.

After gain/settings are determined, the robot-application only needs to periodically set the target
position.

There is no general requirement to “wait for the profile to finish”, however the robot application
can poll the sensor position and determine when the motion is finished if need be.

A Trapezoidal Motion Profile generally ramps the output velocity at a specified acceleration until
cruise velocity is reached. This cruise velocity is then maintained until the system needs to
deaccelerate to reach the target position and stop motion. Talon determines when these critical
points occur on-the-fly.

NOTE: If the remaining sensor distance to travel is small, the velocity may not reach cruise
velocity as this would overshoot the target position. This is often refered to as a “triangle

profile”.
Example Trapezoidal Motion Profile

12

10

Accel

Time

Motion Magic utilizes the same PIDF parameters as Motion Profiling.

Cross The Road Electronics Page 70 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

The F parameter should be tuned using the process outlined in Section 12.6.3. Note that while
the F parameter is not normally used for Position Closed-Loop control, Motion Magic requires
this parameter to be properly tuned.

See Section 12.6 for complete FRC JAVA walkthrough on tuning.

Two additional parameters need to be set in the Talon SRX— Acceleration and Cruise Velocity.
The Acceleration parameter controls acceleration and deacceleration rates during the beginning
and end of the trapezoidal motion. The Cruise Velocity parameter controls the cruising velocity

of the motion.

This feature is further enhanced when used with Closed-Loop Voltage Compensation (Section

10.8).

The upper bound for trajectory velocity (RPM) is 278045700/sensor-units-per-rotation.

Cross The Road Electronics Page 71 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

11. Motor Control Profile Parameters

The Talon persistently saves four unique Motor Control Profiles.
Each Motor Control Profile contains several configurable values, including...

One un

P Gain: K, constant to use when control mode is a closed-loop mode.

| Gain: K, constant to use when control mode is a closed-loop mode.

D Gain: Kp constant to use when control mode is a closed-loop mode.

F Gain: Kr constant to use when control mode is a closed-loop mode.

| Zone: Integral Zone. When nonzero, Integral Accumulator is automatically cleared
when the absolute value of Closed-Loop Error exceeds it.

(Closed-Loop) Ramp Rate: Ramp rate to apply when control mode is a closed-loop

mode.

Allowable Closed-Loop Error: When Closed-Loop Error's magnitude is less than this

signal, Integral Accum and motor output are auto-zeroed during closed-loop.

Peak Closed-Loop Output: Caps the maximal or peak motor-output during closed-loop.

Nominal Closed-Loop Output: Promotes the minimal or weakest motor-output during

closed-loop.

ique feature of the Talon SRX is that gain values specified in a Motor Control Profile are

not dedicated to just one type of closed-loop. When selecting a closed-loop mode (for example
position or velocity) the robot application can select either of the two Motor Control Profiles to
select which set of values to use. This can be useful for gain scheduling (changing gain values
on-the-fly) or for persistently saving two sets of gains for two entirely different closed loop

modes.
Reverse Soft Limit 1000 The settings for the first two slots can be set and
read in the web control page.
Motor Controller Closed-Loop Control Parameters Slot O
P Gain 0.2
e oo Note that the Ramp Rate is no longer
Feed-Forward Gain (0.0002 supported, as it has been replaced by Open-
T2one 200 Loop and Closed-Loop Ramp API.

Ramp

Rate 256

Motor Controller Closed-Loop Control Parameters Slot 1

P Gain

I Gain

0.1

0.001

L Gain 1

Feed-Forward Gain 0.0001

I Zone 100

Ramp

Rate 256

Cross The Road Electronics Page 72 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

11.1. Persistent storage and Reset/Startup behavior
The Talon SRX was designed to reduce the “setup” necessary for a Talon SRX to be functional,
particularly with closed-loop features. This is accomplished with efficient CAN framing and
persistent storage.

All settings in the Motor Control Profile (MCP) are saved persistently in flash. Additionally, there
are two complete Motor Control Profiles. Teams that use a constant set of values can simply
set them using the roboRIO Web-based Configuration, and they will “stick” until they are
changed again.

Additionally, Motor Control Profile (MCP) Parameters can be changed though programming API.
When they are changed, the values are ultimately copied to persistent memory using a wear
leveled strategy that ensures Flash longevity, but also meets the requirements for teams.
-Changing MCP values programmatically always take effect immediately (necessary for gain
tuning).

-If the MCP Parameters have remained unchanged for fifteen seconds, and an MCP Parameter
value is then changed using programming API, they are copied to persistent memory
immediately.

-If the persistent memory has been updated within the last fifteen seconds due to a previous
value change, and an MCP Parameter value is changed again, it will be applied to persistent
memory once fifteen seconds has passed since the last persistent memory update. However
the closed-loop will react immediately to the latest values sent over CAN bus.

-If power loss occurs during the period when MCP Parameters are being saved to persistent
storage, the previous values for all MCP Parameters prior to last value-change is loaded. This
is possible because the Talon SRX keeps a small history of all value changes.

These features fit well with the two common strategies that FRC teams utilize when
programmatically changing closed-loop parameters...

(1) Teams use programming API at startup to apply previous tested constants.
(2) Teams use programming API to periodically set/change the constants because they are
“gain scheduled” or action specific.

For use case (1), the constants are eventually saved in Talon SRX persistent memory (worst
case fifteen seconds after robot startup). Once this is done the Talon SRX will have the values
in persistent storage, so even after Talons are power cycled, they will load the constants that
were previous set. This frees the robot controller from needing to re-set the values during a
power cycle, reset, brownout, etc.... On subsequent robot startups, when the robot controller
sends the same values again, and Talon SRX will still react by updating its variables, and
comparing against what’s saved in persistent storage to see if it needs to be updated again. In
the event the robot code changes to use new constants, the Talon will again update the
persistent storage shortly after getting the new values.

Cross The Road Electronics Page 73 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

For use case (2) teams, there are two “best” solutions depending on what’s being
accomplished. If a team needs to switch between two sets of gains, they can leverage both
MCP slots by setting one set of constants in slot 0, and another unique set of constants in slot 1.
Then during the match, teams can switch between the two with a single APIl. This means that
as far as the Talon is concerned, the values in each slot never changes so the contents of the
Talon’s persistent storage never changes. Instead the robot controller just changes which slot
to use. So this use case regresses to use case (1), and a freshly booted Talon already has all
the MCP parameters it needs to function.

For use case(2) teams that requires more than two gain sets likely are changing gain values so
frequently (as a function of autonomous, or state machine driven logic) that they would prefer
not to rely on the previous set of gains sent to the Talon (despite it being available at startup).

In which case they likely will periodically set the MCP parameters continuously (every number of
loops or fixed period of time). Talon SRX always honors whatever parameters are requested
over CAN bus, overriding what was loaded at startup or mirrored in persistent storage. And
since the persistent storage is wear-leveled and mirrored at fifteen second intervals, this has no
harmful impact on Flash longevity. So this use case is also supported well.

Beyond the Motor Control Profile Parameters, closed-loop modes require selecting
-which control mode (position or velocity)

-which feedback sensor to use

-if the feedback sensor should be reversed

-if the closed-loop output should be reversed

-what is the latest target or set point

- ramp rate (if needed)

-which Motor Control Profile Slot to use.

Cross The Road Electronics Page 74 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

11.2. Inspecting Signals

When testing/calibrating closed-loops it is helpful to plot/check...
-Closed-Loop Error

-Applied motor percent output

-Profile Slot Select (which profile slot the closed-loop math is using).
-Position and Velocity depending control mode.

The Self-Test can provide these values for quick sanity checking. These values are also
available with programming API for custom plotting, smart dashboard, LabVIEW front panels,
etc...

Save | Refresh | | Self-Test |

o The self test completed successfully.
Device NOT ENABLED!

Mu-:le:l]:PementDutEut I OutEut:l].l]l]% ID.DD EI
Motor Leads: M+/M-

Coast during neutral
VWCompEn:0 CurrLimited:0

Slot Selects:PIDO: 0 PID1: O
SelFeedback0:0:Quad/MagEnc(rel}|Pos:0u Vel:0u/100ms
SelFeedbackl:0:Quad/MagEnc(rel}|Pos:0u Vel:0u/100ms

PID1 err: 0 iaccum:0 derr:0

Cross The Road Electronics Page 75 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12. Closed-Loop Code Excerpts/Walkthroughs

12.1. Setting Motor Control Profile Parameters

12.1.1. LabVIEW
Setting the Motor Controller Profile parameters can be done with the SET PID VI.
This allows filling all parameters for a given Parameter Slot.

Specifying the set point is also done with the Set VI.
ﬂ [Forward two rotations from zero (if using CTRE Mag Encoder, 4096 units per rotation)|

o e

[Primary PID Loop=0| [p]

Cross The Road Electronics Page 76 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.1.2. C++

Closed-loop parameters for a given profile slot can be modified with several different functions.
/* first param is the slot, second param is generally zero (for primary PID loop) */
talon.SelectProfileSlot (0, 0);

talon.Config kF(0, 0.2, Constants.kTimeoutMs) ;

talon.Config kP (0, 0.2, Constants.kTimeoutMs) ;

talon.Config kI (0, 0, Constants.kTimeoutMs);

talon.Config kD(0, 0, Constants.kTimeoutMs) ;

Setting the target position or velocity is also done with set () .

/* servo position, plus/minus one CTRE Mag Enc rotation via gamepad */

talon.Set (ControlMode.Position, joy.getY() * 4096);

12.1.3. Java
Closed-loop parameters for a given profile slot can be modified using setpID (). This also sets
the “Profile Slot Select” to the slot being modified. There are also individual Set functions for
each signal.

/* first param is the slot, second param is generally zero (for primary PID loop) */
talon.selectProfileSlot (0, 0);

talon.config kF (0, 0.2, Constants.kTimeoutMs) ;

talon.config kP (0, 0.2, Constants.kTimeoutMs) ;

talon.config kI(0, 0, Constants.kTimeoutMs) ;

talon.config kD(0, 0, Constants.kTimeoutMs);

Setting the target position or velocity is also done with set ().

/* servo position, plus/minus one CTRE Mag Enc rotation via gamepad */
talon.set (ControlMode.Position, joy.get¥Y() * 4096);

12.2. Setting/Clearing Integral Accumulator (I Accum)

Clearing the integral accumulator (“I Accum”) may be necessary to prevent integral windup.
When using “I Zone” this is done automatically when the Closed-Loop Error is outside the

‘I Zone”. However, there may be other situations when manually clearing the integral
accumulator is necessary. For example, if the mechanism that’s being closed-looped is “close
enough” and its desirable to reduce occasional spurts of movement caused by a slowly
incrementing integral term, then the robot logic can periodically clear the “I Accum” to prevent
this.

12.2.1. LabVIEW
In this example a case structure is leveraged to conditionally clear the Integral Accumulator
when the case structure conditional evaluates true (this example uses a system button on the
front panel).

Cross The Road Electronics Page 77 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual

1/13/2018

Set lAccum to 0 m

[Primary PID Loop=0| [o](iaccun

|timeuutMs - wait up to 10ms for cu::-nfirmatic-n|

12.2.3. Java

double iaccum = 0;
talon.setIntegralAccumulator (iaccum, 0, 10);

12.2.4. C++

double iaccum = 0;
talon.SetIntegralAccumulator (iaccum, 0, 10);

12.2.3. Is Integral Accum cleared any other time?

In addition to the “I Zone” feature and manual clear, there are certain cases where the integral

accumulator is automatically cleared for more predicable motor response...
-Whenever the control mode of a Talon is changed.

-When a Talon is in the disabled state.

-When the motor control profile slot has changed.

-When the Closed Loop Error’'s magnitude is smaller than the “Allowable Closed Loop Error”.

Cross The Road Electronics Page 78

1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.3. Current Closed-Loop Walkthrough — LabVIEW

This example can be found on the CTR GitHub account.
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW

12.3.1. Current Closed-Loop Walkthrough — Collect Sensor Data — LabVIEW
The first step is to confirm that the sensor is functional and in-phase with the motor.
Additionally, data can be collected to be used later to determine a decent Feed-forward gain.

When Button1 is released, y-axis controls the Talon SRX drive directly. . i
When Button is held, y-axis closed-loops the target-current-draw. Create a Talon and instrument its current draw

and motor output. Also, provide a method to
directly control the Talon to servo (Percent

When Button?2 is held, the Closed-Loop gain parameters are sent to Talon.

CalcFgain = 100% X 1023 / CurrentMeasMilliAmps , assuming

measurement was at 100% motor output. Output). In this example Talon is in Percent
For example, if the CurrentDraw indicator reads 30.125 A at 75.56% Output mode when button is off, and in current
throttle, the calculated Fgain is.... .

CalcFgain = 0.7556 X 1023 / 30125 closed-loop when button is on.

CalcFgain = 0.02566

Percent Output

» Current Draw Amps
v Waveform Chart

Enable the Robot and drive the motor to a reasonable output. Take note of what the motor
output in percent. This will give us a basic relationship between current and motor-output.

Shown to the left is the LabVIEW front panel, however these values

can also be retrieved in the roboRIO web-based configuration (works

Sl for all FRC languages). Print statements can also be used for C++,
JAVA, and HERO C#.

Applied Throttle

CurrentDraw

W This example was taken by using a Talon SRX and CIM to back drive
a secondary CIM motor with leads connected together. At full output
this setup will exceed the 40A breaker rating so less-the-full output was used. However, in a
typical mechanism, full output may be used to acquire a more accurate measurement.

12.3.2. Current Closed-Loop Walkthrough — Calculating Feed Forward— LabVIEW
From this we can calculate our initial Feed-Forward gain. Since measured current is always
positive, we ignore the negative sign of applied output.

Cross The Road Electronics Page 79 1/13/2018

https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

The Talon SRX firmware operates on the desired current in milliamps and outputs a motor
output value [-1023 to +1023]. Knowing this, we calculate a Feedforward that will gives us 75%
output when the Target current-draw is 30125 mA.

(0.7556 X 1023) / 30125 mA => ~0.02566

As a math check, when the set point is 30125mA, the feedforward term will be 30125 X 0.02566
gives us 773 motor output units (~75%).

Next we will set the F gain to 0.02566, while zeroing the PID gains. This can be done in the
web-based configuration or programmatically using the robot API.

True = i 1
e Button? s held, Peﬂ—bﬁomw M ethecamwaeetor | ON the left we have an e.xamplt.a |n.LabVIEW, setting the
Closed-Loop in siotd. closed-loop parameters in Begin.vi.

----------------------------------- The values are entered below in the front panel, though they
could also be constants if need be.

K@ mpmeznzston: 0~ C | @ roboRo-tfR: Neb-.. % | | P
roboRIO-469-FRC : System Configuration Retal Logn Help JWINSTRUMENT Addmona”y, the other |anguages
@ = | ove | meesh || setves = have comparable APIs for gain-
o Qens Lwmenmes| SEttING, OF the gains can be set
8 A o e oo s st using the roboRIO web-based
(2] maron configuration.
] S Web-based configuration can also
2 L be L_lsed to double check that the
%) I settings are what you expect.
L e i ot
= .

1Gain [

D Gain o

Feed-Forward Gain 0025658
L]

1Zone

Ramp Rate o

Cross The Road Electronics Page 80 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

Now rerun the test setup, but now we will press and hold our button to conditionally enable
Current-closed loop mode.

When Button is released, y-axis controls the Talon SRX drive directly.
When Button1 is held, y-axis closed-loops the target-current-draw.

When Buttond is held, the Clesed-Loop gain parameters are sent to Talon.

CalcFgain = 100% X 1023 / CurrentMeasMilliAmps , assurming
measurement was at 100% motor cutput.

For example, if the CurrentDraw indicator reads 30,125 A at 75.56%

throttle, the calculated Fgain is....
CalcFgain = 0.7556 X 1023 / 30125
Cal

IcFgain = 0.02566

Percent Qutput

M

TalonSm
-
Eick Y axis [-1,1]
When Butten is held, Closed-Loop servo
current-draw to 40Amps X y-axis
ton 1

take [-1,1] input from gamepad and
turn it into [-40,+40] amp request

Not surprisingly the desired and measured current draw are nearly
identical.

Of course, there is no guarantee this will be the case at all request
current draws under differing battery conditions. Remember this is
just Feed-forward, we’re not close-looping yet! For example, as we
deviate away from our tuned point, we see error between our
desired and measured current.

Next we will tune P gain so that the closed-loop responds to error.

Cross The Road Electronics Page 81 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.3.3. Current Closed-Loop Walkthrough — Dialing Proportional Gain — LabVIEW

o@‘@ http://172.22.11.2/2Home 0 ~ & ” (2 roboRI0-469-FRC : NI Web-... % | |

In this example the Closed-Loop Err was
roboRIO-469-FRC : System Configuration

~7000 (mA).
@ ‘ ido ||| save Refresh Self-Test
— o @ The sl test completed successtly. Perhaps we want to start with adding another
[L&J PCM (Device ID Q) TA;Dr.u ;s.eg:ble:; Close Lo 0
. pose: 5 comenecose Lo, 10% motor output to help approach our target

E’ "Ir'alon SRX (Device ID 0) ke analpcut current.

- CloseLoopError: -7708
[;J ProfileSlotSelect: 0
= pelectad Dovioni:Qund Encoder 10% output X 1023 = 102 output units

- ;Quad Encoder (4:{)_
] i
B 1dx rise edges:5008

Since we want 102 output units when the error is 7700, calculate P gain by dividing the two...
102.3 /7700 = 0.01329

To check our math, let’s take our P-gain of 0.01329 and multiply by Closed Loop Err (7700mA)
0.01329 X 7700 = 102 (10% of 1023 full output).

Now we can expect approximately 10% more motor output when our error is ~7 amps.

Here we attempt to reproduce the same target point. We see our motor
output has increased because of the stronger P-gain and our current draw
is closer to our target.

Keep increasing the P-gain until the desired response is achieved. To
save time, many will double the P-gain until oscillation is observed
(overshooting the target and then returning to target. This can also be
observed by plotting, or watching the color change on the Talon SRX
LEDs).

After further increasing P-gain, we see our desired and measured current-draw to follow closely.

Cross The Road Electronics Page 82 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

We can also observe how the closed-loop responds to a change in load. Disconnecting the
back driven CIM motor’s connected leads and connecting them to a 0.2 ohm power resistor
reveals how the Closed-Loop increases its motor output to target the desired 20 amps.

Closed Loop driving
77.7% when back-
driven CIM has
power resistor in
series with leads.

Closed Loop driving
59.7% when back-
driven CIM has
leads connected.

With additional tweaking and leveraging the remaining gains (I and D), the closed-loop can be
further improved, though many will find that a simple FP loop will be sufficient for many
applications.

Cross The Road Electronics Page 83 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.4. Velocity Closed-Loop Walkthrough — Java

This example is on the CTR GitHub account. ntps:/github.com/CrossTheRoadElec/Phoenix-Examples-Languages

12.4.1. Velocity Closed-Loop Walkthrough — Collect Sensor Data — Java
The first step is to drive the Talon SRX manually to check that the selected sensor is functioning
and in phase with the motor. The following example below will accomplish this. Deploy and
drive the Talon forward by pulling the gamepad’s y-axis.

public class Robot extends IterativeRobot ({
TalonSRX talon new TalonSRX(3);
Joystick Jjoy new Joystick(0);
StringBuilder _sb new StringBuilder();
int loops 0;

public void robotInit () {
/* first choose the sensor */
_talon.configSelectedFeedbackSensor (FeedbackDevice.CTRE MagEncoder Relative, O,
Constants. kTimeoutMs) ;
_talon.setSensorPhase (true);

/* set the peak, nominal outputs,
_talon.configNominalOutputForward (0, Constants.kTimeoutMs) ;
_talon.configNominalOutputReverse (0, Constants.kTimeoutMs) ;
_talon.configPeakOutputForward(l, Constants.kTimeoutMs) ;
_talon.configPeakOutputReverse (-1, Constants.kTimeoutMs) ;

and deadband */

/* set
_talon.
_talon.
_talon.
_talon.

closed loop gains in slot0 */

config kF (Constants.kPIDLoopIdx,
config kP (Constants.kPIDLoopIdx,
config kI (Constants.kPIDLoopIdx,
config kD (Constants.kPIDLoopIdx,

Constants.kTimeoutMs) ;
, Constants.kTimeoutMs) ;
Constants.kTimeoutMs) ;
Constants.kTimeoutMs) ;

0.34,
0.2
0,
0,
}
/** This function is called periodically during
public void teleopPeriodic() {
/* get gamepad axis */
double left¥Ystick _Jjoy.getY();
double motorOutput _talon.getMotorOutputPercent () ;
/* prepare line to print */

operator control */

_sb.
_sb.
_sb.
_sb.

append ("\tout:") ;

append (motorOutput) ;

append ("\tspd:") ;

append(_talon.getSelectedSensorVelocity (Constants.kPIDLoopIdx)) ;

if (_joy.getRawButton(l)) {

/* Speed mode */
/*
* 4096 Units/Rev * 500 RPM / 600 100ms/min in either direction:
* velocity setpoint is in units/100ms
*/
double targetVelocity UnitsPer100ms
/* 1500 RPM in either direction */
_talon.set (ControlMode.Velocity, targetVelocity UnitsPerl00ms) ;

leftYstick * 4096 * 500.0 / 600;

*/

/* append more signals to print when in speed mode.

_sb.

_sb.

_sb.

_sb.
} else {

append ("\terr:");

append (_talon.getClosedLoopError (Constants.kPIDLoopIdx)) ;
append ("\ttrg:");

append (targetVelocity UnitsPer100ms) ;

}

/* Percent output mode */

_talon.set (ControlMode.PercentOutput, left¥Ystick);

if (++_loops >= 10) {

}
_sb.

Cross The Road Electronics

0;
.out.println(_sb.toString());

_loops
System

setLength (0) ;

Page 84 1/13/2018

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

217-8080

TALON SRX / Victor SPX Software Reference Manual

1/13/2018

out:8.978833333 spd: 9368

out-8.975
out-6.97%
out-8.975
out:-8.975
out:-8.975
out-8.975

Spd:9359
spd:93647
spd 9365
spd 9346
spd:9368
Spd:9324

out:-0.9708833333 spd: 9357
out:-@8.975 spd:9327
out-@.978833333 sSpd: 9341
out-A.975 Sspd:9345
out:8.975 spd:9329
out:8.975 spd: 9357
out:-A.975 spd:9330

D
Talon SRX A
) Talon SRX (Device ID 13)
Y
alon SRX
£ Talon SRX (Device 1D 15)
Talon SRX
> Talon SRX (Device 10 17
alon SRX
Talon SRX (Device 1D 7)
Talon SRX
195 Talon SRX (Device 1D 9)

= alon SRX
™y Talon SRX (Device 10 11)

While driving the Talon in the positive direction, make sure
the sensor speed is also positive.

Additionally, note the approximate sensor speed while the
Talon is driven.

getSelectedSensorVelocity () will return the speed in
position units per 100ms.

roboRIO-469-FRC : System Configuration

The same values can be read
in the roboRIO web-based
configuration under Self-Tests.

Refresh Self-Test

The self test completed successfully.
TALON is enabled

Mode: 0 : Throttle (duty cycle)
Applied Throttle: 100.00% [11.64 V)
Coast dunng neutra

CloseloopError: 0
ProfileSictSelect: 0

Selected Device:6:CTRE MagEnc (rel)
Pos:647099 Velooty:9323

Magnetic Encoder (Relative)

Pos (rot): 158.255 Velooty (RPM):1366.10
Po5:648216 Velooty:9326

Pins: A=Q B=0 ldx=0

1dx nse edges:8510

12.4.2. Velocity Closed-Loop Walkthrough — Calculating Feed Forward—- Java
Now that we’ve confirmed that the position/speed moves in the positive direction with forward
(green LEDs on Talon), we can calculate our Feed-forward gain. Our measurement of
native units per 100ms is used for this. This was captured in the Self-Test.

Now let’s calculate a Feed-forward gain so that 100% motor output is calculated when the
requested speed is 9328 native units per 100ms.

F-gain = (100% X 1023) /

Let’'s check our math, if the target speed is
) => 1023 (full forward).

be (0.1097 X

_talon.setF(0.1097);
_talon.setP(0);
_talon.setI(0):
_talon.setD(0):

F-gain = 0.1097
native units per 100ms, Closed-loop output will

Next we will set the calculated gain. This can also be done in the
roboRIO web-based configuration or programmatically.

After applying the new gain, rerun the test but hold down buttonl to put Talon into Speed
Control Mode. Now review the target and measured speed to see how close we are.

Cross The Road Electronics

Page 85 1/13/2018

217-8080

TALON SRX / Victor SPX Software Reference Manual

1/13/2018

A few DS console samples are shown below, which contain the print statements. Looking at
“spd” and “trg” we see that we’re within ~600 units per 100ms for most of the captures.

out:-84.375 spd:-576 err:i-224 trg:-800

out:-89 6484375 spd:-612 err:-184 trq:-880
out:-91.25976563 spd:-623
out:-85.69335938 spd:-585

out:-86.42578125

out:-93 45783125 spd:-638

out:-87 . 61171875

out:-84_ 81445313 spd:-579

out:-8469_ 0917960
out:-869 8242188
out:-868.7988281
out:-B69.6777344
out:-868 _SAS8504

spd:-5933
Spd:-5938
spd:-5931
spd:-5937
spd:-5920

spd:-598

Sspd:-594

err:-177
err:-216
err:-287
err:-163
err:-2088
err:--221

err:-hohb
err:-h63
err:-Lh6o9
err:--463
err:-4¥8

trg:--804a
trg:--804a
trg:--8d8
trg:-80608
trg:=--804a
trg:--804a

sweep.

trg:-64808
trg:--6L4A0
trg:--G64808
trg:-6488
trg:-64808

out :-866.015625 spd:-5912 err:-488 trg:-64080

out:-866.7488469
out:-848 . 7088281
out:-8467.9199210

out:-916.9921875
out:-9208.9472656
out:-924 6234375
out:-9208_ 2148437
out:-917 28515462
out:-916 . 5527344
out:-9208.9472656
out:-920.5878125
out:-928.3613281

spd:-5917
spd:-5931
spd:-5928

spd:-6268
spd:-6287
spd:-6208
spd:-6282
spd:-6262
spd:-6257
spd:-6287
spd:-6284
spd:-6283

err:-hih
err:-h6o9
err:-hi2

err:-538
err:-513
err:--491
err:-517¥
err:-538
err:-5h3
err:-512
err:-516
err:-h3y

trg:=-G6488
trg:-64808
trg:-64808

trg:-68808
trg:-68808
trg:-680808
trg:-680808
trg:-680808
trg:-680808
trg:-680808
trg:-680808
trg:-66408

Since the sensor is 4096 units per
rotation, ~600 units per 100ms scales
to ~87 RPM for most of the speed-

Additionally, since we have no
feedback, you will find changes in load
will impact the error considerably.

out 1135187422 spd:-7749 err:-889 trg:-8640
out 1129 5410816 spd:-7711 err:-938 trg:-8640
out:-1134.228516 spd:-7743 err:-984% trg:-8640
out:-1131. 0085859 spd:-7721 err:-922 trg:-8640

Remember “err” is in native units per
100ms. So an error of 900 units per
100ms equals an error of 131RPM since
each rotation is 4096 units.

out:-1127 34375 spd:-7696 err:-044 trg:-B6L4A
out :-1136 . 279297 cpd:-7757 err:-882 trg:-8640
out :-1132 177734 spd:-7729 err:-912 trg:-8640
out :-1126 . 757813 spd:-7692 err:-948 trg:-8640

Cross The Road Electronics Page 86 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.4.3. Velocity Closed-Loop Walkthrough — Dialing Proportional Gain — Java
Next we will add in P-gain so that the closed-loop can react to error. Suppose given our worst
error so far (900 native units per 100ms), we want to respond with another 10% of motor output.
Then our starting p-gain would be....

(10% X 1023) / (900) = 0.113333
Now let’s check our math, if the Talon SRX sees an error of 900 the P-term will be
900 X 0.113333 =102 (which is about 10% of 1023)
P-gain = 0.113333

Apply the P -gain programmatically using your preferred method. Now retest to see how well
the closed-loop responds to varying loads. Double the P -gain until the system oscillates (too
much) or until the system responds adequately.

/* set closed loop gains in slot0 */
_talon.config kF (Constants.kPIDLoopIdx, 0.1097, Constants.kTimeoutMs) ;
_talon.config kP (Constants.kPIDLoopIdx, 0.113333, Constants.kTimeoutMs) ;
_talon.config kI (Constants.kPIDLoopIdx, 0, Constants.kTimeoutMs) ;
_talon.config kD(Constants.kPIDLoopIdx, 0, Constants.kTimeoutMs) ;

If the mechanism is moving to swiftly, you can add D-gain to smooth the motion. Start with 10x
the p-gain.

If the mechanism is not quite reaching the final target position (and P -gain cannot be increased
further without hurting overall performance) begin adding I-gain. Start with 1/100™ of the P-gain.

Some mechanisms may require that the closed-loop can never spin in reverse of the desired
direction (due to closed-loop wanting to slow down). This behavior can be achieved by reducing
the peak output to zero.

/* set the peak, nominal outputs */

_talon.configNominalOutputForward (0, Constants.kTimeoutMs) ;

_talon.configNominalOutputReverse (0, Constants.kTimeoutMs) ;
talon.configPeakOutputForward (+1, Constants.kTimeoutMs) ;

_talon.configPeakOutputReverse (0, Constants.kTimeoutMs); /* only positive */

/* set closed loop gains in slot0O */

_talon.config kF(Constants.kPIDLoopIdx, 0.1097, Constants.kTimeoutMs) ;
_talon.config kP (Constants.kPIDLoopIdx, 0.22, Constants.kTimeoutMs) ;
_talon.config kI (Constants.kPIDLoopIdx, 0, Constants.kTimeoutMs) ;
_talon.config kD(Constants.kPIDLoopIdx, 0, Constants.kTimeoutMs) ;

Cross The Road Electronics Page 87 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.5. Velocity Closed-Loop Example — LabVIEW

This example can be found on the CTR GitHub account.
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW

Look at the teleop VI to confirm how the Feed Forward gain is calculated.
There will be a text label similar to the following...

Press and Hold Button to enable Speed-Closed-Loop., otherwise Talon is in PercentVoltage Mode.
Use the Left V-axis on Logitech Gamepad.

VelocityMNativelUnits = Change In Sensor / 100mS
also
VelocityMativelnits = RPM / 600 * SensorUnitsPerRotation

Fgain = 100% X 1023 / VelocityMativelnits
where VelocityMativelnits is measured at 100% throttle

Mag Encoder has 4096 units per rotation.
Example: VelocityRPM is 10198 at 100% throttle

= VelocityNativeUnits = (10198 / 600 * 4098) = 69618
== Fgain = (1023 / 69618) = 0.01469

The calibration procedure is identical to the Java Velocity Walkthrough.

Cross The Road Electronics Page 88 1/13/2018

https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.6. Motion Magic Closed-Loop Walkthrough — Java

This latest example should be downloaded from the CTR GitHub account.
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

The example will appear similar to the snippet below...

public class Robot extends IterativeRobot ({
TalonSRX talon = new TalonSRX(3);
Joystick joy = new Joystick(0);
StringBuilder sb = new StringBuilder();

public void robotInit () {

/* first choose the sensor */

_talon.configSelectedFeedbackSensor(FeedbackDevice.CTRELMagEncodez;Relative,
Constants.kPIDLoopIdx, Constants.kTimeoutMs) ;

_talon.setSensorPhase (true);

_talon.setInverted(false);

/* Set relevant frame periods to be at least as fast as periodic rate*/

_talon.setStatusFramePeriod(StatusFrameEnhanced.Status 13 Base PIDFO, 10,
Constants. kTimeoutMs) ;

_talon.setStatusFramePeriod(StatusFrameEnhanced.Status 10 MotionMagic, 10,
Constants. kTimeoutMs) ;

/* set the peak and nominal outputs */
_talon.configNominalOutputForward (0, Constants.kTimeoutMs) ;
_talon.configNominalOutputReverse (0, Constants.kTimeoutMs) ;
_talon.configPeakOutputForward(l, Constants.kTimeoutMs) ;
_talon.configPeakOutputReverse (-1, Constants.kTimeoutMs) ;

/* set closed loop gains in slot0 - see documentation */

_talon.selectProfileSlot (Constants.kSlotIdx, Constants.kPIDLoopIdx);

_talon.config kF (0, 0.2, Constants.kTimeoutMs) ;

_talon.config kP(0, 0.2, Constants.kTimeoutMs) ;

_talon.config kI(0, 0, Constants.kTimeoutMs);

_talon.config kD(0, 0, Constants.kTimeoutMs) ;

/* set acceleration and vcruise velocity - see documentation */

_talon.configMotionCruiseVelocity (15000, Constants.kTimeoutMs) ;

_talon.configMotionAcceleration (6000, Constants.kTimeoutMs) ;

/* zero the sensor */

_talon.setSelectedSensorPosition (0, Constants.kPIDLoopIdx, Constants.kTimeoutMs) ;
}

/**
* This function is called periodically during operator control
*/
public void teleopPeriodic() {
/* get gamepad axis - forward stick is positive */

double leftYstick = -1.0 * _joy.getY();
/* calculate the percent motor output */
double motorOutput = _talon.getMotorOutputPercent();

/* prepare line to print */

_sb.append ("\tOut%:");

_sb.append (motorOutput) ;

_sb.append("\tvel:");

_sb.append(_talon.getSelectedSensorVelocity (Constants.kPIDLoopIdx)) ;

if (_joy.getRawButton(l)) {
/* Motion Magic */
double targetPos = left¥Ystick * 4096 * 10.0;
/* 4096 ticks/rev * 10 Rotations in either direction*/
_talon.set (ControlMode.MotionMagic, targetPos);

/* append more signals to print when in speed mode. */
_sb.append("\terr:");
_sb.append(_talon.getClosedLoopError (Constants.kPIDLoopIdx)) ;
_sb.append ("\ttrg:");
_sb.append (targetPos) ;

} else {
/* Percent output mode */
_talon.set (ControlMode.PercentOutput, leftYstick);

}

/* instrumentation */

Instrum. Process(_talon, _sb);

try { TimeUnit.MILLISECONDS.sleep(10); } catch(Exception e) {}

Cross The Road Electronics Page 89 1/13/2018

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.6.1. Motion Magic Closed-Loop Walkthrough — General Requirements

ration

_) | s | Reven Self-Test
Be sure to check that the firmware is up to date.
See CRF release notes for when motion magic e
was added.
Name | RIGHT MASTER 3
Device ID ER
|| Light Device LED
Software Status Running Application.
Firmware should in the format 3.X. Hardwars Reision L4
Manufacture Date MNow 3, 2014
Bootloader Revision 2.6
SRX (Dev Vendor Cross The Road Electronics
Model Talon SRX
| Firmware Version 2.22 I
Status Present

Additionally, a reliable signal plotter is helpful for tuning parameters.
The signals of interest are the...

e Sensor Position

e Sensor Velocity

e Active Trajectory Position

e Active Trajectory Velocity

o Applied Motor Output

e ClosedLoopErr

Cross The Road Electronics Page 90 1/13/2018

217-8080

TALON SRX / Victor SPX Software Reference Manual

1/13/2018

12.6.2. Motion Magic Closed-Loop Walkthrough — Collect Sensor Data — Java

The first step is to drive the Talon SRX manually to check that the selected sensor is functioning
and in phase with the motor. Deploy the GitHub example (or similar drive code) and drive the
Talon by pulling the gamepad’s y-axis.

Checking the sensor means...
e Confirming the sensor direction matches Talon motor output.
o Confirm position and speed measurement is accurate throughout entire position/speed

range.

¢ Confirming the velocity is approximately correct given the mechanical setup.
e Noting the measured speed at a given motor output for calculating f-gain
¢ Noting the measured max speed for initial selection of velocity cruise and acceleration.

While throttling the Talon in the positive direction, make
sure the sensor speed is also positive. Talon should be

illuminating green when doing this. If this is not the cause,

change the parameter in setSensorPhase () and retest.

Additionally, note the approximate sensor velocity while
the Talon is driven. The displayed value is in units per

100ms.

The same values can be read in the roboRIO web-based configuration under Self-

Tests.

spd:-4151
Spd:-4148
spd:-4140
spd:-414b
Spd:-4149

spd:-4144
spd:-4147
Spd:-4143
spd:-4152
spd:-4145

It's important to note the speed for calculating the f-gain and for picking cruise velocity and

acceleration.

D-469-FRC : System Configuration

u roboRIO
roboR10-469-FRC

. D CAN Interface

and

PCM
PCM (Device 1D 0)

POP
POP (Device 1D 0)

Pigeon
Pigeon connected to Talon SRX (Dev

Talon SRX
RIGHT MASTER 3

Cross The Road Electronics

Refresh Self-Test

The self test completed successfully.
TALON is enabled.

Mode: 0 : Throttle (duty cycle)
Applied Throttle: 100.00% [12.19 V]
Brake during neutral

CloseloopError: 0
ProfileSlotSelect: 0

Selected Device:6:CTRE MagEnc (rel)
1164241 Velocity:4151

J

Magnetic Encoder (Relative)

Pos (rot): -40.127 Velocity (RPM): -608.05

Pos:-164364 Velocity:-4151
Pins: A=0 B=0 Idx=1

Page 91

Example screenshot while driving

shown here.

Capture several to sanity check

Sensor.

spd 4111
spd 4111
spd: 4186
spd: 4186
sod 4161
spd:-4182
spd:-4187

spd:-4186
spd:-4185
spd:-4118
spd:-4186
spd:-4185
spd:-4118

The self-test capture used for testing

showed

native units per

100ms, so this is used in the next
section. This is comparable to the
4151 show in the left screenshot.

1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.6.2.1. Is velocity magnitude correct?

In this example, we measure units per 100ms (captured from previous section). This
scales to at full motor output (averaged of peak in both directions), assuming 4096
units per rotation (CTRE Mag encoder resolution).

This setup involves 1 X CIM Motor motor (free speed 5330 RPM). The selected gear ratio is
~9:1. The CTRE magnetic encoder is on the geared output. So, a measurement of ~
is reasonable since it is close to 1/9" of 5330 RPM.

12.6.2.2. Is direction correct?
Looking at the screenshots above, positive motor output yielded a positive speed.

12.6.2.3. Sweep motor output and plots signals
While sweeping position and velocity, look for any discontinuities or unexplained behavior. In
the capture below, the sensor velocity and position appear to follow with no discontinuities or
plateaus.

. ~—
£ 1040000 | =
1 [¥]
= © 10000
0 T
o =
= S
[=] o
E 1020000 E 3000 <
7] 1]
1] w
5000
1000000
4000
980000 | 2000
D —
950000
-2000
940000 | -4000
-6000
T T T T T T T T T T
20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0
{} - edit - edit - adit - 2dIt - 2dIt

12.6.2.4. Measurements
For the calculations done in the next section, the measurement units per 100ms at full
motor output is observed.

Cross The Road Electronics Page 92 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.6.3. Motion Magic Closed-Loop Walkthrough — Calculate F-Gain — Java

The Motion-Magic Closed-Loop mode operates by closed-loop servoing to a calculated position
with a fed-forward calculated velocity. The calculations are based on the set-point, cruise
velocity, acceleration parameter, and time. This requires knowing the sensor units per rotation.
For this example, the CTRE Magnetic Encoder (quadrature) was used, which has 4096 native
units per rotation. That is how we can deduce that the native units per 100ms
measurement scales to

Velocity is measured in change in native units per Tyemeas= 100ms.

Now let’s calculate a Feed-forward gain so that 100% motor output is calculated when the
requested speed is 4123 native units per 100ms.

F-gain = (100% X 1023) /
F-gain =0.2481
Let’s check our math, if the target speed is native units per 100ms, Closed-loop output will
be (0.2481 X) => 1023 (full forward).

Motor Controller Closed-Loop Control Parameters Slot O

P Gain 0
I Eain 0
D Gain 0
Feed-Forward Gain 0.2481
Next we will set the calculated gain. This can I Zone 0
also be done in the roboRIO web-based Ramp Rate 0
configuration or programmatically.
/* set closed loop gains in slot0 - see documentation */

_talon.selectProfileSlot (Constants.kSlotIdx, Constants.kPIDLoopldx);
_talon.config kF (0, 0.2481, Constants.kTimeoutMs) ;
_talon.config kP(0, 0, Constants.kTimeoutMs) ;

_talon.config kI(0, 0, Constants.kTimeoutMs) ;

_talon.config kD(0, 0, Constants.kTimeoutMs) ;

/* set acceleration and vcruise velocity - see documentation */
_talon.configMotionCruiseVelocity (0, Constants.kTimeoutMs) ;
_talon.configMotionAcceleration (0, Constants.kTimeoutMs) ;

Cross The Road Electronics Page 93 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.6.4. Motion Magic Closed-Loop Walkthrough — Initial Cruise-
Velocity/Acceleration — Java

Since our peak measured velocity was units per 100ms, the initial cruise velocity should
be set to a smaller value to ensure the speed can be reached. In this example, we will
arbitrarily take 75% of the top speed. Depending on the mechanism type, how safe the
mechanism is, and what is trying to be accomplished, a lower or higher cruise velocity could be
specified. Also remember that this setting can be changed easily and at any time.

75% X units per 100ms = ~3092 units per 100ms

For the initial acceleration value, we will arbitrarily choose a value so that it takes an entire
second to reach our cruise velocity. This will ensure the acceleration is slow enough to be
observable. If this is too fast/slow, adjust accordingly. Since the acceleration is in terms of
change in velocity per second, an acceleration of 3092 units per 100ms per sec will achieve
our 1 second accel time.

/* set closed loop gains in slot0 - see documentation */
_talon.selectProfileSlot (Constants.kSlotIdx, Constants.kPIDLoopldx) ;
_talon.config kF (0, 0.2481, Constants.kTimeoutMs) ;
_talon.config kP (0, 0, Constants.kTimeoutMs) ;

_talon.config kI(0, 0, Constants.kTimeoutMs) ;

_talon.config kD(0, 0, Constants.kTimeoutMs) ;

/* set acceleration and vcruise velocity - see documentation */
_talon.configMotionCruiseVelocity (3092, Constants.kTimeoutMs) ;
_talon.configMotionAcceleration (3092, Constants.kTimeoutMs) ;

With the F gain and initial cruise velocity/acceleration configured, potentially you may start the
servo by holding down button 1 and manipulating the gamepad stick.
Before doing this be aware of the following...

e The servo range is programmed for £10 rotations (see code snippet below).

if (joy.getRawButton(l)) {
/* Motion Magic */
double targetPos = left¥Ystick * 4096 * 10.0;
/* 4096 ticks/rev * 10 Rotations in either direction */
_talon.set (ControlMode.MotionMagic, targetPos);

If that is beyond the mechanism’s range, reduce this and/or setup soft-limits/limit-switches so
that there is no risk in reaching the mechanism’s hard limits (potentially damaging mechanism).
¢ Consider that the current sensor position may be far from ‘0’ because of manual-driving
the motor when collecting sensor values in the previous sections. If needed, reset the
sensor by calling setselectedSensorPosition ().
e Since PID gains are zero, the movement may coast past the target position, particularly
if the Talon’s neutral mode is in coast. But the motor output will reach neutral near the
final target position passed into set ().

Cross The Road Electronics Page 94 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

In this example the mechanism is the left-side of a robot’s drivetrain. The robot is elevated such
that the wheels spin free. In the capture below we see the sensor position/velocity (blue) and
the Active Trajectory position/velocity (brown/orange). At the end of the movement the closed-
loop error (which is in raw units) is sitting at ~1400.units. Given the resolution of the sensor this
is approximately 0.34 rotations (4096 units per rotation). Another note is that when the
movement is finished, you can freely back-drive the mechanism without motor-response
(because PID gains are zero).

a0 130004 3507 400 4 == SensorPosition 0.3
1] = SensorVelodty 0
0.0 1 12000 — J == CloseloopErrRaw -1478
20.04 = ActTraj_Posion -0.1
i = ActTrai_Velocity o
200 11000] 200 7
25.0
25.0
10000
0
20.0 5000 0.0
8000
J -200
15.0 15.0 -

7000

serveo to

5.0+

0.0 4
servo to 0

5.0 ~5.0

-1000 - 1000 7 -1000

-1200 + -1000 -15.0

=2000

on04) 1400 -1400 7

-3000 +

SensorPosition/
=] w B
== (=] [=]
1 1 1
Sensor¥Yelocity /
] & &
(= (= (=]
1 1 1
CloseLoopErrRaw/
5] =} = = =
s 2 2 s 2
1 1 1 1 1
ActTraj_Position\,
5 B
o o
1 i i 1 i i 1 1 i i 1
ActTraj_velocityl
& & :
(=] (=
| L | L 1 1 1 L L L

-4000

Cross The Road Electronics Page 95 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.6.5. Motion Magic Closed-Loop Walkthrough — P-Gain — Java

Next we will add in P-gain so that the closed-loop can react to error. In the previous section,
after running the mechanism with just F-gain, the servo appears to settle with an error or ~1400.

Given an error of (~1400.), suppose we want to respond with another 10% of motor output.
Then our starting p-gain would be....

(10% X 1023) / (1400) = 0.0731
Now let’s check our math, if the Talon SRX sees an error of 1400 the P-term will be
1400 X 0.0731= 102 (which is about 10% of 1023)
P-gain = 0.0731

Apply the P -gain programmatically using your Mator Contreller Closed-Loop Control Parameters Slot 0

preferred method. Now retest to see how well the

closed-loop responds to varying loads.

I Gain o

D Gain]
Feed-Forward Gain .275
IZone o
e o

/* set closed loop gains in slot0 - see documentation */
_talon.selectProfileSlot (Constants.kSlotIdx, Constants.kPIDLoopldx) ;
_talon.config kF (0, 0.2481, Constants.kTimeoutMs) ;
_talon.config kP(0, 0.0731, Constants.kTimeoutMs) ;
_talon.config kI(0, 0, Constants.kTimeoutMs) ;

_talon.config kD(0, 0, Constants.kTimeoutMs) ;

/* set acceleration and vcruise velocity - see documentation */
_talon.configMotionCruiseVelocity (3092, Constants.kTimeoutMs) ;
_talon.configMotionAcceleration (3092, Constants.kTimeoutMs) ;

Cross The Road Electronics Page 96 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

Retest the maneuver by holding button 1 and sweeping the gamepad stick.

At the end of this capture, the wheels were hand-spun to demonstrate how aggressive the
position servo responds. Because the wheel still backdrives considerably before motor holds
position, the P-gain still needs to be increased.

7] == SensorPosition 0.1
10,0 500 o 10.0 500 4 = Sensoryelodty a
1 5000 - 2000 = CloseloopErrRaw 225
== ActTraj_Position 0.1
50 500 4 o 500 4 = ActTraj_Veloity i
4 000 - == AppliedThrotte 16
3000 -|
400 - 200 4
0.0 i o4 m—
7000 |
300 4 B
7000 | 300
5.0 04
200 200 6000 |
5000 +
10.0 | i 10,0 H i
100 .0 100 5000 i =10 rotatior
- 5000 + 04
Rl v - T 1504 L 5
H - P 9 = = 4000~
] = = = 7] =
= g I} H g = :
] 2 w4 & H T g 3
¢ w0 = 1 8w B ogp 7 s —
g g 2 3] T S 007 S —
2004 8 = -] L
'ﬁ é & £ E E \.‘- Back-driving motor,
-25.0 1 P R 2000 no closed-looping
300 4 -300
300 30,0 4 i
09 2000 A 0.0 00 1000 |
-35.0 -500 -35.0 =007 o _/- \ ~
1000 - Y ,
500 4 -600
-40.0 40,0 | 1000 4
004 0 700
-45.0] -45.0 o0 000 4
-300 +
-1000
50.0 o o0 50,0 LR R—

Cross The Road Electronics Page 97 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

Double the P-gain until the system oscillates (by a small amount) or until the system responds
adequately.

After a few rounds the P gain is at 0.6. - Loop : Slot 0

Scope captures below show the sensor position P Gain 0.6
and target position follows visually, but back- I Gain 0
driving the motor still shows a minimal motor D Gain o
response. Feed-Forward Gain
I Zone II}—|
Ramp Rate]
After several rounds, we've landed on a P gain Motor Controller Closed-Loop Control Parameters Slot 0
value of 3. The mechanism overshoots a bit at B Gain 3
the end of the maneuver. Additionally, back- I Gain o |
driving the wheel is very difficult as the motor- D Gain o
response is immediate (good). Feed-Forvard Gain 0.2e81 |
I Zone o
Ramp Rate o

Cross The Road Electronics Page 98 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

4 i 10.0 ——
0.0 00 2500 500
ool 400 . w004 2000 -
2000 o
== SensorPosition 0.1
300 300 == SensorVelodty 0
6.0 - 6.0 == CloseLoopErrRaw 3
n 1500 J == ActTraj_Position 0.1
a0 200 1500 == ActTra)_Velodty 0
404 40 == AppliedThrotte -7
’ 100 | 100 4
1000
2.0 09 = 20 - 0 1000] rﬁ t
g = < 5 E i}
B o [I H 3
T % -wo- & o T -0 E
L 00 = 3 T E
o T] —_ - b
1 8 a I 2 2
g g o 8 o4 E S om0 F s
w4 ? 2 20 = -
-300 -| -300 -
500 4
409 -200 07 400 4 o
ol P I . 500 4
600 - 600 1 4
.0 15009 8.0 e
700 | 700
-10.0 4 -2000 -10.0 o
300 |
-800 7 -1000 o
12.0 4 3000 4 12.0 4
500 | 500 4 2500 -
Once settles, the
10.0 Ek 10.07 500
motor is back-driven
) . 400 - 604 400 4 2000 4
to assess how firm 20]
300 200
the motor holds
position = o
4.0 404
100 | 100
1000 -
1 i i 4 P = SensorPositit -0.1
The wheelis held by . =7_ °_ 1z #75 of ;o AP = SR o1
] = = - T = = CloseloopErRaw -22
. = 3 g soq 2 g] g oseLcoper
the motor flrmly 7 o 5 1004 E‘ é v & 90 £ = ActTraj_Posion 0.1
§ lilf JF |7 1B e 0
s g T] k] = AppliedThrottie -
E E -200 - é 0 % % 209 T s AR NAAALLAA
@ g0 @ < 204 < <
_300 4 -300 |
500 4
N B e I AR AR
.
5.0 oo 0] 5.0 -500
- -600
o0 -600 _1500 4 50 500 -
700 700 4
-10.0 2000 4 -10.0 q
600 - e -1000

Cross The Road Electronics Page 99 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.6.6. Motion Magic Closed-Loop Walkthrough — D-Gain — Java

Motor Controller Closed- Control Parameters Slot 0
To resolve the overshoot at the end of the ' Loop

maneuver, D-gain is added. D-gain can start P Gain 3
typically at 10 X P-gain. I Gain o
0 Gain

Feed-Forward Gain |I}.24B].
I Zone | o
Ramp Rate | o

With this change the visual overshoot of the wheel is gone. The plots also reveal reduced
overshoot at the end of the maneuver.

10.0 | 4 10.0 |
500 2500 | 500 4
e £
400 - I == SensorPosition 0.1
3.0 3.0 400 i == SensorVelocity]
1 2000 == CloseLoopErrRaw 1
300 o 300 - == ACtTraj_Position 0.1
5.0 = ACtTraj_Velocity o
&0 1 : = AppliecThrotte 3
- 1500
200 200 4
4.0 4.0
100 | 1004
1000
2.0 0 ~ 204 . g+
-
€ = T 5 z]
2 T 5 s = g E
£ 8 ymd B i o]
[5 "o o o -0+ =
© poq I] oo00 = =
o ' - 5 | ' | =
T T 2 | el o
§ g 8 7 g L
S c 204 2 0 = = 204 & |
lg ﬂ (7] T] o
2.0 < 20 = < £ il
300 4 300 Alidd
-500 | A
4.0 -0 :
-400 - 400 |
............
-1000 - _ g5
%04 -500 5.0 - ~500 1 | L
{ |’ ,! ir iy
10
w? 3
500 - 600 i || B
1500 4 -500 | il
8.0 | 1500 -8.0 4] i ‘ 1 I |‘,
n '|’m
™ ™ | ”' il ||"'l|
i] Il I
-10.0 4 2000 -10.0 !il I'I! “ u |||I
J 00 1 "
800 -1000 | i | H;i. I I

Cross The Road Electronics Page 100 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

12.6.7. Motion Magic Closed-Loop Walkthrough — I-Gain — Java

Typically, the final step is to confirm the sensor settles very close to the target position. If the
final closed-loop error is not quite close enough to zero, consider adding I-gain and I-zone to
ensure the Closed-Loop Error ultimately lands at zero (or close enough).

Motor Controller Closed-Loop Control Parameters Slot 0
In testing the closed-loop error settles around 20
units, so we’ll set the Izone to 50 units (large P Gan E !
enough to cover the typical error), and start the I- ! Galn

gain at something small (0.001). D Gain |30 |
Feed-Forward Gain |0.2481 |
Keep doubling I-gain until the error reliably 1Zone 50
Ramp Rate 0

settles to zero.

Motor Controller Closed-Loop Control Parameters Slot 0
With some tweaking, we find an I-gain that

P Gain 2)

I Gain ensures maneuver settles with an error of 0.
D Gain 30

Feed-Forward Gain 0.2481

I Zone 50

Ramp Rate 1]

At this point the acceleration and cruise-velocity can be modified to hasten/dampen the
maneuver as the application requires.

10.0 4 i 10.0
=00 2500 500 J’
Closed Loop Err is exactly 0
o 400 504 4004 2000 4 R
2000 //
300 300 4
6.0 5.0
200 1500 200 - 1500
4.0 4.0
100 4 100
1000
2.0 0+ - 207 0+ 1000 §
-~
T = T § z g
= = = =
2 T s g =
G S . 8 8 2 d B
o 1@ 9 4 2 £ == SensorPosiion -10.0
g oo 2 8 o 00+ > =
= T = - ! ° == SensorVelocity 0
5 5 3 z 5 2
E E 004 © 0 = = amd E 500 == CloseloopErrRaw 0
ﬂ g [¥] T o .ri\. wm ActTraj_Positon -10.0
-2.0 4 < 204 = == ActTraj_Velodty 0
-300 -300 == AppliedThrotte 37
500 4
i 4.0
e -400 400 | oA _—
-1000 |
6.0 4 -500 5.0 -500
i 500
500 500 4
8.0 -1500 1 8.0+ 500
700 700
-10.0 -2000 - -10.0 —
i 800 |
800 -1000
12.0 4 5004 2500 4 -12.0 500
T 1

Cross The Road Electronics Page 101 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

13. Setting Sensor Position

Depending on the sensor selected, the user can modify the “Sensor Position”. This is
particularly useful when using a Quadrature Encoder (or any relative sensor) which needs to be
“zeroed” or “home-ed” when the robot is in a known position.

13.1. Setting Sensor Position — LabVIEW
To modify the “Sensor Position”, user will likely have to leverage the SET SENSOR POS VI. In
this example “0” is selected to re-zero the sensor.

[Set sensor pos to 0] m
Primary PID Loop=0
Iyl P

[tim eoutMs - wait up te 10ms fer confirmation|

13.2. Setting Sensor Position — C++
SetSelectedPosition () can be used to change the current sensor position, if a relative

sensor is used.

int sensorPos = 0; // sensor units
talon.SetSelectedSensorPosition (sensorPos, 0, 10);

13.3. Setting Sensor Position — Java
setSelectedPosition () can be used to change the current sensor position, if a relative

sensor is used.
int sensorPos = 0; // sensor units
talon.setSelectedSensorPosition (sensorPos, 0, 10);

13.4. Auto Clear Position using Index Pin
In addition to manually changing the sensor position, the Talon SRX supports automatically
resetting the Selected Sensor Position to zero whenever a digital edge is detected on the
Quadrature Index Pin.

This feature can be enabled regardless of which sensor is selected. This allows a means of
resetting the position using a digital sensor, switch, or any external event that can drive a 3.3V
digital signal. Since the Quadrature Index Pin has an internal pullup, the signal source can be
an open-drain signal that provides ground when asserted, and high-impedance when not
asserted (or vice versa).

This feature is useful for minimizing the latency of resetting the Sensor Position after the

external event since the robot controller is not involved. The maximum delay is <1ms.
Additionally, this feature functions even if the Talon is disabled.

Cross The Road Electronics Page 102 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

The feature can use the Quadrature Index Pin, (and/or Forward Limit/Reverse Limit), which is
convenient if the selected sensor is a Quadrature encoder and the application requires syncing
the position to the sensor’s index signal.

When using Index Pin, a rising edge will clear the position register.
When using Forward/Reverse Limit Pin, position register is cleared when signal is “closed”.

13.4.1. Setting Sensor Position — LabVIEW

[Aute Clear Sensor Position |

R ClearPosOnLimitF ~]=
[0 to disable, 1 to enable]

13.4.2. Setting Sensor Position — Java
double value = 1; // l-on, 0-off
talon.configSetParameter (ParamEnum.eClearPositionOnQuadIdx, value, 0x00, 0x00, 10);
talon.configSetParameter (ParamEnum.eClearPositionOnLimitF, value, 0x00, 0x00, 10);
talon.configSetParameter (ParamEnum.eClearPositionOnLimitR, value, 0x00, 0x00, 10);

13.4.3. Setting Sensor Position — C++

double value = 1; // 1-on, 0-off
talon.ConfigSetParameter (ParamEnum: :eClearPositionOnQuadIdx, value, 0x00, 0x00, 10);
talon.ConfigSetParameter (ParamEnum: :eClearPositionOnLimitF, value, 0x00, O0x00, 10);
talon.ConfigSetParameter (ParamEnum: :eClearPositionOnLimitR, value, 0x00, 0x00, 10);

Cross The Road Electronics Page 103 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

14. Fault Flags

The GeT sTaTUus vI can be used to retrieve sticky flags, and clear them.

14.1. Fault Flags - LabVIEW

Under Voltage
Forward Limit Switch
Reverse Limit Switch

Forward Soft Limit
Reverse Soft Limit

Hardware Failure _ _
st istent) faults
Rezet During Enable |Sticky (persistent) faults]

Sensor Chverflow F UndderL_‘u’ﬂ.I'tasge. D
Sensor COut of Phase Horu.rar L.lm.rt Sw.rtch
SFEL, Hardware ESD Reset cverse Limit wrtc
FaULT - Forward Soft Limit
Remote Loss of Signal i
Reverse Soft Limit

Reset During Enable
Sensor Overflow
Sensor Out of Phaze
Hardware ESD Reset
Remote Loss of Signal

Clearing sticky faults can be done in the roborio web-based configuration page, or this VI.

i MG

CLEAF
STICEY
FAULTS

Cross The Road Electronics Page 104 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

14.2. Fault Flags - C++
Faults toFill;
talon.GetFanlts (toFill); Create an empty Faults object, and pass into the
FOEALL GetFaults routine to update. Now inspect the member
variables to poll fault behavior.

@ ForwardLimitSwitch : bool
ForwardSoftLimit : bool
HardwareESDReset : bool
HardwareFailure : bool
RemotelossOfSignal : bool
ResetDuringEn : bool
ReverseLimitSwitch : bool
© ReverseSoftLimit : bool

@ SensorQutOfPhase: bool

o SensorOverflow : bool
StickyFaults toFill:
talon.GetStickyFanlts (toFill) ;
toFill,

ForwardLimitSwitch : bool
ForwardSoftLimit : bool
HardwareE5DReset : bool
RemotelossCfSignal @ bool
ResetDuringEn : bool
ReverselimitSwitch : bool
ReverseSoftLimit : bool Sticky faults operate similarly.
SenserOutOfPhase : bool
@ SensorCwverflow : bool

@ UnderVoltage : bool

@ HasAnyFault{void) : bool

Clearing the faults can be done via the clear routine.
talon.ClearStickyFaults (0) ;

Cross The Road Electronics Page 105 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

14.3. Fault Flags - Java

S*% greate caching okhject once #/
StickyFaults stickyFaults = new StickyFaults():
f*% greate caching object once #/

Create an empty Faults object,
and pass into the GetFaults

Faults faults = new Faults(); routine to update. Now inspect
the member variables to poll fault
public void testPeriodic() { behavior.

talon.getStickyFaults(stickyFaults):
talon.getFaults (_faults);

Sticky faults operate similarly.

Clearing the faults can be done via the clear routine.
talon.clearStickyFaults (0) ;

14.4. Fault Flags — Clearing
The above examples include routines to programmatically clear sticky faults.
They can also be cleared via the web-based config as documented in section 2.2.1.

Sticky Faults do not impact any motor controller behavior. They are purely a type of logging and
do not need to be cleared to restore any base functionality.

Cross The Road Electronics Page 106 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

15. CAN bus Utilization/Error metrics

The driver station provides various CAN bus metrics under the “lightning bolt” tab.

Utilization is the percent of bus time that is in use relative to the total bandwidth available of the
1Mbps Dual Wire CAN bus. So, at 100% there is no idle bus time (no time between frames on
the CAN bus).

Demonstrated here is 70% bus use when controlling 16 Talon SRXs, along with 1 Pneumatics
Control Module (PCM) and the Power Distribution Panel (PDP).

Faults CAN Metrics
Comms 0 utilization % 69

12V 0 Bus Off 0
ev 0 TXFull 0

5V 0 Receive 0

3.3V 0 Transmit 0 Teleoperated
Enabled

The “Bus Off” counter increments every time the CAN Controller in the roboRIO enters “bus-off”,
a state where the controller “backs off” transmitting until the CAN bus is deemed “healthy”
again. A good method for watching it increment is to short/release the CAN bus High and Low
lines together to watch it enter and leave “Bus Off” (counter increments per short).

The “TX Full” counter tracks how often the buffer holding outgoing CAN frames (RIO to CAN
device) drops a transmit request. This is another common symptom when the roboRIO no
longer is connected to the CAN bus.

The “Receive” and “Transmit” signal is shorthand for “Receive Error Counter” and “Transmit
Error Counter”. These signals are straight from the CAN bus spec, and track the error instances
occurred “on the wire” during reception and transmission respectively. These counts should
always be zero. Attempt to short the CAN bus and you can confirm that the error counts rise
sharply, then decrement back down to zero when the bus is restored (remove short, reconnect
daisy chain).

When starting out with the FRC control system and Talon SRXs, it is recommended to watch
how these CAN metrics change when CAN bus is disconnected from the roboRIO and other
CAN devices to learn what to expect when there is a harness or a termination resistor issue.
Determining hardware related vs software related issues is key to being successful when using
many CAN devices.

Cross The Road Electronics Page 107 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

15.1. How many Talons can we use?
Generally speaking, a maximum of 16 Motor controllers can be powered at once using a single
PDP (sixteen breaker slots). However, FRC game rules should always be checked as it
determines what it considered legal. This is typically the bottleneck for how many Talon SRXs
can be used despite having CAN device ID space for 63 device IDs. Release software is
always tested to support 16 Talon SRXs, 1 PCM, and 1 PDP with guaranteed control of each
Talon at a rate of 10ms. However, this is not the limit. There is still additional bandwidth for
more nodes. Additionally, if faster response time is desired, control frame periods can be
decreased from the default 10ms, but keep a watchful eye of the CAN bus utilization to ensure
reliable communication.

Cross The Road Electronics Page 108 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

16. Troubleshooting Tips and Common Questions

24 Just because a firmware issue has been resolved does not mean your out-of-the-box
hardware doesn’t have old firmware. Immediately update your CAN devices to ensure your
development time is not wasted chasing down an issue that has already been solved.

16.1. When | press the B/C CAL button, the brake LED does not change,

neutral behavior does not change.

This is the expected behavior if the robot application is overriding the brake mode. The B/C
CAL button press does toggle the brake mode in persistent memory, however the LED and
selected neutral behavior will honor the override sent over CAN bus. Check if the override API
is being used in the robot application logic.

16.2. The robot is TeleOperated/Autonomous enabled, but the Talon SRX

continues to blink orange (disabled).

Most likely the device ID of that Talon is not being used. In other words, there is no Open Motor
(LabVIEW) or constructed TalonSRX (C++/Java) with that device ID. This can be confirmed by
doing a Self-Test in the roboRIO Web-based Configuration, and confirm the “DEVICE IS NOT
ENABLED!” message at the top.

16.3. When | attach/power a particular Talon SRX to CAN bus, The LEDs on

every Talon SRX occasionally blink red. Motor drive seems normal.

If there is a single CAN error frame, you can expect all Talon SRXs on the bus to synchronously
blink red. This is a great feature for detecting intermittent issues that normally would go
unnoticed. If attaching a particular Talon brings this behavior out, most likely its device ID is
common with another Talon already on the bus. This means two or more “common ID” Talon
SRXs are periodically attempting to transmit using the same CAN arbitration ID, and are
stepping on each other’s frame. This causes an intermittent error frame which then reveals
itself when all Talon SRXs blink red. Check the roboRIO Web-based Configuration for the
“There are X devices with this Device ID” explained in Section 2.2. Common ID Talons.

16.4. If | have a slave Talon SRX following a master Talon SRX, and the
master Talon SRX is disconnected/unpowered, what will the slave Talon

SRX do?

The follower Talon SRX monitors for motor output updates from the master. If the slave Talon
doesn’t see an update after 100ms, it will disable its drive. The LEDs will reflect robot-enable
but with zero motor output (solid orange LEDS).

Cross The Road Electronics Page 109 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

16.5. Is there any harm in creating a software Talon SRX for a device ID
that’s not on the CAN bus? Will removing a Talon SRX from the CAN bus

adversely affect other CAN devices?

No! Attempting to communicate with a Talon SRX that is not present will not harm the
communication with other CAN nodes. The communication strategy is very different than
previously support CAN devices, and this use case was in mind when it was designed.

Creating more Talon software objects (LabVIEW Motor Open, or C++/Java class instances) will
increase the bus utilization since it means sending more frames, however this should not
adversely affect robot behavior so long as the bus utilization is reasonable.

However the resulted error messages in the DS may be a distraction so when permanently
removing a Talon SRX from the CAN bus, it is helpful to synchronously remove it from the robot
software.

16.6. Driver Station log says “Firm Vers could not be retrieved”.

FRC Driver Station - Version 18.0b14 — O x

Team# 1718

TeleOperated Elapsed Time 0:00.0
Autonomous
Practice

Test

-& PCBattery
PCCPU%

Window =3 [
Teleoperated
Team Station Redl W Disabled

This is to be expected when constructing a TalonSRX with a device ID that is not present on
CAN bus in C++/Java. This can also happen if the firmware predates to 2018 season.

16.7. Driver Station log says “Firmware too old”

[@ FRC Driver Station - Version 18.0b6 — O X

Team # 3539
TeleOperated Elapsed Time 0:00.0 - -

Autonomous D 12.29V

e =& PC Battery
= RN
Test PCCPU % HH

Communications

Joysticks
Window = [

Teleoperated
Team Station Red1 7 Disabled

Follow the update procedure in section 2.3.

16.8. Why are there multiple ways to get the same sensor data?

GetSensorCollection () .GetEncoder () VEISUS GetSelectedSensor () ?

The API that fetches latest values for Encoder (Quadrature) and Analog-In (potentiometer or a
continuous analog sensor) reflect the pure decoded values sent over CAN bus (every 100ms).
They are available all the time, regardless of which control mode is applied or whether the

Cross The Road Electronics Page 110 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

sensor type has been selected for soft limits and closed-loop mode. These signals are ideal for
instrumenting/logging/plotting sensor values to confirm the sensors are wired and functional.
Additionally, they can be read at the same time (you can wire a potentiometer AND a
guadrature encoder and get both position and velocities programmatically). Furthermore, the
robot application could use this method to process sensor information directly. If the 100ms
update rate is not sufficient, it can be overridden to a faster rate.

For using soft limits and/or closed-loop modes, the robot application must select which sensor to
use for position/velocity. Selecting a sensor will cause the Talon SRX to mux the appropriate
sensor to the closed-loop logic, the soft limit logic, to the “Sensor Position” and “Sensor
Velocity” signals (update 20ms). These sighals can be signed using setSensorPhase () in order
to keep the sensor in phase with the motor.

Since “Sensor Position” and “Sensory Velocity” are updated faster (20ms) they can also be
used for processing sensor information instead of overriding the frame rates.

16.9. All CAN devices have red LEDs. Recommended Preliminary checks

for CAN bus.
Some basic checks for the CAN harness are...
Turn off robot, measure resistance between CANH and CANL.
= ~60 ohm is typical (120ohm at each end of the cable).
= ~120 ohm suggests that one end is missing termination resistor. Terminate the end
using PDP jumper or explicit 120 ohm resistor.
= ~0 ohm suggests a short between CANH and CANL.
= INF or large resistances, missing termination resistor at each side.

More information can be found in Talon SRX User’s Guide.

Check the roboRIO’s Web-based Configuration to see if any devices appear, and ensure
there are no Talon SRX'’s sharing the same device ID.

Cross The Road Electronics Page 111 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

16.10. Driver Station reports “MotorSafetyHelper.cpp: A timeout...”, motor
drive no longer works. roboRIO Web-based Configuration says “No Drive”
mode? Driver Station reports error -44075?

This can happen after enabling Motor Safety Enable and not calling set () /set () often enough
to meet the expiration timeout.

@ I TeleOperated Elapsed Time 0:00.0

Autonomous
[=& PCBattery

st PCCPU% B
window =1 [
Teleoperated
Team Station Red1l W Disabled

Refresh Self-Test

Another symptom of this is seeing “No Drive” has the
control mode in the Self-Test.

The salf test complated successfully.
TALOMN is enabled.

Applied Throttle : 0

Brake during neutral

CloseloopError : 0
ProfileSlotSelact : 0

Salected Device for Close Loop : 0 : Quad Encoder

Bas: 0 When the safety timeout expires in LabVIEW, the error
message will be different...

Team # 217
TeleOperated Elapsed Time 0:00.0 -E'al‘z . fea il 4

Autonomous occurred at The connected to PWM 1 of the DIO Module in Controller 1 in the VI path:
=& PCBattery

PCCPU % mm

Practice
Test

Window = [

Teleoperated
Team Station Red1l 7 Disabled

See section 19 for more information.

16.11. Motor drive stutters, misbehaves? Intermittent enable/disable?
Check the CAN Utilization to ensure it’s not near 100%. An abnormally high percent may be a
symptom of “common ID” Talons. This also can occur when selecting custom frame rates that
are too fast.

Ensure robot application calls Set() on each Talon at least once per loop. Avoid strategies that
attempt to write the Talon set-output “only when it changes”. There is no cost to updating the
set-output of the Talon SRX using the robot API, and often such strategies trip the motor-safety

M
features (section 19). If using LabVIEW avoid using tunnels/shift-registers to only call
when the input parameter has changed.

Check the roboRIO’s Web-based Configuration to confirm all expected Talons are populated
and are enabled per the Self-Test.

Check the “Under Vbat” sticky flag in the Self-Test. This will rule out power/voltage related
issues.

Cross The Road Electronics Page 112 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

Check the “Reset During Enable” sticky flag in the Self-Test. This will rule out
power/voltage/ESD-or-reset related issues.

If the issues occur only during rapid changes in direction and magnitude, the power
cables/crimps may not be efficient enough to deliver power during the stall-period when a
loaded motor changes direction. This can be confirmed if increasing the voltage ramp rate
removes/fixes this symptom.

Be sure to check the Driver Station Logs for packet loss since that can cause intermittent robot
disables.

If the Driver Station has 3" party software that uses network communication, or if the Driver
Station

When using the DAP-1522 (or similar radio) be sure to use latest stable firmware. For example,
rev-A DAP1522s (with production ship firmware) will not reliably enable the robot. Additionally,
consult FRC rules and documentation for which hardware rev is legal for competition and how to
properly setup the radio.

16.12. What to expect when devices are disconnected in roboRIO’s Web-

based Configuration. Failed Self-Test?
Depending what version of software is released, a discovered Talon will display loss of
connection one of two ways.

The Firmware Version may report (Device is not responding).

Talon SRX Settings
Talon SRX (Device ID 2)
ame slon
Talon SRX .
Talon SRX (Device ID 10) Device o 2

Light Devics LED
Talon SRX Softs Staty Ri i Applicati
Talom SR (Devics 10 8) oftwsre Status Runnin g Application.
Hardware Revision 1.4
Talon SRX Manufacturs Date Nov 3, 2014
Talon SRX (Device ID 11)
Boatloader Revision 2.6
I Talon SRX Vendor Cross Tha Road Electronics
Talon SRX (Devics ID 17) Model -
Talon SRX Firmiare Revision I 1.1 [Device is not responding, this is stale) I
Talon SRX (Device ID 7) Shatus —

I Talon SRX
Talnn SRY (MNavica TN 15%

Alternatively, the tree element will gray out to indicate loss of communication....

Cross The Road Electronics Page 113 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

Name Talon SRX (Deavice ID 2)

Light Device LED

Softwiare Status Running Application.

Manufactura Date Nov 3, 2014

AR A L

Bootloader Ravision 2.6

Cross Tha Road Electronics

vandar
NI roboRIO Madel Talon SRX
RI00

Firmware Revision 11

= ":SELLEIEIR Status Mot Present
The roboRIO internals rechecks the CAN bus once every five seconds so when
connecting/disconnecting Talons to/from the bus, be sure to wait at least five seconds and

refresh the webpage to detect changes in connection state.

Doing a Self-Test when the Talon SRX is not present on the CAN bus will report a red X’ in the
top left portion of the Self-Test report. Depending on what robot controller image is release you
may see the stale values of all signals when the red “X” is present.

The =elf test failed.

TALOM IS NOT ENABLED! If robot is enabled maybe the ID is wrong?
Mode : 0 : Throttle (duty cycle)

Applied Throttle : 0

Coast during neutral

L%

CloseLoopError : 0
ProfileSlotSelect @ 0

Salected Device for Close Loop @ 0 : Quad Encoder

Pos: O

rele .. n

16.13. How do | get the raw ADC value (or voltage) on the Analog Input pin?
The bottom ten bits of Analog-In Position is equal to the converted ADC value. The range of [0,
1023] scales to [0V, 3.3V]. Additionally, if “Analog Potentiometer” is selected as the Feedback

Device, the signal “Sensor Position” will exactly equal the bottom ten bits of Analog-In Position.

16.14. Recommendation for using relative sensors.
When using relative sensors for closed-loop control, it's always good practice to design in a way
to re-zero your robot. Regardless of how/where relative sensors are connected (robot controller
IO, Talon SRX, etc...), there is always the potential for sensors to “walk” or “drift” due to...
-Mechanical slip issues
-Skipped gear teeth in chain
-Intermittent electrical connections (harness gets damaged in middle of a match)
-Power cycle robot when armatures are not in their “home” position.
-Remote resets of robot controller when armatures are not in their “home” position.

A common solution to this is to design a way in the gamepad logic to force your robot into a
“‘manual mode” where the driver/arm operator can manually servo motors to a home position
and press a button (or button combination) to re-zero (or set to the “home” position values) all
involved sensors.

Cross The Road Electronics Page 114 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

Teams that do this already can continue to use this method with Talon SRX since there is are
set functions to modify “Sensor Position”.

16.15. Does anything get reset or lost after firmware updates?

The transition from v4_legacy Tool suite to Phoenix will default the configuration
parameters. This occurs when firmware is updated to 3.X firmware from 2.X firmware.
The device ID is not affected in this circumstance.

Notwithstanding the above, the device ID, limit switch startup settings, brake startup settings,
Motor Control Profile Parameters, and sticky flags are generally unaffected by the act of field-
upgrading. If a particular firmware release has a “back-breaking” change, it will be explicitly
documented (see paragraph above).

16.16. Analog Position seems to be stuck around ~100 units?
When the analog input is left unconnected, it will hover around 100 units. If an analog sensor

has been wired, most likely it's connected to the wrong pin. Recheck wiring against the Talon
SRX User’s Guide.

Cross The Road Electronics Page 115 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

16.17. Limit switch behavior doesn’t match expected settings.

First check the Startup Settings in the roboRIO Web-based Configuration to determine that the
“Normally Open”/ “Normally Closed” settings are correct. They can be changed
programmatically and in the web page so it's worth confirming. Here we see both directions use
NO limit switches...

Motor Controller Startup Settings

Brake Mode | Coast -
Forward Limit-Switch | Mormally Opened |
Reverse Limit-Switch l Mormally Opened x]

Then press the “Self-Test” button to check...

-The open/closed state of the limit switch input pin on the Talon SRX.

-If enable/disable state of the limit-switch logic is overridden programmatically.
-Check the fault and sticky faults to see if limit fault conditions are detected.

Refresh Self-Test

0 The self test completed successfully.
TALOMN IS NOT EMABLED! If robot is enabled maybe the ID is wrong?
Mode : 0 : Throttle (duty cycle)
Appliad Throttle : O
Coast during neutral

CloseloopError : 290
ProfileSlotSelect : 0

Selected Device for Close Loop : 2 : Analog Encoder
Pos: 728
Velocity: -1

Quad Encoder
Pos: -14735
Velacity : 0

A Pin: 1

B Pin = 0

Idx Pin : 1

Idx rise edges : 3

Analog Input

ADC : 728

Pas (with overflows) = 728
Velacity : -1

Fwd Limit Switch is Closed
Rev Limit Switch is Open

Fwd Limit Switch is forced OFF
Rev Limit Switch is forced OFF

(Fault) (Now) (Sticky)
Fwid Limit Switch 1 0]
Rev Limit Switch : 0 0
Fved Soft Limit : a i}
Rewv Soft Limit : o a
Under Vbat : o a
Ower Temp ¢ a [1]

In this example the Fwd. Limit Switch fault is not set despite the Fwd. Limit Switch being closed.
This is because the Limit Switch logic forced OFF, because the feature is disable
programmatically. As a result closing the forward limit switch will not disable motor drive.

Cross The Road Electronics Page 116 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

16.18. How fast can | control just ONE Talon SRX?

The fastest control frame rate that can be specified is 1ms. That means that the average period
at which the output/set point can be updates is 1ms. This will increase bus utilization by
approximately 15%, which is acceptable if the number of Talon SRXs is few. Always check the
CAN bus performance metrics in the Driver Station when doing this.

16.19. Expected symptoms when there is excessive signal reflection.
If the CAN bus harness has excessive signal reflection due to improper wiring or missing
termination resistors, the following symptoms may be seen...

-Driver Station will show Rx and Tx CAN errors intermittently (see Section 15), particularly with
higher bus utilization.

-CAN bus utilization will be higher than normal. This is because CAN devices transmit error
frames in response to detecting improper frames. This is helpful if you are in the habit of
checking your bus utilization every once in a while and knowing what is typical for your robot.
See Section 15 for more details.

-The LED of every CAN device on the bus will blink red intermittently during normal use (the
same symptom as Section 16.4). Both common-ID Talons and excessive signal reflection can
cause error frames to appear, which trigger every CTRE CAN device to intermittently blink red
during normal use.

One reliable way to observe this LED behavior is to deliberately leave a couple common-ID
Talon SRXs on your CAN Bus. Then, power up your robot and leave it disabled. All Talon
SRXs will rail-road orange (healthy CAN bus and disabled). Now watch any particular Talon
SRX for a minute or so. It will blink red intermittently as the two (or more) common-ID Talon
SRXs inevitably disrupt each other’s frame transmission.

-Measured DC resistance between CANH and CANL (when robot is unpowered) should be
approximately 60 Q. If this is not the case then recheck the CAN wiring and termination
resistors (see Talon SRX User’s Guide).

16.20. LabVIEW application reads incorrect Sensor Position. Sensor

Position jumps to zero or is missing counts.

This is a common symptom if the LabVIEW application is calling the Motor Enable VI
periodically. This VI has the side-effect of modifying the Sensor Position every time it’s invoked.
Additionally, wiring the current Sensor Position to this signal also will prevent proper signal
decoding since the RIO will send stale positions to the Talon SRX, overwriting valid signal
changes in the Talon. See Section 13.1.1 for more information.

Additionally, check that the correct Feedback Device is selected (Section 7). Remember that
the Feedback Device Select is sent only when the robot is enabled. Since there is only one
control frame that contains all control signals, this ensures Talon has the correct sensor
selected when Talon is enabled (Section 20.6).

Cross The Road Electronics Page 117 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

16.21. CAN devices do not appear in the roboRIO Web-based config.
Normally devices appear under the “CAN Interface” tree node...

roboRIO-217 : System Configuration

| | Search Refresh
-
g] roboRIO -
’d{ | roboRIO-217 System Settings
Host boRIO-217
. @ CAN Interface nams | ok
| cand 1P Addrass 10.2.17.2 (Ethernat)
0,0.0.0 (Ethernet)
FOP
| PDP {Device ID 0) DMNS Nama roboRIO-217 lecal
Vendor National Instruments
JE Talon SRX
| rightRears Maodel roboRIO
Serial Mumber 030438A1
Talon SRX Firmware Revision 2.1.0f2
Talon SRX (Device 1D 13)
Operating System MI Linux Real-Time ARMv7-A 3.2,.35-rt52-2.0.0f0
M i oo

...however if the roboRIO is not correctly wired to the CAN Bus, then the tree node will have no
elements listed underneath..

roboRIO-217 : System Configuration

| | Search Refresh
g roboRIO
’dl | roboRIO-217 System Settings

CAN Interface Hostname | roboRIC-217
| can0 1P Address 10.2.17.2 (Ethernet)
0.0.0.0 (Etharnet)
NI roboRIO
| RIDO DME Mame roboRIO-217.local
Wendor Mational Instruments

ACD1 A TRISTD

...in which case double-check the CAN bus wiring and termination strategy. See the Talon SRX
User’s Guide for more information on wiring Talon SRXs. Also see the “FRC Screen steps”
online documentation for more information on wiring the other CAN devices in the control
system. Additionally, check the status LEDs of the CAN devices. Generally, red LED states
reflect an unhealthy CAN connection, which will help diagnose wiring issues.

16.22. When | make a change to a setting in the roboRIO Web-based
configuration and immediately flash firmware into the Talon, the setting

does not stick?

When any of the Motor Control Profile (MCP) settings are changed, a certain amount of time
must pass before the settings are committed to persistent storage (if a previous change hadn’t
been made recently). See section 11.1 for an explanation of how the wear-leveling works. This
only occurs when re-flashing the firmware immediately after two subsequent setting changes
where the two changes are also done immediately after each other.

Cross The Road Electronics Page 118 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

16.23. My mechanism has multiple Talon SRXs and one sensor. Can | still
use the closed-loop/motion-profile modes?

See Section 7.6 for recommended procedure.

16.24. My Closed-Loop is not working? Now what?

The common observations when setting up a closed-loop initially is
e The motor output saturates immediately when enabled.
e The motor output is neutral despite sensor not being near target position/velocity.
e Oscillation or over-shooting the target.
e Motor output is not enough to reach target.
When debugging a closed-loop mechanism, follow the procedure in order.

16.24.1. Make sure Talon has latest firmware.
See Section 2.3 for instructions. See Section 22 for firmware release notes.

16.24.2. Confirm sensor is in phase with motor.
See Section 7.4 for instructions on how to check if sensor and motor are in phase.
This is often the culprit if the closed-loop “runs away” or reaches maximum motor output
immediately.

16.24.3. Confirm Slave/Follower Talons are driving

If there are slave Talon SRXs, ensure their LED output matches the master Talon. If a slave
Talon is not driving due to improper software setup or incorrect wiring, a master Talon may
back-drive the slave Talon(s), causing excessive current-draw and/or breaker trips.

To test that the Slave Talons are functioning, unplug all motors and manually drive each motor
one at a time. If the follower is driving in the wrong direction, it may need to be inverted using
the APl in Section 7.4.

See Section 7.6 for complete instructions on testing Slave/Follower Talons setup.

16.24.4. Drive (Master) Talon manually

Drive the Talon (or if using slave Talons, drive the master Talon) using PercentOutput mode.
Cover the full range of speed to ensure mechanical system is functioning as expected.
Measure the sensor positions at the critical points to ensure sensor is functioning. This also
aids in confirming what the target sensor positions should be if the goal is to use Position
Closed-Loop.

See Section 17 to lookup sensor resolution of each sensor type.

16.24.5. Re-enable Closed-Loop

Zero all four gains (F, P, I, D) and place Talon SRX into Closed-Loop mode. Use the Self-
Test to ensure Talon is enabled and in the appropriate mode (Section 2.4).

Cross The Road Electronics Page 119 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

Gposeties ompleted successfuly If Mode is “No Drive”, see Section 16.12. If Mode is the
e e e v wrong one, inspect robot-code to see why the wrong mode
Brake during neutra| IS Selected

CloseloopError: -2
ProfileSlotSelect: 0

_ » Applied motor output will be 0% since the gains are all
Selected Device:6:CTRE MagEnc (rel)

Pos {rot): -0.289 Velocity (RPM): 0.00 Zeroed,
Pos:-15%8 Velocity:0

Magnetic Encoder [Relative)

Pos (rot): -0.389 Velocry (ROM): 0.00 Ensure the Closed-Loop Peak Outputs are correct.
S el “-100%, 100%"” represent the full range (no restriction) of

o nes g dases motor-output (default).
Analog Input
ADC: gl;S

S By Ensure the Closed-Loop Nominal Outputs are correct.
g:f;j:_‘f*;‘_uggf;j;gg:;;;ﬂ}, 00 “0, 0” represent no restriction on the “smallest” nonzero
Posi-1601 Velocity:0 motor-output of the Closed-Loop (default).

Fued Limit Switch is Open,

Rev Limit Switch is Open. .

Ensure that Allowable Closed Loop Error is correct. A value
of zero represent motor output is allowed anytime Closed

Loop Error is nonzero (default).

No Faults Present.,

Current[A):0.00 Battery(V):12.30 Temp(C):26.77
Nominal Output:0,0

Peak Output:-1023,1023

Closed Loop Allowable Error:Shot0=40,5letl=0
Encoder CPR:0

16.24.6. Start with a simple gain set
The next step depends on whether you are using Position or Velocity Closed-Loop.

16.24.6.1. Start with a simple gain set — Position Closed-Loop

If using Position Closed-Loop, look at the Closed-Loop Error. This is the error between the
target and currently-sampled position. It will be measured in native sensor units. This value is
multiplied by the P gain and sent to the motor output.

For example, if the Closed Loop error is 4096 and the , then...
4096 X
409 or 39.98% (409/1023) motor output.

An error of 4096 represent an error of one-full rotation when using the CTRE Magnetic
Encoder). So with a , the Closed-Loop output will be 39.98% when sensor is off
by one rotation.

Choose a P gain so that the worst case error yields a small motor-output. Set the P gain and
re-enable the Closed-Loop. The motor-output will be “soft” meaning the movement will likely fail
to reach the final target (or come up “short”). Double the P gain accordingly until the response
is sharp without major overshoot. If the P gain is too large, the mechanism will oscillate about
the target position.

At this point, the Closed-Loop will have the basic ability to servo to a target position.

Additionally, tune the remaining Closed Loop Parameters (ramping, I, D, Peak/Nominal Output,
etc.) to dial in the acceleration and near-target response of the closed-loop.

Cross The Road Electronics Page 120 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

16.24.6.2. Start with a simple gain set — Velocity Closed-Loop

The first gain to set is the F gain. See Section 12.6 for LabVIEW instruction/examples on how
this is done. See Section 12.4 for Java instruction/examples (C++ users should also review this
section as the procedure is identical).

With just F gain, the motor’s output should follow the requested target velocity reasonably. At
this point you can begin dialing in P gain so that the closed-loop performs error correction.

16.24.7. Confirm gains are set

If the motion output is still neutral, use the roboRIO Web based configuration page to confirm
that gains are actually nonzero, and that the correct slot is selected.

Search | Save Refresh Self-Test
roboRID Here P gain of 2’ is in Slot 0.
roboRIO-465-FRC Motor Controller Closed-Loop Control Parameters Slot 0
CAN Interfa i
i arace P Gain 2
1 Gain o
alon SRX o Gzin |0 |
' Talon SR (Davice 1D 0) rond . [0 |
NI roboRIO 1Zone |o |
RIOO Ramp Rate o |
ASRLL::INSTR
i ASRL1::INSTR
Motor Controller Closed-Loop Control Parameters Slot 1
ASRLZ::INSTR
& shzmsr P Gain o
1 Gain o
D Gain o
Feed-Forward Gain o
1Zone [
Ramp Rate [

Refresh Self-Test

Now perform the Self-Test to conflrm' which Profile ‘Slyot is The self test completed fully,
selected. In this example we would like to use slot ‘0’. B2 SN s e
Mode: 1 : Position Close Loop
Applied Throttle: 0.00% [0.00 V]
Brake during neutral

CloseLoopError: -2
IPreﬁIeSlutEelect: 0 I
Selected Device:5:CTRE MagEnc [ral)

Fiee el Fpla 1oL T S PR T L TR O 1o

16.25. Where can | find application examples?

Example projects for Talon SRX can also be found in the CTR GitHub account.
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

Cross The Road Electronics Page 121 1/13/2018

https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

16.26. Can RobotDrive be used with Talon SRXs? What if there are six

Talons?

The default RobotDrive object in LabVIEW/C++/Java already supports two-Talon and four-Talon
drivetrains. Simply create the WPI_TalonSRX objects and pass them into the RobotDrive
example.

For six drive Talons, the four-motor examples for Robot Drive can be used with four
WPI_TalonSRX objects, then create the final two Talons and set them to slave/follower mode.

The JAVA_Six_CANTalon_ArcadeDrive example can be downloaded at...
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
The screenshot below can be used as a reference.

Although the example is in Java, the strategy can be used in all three FRC languages.
Although the example uses arcadeDrive, the robot application could use tankDrive as well.

public class Robot extends IterativeRobot {

/* talons for arcade drive */
WPI_TalonSRX frontLeftMotor = new WPI TalonSRX(1l); /* device IDs here (1 of 2) */
WPI_TalonSRX _frontRightMotor = new WPI_TalonSRX(14);

/* extra talons for six motor drives */

WPI VictorSPX _leftSlavel = new WPI VictorSPX(13);
WPI_VictorSPX _rightSlavel = new WPI_VictorSPX(15);
WPI_VictorSPX _leftSlave2 = new WPI_VictorSPX(16);
WPI VictorSPX _rightSlave2 = new WPI_ VictorSPX(17);

final int kTimeoutMs = 10;
DifferentialDrive drive = new DifferentialDrive(frontLeftMotor, _frontRightMotor) ;

Joystick joy = new Joystick(0);
/**
* This function is run when the robot is first started up and should be
* used for any initialization code.
*/
public void robotInit() {
/* take our extra talons and just have them follow the Talons updated in arcadeDrive */
leftSlavel.follow(frontLeftMotor);
leftSlave2.follow(frontLeftMotor);
_rightSlavel.follow(frontRightMotor);
~rightSlave2.follow(frontRightMotor);

_frontLeftMotor.configSelectedFeedbackSensor (FeedbackDevice.QuadEncoder, 0, kTimeoutMs) ;
_frontRightMotor.configSelectedFeedbackSensor (FeedbackDevice.QuadEncoder, 0, kTimeoutMs) ;

/* do this first */

/*flip values until sensor is positive with positive motor output (green LEDs) */
_frontLeftMotor.setSensorPhase (false) ;

_frontRightMotor.setSensorPhase (true) ;

/* do this second */

boolean invertLeft = false;

boolean invertRight = false;
_frontLeftMotor.setInverted (invertLeft);
_frontLeftMotor.setInverted (invertLeft);
_frontLeftMotor.setInverted (invertLeft);
_frontRightMotor.setInverted (invertRight)
_frontRightMotor.setInverted (invertRight)
_frontRightMotor.setInverted (invertRight) ;

’
’

Cross The Road Electronics Page 122 1/13/2018

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

}
/‘k‘k

* This function is called periodically during operator control
*/
public void teleopPeriodic() {
double forward = joy.getY(); // logitech gampad left X, positive is forward
double turn = joy.getZ(); //logitech gampad right X, positive means turn right
_drive.arcadeDrive (forward, turn);

}

16.27. How fast does the closed-loop run?
Talon SRX updates the motor output every 1ms by recalculating the PIDF output.

Additionally, when using the motion magic control mode, the target position and target velocity
is recalculated every 10ms to honor the user’s specified acceleration and cruise-velocity.
16.28. Driver Station log reports: The transmission queue is full. Wait until frames in the

qgueue have been sent and try again.

This error means the roboRIO is sending more CAN bus frames than can be physically
sent. Usually because of a cable disconnect. Check your wiring for opportunities for CAN bus

to disconnect.

Check for changes in the CAN error counts (Section 15) to confirm cable integrity.

Section 16.24 has additional cable troubleshooting tips.

Cross The Road Electronics Page 123 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

17. Units and Term Definitions

Listed below are the native units and term definitions for the signals inside the motor controller.

17.1. Signal Definitions and Sensor Units

17.1.1. (Quadrature) Encoder Position
When measuring the position of a Quadrature Encoder, the position is measured in 4X encoder
edges. For example, if a US Digital Encoder with a 360 cycles per revolution (CPR) will count
1440 units per rotation when read using “Encoder Position” or “Sensor Position”.

The velocity units of a Quadrature Encoder is the change in Encoder Position per Tveimea
(Tvemeas=0.1sec). For example, if a US Digital Encoder (CPR=360) spins at 20 rotations per
second, this will result in a velocity of 2880 (28800 position units per second).

17.1.2. Analog (Encoder/Potentiometer)
When measuring the position of a 3.3V Analog Potentiometer, the position is measured as a 10
bit ADC value. A value of 1023 corresponds to 3.3V. A value of 0 corresponds to 0.0V.

The velocity units of a 3.3V Analog Potentiometer is the change in Analog Position per Tveimea
(Tvemeas=0.1sec). For example if an Analog Potentiometer transitions from 0V to 3.3V (1023
units) in one second, the Analog Velocity will be 102.

Like 3.3V Analog Potentiometers, the 10 bit ADC is used to scale [0 V, 3.3 V] => [0, 1023].
However when the Analog Encoder “wraps around” from 1023 to 0, the Analog Position will
continue to 1024. In other words, the sensor is treated as “continuous”.

The velocity units of a 3.3V Analog Encoder is the change in Analog Position per 100ms
(Tvemeas=0.1sec). For example if an Analog Encoder transitions from 0V to 3.3V (1023 units) in
one second, the Analog Velocity will be 102.

17.1.3. Motor output
The Talon SRX uses 10bit resolution for the output duty cycle. This means a -1023 represents
full reverse, +1023 represents full forward, and 0 represents neutral.

The programming APl made available in LabVIEW and C++/Java performs the scaling into
percent, so the duty cycle resolution is not necessary for programming purposes. However
when evaluating PIDF gain values, it is helpful to understand how the calculated output of the
closed-loop is interpreted.

Cross The Road Electronics Page 124 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

17.1.4. (Open-Loop) Ramp
The Talon SRX natively represents Open-Loop Ramp as the change in output per Tramprate
(Tramprate=10mMs). Motor output is represented as a 10bit signed value (1023 is full forward, -
1023 is full reverse). For example, if the robot application requires motor drive ramping from 0%
to 100% to take one second of ramping, the result Ramp Rate would be ([1023 — 0] / 1000ms X
TRampRate) or 10 units.

The programming APl made available in LabVIEW and C++/Java performs the scaling into
appropriate units (percent-output and time).

17.1.5. (Closed-Loop) Ramp
The Talon SRX natively represents Closed-Loop Ramp as the change in output per Tramprate
(Tramprae=10mMs). Motor output is represented as a 10bit signed value (1023 is full forward, -
1023 is full reverse). For example, if the robot application requires motor drive ramping from 0%
to 100% to take one second of ramping, the result Ramp Rate would be ([1023 — 0] / 1000ms X
Tramprate) OF 10 units.

The programming APl made available in LabVIEW and C++/Java performs the scaling into
appropriate units (percent-output and time).

17.1.6. Integral Zone (I Zone)
The motor control profile contains Integral Zone (I Zone), which (when nonzero), is the
maximum error where Integral Accumulation will occur during a closed-loop Mode. If the
Closed-loop error is outside of the | Zone, “| Accum” is automatically cleared. This can prevent
total instability due to integral windup, particularly when tweaking gains.

The units are in the same units as the selected feedback device (Quadrature Encoder, Analog
Potentiometer, Analog Encoder, and EncRise).

17.1.7. Integral Accumulator (I Accum)
The accumulated sum of Closed-Loop Error. It is accumulated in line with Closed-Loop math
every 1ms.

17.1.8. Motor Invert
Boolean signal for reversing the h-bridge output. This signal does not impact Talon LEDs in
order to ensure LEDs are in phase with limit switch wiring and soft-limit configuration.

Changing the motor invert does not impact Sensor Phase. This is because the firmware will
compensate for the motor inversion internally.

17.1.9. Sensor Phase
Boolean signal for reversing the sensor phase. Generally, this will multiply the sensor value by -
1 when set to true.

17.1.10. Closed-Loop Error
Calculated as the difference between target set point and the actual Sensor Position/Velocity.

Cross The Road Electronics Page 125 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

The units are matched to Analog-In or Encoder depending on which “Feedback Device” and
control mode (position vs. speed) is selected.

17.1.11. Closed-Loop gains
P gain is specified in motor output unit per error unit. For example, a value of 102 is ~9.97%
(which is 102/1023) motor output per 1 unit of Closed-Loop Error.

| gain is specified in motor output unit per integrated error. For example, a value of 10 equates
to ~0.97% for each accumulated error (Integral Accumulator). Integral accumulation is done

every 1ms.

D gain is specified in motor output unit per derivative error. For example, a value of 102 equates
to ~9.97% (which is 102/1023) per change of Sensor Position/Velocity unit per 1ms.

F gain is multiplied directly by the set point passed into the programming APl made available in
LabVIEW and C++/Java. This allows the robot to feed-forward using the target set-point.

17.2. Sensor Resolutions

Sensor Type Units per rotation
Quadrature Encoder : US Digital 1024 CPR 4096 (because Talon/CANifer counts every edge)
CTRE Magnetic Encoder (relative/quadrature) 4096
CTRE Magnetic Encoder (absolute/pulse width
4096
encoded)
Any pulse width encoded position 4096 represents 100% duty cycle
AndyMark CiMcoder 80 (because 20 pulses => 80 edges)

Pasition units are in the natural units of the sensor. This ensures the best resolution possible
when performing closed-loops in firmware.

Velocity is measured in sensor units per 100ms. This ensures sufficient resolution regardless of
the sensing strategy. For example, when using the CTRE Magnetic Encoder, 1u velocity
represents 1/4096 of a rotation every 100ms. Generally, you can multiply the velocity units by
600/UnitsPerRotation to obtain RPM.

Tachometer velocity measurement is unique in that it measures time directly. Thus, the reported

velocity is calculated where 1024 represents a full "rotation”. This means that a velocity
measurement of 1 represents 1/1024 of a rotation every 100ms.

Cross The Road Electronics Page 126 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

18. How is the closed-loop implemented?

The closed-loop logic is the same regardless of which feedback sensor or closed-loop mode is
selected. The verbatim implementation in the Talon firmware is displayed below.
This includes...

- The logic for PIDF style closed-loop.

- Inverting the output of the closed-loop if enabled in API.

- Capping the output to positive values only IF using a single direction feedback sensor.

Note: The PID Mux Unsigned and PID Mux_Sign routines are merely multiply functions.

/**

* 1lms process for PIDF closed-loop.

* @param pid ptr to pid object

* @param pos signed integral position (or velocity when in velocity mode) .

* The target pos/velocity is ramped into the target member from caller's 'in'.
* If the CloseLoopRamp in the selected Motor Controller Profile is zero then

* there is no ramping applied. (throttle units per ms)

* PIDF is traditional, unsigned coefficients for P,i,D, signed for F.

* Target pos/velocity is feed forward.

*

* Izone gives the abilty to autoclear the integral sum if error is wound up.

* @param revMotDuringCloseLoopEn nonzero to reverse PID output direction.
* @param oneDirOnly when using positive only sensor, keep the closed-loop from outputing negative throttle.
*/
void PID CalclMs(pid t * pid, int32_t pos,uint8_t revMotDuringCloseLoopEn, uint8_t oneDirOnly)
{
/* grab selected slot */
MotorControlProfile t * slot = MotControlProf GetSlot();
/* calc error : err = target - pos*/
int32_t err = pid->target - pos;
pid->err = err;
/*abs error */
int32_t absErr = err;
if(err < 0)

absErr = -absErr;
/* integrate error */
if (0 == pid->notFirst) {

/* first pass since reset/init */
pid->iAccum = 0;
/* also tare the before ramp throt */
pid->out = BDC_GetThrot(); /* the save the current ramp */
}else if((!slot->IZone) || (absErr < slot->IZone)) {
/* izone is not used OR absErr is within iZone */
pid->iAccum += err;
telse{
pid->iAccum = 0;
}
/* dErr/dt */
if (pid->notFirst) {
/* calc dErr */
pid->dErr = (err - pid->prevErr);
telse{
/* clear dErr */
pid->dErr = 0;
}
/* P gain X the distance away from where we want */
pid->outBeforRmp = PID Mux Unsigned(err, slot->P);
if (pid->iAccum && slot->I) {
/* our accumulated error times I gain. If you want the robot to creep up then pass a nonzero Igain */
pid->outBeforRmp += PID_Mux Unsigned(pid->iAccum, slot->I);
}
/* derivative gain, if you want to react to sharp changes in error (smooth things out). */
pid->outBeforRmp += PID Mux_Unsigned(pid->dErr, slot->D);
/* feedforward on the set point */
pid->outBeforRmp += PID Mux_Signed(pid->target, slot->F);
/* arm for next pass */
{
pid->prevErr = err; /* save the prev error for D */
pid->notFirst = 1; /* already serviced first pass */
}
/* if we are using one-direction sensor, only allow throttle in one dir.
If it's the wrong direction, use revMotDuringCloseLoopEn to flip it */
if (oneDirOnly) {

Cross The Road Electronics Page 127 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

if (pid->outBeforRmp < 0)
pid->outBeforRmp = 0;
}
/* honor the direction flip from control */
if (revMotDuringCloseLoopEn)

pid->outBeforRmp = -pid->outBeforRmp;
/* honor closelooprampratem, ramp out towards outBeforRmp */
1f(0 != slot->CloseLoopRampRate) {

if (pid->outBeforRmp >= pid->out) {
/* we want to increase our throt */
int32_t deltaUp = pid->outBeforRmp - pid->out;
if (deltaUp > slot->CloseLoopRampRate)
deltaUp = slot->CloseLoopRampRate;
pid->out += deltaUp;
telse{
/* we want to decrease our throt */
int32_t deltabn = pid->out - pid->outBeforRmp;
if (deltabDn > slot->CloseLoopRampRate)
deltaDn = slot->CloseLoopRampRate;
pid->out -= deltaDn;

telse{
pid->out = pid->outBeforRmp;

Cross The Road Electronics Page 128 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

19. Motor Safety Helper

The Motor Safety feature works in a similar manner as the other motor controllers. The goal is
to set an expiration time to a given motor controller, such that, if the set () /set () routine is not
called within the expiration time, the motor controller will disable. Additionally, the DS will report
the error and the roboRIO Web-based Configuration Self-Test will report bisabled as the
mode. Thus, the set routine must be called periodically for sustained motor drive when motor
safety is enabled.

Be sure to use WPI_TalonSRX and WPI_VictorSPX classes to leverage motor-safety.

One example where this feature is useful is when laying breakpoints with the debugger while
the robot is enabled and moving. Ideally when a breakpoint lands, its safest to disable motor
drive while the developer performs source-level debugging.

19.1. Best practices
Be sure to test that the time between enabling Motor Safety features, and the first set () /set ()
call is small enough to not risk accidently timing out. Calling set () /set () immediately after
enabling the feature can be used to ensure transitioning into the enabled modes doesn’t
intermittently cause a timeout.

Even if tripping the motor-safety expiration time is not an expected condition, it’s best to re-
enable the motors somewhere in the source so that the timeouts can be reset easily, for
example in Autonlinit()/Teleoplnit(). That way normal robot functionality can be safely resumed
after a motor controller expires (usually during source-level debugging).

Additionally, if source-level debugging is not required (for example during a competition or if
logging-style debugging is preferred) the motor-safety enable can be turned off.

Cross The Road Electronics Page 129 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

19.2. C++ example
SetSafetyEnabled () can be used to turn on this feature. setExpiration () can be used to
set the expiration time. The default expiration time is typically 100ms.

19.3. Java example
setSafetyEnabled () can be used to turn on this feature. setExpiration () can be used to
set the expiration time. The default expiration time is typically 100ms.

19.4. LabVIEW Example
The Motor SAFETY CONFIG VI can be used to turn on this feature. Select “Enable” for the
mode and specify the timeout in seconds.

Matar [

T3 b4 SAFETY
Enable SareTt

Timeout (sec) (|1

19.5. RobotDrive
The examples in this section refer to the wpI Talonsrx objects directly. However higher level
class types such as rRobotDrive can have their own motor safety objects as well. Although
WPI TalonsRx safety features default off, the higher-level drive objects tend to default safety
enable to on. If you are still withessing disabled motor drive behavior and Motor Safety Driver
Station Log Messages (see Section 16.14) then you may need to call
setSafetyEnabled (false) (Or similar routines/Vl) on RobotDrive Objects as well. Keep in
mind that disabling safety enable means that motor drive can continue if a source-level
breakpoint halts program flow. Take the necessary precautions to debug the robot safely or
alternatively only enable motor safety features when performing source level debugging.

Cross The Road Electronics Page 130 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

20. Going deeper - How does the framing work?

The Talon periodically transmits four status frames with sensor data at the given periods. This
ensures that certain signals are always available with a deterministic update rate. This also
keeps bus utilization stable.

Similarly, the control frame sent to the Talon SRX is periodic and contains almost all the
information necessary for all control modes. The rest of the necessary parameters are are
persistent and modified via configuration function/VIs, which are typically configured during
robot boot up.

Although the frame rates are default to ensure stable CAN bandwidth, there is API to override
the frame rates for performance reasons. If this is done, be sure to check the CAN performance
metrics to ensure custom settings don’t exceed the available CAN bandwidth, see “CAN bus
Utilization and Performance metrics”.

Changing the frame periods are not persistent. This is deliberate to ensure you can power
cycle a CTRE CAN Device and restore normal communication. Developers can use the “has
reset” API to check if a device has been rebooted, and therefore restore custom frame periods.

20.1. General Status 1

The General Status frame has a default period of 10ms, and provides...

-Motor Output: The current 10bit motor output duty cycle (-1023 full reverse to +1023 full
forward).

-Forward Limit Switch Pin State

-Reverse Limit Switch Pin State

-Fault bits

-Applied Control Mode

-Soft limit and limit switch overrides

-Invert/Brake selections

... These signals are accessible in the various get functions in the programming API.

20.2. FeedbackO Status 2

The Feedback0 Status 2 frame has a default period of 20ms, and provides...
-Sensor Position: Position of the selected sensor for PID Loop 0

-Sensor Velocity: Velocity of the selected sensor for PID Loop 0

-Motor Current

-Sticky Faults

-Motor Control Profile Select

... These signals are accessible in the various get functions in the programming API.

20.3. Quadrature Encoder Status 3

The Quadrature Encoder Status frame has a default period of 160ms.
-Encoder Position: Position of the quadrature sensor

-Encoder Velocity: Velocity of the selected sensor

Cross The Road Electronics Page 131 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

-Number of rising edges counted on the Index Pin.

-Quad A pin state.

-Quad B pin state.

-Quad Index pin state.

... These signals are accessible in the various get functions in the programming API.

The quadrature decoder is always engaged, whether the feedback device is selected or not,
and whether a quadrature encoder is actually wired or not. This means that the Quadrature
Encoder signals are always available in programming API regardless of how the Talon is used.
The default update rate is sufficient for logging, instrumentation and debugging. If a faster
update rate is required the robot application can select the appropriate sensor and leverage the
Sensor Position and Sensor Velocity.

20.4. Analog Input / Temperature / Battery Voltage Status 4

The Analog/Temp/BattV status frame has a default period of 160ms.

-Analog Position: Position of the selected sensor

-Analog Velocity: Velocity of the selected sensor

-Temperature

-Battery Voltage

-Selected feedback sensor for PIDLoop O.

... These signals are accessible in the various get functions in the programming API.

The Analog to Digital Convertor is always engaged, whether the feedback device is selected or
not, and whether an analog sensor is wired or not. This means that the Analog In signals are
always available in programming API regardless of how the Talon is used. The default update
rate is sufficient for logging, instrumentation and debugging. If a faster update rate is required,
the robot application can select the appropriate sensor and leverage the Sensor Position and
Sensor Velocity.

20.5. Pulse Width Status 8

The status frame has a default period of 160ms.

-Period and pulse width capture on the Talon Idx pin.

-Velocity (of a PulseWidthEncoded sensor such as CTRE Mag Encoder).

-Position (of a PulseWidthEncoded sensor such as CTRE Mag Encoder).

... These signals are accessible in the various get functions in the programming API.

20.6. Targets Status 10 (Motion Profile and Motion Magic)
The status frame has a default period of 160ms.
-Target Position, velocity, and heading for the active trajectory point.

20.7. PIDFO Status 13

The status frame has a default period of 160ms.
-Closed-loop error of PIDLoop 0.

-Integral Accumulator of PIDLoop O.

-Derivative term of PIDLoop O.

Cross The Road Electronics Page 132 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

20.8. Modifying Status Frame Period
The frame rates of these signals may be modifiable through programming API.

20.8.1. C++
The setstatusFramePeriod () function can be used to modify the frame rate period of a
particular Status Frame.

/* change frame period to 7 ms */
talon.SetStatusFramePeriod(StatusFrameEnhanced::Status 10 MotionMagic, 7, 0);

Use statusFrameEnhanced for products that have a Feedback Gadgeteer Port (such as Talon
SRX). VictorSPX objects must use statusFrame.

20.8.2. Java
The setsStatusFramePeriod () function can be used to modify the frame rate period of a
particular Status Frame.

/* change frame period to 7 ms */
talon.setStatusFramePeriod(StatusFrameEnhanced.Status 10 MotionMagic, 7, 0);

Use statusFrameEnhanced for products that have a Feedback Gadgeteer Port (such as Talon
SRX). VictorSPX objects must use statusFrame.

20.8.3. LabVIEW

MG

ustthe per
The LF=Ferf VI can be used to adjust the period of a status frame.

rStatus_LG eneral 7|

|timeuuth"|s - wait up to 10ms for c::-nfirmatiun|

Cross The Road Electronics Page 133 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

20.9. Control Frame (Control 3)

The Talon is primarily controlled by one periodic control frame. The default period of this frame
is 10ms. The control frame provides the Talon...

-which Motor Control Profile Slot to use.

-which control mode (position, velocity, duty cycle, slave mode)

-if the feedback sensor should be reversed

-if the closed-loop output should be reversed

-the target/set point or duty cycle or which Talon to follow

-the (voltage) ramp rate

-brake neutral mode override if specified

-limit switch overrides if specified

... These signals are accessible in the various set functions in the programming API.

20.10. Modifying the Control Frame Period
Advanced users can modify the Control Frame Rate to increase the update rate of the control
parameters, or decrease to reduce total bus bandwidth.

20.10.1. Modifying the Control Frame Rate — C++
Note there is no timeoutMs, as this setting is applied to the roboRIO.

/* change period to 7 ms */
talon.SetControlFramePeriod(ControlFrame::Control 3 General, 7);

20.10.2. Modifying the Control Frame Rate — Java
Note there is no timeoutMs, as this setting is applied to the roboRIO.

/* change period to 7 ms */
talon.setControlFramePeriod(ControlFrame.Control 3 General, 7);

20.10.3. Modifying the Control Frame Rate — LabVIEW

fCu:untru:ulj_G eneral *

Cross The Road Electronics Page 134 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

21. Functional Limitations

Functional Limitations describe behavior that deviates than what is documented. Feature
additions and improvements are always possible thanks to the field-upgrade features of the
Talon SRX.

Just because a firmware issue has been resolved does not mean your out-of-the-box hardware
doesn’t have old firmware. Immediately update your CAN devices to ensure your development
time is not wasted chasing down an issue that has already been solved.

21.1. roboRIO power up: User should manually refresh the web-based
configuration after rebooting roboRIO.

It is recommended to manually refresh the web browser if the roboRIO has been reset or power
cycled. This ensures that the web browser and roboRIO are synchronized well. Otherwise
device icons may not match the device type in the web-based config.

21.2. Phoenix 5.1.3.1: Motion profile disabled in 2018 kickoff firmware.
Talon SRX/ Victor SPX motion-profile mode is not available in the kickoff release. This is due to
the modifications done to support Pigeon IMU integration. This will be remedied in a future
release. [Resolved in Phoenix 5.2.1.1]

21.3. Two sets of Param declarations for auto-clear position parameters.
The paramEnum list includes two sets of enumerated values...

eClearPositionOnLimitF = 320,
eClearPositionOnLimitR = 321,
eClearPositionOnQuadldx = 322,

eClearPositionOnldx = 100,
eClearPosOnLimitF = 144,
eClearPosOnLimitR = 145,

...both sets are supported in Talon SRX firmware.

21.4. getClosedLoopTarget() return milliamperes.
getClosedLoopTarget reports in units of milliamperes when in current closed-loop mode.
Divide the returned value by 1000 to obtain amperes.

Cross The Road Electronics Page 135 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

21.5. Auto-clear position feature on Quadrature Idx only works for rising

edges.
eQuadldxPolarity signal is not supported in current firmware.
If falling edge is necessary, use the Limit Forward or Limit Reverse auto-clear features.

Cross The Road Electronics Page 136 1/13/2018

217-8080 TALON SRX / Victor SPX Software Reference Manual 1/13/2018

22. CRF Firmware Version Information

CRF Version | Date Description
3.3 (FRC) Jan 2018 Motion profile feature re-enabled for Talon SRX.
3.1 (FRC) Jan 2018 Initial release for Victor SPX and Talon SRX for 2018.

23. Document Revision Information

Rev Date Description

2.0 18-Jan-2018 -Initial release that is Phoenix compliant.

Cross The Road Electronics Page 137 1/13/2018

	1. CAN bus Device Basics
	1.1. Supported Hardware Platforms
	1.1.1. Cross The Road Electronics HERO Control System
	1.1.2. roboRIO FRC Control System

	2. roboRIO Web-based Configuration: Firmware and diagnostics
	2.1. Device ID ranges
	2.2. Common ID Talons
	2.2.1 – Light Device LED

	2.3. Firmware Field-upgrade a Talon SRX / Victor SPX
	2.3.1. When I update firmware, I get “You do not have permissions…”
	2.3.2. What if Firmware Field-upgrade is interrupted?
	2.3.3. Other Field-upgrade Failure Modes
	2.3.4. Where to get CRF files?

	2.4. Self-Test
	2.4.1. Clearing Sticky Faults

	2.5. Custom Names
	2.5.1. Re-default custom name

	3. Creating a Talon Object (and the basics)
	3.1. Programming API and Device ID
	3.1.1 Including Libraries (FRC)
	3.1.2 Configuration API
	3.1.2.1. Configuration API - timeoutMs
	3.1.2.2. Factory Default

	3.2. New Classes/Virtual Instruments
	3.2.1 WPILIB Class integration
	3.2.2. LabVIEW
	3.2.3. C++
	3.2.4. Java

	3.3. Setting Output Mode and Value
	3.3.1. LabVIEW
	3.3.2. C++
	3.3.3. Java
	3.3.4. Check Control Mode with Self-Test

	3.4. WPILib RobotDrive Class
	3.4.1. LabVIEW
	3.4.2. C++
	3.4.3. Java

	4. Limit Switch and Neutral Brake Mode
	4.1. Default Settings
	4.2. roboRIO Web-based Configuration: Limit Switch and Brake
	4.3. Overriding Brake and Limit Switch with API
	4.3.1. LabVIEW
	4.3.2. C++
	4.3.3. Java

	5. Getting Status and Signals
	5.1. LabVIEW
	5.2. C++
	5.3. Java

	6. Setting the Ramp Rate
	6.1. LabVIEW
	6.2. C++/ Java
	6.3. Web-based configuration limitations

	7. Feedback Device (Sensor Feedback)
	7.1. LabVIEW
	7.2. C++
	7.3. Java
	7.4. Correcting sensor direction, best practices.
	7.5. Supported Feedback Devices
	7.5.1. Quadrature
	7.5.2. Analog (Potentiometer / Encoder)
	7.5.2.1. Potentiometer (Discontinuous) Sensor
	7.5.2.2. LabVIEW Example
	7.5.2.2. C++ Example
	7.5.2.3. Java Example

	7.5.3. Pulse Width Decoder
	7.5.4. Cross The Road Electronics Magnetic Encoder (Absolute and Relative)
	7.5.4.1. Selecting the Magnetic Encoder
	7.5.4.2. CTR Magnetic Encoder (absolute) – C++
	7.5.4.3. CTR Magnetic Encoder (absolute) – Java

	7.6. Multiple Talon SRXs and single sensor
	7.7. Pulse Width - Checking Sensor Health
	7.8. Velocity Measurement
	7.8.1. Changing Velocity Measurement Parameters.
	7.8.1.1. Changing Parameters – HERO C#
	7.8.1.2. Changing Parameters – Hero LifeBoat
	7.8.1.2. Changing Parameters – HERO C#
	_talon.SetVelocityMeasurementPeriod(CTRE.TalonSrx.VelocityMeasurementPeriod.Period_10Ms);
	_talon.SetVelocityMeasurementWindow(20);
	7.8.1.3. Changing Parameters – FRC Java
	7.8.1.4. Changing Parameters – FRC C++
	7.8.1.5. Changing Parameters – FRC LabVIEW

	7.8.2. Recommended Procedure
	7.8.3. Self-Test Velocity Settings
	7.8.3.1. Self-Test reads 0 for Period and Window.

	7.9. Tachometer Measurement
	7.9.1. Tachometer Measurement – LabVIEW
	7.9.2. Tachometer Measurement – Java
	7.9.2. Tachometer Measurement – C++

	8. Soft Limits
	8.1. LabVIEW
	8.2. C++
	8.3. Java

	9. Special Features
	9.1. Follower Mode
	9.1.1. LabVIEW
	9.1.2. C++
	9.1.3. Java
	9.1.4. Correcting Follower Direction
	9.1.4.1. Correcting Follower Direction – C++
	9.1.4.2. Correcting Follower Direction – Java
	9.1.4.3. Correcting Follower Direction – LabVIEW

	9.2. Voltage Compensation
	9.2.1. LabVIEW
	9.2.2. C++
	9.2.3. Java
	9.2.4. Self-Test

	9.3. Current Limits
	9.3.1. Current Limit – LabVIEW
	9.3.2. Current Limit – C++
	9.3.3. Current Limit – Java

	10. Control Modes (Closed-Loop)
	10.1. Position Closed-Loop Control Mode
	10.2. Current Closed-Loop Control Mode
	10.3. Velocity Closed-Loop Control Mode
	10.4. Motion Profile Control Mode
	10.5. Peak/Nominal Output
	10.5.1. Peak/Nominal Closed-Loop Output – LabVIEW
	10.5.2. Peak/Nominal Closed-Loop Output – C++
	10.5.3. Peak/Nominal Closed-Loop Output – Java
	10.5.4. Peak/Nominal Closed-Loop Output – Web based Configuration Self-Test

	10.6. Allowable Closed-Loop Error
	10.6.1. Allowable Closed-Loop Error – LabVIEW
	10.6.2. Allowable Closed-Loop Error – C++
	10.6.3. Allowable Closed-Loop Error – Java
	10.6.4. Allowable Closed-Loop Error – Web based Configuration Self-Test

	10.7. Motion Magic Control Mode

	11. Motor Control Profile Parameters
	11.1. Persistent storage and Reset/Startup behavior
	11.2. Inspecting Signals

	12. Closed-Loop Code Excerpts/Walkthroughs
	12.1. Setting Motor Control Profile Parameters
	12.1.1. LabVIEW
	12.1.2. C++
	12.1.3. Java

	12.2. Setting/Clearing Integral Accumulator (I Accum)
	12.2.1. LabVIEW
	12.2.3. Java
	12.2.4. C++
	12.2.3. Is Integral Accum cleared any other time?

	12.3. Current Closed-Loop Walkthrough – LabVIEW
	12.3.1. Current Closed-Loop Walkthrough – Collect Sensor Data – LabVIEW
	12.3.2. Current Closed-Loop Walkthrough – Calculating Feed Forward– LabVIEW
	12.3.3. Current Closed-Loop Walkthrough – Dialing Proportional Gain – LabVIEW

	12.4. Velocity Closed-Loop Walkthrough – Java
	12.4.1. Velocity Closed-Loop Walkthrough – Collect Sensor Data – Java
	12.4.2. Velocity Closed-Loop Walkthrough – Calculating Feed Forward– Java
	12.4.3. Velocity Closed-Loop Walkthrough – Dialing Proportional Gain – Java

	12.5. Velocity Closed-Loop Example – LabVIEW
	12.6. Motion Magic Closed-Loop Walkthrough – Java
	12.6.1. Motion Magic Closed-Loop Walkthrough – General Requirements
	12.6.2. Motion Magic Closed-Loop Walkthrough – Collect Sensor Data – Java
	12.6.2.1. Is velocity magnitude correct?
	12.6.2.2. Is direction correct?
	12.6.2.3. Sweep motor output and plots signals
	12.6.2.4. Measurements

	12.6.23. Motion Magic Closed-Loop Walkthrough – Calculate F-Gain – Java
	12.6.4. Motion Magic Closed-Loop Walkthrough – Initial Cruise-Velocity/Acceleration – Java
	12.6.35. Motion Magic Closed-Loop Walkthrough – P-Gain – Java
	12.6.6. Motion Magic Closed-Loop Walkthrough – D-Gain – Java
	12.6.7. Motion Magic Closed-Loop Walkthrough – I-Gain – Java

	13. Setting Sensor Position
	13.1. Setting Sensor Position – LabVIEW
	13.2. Setting Sensor Position – C++
	13.3. Setting Sensor Position – Java
	13.4. Auto Clear Position using Index Pin
	13.4.1. Setting Sensor Position – LabVIEW
	13.4.2. Setting Sensor Position – Java
	13.4.3. Setting Sensor Position – C++

	14. Fault Flags
	14.1. Fault Flags - LabVIEW
	14.2. Fault Flags - C++
	14.3. Fault Flags - Java
	14.4. Fault Flags – Clearing

	15. CAN bus Utilization/Error metrics
	15.1. How many Talons can we use?

	16. Troubleshooting Tips and Common Questions
	16.1. When I press the B/C CAL button, the brake LED does not change, neutral behavior does not change.
	16.2. The robot is TeleOperated/Autonomous enabled, but the Talon SRX continues to blink orange (disabled).
	16.3. When I attach/power a particular Talon SRX to CAN bus, The LEDs on every Talon SRX occasionally blink red. Motor drive seems normal.
	16.4. If I have a slave Talon SRX following a master Talon SRX, and the master Talon SRX is disconnected/unpowered, what will the slave Talon SRX do?
	16.5. Is there any harm in creating a software Talon SRX for a device ID that’s not on the CAN bus? Will removing a Talon SRX from the CAN bus adversely affect other CAN devices?
	16.6. Driver Station log says “Firm Vers could not be retrieved”.
	16.7. Driver Station log says “Firmware too old”
	16.8. Why are there multiple ways to get the same sensor data? GetSensorCollection().GetEncoder() versus GetSelectedSensor()?
	16.9. All CAN devices have red LEDs. Recommended Preliminary checks for CAN bus.
	16.10. Driver Station reports “MotorSafetyHelper.cpp: A timeout…”, motor drive no longer works. roboRIO Web-based Configuration says “No Drive” mode? Driver Station reports error -44075?
	16.11. Motor drive stutters, misbehaves? Intermittent enable/disable?
	16.12. What to expect when devices are disconnected in roboRIO’s Web-based Configuration. Failed Self-Test?
	16.13. How do I get the raw ADC value (or voltage) on the Analog Input pin?
	16.14. Recommendation for using relative sensors.
	16.15. Does anything get reset or lost after firmware updates?
	16.16. Analog Position seems to be stuck around ~100 units?
	16.17. Limit switch behavior doesn’t match expected settings.
	16.18. How fast can I control just ONE Talon SRX?
	16.19. Expected symptoms when there is excessive signal reflection.
	16.20. LabVIEW application reads incorrect Sensor Position. Sensor Position jumps to zero or is missing counts.
	16.21. CAN devices do not appear in the roboRIO Web-based config.
	16.22. When I make a change to a setting in the roboRIO Web-based configuration and immediately flash firmware into the Talon, the setting does not stick?
	16.23. My mechanism has multiple Talon SRXs and one sensor. Can I still use the closed-loop/motion-profile modes?
	16.24. My Closed-Loop is not working? Now what?
	16.24.1. Make sure Talon has latest firmware.
	16.24.2. Confirm sensor is in phase with motor.
	16.24.3. Confirm Slave/Follower Talons are driving
	16.24.4. Drive (Master) Talon manually
	16.24.5. Re-enable Closed-Loop
	16.24.6. Start with a simple gain set
	16.24.6.1. Start with a simple gain set – Position Closed-Loop
	16.24.6.2. Start with a simple gain set – Velocity Closed-Loop

	16.24.7. Confirm gains are set

	16.25. Where can I find application examples?
	16.26. Can RobotDrive be used with Talon SRXs? What if there are six Talons?
	16.27. How fast does the closed-loop run?
	16.28. Driver Station log reports: The transmission queue is full. Wait until frames in the queue have been sent and try again.

	17. Units and Term Definitions
	17.1. Signal Definitions and Sensor Units
	17.1.1. (Quadrature) Encoder Position
	17.1.2. Analog (Encoder/Potentiometer)
	17.1.3. Motor output
	17.1.4. (Open-Loop) Ramp
	17.1.5. (Closed-Loop) Ramp
	17.1.6. Integral Zone (I Zone)
	17.1.7. Integral Accumulator (I Accum)
	17.1.8. Motor Invert
	17.1.9. Sensor Phase
	17.1.10. Closed-Loop Error
	17.1.11. Closed-Loop gains

	17.2. Sensor Resolutions

	18. How is the closed-loop implemented?
	19. Motor Safety Helper
	19.1. Best practices
	19.2. C++ example
	19.3. Java example
	19.4. LabVIEW Example
	19.5. RobotDrive

	20. Going deeper - How does the framing work?
	20.1. General Status 1
	20.2. Feedback0 Status 2
	20.3. Quadrature Encoder Status 3
	20.4. Analog Input / Temperature / Battery Voltage Status 4
	20.5. Pulse Width Status 8
	20.6. Targets Status 10 (Motion Profile and Motion Magic)
	20.7. PIDF0 Status 13
	20.8. Modifying Status Frame Period
	20.8.1. C++
	20.8.2. Java
	20.8.3. LabVIEW

	20.9. Control Frame (Control 3)
	20.10. Modifying the Control Frame Period
	20.10.1. Modifying the Control Frame Rate – C++
	20.10.2. Modifying the Control Frame Rate – Java
	20.10.3. Modifying the Control Frame Rate – LabVIEW

	21. Functional Limitations
	21.1. roboRIO power up: User should manually refresh the web-based configuration after rebooting roboRIO.
	21.2. Phoenix 5.1.3.1: Motion profile disabled in 2018 kickoff firmware.
	21.3. Two sets of Param declarations for auto-clear position parameters.
	21.4. getClosedLoopTarget() return milliamperes.
	21.5. Auto-clear position feature on Quadrature Idx only works for rising edges.

	22. CRF Firmware Version Information
	23. Document Revision Information

