

The Definitive Guide
to Django
Web Development Done Right,
Second Edition

Adrian Holovaty and Jacob Kaplan-Moss

The Definitive Guide to Django: Web Development Done Right, Second Edition

Copyright © 2009 by Adrian Holovaty and Jacob Kaplan-Moss

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 13: 978-1-4302-1936-1

ISBN (electronic): 978-1-4302-1937-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Duncan Parkes
Technical Reviewer: Sean Legassick
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Managers: Grace Wong and James Markham
Copy Editors: Nancy Sixsmith and Candace English
Associate Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Patrick Cunningham
Proofreader: April Eddy
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or
visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail , or visit

.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at .

This book is dedicated to the Django community.

iv

Contents at a Glance

About the Author .xxvii

About the Technical Reviewer . xxix

Acknowledgments . xxxi

Preface . xxxiii

Introduction .xxxv

PART 1 Getting Started
CHAPTER 1 Introduction to Django . 3

CHAPTER 2 Getting Started . 11

CHAPTER 3 Views and URLconfs . 21

CHAPTER 4 Templates . 39

CHAPTER 5 Models . 71

CHAPTER 6 The Django Admin Site . 95

CHAPTER 7 Forms . 119

PART 2 Advanced Usage
CHAPTER 8 Advanced Views and URLconfs . 145

CHAPTER 9 Advanced Templates . 167

CHAPTER 10 Advanced Models . 191

CHAPTER 11 Generic Views . 203

CHAPTER 12 Deploying Django . 213

v

PART 3 Other Django Features
CHAPTER 13 Generating Non-HTML Content . 237

CHAPTER 14 Sessions, Users, and Registration . 255

CHAPTER 15 Caching . 277

CHAPTER 16 django.contrib . 291

CHAPTER 17 Middleware . 309

CHAPTER 18 Integrating with Legacy Databases and Applications 317

CHAPTER 19 Internationalization . 323

CHAPTER 20 Security . 341

PART 4 Appendixes
APPENDIX A Model Definition Reference . 353

APPENDIX B Database API Reference . 369

APPENDIX C Generic View Reference . 395

APPENDIX D Settings . 413

APPENDIX E Built-in Template Tags and Filters . 429

APPENDIX F The django-admin Utility . 455

APPENDIX G Request and Response Objects . 469

INDEX . 479

vii

Contents

About the Author .xxvii

About the Technical Reviewer . xxix

Acknowledgments . xxxi

Preface . xxxiii

Introduction .xxxv

PART 1 Getting Started

CHAPTER 1 Introduction to Django . 3

What Is a Web Framework? . 3

The MVC Design Pattern . 5

Django's History . 7

How to Read This Book . 8

Required Programming Knowledge . 8

Required Python Knowledge . 8

Required Django Version . 9

Getting Help . 9

What’s Next? . 9

CHAPTER 2 Getting Started . 11

Installing Python . 11

Python Versions . 11

Installation . 12

Installing Django . 12

Installing an Official Release . 12

Installing the Trunk Version . 13

Testing the Django Installation . 14

CONTENTSviii

Setting Up a Database . 15

Using Django with PostgreSQL . 16

Using Django with SQLite 3 . 16

Using Django with MySQL . 17

Using Django with Oracle . 17

Using Django Without a Database . 17

Starting a Project . 17

Running the Development Server . 18

What's Next? . 19

CHAPTER 3 Views and URLconfs . 21

Your First Django-Powered Page: Hello World . 21

Your First View . 21

Your First URLconf . 22

A Quick Note About 404 Errors . 26

A Quick Note About the Site Root . 27

How Django Processes a Request . 28

Your Second View: Dynamic Content . 28

URLconfs and Loose Coupling . 31

Your Third View: Dynamic URLs . 31

Django’s Pretty Error Pages . 35

What's Next? . 37

CHAPTER 4 Templates . 39

Template-System Basics . 40

Using the Template System . 41

Creating Template Objects . 42

Rendering a Template . 43

Multiple Contexts, Same Template . 45

Context Variable Lookup . 46

Playing with Context Objects . 49

Basic Template Tags and Filters . 50

Tags . 50

Filters . 56

Philosophies and Limitations . 57

Using Templates in Views . 58

CONTENTS ix

Template Loading . 60

render_to_response() . 63

The locals() Trick . 63

Subdirectories in get_template() . 64

The include Template Tag . 65

Template Inheritance . 66

What's Next? . 70

CHAPTER 5 Models . 71

The “Dumb” Way to Do Database Queries in Views 71

The MTV (or MVC) Development Pattern . 72

Configuring the Database . 74

Your First App . 76

Defining Models in Python . 77

Your First Model . 78

Installing the Model . 80

Basic Data Access . 83

Adding Model String Representations . 84

Inserting and Updating Data . 86

Selecting Objects . 88

Filtering Data . 88

Retrieving Single Objects . 89

Ordering Data . 90

Chaining Lookups. 91

Slicing Data . 92

Updating Multiple Objects in One Statement. 92

Deleting Objects . 93

What's Next? . 94

CHAPTER 6 The Django Admin Site . 95

The django.contrib Packages . 95

Activating the Admin Interface . 96

Using the Admin Site . 97

Adding Your Models to the Admin Site . 102

How the Admin Site Works . 103

Making Fields Optional . 103

Making Date and Numeric Fields Optional . 104

Customizing Field Labels . 105

CONTENTSx

Custom ModelAdmin Classes . 106

Customizing Change Lists . 106

Customizing Edit Forms . 112

Users, Groups, and Permissions . 116

When and Why to Use the Admin Interface—And When Not To 117

What’s Next? . 118

CHAPTER 7 Forms . 119

Getting Data from the Request Object . 119

Information About the URL . 119

Other Information About the Request . 120

Information About Submitted Data . 121

A Simple Form-Handling Example . 122

Improving Our Simple Form-Handling Example . 125

Simple Validation . 127

Making a Contact Form . 129

Your First Form Class . 133

Tying Form Objects into Views . 136

Changing How Fields Are Rendered . 137

Setting a Maximum Length . 137

Setting Initial Values . 138

Adding Custom Validation Rules . 138

Specifying Labels . 139

Customizing Form Design . 139

What’s Next? . 141

PART 2 Advanced Usage

CHAPTER 8 Advanced Views and URLconfs . 145

URLconf Tricks . 145

Streamlining Function Imports . 145

Using Multiple View Prefixes . 147

Special-Casing URLs in Debug Mode . 148

Using Named Groups . 148

Understanding the Matching/Grouping Algorithm 150

Passing Extra Options to View Functions . 150

Using Default View Arguments . 155

CONTENTS xi

Special-Casing Views . 156

Capturing Text in URLs . 157

Determining What the URLconf Searches Against 158

Higher-Level Abstractions of View Functions 158

Wrapping View Functions . 161

Including Other URLconfs . 162

How Captured Parameters Work with include() 163

How Extra URLconf Options Work with include() 164

What’s Next? . 165

CHAPTER 9 Advanced Templates . 167

Template Language Review . 167

RequestContext and Context Processors . 168

django.core.context_processors.auth . 171

django.core.context_processors.debug . 171

django.core.context_processors.i18n . 172

django.core.context_processors.request . 172

Guidelines for Writing Your Own Context Processors 172

Automatic HTML Escaping . 173

How to Turn It Off . 174

Notes . 175

Automatic Escaping of String Literals in Filter Arguments 176

Inside Template Loading . 176

Extending the Template System . 177

Creating a Template Library . 177

Writing Custom Template Filters . 178

Writing Custom Template Tags . 180

Writing the Compilation Function . 180

Writing the Template Node . 182

Registering the Tag . 182

Setting a Variable in the Context . 183

Parsing Until Another Template Tag . 184

Parsing Until Another Template Tag and Saving Contents 185

Shortcut for Simple Tags . 185

Inclusion Tags . 186

Writing Custom Template Loaders . 188

Configuring the Template System in Standalone Mode 189

What’s Next? . 190

CONTENTSxii

CHAPTER 10 Advanced Models . 191

Related Objects . 191

Accessing Foreign Key Values . 192

Accessing Many-to-Many Values . 193

Making Changes to a Database Schema . 193

Adding Fields . 193

Removing Fields . 196

Removing Many-to-Many Fields . 196

Removing Models. 196

Managers . 197

Adding Extra Manager Methods . 197

Modifying Initial Manager QuerySets . 198

Model Methods . 199

Executing Raw SQL Queries. 200

What’s Next? . 201

CHAPTER 11 Generic Views . 203

Using Generic Views . 204

Generic Views of Objects . 205

Extending Generic Views . 207

Making “Friendly” Template Contexts . 207

Adding Extra Context . 208

Viewing Subsets of Objects . 209

Complex Filtering with Wrapper Functions . 210

Performing Extra Work . 211

What’s Next? . 212

CHAPTER 12 Deploying Django . 213

Preparing Your Codebase for Production . 213

Turning Off Debug Mode . 213

Turning Off Template Debug Mode . 214

Implementing a 404 Template . 214

Implementing a 500 Template . 214

Setting Up Error Alerts . 215

Setting Up Broken Link Alerts . 215

Using Different Settings for Production . 216

DJANGO_SETTINGS_MODULE. 217

CONTENTS xiii

Using Django with Apache and mod_python . 218

Basic Configuration . 218

Running Multiple Django Installations on
the Same Apache Instance . 219

Running a Development Server with mod_python 220

Serving Django and Media Files from
the Same Apache Instance . 220

Error Handling . 221

Handling a Segmentation Fault . 221

An Alternative: mod_wsgi . 222

Using Django with FastCGI . 222

FastCGI Overview . 222

Running Your FastCGI Server . 223

Using Django with Apache and FastCGI . 224

FastCGI and lighttpd . 225

Running Django on a Shared-Hosting Provider with Apache 227

Scaling . 228

Running on a Single Server . 228

Separating Out the Database Server . 229

Running a Separate Media Server. 229

Implementing Load Balancing and Redundancy 230

Going Big . 232

Performance Tuning . 232

There’s No Such Thing As Too Much RAM . 233

Turn Off Keep-Alive . 233

Use Memcached . 233

Use Memcached Often . 234

Join the Conversation . 234

What’s Next? . 234

PART 3 Other Django Features

CHAPTER 13 Generating Non-HTML Content . 237

The Basics: Views and MIME Types . 237

Producing CSV . 238

Generating PDFs . 239

Installing ReportLab . 240

Writing Your View . 240

Complex PDFs. 241

CONTENTSxiv

Other Possibilities . 242

The Syndication-Feed Framework . 242

Initialization . 243

A Simple Feed . 244

A More Complex Feed . 245

Specifying the Type of Feed . 247

Enclosures . 247

Language . 248

URLs . 248

Publishing Atom and RSS Feeds in Tandem 248

The Sitemap Framework . 249

Installation . 249

Initialization . 250

Sitemap Classes . 250

Shortcuts . 251

Creating a Sitemap Index . 252

Pinging Google . 253

What's Next? . 254

CHAPTER 14 Sessions, Users, and Registration . 255

Cookies . 255

Getting and Setting Cookies . 256

The Mixed Blessing of Cookies . 257

Django’s Session Framework . 258

Enabling Sessions . 258

Using Sessions in Views . 259

Setting Test Cookies . 261

Using Sessions Outside of Views . 261

When Sessions Are Saved . 262

Browser-Length Sessions vs. Persistent Sessions 262

Other Session Settings . 263

Users and Authentication . 264

Enabling Authentication Support . 264

Using Users . 265

Logging In and Out . 267

Limiting Access to Logged-in Users . 269

Limiting Access to Users Who Pass a Test . 269

Managing Users, Permissions, and Groups . 271

Using Authentication Data in Templates . 273

CONTENTS xv

Permissions, Groups, and Messages . 274

Permissions . 274

Groups . 275

Messages . 275

What’s Next? . 276

CHAPTER 15 Caching . 277

Setting Up the Cache . 278

Memcached . 278

Database Caching . 279

Filesystem Caching . 279

Local-Memory Caching . 280

Dummy Caching (for Development) . 280

Using a Custom Cache Back-End . 280

CACHE_BACKEND Arguments . 281

The Per-Site Cache . 281

The Per-View Cache . 282

Specifying Per-View Cache in the URLconf . 283

Template Fragment Caching . 284

The Low-Level Cache API. 284

Upstream Caches . 286

Using Vary Headers . 287

Controlling Cache: Using Other Headers . 288

Other Optimizations . 290

Order of MIDDLEWARE_CLASSES . 290

What’s Next? . 290

CHAPTER 16 django.contrib . 291

The Django Standard Library . 291

Sites . 293

Scenario 1: Reusing Data on Multiple Sites 293

Scenario 2: Storing Your Site Name/Domain in One Place 293

How to Use the Sites Framework . 293

The Sites Framework’s Capabilities . 294

CurrentSiteManager. 297

How Django Uses the Sites Framework . 298

Flatpages . 299

Using Flatpages . 299

Adding, Changing, and Deleting Flatpages . 301

Using Flatpage Templates . 301

CONTENTSxvi

Redirects . 302

Using the Redirects Framework . 302

Adding, Changing, and Deleting Redirects . 303

CSRF Protection . 304

A Simple CSRF Example . 304

A More Complex CSRF Example . 304

Preventing CSRF . 304

Humanizing Data . 306

apnumber . 306

intcomma . 306

intword . 306

ordinal . 307

Markup Filters . 307

What’s Next? . 307

CHAPTER 17 Middleware . 309

What’s Middleware? . 309

Middleware Installation . 310

Middleware Methods . 311

Initializer: __init__(self) . 311

Request Preprocessor: process_request(self, request) 311

View Preprocessor: process_view(self, request, view,
args, kwargs) . 311

Response Postprocessor: process_response(self,
request, response) . 312

Exception Postprocessor: process_exception(self,
request, exception) . 312

Built-in Middleware . 313

Authentication Support Middleware . 313

“Common” Middleware . 313

Compression Middleware . 314

Conditional GET Middleware . 314

Reverse Proxy Support (X-Forwarded-For Middleware) 314

Session Support Middleware . 315

Sitewide Cache Middleware . 315

Transaction Middleware . 315

What’s Next? . 315

CONTENTS xvii

CHAPTER 18 Integrating with Legacy Databases and Applications . . . 317

Integrating with a Legacy Database . 317

Using inspectdb . 317

Cleaning Up Generated Models . 318

Integrating with an Authentication System . 319

Specifying Authentication Back-Ends . 319

Writing an Authentication Back-End . 319

Integrating with Legacy Web Applications . 321

What’s Next? . 322

CHAPTER 19 Internationalization . 323

How to Specify Translation Strings . 324

In Python Code . 324

In Template Code . 327

Working with Lazy Translation Objects . 329

How to Create Language Files . 330

Message Files . 330

Compiling Message Files . 332

How Django Discovers Language Preference . 333

Using Translations in Your Own Projects . 335

The set_language Redirect View . 336

Translations and JavaScript . 337

The javascript_catalog View . 337

Using the JavaScript Translation Catalog . 337

Creating JavaScript Translation Catalogs . 339

Notes for Users Familiar with gettext . 339

gettext on Windows . 339

What’s Next? . 340

CHAPTER 20 Security . 341

The Theme of Web Security . 341

SQL Injection . 342

The Solution . 343

Cross-Site Scripting (XSS) . 343

The Solution . 344

Cross-Site Request Forgery . 345

Session Forging/Hijacking . 345

The Solution . 346

CONTENTSxviii

E-mail Header Injection . 347

The Solution . 347

Directory Traversal . 347

The Solution . 348

Exposed Error Messages . 349

The Solution . 349

A Final Word on Security . 349

What’s Next? . 349

PART 4 Appendixes

APPENDIX A Model Definition Reference . 353

Fields . 353

AutoField . 354

BooleanField . 354

CharField . 354

CommaSeparatedIntegerField . 354

DateField . 355

DateTimeField . 355

DecimalField . 355

EmailField . 355

FileField . 355

FilePathField . 357

FloatField . 357

ImageField . 357

IntegerField . 358

IPAddressField . 358

NullBooleanField . 358

PositiveIntegerField . 358

PositiveSmallIntegerField . 358

SlugField . 358

SmallIntegerField . 358

TextField . 358

TimeField . 358

URLField . 359

XMLField . 359

CONTENTS xix

Universal Field Options . 359

null . 359

blank. 360

choices . 360

db_column . 361

db_index . 361

db_tablespace . 361

default . 361

editable . 361

help_text . 361

primary_key . 362

unique . 362

unique_for_date . 362

unique_for_month . 362

unique_for_year . 362

verbose_name . 362

Relationships . 363

ForeignKey . 363

ManyToManyField . 364

OneToOneField . 365

Model Metadata Options . 365

abstract . 365

db_table . 366

db_tablespace . 366

get_latest_by . 366

managed . 366

ordering . 367

proxy. 368

unique_together . 368

verbose_name . 368

verbose_name_plural . 368

APPENDIX B Database API Reference . 369

Creating Objects. 370

What Happens When You Save? . 370

Autoincrementing Primary Keys . 370

Saving Changes to Objects . 371

Retrieving Objects . 372

Caching and QuerySets . 373

CONTENTSxx

Filtering Objects . 373

Chaining Filters . 374

Limiting QuerySets . 375

Query Methods That Return New QuerySets 376

QuerySet Methods That Do Not Return QuerySets 379

Field Lookups . 382

exact . 382

iexact . 382

contains . 382

icontains . 383

gt, gte, lt, and lte . 383

in . 383

startswith . 384

istartswith . 384

endswith and iendswith . 384

range . 384

year, month, and day . 384

isnull . 385

search . 385

The pk Lookup Shortcut . 385

Complex Lookups with Q Objects . 385

Related Objects . 387

Lookups That Span Relationships . 387

Foreign-Key Relationships . 387

“Reverse” Foreign-Key Relationships . 388

Many-to-Many Relationships . 390

Queries over Related Objects . 391

Deleting Objects . 391

Shortcuts . 392

get_object_or_404() . 392

get_list_or_404() . 392

Falling Back to Raw SQL . 393

APPENDIX C Generic View Reference . 395

Common Arguments to Generic Views . 395

“Simple” Generic Views . 396

Rendering a Template . 396

Redirecting to Another URL . 397

CONTENTS xxi

List/Detail Generic Views . 397

Lists of Objects . 397

Detail Views . 400

Date-Based Generic Views . 401

Archive Index . 402

Year Archives . 403

Month Archives . 404

Week Archives . 406

Day Archives . 408

Archive for Today . 409

Date-Based Detail Pages . 409

APPENDIX D Settings . 413

The Basics of Settings Files . 413

Default Settings . 413

Seeing Which Settings You’ve Changed . 414

Using Settings in Python Code . 414

Altering Settings at Runtime . 414

Security . 414

Creating Your Own Settings . 415

Designating the Settings: DJANGO_SETTINGS_MODULE 415

The django-admin.py Utility . 415

On the Server (mod_python) . 416

Using Settings Without Setting DJANGO_SETTINGS_MODULE 416

Custom Default Settings . 417

Either configure() or DJANGO_SETTINGS_MODULE Is Required . . 417

Available Settings . 417

ABSOLUTE_URL_OVERRIDES . 417

ADMIN_MEDIA_PREFIX . 418

ADMINS . 418

ALLOWED_INCLUDE_ROOTS . 418

APPEND_SLASH . 418

CACHE_BACKEND . 418

CACHE_MIDDLEWARE_KEY_PREFIX . 418

DATABASE_ENGINE . 418

DATABASE_HOST . 419

DATABASE_NAME . 419

DATABASE_OPTIONS. 419

DATABASE_PASSWORD . 419

DATABASE_PORT . 419

CONTENTSxxii

DATABASE_USER . 419

DATE_FORMAT . 419

DATETIME_FORMAT . 420

DEBUG . 420

DEFAULT_CHARSET . 420

DEFAULT_CONTENT_TYPE . 420

DEFAULT_FROM_EMAIL . 420

DISALLOWED_USER_AGENTS . 420

EMAIL_HOST . 421

EMAIL_HOST_PASSWORD . 421

EMAIL_HOST_USER . 421

EMAIL_PORT . 421

EMAIL_SUBJECT_PREFIX . 421

FIXTURE_DIRS . 421

IGNORABLE_404_ENDS . 421

IGNORABLE_404_STARTS . 422

INSTALLED_APPS . 422

LANGUAGE_CODE . 422

LANGUAGES . 422

MANAGERS . 423

MEDIA_ROOT . 423

MEDIA_URL . 423

MIDDLEWARE_CLASSES . 423

MONTH_DAY_FORMAT . 423

PREPEND_WWW . 424

ROOT_URLCONF . 424

SECRET_KEY . 424

SEND_BROKEN_LINK_EMAILS . 424

SERIALIZATION_MODULES . 424

SERVER_EMAIL . 424

SESSION_COOKIE_AGE . 424

SESSION_COOKIE_DOMAIN . 425

SESSION_COOKIE_NAME . 425

SESSION_COOKIE_SECURE . 425

SESSION_EXPIRE_AT_BROWSER_CLOSE . 425

SESSION_SAVE_EVERY_REQUEST . 425

SITE_ID . 425

TEMPLATE_CONTEXT_PROCESSORS . 425

TEMPLATE_DEBUG . 426

TEMPLATE_DIRS . 426

TEMPLATE_LOADERS . 426

CONTENTS xxiii

TEMPLATE_STRING_IF_INVALID . 426

TEST_DATABASE_NAME . 426

TEST_RUNNER . 426

TIME_FORMAT . 427

TIME_ZONE . 427

URL_VALIDATOR_USER_AGENT . 427

USE_ETAGS . 427

USE_I18N . 428

YEAR_MONTH_FORMAT . 428

APPENDIX E Built-in Template Tags and Filters . 429

Built-in Tag Reference . 429

autoescape . 429

block . 429

comment . 429

cycle . 430

debug . 431

extends . 431

filter . 431

firstof . 431

for . 432

if . 433

ifchanged . 434

ifequal . 435

ifnotequal . 435

include . 435

load . 436

now . 436

regroup . 438

spaceless . 440

ssi . 440

templatetag . 440

url . 441

widthratio . 441

with . 442

Built-in Filter Reference . 442

add . 442

addslashes . 442

capfirst . 442

center . 442

CONTENTSxxiv

cut . 442

date . 442

default . 443

default_if_none . 443

dictsort . 443

dictsortreversed . 444

divisibleby . 444

escape . 444

escapejs . 444

filesizeformat . 444

first . 445

fix_ampersands . 445

floatformat . 445

force_escape . 446

get_digit. 446

iriencode . 446

join . 446

last . 447

length . 447

length_is . 447

linebreaks . 447

linenumbers . 447

ljust . 447

lower . 448

make_list . 448

phone2numeric . 448

pluralize . 448

pprint . 448

random . 449

removetags . 449

rjust . 449

safe . 449

safeseq . 449

slice . 449

slugify . 450

stringformat . 450

striptags . 450

time . 450

timesince . 451

timeuntil . 451

title . 451

CONTENTS xxv

truncatewords . 451

truncatewords_html . 451

unordered_list . 452

upper . 452

urlencode . 452

urlize . 452

urlizetrunc . 453

wordcount . 453

wordwrap . 453

yesno . 453

APPENDIX F The django-admin Utility . 455

Usage . 455

Getting Runtime Help . 456

App Names . 456

Determining the Version . 456

Displaying Debug Output . 456

Available Subcommands . 456

cleanup . 456

compilemessages . 456

createcachetable . 457

createsuperuser . 457

dbshell . 457

diffsettings. 458

dumpdata . 458

flush . 458

inspectdb . 459

loaddata <fixture fixture ...> . 459

makemessages . 461

reset <appname appname ...> . 461

runfcgi [options] . 462

runserver . 462

shell . 463

sql <appname appname ...> . 463

sqlall <appname appname ...> . 463

sqlclear <appname appname ...> . 463

sqlcustom <appname appname ...> . 464

sqlflush . 464

sqlindexes <appname appname ...> . 464

sqlreset <appname appname ...> . 464

CONTENTSxxvi

sqlsequencereset <appname appname ...> 464

startapp <appname> . 464

startproject <projectname> . 464

syncdb . 464

test . 465

testserver <fixture fixture ...> . 465

validate . 465

Default Options . 466

--pythonpath . 466

--settings . 466

--traceback . 466

--verbosity . 466

Extra Niceties . 467

Syntax Coloring . 467

Bash Completion . 467

APPENDIX G Request and Response Objects . 469

HttpRequest . 469

QueryDict Objects . 471

A Complete Example . 473

HttpResponse . 474

Construction HttpResponses . 474

Setting Headers . 474

HttpResponse Subclasses . 474

Returning Errors . 475

Customizing the 404 (Not Found) View . 476

Customizing the 500 (Server Error) View . 477

INDEX . 479

xxvii

About the Authors

ADRIAN HOLOVATY is a cocreator and co–Benevolent Dictator for Life of Django. He runs a Web
start-up called EveryBlock. He lives with his wife in Chicago and spends his free time attempt-
ing to play guitar in the style of Django Reinhardt.

JACOB KAPLAN-MOSS is a lead developer and co–Benevolent Dictator for Life of Django. Jacob
is a partner at Revolution Systems, a consultancy that helps companies make the most of open
source software. Jacob previously worked for the Lawrence Journal-World, the locally owned
newspaper in Lawrence, Kansas where Django was developed. At Journal-World Jacob was the
lead developer of Ellington, a commercial Web-publishing platform for media companies.

xxix

About the Technical Reviewer

SEAN LEGASSICK has been creating software for over 15 years. His work
designing the architecture of South African open source framework
Chisimba has contributed significantly to software-engineering capac-
ity-building in Africa and other areas of the developing world. He is a
cofounder of MobGeo, a start-up developing innovative location-aware
mobile marketing solutions. Away from the world of software, he writes
on politics and culture.

xxxi

Acknowledgments

Thanks to the many people who contributed to our online first drafts, and thanks to the folks
at Apress for their great editing.

xxxiii

Preface

Welcome to the second edition of The Definitive Guide to Django, informally known as The
Django Book! This book aims to teach you how to use the Django Web framework to develop
Web sites efficiently.

When Jacob Kaplan-Moss and I wrote the first edition of this book, Django was still in a
pre-1.0 stage. Once Django version 1.0 was released, with its several backward-incompatible
changes, the first edition inevitably became outdated and people began demanding an update.
I’m happy to report this edition covers Django 1.1 and should serve you well for some time.

My thanks go to the many contributors who posted comments, corrections, and rants to
, the accompanying Web site for this book, where I posted chapter

drafts as I wrote them. You guys are great.

Adrian Holovaty
Cocreator and co–Benevolent Dictator for Life, Django

xxxv

Introduction

In the early days, Web developers wrote every page by hand. Updating a Web site meant edit-
ing HTML; a “redesign” involved redoing every single page, one at a time.

As Web sites grew and became more ambitious, it quickly became obvious that that
situation was tedious, time-consuming, and ultimately untenable. A group of enterprising
hackers at NCSA (the National Center for Supercomputing Applications, where Mosaic, the
first graphical Web browser, was developed) solved this problem by letting the Web server
spawn external programs that could generate HTML dynamically. They called this protocol
the Common Gateway Interface, or CGI, and it changed the Web forever.

It’s hard now to imagine what a revelation CGI must have been: instead of treating HTML
pages as simple files on disk, CGI allows you to think of your pages as resources generated
dynamically on demand. The development of CGI ushered in the first generation of dynamic
Web sites.

However, CGI has its problems: CGI scripts need to contain a lot of repetitive “boilerplate”
code, they make code reuse difficult, and they can be difficult for first-time developers to write
and understand.

PHP fixed many of these problems, and it took the world by storm—it’s now by far the
most popular tool used to create dynamic Web sites, and dozens of similar languages and
environments (ASP, JSP, etc.) have followed PHP’s design closely. PHP’s major innovation is its
ease of use: PHP code is simply embedded into plain HTML. The learning curve for someone
who already knows HTML is extremely shallow.

But PHP has its own problems; its very ease of use encourages sloppy, repetitive, ill-
conceived code. Worse, PHP does little to protect programmers from security vulnerabilities,
and thus many PHP developers found themselves learning about security only once it was
too late.

These and similar frustrations led directly to the development of the current crop of
“third- generation” Web-development frameworks. These frameworks—Django and Ruby
on Rails appear to be the most popular these days—recognize that the Web’s importance has
escalated of late.

With this new explosion of Web development comes yet another increase in ambition;
Web developers are expected to do more and more every day.

Django was invented to meet these new ambitions. Django lets you build deep, dynamic,
interesting sites in an extremely short time. Django is designed to let you focus on the fun,
interesting parts of your job while easing the pain of the repetitive bits. In doing so, it provides
high-level abstractions of common Web-development patterns, shortcuts for frequent pro-
gramming tasks, and clear conventions on how to solve problems. At the same time, Django
tries to stay out of your way, letting you work outside the scope of the framework as needed.

INTRODUCTIONxxxvi

We wrote this book because we firmly believe that Django makes Web development bet-
ter. It’s designed to quickly get you moving on your own Django projects, and then ultimately
teach you everything you need to know to successfully design, develop, and deploy a site that
you’ll be proud of.

We’re extremely interested in your feedback. The online version of this book—available
at —will let you comment on any part of the book and discuss it with
other readers. We’ll do our best to read all the comments posted there, and to respond to as
many as possible. If you prefer e-mail, please drop us a line at . Either
way, we’d love to hear from you!

We’re glad you’re here, and we hope you find Django as exciting, fun, and useful as we do.

P A R T 1

Getting Started

3

C H A P T E R 1

Introduction to Django

This book is about Django, a Web-development framework that saves you time and makes
Web development a joy. Using Django, you can build and maintain high-quality Web applica-
tions with minimal fuss.

At its best, Web development is an exciting, creative act; at its worst, it can be a repeti-
tive, frustrating nuisance. Django lets you focus on the fun stuff—the crux of your Web
application—while easing the pain of the repetitive bits. In doing so, it provides high-level
abstractions of common Web development patterns, shortcuts for frequent programming
tasks, and clear conventions for how to solve problems. At the same time, Django tries to stay
out of your way, letting you work outside the scope of the framework as needed.

The goal of this book is to make you a Django expert. The focus is twofold. First, we
explain, in depth, what Django does and how to build Web applications with it. Second, we
discuss higher-level concepts where appropriate, answering the question “How can I apply
these tools effectively in my own projects?” By reading this book, you’ll learn the skills needed
to develop powerful Web sites quickly, with code that is clean and easy to maintain.

What Is a Web Framework?
Django is a prominent member of a new generation of Web frameworks—but what does that
term mean, precisely?

To answer that question, let’s consider the design of a Web application written in Python
without a framework. Throughout this book, we’ll take this approach of showing you basic
ways to get work done without shortcuts, in the hope that you’ll recognize why shortcuts are
so helpful. (It’s also valuable to know how to get things done without shortcuts because short-
cuts aren’t always available. And most importantly, knowing why things work the way they do
makes you a better Web developer.)

One of the simplest, most direct ways to build a Python Web app from scratch is to use
the Common Gateway Interface (CGI) standard, which was a popular technique circa 1998.
Here’s a high-level explanation of how it works: create a Python script that outputs HTML,
then save the script to a Web server with a extension and visit the page in your Web
browser. That’s it.

CHAPTER 1 INTRODUCTION TO DJANGO4

Here’s a sample Python CGI script that displays the ten most recently published books
from a database. Don’t worry about syntax details; just get a feel for the basic things it’s doing.

First, to fulfill the requirements of CGI, this code prints a “Content-Type” line, followed
by a blank line. It prints some introductory HTML, connects to a database, and runs a query to
retrieve the names of the latest ten books. Looping over those books, it generates an HTML list
of the titles. Finally, it prints the closing HTML and closes the database connection.

With a one-off page like this one, the write-it-from-scratch approach isn’t necessarily bad.
For one thing, this code is simple to comprehend—even a novice developer can read these 16
lines of Python and understand everything it does, from start to finish. There’s nothing else
to learn, no other code to read. It’s also simple to deploy: just save this code in a file that ends
with , upload that file to a Web server, and visit that page with a browser.

Despite its simplicity, this approach has a number of problems and annoyances. Ask your-
self these questions:

-
base? Surely that database-connecting code shouldn’t need to be duplicated in each
individual CGI script. The pragmatic thing to do would be to refactor it into a shared
function.

really have to worry about printing the “Content-Type” line and
remembering to close the database connection? This sort of boilerplate reduces pro-
grammer productivity and introduces opportunities for mistakes. These setup- and
teardown-related tasks would best be handled by some common infrastructure.

CHAPTER 1 INTRODUCTION TO DJANGO 5

-
rate database and password? At this point, some environment-specific configuration
becomes essential.

redesign the page? One wrong character could crash the entire application. Ideally,
the logic of the page—the retrieval of book titles from the database—would be sepa-
rate from the HTML display of the page so that a designer could edit the latter without
affecting the former.

These problems are precisely what a Web framework intends to solve. A Web framework
provides a programming infrastructure for your applications so that you can focus on writ-
ing clean, maintainable code without having to reinvent the wheel. In a nutshell, that’s what
Django does.

The MVC Design Pattern
Let’s dive in with a quick example that demonstrates the difference between the previous
approach and a Web framework’s approach. Here’s how you might write the previous
CGI code using Django. The first thing to note is that we split it over three Python files
(, ,) and an HTML template ():

CHAPTER 1 INTRODUCTION TO DJANGO6

Again, don’t worry about the particulars of syntax; just get a feel for the overall design. The
main thing to note here is the separation of concerns:

 file contains a description of the database table, represented by a
Python class. This class is called a model. Using it, you can create, retrieve, update, and
delete records in your database using simple Python code rather than writing repetitive
SQL statements.

 file contains the business logic for the page. The function
is called a view.

 file specifies which view is called for a given URL pattern. In this case, the
URL will be handled by the function. In other words, if your
domain is example.com, any visit to the URL will call the

 function.

 file is an HTML template that describes the design of the page.
It uses a template language with basic logic statements—for example,

.

Taken together, these pieces loosely follow a pattern called Model-View-Controller (MVC).
Simply put, MVC is way of developing software so that the code for defining and accessing
data (the model) is separate from request-routing logic (the controller), which in turn is sepa-
rate from the user interface (the view). (We’ll discuss MVC in more depth in Chapter 5.)

A key advantage of such an approach is that components are loosely coupled. Each distinct
piece of a Django-powered Web application has a single key purpose and can be changed
independently without affecting the other pieces. For example, a developer can change the
URL for a given part of the application without affecting the underlying implementation. A
designer can change a page’s HTML without having to touch the Python code that renders it.
A database administrator can rename a database table and specify the change in a single place
rather than having to search and replace through a dozen files.

In this book, each component of MVC gets its own chapter. Chapter 3 covers views,
Chapter 4 covers templates, and Chapter 5 covers models.

CHAPTER 1 INTRODUCTION TO DJANGO 7

Django's History
Before we dive into more code, we should take a moment to explain Django’s history. We
noted earlier that we’ll be showing you how to do things without shortcuts so that you more
fully understand the shortcuts. Similarly, it’s useful to understand why Django was created,
because knowledge of the history will put into context why Django works the way it does.

If you’ve been building Web applications for a while, you’re probably familiar with the
problems in the CGI example we presented earlier. The classic Web developer’s path goes
something like this:

 1. Write a Web application from scratch.

 2. Write another Web application from scratch.

 3. Realize the application from step 1 shares much in common with the application from
step 2.

 4. Refactor the code so that application 1 shares code with application 2.

 5. Repeat steps 2–4 several times.

 6. Realize you’ve invented a framework.

This is precisely how Django itself was created!
Django grew organically from real-world applications written by a Web-development

team in Lawrence, Kansas, USA. It was born in the fall of 2003, when the Web programmers
at the Lawrence Journal-World newspaper, Adrian Holovaty and Simon Willison, began using
Python to build applications.

The World Online team, responsible for the production and maintenance of several local
news sites, thrived in a development environment dictated by journalism deadlines. For the
sites—including LJWorld.com, Lawrence.com, and KUsports.com—journalists (and manage-
ment) demanded that features be added and entire applications be built on an intensely fast
schedule, often with only days’ or hours’ notice. Thus, Simon and Adrian developed a time-
saving Web-development framework out of necessity—it was the only way they could build
maintainable applications under the extreme deadlines.

In summer 2005, after having developed this framework to a point where it was efficiently
powering most of World Online’s sites, the team, which now included Jacob Kaplan-Moss,
decided to release the framework as open source software. They released it in July 2005 and
named it Django, after the jazz guitarist Django Reinhardt.

Now, several years later, Django is a well-established open source project with tens of
thousands of users and contributors spread across the planet. Two of the original World
Online developers (the “Benevolent Dictators for Life,” Adrian and Jacob) still provide central
guidance for the framework’s growth, but it’s much more of a collaborative team effort.

This history is relevant because it helps explain two key things. The first is Django’s “sweet
spot.” Because Django was born in a news environment, it offers several features (such as its
admin site, covered in Chapter 6) that are particularly well suited for “content” sites—sites
like Amazon.com, Craigslist, and The Washington Post that offer dynamic, database-driven
information. Don’t let that turn you off, though—although Django is particularly good for
developing those sorts of sites, that doesn’t preclude it from being an effective tool for build-
ing any sort of dynamic Web site. (There’s a difference between being particularly effective at
something and being ineffective at other things.)

CHAPTER 1 INTRODUCTION TO DJANGO8

The second matter to note is how Django’s origins have shaped the culture of its open
source community. Because Django was extracted from real-world code rather than being an
academic exercise or a commercial product, it is acutely focused on solving Web-development
problems that Django’s developers themselves have faced—and continue to face. As a result,
Django itself is actively improved on an almost daily basis. The framework’s maintainers have
a vested interest in making sure Django saves developers time, produces applications that are
easy to maintain, and performs well under load. If nothing else, the developers are motivated
by their own selfish desires to save themselves time and enjoy their jobs. (To put it bluntly,
they eat their own dog food.)

How to Read This Book
In writing this book, we tried to strike a balance between readability and reference, with a bias
toward readability. Our goal with this book, as stated earlier, is to make you a Django expert,
and we believe the best way to teach is through prose and plenty of examples, rather than
providing an exhaustive but bland catalog of Django features. (As the saying goes, you can’t
expect to teach somebody how to speak a language merely by teaching them the alphabet.)

With that in mind, we recommend that you read Chapters 1 through 12 in order. They
form the foundation of how to use Django; once you’ve read them, you’ll be able to build
and deploy Django-powered Web sites. Specifically, Chapters 1 through 7 are the “core cur-
riculum,” Chapters 8 through 11 cover more-advanced Django usage, and Chapter 12 covers
deployment. The remaining chapters, 13 through 20, focus on specific Django features and
can be read in any order.

The appendixes are for reference. They, along with the free documentation at
, are probably what you’ll flip back to occasionally to recall syntax or find

quick synopses of what certain parts of Django do.

Required Programming Knowledge
Readers of this book should understand the basics of procedural and object-oriented pro-
gramming: control structures (e.g., , ,), data structures (lists, hashes/dictionaries),
variables, classes, and objects.

Experience in Web development is, as you may expect, very helpful, but it’s not required
to understand this book. Throughout the book, we try to promote best practices in Web devel-
opment for readers who lack this experience.

Required Python Knowledge
At its core, Django is simply a collection of libraries written in the Python programming
language. To develop a site using Django, you write Python code that uses these libraries.
Learning Django, then, is a matter of learning how to program in Python and understanding
how the Django libraries work.

CHAPTER 1 INTRODUCTION TO DJANGO 9

If you have experience programming in Python, you should have no trouble diving in. By
and large, the Django code doesn’t perform a lot of “magic” (i.e., programming trickery whose
implementation is difficult to explain or understand). For you, learning Django will be a mat-
ter of learning Django’s conventions and APIs.

If you don’t have experience programming in Python, you’re in for a treat. It’s easy to
learn and a joy to use! Although this book doesn’t include a full Python tutorial, it highlights
Python features and functionality where appropriate, particularly when code doesn’t immedi-
ately make sense. Still, we recommend you read the official Python tutorial, available online at

. We also recommend Mark Pilgrim’s free book Dive Into Python
(Apress, 2004), available at and published in print by Apress.

Required Django Version
This book covers Django 1.1.

Django’s developers maintain backward compatibility within “major version” numbers.
This commitment means that, if you write an application for Django 1.1, it will still work for
1.2, 1.3, 1.9, and any other version number that starts with “1.” Once Django hits 2.0, though,
your applications might need to be rewritten—but version 2.0 is a long way away. As a point of
reference, it took more than three years to release version 1.0. (This is very similar to the com-
patibility policy that applies to the Python language itself: code that was written for Python 2.0
works with Python 2.6, but not necessarily with Python 3.0.) Given that this book covers Django
1.1, it should serve you well for some time.

Getting Help
One of the greatest benefits of Django is its kind and helpful user community. For help with
any aspect of Django—from installation to application design to database design to deploy-
ment—feel free to ask questions online.

answer questions. Sign up for free at .

real time. Join the fun by logging on to on the Freenode IRC network.

What’s Next?
In the next chapter, we’ll get started with Django, covering installation and initial setup.

C H A P T E R 2

Getting Started

Installing Django is a multistep process because of the multiple moving parts in modern Web
development environments. In this chapter, we’ll walk you through how to install the frame-
work and its few dependencies.

Because Django is “just” Python code, it runs anywhere Python does—including on some
cell phones! But this chapter just covers the common scenarios for Django installations. We’ll
assume that you’re installing it either on a desktop/laptop machine or on a server.

Later on (in Chapter 12), we’ll cover how to deploy Django to a production site.

Installing Python
Django is written purely in Python, so the first step in installing the framework is to make sure
that you have Python installed.

Python Versions
The core Django framework works with any Python version from 2.3 to 2.6, inclusive. Django’s
optional Geographic Information Systems (GIS) support requires Python 2.4 to 2.6.

If you’re not sure which version of Python to install and you have complete freedom over
the decision, pick the latest one in the 2.x series: version 2.6. Although Django works equally
well with any version from 2.3 to 2.6, the later versions of Python have performance improve-
ments and additional language features you might like to use in your applications. Plus,
certain third-party Django add-ons that you might want to use might require a version newer
than Python 2.3, so using a later version of Python keeps your options open.

DJANGO AND PYTHON 3.0

At the time of writing, Python 3.0 was released, but Django didn’t yet support it. Python 3.0 introduced a
substantial number of backward-incompatible changes to the language, so we expect that most major Python
libraries and frameworks, including Django, will take a few years to catch up.

If you’re new to Python and are wondering whether to learn Python 2.x or Python 3.x, our advice is to
stick with Python 2.x.

11

CHAPTER 2 GETTING STARTED12

Installation
If you’re on Linux or Mac OS X, you probably have Python already installed. Type at a
command prompt (or in Applications/Utilities/Terminal in OS X). If you see something like
this, Python is installed:

Otherwise, you’ll need to download and install Python. It’s fast and easy, and detailed
instructions are available at .

Installing Django
At any given time, two distinct versions of Django are available to you: the latest official release
and the bleeding-edge trunk version. The version you decide to install depends on your priori-
ties. Do you want a stable and tested version of Django, or do you want a version containing
the latest features, perhaps so you can contribute to Django itself, at the expense of stability?

We recommend sticking with an official release, but it’s important to know that the trunk
development version exists because you’ll find it mentioned in the documentation and by
members of the community.

Installing an Official Release
Official releases have a version number, such as 1.0.3 or 1.1, and the latest one is always avail-
able at .

If you’re on a Linux distribution that includes a package of Django, it’s a good idea to use
the distributor’s version. That way, you’ll get security updates along with the rest of your sys-
tem packages.

If you don’t have access to a prepackaged version, you can download and install the
framework manually. To do so, first download the tarball, which will be named something
similar to . (It doesn’t matter which local directory you download
this file into; the installation process will put Django’s files in the right place.) Then unzip it
and run , as you do with most Python libraries.

Here’s how that process looks on Unix systems:

 1.

 2.

 3.

On Windows, we recommend using 7-Zip () to
unzip files. Once you’ve unzipped the file, start up a DOS shell (the command prompt)
with administrator privileges and run the following command from within the directory whose
name starts with :

CHAPTER 2 GETTING STARTED 13

In case you’re curious, Django’s files will be installed into your Python installation’s
 directory—a directory where Python looks for third-party libraries. Usually

it’s in a place similar to .

Installing the Trunk Version
The latest and greatest Django development version is referred to as the trunk version, and it’s
available from Django’s Subversion repository. You should consider installing this version if
you want to work on the bleeding edge or if you want to contribute code to Django itself.

Subversion is a free, open source revision-control system, and the Django team uses it
to manage changes to the Django codebase. You can use a Subversion client to grab the very
latest Django source code and you can update your local version of the Django code, known
as your local checkout, at any given time to get the latest changes and improvements made by
Django developers.

When using trunk, keep in mind there’s no guarantee things won’t be broken at any given
moment. With that said, though, some members of the Django team run production sites on
trunk, so they have an incentive to keep it stable.

To grab the latest Django trunk, follow these steps:

 1. Make sure that you have a Subversion client installed. You can get the software free
from and you can find excellent documentation at

.

 If you’re on a Mac with OS X 10.5 or later, you’re in luck; Subversion should already be
installed. You can verify this by typing in the Terminal.

 2. Check out the trunk using the command
.

 3. Locate your Python installation’s directory, which is usually in a place
similar to . If you have no idea, type this command
from a command prompt:

 The resulting output should include your directory.

 Within the directory, create a file called and edit it to contain
the full path to your directory to it. For example, the file could contain just this
line:

 4. Place on the system path. This directory includes management
utilities such as .

Tip If files are new to you, you can learn more about them at
.

CHAPTER 2 GETTING STARTED14

After downloading from Subversion and following the preceding steps, there’s no need to
run —you just did the work by hand!

Because the Django trunk changes often with bug fixes and feature additions, you’ll prob-
ably want to update it every once in a while. To update the code, just run the command

 from within the directory. When you run that command, Subversion will con-
tact , determine whether any of Django’s code has changed,
and update your local version of the code with any changes that have been made since you last
updated. It’s quite slick.

Finally, if you use trunk, you should know how to figure out which version of trunk you’re
running. Knowing your version number is important if you ever need to reach out to the com-
munity for help or if you submit improvements to the framework. In these cases, you should
tell people which trunk version (also known as a revision number or changeset) that you’re
using. To find out your revision number, type from within the directory, and
look for the number after Revision. This number is incremented each time Django is changed,
whether through a bug fix, feature addition, documentation improvement, or anything else.
Among some members of the Django community, it’s a badge of honor to be able to say, “I’ve
been using Django since [insert very low revision number here].”

Testing the Django Installation
For some post-installation positive feedback, take a moment to test whether the installation
worked. In a command shell, change into another directory (not the directory that contains
the directory) and start the Python interactive interpreter by typing . If the instal-
lation was successful, you should be able to import the module :

INTERACTIVE INTERPRETER EXAMPLES

The Python interactive interpreter is a command-line program that lets you write a Python program interac-
tively. To start it, run the command at the command line.

Throughout this book, we feature example Python interactive interpreter sessions. You can recognize
these examples by the triple greater-than signs () that designate the interpreter’s prompt. If you’re copy-
ing examples from this book, don’t copy those greater-than signs.

CHAPTER 2 GETTING STARTED 15

Multiline statements in the interactive interpreter are padded with three dots (). For example:

Those three dots at the start of the additional lines are inserted by the Python shell—they’re not part of
our input. We include them to be faithful to the actual output of the interpreter. If you copy our examples to
follow along, don’t copy those dots.

Setting Up a Database
At this point, you could very well begin writing a Web application with Django because
Django’s only hard-and-fast prerequisite is a working Python installation. However, odds
are you’ll be developing a database-driven Web site, in which case you’ll need to configure
a database server.

If you just want to start playing with Django, skip ahead to the “Starting a Project” sec-
tion—but keep in mind that all the examples in this book assume that you have a working
database set up.

Django supports four database engines:

)

)

)

)

For the most part, all the engines work equally well with the core Django framework.
(A notable exception is Django’s optional GIS support, which is much more powerful with

, which achieves a fine
balance between cost, features, speed, and stability.

CHAPTER 2 GETTING STARTED16

Setting up the database is a two-step process:

 1. First, you’ll need to install and configure the database server. This process is beyond
the scope of this book, but each of the four database back-ends has rich documenta-
tion on its Web site. (If you’re on a shared hosting provider, the server is probably set
up already.)

 2. Second, you’ll need to install the Python library for your particular database back-end.
This is a third-party bit of code that allows Python to interface with the database. We
outline the specific, per-database requirements in the following sections.

If you’re just playing around with Django and don’t want to install a database server, con-
 is unique in the list of supported databases in that it doesn’t require

either of the preceding steps if you’re using Python 2.5 or higher. It merely reads and writes
its data to a single file on your filesystem, and Python versions 2.5 and higher include built-in
support for it.

On Windows, obtaining database driver binaries can be frustrating. If you’re eager to
e.

Using Django with PostgreSQL
If or package from

. We recommend because it is
newer, more actively developed, and can be easier to install. Either way, remember whether
you’re using version 1 or 2; you’ll need this information later.

 at
.

If you’re on Linux, check whether your distribution’s package-management system offers
a package called , , , or something similar.

Using Django with SQLite 3
If you’re using Python version 2.5 or higher, you’re in luck: no database-specific installation is

not version 2—from
 and the package from

. Make sure that you have version 2.0.3 or
higher.

they’re statically linked into the binaries.
If you’re on Linux, check whether your distribution’s package-management system offers

a package called , , , or something similar.

CHAPTER 2 GETTING STARTED 17

Using Django with MySQL
Dj x versions don’t support nested subqueries and

You’ll also need to install the package from
.

If you’re on Linux, check whether your distribution’s package-management system offers
a package called , , , or something similar.

Using Django with Oracle
Django works with Oracle Database Server versions 9i and higher.

If you’re using Oracle, you’ll need to install the library, available at
. Use version 4.3.1 or higher, but avoid version 5.0 because of a

bug in that version of the driver.

Using Django Without a Database
As mentioned earlier, Django doesn’t actually require a database. If you just want to use it to
serve dynamic pages that don’t hit a database, that’s perfectly fine.

With that said, bear in mind that some of the extra tools bundled with Django do require
a database, so if you choose not to use a database, you’ll miss out on those features. (We high-
light these features throughout this book.)

Starting a Project
Once you’ve installed Python, Django, and (optionally) your database server/library, you can
take the first step of developing a Django application by creating a project.

A project is a collection of settings for an instance of Django, including database configu-
ration, Django-specific options, and application-specific settings.

If this is your first time using Django, you’ll have to take care of some initial setup. Create
a new directory to start working in, perhaps something like .

WHERE SHOULD THIS DIRECTORY LIVE?

If your background is in PHP, you’re probably used to putting code under the Web server’s document root (in
a location such as). With Django, you don’t do that. It’s not a good idea to put any of this Python
code within your Web server’s document root because in doing so you risk the possibility that people will be
able to view your raw source code over the Web. That’s not good.

Put your code in a directory outside of the document root.

CHAPTER 2 GETTING STARTED18

Change into the directory you created and run the command
. This will create a directory in your current directory.

Note should be on your system path if you installed Django via its utility.
If you’re using trunk, you’ll find in . Because you’ll be using

 often, consider adding it to the system path. On Unix, you can do so by symlinking from
 by using a command such as

. On Windows, you’ll need to update your environment variable.
If you installed Django from a packaged version for your Linux distribution, might be
called instead.

If you see a “permission denied” message when running ,
you’ll need to change the file’s permissions. To do this, navigate to the directory where

 is installed (for example,) and run the command
.

The command creates a directory containing four files:

These files are as follows:

: A file required for Python to treat the directory as a package (a
group of Python modules). It’s an empty file, and you normally won’t add anything to it.

: A command-line utility that lets you interact with this Django project in
various ways. Type to get a feel for what it can do. You should
never have to edit this file; it’s created in the directory purely for convenience.

: Settings/configuration for this Django project. Take a look at it to get an
idea of the types of settings available, along with their default values.

: The URLs for this Django project. Think of it as the “table of contents” of
your Django-powered site. At the moment, it’s empty.

Despite their small size, these files already constitute a working Django application.

Running the Development Server
For more post-installation positive feedback, let’s run the Django development server to see
the bare-bones application in action.

The Django development server (also called the runserver after the command that
launches it) is a built-in, lightweight Web server you can use while developing your site. It’s
included with Django so you can develop your site rapidly, without having to deal with con-
figuring your production server (Apache, for example) until you’re ready for production. The

CHAPTER 2 GETTING STARTED 19

development server watches your code and automatically reloads it, making it easy for you to
change your code without needing to restart anything.

To start the server, change into the project directory () if you haven’t already,
and run this command:

You’ll see something like this:

This launches the server locally on port 8000, accessible only to connections from your
own computer. Now that it’s running, visit with your Web browser.
You’ll see a “Welcome to Django” page shaded in a pleasant pastel blue. It worked!

One final important note about the development server is worth mentioning before pro-
ceeding. Although this server is convenient for development, resist the temptation to use it in
anything resembling a production environment. The development server can handle only a
single request at a time reliably, and it has not gone through a security audit of any sort. When
the time comes to launch your site, see Chapter 12 for information on how to deploy Django.

CHANGING THE DEVELOPMENT SERVER'S HOST OR PORT

By default, the command starts the development server on port 8000, listening only for local
connections. If you want to change the server’s port, pass it as a command-line argument:

When you specify an IP address, you tell the server to allow nonlocal connections, which is especially
helpful if you want to share a development site with other members of your team. The IP address
tells the server to listen on any network interface:

After this is done, other computers on your local network will be able to view your Django site by visiting
your IP address in their Web browsers (for example,)

Note that you’ll have to consult your network settings to determine your IP address on the local network.
Unix users can run in a command prompt to get this information; Windows users can run .

What's Next?
Now that you have everything installed and the development server running, you’re ready to
learn the basics of serving Web pages with Django in Chapter 2.

C H A P T E R 3

Views and URLconfs

In the previous chapter, we explained how to set up a Django project and run the Django
development server. In this chapter, you’ll learn the basics of creating dynamic Web pages
with Django.

Your First Django-Powered Page: Hello World
As a first goal, let’s create a Web page that outputs that famous example message: “Hello world.”

If you were publishing a simple “Hello world” Web page without a Web framework, you’d
simply type “Hello world” into a text file, call it , and upload it to a directory on a
Web server somewhere. Notice that you specified two key pieces of information about that
Web page: its contents (the string) and its URL (

, or maybe if you put it in a subdirectory).
With Django, you specify those same two things, but in a different way. The contents of

the page are produced by a view function, and the URL is specified in a URLconf. First, let’s
write the “Hello world” view function.

Your First View
Within the directory that made in the last chapter, cre-
ate an empty file called . This Python module will contain the views for this chapter.
Note that there’s nothing special about the name —Django doesn’t care what the file
is called, as you’ll see in a bit—but it’s a good idea to call it as a convention for the
benefit of other developers reading your code.

A “Hello world” view is simple. Here’s the entire function, plus statements, which
you should type into the file:

21

CHAPTER 3 V IEWS AND URLCONFS22

Let’s step through this code one line at a time:

, which lives in the module. You
need to import this class because it’s used later in the code.

—the view function.

 by convention. This is
an object that contains information about the current Web request that has triggered
this view, and it’s an instance of the class . In this example,
you don’t do anything with , but it must be the first parameter of the view
nonetheless.

in a certain way for Django to recognize it. We called it because that name clearly
indicates the gist of the view, but it could just as well be named

, or something equally revolting. The next section, “Your First
URLconf,” will shed light on how Django finds this function.

 object that has
been instantiated with the text .

The main lesson is this: a view is just a Python function that takes an as its
first parameter and returns an instance of . In order for a Python function to be a
Django view, it must do these two things. (There are exceptions, but we’ll get to them later.)

Your First URLconf
If at this point you run again, you’ll still see the “Welcome to
Django” message, with no trace of the “Hello world” view anywhere. That’s because the
project doesn’t yet know about the view
activating this view at a particular URL. (Continuing the previous analogy of publishing static
HTML files, at this point you’ve created the HTML file but haven’t uploaded it to a directory on
the server yet.) To hook a view function to a particular URL with Django, use a URLconf.

A URLconf is like a table of contents for a Django-powered Web site. Basically, it’s a map-
ping between URLs and the view functions that should be called for those URLs. It’s how you
tell Django, “For this URL, call this code, and for that URL, call that code.” For example, “When
somebody visits the URL , call the view function , which lives in the Python
module .”

When you executed in the previous chapter, the script cre-
ated a URLconf for you automatically: the file . By default, it looks something like this:

CHAPTER 3 V IEWS AND URLCONFS 23

This default URLconf includes some commonly used Django features commented out, so
activating those features is as easy as uncommenting the appropriate lines. If you ignore the
commented-out code, here’s the essence of a URLconf:

Let’s step through this code one line at a time:

 module, which is
Django’s URLconf infrastructure. This includes a function called .

 and saves the result into a variable called
. The function gets passed only a single argument: the empty

string. (The string can be used to supply a common prefix for view functions, which
we’ll cover in Chapter 8.)

The main thing to note is the variable , which Django expects to find in the
URLconf module. This variable defines the mapping between URLs and the code that handles
those URLs. By default, the URLconf is empty—the Django application is a blank slate.

Note That’s how Django knew to show you the “Welcome to Django” page in the last chapter. If your
URLconf is empty, Django assumes that you just started a new project, so it displays that message.

To add a URL and view to the URLconf, just add a Python tuple mapping a URL pattern to
the view function. Here’s how to hook in the view:

CHAPTER 3 V IEWS AND URLCONFS24

Note We removed the commented-out code for brevity. You can choose to leave those lines in if you want.

Two changes were made:

 view was imported from its module: , which translates
into in Python import syntax. (This assumes that is on

 was added to . This line is referred to as
a URLpattern. It’s a Python tuple in which the first element is a pattern-matching string

-
tion to use for that pattern.

In a nutshell, Django was told that any request to the URL should be handled by
the view function.

PYTHON PATH

The Python path is the list of directories on your system where Python looks when you use the Python
statement.

For example, let’s say your Python path is set to
. If you execute the Python statement , Python will

look for a module called in the current directory. (The first entry in the Python path, an empty string,
means “the current directory.”) If that file doesn’t exist, Python will look for the file

. If that file doesn’t exist, it will try . Finally, if
that file doesn’t exist, it will raise .

If you’re interested in seeing the value of your Python path, start the Python interactive interpreter and
type this:

You usually don’t have to worry about setting your Python path—Python and Django take care of things
for you automatically behind the scenes. (Setting the Python path is one of the things that the
script does.)

It’s worth discussing the syntax of this URLpattern because it might not be immediately
obvious. Although you want to match the URL , the pattern looks a bit different from
that. Here’s why:

CHAPTER 3 V IEWS AND URLCONFS 25

the URLpatterns. This means that the URLpattern doesn’t include the leading slash
in . (At first, this requirement might seem counterintuitive, but it simplifies
things—such as the inclusion of URLconfs within other URLconfs, which we’ll cover
in Chapter 8.)

) and a dollar sign (). These regular expression char-
acters have a special meaning: the caret means “require that the pattern matches the
start of the string,” and the dollar sign means “require that the pattern matches the end
of the string.”

(without a dollar sign at the end), any URL starting with would match (for
example, and , not just). Similarly, if you leave off the
initial caret character (for example,), Django would match any URL that
ends with , such as . If you simply use without a caret
or a dollar sign, any URL containing would match (for example,

). Thus, you use both the caret and dollar sign to ensure that only the URL
matches—nothing more, nothing less.

flexibility to perform more sophisticated matches.

 (that is,
without a trailing slash). Because the URLpattern requires a trailing slash, that URL
would not match. However, by default, any request to a URL that doesn’t match a
URLpattern and doesn’t end with a slash will be redirected to the same URL with a
trailing slash. (This is regulated by the Django setting, which is covered
in Appendix D.)

preference of Django’s developers), all you need to do is add a trailing slash to each
URLpattern and leave set to . If you prefer your URLs not to have
trailing slashes, or if you want to decide it on a per-URL basis, set to

 and put trailing slashes in your URLpatterns as you see fit.

The other thing to note about this URLconf is that the view function was passed as
an object without calling the function. This is a key feature of Python (and other dynamic lan-
guages): functions are first-class objects, which means that you can pass them around just like
any other variables. Cool stuff, eh?

To test the changes to the URLconf, start the Django development server, as you did in
Chapter 2, by running the command . (If you left it running,
that’s fine, too. The development server automatically detects changes to your Python code
and reloads as necessary, so you don’t have to restart the server between changes.) The
server is running at the address , so open up a Web browser and go
to . You should see the text “Hello world”—the output of your
Django view.

Hooray! You made your first Django-powered Web page.

CHAPTER 3 V IEWS AND URLCONFS26

REGULAR EXPRESSIONS

You can use a regular expression (regex) as a compact way of specifying patterns in text. While Django
URLconfs allow arbitrary regexes for powerful URL matching, you’ll probably only use a few regex symbols in
practice. Here’s a selection of common symbols.

Symbol Matches

 (dot) Any single character

Any single digit

Any character between and (uppercase)

Any character between and (lowercase)

Any character between and (case-insensitive)

One or more of the previous expression (for example, matches one or more
digits)

One or more characters until (and not including) a forward slash

Zero or one of the previous expression (for example, matches zero or one
digits)

Zero or more of the previous expression (for example, matches zero, one or
more than one digit)

Between one and three (inclusive) of the previous expression (for example,
 matches one, two, or three digits)

For more on regular expressions, see .

A Quick Note About 404 Errors
At this point, the URLconf defines only a single URLpattern: the one that handles requests to
the URL . What happens when you request a different URL?

To find out, try running the Django development server and visiting a page such as
, , or even

 (the site “root”). You should see a “Page not found” message (see
Figure 3-1). Django displays this message because you requested a URL that’s not defined in
your URLconf.

The utility of this page goes beyond the basic 404 error message. It also tells you precisely
which URLconf Django used and every pattern in that URLconf. From that information, you
should be able to tell why the requested URL threw a 404.

Naturally, this is sensitive information intended only for you, the Web developer. If this
were a production site deployed live on the Internet, you wouldn’t want to expose that infor-
mation to the public. For that reason, this “Page not found” page is displayed only if your
Django project is in debug mode. We’ll explain how to deactivate debug mode later. For now,
just know that every Django project is in debug mode when you first create it, and if the proj-
ect is not in debug mode, Django outputs a different 404 response.

CHAPTER 3 V IEWS AND URLCONFS 27

Figure 3-1. Django’s 404 page

A Quick Note About the Site Root
As explained in the last section, you’ll see a 404 error message if you view the site root:

not special-cased in any way. It’s up to you to assign it to a URLpattern, just like every other
entry in your URLconf.

The URLpattern to match the site root is a bit counterintuitive, though, so it’s worth men-
tioning. When you’re ready to implement a view for the site root, use the URLpattern ,
which matches an empty string. Here’s an example:

CHAPTER 3 V IEWS AND URLCONFS28

How Django Processes a Request
Before continuing to the second view function, let’s pause to learn a little more about how
Django works. Specifically, when you view your “Hello world” message by visiting

 in your Web browser, what does Django do behind the scenes?
It all starts with the settings file. When you run , the script

looks for a file called in the same directory as . This file contains all sorts
of configuration for this particular Django project, all in uppercase: ,

, and so on. The most important setting is called . tells Django
which Python module should be used as the URLconf for this Web site.

Remember when created the files and ?
The autogenerated contains a setting that points to the autogen-
erated . Open the

This corresponds to the file . When a request comes in for a particular
URL—say, a request for —Django loads the URLconf pointed to by the
setting. Then it checks each of the URLpatterns in that URLconf, in order, comparing the
requested URL with the patterns one at a time, until it finds one that matches. When it
finds one that matches, it calls the view function associated with that pattern, passing it an

 object as the first parameter. (We’ll cover the specifics of later.)
As you saw in the first view example, a view function must return an . Once

it does this, Django does the rest, converting the Python object to a proper Web response with
the appropriate HTTP headers and body (the content of the Web page).

In summary, here are the steps:

 1. A request comes in to .

 2. Django determines the root URLconf by looking at the setting.

 3. Django looks at all the URLpatterns in the URLconf for the first one that matches
.

 4. If it finds a match, it calls the associated view function.

 5. The view function returns an .

 6. Django converts the to the proper HTTP response, which results in a
Web page.

You now know the basics of how to make Django-powered pages. It’s quite simple, really:
just write view functions and map them to URLs via URLconfs.

Your Second View: Dynamic Content
The “Hello world” view was instructive for demonstrating the basics of how Django works,
but it wasn’t an example of a dynamic Web page because the contents of the page are always

HTML file.

CHAPTER 3 V IEWS AND URLCONFS 29

For the second view, let’s create something more dynamic: a Web page that displays the
current date and time. This is a nice and simple next step because it doesn’t involve a database

-
ing than “Hello world,” but it will demonstrate a few new concepts.

This view needs to do two things: calculate the current date and time, and return an
 containing that value. If you have experience with Python, you know that Python

includes a module for calculating dates. Here’s how to use it:

That’s simple enough, and it has nothing to do with Django. It’s just Python code. (We
want to emphasize that you should be aware of what code is “just Python” vs. code that is
Django-specific. As you learn Django, we want you to be able to apply your knowledge to other
Python projects that don’t necessarily use Django.)

To make a Django view that displays the current date and time, you just need to hook this
 statement into a view and return an . Here’s how it looks:

As with the view function, this should live in . Note that we hid the
function from this example for brevity, but for the sake of completeness, here’s what the entire

 looks like:

Note From now on, we won’t display previous code in code examples except when necessary. You
should be able to tell from context which parts of an example are new and which are old.

CHAPTER 3 V IEWS AND URLCONFS30

Let’s step through the changes made to to accommodate the
view:

 was added to the top of the module, so you can calculate dates.

 function calculates the current date and time as a
 object and then stores it as the local variable .

“format-string” capability. The within the string is a placeholder, and the percent
sign after the string means “Replace the in the preceding string with the value of the
variable .” The variable is technically a object, not a string,
but the format character converts it to its string representation, which is some-
thing like this: . It will result in an HTML string such as

.

 object that contains the generated
response—just as we did in .

After adding that to , add the URLpattern to to tell Django which URL
should handle this view. Something like would make sense:

Two changes were made. First, we imported the function at the top.
Second, and more importantly, we added a URLpattern mapping the URL to that new
view. Getting the hang of this?

With the view written and URLconf updated, fire up the and visit
 in your browser. You should see the current date and time.

DJANGO'S TIME ZONE

Depending on your computer, the date and time might be a few hours off. That’s because Django is time
zone–aware and defaults to the time zone. (It has to default to something, and that’s the
time zone where the original developers live.) If you live elsewhere, you’ll want to change it in .
See the comment in that file for a link to an up-to-date list of worldwide time zone options.

CHAPTER 3 V IEWS AND URLCONFS 31

URLconfs and Loose Coupling
Now is a good time to highlight a key philosophy behind URLconfs and behind Django in
general: the principle of loose coupling. Simply put, loose coupling is a software-development
approach that values the importance of making pieces interchangeable. If two pieces of code
are loosely coupled, changes made to one of the pieces will have little or no effect on the other.

Django’s URLconfs are a good example of this principle in practice. In a Django Web appli-

decision of what the URL should be for a given function and the implementation of the function
itself resides in two separate places. This lets you switch out one piece without affecting the other.

For example, consider the view. If you wanted to change the URL for
the application—say, to move it from to —you could make a quick
change to the URLconf without having to worry about the view itself. Similarly, if you wanted
to change the view function—altering its logic somehow—you could do that without affecting
the URL to which the function is bound.

Furthermore, if you wanted to expose the current-date functionality at several URLs, you
could easily take care of that by editing the URLconf, without having to touch the view code. In
this example, the is available at two URLs. It’s a contrived example, but this
technique can come in handy:

URLconfs and views are loose coupling in action. We’ll continue to point out examples of
this important philosophy throughout this book.

Your Third View: Dynamic URLs
In the view, the contents of the page—the current date/time—were
dynamic, but the URL () was static. In most dynamic Web applications, though, a URL
contains parameters that influence the output of the page. For example, an online bookstore
might give each book its own URL (for example, and).

Let’s create a third view that displays the current date and time offset by a certain number
of hours. The goal is to craft a site so that the page displays the date/time one
hour into the future, the page displays the date/time two hours into the future,
the page displays the date/time three hours into the future, and so on.

A novice might think to code a separate view function for each hour offset, which might
result in a URLconf like this:

CHAPTER 3 V IEWS AND URLCONFS32

Clearly, this line of thought is flawed. Not only would this result in redundant view func-
tions but also the application is fundamentally limited to supporting only the predefined hour
ranges: one, two, three, or four hours. If you decided to create a page that displayed the time
five hours into the future, you’d have to create a separate view and URLconf line for that, fur-
thering the duplication. You need to do some abstraction here.

A WORD ABOUT PRETTY URLS

If you’re experienced in another Web development platform, such as PHP or Java, you might want to use a
query string parameter—something like , in which the hours would be designated by
the parameter in the URL’s query string (the part after the).

You can do that with Django (and we’ll tell you how in Chapter 8 but one of Django’s core philosophies
is that URLs should be beautiful. The URL is far cleaner, simpler, more readable, easier to
recite to somebody aloud, and just plain prettier than its query string counterpart. Pretty URLs are a charac-
teristic of a quality Web application.

Django’s URLconf system encourages pretty URLs by making it easier to use pretty URLs than not to.

How then do you design the application to handle arbitrary hour offsets? The key is to use
wildcard URLpatterns
you can use the regular expression pattern to match one or more digits:

(We’re using the to imply there might be other URLpatterns that we trimmed from
this example.)

This new URLpattern will match any URL such as , , or even
. Come to think of it, let’s limit it so that the maximum allowed off-

set is 99 hours. That means we want to allow either one- or two-digit numbers—and in regular
expression syntax, that translates into :

Note When building Web applications, it’s always important to consider the most outlandish data input
possible and decide whether the application should support that input. We’ve curtailed the outlandishness
here by limiting the offset to 99 hours.

CHAPTER 3 V IEWS AND URLCONFS 33

One important detail introduced here is that character in front of the regular expres-
sion string. This character tells Python that the string is a “raw string”—its contents should
not interpret backslashes. In normal Python strings, backslashes are used for escaping special
characters—such as in the string , which is a one-character string containing a newline.
When you add the to make it a raw string, Python does not apply its backslash escaping, so

 is a two-character string containing a literal backslash and a lowercase n. There’s a natu-
ral collision between Python’s use of backslashes and the backslashes that are found in regular
expressions, so it’s strongly suggested that you use raw strings any time you’re defining a regu-
lar expression in Python. From now on, all the URLpatterns in this book will be raw strings.

Now that a wildcard is designated for the URL, you need a way of passing that wildcard
data to the view function, so that you can use a single view function for any arbitrary hour off-
set. You can do this by placing parentheses around the data in the URLpattern that you want
to save. In the case of the example, you want to save whatever number was entered in the URL,
so put parentheses around , like this:

parentheses to capture data from the matched text.
The final URLconf, including the previous two views, looks like this:

With that taken care of, let’s write the view.

CODING ORDER

In this example, the URLpattern was written first and the view was written second, but in the previous exam-
ples, the view was written first and then the URLpattern was written. Which technique is better? Well, every
developer is different.

If you’re a big-picture type of person, it might make the most sense to you to write all the URLpatterns
for your application at the same time, at the start of your project, and then code up the views. This has the
advantage of giving you a clear to-do list, and it essentially defines the parameter requirements for the view
functions you’ll need to write.

If you’re more of a bottom-up developer, you might prefer to write the views first and then anchor them
to URLs afterward. That’s OK, too.

In the end, it comes down to which technique fits your brain the best. Both approaches are valid.

CHAPTER 3 V IEWS AND URLCONFS34

 is very similar to the view written earlier with one key dif-
ference: it takes an extra argument the number of hours of offset. Here’s the view code:

Let’s step through this code one line at a time:

, takes two parameters: and .

 is an object, just as in and . We’ll say it
again: each view always takes an object as its first parameter.

 is the string captured by the parentheses in the URLpattern. For example, if
the requested URL were , would be the string . If the requested
URL were , would be the string . Note that captured values
will always be strings, not integers, even if the string is composed of only digits such
as .

Note Technically, captured values will always be Unicode objects, not plain Python byte strings, but don’t
worry about this distinction at the moment.

, but you can call it whatever you want as long as

it’s the second argument to the function, after . (It’s also possible to use key-
word, instead of positional, arguments in a URLconf. We cover that in Chapter 8.)

 on . This converts the
string value to an integer.

 exception if you call on a value that
cannot be converted to an integer, such as the string . In this example, if you
encounter the , you raise the exception , which, as you
can imagine, results in a 404 “Page not found” error.

CHAPTER 3 V IEWS AND URLCONFS 35

 case, given that
the regular expression in the URLpattern— —captures only digits, and there-
fore will only ever be a string composed of digits. The answer is that we won’t
because the URLpattern provides a modest but useful level of input validation, but we
still check for the in case this view function ever gets called in some other
way. It’s good practice to implement view functions such that they don’t make any
assumptions about their parameters. Loose coupling, remember?

appropriate number of hours. You’ve already seen from
the view
arithmetic by creating a object and adding to a
object. The result is stored in the variable .

 on —the function
requires the parameter to be an integer.

. A small difference in this line from the previous line is that it uses Python’s
format-string capability with two values, not just one. Hence, there are two symbols
in the string and a tuple of values to insert: .

 of the HTML is returned. By now, this is old hat.

With that view function and URLconf written, start the Django development server (if
it’s not already running), and visit to verify it works.
Then try . Then .
Finally, visit to verify that the pattern in the URLconf

 (with no hour designation) should also throw a 404.

Django’s Pretty Error Pages
Take a moment to admire the fine Web application you’ve made so far and now you’ll break it!
Let’s deliberately introduce a Python error into the file by commenting out the

 lines in the view:

Load up the development server and navigate to . You’ll see an error page
with a significant amount of information, including a message displayed at the very
top: .

CHAPTER 3 V IEWS AND URLCONFS36

What happened? Well, the function expects the parameter to be
an integer, and the bit of code that converted to an integer was commented out. That
caused to raise the . It’s the typical kind of small bug that every
programmer runs into at some point.

The point of this example was to demonstrate Django error pages. Take some time to
explore the error page and get to know the various bits of information it gives you.

Here are some things to notice:

exception, any parameters to the exception (the message in this
case), the file in which the exception was raised, and the offending line number.

this exception. This is similar to the standard traceback you get in Python’s command-
line interpreter, except it’s more interactive. For each level (“frame”) in the stack,
Django displays the name of the file, the function/method name, the line number,
and the source code of that line.

after the erroneous line, to give you context.

their values, in that frame, at the exact point in the code at which the exception was
raised. This debugging information can be a great help.

those words, and the traceback will switch to an alternate version that can be easily
copied and pasted. Use this when you want to share your exception traceback with
others to get technical support—such as the kind folks in the Django IRC chat room
or on the Django users’ mailing list.

for you in just one click. Click it to post the traceback to ,
where you’ll get a distinct URL that you can share with other people.

values, and metainformation, such as Common Gateway Interface (CGI) headers.
Appendix G has a complete reference of all the information that a request object
contains.

for this particular Django installation. (We already mentioned and we’ll
show you various Django settings throughout the book. All the available settings are
covered in detail in Appendix D.)

CHAPTER 3 V IEWS AND URLCONFS 37

The Django error page is capable of displaying more information in certain special cases,
such as the case of template syntax errors. We’ll get to those later, when we discuss the Django
template system. For now, uncomment the lines to get the view func-
tion working properly again.

Are you the type of programmer who likes to debug with the help of carefully placed
statements? You can use the Django error page to do so—just without the statements.
At any point in your view, temporarily insert an to trigger the error page. Then
you can view the local variables and state of the program. Here’s an example using the

 view:

Finally, it’s obvious that much of this information is sensitive—it exposes the innards of
your Python code and Django configuration—and it would be foolish to show this informa-
tion on the public Internet. A malicious person could use it to attempt to reverse-engineer
your Web application and do nasty things. For that reason, the Django error page is displayed
only when your Django project is in debug mode. We’ll explain how to deactivate debug mode
in Chapter 12. For now, just know that every Django project is in debug mode automatically
when you start it. (Sound familiar? The “Page not found” errors, described earlier in this chap-
ter, work the same way.)

What's Next?
So far, we’ve been writing the view functions with HTML hard-coded directly in the Python
code. We’ve done that to keep things simple while we demonstrated core concepts, but in the
real world, this is nearly always a bad idea.

Django ships with a simple yet powerful template engine that allows you to separate the
design of the page from the underlying code. You’ll dive into Django’s template engine in the
next chapter.

C H A P T E R 4

Templates

In the previous chapter, you may have noticed something peculiar in how we returned the
text in our example views. Namely, the HTML was hard-coded directly in our Python code,
like this:

Although this technique was convenient for the purpose of explaining how views work, it’s
not a good idea to hard-code HTML directly in your views. Here’s why:

. The design
of a site tends to change far more frequently than the underlying Python code, so it
would be convenient if the design could change without needing to modify the Python
code.

-

people (or even separate departments). Designers and HTML/CSS coders shouldn’t be
required to edit Python code to get their job done.

templates at the same time, rather than one person waiting for the other to finish edit-
ing a single file that contains both Python and HTML.

For these reasons, it’s much cleaner and more maintainable to separate the design of the
template system, which we dis-

cuss in this chapter.

39

CHAPTER 4 TEMPLATES40

Template-System Basics
A Django template is a string of text that is intended to separate the presentation of a docu-
ment from its data. A template defines placeholders and various bits of basic logic (template
tags) that regulate how the document should be displayed. Usually templates are used for pro-
ducing HTML, but Django templates are equally capable of generating any text-based format.

Let’s start with a simple example template. This Django template describes an HTML page
that thanks a person for placing an order with a company. Think of it as a form letter:

CHAPTER 4 TEMPLATES 41

This template is basic HTML with some variables and template tags thrown in. Let’s step
through it:

) is a variable. This
means “insert the value of the variable with the given name.” How do we specify the

) is a template tag. The definition of a tag is quite broad: a tag just tells the
template system to “do something.”

 This example template contains a tag () and an tag
().

 A tag works very much like a statement in Python, letting you loop over each
item in a sequence. An
this particular case, the tag checks whether the value of the variable
evaluates to

 and -
thing between and . Note that the is optional.

filter, which is

, we’re passing the variable to the filter, giving
the filter the argument . The filter formats dates in a given format,
as specified by that argument. Filters are attached using a pipe character (), as a refer-
ence to Unix pipes.

Each Django template has access to several built-in tags and filters, many of which are
discussed in the sections that follow. Appendix F contains the full list of tags and filters, and

-
sible to create your own filters and tags; we’ll cover that in Chapter 9.

Using the Template System
Let’s dive into Django’s template system so you can see how it works—but we’re not yet going
to integrate it with the views that we created in the previous chapter. Our goal here is to show
you how the system works independent of the rest of Django. (Usually you’ll use the template
system within a Django view, but we want to make it clear that the template system is just a
Python library that you can use anywhere, not just in Django views.)

Here is the most basic way you can use Django’s template system in Python code:

 1. Create a object by providing the raw template code as a string.

 2. Call the method of the object with a given set of variables (the con-
text). This returns a fully rendered template as a string, with all of the variables and
template tags evaluated according to the context.

CHAPTER 4 TEMPLATES42

The following sections describe these steps in much more detail.

Creating Template Objects
The easiest way to create a object is to instantiate it directly. The class lives
in the module, and the constructor takes one argument, the raw template
code. Let’s dip into the Python interactive interpreter to see how this works in code.

From the project directory created by (as covered
in Chapter 2), type to start the interactive interpreter.

A SPECIAL PYTHON PROMPT

If you’ve used Python before, you may be wondering why we’re running instead
of just . Both commands will start the interactive interpreter, but the command
has one key difference from : before starting the interpreter, it tells Django which settings file to use.
Many parts of Django—including the template system—rely on your settings, and you won’t be able to use
them unless the framework knows which settings to use.

If you’re curious, here’s how it works behind the scenes. Django looks for an environment variable
called , which should be set to the import path of your . For
example, might be set to , assuming is on your
Python path.

When you run , the command takes care of setting
 for you. We’re encouraging you to use in these examples to minimize

the amount of tweaking and configuring you have to do.
As you become more familiar with Django, you’ll likely stop using and will set

 manually in your or other shell-environment configuration file.

Let’s go through some template-system basics:

CHAPTER 4 TEMPLATES 43

That will be different every time, but it isn’t relevant; it’s a Python thing (the
Python “identity” of the object, if you must know).

 object, the template system compiles the raw template code
into an internal, optimized form, ready for rendering. But if your template code includes any
syntax errors, the call to will cause a exception:

The term block tag here refers to . Block tag and template tag are
synonymous.

The system raises a exception for any of the following cases:

s)

Rendering a Template
Once you have a object, you can pass it data by giving it a context. A context is sim-
ply a set of template variable names and their associated values. A template uses a context to
populate its variables and evaluate its tags.

A context is represented in Django by the class, which lives in the

variable values. Call the object’s method with the context to “fill” the template:

 is a Unicode object—not
a normal Python string. You can tell this by the in front of the string. Django uses Unicode

-
sions of that, be thankful for the sophisticated things Django does behind the scenes to make

Django’s Unicode support makes it relatively painless for your applications to support a wide
variety of character sets beyond the basic “A–Z” of the English language.

CHAPTER 4 TEMPLATES44

DICTIONARIES AND CONTEXTS

A Python dictionary is a mapping between known keys and variable values. A is similar to a diction-
ary, but a provides additional functionality, as covered in Chapter 9.

Variable names must begin with a letter (A–Z or a–z) and may contain additional letters,
digits, underscores, and dots. (Dots are a special case we’ll discuss in the section “Context
Variable Lookup.”) Variable names are case-sensitive.

Here’s an example of template compilation and rendering, using a template similar to the
example at the beginning of this chapter:

Let’s step through this code one statement at a time:

 1. First we import the classes and , which both live in the module
.

 2. . Note that we use
triple quotation marks to designate the string, because it wraps over multiple lines; in
contrast, strings within single quotation marks cannot be wrapped over multiple lines.

CHAPTER 4 TEMPLATES 45

 3. Next we create a template object, , by passing to the class
constructor.

 4. module from Python’s standard library because we’ll need it in
the following statement.

 5. object, . The constructor takes a Python dictionary, which
maps variable names to values. Here, for example, we specify that the is

, is , and so forth.

 6. Finally, we call the method on our template object, passing it the context.
This returns the rendered template—that is, it replaces template variables with the
actual values of the variables, and it executes any template tags.

 Note that the “You didn’t order a warranty” paragraph was displayed because the
 variable evaluated to . Also note the date, , which

is displayed according to the format string
the filter in Appendix E.)

() rather than displaying the line breaks. That’s happening because of a subtlety
in the Python interactive interpreter: the call to returns a string, and
by default the interactive interpreter displays the representation of the string rather

displayed as true line breaks rather than characters, use the statement:

.

Those are the fundamentals of using the Django template system: just write a template
string, create a object, create a , and call the method.

Multiple Contexts, Same Template
Once you have a object, you can render multiple contexts through it. Consider this
example:

more efficient to create the object once, and then call on it multiple times:

CHAPTER 4 TEMPLATES46

Django’s template parsing is quite fast. Behind the scenes, most of the parsing hap-
pens via a call to a single regular expression. This is in stark contrast to XML-based template
engines, which incur the overhead of an XML parser and tend to be orders of magnitude
slower than Django’s template-rendering engine.

Context Variable Lookup
n the examples so far, we’ve passed simple values in the contexts—mostly strings, plus a

 example. However, the template system elegantly handles more-complex data
structures, such as lists, dictionaries, and custom objects.

The key to traversing complex data structures in Django templates is the dot character ().
Use a dot to access dictionary keys, attributes, methods, or indices of an object.

This is best illustrated with a few examples. For instance, suppose you’re passing a Python
dictionary to a template. To access the values of that dictionary by dictionary key, use a dot:

Similarly, dots also allow access of object attributes. For example, a Python
object has , , and attributes, and you can use a dot to access those attributes in a
Django template:

CHAPTER 4 TEMPLATES 47

This example uses a custom class, demonstrating that variable dots also allow attribute
access on arbitrary objects:

Dots can also refer to methods on objects. For example, each Python string has the meth-
ods and , and you can call those in Django templates using the same dot
syntax:

Note that you do not include parentheses in the method calls. Also, it’s not possible to
pass arguments to the methods; you can only call methods that have no required arguments.

Finally, dots are also used to access list indices, as in this example:

Negative list indices are not allowed. For example, the template variable
would cause a .

PYTHON LISTS

A reminder: Python lists have 0-based indices. The first item is at index 0, the second is at index 1, and so on.

CHAPTER 4 TEMPLATES48

Dot lookups can be summarized like this: when the template system encounters a dot in a
variable name, it tries the following lookups, in this order:

)

)

)

)

Dot lookups can be nested multiple levels deep. For instance, the following example uses
, which translates into a dictionary lookup () and then

a method call ():

Method-Call Behavior
Method calls are slightly more complex than the other lookup types. Here are some things to
keep in mind.

-
gated unless the exception has an attribute whose value is
the exception does have a attribute, the variable will render as an
empty string, as in this example:

CHAPTER 4 TEMPLATES 49

system will move to the next lookup type (list-index lookup).

even a security hole, to allow the template system to access them.

 Say, for instance, you have a object that has a method -
plate includes something like , where is a
object, the object would be deleted when the template is rendered!

 To prevent this, set the function attribute on the method:

the current example, if a template includes and the
method has , then the method will not be executed when

ly.

How Invalid Variables Are Handled
By default, if a variable doesn’t exist the template system renders it as an empty string, failing
silently. Consider this example:

The system fails silently rather than raising an exception because it’s intended to be resil-

due to a small template syntax error.

Playing with Context Objects
Most of the time, you’ll instantiate objects by passing in a fully populated dictionary to

. But you can add and delete items from a object once it’s been instantiated,
too, using standard Python dictionary syntax:

CHAPTER 4 TEMPLATES50

Basic Template Tags and Filters
As we’ve mentioned already, the template system ships with built-in tags and filters. The sec-
tions that follow provide a rundown of the most common tags and filters.

Tags
The following sections outline the common Django tags.

if/else
The tag evaluates a variable, and if that variable is (i.e., it exists, is not empty,
and is not a Boolean value), the system will display everything between and

, as in this example:

An tag is optional:

CHAPTER 4 TEMPLATES 51

PYTHON "TRUTHINESS"

In Python and in the Django template system, these objects evaluate to in a Boolean context:

).

).

).

).

).

.

Everything else evaluates to .

The tag accepts , , or for testing multiple variables, or to negate a given
variable. Consider this example:

 tags don’t allow and clauses within the same tag, because the order of
logic would be ambiguous. For example, this is invalid:

CHAPTER 4 TEMPLATES52

yourself needing parentheses, consider performing logic outside the template and passing the
result of that as a dedicated template variable. Or just use nested tags, like this:

Multiple uses of the same logical operator are fine, but you can’t combine different opera-
tors. For example, this is valid:

There is no tag. Use nested tags to accomplish the same thing:

Make sure to close each with an . Otherwise, Django will throw a
.

for
The tag allows you to loop over each item in a sequence. As in Python’s state-
ment, the syntax is , where is the sequence to loop over and is the name of the
variable to use for a particular cycle of the loop. Each time through the loop, the template
system will render everything between and .

For example, you could use the following to display a list of athletes given a variable
:

Add to the tag to loop over the list in reverse:

CHAPTER 4 TEMPLATES 53

 tags:

A common pattern is to check the size of the list before looping over it, and outputting
some special text if the list is empty:

Because this pattern is so common, the tag supports an optional clause
that lets you define what to output if the list is empty. This example is equivalent to the previ-
ous one:

accomplish this, change the variable you’re looping over so that it includes only the values you
want to loop over. Similarly, there is no support for a “continue” statement that would instruct
the loop processor to return immediately to the front of the loop. (See the section “Philoso-
phies and Limitations” later in this chapter for the reasoning behind this design decision.)

 loop, you get access to a template variable called . This
variable has a few attributes that give you information about the progress of the loop:

 is always set to an integer representing the number of times the loop
has been entered. This is one-indexed, so the first time through the loop,

 will be set to . Here’s an example:

 is like
to the first time through the loop.

CHAPTER 4 TEMPLATES54

 is always set to an integer representing the number of remaining
items in the loop. The first time through the loop, will be set to
the total number of items in the sequence you’re traversing. The last time through the
loop, will be set to .

 is like , except it’s zero-indexed. The first time
through the loop, will be set to the number of elements in the
sequence, minus 1. The last time through the loop, it will be set to .

 is a Boolean value set to if this is the first time through the loop.
This is convenient for special-casing:

 is a Boolean value set to if this is the last time through the loop. A
common use for this is to put pipe characters between a list of links:

 The preceding template code might output something like this:

 Another common use for this is to put a comma between words in a list:

 is a reference to the object for the parent loop, in case of
nested loops. Here’s an example:

The magic variable is available only within loops. After the template parser has
reached , disappears.

CHAPTER 4 TEMPLATES 55

CONTEXT AND THE FORLOOP VARIABLE

Inside the block, the existing variables are moved out of the way to avoid overwriting the magic
 variable. Django exposes this moved context in . You generally don’t need

to worry about this, but if you supply a template variable named
because it could confuse fellow template authors), it will be named while inside the

 block.

ifequal/ifnotequal
The Django template system deliberately is not a full-fledged programming language and thus
does not allow you to execute arbitrary Python statements. (More on this idea in the section
“Philosophies and Limitations.”) However, it’s quite a common template requirement to com-
pare two values and display something if they’re equal—and Django provides an

 tag for that purpose.
The tag compares two values and displays everything between

 and if the values are equal.
This example compares the template variables and :

The arguments can be hard-coded strings, with either single or double quotes, so the fol-
lowing is valid:

Just like , the tag supports an optional :

Only template variables, strings, integers, and decimal numbers are allowed as arguments
to . These are valid examples:

CHAPTER 4 TEMPLATES56

Any other types of variables, such as Python dictionaries, lists, or Booleans, can’t be hard-
coded in . These are invalid examples:

 tags instead of
.

Comments
Just as in HTML or Python, the Django template language allows for comments. To designate a
comment, use :

The comment will not be output when the template is rendered.
Comments using this syntax cannot span multiple lines. This limitation improves tem-

same as the template (i.e., the comment tag will not be parsed as a comment):

 template tag, like this:

Filters
As explained earlier in this chapter, template filters are simple ways of altering the value of
variables before they’re displayed. Filters use a pipe character, like this:

This displays the value of the variable after being filtered through the
filter, which converts text to lowercase.

Filters can be chained—that is, they can be used in tandem such that the output of one filter
is applied to the next. Here’s an example that converts the first element in a list to uppercase:

CHAPTER 4 TEMPLATES 57

Some filters take arguments. A filter argument comes after a colon and is always in double
quotes. Here’s an example:

This displays the first 30 words of the variable.
The following are a few of the most important filters. Appendix F covers the rest.

: Adds a backslash before any backslash, single quote, or double quote. This
is useful if the produced text is included in a JavaScript string.

: Formats a or object according to a format string given in the
parameter, as in this example:

 Format strings are defined in Appendix F.

: Returns the length of the value. For a list, this returns the number of elements.
For a string, this returns the number of characters. (Python experts, note that this
works on any Python object that knows how to determine its own length—that is, any
object that has a method.)

Philosophies and Limitations
Now that you’ve gotten a feel for the Django template language, we should point out some of
its intentional limitations, along with some philosophies behind why it works the way it works.

-
tive, and programmers’ opinions vary wildly. The fact that Python alone has dozens, if not
hundreds, of open source template-language implementations supports this point. Each was

fact, it is said to be a rite of passage for a Python developer to write his or her own template

convenient to use Django’s template system than other Python template libraries, but it’s not
a strict requirement in any sense. As you’ll see in the upcoming section “Using Templates in
Views,” it’s very easy to use another template language with Django.

Still, it’s clear we have a strong preference for the way Django’s template language works.

combined experience of Django’s creators. Here are a few of our philosophies:

CHAPTER 4 TEMPLATES58

Business logic should be separated from presentation logic. Django’s developers see a
template system as a tool that controls presentation and presentation-related logic—
and that’s it. The template system shouldn’t support functionality that goes beyond
this basic goal.

 For that reason, it’s impossible to call Python code directly within Django templates.
All “programming” is fundamentally limited to the scope of what template tags can

is possible to write custom template tags that do arbitrary things, but the out-
of-the-box Django template tags intentionally do not allow for arbitrary Python-code
execution.

Syntax should be decoupled from HTML/XML. Although Django’s template system
is used primarily to produce HTML, it’s intended to be just as usable for non-HTML
formats, such as plain text. Some other template languages are XML based, placing all
template logic within XML tags or attributes, but Django deliberately avoids this limita-
tion. Requiring valid XML for writing templates introduces a world of human mistakes
and hard-to-understand error messages, and using an XML engine to parse templates
incurs an unacceptable level of overhead in template processing.

Designers are assumed to be comfortable with HTML code. The template system isn’t

as Dreamweaver. That is too severe a limitation and wouldn’t allow the syntax to be
as friendly as it is. Django expects template authors to be comfortable editing HTML
directly.

Designers are assumed not to be Python programmers. The template-system authors
designers, not program-

mers, and therefore should not assume Python knowledge.

 However, the system also intends to accommodate small teams in which the templates
are
writing raw Python code. (More on this in Chapter 9.)

The goal is not to invent a programming language. The goal is to offer just as much
programming-esque functionality, such as branching and looping, that is essential for
making presentation-related decisions.

Using Templates in Views
You’ve learned the basics of using the template system; now let’s use this knowledge to create
a view. Recall the view in , which we started in the previous
chapter. Here’s what it looks like:

CHAPTER 4 TEMPLATES 59

Let’s change this view to use Django’s template system. At first you might think to do
something like this:

Sure, that uses the template system, but it doesn’t solve the problems we pointed out in
the introduction of this chapter. Namely, the template is still embedded in the Python code, so
true separation of data and presentation isn’t achieved. Let’s fix that by putting the template in
a separate file, which this view will load.

You might first consider saving your template somewhere on your filesystem and using
Python’s built-in file-opening functionality to read the contents of the template. Here’s what
that might look like, assuming the template was saved as the file

:

This approach, however, is inelegant for these reasons:

 doesn’t exist or isn’t readable, the call will raise an exception.

function, you’d be duplicating the template locations—not to mention that it involves
a lot of typing!

calls to , , and each time you load a template.

To solve these issues, we’ll use template loading and template inheritance.

CHAPTER 4 TEMPLATES60

Template Loading
D
with the goal of removing redundancy both in your template-loading calls and in your tem-
plates themselves.

your templates. The place to do this is in your settings file—the file that we men-
tioned in the last chapter, when we introduced the setting.

 and find the setting. By default,
it’s an empty tuple, likely containing some autogenerated comments:

This setting tells Django’s template-loading mechanism where to look for templates.
Pick a directory where you’d like to store your templates and add it to , like so:

There are a few things to note:

you can’t think of an appropriate place to put your templates, we recommend creating
a directory within your project (i.e., within the directory you created
in Chapter 2).

 contains only one directory, don’t forget the comma at the end of
the directory string!

 Bad:

 Python requires commas within single-element tuples to disambiguate the tuple from
a parenthetical expression. This is a common newbie gotcha.

CHAPTER 4 TEMPLATES 61

rather than backslashes, as follows:

advantage of the fact that Django settings files are just Python code by constructing the
contents of dynamically, as in this example:

 This example uses the “magic” Python variable , which is automatically set

directory that contains (), joins that with in a
cross-platform way (), then ensures that everything uses forward slashes

syntax error or a runtime error, your Django-powered site will likely crash.

 set, the next step is to change the view code to use Django’s template-
loading functionality rather than hard-coding the template paths. Returning to our

 view, let’s change it like so:

rather
than loading the template from the filesystem manually. The function takes a
template name as its argument, figures out where the template lives on the filesystem, opens
that file, and returns a compiled object.

Our template in this example is , but there’s nothing special about
that extension. You can give your templates whatever extension makes sense for your
application, or you can leave off extensions entirely.

CHAPTER 4 TEMPLATES62

To determine the location of the template on your filesystem, combines
your template directories from with the template name that you pass to

. For example, if your is set to ,
the call would look for the template

.
 cannot find the template with the given name, it raises a
 exception. To see what that looks like, fire up the Django development

server by running within your Django project’s directory.
Then point your browser at the page that activates the view (e.g.,

). Assuming is set to and you haven’t yet created a
 template, you should see a Django error page highlighting the

 error, as shown in Figure 4-1.

Figure 4-1. The error page shown when a template cannot be found

This error page is similar to the one we explained in Chapter 3, with one additional piece
of debugging information: a “Template-loader postmortem” section. This section tells you
which templates Django tried to load, along with the reason each attempt failed (e.g., “File
does not exist”). This information is invaluable when you’re trying to debug template-loading
errors.

Moving along, create the file within your template directory using
the following template code:

e.

CHAPTER 4 TEMPLATES 63

render_to_response()
’ve shown you how to load a template, fill a , and return an object

 instead of
hard-coding templates and template paths. But it still requires a fair amount of typing to do
those things. Because these steps are such a common idiom, Django provides a shortcut that
lets you load a template, render it, and return an —all in one line of code.

This shortcut is a function called , which lives in the module
. Most of the time you’ll be using rather than loading tem-

plates and creating and objects manually—unless your employer judges
your work by total lines of code written.

Here’s the ongoing example rewritten to use :

, , , or .
. The

remains.

 function, we still calculate , but the template loading,
context creation, template rendering, and creation are all taken care of by
the call. Because returns an
object, we can simply return that value in the view.

The first argument to is the name of the template to use. The sec-
ond argument, if given, should be a dictionary to use in creating a
you don’t provide a second argument, will use an empty dictionary.

The locals() Trick
Consider our latest incarnation of :

Many times, as in this example, you’ll find yourself calculating some values, storing them
in variables (e.g., in the preceding code), and sending those variables to the template. Par-
ticularly lazy programmers should note that it’s slightly redundant to have to give names for
temporary variables and

CHAPTER 4 TEMPLATES64

So if you’re one of those lazy programmers and you like keeping code particularly concise,
you can take advantage of a built-in Python function called
mapping all local variable names to their values, where local means all variables that have
been defined within the current scope. Thus, the preceding view could be rewritten like so:

Here, instead of manually specifying the context dictionary as before, we pass the value of
, which will include all variables defined at that point in the function’s execution. As

a consequence, we’ve renamed the variable to , because that’s the variable
 doesn’t offer a huge improvement,

but this technique can save you some typing if you have several template variables to define—
or if you’re lazy.

One thing to watch out for when using is that it includes every local variable,

the previous example, will also include
on your application and your level of perfectionism.

Subdirectories in get_template()
can get unwieldy to store all of your templates in a single directory. You might like to store

doing so; some more-advanced Django features (such as the generic views system, which we
cover in Chapter 11) expect this template layout as a default convention.

, just include the subdirectory name and a slash before the template name, like so:

Because is a small wrapper around , you can do the
same thing with the first argument to , like this:

There’s no limit to the depth of your subdirectory tree. Feel free to use as many subdirec-
tories as you like.

Note Windows users, be sure to use forward slashes rather than backslashes.
assumes a Unix-style file-name designation.

CHAPTER 4 TEMPLATES 65

The include Template Tag
Now that we’ve covered the template-loading mechanism, we can introduce a built-in tem-
plate tag that takes advantage of it: . This tag allows you to include the contents
of another template. The argument to the tag should be the name of the template to include,
and the template name can be either a variable or a hard-coded (quoted) string, in either sin-
gle or double quotes. Anytime you have the same code in multiple templates, consider using

 to remove the duplication.
These two examples include the contents of the template . The examples are

equivalent and illustrate that either single or double quotes are allowed:

This example includes the contents of the template :

The following example includes the contents of the template whose name is contained in
the variable :

As in , the template’s file name is determined by adding the template
directory from to the requested template name.

For example, consider these two templates:

 with a context containing , then the variable
will be available in the d template, as you would expect.

CHAPTER 4 TEMPLATES66

 tag, a template with the given name isn’t found, Django will do one
of two things:

 is set to , you’ll see the exception on a Django error
page.

 is set to , the tag will fail silently, displaying nothing in the place of the tag.

Template Inheritance
Our template examples so far have been tiny HTML snippets, but in the real world you’ll
be using Django’s template system to create entire HTML pages. This leads to a common

redundancy of common page areas, such as sitewide navigation?
A classic way of solving this problem is to use server-side includes, directives you can embed

approach, with the template tag just described. But the preferred way of solving
this problem with Django is to use a more elegant strategy called template inheritance.

all the common parts of your site and defines “blocks” that child templates can override.
Let’s see an example of this by creating a more complete template for our

 view, by editing the file:

That looks just fine, but what happens when we want to create a template for another
view—say, the view
HTML template, we’d create something like this:

CHAPTER 4 TEMPLATES 67

-
ing a navigation bar, a few style sheets, perhaps some JavaScript—we’d end up putting all sorts
of redundant HTML into each template.

The server-side include solution to this problem is to factor out the common bits in both
templates and save them in separate template snippets, which are then included in each tem-
plate. Perhaps you’d store the top bit of the template in a file called :

And perhaps you’d store the bottom bit in a file called :

—
but that title can’t fit into because the
included the in the header, we’d have to include the , which wouldn’t allow us to
customize it per page. See where this is going?

Django’s template-inheritance system solves these problems. You can think of it as an
common,

you define the snippets that are different.
The first step is to define a base template—a skeleton of your page that child templates will

later fill in. Here’s a base template for our ongoing example:

CHAPTER 4 TEMPLATES68

This template, which we’ll call , defines a simple HTML skeleton document

directory as .)
 tag. All the

 tags do is tell the template engine that a child template may override those por-
tions of the template.

Now that we have this base template, we can modify our existing
template to use it:

 view
following along with code, we’ll leave it up to you to change to use the template
system instead of hard-coded HTML.) Here’s what that could look like:

unique to that template.

, and all of the other templates will immediately reflect the change.
, the template

engine sees the tag, noting that this template is a child template. The engine
immediately loads the parent template—in this case, .

At that point, the template engine notices the three tags in and
replaces those blocks with the contents of the child template. So, the title we’ve defined in

 will be used, as will the .
Note that since the child template doesn’t define the block, the template system

uses the value from the parent template instead. Content within a tag in a parent
template is always used as a fallback.

-
itance tree will have access to every one of your template variables from the context.

CHAPTER 4 TEMPLATES 69

You can use as many levels of inheritance as needed. One common way of using inheri-
tance is the following three-level approach:

 1. Create a template that holds the main look and feel of your site. This is the
stuff that rarely, if ever, changes.

 2. Create a template for each “section” of your site (e.g.,
 and). These templates extend and include section-

specific styles/design.

 3. Create individual templates for each type of page, such as a forum page or a photo gal-
lery. These templates extend the appropriate section template.

This approach maximizes code reuse and makes it easy to add items to shared areas, such
as sectionwide navigation.

Here are some guidelines for working with template inheritance:

 in a template, it must be the first template tag in that tem-
plate. Otherwise, template inheritance won’t work.

 tags in your base templates, the better. Remember,
child templates don’t have to define all parent blocks, so you can fill in reasonable
defaults in a number of blocks and then define only the ones you need in the child

should move that code to a in a parent template.

, which is a “magic” variable providing the rendered text of the parent tem-
plate. This is useful if you want to add to the contents of a parent block instead of
completely overriding it.

 tags with the same name in the same tem-
plate. This limitation exists because a block tag works in both directions. That is, a
block tag doesn’t just provide a hole to fill; it also defines the content that fills the hole
in the parent tags in a template, that
template’s parent wouldn’t know which one of the blocks’ content to use.

 is loaded using the same method that
 uses. That is, the template name is appended to your

setting.

 will be a string, but it can be a variable if
you don’t know the name of the parent template until runtime. This lets you do some
cool, dynamic stuff.

CHAPTER 4 TEMPLATES70

What's Next?

database-driven
relational database. This allows a clean separation of data and logic (in the same way views
and templates allow the separation of logic and display).

The next chapter covers the tools Django gives you to interact with a database.

C H A P T E R 5

Models

In Chapter 3, we covered the fundamentals of building dynamic Web sites with Django: set-
ting up views and URLconfs. As we explained, a view is responsible for doing some arbitrary
logic, and then returning a response. In one of the examples, our arbitrary logic was to calcu-
late the current date and time.

In modern Web applications, the arbitrary logic often involves interacting with a database.
Behind the scenes, a database-driven Web site connects to a database server, retrieves some
data out of it, and displays that data on a Web page. The site might also provide ways for site
visitors to populate the database on their own.

Many complex Web sites provide some combination of the two. Amazon.com, for
instance, is a great example of a database-driven site. Each product page is essentially a query
into Amazon’s product database formatted as HTML, and when you post a customer review, it
gets inserted into the database of reviews.

Django is well suited for making database-driven Web sites because it comes with easy yet
powerful tools for performing database queries using Python. This chapter explains that func-
tionality: Django’s database layer.

Note While it’s not strictly necessary to know basic relational database theory and SQL in order to use
Django’s database layer, it’s highly recommended. An introduction to those concepts is beyond the scope
of this book, but keep reading even if you’re a database newbie. You’ll probably be able to follow along and
grasp concepts based on the context.)

The “Dumb” Way to Do Database Queries in Views
Just as Chapter 3 detailed a “dumb” way to produce output within a view (by hard-coding the
text directly within the view), there’s a “dumb” way to retrieve data from a database in a view.
It’s simple: just use any existing Python library to execute an SQL query and do something
with the results.

71

CHAPTER 5 MODELS72

In this example view, we use the library (available via
) to connect to a MySQL database, retrieve some records, and feed them

to a template for display as a Web page:

This approach works, but some problems should jump out at you immediately:

would be stored in the Django configuration.

cursor, executing a statement, and closing the connection. Ideally, all we’d have to do
is specify which results we want.

to use a different database adapter (e.g., rather than), alter the con-
nection parameters, and—depending on the nature of the SQL statement—possibly
rewrite the SQL. Ideally, the database server we’re using would be abstracted, so that
a database server change could be made in a single place. (This feature is particularly
useful if you’re building an open source Django application that you want to be used
by as many people as possible.)

As you might expect, Django’s database layer aims to solve these problems. Here’s a sneak
preview of how the previous view can be rewritten using Django’s database API:

We’ll explain this code a little later in the chapter. For now, just get a feel for how it looks.

The MTV (or MVC) Development Pattern
Before we delve into any more code, let’s take a moment to consider the overall design of a
database-driven Django Web application.

As we mentioned in previous chapters, Django is designed to encourage loose coupling
and strict separation between pieces of an application. If you follow this philosophy, it’s easy
to make changes to one particular piece of the application without affecting the other pieces.

CHAPTER 5 MODELS 73

In view functions, for instance, we discussed the importance of separating the business logic
from the presentation logic by using a template system. With the database layer, we’re apply-
ing that same philosophy to data access logic.

Those three pieces together—data access logic, business logic, and presentation logic—
comprise a concept that’s sometimes called the Model-View-Controller (MVC) pattern of
software architecture. In this pattern, “Model” refers to the data access layer, “View” refers to
the part of the system that selects what to display and how to display it, and “Controller” refers
to the part of the system that decides which view to use, depending on user input, accessing
the model as needed.

WHY THE ACRONYM?

The goal of explicitly defining patterns such as MVC is mostly to streamline communication among develop-
ers. Instead of having to tell your coworkers, “Let’s make an abstraction of the data access, then let’s have a
separate layer that handles data display, and let’s put a layer in the middle that regulates this,” you can take
advantage of a shared vocabulary and say, “Let’s use the MVC pattern here.”

Django follows this MVC pattern closely enough that it can be called an MVC framework.
Here’s roughly how the M, V, and C break down in Django:

M, the data-access portion, is handled by Django’s database layer, which is described
in this chapter.

V, the portion that selects which data to display and how to display it, is handled by
views and templates.

C, the portion that delegates to a view depending on user input, is handled by the
framework itself by following your URLconf and calling the appropriate Python func-
tion for the given URL.

Because the “C” is handled by the framework itself and most of the excitement in Django
happens in models, templates, and views, Django has been referred to as an MTV framework.
In the MTV development pattern,

M stands for “Model,” the data access layer. This layer contains anything and every-
thing about the data: how to access it, how to validate it, which behaviors it has, and
the relationships between the data.

T stands for “Template,” the presentation layer. This layer contains presentation-
related decisions: how something should be displayed on a Web page or other type of
document.

V stands for “View,” the business logic layer. This layer contains the logic that accesses
the model and defers to the appropriate template(s). You can think of it as the bridge
between models and templates.

If you’re familiar with other MVC Web-development frameworks, such as Ruby on
Rails, you may consider Django views to be the “controllers” and Django templates to be the
“views.” This is an unfortunate confusion brought about by differing interpretations of MVC.

CHAPTER 5 MODELS74

In Django’s interpretation of MVC, the “view” describes the data that gets presented to the
user; it’s not necessarily just how the data looks, but which data is presented. In contrast, Ruby
on Rails and similar frameworks suggest that the controller’s job includes deciding which data
gets presented to the user, whereas the view is strictly how the data looks, not which data is
presented.

Neither interpretation is more “correct” than the other. The important thing is to under-
stand the underlying concepts.

Configuring the Database
With all of that philosophy in mind, let’s start exploring Django’s database layer. First, we need
to take care of some initial configuration; we need to tell Django which database server to use
and how to connect to it.

We’ll assume you’ve set up a database server, activated it, and created a database within
it (e.g., using a statement). If you’re using SQLite, no such setup is required
because SQLite uses standalone files on the filesystem to store its data.

As with in the previous chapter, database configuration lives in the Django
settings file, called by default. Edit that file and look for the database settings:

Here’s a rundown of each setting.

 tells Django which database engine to use. If you’re using a database
with Django, must be set to one of the strings shown in Table 5-1.

Table 5-1. Database Engine Settings

Setting Database Required Adapter

PostgreSQL version 1.x,
.

PostgreSQL version 2.x,
.

MySQL ,
.

SQLite No adapter needed if using Python 2.5+. Otherwise,
,

.

Oracle ,
.

CHAPTER 5 MODELS 75

install the appropriate database adapter. Each one is available for free on the Web; just
follow the links in the “Required Adapter” column in Table 5-1. If you’re on Linux, your
distribution’s package-management system might offer convenient packages. (Look
for packages called or .) For example:

 tells Django the name of your database. For example:

 If you’re using SQLite, specify the full filesystem path to the database file on your
filesystem. For example:

 As for where to put that SQLite database, we’re using the directory in
this example, but you should pick a directory that works best for you.

 tells Django which username to use when connecting to your database.
If you’re using SQLite, leave this blank.

 tells Django which password to use when connecting to your
database. If you’re using SQLite or have an empty password, leave this blank.

 tells Django which host to use when connecting to your database.
If your database is on the same computer as your Django installation (i.e., localhost),
leave this blank. If you’re using SQLite, leave this blank.

 MySQL is a special case here. If this value starts with a forward slash () and you’re
using MySQL, MySQL will connect via a Unix socket to the specified socket, for
example:

Once you’ve entered those settings and saved , it’s a good idea to test your
configuration. To do this, run , as in the last chapter, from within the

 project directory. (As discussed in the previous chapter, is a way to run
the Python interpreter with the correct Django settings activated. This is necessary in our case
because Django needs to know which settings file to use in order to get your database connec-
tion information.)

In the shell, type these commands to test your database configuration:

If nothing happens, then your database is configured properly. Otherwise, check the error
message for clues about what’s wrong. Table 5-2 shows some common errors.

CHAPTER 5 MODELS76

Table 5-2. Database Configuration Error Messages

Error Message Solution

You haven’t set the
 setting yet.

Set the setting to something other
than an empty string. Valid values are shown in
Table 5-1.

Environment variable
 is undefined.

Run the command rather
than .

Error loading _____ module:
No module named _____.

You haven’t installed the appropriate database-
specific adapter (e.g., or). Adapters
are not bundled with Django, so it’s your responsi-
bility to download and install them on your own.

_____ isn’t an available database back-end. Set your setting to one of the valid
engine settings described previously. Perhaps you
made a typo?

Database _____ does not exist Change the setting to point to a
database that exists, or execute the appropriate

 statement in order to create it.

Role _____ does not exist Change the setting to point to a user
that exists, or create the user in your database.

Could not connect to server Make sure and are
set correctly, and make sure the database server is
running.

Your First App
Now that you’ve verified the connection is working, it’s time to create a Django app—a bundle
of Django code, including models and views, that lives together in a single Python package and
represents a full Django application.

It’s worth explaining the terminology here, because this tends to trip up beginners. We
already created a project in Chapter 2, so what’s the difference between a project and an app?
The difference is that of configuration vs. code:

 is an instance of a certain set of Django apps, plus the configuration for
those apps.

defines the database connection information, the list of installed apps, the
, and so forth.

that lives together in a single Python package.

, such as a commenting system and
an automatic admin interface. A key thing to note about these apps is that they’re por-
table and reusable across multiple projects.

CHAPTER 5 MODELS 77

There are very few hard-and-fast rules about how you fit your Django code into this
scheme. If you’re building a simple Web site, you may use only a single app. If you’re building
a complex Web site with several unrelated pieces such as an e-commerce system and a mes-
sage board, you’ll probably want to split those into separate apps so that you’ll be able to reuse
them individually in the future.

Indeed, you don’t necessarily need to create apps at all, as evidenced by the example
view functions we’ve created so far in this book. In those cases, we simply created a file called

, filled it with view functions, and pointed our URLconf at those functions. No “apps”
were needed.

However, there’s one requirement regarding the app convention: if you’re using Django’s
database layer (models), you must create a Django app. Models must live within apps. Thus, in
order to start writing our models, we’ll need to create a new app.

Within the project directory, type this command to create a app:

This command does not produce any output, but it does create a directory within
the directory. Let’s look at the contents of that directory:

These files will contain the models and views for this app.
Have a look at and in your favorite text editor. Both files are empty,

except for comments and an import in . This is the blank slate for your Django app.

Defining Models in Python
As we discussed earlier in this chapter, the “M” in “MTV” stands for “Model.” A Django model
is a description of the data in your database, represented as Python code. It’s your data lay-
out—the equivalent of your SQL statements—except it’s in Python instead of
SQL, and it includes more than just database column definitions. Django uses a model to exe-
cute SQL code behind the scenes and return convenient Python data structures representing
the rows in your database tables. Django also uses models to represent higher-level concepts
that SQL can’t necessarily handle.

If you’re familiar with databases, your immediate thought might be, “Isn’t it redundant
to define data models in Python instead of in SQL?” Django works the way it does for several
reasons:

CHAPTER 5 MODELS78

data-access APIs, Django needs to know the database layout somehow, and there
are two ways of accomplishing this. The first way is to explicitly describe the data in
Python, and the second way is to introspect the database at runtime to determine the
data models.

one place, but it introduces a few problems. First, introspecting a database at runtime
obviously requires overhead. If the framework had to introspect the database each time
it processed a request, or even only when the Web server was initialized, this would
incur an unacceptable level of overhead. (While some believe that level of overhead is
acceptable, Django’s developers aim to trim as much framework overhead as possible.)
Second, some databases, notably older versions of MySQL, do not store sufficient
metadata for accurate and complete introspection.

your brain has to do a “context switch.” It helps productivity if you keep yourself in a
single programming environment/mentality for as long as possible. Having to write
SQL, then Python, and then SQL again is disruptive.

your models under version control. This way, you can easily keep track of changes to
your data layouts.

systems, for example, do not provide a specialized data type for representing e-mail
addresses or URLs. Django models do. The advantage of higher-level data types is
higher productivity and more reusable code.

for example, it’s much more pragmatic to distribute a Python module that describes
your data layout than separate sets of statements for MySQL, PostgreSQL,
and SQLite.

A drawback of this approach, however, is that it’s possible for the Python code to get out
of sync with what’s actually in the database. If you make changes to a Django model, you’ll
need to make the same changes inside your database to keep your database consistent with
the model. We’ll discuss some strategies for handling this problem later in this chapter.

Finally, we should note that Django includes a utility that can generate models by intro-
specting an existing database. This is useful for quickly getting up and running with legacy
data. We’ll cover this in Chapter 18.

Your First Model
As an ongoing example in this chapter and the next chapter, we’ll focus on a basic book/
author/publisher data layout. We use this as our example because the conceptual relation-
ships between books, authors, and publishers are well known, and this is a common data
layout used in introductory SQL textbooks. You’re also reading a book that was written by
authors and produced by a publisher!

CHAPTER 5 MODELS 79

We’ll suppose the following concepts, fields, and relationships:

Web site.

to-many relationship with authors) and a single publisher (a one-to-many relationship—
aka foreign key—to publishers).

The first step in using this database layout with Django is to express it as Python code. In
the file that was created by the command, enter the following:

Let’s quickly examine this code to cover the basics. The first thing to notice is that each
model is represented by a Python class that is a subclass of . The
parent class, , contains all the machinery necessary to make these objects capable of
interacting with a database—and that leaves our models responsible solely for defining their
fields, in a nice and compact syntax. Believe it or not, this is all the code we need to write to
have basic data access with Django.

Each model generally corresponds to a single database table, and each attribute on a
model generally corresponds to a column in that database table. The attribute name cor-
responds to the column’s name, and the type of field (e.g.,) corresponds to the
database column type (e.g.,). For example, the model is equivalent to the
following table (assuming PostgreSQL syntax):

CHAPTER 5 MODELS80

Indeed, Django can generate that statement automatically, as we’ll show
you in a moment.

The exception to the one-class-per-database-table rule is the case of many-to-many rela-
tionships. In our example models, has a called . This designates
that a book has one or many authors, but the database table doesn’t get an col-
umn. Rather, Django creates an additional table—a many-to-many “join table”—that handles
the mapping of books to authors.

For a full list of field types and model syntax options, see Appendix B.
Finally, note we haven’t explicitly defined a primary key in any of these models. Unless you

instruct it otherwise, Django automatically gives every model an autoincrementing integer pri-
mary key field called . Each Django model is required to have a single-column primary key.

Installing the Model
We’ve written the code; now let’s create the tables in our database. In order to do that, the first
step is to activate these models in our Django project. We do that by adding the app to
the list of “installed apps” in the settings file.

Edit the file again, and look for the setting.
tells Django which apps are activated for a given project. By default, it looks something like this:

Temporarily comment out all four of those strings by putting a hash character () in front
of them. (They’re included by default as a common-case convenience, but we’ll activate and
discuss them in subsequent chapters.) While you’re at it, comment out the default

 setting, too; the default values in depend on some of the apps we
just commented out. Then, add to the list, so the setting ends
up looking like this:

CHAPTER 5 MODELS 81

As discussed in the last chapter, when you set , be sure to include the trail-
ing comma in because it’s a single-element tuple. By the way, this book’s
authors prefer to put a comma after every element of a tuple, regardless of whether the tuple
has only a single element. This avoids the issue of forgetting commas, and there’s no penalty
for using that extra comma.

 refers to the app we’re working on. Each app in is
represented by its full Python path—that is, the path of packages, separated by dots, leading to
the app package.

Now that the Django app has been activated in the settings file, we can create the data-
base tables in our database. First, let’s validate the models by running this command:

The command checks whether your models’ syntax and logic are correct. If all
is well, you’ll see the message . If you don’t, make sure you typed in the model
code correctly. The error output should give you helpful information about what was wrong
with the code.

Any time you think you have problems with your models, run .
It tends to catch all the common model problems.

If your models are valid, run the following command for Django to generate
statements for your models in the app (with colorful syntax highlighting available, if
you’re using Unix):

In this command, is the name of the app. It’s what you specified when you ran
the command . When you run the command, you should see something
like this:

CHAPTER 5 MODELS82

Note the following:

 are automatically generated by combining the name of the app ()
and the lowercase name of the model (, , and). You can override
this behavior, as detailed in Appendix B.

 fields. You can override this, too.

 to the foreign key field name. As you might have
guessed, you can override this behavior, too.

 statement.

 statements are tailored to the database you’re using, so database-
specific field types such as (MySQL), (PostgreSQL), or

 (SQLite) are handled for you automatically. The same goes for quoting of
column names (e.g., using double quotes or single quotes). This example output is in
PostgreSQL syntax.

CHAPTER 5 MODELS 83

The command doesn’t actually create the tables or otherwise touch your data-
base—it just prints output to the screen so you can see what SQL Django would execute if you
asked it. If you wanted to, you could copy and paste this SQL into your database client, or use
Unix pipes to pass it directly (e.g.,). However,
Django provides an easier way of committing the SQL to the database: the command:

Run that command and you’ll see something like this:

The command is a simple “sync” of your models to your database. It looks at all of
the models in each app in your setting, checks the database to see whether the
appropriate tables exist yet, and creates the tables if they don’t yet exist. Note that does
not sync changes in models or deletions of models; if you make a change to a model or delete a
model, and you want to update the database, will not handle that. (More on this in the
“Making Changes to a Database Schema” section toward the end of this chapter.)

If you run again, nothing happens, because you haven’t added
any models to the app or added any apps to . Ergo, it’s always safe to run

—it won’t clobber things.
If you’re interested, take a moment to dive into your database server’s command-line

client and see the database tables Django created. You can manually run the command-line
client (e.g., for PostgreSQL) or you can run the command ,
which will figure out which command-line client to run, depending on your
setting. The latter is almost always more convenient.

Basic Data Access
Once you’ve created a model, Django automatically provides a high-level Python API for work-
ing with those models. Try it out by running and typing the following:

CHAPTER 5 MODELS84

These few lines of code accomplish quite a bit. Here are the highlights:

 model class. This lets you interact with the database table
that contains publishers.

 object by instantiating it with values for each field: , ,
and so on.

 method. Behind the scenes, Django
executes an SQL statement here.

, which
you can think of as a set of all publishers. Fetch a list of all objects in the
database with the statement . Behind the scenes, Django
executes an SQL statement here.

One thing is worth mentioning, in case it wasn’t clear from this example. When you create
objects using the Django model API, Django doesn’t save the objects to the database until you
call the method:

If you want to create an object and save it to the database in a single step, use the
 method. This example is equivalent to the preceding example:

Naturally, you can do quite a lot with the Django database API—but first, let’s take care of
a small annoyance.

Adding Model String Representations
When we printed out the list of publishers, all we got was this unhelpful display that makes it
difficult to tell the objects apart:

CHAPTER 5 MODELS 85

We can fix this easily by adding a method called to our class. A
 method tells Python how to display the “unicode” representation of an object.

You can see this in action by adding a method to the three models:

As you can see, a method can do whatever it needs to do in order to return
a representation of an object. Here, the methods for and simply
return the object’s name and title, respectively, but the for is slightly
more complex: it pieces together the and fields, separated by a space.
The only requirement for is that it return a Unicode object. If
doesn’t return a Unicode object—if it returns, say, an integer—Python will raise a
with a message such as .

CHAPTER 5 MODELS86

UNICODE OBJECTS

What are Unicode objects?
You can think of a Unicode object as a Python string that can handle more than a million different

types of characters, from accented versions of Latin characters, to non-Latin characters, to curly quotes and
obscure symbols.

Normal Python strings are encoded, which means they use an encoding such as ASCII, ISO-8859-1, or
UTF-8. If you’re storing fancy characters (anything beyond the standard 128 ASCII characters such as 0–9
and A–Z) in a normal Python string, you have to keep track of which encoding your string is using, or else the
fancy characters might appear messed up when they’re displayed or printed. Problems occur when you have
data that’s stored in one encoding and you try to combine it with data in a different encoding, or when you
try to display it in an application that assumes a certain encoding. We’ve all seen Web pages and e-mail that
are littered with “??? ??????” or other characters in odd places; that generally suggests there’s an encoding
problem.

Unicode objects, however, have no encoding; they use a consistent, universal set of characters called,
well, Unicode. When you deal with Unicode objects in Python, you can mix and match them safely without
having to worry about encoding issues.

Django uses Unicode objects throughout the framework. Model objects are retrieved as Unicode objects,
views interact with Unicode data, and templates are rendered as Unicode. You usually won’t have to worry
about making sure that your encodings are right; things should just work.

Note that this has been a very high-level, dumbed-down overview of Unicode objects, and you owe it
to yourself to learn more about the topic. A good place to start is

.

For the changes to take effect, exit out of the Python shell and enter it again
with . (This is the simplest way to make code changes take effect.)
Now the list of objects is much easier to understand:

Make sure any model you define has a method—not only for your own
convenience when using the interactive interpreter, but also because Django uses the output
of in several places when it needs to display objects.

Finally, note that is a good example of adding behavior to models. A Django
model describes more than the database table layout for an object; it also describes any
functionality that an object knows how to do. is one example of such function-
ality—a model knows how to display itself.

Inserting and Updating Data
You’ve already seen this done: to insert a row into your database, first create an instance of
your model using keyword arguments, like so:

CHAPTER 5 MODELS 87

This act of instantiating a model class does not touch the database. The record isn’t saved
into the database until you call , like this:

In SQL, this can roughly be translated into the following:

Because the model uses an autoincrementing primary key , the initial call to
 does one more thing: it calculates the primary key value for the record and sets it to the

 attribute on the instance:

Subsequent calls to will save the record in place, without creating a new record
(i.e., performing an SQL statement instead of an):

The preceding statement will result in roughly the following SQL:

Note that all the fields will be updated, not just the ones that have been changed. Depend-
ing on your application, this may cause a race condition. See the section “Updating Multiple
Objects in One Statement” to find out how to execute this (slightly different) query:

CHAPTER 5 MODELS88

Selecting Objects
Knowing how to create and update database records is essential, but chances are that the Web
applications you’ll build will be doing more querying of existing objects than creating new
ones. You’ve already seen a way to retrieve every record for a given model:

This roughly translates to this SQL:

Note Django doesn’t use when looking up data and instead lists all fields explicitly. This is by
design: in certain circumstances can be slower, and (more important) listing fields more closely
follows one tenet of the Zen of Python: “Explicit is better than implicit.” For more on the Zen of Python, try
typing at a Python prompt.

Let’s take a close look at each part of this line:

. No surprise here: when you want to
look up data, you use the model for that data.

 attribute, which is called a manager. Managers are discussed
in detail in Chapter 10. For now, all you need to know is that managers take care of all
“table-level” operations on data including, most important, data lookup.

 manager; you’ll use it any time you want to
look up model instances.

. This is a method on the manager that returns all the
rows in the database. Though this object looks like a list, it’s actually a —an
object that represents a specific set of rows from the database. Appendix C deals with

s in detail. For the rest of this chapter, we’ll just treat them like the lists they
emulate.

Any database lookup is going to follow this general pattern—we’ll call methods on the
manager attached to the model we want to query against.

Filtering Data
Naturally, it’s rare to want to select everything from a database at once; in most cases, you’ll
want to deal with a subset of your data. In the Django API, you can filter your data using the

 method:

CHAPTER 5 MODELS 89

 takes keyword arguments that get translated into the appropriate SQL
clauses. The preceding example would get translated into something like this:

You can pass multiple arguments into to narrow down things further:

Those multiple arguments get translated into SQL clauses. Thus, the example in the
code snippet translates into the following:

Notice that by default the lookups use the SQL operator to do exact match lookups.
Other lookup types are available:

That’s a double underscore there between and . Like Python itself, Django
uses the double underscore to signal that something “magic” is happening—here, the

 part gets translated by Django into an SQL statement:

Many other types of lookups are available, including (case-insensitive),
 and , and (SQL queries). Appendix C describes all of these

lookup types in detail.

Retrieving Single Objects
The previous examples all returned a , which you can treat like a list. Some-
times it’s more convenient to fetch only a single object instead of a list. That’s what the
method is for:

Instead of a list (rather,), only a single object is returned. Because of that, a query
resulting in multiple objects will cause an exception:

CHAPTER 5 MODELS90

A query that returns no objects also causes an exception:

The exception is an attribute of the model’s class: .
In your applications, you’ll want to trap these exceptions, like this:

Ordering Data
As you play around with the previous examples, you might discover that the objects are being
returned in a seemingly random order. You aren’t imagining things; so far we haven’t told the
database how to order its results, so we’re simply getting back data in some arbitrary order
chosen by the database.

In your Django applications, you’ll probably want to order your results according to a cer-
tain value—say, alphabetically. To do this, use the method:

This doesn’t look much different from the earlier example, but the SQL now
includes a specific ordering:

You can order by any field you like:

To order by multiple fields (where the second field is used to disambiguate ordering in
cases where the first is the same), use multiple arguments:

CHAPTER 5 MODELS 91

You can also specify reverse ordering by prefixing the field name with a (that’s a minus
character):

While this flexibility is useful, using all the time can be quite repetitive. Most of
the time you’ll have a particular field you usually want to order by. In these cases, Django lets
you specify a default ordering in the model:

Here, we’ve introduced a new concept: the , which is a class that’s embedded
within the class definition (it’s indented to be within). You can use
this class on any model to specify various model-specific options. A full reference of
options is available in Appendix B, but for now, we’re concerned with the option.
If you specify this, it tells Django that unless an ordering is given explicitly with ,
all objects should be ordered by the field whenever they’re retrieved with the
Django database API.

Chaining Lookups
You’ve seen how you can filter data, and you’ve seen how you can order it. You’ll often need to
do both, of course. In these cases, you simply “chain” the lookups together:

As you might expect, this translates to an SQL query with both a and an :

CHAPTER 5 MODELS92

Slicing Data
Another common need is to look up only a fixed number of rows. Imagine that you have thou-
sands of publishers in your database, but you want to display only the first one. You can do
this using Python’s standard list-slicing syntax:

This translates roughly to:

Similarly, you can retrieve a specific subset of data using Python’s range-slicing syntax:

This returns two objects, translating roughly to the following:

Note that negative slicing is not supported:

This is easy to get around, though. Just change the statement like this:

Updating Multiple Objects in One Statement
We pointed out in the “Inserting and Updating Data” section that the model method
updates all columns in a row. Depending on your application, you might want to update only
a subset of columns.

For example, suppose that you want to update the Apress to change the name
from to . Using , it would look something like this:

CHAPTER 5 MODELS 93

This roughly translates to the following SQL:

Note This example assumes that Apress has a publisher ID of .

You can see in this example that Django’s method sets all the column values, not
just the column. If you’re in an environment in which other columns of the database
might change because of some other process, it’s smarter to change only the column you need
to change. To do this, use the method on objects. Here’s an example:

The SQL translation here is much more efficient and has no chance of race conditions:

The method works on any , which means that you can edit multiple
records in bulk. Here’s how you might change the from to in each

 record:

The method has a return value: an integer that represents how many records
changed. In the preceding example, it was .

Deleting Objects
To delete an object from your database, simply call the object’s method:

CHAPTER 5 MODELS94

You can also delete objects in bulk by calling on the result of any . This
is similar to the method shown in the last section:

Be careful when deleting your data! As a precaution against deleting all the data in a par-
ticular table, Django requires you to explicitly use if you want to delete everything in
your table.

For example, this doesn’t work:

But it does work if you add the method:

If you’re just deleting a subset of your data, you don’t need to include . To repeat a
previous example:

What's Next?
After reading this chapter, you now have enough knowledge of Django models to be able
to write basic database applications. Chapter 10 will provide some information on more
advanced usage of Django’s database layer.

Once you’ve defined your models, the next step is to populate your database with data.
You might have legacy data, in which case Chapter 18 will give you advice about integrating
with legacy databases. You might rely on site users to supply your data, in which case Chapter 7
will teach you how to process user-submitted form data.

But in some cases, you or your team might need to enter data manually, in which case
it would be helpful to have a Web-based interface for entering and managing data. The next
chapter covers Django’s admin interface, which exists precisely for that reason.

C H A P T E R 6

The Django Admin Site

For a certain class of Web sites, an admin interface is an essential part of the infrastructure.
This is a Web-based interface, limited to trusted site administrators, that enables the adding,
editing, and deletion of site content. Some common examples are: the interface you use to
post to your blog, the back-end site managers use to moderate user-generated comments,
the tool your clients use to update the press releases on the Web site you built for them.

There’s a problem with admin interfaces, though: it’s boring to build them. Web develop-
ment is fun when you’re developing public-facing functionality, but building admin interfaces
is always the same. You have to authenticate users, display and handle forms, validate input,
and so on. It’s boring and it’s repetitive.

So what’s Django’s approach to these boring, repetitive tasks? It does it all for you—in
just a couple of lines of code, no less. With Django, building an admin interface is a solved
problem.

This chapter is about Django’s automatic admin interface. The feature works by read-
ing metadata in your model to provide a powerful and production-ready interface that site
administrators can start using immediately. We discuss how to activate, use, and customize
this feature.

Note that we recommend reading this chapter even if you don’t intend to use the Django
admin site, because we introduce a few concepts that apply to all of Django, regardless of
admin-site usage.

The django.contrib Packages
Django’s automatic admin is part of a larger suite of Django functionality called

—the part of the Django codebase that contains various useful add-ons to the core
framework. You can think of as Django’s equivalent of the Python standard
library—optional, de facto implementations of common patterns. They’re bundled with
Django so that you don’t have to reinvent the wheel in your own applications.

The admin site is the first part of that we’re covering in this book; techni-
cally, it’s called . Other available features in include a
user-authentication system (), support for anonymous sessions (

), and even a system for user comments (). You’ll get

95

CHAPTER 6 THE DJANGO ADMIN S ITE96

to know the various features as you become a Django expert, and we’ll spend
some more time discussing them in Chapter 16. For now, just know that Django ships with
many nice add-ons, and is generally where they live.

Activating the Admin Interface
The Django admin site is entirely optional, because only certain types of sites need this func-
tionality. That means you’ll need to take a few steps to activate it in your project.

First, make a few changes to your settings file:

 1. Add to the setting. (The order of
 doesn’t matter, but we like to keep things alphabetical so it’s easy for a human

to read.)

 2. Make sure contains ,
, and . The Django admin site requires

these three packages. (If you’re following along with our ongoing project, note
that we commented out these three entries in Chapter 5. Uncomment
them now.)

 3. Make sure contains ,
, and

. (Again, if you’re following along, note
that we commented them out in Chapter 5, so uncomment them.)

Second, run . This step will install the extra database tables
that the admin interface uses. The first time you run with in

, you’ll be asked about creating a superuser. If you don’t do this, you’ll need
to run separately to create an admin user account; oth-
erwise you won’t be able to log in to the admin site. (Potential gotcha: the

 command is available only if is in your
.)
Third, add the admin site to your URLconf (in , remember). By default, the

generated by contains commented-out code for the Django
admin, and all you have to do is uncomment it. For the record, here are the bits you need to
make sure are in there:

CHAPTER 6 THE DJANGO ADMIN S ITE 97

With that bit of configuration out of the way, now you can see the Django admin site in
action. Just run the development server (, as in previous chapters)
and visit in your Web browser.

Using the Admin Site
The admin site is designed to be used by nontechnical users, and as such it should be pretty
self-explanatory. Nevertheless, we’ll give you a quick walkthrough of the basic features.

The first thing you’ll see is a login screen, as shown in Figure 6-1.

Figure 6-1. Django’s login screen

Log in with the username and password you set up when you added your superuser. If
you’re unable to log in, make sure you’ve actually created a superuser—try running

.
Once you’re logged in, the first thing you’ll see will be the admin home page (Figure 6-2).

This page lists all the available types of data that can be edited on the admin site. At this point,
because we haven’t activated any of our own models yet, the list is sparse: it includes only
Groups and Users, which are the two default admin-editable models.

CHAPTER 6 THE DJANGO ADMIN S ITE98

Figure 6-2. The Django admin home page

Each type of data in the Django admin site has a change list and an edit form. Change lists
show you all the available objects in the database, and edit forms let you add, change, or delete
particular records in your database.

OTHER LANGUAGES

If your primary language is not English and your Web browser is configured to prefer a language other
than English, you can make a quick change to see whether the Django admin site has been translated into
your language. Just add to your

 setting, making sure it appears after
.

When you’ve done that, reload the admin index page. If a translation for your language is available, then
the various parts of the interface—from the Change Password and Log Out links at the top of the page to the
Groups and Users links in the middle—will appear in your language instead of English. Django ships with
translations for dozens of languages.

For much more on Django’s internationalization features, see Chapter 19.

CHAPTER 6 THE DJANGO ADMIN S ITE 99

Click the Change link in the Users row to load the change-list page for users (Figure 6-3).

Figure 6-3. The user change-list page

This page displays all users in the database; you can think of it as a prettied-up Web
version of a SQL query. If you’re following along with our ongo-
ing example, you’ll see only one user here, assuming you’ve added only one, but once you
have more users, you’ll probably find the filtering, sorting, and searching options useful.
Filtering options are at the right, sorting is available by clicking a column header, and the
search box at the top lets you search by username.

Click the username of the user you created, and you’ll see the edit form for that user
(Figure 6-4).

CHAPTER 6 THE DJANGO ADMIN S ITE100

Figure 6-4. The user edit form

This page lets you change the attributes of the user, like the first/last names and various
permissions. (Note that to change a user’s password, you should click Change Password Form
under the password field rather than editing the hashed code.) Another thing to note here is
that fields of different types get different widgets—for example, date/time fields have calendar
controls, Boolean fields have check boxes, and character fields have simple text input fields.

You can delete a record by clicking the Delete button at the bottom left of the record’s edit
form. That’ll take you to a confirmation page, which, in some cases, will display any depen-
dent objects that will be deleted, too. (For example, if you delete a publisher, any book with
that publisher will be deleted, as well!)

You can add a record by clicking Add in the appropriate column of the admin home page.
This will give you an empty version of the edit page, ready for you to fill out.

You’ll notice that the admin interface handles input validation for you. Try leaving a
required field blank or putting an invalid date into a date field, and you’ll see those errors
when you try to save, as shown in Figure 6-5.

When you edit an existing object, you’ll notice a History link in the upper-right corner of
the window. Every change made through the admin interface is logged, and you can examine
this log by clicking the History link (see Figure 6-6).

CHAPTER 6 THE DJANGO ADMIN S ITE 101

Figure 6-5. An edit form displaying errors

Figure 6-6. An object history page

CHAPTER 6 THE DJANGO ADMIN S ITE102

Adding Your Models to the Admin Site
There’s one crucial part we haven’t done yet. Let’s add our own models to the admin site so
we can add, change, and delete objects in our custom database tables using this nice interface.
We’ll continue the example from Chapter 5, where we defined three models: ,

, and .
Within the directory (), create a file called , and type in the fol-

lowing lines of code:

This code tells the Django admin site to offer an interface for each of these models.
Once you’ve done that, go to your admin home page in your Web browser (

). You should see a Books section with links for Authors, Books, and Publish-
ers. (You might have to stop and start the for the changes to take effect.)

You now have a fully functional admin interface for each of those three models. That
was easy!

Take some time to add and change records, to populate your database with some data.
If you followed Chapter 5’s examples of creating objects (and you didn’t delete
them), you’ll already see those records on the publisher change-list page.

One feature worth mentioning here is the admin site’s handling of foreign keys and many-
to-many relationships, both of which appear in the model. As a reminder, here’s what the

 model looks like:

On the Django admin site’s Add Book page (
), the publisher (a) is represented by a select box, and the field (a

) is represented by a multiple-select box. Both fields sit next to a green plus
sign that lets you add related records of that type. For example, if you click the green plus sign
next to the Publisher field, you’ll get a pop-up window that lets you add a publisher. After you
successfully create the publisher in the pop-up, the Add Book form will be updated with the
newly created publisher. Slick.

CHAPTER 6 THE DJANGO ADMIN S ITE 103

How the Admin Site Works
Behind the scenes, how does the admin site work? It’s pretty straightforward.

When Django loads your URLconf from at server startup, it executes the
 statement that we added as part of activating the admin. This function iterates

over your setting and looks for a file called in each installed app. If an
 exists in a given app, it executes the code in that file.

In the in our app, each call to simply registers the
given model with the admin. The admin site will display an edit/change interface for only
models that have been explicitly registered.

The app includes its own , which is why Users and Groups
showed up automatically in the admin. Other apps, such as

, also add themselves to the admin, as do many third-party Django applications you
might download from the Web.

Beyond that, the Django admin site is just a Django application, with its own models,
templates, views, and URLpatterns. You add it to your application by hooking it into your
URLconf, just as you hook in your own views. You can inspect its templates, views, and URL-
patterns by poking around in in your copy of the Django codebase—but
don’t be tempted to change anything directly in there, as there are plenty of hooks for you to
customize the way the admin site works. (If you do decide to poke around the Django admin
application, keep in mind it does some rather complicated things in reading metadata about
models, so it would probably take a good amount of time to read and understand the code.)

Making Fields Optional
After you play around with the admin site for a while, you’ll probably notice a limitation—
the edit forms require every field to be filled out, whereas in many cases you’d want certain
fields to be optional. Let’s say, for example, that we want our model’s field to be
optional—that is, a blank string should be allowed. In the real world, you might not have an
e-mail address on file for every author.

To specify that the field is optional, edit the model (which, as you’ll recall from
Chapter 5, lives in). Simply add to the field, like so:

This tells Django that a blank value is indeed allowed for authors’ e-mail addresses.
By default, all fields have , which means blank values are not allowed.

There’s something interesting happening here. Until now, with the exception of the
 method, our models have served as definitions of our database tables—Pythonic

expressions of SQL statements, essentially. In adding , we have begun
expanding our model beyond a simple definition of what the database table looks like. Now
our model class is starting to become a richer collection of knowledge about what
objects are and what they can do. Not only is the field represented by a column
in the database, it’s also an optional field in contexts such as the Django admin site.

CHAPTER 6 THE DJANGO ADMIN S ITE104

Once you’ve added that , reload the author edit form (
), and you’ll notice the field’s label—Email—is no longer

bolded. This signifies it’s not a required field. You can now add authors without needing to
provide e-mail addresses; you won’t get the loud red “This field is required” message anymore
if the field is submitted empty.

Making Date and Numeric Fields Optional
A common gotcha related to has to do with date and numeric fields, but it requires
a fair amount of background explanation.

SQL has its own way of specifying blank values—a special value called . could
mean “unknown,” or “invalid,” or some other application-specific meaning. In SQL, a value of

 is different from an empty string, just as the special Python object is different from
an empty Python string (). This means it’s possible for a particular character field (e.g., a

 column) to contain both values and empty string values.
This can cause unwanted ambiguity and confusion: “Why does this record have a but

this other one has an empty string? Is there a difference, or was the data just entered inconsis-
tently?” And “How do I get all the records that have a blank value—should I look for both
records and empty strings, or do I select only the ones with empty strings?”

To help avoid such ambiguity, Django’s automatically generated statements
(which were covered in Chapter 5) add an explicit to each column definition. For
example, here’s the generated statement for our model, from Chapter 5:

In most cases, this default behavior is optimal for your application and will save you
from data-inconsistency headaches. And it works nicely with the rest of Django, such as the
Django admin site, which inserts an empty string (not a value) when you leave a char-
acter field blank.

But there’s an exception with database column types that do not accept empty strings as
valid values—such as dates, times, and numbers. If you try to insert an empty string into a date
or an integer column, you’ll likely get a database error, depending on which database you’re
using. (PostgreSQL, which is strict, will raise an exception here; MySQL might accept it or
might not, depending on the version you’re using, the time of day, and the phase of the moon.)
In this case, is the only way to specify an empty value. In Django models, you can specify
that is allowed by adding to a field.

In short, if you want to allow blank values in a date field (e.g., , ,
) or numeric field (e.g., , ,), you’ll need to

use both and .

CHAPTER 6 THE DJANGO ADMIN S ITE 105

For the sake of example, let’s change our model to allow a blank .
Here’s the revised code:

Adding is more complicated than adding , because
changes the semantics of the database—that is, it changes the statement to
remove the from the field. To complete this change, we’ll need to
update the database.

For a number of reasons, Django does not attempt to automate changes to database
schemas, so it’s your own responsibility to execute the appropriate statement
whenever you make such a change to a model. Recall that you can use to
enter your database server’s shell. Here’s how to remove the in this particular case:

(Note that this SQL syntax is specific to PostgreSQL.) We’ll cover schema changes in more
depth in Chapter 10.

Bringing this back to the admin site, now the Add Book edit form should allow for empty
publication-date values.

Customizing Field Labels
On the admin site’s edit forms, each field’s label is generated from its model field name. The
algorithm is simple: Django just replaces underscores with spaces and capitalizes the first char-
acter, so, for example, the model’s field has the label Publication Date.

However, field names don’t always lend themselves to nice admin field labels, so in some
cases you might want to customize a label. You can do this by specifying in the
appropriate model field.

For example, here’s how we can change the label of the field to “e-mail,”
with a hyphen:

Make that change and reload the server, and you should see the field’s new label on the
author edit form.

Note that you shouldn’t capitalize the first letter of a unless it should always
be capitalized (e.g.,). Django will automatically capitalize it when it needs to, and
it will use the exact value in places that don’t require capitalization.

CHAPTER 6 THE DJANGO ADMIN S ITE106

Finally, note that you can pass the as a positional argument, for a slightly
more compact syntax. This example is equivalent to the previous one:

This won’t work with or fields, though, because they require
the first argument to be a model class. In those cases, specifying explicitly is the
way to go.

Custom ModelAdmin Classes
The changes we’ve made so far— , , and —are really
model-level changes, not admin-level changes. That is, these changes are fundamentally a
part of the model and just so happen to be used by the admin site; there’s nothing admin-
specific about them.

Beyond these, the Django admin site offers a wealth of options that let you customize how
the admin site works for a particular model. Such options live in classes, which are
classes that contain configuration for a specific model in a specific admin site instance.

Customizing Change Lists
Let’s dive into admin customization by specifying the fields that are displayed on the change
list for our model. By default, the change list displays the result of for
each object. In Chapter 5 we defined the method for objects to display
the first name and last name together:

As a result, the change list for objects displays each author’s first name and last
name together, as you can see in Figure 6-7.

CHAPTER 6 THE DJANGO ADMIN S ITE 107

Figure 6-7. The author change-list page

We can improve on this default behavior by adding a few other fields to the change-list
display. It’d be handy, for example, to see each author’s e-mail address in this list, and it’d be
nice to be able to sort by first and last name.

To make this happen, we’ll define a class for the model. This class is the
key to customizing the admin, and one of the most basic things it lets you do is specify the list
of fields to display on change-list pages. Edit to make these changes:

CHAPTER 6 THE DJANGO ADMIN S ITE108

Here’s what we’ve done:

. This class, which subclasses
, holds custom configuration for a specific admin model. We’ve specified

only one customization— , which is set to a tuple of field names to display
on the change-list page. These field names must exist in the model, of course.

 call to add after . You can
read this as “Register the model with the options.”

 The function takes a subclass as an optional second
argument. If you don’t specify a second argument (as is the case for and

), Django will use the default admin options for that model.

With that tweak made, reload the author change-list page, and you’ll see it’s now display-
ing three columns—the first name, last name, and e-mail address. In addition, each of those
columns is sortable by clicking on the column header. (See Figure 6-8.)

Figure 6-8. The author change-list page after list_display

CHAPTER 6 THE DJANGO ADMIN S ITE 109

Next let’s add a simple search bar. Add to , like so:

Reload the page in your browser, and you should see a search bar at the top. (See Figure 6-9.)
We’ve just told the admin change-list page to include a search bar that searches against the

 and fields. As a user might expect, this is case insensitive and searches
both fields, so searching for the string would find both an author with the first name
Barney and an author with the last name Hobarson.

Figure 6-9. The author change-list page after search_fields

Next let’s add some date filters to our model’s change-list page:

CHAPTER 6 THE DJANGO ADMIN S ITE110

Here, because we’re dealing with a different set of options, we created a separate
 class— . First we defined a just to make the change list

look a bit nicer. Then we used , which is set to a tuple of fields to use to create
filters along the right side of the change-list page. For date fields, Django provides short-
cuts to filter the list to “Today,” “Past 7 days,” “This month,” and “This year”—shortcuts
that Django’s developers have found hit the common cases for filtering by date. Figure 6-10
shows what that looks like.

Figure 6-10. The book change-list page after list_filter

 also works on fields of other types, not just . (Try it with
 and fields, for example.) The filters show up as long as there

are at least two values to choose from.

CHAPTER 6 THE DJANGO ADMIN S ITE 111

Another way to offer date filters is to use the admin option, like this:

With this in place, the change-list page gets a date drill-down navigation bar at the top
of the list, as shown in Figure 6-11. It starts with a list of available years, then drills down into
months and individual days.

Figure 6-11. The book change-list page after date_hierarchy

Note that takes a string, not a tuple, because only one date field can be
used to make the hierarchy.

Finally, let’s change the default ordering so that books on the change-list page are always
ordered descending by their publication date. By default, the change list orders objects
according to their model’s within (which we covered in Chapter 5)—but if
you haven’t specified this value, then the ordering is undefined.

CHAPTER 6 THE DJANGO ADMIN S ITE112

This admin option works exactly as the in a model’s , except
that it uses only the first field name in the list. Just pass a list or tuple of field names, and add a
minus sign to a field to use descending sort order.

Reload the book change list to see this in action. Note that the Publication Date header
now includes a small arrow that indicates which way the records are sorted. (See Figure 6-12.)

Figure 6-12. The book change-list page after ordering

We’ve covered the main change-list options here. Using these options, you can make a
very powerful, production-ready, data-editing interface with only a few lines of code.

Customizing Edit Forms
Just as the change list can be customized, edit forms can be customized in many ways.

First, let’s customize the way fields are ordered. By default, the order of fields in an edit
form corresponds to the order in which they’re defined in the model. We can change that
using the option in our subclass:

CHAPTER 6 THE DJANGO ADMIN S ITE 113

After this change, the edit form for books will use the given ordering for fields. It’s slightly
more natural to have the authors after the book title. Of course, the field order should depend
on your data-entry workflow. Every form is different.

Another useful thing the option lets you do is to exclude certain fields from being
edited. Just leave out the field(s) you want to exclude. You might use this if your admin users
are trusted to edit only a certain segment of your data, or if parts of your fields are changed by
some outside, automated process. For example, in our book database, we could prevent the

 field from being editable:

As a result, the edit form for books doesn’t offer a way to specify the publication date. This
could be useful if, say, you’re an editor who prefers that his authors not push back publication
dates. (This is purely a hypothetical example, of course.)

When a user employs this incomplete form to add a new book, Django will simply set the
 to —so make sure that field has .

Another commonly used edit-form customization has to do with many-to-many fields.
As we’ve seen on the edit form for books, the admin site represents each as
a multiple-select box, which is the most logical HTML input widget to utilize—but multiple-
select boxes can be difficult to use. If you want to select multiple items, you have to hold down
the Control key, or Command on a Mac. The admin site helpfully inserts a bit of text that
explains this, but, still, it gets unwieldy when your field contains hundreds of options.

The admin site’s solution is . Let’s add that to and see what
it does.

(If you’re following along, note that we’ve also removed the option to restore all the
fields in the edit form.)

CHAPTER 6 THE DJANGO ADMIN S ITE114

Reload the edit form for books, and you’ll see that the Authors section now uses a fancy
JavaScript filter interface that lets you search through the options dynamically and move spe-
cific authors from Available Authors to the Chosen Authors box, and vice versa.

Figure 6-13. The book edit form after adding filter_horizontal

We’d highly recommend using for any that has more
than ten items. It’s far easier to use than a simple multiple-select widget. Also, note you can
use for multiple fields—just specify each name in the tuple.

 classes also support a option. This works exactly as
, but the resulting JavaScript interface stacks the two boxes vertically instead of

horizontally. It’s a matter of personal taste.
 and work on only fields, not

 fields. By default, the admin site uses simple boxes for fields,
but, as for , sometimes you don’t want to incur the overhead of having to
select all the related objects to display in the drop-down. For example, if our book database
grows to include thousands of publishers, the Add Book form could take a while to load,
because it would have to load every publisher for display in the box.

CHAPTER 6 THE DJANGO ADMIN S ITE 115

You can fix this with an option called . Set this to a tuple of field
names, and those fields will be displayed in the admin with a simple text-input box (

) instead of a . See Figure 6-14.

Figure 6-14. The book edit form after adding raw_id_fields

What do you enter in this input box? The database ID of the publisher. Given that humans
don’t normally memorize database IDs, there’s a magnifying-glass icon that you can click to
pull up a pop-up window from which you can select the publisher.

CHAPTER 6 THE DJANGO ADMIN S ITE116

Users, Groups, and Permissions
Because you’re logged in as a superuser, you have access to create, edit, and delete any object.
Naturally, different environments require different permission systems—not everybody can or
should be a superuser. Django’s admin site uses a permissions system that you can use to give
specific users access to only the portions of the interface that they need.

These user accounts are meant to be generic enough to be used outside of the admin
interface, but we’ll just treat them as admin user accounts for now. In Chapter 14 we’ll cover
how to integrate user accounts with the rest of your site (i.e., not just the admin site).

You can edit users and permissions through the admin interface just like any other object.
We saw this earlier in this chapter, when we played around with the User and Group sections
of the admin. User objects have the standard username, password, e-mail, and real-name
fields you might expect, along with a set of fields that define what the user is allowed to do in
the admin interface. First, there’s a set of three Boolean flags:

 controls whether the user is active at all. If this flag is off and the user
tries to log in, he won’t be allowed in, even with a valid password.

 controls whether the user is allowed to log in to the admin interface
(i.e., whether that user is considered a “staff member” in your organization). Since this
same user system can be used to control access to public (i.e., nonadmin) sites—see
Chapter 14—this flag differentiates between public users and administrators.

 gives the user full access to add, create, and delete any item in the
admin interface. If a user has this flag set, then all regular permissions (or lack thereof)
are ignored for that user.

“Normal” admin users—that is, active, nonsuperuser staff members—are granted admin
access through assigned permissions. Each object editable through the admin interface (e.g.,
books, authors, publishers) has three permissions: create, edit, and delete. Assigning permis-
sions to a user grants the user the associated level of access.

When you create a user, that user has no permissions; it’s up to you to assign specific
ones. For example, you can give a user permission to add and change publishers but not to
delete them. Note that these permissions are defined per model, not per object—so they let
you say, “John can make changes to any book,” but they don’t let you say, “John can make
changes to any book published by Apress.” Per-object permissions are a bit more complicated
and are outside the scope of this book (but are covered in the Django documentation).

Note Access to edit users and permissions is also controlled by this permissions system. If you give
someone permission to edit users, she will be able to edit her own permissions, which might not be what you
want! Giving a user permission to edit other users is essentially turning a user into a superuser.

You can also assign users to groups. A group is simply a set of permissions to apply to
all members of that group. Groups are useful for granting identical permissions to a subset
of users.

CHAPTER 6 THE DJANGO ADMIN S ITE 117

When and Why to Use the Admin Interface—
And When Not To
After having worked through this chapter, you should have a good idea of how to use Django’s
admin site. But we want to make a point of covering when and why you might want to use it—
and when not to use it.

Django’s admin site especially shines when nontechnical users need to be able to enter
data; that’s the purpose behind the feature, after all. At the newspaper where Django was first
developed, creation of a typical online feature—say, a special report on water quality in the
municipal supply—would go something like this:

 1. The reporter responsible for the project meets with one of the developers and describes
the available data.

 2. The developer designs Django models to fit this data and then opens up the admin site
to the reporter.

 3. The reporter inspects the admin site to point out any missing or extraneous fields—
better now than later. The developer changes the models iteratively.

 4. When the models are agreed upon, the reporter begins entering data using the admin
site. At the same time, the programmer can focus on developing the publicly accessible
views/templates (the fun part!).

In other words, the raison d’être of Django’s admin interface is to facilitate the simultane-
ous work of content producers and programmers.

However, beyond these obvious data-entry tasks, the admin site is useful in a few
other cases:

Inspecting data models: Once you’ve defined a few models, it can be quite useful to call
them up in the admin interface and enter some dummy data. In some cases, this might
reveal data-modeling mistakes or other problems with your models.

Managing acquired data: For applications that rely on data coming from external
sources (e.g., users or Web crawlers), the admin site gives you an easy way to inspect
or edit this data. You can think of it as a less powerful but more convenient version of
your database’s command-line utility.

Quick and dirty data-management apps: You can use the admin site to build a very
lightweight data-management app—say, to keep track of expenses. If you’re just build-
ing something for your own needs, not for public consumption, the admin site can take
you a long way. In this sense, you can think of it as a beefed-up, relational version of a
spreadsheet.

One final point we want to make clear is that the admin site is not an end-all-be-all.
Over the years, we’ve seen it hacked and chopped up to serve a variety of functions it wasn’t
intended to serve. It’s not intended to be a public interface to data, nor is it intended to
allow for sophisticated sorting and searching of your data. As we said early in this chapter,
it’s for trusted site administrators. Keeping this sweet spot in mind is the key to effective
admin-site usage.

CHAPTER 6 THE DJANGO ADMIN S ITE118

What’s Next?
So far we’ve created a few models and configured a top-notch interface for editing data. In the
next chapter we’ll move on to the real “meat and potatoes” of Web development: form cre-
ation and processing.

C H A P T E R 7

Forms

HTML forms are the backbone of interactive Web sites, from the simplicity of Google’s single
search box to ubiquitous blog comment-submission forms to complex custom data-entry
interfaces. This chapter covers how you can use Django to access user-submitted form data,
validate it, and do something with it. Along the way, we’ll cover and objects.

Getting Data from the Request Object
We introduced objects in Chapter 3 when we first covered view functions, but
we didn’t have much to say about them at the time. Recall that each view function takes an

 object as its first parameter, as in our view:

 objects, such as the variable here, have a number of interesting attri-
butes and methods that you should familiarize yourself with so that you know what’s possible.
You can use these attributes to get information about the current request (i.e., the user/Web
browser that’s loading the current page on your Django-powered site) at the time the view
function is executed.

Information About the URL
 objects contain several pieces of information about the currently requested URL,

as Table 7-1 shows.

119

CHAPTER 7 FORMS120

Table 7-1. HttpRequest Attributes and Methods

Attribute/Method Description Example

The full path, not including the domain
but including the leading slash

The host (i.e., the “domain,” in common
parlance)

 or

The , plus a query string (if available)

 if the request was made via HTTPS;
otherwise,

 or

Always use the attributes/methods outlined in Table 7-1 instead of hard-coding URLs in
your views. This makes for more flexible code that can be reused in other places. Here’s a sim-
plistic example:

Other Information About the Request
 is a Python dictionary containing all available HTTP headers for the given

request—including the user’s IP address and user agent (generally the name and version of the
Web browser). Note that the full list of available headers depends on which headers the user
sent and which headers your Web server sets. The following are some commonly available
keys in this dictionary:

: The referring URL, if any. (Note the misspelling of .)

: The user-agent string (if any) of the user’s browser. This looks some-
thing like the following:

: The IP address of the client—for instance, . (If the request
has passed through any proxies, then this might be a comma-separated list of IP
addresses, such as .)

CHAPTER 7 FORMS 121

Note that because is just a basic Python dictionary, you’ll get a
exception if you try to access a key that doesn’t exist. (Because HTTP headers are external
data—that is, they’re submitted by your users’ browsers—they shouldn’t be trusted, and
you should always design your application to fail gracefully if a particular header is empty or
doesn’t exist.) You should either use a / clause or the method to handle the
case of undefined keys, as in this example:

We encourage you to write a small view that displays all of the data so you
can get to know what’s available. Here’s what that view might look like:

As an exercise, see whether you can convert this view to use Django’s template system
instead of hard-coding the HTML. Also try adding and the other
methods from the previous section.

Information About Submitted Data
Beyond basic metadata about the request, objects have two attributes that
contain user-submitted information: and . Both of these are diction-
ary-like objects that give you access to and data.

 data generally is submitted from an HTML , while data can come from a
 or the query string in the page’s URL.

CHAPTER 7 FORMS122

DICTIONARY-LIKE OBJECTS

When we say and are dictionary-like objects, we mean they behave like stan-
dard Python dictionaries but aren’t technically dictionaries under the hood. For example, and

 both have , , and methods, and you can iterate over the keys by
doing .

So why do we refer to these as “dictionary-like” objects as opposed to normal dictionaries? Because
both and have additional methods that normal dictionaries don’t have.

You might have encountered the similar term “file-like objects”—Python objects that have a few basic
methods, such as , that let them act as stand-ins for “real” file objects.

A Simple Form-Handling Example
Continuing this book’s ongoing example of books, authors, and publishers, let’s create a sim-
ple view that lets users search our book database by title.

Generally, there are two parts to developing a form: the HTML user interface and the
back-end view code that processes the submitted data. The first part is easy; let’s just set up a
view that displays a search form:

As you learned in Chapter 3, this view can live anywhere on your Python path. For this
example, put it in .

The accompanying template, , could look like this:

The URLpattern in could look like this:

CHAPTER 7 FORMS 123

Note that we’re importing the module directly, instead of something like
, because the former is less verbose. We’ll cover this import-

ing approach in more detail in Chapter 8.
Now, if you run the and visit , you’ll see

the search interface. Simple enough.
Try submitting the form, though, and you’ll get a Django 404 error. The form points to the

URL , which hasn’t yet been implemented. Let’s fix that with a second view function:

For the moment, this merely displays the user’s search term so we can make sure the data
is being submitted to Django properly and so you can get a feel for how the search term flows
through the system. In short, here’s what happens:

 1. The HTML defines a variable . When it’s submitted, the value of is sent via
 () to the URL .

 2. The Django view that handles the URL () has access to the value in
.

Note that we explicitly check that exists in . As we pointed out in the
 discussion earlier in this chapter, you shouldn’t trust anything submitted by

users or even assume that they’ve submitted anything in the first place. If we didn’t add this
check, any submission of an empty form would raise in the view:

CHAPTER 7 FORMS124

QUERY-STRING PARAMETERS

Because data is passed in the query string (e.g.,), you can use
to access query-string variables. In Chapter 3’s introduction of Django’s URLconf system, we compared
Django’s pretty URLs to more traditional PHP/Java URLs such as and said we’d show
you how to use the latter in Chapter 7. Now you know how to access query-string parameters in your views
(like in this example)—use .

 data works the same way as data—just use instead of .
What’s the difference between and ? Use when the act of submitting the form is
just a request to “get” data. Use whenever the act of submitting the form will have some
side effect—changing data or sending an e-mail, or something else that’s beyond simple dis-
play of data. In our book-search example, we’re using because the query doesn’t change
any data on our server. (See if you want
to learn more about and .)

Now that we’ve verified is being passed in properly, let’s hook the user’s
search query into our book database (again, in):

Some notes on what we did here:

 exists in , we made sure that
 is a nonempty value before passing it to the database query.

 to query our book table for all
books whose title includes the given submission. The is a lookup type (as
explained in Chapter 5 and Appendix B), and the statement can be roughly translated
as “Get the books whose title contains , without being case-sensitive.”

 This is a very simple way to do a book search. We wouldn’t recommend using a simple
 query on a large production database, as it can be slow. (In the real world,

you’d want to use a custom search system of some sort. Search the Web for open-source
full-text search to get an idea of the possibilities.)

, a list of objects, to the template. The template code for
 might include something like this:

CHAPTER 7 FORMS 125

Note the usage of the template filter, which outputs an “s” if appropriate, based
on the number of books found.

Improving Our Simple Form-Handling Example
As in previous chapters, we’ve shown you the simplest thing that could possibly work. Now
we’ll point out some problems and show you how to improve it.

First, our view’s handling of an empty query is poor—we’re just displaying a
 message, requiring the user to hit the browser’s Back button.

This is horrid and unprofessional, and if you ever actually implement something like this in
the wild, your Django privileges will be revoked.

It would be much better to redisplay the form, with an error above it, so that the user
can try again immediately. The easiest way to do that would be to render the template again,
like this:

(Note that we’ve included here so you can see both views in one place.)
Here we’ve improved to render the template again if the query

is empty. And because we need to display an error message in that template, we pass a tem-
plate variable. Now we can edit to check for the variable:

CHAPTER 7 FORMS126

We can still use this template from our original view, , because
 doesn’t pass to the template—so the error message won’t show up in that case.

With this change in place, it’s a better application but it now begs the question: is a dedi-
cated view really necessary? As it stands, a request to the URL (without
any parameters) will display the empty form (but with an error). We can remove the

 view, along with its associated URLpattern, as long as we change to
hide the error message when somebody visits with no parameters:

In this updated view, if a user visits with no parameters, he’ll see the search
form with no error message. If a user submits the form with an empty value for , he’ll see
the search form with an error message. And, finally, if a user submits the form with a non-
empty value for , he’ll see the search results.

We can make one final improvement to this application, to remove a bit of redundancy.
Now that we’ve rolled the two views and URLs into one and handles both search-
form display and result display, the HTML in doesn’t have to
hard-code a URL. Instead of this

it can be changed to this:

CHAPTER 7 FORMS 127

The means “Submit the form to the same URL as the current page.” With
this change in place, you won’t have to remember to change the if you ever hook the

 view to another URL.

Simple Validation
Our search example is still reasonably simple, particularly in terms of its data validation; we’re
merely checking to make sure the search query isn’t empty. Many HTML forms include a level
of validation that’s more complex than making sure the value is nonempty. We’ve all seen the
following error messages on Web sites:

number.”

A NOTE ON JAVASCRIPT VALIDATION

JavaScript validation is beyond the scope of this book, but you can use JavaScript to validate data on the
client side, directly in the browser. Be warned, however: even if you do this, you must validate data on the
server side. Some people have JavaScript turned off, and some malicious users might submit raw, unvali-
dated data directly to your form handler to see whether they can cause mischief.

There’s nothing you can do about this, other than to always validate user-submitted data server-side
(i.e., in your Django views). You should think of JavaScript validation as a bonus usability feature, not as your
only means of validating.

Let’s tweak our view so it validates that the search term is less than or equal to

too slow.) How might we do that? The simplest thing would be to embed the logic directly in
the view, like this:

CHAPTER 7 FORMS128

error message. But that error message in currently says,
—so we’ll have to change it to be accurate for both cases (an empty search term

or a search term that’s too long).

There’s something ugly about this. Our one-size-fits-all error message is potentially con-
fusing. Why should the error message for an empty form submission mention anything about

The problem is that we’re using a simple Boolean value for , whereas we should be
using a list of error-message strings. Here’s how we might fix that:

Then we need to make a small tweak to the template to reflect that it’s
now passed an list instead of an Boolean value:

CHAPTER 7 FORMS 129

Making a Contact Form
Although we iterated over the book-search-form example several times and improved it
nicely, it’s still fundamentally simple: just a single field, . Because it’s so simple, we didn’t
even use Django’s form library to deal with it. But more complex forms call for more complex
treatment—and now we’ll develop something more complex: a site contact form that lets site
users submit a bit of feedback, along with an optional e-mail return address. After the form
is submitted and the data is validated, we’ll automatically send the message via e-mail to the
site staff.

We’ll start with our template, .

CHAPTER 7 FORMS130

We’ve defined three fields: the subject, e-mail address, and message. The second is
optional, but the other two fields are required. Note we’re using here instead of

 because this form submission has a side effect—it sends an e-mail. Also, we cop-
ied the error-displaying code from our previous template .

If we continue down the road established by our view from the previous section,
a naive version of our view might look like this:

Note You may be wondering whether to put this view in the file. It doesn’t have any-
thing to do with the books application, so should it live elsewhere? It’s up to you; Django doesn’t care, as
long as you’re able to point to the view from your URLconf. Our personal preference would be to create a
separate directory, , at the same level in the directory tree as . This would contain an empty

 and .

CHAPTER 7 FORMS 131

Several new things are happening here:

 is . This will be true only in the case of a
form submission; it won’t be true if somebody is merely viewing the contact form. (In
the latter case, will be set to because in normal Web browsing,
browsers use , not .) This makes it a nice way to isolate the “form display” case
from the “form processing” case.

, we’re using to access the submitted form data.
This is necessary because the HTML in uses .
If this view is accessed via , then will be empty.

two required fields, and , so we have to validate both. Note
that we’re using and providing a blank string as the default value;
this is a nice, short way of handling both the cases of missing keys and missing data.

 field is not required, we still validate it if it is indeed submitted.
Our validation algorithm here is fragile—we’re just checking that the string contains an

 character. In the real world, you’d want more robust validation (and Django provides
it, which we’ll show you in the “Your First Form Class” section later in this chapter).

 to send an e-mail. This function
has four required arguments: the e-mail subject, the e-mail body, the “from” address,
and a list of recipient addresses. is a convenient wrapper around Django’s

 class, which provides advanced features such as attachments, multipart
e-mails, and full control over e-mail headers.

 Note that in order to send e-mail using , your server must be configured to
send mail, and Django must be told about your outbound e-mail server. See

 for the specifics.

 object. We’ll leave the implementation of that “success”

page up to you (it’s a simple view/URLconf/template), but we’ll explain why we
initiate a redirect instead of, for example, simply calling with
a template right there.

 The reason: if a user hits Refresh on a page that was loaded via , that request will be
repeated. This can often lead to undesired behavior, such as a duplicate record being
added to the database—or, in our example, the e-mail being sent twice. If the user
is redirected to another page after the , then there’s no chance of repeating the
request.

 You should always issue a redirect for successful requests. It’s a Web-development
best practice.

This view works, but those validation functions are kind of crufty. Imagine processing a
form with a dozen fields; would you really want to have to write all of those statements?

Another problem is form redisplay. In the case of validation errors, it’s best practice to
redisplay the form with the previously submitted data already filled in so the user can see what
he did wrong (and doesn’t have to re-enter data in fields that were submitted correctly). We
could manually pass the data back to the template, but we’d have to edit each HTML field
to insert the proper value in the proper place:

CHAPTER 7 FORMS132

CHAPTER 7 FORMS 133

This is a lot of cruft, and it introduces a lot of opportunities for human error. We hope
you’re starting to see the opportunity for some higher-level library that handles form- and
validation-related tasks.

Your First Form Class
Django comes with a form library, called , that handles many of the issues we’ve
been exploring in this chapter—from HTML form display to validation. Let’s dive in and
rework our contact-form application using the Django forms framework.

DJANGO’S “NEWFORMS” LIBRARY

Throughout the Django community, you might see chatter about something called . When
people speak of , they’re talking about what is now —the library covered
in this chapter.

When Django was first released to the public, it had a complicated, confusing forms system,
. It was completely rewritten, and the new version was called so that people could

still use the old system. When Django 1.0 was released, the old went away, and
 became .

The primary way to use the forms framework is to define a class for each HTML
 you’re dealing with. In our case, we only have one , so we’ll have one class.

This class can live anywhere you want—including directly in your file—but commu-
nity convention is to keep classes in a separate file called . Create this file in the
same directory as your , and enter the following:

CHAPTER 7 FORMS134

is represented by a type of class— and are the only types of fields
used here—as attributes of a
optional, we specify .

Let’s hop into the Python interactive interpreter and see what this class can do. The first
thing it can do is display itself as HTML:

Django adds a label to each field, along with tags for accessibility. The idea is to
make the default behavior as optimal as possible.

This default output is in the format of an HTML , but there are a few other built-in
outputs:

Note that the opening and closing , , and tags aren’t included in the
output, so you can add any additional rows and customization if necessary.

These methods are just shortcuts for the common case of “display the entire form.” You
can also display the HTML for a particular field:

The second thing objects can do is validate data. To do this, create a new object
and pass it a dictionary of data that maps field names to data:

CHAPTER 7 FORMS 135

Once you’ve associated data with a instance, you’ve created a bound :

Call the method on any bound to find out whether its data is valid. We’ve
passed a valid value for each field, so the in its entirety is valid:

If we don’t pass the field, it’s still valid, because we’ve specified for
that field:

But if we leave off either or , the is no longer valid:

You can drill down to get field-specific error messages:

 instance has an attribute that gives you a dictionary mapping
field names to error-message lists:

Finally, for instances whose data has been found to be valid, a attribute
is available. This is a dictionary of the submitted data, “cleaned up.” Django’s forms frame-
work not only validates data, but cleans it up by converting values to the appropriate Python
types, as shown here:

CHAPTER 7 FORMS136

Our contact form deals only with strings, which are “cleaned” into Unicode objects—
but if we were to use an or a , the forms framework would ensure that

 used proper Python integers or objects for the given fields.

Tying Form Objects into Views
Now that you have some basic knowledge about classes, you might see how we can use
this infrastructure to replace some of the cruft in our view. Here’s how we can
rewrite to use the forms framework:

CHAPTER 7 FORMS 137

Look at how much cruft we’ve been able to remove! Django’s forms framework handles
the HTML display, the validation, data cleanup, and form redisplay-with-errors.

Try running this locally. Load the form, submit it with none of the fields filled out, submit
it with an invalid e-mail address, then finally submit it with valid data. (Of course, depend-
ing on your mail-server configuration, you might get an error when is called, but
that’s another issue.)

Changing How Fields Are Rendered
Probably the first thing you’ll notice when you render this form locally is that the field
is displayed as an , and it ought to be a . We can fix that by set-
ting the field’s widget:

The forms framework separates out the presentation logic for each field into a set of wid-

custom widget of your own.
Think of the classes as representing validation logic, while widgets represent presen-

tation logic.

Setting a Maximum Length
One of the most common validation needs is to check that a field is of a certain size. For good
measure, we should improve our to limit the to 100 characters. To do
that, just supply a to the , like this:

CHAPTER 7 FORMS138

An optional argument is also available.

Setting Initial Values
As an improvement to this form, let’s add an initial value for the field:

 (A little power of suggestion can’t hurt.) To do this, we can use the argument
when we create a instance:

Now the field will be displayed prepopulated with that kind statement.
Note that there is a difference between passing initial data and passing data that binds the

form. If you’re just passing initial data, then the form will be unbound, which means it won’t
have any error messages.

Adding Custom Validation Rules
Imagine we’ve launched our feedback form, and the e-mails have started tumbling in. There’s
just one problem: some of the submitted messages are just one or two words, which isn’t long
enough for us to make sense of. We decide to adopt a new validation policy: four words or
more, please.

There are various ways to hook custom validation into a Django form. If our rule is
something we will reuse again and again, we can create a custom field type. Most custom vali-
dations are one-off affairs, though, and can be tied directly to the class.

We want additional validation on the field, so we add a method
to our class:

CHAPTER 7 FORMS 139

Django’s form system automatically looks for any method whose name starts with
and ends with the name of a field. If any such method exists, it’s called during validation.

Specifically, the method will be called after the default validation logic
for a given field (in this case, the validation logic for a required). Because the field
data has already been partially processed, we pull it out of . Also, we don’t
have to worry about checking that the value exists and is nonempty; the default validator
does that.

We naively use a combination of and to count the number of words. If the
user has entered too few words, we raise a . The string attached to this
exception will be displayed to the user as an item in the error list.

It’s important that we explicitly return the cleaned value for the field at the end of the
method. This allows us to modify the value (or convert it to a different Python type) within our
custom validation method. If we forget the return statement, then will be returned and
the original value will be lost.

Specifying Labels
By default, the labels on Django’s autogenerated form HTML are created by replacing under-
scores with spaces and capitalizing the first letter—so the label for the field is .
(Sound familiar? It’s the same simple algorithm that Django’s models use to calculate default

 values for fields, which we covered in Chapter 5.)
But, as with Django’s models, we can customize the label for a given field. Just use ,

like so:

Customizing Form Design
Our template uses to display the form, but we can
display the form in other ways to get more granular control over the display.

CHAPTER 7 FORMS140

could do with some visual enhancement, and the autogenerated error lists use
 precisely so that you can target them with CSS. The following CSS really makes

our errors stand out:

Although it’s convenient to have our form’s HTML generated for us, in many cases you’ll
want to override the default rendering. and friends are useful shortcuts
while you develop your application, but everything about the way a form is displayed can be
overridden, mostly within the template itself, and you’ll likely override the defaults often.

, , , etc.) can be rendered
individually by accessing in the template, and any errors associated
with a field are available as . With this in mind, we can construct
a custom template for our contact form with the following template code:

CHAPTER 7 FORMS 141

 displays a if errors are present and
a blank string if the field is valid (or the form is unbound). We can also treat

 as a Boolean or even iterate over it as a list. Consider this example:

In the case of validation errors, this will add an class to the containing and
display the list of errors in an unordered list.

What’s Next?
This chapter concludes the introductory material in this book—the so-called “core curricu-

After these first seven chapters, you should know enough to start writing your own Django
projects. The rest of the material in this book will help fill in the missing pieces. We’ll start in
Chapter 8 by doubling back and taking a closer look at views and URLconfs (introduced first in
Chapter 3).

P A R T 2

Advanced Usage

145

C H A P T E R 8

Advanced Views and URLconfs

In Chapter 3, we explained the basics of Django view functions and URLconfs. This chapter
goes into more detail about advanced functionality in those two pieces of the framework.

URLconf Tricks
There’s nothing “special” about URLconfs—like anything else in Django, they’re just Python
code. You can take advantage of this in several ways, as described in the sections that follow.

Streamlining Function Imports
Consider this URLconf, which builds on the example in Chapter 3:

As explained in Chapter 3, each entry in the URLconf includes its associated view func-
tion, passed directly as a function object. This means it’s necessary to import the view
functions at the top of the module.

But as a Django application grows in complexity, its URLconf grows, too, and keeping
those imports can be tedious to manage. (For each new view function, you have to remember
to import it, and the statement tends to get overly long if you use this approach.) It’s
possible to avoid that tedium by importing the module itself. This example URLconf is
equivalent to the previous one:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS146

Django offers another way of specifying the view function for a particular pattern in the
URLconf: you can pass a string containing the module name and function name rather than
the function object itself. Continuing the ongoing example:

(Note the quotes around the view names. We’re using —
with quotes—instead of .)

Using this technique, it’s no longer necessary to import the view functions; Django auto-
matically imports the appropriate view function the first time it’s needed, according to the
string describing the name and path of the view function.

A further shortcut you can take when using the string technique is to factor out a common
“view prefix.” In our URLconf example, each of the view strings starts with ,
which is redundant to type. We can factor out that common prefix and pass it as the first argu-
ment to , like this:

Note that you don’t put a trailing dot () in the prefix, nor do you put a leading dot in
the view strings. Django puts those in automatically.

With these two approaches in mind, which is better? It really depends on your personal
coding style and needs.

Advantages of the string approach are as follows:

across several different Python modules.

CHAPTER 8 ADVANCED V IEWS AND URLCONFS 147

Advantages of the function object approach are as follows:

” of view functions. See the section “Wrapping View Func-
tions” later in this chapter.

functions as objects.

Both approaches are valid, and you can even mix them within the same URLconf. The
choice is yours.

Using Multiple View Prefixes
In practice, if you use the string technique, you’ll probably end up mixing views to the point
where the views in your URLconf won’t have a common prefix. However, you can still take
advantage of the view prefix shortcut to remove duplication. Just add multiple
objects together, like this:

Old:

New:

All the framework cares about is that there’s a module-level variable called .
This variable can be constructed dynamically, as we do in this example. We should specifically
point out that the objects returned by can be added together, which is something
you might not have expected.

CHAPTER 8 ADVANCED V IEWS AND URLCONFS148

Special-Casing URLs in Debug Mode
Speaking of constructing dynamically, you might want to take advantage of this
technique to alter your URLconf’s behavior while in Django’s debug mode. To do this, just
check the value of the setting at runtime, like so:

In this example, the URL will be available only if your setting is set to .

Using Named Groups
In all of our URLconf examples so far, we’ve used simple, non-named regular expression
groups—that is, we put parentheses around parts of the URL we wanted to capture, and
Django passes that captured text to the view function as a positional argument. In more
advanced usage, it’s possible to use named regular expression groups to capture URL bits and
pass them as keyword arguments to a view.

KEYWORD ARGUMENTS VS. POSITIONAL ARGUMENTS

A Python function can be called using keyword arguments or positional arguments—and, in some cases, both
at the same time. In a keyword argument call, you specify the names of the arguments along with the values
you’re passing. In a positional argument call, you simply pass the arguments without explicitly specifying
which argument matches which value; the association is implicit in the arguments’ order.

For example, consider this simple function:

To call it with positional arguments, you specify the arguments in the order in which they’re listed in the
function definition:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS 149

To call it with keyword arguments, you specify the names of the arguments along with the values. The
following statements are equivalent:

Finally, you can mix keyword and positional arguments, as long as all positional arguments are listed
before keyword arguments. The following statements are equivalent to the previous examples:

In Python regular expressions, the syntax for named regular expression groups is
, where is the name of the group and is some pattern to match.

Here’s an example URLconf that uses non-named groups:

Here’s the same URLconf, rewritten to use named groups:

This accomplishes exactly the same thing as the previous example, with one subtle dif-
ference: the captured values are passed to view functions as keyword arguments rather than
positional arguments.

For example, with non-named groups, a request to would result in a
function call equivalent to this:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS150

With named groups, though, the same request would result in this function call:

In practice, using named groups makes your URLconfs slightly more explicit and less
prone to argument-order bugs—and you can reorder the arguments in your views’ function
definitions. Following the preceding example, if we wanted to change the URLs to include
the month before the year, and we were using non-named groups, we’d have to remember to
change the order of arguments in the view. If we were using named groups,
changing the order of the captured parameters in the URL would have no effect on the view.

Of course, the benefits of named groups come at the cost of brevity; some developers find
the named-group syntax ugly and too verbose. Still, another advantage of named groups is
readability, especially by those who aren’t intimately familiar with regular expressions or your
particular Django application. It’s easier to see what’s happening, at a glance, in a URLconf
that uses named groups.

Understanding the Matching/Grouping Algorithm
A caveat with using named groups in a URLconf is that a single URLconf pattern cannot con-
tain both named and non-named groups. If you do this, Django won’t throw any errors, but
you’ll probably find that your URLs aren’t matching as you expect. Specifically, here’s the
algorithm the URLconf parser follows, with respect to named groups vs. non-named groups in
a regular expression:

 options as keyword arguments. See the next section
for more information.

Passing Extra Options to View Functions
Sometimes you’ll find yourself writing view functions that are quite similar, with only a few
small differences. For example, say you have two views whose contents are identical except for
the templates they use:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS 151

We’re repeating ourselves in this code, and that’s inelegant. At first, you may think to
remove the redundancy by using the same view for both URLs, putting parentheses around
the URL to capture it, and checking the URL within the view to determine the template, like so:

The problem with that solution, though, is that it couples your URLs to your code. If you
decide to rename to , you’ll have to remember to change the view code.

The elegant solution involves an optional URLconf parameter. Each pattern in a URLconf
may include a third item: a dictionary of keyword arguments to pass to the view function.

With this in mind, we can rewrite our ongoing example like this:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS152

As you can see, the URLconf in this example specifies in the URLconf. The
view function treats it as just another parameter.

This extra URLconf options technique is a nice way of sending additional information
to your view functions with minimal fuss. As such, it’s used by a couple of Django’s bundled
applications, most notably its generic views system, which we cover in Chapter 11.

The following sections contain a couple of ideas on how you can use the extra URLconf
options technique in your own projects.

Faking Captured URLconf Values
Say you have a set of views that match a pattern, along with another URL that doesn’t fit the
pattern but whose view logic is the same. In this case, you can “fake” the capturing of URL val-
ues by using extra URLconf options to handle that extra URL with the same view.

For example, you might have an application that displays some data for a particular day,
with URLs such as these:

This is simple enough to deal with—you can capture those in a URLconf like this (using
named group syntax):

And the view function signature would look like this:

This approach is straightforward—it’s nothing you haven’t seen before. The trick comes in
when you want to add another URL that uses but whose URL doesn’t include a
and/or .

For example, you might want to add another URL, , which would be
equivalent to . You can take advantage of extra URLconf options like so:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS 153

The cool thing here is that you don’t have to change your view function at all. The view
function only cares that it gets and parameters—it doesn’t matter whether they come
from the URL capturing itself or extra parameters.

Making a View Generic
It’s good programming practice to “factor out” commonalities in code. For example, with
these two Python functions:

we can factor out the greeting to make it a parameter:

You can apply this same philosophy to your Django views by using extra URLconf param-
eters.

With this in mind, you can start making higher-level abstractions of your views. Instead of
thinking to yourself, “This view displays a list of objects,” and “That view displays a list of

 objects,” realize they’re both specific cases of “A view that displays a list of objects,
where the type of object is variable.”

Take this code, for example:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS154

The two views do essentially the same thing: they display a list of objects. So let’s factor
out the type of object they’re displaying:

With those small changes, we suddenly have a reusable, model-agnostic view! From now
on, anytime we need a view that lists a set of objects, we can simply reuse this
view rather than writing view code. Here are a couple of notes about what we did:

 parameter. The dictionary of extra
URLconf options can pass any type of Python object—not just strings.

 line is an example of duck typing: “If it walks like a duck and
talks like a duck, we can treat it like a duck.” Note the code doesn’t know what type of
object is; the only requirement is that have an attribute, which in
turn has an method.

 in determining the template name. Every Python
class has a attribute that returns the class name. This feature is useful at
times like this, when we don’t know the type of class until runtime. For example, the

 class’s is the string .

generic variable name to the template. We could easily change this vari-
able name to be or , but we’ve left that as an exercise for the
reader.

CHAPTER 8 ADVANCED V IEWS AND URLCONFS 155

Because database-driven Web sites have several common patterns, Django comes with a
set of “generic views” that use this exact technique to save you time. We cover Django’s built-
in generic views in Chapter 11.

Giving a View Configuration Options
If you’re distributing a Django application, chances are that your users will want some degree
of configuration. In this case, it’s a good idea to add hooks to your views for any configuration
options you think people may want to change. You can use extra URLconf parameters for this
purpose.

A common bit of an application to make configurable is the template name:

Understanding Precedence of Captured Values vs. Extra Options
When there’s a conflict, extra URLconf parameters get precedence over captured parameters.
In other words, if your URLconf captures a named-group variable and an extra URLconf
parameter includes a variable with the same name, the extra URLconf parameter value will
be used.

For example, consider this URLconf:

Here, both the regular expression and the extra dictionary include an . The hard-coded
 gets precedence. That means any request (e.g., or) will be

treated as if is set to , regardless of the value captured in the URL.
Astute readers will note that in this case, it’s a waste of time and typing to capture the

in the regular expression, because its value will always be overridden by the dictionary’s value.
That’s correct; we bring this up only to help you avoid making the mistake.

Using Default View Arguments
Another convenient trick is to specify default parameters for a view’s arguments. This tells the
view which value to use for a parameter by default if none is specified.

Here’s an example:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS156

Here, both URLpatterns point to the same view— —but the first pattern doesn’t
capture anything from the URL. If the first pattern matches, the function will use its
default argument for , . If the second pattern matches, will use whatever
value was captured by the regular expression.

Note We’ve been careful to set the default argument’s value to the string , not the integer . That’s
for consistency because any captured value for will always be a string.

It’s common to use this technique in conjunction with configuration options, as explained
earlier. This example makes a slight improvement to the example in the “Giving a View Con-
figuration Options” section by providing a default value for :

Special-Casing Views
Sometimes you’ll have a pattern in your URLconf that handles a large set of URLs, but you’ll
need to special-case one of them. In this case, take advantage of the linear way a URLconf is
processed and put the special case first.

For example, you can think of the “add an object” pages in Django’s admin site as repre-
sented by a URLpattern like this:

This matches URLs such as and . However, the
“add” page for a user object () is a special case—it doesn’t display all of the
form fields, it displays two password fields, and so forth. We could solve this problem by spe-
cial-casing in the view, like so:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS 157

but that’s inelegant for a reason we’ve touched on multiple times in this chapter: it puts URL
logic in the view. As a more elegant solution, we can take advantage of the fact that URLconfs
are processed in order from top to bottom:

With this in place, a request to will be handled by the
view. Although that URL matches the second pattern, it matches the top one first. (This is
short-circuit logic.)

Capturing Text in URLs
Each captured argument is sent to the view as a plain Python Unicode string, regardless of
what sort of match the regular expression makes. For example, in this URLconf line, the
argument to will be a string, not an integer, even though will only
match integer strings:

This is important to keep in mind when you’re writing view code. Many built-in Python
functions are fussy (and rightfully so) about accepting only objects of a certain type. A com-
mon error is to attempt to create a object with string values instead of integer
values:

Translated to a URLconf and view, the error looks like this:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS158

Instead, can be written correctly like this:

Note that itself raises a when you pass it a string that is not composed
solely of digits, but we’re avoiding that error in this case because the regular expression in our
URLconf has ensured that only strings containing digits are passed to the view function.

Determining What the URLconf Searches Against
When a request comes in, Django tries to match the URLconf patterns against the requested
URL, as a Python string. This does not include or parameters, or the domain name. It
also does not include the leading slash, because every URL has a leading slash.

For example, in a request to , Django will try to match
. In a request to , Django will try to match .

The request method (e.g., ,) is not taken into account when traversing the URL-
conf. In other words, all request methods will be routed to the same function for the same
URL. It’s the responsibility of a view function to perform branching based on the request
method.

Higher-Level Abstractions of View Functions
And speaking of branching based on the request method, let’s take a look at how we might
build a nice way of doing that. Consider this URLconf/view layout:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS 159

In this example, the view’s handling of vs. requests is quite different.
The only thing they have in common is a shared URL: . As such, it’s kind of inel-
egant to deal with both and in the same view function. It would be nice if we could
have two separate view functions—one handling requests and the other handling —
and ensuring that each one was called only when appropriate.

We can do that by writing a view function that delegates to other views, either before or
after executing some custom logic. Here’s an example of how this technique could help sim-
plify our view:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS160

Let’s go through what this does:

, that delegates to other views based on
. It looks for two keyword arguments, and , which should be

view functions. If is , it calls the view. If is
, it calls the view. If is something else (, and so on), or if

 or were not supplied to the function, it raises an .

 at and pass it extra arguments—
the view functions to use for and , respectively.

 view into two view functions: and
. This is much nicer than shoving all that logic into a single view.

Note These view functions technically no longer have to check because
 does that. (By the time is called, for example, we can be confident that

 is .) Still, just to be safe, and also to serve as documentation, we stuck in an
, ensuring that is what we expect it to be.

Now we have a nice generic view function that encapsulates the logic of delegating a view
by . Nothing about is tied to our specific application, of
course, so we can reuse it in other projects.

But there’s one way to improve on . As it’s written, it assumes that the
 and views take no arguments other than . What if we wanted to use

 with views that, for example, capture text from URLs or take optional keyword
arguments?

To do that, we can use a nice Python feature: variable arguments with asterisks. We’ll
show the example first and then explain it:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS 161

Here, we refactored to remove the and keyword arguments in
favor of and (note the asterisks). This is a Python feature that allows a function
to accept a dynamic arbitrary number of arguments whose names aren’t known until runtime.
If you put a single asterisk in front of a parameter in a function definition, any positional argu-
ments to that function will be rolled up into a single tuple. If you put two asterisks in front of
a parameter in a function definition, any keyword arguments to that function will be rolled up
into a single dictionary.

For example, note this function:

Here’s how it would work:

Bringing this back to , you can see we’re using and to
accept any arguments to the function and pass them along to the appropriate view. But before
we do that, we make two calls to to get the and arguments, if they’re
available. (We’re using with a default value of to avoid if one or the other
isn’t defined.)

Wrapping View Functions
Our final view trick takes advantage of an advanced Python technique. Suppose that you find
yourself repeating a bunch of code throughout various views, as in this example:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS162

Here, each view starts by checking that is authenticated—that is, the current
user has successfully logged into the site—and redirects to if not.

Note We haven’t yet covered —Chapter 14 does—but represents the
current user, either logged-in or anonymous.

It would be nice if we could remove that bit of repetitive code from each of these views
and just mark them as requiring authentication. We can do that by making a view wrapper.
Take a moment to study this:

This function, , takes a view function () and returns a new view func-
tion (). The new function, , is defined within and handles the
logic of checking and delegating to the original view ().

Now, we can remove the checks from our views
and simply wrap them with in our URLconf:

This has the same effect as before, but with less code redundancy. Now we’ve created a
nice generic function— that we can wrap around any view in order to make
it require a login.

Including Other URLconfs
If you intend your code to be used on multiple Django-based sites, you should consider
arranging your URLconfs in such a way that allows for “including.”

CHAPTER 8 ADVANCED V IEWS AND URLCONFS 163

At any point, your URLconf can “include” other URLconf modules. This essentially “roots”
a set of URLs below other ones. For example, this URLconf includes other URLconfs:

You saw this before in Chapter 6, when we introduced the Django admin site. The admin
site has its own URLconf that you merely within yours.

There’s an important gotcha here: the regular expressions in this example that point to
an do not have a (end-of-string match character) but do include a trailing slash.
Whenever Django encounters , it chops off whatever part of the URL matched up to
that point and sends the remaining string to the included URLconf for further processing.

Continuing this example, here’s the URLconf :

With these two URLconfs, here’s how a few sample requests would be handled:

: In the first URLconf, the pattern matches. Because it is
an , Django strips all the matching text, which is in this case. The
remaining part of the URL is , which matches the first line in the

 URLconf.

 (with two slashes): In the first URLconf, the pattern
matches. Because it is an , Django strips all the matching text, which is

 in this case. The remaining part of the URL is (with a leading slash),
which does not match any of the lines in the URLconf.

: This matches the view in the first URLconf, demonstrat-
ing that you can mix patterns with non- patterns.

How Captured Parameters Work with include()
An included URLconf receives any captured parameters from parent URLconfs, for example:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS164

In this example, the captured variable is passed to the included URLconf and,
hence, to every view function within that URLconf.

Note that the captured parameters will always be passed to every line in the included
URLconf, regardless of whether the line’s view actually accepts those parameters as valid. For
this reason, this technique is useful only if you’re certain that every view in the included URL-
conf accepts the parameters you’re passing.

How Extra URLconf Options Work with include()
Similarly, you can pass extra URLconf options to , just as you can pass extra URLconf
options to a normal view—as a dictionary. When you do this, each line in the included URL-
conf will be passed the extra options.

For example, the following two URLconf sets are functionally identical.
Set one:

Set two:

CHAPTER 8 ADVANCED V IEWS AND URLCONFS 165

As is the case with captured parameters (explained in the previous section), extra options
will always be passed to every line in the included URLconf, regardless of whether the line’s view
actually accepts those options as valid. For this reason, this technique is useful only if you’re
certain that every view in the included URLconf accepts the extra options you’re passing.

What’s Next?
This chapter provided many advanced tips and tricks for views and URLconfs. In Chapter 9,
we’ll give this advanced treatment to Django’s template system.

C H A P T E R 9

Advanced Templates

Although most of your interactions with Django’s template language will be in the role of
template author, you may want to customize and extend the template engine—either to make
it do something it doesn’t already do, or to make your job easier in some other way.

This chapter delves deep into the guts of Django’s template system. It covers what you
need to know if you plan to extend the system or if you’re just curious about how it works. It
also covers the autoescaping feature, a security measure you’ll no doubt notice over time as
you continue to use Django.

If you’re looking to use the Django template system as part of another application (i.e.,
without the rest of the framework), make sure to read the “Configuring the Template System
in Standalone Mode” section later in the chapter.

Template Language Review
First, let’s quickly review a number of terms introduced in Chapter 4:

template is a text document, or a normal Python string, that is marked up using the

template tag is a symbol within a template that does something. This definition is
deliberately vague. For example, a template tag can produce content, serve as a con-
trol structure (an statement or a loop), grab content from a database, or enable
access to other template tags.

 Template tags are surrounded by and :

167

CHAPTER 9 ADVANCED TEMPLATES168

variable is a symbol within a template that outputs a value.

 Variable tags are surrounded by and :

context is a name-value mapping (similar to a Python dictionary) that is passed to a
template.

renders a context by replacing the variable “holes” with values from the
context and executing all template tags.

For more details about the basics of these terms, refer back to Chapter 4.
The rest of this chapter discusses ways of extending the template engine. First, though,

let’s take a quick look at a few internals left out of Chapter 4 for simplicity.

RequestContext and Context Processors
When rendering a template, you need a context. Usually this is an instance of

, but Django also comes with a special subclass, , that
acts slightly differently. adds a bunch of variables to your template context by
default—things like the object or information about the currently logged-in user.

Use when you don’t want to have to specify the same set of variables in a
series of templates. For example, consider these two views:

CHAPTER 9 ADVANCED TEMPLATES 169

(Note that we’re deliberately not using the shortcut in these exam-
ples—we’re manually loading the templates, constructing the context objects, and rendering
the templates. We’re “spelling out” all of the steps for the purpose of clarity.)

Each view passes the same three variables— , , and —to its template.
Wouldn’t it be nice if we could remove that redundancy?

 and context processors were created to solve this problem. Context proces-
sors let you specify a number of variables that get set in each context automatically—without
you having to specify the variables in each call. The catch is that you
have to use instead of when you render a template.

The most low-level way of using context processors is to create some processors and pass
them to . Here’s how the preceding example could be written with context
processors:

Let’s step through this code:

. This is a context processor—it takes an
 object and returns a dictionary of variables to use in the template context.

That’s all it does.

 instead of .
There are two differences in how the context is constructed. First,
requires the first argument to be an object—the one that was passed into
the view function in the first place (). Second, takes an optional

 argument, which is a list or tuple of context processor functions to use.
Here, we pass in , the custom processor we defined earlier.

CHAPTER 9 ADVANCED TEMPLATES170

, , or in its context construction,
because those are provided by .

still has the flexibility to introduce any custom template variables it might
need. In this example, the template variable is set differently in each view.

In Chapter 4, we introduced the shortcut, which saves you from
having to call , then create a , then call the method
on the template. In order to demonstrate the lower-level workings of context processors, the
previous examples didn’t use . But it’s possible—and preferable—to use
context processors with . Do this with the argument,
like so:

Here, we’ve trimmed down each view’s template-rendering code to a single (wrapped) line.
This is an improvement, but, evaluating the conciseness of this code, we have to admit

we’re now almost overdosing on the other end of the spectrum. We’ve removed redundancy
in data (our template variables) at the cost of adding redundancy in code (in the
call). Using context processors doesn’t save you much typing if you have to type
all the time.

For that reason, Django provides support for global context processors. The
 setting (in your) designates which context processors should

always be applied to . This removes the need to specify each time
you use .

CHAPTER 9 ADVANCED TEMPLATES 171

By default, is set to the following:

This setting is a tuple of callables that use the same interface as the preceding
function—functions that take a request object as their argument and return a dictionary of
items to be merged into the context. Note that the values in are
specified as strings, which means the processors are required to be somewhere on your Python
path (so you can refer to them from the setting).

Each processor is applied in order. That is, if one processor adds a variable to the context
and a second processor adds a variable with the same name, the second will override the first.

Django provides a number of simple context processors, including the ones that are
enabled by default.

django.core.context_processors.auth
If contains this processor, every will contain
these variables:

 instance representing the current logged-in
user (or an instance, if the client isn’t logged in).

scenes, this variable calls for every request.
That method collects the user’s messages and deletes them from the database.

, which represents
the permissions the current logged-in user has.

See Chapter 14 for more information on users, permissions, and messages.

django.core.context_processors.debug
This processor pushes debugging information down to the template layer. If

 contains this processor, every will contain these variables:

: The value of your setting (either or). You can use this variable in
templates to test whether you’re in debug mode.

 dictionaries representing every SQL
query that has happened so far during the request and how long it took. The list is in
the order in which the queries were issued.

CHAPTER 9 ADVANCED TEMPLATES172

Because debugging information is sensitive, this context processor will add variables to
the context only if both of the following conditions are true:

 setting is .

 setting.

 template variable will never have the value
because if is , the template variable won’t be populated in the first place.

django.core.context_processors.i18n
If this processor is enabled, every will contain these variables:

: The value of the setting.

: if it exists; otherwise, the value of the
 setting.

 these two settings.

django.core.context_processors.request
If this processor is enabled, every will contain a variable , which is the
current object. Note that this processor is not enabled by default; you have to
activate it.

You might want to use this if you find your templates needing to access attributes of the
current such as the IP address:

Guidelines for Writing Your Own Context Processors
Here are a few tips for rolling your own:

possible. It’s easy to use multiple processors, so you might as well split functionality
into logical pieces for future reuse.

 will be
available in every template powered by that settings file, so try to pick variable names
that are unlikely to conflict with variable names your templates might be using inde-
pendently. Because variable names are case-sensitive, it’s not a bad idea to use all
uppercase letters for variables that a processor provides.

Python path so you can point to them from the setting.
With that said, the convention is to save them in a file called
within your app or project.

CHAPTER 9 ADVANCED TEMPLATES 173

Automatic HTML Escaping
When generating HTML from templates, there’s always a risk that a variable will include char-
acters that affect the resulting HTML. For example, consider this template fragment:

happen if the user entered his name this way:

With this name value, the template would be rendered as follows:

This means the browser would display a JavaScript alert box! Similarly, what if the name
contained a symbol, like this?

It would result in a rendered template like this:

This, in turn, would result in the remainder of the Web page being bold!
Clearly, user-submitted data shouldn’t be trusted blindly and inserted directly into your

Web pages because a malicious user could use this kind of hole to do potentially bad things.
This type of security exploit is called a cross-site scripting (XSS) attack.

Tip For more on security, see Chapter 20.

To avoid this problem, you have two options:

 filter, which
converts potentially harmful HTML characters to unharmful ones. This was the default
solution in Django for its first few years, but the problem is that it puts the onus on you,
the developer/template author, to ensure that you’re escaping everything. It’s easy to
forget to escape data.

section describes how autoescaping works.

CHAPTER 9 ADVANCED TEMPLATES174

By default, in Django every template automatically escapes the output of every variable
tag. Specifically, these five characters are escaped:

 is converted to

 is converted to

 (single quote) is converted to

 (double quote) is converted to

 is converted to

-
tem, you’re protected.

How to Turn It Off
If you don’t want data to be autoescaped on a per-site, per-template, or per-variable level, you
can turn it off in several ways.

Why would you want to turn it off? Because sometimes template variables contain data
that you intend to be rendered as raw HTML, in which case you don’t want their contents to be
escaped. For example, you might store a blob of trusted HTML in your database and want to
embed it directly into your template. Or you might be using Django’s template system to pro-
duce text that is not HTML—like an e-mail message, for instance.

For Individual Variables
To disable autoescaping for an individual variable, use the filter:

Think of safe as shorthand for safe from further escaping or can be safely interpreted as
HTML. In this example, if contains , the output will be the following:

For Template Blocks
To control autoescaping for a template, wrap the template (or just a particular section of the
template) in the tag, like so:

CHAPTER 9 ADVANCED TEMPLATES 175

The tag takes either or
force autoescaping when it would otherwise be disabled. Here is an example template:

The autoescaping tag passes its effect on to templates that extend the current one as well
as templates included via the tag, just like all block tags. For example:

Because autoescaping is turned off in the base template, it will also be turned off in the
child template, resulting in the following rendered HTML when the variable contains
the string :

Notes
Template authors usually don’t need to worry about autoescaping very much. Developers
on the Python side (people writing views and custom filters) need to think about the cases in
which data shouldn’t be escaped, and mark data appropriately, so things work in the template.

If you’re creating a template that might be used in situations in which you’re not sure
whether autoescaping is enabled, add an filter to any variable that needs escaping.
When autoescaping is on, there’s no danger of the filter double-escaping data—the

 filter does not affect autoescaped variables.

CHAPTER 9 ADVANCED TEMPLATES176

Automatic Escaping of String Literals in Filter Arguments
 earlier, filter arguments can be strings:

without any automatic escaping into the template—they act
as if they were all passed through the filter. The reasoning behind this is that the template
author is in control of what goes into the string literal, so they can make sure the text is cor-
rectly escaped when the template is written.

This means you would write the following:

instead of the following:

This doesn’t affect what happens to data coming from the variable itself. The variable’s
contents are still automatically escaped, if necessary, because they’re beyond the control of
the template author.

Inside Template Loading
Generally, you’ll store templates in files on your filesystem, but you can use custom template
loaders to load templates from other sources.

Django has two ways to load templates:

: returns the com-
piled template (a object) for the template with the given name. If the template
doesn’t exist, a exception will be raised.

: is
just like , except it takes a list of template names. Of the list, it returns the
first template that exists. If none of the templates exist, a excep-
tion will be raised.

 set-
ting to load templates. Internally, however, these functions actually delegate to a template
loader for the heavy lifting.

Some of loaders are disabled by default, but you can activate them by editing the
 setting. should be a tuple of strings, where each string represents a

template loader. These template loaders ship with Django:

: This loader loads tem-
plates from the filesystem, according to . It is enabled by default.

: This loader
loads templates from Django applications on the filesystem. For each application in

, the loader looks for a subdirectory. If the directory exists,
Django looks for templates there.

CHAPTER 9 ADVANCED TEMPLATES 177

 This means you can store templates with your individual applications, making it easy
to distribute Django applications with default templates. For example, if

 contains , then
 will look for templates in this order:

 Note that the loader performs an optimization when it is first imported: it caches a list
of which packages have a subdirectory.

 This loader is enabled by default.

: This loader is just like
, except it loads templates from Python eggs rather than from the filesystem.

This loader is disabled by default; you’ll need to enable it if you’re using eggs to distribute
your application. (Python eggs are a way of compressing Python code into a single file.)

Django uses the template loaders in order according to the setting. It
uses each loader until a loader finds a match.

Extending the Template System
Now that you understand a bit more about the internals of the template system, let’s look at
how to extend the system with custom code.

Most template customization comes in the form of custom template tags and/or filters.
-

ably assemble your own libraries of tags and filters that fit your own needs. Fortunately, it’s
quite easy to define your own functionality.

Creating a Template Library
Whether you’re writing custom tags or filters, the first thing to do is to create a template
library—a small bit of infrastructure Django can hook into.

Creating a template library is a two-step process:

 1. First, decide which Django application should house the template library. If you’ve cre-
ated an app via , you can put it in there, or you can create another
app solely for the template library. We recommend the latter because your filters might
be useful to you in future projects.

 Whichever route you take, make sure to add the app to your setting.
We’ll explain this shortly.

 2. Second, create a directory in the appropriate Django application’s pack-
age. It should be on the same level as , , and so forth. For example:

CHAPTER 9 ADVANCED TEMPLATES178

 Create two empty files in the directory: an file (to indicate to
Python that this is a package containing Python code) and a file that will contain your
custom tag/filter definitions. The name of the latter file is what you’ll use to load the
tags later. For example, if your custom tags/filters are in a file called ,
you’d write the following in a template:

 The tag looks at your setting and only allows the loading
of template libraries within installed Django applications. This is a security feature; it
allows you to host Python code for many template libraries on a single computer with-
out enabling access to all of them for every Django installation.

If you write a template library that isn’t tied to any particular models/views, it’s valid and
quite normal to have a Django application package that contains only a pack-
age. There’s no limit on how many modules you put in the package. Just keep in
mind that a statement will load tags/filters for the given Python module name, not
the name of the application.

Once you’ve created that Python module, you’ll just have to write a bit of Python code,
depending on whether you’re writing filters or tags.

To be a valid tag library, the module must contain a module-level variable named
that is an instance of . This is the data structure in which all the tags and fil-
ters are registered. So, near the top of your module, insert the following:

Note For a fine selection of examples, read the source code for Django’s default filters and tags. They’re
in and , respectively. Some
applications in also contain template libraries.

Once you’ve created this variable, you’ll use it to create template filters and tags.

Writing Custom Template Filters
Custom filters are just Python functions that take one or two arguments:

For example, in the filter , the filter would be passed the contents
of the variable and the argument .

Filter functions should always return something. They shouldn’t raise exceptions, and
they should fail silently. If there’s an error, they should return either the original input or an
empty string, whichever makes more sense.

CHAPTER 9 ADVANCED TEMPLATES 179

Here’s an example filter definition:

value:

Most filters don’t take arguments. In this case, just leave the argument out of your function:

When you’ve written your filter definition, you need to register it with your
instance, to make it available to Django’s template language:

The method takes two arguments:

If you’re using Python 2.4 or above, you can use as a decorator instead:

If you leave off the argument, as in the second example, Django will use the func-
tion’s name as the filter name.

Here, then, is a complete template library example, supplying the filter:

CHAPTER 9 ADVANCED TEMPLATES180

Writing Custom Template Tags
Tags are more complex than filters, because tags can do nearly anything.

Chapter 4 describes how the template system works in a two-step process: compiling and
rendering. To define a custom template tag, you need to tell Django how to manage both of
these steps when it gets to your tag.

When Django compiles a template, it splits the raw template text into nodes. Each node is
an instance of and has a method. Thus, a compiled template is
simply a list of objects. For example, consider this template:

In compiled template form, this template is represented as this list of nodes:

 and

When you call on a compiled template, the template calls on each
 in its node list, with the given context. The results are all concatenated together to form

the output of the template. Thus, to define a custom template tag, you specify how the raw
template tag is converted into a (the compilation function) and what the node’s
method does.

In the sections that follow, we cover all the steps in writing a custom tag.

Writing the Compilation Function
For each template tag the parser encounters, it calls a Python function with the tag contents
and the parser object itself. This function is responsible for returning a instance based on
the contents of the tag.

For example, let’s write a template tag, , that displays the current
date/time, formatted according to a parameter given in the tag, in syntax (see

). It’s a good idea to decide the tag syntax before
anything else. In our case, let’s say the tag should be used like this:

CHAPTER 9 ADVANCED TEMPLATES 181

Note Yes, this template tag is redundant—Django’s default tag does the same task with sim-
pler syntax. This template tag is presented here just for example purposes.

The parser for this function should grab the parameter and create a object:

There’s a lot going here:

 and .
is the template parser object. We don’t use it in this example. is the token cur-
rently being parsed by the parser.

 is a string of the raw contents of the tag. In our example, it’s
.

 method separates the arguments on spaces while keeping
 (which just uses Python’s

standard string-splitting semantics). It’s not as robust, as it naively splits on all spaces,
including those within quoted strings.

, with
helpful messages, for any syntax error.

name to your function. will always be the name of your
tag—even when the tag has no arguments.

 (which we’ll create shortly) containing every-
thing the node needs to know about this tag. In this case, it just passes the argument

. The leading and trailing quotes from the template tag are
removed with .

 functions must return a subclass; any other return value
is an error.

CHAPTER 9 ADVANCED TEMPLATES182

Writing the Template Node
The second step in writing custom tags is to define a subclass that has a method.
Continuing the preceding example, we need to define :

These two functions (and) map directly to the two steps in template
processing (compilation and rendering). Thus, the initialization function only needs to store
the format string for later use, and the function does the real work.

Like template filters, these rendering functions should fail silently instead of raising errors.
The only time that template tags are allowed to raise errors is at compilation time.

Registering the Tag
Finally, you need to register the tag with your module’s instance. Registering custom
tags is very similar to registering custom filters (as explained previously). Just instantiate a

 instance and call its method. For example:

The method takes two arguments:

 as a decorator in Python
2.4 and above:

If you leave off the argument, as in the second example, Django will use the func-
tion’s name as the tag name.

CHAPTER 9 ADVANCED TEMPLATES 183

Setting a Variable in the Context
The previous section’s example simply returned a value. Often it’s useful to set template vari-
ables instead of returning values. That way, template authors can just use the variables that
your template tags set.

To set a variable in the context, use dictionary assignment on the context object in the
 method. Here’s an updated version of that sets a template variable,

, instead of returning it:

Note We’ll leave the creation of a function, plus the registration of that function to a
 template tag, as exercises for you.

Note that returns an empty string. should always return a string, so if
all the template tag does is set a variable, should return an empty string.

Here’s how you’d use this new version of the tag:

But there’s a problem with : the variable name is hard-
coded. This means you’ll need to make sure your template doesn’t use
anywhere else, because will blindly overwrite that variable’s value.

like so:

To do so, you’ll need to refactor both the compilation function and the class, as
follows:

CHAPTER 9 ADVANCED TEMPLATES184

Now passes the format string and the variable name to .

Parsing Until Another Template Tag
Template tags can work as blocks containing other tags (such as , , etc.).
To create a template tag like this, use in your compilation function.

Here’s how the standard tag is implemented:

 takes a tuple of names of template tags to parse until. It returns an
instance of , which is a list of all objects that the parser
encountered before it encountered any of the tags named in the tuple.

So in the preceding example, is a list of all nodes between and
, not counting and themselves.

CHAPTER 9 ADVANCED TEMPLATES 185

 is called, the parser hasn’t yet “consumed” the
tag, so the code needs to explicitly call to prevent that tag from
being processed twice.

Then simply returns an empty
 and is ignored.

Parsing Until Another Template Tag and Saving Contents
In the previous example, discarded everything between and

. It’s also possible to do something with the code between template tags
instead.

For example, here’s a custom template tag, , that capitalizes everything
between itself and :

. This time, we pass the resulting
 to :

The only new concept here is in .
This simply calls on each in the node list.

For more examples of complex rendering, see the source code for , ,
, and . They live in .

Shortcut for Simple Tags
Many template tags take a single argument—a string or a template variable reference—and
return a string after doing some processing based solely on the input argument and some
external information. For example, the tag we wrote earlier is of this variety.
We give it a format string, and it returns the time as a string.

To ease the creation of these types of tags, Django provides a helper function, .
This function, which is a method of , takes a function that accepts
one argument, wraps it in a function and the other necessary bits mentioned previ-
ously, and registers it with the template system.

CHAPTER 9 ADVANCED TEMPLATES186

Our earlier function could thus be written like this:

In Python 2.4, the decorator syntax also works:

Notice a couple of things about the helper function:

function is called, so we don’t need to do that.

 already been stripped away, so we
receive a plain Unicode string.

Inclusion Tags
 template tag is the type that displays some data by rendering another tem-

plate. For example, Django’s admin interface uses custom template tags to display the buttons
along the bottom of the “add/change” form pages. Those buttons always look the same, but
the link targets change depending on the object being edited. They’re a perfect case for using a
small template that is filled with details from the current object.

These sorts of tags are called inclusion tags. Writing inclusion tags is probably best dem-
onstrated by example. Let’s write a tag that produces a list of books for a given object.
We’ll use the tag like this:

The result will be something like this:

First, we define the function that takes the argument and produces a dictionary of data for
the result. Notice that we need to return only a dictionary, not anything more complex. This
will be used as the context for the template fragment:

CHAPTER 9 ADVANCED TEMPLATES 187

Next, we create the template used to render the tag’s output. Following our example, the
template is very simple:

Finally, we create and register the inclusion tag by calling the method on
a object.

Following our example, if the preceding template is in a file called , we
register the tag like this:

Python 2.4 decorator syntax works as well, so we could have written this instead:

Sometimes, your inclusion tags need access to values from the parent template’s con-
text. To solve this, Django provides a option for inclusion tags. If you specify

 in creating an inclusion tag, the tag will have no required arguments, and the
underlying Python function will have one argument: the template context as of when the tag
was called.

For example, say you’re writing an inclusion tag that will always be used in a context that
contains and variables that point back to the main page. Here’s what the
Python function would look like:

Note The first parameter to the function must be called .

The template might contain the following:

CHAPTER 9 ADVANCED TEMPLATES188

Then, anytime you want to use that custom tag, load its library and call it without any
arguments, like so:

Writing Custom Template Loaders
Django’s built-in template loaders (described in the “Inside Template Loading” section) will
usually cover all your template-loading needs, but it’s pretty easy to write your own if you need
special loading logic. For example, you could load templates from a database, or directly from
a Subversion repository using Subversion’s Python bindings, or (as shown shortly) from a ZIP
archive.

 setting—is expected to be a
callable object with this interface:

The argument is the name of the template to load (as passed to
 or), and is an optional list of directo-

ries to search instead of .
If a loader is able to successfully load a template, it should return a tuple:

. Here, is the template string that will be compiled by
the template engine, and is the path the template was loaded from. That path
might be shown to the user for debugging purposes, so it should quickly identify where the
template was loaded from.

If the loader is unable to load a template, it should raise
.

Each loader function should also have an function attribute. This is a Boolean
that informs the template engine whether this loader is available in the current Python instal-
lation. For example, the eggs loader (which is capable of loading templates from Python eggs)
sets to if the module isn’t installed, because is
necessary to read data from eggs.

load templates from a ZIP file. It uses a custom setting, , as a search path
instead of , and it expects each item on that path to be a ZIP file containing
templates:

CHAPTER 9 ADVANCED TEMPLATES 189

The only step left if we want to use this loader is to add it to the setting.
If we put this code in a package called , then we add

 to .

Configuring the Template System in
Standalone Mode

Note This section is only of interest to people trying to use the template system as an output component
in another application. If you are using the template system as part of a Django application, the information
presented here doesn’t apply to you.

Normally, Django loads all the configuration information it needs from its own default
configuration file, combined with the settings in the module given in the

 environment variable
But if you’re using the template system independent of the rest of Django, the environment
variable approach isn’t very convenient, because you probably want to configure the tem-
plate system in line with the rest of your application rather than dealing with settings files and
pointing to them via environment variables.

To solve this problem, you need to use the manual configuration option described fully in

and then, before you call any of the template functions, call
with any settings you wish to specify.

CHAPTER 9 ADVANCED TEMPLATES190

You might want to consider setting at least (if you are going to use template
loaders), (although the default of is probably fine), and .

 is of
obvious interest.

What’s Next?
Continuing this section’s theme of advanced topics, the next chapter covers the advanced
usage of Django models.

C H A P T E R 1 0

Advanced Models

In Chapter 5 we presented an introduction to Django’s database layer—how to define models
and how to use the database API to create, retrieve, update, and delete records. In this chapter,
we’ll introduce you to some more advanced features of this part of Django.

Related Objects
Recall our book models from Chapter 5:

191

CHAPTER 10 ADVANCED MODELS192

As we explained in Chapter 5, accessing the value for a particular field on a database
object is as straightforward as using an attribute. For example, to determine the title of the
book with ID 50, we’d do the following:

But one thing we didn’t mention previously is that related objects—fields expressed as
either a or —act slightly differently.

Accessing Foreign Key Values
When you access a field that’s a , you’ll get the related model object. Consider this
example:

With fields, API access works in reverse, too, but it’s slightly different due to
the nonsymmetrical nature of the relationship. To get a list of books for a given publisher, use

, like this:

Behind the scenes, is just a (as covered in Chapter 5), and it can be fil-
tered and sliced like any other . Consider this example:

The attribute name is generated by appending the lowercase model name to .

CHAPTER 10 ADVANCED MODELS 193

Accessing Many-to-Many Values
Many-to-many values work like foreign-key values, except we deal with values
instead of model instances. For example, here’s how to view the authors for a book:

It works in reverse, too. To view all of the books for an author, use ,
like this:

Here, as with fields, the attribute name is generated by appending
the lowercase model name to .

Making Changes to a Database Schema
When we introduced the command in Chapter 5, we noted that merely creates
tables that don’t yet exist in your database—it does not sync changes in models or perform
deletions of models. If you add or change a model’s field or if you delete a model, you’ll need
to make the change in your database manually. This section explains how to do that.

When dealing with schema changes, it’s important to keep a few things in mind about
how Django’s database layer works:

the database table. This will cause an error the first time you use the Django database
API to query the given table (i.e., it will happen at code-execution time, not at compila-
tion time).

not care if a database table contains columns that are not defined in the
model.

not care if a database contains a table that is not represented by a model.

Making schema changes is a matter of changing the various pieces—the Python code and
the database itself—in the right order, as outlined in the following sections.

Adding Fields
When adding a field to a table/model in a production setting, the trick is to take advantage of
the fact that Django doesn’t care if a table contains columns that aren’t defined in the model.
The strategy is to add the column in the database, and then update the Django model to
include the new field.

CHAPTER 10 ADVANCED MODELS194

However, there’s a bit of a chicken-and-egg problem here, because in order to know how
the new database column should be expressed in SQL, you need to look at the output of Djan-
go’s command, which requires that the field exist in the model. (Note that
you’re not required to create your column with exactly the same SQL that Django would, but
it’s a good idea to do so, just to be sure everything’s in sync.)

The solution to the chicken-and-egg problem is to use a development environment
instead of making the changes on a production server. (You are using a testing/development
environment, right?) The following are the detailed steps to take.

First, take these steps in the development environment (i.e., not on the production server):

 1. Add the field to your model.

 2. Run to see the new statement for the model.
Note the column definition for the new field.

 3. Start your database’s interactive shell (e.g., or , or you can use
). Execute an statement that adds your new column.

 4. Launch the Python interactive shell with and verify that the new field
was added properly by importing the model and selecting from the table (e.g.,

). If you updated the database correctly, the statement should work
without errors.

Then, on the production server perform these steps:

 1. Start your database’s interactive shell.

 2. Execute the statement you used in step 3 of the development-environment
steps.

 3. Add the field to your model. If you’re using source-code revision control and you
checked in your change in step 1 of the development-environment part of this process,
now is the time to update the code (e.g., , with Subversion) on the produc-
tion server.

 4. Restart the Web server for the code changes to take effect.

For example, let’s walk through what we’d do if we added a field to the
model from Chapter 5. First we’d alter the model in our development environment to look
like this:

CHAPTER 10 ADVANCED MODELS 195

Note Read the section “Making Fields Optional” in Chapter 6, plus the sidebar “Adding NOT NULL
Columns” later in this chapter for important details on why we included and .

Then we’d run the command to see the statement.
Depending on your database back-end, it would look something like this:

The new column is represented like this:

Next we’d start the database’s interactive shell for our development database by typing
 (for PostgreSQL), and we’d execute the following statement:

ADDING NOT NULL COLUMNS

There’s a subtlety here that deserves mention. When we added the field to our model, we
included the and options because a database column will contain values
when you first create it.

However, it’s also possible to add columns that cannot contain values. To do this, you have to
create the column as , then populate the column’s values using some default(s), and then alter the
column to set the modifier. Here’s an example:

If you go down this path, remember that you should leave off and in your
model.

CHAPTER 10 ADVANCED MODELS196

After the statement, we’d verify that the change worked properly by starting
the Python shell and running this code:

If that code didn’t cause errors, we’d switch to our production server and execute the
 statement on the production database. Then we’d update the model in the pro-

duction environment and restart the Web server.

Removing Fields
Removing a field from a model is a lot easier than adding one. Just follow these steps:

 1. Remove the field’s code from your model class and restart the Web server.

 2. Remove the column from your database, using a command like this:

Be sure to perform the steps in this order. If you remove the column from your database
first, Django will immediately begin raising errors.

Removing Many-to-Many Fields
Because many-to-many fields are different from normal fields, the removal process is
different:

 1. Remove the code from your model class and restart the Web server.

 2. Remove the many-to-many table from your database, using a command like this:

As in the previous section, be sure to perform the steps in this order.

Removing Models
Removing a model entirely is as easy as removing a field. Just follow these steps:

 1. Remove the model class from your file and restart the Web server.

 2. Remove the table from your database, using a command like this:

Note that you might need to remove any dependent tables from your database first—for
instance, any tables that have foreign keys to .

As in the previous sections, be sure to perform the steps in the order shown here.

CHAPTER 10 ADVANCED MODELS 197

Managers
In the statement , is a special attribute through which you query
your database. In Chapter 5 we briefly identified this as the model’s manager. Now it’s time to
dive a bit deeper into what managers are and how you can use them.

In short, a model’s manager is an object through which Django models perform database
queries. Each Django model has at least one manager, and you can create custom managers to
customize database access.

There are two reasons you might want to create a custom manager: to add extra manager
methods, and/or to modify the initial the manager returns.

Adding Extra Manager Methods
Adding extra manager methods is the preferred way to add table-level functionality to your
models. A table-level function is one that acts on multiple instances of models, as opposed to
single instances. (For row-level functionality—i.e., functions that act on a single instance of a
model object—use model methods, which are explained later in this chapter.)

For example, let’s give our model a manager method that takes a
keyword and returns the number of books that have a title containing that keyword. (This
example is slightly contrived, but it demonstrates how managers work.)

With this manager in place, we can now use the new methods:

CHAPTER 10 ADVANCED MODELS198

Here are some notes about the code:

 class that extends . This has a
single method, , which does the calculation. Note that the method uses

, where refers to the manager itself.

 to the attribute on the model. This replaces the
default manager for the model, which is called and is automatically created if
you don’t specify a custom manager. By calling our manager rather than some-
thing else, we’re consistent with automatically created managers.

Why would we want to add a method such as ? To encapsulate commonly
executed queries so that we don’t have to duplicate code.

Modifying Initial Manager QuerySets
A manager’s base returns all objects in the system. For example,
returns all books in the book database.

You can override a manager’s base by overriding the
method. should return a with the properties you require.

For example, the following model has two managers—one that returns all objects, and
one that returns only the books by Roald Dahl.

With this sample model, will return all books in the database, but
 will return only the ones written by Roald Dahl. Note that we explic-

itly set to a vanilla instance because if we hadn’t, the only available manager
would be .

Of course, because returns a object, you can use ,
, and all the other methods on it. So these statements are all legal:

CHAPTER 10 ADVANCED MODELS 199

This example points out another interesting technique: using multiple managers on the
same model. You can attach as many instances to a model as you’d like. This is an
easy way to define common filters for your models.

Consider this example:

This example allows you to request , , and
, yielding predictable results.

If you use custom objects, take note that the first Django encounters (in
the order in which they’re defined in the model) has a special status. Django interprets this
first defined in a class as the default , and several parts of Django (though not
the admin application) will use that default exclusively for that model. As a result, it’s
a good idea to be careful in your choice of default manager, in order to avoid a situation where
overriding results in an inability to retrieve objects you’d like to work with.

Model Methods
Model methods allow you to define custom methods on a model to add custom row-level
functionality to your objects. Whereas managers are intended to do table-wide things, model
methods should act on a particular model instance.

Model methods are valuable for keeping business logic in one place—the model. An
example is the easiest way to explain this. Here’s a model with a few custom methods:

CHAPTER 10 ADVANCED MODELS200

The last method in this example is a property. (You can read more about properties at
.) Here’s an example usage:

Executing Raw SQL Queries
The Django database API can take you only so far, so sometimes you’ll want to write custom
SQL queries against your database. You can do this very easily by accessing the object

, which represents the current database connection. To use it, call
 to get a cursor object. Then call to execute the SQL

and or to return the resulting rows. Here’s an example:

CHAPTER 10 ADVANCED MODELS 201

 and mostly implement the standard Python Database API, which you
can read about at . If you’re not familiar with
the Python Database API, note that the SQL statement in uses placehold-
ers, , rather than adding parameters directly within the SQL. If you use this technique,
the underlying database library will automatically add quotes and escape characters to your
parameter(s) as necessary.

Rather than littering your view code with statements, it’s a good
idea to put them in custom model methods or manager methods. For instance, the preceding
example could be integrated into a custom manager method like this:

Here’s a sample usage:

What’s Next?
In the next chapter we’ll show you Django’s “generic views” framework, which lets you save
time building Web sites that follow common patterns.

C H A P T E R 1 1

Generic Views

Here again is a recurring theme of this book: at its worst, Web development is boring and
monotonous. So far, we’ve covered how Django tries to take away some of that monotony
at the model and template layers, but Web developers also experience this boredom at the
view level.

Django’s generic views were developed to ease that pain. They take certain common
idioms and patterns found in view development and abstract them so that you can quickly
write common views of data without having to write too much code. In fact, nearly every view
example in the preceding chapters could be rewritten with the help of generic views.

Chapter 8 touched briefly on how you’d go about making a view generic. To review, we
can recognize certain common tasks, like displaying a list of objects, and write code that dis-
plays a list of any object. Then the model in question can be passed as an extra argument to
the URLconf.

Django ships with generic views to do the following:

template.

 and views
from Chapter 8 are examples of list views. A single event page is an example of what we
call a detail view.

) year,
month, and day archives are built with these, as would be a typical newspaper’s
archives.

Taken together, these views provide easy interfaces to perform the most common tasks
developers encounter.

203

CHAPTER 11 GENERIC V IEWS204

Using Generic Views
All of these views are used by creating configuration dictionaries in your URLconf files and

actually exactly the same as the examples in Chapter 8. The view simply
grabs information from the extra-parameters dictionary and uses that information when ren-
dering the view.

URLs of the form to statically rendered . We’ll do
this by first modifying the URLconf to point to a view function:

Next, we’ll write the view:

CHAPTER 11 GENERIC V IEWS 205

Here we’re treating like any other function. Since it returns an
, we can simply return it as is. The only slightly tricky business here is dealing

with missing templates. We don’t want a nonexistent template to cause a server error, so we
catch exceptions and return 404 errors instead.

IS THERE A SECURITY VULNERABILITY HERE?

Sharp-eyed readers may have noticed a possible security hole: we’re constructing the template name using
interpolated content from the browser (). At first glance, this looks
like a classic directory-traversal vulnerability (discussed in detail in Chapter 20). But is it really?

Not exactly. Yes, a maliciously crafted value of could cause directory traversal, but although
is taken from the request URL, not every value will be accepted. The key is in the URLconf: we’re using the
regular expression to match the part of the URL, and accepts only letters and numbers. Thus,
any malicious characters (such as dots and slashes) will be rejected by the URL resolver before they reach the
view itself.

Generic Views of Objects
The view certainly is useful, but Django’s generic views really shine when
it comes to presenting views on your database content. Because it’s such a common task,
Django comes with a handful of built-in generic views that make generating list and detail
views of objects incredibly easy.

. We’ll be using this
 object from Chapter 5:

CHAPTER 11 GENERIC V IEWS206

To build a list page of all publishers, we’d use a URLconf along these lines:

We can explicitly tell the view which template to use by including a
key in the extra-arguments dictionary:

In the absence of , though, the generic view will infer one from
the object’s name. In this case, the inferred template will be

 part comes from the name of the app that defines the model, while the bit is
just the lowercased version of the model’s name.

This template will be rendered against a context containing a variable called
that contains all the objects. A very simple template might look like the following:

CHAPTER 11 GENERIC V IEWS 207

 template, as we provided in an exam-
ple in Chapter 4.)

That’s really all there is to it. All the cool features of generic views come from changing the

all their options in detail; the rest of this chapter will consider some of the common ways you
might customize and extend generic views.

Extending Generic Views
There’s no question that using generic views can speed up development substantially. In most
projects, however, there comes a moment when the generic views no longer suffice. Indeed,
one of the most common questions asked by new Django developers is how to make generic
views handle a wider array of situations.

Luckily, in nearly every one of these cases there are ways to simply extend generic views
to handle a larger array of use cases. These situations usually fall into the handful of patterns
dealt with in the following sections.

Making “Friendly” Template Contexts
You might have noticed that the sample publisher list template stores all the books in a vari-
able named . While this works just fine, it isn’t all that friendly to template authors:

would be ; that variable’s content is pretty obvious.
We can change the name of that variable easily with the argument:

In the template, the generic view will append to the to create
the variable name representing the list of items.

 is always a good idea. Your coworkers who
design templates will thank you.

CHAPTER 11 GENERIC V IEWS208

Adding Extra Context
Sometimes you might need to present information beyond that provided in the generic view.

The generic view provides the publisher to the context, but it seems there’s no
way to get a list of all publishers in that template.

But there is: all generic views take an extra optional parameter, . This is a
dictionary of extra objects that will be added to the template’s context. So, to provide the list of
all publishers on the detail view, we’d use an info dictionary like this:

This would populate a variable in the template context. This pattern can
be used to pass any information down into the template for the generic view. It’s very handy.

The problem has to do with when the queries in are evaluated. Because
this example puts

Appendix B for more information about when objects are cached and evaluated).

Note This problem doesn’t apply to the generic view argument. Since Django knows that par-
ticular should never be cached, the generic view takes care of clearing the cache when each view
is rendered.

The solution is to use a callback in
function) that’s passed to
of only once). You could do this with an explicitly defined function:

CHAPTER 11 GENERIC V IEWS 209

 is
itself a callable:

Notice the lack of parentheses after . This references the function with-
 view will do later).

Viewing Subsets of Objects
Now let’s take a closer look at this key we’ve been using all along. Most generic
views take one of these

 objects, and
see Appendix B for the complete details).

Suppose, for example, that you want to order a list of books by publication date, with the
most recent first:

want to do more than just reorder objects. If you want to present a list of books by a particular
publisher, you can use the same technique:

Notice that along with a filtered , we’re also using a custom template name. If we

not be what we want.

CHAPTER 11 GENERIC V IEWS210

Also notice that this isn’t a very elegant way of doing publisher-specific books. If we want
to add another publisher page, we’d need another handful of lines in the URLconf, and more
than a few publishers would get unreasonable. We’ll deal with this problem in the next section.

Complex Filtering with Wrapper Functions
Another common need is to filter the objects given in a list page by some key in the URL.

 generic view to avoid writing a lot of code by hand. As usual, we’ll start by writing
a URLconf:

Next we’ll write the view itself:

functions. Like any view function, generic views expect a certain set of arguments and return
 objects. Thus, it’s incredibly easy to wrap a small function around a generic

 the
generic view.

Note Notice that in the preceding example we passed the current publisher being displayed in the
. This is usually a good idea in wrappers of this nature; it lets the template know which

“parent” object is currently being browsed.

CHAPTER 11 GENERIC V IEWS 211

Performing Extra Work
The last common pattern we’ll look at involves doing some extra work before or after calling
the generic view.

Imagine we had a field on our object that we were using to keep
track of the last time anybody looked at that author. The generic view, of
course, wouldn’t know anything about this field, but once again we could easily write a custom
view to keep that field updated.

 bit in the URLconf to point to a custom view:

Then we’d write our wrapper function:

Note This code won’t work unless you add a field to your model and create a
 template.

CHAPTER 11 GENERIC V IEWS212

We can use a similar idiom to alter the response returned by the generic view. If we
wanted to provide a downloadable plain-text version of the list of authors, we could use a
view like this:

This works because the generic views return simple objects that can be
 business, by the way,

instructs the browser to download and save the page instead of displaying it in the browser.

What’s Next?
In this chapter we looked at only a couple of the generic views Django ships with, but the gen-
eral ideas presented here should apply pretty closely to any generic view. Appendix C covers
all the available views in detail, and it’s recommended reading if you want to get the most out
of this powerful feature.

we cover deployment of Django applications.

C H A P T E R 1 2

Deploying Django

This chapter covers the last essential step of building a Django application: deploying it to
a production server.

If you’ve been following along with our ongoing examples, you probably used the
, which makes things very easy (you don’t have to worry about Web server setup).

But is intended only for development on your local machine, not for exposure on
the public Web. To deploy your Django application, you’ll need to hook it into an industrial-
strength Web server such as Apache. In this chapter, we’ll show you how to do that, but first
we’ll give you a checklist of things to do in your codebase before you go live.

Preparing Your Codebase for Production
Fortunately, the approximates a “real” Web server closely enough that not very
many changes need to be made to a Django application in order to make it production-ready.
But there are a few essential things you should do before you turn the switch.

Turning Off Debug Mode
When we created a project in Chapter 2, the command created
a file with set to . Many internal parts of Django check this setting and
change their behavior if mode is on. For example, if is set to , then:

. As you can imagine, this eats up memory!

information and should not be exposed to the public Internet.

error page that you’ve likely come to know and love. This page contains even more sen-
never be exposed to the public.

213

CHAPTER 12 DEPLOYING DJANGO214

In short, setting to tells Django to assume that only trusted developers are
using your site. The Internet is full of untrustworthy hooligans, and the first thing you should
do when you’re preparing your application for deployment is set to .

Turning Off Template Debug Mode
Similarly, you should set to in production. If , this setting tells
Django’s template system to save some extra information about every template for use on the
pretty error pages.

Implementing a 404 Template
If is , Django is , it does some-
thing different: it renders a template called in your root template directory. So, when

message in it.
Here’s a sample you can use as a starting point. It assumes that you’re using

template inheritance and have defined a with blocks called and :

To test that your is working, just change to and visit a nonexistent
URL. (This works on the just as well as it works on a production server.)

Implementing a 500 Template
Similarly, if is , then Django no longer displays its useful error/traceback pages in

 and
renders it. Like , this template should live in your root template directory.

There’s one slightly tricky thing about . You can never be sure why this template

on any potentially broken part of your infrastructure. (For example, it should not use custom
template tags.) If it uses template inheritance, then the parent template(s) shouldn’t rely on
potentially broken infrastructure, either. Therefore, the best approach is to avoid template
inheritance and use something very simple. Here’s an example as a starting point:

CHAPTER 12 DEPLOYING DJANGO 215

Setting Up Error Alerts
When your Django-powered site is running and an exception is raised, you’ll want to know
about it, so you can fix it. By default, Django is configured to send an e-mail to the site developers

First, change your setting to include your e-mail address, along with the e-mail
addresses of any other people who need to be notified. This setting takes tuples,
like this:

Second, make sure that your server is configured to send e-mail. Setting up ,
, or any other mail server is outside the scope of this book, but on the Django side of

things, you’ll want to make sure that your setting is set to the proper hostname for
your mail server. It’s set to by default, which works out of the box for most shared-
hosting environments. You might also need to set , ,

, or , depending on the complexity of your arrangement.
Also, you can set to control the prefix Django uses in front of its

error e-mail. It is set to by default.

Setting Up Broken Link Alerts
If you have the installed (e.g., if your setting includes

, which it does by default), you have the option
of receiving an e-mail any time somebody visits a page on your Django-powered site that

feature, set to (it’s by default) and set your set-
ting to a person or people who will receive this broken-link e-mail. uses the same
syntax as . For example:

Note that error e-mail can get annoying; they’re not for everybody.

CHAPTER 12 DEPLOYING DJANGO216

Using Different Settings for Production
So far in this book, we’ve dealt with only a single settings file: the generated
by . But as you get ready to deploy, you’ll likely find yourself
needing multiple settings files to keep your development environment isolated from your pro-
duction environment. (For example, you probably won’t want to change from to

 whenever you want to test code changes on your local machine.) Django makes this very
easy by allowing you to use multiple settings files.

If you want to organize your settings files into “production” and “development” settings,
you can accomplish it in three ways:

-
tings file that merely imports from the first one and defines whatever overrides it needs
to define.

context.

We’ll take these one at a time.
First, the most basic approach is to define two separate settings files. If you’re following

along, you’ve already got . Now, just make a copy of it called .
(We made this name up; you can call it whatever you want.) In this new file, change , and
so on.

The second approach is similar, but cuts down on redundancy. Instead of having two set-
tings files whose contents are mostly similar, you can treat one as the “base” file and create
another file that imports from it. For example:

CHAPTER 12 DEPLOYING DJANGO 217

Here, imports everything from and just redefines the
settings that are particular to production. In this case, is set to , but we also set dif-
ferent database access parameters for the production setting. (The latter goes to show that you
can redefine any setting, not just the basic ones such as .)

Finally, the most concise way of accomplishing two settings environments is to use a
single settings file that branches based on the environment. One way to do this is to check the
current hostname. For example:

Here, we import the module
the current system’s hostname. We can check the hostname to determine whether the code is
being run on the production server.

A core lesson here is that settings files are just Python code. They can import from other
files, they can execute arbitrary logic, and so on. Just make sure that if you go down this road,

likely crash badly.

RENAMING SETTINGS.PY

Feel free to rename your to , or , or —
Django doesn’t care, as long as you tell it what settings file you’re using.

But if you do rename the file that is generated by ,
you’ll find that will give you an error message saying that it can’t find the settings. That’s
because it tries to import a module called . You can fix this either by editing to change

 to the name of your module, or by using instead of . In the latter
case, you’ll need to set the environment variable to the Python path to your set-
tings file (e.g.,).

DJANGO_SETTINGS_MODULE
With those code changes out of the way, the next part of this chapter will focus on deploy-
ment instructions for specific environments, such as Apache. The instructions are different
for each environment, but one thing remains the same: in each case, you have to tell the Web
server your . This is the entry point into your Django application. The

 points to your settings file, which points to your , which
points to your views, and so on.

CHAPTER 12 DEPLOYING DJANGO218

that the directory for our ongoing
example is .

Using Django with Apache and mod_python
Apache with mod_python historically has been the suggested setup for using Django on a pro-
duction server.

mod_python () is an Apache plug-in that

Code stays in memory throughout the life of an Apache process, which leads to significant per-
formance gains over other server arrangements.

Note Configuring Apache is well beyond the scope of this book, so we’ll simply mention details as
needed. Luckily, many great resources are available if you need to learn more about Apache. A few of them
we like are the following.

Pro Apache, Third Edition

Apache: The Definitive Guide, Third Edition

Basic Configuration
To configure Django with mod_python, first make sure you have Apache installed with the
mod_python module activated. This usually means having a directive in your
Apache configuration file. It will look something like this:

Then, edit your Apache configuration file and add a directive that ties a spe-
cific URL path to a specific Django installation. For example:

CHAPTER 12 DEPLOYING DJANGO 219

Make sure to replace with the appropriate for
your site.

This tells Apache, “Use mod_python for any URL at or under ‘/’, using the Django mod_
python handler.” It passes the value of so mod_python knows which
settings to use.

Note that we’re using the directive, not the directive. The latter is
used for pointing at places on your filesystem, whereas points at places in the URL
structure of a Web site. would be meaningless here.

Apache likely runs as a different user than your normal login and may have a different
path and . You may need to tell mod_python how to find your project and Django
itself.

You can also add directives such as for performance. See the mod_
python documentation for a full list of options.

Note that you should set on a production server. If you leave

mod_python.

inside a block) will be served by Django.

Running Multiple Django Installations on the
Same Apache Instance
It’s entirely possible to run multiple Django installations on the same Apache instance. You
might want to do this if you’re an independent Web developer with multiple clients but only a
single server.

To accomplish this, just use like so:

If you need to put two Django installations within the same , you’ll need to
take a special precaution to ensure mod_python’s code cache doesn’t mess things up. Use the

 directive to give different directives separate interpreters:

CHAPTER 12 DEPLOYING DJANGO220

The values of don’t really matter, as long as they’re different between
the two blocks.

Running a Development Server with mod_python
Because mod_python caches
python you’ll need to restart Apache each time you make changes to your code. This can be a

 to your config file to

or we’ll revoke your Django privileges.
If you’re the type of programmer who debugs using scattered statements (we are),

note that statements have no effect in mod_python; they don’t appear in the Apache log,
as you might expect. If you have the need to print debugging information in a mod_python

 information is
available at .

Serving Django and Media Files from the Same Apache Instance
Django should not be used to serve media files itself; leave that job to whichever Web server
you choose. We recommend using a separate Web server (i.e., one that’s not also running
Django) for serving media. For more information, see the “Scaling” section.

If, however, you have no option but to serve media files on the same Apache
as Django, here’s how you can turn off mod_python for a particular part of the site:

Change to the root URL of your media files.
You can also use to match a regular expression. For example, this sets up

Django at the site root but explicitly disables Django for the subdirectory and any URL
that ends with , , or :

CHAPTER 12 DEPLOYING DJANGO 221

In all of these cases, you’ll need to set the directive so Apache knows where
to find your static files.

Error Handling
When you
won’t propagate to the Apache level and won’t appear in the Apache .

The exception to this is if something is really messed up in your Django setup. In that

traceback in your Apache file. The traceback is spread over multiple lines.
(Yes, this is ugly and rather hard to read, but it’s how mod_python does things.)

Handling a Segmentation Fault
Sometimes, Apache segfaults when you install Django. When this happens, it’s almost always
one of two causes mostly unrelated to Django itself:

 module (used for XML pars-
ing), which may conflict with the version embedded in Apache. For full information,
see “Expat Causing Apache Crash” at

.

instance, with MySQL as your database back-end. In some cases, this causes a known

There’s full information in a mod_python FAQ entry, accessible via
.

If you continue to have problems setting up mod_python, a good thing to do is get a bare-
bones mod_python site working, without the Django framework. This is an easy way to isolate
mod_python-specific problems. The article “Getting mod_python Working” details this proce-
dure: .

CHAPTER 12 DEPLOYING DJANGO222

The next step should be to edit your test code and add an import of any Django-specific

If this causes a crash, you’ve confirmed it’s the importing of Django code that causes the
problem. Gradually reduce the set of imports until it stops crashing, so as to find the specific
module that causes the problem. Drop down further into modules and look into their imports
as necessary. For more help, system tools like on Linux, on Mac OS, and

 (from SysInternals) on Windows can help you identify shared dependencies and
possible version conflicts.

An Alternative: mod_wsgi
As an alternative to mod_python, you might consider using mod_wsgi (

), which has been developed more recently than mod_python and is getting
some traction in the Django community. A full overview is outside the scope of this book, but
see the official Django documentation for more information.

Using Django with FastCGI
Although Django under Apache and mod_python is the most robust deployment setup, many
people use shared hosting, on which FastCGI is the only available deployment option.

Additionally, in some situations, FastCGI allows better security and possibly better perfor-
mance than mod_python. For small sites, FastCGI can also be more lightweight than Apache.

FastCGI Overview
FastCGI is an efficient way of letting an external application serve pages to a Web server. The

code and passes the response back to the Web server, which, in turn, passes it back to the cli-
ent’s Web browser.

with no startup time. Unlike mod_python, a FastCGI process doesn’t run inside the Web
server process, but in a separate, persistent process.

WHY RUN CODE IN A SEPARATE PROCESS?

The traditional arrangements in Apache embed various scripting languages (most notably PHP, Python/
mod_python, and Perl/mod_perl) inside the process space of your Web server. Although this lowers startup
time (because code doesn’t have to be read off disk for every request), it comes at the cost of memory use.

Each Apache process gets a copy of the Apache engine, complete with all the features of Apache that
Django simply doesn’t take advantage of. FastCGI processes, on the other hand, only have the memory over-
head of Python and Django.

Due to the nature of FastCGI, it’s also possible to have processes that run under a different user account
than the Web server process. That’s a nice security benefit on shared systems, because it means you can
secure your code from other users.

CHAPTER 12 DEPLOYING DJANGO 223

Before you can start using FastCGI with Django, you’ll need to install
library for dealing with FastCGI. Some users have reported stalled pages with older ver-
sions, so you may want to use the latest SVN version. Get at

.

Running Your FastCGI Server
FastCGI operates on a client/server model, and in most cases you’ll be starting the FastCGI
server process on your own. Your Web server (be it Apache, lighttpd, or otherwise) contacts
your Django-FastCGI process only when the server needs a dynamic page to be loaded.
Because the daemon is already running with the code in memory, it’s able to serve the

Note If you’re on a shared hosting system, you’ll probably be forced to use Web server-managed FastCGI
processes. If you’re in this situation, you should read the section titled “Running Django on a Shared-Hosting
Provider with Apache,” later in this chapter.

A Web server can connect to a FastCGI server in one of two ways: it can use either a Unix
domain socket (a named pipe

To start your server, first change into the directory of your project (wherever your
 is), and then run with the command:

If you specify as the only option after , a list of all the available options will
display.

You’ll need to specify either a or both and . Then, when you set up your
Web server, you’ll just need to point it at the socket or host/port you specified when starting
the FastCGI server.

A few examples should help explain this:

CHAPTER 12 DEPLOYING DJANGO224

Stopping the FastCGI Daemon
If you have the process running in the foreground, it’s easy enough to stop it: simply press

processes, you’ll need to resort to the Unix command.
If you specify the option to your , you can kill the running

FastCGI daemon like this:

where is the you specified.
To easily restart your FastCGI daemon on Unix, you can use this small shell script:

Using Django with Apache and FastCGI
To use Django with Apache and FastCGI, you’ll need Apache installed and configured, with
mod_fastcgi installed and enabled. Consult the Apache and mod_fastcgi documentation for
instructions: .

Once you’ve completed the setup, point Apache at your Django FastCGI instance by edit-
ing the (Apache configuration) file. You’ll need to do two things:

 directive to specify the location of your FastCGI server.

 to point URLs at FastCGI as appropriate.

CHAPTER 12 DEPLOYING DJANGO 225

Specifying the Location of the FastCGI Server
The directive tells Apache how to find your FastCGI server. As
the FastCGIExternalServer docs (

) explain, you can specify either a or a . Here are
examples of both:

In either case, the directory should exist, though the file
 doesn’t actually have to exist. It’s just a URL used by the

FastCGI. (More on this in the next section.)

Using mod_rewrite to Point URLs at FastCGI
The second step is telling Apache to use FastCGI for URLs that match a certain pattern. To do
this, use the module and rewrite URLs to (or whatever you specified
in the directive, as explained in the previous section).

-
sent a file on the filesystem and doesn’t start with . This is probably the most common
case, if you’re using Django’s admin site:

FastCGI and lighttpd
lighttpd () is a lightweight Web server commonly
used for serving static files. It supports FastCGI natively and thus is also an ideal choice for
serving both static and dynamic pages, if your site doesn’t have any Apache-specific needs.

Make sure is in your modules list, somewhere after and
, but not after . You’ll probably want as well, for serving admin

media.

CHAPTER 12 DEPLOYING DJANGO226

Add the following to your lighttpd config file:

Running Multiple Django Sites on One lighttpd Instance
lighttpd lets you use “conditional configuration” to allow configuration to be customized per
host. To specify multiple FastCGI sites, just add a conditional block around your FastCGI con-
fig for each site:

CHAPTER 12 DEPLOYING DJANGO 227

You can also run multiple Django installations on the same site simply by specifying mul-
tiple entries in the directive. Add one FastCGI host for each.

Running Django on a Shared-Hosting Provider with Apache
Many shared-hosting providers don’t allow you to run your own server daemons or edit the

 file. In these cases, it’s still possible to run Django using Web server-spawned processes.

Note If you’re using Web server-spawned processes, as explained in this section, there’s no need for you
to start the FastCGI server on your own. Apache will spawn a number of processes, scaling as it needs to.

In your Web root directory, add this to a file named :

Then, create a small script that tells Apache how to spawn your FastCGI program. Create a
file, , and place it in your Web directory, and be sure to make it executable:

Restarting the Spawned Server
If you
But there’s no need to restart Apache in this case. Rather, just reupload

updated, it will restart your Django application for you.
If you have access to a command shell on a Unix system, you can accomplish this easily by

using the command:

CHAPTER 12 DEPLOYING DJANGO228

Scaling
Now that you know how to get Django running on a single server, let’s look at how you can
scale out a Django installation. This section walks through how a site might scale from a single
server to a large-scale cluster that could serve millions of hits an hour.

It’s important to note, however, that nearly every large site is large in different ways, so
scaling is anything but a one-size-fits-all operation. The following coverage should suffice
to show the general principle, and whenever possible we’ll try to point out where different
choices could be made.

First off, we’ll make a pretty big assumption and exclusively talk about scaling under
Apache and mod_python. Though we know of a number of successful medium- to large-scale
FastCGI deployments, we’re much more familiar with Apache.

Running on a Single Server
Most sites start out running on a single server, with an architecture that looks something like
Figure 12-1.

Server

Django

Database

Media

Figure 12-1. A single-server Django setup

resource contention between the dif-
ferent pieces of software. Database servers and Web servers love to have the entire server
to themselves, so when run on the same server they often end up “fighting” over the same

This is solved easily by moving the database server to a second machine, as explained in
the following section.

CHAPTER 12 DEPLOYING DJANGO 229

Separating Out the Database Server
As far as Django is concerned, the process of separating out the database server is extremely
easy: you’ll simply need to change the setting

the connection between your Web server and database server isn’t recommended.
With a separate database server, our architecture now looks like Figure 12-2.

Django

Media

Web Server

Database Server

Database

Figure 12-2. Moving the database onto a dedicated server

Here we’re starting to move into what’s usually called n-tier architecture. Don’t be scared

out onto different physical machines.
At this point, if you anticipate ever needing to grow beyond a single database server, it’s

probably a good idea to start thinking about connection pooling and/or database replication.
Unfortunately, there’s not nearly enough space to do those topics justice in this book, so you’ll
need to consult your database’s documentation and/or community for more information.

Running a Separate Media Server
We still have a big problem left over from the single-server setup: the serving of media from
the same box that handles dynamic content.

Those two activities perform best under different circumstances, and by smashing them
together on the same box you end up with neither performing particularly well. So the next

not

CHAPTER 12 DEPLOYING DJANGO230

Web Server

Database Server

Django

Database

Media Server

Media

Figure 12-3. Separating out the media server

Ideally, this media server should run a stripped-down Web server optimized for static
media delivery. lighttpd and tux () are both excellent
choices here, but a heavily stripped down Apache could work, too.

For sites heavy in static content (photos, videos, etc.), moving to a separate media server
is doubly important and should likely be the first step in scaling up.

This step can be slightly tricky, however. If your application involves file uploads, Django
needs to be able to write uploaded media to the media server. If media lives on another server,
you’ll need to arrange a way for that write to happen across the network.

Implementing Load Balancing and Redundancy
At this point, we’ve broken things down as much as possible. This three-server setup should

-

of your three servers fails, you’ll bring down your entire site. So as you add redundant servers,
not only do you increase capacity, but you also increase reliability.

For the sake of this example, let’s assume that the Web server hits capacity first. It’s rela-

the code onto multiple machines, and start Apache on all of them.
However, you’ll need another piece of software to distribute traffic over your multiple

servers: a load balancer. You can buy expensive and proprietary hardware load balancers, but

CHAPTER 12 DEPLOYING DJANGO 231

Apache’s
) to be fantastic. It’s a load balancer and reverse proxy written by the same

folks who wrote Memcached (see Chapter 15).

Note If you’re using FastCGI, you can accomplish this same distribution/load-balancing step by separat-
ing your front-end Web servers and back-end FastCGI processes onto different machines. The front-end
server essentially becomes the load balancer, and the back-end FastCGI processes replace the Apache/
mod_python/Django servers.

With the Web servers now clustered, our evolving architecture starts to look more com-

Load Balancer

Perlbal

Django DjangoDjango

Web Server Cluster

Database Server

Database

Media Server

Media

Figure 12-4. A load-balanced, redundant server setup

Notice that in the diagram the Web servers are referred to as a “cluster” to indicate that
the number of servers is basically variable. Once you have a load balancer out front, you can
easily add and remove back-end Web servers without a second of downtime.

CHAPTER 12 DEPLOYING DJANGO232

Going Big
At this point, the next few steps are pretty much derivatives of the last one:

servers. MySQL users should look into Slony
() and pgpool (

) for replication and connection pooling, respectively.

front and distribute among them using round-robin DNS.

the load with your load-balancing cluster.

After a few of these iterations, a large-scale architecture might look like Figure 12-5.

Django DjangoDjango

Web Server Cluster

Database DatabaseDatabase

Database Server Cluster

Perlbal PerlbalPerlbal

Media Server ClusterLoad Balancing Cluster

Cache Cluster

Media Media

Memcached Memcached

Figure 12-5. An example large-scale Django setup

Though we’ve shown only two or three servers at each level, there’s no fundamental limit
to how many you can add.

Performance Tuning
If you have a huge amount of money, you can just keep throwing hardware at scaling prob-
lems. For the rest of us, though, performance tuning is a must.

CHAPTER 12 DEPLOYING DJANGO 233

Note Incidentally, if anyone with monstrous gobs of cash is actually reading this book, please consider a
substantial donation to the Django Foundation. We accept uncut diamonds and gold ingots, too.

Unfortunately, performance tuning is much more of an art than a science, and it is even
more difficult to write about than scaling. If you’re serious about deploying a large-scale
Django application, you should spend a great deal of time learning how to tune each piece of
your stack.

The following sections, though, present a few Django-specific tuning tips we’ve discov-
ered over the years.

There’s No Such Thing As Too Much RAM
Even the really expensive RAM is relatively affordable these days. Buy as much RAM as you can
possibly afford, and then buy a little bit more.

Faster processors won’t improve performance all that much; most Web servers spend up

die. Faster disks might help slightly, but they’re much more expensive than RAM, such that it
doesn’t really matter.

If you have multiple servers, the first place to put your RAM is in the database server. If
you can afford it, get enough RAM to get fit your entire database into memory. This shouldn’t
be too hard; we’ve developed a site with more than half a million newspaper articles, and it
took under 2GB of space.

Next, max out the RAM on your Web server. The ideal situation is one where neither server
 withstand most normal traffic.

Turn Off Keep-Alive
 is a

This looks good at first glance, but it can kill the performance of a Django site. If you’re

active one should be using.

Use Memcached
Although Django supports a number of different cache back-ends, none of them even come
close to being as fast as Memcached. If you have a high-traffic site, don’t even bother with the

CHAPTER 12 DEPLOYING DJANGO234

Use Memcached Often
Of course, selecting Memcached does you no good if you don’t actually use it. Chapter 15 is
your best friend here: learn how to use Django’s cache framework, and use it everywhere pos-
sible. Aggressive, preemptive caching is usually the only thing that will keep a site up under
major traffic.

Join the Conversation
Each piece -

open source communities behind your software and ask for help. Most free-software commu-
nity members will be happy to help.

And also be sure to join the Django community. Your humble authors are only two mem-
bers of an incredibly active, growing group of Django developers. Our community has a huge
amount of collective experience to offer.

What’s Next?
The remaining chapters focus on other Django features that you might or might not need,
depending on your application. Feel free to read them in any order you choose.

P A R T 3

Other Django Features

237

C H A P T E R 1 3

Generating Non-HTML Content

Usually when we talk about developing Web sites, we’re talking about producing HTML. Of
course, there’s a lot more to the Web than HTML; we use the Web to distribute data in all sorts
of formats: RSS, PDFs, images, and so forth.

So far, we’ve focused on the common case of HTML production, but in this chapter we’ll
take a detour and look at using Django to produce other types of content.

Django has convenient built-in tools that you can use to produce some common non-
HTML content:

engines)

We’ll examine each of those tools a little later, but first we’ll cover the basic principles.

The Basics: Views and MIME Types
Recall from Chapter 3 that a view function is simply a Python function that takes a Web
request and returns a Web response. This response can be the HTML contents of a Web page,

More formally, a Django view function must

 instance as its first argument

 instance

The key to returning non-HTML content from a view lies in the class, spe-
cifically the argument. By tweaking the MIME type, we can indicate to the browser
that we’ve returned a response of a different format.

just read the file off the disk:

CHAPTER 13 GENERATING NON-HTML CONTENT238

That’s it! If you replace the image path in the call with a path to a real image, you
can use this very simple view to serve an image, and the browser will display it correctly.

The other important thing to keep in mind is that objects implement
. This means that you can use an instance

For an example of how that works, let’s take a look at producing CSV with Django.

Producing CSV
CSV is a simple data format usually used by spreadsheet software. It’s basically a series of table

CSV stands for comma-separated val-
ues). For example, here’s some data on “unruly” airline passengers in CSV format:

Note The preceding listing contains real numbers! They come from the US Federal Aviation Administration.

Though CSV looks simple, its formatting details haven’t been universally agreed upon.
Different pieces of software produce and consume different variants of CSV, making it a bit
tricky to use. Luckily, Python comes with a standard CSV library, , that is pretty much bul-
letproof.

Because the module operates on filelike objects, it’s a snap to use an
instead:

CHAPTER 13 GENERATING NON-HTML CONTENT 239

The code and comments should be pretty clear, but a few things deserve special mention:

). This
tells browsers that the document is a CSV file.

 header, which contains the name

prompt for a location to save the file instead of just displaying it. This file name is arbi-

, just treat the as a dictionary and

 as the first argument to
. The function expects a filelike object, and objects

fit the bill.

, passing it an iterable object such as
a list or a tuple.

-
ing strings with quotes or commas in them. Just pass information to , and it
will do the right thing.

This is the general pattern you’ll use any time you need to return non-HTML content:
create an response object
expecting a file, and then return the response.

Let’s look at a few more examples.

Generating PDFs
 is used to represent

printable documents, complete with pixel-perfect formatting, embedded fonts, and 2D vector
graphics. You can think of a PDF document as the digital equivalent of a printed document;
indeed, PDFs are often used to distribute documents for printing.

You can easily generate PDFs with Python and Django thanks to the excellent open source
ReportLab library). The advantage of generating
PDF files dynamically is that you can create customized PDFs for different purposes—say, for
different users or different pieces of content.

CHAPTER 13 GENERATING NON-HTML CONTENT240

For example, your humble authors used Django and ReportLab at KUsports.com to gener-
ate customized, printer-ready

Installing ReportLab
Before you do any PDF generation, however, you’ll need to install ReportLab. It’s usually sim-
ple: just download and install the library from .

Note If you’re using a modern Linux distribution, you might want to check your package-management
utility before installing ReportLab. Most package repositories have added ReportLab. For example, if you’re
using Ubuntu, a simple will do the trick nicely.

 has additional installation instructions.
Test your installation by importing it in the Python interactive interpreter:

If that command doesn’t raise any errors, the installation worked.

Writing Your View
Like CSV, generating
filelike objects.

Here’s a “Hello World” example:

CHAPTER 13 GENERATING NON-HTML CONTENT 241

 MIME type. This tells browsers that the document
is a PDF file, rather than an HTML file. If you leave off this information, browsers will
probably interpret the response as HTML, which will result in scary gobbledygook in
the browser window.

 is easy: just pass as the first argument to
. The class expects a filelike object, and objects fit

the bill.

),
not on .

 to call and on the PDF file—or else you’ll end
up with a corrupted PDF file.

Complex PDFs
If you’re

 library as a temporary holding place for your PDF file. The library pro-
vides a filelike object interface that is written in C for maximum efficiency.

Here’s the previous “Hello World” example rewritten to use :

CHAPTER 13 GENERATING NON-HTML CONTENT242

Other Possibilities
There’s a whole host of other types of content you can generate in Python. Here are a few more
ideas and some pointers to libraries you could use to implement them:

ZIP files: Python’s standard library ships with the module, which can both read
and write compressed ZIP files. You could use it to provide on-demand archives of a
bunch of files, or perhaps compress large documents when requested. You could simi-

 module.

Dynamic images
) is a fantastic toolkit for producing images

lot more). You could use it to automatically scale down images into thumbnails, com-
posite multiple images into a single frame, or even do Web-based image processing.

Plots and charts: There is a number of powerful Python plotting and charting libraries
you could use to produce on-demand maps, charts, plots, and graphs. We can’t possi-
bly list them all, so here are two of the highlights:

) can be used to produce the type
of high-quality plots usually generated with MatLab or Mathematica.

), can be used for generating structured
diagrams of graphs and networks.

In general, any Python library capable of writing to a file can be hooked into Django. The
possibilities are immense.

Now that we’ve looked at the basics of generating non-HTML content, let’s step up a level
of abstraction. Django ships with some pretty nifty built-in tools for generating some common
types of non-HTML content.

The Syndication-Feed Framework
Django comes with a high-level syndication-feed-generating framework that makes creating

WHAT'S RSS? WHAT'S ATOM?

RSS and Atom are both XML-based formats you can use to provide automatically updating “feeds” of your
site’s content. Read more about RSS at , and get information on Atom at

.

To create any syndication feed, all you have to do is write a short Python class. You can
create as many feeds as you want.

CHAPTER 13 GENERATING NON-HTML CONTENT 243

The high-level syndication-feed-generating framework is a view that’s hooked to
) to determine

which feed to return.
To create a feed, you’ll write a class and point to it in your URLconf.

Initialization
To activate syndication feeds on your Django site, add this URLconf:

This line tells Django to use the RSS framework to handle all URLs starting with .
prefix to fit your own needs.)

This URLconf line has an extra argument: . Use this extra argument
to pass the syndication framework the feeds that should be published under that URL.

Specifically,
 class. You can define the in the URLconf itself. Here’s a full example URLconf:

The preceding example registers two feeds:

 will live at .

 will live at .

Once that’s set up, you’ll need to define the classes themselves.
 class -

is variable).
 classes must subclass . They can live any-

where in your code tree.

CHAPTER 13 GENERATING NON-HTML CONTENT244

A Simple Feed
This simple example describes a feed of the latest five blog entries for a given blog:

The important things to notice here are as follows:

.

, , and correspond to the standard RSS , , and
 elements, respectively.

 is simply a method that returns a list of objects that should be included in the
feed as objects using Django’s

 doesn’t have to return model instances.

There’s just one more step. In an RSS feed, each has a , , and
. We need to tell the framework what data to put into those elements.

 and , create Django templates called
 and , where is the

 specified in the URLconf for the given feed. Note that the extension is
required.

 The RSS system renders that template for each item, passing it two template context
variables:

).

 object representing the current site. This is
useful for or .

 If you don’t create a template for either the title or description, the framework will use
the template by default—that is, the normal string representation of the

 method.)

 You can also change the names of these two templates by specifying
and as attributes of your class.

CHAPTER 13 GENERATING NON-HTML CONTENT 245

, you have two options. For each item in ,
Django first tries executing a method on that object. If that method
doesn’t exist, it tries calling a method in the class, passing it a single
parameter, , which is the object itself.

 Both and should return the item’s URL as a normal
Python string.

 example, we could have very simple feed templates.
 contains

 and contains

 It’s almost too easy. . . .

A More Complex Feed
The framework also supports more-complex feeds, via parameters.

For example, say your blog offers an RSS feed for every distinct “tag” you’ve used to catego-
rize your entries. It would be silly to create a separate class for each tag; that would violate

 and would couple data to programming logic.
Instead, the syndication framework lets you make generic feeds that return items based

on information in the feed’s URL.
Your tag-specific feeds could use URLs like this:

: Returns recent entries tagged with “python”

: Returns recent entries tagged with “cats”

The slug here is . The syndication framework sees the extra URL bits after the slug—
 and and gives you a hook to tell it what those URL bits mean and how they should

influence which items get published in the feed.

CHAPTER 13 GENERATING NON-HTML CONTENT246

Here’s the basic algorithm of the RSS framework, given this class and a request to the URL
:

 1. The framework gets the URL and notices there’s an extra bit of
) and calls the

 class’s method, passing it the bits.

 In this case, bits is . For a request to , bits would
be .

 2. is responsible for retrieving the given object, from the given .

 . Note that
should raise if given invalid parameters.
There’s no around the call, because it’s not necessary.
That function raises on failure, and is a subclass of

. Raising in tells Django to pro-
duce a 404 error for that request.

 3. To generate the feed’s , , and , Django uses the ,
, and methods. In the previous example, they were simple string

class attributes, but this example illustrates that they can be either strings or methods.
For each of , , and , Django follows this algorithm:

 a. It tries to call a method, passing the argument, where is the object returned
by .

 b. Failing that, it tries to call a method with no arguments.

 c. Failing that, it uses the class attribute.

 4. Finally, note that in this example also takes the argument. The algorithm
for is the same as described in the previous step—first, it tries , then

, and then finally an

Full documentation of all the methods and attributes of the classes is always avail-
able from the

).

CHAPTER 13 GENERATING NON-HTML CONTENT 247

Specifying the Type of Feed
By default, the syndication framework produces RSS 2.0. To change that, add a attri-
bute to your class:

Note that you set to a class object, not an instance. Currently available feed
types are shown in Table 13-1.

Table 13-1. Feed Types

Feed Class Format

RSS 0.91

Enclosures
To specify
feeds), use the , , and
hooks, as in this example:

This assumes, of course, that you’ve created a object with and
 size in bytes) fields.

CHAPTER 13 GENERATING NON-HTML CONTENT248

Language
Feeds created by the syndication framework automatically include the appropriate

 attribute from your
setting.

URLs
The) or a URL with

). If
doesn’t return the domain, the syndication framework will insert the domain of the current
site, according to your and the sites
framework.)

 that defines the feed’s current location. The syn-
dication framework populates this automatically.

Publishing Atom and RSS Feeds in Tandem
Some developers and RSS versions of their feeds. That’s easy
to do with Django: just create a subclass of your class and set the to something
different. Then update your URLconf to add the extra versions. Here’s a full example:

 accompanying URLconf:

CHAPTER 13 GENERATING NON-HTML CONTENT 249

The Sitemap Framework
sitemap is how frequently

your pages change and how “important” certain pages are in relation to other pages on your
site. This information helps search engines index your site.

):

For more on sitemaps, see .

express this information in Python code. To create a sitemap, you just need to write a
class and point to it in your URLconf.

Installation
To install the sitemap application, follow these steps:

 1. to your setting.

 2. Make sure is in
your setting. It’s in there by default, so you’ll need to change this
only if you’ve changed that setting.

 3. Make sure you’ve installed the

CHAPTER 13 GENERATING NON-HTML CONTENT250

Note The sitemap application doesn’t install any database tables. The only reason it needs to go into
 is so the template loader can find the default templates.

Initialization
To activate sitemap generation on your Django site, add this line to your URLconf:

This line tells Django to build a sitemap when a client accesses
the dot character in is escaped with a backslash because dots have a special
meaning in regular expressions.)

The name of the sitemap file is not important, but the location is. Search engines will
index links in your sitemap for only the current URL level and below. For instance, if

 lives in your root directory, it may reference any URL in your site. However, if your sitemap
lives at , it may only reference URLs that begin with .

The sitemap view takes an extra, required argument: .
 or) to its class

 or). It may also map to an instance of a
).

Sitemap Classes
 class is a simple Python class that represents a “section” of entries in your sitemap.

For example, one class could represent all the entries of your weblog, while another
could represent all of the events in your events calendar.

In the simplest case, all these sections get lumped together into one , but
it’s also possible to use the framework to generate a sitemap index that references individual

 classes must subclass . They can live anywhere
in your code tree. For example, let’s assume you have a blog system, with an model, and
you want your sitemap to include all the links to your individual blog entries. Here’s how your

 class might look:

CHAPTER 13 GENERATING NON-HTML CONTENT 251

Declaring a should look very similar to declaring a . That’s by design.
Like classes, members can be either methods or attributes. See the steps in

 (required): Provides a list of objects. The framework doesn’t care what type of
objects they are; all that matters is that these objects get passed to the ,

, , and methods.

 (optional)
means a URL that doesn’t include the protocol or domain. Here are some examples:

Good:

Bad:

Bad:

 If isn’t provided, the framework will call the method on
each object as returned by .

 (optional): The object’s “last modification” date, as a Python object.

 (optional)
Sitemaps specification) are as follows:

 (optional) priority between and . The default
priority of a page is ; see the documentation for more
about how works.

Shortcuts
The sitemap framework provides a couple of convenience classes for common cases. These
are described in the sections that follow.

FlatPageSitemap
The class looks at all flatpages defined for the
current site and creates an entry in the sitemap. These entries include only the attri-
bute—not , , or .

 about flatpages.

CHAPTER 13 GENERATING NON-HTML CONTENT252

GenericSitemap
The class

To use it, create an instance, passing in the same you pass to the generic views.
The only requirement is that the dictionary have a entry. It may also have a

 entry that specifies a date field for objects retrieved from the . This will be used
for the attribute in the generated sitemap. You may also pass and
keyword arguments to the constructor to specify these attributes for all URLs.

Here’s an example of a URLconf using both and
the hypothetical object from earlier):

Creating a Sitemap Index
The sitemap framework also has the ability to create a sitemap index that references individual
sitemap files, one per section defined in your dictionary. The only differences in
usage are as follows:

 and
.

 view should take a keyword
argument.

CHAPTER 13 GENERATING NON-HTML CONTENT 253

Here is what the relevant URLconf lines would look like for the previous example:

This will automatically generate a file that references both
 and . The classes and the dictionary don’t change at all.

Pinging Google
You may
The framework provides a function to do just that: .

 takes an optional argument, , which should be the absolute
). If this argument isn’t provided,

 will attempt to figure out your sitemap by performing a reverse lookup on your
URLconf.

 raises the exception if it cannot
determine your sitemap URL.

One useful way to call is from a model’s method:

 from a script or

may not want to introduce that network overhead each time you call .
Finally, if is in your , then your will

include a new command, . This is useful for command-line access to pinging.
Here’s an example:

CHAPTER 13 GENERATING NON-HTML CONTENT254

What's Next?
Next we’ll continue to dig deeper into Django’s built-in tools. Chapter 14 looks at all the tools
you need to provide user-customized sites: sessions, users, and authentication.

C H A P T E R 1 4

Sessions, Users,
and Registration

It’s time for a confession: we’ve been deliberately ignoring an important aspect of Web
development prior to this point. So far, we’ve thought of the traffic visiting our sites as some
faceless, anonymous mass hurtling itself against our carefully designed pages.

This isn’t true, of course. The browsers hitting our sites have real humans behind them
(most of the time, at least). That’s a big thing to ignore: the Internet is at its best when it serves
to connect people, not machines. If we’re going to develop truly compelling sites, eventually
we’re going to have to deal with the bodies behind the browsers.

Unfortunately, it’s not all that easy. HTTP is designed to be stateless—that is, each and
every request happens in a vacuum. There’s no persistence between one request and the next,
and we can’t count on any aspects of a request (IP address, user agent, etc.) to consistently
indicate successive requests from the same person.

In this chapter you’ll learn how to handle this lack of state. We’ll start at the lowest level
(cookies), and work up to the high-level tools for handling sessions, users, and registration.

Cookies
Browser developers long ago recognized that HTTP’s statelessness poses a huge problem for
Web developers, and thus cookies were born. A cookie is a small piece of information that
browsers store on behalf of Web servers. Every time a browser requests a page from a certain
server, it gives back the cookie that it initially received.

Let’s take a look at how this might work. When you open your browser and type in
, your browser sends an HTTP request to Google that starts something like this:

255

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 256

When Google replies, the HTTP response looks something like the following:

Notice the header. Your browser will store that cookie value (
) and serve it back to Google every time you

access the site. So the next time you access Google, your browser is going to send a request
like this:

Google then can use that value to know that you’re the same person who accessed
the site earlier. This value might, for example, be a key into a database that stores user infor-
mation. Google could (and does) use it to display your account’s username on the page.

Getting and Setting Cookies
When dealing with persistence in Django, most of the time you’ll want to use the higher-level
session and/or user frameworks discussed a little later in this chapter. However, first look at
how to read and write cookies at a low level. This should help you understand how the rest of
the tools discussed in the chapter actually work, and it will come in handy if you ever need to
play with cookies directly.

Reading cookies that are already set is simple. Every object has a
object that acts like a dictionary; you can use it to read any cookies that the browser has sent
to the view:

Writing cookies is slightly more complicated. You need to use the method
on an object. Here’s an example that sets the cookie based on a

 parameter:

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 257

You can also pass a number of optional arguments to that control
aspects of the cookie, as shown in Table 14-1.

Table 14-1. Cookie Options

Parameter Default Description

Age (in seconds) that the cookie should last. If this parameter is , the
cookie will last only until the browser is closed.

The actual date/time when the cookie should expire. It needs to be in the
format . If given, this parameter over-
rides the parameter.

The path prefix that this cookie is valid for. Browsers will only pass the
cookie back to pages below this path prefix, so you can use this to prevent
cookies from being sent to other sections of your site.

This is especially useful when you don’t control the top level of your site’s
domain.

The domain that this cookie is valid for. You can use this parameter to set
a cross-domain cookie. For example, will set a
cookie that is readable by the domains ,

, and .

If this parameter is set to , a cookie will only be readable by the
domain that set it.

If set to , this parameter instructs the browser to only return this
cookie to pages accessed over HTTPS.

The Mixed Blessing of Cookies
You might notice a number of potential problems with the way cookies work. Let’s look at
some of the more important ones:

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 258

all browsers enable users to control the policy for accepting cookies. If you want to see
just how vital cookies are to the Web, try turning on your browser’s “prompt to accept
every cookie” option.

 Despite their nearly universal use, cookies are still the definition of unreliability. This
means that developers should check that a user actually accepts cookies before relying
on them.

is sent in cleartext, cookies are extremely vulnerable to snooping attacks. That is, an
attacker snooping on the wire can intercept a cookie and read it. This means you
should never store sensitive information in a cookie.

 There’s an even more insidious attack, known as a man-in-the-middle attack, wherein
-

cusses attacks of this nature in depth, as well as ways to prevent it.

ways to edit the content of individual cookies, and resourceful users can always use
tools like mechanize () to construct
HTTP requests by hand.

 So you can’t store data in cookies that might be sensitive to tampering. The canonical
mistake in this scenario is storing something like in a cookie when a user
logs in. You’d be amazed at the number of sites that make mistakes of this nature; it
takes only a second to fool these sites’ “security” systems.

Django’s Session Framework
With all of these limitations and potential security holes, it’s obvious that cookies and persis-
tent sessions are examples of those “pain points” in Web development. Of course, Django’s
goal is to be an effective painkiller, so it comes with a session framework designed to smooth
over these difficulties for you.

This session framework lets you store and retrieve arbitrary data on a per-site visitor basis.

use only a hashed session ID—not the data itself—thus protecting you from most of the com-
mon cookie problems.

Let’s look at how to enable sessions and use them in views.

Enabling Sessions
Sessions are implemented
To enable sessions, you’ll need to follow these steps:

 1. Edit your setting and make sure contains
.

 2. is in your setting (and run
 if you have to add it).

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 259

The default skeleton settings created by have both of these bits already
installed, so unless you’ve removed them, you probably don’t have to change anything to get
sessions to work.

If you don’t want to use sessions, you might want to remove the line
from and from your . It will
save you only a small amount of overhead, but every little bit counts.

Using Sessions in Views
When is activated, each object—the first argument to any
Django view function—will have a attribute, which is a dictionary-like object. You can
read it and write to it in the same way you’d use a normal dictionary. For example, in a view
you could do stuff like this:

You can also use other dictionary methods like and on .
There are a couple of simple rules for using Django’s sessions effectively:

 (as opposed to
integers, objects, etc.).

Django. In practice, the framework uses only a small number of underscore-prefixed
session variables, but unless you know what they all are (and you are willing to keep
up with any changes in Django itself), staying away from underscore prefixes will keep
Django from interfering with your application.

 For example, don’t use a session key called like this:

 with a new object, and don’t access or set its attributes.
Use it like a Python dictionary. Here are a couple of examples:

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 260

Let’s take a look at a few quick examples. This simplistic view sets a vari-
able to after a user posts a comment. It’s a simple (if not particularly secure) way of
preventing a user from posting more than one comment:

This simplistic view logs in a “member” of the site:

And this one logs out a member who has been logged in via :

Note In practice, this is a lousy way of logging users in. The authentication framework discussed shortly
handles this task for you in a much more robust and useful manner. These examples are deliberately sim-
plistic so that you can easily see what’s going on.

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 261

Setting Test Cookies
As mentioned earlier, you can’t rely on every browser accepting cookies. So, as a conve-
nience, Django provides an easy way to test whether a user’s browser accepts cookies. Just
call in a view, and check

 in a subsequent view—not in the same view call.
This awkward split between and is necessary

due to the way cookies work. When you set a cookie, you can’t actually tell whether a browser
accepted it until the browser’s next request.

It’s good practice to use to clean up after yourself. Do this after
you’ve verified that the test cookie worked.

Here’s a typical usage example:

Note Again, the built-in authentication functions handle this check for you.

Using Sessions Outside of Views
Internally, each session is just a normal Django model defined in

cookie. Because it’s a normal model, you can access sessions using the normal Django data-
base API:

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 262

You’ll need to call to get the actual session data. This is necessary because
the dictionary is stored in an encoded format:

When Sessions Are Saved
By default, Django only saves to the database if the session has been modified—that is, if any
of its dictionary values have been assigned or deleted:

To change this default behavior, set to . If
 is , Django will save the session to the database on every single request,

even if it wasn’t changed.
Note that the session cookie is sent only when a session has been created or modified. If

 is , the session cookie will be sent on every request. Similarly,
the part of a session cookie is updated each time the session cookie is sent.

Browser-Length Sessions vs. Persistent Sessions
You might have noticed that the cookie Google sent at the beginning of this chapter contained

that advises the browser on when to remove the cookie. If a cookie doesn’t contain an expira-
tion value, the browser will expire it when the user closes his or her browser window. You can
control the session framework’s behavior in this regard with the

 setting.

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 263

By default, is set to , which means session cookies
will be stored in users’ browsers for seconds (which defaults to two weeks,

a browser.
If is set to , Django will use browser-length cookies.

Other Session Settings
Besides the settings already mentioned, a few other settings influence how Django’s session
framework uses cookies, as

Table 14-2. Settings That Influence Cookie Behavior

Setting Description Default

The domain to use for session cookies. Set this to a
string such as for cross-domain cook-
ies, or use for a standard cookie.

The name of the cookie to use for sessions. This can be
any string.

Whether to use a “secure” cookie for the session
cookie. If this is set to , the cookie will be marked
as “secure,” which means that browsers will ensure
that the cookie is only sent via HTTPS.

TECHNICAL DETAILS

For the curious, here are a few technical notes about the inner workings of the session framework:

 module for information about how this works.

.

database table.

cookie (unless is set to).

 header.

 for
more details.

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 264

Users and Authentication
Sessions give us a way of persisting data through multiple browser requests; the second part of
the equation is using those sessions for user login. Of course, we can’t just trust that users are
who they say they are, so we need to authenticate them along the way.

Naturally, Django provides tools to handle this common task (and many others). Django’s
user authentication system handles user accounts, groups, permissions, and cookie-based
user sessions. This system is often referred to as an auth/auth (authentication and authoriza-
tion) system. That name recognizes that dealing with users is often a two-step process. We
need to

 1. Verify (authenticate) that a user is who he or she claims to be (usually by checking a
username and password against a database of users)

 2. Verify that the user is authorized to perform some given operation (usually by checking
against a table of permissions)

Following these needs, Django’s auth/auth system consists of a number of parts:

Users: People registered with your site

Permissions: Binary (yes/no) flags designating whether a user may perform a certain
task

Groups: A generic way of applying labels and permissions to more than one user

Messages: A simple way to queue and display system messages to users

tools, and if you’ve edited users or groups in the admin tool, you’ve actually been editing data
in the auth system’s database tables.

Enabling Authentication Support
Like the session tools, authentication support is bundled as a Django application in

 that needs to be installed. Similar to the session tools, it’s also installed by default, but
if you’ve removed it, you’ll need to follow these steps to install it:

 1.
Keeping track of users obviously requires cookies, and thus builds on the session
framework.

 2. Put in your setting and run
to install the appropriate database tables.

 3. is in
your setting—after .

With that installation out of the way, we’re ready to deal with users in view functions.
The main interface you’ll use to access users within a view is ; this is an object
that represents the currently logged-in user. If the user isn’t logged in, this will instead be an

 object (see the following section for more details).

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 265

You can easily tell if a user is logged in with the method:

Using Users
Once you have a —often from , but possibly through one of the other meth-
ods discussed shortly—you have a number of fields and methods available on that object.

 objects emulate some of this interface, but not all of it, so you should always
check before assuming you’re dealing with a bona fide object.
Tables 14-3 and 14-4 list the fields and methods, respectively, on objects.

Table 14-3. Fields on User Objects

Field Description

and underscores).

Optional. E-mail address.

Required. A hash of, and metadata about, the password (Django doesn’t store the
raw password). See the “Passwords” section for more about this value.

Boolean. Designates whether this user can access the admin site.

Boolean. Designates whether this account can be used to log in. Set this flag to
 instead of deleting accounts.

Boolean. Designates that this user has all permissions without explicitly assign-
ing them.

A datetime of the user’s last login. This is set to the current date/time by default.

A datetime designating when the account was created. This is set to the current
date/time by default when the account is created.

Table 14-4. Methods on User Objects

Method Description

Always returns for “real” objects. This is a way to tell
if the user has been authenticated. This does not imply any
permissions, and it doesn’t check if the user is active. It only
indicates that the user has successfully authenticated.

Returns only for objects (and for
“real” objects). Generally, you should prefer using

 to this method.

Returns the plus the , with a space in
between.

Continued

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 266

Table 14-4. Continued

Method Description

Sets the user’s password to the given raw string, taking care of
the password hashing. This doesn’t actually save the object.

Returns if the given raw string is the correct password for
the user. This takes care of the password hashing in making the
comparison.

Returns a list of permission strings that the user has through the
groups he or she belongs to.

Returns a list of permission strings that the user has, both
through group and user permissions.

Returns if the user has the specified permission, where
 is in the format . If the user is inactive,

this method will always return .

Returns if the user has all of the specified permissions.
If the user is inactive, this method will always return .

Returns if the user has any permissions in the given
. If the user is inactive, this method will always return

.

Returns a list of objects in the user’s queue and deletes
the messages from the queue.

Sends an e-mail to the user. This e-mail is sent from the
 setting. You can also pass a third argument,

, to override the From address on the e-mail.

Finally, objects have two many-to-many fields: and . objects
can access their related objects in the same way as any other many-to-many field:

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 267

Logging In and Out
Django provides built-in view functions for handling logging in and out (and a few other nifty
tricks), but before we get to those, let’s take a look at how to log users in and out “by hand.”
Django provides two functions to perform these actions in :
and .

To authenticate a given username and password, use . It takes two key-
word arguments, and , and it returns a object if the password is valid
for the given username. If the password is invalid, returns :

 only verifies a user’s credentials. To log in a user, use . It takes an
 object and a object and saves the user’s ID in the session, using Django’s ses-

sion framework.
This example shows how you might use both and within a view

function:

To log out a user, use within your view. It takes an
 object and has no return value:

Note that doesn’t throw any errors if the user wasn’t logged in.

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 268

In practice, you usually will not need to write your own login/logout functions; the
authentication system comes with a set of views for generically handling logging in and out.
The first step in using these authentication views is to wire them up in your URLconf. You’ll
need to add this snippet:

 and are the default URLs that Django uses for these
views.

By default, the view renders a template at (you can change
this template name by passing an extra view argument ,). This form needs to
contain a and a field. A simple template might look like this:

If the user successfully logs in, he or she will be redirected to by
default. You can override this by providing a hidden field called with the URL to redirect
to after logging in. You can also pass this value as a parameter to the login view and it will
be automatically added to the context as a variable called that you can insert into that
hidden field.

The logout view works a little differently. By default it renders a template at
 (which usually contains a “You’ve successfully logged out” message). How-

ever, you can call the view with an extra argument, , which will instruct the view to
redirect after a logout.

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 269

Limiting Access to Logged-in Users
Of course, the reason we’re going through all this trouble is so we can limit access to parts of
our site.

The simple, raw way to limit access to pages is to check
and redirect to a login page:

or perhaps display an error message:

As a shortcut, you can use the convenient decorator:

 does the following:

, passing the current URL path
in the query string as , for example: .

 view normally. The view code can then assume that
the user is logged in.

Limiting Access to Users Who Pass a Test
Limiting access based on certain permissions or some other test, or providing a different loca-
tion for the login view works essentially the same way.

The raw way is to run your test on in the view directly. For example, this
view checks to make sure the user is logged in and has the permission (more
about how permissions work follows):

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 270

Again, Django provides a shortcut called . It takes arguments and gener-
ates a specialized decorator for your particular situation:

 takes one required argument: a callable that takes a object and
returns if the user is allowed to view the page. Note that does not auto-
matically check that the is authenticated; you should do that yourself.

In this example we’re also showing the second (optional) argument, , which lets
you specify the URL for your login page (by default). If the user doesn’t pass
the test, the decorator will redirect the user to the .

Because it’s a relatively common task to check whether a user has a particular permission,
Django provides a shortcut for that case: the decorator. Using this
decorator, the earlier example can be written as follows:

Note that also takes an optional parameter, which also
defaults to .

LIMITING ACCESS TO GENERIC VIEWS

You can, of course, replace with any of the other limiting decorators.

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 271

Managing Users, Permissions, and Groups

discusses how to use Django’s admin site to edit users and control their permissions and
access, and most of the time you’ll just use that interface.

However, there are low-level APIs you can dive into when you need absolute control, and
we discuss these in the sections that follow.

Creating Users
 with the helper function:

At this point, is a instance ready to be saved to the database (
doesn’t actually call itself). You can continue to change its attributes before saving, too:

Changing Passwords
You can change a password with :

Don’t set the attribute directly unless you know what you’re doing. The pass-
word is actually stored as a salted hash and thus can’t be edited directly.

 attribute of a object is a string in this format:

That’s a hash type, the salt, and the hash itself, separated by the dollar sign ($) character.
 is either (default) or , the algorithm used to perform a one-way hash

of the password. is a random string used to salt the raw password to create the hash, for
example:

The and functions handle the setting and
checking of these values behind the scenes.

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 272

SALTED HASHES

A hash

If we stored passwords as plain text, anyone who got their hands on the password database would

database.
brute-force attack, hashing millions

might think.
rainbow tables, or databases of pre-computed hashes of millions of

passwords. With a rainbow table, an experienced attacker could break most passwords in seconds.
Adding a salt

-
bow table, thus forcing attackers to fall back on a brute-force attack, itself made more difficult by the extra
entropy added to the hash by the salt.

While salted hashes aren’t absolutely the most secure way of storing passwords, they’re a good middle

Handling Registration
We can use these low-level tools to create views that allow users to sign up for new accounts.
Different developers implement registration differently, so Django leaves writing a registration
view up to you. Luckily, it’s pretty easy.

At its simplest, we could provide a small view that prompts for the required user informa-
tion and creates those users. Django provides a built-in form you can use for this purpose,
which we’ll use in this example:

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 273

This form assumes a template named . Here’s an example of
what that template might look like:

Using Authentication Data in Templates
The current logged-in user and his or her permissions are made available in the template con-
text when you use

Note
 and your setting contains

, which is the default. Again, see Chapter 9 for more information.

When using , the current user (either a instance or an
instance) is stored in the template variable :

This user’s permissions are stored in the template variable . This is a template-
friendly proxy to a couple of permission methods described shortly.

There are two ways you can use this object. You can use something like
 to check whether the user has any permissions for some given application, or

you can use something like to check if the user has a specific
permission.

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 274

Thus, you can check permissions in template statements:

Permissions, Groups, and Messages
There are a few other bits of the authentication framework that we’ve only dealt with in pass-
ing. We’ll take a closer look at them in the following sections.

Permissions
Permissions are a simple way to “mark” users and groups as being able to perform some
action. They are usually used by the Django admin site, but you can easily use them in your
own code.

The Django admin site uses permissions as follows:

add per-
mission for that type of object.

to users with the change permission for that type of object.

delete permission for that type
of object.

Permissions are set globally per type of object, not per specific object instance. For

change news stories that have a certain status, publication date, or ID.”
These three basic permissions—add, change, and delete—are automatically created for

each Django model. Behind the scenes, these permissions are added to the
database table when you run .

These permissions will be of the form . That is, if you
have a application with a model, you’ll get permissions named

, , and .

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 275

Just like users, permissions are implemented in a Django model that lives in
. This means that you can use Django’s database API to interact directly

with permissions if you like.

Groups
Groups are a generic way of categorizing users so you can apply permissions, or some other
label, to those users. A user can belong to any number of groups.

A user in a group automatically has the permissions granted to that group. For example,
if the group has the permission , any user in that group will
have that permission.

Groups are also a convenient way to categorize users to give them some label, or extended
functionality. For example, you could create a group , and you could write
code that could, say, give those users access to a members-only portion of your site, or send
them members-only e-mail messages.

Like users, the easiest way to manage groups is through the admin interface. However,
groups are also just Django models that live in , so once again you
can always use Django’s database APIs to deal with groups at a low level.

Messages
The message system is a lightweight way to queue messages for given users. A message is asso-
ciated with a . There’s no concept of expiration or timestamps.

when you create an object, you’ll notice a “The object was created successfully” message at the
top of the admin page.

You can use the same API to queue and display messages in your own application. The
API is simple:

.

, which returns a list
of objects in the user’s queue (if any) and deletes the messages from the queue.

In this example view, the system saves a message for the user after creating a playlist:

CHAPTER 14 SESSIONS, USERS, AND REGISTRATION 276

When you use , the current logged-in user and his or her messages are
made available in the template context as the template variable . Here’s an
example of template code that displays messages:

Note that calls behind the scenes, so any mes-
sages will be deleted even if you don’t display them.

Finally, note that this messages framework only works with users in the user database.
To send messages to anonymous users, use the session framework directly.

What’s Next?

all the features described in this chapter, but when you need to allow complex interactions
between users, it’s good to have all that power available.

In the next chapter, we’ll take a look at Django’s caching infrastructure, which is a conve-
nient way to improve the performance of your application.

C H A P T E R 1 5

Caching

A fundamental trade-off in dynamic Web sites is, well, they’re dynamic. Each time a user
requests a page, the Web server makes all sorts of calculations—from database queries to tem-
plate rendering to business logic—to create the page that your site’s visitor sees. This is a lot
more expensive, from a processing-overhead perspective, than your standard read-a-file-off-
the-filesystem-server arrangement.

For most Web applications, this overhead isn’t a big deal. Most Web applications aren’t
washingtonpost.com or slashdot.org; they’re simply small- to medium-sized sites with so-so
traffic. But for medium- to high-traffic sites, it’s essential to cut as much overhead as possible.

That’s where caching comes in.
To cache something is to save the result of an expensive calculation so that you don’t have

to perform the calculation next time. Here’s some pseudocode explaining how this would
work for a dynamically generated Web page:

Django comes with a robust cache system that lets you save dynamic pages so they don’t
have to be calculated for each request. For convenience, Django offers different levels of cache
granularity: you can cache the output of specific views, you can cache only the pieces that are
difficult to produce, or you can cache your entire site.

Django also works well with “upstream” caches, such as Squid (
) and browser-based caches. These are the types of caches that you don’t directly control

but to which you can provide hints (via HTTP headers) about which parts of your site should
be cached, and how.

277

CHAPTER 15 CACHING278

Setting Up the Cache
The cache system requires a small amount of setup. Namely, you have to tell it where your
cached data should live—whether in a database, on the filesystem, or directly in memory.
This is an important decision that affects your cache’s performance; yes, some cache types are
faster than others.

Your cache preference goes in the setting in your settings file. Here’s an
explanation of all available values for .

Memcached
By far the fastest, most efficient type of cache available to Django, Memcached is an entirely
memory-based cache framework originally developed to handle high loads at LiveJournal.com
and subsequently open-sourced by Danga Interactive. It’s used by sites such as Facebook and
Wikipedia to reduce database access and dramatically increase site performance.

Memcached is available for free at . It runs as a daemon and
is allotted a specified amount of RAM. All it does is provide a fast interface for adding, retriev-
ing, and deleting arbitrary data in the cache. All data is stored directly in memory, so there’s no
overhead of database or filesystem usage.

After installing Memcached itself, you’ll need to install the Memcached Python bindings,
which are not bundled with Django directly. Two versions are available. Choose and install one
of the following modules:

, available at
.

, you can install , available at
. If that URL is no longer valid, just go to the Mem-

cached Web site () and get the Python bindings from
the “Client APIs” section.

To use Memcached with Django, set to , where
is the IP address of the Memcached daemon and is the port on which Memcached is
running.

In this example, Memcached is running on localhost (127.0.0.1) port 11211:

One excellent feature of Memcached is its ability to share cache over multiple servers.
This means you can run Memcached daemons on multiple machines, and the program will
treat the group of machines as a single cache, without the need to duplicate cache values on
each machine. To take advantage of this feature, include all server addresses in ,
separated by semicolons.

In this example, the cache is shared over Memcached instances running on IP addresses
172.19.26.240 and 172.19.26.242, both on port 11211:

In the following example, the cache is shared over Memcached instances running on the
IP addresses 172.19.26.240 (port 11211), 172.19.26.242 (port 11212), and 172.19.26.244 (port
11213):

CHAPTER 15 CACHING 279

A final point about Memcached is that memory-based caching has one disadvantage:
because the cached data is stored in memory, the data will be lost if your server crashes.
Clearly, memory isn’t intended for permanent data storage, so don’t rely on memory-based
caching as your only data storage. Without a doubt, none of the Django caching back-ends
should be used for permanent storage—they’re all intended to be solutions for caching, not
storage—but we point this out here because memory-based caching is particularly temporary.

Database Caching
To use a database table as your cache back-end, first create a cache table in your database by
running this command where is the name of the database table to create:

This name can be whatever you want, as long as it’s a valid table name that’s not already being
used in your database. This command creates a single table in your database that is in the
proper format that Django’s database-cache system expects.

Once you’ve created that database table, set your setting to
, where is the name of the database table. In this example, the cache

table’s name is :

The database caching back-end uses the same database as specified in your settings file.
You can’t use a different database back-end for your cache table.

Database caching works best if you have a fast, well-indexed database server.

Filesystem Caching
To store cached items on a filesystem, use the cache type for . For
example, to store cached data in , use this setting:

Note that there are three forward slashes toward the beginning of that example. The first
two are for , and the third is the first character of the directory path,

. If you’re on Windows, put the drive letter after the , like this:

The directory path should be absolute—that is, it should start at the root of your filesys-
tem. It doesn’t matter whether you put a slash at the end of the setting.

Make sure the directory pointed to by this setting exists and is readable and writable by
the system user under which your Web server runs. Continuing the preceding example, if your
server runs as the user , make sure the directory exists and is
readable and writable by the user .

Each cache value will be stored as a separate file whose contents are the cache data saved
in a serialized (“pickled”) format, using Python’s module. Each file’s name is the cache
key, escaped for safe filesystem use.

CHAPTER 15 CACHING280

Local-Memory Caching
If you want the speed advantages of in-memory caching but don’t have the capability of run-
ning Memcached, consider the local-memory cache back-end. This cache is multi-process and
thread-safe. To use it, set to . For example:

Note that each process will have its own private cache instance, which means no cross-
process caching is possible. This obviously also means the local memory cache isn’t particu-
larly memory efficient, so it’s probably not a good choice for production environments. It’s
nice for development.

Dummy Caching (for Development)
Finally, Django comes with a “dummy” cache that doesn’t actually cache; it just implements
the cache interface without doing anything.

This is useful if you have a production site that uses heavy-duty caching in various places
but a development/test environment in which you don’t want to cache and don’t want to have
to change your code to special-case the latter. To activate dummy caching, set
like so:

Using a Custom Cache Back-End
Although Django includes support for a number of cache back-ends out of the box, sometimes
you might want to use a customized cache back-end. To use an external cache back-end with
Django, use a Python import path as the scheme portion (the part before the initial colon) of
the URI, like so:

If you’re building your own back-end, you can use the standard cache back-ends as refer-
ence implementations. You’ll find the code in the directory of
the Django source.

Note Without a really compelling reason (for example, a host that doesn’t support back-ends), you should
stick to the cache back-ends included with Django. They’ve been well-tested and are easy to use.

CHAPTER 15 CACHING 281

CACHE_BACKEND Arguments
Each cache back-end may take arguments. They’re given in query-string style on the

 setting. Valid arguments are as follows:

: The default timeout, in seconds, to use for the cache. This argument defaults
to 300 seconds (5 minutes).

: For the , , and back-ends, the maximum
number of entries allowed in the cache before old values are deleted. This argument
defaults to 300.

: The percentage of entries that are culled when is
reached. The actual ratio is , so set to cull half of
the entries when is reached.

 A value of for means that the entire cache will be dumped when
 is reached. This makes culling much faster at the expense of more cache

misses.

In this example, is set to :

In this example, is and is :

Invalid arguments are silently ignored, as are invalid values of known arguments.

The Per-Site Cache
After the cache is set up, the simplest way to use caching is to cache your entire site. You’ll
need to add and

 to your setting, as in this example:

Note No, that’s not a typo: the “update” middleware must be first in the list, and the “fetch” middleware
must be last. The details are a bit obscure, but see “Order of MIDDLEWARE_CLASSES,” at the end of the
chapter, if you want the full story.

CHAPTER 15 CACHING282

Then, add the following required settings to your Django settings file:

: The number of seconds each page should be cached.

: If the cache is shared across multiple sites using the same
Django installation, set this to the name of the site, or some other string that is unique to
this Django instance, to prevent key collisions. Use an empty string if you don’t care.

The cache middleware caches every page that doesn’t have or parameters.
Optionally, if the setting is , only anonymous requests
(i.e., not those made by a logged-in user) will be cached. This is a simple and effective way of
disabling caching for any user-specific pages (include Django’s admin interface). Note that
if you use , you should make sure you’ve activated

.
Additionally, the cache middleware automatically sets a few headers in each

:

 header to the current date/time when a fresh (uncached)
version of the page is requested.

 header to the current date/time plus the defined
.

 header to give a max age for the page—again, from the
 setting.

Note See Chapter 17 for more on middleware.

If a view sets its own cache expiry time (i.e., it has a section in its
header), the page will be cached until the expiry time instead of .
Using the decorators in , you can easily set a view’s expiry
time (using the decorator) or disable caching for a view (using the
decorator). See the following “Controlling Cache: Using Other Headers” section for more on
these decorators.

The Per-View Cache
A more granular way to use the caching framework is by caching the output of individual
views. defines a decorator that will automatically
cache the view’s response for you. It’s easy to use:

CHAPTER 15 CACHING 283

Or, using Python 2.4’s decorator syntax:

 takes a single argument: the cache timeout, in seconds. In the preceding
example, the result of the view will be cached for 15 minutes. (Note that we’ve writ-
ten it as for the purpose of readability. will be evaluated to —that is, 15
minutes multiplied by 60 seconds per minute.)

The per-view cache, like the per-site cache, is keyed off of the URL. If multiple URLs point
at the same view, each URL will be cached separately. Continuing the example, if your
URLconf looks like this:

then requests to and will be cached separately, as you may expect. But once
a particular URL (e.g.,) has been requested, subsequent requests to that URL will use
the cache.

Specifying Per-View Cache in the URLconf
The examples in the previous section have hard-coded the fact that the view is cached,
because alters the function in place. This approach couples your view
to the cache system, which is not ideal for several reasons. For instance, you might want to
reuse the view functions on another, cache-less site, or you might want to distribute the views
to people who might want to use them without being cached. The solution to these prob-
lems is to specify the per-view cache in the URLconf rather than next to the view functions
themselves.

Doing so is easy: simply wrap the view function with when you refer to it in the
URLconf. Here’s the old URLconf from earlier:

Here’s the same thing, with wrapped in :

If you take this approach, don’t forget to import within your URLconf.

CHAPTER 15 CACHING284

Template Fragment Caching
If you’re after even more control, you can also cache template fragments using the tem-
plate tag. To give your template access to this tag, put near the top of your
template.

The template tag caches the contents of the block for a given amount of time.
It takes at least two arguments: the cache timeout in seconds and the name to give the cache
fragment. For example:

Sometimes you might want to cache multiple copies of a fragment, depending on some
dynamic data that appears inside the fragment. For example, you might want a separate cached
copy of the sidebar used in the previous example for every user of your site. Do this by passing
additional arguments to the template tag to uniquely identify the cache fragment:

It’s perfectly fine to specify more than one argument to identify the fragment. Simply pass
as many arguments to as you need.

The cache timeout can be a template variable, as long as the template variable resolves to
an integer value. For example, if the template variable is set to the value , the
following two examples are equivalent:

This feature is useful for avoiding repetition in templates. You can set the timeout in a
variable, in one place, and just reuse that value.

The Low-Level Cache API
Sometimes, caching an entire rendered page doesn’t gain you very much and is, in fact, incon-
venient overkill.

Perhaps, for instance, your site includes a view whose results depend on several expensive
queries, the results of which change at different intervals. In this case, it would not be ideal
to use the full-page caching that the per-site or per-view cache strategies offer, because you
wouldn’t want to cache the entire result (since some of the data changes often), but you’d still
want to cache the results that rarely change.

For cases like this, Django exposes a simple, low-level cache API. You can use this API
to store objects in the cache with any level of granularity you like. You can cache any Python
object that can be pickled safely: strings, dictionaries, lists of model objects, and so forth.
(Most common Python objects can be pickled; refer to the Python documentation for more
information about pickling.)

CHAPTER 15 CACHING 285

The cache module, , has a object that’s automatically created
from the setting:

The basic interface is and :

The argument is optional and defaults to the argument in the
 setting (explained earlier).

If the object doesn’t exist in the cache, returns :

We advise against storing the literal value in the cache, because you won’t be able
to distinguish between your stored value and a cache miss signified by a return value
of .

 can take a argument. This specifies which value to return if the object
doesn’t exist in the cache:

To add a key (only if it doesn’t already exist), use the method. It takes the same
parameters as , but it will not attempt to update the cache if the key specified is already
present:

If you need to know whether stored a value in the cache, you can check the return
value. It returns if the value was stored; it returns otherwise.

There’s also a interface that hits the cache only once: returns a dic-
tionary with all the keys you asked for that actually exist in the cache (and haven’t expired):

Finally, you can delete keys explicitly with . This is an easy way of clearing the
cache for a particular object:

CHAPTER 15 CACHING286

You can also increment or decrement a key that already exists using the or
methods, respectively. By default, the existing cache value will be incremented or decre-
mented by 1. Other increment/decrement values can be specified by providing an argument
to the increment/decrement call. A will be raised if you attempt to increment or
decrement a nonexistent cache key:

Note / methods are not guaranteed to be atomic. On those back-ends that support atomic
increment/decrement (most notably, the Memcached back-end), increment and decrement operations will
be atomic. However, if the back-end doesn’t natively provide an increment/decrement operation, it will be
implemented using a two-step retrieve/update.

Upstream Caches
So far, this chapter has focused on caching your own data. But another type of caching is rel-
evant to Web development, too: caching performed by “upstream” caches. These are systems
that cache pages for users even before the request reaches your Web site.

Here are a few examples of upstream caches:

,
your ISP would send you the page without having to access example.com directly. The
maintainers of example.com have no knowledge of this caching; the ISP sits between
example.com and your Web browser, handling all of the caching transparently.

proxy cache, such as Squid Web Proxy Cache
(), that caches pages for performance. In this case, each
request first would be handled by the proxy, and it would be passed to your application
only if needed.

your browser will use the local cached copy for subsequent requests to that page, with-
out even contacting the Web page again to see whether it has changed.

CHAPTER 15 CACHING 287

Upstream caching is a nice efficiency boost, but there’s a danger to it: many Web pages’
contents differ based on authentication and a host of other variables, and cache systems that
blindly save pages based purely on URLs could expose incorrect or sensitive data to subse-
quent visitors to those pages.

For example, say you operate a Web e-mail system, and the contents of the “inbox” page
obviously depend on which user is logged in. If an ISP blindly cached your site, then the first
user who logged in through that ISP would have his user-specific inbox page cached for subse-
quent visitors to the site. That’s not cool.

Fortunately, HTTP provides a solution to this problem. A number of HTTP headers exist
to instruct upstream caches to differ their cache contents depending on designated variables,
and to tell caching mechanisms not to cache particular pages. We’ll look at some of these
headers in the sections that follow.

Using Vary Headers
The header defines which request headers a cache mechanism should take into account
when building its cache key. For example, if the contents of a Web page depend on a user’s
language preference, the page is said to “vary on language.”

By default, Django’s cache system creates its cache keys using the requested path (e.g.,
). This means every request to that URL will use the

same cached version, regardless of user-agent differences such as cookies or language prefer-
ences. However, if this page produces different content based on some difference in request
headers—such as a cookie, or a language, or a user-agent—you’ll need to use the header
to tell caching mechanisms that the page output depends on those things.

To do this in Django, use the convenient view decorator, like so:

In this case, a caching mechanism (such as Django’s own cache middleware) will cache a
separate version of the page for each unique user-agent.

The advantage to using the decorator rather than manually setting the
 header (using something like) is that the decorator

adds to the header (which may already exist), rather than setting it from scratch and
potentially overriding anything that was already in there.

CHAPTER 15 CACHING288

You can pass multiple headers to :

This tells upstream caches to vary on both, which means each combination of user-agent
and cookie will get its own cache value. For example, a request with the user-agent
and the cookie value will be considered different from a request with the user-agent

 and the cookie value .
Because varying on cookie is so common, there’s a decorator. These two

views are equivalent:

The headers you pass to are not case sensitive; is the same
thing as .

You can also use a helper function, , directly.
This function sets, or adds to, the header. For example:

 takes an instance as its first argument and a list/tuple of
case-insensitive header names as its second argument.

Controlling Cache: Using Other Headers
Other problems with caching are the privacy of data and the question of where data should be
stored in a cascade of caches.

A user usually faces two kinds of caches: his or her own browser cache (a private cache)
and his or her provider’s cache (a public cache). A public cache is used by multiple users and
controlled by someone else. This poses problems with sensitive data—you don’t want, say,
your bank account number stored in a public cache. So Web applications need a way to tell
caches which data is private and which is public.

The solution is to indicate a page’s cache should be “private.” To do this in Django, use
the view decorator. Here’s an example:

CHAPTER 15 CACHING 289

This decorator takes care of sending out the appropriate HTTP header behind the scenes.
There are a few other ways to control cache parameters. For example, HTTP allows appli-

cations to do the following:

cached content when there are no changes. (Some caches might deliver cached con-
tent even if the server page changes, simply because the cache copy isn’t yet expired.)

In Django, use the view decorator to specify these cache parameters. In
this example, tells caches to revalidate the cache on every access and to store
cached versions for, at most, 3,600 seconds:

Any valid HTTP directive is valid in . Here’s a full list:

 (Note that the caching middleware already sets the cache header’s with the value
of the setting. If you use a custom in a deco-
rator, the decorator will take precedence, and the header values will be merged correctly.)

If you want to use headers to disable caching altogether,
 is a view decorator that adds headers to ensure that the response won’t be cached

by browsers or other caches. For example:

CHAPTER 15 CACHING290

Other Optimizations
Django comes with a few other pieces of middleware that can help optimize your apps’
performance:

 adds support for modern
browsers to conditionally responses based on the and
headers.

 compresses responses for all modern
browsers, saving bandwidth and transfer time.

Order of MIDDLEWARE_CLASSES
If you use caching middleware, it’s important to put each half in the right place within the

 setting. That’s because the cache middleware needs to know which head-
ers should be used to vary the cache storage. Middleware always adds something to the
response header when it can.

 runs during the response phase (in which middleware is run in
reverse order), so an item at the top of the list runs last during the response phase. Thus, you
need to make sure that appears before any other middleware that
might add something to the header. The following middleware modules do so:

 adds

 adds

 adds

On the other hand, runs during the request phase, during
which middleware is applied first to last, so an item at the top of the list runs first during
the request phase. The also needs to run after other middleware
updates the header, so must be after any item that does so.

What’s Next?
Django ships with a number of “contrib” packages—optional features that can make your life
easier. We’ve already covered a few of these: the admin site (discussed in Chapter 6) and the
session/user framework (refer to Chapter 14). The next chapter covers more of the “contrib-
uted” subframeworks.

C H A P T E R 1 6

django.contrib

One of the many strengths of Python is its “batteries included” philosophy: when you install
Python, it comes with a large standard library of packages that you can start using immedi-
ately, without having to download anything else. Django aims to follow this philosophy, and it
includes its own standard library of add-ons useful for common Web-development tasks. This
chapter covers that collection of add-ons.

The Django Standard Library
Django’s standard library lives in the package . Within each subpackage is a
separate piece of add-on functionality. These pieces are not necessarily related, but some

 subpackages may require other ones.
There’s no hard requirement for the types of functionality in . Some of

the packages include models (and hence require you to install their database tables into your
database), but others consist solely of middleware or template tags.

The single characteristic the packages have in common is this: if you were
to remove the package entirely, you could still use Django’s fundamental fea-
tures with no problems. When the Django developers add new functionality to the framework,
they use this rule of thumb in deciding whether the new functionality should live in

 or elsewhere.
 consists of these packages:

: The Django admin site. See Chapter 6.

: autodocumentation for the Django admin site. This book doesn’t cover this
feature; check the official Django documentation.

: Django’s authentication framework. See Chapter 14.

: A comments application. This book doesn’t cover this feature; check the
official Django documentation.

291

CHAPTER 16 DJANGO.CONTRIB292

: A framework for hooking into “types” of content, where each installed
Django model is a separate content type. This framework is used internally by other
“contrib” applications and is mostly intended for very advanced Django developers.
Those developers should find out more about this application by reading the source
code in .

: Protection against cross-site request forgery (CSRF). See the later section titled
“CSRF Protection.”

: A Django application that lets you browse your data. This book doesn’t
cover this feature; check the official Django documentation.

: A framework for managing simple “flat” HTML content in a database.
See the later section titled “Flatpages.”

: A number of useful higher-level libraries for dealing with common patterns
in forms. This book doesn’t cover this feature; check the official Django documentation.

: Extensions to Django that provide for GIS (Geographic Information Systems)
support. These, for example, allow your Django models to store geographic data and
perform geographic queries. This is a large, complex library and isn’t covered in this
book. See for documentation.

: A set of Django template filters useful for adding a “human touch” to data.
See the later section titled “Humanizing Data.”

: Assorted pieces of code that are useful for particular countries or cultures.
For example, this includes ways to validate US ZIP codes or Icelandic personal identifi-
cation numbers.

: A set of Django template filters that implement a number of common markup
languages. See the later section titled “Markup Filters.”

: A framework for managing redirects. See the later section titled “Redirects.”

: Django’s session framework. See Chapter 14.

: A framework for generating sitemap XML files. See Chapter 13.

: A framework that lets you operate multiple Web sites from the same database
and Django installation. See the next section, “Sites.”

: A framework for generating syndication feeds in RSS and Atom. See
Chapter 13.

: Django add-ons that are particularly useful to Web designers (as opposed
to developers). As of this writing, this includes only a single template tag, .
Check the Django documentation for more information.

The rest of this chapter goes into detail about a number of packages that
we haven’t yet covered in this book.

CHAPTER 16 DJANGO.CONTRIB 293

Sites
Django’s sites system is a generic framework that lets you operate multiple Web sites from the
same database and Django project. This is an abstract concept, and it can be tricky to under-
stand, so we’ll start with a couple of scenarios where it would be useful.

Scenario 1: Reusing Data on Multiple Sites
As we explained in Chapter 1, the Django-powered sites LJWorld.com and Lawrence.com
are operated by the same news organization: the Lawrence Journal-World newspaper in
Lawrence, Kansas. LJWorld.com focuses on news, while Lawrence.com focuses on local enter-
tainment. But sometimes editors want to publish an article on both sites.

The brain-dead way of solving the problem would be to use a separate database for each
site and to require site producers to publish the same story twice: once for LJWorld.com and
again for Lawrence.com. But that’s inefficient for site producers, and it’s redundant to store
multiple copies of the same story in the database.

The better solution? Both sites use the same article database, and an article is associated
with one or more sites via a many-to-many relationship. The Django sites framework provides
the database table to which articles can be related. It’s a hook for associating data with one or
more “sites.”

Scenario 2: Storing Your Site Name/Domain in One Place
LJWorld.com and Lawrence.com both have e-mail alert functionality, which lets readers sign
up to get notifications when news happens. It’s pretty basic: a reader signs up on a Web form,
and immediately gets an e-mail saying, “Thanks for your subscription.”

It would be inefficient and redundant to implement this signup-processing code twice,
so the sites use the same code behind the scenes. But the “Thank you for your subscription”
notice needs to be different for each site. By using objects, we can abstract the thank-
you notice to use the values of the current site’s (e.g.,) and
(e.g.,).

The Django sites framework provides a place for you to store the and for each
site in your Django project, which means you can reuse those values in a generic way.

How to Use the Sites Framework
The sites framework is more a series of conventions than a framework. The whole thing is
based on two simple concepts:

 model, found in , has and fields.

 setting specifies the database ID of the object associated with that
particular settings file.

How you use these two concepts is up to you, but Django uses them in a couple of ways
automatically via simple conventions.

CHAPTER 16 DJANGO.CONTRIB294

To install the sites application, follow these steps:

 1. Add to your .

 2. Run the command to install the table into your data-
base. This will also create a default site object, with the domain .

 3. Change the site to your own domain, and add any other objects,
either through the Django admin site or via the Python API. Create a object for each
site/domain that this Django project powers.

 4. Define the setting in each of your settings files. This value should be the data-
base ID of the object for the site powered by that settings file.

The Sites Framework’s Capabilities
The sections that follow describe the various things you can do with the sites framework.

Reusing Data on Multiple Sites
To reuse data on multiple sites, as explained in the first scenario, just create a
to in your models, as in this example:

That’s the infrastructure you need to associate articles with multiple sites in your
database. With that in place, you can reuse the same Django view code for multiple sites.
Continuing the model example, here’s what an view might look like:

This view function is reusable because it checks the article’s site dynamically, according to
the value of the setting.

For example, say LJWorld.com’s settings file has a set to , and Lawrence.
com’s settings file has a set to . If this view is called when LJWorld.com’s settings
file is active, then it will limit the article lookup to articles in which the list of sites includes
LJWorld.com.

CHAPTER 16 DJANGO.CONTRIB 295

Associating Content with a Single Site
Similarly, you can associate a model to the model in a many-to-one relationship using

.
For example, if each article is associated with only a single site, you could use a model

like this:

This has the same benefits as described in the preceding section.

Hooking into the Current Site from Views
On a lower level, you can use the sites framework in your Django views to do particular things
based on the site in which the view is being called, as in this example:

Of course, it’s ugly to hard-code the site IDs like that. A slightly cleaner way of accom-
plishing the same thing is to check the current site’s domain:

The idiom of retrieving the object for the value of is quite common,
so the model’s manager () has a method. This example is
equivalent to the previous one:

CHAPTER 16 DJANGO.CONTRIB296

Note In this final example, you don’t have to import .

Getting the Current Domain for Display
For a DRY (Don’t Repeat Yourself) approach to storing your site’s name and domain name,
as explained in “Scenario 2: Storing Your Site Name/Domain in One Place,” just reference the

 and of the current object. Here’s an example:

Continuing our ongoing example of LJWorld.com and Lawrence.com, on Lawrence.com
this e-mail has the subject line “Thanks for subscribing to Lawrence.com alerts.” On LJWorld.
com, the e-mail has the subject line “Thanks for subscribing to LJWorld.com alerts.” This same
site-specific behavior is applied to the e-mails’ message body.

An even more flexible (but more heavyweight) way of doing this would be to use Django’s
template system. Assuming Lawrence.com and LJWorld.com have different template directo-
ries (), you could simply delegate to the template system like so:

CHAPTER 16 DJANGO.CONTRIB 297

In this case, you have to create and templates in both the
LJWorld.com and Lawrence.com template directories. As mentioned previously, that gives you
more flexibility, but it’s also more complex.

It’s a good idea to exploit the objects as much as possible to remove unneeded com-
plexity and redundancy.

CurrentSiteManager
If objects play a key role in your application, consider using the in
your model(s). It’s a model manager (see Chapter 10) that automatically filters its queries to
include only objects associated with the current .

Use by adding it to your model explicitly, as in this example:

With this model, will return all objects in the database, but
 will return only the objects associated with the current site,

according to the setting.
In other words, these two statements are equivalent:

CHAPTER 16 DJANGO.CONTRIB298

How did know which field of was the ? It defaults to look-
ing for a field called . If your model has a or called something
other than , you need to explicitly pass that as the parameter to . The
following model, which has a field called , demonstrates this:

If you attempt to use and pass a field name that doesn’t exist, Django
will raise a .

Note You’ll probably want to keep a normal (non-site-specific) on your model, even if you use
. As explained in Appendix B, if you define a manager manually, then Django won’t

create the automatic manager for you.
Also, certain parts of Django—namely, the Django admin site and generic views—use whichever

manager is defined first in the model, so if you want your admin site to have access to all objects (not just site-
specific ones), put in your model before you define .

How Django Uses the Sites Framework
Although it’s not required that you use the sites framework, it’s encouraged because Django
takes advantage of it in a few places. Even if your Django installation is powering only a single
site, you should take a few seconds to create the site object with your and , and
point to its ID in your setting.

Here’s how Django uses the sites framework:

associated with a particular site. When Django searches for a redirect, it takes into
account the current .

When a comment is posted, its is set to the current , and when comments
are listed via the appropriate template tag, only the comments for the current site are
displayed.

CHAPTER 16 DJANGO.CONTRIB 299

-
ated with a particular site. When a flatpage is created, you specify its , and the
flatpage middleware checks the current in retrieving flatpages to display.

 and
automatically have access to a variable , which is the object represent-
ing the current site. Also, the hook for providing item URLs will use the from the
current object if you don’t specify a fully qualified domain.

 view passes the current name to the template as and the
current object as .

Flatpages
Often you’ll have a database-driven Web application up and running, but you’ll need to add
a couple of one-off static pages, such as an About page or a Privacy Policy page. It would be
possible to use a standard Web server such as Apache to serve these files as flat HTML files,
but that introduces an extra level of complexity into your application, because then you have
to worry about configuring Apache, you have to set up access for your team to edit those files,
and you can’t take advantage of Django’s template system to style the pages.

The solution to this problem is Django’s flatpages application, which lives in the package
. This application lets you manage such one-off pages via Django’s

admin site, and it lets you specify templates for them using Django’s template system. It uses
Django models behind the scenes, which means it stores the pages in a database, just like the
rest of your data, and you can access flatpages with the standard Django database API.

Flatpages are keyed by their URL and site. When you create a flatpage, you specify which
URL it’s associated with, along with which site(s) it’s on. (For more on sites, see the “Sites”
section.)

Using Flatpages
To install the flatpages application, follow these steps:

 1. Add to your .
depends on , so make sure both packages are in .

 2. Add to your
 setting.

 3. Run the command to install the two required tables into your
database.

The flatpages application creates two tables in your database: and
. simply maps a URL to a title and bunch of text con-

tent. is a many-to-many table that associates a flatpage with one or
more sites.

CHAPTER 16 DJANGO.CONTRIB300

The application comes with a single model, defined in
. It looks something like this:

Let’s examine these fields one at a time:

: The URL at which this flatpage lives, excluding the domain name but including the
leading slash (e.g.,).

: The title of the flatpage. The framework doesn’t do anything special with this.
It’s your responsibility to display it in your template.

: The content of the flatpage (i.e., the HTML of the page). The framework doesn’t
do anything special with this. It’s your responsibility to display it in the template.

: Whether to enable comments on this flatpage. The framework
doesn’t do anything special with this. You can check this value in your template and
display a comment form if needed.

: The name of the template to use for rendering this flatpage. This is
optional; if it’s not given or if this template doesn’t exist, the framework will fall back to
the template .

: Whether registration is required for viewing this flatpage. This
integrates with Django’s authentication/user framework, which is explained further in
Chapter 14.

: The sites that this flatpage lives on. This integrates with Django’s sites frame-
work, which is explained in the “Sites” section of this chapter.

You can create flatpages through either the Django admin interface or the Django data-
base API. For more information on this, see the section “Adding, Changing, and Deleting
Flatpages.”

Once you’ve created flatpages, does all of the work. Each
time any Django application raises a 404 error, this middleware checks the flatpages database
for the requested URL as a last resort. Specifically, it checks for a flatpage with the given URL
with a site ID that corresponds to the setting.

If it finds a match, it loads the flatpage’s template or if the flat-
page has not specified a custom template. It passes that template a single context variable,

, which is the object. It uses in rendering the template.

CHAPTER 16 DJANGO.CONTRIB 301

If doesn’t find a match, the request continues to be pro-
cessed as usual.

Note This middleware gets activated for only 404 (page not found) errors—not for 500 (server error) or
other error responses. Also note that the order of matters. Generally, you can put

 at or near the end of the list, because it’s a last resort.

Adding, Changing, and Deleting Flatpages
You can add, change, and delete flatpages in two ways.

Via the Admin Interface
If you’ve activated the automatic Django admin interface, you should see a Flatpages section
on the admin index page. Edit flatpages as you would edit any other object in the system.

Via the Python API
As described previously, flatpages are represented by a standard Django model that lives in

. Hence, you can access flatpage objects via the Django
database API, as in this example:

Using Flatpage Templates
By default, flatpages are rendered via the template , but you can over-
ride that for a particular flatpage with the field on the object.

Creating the template is your responsibility. In your template
directory, just create a directory containing a file.

CHAPTER 16 DJANGO.CONTRIB302

Flatpage templates are passed a single context variable, , which is the flatpage
object.

Here’s a sample template:

Note that we’ve used the template filter to allow to include raw
HTML and bypass autoescaping.

Redirects
Django’s redirects framework lets you manage redirects easily by storing them in a database
and treating them as any other Django model object. For example, you can use the redirects
framework to tell Django, “Redirect any request to to .” This
comes in handy when you need to move things around on your site; Web developers should
do whatever is necessary to avoid broken links.

Using the Redirects Framework
To install the redirects application, follow these steps:

 1. Add to your .

 2. Add to your
 setting.

 3. Run the command to install the single required table into your
database.

 creates a table in your database. This is a simple
lookup table with , , and fields.

You can create redirects through either the Django admin interface or the Django data-
base API. For more, see the section “Adding, Changing, and Deleting Redirects.”

Once you’ve created redirects, the class does all of the
work. Each time any Django application raises a 404 error, this middleware checks the redi-
rects database for the requested URL as a last resort. Specifically, it checks for a redirect with
the given with a site ID that corresponds to the setting. (See the earlier
section “Sites” for more information on and the sites framework.) Then it follows
these steps:

CHAPTER 16 DJANGO.CONTRIB 303

 1. If it finds a match and is not empty, it redirects to .

 2. If it finds a match and is empty, it sends a 410 (“Gone”) HTTP header and an
empty (contentless) response.

 3. If it doesn’t find a match, the request continues to be processed as usual.

Note The middleware gets activated for only 404 errors—not for 500 errors or responses of any
other status code. Additionally, the order of matters. Generally, you can put

 toward the end of the list, because it’s a last resort.

Note If you’re using both the redirect and flatpage fallback middleware, consider which one (redirect
or flatpage) you’d like checked first. We suggest flatpages before redirects (thus putting the flatpage middle-
ware before the redirect middleware), but you might feel differently.

Adding, Changing, and Deleting Redirects
You can add, change, and delete redirects in two ways.

Via the Admin Interface
If you’ve activated the automatic Django admin interface, you should see a Redirects section
on the admin index page. Edit redirects as you would edit any other object in the system.

Via the Python API
Redirects are represented by a standard Django model that lives in

. Hence, you can access redirect objects via the Django database API, as in this
example:

CHAPTER 16 DJANGO.CONTRIB304

CSRF Protection
The package protects against CSRF (also known as “session riding”),
which is a Web site security exploit. It happens when a malicious Web site tricks a user into
unknowingly loading a URL from a site at which that user is already authenticated, hence tak-
ing advantage of the user’s authenticated status. This can be a bit tricky to understand at first,
so we walk through two examples in this section.

A Simple CSRF Example
Suppose you’re logged in to a Webmail account at . This Webmail site has a Log
Out button that points to the URL —that is, the only action you need to
take in order to log out is to visit the page .

A malicious site can coerce you to visit the URL by including that URL
as a hidden on its own (malicious) page. Thus, if you’re logged in to the
Webmail account and visit the malicious page that has an to , the
act of visiting the malicious page will log you out from .

Clearly, being logged out of a Webmail site against your will is not a terrifying breach
of security, but this same type of exploit can happen to any site that trusts users, such as an
online banking site or an e-commerce site, where the exploit could be used to initiate an order
or payment without the user’s knowledge.

A More Complex CSRF Example
In the previous example, was partially at fault because it allowed a state change
(i.e., logging the user out) to be requested via the HTTP method. It’s much better practice
to require an HTTP for any request that changes state on the server. But even Web sites
that require for state-changing actions are vulnerable to CSRF.

Suppose has upgraded its Log Out functionality so that it’s a button
that is requested via to the URL . Furthermore, the logout
includes this hidden field:

This ensures that a simple to the URL won’t log out a user; in
order for a user to log out, the user must request via and send the

 variable with a value of .
Well, despite the extra security, this arrangement can still be exploited by CSRF—the mali-

cious page just needs to do a little more work. Attackers can create an entire form targeting
your site, hide it in an invisible , and then use JavaScript to submit that form auto-
matically.

Preventing CSRF
How, then, can your site protect itself from this exploit? The first step is to make sure all
requests are free of side effects. That way, if a malicious site includes one of your pages as an

, it won’t have a negative effect.

CHAPTER 16 DJANGO.CONTRIB 305

That leaves requests. The second step is to give each a hidden field
whose value is secret and is generated from the user’s session ID. Then, when processing the
form on the server side, check for that secret field and raise an error if it doesn’t validate.

This is exactly what Django’s CSRF prevention layer does, as explained in the sections
that follow.

Using the CSRF Middleware
The package contains only one module: . This module
contains a Django middleware class, , which implements the CSRF protection.

To activate this CSRF protection, add
to the setting in your settings file. This middleware needs to process the
response after , so must appear before in
the list (because the response middleware is processed last-to-first). Also, it must process the
response before the response gets compressed or otherwise mangled, so must
come after . Once you’ve added to your
setting, you’re done. See the section “Order of MIDDLEWARE_CLASSES” in Chapter 15 for
more explanation.

In case you’re interested, here’s how works:

 forms, with the
name and a value that is a hash of the session ID plus a secret
key. The middleware does not modify the response if there’s no session ID set, so the
performance penalty is negligible for requests that don’t use sessions.

 requests that have the session cookie set, it checks that
 is present and correct. If it isn’t, the user will get a 403 HTTP

error. The content of the 403 error page is the message “Cross Site Request Forgery
detected. Request aborted.”

This ensures that only forms originating from your Web site can be used to data back.
This middleware deliberately targets only HTTP requests (and the correspond-

ing forms). As we explained, requests ought never to have side effects; it’s your own
responsibility to ensure this.

 requests not accompanied by a session cookie are not protected, but they don’t need
to be protected, because a malicious Web site could make these kind of requests anyway.

To avoid altering non-HTML requests, the middleware checks the response’s
header before modifying it. Only pages that are served as or
are modified.

Limitations of the CSRF Middleware
 requires Django’s session framework to work. (See Chapter 14 for more on ses-

sions.) If you’re using a custom session or authentication framework that manually manages
session cookies, this middleware will not help you.

If your application creates HTML pages and forms in some unusual way (e.g., if it sends
fragments of HTML in JavaScript statements), you might bypass the filter that
adds the hidden field to the form. In this case, the form submission will always fail. (This hap-
pens because uses a regular expression to add the field

CHAPTER 16 DJANGO.CONTRIB306

to your HTML before the page is sent to the client, and the regular expression sometimes can-
not handle wacky HTML.) If you suspect this might be happening, just view the source in your
Web browser to see whether was inserted into your .

For more CSRF information and examples, visit .

Humanizing Data
The package holds a set of Django template filters useful for add-
ing a “human touch” to data. To activate these filters, add to your

. Once you’ve done that, use in a template, and you’ll
have access to the filters described in the following sections.

apnumber
For numbers 1 through 9, this filter returns the number spelled out. Otherwise, it returns the
numeral. This follows Associated Press style. Here are some examples:

You can pass in either an integer or a string representation of an integer.

intcomma
This filter converts an integer to a string containing commas every three digits. Here are some
examples:

You can pass in either an integer or a string representation of an integer.

intword
This filter converts a large integer to a friendly text representation. It works best for numbers
over 1 million. Values up to 1 quadrillion (1,000,000,000,000,000) are supported. Here are some
examples:

You can pass in either an integer or a string representation of an integer.

CHAPTER 16 DJANGO.CONTRIB 307

ordinal
This filter converts an integer to its ordinal as a string. Here are some examples:

You can pass in either an integer or a string representation of an integer.

Markup Filters
The package includes a handful of Django template filters, each of
which implements a common markup language:

: Implements Textile (
)

: Implements Markdown ()

: Implements reStructured Text (
)

In each case, the filter expects formatted markup as a string and returns a string repre-
senting the marked-up text. For example, the filter converts text that is marked up in
Textile format to HTML:

To activate these filters, add to your setting.
Once you’ve done that, use in a template, and you’ll have access to these
filters. For more documentation, read the source code in

.

What’s Next?
Many of these contributed frameworks (CSRF, the auth system, etc.) do their magic by provid-
ing a piece of middleware. Middleware is code that runs before and/or after every request and
can modify requests and responses at will to extend the framework. In the next chapter, we’ll
discuss Django’s built-in middleware and explain how you can write your own.

C H A P T E R 1 7

Middleware

On occasion, you’ll need to run a piece of code on each and every request that Django
handles. This code might need to modify the request before the view handles it, it might
need to log information about the request for debugging purposes, and so forth.

You can do this with Django’s middleware framework, which is a set of hooks into
Django’s request/response processing. It’s a light, low-level “plug-in” system capable of
globally altering both Django’s input and output.

Each middleware component is responsible for doing some specific function. If you’re
reading this book straight through, you’ve seen middleware a number of times already:

a few small pieces of middleware (more specifically, the middleware makes

 and available to you in views).

bypasses the call to your view function if the response for that view has already been
cached.

, redirects, and csrf
through middleware components.

This chapter dives deeper into exactly what middleware is and how it works, and explains
how you can write your own middleware.

What’s Middleware?
Let’s start with a very simple example.

High-traffic sites often need to deploy Django behind a load-balancing proxy (see

remote IP () will be that of the load balancer, not the actual IP mak-
ing the request. Load balancers deal with this by setting a special header, , to
the actual requesting IP address.

309

CHAPTER 17 MIDDLEWARE310

So here’s a small bit of middleware that lets sites running behind a proxy still see the
correct IP address in :

Note Although the HTTP header is called , Django makes it available as
. With the exception of and , any HTTP

headers in the request are converted to keys by converting all characters to uppercase,
replacing any hyphens with underscores, and adding an prefix to the name.

If this middleware is installed (see the next section), every request’s value
will be automatically inserted into . This means your Django
applications don’t need to be concerned with whether they’re behind a load-balancing proxy
or not; they can simply access , and that will work whether or
not a proxy is being used.

In fact, this is a common enough need that this piece of middleware is a built-in part of
Django. It lives in , and you can read a bit more about it later in this
chapter.

Middleware Installation
If you’ve read this book straight through, you’ve already seen a number of examples of
middleware installation; many of the examples in previous chapters have required certain
middleware. For completeness, here’s how to install middleware.

To activate a middleware component, add it to the tuple in your
settings module. In , each middleware component is represented by a
string: the full Python path to the middleware’s class name. For example, here’s the default

 created by :

CHAPTER 17 MIDDLEWARE 311

 can be empty,
, which we explain shortly.

The order is significant. On the request and view phases, Django applies middleware in
the order given in , and on the response and exception phases, Django
applies middleware in reverse order. That is, Django treats as a sort of
“wrapper” around the view function: on the request it walks down the list to the view, and on
the response it walks back up.

Middleware Methods
Now that you know what middleware is and how to install it, let’s take a look at all the avail-
able methods that middleware classes can define.

Initializer: __init__(self)
Use to perform systemwide setup for a given middleware class.

For performance reasons, each activated middleware class is instantiated only once per
server process. This means that -
vidual requests.

 method is to check whether the middle-
ware is indeed needed. If raises , then
Django will remove the middleware from the middleware stack. You might use this feature
to check for some piece of software that the middleware class requires, or check whether the
server is running in debug mode, or any other such environment situation.

If a middleware class defines an method, the method should take no argu-
ments beyond the standard .

Request Preprocessor: process_request(self, request)
This method
the URL to determine which view to execute. It gets passed the object, which you
may modify at will.

 should return either or an object.

, Django will continue processing this request, executing any other
middleware and then the appropriate view.

 object, Django won’t bother calling any other middleware
(of any type) or the appropriate view. Django will immediately return that .

View Preprocessor: process_view(self, request, view,
args, kwargs)
This method gets called after the request preprocessor is called and Django has determined
which view to execute, but before that view has actually been executed.

CHAPTER 17 MIDDLEWARE312

Table 17-1. Arguments Passed to process_view()

Argument Explanation

The object.

The Python function that Django will call to handle this request. This is the actual
function object itself, not the name of the function as a string.

The list of positional arguments that will be passed to the view, not including the
 argument (which is always the first argument to a view).

The dictionary of keyword arguments that will be passed to the view.

Just like , should return either or an
object.

, Django will continue processing this request, executing any other
middleware and then the appropriate view.

 object, Django won’t bother calling any other middleware
(of any type) or the appropriate view. Django will immediately return that .

Response Postprocessor: process_response(self, request,
response)
This method gets called after the view function is called and the response is generated. Here,
the processor can modify the content of a response. One obvious use case is content compres-
sion, such as gzipping of the request’s HTML.

The parameters should be pretty self-explanatory: is the request object, and
 is the response object returned from the view.

Unlike the request and view preprocessors, which may return ,
must return an object. That response could be the original one passed into the
function (possibly modified) or a brand-new one.

Exception Postprocessor: process_exception(self, request,
exception)
This method gets called only if something goes wrong and a view raises an uncaught excep-
tion. You can use this hook to send error notifications, dump postmortem information to a log,
or even try to recover from the error automatically.

The parameters to this function are the same object we’ve been dealing with all
along, and , which is the actual object raised by the view function.

 should return either or an object.

, Django will continue processing this request with the framework’s
built-in exception handling.

 object, Django will use that response instead of the frame-
work’s built-in exception handling.

CHAPTER 17 MIDDLEWARE 313

Note Django ships with a number of middleware classes (discussed in the following section) that make
good examples. Reading the code for them should give you a good feel for the power of middleware.

You can also find a number of community-contributed examples on Django’s wiki:
.

Built-in Middleware
Django comes with some built-in middleware to deal with common problems, which we dis-
cuss in the sections that follow.

Authentication Support Middleware
Middleware class: .

This middleware enables authentication support. It adds the attribute, rep-
resenting the currently logged-in user, to every incoming object.

 details.

“Common” Middleware
Middleware class: .

This middleware adds a few conveniences for perfectionists:

Forbids access to user agents in the setting: If provided, this
setting should be a list of compiled regular expression objects that are matched against
the user-agent header for each incoming request. Here’s an example snippet from a
settings file:

 Note the , because requires its values to be com-
piled regexes (i.e., the output of). The settings file is regular Python, so it’s
perfectly OK to include Python statements in it.

Performs URL rewriting based on the and settings: If
 is , URLs that lack a trailing slash will be redirected to the same URL with a

trailing slash, unless the last component in the path contains a period. So
is redirected to , but is passed through unchanged.

 If is , URLs that lack a leading “www.” will be redirected to the same
URL with a leading “www.”.

CHAPTER 17 MIDDLEWARE314

 Both of these options are meant to normalize URLs. The philosophy is that each URL
 is

distinct from , which in turn is distinct from .

your site’s search-engine rankings, so it’s a best practice to normalize URLs.

Handles ETags based on the setting: ETags are an HTTP-level optimization
for caching pages conditionally. If is set to , Django will calculate an

-
ing responses, if appropriate.

 Note that there is also a conditional middleware, covered shortly, which handles
ETags and does a bit more.

Compression Middleware
Middleware class: .

This middleware automatically compresses content for browsers that understand gzip
compression (all modern browsers). This can greatly reduce the amount of bandwidth a Web
server consumes. The tradeoff is that it takes a bit of processing time to compress pages.

We usually prefer speed over bandwidth, but if you prefer the reverse, just enable this
middleware.

Conditional GET Middleware
Middleware class: .

This middleware provides support for conditional operations. If the response has a
, an , and a header, and if the request has or

 support depends on
the use of the setting and expects the -
cussed previously, the header is set by the common middleware.

It also removes the content from any response to a request and sets the and
 response headers for all requests.

Reverse Proxy Support (X-Forwarded-For Middleware)
Middleware class: .

This is the example we examined in the “What’s Middleware?” section earlier. It sets
 based on , if the latter

is set. This is useful if you’re sitting behind a reverse proxy that causes each request’s
 to be set to .

CHAPTER 17 MIDDLEWARE 315

Warning This middleware does not validate .
If you’re not behind a reverse proxy that sets automatically, do not use this

middleware. Anybody can spoof the value of , and because this sets
based on , that means anybody can fake his IP address.

Only use this middleware when you can absolutely trust the value of .

Session Support Middleware
Middleware class: .

This middleware enables session

Sitewide Cache Middleware
Middleware classes: and

.
These classes of middleware work together to cache each Django-powered page. This was

discussed in detail

Transaction Middleware
Middleware class: .

This middleware binds a database or to the request/response phase. If a
view function runs successfully, a is issued. If the view raises an exception, a
is issued.

The order of this middleware in the stack is important. Middleware modules running

running inside it (coming later in the stack) will be under the same transaction control as the
view functions.

 B for more about information about database transactions.

What’s Next?
Web developers and database-schema designers don’t always have the luxury of starting from
scratch. In the next chapter, we’ll cover how to integrate with legacy systems, such as database
schemas you’ve inherited

C H A P T E R 1 8

Integrating with Legacy
Databases and Applications

Django is best suited for so-called green-field development—that is, starting projects from
scratch, as if you were constructing a building on a fresh field of green grass. But despite the
fact that Django favors from-scratch projects, it’s possible to integrate the framework into
legacy databases and applications. This chapter explains a few integration strategies.

Integrating with a Legacy Database
Django’s database layer generates SQL schemas from Python code—but with a legacy data-
base, you already have the SQL schemas. In such a case, you’ll need to create models for your
existing database tables. For this purpose, Django comes with a tool that can generate model
code by reading your database table layouts. This tool is called , and you can call it
by executing the command .

Using inspectdb
The utility inspects the database that your settings file points to, determines a
Django model representation for each of your tables, and prints the Python model code to
standard output.

The following is a walk-through of a typical legacy database–integration process from
scratch. The only assumptions are that Django is installed and that you have a legacy database.

 1. Create a Django project by running (where
 is your project’s name).

 2. Edit the settings file in that project, , to tell Django your data-
base-connection parameters and the name of the database. Specifically, provide the

, , , , ,
and settings. (Note that some of these settings are optional. Refer to
Chapter 5 for more information.)

317

CHAPTER 18 INTEGRATING WITH LEGACY DATABASES AND APPLICATIONS318

 3. Create a Django application within your project by running
 (where is your application’s name).

 4. Run the command . This will examine the tables in
the database and print the generated model class for each table. Take a
look at the output to get an idea of what can do.

 5. Save the output to the file within your application by using standard shell
output redirection:

 6. Edit the file to clean up the generated models and make any
necessary customizations. We’ll give some hints for this in the next section.

Cleaning Up Generated Models
As you might expect, the database inspection isn’t perfect, and you’ll need to do some light
cleanup of the resulting model code. Here are a few pointers for dealing with the generated
models:

between database tables and model classes). This means that you’ll need to refactor
the models for any many-to-many join tables into objects.

 primary-key fields.
However, recall that Django automatically adds an primary-key field if a model
doesn’t have a primary key. Thus, you’ll want to remove any lines that look like this:

 Not only are these lines redundant, but also they can cause problems if your applica-
tion will be adding new records to these tables.

,) is determined by looking at the database
column type (e.g., ,). If cannot map a column’s type to a model
field type, it will use and will insert the Python comment

 next to the field in the generated model. Keep an eye out for that, and
change the field type accordingly if needed.

 If a field in your database has no good Django equivalent, you can safely leave it off.
The Django model layer is not required to include every field in your table(s).

, , or),
 will append to the attribute name and set the attribute to

the real field name (e.g., , , or).

 For example, if a table has an column called , the generated model will have a
field like this:

 will insert the Python comment
 next to the field.

CHAPTER 18 INTEGRATING WITH LEGACY DATABASES AND APPLICATIONS 319

might need to rearrange the order of the generated models so models that refer to
other models are ordered properly. For example, if model has a to
model , model should be defined before model . If you need to create
a relationship on a model that has not yet been defined, you can use a string contain-
ing the name of the model, rather than the model object itself.

 detects primary keys for PostgreSQL, MySQL, and SQLite. That is, it inserts
 where appropriate. For other databases, you’ll need to insert

 for at least one field in each model, because Django models are required to
have a field.

In other cases, foreign-key fields will be generated as s, assuming the
foreign-key column was an column.

Integrating with an Authentication System
It’s possible to integrate Django with an existing authentication system—another source of
usernames and passwords or authentication methods.

For example, your company may already have an LDAP setup that stores a username and
password for every employee. It would be a hassle for both the network administrator and the
users themselves if users had separate accounts in LDAP and the Django-based applications.

To handle situations like this, the Django authentication system lets you plug in other
authentication sources. You can override Django’s default database-based scheme, or you can
use the default system in tandem with other systems.

Specifying Authentication Back-Ends
Behind the scenes, Django maintains a list of authentication back-ends that it checks. When
somebody calls (as described in Chapter 14), Django
tries authenticating across all of its authentication back-ends. If the first authentication
method fails, Django tries the second one, and so on, until all back-ends have been attempted.

The list of authentication back-ends to use is specified in the
setting. This should be a tuple of Python path names that point to Python classes that know
how to authenticate. These classes can be anywhere on your Python path.

By default, is set to the following:

That’s the basic authentication scheme that checks the Django users database.
The order of matters, so if the same username and password are

valid in multiple back-ends, Django will stop processing at the first positive match.

Writing an Authentication Back-End
An authentication back-end is a class that implements two methods: and

.

CHAPTER 18 INTEGRATING WITH LEGACY DATABASES AND APPLICATIONS320

The method takes an —which could be a username, database ID, or
whatever—and returns a object.

The method takes credentials as keyword arguments. Most of the time it
looks like this:

But it could also authenticate a token, like so:

Either way, should check the credentials it gets, and it should return a
object that matches those credentials, if the credentials are valid. If they’re not valid, it should
return .

The Django admin system is tightly coupled to Django’s own database-backed object
described in Chapter 14. The best way to deal with this is to create a Django object for
each user that exists for your back-end (e.g., in your LDAP directory, your external SQL data-
base, etc.). Either you can write a script to do this in advance, or your method
can do it the first time a user logs in.

Here’s an example back-end that authenticates against a username and password vari-
able defined in your file and creates a Django object the first time a user
authenticates:

CHAPTER 18 INTEGRATING WITH LEGACY DATABASES AND APPLICATIONS 321

For more on authentication back-ends, see the official Django documentation.

Integrating with Legacy Web Applications
It’s possible to run a Django application on the same Web server as an application powered by
another technology. The most straightforward way of doing this is to use Apache’s configura-
tion file, , to delegate different URL patterns to different technologies. (Note that
Chapter 12 covers Django deployment on Apache/mod_python, so it might be worth reading
that chapter before attempting this integration.)

The key is that Django will be activated for a particular URL pattern only if your
 file says so. The default deployment explained in Chapter 12 assumes you want Django to

power every page on a particular domain:

Here, the line means “handle every URL, starting at the root,” with
Django.

It’s perfectly fine to limit this directive to a certain directory tree. For example,
say you have a legacy PHP application that powers most pages on a domain and you want to
install a Django admin site at without disrupting the PHP code. To do this, just set the

 directive to :

CHAPTER 18 INTEGRATING WITH LEGACY DATABASES AND APPLICATIONS322

With this in place, only the URLs that start with will activate Django. Any other
page will use whatever infrastructure already existed.

Note that attaching Django to a qualified URL (such as in this section’s example)
does not affect the Django URL parsing. Django works with the absolute URL (e.g.,

), not a “stripped” version of the URL (e.g.,). This
means that your root URLconf should include the leading .

What’s Next?
If you’re a native English speaker, you might not have noticed one of the coolest features of
Django’s admin site: it’s available in more than 50 languages! This is made possible by Djan-
go’s internationalization framework (and the hard work of Django’s volunteer translators). The
next chapter explains how to use this framework to provide localized Django sites.

C H A P T E R 1 9

Internationalization

Django was originally developed right in the middle of the United States quite literally
because Lawrence, Kansas lies fewer than 40 miles from the geographic center of the conti-
nental United States. Like most open source projects, though, Django’s community grew to
include people from all over the globe. As Django’s community became increasingly diverse,
internationalization and localization became increasingly important. Because many develop-
ers have at best a fuzzy understanding of these terms, we’ll define them briefly.

Internationalization refers to the process of designing programs for the potential use of
any locale. This includes marking text such as user interface (UI) elements and error messages
for future translation, abstracting the display of dates and times so that different local stan-
dards can be observed, providing support for differing time zones, and generally making sure
that the code contains no assumptions about the location of its users. You’ll often see inter-
nationalization abbreviated as I18N (18 refers to the number of letters omitted between the
initial I and the terminal N.)

Localization refers to the process of actually translating an internationalized program for
use in a particular locale. You’ll sometimes see localization abbreviated as L10N.

Django itself is fully internationalized; all strings are marked for translation, and settings
control the display of locale-dependent values such as dates and times. Django also ships with
more than 50 different localization files. If you’re not a native English speaker, there’s a good
chance that Django is already translated into your primary language.

The same internationalization framework used for these localizations is available for you
to use in your own code and templates.

To use this framework, you’ll need to add a minimal number of hooks to your Python
code and templates. These hooks are called translation strings. They tell Django, “This text
should be translated into the end user’s language if a translation for this text is available in that
language.”

Django takes care of using these hooks to translate Web applications on the fly, according
to users’ language preferences.

323

CHAPTER 19 INTERNATIONALIZATION324

Django does two things:

be translatable.

their language preferences.

Note Django’s translation machinery uses GNU ()
via the standard module that comes with Python.

IF YOU DON'T NEED INTERNATIONALIZATION

Django’s internationalization hooks are enabled by default, which incurs a small bit of overhead. If you don’t
use internationalization, you should set in your settings file. If is set to

, Django will make some optimizations to avoid loading the internationalization machinery.
You’ll probably also want to remove from your

 setting.

The three steps for internationalizing your Django application are as follows:

 1. Embed translation strings in your Python code and templates.

 2. Get translations for those strings, in whichever languages you want to support.

 3. Activate the locale middleware in your Django settings.

We’ll cover each one of these steps in detail in the following sections.

How to Specify Translation Strings
Translation strings specify that “this text should be translated.” These strings can appear in
your Python code and templates. It’s your responsibility to mark translatable strings; the sys-
tem can translate only strings it knows about.

In Python Code

Standard Translation
Specify a translation string by using the function . It’s convention to import this as a
shorter alias, , to save typing.

CHAPTER 19 INTERNATIONALIZATION 325

In this example, the text is marked as a translation string:

Obviously, you could code this without using the alias. This example is identical to the
previous one:

Translation works on computed values. This example is identical to the previous two:

Translation works on variables. Again, here’s an identical example:

Caution The caveat when using variables or computed values, as in the previous two examples, is that
Django’s translation string–detecting utility, , can’t find these strings.
More on later.

The strings you pass to or can take placeholders specified with Python’s
standard named-string interpolation syntax. For example:

This technique lets language-specific translations reorder the placeholder text. For exam-
ple, an English translation may be , whereas a Spanish translation
may be Only the placeholders (the month and the day) have their
positions swapped.

CHAPTER 19 INTERNATIONALIZATION326

For this reason, you should use named-string interpolation (e.g.,) instead of posi-
tional interpolation (e.g., or) whenever you have more than a single parameter. If you
used positional interpolation, translations couldn’t reorder placeholder text.

Marking Strings As No-Op
Use the function to mark a string as a translation
string without translating it. The string is later translated from a variable.

Use it if you have constant strings that should be stored in the source language because
they are exchanged over systems or users such as strings in a database but should be trans-
lated at the last possible point in time, such as when the string is presented to the user.

Lazy Translation
Use the function to translate strings lazily when
the value is accessed instead of when the function is called.

For example, to translate a model’s , do the following:

In this example, stores a lazy reference to the string, not the actual trans-
lation. The translation itself will be done when the string is used in a string context, such as
template rendering on the Django admin site.

The result of a call can be used wherever you would use a Unicode string
(an object with type) in Python. If you try to use it where a bytestring (a object)
is expected, things will not work as expected because a object doesn’t know
how to convert itself to a bytestring. You can’t use a Unicode string inside a bytestring, either,
so this is consistent with normal Python behavior. For example:

If you ever see output that looks like , you have
tried to insert the result of into a bytestring. That’s a bug in your code.

If you don’t like the verbose name , you can just alias it as (underscore),
like so:

CHAPTER 19 INTERNATIONALIZATION 327

Always use lazy translations in Django models. Field names and table names should
be marked for translation (otherwise, they won’t be translated in the admin interface). This
means writing explicit and options in the class,
though, instead of relying on Django’s default determination of and

 by looking at the model’s class name:

Pluralization
Use the function to specify pluralized messages. For
example:

 takes three arguments: the singular translation string, the plural translation
string, and the number of objects (which is passed to the translation languages as the
variable).

In Template Code
Translation in Django templates uses two template tags and a slightly different syntax than in
Python code. To give your template access to these tags, put toward the top
of your template.

The template tag translates either a constant string (enclosed in single or
double quotes) or variable content:

If the option is present, variable lookup still takes place, but the translation is
skipped. This is useful when “stubbing out” content that will require translation in the future:

CHAPTER 19 INTERNATIONALIZATION328

It’s not possible to mix a template variable inside a string within . If your
translations require strings with variables (placeholders), use :

To translate a template expression (using template filters, for instance), you need to bind
the expression to a local variable for use within the translation block:

If you need to bind more than one expression inside a tag, separate the pieces
with :

To pluralize, specify both the singular and plural forms with the tag, which
appears within and . For example:

Internally, all block and inline translations use the appropriate / call.
Each has access to three translation-specific variables:

 is a list of tuples in which the first element is the language code and the
second is the language name (translated into the currently active locale).

 is the current user’s preferred language as a string. For example: .
(See the following section, “How Django Discovers Language Preference.”)

 is the current locale’s direction. If , it’s a right-to-left language
(e.g., Hebrew and Arabic). If , it’s a left-to-right language (e.g., English, French,
German, and so on).

If you don’t use the extension, you can get those values with three tags:

These tags also require a .
Translation hooks are also available within any template block tag that accepts constant

strings. In those cases, just use syntax to specify a translation string:

CHAPTER 19 INTERNATIONALIZATION 329

In this case, both the tag and the filter will see the already-translated string, so they don’t
need to be aware of translations.

Note In this example, the translation infrastructure will be passed the string , not the individual
strings and . The translated string will need to contain the comma so that the filter parsing code
knows how to split up the arguments. For example, a German translator might translate the string
as (keeping the comma intact).

Working with Lazy Translation Objects
Using and to mark strings in models and utility functions
is a common operation. When you’re working with these objects elsewhere in your code, you
should ensure that you don’t accidentally convert them to strings because they should be con-
verted as late as possible (so that the correct locale is in effect). This necessitates the use of a
couple of helper functions, discussed in the following sections.

Joining Strings: string_concat()
Standard Python string joins () will not work on lists containing lazy transla-
tion objects. Instead, you can use , which creates a
lazy object that concatenates its contents and converts them to strings only when the result is
included in a string. For example:

In this case, the lazy translations in will be converted to strings only when
itself is used in a string (usually at template-rendering time).

The allow_lazy() Decorator
Django offers many utility functions (particularly in) that take a string as their
first argument and do something to that string. These functions are used by template filters as
well as directly in other code.

If you write your own similar functions and deal with translations, you’ll face the problem
of what to do when the first argument is a lazy translation object. You don’t want to convert it
to a string immediately because you might be using this function outside of a view (and hence
the current thread’s locale setting will not be correct).

CHAPTER 19 INTERNATIONALIZATION330

For cases like these, use the decorator. It modi-
fies the function so that if it’s called with a lazy translation as the first argument, the function
evaluation is delayed until it needs to be converted to a string. For example:

In addition to the function to decorate, the decorator takes a number of
extra arguments () specifying the type(s) that the original function can return. Usually, it’s
enough to include here and ensure that your function returns only Unicode strings.

Using this decorator means that you can write your function and assume that the input is
a proper string; then add support for lazy translation objects at the end.

How to Create Language Files
After you tag your strings for later translation, you need to write (or obtain) the language trans-
lations themselves. Here’s how that works.

LOCALE RESTRICTIONS

Django does not support localizing your application into a locale for which Django itself has not been
translated. In this case, it will ignore your translation files. If you were to try this, and Django supported it,
you would inevitably see a mixture of translated strings (from your application) and English strings (from
Django itself).

If you want to support a locale for your application that is not already part of Django, you’ll need to make
at least a minimal translation of the Django core.

Message Files
The first step is to create a message file for a new language. A message file is a plain-text file,
representing a single language, that contains all available translation strings and how they
should be represented in the given language. Message files have a file extension.

Django comes with a tool, , which automates the creation
and upkeep of these files. To create or update a message file, run this command, where is
the language code for the message file you want to create:

CHAPTER 19 INTERNATIONALIZATION 331

The language code, in this case, is in locale format. For example, it’s for Brazilian
Portuguese and for Austrian German.

The script should be run from one of three places:

 directory (not a Subversion checkout, but the one that is linked to via
 or is located somewhere on that path). This is relevant only when you are

creating a translation for Django itself.

This script runs over your project source tree or your application source tree, and pulls
out all strings marked for translation. It creates (or updates) a message file in the directory

. In the example, the file will be .
By default, examines every file that has the file

extension. In case you want to override that default, use the or option to spec-
ify the file extensions to examine:

Separate multiple extensions with commas and/or use or multiple times:

When creating JavaScript translation catalogs (covered later in this chapter), you need to
use the special domain, not .

NO GETTEXT?

If you don’t have the utilities installed, will create empty files.
If that’s the case, either install the utilities or just copy the English message file (

), if available, and use it as a starting point; it’s just an empty translation file.

WORKING ON WINDOWS?

If you’re using Windows and need to install the GNU utilities so
works, see the “gettext on Windows” section for more information.

The format of files is straightforward. Each file contains a small bit of metadata,
such as the translation maintainer’s contact information, but the bulk of the file is a list of
messages—simple mappings between translation strings and the actual translated text for the
particular language.

CHAPTER 19 INTERNATIONALIZATION332

For example, if your Django app contained a translation string for the text
 like so:

 will have created a file containing the following snippet
message:

Here’s a quick explanation:

 is the translation string that appears in the source. Don’t change it.

 is where you put the language-specific translation. It starts out empty, so it’s
your responsibility to change it. Make sure to keep the quotes around your translation.

 and located above the line, the file name and line number from which the
translation string was gleaned.

Long messages are a special case. There, the first string directly after the (or)
is an empty string. Then the content itself will be written over the next few lines as one string
per line. Those strings are directly concatenated. Don’t forget trailing spaces within the strings;
otherwise, they’ll be tacked together without whitespace!

To reexamine all source code and templates for new translation strings and update all
message files for all languages, run this:

Compiling Message Files
After you create your message file and each time you make changes to it you’ll need to
compile it into a more efficient form for use by . Do this with the

 utility.
This tool runs over all available files and creates files, which are binary files

optimized for use by . In the same directory from which you ran
, run like this:

That’s it. Your translations are ready for use.

CHAPTER 19 INTERNATIONALIZATION 333

How Django Discovers Language Preference
After you prepare your translations (or if you just want to use the translations that come with
Django), you need to activate translation for your app.

Behind the scenes, Django has a very flexible model of deciding which language should be
used: installation-wide, for a particular user, or both.

To set an installation-wide language preference, set . Django uses this lan-
guage as the default translation—the final attempt if no other translator finds a translation.

If all you want to do is run Django with your native language, and a language file is avail-
able for your language, just set .

If you want to let each individual user specify which language he or she prefers, use
. enables language selection based on data from the

request. It customizes content for each user.
To use , add to your

 setting. Because middleware order matters, you should follow these
guidelines:

 because makes use of
session data.

, put after it.

For example, your might look like this:

(For more on middleware, see Chapter 17.)
 tries to determine the user’s language preference by following this

algorithm:

 1. First, it looks for a key in the current user’s session.

 2. Failing that, it looks for a cookie.

 3. Failing that, it looks at the HTTP header. This header is sent by your
browser and tells the server which language(s) you prefer, in order by priority. Django
tries each language in the header until it finds one with available translations.

 4. Failing that, it uses the global setting.

CHAPTER 19 INTERNATIONALIZATION334

Note the following:

-
guage format as a string. For example, Brazilian Portuguese is .

base language. For example, if a user specifies (Austrian German) but Django has
only available, Django uses .

 setting can be selected. If you want to restrict
the language selection to a subset of provided languages (because your application
doesn’t provide all those languages), set to a list of languages. For example:

 This example restricts languages that are available for automatic selection to German
and English (and any sublanguage such as or).

 setting, as explained in the previous bullet, it’s fine
to mark the languages as translation strings but use a “dummy” function,
not the one in . You should never import

 from within your settings file because that module in itself depends on the
settings, and that would cause a circular import.

 The solution is to use a “dummy” function. Here’s a sample settings file:

 With this arrangement, will still find and mark these
strings for translation, but the translation won’t happen at runtime. You’ll have to
remember to wrap the languages in the real in any code that uses
at runtime.

 can select only languages for which there is a Django-provided
base translation. If you want to provide translations for your application that aren’t
already in the set of translations in Django’s source tree, you’ll want to provide at least
basic translations for that language. For example, Django uses technical message IDs
to translate date formats and time formats, so you need at least those translations for
the system to work correctly.

 A good starting point is to copy the English file and to translate at least the techni-
cal messages (maybe the validation messages, too).

CHAPTER 19 INTERNATIONALIZATION 335

 Technical message IDs are easily recognized; they’re all uppercase. You don’t trans-
late the message ID as with other messages; you provide the correct local variant on
the provided English value. For example, with (or or

) this would be the format string that you want to use in your language.
The format is identical to the format strings used by the template tag.

After determines the user’s preference, it makes this preference avail-
able as for each . Feel free to read this value in your view
code. Here’s a simple example:

Note that with static (middleware-less) translation the language is in
, whereas with dynamic (middleware) translation, it’s in .

Using Translations in Your Own Projects
Django looks for translations by following this algorithm:

 1. First, it looks for a directory in the application directory of the view that’s being
called. If it finds a translation for the selected language, the translation will be installed.

 2. Next, it looks for a directory in the project directory. If it finds a translation, the
translation will be installed.

 3. Finally, it checks the Django-provided base translation in .

This way, you can write applications that include their own translations, and you can
override base translations in your project path. Or you can just build a big project out of sev-
eral apps and put all translations into one big project message file. The choice is yours.

All message file repositories are structured in the same way:

 in your settings file are searched in that order for

To create message files, use the same tool as with the
Django message files. You only need to be in the right place: in the directory in which either
the (in case of the source tree) or the (in case of app messages or project
messages) directory is located. And you use the same to
produce the binary files that are used by .

You can also run to
make the compiler process all the directories in your setting.

CHAPTER 19 INTERNATIONALIZATION336

Application message files are a bit complicated to discover they need the .
If you don’t use the middleware, only the Django message files and project message files will be
processed.

Finally, you should give some thought to the structure of your translation files. If your
applications need to be delivered to other users and will be used in other projects, you might
want to use app-specific translations. But using app-specific translations and project trans-
lations could produce weird problems with : will traverse all
directories below the current path and so might put message IDs into the project message files
that are already in application message files.

The easiest way out is to store applications that are not part of the project (and so carry
their own translations) outside the project tree. That way,
on the project level will translate only strings that are connected to your explicit project, not
strings that are distributed independently.

The set_language Redirect View
As a convenience, Django comes with a view, , which sets a
user’s language preference and redirects back to the previous page.

Activate this view by adding the following line to your URLconf:

Note This example makes the view available at .

The view expects to be called via the method with a parameter set in the
request. If session support is enabled, the view saves the language choice in the user’s session.
Otherwise, it saves the language choice in a cookie named by default. (The
name can be changed through the setting.)

After setting the language choice, Django redirects the user, following this algorithm:

 parameter in the data.

 header.

be redirected to (the site root) as a fallback.

Here’s an example of HTML template code:

CHAPTER 19 INTERNATIONALIZATION 337

Translations and JavaScript
Adding translations to JavaScript poses some problems:

 implementation.

 or files; they need to be delivered by
the server.

Django provides an integrated solution for these problems: it passes the translations into
JavaScript, so you can call , and so on from within JavaScript.

The javascript_catalog View
The main solution to these problems is the view, which sends out a
JavaScript code library with functions that mimic the interface, plus an array of trans-
lation strings. Those translation strings are taken from the application, project, or Django core,
according to what you specify in either the or the URL.

You hook it up like this:

Each string in should be in Python dotted-package syntax (the same format as
the strings in) and should refer to a package that contains a directory. If
you specify multiple packages, all those catalogs are merged into one catalog. This is useful if
you have JavaScript that uses strings from different applications.

You can make the view dynamic by putting the packages into the URL pattern:

With this, you specify the packages as a list of package names delimited by + signs in the
URL. This is especially useful if your pages use code from different apps and change often, and
you don’t want to pull in one big catalog file. As a security measure, these values can be only

 or any package from the setting.

Using the JavaScript Translation Catalog
To use the catalog, just pull in the dynamically generated script like this:

CHAPTER 19 INTERNATIONALIZATION338

This is how the admin fetches the translation catalog from the server. When the catalog is
loaded, your JavaScript code can use the standard interface to access it:

There is also an interface:

And even a string interpolation function:

The interpolation syntax is borrowed from Python, so the function supports
both positional and named interpolation:

Positional interpolation: contains a JavaScript object whose elements values
are then sequentially interpolated in their corresponding placeholders in the same
order they appear. For example:

Named interpolation: This mode is selected by passing the optional Boolean
parameter as . contains a JavaScript object or associative array. For example:

You shouldn’t go over the top with string interpolation, though; this is still JavaScript,
so the code has to make repeated regular-expression substitutions. This isn’t as fast as string
interpolation in Python, so keep it to those cases where you really need it (for example, in con-
junction with to produce proper pluralizations).

CHAPTER 19 INTERNATIONALIZATION 339

Creating JavaScript Translation Catalogs
You create and update the translation catalogs the same way as with the other Django transla-
tion catalogs: with the tool. The only difference is you need to
provide a parameter, like this:

This creates or updates the translation catalog for JavaScript for German. After updating
translation catalogs, just run the same way as you do with
normal Django translation catalogs.

Notes for Users Familiar with gettext
If you know , you might note these specialties in the way Django does translation:

 or . This string domain is used to differentiate
between different programs that store their data in a common message-file library
(usually). The domain is used for Python and template
translation strings, and is loaded into the global translation catalogs. The
domain is used only for JavaScript translation catalogs to make sure that they are as
small as possible.

 alone. It uses Python wrappers around and
. This is mostly for convenience.

gettext on Windows
This is needed only for people who either want to extract message IDs or compile message files
(). Translation work itself just involves editing existing files of this type, but if you want to
create your own message files, or want to test or compile a changed message file, you need the

 utilities:

 1. Download the following ZIP files from :

 2. Extract the three files in the same folder ().

 3. Update the system :

 a. .

 b. In the list, click ; then click .

 c. Add at the end of the field.

CHAPTER 19 INTERNATIONALIZATION340

You can also use binaries you have obtained elsewhere as long as the
 command works properly. Some version 0.14.4 binaries have been found to not

support this command. Do not attempt to use Django translation utilities with a pack-
age if the command entered at a Windows command prompt causes a
pop-up window saying “xgettext.exe has generated errors and will be closed by Windows.”

What’s Next?
The final chapter focuses on security: how you can help secure your sites and your users from
malicious attackers.

C H A P T E R 2 0

Security

The Internet can be a scary place.
These days, high-profile security gaffes seem to crop up on a daily basis. We’ve seen

viruses spread with amazing speed; swarms of compromised computers wielded as weapons;
a never-ending arms race against spammers; and many, many reports of identity theft from
hacked Web sites.

As Web developers, we have a duty to do what we can to combat these forces of darkness.
Every Web developer needs to treat security as a fundamental aspect of Web programming.
Unfortunately, it turns out that implementing security is hard—attackers need to find only a
single vulnerability, but defenders have to protect every single one.

Django attempts to mitigate this difficulty. It’s designed to automatically protect you from
many of the common security mistakes that new (and even experienced) Web developers
make. Still, it’s important to understand what these problems are, how Django protects you,
and—most important—the steps you can take to make your code even more secure.

First, though, an important disclaimer: we do not intend to present a definitive guide
to every known Web security exploit, so we won’t try to explain each vulnerability in a com-
prehensive manner. Instead, we’ll give a short synopsis of security problems as they apply
to Django.

The Theme of Web Security
If you learn only one thing from this chapter, let it be this:

Never—under any circumstances—trust data from the browser.

You never know who’s on the other side of that HTTP connection. It might be one of your
users, but it just as easily could be a nefarious cracker looking for an opening.

Any data of any nature that comes from the browser needs to be treated with a healthy
dose of paranoia. This includes data that’s both “in band” (i.e., submitted from Web forms)
and “out of band” (i.e., HTTP headers, cookies, and other request information). It’s trivial to
spoof the request metadata that browsers usually add automatically.

341

CHAPTER 20 SECURITY342

Every one of the vulnerabilities discussed in this chapter stems directly from trusting data
that comes over the wire and then failing to sanitize that data before using it. You should make
it a general practice to continuously ask, “Where does this data come from?”

SQL Injection
SQL injection is a common exploit in which an attacker alters Web page parameters (such as

/ data or URLs) to insert arbitrary SQL snippets that a naive Web application executes
in its database directly. It’s probably the most dangerous—and unfortunately one of the most
common—vulnerabilities out there.

This vulnerability most commonly crops up when constructing SQL “by hand” from user
input. For example, imagine writing a function to gather a list of contact information from a
contact search page. To prevent spammers from reading every single e-mail in our system,
we’ll force the user to type in someone’s username before providing her e-mail address:

Note In this example, and in all similar “don’t-do-this” examples that follow, we deliberately left out most
of the code needed to make the functions actually work. We don’t want this code to work if someone acci-
dentally takes it out of context.

Although at first this SQL construction doesn’t look dangerous, it really is.
First, our attempt at protecting our entire e-mail list will fail with a cleverly constructed

query. Think about what happens if an attacker types into the query box. In that
case, the query that the string interpolation will construct will be the following:

Because we allowed unsecured SQL into the string, the attacker’s added clause ensures
that every single row is returned.

However, that’s the least scary attack. Imagine what will happen if the attacker submits
. We’ll end up with this complete query

(comprising two statements):

Yikes! Our entire contact list would be deleted instantly.

CHAPTER 20 SECURITY 343

The Solution
Although this problem is insidious and sometimes hard to spot, the solution is simple: never
trust user-submitted data, and always escape it when passing it into SQL.

The Django database API does this for you. It automatically escapes all special SQL
parameters, according to the quoting conventions of the database server you’re using (e.g.,
PostgreSQL or MySQL).

For example, in this API call:

Django will escape the input accordingly, resulting in a statement like this:

Completely harmless.
This applies to the entire Django database API, with a couple of exceptions:

 argument to the method. That parameter accepts raw SQL by
design.

In each of these cases, it’s easy to keep yourself protected. In each case, avoid string inter-
polation in favor of passing in bind parameters. That is, the example we started this section
with should be written as follows:

The low-level method takes a SQL string with placeholders and automati-
cally escapes and inserts parameters from the list passed as the second argument. You should
always construct custom SQL this way.

Unfortunately, you can’t use bind parameters everywhere in SQL; they’re not allowed as
identifiers (i.e., table or column names). Thus, if you need to dynamically construct a list of
tables from a variable, for example, you’ll need to escape that name in your code. Django
provides a function, , which will escape the identifier
according to the current database’s quoting scheme.

Cross-Site Scripting (XSS)
Cross-site scripting (XSS) is found in Web applications that fail to escape user-submitted con-
tent properly before rendering it into HTML. This allows an attacker to insert arbitrary HTML
into your Web page, usually in the form of tags.

CHAPTER 20 SECURITY344

Attackers often use XSS attacks to steal cookie and session information, or to trick users
into giving private information to the wrong person (aka phishing).

This type of attack can take a number of different forms and has an almost infinite num-
ber of permutations, so we’ll just look at a typical example. Consider this extremely simple
“Hello, World” view:

This view simply reads a name from a parameter and passes that name into the
generated HTML. So if we accessed , the page would
contain this:

But wait—what happens if we access ?
We get this:

Of course, an attacker wouldn’t use something as benign as tags; he could include a
whole set of HTML that hijacked your page with arbitrary content. This type of attack has been
used to trick users into entering data into what looks like their bank’s Web site, but in fact is an
XSS-hijacked form that submits their back account information to an attacker.

The problem gets worse if you store this data in the database and later display it on your
site. For example, MySpace was once found to be vulnerable to an XSS attack of this nature. A
user inserted JavaScript into his profile that automatically added him as your friend when you
visited his profile page. Within a few days, he had millions of friends.

Now this may sound relatively benign, but keep in mind that this attacker managed to get
his code—not MySpace’s—running on your computer. This violates the assumed trust that all
the code on MySpace is actually written by MySpace.

MySpace was extremely lucky that this malicious code didn’t automatically delete view-
ers’ accounts, change their passwords, flood the site with spam, or create any of the other
nightmare scenarios this vulnerability unleashes.

The Solution
The solution is simple: always escape any content that might have come from a user before
inserting it into HTML.

To guard against this, Django’s template system automatically escapes all variable values.
Let’s see what happens if we rewrite our example using the template system:

CHAPTER 20 SECURITY 345

With this in place, a request to will result in
the following page:

We covered Django’s auto-escaping back in Chapter 4, along with ways to turn it off. But
even if you’re using this feature, you should still get in the habit of asking yourself at all times,
“Where does this data come from?” No automatic solution will ever protect your site from XSS

 the time.

Cross-Site Request Forgery
Cross-site request forgery (CSRF) happens when a malicious Web site tricks users into
unknowingly loading a URL from a site at which they’re already authenticated—hence taking
advantage of their authenticated status.

Django has built-in tools to protect from this kind of attack. (The attack itself and those
tools are covered in great detail

Session Forging/Hijacking
This isn’t a specific attack; it’s a general class of attacks on a user’s session data. It can take a
number of different forms:

man-in-the-middle attack, in which an attacker snoops on session data as it travels
over the wire (or wireless) network.

Session forging, in which an attacker uses a session ID (perhaps obtained through a
man-in-the-middle attack) to pretend to be another user.

 An example of these first two is an attacker in a coffee shop using the shop’s wireless
network to capture a session cookie. She could then use that cookie to impersonate the
original user.

cookie-forging attack, in which an attacker overrides the supposedly read-only data

points is that it’s trivial for browsers and malicious users to change cookies without
your knowledge.

 There’s a long history of Web sites that have stored a cookie such as or
even . It’s dead simple to exploit these types of cookies.

 On a more subtle level, though, it’s never a good idea to trust anything stored in cook-
ies. You never know who’s been poking at them.

CHAPTER 20 SECURITY346

Session fixation, in which an attacker tricks a user into setting or resetting the user’s
session ID.

 For example, PHP allows session identifiers to be passed in the URL (e.g.,
). An attacker who tricks a

user into clicking a link with a hard-coded session ID will cause the user to pick up that
session.

 Session fixation has been used in phishing attacks to trick users into entering personal
information into an account the attacker owns. He can later log into that account and
retrieve the data.

Session poisoning, in which an attacker injects potentially dangerous data into a user’s
session—usually through a Web form that the user submits to set session data.

 A canonical example is a site that stores a simple user preference (such as a page’s
background color) in a cookie. An attacker could trick a user into clicking a link to sub-
mit a “color” that actually contains an XSS attack. If that color isn’t escaped, the user
could again inject malicious code into the user’s environment.

The Solution
There are a number of general principles that can protect you from these attacks:

-
tained in the URL.

data stored on the back-end.

 If you use Django’s built-in session framework (i.e.,), this is handled
automatically for you. The only cookie that the session framework uses is a single ses-
sion ID; all the session data is stored in the database.

section, and remember that it applies to any user-created content as well as any data
from the browser. You should treat session information as being user created.

 Although it’s nearly impossible to detect someone who’s hijacked a session ID, Django
does have built-in protection against a brute-force session attack. Session IDs are
stored as hashes (instead of sequential numbers), which prevents a brute-force attack,
and a user will always get a new session ID if she tries a nonexistent one, which pre-
vents session fixation.

Notice that none of those principles and tools prevents man-in-the-middle attacks, which
are nearly impossible to detect. If your site allows logged-in users to see any sort of sensitive
data, you should always serve that site over HTTPS. Additionally, if you have an SSL-enabled
site, you should set the setting to ; this will make Django only send
session cookies over HTTPS.

CHAPTER 20 SECURITY 347

E-mail Header Injection
SQL injection’s less well-known sibling, e-mail header injection, hijacks Web forms that send
e-mail. An attacker can use this technique to send spam via your mail server. Any form that
constructs e-mail headers from Web form data is vulnerable to this kind of attack.

Let’s look at the canonical contact form found on many sites. Usually this sends a message
to a hard-coded e-mail address, so it doesn’t appear vulnerable to spam abuse at first glance.

However, most of these forms also allow the user to type in his own subject for the e-mail
(along with a “from” address, a body, and sometimes a few other fields). This subject field is
used to construct the “subject” header of the e-mail message.

If that header is unescaped when building the e-mail message, an attacker could submit
something like (where ” is a newline character). That
would make the constructed e-mail headers turn into this:

Like SQL injection, if we trust the subject line given by the user, we’ll allow him to con-
struct a malicious set of headers, and he can use our contact form to send spam.

The Solution
We can prevent this attack in the same way we prevent SQL injection: always escape or vali-
date user-submitted content.

Django’s built-in mail functions (in) simply do not allow newlines in
any fields used to construct headers (the “from” and “to” addresses, plus the subject). If you
try to use with a subject that contains newlines, Django will raise
a exception.

If you do not use Django’s built-in mail functions to send e-mail, you’ll need to make sure
that newlines in headers either cause an error or are stripped. You may want to examine the

 class in to see how Django does this.

Directory Traversal
Directory traversal is another injection-style attack, in which a malicious user tricks filesystem
code into reading and/or writing files that the Web server shouldn’t have access to.

An example might be a view that reads files from the disk without carefully sanitizing the
file name:

Though it looks like that view restricts file access to files beneath (by using
), if the attacker passes in a containing (two periods, a shorthand for

CHAPTER 20 SECURITY348

“the parent directory”), she can access files “above” . It’s only a matter of time before
she can discover the correct number of dots to successfully access ,
for example.

Anything that reads files without proper escaping is vulnerable to this problem. Views that
write files are just as vulnerable, but the consequences are doubly dire.

Another permutation of this problem lies in code that dynamically loads modules based
on the URL or other request information. A well-publicized example came from the world of

directly to load modules and call methods. The result was that a carefully constructed URL
could automatically load arbitrary code, including a database reset script!

The Solution
If your code ever needs to read or write files based on user input, you need to sanitize the
requested path very carefully to ensure that an attacker can’t escape from the base directory
you’re restricting access to.

Note Needless to say, you should never write code that can read from any area of the disk!

A good example of how to do this escaping lies in Django’s built-in static content-serving
view (in). Here’s the relevant code:

Django doesn’t read files (unless you use the function, but that’s protected
with the code just shown), so this vulnerability doesn’t affect the core code much.

CHAPTER 20 SECURITY 349

In addition, the use of the URLconf abstraction means that Django will never load code
you’ve not explicitly told it to load. There’s no way to create a URL that causes Django to load
something not mentioned in a URLconf.

Exposed Error Messages
During development, being able to see tracebacks and errors live in your browser is extremely
useful. Django has “pretty” and informative debug messages specifically to make debugging
easier.

However, if these errors get displayed after the site goes live, they can reveal aspects of
your code or configuration that could aid an attacker.

Furthermore, errors and tracebacks aren’t at all useful to end users. Django’s philosophy
is that site visitors should never see application-related error messages. If your code raises
an unhandled exception, a site visitor should not see the full traceback—or any hint of code
snippets or Python (programmer-oriented) error messages. Instead, the visitor should see a
friendly “This page is unavailable” message.

Naturally, of course, developers need to see tracebacks to debug problems in their code.
So the framework should hide all error messages from the public, but it should display them to
the trusted site developers.

The Solution
As we covered setting controls the display of these error mes-
sages. Make sure to set this to when you’re ready to deploy.

have in their Apache conf files; this will suppress any errors that occur before
Django has had a chance to load.

A Final Word on Security
We hope all this talk of security problems isn’t too intimidating. It’s true that the Web can be a
wild world, but with a little bit of foresight, you can have a secure Web site.

Keep in mind that Web security is a constantly changing field; if you’re reading the dead-
tree version of this book, be sure to check more up-to-date security resources for any new
vulnerabilities that have been discovered. In fact, it’s always a good idea to spend some time
each week or month researching and keeping current on the state of Web application security.
It’s a small investment to make, but the protection you’ll get for your site and your users is
priceless.

What’s Next?
You’ve reached the end of our regularly scheduled program. The following appendixes all con-
tain reference material that you might need as you work on your Django projects.

We wish you the best of luck in running your Django site, whether it’s a little toy for you
and a few friends, or the next Google.

P A R T 4

Appendixes

353

A P P E N D I X A

Model Definition Reference

Chapter 5 explains the basics of defining models, and we use them throughout the rest of the
book. There is, however, a huge range of model options available not covered elsewhere. This
appendix explains each model definition option.

Note that although these APIs are considered stable, the Django developers consistently
add new shortcuts and conveniences to the model definition. It’s a good idea to always check
the latest documentation online at .

Fields
The most important part of a model—and the only required part of a model—is the list of
database fields it defines.

FIELD NAME RESTRICTIONS

Django places only two restrictions on model field names:

are
-

APPENDIX A MODEL DEFINIT ION REFERENCE354

Each field in your model should be an instance of the appropriate class. Django uses
the field class types to determine a few things:

,)

,)

by forms

A complete list of field classes follows, sorted alphabetically. Note that relationship fields
, etc.) are handled in the next section.

AutoField
An that automatically increments according to available IDs. You usually won’t
need to use this directly; a primary key field will automatically be added to your model if you
don’t specify otherwise.

BooleanField
A true/false field.

MYSQL USERS...

a proper
 or instead of or

 and

CharField
A string field .)

 has one extra required argument: . This is the maximum length
 is enforced at the database level and in Django’s

validation.

CommaSeparatedIntegerField
A field of integers separated by commas. As in , the argument is required.

APPENDIX A MODEL DEFINIT ION REFERENCE 355

DateField
A date represented in Python by a instance.

DateTimeField
A date and time represented in Python by a instance.

DecimalField
A fixed-precision decimal number represented in Python by a instance. It has
two required arguments:

 is the maximum number of digits allowed in the number.

 is the number of decimal places to store with the number.

use this:

And to store numbers up to approximately one billion with a resolution of ten decimal
places, use this:

When assigning to a , use either a object or a string, not a
Python float.

EmailField
A that checks that the value is a valid e-mail address.

FileField
A file-upload field.

Note and

Has one required argument:

A local filesystem path that will be appended to your setting to determine the
value of the attribute.

This path may contain strftime formatting standard

uploaded files don’t fill up the given directory).

APPENDIX A MODEL DEFINIT ION REFERENCE356

It can also be a callable, such as a function, which will be called to obtain the upload path,
including the file name. This callable must be able to accept two arguments and return a

arguments that will be passed are shown in Table A-1.

Table A-1. Arguments Passed to Callable upload_to argument

Argument Description

An instance of the model where the is defined. More specifically, this is
the particular instance where the current file is being attached.

In most cases, this object will not have been saved to the database yet, so if it uses the
default , it might not yet have a value for its primary key field.

The file name that was originally given to the file. It may or may not be taken into
account when determining the final destination path.

It also has one optional argument:

Optional: a storage object that handles the storage and retrieval of your files.

Using a or an section) in a model takes a few steps:

 1. In your settings file, you’ll need to define as the full path to a directory in

stored in the database.) Define as the base public URL of that directory.
Make sure that this directory is writable by the Web server’s user account.

 2. Add the or to your model, making sure to define the
option to tell Django to which subdirectory of it should upload files.

 3.).
You’ll most likely want to use the convenience
example, if your is called , you can get the absolute URL to your
image in a template with .

 is set to , and is set to
. The part of is strftime formatting; is the four-

digit year, is the two-digit month, and is the two-digit day. If you upload a file on
.

If you want to retrieve the upload file’s on-disk file name, a URL that refers to that file,
or the file’s size, you can use the , , and attributes, respectively.

Note that whenever you deal with uploaded files, you should pay close attention to where
you’re uploading them, and what type of files they are, to avoid security holes. Be sure to vali-

you blindly let somebody upload files without validation to a directory that’s within your Web
server’s document root, somebody could upload a CGI or PHP script and execute that script by
visiting its URL on your site. Don’t allow that to happen.

By default, instances are created as columns in your database.
As with other fields, you can change the maximum length using the argument.

APPENDIX A MODEL DEFINIT ION REFERENCE 357

FilePathField
A whose choices are limited to the file names in a certain directory on the filesys-
tem. It has three special arguments, of which the first is required:

Required. The absolute filesystem path to a directory from which this
.

Optional. A regular expression, as a string, that will use to filter file names.

, which will match a file called but not or .

Optional. Either or . Default is . Specifies whether all subdirectories of
 should be included.

Of course, these arguments can be used together.
The one potential gotcha is that applies to the base file name, not the full path.

So this example will match , but not
because the and):

By default, instances are created as columns in your
database. As with other fields, you can change the maximum length using the
argument.

FloatField
A floating-point number represented in Python by a instance.

ImageField
Similar to , but validates that the uploaded object is a valid image. It has two extra
optional arguments:

The name of a model field that will be autopopulated with the height of the image each
time the model instance is saved.

The name of a model field that will be autopopulated with the width of the image each
time the model instance is saved.

In addition to the special attributes that are available for , an also
has and attributes, both of which correspond to the image’s height and width in
pixels.

APPENDIX A MODEL DEFINIT ION REFERENCE358

It requires the Python Imaging Library, available at
.

By default, instances are created as columns in your database.
As with other fields, you can change the maximum length using the argument.

IntegerField
An integer.

IPAddressField
An IP address in string).

NullBooleanField
Similar to a , but allows as one of the options. Use this instead of a

 with .

PositiveIntegerField
Similar to an , but must be positive.

PositiveSmallIntegerField
Similar to a , but allows only values under a
dependent) point.

SlugField
Slug, which is a newspaper term, is a short label for something, containing only letters,
numbers, underscores, or hyphens. Slugs are generally used in URLs.

Like a , you can specify . If is not specified, Django will

It implies setting to .

SmallIntegerField
Similar to an , but allows only values under a

TextField
A large text field.

Also see for storing smaller bits of text.

TimeField
A time represented in Python by a instance. Accepts the same autopopulation
options as .

APPENDIX A MODEL DEFINIT ION REFERENCE 359

URLField
A for a URL; it has one extra optional argument:

If

threaded development server, validating a URL being served by the same server will hang.
This should not be a problem for multithreaded servers.

Like all subclasses, takes the optional argument. If you
don’t specify , a default of is used.

XMLField
A that checks whether the value is valid XML that matches a given schema. Takes
one required argument:

The filesystem path to a RelaxNG schema against which to validate
RelaxNG, see .

Universal Field Options
The following arguments are available to all field types. All are optional.

null
If , Django will store empty values as in the database. If , saving empty values
will likely result in a database error. The default is .

Note that empty string values will always get stored as empty strings, not as . Use

fields, you will also need to set if you want to permit empty values in forms because
the).

Avoid using on string-based fields such as and unless you have
an excellent reason. If a string-based field has , that means it has two possible values
for “no data”: and the empty string. In most cases, it’s redundant to have two possible
values for “no data”; Django’s convention is to use the empty string, not .

Note option

Chapter 6.

APPENDIX A MODEL DEFINIT ION REFERENCE360

blank
If , the field is allowed to be blank. The default is .

Note that this is different from . is purely database-related, whereas is
validation-related. If a field has , validation on Django’s admin site will allow entry
of an empty value. If a field has , the field will be required.

choices
An

A list looks like this:

The first element in each tuple is the actual value to be stored. The second element is the
human-readable name for the option.

The list can be defined as part of your model class:

It can also be defined outside your model class altogether:

You can also collect your available choices into named groups that can be used for organi-
zational purposes in a form:

APPENDIX A MODEL DEFINIT ION REFERENCE 361

The first element in each tuple is the name to apply to the group. The second element is
an iterable of two-tuples, with each two-tuple containing a value and a human-readable name
for an option. Grouped options can be combined with ungrouped options within a single list

unknown option in this example).

lets you construct choices dynamically. But if you find yourself hacking to be dynamic,
you’re probably better off using a proper database table with a . is meant
for static data that doesn’t change much, if ever.

db_column
The name of the database column to use for this field. If it isn’t given, Django will use the
field’s name.

If your database column name is an SQL-reserved word or contains characters that aren’t
allowed in Python variable names—notably, the hyphen—that’s okay. Django quotes column
and table names behind the scenes.

db_index
If , will output a statement for this field.

db_tablespace
The name of the database tablespace to use for this field’s index if this field is indexed. The
default is the project’s setting, if set; or the of the
model, if any. If the back-end doesn’t support tablespaces, this option is ignored.

default
The default value for the field; it can be a value or a callable object. If callable, it will be called
every time a new object is created.

editable
If , the field will not be editable in the admin or via forms automatically generated from
the model class. Default is .

help_text
Extra “help” text to be displayed under the field on the object’s admin form. It’s useful for
documentation even if your object doesn’t have an admin form.

APPENDIX A MODEL DEFINIT ION REFERENCE362

Note that this value is not HTML-escaped when it’s displayed in the admin interface. This
lets you include HTML in

Alternatively, you can use plain text and to escape any
HTML special characters.

primary_key
If , this field is the primary key for the model.

If you don’t specify for any fields in your model, Django will automati-
cally add an to hold the primary key, so you don’t need to set on
any of your fields unless you want to override the default primary key behavior.

 implies and . Only one primary key is allowed
on an object.

unique
If , this field must be unique throughout the table.

This is enforced at the database level and at the level of forms created with

a field, an will be raised by the model’s method.
This option is valid on all field types except , , and .

unique_for_date
Set this to the name of a or to require that this field be unique for the
value of the date field.

 that has , Django
wouldn’t allow the entry of two records with the same and .

This is enforced at the level of forms created with
Django admin site), but not at the database level.

unique_for_month
Similar to , but requires the field to be unique with respect to the month.

unique_for_year
Similar to and .

verbose_name
A human-readable name for the field. If the verbose name isn’t given, Django will automati-
cally create it using the field’s attribute name, converting underscores to spaces.

APPENDIX A MODEL DEFINIT ION REFERENCE 363

Relationships
Clearly, the power of relational databases lies in relating tables to each other. Django offers
ways to define the three most common types of database relationships: many-to-one, many-
to-many, and one-to-one.

ForeignKey
A many-to-one relationship. Requires a positional argument: the class to which the model is
related.

To create a recursive relationship—an object that has a many-to-one relationship with
itself—use .

If you need to create a relationship on a model that has not yet been defined, you can use
the name of the model instead of the model object itself:

Note, however, that this refers only to models in the same file. To refer to mod-
els defined in another application, you must instead explicitly specify the application label.

 model is defined in another application called ,
you’d need to use the following:

Behind the scenes, Django appends to the field name to create its database column
name. In the preceding example, the database table for the model will have a

.) However, your code should
never have to deal with the database column name unless you write custom SQL. You’ll always
deal with the field names of your model object.

 accepts an extra set of arguments—all optional—which define the details of
how the relation works.

A dictionary of lookup arguments and values that limit the available admin choices for
this object. Use this with functions from the Python module to limit choices of

 before the current date/time to be chosen:

objects in the admin.

APPENDIX A MODEL DEFINIT ION REFERENCE364

The name to use for the relation from the related object back to this one.

The field on the related object that the relation is to. By default, Django uses the primary
key of the related object.

ManyToManyField
A many-to-many relationship. Requires a positional argument: the class to which the model is
related. This works exactly the same as it does for , including all the options regard-
ing recursive relationships and lazy relationships.

Behind the scenes, Django creates an intermediary join table to represent the many-to-
many relationship. By default, this table name is generated using the names of the two tables
being joined. Because some databases don’t support table names above a certain length, these
table names will be automatically truncated to 64 characters, and a uniqueness hash will be
used. This means you might see table names such as ; this is perfectly nor-
mal. You can manually provide the name of the join table using the option.

 accepts an extra set of arguments—all optional—that control how the
relationship functions:

Same as in .

Same as in .

 has no effect when used on a with a custom intermedi-
ate table specified using the parameter.

Only used in the definition of on . Consider the following model:

When Django processes this model, it identifies that it has a on itself, so
it doesn’t add a attribute to the class. Instead, the is

If you do not want symmetry in many-to-many relationships with , set
to . This will force Django to add the descriptor for the reverse relationship, allowing

 relationships to be nonsymmetrical.

Django will automatically generate a table to manage many-to-many relationships.
However, if you want to manually specify the intermediary table, you can use the
option to specify the Django model that represents the intermediate table that you want
to use.

APPENDIX A MODEL DEFINIT ION REFERENCE 365

The most common use for this option is when you want to associate extra data with a
many-to-many relationship.

The name of the table to create for storing the many-to-many data. If it is not provided,
Django will assume a default name based on the names of the two tables being joined.

OneToOneField
A one-to-one relationship. Conceptually, this is similar to a with , but
the “reverse” side of the relation will directly return a single object.

This is most useful as the primary key of a model that “extends” another model in some
way; multitable inheritance is implemented by adding an implicit one-to-one relationship
from the child model to the parent model, for example.

One positional argument is required: the class to which the model will be related. This
works exactly the same as it does for , including all the options regarding recursive
relationships and lazy relationships.

Additionally, accepts all the extra arguments accepted by , plus
one extra argument:

When
that this field should be used as the link back to the parent class instead of the extra

, which would normally be implicitly created by subclassing.

Model Metadata Options
Model-specific metadata lives in a defined in the body of your model class:

Model metadata is “anything that’s not a field,” such as ordering options and so forth.
The sections that follow present a list of all possible options. No options are required.

Adding to a model is completely optional.

abstract
If , this model will be an abstract base class. See the Django documentation for more on
abstract base classes.

APPENDIX A MODEL DEFINIT ION REFERENCE366

db_table
The name of the database table to use for the model:

Table names
To save time, Django automatically derives the name of the database table from the name of
the model class and the app that contains it. A model’s database table name is constructed
by joining the model’s app label—the name you used in —to the model’s
class name, with an underscore between them.

),
a model defined as will have a database table named .

To override the database table name, use the parameter in .
If your database table name is an SQL-reserved word or contains characters that aren’t

allowed in Python variable names—notably, the hyphen—that’s okay. Django quotes column
and table names behind the scenes.

db_tablespace
The name of the database tablespace to use for the model. If the back-end doesn’t support
tablespaces, this option is ignored.

get_latest_by
The name of a or in the model. This specifies the default field to use
in the model method.

 example:

managed
Defaults to , meaning that Django will create the appropriate database tables in

 and remove them as part of a management command. That
is, Django manages the database tables’ life cycles.

If , no database table creation or deletion operations will be performed for this
model. This is useful if the model represents an existing table or a database view that has
been created by some other means. This is the only difference when is . All other
aspects of model handling are exactly the same as normal, including the following:

APPENDIX A MODEL DEFINIT ION REFERENCE 367

confusion for later code readers, it’s recommended that you specify all the columns
from the database table you are modeling when using unmanaged models.

 contains a that points to another
unmanaged model, the intermediary table for the many-to-many join will also not be
created. However, the intermediary table between one managed and one unmanaged
model will be created.

 If you need to change this default behavior, create the intermediary table as an explicit
 set as needed) and use the attribute to make the relation

use your custom model.

, it’s up to you to ensure the correct tables
are created as part of the test setup.

If you’re interested in changing the Python-level behavior of a model class, you could use
 and create a copy of an existing model. However, there’s a better approach for

that situation: proxy models.

ordering
The default ordering for the object, for use when obtaining lists of objects:

This is a tuple or list of strings. Each string is a field name with an optional prefix, which
 will be ordered ascending. Use the

string to order randomly.

Note

 field ascending, use this:

To order by descending, use this:

To order by descending and then by ascending, use this:

APPENDIX A MODEL DEFINIT ION REFERENCE368

proxy
If set to , a
more on proxy models, see the Django documentation.

unique_together
Sets of field names that, when taken together, must be unique:

This is a list of lists of fields that must be unique when considered together. It’s used by

 statements are included in the statement).
 can be a single sequence when dealing with a single set

of fields:

verbose_name
A human-readable name for the object, singular:

If this isn’t given, Django will use a munged version of the class name: becomes
.

verbose_name_plural
The plural name for the object:

If this isn’t given, Django will use + .

A P P E N D I X B

Database API Reference

Django’s database API is the other half of the model API discussed in Appendix A. Once
you’ve defined a model, you’ll use this API any time you need to access the database. You’ve
seen examples of this API in use throughout the book; this appendix explains all the various
options in detail.

Like the model APIs discussed in Appendix A, although these APIs are considered very sta-
ble, the Django developers consistently add new shortcuts and conveniences. It’s a good idea to
always check the latest documentation online, available at .

Throughout this reference, we’ll refer to the following models, which might form a simple
blog application:

369

APPENDIX B DATABASE API REFERENCE370

Creating Objects
To create an object, instantiate it using keyword arguments to the model class, and then call

 to save it to the database:

This performs an SQL statement behind the scenes. Django doesn’t hit the data-
base until you explicitly call . The method has no return value.

To create an object and save it all in one step, see the manager method.

What Happens When You Save?
When you save an object, Django performs the following steps:

 1. Emit a signal: This provides a notification that an object is about to be saved.
You can register a listener that will be invoked whenever this signal is emitted. Check
the online documentation for more on signals.

 2. Preprocess the data: Each field on the object is asked to perform any automated data
modification that the field may need to perform.

 Most fields do no preprocessing—the field data is kept as is. Preprocessing is used only
on fields that have special behavior, like file fields.

 3. Prepare the data for the database: Each field is asked to provide its current value in a
data type that can be written to the database.

 Most fields require no data preparation. Simple data types, such as integers and
strings, are “ready to write” as a Python object. However, more-complex data types
often require some modification. For example, use a Python
object to store data. Databases don’t store objects, so the field value must be
converted into an ISO-compliant date string for insertion into the database.

 4. Insert the data into the database: The preprocessed, prepared data is composed into an
SQL statement for insertion into the database.

 5. Emit a signal: As with the signal, this is used to provide notification
that an object has been saved successfully.

Autoincrementing Primary Keys
For convenience, each model is given an autoincrementing primary-key field named
unless you explicitly specify on a field (see the section titled “AutoField”
in Appendix A).

APPENDIX B DATABASE API REFERENCE 371

If your model has an , that autoincremented value will be calculated and saved
as an attribute on your object the first time you call :

There’s no way to tell what the value of an ID will be before you call , because that
value is calculated by your database, not by Django.

If a model has an but you want to define a new object’s ID explicitly when sav-
ing, define it explicitly before saving, rather than relying on the autoassignment of the ID:

If you assign auto–primary-key values manually, make sure not to use an existing primary-
key value! If you create a new object with an explicit primary-key value that already exists in the
database, Django will assume you’re changing the existing record rather than creating a new one.

Given the preceding blog example, this example would override the previ-
ous record in the database:

Explicitly specifying auto–primary-key values is mostly useful for bulk-saving objects,
when you’re confident you won’t have primary-key collision.

Saving Changes to Objects
To save changes to an object that’s already in the database, use .

Given a instance that has already been saved to the database, this example
changes its name and updates its record in the database:

This performs an SQL statement behind the scenes. Again, Django doesn’t hit the
database until you explicitly call .

APPENDIX B DATABASE API REFERENCE372

HOW DJANGO KNOWS WHEN TO UPDATE AND WHEN TO INSERT

You may have noticed that Django database objects use the same method for creating and changing
objects. Django abstracts the need to use or SQL statements. Specifically, when you call

, Django follows this algorithm:

 (i.e., a value other than
 or the empty string), Django executes a query to determine whether a record with the

 query.

not
an .

Updating fields works exactly the same way; simply assign an object of the
right type to the field in question:

Django will complain if you try to assign an object of the wrong type.

Retrieving Objects
Throughout this book you’ve seen objects retrieved using code like the following:

There are quite a few “moving parts” behind the scenes here: when you retrieve objects
from the database, you’re actually constructing a using the model’s . This

 knows how to execute SQL and return the requested objects.
Appendix A looked at both and from a model-definition point of view;

now we’ll look at how they operate.
A represents a collection of objects from your database. It can have zero, one,

or many filters—criteria that narrow down the collection based on given parameters. In SQL
terms, a equates to a statement, and a filter is a .

You get a by using your model’s . Each model has at least one ,
and it’s called by default. Access it directly via the model class, like so:

APPENDIX B DATABASE API REFERENCE 373

s are accessible only via model classes, rather than from model instances, to
enforce a separation between table-level operations and record-level operations:

The is the main source of s for a model. It acts as a “root” that
describes all objects in the model’s database table. For example, is the initial

 that contains all objects in the database.

Caching and QuerySets
Each contains a cache to minimize database access. To write the most efficient code,
it’s important to understand how caching works.

In a newly created , the cache is empty. The first time a is evaluated—
and, hence, a database query happens—Django saves the query results in the ’s
cache and returns the results that have been explicitly requested (e.g., the next element,
if the is being iterated over). Subsequent evaluations of the reuse the
cached results.

Keep this caching behavior in mind, because it may bite you if you don’t use your
s correctly. For example, the following will create two s, evaluate them,

and throw them away:

That means the same database query will be executed twice, effectively doubling your
database load. Also, there’s a possibility the two lists may not include the same database
records, because an may have been added or deleted in the split second between the
two requests.

To avoid this problem, simply save the and reuse it:

Filtering Objects
The simplest way to retrieve objects from a table is to get all of them. To do this, use the
method on a :

The method returns a of all the objects in the database.

APPENDIX B DATABASE API REFERENCE374

Usually, though, you’ll need to select only a subset of the complete set of objects. To cre-
ate such a subset, you refine the initial , adding filter conditions. You’ll usually do this
using the and/or methods:

 and both take field lookup arguments, which are discussed in detail in
the “Field Lookups” section of this appendix.

Chaining Filters
The result of refining a is itself a , so it’s possible to chain refinements
together, as in this example:

This takes the initial of all entries in the database, adds a filter, then an exclusion,
and then another filter. The final result is a containing all entries with a headline that
starts with “What” that were published between January 1, 2005, and the current day.

It’s important to point out here that are lazy—the act of creating a
doesn’t involve any database activity. In fact, the three preceding lines don’t make any data-
base calls; you can chain filters together all day long and Django won’t actually run the query
until the is evaluated.

You can evaluate a in any of the following ways:

Iterating: A is iterable, and it executes its database query the first time you
iterate over it. For example, the following isn’t evaluated until it’s iterated
over in the loop:

 This prints all headlines from 2006 that contain “bill” but causes only one database hit.

Printing: A is evaluated when you call on it. This is for convenience in
the Python interactive interpreter, so you can immediately see your results when using
the API interactively.

Slicing: As explained in the upcoming “Limiting QuerySets” section, a can be
sliced using Python’s array-slicing syntax. Usually slicing a returns another
(unevaluated) , but Django will execute the database query if you use the
parameter of Python’s slice syntax.

Converting to a list: You can force evaluation of a by calling on it, as in
this example:

APPENDIX B DATABASE API REFERENCE 375

 Be warned, though, that this could have a large memory overhead, because Django will
load each element of the list into memory. In contrast, iterating over a will take
advantage of your database to load data and instantiate objects only as you need them.

FILTERED QUERYSETS ARE UNIQUE

Each time you refine a that is in no way bound to the previous
one. Each refinement creates a separate and distinct that can be stored, used, and reused:

These three s are separate. The first is a base containing all entries that have a
headline starting with “What.” The second is a subset of the first, with an additional criterion that excludes
records whose is later than the current date. The third is a subset of the first, with an additional
criterion that selects only the records whose is later than the current date. The initial
() is unaffected by the refinement process.

Limiting QuerySets
Use Python’s array-slicing syntax to limit your to a certain number of results. This is
the equivalent of SQL’s and clauses.

For example, this returns the first five entries ():

This returns the sixth through tenth entries ():

Generally, slicing a returns a new —it doesn’t evaluate the query. An
exception is if you use the parameter of Python’s slice syntax. For example, this would
execute the query to return a list of every second object of the first ten:

To retrieve a single object rather than a list (e.g.,), use a
simple index instead of a slice. For example, the following code returns the first in the
database, after ordering objects alphabetically by headline:

This is roughly equivalent to the following:

APPENDIX B DATABASE API REFERENCE376

Note, however, that the first of these will raise while the second will raise
 if no objects match the given criteria.

Query Methods That Return New QuerySets
Django provides a range of refinement methods that modify either the types of
results returned by the or the way its SQL query is executed. These methods are
described in the sections that follow. Some of the methods take field-lookup arguments, which
are discussed in detail in the “Field Lookups” section a bit later on.

filter(**lookup)
This method returns a new containing objects that match the given lookup
parameters.

exclude(**lookup)
The method returns a new containing objects that do not match
the given lookup parameters.

order_by(*fields)
By default, results returned by a are ordered by the ordering tuple given by the

 option in the model’s metadata (see Appendix A). You can override this for a particu-
lar query using the method:

This result will be ordered by descending , then by ascending . The
minus sign in indicates descending order. Ascending order is assumed if the is
absent. To order randomly, use , like so:

Ordering randomly incurs a performance penalty, though, so you shouldn’t use it for anything
with heavy load.

If no ordering is specified in a model’s and a from that model doesn’t
include , then ordering will be undefined and may differ from query to query.

distinct()
This returns a new that uses in its SQL query, eliminating duplicate
rows from the query results.

By default, a will not eliminate duplicate rows. In practice this is rarely a prob-
lem, because simple queries such as don’t introduce the possibility of
duplicate result rows. However, if your query spans multiple tables, it’s possible to get dupli-
cate results when a is evaluated. That’s when you’d use .

APPENDIX B DATABASE API REFERENCE 377

values(*fields)
The method returns a special that evaluates to a list of dictionaries
instead of model-instance objects. Each of those dictionaries represents an object, with the
keys corresponding to the attribute names of model objects:

 takes optional positional arguments, , which specify field names to
which the should be limited. If you specify the fields, each dictionary will contain only
the field keys/values for the fields you specify. If you don’t specify the fields, each dictionary
will contain a key and value for every field in the database table:

This method is useful when you know you’re going to need values from only a small num-
ber of the available fields and you won’t need the functionality of a model-instance object. It’s
more efficient to select only the fields you need to use.

dates(field, kind, order)
This method returns a special that evaluates to a list of objects
representing all available dates of a particular kind within the contents of the .

The argument must be the name of a or of your model.
The argument must be , , or . Each object in the
result list is truncated to the given :

 returns a list of all distinct year values for the field.

 returns a list of all distinct year/month values for the field.

 returns a list of all distinct year/month/day values for the field.

, which defaults to , should be either or . This specifies how to
order the results—ascending or descending. Here are a few examples:

APPENDIX B DATABASE API REFERENCE378

select_related()
The method returns a that will automatically “follow” foreign-key
relationships, selecting that additional related-object data when it executes its query. This is
a performance booster that results in (sometimes much) larger queries but means later use of
foreign-key relationships won’t require database queries.

The following examples illustrate the difference between plain lookups and
 lookups. Here’s a standard lookup:

And here’s a lookup:

 follows foreign keys as far as possible. If you have the following models

then a call to will cache the related and the
related :

APPENDIX B DATABASE API REFERENCE 379

Note that does not follow foreign keys that have .
Usually, using can vastly improve performance because your appli-

cation can avoid many database calls. However, in situations with deeply nested sets of
relationships, can sometimes end up following too many relationships and
can generate queries so large that they end up being slow.

QuerySet Methods That Do Not Return QuerySets
The following methods evaluate the and return something other than a

—a single object, a value, and so forth.

get(**lookup)
This returns the object matching the given lookup parameters, which should be in the format
described in the “Field Lookups” section. This raises if more than one object is
found.

 raises a exception if an object isn’t found for the given parameters.
The exception is an attribute of the model class. Consider this example:

The exception inherits from ,
so you can target multiple exceptions:

create(**kwargs)
This is a convenience method for creating an object and saving it all in one step. It lets you
compress two common steps

into a single line:

APPENDIX B DATABASE API REFERENCE380

get_or_create(**kwargs)
This is a convenience method for looking up an object and creating one if it doesn’t exist.
It returns a tuple of , where is the retrieved or created object and

 is a Boolean specifying whether a new object was created.
This method is meant as a shortcut to boilerplate code and is mostly useful for data-

import scripts. Here’s an example:

This pattern gets quite unwieldy as the number of fields in a model increases. The previ-
ous example can be rewritten using like so:

Any keyword arguments passed to —except an optional one called
—will be used in a call. If an object is found, returns a tuple of

that object and . If an object is not found, will instantiate and save a new
object, returning a tuple of the new object and . The new object will be created according
to this algorithm:

In English, that means you should start with any non- keyword argument that
doesn’t contain a double underscore (which would indicate an inexact lookup). Then add the
contents of , overriding any keys if necessary, and use the result as the keyword argu-
ments to the model class.

If you have a field named and want to use it as an exact lookup in
, just use like so:

APPENDIX B DATABASE API REFERENCE 381

Note As mentioned earlier, is mostly useful in scripts that need to parse data and cre
 in a view, please

 requests unless you have a good reason not to.
any effect on data; use whenever a request to a page has a side effect on your data.

count()
 returns an integer representing the number of objects in the database matching the

. never raises exceptions. Here’s an example:

 performs a behind the scenes, so you should always use
rather than loading all of the records into Python objects and calling on the result.

Depending on which database you’re using (e.g., PostgreSQL or MySQL), may
return a long integer instead of a normal Python integer. This is an underlying implementation
quirk that shouldn’t pose any real-world problems.

in_bulk(id_list)
This method takes a list of primary-key values and returns a dictionary mapping each primary-
key value to an instance of the object with the given ID, as in this example:

IDs of objects that don’t exist are silently dropped from the result dictionary. If you pass
 an empty list, you’ll get an empty dictionary.

latest(field_name=None)
This returns the latest object in the table, by date, using the provided as the date
field. This example returns the latest in the table, according to the field:

APPENDIX B DATABASE API REFERENCE382

If your model’s specifies , you can leave off the argument to
. Django will use the field specified in by default.

Like , raises if an object doesn’t exist with the given parameters.

Field Lookups
Field lookups are how you specify the meat of an SQL clause. They’re specified as key-
word arguments to the methods , , and .

Basic lookup keyword arguments take the form (note the double
underscore). This example

translates (roughly) into the following SQL:

If you pass an invalid keyword argument, a lookup function will raise .
The supported lookup types follow.

exact
 performs an exact match:

This matches any object with the exact headline “Man bites dog”.
If you don’t provide a lookup type—that is, if your keyword argument doesn’t contain a

double underscore—the lookup type is assumed to be . For example, the following two
statements are equivalent:

This is for convenience, because lookups are the common case.

iexact
This method performs a case-insensitive exact match:

This will match , , , and so forth.

contains
This method performs a case-sensitive containment test:

This will match the headline but not .
SQLite doesn’t support case-sensitive statements; when using SQLite, acts

like .

APPENDIX B DATABASE API REFERENCE 383

ESCAPING PERCENT SIGNS AND UNDERSCORES IN LIKE STATEMENTS

 SQL statements (, , , ,
, , and) will automatically escape the two special characters used in

 statements—the percent sign and the underscore statement, the percent sign signifies a

the entries that contain a percent sign, just use the percent sign as any other character:

 and underscores are handled for you transparently.

icontains
This performs a case-insensitive containment test:

Unlike , will match .

gt, gte, lt, and lte
These represent greater than, greater than or equal to, less than, and less than or equal to:

These queries return any object with an ID greater than 4, an ID less than 15, and an ID
greater than or equal to 1, respectively.

You’ll usually use these on numeric fields. Be careful with character fields since character
order isn’t always what you’d expect (i.e., the string sorts after the string).

in
The method filters where a value is on a given list:

This returns all objects with the ID 1, 3, or 4.

APPENDIX B DATABASE API REFERENCE384

startswith
 performs a case-sensitive search based on the starting characters:

This will return the headlines “Will he run?” and “Willbur named judge,” but not “Who is
Will?” or “will found in crypt.”

istartswith
This method performs a case-insensitive search based on the starting characters:

This will return the headlines “Will he run?” “Willbur named judge,” and “will found in
crypt,” but not “Who is Will?”

endswith and iendswith
These methods perform case-sensitive and case-insensitive, respectively, searches based on
the ending characters, similar to and :

range
 performs an inclusive range check:

You can use anywhere you can use in SQL—for dates, numbers, and even
characters.

year, month, and day
For date/datetime fields, these methods perform exact year, month, or day matches:

APPENDIX B DATABASE API REFERENCE 385

isnull
This method takes either or , which correspond to SQL queries of and

, respectively:

search
 is a Boolean full-text search that takes advantage of full-text indexing. This is like

 but is significantly faster due to full-text indexing.
Note this is available only in MySQL and requires direct manipulation of the database

to add the full-text index.

The pk Lookup Shortcut
For convenience, Django provides a lookup type, which stands for “primary_key.”

In the example model, the primary key is the field, so these three statements are
equivalent:

The use of isn’t limited to queries—any query term can be combined with to
perform a query on a model’s primary key:

 lookups also work across joins. For example, these three statements are equivalent:

The point of is to give you a generic way to refer to the primary key when you’re not
sure whether the model’s primary key is called .

Complex Lookups with Q Objects
Keyword argument queries—in and so on—are ed together. If you need to execute
more-complex queries (e.g., queries with statements), you can use objects.

A object () is an object used to encapsulate a collection of keyword
arguments. These keyword arguments are specified as explained in the “Field Lookups”
section.

APPENDIX B DATABASE API REFERENCE386

For example, this object encapsulates a single query:

 objects can be combined using the and operators. When an operator is used on two
objects, it yields a new object. For example, this statement yields a single object that repre-
sents the of two queries:

This is equivalent to the following SQL clause:

You can compose statements of arbitrary complexity by combining objects with the
and operators. You can also use parenthetical grouping.

Each lookup function that takes keyword arguments (e.g., , ,)
can also be passed one or more objects as positional (not-named) arguments. If you provide
multiple object arguments to a lookup function, the arguments will be ed together, as in
this example:

This roughly translates into the following SQL:

Lookup functions can mix the use of objects and keyword arguments. All arguments
provided to a lookup function (be they keyword arguments or objects) are ed together.
However, if a object is provided, it must precede the definition of any keyword arguments.
For example, the following

would be a valid query, equivalent to the previous example, but this would not be valid:

You can find some examples online at
.

APPENDIX B DATABASE API REFERENCE 387

Related Objects
When you define a relationship in a model (i.e., a , , or

), instances of that model will have a convenient API to access the related
object(s).

For example, an object can get its associated object by accessing the
attribute .

Django also creates API accessors for the “other” side of the relationship—the link from
the related model to the model that defines the relationship. For example, a object has
access to a list of all related objects via the attribute: .

All examples in this section use the sample , , and models defined at the
start of this appendix.

Lookups That Span Relationships
Django offers a powerful and intuitive way to “follow” relationships in lookups, taking care
of the SQL s for you automatically behind the scenes. To span a relationship, just use the
field name of related fields across models, separated by double underscores, until you get to
the field you want.

This example retrieves all objects with a whose is :

This spanning can be as deep as you’d like.
It works backward, too. To refer to a “reverse” relationship (see the section “‘Reverse’

Foreign-Key Relationships”), just use the lowercase name of the model.
This example retrieves all objects that have at least one whose con-

tains :

Foreign-Key Relationships
If a model has a , instances of that model will have access to the related (foreign)
object via a simple attribute of the model, as in this example:

You can get and set foreign-key values via a foreign-key attribute. As you may expect,
changes to the foreign key aren’t saved to the database until you call , as in this example:

APPENDIX B DATABASE API REFERENCE388

If a field has set (i.e., it allows values), you can set it to by
assigning to it and saving:

Forward access to one-to-many relationships is cached the first time the related object is
accessed. Subsequent accesses to the foreign key on the same object instance are cached, as in
this example:

Note that the method recursively prepopulates the cache of all
one-to-many relationships:

 is documented in the “select_related()” section earlier in this appendix.

“Reverse” Foreign-Key Relationships
Foreign-key relationships are automatically symmetrical—a reverse relationship is inferred
from the presence of a pointing to another model.

If a model has a , instances of the foreign-key model will have access to a
 that returns all instances of the first model that relate to that object. By default, this
 is named , where is the source model name, lowercased. This

returns , which can be filtered and manipulated as described in the “Retrieving
Objects” section earlier in this appendix.

Here’s an example:

You can override the name by setting the parameter in
the definition. For example, if the model was altered to

, the preceding example code would look
like this:

APPENDIX B DATABASE API REFERENCE 389

 is particularly useful if a first model has two foreign keys to the same second
model.

You cannot access a reverse from the class; it must be accessed from
an instance:

In addition to the methods defined in the earlier “Retrieving Objects” section,
the has these methods:

: Adds the specified model objects to the related object set,
for example

: Creates a new object, saves it, and puts it in the related object set.
It returns the newly created object:

 This is equivalent to (but much simpler than) the following:

 Note that there’s no need to specify the keyword argument of the model that defines
the relationship. In the preceding example, we don’t pass the parameter to

. Django figures out that the new object’s field should be set to .

APPENDIX B DATABASE API REFERENCE390

: Removes the specified model objects from the related
object set:

 To prevent database inconsistency, this method exists only on objects
where . If the related field can’t be set to (), then an object can’t be
removed from a relation without being added to another. In the preceding example,
removing from is equivalent to doing , and because the

 doesn’t have , this is invalid.

: Removes all objects from the related object set:

 Note that this doesn’t delete the related objects—it just disassociates them.

 Just like , is available only on s where .

To assign the members of a related set in one fell swoop, just assign to it from any iterable
object, as in this example:

If the method is available, any pre-existing objects will be removed from the
 before all objects in the iterable (in this case, a list) are added to the set. If the

 method is not available, all objects in the iterable will be added without removing any
existing elements.

Each “reverse” operation described in this section has an immediate effect on the data-
base. Every addition, creation, and deletion is immediately and automatically saved to the
database.

Many-to-Many Relationships
Both ends of a many-to-many relationship get automatic API access to the other end. The API
works just as a “reverse” one-to-many relationship (described in the previous section). The
only difference is in the attribute naming: the model that defines the uses
the attribute name of that field itself, whereas the “reverse” model uses the lowercased model
name of the original model, plus (just like reverse one-to-many relationships).

An example makes this concept easier to understand:

APPENDIX B DATABASE API REFERENCE 391

Like , can specify . In the preceding example,
if the in had specified , then each
instance would have an attribute instead of .

HOW ARE THE REVERSE RELATIONSHIPS POSSIBLE?

Some

model classes are related to it until those other model classes are loaded?
The answer lies in the setting. The first time any model is loaded, Django iterates

over every model in and creates the reverse relationships in memory as needed. Essen
tially, one of the functions of is to tell Django the entire model domain.

Queries over Related Objects
Queries involving related objects follow the same rules as queries involving normal value
fields. When specifying the value for a query to match, you may use either an object instance
itself or the primary-key value for the object.

For example, if you have a object with , the following three queries would be
identical:

Deleting Objects
The deletion method, conveniently, is named . This method immediately deletes the
object and has no return value:

You can also delete objects in bulk. Every has a method, which deletes
all members of that . For example, this deletes all objects with a year
of 2005:

When Django deletes an object, it emulates the behavior of the SQL constraint
—in other words, any objects that had foreign keys pointing at the object to be deleted

will be deleted along with it. Here’s an example:

APPENDIX B DATABASE API REFERENCE392

Note that is the only method that is not exposed on a itself.
This is a safety mechanism to prevent you from accidentally requesting

 and deleting all the entries. If you do want to delete all the objects, then you have
to explicitly request a complete query set:

Shortcuts
As you develop views, you will discover a number of common idioms in the way you use the
database API. Django encodes some of these idioms as shortcuts that can be used to simplify
the process of writing views. These functions are in the module.

get_object_or_404()
One common idiom is to use and raise if the object doesn’t exist. This idiom is
captured by . This function takes a Django model as its first argument
and an arbitrary number of keyword arguments, which it passes to the default manager’s
function. It raises if the object doesn’t exist. Consider this example:

When you provide a model to this shortcut function, the default manager is used to exe-
cute the underlying query. If you don’t want to use the default manager or if you want
to search a list of related objects, you can provide with a object
instead:

get_list_or_404()
 behaves the same way as , except that it uses

instead of . It raises if the list is empty.

APPENDIX B DATABASE API REFERENCE 393

Falling Back to Raw SQL
If you find yourself needing to write an SQL query that is too complex for Django’s database
mapper to handle, you can fall back into raw SQL-statement mode.

The preferred way to do this is by giving your model custom methods or custom man-
ager methods that execute queries. Although there’s nothing in Django that requires database
queries to live in the model layer, this approach keeps all your data-access logic in one place,
which is smart from a code-organization standpoint. For instructions, see Appendix A.
Finally, it’s important to note that the Django database layer is merely an interface to your
database. You can access your database via other tools, programming languages, or database
frameworks—there’s nothing Django-specific about your database.

A P P E N D I X C

Generic View Reference

Chapter 11 introduced generic views but leaves out some of the gory details. This appendix
describes each generic view along with all the options each view can take. Be sure to read
Chapter 11 before trying to understand the reference material that follows. You might want to
refer to the , , and objects defined in that chapter; the examples that fol-
low use these models.

Common Arguments to Generic Views
Most of these views take a large number of arguments that can change the generic view’s
behavior. Many of these arguments work the same across a large number of views. Table C-1
describes each of these common arguments; any time you see one of these arguments in a
generic view’s argument list, it will work as described in the table.

Table C-1. Common Arguments to Generic Views

Argument Description

A Boolean specifying whether to display the page if no objects are avail-
able. If this is and no objects are available, the view will raise a 404
error instead of displaying an empty page. By default, this is .

A list of additional template-context processors (besides the defaults) to
apply to the view’s template. See Chapter 9 for information on template
context processors.

A dictionary of values to add to the template context. By default, this is an
empty dictionary. If a value in the dictionary is callable, the generic view
will call it just before rendering the template.

The MIME type to use for the resulting document. It defaults to the value
of the setting, which is if you haven’t
changed it.

A (i.e., something like) to read objects
from. See Appendix B for more information about objects. Most
generic views require this argument.

Continued

395

APPENDIX C GENERIC V IEW REFERENCE396

Table C-1. Continued

Argument Description

The template loader to use when loading the template. By default, it’s
. See Chapter 9 for information on template

loaders.

The full name of a template to use in rendering the page. This lets you
override the default template name derived from the .

The name of the template variable to use in the template context. By
default, this is . Views that list more than one object (i.e.,

 views and various objects-for-date views) will append to the
value of this parameter.

“Simple” Generic Views
The module contains simple views that handle a couple of com-
mon cases: rendering a template when no view logic is needed and issuing a redirect.

Rendering a Template
View function:

This view renders a given template, passing it a template variable, which is a
dictionary of the parameters captured in the URL.

Example
Given the following URLconf, a request to would render the template ,
and a request to would render with a context variable

 that is set to :

Required Arguments

: The full name of a template to use.

APPENDIX C GENERIC V IEW REFERENCE 397

Redirecting to Another URL
View function:

This view redirects to another URL. The given URL may contain dictionary-style string
formatting, which will be interpolated against the parameters captured in the URL.

If the given URL is , Django will return an HTTP 410 (“Gone”) message.

Example
This URLconf redirects from to :

This example returns a “Gone” response for requests to :

Required Arguments

: The URL to redirect to, as a string. Or to return a 410 (“Gone”) HTTP
response.

List/Detail Generic Views
The list/detail generic views (in the module) handle the
common case of displaying a list of items at one view and individual “detail” views of those
items at another.

Lists of Objects
View function:

Use this view to display a page representing a list of objects.

Example
Given the object from Chapter 5, we can use the view to show a simple list
of all authors, given the following URLconf snippet:

APPENDIX C GENERIC V IEW REFERENCE398

Required Arguments

: A of objects to list (refer to Table C-1).

Optional Arguments

: An integer specifying how many objects should be displayed per page. If
this is given, the view will paginate objects with objects per page. The view
will expect either a query string parameter (via) containing a zero-indexed
page number or a variable specified in the URLconf. (See the following “A Note
on Pagination” sidebar.)

Additionally, this view may take any of these common arguments (described in Table C-1):

Template Name
If isn’t specified, this view will use the template

 by default. Both the application label and the model name are derived from the
 parameter. The application label is the name of the application that the model is

defined in, and the model name is the lowercased version of the name of the model class.
In the previous example using as the , the application label

would be and the model name would be . This means the default template would
be .

APPENDIX C GENERIC V IEW REFERENCE 399

Template Context
In addition to , the template’s context will contain the following:

: The list of objects. This variable’s name depends on the
 parameter, which is by default. If is , this

variable’s name will be .

: A Boolean representing whether the results are paginated. Specifically,
this is set to if the number of available objects is less than or equal to .

If the results are paginated, the context will contain these extra variables:

: The number of objects per page (this is the same as the
parameter).

: A Boolean representing whether there’s a next page.

: A Boolean representing whether there’s a previous page.

: The current page number as an integer. This is 1-based.

: The next page number, as an integer. If there’s no next page, this will still be an
integer representing the theoretical next-page number. This is 1-based.

: The previous page number, as an integer. This is 1-based.

: The total number of pages, as an integer.

: The total number of objects across all pages, not just this page.

A NOTE ON PAGINATION

If is specified, Django will paginate the results. You can specify the page number in the URL in
one of two ways:

 parameter in the URLconf. For example, this is what your URLconf might look like:

 query-string parameter. For example, a URL would look like this:

In both cases, is 1-based, not 0-based, so the first page would be represented as page .

APPENDIX C GENERIC V IEW REFERENCE400

Detail Views
View function:

This view provides a “detail” view of a single object.

Example
Continuing the previous example, we could add a detail view for a given author by
modifying the URLconf:

Required Arguments

: A that will be searched for the object (refer to Table C-1).

You'll also need either:

: The value of the primary-key field for the object.

or

: The slug of the given object. If you pass this field, the argument
(see the following section) is also required.

Optional Arguments

: The name of the field on the object containing the slug. This is required if
you are using the argument, but it must be absent if you’re using the
argument.

: The name of a field on the object whose value is the template
name to use. This lets you store template names in your data.

APPENDIX C GENERIC V IEW REFERENCE 401

 In other words, if your object has a field that contains a string
, and you set to , the generic view for this

object will use the template .

 If the template named by doesn’t exist, the one named by
 is used instead. It’s a bit of a brain-bender, but it’s useful in some cases.

This view may also take these common arguments (refer to Table C-1):

Template Name
If and aren’t specified, this view will use the template

 by default.

Template Context
In addition to , the template’s context will be as follows:

: The object. This variable’s name depends on the param-
eter, which is by default. If is , this variable’s
name will be .

Date-Based Generic Views
Date-based generic views are generally used to provide a set of “archive” pages for dated mate-
rial. Think year/month/day archives for a newspaper, or a typical blog archive.

Tip

-
 option to will make the future

APPENDIX C GENERIC V IEW REFERENCE402

Archive Index
View function:

This view provides a top-level index page showing the “latest” (i.e., most recent) objects
by date.

Example
Say a typical book publisher wants a page of recently published books. Given some object
with a field, we can use the view for this common task:

Required Arguments

: The name of the or in the ’s model that
the date-based archive should use to determine the objects on the page.

: A of objects for which the archive serves.

Optional Arguments

: A Boolean specifying whether to include “future” objects on this page, as
described in the previous note.

: The number of latest objects to send to the template context. By default,
it’s 15.

This view may also take these common arguments (refer to Table C-1):

APPENDIX C GENERIC V IEW REFERENCE 403

Template Name
If isn’t specified, this view will use the template

 by default.

Template Context
In addition to , the template’s context will be as follows:

: A list of objects representing all years that have objects avail-
able according to . These are ordered in reverse.

 For example, if you have blog entries from 2003 through 2006, this list will contain four
 objects: one for each of those years.

: The objects in the system, in descending order by .
For example, if is , then will be a list of the latest 10 objects in

.

Year Archives
View function:

Use this view for yearly archive pages. These pages have a list of months in which objects
exist and they can optionally display all the objects published in a given year.

Example
Extending the example from earlier, we’ll add a way to view all the books pub-
lished in a given year:

Required Arguments

: As for (refer to the previous section).

: A of objects for which the archive serves.

: The four-digit year for which the archive serves (as in our example, this is usually
taken from a URL parameter).

APPENDIX C GENERIC V IEW REFERENCE404

Optional Arguments

: A Boolean specifying whether to retrieve the full list of objects for
this year and pass those to the template. If , this list of objects will be made avail-
able to the template as . (The name may be different; see
the information about in the following “Template Context” section.) By
default, this is .

: A Boolean specifying whether to include “future” objects on this page.

This view may also take these common arguments (refer to Table C-1):

Template Name
If isn’t specified, this view will use the template

 by default.

Template Context
In addition to , the template’s context will be as follows:

: A list of objects representing all months that have objects
available in the given year, according to , in ascending order.

: The given year, as a four-character string.

: If the parameter is , this will be set to a list of
objects available for the given year, ordered by the date field. This variable’s name
depends on the parameter, which is by default.
If is , this variable’s name will be .

 If is , will be passed to the template as an
empty list.

Month Archives
View function:

This view provides monthly archive pages showing all objects for a given month.

APPENDIX C GENERIC V IEW REFERENCE 405

Example
Continuing with our example, adding month views should look familiar:

Required Arguments

: The four-digit year for which the archive serves (a string).

: The month for which the archive serves, formatted according to the
 argument.

: A of objects for which the archive serves.

: The name of the or in the ’s model that
the date-based archive should use to determine the objects on the page.

Optional Arguments

: A format string that regulates what format the parameter uses.
This should be in the syntax accepted by Python’s . (See Python’s

 documentation at
.) It’s set to by default, which is a three-letter month abbreviation

(i.e., “jan,” “feb,” etc.). To change it to use numbers, use .

: A Boolean specifying whether to include “future” objects on this page, as
described in the previous note.

This view may also take these common arguments (refer to Table C-1):

APPENDIX C GENERIC V IEW REFERENCE406

Template Name
If isn’t specified, this view will use the template

 by default.

Template Context
In addition to , the template’s context will be as follows:

: A object representing the given month.

: A object representing the first day of the next month. If the
next month is in the future, this will be .

: A object representing the first day of the previous
month. Unlike , this will never be .

: A list of objects available for the given month. This variable’s name
depends on the parameter, which is by default. If

 is , this variable’s name will be .

Week Archives
View function:

This view shows all objects in a given week.

Note
day of the week is Sunday.

Example

APPENDIX C GENERIC V IEW REFERENCE 407

Required Arguments

: The four-digit year for which the archive serves (a string).

: The week of the year for which the archive serves (a string).

: A of objects for which the archive serves.

: The name of the or in the ’s model that
the date-based archive should use to determine the objects on the page.

Optional Arguments

: A Boolean specifying whether to include “future” objects on this page, as
described in the previous note.

This view may also take these common arguments (refer to Table C-1):

Template Name
If isn’t specified, this view will use the template

 by default.

Template Context
In addition to , the template’s context will be as follows:

: A object representing the first day of the given week.

: A list of objects available for the given week. This variable’s name
depends on the parameter, which is by default.
If is , this variable’s name will be .

APPENDIX C GENERIC V IEW REFERENCE408

Day Archives
View function:

This view generates all objects in a given day.

Example

Required Arguments

: The four-digit year for which the archive serves (a string).

: The month for which the archive serves, formatted according to the
 argument.

: The day for which the archive serves, formatted according to the
argument.

: A of objects for which the archive serves.

: The name of the or in the ’s model that
the date-based archive should use to determine the objects on the page.

Optional Arguments

: A format string that regulates what format the parameter uses.
See the detailed explanation in the preceding “Month Archives” section.

: Like , but for the parameter. It defaults to (the day of
the month as a decimal number, 01-31).

: A Boolean specifying whether to include “future” objects on this page, as
described in the previous note.

This view may also take these common arguments (refer to Table C-1):

APPENDIX C GENERIC V IEW REFERENCE 409

Template Name
If isn’t specified, this view will use the template

 by default.

Template Context
In addition to , the template’s context will be as follows:

: A object representing the given day.

: A object representing the next day. If the next day is in the
future, this will be .

: A object representing the previous day. Unlike ,
this will never be .

: A list of objects available for the given day. This variable’s name depends
on the parameter, which is by default. If

 is , this variable’s name will be .

Archive for Today
The view shows all objects for today. This
is exactly the same as , except the / / arguments are not used, and
today’s date is used instead.

Example

Date-Based Detail Pages
View function:

Use this view for a page representing an individual object.
This has a different URL from the view; the view uses URLs

such as , whereas this one uses URLs such as .

APPENDIX C GENERIC V IEW REFERENCE410

Note
the
See Appendix A for details on .

Example
This one differs (slightly) from all the other date-based examples in that we need to provide
either an object ID or a slug so that Django can look up the object in question.

Since the object we’re using doesn’t have a slug field, we’ll use ID-based URLs. It’s consid-
ered a best practice to use a slug field, but in the interest of simplicity we’ll let it go.

Required Arguments

: The object’s four-digit year (a string).

: The object’s month, formatted according to the argument.

: The object’s day, formatted according to the argument.

: A that contains the object.

: The name of the or in the ’s model that
the generic view should use to look up the object according to , , and .

You’ll also need either:

: The value of the primary-key field for the object.

or:

: The slug of the given object. If you pass this field, then the argument
(described in the following section) is also required.

APPENDIX C GENERIC V IEW REFERENCE 411

Optional Arguments

: A Boolean specifying whether to include “future” objects on this page,
as described in the previous note.

: Like , but for the parameter. It defaults to (the day of
the month as a decimal number, 01-31).

: A format string that regulates what format the parameter uses.
See the detailed explanation in the “Month Archives” section.

: The name of the field on the object containing the slug. This is required if
you are using the argument, but it must be absent if you’re using the
argument.

: The name of a field on the object whose value is the template
name to use. This lets you store template names in the data. In other words, if your
object has a field that contains a string , and you set

 to , the generic view for this object will use
the template .

This view may also take these common arguments (refer to Table C-1):

Template Name
If and aren’t specified, this view will use the template

 by default.

Template Context
In addition to , the template’s context will be as follows:

: The object. This variable’s name depends on the param-
eter, which is by default. If is , this variable’s
name will be .

A P P E N D I X D

Settings

Your Django settings file contains all the configuration of your Django installation. This
appendix explains how settings work and which settings are available.

The Basics of Settings Files
A settings file is just a Python module with module-level variables.

Here are a couple of example settings:

Because a settings file is a Python module, the following apply to it:

 from other settings files.

Default Settings
A Django settings
has a sensible default value. These defaults live in the file .

Here are the steps Django uses in compiling settings:

 1. Load settings from .

 2. Load settings from the specified settings file, overriding the global settings as
necessary.

Note that a settings file should not import from , because
redundant.

413

APPENDIX D SETTINGS414

Seeing Which Settings You’ve Changed
 way to view which of your settings deviate from the default settings. The

command displays differences between the current settings file and

 is described in more detail in Appendix F.

Using Settings in Python Code
 applications, use settings by importing the object , as in

this example:

Note that -
tings is not possible:

Also note that your code should not import from either or your own set-
tings file. abstracts the concepts of default settings and site-specific

 from the
location of your settings.

Altering Settings at Runtime

a view:

The only place that settings should be defined in is a settings file.

Security
Because a settings file contains sensitive information, such as the database password, you
should make every attempt to limit access to it. For example, change its file permissions so

 important in a shared-
hosting environment.

APPENDIX D SETTINGS 415

Creating Your Own Settings
 you from creating your own settings for your own Django applica-

tions. Just follow these conventions:

-

 an existing setting.

Designating the Settings: DJANGO_SETTINGS_
MODULE
When you use Django, you have -
ronment variable .

The value of should be in Python path syntax (e.g.,
). Note that the settings module should be on the Python import search path

().

Tip A good guide to can be found at
.

The django-admin.py Utility
When using (see Appendix F), you can either set the environment variable
once or explicitly pass in the settings module each time you run the utility.

 command-line argument to specify the settings manually:

The utility created by as part of the project skeleton sets
 for more about .

APPENDIX D SETTINGS416

On the Server (mod_python)

use. Do that with :

For more information, read documentation online at
.

Using Settings Without Setting DJANGO_
SETTINGS_MODULE

 might want to bypass the environment variable.

up an environment variable pointing to a settings module.

Pass

and is needed at some later point, Django will use the default setting value.

Configuring Django in this fashion is necessary mostly—and, indeed, recommended—

configured via , Django will not make any modifications to the process
 later in this appendix to find out why

-
ment in these cases.

APPENDIX D SETTINGS 417

Custom Default Settings
 default values to come from somewhere other than ,

you can pass in a module or class that provides the default settings as the
argument (or as the first positional argument) in the call to .

, and the setting is
set to , regardless of its value in :

The following example, which uses

Normally, you will not need to override the defaults in this fashion. The Django defaults
are sufficiently tame that you can safely use them. Be aware that if you do pass in a new default
module, it entirely replaces the Django defaults, so you must specify a value for every pos-
sible setting that might be used in that code you are importing. Check

 for the full list.

Either configure() or DJANGO_SETTINGS_MODULE Is Required
 setting the environment variable, you must call
 at some point before using any code that reads settings.

, Django will raise an

, access settings values, and then call , Django will raise an
stating that settings have already been configured.

 more than once or to call after any set-
ting has been accessed.

 either or , and
use it only once.

Available Settings
The following sections consist of a list of the main available settings, in alphabetical order, and
their default values.

ABSOLUTE_URL_OVERRIDES
Default: (empty dictionary)

This is a dictionary mapping strings to functions that take a
 methods on a

APPENDIX D SETTINGS418

Note that the model name used in this setting should be all lowercase, regardless of the
case of the actual model class name.

ADMIN_MEDIA_PREFIX
Default:

This setting is
use a trailing slash.

ADMINS
Default: (empty tuple)

This is a tuple that lists people who get code-error notifications. When and a
view raises an exception, Django will e-mail these people with the full exception information.

Note that Django will e-mail all of these people whenever an error happens.

ALLOWED_INCLUDE_ROOTS
Default: (empty tuple)

This is a tuple of strings representing allowed prefixes for the template tag.

accessing.
For example, if is , then

 would work, but

APPEND_SLASH
Default:

This setting indicates
 also .

CACHE_BACKEND
Default:

This is the cache back-end to use (see Chapter 15).

CACHE_MIDDLEWARE_KEY_PREFIX
Default: (empty string)

This is the cache key prefix that the cache middleware should use (see Chapter 15).

DATABASE_ENGINE
Default: (empty string)

This setting indicates which database back-end to use, (e.g., or
).

APPENDIX D SETTINGS 419

DATABASE_HOST
Default: (empty string)

This setting indicates which host to use when connecting to the database. An empty string
means

doesn’t start with a forward slash, then this value is
assumed to be the host.

DATABASE_NAME
Default: (empty string)

This is the name to the database file.

DATABASE_OPTIONS
Default: (empty dictionary)

This specifies extra parameters to use when connecting to the database. Consult the back-
 for available keywords.

DATABASE_PASSWORD
Default: (empty string)

This setting is is not used with

DATABASE_PORT
Default: (empty string)

This is the port to use when connecting to the database. An empty string means the

DATABASE_USER
Default: (empty string)

This setting is is not used with

DATE_FORMAT
Default: (e.g.,)

This is the default formatting to use for date fields on Django admin change-list pages—
 as the tag (see

, , , and .

APPENDIX D SETTINGS420

DATETIME_FORMAT
Default: (e.g.,)

This is the default formatting to use for datetime fields on Django admin change-list
 tag

(see Appendix
, , , and .

DEBUG
Default:

This setting is a Boolean that turns debug mode on and off.
 has a regular

expression that will hide from the view anything that contains , , or
. This allows untrusted users to be able to provide backtraces without seeing

sensitive (or offensive) settings.
-

propriate for public consumption. File paths, configuration options, and the like all give
attackers extra information about your server. Never deploy a site with turned on.

DEFAULT_CHARSET
Default:

This is the default charset to use for all -
 to construct the header.

 about objects.

DEFAULT_CONTENT_TYPE
Default:

This is the default content type to use for all
 to construct the header.

 about objects.

DEFAULT_FROM_EMAIL
Default:

This is the default e-mail address to use for various automated correspondence from the
site manager(s).

DISALLOWED_USER_AGENTS
Default: (empty tuple)

This is a list of compiled regular-expression objects representing user-agent strings that

only if is installed (see Chapter 17).

APPENDIX D SETTINGS 421

EMAIL_HOST
Default:

This is the also .

EMAIL_HOST_PASSWORD
Default: (empty string)

This is the . This setting is used
in conjunction with

 also .

EMAIL_HOST_USER
Default: (empty string)

This is the
.

EMAIL_PORT
Default:

This is the defined in .

EMAIL_SUBJECT_PREFIX
Default:

This is the subject-line prefix for e-mail messages sent with
or include a trailing space.

FIXTURE_DIRS
Default: (empty tuple)

This is a list of locations of the fixture data files, in search order. Note that these paths
-

work, which is covered online at .

IGNORABLE_404_ENDS
Default:

This is a tuple

 also and .

APPENDIX D SETTINGS422

IGNORABLE_404_STARTS
Default:

This is just like
 also and .

INSTALLED_APPS
Default: (empty tuple)

A tuple of strings designating all applications that are enabled in this Django installation.
-

 more about applications.

LANGUAGE_CODE
Default:

This is a string representing the language code for this installation. This should be in stan-
 is

LANGUAGES
Default: A tuple of all available languages. This list is continually growing and any copy
included here would inevitably become rapidly out of date. You can see the current list of
translated languages by looking in .

The list is a tuple of two-tuples in the format (language code, language name)—for exam-
ple, . This specifies which languages are available for language selection.

-
guage selection to a subset of the Django-provided languages.

strings, but you should never import from within your settings file,
because that module itself depends on the settings, and that would cause a circular import.

The solution is to use a “dummy” function

With this arrangement, will still find and mark these strings for transla-

languages in the real in any code that uses at runtime.

APPENDIX D SETTINGS 423

MANAGERS
Default: (empty tuple)

This tuple is in the same format as -
tions when .

MEDIA_ROOT
Default: (empty string)

This is an absolute path to the directory that holds media for this installation (e.g.,
 also .

MEDIA_URL
Default: (empty string)

 the media served from (e.g.,).
Note that this should have a trailing slash if it has a path component:

Correct:

Incorrect:

 and serving media.

MIDDLEWARE_CLASSES
Default:

This is a tuple of middleware classes to

MONTH_DAY_FORMAT
Default:

This is the default formatting to use for date fields on Django admin change-list pages—
and, possibly, by other parts of the system—in cases when only the month and day are

For example, when a Django admin change-list page is being filtered by a date, the header
for a given day displays the day and month. Different locales have different formats. For exam-

 also , , , and .

APPENDIX D SETTINGS424

PREPEND_WWW
Default:

This setting indicates
it. This is used only if is installed (see .

ROOT_URLCONF
Default: Not defined

This is a string
 Chapter 3.

SECRET_KEY
Default when you start a project

 creates one automatically, and most of the time you
need to change it.

SEND_BROKEN_LINK_EMAILS
Default:

This setting indicates whether to send an e-mail to the each time somebody vis-

used only if is installed (see and
.

SERIALIZATION_MODULES
Default: Not defined

-
tion at for more information.

SERVER_EMAIL
Default:

This is the e-mail address that error messages come from, such as those sent to and
.

SESSION_COOKIE_AGE
Default: (two weeks, in seconds)

This is the age of session cookies, in

APPENDIX D SETTINGS 425

SESSION_COOKIE_DOMAIN
Default:

This is the
for cross-domain cookies, or use for a standard domain

SESSION_COOKIE_NAME
Default:

This is the

SESSION_COOKIE_SECURE
Default:

This setting indicates
, the cookie will be marked as “secure,” which means browsers may ensure that the cookie

SESSION_EXPIRE_AT_BROWSER_CLOSE
Default:

This setting indicates whether to expire the session when the user closes his browser.

SESSION_SAVE_EVERY_REQUEST
Default:

This setting indicates whether to save the session data on every

SITE_ID
Default: Not defined

 an integer, of the current site in the
so that application data can hook into specific site(s) and a single database can manage con-
tent for multiple

TEMPLATE_CONTEXT_PROCESSORS
Default:

This is a tuple of callables that are used to populate the context in . These

into the

APPENDIX D SETTINGS426

TEMPLATE_DEBUG
Default:

This Boolean turns , the fancy error page will
display a detailed report for any . This report contains the relevant snip-
pet of the template, with the appropriate line highlighted.

Note that Django displays fancy error pages only if is
to take advantage of this setting.

.

TEMPLATE_DIRS
Default: (empty tuple)

This is a list of locations of the template source files, in search order. Note that these paths

TEMPLATE_LOADERS
Default:

This is a tuple of callables (as strings) that know how to import templates from various

TEMPLATE_STRING_IF_INVALID
Default:

This is output, as a string, that the template system should use for invalid (e.g., misspelled)

TEST_DATABASE_NAME
Default:

This is the name is
specified, the test database will use the name

 is covered online at
.

TEST_RUNNER
Default:

This is the -
ing framework, which is covered online at

.

APPENDIX D SETTINGS 427

TIME_FORMAT
Default: (e.g.,)

This is the default formatting to use for time fields on Django admin change-list pages—
 tag (see

 also , , , , and
.

TIME_ZONE
Default:

This is a string

.

Normally, Django sets the variable
 setting. Thus, all your views and models will automatically operate in the correct

not
touch the environment variable, and it will be up to you to ensure your processes are run-
ning in the correct environment.

Note Django cannot reliably use alternate time zones in a Windows environment. If you’re running Django
on Windows, this variable must be set to match the system time zone.

URL_VALIDATOR_USER_AGENT
Default:

This is the string to use as the
the option on to Appendix A).

USE_ETAGS
Default:

This Boolean specifies
down performance. This is used only if is installed (see Chapter 17).

APPENDIX D SETTINGS428

USE_I18N
Default:

This Boolean specifies

-
 machinery.

YEAR_MONTH_FORMAT
Default:

This is the default formatting to use for date fields on Django admin change-list pages—
and, possibly, by other parts of the system—in cases when only the year and month are

For example, when a Django admin change-list page is being filtered by a date drill-down,
the header for a given month displays the month and the year. Different locales have different

 would use “January use

, , , and .

A P P E N D I X E

Built-in Template Tags
and Filters

Chapter 4 lists a number of the most useful built-in template tags and filters. However,
Django ships with many more built-in tags and filters. This appendix covers them.

Built-in Tag Reference

autoescape
Controls the current autoescaping behavior. This tag takes either or as an argument,
which determines whether autoescaping is in effect inside the block.

When autoescaping is in effect, all variable content has HTML escaping applied to it
before placing the result into the output (but after any filters have been applied). This is equiv-
alent to manually applying the filter to each variable.

The only exceptions are variables that are already marked as “safe” from escaping, either
by the code that populated the variable or because it has had the or filters applied.

block
Defines a block that can be overridden by child templates. See Chapter 4 for more information
on template inheritance.

comment
Ignores everything between and .

429

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 430

cycle
Cycles among the given strings or variables each time this tag is encountered.

Within a loop, cycles among the given strings each time through the loop:

You can use variables, too. For example, if you have two template variables, and
, you can cycle between their values like this:

Yes, you can mix variables and strings:

In some cases, you might want to refer to the next value of a cycle from outside of a loop.
To do this, just give the tag a name, using like this:

From then on, you can insert the current value of the cycle wherever you’d like in your
template:

You can use any number of values in a tag, separated by spaces. Values
enclosed in single quotes () or double quotes () are treated as string literals, whereas values
without quotes are treated as template variables.

For backward-compatibility, the tag supports the much inferior old syntax
from previous Django versions. You shouldn’t use this in any new projects, but for the sake of
the people who are still using it, here’s what it looks like:

In this syntax, each value gets interpreted as a literal string, and there’s no way to specify
variable values. Or literal commas. Or spaces. Did we mention you shouldn’t use this syntax in
any new projects?

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 431

debug
Outputs a whole load of debugging information, including the current context and imported
modules.

extends
Signals that this template extends a parent template.

This tag can be used in two ways:

 (with quotes) uses the literal value as the
name of the parent template to extend.

 uses the value of . If the variable evaluates to a string,
Django will use that string as the name of the parent template. If the variable evaluates
to a object, Django will use that object as the parent template.

See Chapter 4 for more information on template inheritance.

filter
Filters the contents of the variable through variable filters.

Filters can also be piped through each other, and they can have arguments just as in vari-
able syntax.

For example:

firstof
Outputs the first variable passed that is not . Outputs nothing if all the passed variables
are .

For example:

This is equivalent to the following:

You can also use a literal string as a fallback value in case all passed variables are :

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 432

for
Loops over each item in an array. For example, to display a list of athletes provided in

:

You can loop over a list in reverse by using .
If you need to loop over a list of lists, you can unpack the values in each sublist into indi-

vidual variables. For example, if your context contains a list of (x,y) coordinates called ,
you could use the following to output the list of points:

This can also be useful if you need to access the items in a dictionary. For example, if your
context contained a dictionary , the following would display the keys and values of the
dictionary:

The loop sets a number of variables available within the loop (see Table E-1).

Table E-1. Variables Available Inside {% for %} Loops

Variable Description

The current iteration of the loop (1-indexed)

The current iteration of the loop (0-indexed)

The number of iterations from the end of the loop (1-indexed)

The number of iterations from the end of the loop (0-indexed)

 if this is the first time through the loop

 if this is the last time through the loop

For nested loops, this is the loop “above” the current one

The tag can take an optional clause that will be displayed if the given
array is empty or could not be found:

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 433

The preceding is equivalent to but shorter, cleaner, and possibly faster than the following:

if
The tag evaluates a variable, and if that variable is (i.e., exists, is not empty, and
is not a false Boolean value), the contents of the block are output:

In the preceding code, if is not empty, the number of athletes will be dis-
played by the variable.

As you can see, the tag can take an optional clause that will be displayed if
the test fails.

 tags may use , , or to test a number of variables or to negate a given variable:

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 434

 tags don’t allow and clauses within the same tag because the order of logic would
be ambiguous. For example, this is invalid:

If you need to combine and to do advanced logic, just use nested tags. For example:

Multiple uses of the same logical operator are fine, as long as you use the same operator.
For example, this is valid:

ifchanged
Checks to see whether a value has changed from the last iteration of a loop.

The tag is used within a loop. It has two possible uses:

content if it has changed. For example, this displays a list of days, only displaying the
month if it changes:

shows the date every time it changes, but only shows the hour if both the hour and the
date have changed:

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 435

The tag can also take an optional clause that will be displayed if the
value has not changed:

ifequal
Outputs the contents of the block if the two arguments equal each other.

For example:

As in the tag, an clause is optional.
The arguments can be hard-coded strings, so the following is valid:

It is possible to compare an argument only to template variables or strings. You cannot
check for equality with Python objects such as or . If you need to test whether some-
thing is or , use the tag instead.

ifnotequal
Just like , except that it tests that the two arguments are not equal.

include
Loads a template and renders it with the current context. This is a way of “including” other
templates within a template.

The template name can either be a variable or a hard-coded (quoted) string in either
single or double quotes.

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 436

This example includes the contents of the template :

This example includes the contents of the template whose name is contained in the vari-
able :

An included template is rendered with the context of the template that includes it. This
example produces the output :

 is set to .

 template:

See also: .

load
Loads a custom template tag set. See Chapter 9 for more information on custom template
libraries.

now
Displays the date, formatted according to the given string.

Uses the same format as PHP’s function () with some custom
extensions.

Table E-2 shows the available format strings.

Table E-2. Available Date Format Strings

Format Character Description Example Output

a or (Note that this is slightly differ-
ent from PHP’s output because it includes periods
to match Associated Press style.)

A or .

b Month, textual, three letters, lowercase.

B Not implemented.

d Day of the month, two digits with leading zeros. to

D Day of the week, textual, three letters.

f Time, in 12-hour hours and minutes, with minutes
left off if they’re zero. Proprietary extension.

,

F Month, textual, long.

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 437

Format Character Description Example Output

g Hour, 12-hour format without leading zeros. to

G Hour, 24-hour format without leading zeros. to

h Hour, 12-hour format. to

H Hour, 24-hour format. to

i Minutes. to

I Not implemented.

j Day of the month without leading zeros. to

l Day of the week, textual, long.

L Boolean for whether it’s a leap year. or

m Month, two digits with leading zeros. to

M Month, textual, three letters.

n Month without leading zeros. to

N Month abbreviation in Associated Press style.
Proprietary extension.

, ,
,

O Difference to Greenwich time in hours.

P Time, in 12-hour hours and minutes, and
‘a.m.’/’p.m.’, with minutes left off if they’re zero
and the special-case strings and

 if appropriate. Proprietary extension.

, ,
, ,

r RFC 2822 formatted date.

s Seconds, two digits with leading zeros. to

S English ordinal suffix for day of the month, two
characters.

, , , or

t Number of days in the given month. to

T Time zone of this machine. ,

U Not implemented.

w Day of the week, digits without leading zeros. (Sunday) to
(Saturday)

W ISO-8601 week number of year, with weeks starting
on Monday.

,

y Year, two digits.

Y Year, four digits.

z Day of the year. to

Z Time zone offset in seconds. The offset for time
zones west of UTC is always negative, and for those
east of UTC is always positive.

 to

For example:

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 438

Note that you can backslash-escape a format string if you want to use the “raw” value. In
this example, “f” is backslash-escaped because otherwise “f” is a format string that displays the
time. The “o” doesn’t need to be escaped, because it’s not a format character:

This would display as “It is the 4th of September.”

regroup
Regroups a list of like objects by a common attribute.

This complex tag is best illustrated by use of an example: say that is a list of people
represented by dictionaries with , , and keys:

And you want to display a hierarchical list that is ordered by gender, like this:

Male:

Female:

Unknown:

You can use the tag to group the list of people by gender. The following
snippet of template code would accomplish it:

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 439

Let’s walk through this example. takes three arguments: the list you want
to regroup, the attribute to group by, and the name of the resulting list. Here, we’re regrouping
the list by the attribute and calling the result .

 produces a list (in this case,) of group objects. Each group
object has two attributes:

: The item that was grouped by (e.g., the string or)

: A list of all items in this group (e.g., a list of all people with)

Note that does not order its input! Our example relies on the fact that the
 list was ordered by in the first place. If the list did not order its members

by , the regrouping would naively display more than one group for a single gender. For
example, say the list was set to this (note that the males are not grouped together):

With this input for , the previous example template code would
result in the following output:

Male:

Unknown:

Female:

Male:

Female:

The easiest solution to this gotcha is to make sure in your view code that the data is
ordered according to how you want to display it.

Another solution is to sort the data in the template using the filter if your data is
in a list of dictionaries:

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 440

spaceless
Removes whitespace between HTML tags (this includes tab characters and newlines).

For example:

This example would return this HTML:

Only space between tags is removed; not space between tags and text. In this example, the
space around won’t be stripped:

ssi
Outputs the contents of a given file into the page.

Like a simple tag, includes the contents of another file that must be
specified using an absolute path in the current page:

If the optional “parsed” parameter is given, the contents of the included file are evaluated
as template code within the current context:

Note that if you use , you’ll need to define in your
Django settings as a security measure.

See also .

templatetag
Outputs one of the syntax characters used to compose template tags.

Because the template system has no concept of “escaping,” to display one of the bits used
in template tags, you must use the tag.

See Table E-3 for the available arguments.

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 441

Table E-3. Available Arguments for templatetag Filter

Argument Output

url
Returns an absolute URL (i.e., a URL without the domain name) matching a given view func-
tion and optional parameters. This is a way to output links without violating the DRY principle
by having to hard-code URLs in your templates:

The first argument is a path to a view function in the format
. Additional arguments are optional and should be comma-separated values that will

be used as positional and keyword arguments in the URL. All arguments required by the URL-
conf should be present.

For example, suppose that you have a view, , whose URLconf takes a cli-
ent ID (here, is a method inside the views file). The URLconf line might
look like this:

If this app’s URLconf is included into the project’s URLconf under a path such as this:

you can create a link to this view like this in a template:

The template tag will output the string .

widthratio
For creating bar charts and such, this tag calculates the ratio of a given value to a maximum
value, and then applies that ratio to a constant.

For example:

If is and is , the image in the preceding example will be 88
pixels wide (because 175 / 200 = .875, .875 * 100 = 87.5, which is rounded up to 88).

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 442

with
Caches a complex variable under a simpler name. This is useful when accessing an “expensive”
method (e.g., one that hits the database multiple times).

For example:

The populated variable (in the example above,) is only available between the
 and tags.

Built-in Filter Reference

add
Adds the argument to the value.

For example:

If is , the output will be .

addslashes
Adds slashes before quotes. Useful for escaping strings in CSV, for example.

capfirst
Capitalizes the first character of the value.

center
Centers the value in a field of a given width.

cut
Removes all values of from the given string. For example:

If is , the output will be .

date
Formats a date according to the given format (same as the tag). For example:

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 443

If is a object (e.g., the result of), the output will
be the string .

When used without a format string, as follows, the formatting string defined in the
 setting will be used:

default
If value evaluates to , use given default. Otherwise, use the value.

For example:

If is (the empty string), the output will be .

default_if_none
If (and only if) is , use the given default. Otherwise, use the value.

Note that if an empty string is given, the default value will not be used. Use the
filter if you want to fallback for empty strings.

For example:

If is , the output will be the string .

dictsort
Takes a list of dictionaries and returns that list sorted by the key given in the argument.

For example:

If is:

then the output would be:

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 444

dictsortreversed
Takes a list of dictionaries and returns that list sorted in reverse order by the key given in the
argument. This works exactly the same as the previous filter, but the returned value will be in
reverse order.

divisibleby
Returns if the value is divisible by the argument.

For example:

If is , the output would be .

escape
Escapes a string’s HTML. Specifically, it makes these replacements:

 is converted to

 is converted to

 (single quote) is converted to

 (double quote) is converted to

 is converted to

The escaping is applied only when the string is output, so it does not matter where in a
chained sequence of filters you put : it will always be applied as if it were the last filter.
If you want escaping to be applied immediately, use the filter.

Applying to a variable that would normally have autoescaping applied to the result
will result in only one round of escaping being done. So it is safe to use this function even
in autoescaping environments. If you want multiple escaping passes to be applied, use the

 filter.

escapejs
Escapes characters for use in JavaScript strings. This does not make the string safe for use in
HTML, but does protect you from syntax errors when using templates to generate JavaScript/
JSON.

filesizeformat
Formats the value like a ‘human-readable’ file size (i.e., , , , etc).

For example:

If is 123456789, the output would be .

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 445

first
Returns the first item in a list.

For example:

If is the list , the output will be .

fix_ampersands
Replaces ampersands with entities.

For example:

If is , the output will be .

floatformat
When used without an argument, rounds a floating-point number to one decimal place (but
only if there’s a decimal part to be displayed). See Table E-4.

Table E-4. Example Output of floatformat Tag

 Template Output

If used with a numeric integer argument, rounds a number to that many
decimal places. See Table E-5.

Table E-5. More Example Output of floatformat Tag

 Template Output

If the argument passed to is negative, it will round a number to that many
decimal places, but only if there’s a decimal part to be displayed. See Table E-6.

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 446

Table E-6. Even More Example Output of floatformat Tag

 Template Output

Using with no argument is equivalent to using with an argument
of .

force_escape
Applies HTML escaping to a string (see the filter for details). This filter is applied
immediately and returns a new escaped string. This is useful in the rare cases where you need
multiple escaping or want to apply other filters to the escaped results. Normally, you want to
use the filter.

get_digit
Given a whole number, returns the requested digit, where 1 is the rightmost digit, 2 is the
second digit, and so on. Returns the original value for invalid input (if the input or argument is
not an integer or if the argument is less than 1). Otherwise, output is always an integer.

For example:

If is , the output will be .

iriencode
Converts an Internationalized Resource Identifier (IRI) to a string that is suitable for including
in a URL. This is necessary if you’re trying to use strings containing non-ASCII characters in a
URL.

It’s safe to use this filter on a string that has already gone through the filter.

join
Joins a list with a string such as Python’s .

For example:

If is the list , the output will be the string .

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 447

last
Returns the last item in a list.

For example:

If is the list , the output will be the string .

length
Returns the length of the value (this works for both strings and lists).

For example:

If is , the output will be .

length_is
Returns if the value’s length is the argument, or otherwise.

For example:

If is , the output will be .

linebreaks
Replaces line breaks in plain text with appropriate HTML; a single newline becomes an HTML
line break () and a new line followed by a blank line becomes a paragraph break ().

For example:

If is , the output will be .

linebreaksbr
Converts all newlines in a piece of plain text to HTML line breaks ().

linenumbers
Displays text with line numbers.

ljust
Left-aligns the value in a field of a given width.

Argument: field size

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 448

lower
Converts a string into all lowercase.

For example:

If is , the output will be .

make_list
Returns the value turned into a list. For an integer, it’s a list of digits. For a string, it’s a list of
characters.

For example:

If is the string , the output would be the list . If
 is , the output will be the list .

phone2numeric
Converts a phone number (possibly containing letters) to its numerical equivalent. For exam-
ple, will be converted to .

The input doesn’t have to be a valid phone number. This will happily convert any string.

pluralize
Returns a plural suffix if the value is not . By default, this suffix is .

For example:

For words that require a suffix other than , you can provide an alternate suffix as a
parameter to the filter.

For example:

For words that don’t pluralize by simple suffix, you can specify both a singular and plural
suffix, separated by a comma.

For example:

pprint
A wrapper around the Python standard library’s function for debugging, really.

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 449

random
Returns a random item from the given list.

For example:

If is the list , the output could be .

removetags
Removes a space-separated list of [X]HTML tags from the output.

For example:

If is the output will be
.

rjust
Right-aligns the value in a field of a given width.

Argument: field size

safe
Marks a string as not requiring further HTML escaping prior to output. When autoescaping is
off, this filter has no effect.

safeseq
Applies the filter to each element of a sequence. Useful in conjunction with other filters
that operate on sequences, such as . For example:

You couldn’t use the filter directly in this case because it would first convert the vari-
able into a string instead of working with the individual elements of the sequence.

slice
Returns a slice of the list.

Uses the same syntax as Python’s list slicing. See
 for an introduction.

For example:

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 450

slugify
Converts to lowercase, removes nonword characters (only alphanumerics and underscores are
kept), and converts spaces to hyphens. Also strips leading and trailing whitespace.

For example:

If is , the output will be .

stringformat
Formats the variable according to the argument, a string-formatting specifier. This specifier
uses Python string-formatting syntax, with the exception that the leading is dropped.

See for
documentation of Python string formatting.

For example:

If is , the output will be .

striptags
Strips all [X]HTML tags.

For example:

If is , the output will be
.

time
Formats a time according to the given format (same as the tag). The filter will accept
parameters in the format string that relate to the time of day, not the date (for obvious rea-
sons). If you need to format a date, use the filter.

For example:

If is equivalent to , the output will be the string .
When used without a format string, the format string defined in the setting

will be used:

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 451

timesince
Formats a date as the time since that date (e.g., “4 days, 6 hours”).

Takes an optional argument that is a variable containing the date to use as the compari-
son point (without the argument, the comparison point is now). For example, if is
a date instance representing midnight on 1 June 2006, and is a date instance for
08:00 on 1 June 2006, then would return “ ”.

Comparing offset-naive and offset-aware datetimes will return an empty string.
Minutes is the smallest unit used, and will be returned for any date that is in

the future relative to the comparison point.

timeuntil
Similar to , except that it measures the time from now until the given date or date-
time. For example, if today is 1 June 2006, and is a date instance holding 29
June 2006, then will return .

Takes an optional argument that is a variable containing the date to use as the
comparison point (instead of now). If contains 22 June 2006, then

 will return .
Comparing offset-naive and offset-aware datetimes will return an empty string.
Minutes is the smallest unit used, and will be returned for any date that is in

the past relative to the comparison point.

title
Converts a string into titlecase.

truncatewords
Truncates a string after a certain number of words.

Argument: Number of words to truncate after.
For example:

If is , the output will be .

truncatewords_html
Similar to , except that it is aware of HTML tags. Any tags that are opened in the
string and not closed before the truncation point are closed immediately after the truncation.

This is less efficient than , so should be used only when it is being passed
HTML text.

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 452

unordered_list
Recursively takes a self-nested list and returns an HTML unordered list without opening and
closing tags.

The list is assumed to be in the proper format. For example, if contains
, then would

return the following:

upper
Converts a string into all uppercase.

For example:

If is , the output will be .

urlencode
Escapes a value for use in a URL.

urlize
Converts URLs in plain text into clickable links.

Note that if is applied to text that already contains HTML markup, things won’t
work as expected. Apply this filter only to plain text.

For example:

If is , the output will be
.

APPENDIX E BUILT- IN TEMPLATE TAGS AND F ILTERS 453

urlizetrunc
Converts URLs into clickable links, truncating URLs longer than the given character limit.

As with , this filter should be applied only to plain text.
Argument: Length to truncate URLs to.
For example:

If is , the output would be
.

wordcount
Returns the number of words.

wordwrap
Wraps words at a specified line length.

Argument: number of characters at which to wrap the text.
For example:

If is , the output would be the following:

yesno
Given a string mapping values for , , and (optionally) returns one of those
strings according to the value (see Table E-7).

Table E-7. Examples of the yesno Filter

Value Argument Output

 (converts to if no mapping for is given)

A P P E N D I X F

The django-admin Utility

 is Django’s command-line utility for administrative tasks. This appendix
explains its many powers.

Usually you’ll access through a project’s wrapper.
is created automatically in each Django project and is a thin wrapper around .
It takes care of two things for you before delegating to :

.

 environment variable so that it points to your
project’s file.

The script should be on your system path if you installed Django via its
 utility. If it’s not on your path, you can find it in within

your Python installation. Consider symlinking it from some place on your path, such as
.

Windows users, who do not have symlinking functionality available, can copy
 to a location on their existing path or edit the settings (under Settings Control Panel
 System Advanced Environment) to point to its installed location.

Generally, when working on a single Django project it’s easier to use . If you
need to switch between multiple Django settings files, use with

 or use the command-line option.
The command-line examples throughout this appendix use to be consis-

tent, but any example can use just as well.

Usage
Here’s how to use :

455

APPENDIX F THE DJANGO-ADMIN UTIL ITY456

 should be one of the subcommands listed in the “Available Subcommands”
section of this appendix. , which is optional, should be zero or more of the options
available for the given subcommand.

Getting Runtime Help
Run to display a list of all available subcommands. Run

 to display a description of the given subcommand and a list of its available
options.

App Names
Many subcommands take a list of app names. An app name is the base name of the package
containing your models. For example, if your contains the string ,
the app name is .

Determining the Version
Run to display the current Django version.

Here are some examples of output:

Displaying Debug Output
Use to specify the amount of notification and debug information that

 should print to the console.

Available Subcommands

cleanup
This can be run as a cron job, or directly to clean out old data from the database (only expired
sessions currently).

compilemessages
The subcommand compiles files created with to files for
use with the built-in support. See Chapter 19.

APPENDIX F THE DJANGO-ADMIN UTIL ITY 457

--locale
Use the or option to specify the locale to process. If this option is not provided, all
locales are processed.

Here is a usage example:

createcachetable
This subcommand creates a cache table with a given name for use with the database-cache
back-end. See Chapter 15.

Example usage:

createsuperuser
This creates a superuser account (a user who has all permissions). This is useful if you need to
create an initial superuser account but did not do so during , or if you need to generate
superuser accounts programmatically for your site(s).

When run interactively, this command will prompt for a password for the new superuser
account. When run non-interactively, no password will be set, and the superuser account will
not be able to log in until a password has been set for it manually.

The username and e-mail address for the new account can be supplied by using the
 and arguments on the command line. If either of these is not supplied,

 will prompt for it when running interactively.
This command is available only if Django’s authentication system ()

is in . See Chapter 14.

dbshell
 runs the command-line client for the database engine specified in your

 setting, with the connection parameters specified in your ,
, and other such settings:

 command-line client.

 command-line client.

 command-line client.

This command assumes the programs are on your so that a simple call to the pro-
gram name (, ,) will find the program in the right place. There’s no way to
specify the location of the program manually.

APPENDIX F THE DJANGO-ADMIN UTIL ITY458

diffsettings
Use this to display differences between the current settings file and Django’s default settings.
Settings that don’t appear in the defaults are followed by . For example, the default
settings don’t define , so is followed by in the output of

.
Note that Django’s default settings live in , in case you’re

ever curious to see the full list of defaults.

dumpdata
This outputs to standard output all data in the database associated with the named application(s).
If no application name is provided, all installed applications will be dumped. The output of

 can be used as input for .
Note that uses the default manager on the model for selecting the records to

dump. If you’re using a custom manager as the default manager and it filters some of the avail-
able records, not all of the objects will be dumped.

Here is a usage example:

Use the option to exclude a specific application from the applications whose
contents are output. For example, to specifically exclude the auth application from the output,
you would call:

If you want to exclude multiple applications, use multiple directives:

By default, will format its output in JSON, but you can use the option to
specify another format. Currently supported formats are listed in the Django documentation.

By default, will output all data on a single line. This isn’t easy for humans to read, so
you can use the option to pretty-print the output with a number of indentation spaces.

In addition to specifying application names, you can provide a list of individual models,
in the form of . If you specify a model name to , the dumped output will
be restricted to that model, rather than the entire application. You can also mix application
names and model names.

flush
 returns the database to the state it was in immediately after was executed. This

means that all data will be removed from the database, any post-synchronization handlers will
be re-executed, and the fixture will be reinstalled.

Use the option to suppress all user prompting, such as “Are you sure?” con-
firmation messages. This is useful if is being executed as an unattended,
automated script.

APPENDIX F THE DJANGO-ADMIN UTIL ITY 459

inspectdb
This subcommand introspects the database tables in the database pointed to by the

 setting and outputs a Django model module (a file) to standard output.
Use this if you have a legacy database with which you’d like to use Django. The script will

inspect the database and create a model for each table within it.
As you might expect, the created models will have an attribute for every field in the table.

Note that has a few special cases in its field-name output:

 cannot map a column’s type to a model field type, it’ll use and
insert the Python comment next to the field in the
generated model.

, , or
), will append to the attribute name. For example, if a table

has a column , the generated model will have a field , with the
 attribute set to . will insert the Python comment

 next to the field.

This feature is meant as a shortcut, not as definitive model generation. After you run it,
you’ll want to look over the generated models yourself to make customizations. In particular,
you’ll need to rearrange models’ order so that models that refer to other models are ordered
properly.

case Django puts in the where needed.

loaddata <fixture fixture ...>
This subcommand searches for and loads the contents of the named fixture into the database.

What’s a Fixture?
A fixture is a collection of files that contain the serialized contents of the database. Each fixture
has a unique name, and the files that compose the fixture can be distributed over multiple
directories, in multiple applications.

Django will search in three locations for fixtures:

 directory of every installed application

 setting

Django will load any and all fixtures it finds in these locations that match the provided
fixture names.

APPENDIX F THE DJANGO-ADMIN UTIL ITY460

If the named fixture has a file extension, only fixtures of that type will be loaded. For
example:

would load only JSON fixtures called . The fixture extension must correspond to the reg-
istered name of a serializer (e.g., or). For more on serializers, see the Django docs.

If you omit the extensions, Django will search all available fixture types for a matching
fixture. For example:

would look for any fixture of any fixture type called . If a fixture directory contained
, that fixture would be loaded as a JSON fixture.

The fixtures that are named can include directory components. These directories will be
included in the search path. For example:

would search for each installed application,
 for each directory in , and the literal path

.
When fixture files are processed, the data is saved to the database as is. Model-defined
 methods and signals are not called.
Note that the order in which fixture files are processed is undefined. However, all fixture

data is installed as a single transaction, so data in one fixture can reference data in another
fixture. If the database back-end supports row-level constraints, these constraints will be
checked at the end of the transaction.

The command can be used to generate input for .

Compressed Fixtures
Fixtures may be compressed in , , or format. For example:

would look for any of , , , or . The
first file contained within a ZIP-compressed archive is used.

Note that if two fixtures with the same name but different fixture types are discovered (for
example, if and were found in the same fixture directory), fixture
installation will be aborted, and any data installed in the call to will be removed from
the database.

MYSQL AND FIXTURES

Unfortunately, MySQL isn’t capable of completely supporting all the features of Django fixtures. If you use
MyISAM tables, because MySQL doesn’t support transactions or constraints, you won’t get a rollback if multi-
ple fixture files are found or if validation of fixture data fails.

If you use InnoDB tables, you won’t be able to have any forward references in your data files—MySQL
doesn’t provide a mechanism to defer checking of row constraints until a transaction is committed.

APPENDIX F THE DJANGO-ADMIN UTIL ITY 461

makemessages
This runs over the entire source tree of the current directory and pulls out all strings marked
for translation. It creates (or updates) a message file in the (in the Django tree) or

 (for projects and applications) directory. After making changes to the messages files,
you need to compile them with for use with the built-in support. See
Chapter 19 for details.

--all
Use the or option to update the message files for all available languages.

Here’s an example of its usage:

--extension
Use the or option to specify a list of file extensions to examine (default:
“ ”).

Here’s a usage example:

Separate multiple extensions with commas or use or multiple times:

--locale
Use the or option to specify the locale to process.

Here’s a usage example:

--domain
Use the or option to change the domain of the messages files. These are currently
supported:

 for all and files (default)

 for files

reset <appname appname ...>
This subcommand executes the equivalent of for the given app name(s).

--noinput
Use the option to suppress all user prompting, such as “Are you sure?” confirmation
messages. This is useful if is being executed as an unattended, automated script.

APPENDIX F THE DJANGO-ADMIN UTIL ITY462

runfcgi [options]
This starts a set of FastCGI processes suitable for use with any Web server that supports the
FastCGI protocol. See Chapter 12 for details. Requires the Python FastCGI module from flup:

.

runserver
This starts a lightweight development Web server on the local machine. By default, the server
runs on port 8000 on the IP address 127.0.0.1. You can pass in an IP address and port number
explicitly.

If you run this script as a user with normal privileges (recommended), you might not

superuser (root).
Do not use this server in a production setting. It has not gone through security audits

or performance tests. (And that’s how it’s gonna stay. We’re in the business of making Web
frameworks, not Web servers, so improving this server to be able to handle a production envi-
ronment is outside the scope of Django.)

The development server automatically reloads Python code for each request, as needed.
You don’t need to restart the server for code changes to take effect.

When you start the server, and each time you change Python code while the server is run-
ning, the server will validate all of your installed models. (See the command later in
this appendix.) If the validator finds errors, it will print them to standard output, but it won’t
stop the server.

You can run as many servers as you want, as long as they’re on separate ports. Just execute
 more than once.

Note that the default IP address, 127.0.0.1, is not accessible from other machines on your
network. To make your development server viewable to other machines on the network, use
its own IP address (e.g., 192.168.2.1) or 0.0.0.0 (which you can use if you don’t know what your
IP address is on the network).

Use the option to tell Django where to find the various CSS and JavaScript
files for the Django admin interface. Normally, the development server serves these files out of
the Django source tree magically, but you’d want to use this if you made any changes to those
files for your own site.

Here’s an example of usage:

Use the option to disable the use of the auto-reloader. This means any Python
code changes you make while the server is running will not take effect if the particular Python
modules have already been loaded into memory.

Here’s an example:

APPENDIX F THE DJANGO-ADMIN UTIL ITY 463

Examples of Using Different Ports and Addresses

Port 8000 on IP address 127.0.0.1:

Port 8000 on IP address 1.2.3.4:

Port 7000 on IP address 127.0.0.1:

Port 7000 on IP address 1.2.3.4:

Serving Static Files with the Development Server
By default, the development server doesn’t serve any static files for your site (such as CSS files,
images, things under , and so forth).

shell
 starts the Python interactive interpreter.

Django will use IPython (), if it’s installed. If you have IPython
installed and want to force use of the “plain” Python interpreter, use the option, like so:

sql <appname appname ...>
This prints the given app name(s).

sqlall <appname appname ...>
This prints the

Refer to the description of for an explanation of how to specify initial data.

sqlclear <appname appname ...>
This prints the given app name(s).

APPENDIX F THE DJANGO-ADMIN UTIL ITY464

sqlcustom <appname appname ...>
This prints the -
fied app, this command looks for the file , where is the
given app name and is the model’s name in lowercase. For example, if you have an
app that includes a model, will attempt to read a file
and append it to the output of this command.

directly into the database after all of the models’ table-creation statements have been exe-

the database.
 processed is undefined.

sqlflush
This prints the the command.

sqlindexes <appname appname ...>
This subcommand prints the app name(s).

sqlreset <appname appname ...>
This prints the given app name(s).

sqlsequencereset <appname appname ...>
This prints the the given app name(s).

startapp <appname>
 creates a Django app directory structure for the given app name in the

current directory.

startproject <projectname>
This creates a Django project directory structure for the given project name in the current
directory. This command is disabled when the option to is used,
or when the environment variable has been set. To re-enable it in
these situations, either omit the option or unset .

syncdb
 creates the database tables for all apps in whose tables have not already

been created. Use this command when you’ve added new applications to your project and
want to install them in the database. This includes any apps shipped with Django that might
be in by default. When you start a new project, run this command to install the
default apps.

APPENDIX F THE DJANGO-ADMIN UTIL ITY 465

SYNCDB WILL NOT ALTER EXISTING TABLES

 will only create tables for models that have not yet been installed. It will never issue
statements to match changes made to a model class after installation. Changes to model classes and data-
base schemas often involve some form of ambiguity and, in those cases, Django would have to guess at the
correct changes to make. There is a risk that critical data would be lost in the process.

If you have made changes to a model and wish to alter the database tables to match, use the
command to display the new SQL structure and compare that to your existing table schema to work out
the changes.

If you’re installing the application, will give you the option of
creating a superuser immediately.

 will also search for and install any fixture named with an appropriate
extension (e.g., or). See the section on in the official Django documentation
for details on the specification of fixture data files.

--noinput
Use the option to suppress all user prompting, such as “Are you sure?” confirmation
messages. This is useful if is being executed as an unattended, automated
script.

test
This subcommand runs tests for all installed models. See the Django documentation for more
on testing.

--noinput
Use the option to suppress all user prompting, such as “Are you sure?” confir-
mation messages. This is useful if is being executed as an unattended,
automated script.

testserver <fixture fixture ...>
This runs a Django development server (as in) using data from the given fixture(s).
For more information, see the Django documentation.

validate
This validates all installed models (according to the setting) and prints valida-
tion errors to standard output.

APPENDIX F THE DJANGO-ADMIN UTIL ITY466

Default Options
Although some subcommands may allow their own custom options, every subcommand
allows for the following options.

--pythonpath
This adds the given filesystem path to the Python import search path. If this isn’t provided,

 will use the environment variable.
Here is a usage example:

Note that this option is unnecessary in , which takes care of setting the Python
path for you.

--settings
This explicitly specifies the settings module to use. The settings module should be in Python
package syntax, for example . If this isn’t provided, will use
the environment variable.

Here is a usage example:

Note that this option is unnecessary in , which uses from the cur-
rent project by default.

--traceback
By default, will show a simple error message whenever an error occurs. If you
specify , will output a full stack trace whenever an exception is
raised.

Here is a usage example:

--verbosity
Use to specify the amount of notification and debug information that

 should print to the console.

 means no output.

 means normal output (default).

 means verbose output.

Here is a usage example:

APPENDIX F THE DJANGO-ADMIN UTIL ITY 467

Extra Niceties

Syntax Coloring
The / standard output will use pretty
color-coded output if your terminal supports ANSI colors. It won’t use the color codes if you’re
piping the command’s output to another program.

Bash Completion
If you use the Bash shell, consider installing the Django bash completion script, which lives
in in the Django distribution. It enables tab completion of

 and commands, so you can, for instance

 see all available options

, then press the Tab key to see all available options whose names start with

A P P E N D I X G

Request and Response Objects

Django uses request and response objects to pass state through the system. When a page is
requested, Django creates an object that contains metadata about the request.
Then Django loads the appropriate view, passing the as the first argument to the
view function. Each view is responsible for returning an object.

We’ve used these objects often throughout the book; this appendix explains the complete
APIs for and objects.

HttpRequest
 represents a single HTTP request from some user-agent. Much of the important

information about the request is available as attributes on the instance (see Table
G-1). All attributes except should be considered read-only.

Table G-1. Attributes of HttpRequest Objects

Attribute Description

A string representing the full path to the requested page, not including the
domain—for example, .

A string representing the HTTP method used in the request. This is guaranteed to
be uppercase. For example:

i

A string representing the current encoding used to decode form submission data
(or , which means the setting is used).

You can write to this attribute to change the encoding used when accessing the
form data. Any subsequent attribute accesses (such as reading from or)
will use the new value. Useful if you know the form data is not in the

 encoding.

Continued

469

APPENDIX G REQUEST AND RESPONSE OBJECTS470

Table G-1. Continued

Attribute Description

A dictionary-like object containing all given parameters. See the
“QueryDict Objects” section later in this appendix.

A dictionary-like object containing all given parameters. See the
“QueryDict Objects” section later in this appendix.

It’s possible that a request can come in via with an empty dictionary—
if, say, a form is requested via the method but does not include form
data. Therefore, you shouldn’t use to check for use of the
method; instead, use (see the entry in
this table).

Note: does not include file-upload information. See .

For convenience, a dictionary-like object that searches first, and then .
Inspired by PHP’s .

For example, if and ,
 would be , and would be .

It’s strongly suggested that you use and instead of , because the
former are more explicit.

A standard Python dictionary containing all cookies. Keys and values are strings.
See Chapter 14 for more on using cookies.

A dictionary-like object that maps file names to objects. See the
Django documentation for more.

A standard Python dictionary containing all available HTTP headers. Available
headers depend on the client and server, but here are some examples:

: The raw unparsed query string

: The IP address of the client
: The hostname of the client
: The hostname of the server
: The port of the server

Any HTTP headers are available in as keys prefixed with , converted to
uppercase, and substituting underscores for hyphens. For example:

: The HTTP header sent by the client
: The referring page, if any

: The client’s user-agent string
: The value of the header, if set

APPENDIX G REQUEST AND RESPONSE OBJECTS 471

Attribute Description

A object representing the currently logged-
in user. If the user isn’t currently logged in, will be set to an instance of

. You can tell and
 apart with , like so:

 is available only if your Django installation has
activated.

For the complete details of authentication and users, see Chapter 14.

A readable and writable dictionary-like object that represents the current session.
This is available only if your Django installation has session support activated.
See Chapter 14.

The raw data. This is useful for advanced processing.

Request objects also have a few useful methods, as shown in Table G-2.

Table G-2. HttpRequest Methods

Method Description

Returns the / value for the given key, checking first, and then
. Raises if the key doesn’t exist.

This lets you use dictionary-accessing syntax on an in-
stance. For example, is the same as checking

 and then .

Returns or , designating whether or
has the given key.

Returns the originating host of the request using information from the
 and headers (in that order). If they

don’t provide a value, the method uses a combination of
and .

Returns the , plus an appended query string, if applicable. For example,
.

Returns if the request is secure; that is, if it was made with HTTPS.

QueryDict Objects
In an object, the and attributes are instances of .

 is a dictionary-like class customized to deal with multiple values for the same key.
This is necessary because some HTML form elements, notably ,
pass multiple values for the same key.

APPENDIX G REQUEST AND RESPONSE OBJECTS472

 instances are immutable, unless you create a of them. That means you
can’t change attributes of and directly.

 implements all standard dictionary methods because it’s a subclass of diction-
ary. Exceptions are outlined in Table G-3.

Table G-3. How QueryDicts Differ from Standard Dictionaries

Method Differences from Standard dict Implementation

Works just like a dictionary. However, if the key has more than one value,
 returns the last value.

Sets the given key to (a Python list whose single element is).
Note that this, as other dictionary functions that have side effects, can be called
only on a mutable (one that was created via).

If the key has more than one value, returns the last value just like
.

Takes either a or standard dictionary. Unlike the standard diction-
ary’s method, this method appends to the current dictionary items
rather than replacing them:

Just like the standard dictionary method, except this uses the same
last-value logic as :

Just like the standard dictionary method, except this uses the same
last-value logic as .

In addition, has the methods shown in Table G-4.

Table G-4. Extra (Nondictionary) QueryDict Methods

Method Description

Returns a copy of the object, using from the Python
standard library. The copy will be mutable—that is, you can change
its values.

Returns the data with the requested key, as a Python list. Returns an
empty list if the key doesn’t exist. It’s guaranteed to return a list of
some sort.

Sets the given key to (unlike).

Appends an item to the internal list associated with .

APPENDIX G REQUEST AND RESPONSE OBJECTS 473

Method Description

Just like , except it takes a list of values instead of a
single value.

Like , except it includes all values, as a list, for each member
of the dictionary. For example:

Returns a string of the data in query-string format (e.g.,).

A Complete Example
For example, given this HTML form

if the user enters in the field and selects both The Beatles and The
Zombies in the multiple-select box, here’s what Django’s request object would have:

Note The , , , , , , , and attributes are all
lazily loaded. That means Django doesn’t spend resources calculating the values of those attributes until your
code requests them.

APPENDIX G REQUEST AND RESPONSE OBJECTS474

HttpResponse
In contrast to objects, which are created automatically by Django,
objects are your responsibility. Each view you write is responsible for instantiating, populat-
ing, and returning an .

The class lives at .

Construction HttpResponses
Typically, you’ll construct an to pass the contents of the page, as a string, to the

 constructor:

But if you want to add content incrementally, you can use as a filelike object:

You can pass an iterator rather than passing it hard-coded strings. If you use
this technique, follow these guidelines:

 has been initialized with an iterator as its content, you can’t use the
 instance as a filelike object. Doing so will raise .

Finally, note that implements a method, which makes it suitable for
use anywhere that Python expects a filelike object. See Chapter 8 for some examples of using
this technique.

Setting Headers
You can add and delete headers using dictionary syntax:

You can also use to check for the existence of a header.
Avoid setting headers by hand; instead, see Chapter 14 for instructions on how

cookies work in Django.

HttpResponse Subclasses
Django includes a number of subclasses that handle different types of HTTP
responses (see Table G-5). Like , these subclasses live in .

APPENDIX G REQUEST AND RESPONSE OBJECTS 475

Table G-5. HttpResponse Subclasses

Class Description

The constructor takes a single argument: the path to redirect
to. This can be a fully qualified URL (e.g.,

) or an absolute URL with no domain (e.g.,
). Note that this returns an HTTP status code 302.

Like , but it returns a permanent
redirect (HTTP status code 301) instead of a “found” redirect
(status code 302).

The constructor doesn’t take any arguments. Use this to
designate that a page hasn’t been modified since the user’s
last request.

Acts just like but uses a 400 status code.

Acts just like but uses a 404 status code.

Acts just like but uses a 403 status code.

Acts like but uses a 405 status code. It takes a
single, required argument: a list of permitted methods (e.g.,

).

Acts just like but uses a 410 status code.

Acts just like but uses a 500 status code.

You can, of course, define your own subclass to support different types of
responses not supported out of the box.

Returning Errors
Returning HTTP error codes in Django is easy. We’ve already mentioned the

, , , and other sub-
classes. Just return an instance of one of those subclasses instead of a normal
in order to signify an error, as in this example:

Because a 404 error is by far the most common HTTP error, there’s an easier way to han-
dle it. When you return an error such as , you’re responsible for defining
the HTML of the resulting error page:

For convenience, and because it’s a good idea to have a consistent 404 error page across
your site, Django provides an exception. If you raise at any point in a view
function, Django will catch it and return the standard error page for your application, along
with an HTTP error code 404. Here’s an example:

APPENDIX G REQUEST AND RESPONSE OBJECTS476

In order to use the exception to its fullest, you should create a template that is
displayed when a 404 error is raised. This template should be called , and it should be
located in the top level of your template tree.

Customizing the 404 (Not Found) View
When you raise an exception, Django loads a special view devoted to handling 404
errors. By default, it’s the view , which loads and ren-
ders the template .

This means you need to define a template in your root template directory. This
template will be used for all 404 errors.

This view should suffice for 99% of Web applications, but if you want to
override the 404 view, you can specify in your URLconf, like so:

Behind the scenes, Django determines the 404 view by looking for . By default,
URLconfs contain the following line:

That takes care of setting in the current module. As you can see in
, is set to by

default.
There are three things to note about 404 views:

expression in the URLconf.

-
mended—you still have one obligation: to create a template in the root of
your template directory. The default 404 view will use that template for all 404 errors.

 is set to (in your settings module), then your 404 view will never be used,
and the traceback will be displayed instead.

APPENDIX G REQUEST AND RESPONSE OBJECTS 477

Customizing the 500 (Server Error) View
Similarly, Django executes special-case behavior in the case of runtime errors in view code.
If a view results in an exception, Django will, by default, call the view

, which loads and renders the template . This means you need to define
a template in your root template directory. This template will be used for all server
errors.

This view should suffice for 99% of Web applications, but if you want to
override the view, you can specify in your URLconf, like so:

479

Index

Special Characters
% (percent sign), 383
* symbol, 26
.. (two periods), 347
[^/]+ symbol, 26
_ (underscore), 383
{ } (empty dictionary), 417
+ symbol, 26
{1,3} symbol, 26
. (dot) symbol, 26
'' (empty string) value, 418–419, 421, 423, 426
() (empty tuple) value, 418, 420, 422–423
? symbol, 26

Numerics
0 errors found message, 81
25 value, 421
404 (not found) view, 476
404 error message, 26, 476
404.html template, implementing, 214
500 (server error) view, 477
500.html template, implementing, 214–215
1209600 value, 424

A
a format character, 436
A format character, 436
-a option, 461
/about/ path, 163
ABSOLUTE_URL_OVERRIDES setting,

417–418
abstract meta option, 365
{{ account.delete }} variable, 49
/accounts/login/ directory, 162, 268
/accounts/logout/ directory, 268
acquired data management, 117
active flag, 116
add() method, 285
add permission, 274
add(obj1, obj2, ...) method, 389
addslashes filter, 57, 442
/admin/ file, 322
admin home page, 97

admin interface. See also admin site
manipulating flatpages via, 301
manipulating redirects via, 303
overview, 95

admin package, 291
admin site

activating, 96–97
advantages/disadvantages of, 117
django.contrib packages, 95–96
field labels, customizing, 105–106
fields, making optional, 103–105
function of, 103
groups, 116
ModelAdmin classes, custom

change lists, 106–112
edit forms, 112–115
overview, 106

models, adding to, 102
overview, 95, 97–100
permissions, 116
users, 116

ADMIN_MEDIA_PREFIX setting, 418
admin.autodiscover() statement, 103
admindocs package, 291
--adminmedia option, 462
admin.py file, 103
ADMINS setting, 215, 418
admin.site.register() function, 108
all() method, 84, 154, 373
--all option, 461
allow_empty argument, 395
allow_future argument, 402, 404–405,

407–408, 411
allow_lazy() decorator, 329–330
ALLOWED_INCLUDE_ROOTS setting, 418
ALTER TABLE statement, 196
alters_data attribute, 49
'America/Chicago' value, 427
and clause, 51
anonymous session support (django.contrib.

sessions), 95
AnonymousUser object, 264–265
Apache

deploying Django, 218–222
running Django on shared-hosting

provider with, 227

INDEX480

apnumber filter, 306
app names, 456
app variable, 169–170
APPEND_SLASH setting, 25, 313, 418
appendlist(key, item) method, 472
application/pdf MIME type, 241
applications (apps), overview, 76–77
arbitrary logic, 71
archive index, 402–403
archive_day view function, 408
archive_index view function, 402
archive_month view function, 404
archive_today view function, 409
archive_week view function, 406
archive_year view function, 403
args argument, 312
Article model, 294
article_detail view, 294
/articles/2006/03/ path, 149
assert False view, 37
Atom feeds, 242, 248
auth package, 291
auth_permission database table, 274
authenticate() method, 267, 319–320
authentication, 264

authentication data, using in templates,
273–274

enabling, 264–265
legacy system, integrating with, 319–321
limiting access

to logged-in users, 269
to users who pass test, 269–270

logging in and out, 267–268
overview, 264
passwords, changing, 271
registration, 272–273
users

creating, 271
using, 265–266

authentication support middleware, 313
AUTHENTICATION_BACKENDS setting, 319
AuthenticationMiddleware class, 313
/auth/groups/add/ path, 156
auth.logout() method, 267
Author object, 186
/auth/user/add/ path, 157
autoescape tag, 174, 429
AutoField field, 354
autoincrementing primary keys, 370–371
[A-Z] symbol, 26
[a-z] symbol, 26
[A-Za-z] symbol, 26

B
b format character, 436
Hello! string, 175
BankAccount object, 49
base template, 67
base_SECTION.html template, 69
base.html file, 68–69, 214, 431
Bash completion, 467
bind parameters, 343
bio variable, 57
blank field option, 360
blank=False value, 103
blank=True value, 103
block tag, 43, 68–69, 429
blocktrans tag, 328
BlogEntry objects, 153
Book objects, 124
book_set attribute name, 192
book_snippet.html file, 187
BookManager class, 198
Book.objects.all() method, 197
Book.objects.filter(title__icontains=q)

method, 124
books/views.py file, 130
BooleanField field, 354
broken link alerts, setting up, 215
browser-length sessions, 262–263
brute-force attacks, 272
built-in middleware, 313–315
business logic, 58, 73

C
cache object, 285
cache tag, 284
CACHE_BACKEND setting, 278–279, 281,

285, 418
cache_control() method, 288–289
CACHE_MIDDLEWARE_ANONYMOUS_

ONLY setting, 282
CACHE_MIDDLEWARE_KEY_PREFIX set-

ting, 282, 418
CACHE_MIDDLEWARE_SECONDS setting,

282
CACHE_MIDDLEWARE_SETTINGS setting,

289
cache_page decorator, 282–283
Cache-Control header, 282
cache.get() method, 285
caching

CACHE_BACKEND arguments, 281
controlling, 288–289
custom cache back-end, 280
database, 279

INDEX 481

dummy, 280
filesystem, 279
local-memory, 280
low-level cache API, 284–286
Memcached, 278–279
MIDDLEWARE_CLASSES setting, 290
overview, 277
per-site, 281–282
per-view, 282–283
QuerySets and, 373
template fragment, 284
upstream, 286–287
Vary headers, 287–288

can_edit_home_page permission, 275
can_vote permission, 269
Canvas class, 241
capfirst filter, 442
capturing text, in URLs, 157–158
center filter, 442
CGI (Common Gateway Interface), 3, 5, 36
'/cgi-bin/' value, 422
chaining

filters, 374–375
lookups, 91

change lists, 98, 106–112
change permission, 274
changefreq() method, 251
changesets, 14
CharField object, 137, 354
charts, 242
check_password() method, 266, 271
.chi extension, 3
child templates, 67
chmod +x django-admin.py command, 18
Choice model, 274
choices field option, 360–361
class Meta class, 365
clean_message() method, 138–139
cleaned_data attribute, 135–136
cleanup subcommand, 456
clear() method, 390
closeblock argument, 441
closebrace argument, 441
closecomment argument, 441
closevariable argument, 441
cmemcache module, 278
comma-separated values (CSV), 238–239
CommaSeparatedIntegerField field, 354
comment tag, 56, 185, 429
CommentNode.render() method, 185
comments, template, 56
comments package, 291
COMMIT database, 315
Common Gateway Interface (CGI), 3, 5, 36
common middleware, 313–314

CommonMiddleware class, 215, 311, 313, 420
compilation function, 180–181
compilemessages subcommand, 456–457
compressed fixtures, 460
compression middleware, 314
conditional GET middleware, 314
ConditionalGetMiddleware class, 290, 314
configure() method, 417
confirm POST variable, 304
contact() view, 130, 136
contact form, 129–133
contact_form.html template, 129, 131, 139
ContactForm object, 137
contains field lookup, 382–383
content field, 300
Content-Disposition header, 239
Content-Length response header, 314
Content-Type header, 305
contenttypes package, 292
context, 41, 43, 168
Context() method, 49
Context class, 43–44
context function, 187
Context object, 45, 49–50, 63
context processors, 168–172
Context subclass, 168
context variable lookup, 46–49
context_instance argument, 170
context_processors argument, 395
context_processors.py file, 172
control structures, 8
Cookie value, 256
cookie-forging attack, 345
cookies, 255–258, 261
COOKIES object, 256, 470
copy() method, 472
count() method, 381
counter variable, 432
create() method, 84
CREATE TABLE statements, 82
create(**kwargs) method, 379, 389
create_user helper function, 271
createcachetable subcommand, 457
createsuperuser subcommand, 457
cross-site request forgery (CSRF), 304–306,

345
cross-site scripting (XSS), 173, 343–345
csrf object, 292, 309
CsrfMiddleware class, 305–306
csrfmiddlewaretoken field, 305
cStringIO library, 241
CSV (comma-separated values), 238–239
csv.writer function, 239
cull_percentage argument, 281

INDEX482

current_datetime view, 30–31, 34–35, 58,
61–63, 66

current_datetime.html file, 62, 66, 68
current_time variable, 183, 185–186
CurrentSiteManager model manager,

297–298
/current-time/ path, 31
CurrentTimeNode object, 181–183
CurrentTimeNode2 object, 183
currentuser variable, 55
custom cache back-end, 280
custom_proc function, 169
cut filter, 179, 442
cx_Oracle library, 17
cycle tag, 430

D
d format character, 436
D format character, 436
-d option, 461
\d symbol, 26
data access, 73, 83–84
data model inspection, 117
data preprocessing, 370
data structures, 8
database caching, 279. See also caching
DATABASE_ENGINE setting, 74, 317, 418
DATABASE_HOST setting, 75, 229, 317, 419
DATABASE_NAME setting, 28, 75, 317, 419
DATABASE_OPTIONS setting, 419
DATABASE_PASSWORD setting, 75, 317, 419
DATABASE_PORT setting, 317, 419
DATABASE_SERVER setting, 83
DATABASE_USER setting, 75, 317, 419
database-driven Web sites, 15, 70–71
databases

configuring, 74–76
legacy, integrating with, 317–319
schema, making changes to, 193–196
using Django with, 15–17
using Django without, 17

databrowse package, 292
data-management apps, 117
date fields, making optional, 104–105
date filter, 41, 57, 442–443
Date response header, 314
date_field argument, 402–403, 405, 407–408,

410
DATE_FORMAT setting, 419
date_hierarchy admin option, 111
date_joined field, 265
date_list variable, 403–404
date-based detail pages, 409–411

date-based generic views
archive index, 402–403
date-based detail pages, 409–411
day archives, 408–409
month archives, 404–406
overview, 401
today archives, 409
week archives, 406–407
year archives, 403–404

DateField field, 136, 355
dates(field, kind, order) method, 377
datetime module, 29, 45
DATETIME_FORMAT setting, 420
datetime.date object, 46, 136, 157, 355
datetime.datetime object, 30, 35
datetime.datetime.now() function, 29, 35
DateTimeField field, 355
datetime.timedelta function, 35–36
day archives, 408–409
day argument, 408–410
day attribute, 46, 153
day field lookup, 384
"day" value, 377
day_archive() function, 158
day_format argument, 408, 411
db_column field option, 318, 361
db_index field option, 361
db_table meta option, 365–366
db_tablespace field option, 361
db_tablespace meta option, 366
dbshell subcommand, 457
debug mode, 26, 148, 172, 213–214, 420, 456
debug tag, 431
debug variable, 171
/debuginfo/ path, 148
decimal_place argument, 355
decimal.Decimal instance, 355
DecimalField field, 355
default argument, 285
default field option, 361
default filter, 443
default view arguments, 155–156
DEFAULT_CHARSET setting, 190, 420
DEFAULT_CONTENT_TYPE setting, 420
DEFAULT_FROM_EMAIL setting, 420
default_if_none filter, 443
default.html file, 301
delete() method, 49, 285, 391–392
delete permission, 274
delete_first_token() method, 185
delete_test_cookie() method, 261
deleting

flatpages, 301
objects, 93–94, 391–392
redirects, 303

INDEX 483

description() method, 246
description field, 299
detail views, 400–401
development server, running, 18–19
dictsort filter, 443
dictsortreversed filter, 444
diffsettings subcommand, 458
direct_to_template view, 204–205, 396
directory traversal, 205, 347–349
<Directory> directive, 219
DISALLOWED_USER_AGENTS setting, 313,

420
distinct() method, 376
<div> tag, 141
divisibleby filter, 444
Django

deploying
DJANGO_SETTINGS_MODULE,

217–218
overview, 213
performance tuning, 232–234
preparing codebase for, 213–215
scaling, 228–232
using different settings for, 216–217
using with Apache, 218–222
using with FastCGI, 222–227

help resources, 9
history of, 7–8
installing, 12–14
MVC design pattern, 5–6
overview, 3–11
projects, 17–19
Python, 8–9, 11–12
using with databases, 15–17
versions of, 9
Web frameworks, 3–5

#django channel, 9
'[Django] ' value, 421
django_flatpage command, 299
django_flatpage_sites command, 299
django_redirect table, 302
django_session table, 263
DJANGO_SETTINGS_MODULE variable, 42,

189, 217–218, 415–417
django_site table, 294
Django/<version> value, 427
Django-1.0.2-final.tar.gz file, 12
django-admin utility

Bash completion, 467
default options, 466
overview, 455
subcommands, 456–465
syntax coloring, 467
using, 455–456

django-admin.py compilemessages utility,
332

django-admin.py makemessages tool, 330,
334–335, 339

django-admin.py startproject command, 18,
21–22, 28, 213, 216–217, 310

django-admin.py startproject mysite com-
mand, 18, 317

django-admin.py utility, 13, 18, 217, 415
django/conf/global_settings.py file, 413
django.conf.settings object, 414
django.conf.settings.configure() method, 416
django.conf.urls.defaults module, 23
django.contrib package

CSRF protection, 304–306
flatpages application, 299–302
humanizing data, 306–307
markup filters, 307
overview, 95–96, 291
redirects framework, 302–303
sites framework, 293–299

django.contrib.auth (user-authentication
system), 95

django.contrib.auth.models parameter, 171,
275

django.contrib.auth.views.login view, 299
django.contrib.comments (user comment

system), 95
django.contrib.csrf package, 304–305
django.contrib.flatpages command, 299
django/contrib/flatpages/models.py file,

300–301
django.contrib.humanize package, 306
django.contrib.markup package, 307
django/contrib/markup/templatetags/

markup.py file, 307
django/contrib/redirects/models.py file, 303
django.contrib.sessions (anonymous session

support), 95
django.contrib.sessions.models parameter,

261
django.core.cache module, 285
django/core/cache/backends/ directory, 280
django.core.context_processors.auth context

processor, 171
django.core.context_processors.debug con-

text processor, 171–172
django.core.context_processors.i18n context

processor, 172
django.core.context_processors.request

context processor, 172
django.db.connection object, 200
django.db.connection.queries command,

213
django.forms library, 133

INDEX484

django.http module, 22
django.middleware.http template, 310
django.newforms library, 133
django.pth file, 13
django.template module, 42
django.views.decorators.cache, 282
djtrunk directory, 13–14
djtrunk/django/bin path, 13, 18
do_comment() method, 185
do_current_time() method, 184
DocumentRoot directive, 221
DoesNotExist exception, 90
domain field, 296, 298
--domain option, 461
domain parameter, 257
Don't Repeat Yourself (DRY) principle, 245
dot (.) symbol, 26
double-escaping data, 175
duck typing, 154
dummy caching, 280
dumpdata subcommand, 458
dynamic content, 28–30
dynamic images, 242
dynamic URLs, 31–35
dynamic Web pages, 28

E
-e option, 461
edit forms, 98, 100, 112–115
editable field option, 361
else tag, 50–52
--email argument, 457
e-mail field, 131, 135, 139, 265, 355
e-mail header injection, 347
e-mail security, 342
EMAIL_HOST setting, 215, 421
EMAIL_HOST_PASSWORD setting, 421
EMAIL_HOST_USER setting, 421
EMAIL_PORT setting, 421
EMAIL_SUBJECT_PREFIX setting, 215, 421
email_user(subj, msg) method, 266
empty dictionary ({ }), 417
empty string ('') value, 418–419, 421, 423, 426
empty tag, 53
empty tuple (()) value, 418, 420, 422–423
enable_comments field, 300
enclosures, 247
encoding attribute, 469
endcomment tag, 185
endiftag, 50, 52
endifequal tag, 55
endswith field lookup, 384

enduppertag, 185
'en-us' value, 422
error alerts, setting up, 215
error handling, Apache, 221
error messages, exposed, 349
error pages, Django, 35–37
error variable, 125
error_log file, 221
errors attribute, 135
errors class, 141
escape() method, 362
escape filter, 173, 175, 444
escapejs filter, 444
escaping HTML, 444
Event objects, 153
exact field lookup, 382
Exception object, 312
exception postprocessor method, 312
exclude() method, 374, 376
--exclude option, 458
Expires header, 282
expires parameter, 257
exposed error messages, 349
extends tag, 68–69, 431
--extension option, 461
external data, 121
extra() method, 343
extra_context argument, 208, 210, 395

F
f format character, 436
F format character, 436
'F Y' value, 428
False object, 51
False value, 420, 424–425, 427, 453
FastCGI

lighttpd server, 225–227
overview, 222–223
running Django on shared-hosting pro-

vider with Apache, 227
running server, 223–224
using with Django and Apache, 224–225

FastCGIExternalServer directive, 224–225
fastcgi.server directive, 227
_fav_color session key, 259
'favicon.ico' value, 421
favorite_color cookie, 256
Feed class, 243
feed_dict argument, 243
FetchFromCacheMiddleware class, 281, 290,

315
Field class, 134

INDEX 485

field lookups
contains, 382–383
day, 384
endswith, 384
exact, 382
gt, 383
gte, 383
icontains, 383
iendswith, 384
iexact, 382
in, 383
isnull, 385
istartswith, 384
lt, 383
lte, 383
month, 384
overview, 382
pk lookup shortcut, 385
range, 384
search, 385
startswith, 384
year, 384

fields
adding, 193–196
AutoField, 354
BooleanField, 354
CharField, 354
CommaSeparatedIntegerField, 354
DateField, 355
DateTimeField, 355
DecimalField, 355
EmailField, 355
FileField, 355–356
FilePathField, 357
FloatField, 357
ImageField, 357–358
IntegerField, 358
IPAddressField, 358
making optional, 103–105
NullBooleanField, 358
overview, 353–354
PositiveIntegerField, 358
PositiveSmallIntegerField, 358
removing, 196
removing many-to-many, 196
SlugField, 358
SmallIntegerField, 358
TextField, 358
TimeField, 358
URLField, 359
XMLField, 359

fields option, 112–113
file:// cache type, 279
FileField field, 355–356
FilePathField field, 357

FILES attribute, 470
filesizeformat filter, 444
filesystem caching, 279
filter() method, 88, 179, 374, 376
filter arguments, 57, 176
filter tag, 431
filter_horizontal argument, 113–114
filter_vertical option, 114
filtering

chaining filters, 374–375
limiting QuerySets, 375–376
overview, 88–89, 373–374
QuerySet methods

that do not return QuerySets, 379–382
that return new QuerySets, 376–379

with wrapper functions, 210
filters

addslashes, 442
capfirst, 442
center, 442
cut, 442
date, 442–443
default, 443
default_if_none, 443
defined, 41
dictsort, 443
dictsortreversed, 444
divisibleby, 444
escape, 444
escapejs, 444
filesizeformat, 444
first, 445
fix_ampersands, 445
floatformat, 445–446
force_escape, 446
get_digit, 446
iriencode, 446
join, 446
last, 447
length, 447
length_is, 447
linebreaks, 447
linebreaksbr, 447
linenumbers, 447
ljust, 447
lower, 448
make_list, 448
overview, 429, 442
phone2numeric, 448
pluralize, 448
pprint, 448
random, 449
removetags, 449
rjust, 449
safe, 449

INDEX486

safeseq, 449
slice, 449
slugify, 450
stringformat, 450
striptags, 450
template, 56–57
time, 450
timesince, 451
timeuntil, 451
title, 451
truncatewords, 451
truncatewords_html, 451
unordered_list, 452
upper, 452
urlencode, 452
urlize, 452
urlizetrunc, 453
wordcount, 453
wordwrap, 453
writing custom, 178–179
yesno, 453

first filter, 445
first variable, 432
first_name field, 265
firstof tag, 431
fix_ampersands filter, 445
FIXTURE_DIRS setting, 421
fixtures, 459–460
FlatPage model, 300
FlatpageFallbackMiddleware class, 299–301
flatpages application, 299–302
flatpages object, 309
flatpages package, 292
flatpages/default.html template, 300–302
FlatPageSitemap class, 251
FloatField field, 357
floatformat filter, 445–446
flush subcommand, 458
foo filter, 178
foo_view() function, 22
/foo/1/ directory, 283
/foo/23/ directory, 283
/foo/bar/hello/ file, 25
footer block, 68
for statement, 41
for tag, 41, 52–55, 185, 432–433
force_escape filter, 446
foreign keys, 102, 192, 387–388
ForeignKey class, 295, 298, 363–364
forloop variable, 54–55
forloop.counter attribute, 53, 432
forloop.first attribute, 54
forloop.last attribute, 54
forloop.parentloop attribute, 54–55
forloop.revcounter attribute, 54, 432

forloop.revcounter0 attribute, 54, 432
form redisplay, 131
<form> tag, 121, 134, 304
{{ form.as_table }} template, 140
{{ form.fieldname.errors }} template, 140
{{ form.message.errors }} template, 141
forms

contact form, 129–133
example

improving, 125–127
overview, 122–125

form class
custom validation rules, adding,

138–139
customizing form design, 139–141
field rendering, changing, 137
initial values, setting, 138
labels, specifying, 139
maximum length, setting, 137–138
overview, 133–136
tying form objects into views, 136–137

overview, 119
retrieving data from request object,

119–122
validation, 127–128

forms.py file, 133
formtools package, 292
fp.close() method, 59
fp.read() method, 59
Freenode IRC network, 9

G
g format character, 437
G format character, 437
generic views

arguments, 395
date-based

archive for today, 409
archive index, 402–403
day archives, 408–409
detail pages, 409–411
month archives, 404–406
overview, 401
week archives, 406–407
year archives, 403–404

extending
adding extra context, 208–209
complex filtering with wrapper func-

tions, 210
"friendly" template contexts, 207
overview, 207
performing extra work, 211–212
viewing subsets of objects, 209–210

INDEX 487

list/detail generic views, 397–401
lists of objects, 397–399
of objects, 205–207
overview, 203, 395
"simple," 396–397
using, 204–205

GenericSitemap class, 252
Geographic Information Systems (GIS), 11
get() method, 89, 121–122, 131, 472
GET parameter, 124, 126, 158, 160, 256, 268,

304, 314, 470
get(**lookup) method, 379
get_absolute_url() method, 245, 417
get_all_permissions() method, 266
get_and_delete_messages() method, 266,

275–276
get_current() method, 295
get_decoded() method, 262
get_digit filter, 446
get_full_name() method, 265
get_full_path() method, 471
get_group_permissions() method, 266
get_host() method, 471
get_latest_by meta option, 366
get_list_or_404() function, 392
get_many() interface, 285
get_object() method, 246
get_object_or_404() function, 392
get_or_create(**kwargs) method, 380–381
get_template() function, 61–62, 64, 176
get_user() method, 319–320
__getitem__ method, 471–472
getlist(key) method, 472
gettext() function, 331, 338–340, 422
GIF images, 242
GIS (Geographic Information Systems), 11
gis package, 292
global_settings.py file, 413
Google, 253
greeting variable, 175
grouper attribute, 439
groups, 116, 264, 275
groups field, 266
gt field lookup, 383
gte field lookup, 383
GZipMiddleware class, 290, 305, 314

H
H format character, 437
h format character, 437
<h1> header, 67
has_commented variable, 260
has_header(header) method, 474

has_key() method, 471
has_module_perms(app_label) method, 266
has_next variable, 399
has_perm(perm) method, 266
has_perms(perm_list) method, 266
has_previous variable, 399
hashes, 272
HEAD request, 314
header.html file, 67
height_field argument, 357
hello() view, 22, 29, 119
/hello/ path, 24, 28
hello_wonderful_beautiful_world view func-

tion, 22
hello.html file, 21
help resources, 9
help_text field option, 361–362
History link, 100
hits variable, 399
home_link variable, 187
home_title variable, 187
/home/username/djcode/ directory, 17
host property, 223
hours parameter, 36
hours_ahead view, 33–35, 37, 66, 68
.htaccess file, 227
HTML escaping, automatic, 173–176
HTTP_REFERER key, 120
HTTP_USER_AGENT key, 120
HTTP_X_FORWARDED_FOR setting, 315
Http404 exception, 475–476
httpd.conf file, 227, 321
HttpRequest object

example, 473
overview, 469–471
QueryDict object, 471–473

HttpResponse object
404 (not found) view, 476
500 (server error) view, 477
constructors, 474
error returning, 475–476
headers, setting, 474
overview, 469–474
subclasses, 474–475

HttpResponseBadRequest class, 475
HttpResponseForbidden class, 475
HttpResponseGone class, 475
HttpResponseNotAllowed class, 475
HttpResponseNotFound class, 475
HttpResponseNotModified class, 475
HttpResponsePermanentRedirect class, 475
HttpResponseRedirect class, 131, 475
HttpResponseServerError class, 475
humanize package, 292
humanizing data, 306–307

INDEX488

I
i format character, 437
icontains field lookup, 124, 383
id keyword, 155
id primary-key fields, 318
iendswith field lookup, 384
iexact field lookup, 382
if tag, 50–52, 56, 185, 274, 433–434
ifchanged tag, 185, 434–435
ifconfig command, 19
ifequal tag, 55–56, 185, 435
ifnotequal tag, 55–56, 435
<iframe> tag, 304
IGNORABLE_404_ENDS setting, 421
IGNORABLE_404_STARTS setting, 422
ImageField field, 357–358
import datetime function, 30, 63
in field lookup, 383
in_bulk(id_list) method, 381
include() function, 163–165
include tag, 65–66, 175, 435–436
includes/nav.html template, 65
inclusion tags, 186
inclusion_tag() method, 187
inheritance, template, 66–69
__init__.py file, 18, 178
initial argument, 138
initial data, 138
initialization

sitemap framework, 250
syndication-feed framework, 243

initializer, 311
<input type="text"> tag, 137
inserting data, 86–87
inspectdb subcommand, 459
inspectdb utility, 317–318
INSTALLED_APPS setting, 80, 83, 177–178,

258–259, 264, 294, 306, 422
installing

Django, 12–14
middleware, 310–311
models, 80–83
Python, 12
ReportLab, 240

int() function, 34, 158
INT column, 318
intcomma filter, 306
IntegerField field, 136, 354, 358
INTERNAL_IPS setting, 172
internationalization

gettext, 339–340
JavaScript, 337–339
language files, creating, 330–332
language preference discovery, 333–335

overview, 323–324
set_language redirect view, 336
specifying translation strings, 324–330

introspecting, 78
intword filter, 306
invalid variable handling, 49
ip_address variable, 169–170
IPAddressField field, 358
iriencode filter, 446
is_active field, 265
is_anonymous() method, 265
is_authenticated() method, 162, 265, 269
is_paginated method, 399
is_secure() method, 471
is_staff field, 265
is_superuser field, 265
is_usable function, 188
is_valid() method, 135
isdigit() method, 47
isnull field lookup, 385
istartswith field lookup, 384
item_link() method, 245
items() method, 244, 259, 472

J
j format character, 437
JavaScript translations, 337–339
JavaScript validation, 127
javascript_catalog view, 337
join filter, 446
joining strings, 329

K
Keep-Alive feature, 233
KeyError class, 121, 123
keys() method, 122, 259
keyword arguments, 148–149, 161
kill command, 224
kwargs argument, 312
kwargs.pop() function, 161

L
L format character, 437
l format character, 437
-l option, 457, 461
<label> tags, 134
labels, specifying, 139
language, syndication-feed framework, 248
language codes, 331, 334
language files, creating, 330–332

INDEX 489

language preference discovery, 333–335
LANGUAGE_BIDI variable, 328
LANGUAGE_CODE setting, 172, 328, 333, 422
LANGUAGE_COOKIE_NAME setting, 336
LANGUAGES setting, 172, 328, 334, 422
last filter, 447
last variable, 432
last_login field, 265
last_name field, 265
lastmod() method, 251
Last-Modified header, 282
latest variable, 403
latest_books() function, 6
latest_books.html file, 6
LatestEntries feed, 243
LatestEntriesByCategory feed, 243
latest(field_name=None) method, 381–382
lazy translation, 326–327, 329–330
ldconfig tool, 222
legacy database and application integration

authentication system, 319–321
databases, 317–319
overview, 317
Web applications, 321–322

len() method, 139
length filter, 57, 447
length_is filter, 447
Library instance, 179
Library.filter()method, 179
lighttpd server, 225–227
limit_choices_to argument, 364
linebreaks filter, 447
linebreaksbr filter, 447
linenumbers filter, 447
link() method, 246
link.html template, 187
list() method, 374
list attribute, 439
list_display value, 108
list_filter value, 110
list/detail generic views

detail views, 400–401
lists of objects, 397–399
overview, 397

lists() method, 473
lists of objects, 397–399
ljust filter, 447
load balancer, 230
load balancing, implementing, 230–231
load tag, 178, 436
load_template_source template, 176–177,

189, 426
loaddata <fixture fixture...> subcommand,

459–460

loader.get_template() method, 170
loading templates

get_template() function, 64
locals() function, 63–64
overview, 60–62
render_to_response() function, 63

local checkout, 13
--locale option, 457–461
LocaleMiddleware class, 333, 335–336
localflavor package, 292
'localhost' value, 421
localization (L10N), 323
local-memory caching, 280
locals() function, 63–64
location() method, 251
Location blocks, 220
<Location> directive, 218, 321
<LocationMatch> directive, 220
'locmem://' value, 418
logging in and out, 267–268
login() method, 267
login screen, 97
login view, 268
login_url argument, 270
logout() method, 267
loosely coupled components, 6
lower filter, 448
low-level cache API, 284–286
lt field lookup, 383
lte field lookup, 383

M
m format character, 437
M format character, 437
'mail.cgi' value, 421
'mailform.cgi' value, 421
'mailform.pl' value, 421
'mail.pl' value, 421
make_list filter, 448
make_object_list argument, 404
makemessages subcommand, 461
managed meta option, 366–367
manage.py diffsettings command, 414
manage.py inspectdb command, 317
manage.py runfcgi command, 224
manage.py shell command, 42
manage.py sqlall books command, 195
manage.py sqlall command, 194
manage.py syncdb command, 264, 274, 294,

299, 302
manage.py utility, 18, 28, 217, 223, 415, 455
Manager object, 366, 372–373

INDEX490

managers
adding extra manager methods, 197–198
defined, 88
overview, 197
QuerySets, modifying initial, 198–199

MANAGERS setting, 215, 423
man-in-the-middle attacks, 258, 345–346
many-to-many fields, 113, 193, 196
many-to-many relationships, 102, 390–391
ManyToManyField class, 294, 298, 318,

364–365
markdown filter, 307
markup filters, 307
markup package, 292
match argument, 357
matching/grouping algorithm, 150
matplotlib library, 242
max_age parameter, 257
max_digits argument, 355
max_entries argument, 281
max_length argument, 137, 354
MaxRequestsPerChild 1 directive, 220
/media/ file, 225
media subdirectory, 220
'/media/' value, 418
MEDIA_ROOT setting, 355, 423
MEDIA_URL setting, 423
memcached back-end, 233–234
Memcached cache framework, 278–279
message field, 138
message files, 330–332
message system, 275–276
message template variable, 170
messages variable, 171
message.txt template, 297
META attribute, 470
method attribute, 469
method_splitter() function, 160
method-call behavior, 48–49
middleware

built-in, 313–315
defined, 309–310
installing, 310–311
methods, 311–313
overview, 309

MIDDLEWARE_CLASSES setting, 80, 258,
264, 281, 290, 301, 305, 310, 423

MiddlewareNotUsed class, 311
middleware.py file, 305
MIME types, 237–238
mimetype argument, 237, 395
min_length argument, 138
mod_* arrangements, 222
mod_access setting, 225
mod_accesslog setting, 225

mod_alias setting, 225
mod_fastcgi setting, 225
mod_proxy setting, 231
mod_python plug-in, 218–220, 416
mod_rewrite command, 224–225
mod_wsgi plug-in, 222
model definition reference

fields, 353–359
model metadata options, 365–368
overview, 353
relationships, 363–365
universal field options, 359–362

model metadata options, 365–368
model methods, 199–200
model parameter, 154
Model parent class, 79
ModelAdmin classes

change lists, 106–112
edit forms, 112–115
overview, 106

models
applications, 76–77
data access, 83–84
databases

configuring, 74–76
schema, making changes to, 193–196

defining in Python, 77–78
deleting objects, 93–94
inserting data, 86–87
installing, 80–83
managers, 197–199
model methods, 199–200
MTV and MVC development patterns,

72–74
related objects, 191–193
selecting objects

chaining lookups, 91
filtering data, 88–89
ordering data, 90–91
overview, 88
retrieving single objects, 89–90
slicing data, 92
updating multiple objects in one state-

ment, 92–93
SQL queries, 71–72, 200–201
string representations, 84–86
updating data, 86–87

models.py file, 6, 318, 363
Model-Template-View (MTV) development

pattern, 72–74
Model-View-Controller (MVC) development

pattern, 5–6, 72–74
month archives, 404–406
month argument, 405, 408, 410
month attribute, 46, 153

INDEX 491

month field lookup, 384
"month" value, 377
month variable, 406
month_archive view, 150
MONTH_DAY_FORMAT setting, 423
month_format argument, 405, 408, 411
msgid line, 332
msgstr line, 332
MTV (Model-Template-View) development

pattern, 72–74
multiple view prefixes, 147
/music/ file, 302
MVC (Model-View-Controller) development

pattern, 5–6, 72–74
my_view() view, 152, 283
/myapp/ path, 158
/myblog/entries/add/path, 156
mypage.html file, 65
mysite directory, 18, 21, 42, 60, 218
mysite.fcgi file, 225, 227
mysite/myapp/models.py file, 318
mysite.settings setting, 219
mysite/settings.py project, 317
mysite/urls.py file, 28
mysite.views view, 58
mysite/views.py module, 24
mysite.zip_loader package, 189
MySpace, security, 344
MySQL, 17, 232, 460
mysql-python package, 17
mytemplate.html file, 59

N
n format character, 437
N format character, 437
'N j, Y, P' value, 420
'\n' string, 33
name argument, 179, 182
name field, 296, 298
__name__ attribute, 154
__name__.lower() function, 154
named groups, 148–150
named interpolation, 338
named pipe, 223
named regular expression groups, 148
named-string interpolation, 326
nav.html template, 65
never_cache view, 289
next field, 268
next variable, 399
next_day variable, 409
next_month variable, 406
ngettext interface, 338

Node class, 181–183
NodeList class, 184
nodes, 180
--noinput option, 458, 461–465
None value, 425, 453
non-HTML content generation

comma-separated values, 238–239
MIME types, 237–238
overview, 237
PDF, 239–241
sitemap framework, 249–253
syndication-feed framework, 242–248
views, 237–238

non-named regular expression groups, 148
--noreload option, 462
NOT NULL value, 104–105
now tag, 436–438
now variable, 30, 64
null field option, 359
NULL value, 104, 195
null=True option, 359
NullBooleanField field, 358
num value, 156
num_latest argument, 402
numeric fields, making optional, 104–105

O
O format character, 437
obj argument, 244, 246
object list view, 205
object variable, 401, 411
object_detail view function, 211, 400, 409
object_id argument, 400, 410
object_list variable, 154, 206, 210, 397, 399,

404, 406–407, 409
objects

creating, 370–371
deleting, 391–392
filtering

chaining filters, 374–375
limiting QuerySets, 375–376
overview, 373–374
QuerySet methods, 376–382

related, 387–391
retrieving, 372–373
saving changes to, 371–372

objects attribute, 88
official releases, 12–13
offset string, 34
offset variable, 34
one-to-many relationships, 388
OneToOneField relationship, 365
open() method, 59, 238

INDEX492

openblock argument, 441
openbrace argument, 441
opencomment argument, 441
openvariable argument, 441
or clause, 51
Oracle, 17
order_by() method, 90, 376
ordered_warranty variable, 41
ordering data, 90–91
ordering meta option, 367
ordering option, 91
ordinal filter, 307
os.environ['TZ'] variable, 427

P
P format character, 437
'P' value, 427
page() function, 156
page variable, 399
page_not_found view, 476
pages variable, 399
paginate_by argument, 398–399
pagination, 399
parent loop, 54
parentloop variable, 432
parse() method, 184–185
parser argument, 181
password argument, 267
password attribute, 271
password field, 265
passwords, changing, 271
patch_vary_headers decorator, 288
path argument, 357
path attribute, 257, 469
patterns() function, 23, 146
PDF (Portable Document Format), generat-

ing, 239–241
percent signs (%), 383
performance tuning, 232–234
permission_required() method, 270
permissions, 116, 264, 274–275
permissions field, 266
perms variable, 171
persistent sessions, 262–263
per-site cache, 281–282
{{ person.name.upper }} variable, 48
per-view cache, 282–283
phishing, 344
phone2numeric filter, 448
Photo.on_site.all() method, 297
'.php' value, 421
pickle module, 263, 279
$PIDFILE file, 224

pidfile option, 224
ping_google() method, 253
pinging Google, 253
pk lookup shortcut, 385
pkg_resources module, 188
--plain option, 463
"Please submit a search term." message, 125
plots, 242
plural tag, 328
pluralization, 327
pluralize filter, 125, 448
.po files, 331, 334, 337, 339
port daemon, 278
port property, 223
Portable Document Format (PDF), generat-

ing, 239–241
positional arguments, 161
positional interpolation, 326, 338
PositiveIntegerField field, 358
PositiveSmallIntegerField field, 358
POST attribute, 124, 131, 158, 160, 304–305,

470
post_save signal, 370
PostgreSQL, 15–16, 232
pprint filter, 448
pre_save signal, 370
PREPEND_WWW setting, 313, 424
presentation logic, 58, 73
previous variable, 399
previous_day variable, 409
previous_month variable, 406
primary keys, autoincrementing, 370–371
primary_key field option, 362
print statements, 37, 220
printing, 374
priority() method, 251
process_exception() method, 312
process_request(self, request) method, 311
process_response() method, 312
process_view(self, request, view, args,

kwargs), 311–312
processors argument, 169
project directory, 19
projects

defined, 76
overview, 17–18
running development server, 18–19

proxy cache, 286
proxy meta option, 368
psycopg package, 16
psycopg2 package, 16
psycopg2-python package, 16
publish_on field, 298
Publisher class, 79, 84
pyexpat module, 221

INDEX 493

pygraphviz library, 242
pysqlite package, 16
Python

defining models in, 77–78
manipulating flatpages via, 301
manipulating redirects via, 303
overview, 11–12
programming language, 8–9
specifying translation strings in, 324–327

python command, 12, 14, 42
Python Imaging Library, 358
Python interactive interpreter program, 14
python manage.py dbshell command, 83
python manage.py runserver command, 22,

25, 28, 62
python manage.py shell command, 42, 83
python mysite/manage.py inspectdb com-

mand, 318
python mysite/manage.py startapp myapp

command, 318
python setup.py install command, 14
PythonAutoReload directive, 219
PythonDebug directive, 219
PythonInterpreter directive, 219
python-memcached module, 278
python-mysql package, 17
python-mysqldb package, 17
--pythonpath option, 466
python-postgresql package, 16
python-psycopg2 package, 16
python-sqlite3 package, 16

Q
Q objects, 385–386
q value, 123
QueryDict object, 471–473
queryset argument, 208–209, 395, 398, 400,

402–403, 405, 407–408, 410
QuerySet object

caching and, 373
limiting, 375–376
modifying initial, 198–199
QuerySet methods that do not return,

379–382
QuerySet methods that return new,

376–379
query-string parameters, 124

R
r format character, 437
rainbow tables, 272
RAM, performance tuning, 233

random filter, 449
range field lookup, 384
raw_id_fields option, 115
raw_post_data attribute, 471
raw_template variable, 44
recursive argument, 357
redirect_to view function, 397
RedirectFallbackMiddleware class, 302
redirects framework, 302–303
redirects object, 309
redirects package, 292
redundancy, 151, 230–231
Referer header, 263
register variable, 178
register.tag argument, 182
registration, 272–273
registration_required field, 300
registration/logged_out.html directory, 268
registration/login.html directory, 268
registration/register.html template, 273
regroup tag, 438–439
regular expression, 26
related objects

foreign-key relationships, 192, 387–388
lookups that span relationships, 387
many-to-many relationships, 193, 390–391
overview, 191–192, 387
queries over, 391
"reverse" foreign-key relationships,

388–390
related_name argument, 364
relationships

ForeignKey, 363–364
ManyToManyField, 364–365
OneToOneField, 365

REMOTE_ADDR key, 120
remove(obj1, obj2, ...) method, 390
removetags filter, 449
render() method, 41, 43, 45, 180, 182–183,

185
render_to_response() method, 63, 131,

169–170
ReportLab library, 239–241
repr() method, 374
request argument, 312
REQUEST attribute, 470
request object, 34, 119–122, 312
request parameter, 22
request preprocessor method, 311
request variable, 119
RequestContext class, 168–173, 300
request.GET attribute, 121–124, 131
request.get_full_path() method, 120
request.get_host() method, 120
request.is_secure() method, 120

INDEX494

request.META key, 120, 310
request.META['HTTP_X_FORWARDED_

FOR'] function, 314
request.META['REMOTE_ADDR'] function,

314
request.method attribute, 131, 160
request.path attribute, 120–121
request.POST attribute, 121–122, 124, 131
requests, processing, 28
request.session attribute, 259, 309
request.session.set_test_cookie() method,

261
request.session.test_cookie_worked()

method, 261
request.user attribute, 269, 309, 313
requires_login function, 162
reset <appname appname ...> subcommand,

461
reset management command, 366
resource contention, 228
response object, 312
response postprocessor method, 312
restrictions, model field names, 353
restructuredtext filter, 307
results_per_page variable, 399
retrieving objects, 89–90, 372–373
"reverse" foreign-key relationships, 388–390
reverse proxy support (X-forwarded-for

middleware), 314–315
reverse relationships, 391
revision number, 14
rjust filter, 449
r'\n' string, 33
ROLLBACK database, 315
ROOT_URLCONF setting, 28, 60, 217, 424
row-level functionality, 197
RSS feeds, 242, 248
run_tests function, 426
runfcgi command, 223, 462
runserver command, 18–19, 30, 123, 213,

462–463

S
S format character, 437
s format character, 437
safe filter, 174, 176, 449
safeseq filter, 449
salted hashes, 271–272
save() method, 84, 87, 93, 241, 370–372
saving changes to objects, 371–372

scaling
load balancing, implementing, 230–231
overview, 228
redundancy, implementing, 230–231
running on single server, 228
running separate media server, 229–230
separating out database server, 229

schema_path argument, 359
<script> tags, 343
search() method, 125, 127, 130
search bar, 109
search field lookup, 385
/search/ file, 123, 126
search_form() method, 125–126
search_form.html template, 122, 125–126,

128, 130
search_results.html template, 124
SECRET_KEY setting, 424
/sections/arts/music/ file, 302
secure parameter, 257
security

cross-site request forgery, 345
cross-site scripting, 343–345
directory traversal, 347–349
e-mail header injection, 347
exposed error messages, 349
overview, 341–342
session forging/hijacking, 345–346
settings, 414
SQL injection, 342–343

segmentation fault handling, 221–222
select_related() method, 378–379
select_template(template_name_list) tem-

plate, 176
selecting objects

chaining lookups, 91
filtering data, 88–89
ordering data, 90–91
overview, 88
retrieving single objects, 89–90
slicing data, 92
updating multiple objects in one state-

ment, 92–93
self.cleaned_data argument, 139
SEND_BROKEN_LINK_EMAILS setting, 215,

424
send_mail() method, 137
SERIALIZATION_MODULES setting, 424
SERVER_EMAIL setting, 424
server_error view, 477
session attribute, 259, 471
session fixation, 346
session forging, 345–346

INDEX 495

session hijacking, 345–346
session poisoning, 346
session riding (CSRF), 304–306, 345
session support middleware, 315
SESSION_COOKIE_AGE setting, 424
SESSION_COOKIE_DOMAIN setting, 263,

425
SESSION_COOKIE_NAME setting, 263, 425
SESSION_COOKIE_SECURE setting, 263, 425
SESSION_EXPIRE_AT_BROWSER_CLOSE

setting, 262, 425
SESSION_SAVE_EVERY_REQUEST setting,

262, 425
'sessionid' value, 425
SessionMiddleware class, 264, 305, 315
sessions

browser-length vs. persistent, 262–263
enabling, 258–259
overview, 258
saving, 262
setting test cookies, 261
using in views, 259–260
using outside of views, 261–262

sessions package, 292
set() method, 285
set_cookie() method, 256–257
set_language redirect view, 336
set_password() function, 271
set_password(passwd) method, 266
set_test_cookie()method, 261
Set-Cookie header, 256
__setitem__ method, 472
setlistdefault(key, a) method, 473
setlist(key, list_) method, 472
SetRemoteAddrFromForwardedFor class,

314
settings

altering at runtime, 414
available, 417–428
creating, 415
default, 413–414
designating

with DJANGO_SETTINGS_MODULE,
415–416

without DJANGO_SETTINGS_
MODULE, 416–417

overview, 413
in Python code, 414
security, 414

settings command-line argument, 415
settings file, 28, 60
--settings option, 464, 466
settings_production.py file, 216–217
settings.py file, 18, 28, 30, 60–61, 213, 216, 320

settings.SITE_ID setting, 295
setup.py utility, 12, 18
shell subcommand, 463
showPage() method, 241
silent_variable_failure attribute, 48
"simple" generic views, 396–397
simple_tag function, 185–186
site context variable, 244
site field, 298, 300
Site object, 293, 295, 297, 299
site root, 27
SITE_ID setting, 293–294, 297–298, 300, 302,

425
Sitemap class, 250–251
sitemap framework

initialization, 250
installation, 249
overview, 249
pinging Google, 253
shortcuts, 251–252
Sitemap classes, 250–251
sitemap index, 252–253

sitemaps package, 292
sitemap.xml file, 250
site-packages directory, 13
sites framework

capabilities of, 294–297
CurrentSiteManager model manager,

297–298
how Django uses, 298–299
overview, 293
reusing data on multiple sites, 293
storing site name/domain in one place,

293
using, 293–294

sites package, 292
sitewide cache middleware, 315
slice filter, 449
slicing data, 92, 374
slug argument, 400, 410
slug_field argument, 400, 411
SlugField field, 358
slugify filter, 450
SmallIntegerField field, 358
snooping attacks, 258
socket module, 217
socket property, 223
some_page() function, 159
some_page_get() function, 160
some_page_post() function, 160
/somepage/ path, 159–160
spaceless tag, 440
special-casing URLs, 148
special-casing views, 156–157

INDEX496

split() method, 139
split_contents() method, 181
sql <appname appname ...> subcommand,

463
SQL injection, 342–343
SQL queries, 71–72, 200–201
SQL reserved words, 353
sql_queries variable, 171
sqlall <appname appname ...> subcommand,

463
sqlall command, 83
sqlclear <appname appname ...> subcom-

mand, 463
sqlcustom <appname appname ...> subcom-

mand, 464
sqlflush subcommand, 464
sqlindexes <appname appname ...> subcom-

mand, 464
SQLite, 16, 74
sqlite-python package, 16
sqlreset <appname appname ...> subcom-

mand, 464
sqlsequencereset <appname appname ...>

subcommand, 464
Squid, 277
ssi tag, 440
staff flag, 116
standalone mode, 189–190
standard library, 291–292
startapp <appname> subcommand, 464
startproject <projectname> subcommand,

464
startproject command, 18, 259
startswith field lookup, 384
stateless, defined, 255
storing templates in subdirectories, 64
strftime syntax, 180, 355
string literals, 176
string representations, 84–86
string_concat() function, 329
stringformat filter, 450
striptags filter, 450
subdirectories, storing templates in, 64
subject field, 138
subject.txt template, 297
superuser flag, 116
superusers, 96–97, 116
svn co command, 13
svn update command, 14
svn --version command, 13
symmetrical argument, 364
syncdb command, 83, 193, 464–465
syndication package, 292

syndication-feed framework
enclosures, 247
feeds, 244–247
initialization, 243
language, 248
overview, 242–243
publishing Atom and RSS feeds in tandem,

248
URLs, 248

syntax coloring, 467

T
t format character, 437
T format character, 437
table names, 82
<table> tag, 134
table-level functionality, 197
tablename database table, 279
tag() method, 182
tags

autoescape, 429
block, 429
comment, 429
cycle, 430
debug, 431
extends, 431
filter, 431
firstof, 431
for, 432–433
if, 433–434
ifchanged, 434–435
ifequal, 435
ifnotequal, 435
include, 435–436
inclusion, 186–188
load, 436
now, 436–438
overview, 429
parsing until another, 184–185
registering, 182
regroup, 438–439
shortcut for, 185–186
spaceless, 440
ssi, 440
template, 50–56, 65–66
templatetag, 440
url, 441
widthratio, 441
with, 442
writing custom, 180

takes_context option, 187
.tar.gz files, 12

INDEX 497

Template() method, 43
template argument, 396
template fragment caching, 284
template inheritance, 59
template loading, 59, 176–177, 188–189
Template object, 41–43, 61
template tag, 41, 43, 167, 181
TEMPLATE_CONTEXT_PROCESSORS set-

ting, 170–172, 273, 425
TEMPLATE_DEBUG setting, 190, 214, 426
TEMPLATE_DIRS setting, 28, 60, 69, 176, 188,

190, 426
template_loader argument, 396
TEMPLATE_LOADERS setting, 176–177,

188–189, 249, 426
template_name argument, 65, 152, 156, 188,

300–301, 396
template_name_field argument, 400, 411
template_object_name argument, 207, 396
TEMPLATE_STRING_IF_INVALID setting,

426
TEMPLATE_ZIP_FILES setting, 188
TemplateDoesNotExist exception, 62, 66,

176, 205
template.Library directory, 178, 182
templates

authentication data, using in, 273–274
automatic HTML escaping, 173–176
comments, 56
configuring system in standalone mode,

189–190
Context objects, 49–50
context processors, 168–172
context variable lookup, 46–49
custom loaders, 188–189
extending system

creating library, 177–178
inclusion tags, 186–188
overview, 177
parsing until another template tag,

184–185
registering tags, 182
setting variable in context, 183–184
shortcut for tags, 185–186
writing compilation function, 180–181
writing custom filters, 178–179
writing custom tags, 180
writing node, 182

filters, 56–57
flatpages, 301–302
inheritance, 66–69
limitations, 57–58
loading, 60–64, 176–177
overview, 39–42, 167

philosophies, 57–58
rendering, 43–45
rendering multiple contexts through,

45–46
RequestContext subclass, 168–172
tags, 50–56, 65–66
Template objects, creating, 42–43
terminology, 167–168
using in views, 58–59

templates subdirectory, 177
TemplateSyntaxError class, 43, 47, 52
templatetag tag, 440
templatetags directory, 177–178
test subcommand, 465
test_cookie_worked() method, 261
TEST_DATABASE_NAME setting, 426
TEST_RUNNER setting, 426
testing Django installation, 14
testserver <fixture fixture ...> subcommand,

465
<textarea> tag, 137
TextField field, 358
'text/html' value, 420
textile filter, 307
through argument, 364
time filter, 450
/time/ path, 30–35
TIME_FORMAT setting, 427
TIME_ZONE setting, 427
TimeField field, 358
timeout argument, 281, 285
timeout_seconds argument, 285
/time/plus/1/ path, 31
/time/plus/2/ path, 31–32
/time/plus/3/ path, 31, 34–35
/time/plus/21/ path, 34
/time/plus/25/ path, 32
/time/plus/100000000000/ path, 32
/time/plus?hours=3 path, 32
timesince filter, 451
timeuntil filter, 451
TINYINT column, 354
title() method, 246
title field, 299–300
title filter, 451
<title> header, 67
today archives, 409
token argument, 181
token.contents string, 181
touch command, 227
--traceback option, 466
tracebacks, exposed, 349
trans tag, 327
transaction middleware, 315

INDEX498

TransactionMiddleware class, 315
translation strings, 323
True value, 418, 428, 453
truncatewords filter, 451
truncatewords_html filter, 451
trunk version, 12–14
two periods (..), 347

U
ugettext() function, 324–325, 334
ugettext_lazy() function, 326
ugettext_noop() function, 326
<ul class="errorlist"> tag, 140
 tag, 134
underscores (_), 383
ungettext() function, 327
Unicode objects, 86
__unicode__() method, 85, 106
unique field option, 362
unique_for_date field option, 362
unique_for_month field option, 362
unique_for_year field option, 362
unique_together meta option, 368
universal field options, 359–362
unordered_list filter, 452
update() method, 93, 472
UpdateCacheMiddleware class, 281, 290, 315
upload_to option, 356
upper() method, 47
upper filter, 452
upper tag, 185
UpperNode.render() method, 185
upstream caches, 286–287
url argument, 397
url field, 300
url tag, 441
URL_VALIDATOR_USER_AGENT setting, 427
URLconfs

capturing text in URLs, 157–158
determining what URLconf searches

against, 158
Django error pages, 35–37
Django page, 21–27
include() method, 163–165
loose coupling, 31
matching/grouping algorithm, 150
named groups, 148–150
overview, 21, 145
request processing, 28
special-casing URLs in debug mode, 148
specifying in per-view cache, 283

view functions
higher-level abstractions of, 158–161
passing extra options to, 150–155
streamlining imports, 145–147
wrapping, 161–162

urlencode() method, 473
urlencode filter, 452
URLField field, 359
urlize filter, 452
urlizetrunc filter, 453
urlpatterns function, 24, 147–148
URLs

capturing text in, 157–158
special-casing in debug mode, 148
syndication-feed framework, 248

urls.py command, 6, 18, 28, 96
USE_ETAGS setting, 314, 427
USE_I18N setting, 324, 428
user attribute, 471
user change-list page, 99
user comment system (django.contrib.

comments), 95
user edit form, 99
User object, 266–267
user variable, 55, 169–171
user_add_stage view, 157
user_passes_test permission, 270
user-authentication system (django.contrib.

auth), 95
--username argument, 457
username field, 265
username variable, 164
users

admin site, 116
creating, 271
limiting access to, 269–270
using, 265–266

/usr/local/bin directory, 18
'utf-8' value, 420

V
validate command, 81, 465
validation, 127–128, 137–139
ValidationError argument, 139
ValueError class, 34, 158, 286
values() method, 122, 377, 472
varchar(100) columns, 357–358
variable tag, 174
variable value, 431
/var/tmp/django_cache directory, 279
Vary headers, 287–288

INDEX 499

vary_on_cookie decorator, 288
vary_on_headers() method, 287–288
verbose_name option, 105–106, 139, 327, 362,

368
verbose_name_plural option, 327, 368
--verbosity option, 456, 466
verify_exists argument, 359
version determination, 456
--version option, 456
view argument, 312
view functions

higher-level abstractions of, 158–161
passing extra options to, 150–155
streamlining imports, 145–147
wrapping, 161–162

view preprocessor method, 311–312
views

Django error pages, 35–37
Django page, 21–27
non-HTML content generation, 237–241
overview, 21
second view, 28–30
third view, 31–35
using sessions in, 259–260
using sessions outside of, 261–262
using templates in, 58–59

views module, 123, 145
views.page view, 156
views.py file, 6, 21–22, 29, 35, 133
views.year_archive() function, 157
VirtualHost class, 219–220
'/_vti_bin' value, 422
'/_vti_inf' value, 422

W
w format character, 437
W format character, 437
Web applications, legacy, 321–322
Web frameworks, 3–5
webdesign package, 292
/weblog/2007/ path, 163
'webmaster@localhost' value, 420
week archives, 406–407
week argument, 407
where argument, 343
whitespace, 440, 450
width_field argument, 357
widthratio tag, 441
wildcard URLpatterns, 32
with tag, 442
wordcount filter, 453

wordwrap filter, 453
wrapper functions, 210
wrapping, 147, 161–162

X
X-Forwarded-For header, 309–310
X-forwarded-for middleware (reverse proxy

support), 314–315
XMLField field, 359
XSS (cross-site scripting), 173, 343–345

Y
y format character, 437
Y format character, 437
year archives, 403–404
year argument, 46, 157, 403–405, 407–408,

410
year field lookup, 384
"year" value, 377
YEAR_MONTH_FORMAT setting, 428
yesno filter, 453

Z
z format character, 437
Z format character, 437
ZIP files, 242

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

