
Setting up and Using Topcoder Applet 

(Practice Problems and SRMs) + KawigiEdit 

Plugin 
 

This guide will explain you to do the following : 

Setting up the Applet 2 

Setting up KawigiEdit Plugin 4 

Joining an Active SRM 6 

Practice Problems in previous SRMs 7 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

https://ali8essam.wordpress.com/author/aliessamarafa/


Setting up the Applet 
● First you have to have JRE (Java Runtime Environment).You can Download the 

latest version from here ​http://java.com/en/download/index.jsp 
● Follow ​this guide​ to setup the environment for Java. 
● Download the Topcoder Applet from here ​http://topcodr.co/javaarena 
● It’s preferred that you move the downloaded file to a folder of its own. Lets call it 

“Topcoder Applet”. 
● Click on the file to Launch The Applet. 

Java Security Warning! 

If you get security warning - After installing Java add the Topcoder to exception list: 
 

Windows:  Control Panel →  Java →  Security →  Exception List  
OSX: System Preferences → Java → Security → Exception List 
Linux, UNIX, Solaris, FreeBSD:  Open a terminal  
Execute the following command: /usr/bin/jdk1.8.0_05/bin/ControlPanel 
Replace /usr/bin/jdk1.8.0_05 by the path of your Java installation. 
 

Here is the exception list you have to add: 

http​:​//topcoder.com 

http​:​//www.topcoder.com 

http​:​//arena.topcoder.com 

https​:​//topcoder.com 

https​:​//www.topcoder.com 

https​:​//arena.topcoder.com   

 
Once done try opening the Topcoder Applet again 
 

 

http://java.com/en/download/index.jsp
https://www.tutorialspoint.com/java/java_environment_setup.htm
http://java.com/en/download/index.jsp
http://topcodr.co/javaarena


● Enter your TopCoder Handle (username) and Password. 

 

● You should see the following Screen if you logged in correctly 

 

 
 

 



Setting up KawigiEdit Plugin  

This Plugin is very useful and saves a lot of time during contests (SRMs) (Time = Score) 

Topcoder doesn’t depend on standard IO as (uva-spoj-codeforces), it depends on a 
function inside a class, this function takes the parameters as the input, and returns the 
output 

Luckily, KawigiEdit does most of this for us, choose on your prefered language from 
above (c++ in our case), and get back to the code area down. 

We’ll only discuss some of its features and how to Set it up 

● Download the plugin : ​http://topcoder.yajags.com/KawigiEdit_2.1.jar 
● It’s preferred that you put the file in the same directory of the Arena (in the 

“Topcoder Arena” Folder) 
● Start the Topcoder Arena applet (if it’s not already running). 
● From the Options menu, choose “Editor”.The Editor Preferences dialog should 

come up. 

 

● Click on the “Add” button. A dialog titled “Enter Plugin Information” should pop up. 

 

http://topcoder.yajags.com/KawigiEdit_2.1.jar


 

 

● Fill in the fields with the following 
○ Name : “KawigiEdit” 
○ EntryPoint : “kawigi.KawigiEdit” 

● Click On Browse and Navigate to “Topcoder Applet” Folder and Select The 
KawigiEdit_x.jar file 

● Click Ok and return to the Editor Preferences Dialog. 
● Check On the Default Box of the KawigiEdit instead of the Default . 
● Click Save and Close. 
● Congratulations , you have your KawigiEdit. 

 

 

 

 

 

 

 

 
 
 

 



Joining an Active SRM 

SRMs are scheduled in TopCoder, you can join anyone ​but you have to register in it 
before it starts 

Please register 5 mins before the SRM to make sure you are set 

To register: 

● From the top menu choose Active Contests. 
● Select the SRM  
● Click On Register 

When the SRM begins Enter it 

● From the top menu choose Active Contests. 
● Select the SRM  
● Click On Enter 

The SRM consists of 4 Phases 

1. Coding Phase : In this phase you’ll be solving the problems just as mentioned 
above in the practice 

2. Intermission : 5 minutes to take your breath 
3. Challenge Phase: You can challenge others code with a test case that you think 

his code would fail, you get score if the challenge succeeded else you lose score 
4. System Testing Phase : Topcoder System will run extra test cases on all 

participants’ code 
5. After the system tests finishes go to Tools > Room Summary to see if your code 

passed 

 
 
 
 
 

 



Practice Problems in previous SRMs 

● Open the Applet, from the top menu choose practice problems then choose SRMs 
● For example we’ll open the SRM 575 Div2 
● Here is what you should see 

 

● Every Room has 3 problems sorted by their difficulty. 
● To Open a problem , from the select menu click on the 250 problem for example. 
● The Problem will open in a new window 

 



 

● The problem statement, is composed of 
○ Problem Statement 
○ Definition (KawigiEdit handles most of it ) 
○ Constraints : the limits of the input && || other specifications of the input 
○ Examples 

● Topcoder doesn’t depend on standard IO as (uva-spoj-codeforces), it depends on 
a function inside a class, this function takes the parameters as the input, and 
returns the output 

● Luckily, KawigiEdit does most of this for us, choose on your prefered language 
from above (c++ in our case), and get back to the code area down. 

● You’ll find that KawigiEdit made most of the code for you ,all needed #include , 
the class , the function in it. All you have to do is to solve the problem inside the 
function and return the result at last. 

● If you are done with your solution and want to test it, there are 2 ways, one that 
involves using g++ , and the other one using Visual Studio or Code::Blocks or any 
c++ IDE . 

● We’ll be using the second one 
○ Open Code::Blocks and create an empty c++ project and make a cpp source 

file 
○ Copy The source Code from the KawigiEdit to VS. 
○ Back to the KawigiEdit open the Test Code tab. 
○ Copy the code in it and add it to the code in VS. 

 



○ Run The program ,and this is how it should look like 

 

● It will run the tests for you and will tell you if you have any problem with any 
sample test cast. 

● The highlighted code,is the code you are going to submit + the includes above. 
● Back to the problem window ,to submit your code click submit and you are done  
● you may want to compile your code first to make sure you don’t have any errors. 

 

 

 

 

 

 

 

 


