
Transport API C Edition
V3.1.X

DEVELOPERS GUIDE
C EDITION
Document Version: 3.1.3
Date of issue: 30 January 2018
Document ID: ETAC313UM.180

Legal Information
© Thomson Reuters 2015 - 2018. All rights reserved.

Thomson Reuters, by publishing this document, does not guarantee that any information contained herein is and will remain accurate or that
use of the information will ensure correct and faultless operation of the relevant service or equipment. Thomson Reuters, its agents and
employees, shall not be held liable to or through any user for any loss or damage whatsoever resulting from reliance on the information
contained herein.

This document contains information proprietary to Thomson Reuters and may not be reproduced, disclosed, or used in whole or part without
the express written permission of Thomson Reuters.

Any Software, including but not limited to, the code, screen, structure, sequence, and organization thereof, and Documentation are protected
by national copyright laws and international treaty provisions. This manual is subject to U.S. and other national export regulations.

Nothing in this document is intended, nor does it, alter the legal obligations, responsibilities or relationship between yourself and Thomson
Reuters as set out in the contract existing between us.
Transport API C Edition 3.1.X – Developers Guide ii
ETAC313UM.180

Contents

Contents
Chapter 1 Transport API Developers Guide Introduction.. 1
1.1 About this Manual ... 1
1.2 Audience ... 1
1.3 Programming Language.. 1
1.4 Acronyms and Abbreviations .. 1
1.5 References.. 3
1.6 Documentation Feedback ... 3
1.7 Document Conventions... 3

1.7.1 Typographic .. 3
1.7.2 Diagrams .. 4

1.8 What’s New in this Document ... 4

Chapter 2 Product Description... 5
2.1 What is the Transport API? ... 5
2.2 Transport API Features... 6

2.2.1 General Capabilities ... 6
2.2.2 Consumer Applications... 6
2.2.3 Provider Applications: Interactive ... 7
2.2.4 Provider Applications: Non-Interactive.. 7

2.3 Performance and Feature Comparison... 7
2.4 Functionality: Which API to Choose?... 8

2.4.1 General Capability Comparison.. 8
2.4.2 Layer-Specific Capability Comparison.. 9

Chapter 3 Consumers and Providers .. 11
3.1 Overview ... 11
3.2 Consumers.. 12

3.2.1 Subscriptions: Request/Response.. 13
3.2.2 Batches... 13
3.2.3 Views .. 14
3.2.4 Pause and Resume .. 15
3.2.5 Symbol Lists ... 16
3.2.6 Posting.. 19
3.2.7 Generic Message.. 20
3.2.8 Private Streams .. 20

3.3 Providers ... 22
3.3.1 Interactive Providers ... 23
3.3.2 Non-Interactive Providers ... 24

Chapter 4 System View ... 26
4.1 System Architecture Overview .. 26
4.2 Advanced Distribution Server (ADS)... 27
4.3 Advanced Data Hub (ADH) ... 28
4.4 Elektron ... 29
4.5 Data Feed Direct ... 30
4.6 Internet Connctivity via HTTP and HTTPS.. 31
4.7 Direct Connect .. 32

Chapter 5 Model and Package Overviews... 33
5.1 Transport API Models ... 33
Transport API 3.1.X C Edition – Developers Guide iii
ETAC313UM.180

5.1.1 Open Message Model (OMM) .. 33
5.1.2 Reuters Wire Format (RWF)... 33
5.1.3 Domain Message Model ... 33

5.2 Packages .. 34
5.2.1 Transport Package ... 34
5.2.2 Data Package ... 34
5.2.3 Message Package .. 34

Chapter 6 Building an OMM Consumer ... 35
6.1 Overview ... 35
6.2 Establish Network Communication ... 35
6.3 Perform Login Process.. 36
6.4 Obtain Source Directory Information... 36
6.5 Load or Download Necessary Dictionary Information ... 37
6.6 Issue Requests and/or Post Information ... 37
6.7 Log Out and Shut Down.. 37
6.8 Additional Consumer Details ... 38

Chapter 7 Building an OMM Interactive Provider ... 39
7.1 Overview ... 39
7.2 Establish Network Communication ... 39
7.3 Perform Login Process.. 40
7.4 Provide Source Directory Information ... 40
7.5 Provide or Download Necessary Dictionaries ... 40
7.6 Handle Requests and Post Messages .. 41
7.7 Disconnect Consumers and Shut Down ... 41
7.8 Additional Interactive Provider Details .. 42

Chapter 8 Building an OMM NIP... 43
8.1 Overview ... 43
8.2 Establish Network Communication ... 43
8.3 Perform Login Process.. 44
8.4 Perform Dictionary Download ... 44
8.5 Provide Source Directory Information ... 44
8.6 Provide Content .. 45
8.7 Log Out and Shut Down.. 45
8.8 Additional NIP Details ... 45

Chapter 9 Encoding and Decoding Conventions ... 46
9.1 Concepts ... 46

9.1.1 Data Types ... 46
9.1.2 Composite Pattern of Data Types... 47

9.2 Encoding Semantics ... 47
9.2.1 Init and Complete Suffixes.. 47
9.2.2 The Encode Iterator: RsslEncodeIterator ... 48
9.2.3 Content Roll Back with Example... 51

9.3 Decoding Semantics and RsslDecodeIterator .. 52
9.3.1 The Decode Iterator: RsslDecodeIterator ... 52
9.3.2 Functions for use with RsslDecodeIterator ... 52
9.3.3 RsslDecodeIterator: Basic Use Example.. 53

9.4 Return Code Values.. 54
9.4.1 Success Codes... 54
9.4.2 Failure Codes ... 56

9.5 Versioning ... 57
Transport API 3.1.3 C Edition – Developers Guide iv
ETAC313UM.180

9.5.1 Protocol Versioning... 57
9.5.2 Library Versioning... 58

Chapter 10 Transport Package Detailed View... 59
10.1 Concepts ... 59

10.1.1 Transport Types.. 60
10.1.2 RSSL Channel Structure .. 60
10.1.3 RSSL Server Structure ... 65
10.1.4 Transport Error Handling .. 65
10.1.5 General Transport Return Codes ... 66
10.1.6 Application Lifecycle ... 67

10.2 Initializing and Uninitializing the Transport .. 68
10.2.1 RSSL Initialization and Uninitialization Functions... 68
10.2.2 Initialization Reference Counting with Example.. 69
10.2.3 Just-in-Time Loaded Library Names (Linux Only) .. 69
10.2.4 Transport Locking Models .. 70

10.3 Creating the Connection ... 71
10.3.1 Network Topologies .. 71
10.3.2 Creating the Outbound Connection: rsslConnect ... 74
10.3.3 rsslConnect Outbound Connection Creation Example ... 82
10.3.4 Tunneling Connection Keep Alive... 83

10.4 Server Creation and Accepting Connections .. 84
10.4.1 Creating a Listening Socket.. 84
10.4.2 Accepting Connection Requests... 90
10.4.3 Compression Support ... 92

10.5 Channel Initialization ... 94
10.5.1 rsslInitChannel Function ... 94
10.5.2 RsslInProgInfo Structure... 95
10.5.3 Calling rsslInitChannel .. 95
10.5.4 rsslInitChannel Return Codes... 95
10.5.5 rsslInitChannel Example ... 96

10.6 Reading Data .. 97
10.6.1 rsslRead Function... 98
10.6.2 rsslRead Return Codes .. 98
10.6.3 rsslRead Example... 100
10.6.4 rsslReadEx Function... 102

10.7 Writing Data: Overview ... 103
10.8 Writing Data: Obtaining a Buffer ... 104

10.8.1 Buffer Management Functions.. 105
10.8.2 rsslGetBuffer Return Values ... 105

10.9 Writing Data to a Buffer... 107
10.9.1 rsslWrite Function ... 107
10.9.2 rsslWrite Flag Enumeration Values .. 108
10.9.3 rsslWriteEx Function... 108
10.9.4 Compression... 109
10.9.5 Fragmentation... 110
10.9.6 rsslWrite Return Codes... 111
10.9.7 rsslGetBuffer and rsslWrite Example.. 112

10.10 Managing Outbound Queues .. 115
10.10.1 Ordering Queued Data: rsslWrite Priorities .. 115
10.10.2 rsslFlush Function... 117
10.10.3 rsslFlush Return Codes .. 117
10.10.4 rsslFlush Example .. 118

10.11 Packing Additional Data into a Buffer.. 119
10.11.1 RsslPackBuffer Return Values ... 119
Transport API 3.1.3 C Edition – Developers Guide v
ETAC313UM.180

10.11.2 Example: rsslGetBuffer, RsslPackBuffer, and rsslWrite ... 120
10.12 Ping Management ... 123

10.12.1 Ping Timeout... 123
10.12.2 rsslPing Function .. 124
10.12.3 rsslPing Return Values ... 124
10.12.4 rsslPing Example .. 125

10.13 Closing Connections ... 126
10.13.1 Functions for Closing Connections ... 126
10.13.2 Close Connections Example... 126

10.14 Utility Functions... 127
10.14.1 General Transport Utility Functions .. 127
10.14.2 RsslChannelInfo Structure Members.. 128
10.14.3 multicastStats Options .. 130
10.14.4 ComponentInfo Option.. 130
10.14.5 RsslServerInfo Structure Members... 131
10.14.6 rsslIoctl Option Values .. 131
10.14.7 rsslServerIoctl Option Values ... 132

10.15 HTTPS Tunneling on Linux ... 132
10.16 XML Tracing.. 132

10.16.1 RsslTraceOptions Structure Members.. 132
10.16.2 RsslTraceCodes Flag Enumeration Values.. 133

Chapter 11 Data Package Detailed View.. 134
11.1 Concepts ... 134
11.2 Primitive Types.. 134

11.2.1 RsslReal ... 138
11.2.2 RsslDate ... 142
11.2.3 RsslTime... 144
11.2.4 RsslDateTime ... 146
11.2.5 RsslQos .. 148
11.2.6 RsslState .. 150
11.2.7 RsslArray .. 156
11.2.8 RsslBuffer ... 161
11.2.9 RMTES Decoding ... 162
11.2.10 General Primitive Type Utility Functions... 166

11.3 Container Types.. 167
11.3.1 RsslFieldList ... 170
11.3.2 RsslElementList .. 179
11.3.3 RsslMap.. 187
11.3.4 RsslSeries... 197
11.3.5 RsslVector .. 205
11.3.6 RsslFilterList ... 215
11.3.7 Non-RWF Container Types .. 223

11.4 Permission Data.. 225
11.5 Summary Data .. 225
11.6 Set Definitions and Set-Defined Data ... 226

11.6.1 Set-Defined Primitive Types ... 227
11.6.2 Set Definition Use ... 230
11.6.3 Set Definition Database .. 233

Chapter 12 Message Package Detailed View .. 245
12.1 Concepts ... 245

12.1.1 Common Message Base .. 245
12.1.2 Message Key .. 248
12.1.3 Stream Identification ... 251
Transport API 3.1.3 C Edition – Developers Guide vi
ETAC313UM.180

12.2 RSSL Messages ... 253
12.2.1 RSSL Request Message Class .. 253
12.2.2 RSSL Refresh Message Class ... 257
12.2.3 RSSL Update Message Class .. 261
12.2.4 RSSL Status Message Class.. 264
12.2.5 RSSL Close Message Class... 266
12.2.6 RSSL Generic Message Class ... 267
12.2.7 RSSL Post Message Class... 269
12.2.8 RSSL Acknowledgment Message Class .. 272
12.2.9 The RSSL Message Union ... 274

Chapter 13 Advanced Messaging Concepts ... 285
13.1 Multi-Part Message Handling .. 285
13.2 Stream Priority .. 285
13.3 Stream Quality of Service ... 286
13.4 Item Group Use... 287

13.4.1 Item Group Buffer Contents.. 287
13.4.2 Item Group Utility Functions ... 288
13.4.3 Group Status Message Information .. 288
13.4.4 Group Status Responsibilities by Application Type .. 288

13.5 Single Open and Allow Suspect Data Behavior .. 289
13.6 Pause and Resume... 290
13.7 Batch Messages.. 291

13.7.1 Batch Request .. 291
13.7.2 Batch Reissue... 292
13.7.3 Batch Close .. 293
13.7.4 Batch Request Encoding Example ... 294
13.7.5 Batch Reissue Encoding Example.. 296
13.7.6 Batch Close Encoding Example ... 297

13.8 Dynamic View Use .. 298
13.8.1 RDMViewTypes Enumerated Names ... 300
13.8.2 Dynamic View RsslRequestMsg Encoding Example.. 300

13.9 Posting .. 302
13.9.1 Post Message Encoding Example .. 303
13.9.2 Post Acknowledgement Encoding Example ... 304

13.10 Visible Publisher Identifier (VPI).. 305
13.10.1 VPI Example: Using RsslPostUserInfo to Obtain VPI Data .. 306
13.10.2 VPI Example: Populating VPI in Post Messages from Consumer Applications.................................... 306
13.10.3 VPI Example: Getting VPI from Post Messages... 307

13.11 TREP Authentication... 308
13.12 Private Streams... 309

Appendix A Item and Group State Decision Table.. 311

Appendix B Error Codes ... 313

Appendix C Document Revision History ... 316
Transport API 3.1.3 C Edition – Developers Guide vii
ETAC313UM.180

Transport API 3.1.X C Edition – Developers Guide viii
ETAC313UM.180

List of Figures

Contents

Figure 1. Network Diagram Notation .. 4
Figure 2. UML Diagram Notation.. 4
Figure 3. OMM-Based Product Offerings ... 5
Figure 4. Transport API: Core Diagram.. 5
Figure 5. TREP Infrastructure .. 11
Figure 6. Transport API as a Consumer... 12
Figure 7. Batch Request... 13
Figure 8. View Request Diagram ... 14
Figure 9. Symbol List: Basic Scenario.. 16
Figure 10. Symbol List: Accessing the Entire ADS Cache ... 16
Figure 11. Symbol List: Requesting Symbol List Streams via the Transport API Reactor ... 17
Figure 12. Server Symbol List .. 18
Figure 13. Posting into a Cache ... 19
Figure 14. OMM Post with Legacy Inserts ... 20
Figure 15. Private Stream Scenarios ... 21
Figure 16. Provider Access Point ... 22
Figure 17. Interactive Providers ... 23
Figure 18. NIP: Point-To-Point ... 25
Figure 19. NIP: Multicast .. 25
Figure 20. Typical TREP Components... 26
Figure 21. Transport API and Advanced Distribution Server ... 27
Figure 22. Transport API and the Advanced Data Hub.. 28
Figure 23. Transport API and Elektron... 29
Figure 24. Transport API and Data Feed Direct... 30
Figure 25. Transport API and Internet Connectivity ... 31
Figure 26. Transport API and Direct Connect .. 32
Figure 27. Transport API and the Composite Pattern .. 47
Figure 28. Application Lifecycle.. 67
Figure 29. Unified TCP Network... 71
Figure 30. TCP Connection Creation ... 72
Figure 31. Unified Multicast Network.. 72
Figure 32. Segmented Multicast Network .. 73
Figure 33. Multicast Connection Creation .. 73
Figure 34. Consuming Multicast Data .. 74
Figure 35. Transport API Server Creation.. 84
Figure 36. Transport API Writing Flow Chart ... 104
Figure 37. rsslWrite Priority Scenario ... 115
Figure 38. Item Group Example ... 287
Figure 39. Batch Request Interaction Example‘ ...‘ 292
Figure 40. Batch Reissue (Pause) Interaction Example... 293
Figure 41. Batch Close Interaction Example .. 294

List of Tables

Contents
Table 1: Acronyms and Abbreviations .. 1
Table 2: API Performance Comparison .. 8
Table 3: Capabilities by API .. 8
Table 4: Layer-Specific Capabilities.. 10
Table 5: RsslEncodeIterator Utility Functions... 49
Table 6: RsslDecodeIterator Utility Functions... 52
Table 7: Data and Message Package Success Return Codes ... 54
Table 8: Data and Message Package Failure Return Codes ... 56
Table 9: RsslLibraryVersionInfo Structure Members... 57
Table 10: RsslLibraryVersionInfo Structure Members... 58
Table 11: Library Version Utility Functions... 58
Table 12: RsslChannel Structure Members... 61
Table 13: RSSL Connection State Values .. 62
Table 14: RSSL ConnectionType Values.. 63
Table 15: RsslServer Structure Members... 65
Table 16: RsslError Structure Members ... 65
Table 17: General Transport Return Codes.. 66
Table 18: RSSL Initialization and Uninitialization Functions ... 68
Table 19: jitOpts Options... 69
Table 20: RSSL Initialize Locking Options .. 70
Table 21: rsslConnect Function ... 74
Table 22: RsslConnectOptions Structure Members.. 75
Table 23: RsslConnectOptions.connectionInfo Options... 77
Table 24: RsslConnectOptions.multicastOpts Options... 78
Table 25: RsslConnectOptions.shmemOpts Options.. 80
Table 26: RsslConnectOptions.seqMulticastOpts Options... 80
Table 27: RsslConnectOptions.tcpOpts Options.. 80
Table 28: RsslConnectOptions.encryptionOpts Options ... 81
Table 29: RsslConnectOptions Utility Function... 81
Table 30: RsslConnectOptions Utility Function... 81
Table 31: rsslBind Function ... 84
Table 32: RsslBindOptions Structure Members.. 84
Table 33: RsslBindOptions.tcpOpts Options... 88
Table 34: RsslBindOptions Utility Function ... 88
Table 35: rsslAccept Function ... 90
Table 36: RsslAcceptOptions Structure Members.. 90
Table 37: RsslAcceptOptions Utility Functions... 90
Table 38: RSSL Compression Types.. 92
Table 39: rsslInitChannel Function .. 94
Table 40: RsslInProgInfo Structure Members.. 95
Table 41: rsslInitChannel Return Codes ... 96
Table 42: RsslChannel Function ... 98
Table 43: rsslRead Return Codes ... 98
Table 44: rsslReadEx Function.. 102
Table 45: rsslReadOutArgs Options .. 102
Table 46: RsslReadFlagsOut Enumerations... 103
Table 47: rsslReadInArgs Option .. 103
Table 48: Buffer Management Functions .. 105
Table 49: rsslGetBuffer Return Values ... 106
Table 50: rsslWrite Function.. 107
Table 51: rsslWrite Flags... 108
Transport API 3.1.X C Edition – Developers Guide ix
ETAC313UM.180

Table 52: rsslWriteEx Function.. 108
Table 53: rsslReadInArgs Options .. 108
Table 54: rsslReadInArgs Options .. 109
Table 55: rsslWriteFlagsIn Enumerations .. 109
Table 56: rsslWrite Return Codes .. 111
Table 57: rsslWrite Priority Value Enumerations .. 116
Table 58: rsslFlush Function.. 117
Table 59: rsslFlush Return Codes .. 117
Table 60: RsslPackBuffer Function .. 119
Table 61: RsslPackBuffer Return Values.. 119
Table 62: rsslPing function ... 124
Table 63: rsslPing Return Codes.. 124
Table 64: RSSL Connection Closing Functionality ... 126
Table 65: Transport Utility Functions .. 127
Table 66: RsslChannelInfo Structure Members.. 128
Table 67: multicastStats Options.. 130
Table 68: componentInfo Option.. 130
Table 69: RsslServerInfo Structure Members.. 131
Table 70: rsslIoctl Option Values .. 131
Table 71: rsslServerIoctl Option Values ... 132
Table 72: RsslTraceOptions Structure Members.. 133
Table 73: RsslTraceCodes Option Values .. 133
Table 74: Transport API Primitive Types .. 135
Table 75: RsslReal Structure Members ... 138
Table 76: RsslRealHints Enumeration Values... 138
Table 77: RsslReal Utility Functions .. 141
Table 78: RsslDate Structure Members ... 142
Table 79: RsslDate Utility Functions .. 143
Table 80: RsslDateTimeStringFormatTypes ... 143
Table 81: RsslTime Structure Members... 144
Table 82: RsslTime Utility Functions .. 144
Table 83: RsslDateTimeStringFormatTypes ... 145
Table 84: RsslDateTime Structure Members... 146
Table 85: RsslDateTime Utility Functions.. 146
Table 86: RsslDateTimeStringFormatTypes ... 147
Table 87: RsslQos Structure Members ... 148
Table 88: RsslQos Timeliness Values... 149
Table 89: RsslQos Rate Values .. 149
Table 90: RsslQos Utility Functions... 150
Table 91: RsslState Structure Members ... 150
Table 92: RsslState Stream State Values... 151
Table 93: RsslState Data State Values... 152
Table 94: RsslState Code Values... 152
Table 95: RsslState Utility Functions .. 155
Table 96: RsslArray Structure Members ... 156
Table 97: RsslArray Encode Functions... 157
Table 98: RsslArray Decode Functions... 159
Table 99: RsslArray Utility Functions .. 160
Table 100: RsslBuffer Structure Members ... 161
Table 101: RsslRmtesCacheBuffer Structure Members ... 162
Table 102: RsslRmtesCacheBuffer Decode Functions... 162
Table 103: RsslRmtesCacheBuffer Utility Functions .. 163
Table 104: RMTES to Unicode Conversion Functions.. 163
Table 105: RsslU16Buffer Structure Members .. 163
Table 106: General Primitive Type Utility Functions ... 166
Transport API 3.1.3 C Edition – Developers Guide x
ETAC313UM.180

Table 107: Transport API Container Types... 167
Table 108: RsslFieldList Structure Members .. 170
Table 109: RsslFieldList Flags ... 171
Table 110: RsslFieldEntry Structure Members .. 172
Table 111: RsslFieldList Encode Functions .. 173
Table 112: RsslFieldList Decode Functions .. 177
Table 113: RsslFieldList Utility Functions.. 179
Table 114: RsslElementList Structure Members .. 179
Table 115: RsslElementList Flags ... 180
Table 116: RsslElementEntry Structure Members.. 181
Table 117: RsslElementList Encoding Interfaces... 181
Table 118: RsslElementList Decode Functions.. 185
Table 119: RsslElementList Utility Functions ... 187
Table 120: RsslMap Structure Members ... 187
Table 121: RsslMap Flags ... 189
Table 122: RsslMapEntry Structure Members ... 189
Table 123: RsslMapEntry Flags.. 190
Table 124: RsslMapEntry Actions... 190
Table 125: RsslMapEntry Encode Functions .. 191
Table 126: RsslMapEntry Decode Functions .. 195
Table 127: RsslMap Utility Functions... 196
Table 128: RsslSeries Structure Members ... 197
Table 129: RsslSeries Flags... 198
Table 130: RsslSeriesEntry Structure Members .. 198
Table 131: RsslSeries Encode Functions... 199
Table 132: RsslSeries Decode Functions... 203
Table 133: RsslSeries Utility Functions .. 204
Table 134: RsslVector Structure Members ... 205
Table 135: RsslVector Flags... 206
Table 136: RsslVectorEntry Structure Members .. 207
Table 137: RsslVectorEntry Flag.. 207
Table 138: RsslVectorEntry Actions... 208
Table 139: RsslVector Encode Functions... 209
Table 140: RsslVector Decode Functions... 213
Table 141: RsslVector Utility Functions .. 214
Table 142: RsslFilterList Structure Members .. 215
Table 143: RsslFilterList Flags .. 216
Table 144: RsslFilterEntry Structure Members .. 216
Table 145: RsslFilterEntry Flags.. 217
Table 146: RsslFilterEntry Actions... 217
Table 147: RsslFilterList Encode Functions .. 218
Table 148: RsslFilterList Decode Functions.. 221
Table 149: RsslFilterList Utility Functions ... 222
Table 150: Non-RWF Type Encode Functions .. 223
Table 151: Set-Defined Primitive Types.. 227
Table 152: RsslFieldSetDef Structure Member.. 230
Table 153: RsslFieldSetDefEntry Structure Members... 231
Table 154: RsslElementSetDef Structure Members.. 231
Table 155: RsslElementSetDefEntry Structure Members... 232
Table 156: RsslLocalFieldSetDefDb Structure Members... 233
Table 157: RsslLocalElementSetDefDb Structure Members .. 234
Table 158: Local Set Definition Database Encode Functions .. 234
Table 159: Local Set Definition Database Decode Functions .. 235
Table 160: Local Set Definition Database Utility Functions .. 236
Table 161: Message Base Structure Members... 245
Transport API 3.1.3 C Edition – Developers Guide xi
ETAC313UM.180

Table 162: Message Class Information .. 247
Table 163: msgKey Structure Members.. 248
Table 164: Message Key Flags .. 249
Table 165: MsgKey Utility Functions... 250
Table 166: RsslRequestMsg Structure Members.. 253
Table 167: RsslRequestMsg Flags ... 255
Table 168: RsslRequestMsg Utility Functions ... 256
Table 169: RsslRefreshMsg Structure Members .. 257
Table 170: RsslRefreshMsg Flags ... 259
Table 171: RsslRefreshMsg Utility Functions ... 260
Table 172: RsslUpdateMsg Structure Members .. 261
Table 173: RsslUpdateMsg Flags ... 263
Table 174: RsslUpdateMsg Utility Functions.. 263
Table 175: RsslStatusMsg Structure Members .. 264
Table 176: RsslStatusMsg Flags ... 265
Table 177: RsslStatusMsg Utility Functions.. 265
Table 178: RsslCloseMsg Structure Members... 266
Table 179: RsslCloseMsg Flags ... 266
Table 180: RsslCloseMsg Utility Functions.. 266
Table 181: RsslGenericMsg Structure Members .. 267
Table 182: RsslGenericMsg Flags ... 268
Table 183: RsslGenericMsg Utility Functions ... 268
Table 184: RsslPostMsg Structure Members... 269
Table 185: RsslPostMsg Flags .. 270
Table 186: RsslPostRights Flags .. 271
Table 187: RsslPostMsg Utility Functions .. 271
Table 188: RsslAckMsg Structure Members ... 272
Table 189: RsslAckMsg Flags .. 273
Table 190: RsslAckMsg NakCode Values... 273
Table 191: RsslAckMsg Utility Functions .. 274
Table 192: RsslMsg Encode Functions .. 274
Table 193: RsslMsg Decode Functions .. 280
Table 194: RsslMsg Utility Functions... 282
Table 195: Item Group Utility Functions ... 288
Table 196: SingleOpen and AllowSuspectData Effects.. 290
Table 197: RDMViewTypes Values .. 300
Table 198: Item and Group State Decision Table ... 311
Table 199: Error Codes... 313
Table 200: Transport API C Edition Document Revision History .. 316
Transport API 3.1.3 C Edition – Developers Guide xii
ETAC313UM.180

Chapter 1 Transport API Developers Guide Introduction
Chapter 1 Transport API Developers Guide Introduction

1.1 About this Manual

This document is authored by Transport API architects and programmers who encountered and resolved many of the issues
the reader might face. Several of its authors have designed, developed, and maintained the Transport API product and other
Thomson Reuters products which leverage it. As such, this document is concise and addresses realistic scenarios and use
cases.

This guide documents the functionality and capabilities of the Transport API C Edition. In addition to connecting to itself, the
Transport API can also connect to and leverage many different Thomson Reuters and customer components. If you want the
Transport API to interact with other components, consult that specific component’s documentation to determine the best way
to configure and interact with these other devices.

1.2 Audience

This manual provides information and examples that aid programmers using the Transport API C Edition. The level of material
covered assumes that the reader is a user or a member of the programming staff involved in the design, coding, and test
phases for applications which will use the Transport API. It is assumed that the reader is familiar with the data types, classes,
operational characteristics, and user requirements of real-time data delivery networks, and has experience developing
products using the C programming language in a networked environment.

1.3 Programming Language

The Transport API Value Added Components are written to both the C and Java languages. This guide discusses concepts
related to the C Edition. All code samples in this document and all example applications provided with the product are written
accordingly.

1.4 Acronyms and Abbreviations

ACRONYM Meaning

ADH Advanced Data Hub is the horizontally scalable service component within Thomson Reuters
Enterprise Platform (TREP) providing high availability for publication and contribution messaging,
subscription management with optional persistence, conflation and delay capabilities.

ADS Advanced Distribution Server is the horizontally scalable distribution component within Thomson
Reuters Enterprise Platform (TREP) providing highly available services for tailored streaming and
snapshot data, publication and contribution messaging with optional persistence, conflation and delay
capabilities.

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ATS Advanced Transformation System

DACS Data Access Control System

Table 1: Acronyms and Abbreviations
Transport API 3.1.X C Edition – Developers Guide 1
ETAC313UM.180

Chapter 1 Transport API Developers Guide Introduction
DMM Domain Message Model

EED Elektron Edge Device

EMA Elektron Message API, referred to simply as the Message API

EOA Elektron Object API, referred to simply as the Object API.

ETA Elektron Transport API, referred to simply as the Transport API. Formerly referred to as UPA.

EWA Elektron Web API

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol (Secure)

IDN Integrated Data Network

NIP Non-Interactive Provider

OMM Open Message Model

QoS Quality of Service

RDM Reuters Domain Model

Reactor The Reactor is a low-level, open-source, easy-to-use layer above ETA. It offers heartbeat
management, connection and item recovery, and many other features to help simplify application
code for users.

RFA Robust Foundation API

RMTES Reuters Multi-Lingual Text Encoding Standard

RSSL Reuters Source Sink Library

RWF Reuters Wire Format, a Thomson Reuters proprietary format.

SOA Service Oriented Architecture

SSL Source Sink Library

TREP Thomson Reuters Enterprise Platform

UML Unified Modeling Language

UTF-8 8-bit Unicode Transformation Format

ACRONYM Meaning

Table 1: Acronyms and Abbreviations
Transport API 3.1.X C Edition – Developers Guide 2
ETAC313UM.180

Chapter 1 Transport API Developers Guide Introduction
1.5 References

1. Transport API C Edition RDM Usage Guide

2. API Concepts Guide

3. Reuters Multilingual Text Encoding Standard Specification

4. The Thomson Reuters Professional Developer Community

1.6 Documentation Feedback

While we make every effort to ensure the documentation is accurate and up-to-date, if you notice any errors, or would like to
see more details on a particular topic, you have the following options:

• Send us your comments via email at apidocumentation@thomsonreuters.com.

• Add your comments to the PDF using Adobe’s Comment feature. After adding your comments, submit the entire PDF to
Thomson Reuters by clicking Send File in the File menu. Use the apidocumentation@thomsonreuters.com address.

1.7 Document Conventions

This document uses the following types of conventions:

• Typographic

• Diagrams

1.7.1 Typographic

• Structures, methods, in-line code snippets, and types are shown in orange, Courier New font.

• Parameters, filenames, tools, utilities, and directories are shown in Bold font.

• Document titles and variable values are shown in italics.

• When initially introduced, concepts are shown in Bold, Italics.

• Longer code examples are shown in Courier New font against an orange background. For example:

/* decode contents into the filter list structure */
if ((retVal = rsslDecodeFilterList(&decIter, &filterList)) >= RSSL_RET_SUCCESS)
{

/* create single filter entry and reuse while decoding each entry */
RsslFilterEntry filterEntry = RSSL_INIT_FILTER_ENTRY;
Transport API 3.1.X C Edition – Developers Guide 3
ETAC313UM.180

https://developers.thomsonreuters.com/
mailto:apidocumentation@thomsonreuters.com
mailto:apidocumentation@thomsonreuters.com

Chapter 1 Transport API Developers Guide Introduction
1.7.2 Diagrams

Diagrams that depict the interaction between components on a network use the following notation:

Figure 1. Network Diagram Notation

Figure 2. UML Diagram Notation

1.8 What’s New in this Document

Added the TREP Authentication feature, which provides enhanced authentication functionality when used with TREP and
DACS. This feature requires TREP 3.1 or later. For further details, refer to Section 13.11.

For a list of 8.0 changes made to this document, refer to Appendix C. For changes made to the Transport API in previous
versions, refer to the last 7.X version release Developer’s Guide.
Transport API 3.1.X C Edition – Developers Guide 4
ETAC313UM.180

Chapter 2 Product Description
Chapter 2 Product Description

2.1 What is the Transport API?

The Transport API (also known as the RSSL API) is the customer release of Thomson Reuters’s low-level internal API,
currently used by the Thomson Reuters Enterprise Platform (TREP) and its dependent APIs for optimal distribution of OMM/
RWF data.

The Transport API is currently used by products such as the Advanced Distribution Server (ADS), Advanced Data Hub (ADH),
Robust Foundation API (RFA), EDF-D, Elektron, and Eikon. Due to its well-integrated and common usage across these
products, the Transport API allows clients to write applications for use with Thomson Reuters Enterprise Platform (TREP) to
achieve the highest performance, highest throughput, and lowest latency.

The Transport API supports all constructs available as part of the Open Message Model. It complements RFA and the
Message API by allowing users to choose the type of functionality and layer (Session or Transport) at which they want to
access the TREP. With the addition of the Transport API, customers have a choice between a feature-loaded session-level
API (i.e., the Message API) and high-performance transport-level API (i.e., the Transport API).

Figure 3. OMM-Based Product Offerings

The Transport API is a low-level API that provides application developers with the most flexible development environment and
is the foundation on which all Thomson Reuters OMM-based components are built.By utilizing an API at the transport level, a
client can write to the same API as the ADS / ADH and achieve the same levels of performance.

Figure 4. Transport API: Core Diagram
Transport API 3.1.X C Edition – Developers Guide 5
ETAC313UM.180

Chapter 2 Product Description
2.2 Transport API Features

The Transport API is:

• Available as both a C-based and Java-based API.

• 64-bit.

• Thread-safe and thread-aware.

• Capable of handling:

• Any and all OMM primitives and containers.

• All Domain Models, including those defined by Thomson Reuters as well as other user-defined models.

• A reliable, transport-level API which includes OMM encoders/decoders.

Additionally, the Transport API provides an ANSI Page parser to encode/decode ANSI sequences and a DACS Library to allow
generation of DACS Locks.

2.2.1 General Capabilities

The Transport API provides general capabilities independent of the type of application. The Transport API:

• Supports fully connected or unified network topologies as well as segmented topologies.

• Supports multiple network session types, including TCP, HTTP, and multicast-based networks.

• Can internally fragment and reassemble large messages.

• Can pack multiple, small messages into the same network buffer.

• Can perform data compression and decompression internally.

• Can choose its locking model based on need. Locking can be enabled globally, within a connection, or disabled
entirely, thus allowing clients to develop single-threaded, multi-threaded, thread-safe, or thread-aware solutions.

• Has full control over the number of message buffers and can dynamically increase or decrease this quantity during
runtime.

• Does not have external configuration, log file, or message file dependencies: everything is programmatically supplied,
where the user can define any external configuration or logging according to their needs.

• Allows users to write messages at different priority levels, allowing higher priority messages to be sent before lower
priority messages.

2.2.2 Consumer Applications

You can use the Transport API to create consumer-based applications that can:

• Make streaming and snapshot-based subscription requests to the ADS.

• Send batch, views, and symbol list requests to the ADS.

• Support pause and resume on active data streams with the ADS.

• Send post messages to the ADS (for consumer-based publishing and contributions).

• Send and receive generic messages with ADS.

• Establish a private stream.

• Transparently use HTTP to communicate with an ADS by tunneling through the Internet.
Transport API 3.1.X C Edition – Developers Guide 6
ETAC313UM.180

Chapter 2 Product Description
2.2.3 Provider Applications: Interactive

You can use the Transport API to create interactive providers that can:

• Receive requests and respond to streaming and snapshot-based Requests from ADH (previously known as Managed
or Sink-Driven Server applications).

• Receive and respond to batch, views, and symbol list requests from ADH.

• Receive and respond to requests for a Private Stream from the ADH.

• Receive requests for pause and resume on active data streams.

• Receive and acknowledge post messages (used receiving consumer- based Publishing and Contributions) from ADH.

• Send and receive Generic Messages with ADH.

Additionally, you can use the Transport API to create server-based applications that can accept multiple connections from
ADH, or allows multiple ADHs to connect to a provider.

2.2.4 Provider Applications: Non-Interactive

Using the Transport API, you can write non-interactive applications that start up and begin publishing data to ADH (previously
known as Source-Driven (Src-Driven) or broadcast-style server applications). This includes both TCP and UDP multicast-
based Non-Interactive Provider (NIP) applications.

2.3 Performance and Feature Comparison

Though TREP’s core infrastructure can achieve great performance numbers, such performance can suffer from bottlenecks
caused by using the rich features offered in certain APIs (i.e., RFA) when developing high-performance applications. By writing
to anthe Transport API, a client can leverage the full throughput and low latency of the core infrastructure while by-passing the
full set of RFA’s features. For a comparison of API capabilities and features, refer to Section 2.4.

As illustrated in Figure 2, core infrastructure components (as well as their performance test tools, such as rmdstestclient and
sink_driven_src) are all written to the Transport API. A Transport API-based application’s maximum achievable performance
(latency, throughput, etc) is determined by the infrastructure component to which is connects. Thus, to know performance
metrics, you should look at the performance numbers for the associated infrastructure component. For example:

• If a Transport API consumer application talks to the ADS and you want to know the maximum throughput and latency of
the consumer, look at the performance numbers for the ADS configuration you use.

• If a Transport API provider application talks to an ADH and you want to know the maximum throughput and latency of the
Transport API provider, look at the performance numbers for the ADH Configuration you use.

When referring to TREP infrastructure documentation, look for Transport API or RSSL numbers (TREP documentation often
refers to the Transport API as RSSL), which will give the performance and latency of the Transport API and the associated
core infrastructure component.

The following table compares existing API products and their performance. Key factors are latency, throughput, memory, and
thread safety. Results may vary depending on whether you use of watch lists and memory queues and according to your
hardware and operating system. Typically, when measuring performance on the same hardware and operating system, these
comparisons remain consistent.

Tip: The Transport API now ships with API performance tools and additional documentation to which you can refer which
you can use to arrive at more-specific results for your environment.
Transport API 3.1.X C Edition – Developers Guide 7
ETAC313UM.180

Chapter 2 Product Description
2.4 Functionality: Which API to Choose?

To make an informed decision on which API to use, you should balance the tradeoffs between performance and functionality
(for performance comparisons, refer to Section 2.3).

2.4.1 General Capability Comparison

The following table compares the general capabilities of RFA, the Message API, and the Transport API.

API THREAD SAFETY THROUGHPUT LATENCY MEMORY FOOTPRINT

Transport API Safe and Aware Very High Lowest Lowest

Message API Safe and Aware High Low Medium

RFA Safe and Aware High Low Medium
(watch list, allows optional queues)

SFC C++ None Medium High Medium – High
(watch list, cache)

SSL 4.5 Big Lock Medium - High Medium Low (watch list optional)

SSL 4.0
Classic Edition

Big Lock Low - Medium Medium - High Medium (watch list)

Table 2: API Performance Comparison

CAPABILITY TYPE CAPABILITY RFA MESSAGE API TRANSPORT API

Transport Compression via OMM X X X

HTTP Tunneling (RWF) X X X

RV Multicast

TCP/IP: RWF X X

Unidirectional Shared
Memory

X

Reliable Multicast X X X

Application Type Consumer X X X

Provider: Interactive X X

Provider: Non-Interactive X X

Table 3: Capabilities by API
Transport API 3.1.X C Edition – Developers Guide 8
ETAC313UM.180

Chapter 2 Product Description
2.4.2 Layer-Specific Capability Comparison

The following table lists capabilities specific to the individual session-layer (RFA and Message API) or transport-layer
(Transport API).

RFA uses information provided from the Transport API and creates specific implementations of capabilities. Though these
capabilities are not implemented in the Transport API, Transport API-based applications can use the information provided by

General Batch Support X X X

Generic Messages X X X

Pause/Resume X X X

Posting X X X

Snapshot Requests X X X

Streaming Requests X X X

Private Streams X X X

Views X X X

Domain Models Custom Data Model Support X X X

RDM: Dictionary X X X

RDM: Login X X X

RDM: Market Price X X X

RDM: MarketByOrder X X X

RDM: MarketByPrice X X X

RDM: Market Maker X X X

RDM: Service Directory X X X

RDM: Symbol List X X X

RDM: Yield Curve X X X

Encoders/Decoders AnsiPage X The Message API supports
passing AnsiPage data, but
does not currently have an
ANSI parser.

X

DACS Lock X The Message API might
include this capability in a
future release

X

OMM X X X

RMTES X X X

TS1 Parser X X

CAPABILITY TYPE CAPABILITY RFA MESSAGE API TRANSPORT API

Table 3: Capabilities by API (Continued)
Transport API 3.1.X C Edition – Developers Guide 9
ETAC313UM.180

Chapter 2 Product Description
the Transport API to implement the same functionality (i.e., as provided by RFA). Additionally, Transport API Value Added
Components offer fully-supported reference implementations for much of this functionality.

CAPABILITY RFA MESSAGE API TRANSPORT API

Config: file-based X X *

Config: programmatic X X X

Group fanout to items X X *

Logging: file-based X X *

Logging: programmatic X X

QoS Management X *

Network Pings: automatic X X *

Recovery: connection X X *

Recover: items X X *

Request routing X *

Session management X *

Service Groups X *

Single Open: API-based X X *

Warm Standby: API-based X Planned for future release *

Watchlist X X *

Controlled fragmentation and
assembly of large messages

X

Controlled locking / threading
model

X

Controlled dynamic message
buffers with ability to
programmatically modify
during runtime

X

Controlled message packing X

Messages can be written at
different priority levels

X

* Transport API users can get the same functionality but must implement it themselves or use the Transport API Value
Added Component libraries or source code.

Table 4: Layer-Specific Capabilities
Transport API 3.1.X C Edition – Developers Guide 10
ETAC313UM.180

Chapter 3 Consumers and Providers
Chapter 3 Consumers and Providers

3.1 Overview

For those familiar with previous API products or concepts from TREP, Rendezvous, or Triarch, we map how the Transport API
implements the same functionality.

At a very high level, the TREP system facilitates controlled and managed interactions between many different service
providers and consumers. Thus, TREP is a real-time, streaming Service Oriented Architecture (SOA) used extensively as
middleware integrating financial-service applications. While providers implement services and expose a certain set of
capabilities (e.g. content, workflow, etc.), consumers use the capabilities offered by providers for a specific purpose (e.g.,
trading screen applications, black-box algorithmic trading applications, etc.). In some cases, a single application can function
as both a consumer and a provider (e.g., a computation engine, value-add server, etc.).

Figure 5. TREP Infrastructure

To access needed capabilities, consumers always interact with a provider, either directly and/or via TREP. Consumer
applications that want the lowest possible latency can communicate directly via TREP APIs with the appropriate service
providers. However, you can implement more complex deployments (i.e., integrating multiple providers, managing local
content, automated resiliency, scalability, control, and protection) by placing the TREP infrastructure between provider and
consumer applications.
Transport API 3.1.X C Edition – Developers Guide 11
ETAC313UM.180

Chapter 3 Consumers and Providers
3.2 Consumers

Consumers make use of capabilities offered by providers through access points. To interact with a provider, the consumer
must attach to a consumer access point. Access points manifest themselves in two different forms:

• A concrete access point. A concrete access point is implemented by the service-provider application if it supports direct
connections from consumers. The right-side diagram in Figure 6 illustrates a Transport API consumer connecting to
Elektron via a direct access point.

• A proxy access point. A proxy access point is point-to-point based or multicast (according to your needs) and
implemented by a TREP Infrastructure component (i.e., an ADS). Figure 6 also illustrates a Transport API consumer
connecting to the provider by first passing through a proxy access point.

Figure 6. Transport API as a Consumer

Examples of consumers include:

• An application that subscribes to data via TREP, EDF, or Elektron.

• An application that posts data to TREP or Elektron (e.g., contributions/inserts or local ublication into a cache).

• An application that communicates via generic messages with TREP or Elektron.

• An application that does any of the above via a private stream.
Transport API 3.1.X C Edition – Developers Guide 12
ETAC313UM.180

Chapter 3 Consumers and Providers
3.2.1 Subscriptions: Request/Response

After a consumer successfully logs into a provider (i.e., ADS or Elektron) and obtains a list of available sources, the consumer
can then subscribe and receive data for various services. A consumer subscribes to a service or service ID that in turn maps to
a service name in the Source Directory. Any service or service ID provides a set of items to its clients.

• If a consumer’s request does not specify interest in future changes (i.e., after receiving a full response), the request is
a classic snapshot request. The data stream is considered closed after a full response of data (possibly delivered in
multiple parts) is sent to the consumer. This is typical behavior when a user sends a non-streaming request. Because
the response contains all current information, the stream is considered complete as soon as the data is sent.

• If a consumer’s request specifies interest in receiving future changes (i.e., after receiving a full response), the request
is considered to be a streaming request. After such a request, the provider sends the consumer an initial set of data
and then sends additional changes or “updates” to the data as they occur. The data stream is considered open until
either the consumer or provider closes it. A consumer typically sends a streaming request when a user subscribes for
an item and wants to receive every change to that item for the life of the stream.

Specialized cases of request / response include:

• Batches

• Views

• Symbol Lists

• Server Symbol Lists

3.2.2 Batches

A consumer can request multiple items using a single, client-based, request called a batch request. After the Transport API
consumer sends an optimized batch request to the ADS, the ADS responds by sending the items as if they were opened
individually so the items can be managed individually.

Figure 7 illustrates a Transport API consumer issuing a batch request for “TRI, “GE”, and “INTC.O” and the resulting ADS
responses.

Figure 7. Batch Request
Transport API 3.1.X C Edition – Developers Guide 13
ETAC313UM.180

Chapter 3 Consumers and Providers
3.2.3 Views

The system reduces the amount of data that flows across the network by filtering out content in which the user is not
interested. To improve performance and maximize bandwidth, you can configure the TREP to filter out certain fields to
downstream users. When filtering, all consumer applications see the same subset of fields for a given item.

Another way of controlling filtering is to configure the consumer application to use Views. Using a view, a consumer requests a
subset of fields with a single, client-based request (refer to Figure 8). The API then requests (from the ADS/Elektron) only the
fields of interest. When the API receives the requested fields, it sends the subset back to the consumer. This is also called
consumer-side (or request-side) filtering.

Figure 8. View Request Diagram

Views were designed to provide the same filtering functionality as the Legacy STIC device and SFC (based on its own internal
cache) while optimizing network traffic.

Views, in conjunction with server-side filtering, can be a powerful tool for bandwidth optimization on a network. Users can
combine a view with a batch request to send a single request to open multiple items using the same view.
Transport API 3.1.X C Edition – Developers Guide 14
ETAC313UM.180

Chapter 3 Consumers and Providers
3.2.4 Pause and Resume

The Pause/Resume feature optimizes network bandwidth. You can use Pause/Resume to reduce the amount of data flowing
across the network for a single item or for many items that might already be openly streaming data to a client.

To pause/resume data, the client first sends a request to pause an item to the ADS. The ADS receives the pause request and
stops sending new data to the client for that item, though the item remains open and in the ADS Cache. The ADS continues to
receive messages from the upstream device (or feed) and continues to update the item in its cache (but because of the client’s
pause request, does not send the new data to the client). When the client wants to start receiving messages for the item again,
the client sends a resume to the ADS, which then responds by sending an aggregated update or a refresh (a current image) to
the client. After the ADS resumes sending data, the ADS sends all subsequent messages.

By using the Pause/Resume feature a client can avoid issuing multiple open/close requests which can disrupt the ADS and
prolong recovery times. There are two main use-case scenarios for this feature:

• Clients with intensive back-end processing

• Clients that display a lot of data

3.2.4.1 Pause / Resume Use Case 1: Back-end Processing

In this use-case, a client application performs heavy back-end processing and has too many items open, such that the client is
at the threshold for lowering the downstream update rate. The client now needs to run a specialized report, or do some other
back-end processing. Such an increase in workload on the client application will negatively impact its downstream message
traffic. The client does not want to back up its messages from the ADS and risk having ADS abruptly cut its connection, nor
does the client want to close its own connection (or close all the items on the ADS) which would require the client to re-open all
items after finishing its back-end processing.

In this case, the client application:

• Sends a single PAUSE message to the ADS to pause all the items it has open.

• Performs all needed back-end processing.

• Sends a Resume request to resume all the items it had paused.

After receiving the Resume request, the ADS sends a refresh (i.e., current image), to the client for all paused items and then
continues to send any subsequent messages.

3.2.4.2 Pause / Resume Use Case 2: Display Applications

The second use case assumes the application displays a lot of data. In this scenario, the user has two windows open. One
window has item “TRI” open and is updating (Window 1). The other has “INTC.O” open and is updating (Window 2). On his
screen, the user moves Window 1 to cover Window 2 and the user can no longer see the contents of Window 2. In this case,
the user might not need updates for “INTC.O” because the contents are obstructed from view. In this case, the client
application can:

• Pause “INTC.O” as long as Window 2 is covered and out of view.

• Resume the stream for “INTC.O” when Window 2 moves back into view.

When Window 2 is again visible, the ADS sends a refresh, or current image, to the client for the item “INTC.O” and then
continues to send any subsequent messages.
Transport API 3.1.X C Edition – Developers Guide 15
ETAC313UM.180

Chapter 3 Consumers and Providers
3.2.5 Symbol Lists

If a consumer wants to open multiple items but doesn’t know their names, the consumer can first issue a request using a
Symbol List. However, the consumer can issue such a request only if a provider exists that can resolve the symbol list name
into a set of item names.

This replaces the functionality for clients that previously used Criteria-Based Requests (CBR) with the SSL 4.5 API.

The following diagram illustrates issuing a basic symbol list request. In this diagram, the consumer issues the request using a
particular key name (FRED). The request flows through the platform to a provider capable of resolving the symbol list name (the
interactive provider with FRED in its cache). The provider sends back all names that map to FRED (TRI and GE). After receiving
the response, the client can then choose whether to open items; individually or by making a batch request for multiple items. A
subsequent request is resolved by the first cache that contains the data (listed in the diagram as optional caches).

Figure 9. Symbol List: Basic Scenario

The following diagram illustrates how a consumer can access all items in the ADS Cache, effectively dumping the cache to the
OMM client. In this scenario, the client requests the symbol list _ADS_CACHE_LIST. The ADS receives the request and
responds with the names of all items in its cache. The client can then choose to open items individually, or make a batch
request to open multiple items. The ADS provides an additional symbol list (_SERVER_LIST) for obtaining lists of items stored in
specific ADH instances. For details on this symbol list, refer to the ADS and ADH Software Installation Manuals.

Figure 10. Symbol List: Accessing the Entire ADS Cache
Transport API 3.1.X C Edition – Developers Guide 16
ETAC313UM.180

Chapter 3 Consumers and Providers
3.2.5.1 Requesting Symbol List Data Streams

For consumer applications using the Transport API reactor value-add component on certain APIs: if the consumer watchlist is
enabled, an application can indicate in its request that it wants streams for the items in the symbol list to be opened on its
behalf. The reactor will internally process responses on the symbol list stream and open requests as new items appear in the
list. The responses to these item requests will be provided to the application using negative streamId values.

The reactor supports this method with the ADS or in direct connections with interactive providers. For details on the model for
requesting symbol list data streams, see the Transport API RDM Usage Guide specific to the API that you use.

Figure 11. Symbol List: Requesting Symbol List Streams via the Transport API Reactor

Note: The reactor opens items from the symbol list as market price items, and uses the best available quality of service (QoS)
advertised by the service in the provider’s source directory response.
Transport API 3.1.X C Edition – Developers Guide 17
ETAC313UM.180

Chapter 3 Consumers and Providers
3.2.5.2 Server Symbol Lists

Using certain Elektron APIs, client Client applications can request a list of all symbols maintained in the cache of all ADH
servers across the network. Client applications start by first requesting a symbol list item _SERVER_LIST which will return a
list of all servers and their supported domains. Each entry on that list is a symbol list item name formatted as follows
_CACHE_LIST.serverId.domain. Client applications can then spawn individual symbol list requests for servers and domains
of interest using the symbol name _CACHE_LIST.serverId.domain. If domain is not provided, it defaults to 6.

The symbol list response for _CACHE_LIST.serverId.domain will include a list of all Level 1 or Level 2 items in the server
cache. It will also include opened non-cached items but not items opened on private streams. The symbol list response will
provide only item names, not item data.

The streams for _SERVER_LIST and _CACHE_LIST.serverId.domain requests will be kept open and updates will be sent to
modify list of servers or list of items in server cache. These streams will be closed if a server is no longer available or it no
longer supports a particular domain.

If the ADH is configured for source mirroring, a failover will trigger a server id change and will lead to closing of the relevant
_CACHE_LIST.serverId.domain request and updating of the _SERVER_LIST to show the new server id after the failover.
Clients will need to make a new symbol list request to the new server.

This feature provides the symbol list of all items in the ADH cache for both interactive and non-interactive services and is
supported for both RSSL (symbol list) and SSL 4.5 (criteria) clients.

Figure 12. Server Symbol List
Transport API 3.1.X C Edition – Developers Guide 18
ETAC313UM.180

Chapter 3 Consumers and Providers
3.2.6 Posting

Through posting, API consumers can easily push content into any cache within the TREP (i.e., an HTTP POST request). Data
contributions/inserts into the ATS or publishing into a cache offer similar capabilities today. When posting, API consumer
applications reuse their existing sessions to publish content to any cache(s) residing within the TREP (i.e., service provider(s)
and/or infrastructure components). When compared to spreadsheets or other applications, posting offers a more efficient form
of publishing, because the application does not need to create a separate provider session or manage event streams. The
posting capability, unlike unmanaged publishing or inserts, offers optional acknowledgments per posted message. The two
types of posting are on-stream and off-stream:

• On-Stream Post: Before sending an on-stream post, the client must first open (request) a data stream for an item. After
opening the data stream, the client application can then send a post. The route of the post is determined by the route of
the data stream.

• Off-Stream Post: In an off-stream post, the client application can send a post for an item via a Login stream, regardless of
whether a data stream first exists. The route of the post is determined by the Core Infrastructure (i.e., ADS, ADH, etc.)
configuration.

3.2.6.1 Local Publication

The following diagram illustrates the benefits of posting.

Green and Red services support internal posting and are fully implemented within the ADH. In both cases the ADH receives
posted messages and then distributes these messages to interested consumers. In the right-side segment, the ADS
component has enabled caching (for the Red service). In this case posted messages received from connected applications
are cached and distributed to these local applications before being forwarded (re-posted) up into the ADH cache. The
Transport API can even post to provider applications (i.e., the Purple service in this diagram) that support posting.

Figure 13. Posting into a Cache

You can use the Transport API to post into an ADH cache. If a cache exists in the ADS (the Red service), the ADS cache is
also populated by responses from the ADH cache. If you configure TREP to allow such behavior, posts can be sent beyond
Transport API 3.1.X C Edition – Developers Guide 19
ETAC313UM.180

Chapter 3 Consumers and Providers
the ADH (to the Provider Application in the Purple service). Such posting flexibility is a good solution if one’s applications are
restricted to a LAN which hosts an ADS but allows publishing up the network to a cache with items to which other clients
subscribe.

3.2.6.2 Contribution/Inserts

Posting also allows OMM-based contributions. Through such posting, clients can contribute data to a device on the head end
or to a custom-provider. In the following example, the Transport API sends an OMM post to a provider application that
supports such functionality.

While this diagram is similar to the example in Figure 13, the difference is that core components (such as the ADS/ADH) in
TREP can convert a post into an SSL Insert for legacy connectivity. This functionality is provided for migration purposes.

Figure 14. OMM Post with Legacy Inserts

3.2.7 Generic Message

Using a Generic Message, an application can send or receive a bi-directional message. A generic message can contain any
OMM primitive type. Whereas the request/response type message flows from TREP to a consumer application, a generic
message can flow in any direction, and a response is not required or expected. One advantage to using generic messages is
its freedom from the traditional request/response data flow.

In a generic message scenario, the consumer sends a generic message to an ADS, while the ADS also publishes a generic
message to the consumer application. All domains support this type of generic message behavior, not just market data-based
domains (such as Market Price, etc). If a generic message is sent to a component that does not understand generic
messages, the component ignores the message.

3.2.8 Private Streams

Using a Private Stream, a consumer application can create a virtual private connection with an interactive provider. This
virtual private connection can be either a direct connection, through the TREP, or via a cascaded set of platforms. The
following diagram illustrates these different configurations.
Transport API 3.1.X C Edition – Developers Guide 20
ETAC313UM.180

Chapter 3 Consumers and Providers
Figure 15. Private Stream Scenarios

A virtual private connection piggy backs on existing, individual point-to-point and multicast connections in the system (Figure
15 illustrates this behavior using a white connector). Messages exchanged via a Private Stream flow between a Consumer
and an Interactive Provider using these existing underlying connections. However, unlike a regular stream, the Transport API
or TREP components do not fan out these messages to other consumers or providers.

In Figure 15, each diagram shows a green consumer creating a private stream with a green provider. The private stream,
using existing infrastructure and network connections, is illustrated as a white path in each of the diagrams. When established,
communications sent on a private stream flow only between the green consumer and the green provider to which it connects.
Blue providers and consumers do not see messages sent via the private stream.

Any break in a “virtual connection” causes the provider and consumer to be notified of the loss of connection. In such a
scenario, the consumer is responsible for re-establishing the connection and re-requesting any data it might have missed from
the provider. All types of requests, functionality, and Domain Models can flow across a private stream, including (but not limited
to):

• Streaming Requests

• Snapshot Requests

• Posting

• Generic Messages

• Batch Requests

• Views

• All Thomson Reuters Domain Models & Custom Domain Models
Transport API 3.1.X C Edition – Developers Guide 21
ETAC313UM.180

Chapter 3 Consumers and Providers
3.3 Providers

Providers make their services available to consumers through TREP infrastructure components. Every provider-based
application must attach to a provider access point to inter-operate with consumers. All provider access points are considered
concrete and are implemented by an TREP infrastructure component (like the ADH).

Examples of providers include:

• A user who receives a subscription request from TREP.

• A user who publishes data into TREP, whether in response to a request or using a broadcast-publishing style.

• A user who receives post data from TREP. Providers can handle such concepts as receiving requests for contributions/
inserts, or receiving publication requests.

• A user who sends and/or receives generic messages with TREP.

Figure 16. Provider Access Point
Transport API 3.1.X C Edition – Developers Guide 22
ETAC313UM.180

Chapter 3 Consumers and Providers
3.3.1 Interactive Providers

An interactive provider is one that communicates with the TREP, accepting and managing multiple connections with TREP
components. The following diagram illustrates this concept.

Figure 17. Interactive Providers

An interactive provider receives connection requests from the TREP. The Interactive Provider responds to requests for
information as to what services, domains, and capabilities it can provide or for which it can receive requests. It may also
receive and respond to requests for information about its data dictionary, describing the format of expected data types. After
this is completed, its behavior is interactive.

For legacy Triarch users or early TREP adopters, the Interactive Provider is similar in concept to the legacy Sink-Driven Server
or Managed Server Application. Interactive Providers act like servers in a client-server relationship. A Transport API interactive
provider can accept and manage connections from multiple TREP components.

3.3.1.1 Request /Response

In a standard request/response scenario, the interactive provider receives requests from consumers on TREP (e.g., “Provide
data for item TRI”). The consumer then expects the interactive provider to provide a response, status, and possible updates
whenever the information changes. If the item cannot be provided by the interactive provider, the consumer expects the
provider to reject the request by providing an appropriate response - commonly a status message with state and text
information describing the reason. Request and response behavior is supported in all domains, not simply Market-Data-based
domains.

Interactive providers can receive any consumer-style request described in the consumer section of this document, including
batch requests, views, symbol lists, pause/resume, etc. Provider applications should respond with a negative acknowledgment
or response if the interactive application cannot provide the expected response to a request.

3.3.1.2 Posts

The interactive provider can receive post messages via TREP. Post messages will state whether an acknowledgment is
required. If required, TREP will expect the interactive provider to provide a response, in the form of a positive or negative
acknowledgment. Post behavior is supported in all domains, not simply Market-Data-based domains. Whenever an interactive
provider connects to TREP and publishes the supported domains, the provider states whether it supports post messages.

Further discussion on posting can be found in Section 13.9.
Transport API 3.1.X C Edition – Developers Guide 23
ETAC313UM.180

Chapter 3 Consumers and Providers
3.3.1.3 Generic Messages

Using generic messages, an application can send or receive bi-directional messages. Whereas a request/response type
message flows from TREP to an interactive provider, generic messages can flow in any direction and do not expect a
response. When using generic messages, the application need not conform to the request/response flow. A generic message
can contain any OMM data type.

Interactive providers can receive a generic message from and publish a generic message to TREP.

Generic message behavior is supported in all domains, not simply Market-Data-based domains. If a generic message is sent
to a component (e.g., a legacy application) which does not understand generic messages, the component ignores it.

Additional details on generic messages can be found in Section 12.2.6.

3.3.1.4 Private Streams

In a typical private stream scenario, the interactive provider can receive requests for a private stream. Once established,
interactive providers can receive any consumer-style request via a private stream, described in the consumer section of this
document, including Batch requests, Views, Symbol Lists, Pause/Resume, Posting, etc. Provider applications should respond
with a negative acknowledgment or response if the interactive application cannot provide the expected response to a request.

3.3.1.5 Tunnel Streams (Available Only in ETA Reactor and EMA)

An interactive provider can receive requests for a tunnel stream when using the ETA Reactor or EMA. When creating a tunnel
stream, the consumer indicates any additional behaviors to enforce, which is exchanged with the provider application end
point. The provider end-point acknowledges creation of the stream as well as the behaviors that it will enforce on the stream.
After the stream is established, the consumer can exchange any content it wants, though the tunnel stream will enforce
behaviors on the transmitted content as negotiated with the provider.

A tunnel stream allows for multiple substreams to exist, where substreams follow from the same general stream concept,
except that they flow and coexist within the confines of a tunnel stream.

3.3.2 Non-Interactive Providers

A non-interactive provider (NIP) writes a provider application that connects to TREP and sends a specific set of non-
interactive data (services, domains, and capabilities).
Transport API 3.1.X C Edition – Developers Guide 24
ETAC313UM.180

Chapter 3 Consumers and Providers
Figure 18. NIP: Point-To-Point

Figure 19. NIP: Multicast

After a NIP connects to TREP, the NIP can start sending information for any supported item and domain. For legacy Triarch
users or early TREP adopters, the NIP is similar in concept to what was once called the Src-Driven, or Broadcast Server
Application.

Non-interactive providers act like clients in a client-server relationship. Multiple NIPs can connect to the same TREP and
publish the same items and content. For example, two NIPs can publish the same or different fields for the same item
“INTC.O” to the same TREP.

NIP applications can connect using a point-to-point TCP-based transport as shown in Figure 18, or using a multicast transport
as shown in Figure 19.

The main benefit of this scenario is that all publishing traffic flows from top to bottom: the way a system normally expects
updating data to flow. In the local publishing scenario, posting is frequently done upstream and must contend with a potential
Infrastructure bias in prioritization of upstream versus downstream traffic.
Transport API 3.1.X C Edition – Developers Guide 25
ETAC313UM.180

Chapter 4 System View
Chapter 4 System View

4.1 System Architecture Overview

A TREP network typically hosts the following:

• Core Infrastructure (i.e., ADS, ADH, etc.)

• Consumer applications that typically request and receive information from the network

• Provider applications that typically write information to the network. Provider applications fall into one of two categories:

• Interactive provider applications which receive and interpret request messages and reply back with any needed
information.

• NIP applications which publish data, regardless of user requests or which applications consume the data.

• Permissioning infrastructure (i.e., DACS)

• Devices which interact with the markets (i.e., Data Feed Direct and the Elektron Edge Device)

The following figure illustrates a typical deployment of a TREP network and some of its possible components. Components
that use the Transport API could alternatively choose to leverage RFA, depending on user needs and required access levels.
The remainder of this chapter briefly describes the components pictured in the diagram and explains how the Transport API
integrates with each.

Figure 20. Typical TREP Components
Transport API 3.1.X C Edition – Developers Guide 26
ETAC313UM.180

Chapter 4 System View
4.2 Advanced Distribution Server (ADS)

The ADS provides a consolidated distribution solution for Thomson Reuters, value-added, and third-party data for trading-
room systems. It distributes information using the same OMM and RWF protocols exposed by the Transport API.

Figure 21. Transport API and Advanced Distribution Server

As a distribution device for market data, the ADS delivers data from the Advanced Data Hub (ADH). Because the ADS
leverages multiple threads, it can offload the encoding, fan out, and writing of client data. By distributing its tasks in this
fashion, ADS can support far more client applications than could any previous Thomson Reuters distribution solution.

The ADS supports two types of data delivery when communicating with API clients:

• Via point-to-point communication.

• Via multicast communication.

To take advantage of multicast communications, consumers must use a Value-Add component. For further information:

• On the Transport API Reactor component, refer to the Transport API C Edition Value Added Components Developers
Guide.

• On network topologies as they relate to the Transport API, refer to Section 10.3.1.
Transport API 3.1.X C Edition – Developers Guide 27
ETAC313UM.180

Chapter 4 System View
4.3 Advanced Data Hub (ADH)

The ADH is a networked, data distribution server that runs in the TREP. It consumes data from a variety of content providers
and reliably fans this data out to multiple ADSs over a backbone network (using either multicast or broadcast technology).
Transport API-based non-interactive or interactive provider applications can publish content directly into an ADH, thus
distributing data more widely across the network. NIP applications can publish content to an ADH via TCP or multicast
connection types.

The ADH leverages multiple threads, both for inbound traffic processing and outbound data fanout. By leveraging multiple
threads, ADH can offload the overhead associated with request and response processing, caching, data conflation, and fault
tolerance management. By offloading overhead in such a fashion, the ADH can support higher throughputs than could
previous Thomson Reuters data hub solutions.

Figure 22. Transport API and the Advanced Data Hub
Transport API 3.1.X C Edition – Developers Guide 28
ETAC313UM.180

Chapter 4 System View
4.4 Elektron

Elektron is an open, global, ultra-high-speed network and hosting environment, which allows users to access and share
various types of content. Elektron allows access to information from a wide network of content providers, including exchanges,
where all exchange data is normalized using the OMM.

The Elektron Edge Device, based on ADS technology, is the access point for consuming this data. To access this content, a
Transport API consumer application can connect directly to the Edge Device or via a cascaded Enterprise Platform
architecture (as illustrated in the following diagram).

Figure 23. Transport API and Elektron
Transport API 3.1.X C Edition – Developers Guide 29
ETAC313UM.180

Chapter 4 System View
4.5 Data Feed Direct

Thomson Reuters Data Feed Direct is a fully managed Thomson Reuters exchange feed providing an ultra-low-latency
solution for consuming data from specific exchanges. The Data Feed Direct normalizes all exchange data using the OMM.

To access this content, a Transport API consumer application can connect directly to the Data Feed Direct or via a cascaded
TREP architecture.

Figure 24. Transport API and Data Feed Direct
Transport API 3.1.X C Edition – Developers Guide 30
ETAC313UM.180

Chapter 4 System View
4.6 Internet Connctivity via HTTP and HTTPS

OMM consumer and Provider applications can use the Transport API to establish connections by tunneling through the
Internet.

• OMM consumer and NIP applications can establish connections via HTTP tunneling.

• ADS and OMM Interactive Provider applications can accept incoming Transport API connections tunneled via HTTP (such
functionality is available across all supported platforms).

• Consumer applications can leverage HTTPS to establish an encrypted tunnel to certain Thomson Reuters Hosted
Solutions, performing key and certificate exchange.

• Consumer-side functionality leverages Microsoft WinINET on Windows and OpenSSL on Linux. For Windows
connections, users can configure a certificate and proxy using Internet Explorer.

For further details, refer to Section 10.15.

Figure 25. Transport API and Internet Connectivity
Transport API 3.1.X C Edition – Developers Guide 31
ETAC313UM.180

Chapter 4 System View
4.7 Direct Connect

The Transport API allows OMM Interactive Provider applications and OMM consumer applications to directly connect to one
another. This includes OMM applications written to RFA. The following diagram illustrates various direct connect combinations.

Figure 26. Transport API and Direct Connect
Transport API 3.1.X C Edition – Developers Guide 32
ETAC313UM.180

Chapter 5 Model and Package Overviews
Chapter 5 Model and Package Overviews

5.1 Transport API Models

5.1.1 Open Message Model (OMM)

The Open Message Model (OMM) is a collection of message header and data constructs. Some OMM message header
constructs (such as the Update message) have implicit market logic associated with them, while others (such as the Generic
message) allow for free-flowing bi-directional messaging. You can combine OMM data constructs in various ways to model
data ranging from simple (i.e., flat) primitive types to complex multi-level hierarchal data.

The layout and interpretation of any specific OMM model (also referred to as a domain model) is described within that model’s
definition and is not coupled with the API. The OMM is a flexible and simple tool that provides the building blocks to design and
produce domain models to meet the needs of the system and its users. The Transport API provides structural representations
of OMM constructs and manages the RWF binary-encoded representation of the OMM. Users can leverage Thomson
Reuters-provided OMM constructs to consume or provide OMM data throughout the Enterprise Platform.

5.1.2 Reuters Wire Format (RWF)

RWF is the encoded representation of the OMM; a highly-optimized, binary format designed to reduce the cost of data
distribution compared to previous wire formats. Binary encoding represents data in the machine’s native manner, enabling
further use in calculations or data manipulations. RWF allows for serializing OMM message and data constructs in an efficient
manner while still allowing you to model rich content types. You can use RWF to distribute field identifier-value pair data
(similar to Marketfeed), self-describing data (similar to Qform), as well as more complex, nested hierarchal content.

5.1.3 Domain Message Model

A Domain Message Model (DMM) describes a specific arrangement of OMM message and data constructs. A DMM defines
any:

• Specialized behavior associated with the domain

• Specific meanings or semantics associated with the message data

Unless a DMM specifies otherwise, any implicit market logic associated with a message still applies (e.g., an Update message
indicates that previously received data is being modified by corresponding data from the Update message).

5.1.3.1 Reuters Domain Model

A Reuters Domain Model (RDM) is a domain message model typically provided or consumed by a Thomson Reuters product
(i.e., the Enterprise Platform, Data Feed Direct, or Elektron). Some currently-defined RDMs allow for authenticating to a
provider (e.g., Login), exchanging field or enumeration dictionaries (e.g., Dictionary), and providing or consuming various
types of market data (e.g., Market Price, Market by Order, Market by Price). Thomson Reuters’s defined models have a
domain value of less than 128. For extended definitions of the currently-defined Reuters Domain Models, refer to the Transport
API RDM Usage Guide.

5.1.3.2 User-Defined Domain Model

A User-Defined Domain Model is a DMM defined by a third party. These might be defined to solve a need specific to a user
or system in a particular deployment and which is not resolved through the use of an RDM. Any user-defined model must use
a domain value between 128 and 255.

Customers can have their domain model designer work with Thomson Reuters to define their model as a standard RDM.
Working directly with Thomson Reuters can help ensure interoperability with future RDM definitions and with other Thomson
Reuters products.
Transport API 3.1.X C Edition – Developers Guide 33
ETAC313UM.180

Chapter 5 Model and Package Overviews
5.2 Packages

The Transport API consists of several packages, each serving a different purpose within an application. While some packages
are interdependent, others can be used alone or with other packages. Each package serves a distinct purpose as described in
the following sections.

As needs evolve, additional packages can be added to the Transport API.

5.2.1 Transport Package

The Transport Package provides a mechanism to efficiently distribute messages across a variety of communication
protocols. This package provides a receiver-transparent way for senders to combine or pack multiple messages into one
outbound packet, and it will internally fragment and reassemble messages which exceed the size of an outbound packet. This
package exposes structural representations to manage connection properties and information. The Transport Package
includes interface functions that assist with establishing connections and the sending or receiving of data. This package
utilizes some header files from the Data Package, but has no other dependencies other than system libraries.

To access all transport functionality, an application must include rsslTransport.h.

The Transport Package is described in more detail in Chapter 10.

5.2.2 Data Package

The Data Package defines primitive and container types, which make up components representing OMM data. Primitive types
are simple, atomically updating constructs, usually provided by the operating system (e.g., Integer, Date). Container types can
model more complex data and be modified more granularly than a primitive type (e.g., field identifier-value pairs, key-value
pairs, self-describing name-value pairs). This package exposes typedef and structural representations of Transport API
primitive and container types and manages their RWF binary representation. The Data Package provides interface functions
for encoding and decoding data, along with additional helper utility functionality. The Data Package is described with more
detail in Chapter 11. This package requires no outside dependencies.

To access all data package functionality, an application must include rsslDataPackage.h.

5.2.3 Message Package

The Message Package defines message header elements that flow between various applications in the TREP (e.g., Update
messages). Some of these header elements are standard to the market data environment, (such as conflation information,
state information, permission information, and item key elements used for stream identification). Message headers also
contain generic attributes in which usage and meaning are defined within specific DMMs (e.g., Market Price, Market By Order).
All messages can carry payload information of varying format and layouts. This package exposes structural representations of
the UPA message classes and manages the RWF binary-encoded representation of these messages. The Message Package
provides interface functions for encoding and decoding messages, along with additional helper utility functionality. The
Message Package is described with more detail in Chapter 12. This package depends on the Data Package.

To access all message package functionality, an application must include rsslMessagePackage.h.
Transport API 3.1.X C Edition – Developers Guide 34
ETAC313UM.180

Chapter 6 Building an OMM Consumer
Chapter 6 Building an OMM Consumer

6.1 Overview

This chapter provides an overview of how to create an OMM consumer application. An OMM consumer application can
establish a connection to other OMM interactive provider applications, including the TREP, Data Feed Direct, and Elektron.
After connecting successfully, an OMM consumer can then consume (i.e., send data requests and receive responses) and
publish data (i.e., post data).

The general process can be summarized by the following steps:

• Establish network communication

• Log in

• Obtain source directory information

• Load or download all necessary dictionary information

• Issue requests, process responses, and/or post information

• Log out and shut down

The rsslConsumer example application, included with the Transport API products, provides an example implementation of an
OMM consumer application. The application is written with simplicity in mind and demonstrates the uses of the Transport API.
Portions of functionality have been abstracted and can easily be reused, though you might need to modify it to achieve your
own unique performance and functionality goals.

6.2 Establish Network Communication

The first step of any Transport API consumer application is to establish a network connection with its peer component (i.e.,
another application with which to interact). An OMM consumer typically creates an outbound connection to the well-known
hostname and port of an Interactive Provider. The consumer uses the rsslConnect function to initiate the connection and then
performs any additional connection initialization processes as described in this document.

After the consumer’s connection is active, ping messages might need to be exchanged. The negotiated ping timeout is
available via the RsslChannel. The connection can be terminated if ping heartbeats are not sent or received within the
expected time frame. Thomson Reuters recommends sending ping messages at intervals one third the size of the ping
timeout.

Detailed information and use case examples for using RSSL Transport are provided in Chapter 10, Transport Package
Detailed View .
Transport API 3.1.X C Edition – Developers Guide 35
ETAC313UM.180

Chapter 6 Building an OMM Consumer
6.3 Perform Login Process

Applications authenticate with one another using the Login domain model. An OMM consumer must register with the system
using a Login request prior to issuing any other requests or opening any other streams.

After receiving a Login request, an interactive provider determines whether a user is permissioned to access the system. The
interactive provider sends back a Login response, indicating to the consumer whether access is granted.

• If the application is denied, the Login stream is closed, and the consumer application cannot send additional requests.

• If the application is granted access, the Login response contains information about available features, such as Posting,
Pause and Resume, and the use of Dynamic Views. The consumer application can use this information to tailor its
interaction with the provider.

Content is encoded and decoded using the Message Package (described in Chapter 12, Message Package Detailed View)
and the Data Package (described in Chapter 11, Data Package Detailed View). Further information about Login domain usage
and messaging is available in the Transport API RDM Usage Guide.

6.4 Obtain Source Directory Information

The Source Directory domain model conveys information about all available services in the system. An OMM consumer
typically requests a Source Directory to retrieve information about available services and their capabilities. This includes
information about supported domain types, the service’s state, the quality of service (QoS), and any item group information
associated with the service. At minimum, Thomson Reuters recommends that the application requests the Info, State, and
Group filters for the Source Directory.

• The Source Directory Info filter contains the service name and serviceId information for all available services. When the
OMM consumer discovers an appropriate service, it uses the service’s serviceId on all subsequent requests to that
service.

• The Source Directory State filter contains status information for service, which informs the consumer whether the service
is Up and available, or Down and unavailable.

• The Source Directory Group filter conveys item group status information, including information about group states, as well
as the merging of groups. Additional information on item groups is available in Section 13.4.

Content is encoded and decoded using the Transport API’s Message Package (as described in Chapter 12, Message
Package Detailed View) and Data Package (as described in Chapter 11, Data Package Detailed View). Information about the
Source Directory domain and its associated filter entry content is available in the Transport API RDM Usage Guide.
Transport API 3.1.X C Edition – Developers Guide 36
ETAC313UM.180

Chapter 6 Building an OMM Consumer
6.5 Load or Download Necessary Dictionary Information

Some data requires the use of a dictionary for encoding or decoding. This dictionary typically defines type and formatting
information and directs the application as to how to encode or decode specific pieces of information. Content that uses the
RsslFieldList type requires the use of a field dictionary (usually the Thomson Reuters RDMFieldDictionary, though it could
also be a user-defined or modified field dictionary).

A source directory message should provide information about:

• Any dictionaries required to decode the content provided on a service.

• Which dictionaries are available for download.

A consumer application can determine whether to load necessary dictionary information from a local file or download the
information from the provider if available.

• If loading from a file, the Transport API offers several utility functions to load and manage a properly-formatted field
dictionary.

• If downloading information, the application issues a request using the Dictionary domain model. The provider application
should respond with a dictionary response. Because a dictionary response often contains a large amount of content, it is
typically broken into a multi-part message. the Transport API offers several utility functions for encoding and decoding of
the Dictionary domain content.

For information on the utility functions used in both instances and for information about the Dictionary domain and its expected
content formats, refer to the Transport API RDM Usage Guide.

Content is encoded and decoded using the Transport API Message Package (as described in Chapter 12, Message Package
Detailed View) and the Transport API Data Package (as described in Chapter 11, Data Package Detailed View).

6.6 Issue Requests and/or Post Information

After the consumer application successfully logs in and obtains Source Directory and Dictionary information, it can request
additional content. When issuing the request, the consuming application can use the serviceId of the desired service, along
with the stream’s identifying information. Requests can be sent for any domain using the formats defined in that domain model
specification. Domains provided by Thomson Reuters are defined in the Transport API RDM Usage Guide.

At this point, an OMM consumer application can also post information to capable provider applications. For more information,
refer to Section 13.9.

Content is encoded and decoded using the Transport API Message Package (as described in Chapter 12, Message Package
Detailed View) and Data Package (as described in Chapter 11, Data Package Detailed View).

6.7 Log Out and Shut Down

When the consumer application is done retrieving or posting content, it should close all open streams and shut down the
network connection. Issuing an RsslCloseMsg for the streamId associated with the Login closes all streams opened by the
consumer.

• For more information on closing streams, refer to Section 12.2.5.

• For information on the Message Package, refer to Chapter 12, Message Package Detailed View.

When shutting down the consumer, the application should release any unwritten pool buffers. Calling rsslCloseChannel
terminates the connection to the provider application. Detailed information and transport code examples are provided in
Chapter 10, Transport Package Detailed View.
Transport API 3.1.X C Edition – Developers Guide 37
ETAC313UM.180

Chapter 6 Building an OMM Consumer
6.8 Additional Consumer Details

The following locations provide specific details about using OMM consumers and the Transport API:

• The rsslConsumer application demonstrates one way of implementing of an OMM consumer application. The
application’s source code and ReadMe file contain additional information about specific implementation and behaviors.

• For reviewing high-level encoding and decoding concepts, refer to Chapter 9, Encoding and Decoding Conventions.

• For a detailed look at the Data Package, typically used for encoding and decoding payload content, refer to Chapter 11,
Data Package Detailed View.

• For a detailed look at the Message Package, used for all message encoding and decoding, refer to Chapter 12, Message
Package Detailed View.

• For a detailed look at the Transport Package, used for the application’s network communication, refer to Chapter 10,
Transport Package Detailed View.

• For specific information about the DMMs required by this application type, refer to the Transport API RDM Usage Guide.
Transport API 3.1.X C Edition – Developers Guide 38
ETAC313UM.180

Chapter 7 Building an OMM Interactive Provider
Chapter 7 Building an OMM Interactive Provider

7.1 Overview

This chapter provides a high-level description of how to create an OMM interactive provider application. An OMM interactive
provider application opens a listening socket on a well-known port allowing OMM consumer applications to connect. After
connecting, consumers can request data from the interactive provider.

The following steps summarize this process:

• Establish network communication

• Accept incoming connections

• Handle login requests

• Provide source directory information

• Provide or download necessary dictionaries

• Handle requests and post messages

• Disconnect consumers and shut down

The rsslProvider example application included with the Transport API package provides one way of implementing an OMM
interactive provider. The application is written with simplicity in mind and demonstrates the use of the Transport API. Portions
of the functionality are abstracted for easy reuse, though you might need to customize it to achieve your own unique
performance and functionality goals.

7.2 Establish Network Communication

The first step of any Transport API Interactive Provider application is to establish a listening socket, usually on a well-known
port so that consumer applications can easily connect. The provider uses the rsslBind function to open the port and listen for
incoming connection attempts.

Whenever an OMM consumer application attempts to connect, the provider uses the rsslAccept function to begin the
connection initialization process.

Once the connection is active, the consumer and provider applications might need to exchange ping messages. A negotiated
ping timeout is available via RsslChannel corresponding to each connection (this value might differ on a per-connection
basis). The provider may choose to terminate a connection if ping heartbeats are not sent or received within the expected time
frame. Thomson Reuters recommends sending ping messages at intervals one-third the size of the ping timeout.

For detailed information and use cases for the RSSL Transport, refer to Chapter 10, Transport Package Detailed View.
Transport API 3.1.X C Edition – Developers Guide 39
ETAC313UM.180

Chapter 7 Building an OMM Interactive Provider
7.3 Perform Login Process

Applications authenticate with one another using the Login domain model. An OMM interactive provider must handle the
consumer’s Login request messages and supply appropriate responses.

After receiving a Login request, the interactive provider can perform any necessary authentication and permissioning.

• If the Interactive Provider grants access, it should send an RsslRefreshMsg to convey that the user successfully
connected. This message should indicate the feature set supported by the provider application.

• If the Interactive Provider denies access, it should send an RsslStatusMsg, closing the connection and informing the user
of the reason for denial.

Content is encoded and decoded using the Transport API Message Package (as described in Chapter 12, Message Package
Detailed View) and the Transport API Data Package (as described in Chapter 11, Data Package Detailed View). For further
information on Login domain usage and messaging, refer to the Transport API RDM Usage Guide.

7.4 Provide Source Directory Information

The Source Directory domain model conveys information about all available services in the system. An OMM consumer
typically requests a Source Directory to retrieve information about available services and their capabilities. This includes
information about supported domain types, the service’s state, the QoS, and any item group information associated with the
service. Thomson Reuters recommends that at a minimum, an interactive provider supply the Info, State, and Group filters for
the Source Directory.

• The Source Directory Info filter contains the name and serviceId for each available service. The interactive provider
should populate the filter with information specific to the services it provides.

• The Source Directory State filter contains status information for the service informing the consumer whether the service is
Up (available) or Down (unavailable).

• The Source Directory Group filter conveys item group status information, including information about group states, as well
as the merging of groups. If a provider determines that a group of items is no longer available, it can convey this
information by sending either individual item status messages (for each affected stream) or a Directory message
containing the item group status information. Additional information about item groups is available in Section 13.4.

Content is encoded and decoded using the Transport API’s Message Package (as described in Chapter 12, Message
Package Detailed View) and Data Package (as described in Chapter 11, Data Package Detailed View). For details on the
Source Directory domain and all of its associated filter entry content, refer to the Transport API RDM Usage Guide.

7.5 Provide or Download Necessary Dictionaries

Some data requires the use of a dictionary for encoding or decoding. The dictionary typically defines type and formatting
information, and tells the application how to encode or decode information. Content that uses the RsslFieldList type
requires the use of a field dictionary (usually the Thomson Reuters RDMFieldDictionary, though it can instead be user-
defined or a modified field dictionary).

The Source Directory message should notify the consumer about dictionaries needed to decode content sent by the provider.
If the consumer needs a dictionary to decode content, it is ideal that the interactive provider application also make this
dictionary available to consumers for download. The provider can inform the consumer whether the dictionary is available via
the Source Directory.

If connected to a supporting ADH, a provider application may also download the RWFFld and RWFEnum dictionaries to
retrieve the appropriate dictionary information for providing field list content. A provider can use this feature to ensure it has the
appropriate version of the dictionary or to encode data. The ADH supporting the Provider Dictionary Download feature sends a
Transport API 3.1.X C Edition – Developers Guide 40
ETAC313UM.180

Chapter 7 Building an OMM Interactive Provider
Login request message containing the SupportProviderDictionaryDownload login element. The dictionary request is sent

using the Dictionary domain model.1

The Transport API offers several utility functions for loading, downloading, and managing a properly-formatted field dictionary.
There are also utility functions provided to help the provider encode into an appropriate format for downloading or decoding
downloaded dictionary.

Content is encoded and decoded using the Transport API Message Package (as described in Chapter 12, Message Package
Detailed View) and the Transport API Data Package (as described in Chapter 11, Data Package Detailed View).

Information about the Login and Dictionary domains, their expected content and formatting, and dictionary utility functions, is
available in the Transport API RDM Usage Guide.

7.6 Handle Requests and Post Messages

A provider can receive a request for any domain, though this should typically be limited to the domain capabilities indicated in
the Source Directory. When a request is received, the provider application must determine if it can satisfy the request by:

• Comparing msgKey identification information received against the content available from the provider

• Determining whether it can provide the requested QoS

• Ensuring that the consumer does not already have a stream open for the requested information

If a provider can service a request, it should send appropriate responses. However, if the provider cannot satisfy the request,
the provider should send an RsslStatusMsg to indicate the reason and close the stream. All requests and responses should
follow specific formatting as defined in the domain model specification. For details on all domains provided by Thomson
Reuters, refer to the Transport API RDM Usage Guide.

If a provider application receives a Post message, the provider should determine the correct handling for the post. This
depends on the application’s role in the system and might involve storing the post in its cache or passing it farther up into the
system. If the provider is the destination for the Post, the provider should send any requested acknowledgments, following the
guidelines described in Section 13.9.

Content is typically encoded and decoded using the Transport API’s Message Package (as described in Chapter 12, Message
Package Detailed View) and Data Package (as described in Chapter 11, Data Package Detailed View).

7.7 Disconnect Consumers and Shut Down

When shutting down, the provider application should close the listening socket by calling rsslCloseServer. Closing the
listening socket prevents new connection attempts. The provider application can either leave consumer connections intact or
shut them down.

If the provider decides to close consumer connections, the provider should send an RsslStatusMsg on each connection’s
login stream, thus closing the stream. At this point, the consumer should assume that its other open streams are also closed.
The provider should then release any unwritten pool buffers it has obtained from rsslGetBuffer and call rsslCloseChannel
for each connected client.

For detailed information and use case examples for the transport, refer to Chapter 10, Transport Package Detailed View.

1. Because this is instantiated by the provider, the application should use a streamId with a negative value. Additional details are provided in subse-
quent chapters.
Transport API 3.1.X C Edition – Developers Guide 41
ETAC313UM.180

Chapter 7 Building an OMM Interactive Provider
7.8 Additional Interactive Provider Details

For specific details about OMM Interactive Providers and the Transport API use, refer to the following locations:

• The rsslProvider application demonstrates one implementation of an OMM interactive provider application. The
application’s source code and ReadMe file have additional information about specific implementation and behaviors.

• To review high-level encoding and decoding concepts, refer to Chapter 9, Encoding and Decoding Conventions.

• For a detailed look at the Data Package, typically used for encoding and decoding payload content, refer to Chapter 11,
Data Package Detailed View.

• For a detailed look at the Message Package, used for all message encoding and decoding, refer to Chapter 12, Message
Package Detailed View.

• For a detailed look at the Transport Package, used for the application’s network communication, refer to Chapter 10,
Transport Package Detailed View.

• For specific information about DMMs required by this application type, refer to the Transport API C Edition RDM Usage
Guide.
Transport API 3.1.X C Edition – Developers Guide 42
ETAC313UM.180

Chapter 8 Building an OMM NIP
Chapter 8 Building an OMM NIP

8.1 Overview

This chapter provides an outline of how to create an OMM NIP application which can establish a connection to an ADH server.
Once connected, anOMM NIP can publish information into the ADH cache without needing to handle requests for the
information. The ADH can cache the information and along with other Enterprise Platform components, provide the information
to any OMM consumer applications that indicate interest.

The general process can be summarized by the following steps:

• Establish network communication

• Perform Login process

• Perform Dictionary Download

• Provide Source Directory information

• Provide content

• Log out and shut down

Included with the Transport API package, the rsslNIProvider example application provides an implementation of an NIP
written with simplicity in mind and demonstrates the use of the Transport API. Portions of the functionality are abstracted for
easy reuse, though you might need to modify it to achieve your own performance and functionality goals.

Content is encoded and decoded using the Transport API Message Package (as described in Chapter 12, Message Package
Detailed View) and the Transport API Data Package (as described in Chapter 11, Data Package Detailed View).

8.2 Establish Network Communication

The first step of any NIP application is to establish network communication with an ADH server. To do so, the OMM NIP
typically creates an outbound connection to the well-known hostname and port of an ADH. The NIP application uses the
rsslConnect function to initiate the connection process and then performs connection initialization processes as described in
this document.

After establishing a connection, ping messages might need to be exchanged. The negotiated ping timeout is available via the
RsslChannel. If ping heartbeats are not sent or received within the expected time frame, the connection can be terminated.
Thomson Reuters recommends sending ping messages at intervals one-third the size of the ping timeout.

For detailed information on RSSL Transport and associated use case examples, refer to Chapter 10, Transport Package
Detailed View.
Transport API 3.1.X C Edition – Developers Guide 43
ETAC313UM.180

Chapter 8 Building an OMM NIP
8.3 Perform Login Process

Applications authenticate with one another using the Login domain model. An OMM NIP must register with the system using a

Login request1 prior to providing any content.

After receiving a Login request, the ADH determines whether the NIP is permissioned to access the system. The ADH sends a
Login response to the NIP which indicates whether the ADH has granted it access. If the application is denied, the ADH closes
the Login stream and the NIP application cannot perform any additional communication. If the application gains access to the
ADH, the Login response informs the application of this. The provider must now provide a Source Directory and/or download
Dictionary.

For details on using the Login domain and expected message content, refer to the Transport API RDM Usage Guide.

8.4 Perform Dictionary Download

If connected to an ADH that support dictionary downloads, an OMM NIP can download the RWFFld and RWFEnum
dictionaries to retrieve appropriate information when providing field list content. An OMM NIP can use this feature to ensure
they are using the correct version of the dictionary or to encode data. The ADH supporting the Provider Dictionary Download
feature sends a Login response message containing the SupportProviderDictionaryDownload login element. The

dictionary request is send using the Dictionary domain model2.

The Transport API offers several utility functions you can use to download and manage a properly-formatted field dictionary.
The API also includes other utility functions that help the provider encode into an appropriate format for downloading or
decoding a downloaded dictionary.

For details on using the Login domain, expected message content, and dictionary utility functions, refer to the Transport API
RDM Usage Guide.

8.5 Provide Source Directory Information

The Source Directory domain model conveys information about all available services in the system. After completing the Login

process, an OMM NIP must provide a Source Directory refresh3 indicating:

• Service, service state, QoS, and capability information associated with the NIP

• Supported domain types and any item group information associated with the service.

At a minimum, Thomson Reuters recommends that the NIP send the Info, State, and Group filters for the Source Directory.

• The Source Directory Info filter contains service name and serviceId information for all available services, though NIPs
typically provide data on only one service.

• The Source Directory State filter contains status information for service. This informs the ADH whether the service is Up
and available or Down and unavailable.

• The Source Directory Group filter conveys item group status information, including information about group states as well
as the merging of groups. For additional information about item groups, refer to Section 13.4.

For details on the Source Directory domain and all of its associated filter entry content, refer to the Transport API RDM Usage
Guide.

1. Because this is done in an interactive manner, the NIP should assign a streamId with a positive value (which the ADH will reference) when sending
its response.
2. Because this is instantiated by the provider, the application should use a streamId with a negative value.
3. Because this is instantiated by the provider, the NIP should use a streamId with a negative value.
Transport API 3.1.X C Edition – Developers Guide 44
ETAC313UM.180

Chapter 8 Building an OMM NIP
8.6 Provide Content

After providing a Source Directory, the NIP application can begin pushing content to the ADH. Each unique information stream

should begin with an RsslRefreshMsg, conveying all necessary identification information for the content4. The initial
identifying refresh can be followed by other status or update messages. Some ADH functionality, such as cache rebuilding,
may require that NIP applications publish the message key on all RsslRefreshMsgs. For more information, refer to
component-specific documentation.

Content is typically encoded and decoded using the Transport API Message Package (as described in Chapter 12, Message
Package Detailed View) and the Transport API Data Package (as described in Chapter 11, Data Package Detailed View).

8.7 Log Out and Shut Down

After publishing content to the system, the NIP application should close all open streams and shut down the network
connection.

• For more information about closing streams, refer to Section 12.2.5.

• For information about the Message Package, refer to Chapter 12, Message Package Detailed View.

When shutting down the provider, the application should release all unwritten pool buffers. Calling rsslCloseChannel
terminates the connection to the ADH. Detailed information for transport and associated use cases are provided in Chapter 10,
Transport Package Detailed View.

8.8 Additional NIP Details

For specific details about OMM Non-Interactive Providers and the Transport API use, refer to the following locations:

• The rsslNIProvider application demonstrates one implementation of an OMM NIP application. The application’s source
code and ReadMe file have additional information about specific implementation and behaviors.

• For reviewing high-level encoding and decoding concepts, refer to Chapter 9, Encoding and Decoding Conventions.

• For a detailed look at the Data Package, typically used for encoding and decoding payload content, refer to Chapter 11,
Data Package Detailed View.

• For a detailed look at the Message Package, used for all message encoding and decoding, refer to Chapter 12, Message
Package Detailed View.

• For a detailed look at the Transport Package, used for the application’s network communication, refer to Chapter 10,
Transport Package Detailed View.

• For specific information about the DMMs required by the application, refer to the Transport API C Edition RDM Usage
Guide.

4. Because the provider instantiates these information streams, a negative value streamId should be used for each stream. Additional details are
provided in subsequent chapters.

Note: Some components, depending on their specific functionality and configuration, require that NIP applications publish the
msgKey in RsslUpdateMsgs. To avoid component or transport migration issues, NIP applications can choose to always include
this information, however this incurs additional bandwidth use and overhead. When designing your application, read the
documentation for your other components to ensure that you take into account any other requirements.
Transport API 3.1.X C Edition – Developers Guide 45
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
Chapter 9 Encoding and Decoding Conventions

9.1 Concepts

Both the Transport API Message Package and Data Package allow the user to encode and decode constructs and various
content. The Data Package defines a single encode iterator type and a single decode iterator type, which are used in both
packages to encode and decode. The Transport API supports single-iterator encoding and decoding such that a single
instance can encode or decode the full depth and breadth of a user’s content. The application controls the depth of decoding,
so you can skip content of no interest. Less efficiently, you can continue to leverage the Transport API to use separate iterator
instances and hence allow the user to separate portions of content across iterators when encoding or decoding.

To provide consistency and ease of use when moving between data and message content, functions provided across both
packages follow the same naming and usage conventions.

Data and Message packages do not provide inherent threading or locking capability. Separate iterator and type instances do
not cause contention and do not share resources between instances. Any needed threading, locking, or thread-model
implementation is at the discretion of the application. Different application threads can encode or decode different messages
without requiring a lock; thus each thread must use its own iterator instance and each message should be encoded or
decoded using unique and independent buffers. Though possible, Thomson Reuters recommends that you do not encode or
decode related messages (ones that flow on the same stream) on different threads as this can scramble the delivery order.

9.1.1 Data Types

The Transport API offers a wide variety of data types categorized into two groups:

• Primitive Types: A primitive type represents simple, atomically updating information such as values like integers, dates,
and ASCII string buffers (refer to Section 11.2).

• Container Types: A container type can model data representations more intricately and manage dynamic content at a
more granular level than primitive types. Container types represent complex information such as field identifier-value,
name-value, or key-value pairs (refer to Section 11.3). The Transport API offers several uniform, homogeneous container
types (i.e., all entries house the same type of data). Additionally, there are several non-uniform, heterogeneous container
types in which different entries can hold different types of data.
Transport API 3.1.X C Edition – Developers Guide 46
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
9.1.2 Composite Pattern of Data Types

The following diagram illustrates the use of Transport API data types to resemble a composite pattern.

Figure 27. Transport API and the Composite Pattern

The diagram highlights the following:

• Being made up of both primitive and container types, Transport API data type values mirror the composite pattern’s
component.

• Transport API primitive types mimic the composite pattern’s leaf, conveying concrete information for the user.

• The Transport API container type and its entries are similar to the composite pattern’s composite. This allows for
housing other container types and, in some cases such as field and element lists, housing primitive types.

The housing of other types is also referred to as nesting. Nesting allows:

• Messages to house other messages or container types

• Container types to house other messages, container, or primitive types

This provides the flexibility for domain model definitions and applications to arrange and nest data types in whatever way best
achieves their goals.

9.2 Encoding Semantics

Because the Transport API supports several styles of encoding, the user can choose whichever method best fits their needs.

9.2.1 Init and Complete Suffixes

Encoding functions that have a suffix of Init or Complete (e.g. rsslEncodeFieldEntryInit and
rsslEncodeFieldEntryComplete) allow the user to encode the type part-by-part, serializing each portion of data with each
called function.

Functions without a suffix of Init or Complete (e.g. rsslEncodeFieldEntry, rsslEncodeInt, or rsslEncodeMsg) perform
encoding within a single call, typically used for encoding simple types like Integer or incorporating previously encoded data
(referred to as pre-encoded data).
Transport API 3.1.X C Edition – Developers Guide 47
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
9.2.2 The Encode Iterator: RsslEncodeIterator

To encode content you must use an RsslEncodeIterator and can use a single encode iterator to manage the entire encoding

process1 (including state and position information).

For example, if you want to encode a message that contains an RsslFieldList composed of various primitive types, you can
use the same RsslEncodeIterator to encode all contents. In this case, initialize the iterator before encoding the message,
and then pass the iterator as a parameter when encoding each portion. You do not need to perform additional initialization or
clearing. When encoding finishes, you can determine the total encoded length and clear the iterator, reusing it for another
encoding. If needed, you can use individual iterators for each level of encoding or for pre-encoding portions of data. However,
when using separate iterators, you must initialize each iterator before starting the associated encoding process.

Initialization of an RsslEncodeIterator consists of several steps. After creating the iterator (typically stack allocated), clear it
using rsslClearEncodeIterator. Each RsslEncodeIterator requires an RsslBuffer (provided via
rsslSetEncodeIteratorBuffer) into which it encodes. RWF version information can also be populated on the iterator,
ensuring that the proper version of the wire format is encoded (refer to Section 9.5.1).

1. A single RsslEncodeIterator can support up to sixteen levels of nesting, allowing for sixteen Init calls without a single Complete call.
Because the most complex RDM currently requires only five levels, sixteen is believed to be sufficient. Should an encoding require more than sixteen
levels of nesting, multiple iterators can be used.
Transport API 3.1.X C Edition – Developers Guide 48
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
9.2.2.1 RsslEncodeIterator Functions

The following table describes functions that you can use with RsslEncodeIterator.

Note: Additional encoding examples are provided throughout this manual as well as in the Transport API package’s example
applications.

FUNCTION NAME DESCRIPTION

rsslClearEncodeIterator Clears members necessary for encoding and readies the iterator for reuse.

You must clear the RsslEncodeIterator prior to starting any encoding
process. For performance purposes, only those members necessary for
proper functionality are cleared.

rsslSetEncodeIteratorBuffer Associates an RsslEncodeIterator with the RsslBuffer into which it
encodes.

RsslBuffer.data should refer to sufficient space for encoding, and
RsslBuffer.length should be set to the number of bytes available in
RsslBuffer.data. This information ensures that encoding does not exceed
allowable buffer space.

rsslSetEncodeIteratorRWFVersion Associates RWF Versioning information to the RsslEncodeIterator,
ensuring that The Transport API uses the appropriate wire format version
while encoding.

Wire format information is typically available on the connection between
applications. Refer to Section 9.5.1.

rsslGetEncodedBufferLength Returns the size (in bytes) of content encoded with the RsslEncodeIterator.

After encoding is complete, use this function to set RsslBuffer.length to the
size of data contained in the buffer.

rsslRealignEncodeIteratorBuffer If an encoding process exceeds the space allocated in the current
RsslBuffer, this function dynamically associates a new, larger buffer with the
encoding process, allowing encoding to continue.

Table 5: RsslEncodeIterator Utility Functions
Transport API 3.1.X C Edition – Developers Guide 49
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
9.2.2.2 RsslEncodeIterator: Basic Use Example

The following example illustrates how to initialize RsslEncodeIterator in a typical fashion and set the buffer’s length once
encoding completes.

Code Example 1: RsslEncodeIterator Usage Example

/* create and clear iterator to prepare for encoding */
RsslEncodeIterator encodeIter;
rsslClearEncodeIterator(&encodeIter);
/* associate buffer and iterator, code assumes that pBuffer->data points to sufficient

memory and pBuffer->length indicates number of bytes available in pBuffer->data */
if (rsslSetEncodeIteratorBuffer(&encodeIter, pBuffer) < RSSL_RET_SUCCESS)
{

printf("Error %s (%d) encountered with rsslSetEncodeIteratorBuffer. Error Text: %s\n",
rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

return;
}
/* set proper protocol version information on iterator, this can typically be obtained from
 the RsslChannel associated with the connection once it becomes active */
if (rsslSetEncodeIteratorRWFVersion(&encodeIter, majorVersion, minorVersion) <

RSSL_RET_SUCCESS)
{

printf("Error %s (%d) encountered with rsslSetEncodeIteratorRWFVersion. Error Text:
%s\n", rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

/* Perform all content encoding now that iterator is prepared. */

/* When encoding is complete, set the pBuffer->length to the number of bytes Encoded */
pBuffer->length = rsslGetEncodedBufferLength(&encodeIter);
Transport API 3.1.X C Edition – Developers Guide 50
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
9.2.3 Content Roll Back with Example

Every Complete method has a success parameter, which allows you to discard unsuccessfully encoded content and roll back
to the last successfully encoded portion.

For example, you begin encoding a list that contains multiple entries, but the tenth entry in the list fails to encode. To salvage
the successful portion of the encoding, pass the success parameter as RSSL_FALSE when calling the failed entry’s
Complete method. This rolls back encoding to the end of the last successful entry. The remaining Complete methods should
be called, after which the application can use the encoded content. You can begin a new encoding for the remaining entries.

The following example demonstrates the use of the roll back procedure. This example encodes an RsslMap with two entries.
The first entry succeeds; so success is passed in as RSSL_TRUE. However, encoding the second entry’s contents fails, so
the second map entry is rolled back, and the map is completed. To highlight the rollback feature, only those portions relevant
to the example are included.

Code Example 2: Encoding Rollback Example

/* example shows encoding a map with two entries, where second entry content fails so it is
rolled back */

retVal = rsslEncodeMapInit(&encIter, &rsslMap, 0, 0);

/* Encode the first map entry - this one succeeds */
retVal = rsslEncodeMapEntryInit(&encIter, &mapEntry, &entryKey, 0);
/* encode contents - assume this succeeds */
/* Passing true for the success parameter completes encoding of this entry */
retVal = rsslEncodeMapEntryComplete(&encIter, RSSL_TRUE);

/* Encode the second map entry - this one fails */
retVal = rsslEncodeMapEntryInit(&encIter, &mapEntry, &entryKey, 0);
/* encode contents - assume this fails */
/* Passing false for the success parameter rolls back the encoding to the end of the previous

entry */
retVal = rsslEncodeMapEntryComplete(&encIter, RSSL_FALSE);

/* Now complete encoding of the map - this results in only one entry being contained in the map
*/

retVal = rsslEncodeMapComplete(&encIter, RSSL_TRUE);
Transport API 3.1.X C Edition – Developers Guide 51
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
9.3 Decoding Semantics and RsslDecodeIterator

Using the Transport API, applications can decode the full depth of the content or skip over portions in which the application is
not interested. Each container type provided by the Transport API includes functionality for decoding the container header and
decoding each entry in the container. If an application wishes to decode information present in a container entry, it can invoke
the specific decode function associated with the nested type. When nested content is completely decoded, the next container
entry can be decoded. If an application wishes to skip decoding data nested in a container entry, it can simply call the container
entry decode function again without invoking the decoder for nested content. A decoding application will typically loop on
decode until RSSL_RET_END_OF_CONTAINER is returned.

9.3.1 The Decode Iterator: RsslDecodeIterator

All decoding requires the use of an RsslDecodeIterator. You can use a single decode iterator to manage the full decoding
process, internally managing various state and position information while decoding.

For example, when decoding a message that contains an RsslFieldList composed of various primitive types, you can use
the same RsslDecodeIterator to decode all contents, including primitive types. In this case, you want to initialize the iterator
before decoding the message and then pass the iterator as a parameter when decoding other portions (without additional
initialization or clearing). After you completely decode all needed content, you can clear the iterator and reuse it for another
decoding. If needed, you can use individual iterators for each level of decoding. However, if you use separate iterators, you
must initialize each iterator before the decoding process that it manages.

Initialization of an RsslDecodeIterator consists of several steps. After the iterator is created (typically stack allocated), use
rsslClearDecodeIterator to clear RsslDecodeIterator. Each RsslDecodeIterator requires an RsslBuffer (provided via
rsslSetDecodeIteratorBuffer) from which to decode. RWF version information can also be populated on the iterator, thus
decoding the appropriate version of the wire format (refer to Section 9.5.1).

9.3.2 Functions for use with RsslDecodeIterator

The following table describes the functions that you can use with RsslDecodeIterator.

Tip: Decoding examples are provided throughout this manual as well as in the example applications provided with the
Transport API package.

Warning! The Transport API decodes directly from the RsslBuffer associated with the RsslDecodeIterator. If this
RsslBuffer.data is adjacent to protected memory, it is possible that decoding content in the last bytes will result in
attempted access to that protected memory due to optimized byte swapping routines. Padding the end of the
RsslBuffer with an additional 7 bytes of space allows optimized swap routines to function properly without accessing
protected memory.

function NAME DESCRIPTION

rsslClearDecodeIterator Clears members necessary for decoding and readies the iterator for reuse.

You must clear RsslDecodeIterator before decoding content. For performance
purposes, only those members required for proper functionality are cleared.

Table 6: RsslDecodeIterator Utility Functions
Transport API 3.1.X C Edition – Developers Guide 52
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
9.3.3 RsslDecodeIterator: Basic Use Example

The following example demonstrates a typical RsslDecodeIterator initialization process.

Code Example 3: RsslDecodeIterator Usage Example

rsslSetDecodeIteratorBuffer Associates the RsslDecodeIterator with the RsslBuffer from which to
decode.

Set RsslBuffer.data to refer to the content to be decoded and
RsslBuffer.length to the number of bytes contained in RsslBuffer.data.
These settings ensure that decoding does not provide content beyond what is
contained in the buffer space.

rsslSetDecodeIteratorRWFVersion Sets the RWF Version to use with the RsslDecodeIterator. The appropriate
RWF Version is typically available on the connection between applications. Refer
to Section 9.5.1.

rsslFinishDecodeEntries The decoding process typically runs until the end of each container, indicated by
RSSL_RET_END_OF_CONTAINER. This function will skip past remaining
entries in the container and perform necessary synchronization between the
content and iterator so that decoding can continue.

/* create and clear iterator to prepare for decoding */
RsslDecodeIterator decodeIter;
rsslClearDecodeIterator(&decodeIter);
/* associate buffer and iterator, code assumes that pBuffer->data points to encoded contents

to decode */
if (rsslSetDecodeIteratorBuffer(&decodeIter, pBuffer) < RSSL_RET_SUCCESS)
{

printf("Error %s (%d) encountered with rsslSetDecodeIteratorBuffer. Error Text: %s\n",
rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

return;
}
/* set proper protocol version information on iterator, this can typically be obtained from

the RsslChannel associated with the connection once it becomes active */
if (rsslSetDecodeIteratorRWFVersion(&decodeIter, majorVersion, minorVersion) <

RSSL_RET_SUCCESS)
{

printf("Error %s (%d) encountered with rsslSetDecodeIteratorRWFVersion. Error Text:
%s\n", rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

/* Perform all content decoding now that iterator is prepared. */

function NAME DESCRIPTION

Table 6: RsslDecodeIterator Utility Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 53
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
9.4 Return Code Values

RSSL Data and Message functionality returns codes indicating success or failure.

• On failure conditions, these codes inform the user of the error.

• On success conditions, these codes provide the application additional direction regarding the next encoding steps.

When using RSSL Data and Message packages, return codes greater than or equal to RSSL_RET_SUCCESS indicate some
type of specific success code, while codes less than RSSL_RET_SUCCESS indicate some type of specific failure.

9.4.1 Success Codes

The following table describes success value return codes associated with RSSL Data and Message packages.

Note: The Transport Layer has special semantics associated with its return codes. It does not follow the same semantics as
the Data and Message Packages. For detailed handling instructions and return code information, refer to Chapter 10,
Transport Package Detailed View.

RETURN CODE DESCRIPTION

RSSL_RET_SUCCESS Indicates operational success. Does not indicate next steps, though
additional encoding or decoding might be required.

RSSL_RET_ENCODE_MSG_KEY_ATTRIB Indicates that initial message encoding was successful and now the
application should encode msgKey attributes. This return occurs if the
application indicates that the message should include msgKey attributes
when calling rsslEncodeMsgInit (RSSL_MKF_HAS_ATTRIB) without
populating pre-encoded data into msgKey.encAttrib.

For further details, refer to Section 12.1.2 and Code Example 41.

RSSL_RET_ENCODE_EXTENDED_HEADER Indicates that initial message encoding (and msgKey attribute encoding)
was successful, and the application should now encode extendedHeader
content. This return occurs if an application indicates that the message
should include extendedHeader content when calling
rsslEncodeMsgInit without populating pre-encoded data into the
extendedHeader.

For further details on message encoding information, refer to Chapter 12,
Message Package Detailed View.

RSSL_RET_ENCODE_CONTAINER Indicates that initial encoding succeeded and that the application should
now encode the specified containerType.

• For details on container types, refer to Section 11.3.

• For details on encoding messages, refer to Chapter 12, Message
Package Detailed View.

RSSL_RET_SET_COMPLETE Indicates that RsslFieldList or RsslElementList encoding is
complete. Additionally encoded entries are encoded in the standard way
with no additional data optimizations. For further information, refer to
Section 11.6.

Table 7: Data and Message Package Success Return Codes
Transport API 3.1.X C Edition – Developers Guide 54
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
RSSL_RET_DICT_PART_ENCODED Indicates that the dictionary encoding utility function successfully
encoded part of a dictionary message (because dictionary messages
tend to be large, they might be segmented into a multi-part message).

• For specific information about the Dictionary domain and the utility
functions provided by the Transport API, refer to the Transport API C
Edition RDM Usage Guide.

• For more details on message fragmentation, refer to Section 13.1.

RSSL_RET_BLANK_DATA Indicates that the decoded primitiveType is a blank value. The contents
of the primitive type should be ignored; any display or calculation should
treat the value as blank.

For further details on primitive types, refer to Section 11.2.

RSSL_RET_NO_DATA Indicates that the containerType being decoded contains no data and
was decoded from an empty payload. Informs the application not to
continue to decode container entries (as none exist).

RSSL_RET_END_OF_CONTAINER Indicates that the decoding process has reached the end of the current
container. If decoding nested content, additional decoding might still be
needed. The application can move back up the nesting stack and
continue decoding the next container entry by calling the container’s
specific entry decode function.

For example, if decoding an RsslFieldList contained in an
RsslMapEntry, when this code is returned, it signifies that the contained
field list decoding is complete.

For details on container types, refer to Section 11.3.

RSSL_RET_SET_SKIPPED Indicates that RsslFieldList or RsslElementList decoding skipped
over contained, set-defined data because a set definition database was
not provided. Any standard encoded entries will still be decoded.

For further information on set definitions, refer to Section 11.6.

RSSL_RET_SET_DEF_DB_EMPTY Indicates that decoding of a set definition database completed
successfully, but the database was empty.

For further information, refer to Section 11.6.

RETURN CODE DESCRIPTION

Table 7: Data and Message Package Success Return Codes (Continued)
Transport API 3.1.X C Edition – Developers Guide 55
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
9.4.2 Failure Codes

RETURN CODE Description

RSSL_RET_FAILURE Indicates a general failure, used when no specific details are available.

RSSL_RET_BUFFER_TOO_SMALL Indicates that the RsslBuffer on the RsslEncodeIterator lacks
sufficient space for encoding.

RSSL_RET_INVALID_ARGUMENT Indicates an invalid argument was provided to an encoding or decoding
function.

RSSL_RET_ENCODING_UNAVAILABLE Indicates that the invoked function does not contain encoding
functionality for the specified type. There might be other ways to encode
content or the type might be invalid in the combination being performed.

RSSL_RET_UNSUPPORTED_DATA_TYPE Indicates that the type is not supported for the operation being
performed. This might indicate a primitiveType is used where a
containerType is expected or the opposite.

RSSL_RET_UNEXPECTED_ENCODER_CALL Indicates that encoding functionality was used in an unexpected
sequence or the called function is not expected in this encoding.

RSSL_RET_INCOMPLETE_DATA Indicates that the RsslBuffer on the RsslDecodeIterator does not
have enough data for proper decoding.

RSSL_RET_INVALID_DATA Indicates that invalid data was provided to the invoked function.

RSSL_RET_ITERATOR_OVERRUN Indicates that the application is attempting to nest more levels of content
than is supported by a single RsslEncodeIteratora. If this occurs, you
should use multiple iterators for encoding.

RSSL_RET_VALUE_OUT_OF_RANGE Indicates that a value being encoded using a set definition exceeds the
allowable range for the type as specified in the definition.

For further information on set definitions, refer to Section 11.6.

RSSL_RET_SET_DEF_NOT_PROVIDED Indicates that RsslFieldList or RsslElementList encoding requires a
set definition database which was not provided.

For more information, refer to Section 11.6.

RSSL_RET_TOO_MANY_LOCAL_SET_DEFS Indicates that encoding exceeds the maximum number of allowed local
set definitions. Currently 15 local set definitions are allowed per
database.

For more information, refer to Section 11.6.

RSSL_RET_DUPLICATE_LOCAL_SET_DEFS Indicates that content includes a duplicate set definition that collides with
a definition already stored in the database.

For more information, refer to Section 11.6.

RSSL_RET_ILLEGAL_LOCAL_SET_DEF Indicates that the setId associated with a contained definition exceeds
the allowable value. Currently setId values up to 15 are allowed.

For more information, refer to Section 11.6.

Table 8: Data and Message Package Failure Return Codes
Transport API 3.1.X C Edition – Developers Guide 56
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
9.5 Versioning

The Transport API supports two types of versioning:

• Protocol Versioning: Allows for the exchange of protocol type and version information across a connection established
with the RSSL Transport Package. Protocol and version information can be provided to the RsslEncodeIterator and
RsslDecodeIterator to ensure the proper handling and use of the appropriate wire format version.

• Library Versioning: Allows for applications to programmatically query library version information. Library versioning
ensures that expected libraries are used and that all versions match in the application.

9.5.1 Protocol Versioning

Consumer and provider applications using the RSSL Transport can provide protocol type and version information. This data is
supplied as part of RsslConnectOptions or RsslBindOptions and populated via the protocolType, majorVersion, and
minorVersion members. When establishing a connection, data is exchanged and negotiated between client and server:

• If the client’s specified protocolType does not match the server’s specified protocolType, the connection is refused.

• If the protocolType information matches, version information is compared and a compatible version determined.

After a connection becomes active, negotiated version information is available via the RsslChannel from both client and
server and can be used for encoding and decoding:

• To populate version information on an RsslEncodeIterator, call the rsslSetEncodeIteratorRWFVersion function.

• To populate version information on an RsslDecodeIterator, call the rsslSetDecodeIteratorRWFVersion function.

The RSSL Transport layer is data neutral and does not change or depend on data distribution. Versioning information is
provided only to help client and server applications manage the data they communicate. For further details on the RSSL
Transport, refer to Chapter 10, Transport Package Detailed View.

Typically, an increase in the major version is associated with the introduction of an incompatible change. An increase in the
minor version tends to signify the introduction of a compatible change or extension.

The Data Package contains several defined values that you can use with protocol versioning:

a. A single RsslEncodeIterator can support up to sixteen levels of nesting (this allows for sixteen Init calls without a single Com-
plete call). Currently, the most complex RDM requires five levels, so sixteen is sufficient. If an encoding requires more than sixteen
levels of nesting, multiple iterators can be employed.

Note: Thomson Reuters strongly recommends that you write all Transport API applications to leverage wire format
versioning.

Note: Properly using Transport API’s versioning functionality helps minimize future impacts associated with underlying format
modifications and enhancements, ensuring compatibility with other Transport API-enabled components.

DEFINE NAME DESCRIPTION

RSSL_RWF_PROTOCOL_TYPE Defines the protocolType value associated with RWF. Define
other protocols using different protocolType values.

RSSL_RWF_MAJOR_VERSION Sets the value associated with the current major version. If
incompatible changes are introduced, this value is incremented.

Table 9: RsslLibraryVersionInfo Structure Members
Transport API 3.1.X C Edition – Developers Guide 57
ETAC313UM.180

Chapter 9 Encoding and Decoding Conventions
9.5.2 Library Versioning

Each Transport API library embeds its own version data as well as internal Thomson Reuters build version data. There are
several ways in which you can obtain this data. From a console, you can use the strings command to search for PACKAGE,
which provides Transport API package version data, and VERSION, which provides the internal Thomson Reuters build
version data. Any issues raised to support should include this version data.

Additionally, each Transport API library includes a utility function. Using utility functions you can programmatically extract
library version information. Each function populates an RsslLibraryVersionInfo structure, as defined in the following table.

RSSL_RWF_MINOR_VERSION Sets the value associated with the current minor version. If
extensions or compatible changes are introduced, this value is
incremented.

RSSL_RWF_MAX_SUPPORTED_MAJOR_VERSION Defines the maximum RWF major version for which this product
release supports encoding or decoding. Any higher value requires
the use of libraries from a more current release.

RSSL_RWF_MIN_SUPPORTED_MAJOR_VERSION Defines the minimum RWF major version for which this product
release supports encoding or decoding. Any lower value requires
the use of libraries from an older release.

MEMBER DESCRIPTION

productVersion Contains the library’s version.

internalVersion Contains the internal Thomson Reuters build data.

productDate Contains the build date for the product release.

Table 10: RsslLibraryVersionInfo Structure Members

FUNCTION NAME DESCRIPTION

rsslQueryDataLibraryVersion Retrieves version data associated with the RSSL Data Package library.

rsslQueryMessagesLibraryVersion Retrieves version data associated with the RSSL Message Package library.

rsslQueryTransportLibraryVersion Retrieves version data associated with the RSSL Transport Package library.

Table 11: Library Version Utility Functions

DEFINE NAME DESCRIPTION

Table 9: RsslLibraryVersionInfo Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 58
ETAC313UM.180

Chapter 10 Transport Package Detailed View
Chapter 10 Transport Package Detailed View

10.1 Concepts

The Transport API offers a Transport Package capable of communicating with other OMM-based components, including but
not limited to TREP, Elektron, EDF Direct, and other TREP API OMM-based applications. The Transport Package efficiently
sends and receives data across TCP/IP-based networks, leverages HTTP or HTTPS connection types, and presents a
message-based interface to applications for ease of reading and writing data.

The package exposes a feature set that includes a receiver-transparent way for senders to combine or pack multiple
messages into one outbound packet, as well as transparent fragmentation and reassembly of messages which exceed the
size of an outbound packet. Structural representations are provided for managing connections (referred to as channels).

The transport layer offers multiple degrees of thread safety, all programmatically configurable by the application. This ranges

from a fully thread-safe option1 to the ability for an application to turn off all protective locking2. Threading implementation and
thread-model selection is managed by the application. The transport provides different locking options to provide maximum
flexibility to the user. For more information, refer to Section 10.2.4.

The transport supports both non-blocking and blocking I/O models, however use of blocking I/O is not recommended. When a
blocking operation is occurring, control will not be returned to the application until the operation has fully completed (e.g. all
information is written). This prevents the application from performing additional tasks, including heartbeat sending and
monitoring, while the transport operation may be waiting for the operating system. By employing an I/O notification mechanism
(e.g. select, poll), an application can leverage a non-blocking I/O model, using the I/O notification to alert the application when
data is available to read or when output space is available for writing to. The following sections are written with an emphasis on
non-blocking I/O use, though blocking behavior is also described. All examples are written from a non-blocking I/O
perspective.

1. When this option is enabled, RSSL Transport can function correctly during simultaneous execution by multiple application threads.
2. When this option is enabled, all locking is disabled for additional performance. If required, the application must provide any necessary thread safety.
Transport API 3.1.X C Edition – Developers Guide 59
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.1.1 Transport Types

The transport supports configuration of multiple connection types for different systems, while providing a single interface for a
look and feel that is similar among all connections and components. Developers should ensure that the components to which
they intend to connect are configured to support the appropriate transport type.

10.1.1.1 Socket Transport

The Transport API provides a transport for efficiently distributing messages across a TCP/IP-based reliable network
(RSSL_CONN_TYPE_SOCKET). This transport is capable of connecting to various OMM-based components, including but
not limited to Enterprise Platform, Elektron, RDF Direct, and other Transport API or RFA OMM-based applications. On specific
platforms, applications can also leverage tunneling through HTTP (RSSL_CONN_TYPE_HTTP) or HTTPS
(RSSL_CONN_TYPE_ENCRYPTED) connection types for internet connectivity.

The socket transport allows for both establishing outbound connections and for creating listening sockets to accept inbound
connections. Once a connection is established, both connected components can send and receive information. Outbound
connections are typically created by OMM Consumer applications to connect to an ADS or OMM Interactive Provider, or by
OMM Non-Interactive Provider applications to connect to an ADH. Listening sockets are typically created by OMM Interactive
Provider applications to allow OMM Consumer applications or ADSs to instantiate connections to it and request data.

10.1.1.2 Reliable Multicast Transport

The Transport API provides an efficient transport for exchanging messages over a UDP Multicast-based network
(RSSL_CONN_TYPE_RELIABLE_MCAST). This transport leverages the same technology used on the Enterprise Platform
Backbone to improve reliability of message delivery and automatically re-sequence out-of-order messages.

OMM Non-Interactive Provider applications may create multicast connections for publishing to an ADH. OMM Consumer
applications may leverage the Transport API Reactor and its watchlist feature to create connections to an ADS. For more
information on the Transport API Reactor, refer to the Transport API C Edition Value Added Components Developers Guide.

10.1.1.3 Sequenced Multicast Transport

The Transport API provides an efficient transport for reading messages over the UDP Multicast-based network
(RSSL_CONN_TYPE_SEQ_MCAST). The Sequenced Multicast protocol is a special, unreliable UDP multicast with built-in
sequence numbers that allow the user to ensure order and identify gaps in their applications.

10.1.2 RSSL Channel Structure

The channel structure represents a connection that can send or receive information across a network, regardless of whether
the connection is outbound or accepted by a listening socket. The Transport Package internally manages any memory
associated with an RsslChannel structure, and the application does not need to create nor destroy memory (associated with
the channel). The RsslChannel is typically used to perform any action on the connection that it represents (e.g. reading,
writing, disconnecting, etc). See the subsequent sections for more information about RsslChannel use within the transport.

The following table describes the members of the RsslChannel structure.
Transport API 3.1.X C Edition – Developers Guide 60
ETAC313UM.180

Chapter 10 Transport Package Detailed View
Structure Member Description

socketId Represents a file descriptor that can be used in some kind of I/O notification
mechanism (e.g. select, poll). This is the file descriptor associated with this end of the
network connection; the file descriptor value may be different from the other end of the
connection.

oldSocketId It is possible for a file descriptor to change over time, typically due to some kind of
connection keep-alive mechanism. If this occurs, this is typically communicated via a
return code of RSSL_RET_READ_FD_CHANGE (for further information, refer to
Section 10.6). The previous socketId is stored in oldSocketId so the application can
properly unregister and then register the new socketId with their I/O notification
mechanism.

state The state associated with the RsslChannel. Until the channel has completed its
initialization handshake and has transitioned to an active state, no reading or writing
can be performed. Table 13 describes channel state values.

connectionType An enumerated value that indicates the type of underlying connection being used. For
more information, refer to Table 14.

clientIP When a server completes the connection handshake with an accepted connection and
the RsslChannel becomes active, this is populated with a string representation of the
IP address of the connecting client. This value is not populated for clients calling the
rsslConnect function.

clientHostname When a server completes the connection handshake with an accepted connection and
the RsslChannel becomes active, this is populated with a string representation of the
hostname of the connecting client. This value is not populated for clients calling the
rsslConnect function.

pingTimeout When an RsslChannel becomes active for a client or server, this is populated with the
negotiated ping timeout value. This is the number of seconds after which no
communication can result in a connection being terminated. Both client and server
applications should send heartbeat information within this interval. The typically used
rule of thumb is to send a heartbeat every pingTimeout/3 seconds. For more
information, refer to Section 10.12.

protocolType When an RsslChannel becomes active for a client or server, this is populated with the
protocolType associated with the content being sent on this connection. If the
protocolType indicated by a server does not match the protocolType that a client
specifies, the connection will be rejected.

The transport layer is data-neutral and allows the flow of any type of content.
protocolType is provided to help client and server applications manage the
information they communicate. For more details, refer to Section 9.5.1.

majorVersion When an RsslChannel becomes active for a client or server, this is populated with the
negotiated major version number that is associated with the content being sent on this
connection. Typically, a major version increase is associated with the introduction of
incompatible change.

The transport layer is data-neutral and allows the flow of any type of content.
majorVersion is provided to help client and server applications manage the
information they communicate. For more details, refer to Section 9.5.1.

Table 12: RsslChannel Structure Members
Transport API 3.1.X C Edition – Developers Guide 61
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.1.2.1 RsslChannel Enumerated Name Values

minorVersion When an RsslChannel becomes active for a client or server, this is populated with the
negotiated minor version number that is associated with the content being sent on this
connection. Typically, a minor version increase is associated with a fully backward
compatible change or extension.

The transport layer is data-neutral and allows the flow of any type of content.
minorVersion is provided to help client and server applications manage the
information they communicate. For more details, refer to Section 9.5.1.

userSpecPtr A pointer that can be set by the user of the RsslChannel. This value can be set directly
or via the connection options and is not modified by the transport. This information can
be useful for coupling this RsslChannel with other user created information, such as a
watch list associated with this connection.

ENUMERATED NAME DESCRIPTION

RSSL_CH_STATE_INACTIVE Indicates that an RsslChannel is inactive. This channel cannot be used. This state
typically occurs after a channel is closed by the user.

RSSL_CH_STATE_INITIALIZING Indicates that an RsslChannel requires additional initialization. This initialization is
typically additional connection handshake messages that need to be exchanged.
When using blocking I/O, an RsslChannel is typically active when it is returned and no
additional initialization is required by the user.

RSSL_CH_STATE_ACTIVE Indicates that an RsslChannel is active. This channel can perform any connection-
related actions, such as reading or writing.

RSSL_CH_STATE_CLOSED Indicates that an RsslChannel has been closed. This typically occurs as a result of an
error inside of a transport function call and is often related to a socket being closed or
becoming unavailable. Appropriate error value return codes and RsslError
information should be available for the user.

Table 13: RSSL Connection State Values

Structure Member Description

Table 12: RsslChannel Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 62
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.1.2.2 RSSL Connection Enumerated Names Values

RSSL Connection types are used in several areas of the transport. When creating a connection, an application can specify
which connection type to use (refer to Section 10.3). Additionally, after a connection is established, the
RsslChannel.connectionType will indicate the connection type being used.

ENUMERATED NAME DESCRIPTION

RSSL_CONN_TYPE_INIT Indicates that the RsslChannel is not connected.

RSSL_CONN_TYPE_SOCKET Indicates that the RsslChannel uses a standard, TCP-based socket
connection. This type can be used to connect between any RSSL Transport-
based applications.

RSSL_CONN_TYPE_HTTP_TUNNEL Indicates that the RsslChannel tunnels using HTTP. This type can be used to
connect between any RSSL Transport-based applications.

For more information, refer to Section 4.6.

RSSL_CONN_TYPE_ENCRYPTED Indicates that the RsslChannel tunnels using encryption. The encryption use
is transparent to the client application. For a server to accept encrypted
connection types the use of an external encryption/decryption device is
required (encryption / decryption is not performed by the server). Because
data will already be decrypted when it arrives at the server, an RsslChannel
may indicate that a connection type is HTTP or SOCKET, even if the
connection was established by specifying ENCRYPTED. The client leverages
the Microsoft WinINET library, which requires use of multiple underlying
connections managed by the RSSL Transport. For more information, refer to
Section 4.6.

RSSL_CONN_TYPE_RELIABLE_MCAST Indicates that the RsslChannel uses a UDP-based, reliable multicast
connection type.

This connection type is available only to applications using the rsslConnect
function to establish their connection. The reliable multicast connection type
ensures proper ordering of content across the network and, through the use
of an acknowledgment and retransmission mechanism, backfills recent
packet gaps. In situations where a packet gap cannot be filled, the application
is notified of the gap situation.

The default behavior for this connection type is to stay connected to the
multicast, even in a gap situation. This allows the application to attempt
recovery in a manner that might minimize any affect on the network. You can
control this behavior via the disconnectOnGaps option described in Table 24.

RSSL_CONN_TYPE_SEQ_MCAST Indicates that the RsslChannel uses a UDP-based, sequenced multicast
connection type.

This connection type is available only to applications using the rsslConnect
function to establish their connection. Though this connection type uses
sequence numbers which enables gap detection, it only ensures the proper
ordering of content across the network; it does not acknowledge or retransmit
packets to fill a gap.

The default behavior for this connection type is to stay connected to the
multicast, even in a gap situation. This allows for the application to attempt
recovery in a manner that might minimize any affect on the network. You can
control this behavior via the disconnectOnGaps option described in Table 24.

Table 14: RSSL ConnectionType Values
Transport API 3.1.X C Edition – Developers Guide 63
ETAC313UM.180

Chapter 10 Transport Package Detailed View
RSSL_CONN_TYPE_UNIDIR_SHMEM Indicates that the RsslChannel is using a shared memory connection type.

This connection type offers a one-way data flow from a single server to
multiple clients using a shared memory segment for content delivery.
However, the server and clients must run on the same machine.

For compatibility purposes, this connection type provides an
RsslChannel.socketId to the application. This socketId will always
indicate that something is available to read, even when there is not. This
ensures that the application is reading content with as little latency as
possible. If needed, the application can implement alternate approaches that
would allow for a less CPU intensive read algorithm.

Warning! Transport API applications using this connection type
require appropriate run-time permissions to create and lock memory
on the system (e.g. mlock()). See operating system-specific
information for details on ensuring applications have proper system
access rights.

ENUMERATED NAME DESCRIPTION

Table 14: RSSL ConnectionType Values (Continued)
Transport API 3.1.X C Edition – Developers Guide 64
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.1.3 RSSL Server Structure

The RSSL Server structure is used to represent a server that is listening for incoming connection requests. Any memory
associated with an RsslServer structure is internally managed by the RSSL Transport Package, and the application does not
need to create nor destroy this type. The RsslServer is typically used to accept or reject incoming connection attempts. See
the subsequent sections for more information about RsslServer use within the transport. The following table describes the
members of the RsslServer structure.

10.1.4 Transport Error Handling

Many RSSL Transport Package functions take a parameter for returning detailed error information. This RsslError structure is
populated only in the event of an error condition and should only be inspected when a specific failure code is returned from the
function itself.

In several cases, positive return values are reserved or have special meaning, for example bytes remaining to write to the
network. As a result, some negative return codes might be used to indicate success (e.g. RSSL_RET_READ_PING). Any specific
transport-related success or failure error handling is described along with the function that requires it.

RsslError members are described in the following table.

STRUCTURE MEMBER DESCRIPTION

socketId Represents a file descriptor that can be used in some kind of I/O notification mechanism (e.g.
select, poll). This is the file descriptor associated with listening socket. When triggered, this
typically indicates that there is an incoming connection and rsslAccept should be called.

state The state associated with the RsslServer. A server is typically returned as active unless an
error occurred during the rsslBind call. Table 6 describes possible state values.

portNumber The port number that this RsslServer is bound to and listening for incoming connections on.

userSpecPtr A pointer that can be set by the user of the RsslServer. This value can be set directly or via
the bind options and is not modified by the transport. This information can be useful for
coupling this RsslServer with other user created information, such as a list of associated
RsslChannel structures.

Table 15: RsslServer Structure Members

Structure Member DESCRIPTION

channel A pointer to the RsslChannel structure on which the error occurred.

rsslErrorId A Transport API-specific return code that specifies what error occurred. Refer to the following
sections for specific error conditions that might arise.

sysError Populated with the system errno or error number associated with the failure. This information
is only available when the failure occurs as a result of a system function, and will be populated
by 0 otherwise.

texta

a. RsslError text information is limited to 1,200 bytes in length.

Detailed text describing the error. This can include RSSL- specific error information,
underlying library-specific error information, or a combination of both.

Table 16: RsslError Structure Members
Transport API 3.1.X C Edition – Developers Guide 65
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.1.5 General Transport Return Codes

It is important that the application monitors return values from all Transport API functions that provide return-codes. Where
specific error values are returned or special handling is required, the subsequent sections describe the possible return codes
from RSSL Transport functionality. The following table lists general error codes. For Transport return codes specific to a
particular method, refer to that method’s section:

• rsslInitChannel return codes: Section 10.5.4.

• rsslRead return codes: Section 10.6.2.

• rsslWrite return codes: Section 10.9.6.

• rsslFlush return codes:Section 10.10.3.

RETURN CODE DESCRIPTION

RSSL_RET_SUCCESS Indicates successful completion of the operation.

RSSL_RET_FAILURE Indicates that initialization has failed and cannot progress. The
RsslChannel.state should be RSSL_CH_STATE_CLOSED. See the
RsslError content for more information.

RSSL_RET_INIT_NOT_INITIALIZED Indicates that the RSSL Transport has not been initialized. See the RsslError
content for more details. For details on initializing, refer to Section 10.2.

Table 17: General Transport Return Codes
Transport API 3.1.X C Edition – Developers Guide 66
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.1.6 Application Lifecycle

The following figure depicts the typical lifecycle of a client or server application using the Transport API, as well as the
associated function calls. The subsequent sections in this document provide more detailed information.

Figure 28. Application Lifecycle
Transport API 3.1.X C Edition – Developers Guide 67
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.2 Initializing and Uninitializing the Transport

Every application using the transport, client or server, must first initialize it. This initialization process allows the RSSL
Transport to pre-allocate internal memory associated with buffering and channel management.

Similarly, when an application has completed its usage of the RSSL Transport, it must uninitialize it. The uninitialization
process allows for any heap allocated memory to be cleaned up properly.

10.2.1 RSSL Initialization and Uninitialization Functions

The following table provides additional information about the RSSL Transport functions used for initializing and uninitializing.

Function Description

rsslInitialize The first RSSL Transport function that an application should normally call (see also the
rsslInitializeEx function). This creates and initializes internal memory and structures, as well as
performing any boot strapping for underlying dependencies. The rsslInitialize function also
allows the user to specify the locking model they want applied to the RSSL Transport. For more
information, refer to Section 10.2.4.

rsslInitializeEx On Linux, if you want to use custom OpenSSL just-in-time loaded library names on tunneling
connections, your application needs to first call rsslInitializeEx (not rsslInitialize).
rsslInitializeEx creates and initializes internal memory and structures, as well as performing any
boot strapping for underlying dependencies (i.e., objects). rsslInitializeEx uses the
rsslInitializeExOpts structure with the following available options:

• jitOpts (for further details on jitOpts, refer to Section 10.2.3)

• rsslLocking (for further details on locking models and settings, refer to Section 10.2.4).

rsslUninitialize The last RSSL Transport function that an application should call. This uninitializes internal data
structures and deletes any allocated memory.

Table 18: RSSL Initialization and Uninitialization Functions
Transport API 3.1.X C Edition – Developers Guide 68
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.2.2 Initialization Reference Counting with Example

Both the rsslInitialize and rsslUninitialize functions use reference counting. This allows only the first call to
rsslInitialize to perform any memory allocation or boot strapping and only the last necessary call to rsslUninitialize to
undo the work of initialize. Only a single rsslInitialize call need be made within an application, however this call must be
the first Transport function call performed.

The following example demonstrates the use of rsslInitialize and rsslUninitialize.

Code Example 4: Transport Initialization and Uninitialization

10.2.3 Just-in-Time Loaded Library Names (Linux Only)

When tunneling via HTTPS on Linux, you can specify alternative names for the OpenSSL and cryptography shared libraries by
using jitOpts by calling rsslInitializeEx (instead of rsslInitialize). If you change a name for a file, you must specify
both jitOpts options: if you specify only one jitOpts option, ETA ignores it and continues to use the default names.

RsslError error;
/* Starting RSSL Transport use, must call initialize first */
if (rsslInitialize(RSSL_LOCK_GLOBAL_AND_CHANNEL, &error) < RSSL_RET_SUCCESS)
{

printf("Error %s (%d) (errno: %d) encountered with rsslInitialize. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,

error.text);

/* End application */
return 0;

}

/* Any transport use occurs here - see following sections for all other functionality */
/* All RSSL Transport use is complete, must uninitialize */
rsslUninitialize();

/* End application */
return 0;

OPTION DESCRIPTION

libsslName Specifies a custom name for the OpenSSL libssl shared library. ETA attempts to dynamically
load a library with this specified name for encrypted connections.

By default, ETA automatically uses libssl.so.10 for encrypted connections.

libcryptoName Specifies a custom name for the OpenSSL libcrypto shared library. ETA attempts to
dynamically load a library with this specified name for encrypted connections.

By default, ETA automatically uses libcrypto.so.10 for encrypted connections.

Table 19: jitOpts Options
Transport API 3.1.X C Edition – Developers Guide 69
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.2.4 Transport Locking Models

The RSSL Transport offers the choice of several locking models. These locking models are designed to offer maximum
flexibility and allow the transport to be used in the manner that best fits the application’s design. There are three types of
locking that occur in the RSSL transport. Global locking is used to protect any resources that are shared across connections or
channels, such as connection pools. Channel locking is used to protect any resources that are shared within a single
connection or channel, such as a channel’s buffer pool. Shared pool locking is used to protect a server’s shared buffer pool,
which is used to share one pool of buffers across multiple connections.

All three types of locking can be enabled or disabled, depending on the needs of the application. Once a locking model is
chosen, it cannot be changed without uninitializing and reinitializing the transport. This behavior is performed to ensure that
there is no locking change pushed onto connections that may already be established. Shared pool locking is controlled on a
per-server basis via RsslBindOptions (for more information, refer to Section 10.4.1.1). Global and channel locking are
controlled by a parameter passed into the rsslInitialize function. The following table describes the valid options for use
with rsslInitialize.

ENUMERATED NAME DESCRIPTION

RSSL_LOCK_NONE Global and Channel locking will be disabled. This option can be used for
single-threaded applications to remove any locking overhead since there is no
risk of multiple thread access. It is additionally useful for multi-threaded
applications that utilize the RSSL Transport from within a single thread. It is
possible for an application to perform reading on an RsslChannel from one
thread and writing to the same RsslChannel from a different thread - this
requires synchronization while creating and destroying connections so use of
RSSL_LOCK_GLOBAL is preferable.

RSSL_LOCK_GLOBAL_AND_CHANNEL Both global locking and channel locking will be enabled. This, in addition to
enabling shared pool locking, will provide full thread safety. This setting allows
for accessing the same channel from multiple threads. Note that writing
messages from multiple threads can result in ordering issues and it is not
recommended to write related messages across different threads. Reading
across multiple threads can also introduce ordering issues associated with
information received, which may or may not impact ordering of related
messages.

RSSL_LOCK_GLOBAL Global locking is enabled and channel locking is disabled. This allows for any
globally shared resources to be protected, but any channel related resources
are not thread safe. This model allows for each channel to be handled by its
own dedicated thread, but channel creation and destruction can occur across
threads.

Table 20: RSSL Initialize Locking Options
Transport API 3.1.X C Edition – Developers Guide 70
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.3 Creating the Connection

The transport package allows for outbound connections to be established and managed. An outbound connection allows an
application to connect to a listening socket or multicast network, often to some type of Provider running on a well known port
number or multicast group address and port.

10.3.1 Network Topologies

The Transport API supports two types of network topologies:

• unified: A unified network topology is one where the RsslChannel uses the same connection information
(address:port) to send and receive all content.

• segmented: A segmented network topology is one where the RsslChannel uses different connection information for
sending and receiving. In the case of a segmented network, this allows for sent content and received content to be on
different underlying address:port combinations.

On TCP-based networks, the Transport API supports only a unified topology (RSSL_CONN_TYPE_SOCKET,
RSSL_CONN_TYPE_HTTP, and RSSL_CONN_TYPE_ENCRYPTED), but on multicast-based networks, the Transport API
supports both unified and segmented topologies (RSSL_CONN_TYPE_RELIABLE_MCAST and
RSSL_CONN_TYPE_SEQ_MCAST).

For configuration information on network topologies, refer to Table 23.

10.3.1.1 TCP-based Networks

If an application needs to communicate with multiple devices using a RSSL_CONN_TYPE_SOCKET,
RSSL_CONN_TYPE_HTTP, and RSSL_CONN_TYPE_ENCRYPTED connection type, a unique (point-to-point) connection is
required for each device. Any content that needs to go to all devices must be written (or “fanned out”) on all connections, which
is the application’s responsibility. The following diagram illustrates this scenario:

Figure 29. Unified TCP Network

In Figure 29, Application A has a unique, point-to-point connection with each of the applications B and C. If Application A
wants to send the same content to both applications B and C, Application A must send the same content over each
connection. In this scenario, if content is sent over only one connection, only the application on the corresponding end of that
connection receives the content.
Transport API 3.1.X C Edition – Developers Guide 71
ETAC313UM.180

Chapter 10 Transport Package Detailed View
For TCP connections, OMM consumer and NIP applications connect as shown in Figure 30. The arrows used in the figure
depict the directions in which connections are established. OMM consumers typically connect to a well known port number
associated with some kind of Interactive Provider (e.g. ADS, Elektron), while OMM Non-Interactive Providers typically connect
to a well known port on the ADH.

Figure 30. TCP Connection Creation

10.3.1.2 Multicast-based Networks: Unified

If an application wishes, it can communicate with multiple devices using a single connection to a multicast network (presuming
the other devices access the same multicast network). In this case, a single transmission is sufficient to send data to all
connected devices.

In the following diagram (Figure 31), all applications send and receive content on the same multicast network. Because the
same network is used for sending and receiving traffic, all traffic is seen by all applications. Anything sent by one application
will be received by all other applications on the network.

Figure 31. Unified Multicast Network
Transport API 3.1.X C Edition – Developers Guide 72
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.3.1.3 Multicast-based Networks: Segmented

In segmented multicast networks, applications transmit and receive data over different networks allowing users to separate
applications based on the content they need to send or receive

In the following diagram (Figure 32):

• Applications A - C only send content on Network 1; they do not receive content from Network 1 (i.e., Application A
does not see content sent by applications B or C). Applications A - C receive only the content sent on Network 2 (by
applications D - F).

• Applications D - F only send content on Network 2; they do not receive content from Network 2 (i.e., Application D
does not see content sent by applications E or F). Applications D - F receive only the content sent on Network 1 (by
applications A - C).

Figure 32. Segmented Multicast Network

The following diagram (Figure 33) illustrates OMM NIP applications using outbound multicast connections leveraging a
segmented connection type. This allows the ADH to receive only content published by NIP applications (via the NIProv Send
Network).

Figure 33. Multicast Connection Creation
Transport API 3.1.X C Edition – Developers Guide 73
ETAC313UM.180

Chapter 10 Transport Package Detailed View
The following diagram (Figure 34) illustrates Transport API Reactor Consumer applications leveraging a segmented network
to connect to a ADS to consume multicast data. This allows a consumer to send to and receive data from multiple ADSs
without receiving data from other consumers.

Figure 34. Consuming Multicast Data

10.3.2 Creating the Outbound Connection: rsslConnect

An application can create an outbound connection by using the rsslConnect function.

Note: Consuming data from an ADS multicast network is only supported when consuming through a watchlist-enabled
Reactor. For more information, refer to the Transport API C Edition Value Added Components Developers Guide.

function NAME DESCRIPTION

rsslConnect Establishes an outbound connection, which can leverage standard sockets, HTTP, or HTTPS.
Returns an RsslChannel that represents the connection to the user. In the event of an error,
NULL is returned and additional information can be found in the RsslError structure.

Connection options are passed in via an RsslConnectOptions structure described in Table
22.

Once a connection is established and transitions to the RSSL_CH_STATE_ACTIVE state,
this RsslChannel can be used for other transport operations. For more information about
channel initialization, refer to Section 10.5.

Table 21: rsslConnect Function
Transport API 3.1.X C Edition – Developers Guide 74
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.3.2.1 RsslConnectOptions Structure Members

STRUCTURE MEMBER DESCRIPTION

blocking If set to RSSL_TRUE, blocking I/O will be used for this RsslChannel.

When I/O is used in a blocking manner on an RsslChannel, any reading or writing will
complete before control is returned to the application. In addition, the rsslConnect function
will complete any initialization on the RsslChannel prior to returning it. Blocking I/O prevents
the application from performing any operations until the I/O operation is completed.

Blocking I/O is typically not recommended. An application can leverage an I/O notification
mechanism to allow efficient reading and writing, while using other cycles to perform other
necessary work in the application. An I/O notification mechanism enables the application to
read when data is available, and write when output space is available.

componentVersion An optional, user-defined component version string appended behind the standard
Transport API component version information. If the combined component version length
exceeds the maximum supported by the Transport API, the user-defined information will be
truncated.

compressionType The type of compression the client would like performed for this connection. Compression is
negotiated between the client and server and may not be performed if only the client has it
enabled. For more information about supported compression types and compression
negotiation, refer to Section 10.4.3.

connectionInfo Network configuration information. This includes unified and segmented network
configuration parameters. For specific configuration information, refer to Table 23. This has
replaced hostName and serviceName configuration.

connectionType Specifies the type of connection to establish. Creation of TCP-based socket connection
types or UDP-based multicast connection types are available across all supported platforms.

• ETA supports HTTPS connections on both Windows and Linux.

• ETA supports HTTP connections only on Windows.

Connection Types are described in more detail in Table 14.

Note: All Windows connections depend on the Microsoft WinINET system library.

guaranteedOutputBuffers A guaranteed number of buffers made available for this RsslChannel to use while writing
data. Guaranteed output buffers are allocated at initialization time.

For more information, refer to Section 10.8.

hostName DEPRECATED.

For information on using connectionInfo.unified.address to configure equivalent
functionality, refer to Table 23.

majorVersion The major version of the protocol that the client intends to exchange over the connection.
This value is negotiated with the server at connection time. The outcome of the negotiation
is provided via the majorVersion information on the RsslChannel. Typically, a major
version increase is associated with the introduction of incompatible change.

The transport layer is data-neutral and allows the flow of any type of content. majorVersion
is provided to help client and server applications manage the information they communicate.
For more details, refer to Section 9.5.1.

Table 22: RsslConnectOptions Structure Members
Transport API 3.1.X C Edition – Developers Guide 75
ETAC313UM.180

Chapter 10 Transport Package Detailed View
minorVersion The minor version of the protocol that the client intends to exchange over the connection.
This value is negotiated with the server at connection time. The outcome of the negotiation
is provided via the minorVersion information on the RsslChannel. Typically, a minor
version increase is associated with a fully backward compatible change or extension.

The transport layer is data-neutral and allows the flow of any type of content. minorVersion
is provided to help client and server applications manage the information they communicate.
For more details, refer to Section 9.5.1.

multicastOpts A substructure containing multicast-based connection type specific options. These settings
are used for RSSL_CONN_TYPE_RELIABLE_MCAST and
RSSL_CONN_TYPE_SEQ_MCAST.

For information about specific options, refer to Table 24.

numInputBuffers The number of sequential input buffers to allocate for reading data into. This controls the
maximum number of bytes that can be handled with a single network read operation. Input
buffers are allocated at initialization time.

objectName An optional object name to pass with a URL while tunneling. This option is only valid for
HTTP and Encrypted connection types.

For more information on connection types, refer to Table 14.

pingTimeout The clients desired ping timeout value. This may change through the negotiation process
between the client and the server. After the connection becomes active, the actual
negotiated value becomes available through the pingTimeout value on the RsslChannel.
When determining the desired ping timeout, the typically used rule of thumb is to send a
heartbeat every pingTimeout/3 seconds. For more information, refer to Section 10.12.

protocolType The protocol type that the client intends to exchange over the connection. If the
protocolType indicated by a server does not match the protocolType that a client
specifies, the connection will be rejected. When an RsslChannel becomes active for a client
or server, this information becomes available via the protocolType on the RsslChannel.

The transport layer is data-neutral and allows the flow of any type of content. protocolType
is provided to help client and server applications manage the information they communicate.
For more details, refer to Section 9.5.1.

encryptionOpts encryptionOpts is a substructure that configures an encrypted tunnel connection on Linux
connections. Currently encyptionOpts uses only one variable: encryptionProtocolFlags.
For further details, refer to Section 10.3.2.7.

proxyOpts proxyOpts is a substructure that configures a proxy for use with tunneled connections.
proxyOpts uses the variables: proxyHostName and proxyPort. For further details, refer to
Section 10.3.2.8.

serviceName DEPRECATED.

For information on using connectionInfo.unified.serviceName to configure equivalent
functionality, refer to Table 23.

shmemOpts A substructure containing shared memory based connection type specific options. These
settings are used for RSSL_CONN_TYPE_UNIDIR_SHMEM. For information about specific
options, refer to Table 25.

tcp_nodelay DEPRECATED.

To configure equivalent functionality, refer to tcpOpts.tcp_nodelay in Table 27.

STRUCTURE MEMBER DESCRIPTION

Table 22: RsslConnectOptions Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 76
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.3.2.2 RsslConnectOptions.connectionInfo Options

tcpOpts A substructure containing TCP-based connection type specific options. These settings are
used for RSSL_CONN_TYPE_SOCKET, RSSL_CONN_TYPE_HTTP, and
RSSL_CONN_TYPE_ENCRYPTED.

For information about specific options, refer to Table 27.

userSpecPtr A pointer that can be set by the application. This value is not modified by the transport, but
will be preserved and stored in the userSpecPtr of the RsslChannel returned from
rsslConnect. This information can be useful for coupling this RsslChannel with other user
created information, such as a watch list associated with this connection.

Option Description

segmented.interfaceName A character representation of an IP address or hostname associated with the local
network interface to use for sending and receiving content. This value is intended for
use in systems which have multiple network interface cards, and if not specified the
default network interface will be used.

segmented.recvAddress Configures the receive address or hostname to use in a segmented network
configuration. All content is received on this recvAddress:recvServiceName pair.

For multicast connections (RSSL_CONN_TYPE_RELIABLE_MULTICAST and
RSSL_CONN_TYPE_SEQ_MCAST), you can specify multiple receive addresses
using a comma-separated list.

segmented.recvServiceName Configures the receive network’s numeric port number or service name (as defined in
etc/services file) to use in a segmented network configuration. All content is received
on this recvAddress:recvServiceName pair.

segmented.sendAddress Configures the send address or hostname to use in a segmented network
configuration. All content is sent on this sendAddress:sendServiceName pair.

segmented.sendServiceName Configures the send network’s numeric port number or service name (as defined in
etc/services file) to use in a segmented network configuration. All content is sent on
this sendAddress:sendServiceName pair.

segmented.unicastServiceName Configures the numeric port number or service name (mapped to a port in
etc/services file) to use for all unicast UDP traffic in a unified network configuration.
This parameter is only required for multicast connection types
(RSSL_CONN_TYPE_RELIABLE_MCAST and
RSSL_CONN_TYPE_SEQ_MCAST). If multiple connections or applications are
running on the same host, this must be unique for each connection.

This option also configures a TCP listening port for use with the rrdump tool. For
more information on the rrdump tool, refer to the ADS and ADH Software Installation
Manuals.

unified.address Configures the address or hostname to use in a unified network configuration. All
content will be sent and received on this address:serviceName pair. This replaces
the RsslConnectOptions.hostName parameter.

Table 23: RsslConnectOptions.connectionInfo Options

STRUCTURE MEMBER DESCRIPTION

Table 22: RsslConnectOptions Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 77
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.3.2.3 RsslConnectOptions.multicastOpts

unified.interfaceName A character representation of an IP address or hostname associated with the local
network interface to use for sending and receiving content. This value is intended for
use in systems which have multiple network interface cards, and if unspecified, the
default network interface is used.

unified.serviceName Configures the numeric port number or service name (as defined in etc/services file)
to use in a unified network configuration. All content will be sent and received on this
address:serviceName pair. This replaces the RsslConnectOptions.serviceName
parameter.

unified.unicastServiceName Configures the numeric port number or service name (as defined in etc/services file)
to use for all unicast UDP traffic in a unified network configuration. This parameter is
only required for multicast connection types
(RSSL_CONN_TYPE_RELIABLE_MCAST and
RSSL_CONN_TYPE_SEQ_MCAST). If multiple connections or applications are
running on the same host, this must be unique for each connection.

This option also configures a TCP listening port for use with the rrdump tool. For
more information on the rrdump tool, refer to the ADS and ADH Software Installation
Manuals.

Option Description

disconnectOnGaps Defaults to RSSL_FALSE, so if any multicast gap situation occur the underlying connection
will not be closed. This allows the application to perform any item level recovery it may be
able to do in order to reduce unnecessary bandwidth of full recovery on the multicast network.
If set to RSSL_TRUE, the underlying connection will be closed if any multicast gap situation
occurs. A multicast gap situation is reported as a return value of
RSSL_RET_PACKET_GAP_DETECTED, RSSL_RET_SLOW_READER, or
RSSL_RET_CONGESTION_DETECTED from rsslRead.

packetTTL Controls the maximum number of components (network switches, etc.) a multicast datagram
can traverse before it is removed from the network. Setting this to 0, prevents packets from
leaving the sending machine. When set to 255, the packet is not limited in the number of
components it can traverse and is not removed from the network.

ndata The maximum number of retransmissions that will be attempted for an unacknowledged
point-to-point packet.

nrreq Specifies the maximum number of retransmit requests that will be sent for a missing packet.

tdata Specifies the time that RRCP must wait before retransmitting an unacknowledged point-to-
point packet, in hundreds of milliseconds.

trreq Specifies the minimum time that RRCP will wait before resending a retransmit request for a
missed multicast packet, in hundreds of milliseconds.

twait Specifies the time that RRCP will ignore additional retransmit requests for a data packet that it
has already retransmitted, in hundreds of milliseconds. The time period starts with the receipt
of the first request for retransmission.

Table 24: RsslConnectOptions.multicastOpts Options

Option Description

Table 23: RsslConnectOptions.connectionInfo Options (Continued)
Transport API 3.1.X C Edition – Developers Guide 78
ETAC313UM.180

Chapter 10 Transport Package Detailed View
tbchold Specifies the maximum time that RRCP will hold a transmitted broadcast packet in case the
packet needs to be retransmitted, in hundreds of milliseconds.

tpphold Specifies the maximum time that RRCP will hold a transmitted point-to-point packet in case
the packet needs to be retransmitted, in hundreds of milliseconds.

userQLimit Specifies the maximum backlog of messages allowed on the channel's inbound message
queue. Once this limit is exceeded RRCP will begin to discard messages until the backlog
decreases. pktPoolLimitLow should be greater than three times userQLimit.

nmissing Specifies the maximum number of missed consecutive multicast packets, from a particular
node, from which RRCP will attempt to request retransmits.

pktPoolLimitHigh Specifies the high-water mark for RRCP packet pool. If this limit is reached, no further RRCP
packets will be allocated until and unless the usage falls below the low-water mark, the
pktPoolLimitLow parameter.

pktPoolLimitLow Specifies the low-water mark for RRCP packet pool. Additional RRCP packets will only be
allocated if the usage falls from the high-water mark pktPoolLimitHigh to below this low-
water mark value. pktPoolLimitLow should be greater than three times userQLimit.

hsmInterface A character representation of an IP address or hostname associated with the local network
interface to use for sending host status message (HSM) packets. This value is intended for
use in systems which have multiple network interface cards, and if not specified the default
network interface will be used.

This option is used to configure broadcasting of statistics messages to the Host Stat Message
(HSM) Client tool. For more information on this tool, refer to the ADS and ADH Software
Installation Manuals.

hsmMultAddress Sets the multicast address over which to send host status message (HSM) packets.

This option is used to configure broadcasting of statistics messages to the Host Stat Message
(HSM) Client tool. For more information on this tool, refer to the ADS and ADH Software
Installation Manuals.

hsmPort Sets the multicast port on which to send host status message (HSM) packets.

This option is used to configure broadcasting of statistics messages to the Host Stat Message
(HSM) Client tool. For more information on this tool, refer to the ADS and ADH Software
Installation Manuals.

hsmInterval The time interval over which HSM packets are sent, in seconds. Set this to 0 to disable
sending host status messages. This setting may be adjusted by the rrdump tool (see the
unicastServiceName option).

This option is used to configure broadcasting of statistics messages to the Host Stat Message
(HSM) Client tool. For more information on this tool, refer to the ADS and ADH Software
Installation Manuals.

Option Description

Table 24: RsslConnectOptions.multicastOpts Options (Continued)
Transport API 3.1.X C Edition – Developers Guide 79
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.3.2.4 RsslConnectOptions.shmemOpts Options

10.3.2.5 RsslConnectOptions.seqMulticastOpts Options

10.3.2.6 RsslConnectOptions.tcpOpts Options

tcpControlPort Specifies the port number to use when connecting rrdump (a monitoring tool available in the
TREP Infrastructure Tools package). If set to or left as NULL, tcpControlPort uses the
same port number as the unicastServiceName setting. If set to -1, a control port is not
opened.

portRoamRange Specifies the number of port numbers on which to attempt binding if the
unicastServiceName fails to bind. Whichever port is specified in unicastServiceName is
used as a starting point, with port numbers incrementing by 1 until it reaches the number
specified in portRoamRange or successfully binds. If set to 0, port roaming is disabled and the
connection attempts to bind to only the unicastServiceName.

Option Description

maxReaderLag Maximum number of messages that the client can have waiting to be read. If the client "lags"
the server by more than this amount, the client will be disconnected on its next attempt to
read. The default is equal to 75% of the number of buffers in the shared memory segment.

Table 25: RsslConnectOptions.shmemOpts Options

Option Description

maxMsgSize Sets the maximum size of messages that the SEQ_MCAST transport will read.

instanceId The instanceId and originating IP address and port uniquely identify the sequenced
multicast channel. When multiple applications run on the same host, unique instanceId
values allow them to operate independently.

Table 26: RsslConnectOptions.seqMulticastOpts Options

Option Description

tcp_nodelay If set to RSSL_TRUE, this disables Nagle’s Algorithm for all accepted connections. Nagle’s
Algorithm allows more efficient use of TCP by delaying and combining small packets to
reduce repeated overhead of TCP headers. Disabling Nagle’s Algorithm can lead to lower
latency by removing this delay, but can add increased bandwidth use as a result of the
additional TCP header used with each small packet.

Table 27: RsslConnectOptions.tcpOpts Options

Option Description

Table 24: RsslConnectOptions.multicastOpts Options (Continued)
Transport API 3.1.X C Edition – Developers Guide 80
ETAC313UM.180

http://en.wikipedia.org/wiki/Nagle%27s_algorithm

Chapter 10 Transport Package Detailed View
10.3.2.7 RsslConnectOptions.encryptionOpts Option

10.3.2.8 RsslConnectOptions.proxyOpts Options

10.3.2.9 RsslConnectOptions Utility Function

The Transport API provides the following utility function for use with the RsslConnectOptions.

Option Description

encryptionProtocolFlags Sets the security protocol for encrypted connections. Available flags include:

• RSSL_ENC_NONE == 0: Sets ETA to not use a security protocol.

• RSSL_ENC_TLSV1 == 0x01: Sets ETA to use TLSv1 protocol.

• RSSL_ENC_TLSV1_1 == 0x02: Sets ETA to use TLSv1.1 protocol.

• RSSL_ENC_TLSV1_2 == 0x04: Sets ETA to use TLSv1.2 protocol.

For further details on ETA tunneling behavior, refer to Section 10.15.

Table 28: RsslConnectOptions.encryptionOpts Options

Function Name Description

proxyHostName Sets the hostname of a proxy for use with a tunneled connection. For further details on ETA
tunneling behavior, refer to Section 10.15.

proxyPort Sets the port on a proxy for use with a tunneled connection. For further details on ETA
tunneling behavior, refer to Section 10.15.

Table 29: RsslConnectOptions Utility Function

Function Name Description

rsslClearConnectOpts Clears the RsslConnectOptions structure. Useful for structure reuse.

Table 30: RsslConnectOptions Utility Function
Transport API 3.1.X C Edition – Developers Guide 81
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.3.3 rsslConnect Outbound Connection Creation Example

The following example demonstrates basic rsslConnect use in a non-blocking manner. The application first populates the
RsslConnectOptions and then attempts to connect. If the connection succeeds, the application then registers the
RsslChannel.socketId with the I/O notification mechanism and continues with connection initialization (as described in
Section 10.5).

RsslChannel *pChnl = 0;
RsslConnectOptions cOpts = RSSL_INIT_CONNECT_OPTS;
/* populate connect options, then pass to rsslConnect function - RSSL should already be

initialized */

cOpts.connectionType = RSSL_CONN_TYPE_SOCKET; /* use standard socket connection */
cOpts.connectionInfo.unified.address = “localhost”; /* connect to server running on same

machine */
cOpts.connectionInfo.unified.serviceName = “14002”; /* server is running on port number 14002

*/
cOpts.pingTimeout = 30; /* clients desired ping timeout is 30 seconds, pings should be sent

every 10 */
cOpts.blocking = RSSL_FALSE; /* perform non-blocking I/O */
cOpts.compressionType = RSSL_COMP_NONE; /* client does not desire compression for this

connection */

/* populate version and protocol with RWF information (found in rsslIterators.h) or protocol
specific
info */

cOpts.protocolType = RSSL_RWF_PROTOCOL_TYPE;
cOpts.majorVersion = RSSL_RWF_MAJOR_VERSION;
cOpts.minorVersion = RSSL_RWF_MINOR_VERSION;

if ((pChnl = rsslConnect(&cOpts, &error)) == 0)
{

printf("Error %s (%d) (errno: %d) encountered with rsslConnect. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,

error.text);

/* End application, uninitialize to clean up first */
rsslUninitialize();
return 0;

}

/* Connection was successful, add socketId to I/O notification mechanism and initialize
connection */

/* Typical FD_SET use, this may vary depending on the I/O notification mechanism the
application is using
*/

FD_SET(pChnl->socketId, &readfds);
FD_SET(pChnl->socketId, &exceptfds);
FD_SET(pChnl->socketId, &writefds);
Transport API 3.1.X C Edition – Developers Guide 82
ETAC313UM.180

Chapter 10 Transport Package Detailed View
Code Example 5: Creating a Connection Using rsslConnect

10.3.4 Tunneling Connection Keep Alive

A client connection that is leveraging a connectionType of RSSL_CONN_TYPE_HTTP_TUNNEL or
RSSL_CONN_TYPE_ENCRYPTED may be connecting through proxy devices as it tunnels through the Internet. Some proxy
devices will force-close connections after certain elapsed time or time of day requirements are met. If one of these proxy
devices is in a tunneling connections path, it can result in periodic connection loss. The RSSL Transport provides the
rsslReconnectClient function which allows a tunneling client application to pro-actively create another connection and
bridge data flow from the existing connection, which will be closed, to the new connection. An application can use this, along
with knowledge of the proxy device’s time requirements, to keep an applications connection alive beyond the time limits
enforced by the proxy which helps to avoid data recovery scenarios. This function is not used to perform any kind of
connection or data recovery after a connection is closed or disconnected or for any non-tunneled connection types.

/* Continue on with connection initialization process, refer to Section 10.5 for more details.
*/
Transport API 3.1.X C Edition – Developers Guide 83
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.4 Server Creation and Accepting Connections

10.4.1 Creating a Listening Socket

The Transport Package allows you to establish and manage listening sockets, typically associated with a server. Listening
sockets can be leveraged to create an application that accepts connections created through the use of rsslConnect. Listening
sockets are used mainly by OMM Interactive Provider applications and are typically established on a well-known port number
(known by other connecting applications).

Figure 35. Transport API Server Creation

An application can create a listening socket connection by using the rsslBind function, described in the following table.

10.4.1.1 RsslBindOptions Structure Members

function NAME DESCRIPTION

rsslBind Establishes a listening socket connection, which supports connections from standard socket
and HTTP rsslConnect users. Returns an RsslServer that represents the listening socket
connection to the user. In the event of an error, NULL is returned and additional information
can be found in the RsslError structure.

Options are passed in via an RsslBindOptions structure described in Section 10.4.1.1.

Once a listening socket is established, this RsslServer can begin accepting connections. For
more information, refer to Section 10.4.2.

Table 31: rsslBind Function

Structure Member DESCRIPTION

serviceName A character representation of a numeric port number or service name (as defined in the etc/
services file) on which to bind and open a listening socket.

interfaceName A character representation of an IP address or hostname for the local network interface to
which to bind. The RSSL Transport will establish connections on the specified interface. This
value is intended for use in systems which have multiple network interface cards. If not
populated, a connection can be accepted on all interfacesa. If the loopback address
(127.0.0.1) is specified, connections can be accepted only when instantiating from the local
machineb.

maxFragmentSize The maximum size buffer that will be written to the network. If a larger buffer is required, the
RSSL Transport will internally fragment the larger buffer into smaller maxFragmentSize
buffers. This is different from application level message fragmentation done via the Message
Package (as discussed in Section 13.1). Any guaranteed, shared, or input buffers created will
use this size. This value is passed to all connected client applications and enforces a common
message size between components. For more information about RSSL Transport buffer
fragmentation, refer to Section 10.9.

Table 32: RsslBindOptions Structure Members
Transport API 3.1.X C Edition – Developers Guide 84
ETAC313UM.180

Chapter 10 Transport Package Detailed View
numInputBuffers The number of sequential input buffers used by each RsslChannel for data reading. This
controls the maximum number of bytes that can be handled with a single network read
operation on each channel. Each input buffer will be created to contain maxFragmentSize
bytes. Input buffers are allocated at initialization time.

guaranteedOutputBuffers A guaranteed number of buffers made available for each RsslChannel to use while writing
data. Each buffer is created to contain maxFragmentSize bytes. Guaranteed output buffers are
allocated at initialization time. For more information, refer to Section 10.8.

Note: For RSSL_CONN_TYPE_UNIDIR_SHMEM, this parameter determines the number of
buffers in the shared memory segment. The size of the shared memory segment will
approximate guaranteedOutputBuffers * maxFragmentSize.

maxOutputBuffers The maximum number of output buffers allowed for use by each RsslChannel.
(maxOutputBuffers - guaranteedOutputBuffers) is equal to the number of shared pool
buffers that each RsslChannel is allowed to use. Shared pool buffers are only used if all
guaranteedOutputBuffers are unavailable. If equal to the guaranteedOutputBuffers value,
no shared pool buffers are available.

sharedPoolSize The maximum number of buffers to make available as part of the shared buffer pool. The
shared buffer pool can be drawn upon by any connected RsslChannel, where each channel is
allowed to use up to (maxOutputBuffers - guaranteedOutputBuffers) number of buffers.
Each shared pool buffer will be created to contain maxFragmentSize bytes.

If set to 0, a default of 1,048,567 shared pool buffers will be allowed. The shared pool is not
fully allocated at bind time. As needed, shared pool buffers are added and reused until the
server is shut down. For more information, refer to Section 10.8.

Note: It is considered an invalid configuration to allow more shared pool buffers
(maxOutputBuffers - guaranteedOutputBuffers) than the sharedPoolSize. If this happens,
an error is returned from rsslBind.

sharedPoolLock If set to RSSL_TRUE, the shared buffer pool will have its own locking performed. This setting
is independent of any other locking mode options. Enabling a shared pool lock allows shared
pool use to remain thread safe while still disabling channel locking. For more information, refer
to Section 10.2.4.

pingTimeout The servers desired ping timeout value. This may change through the negotiation process
between the client and the server. After the connection becomes active, the actual negotiated
value becomes available through the pingTimeout value on the RsslChannel. When
determining the desired ping timeout, the rule of thumb is to send a heartbeat every
pingTimeout/3 seconds.

For more information, refer to Section 10.12.

minPingTimeout The server’s lowest allowable ping timeout value. This is the lowest possible value allowed in
the negotiation between client and servers pingTimeout values. After the connection
becomes active, the actual negotiated value becomes available through the pingTimeout
value on the RsslChannel. When determining the desired ping timeout, the rule of thumb is to
send a heartbeat every pingTimeout/3 seconds.

For more information, refer to Section 10.12.

serverToClientPings If set to RSSL_TRUE, heartbeat messages are required to flow from the server to the client. If
set to RSSL_FALSE, the server is not required to send heartbeats. TREP and other Thomson
Reuters components typically require this to be set to RSSL_TRUE.

Structure Member DESCRIPTION

Table 32: RsslBindOptions Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 85
ETAC313UM.180

Chapter 10 Transport Package Detailed View
clientToServerPings If set to RSSL_TRUE, heartbeat messages are required to flow from the client to the server. If
set to RSSL_FALSE, the client is not required to send heartbeats. TREP and other Thomson
Reuters components typically require this to be set to RSSL_TRUE.

compressionType The type of compression the server wants to apply for this connection. Compression is
negotiated between the client and server and may not be performed if only the server has this
enabled. The server can force compression, regardless of client settings, by using the
forceCompression option. For more information about supported compression types and
compression negotiation, refer to Section 10.4.3.

compressionLevel Sets the level of compression to apply. Allowable values are 0 to 9.

• A compressionLevel of 1 results in the fastest compression.

• A compressionLevel of 9 results in the best compression.

• A compressionLevel of 6 is a compromise between speed and compression.

• A compressionLevel of 0 will copy the data with no compression applied.

For more information on supported compression levels, refer to Section 10.4.3.

forceCompression If set to RSSL_TRUE, this forcibly enables compression, regardless of client preference.
When enabled, compression will use the compressionType and compressionLevel specified
by the server. If set to RSSL_FALSE, compression is negotiated between the client and
server. For more information about supported compression types and compression
negotiation, refer to Section 10.4.3.

tcp_nodelay DEPRECATED. To configure equivalent functionality, refer to tcpOpts.tcp_nodelay in Table
27.

serverBlocking If set to RSSL_TRUE, blocking I/O will be used for this RsslServer.

When I/O is used in a blocking manner on an RsslServer, the rsslAccept function will
complete any initialization on the RsslChannel prior to returning it. Blocking I/O prevents the
application from performing any operations until the I/O operation is completed.

Blocking I/O is typically not recommended. An application can leverage an I/O notification
mechanism to allow efficient use, while using other cycles to perform other necessary work in
the application.

channelsBlocking If set to RSSL_TRUE, blocking I/O will be used for all connected RsslChannel structures.

When I/O is used in a blocking manner on an RsslChannel, any reading or writing will
complete before control is returned to the application. Blocking I/O prevents the application
from performing any operations until the I/O operation is completed.

Blocking I/O is typically not recommended. An application can leverage an I/O notification
mechanism to allow efficient reading and writing, while using other cycles to perform other
necessary work in the application. An I/O notification mechanism enables the application to
read when data is available, and write when output space is available.

Structure Member DESCRIPTION

Table 32: RsslBindOptions Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 86
ETAC313UM.180

Chapter 10 Transport Package Detailed View
protocolType Sets the protocol type that the server uses on its connections. The server rejects connections
from clients that do not use the specified protocolType. When an RsslChannel becomes
active for a client or server, this information becomes available via the protocolType on the
RsslChannel.

The transport layer is data-neutral and allows the flow of any type of content. protocolType is
provided to help client and server applications manage the information they communicate. For
more details, refer to Section 9.5.1.

majorVersion Specifies the major version of the protocol supported by the server. The actual major version
used is negotiated with the client at connection time. The outcome of the negotiation is
provided via majorVersion on the RsslChannel. Typically, the major version increases with
the introduction of an significant (i.e., incompatible) change.

The transport layer is data-neutral and allows the flow of any type of content. majorVersion is
provided to help client and server applications manage the information they communicate. For
more details, refer to Section 9.5.1.

minorVersion The minor version of the protocol supported by the server. The actual minor version used is
negotiated with the client at connection time. The outcome of the negotiation is provided via
minorVersion on the RsslChannel. Typically, the minor version increases with the
introduction of a fully backward-compatible change or extension.

The transport layer is data-neutral and allows the flow of any type of content. minorVersion is
provided to help client and server applications manage the information they communicate. For
more details, refer to Section 9.5.1.

sysRecvBufSize Sets the system’s receive buffer size for this connection. A missing value, or a setting of 0 sets
the buffer to the default size of 64K. Setting sysSendBufSize is done via RsslAcceptOptions
(for details, refer to Table 23).

This can also be set or changed via rsslIoctl for values less than or equal to 64K. For values
larger than 64K, you must use this method to set sysRecvBufSize prior to the bind system
call.

userSpecPtr A pointer that can be set by the application. This value is not modified by the transport, but is
preserved and stored in the userSpecPtr of the RsslServer returned from rsslBind if a
userSpecPtr was not specified in the RsslAcceptOptions. This information can be useful for
coupling this RsslServer with other user-created information, such as a list of connected
RsslChannel structures.

tcpOpts A substructure containing options specific to TCP-based connection types (i.e., these settings
are used for RSSL_CONN_TYPE_SOCKET and RSSL_CONN_TYPE_HTTP). For
information about specific options, refer to Table 27.

componentVersion An optional, user-defined component version string appended behind the standard UPA
component version information. If the combined component version length exceeds the
maximum supported by the Transport API, the user-defined information will be truncated.

a. INADDR_ANY is used
b. INADDR_LOOPBACK is used

Structure Member DESCRIPTION

Table 32: RsslBindOptions Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 87
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.4.1.2 RsslBindOptions.tcpOpts Structure Members

10.4.1.3 RsslBindOptions Utility Function

The Transport API provides the following utility function for use with the RsslBindOptions.

10.4.1.4 rsslBind Listening Socket Connection Creation Example

The following example demonstrates basic rsslBind use in a non-blocking manner. The application first populates the
RsslBindOptions and then attempts to create a listening socket. If the bind succeeds, the application then registers the
RsslServer.socketId with the I/O notification mechanism and waits to be alerted of incoming connection attempts. For more
details on accepting or rejecting incoming connection attempts, refer to Section 10.4.2.

Option DESCRIPTION

tcp_nodelay If set to RSSL_TRUE, this disables Nagle’s Algorithm for all accepted connections. Nagle’s
Algorithm allows more efficient use of TCP by delaying and combining small packets to
reduce repeated overhead of TCP headers. Disabling Nagle’s Algorithm can lead to lower
latency by removing this delay, but can add increased bandwidth use as a result of the
additional TCP header used with each small packet.

Table 33: RsslBindOptions.tcpOpts Options

Option DESCRIPTION

rsslClearBindOpts Clears the RsslBindOptions structure. Useful for structure reuse.

Table 34: RsslBindOptions Utility Function

RsslServer *pSrvr = 0;
RsslBindOptions bOpts = RSSL_INIT_BIND_OPTS;
/* populate bind options, then pass to rsslBind function - RSSL should already be initialized

*/

bOpts.serviceName = “14002”; /* server is running on port number 14002 */
bOpts.pingTimeout = 45; /* servers desired ping timeout is 45 seconds, pings should be sent

every 15 */
bOpts.minPingTimeout = 30; /* min acceptable ping timeout is 30 seconds, pings should be sent

every 10 */

/* set up buffering, configure for shared and guaranteed pools */
bOpts.guaranteedOutputBuffers = 1000;
bOpts.maxOutputBuffers = 2000;
bOpts.sharedPoolSize = 50000;
bOpts.sharedPoolLock = RSSL_TRUE;

bOpts.serverBlocking = RSSL_FALSE; /* perform non-blocking I/O */
bOpts.channelsBlocking = RSSL_FALSE; /* perform non-blocking I/O */
bOpts.compressionType = RSSL_COMP_NONE; /* server does not desire compression for this

connection */
Transport API 3.1.X C Edition – Developers Guide 88
ETAC313UM.180

http://en.wikipedia.org/wiki/Nagles_algorithm

Chapter 10 Transport Package Detailed View
Code Example 6: Creating a Listening Socket Using rsslBind

/* populate version and protocol with RWF information (found in rsslIterators.h) or protocol
specific
info */

bOpts.protocolType = RSSL_RWF_PROTOCOL_TYPE;
bOpts.majorVersion = RSSL_RWF_MAJOR_VERSION;
bOpts.minorVersion = RSSL_RWF_MINOR_VERSION;

if ((pSrvr = rsslBind(&bOpts, &error)) == 0)
{

printf("Error %s (%d) (errno: %d) encountered with rsslBind. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,

error.text);

/* End application, uninitialize to clean up first */
rsslUninitialize();
return 0;

}

/* Connection was successful, add socketId to I/O notification mechanism and wait for
connections */

/* Typical FD_SET use, this may vary depending on the I/O notification mechanism the
application is using
*/

FD_SET(pSrvr->socketId, &readfds);
FD_SET(pSrvr->socketId, &exceptfds);

/* Use rsslAccept for incoming connections, read and write data to established connections,
etc */
Transport API 3.1.X C Edition – Developers Guide 89
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.4.2 Accepting Connection Requests

After establishing a listening socket, the RsslServer.socketId can be registered with an I/O notification mechanism. An alert
from the I/O notification mechanism on the server’s socketId indicates that a connection request has been detected. An
application can begin the process of accepting or rejecting the connection by using the rsslAccept function.

10.4.2.1 RsslAcceptOptions Structure Member

10.4.2.2 RsslAcceptOptions Utility Function

The Transport API provides the following utility function for use with RsslAcceptOptions.

function NAME DESCRIPTION

rsslAccept Uses the RsslServer that represents the listening socket connection and begins the process of
accepting the incoming connection request. Returns an RsslChannel that represents the client
connection. In the event of an error, NULL is returned and additional information can be found in the
RsslError structure.

The rsslAccept function can also begin the rejection process for a connection through the use of the
RsslAcceptOptions structure as described in Section 10.4.2.1.

Once a connection is established and transitions to RSSL_CH_STATE_ACTIVE, this RsslChannel can
be used for other transport operations. For more information about channel initialization, refer to
Section 10.5.

Table 35: rsslAccept Function

STRUCTURE MEMBER DESCRIPTION

nakMount Indicates that the server wants to reject the incoming connection. This may be due to some
kind of connection limit being reached. For non-blocking connections to successfully
complete rejection, the initialization process must still be completed. For more information
about channel initialization, refer to Section 10.5.

userSpecPtr A pointer that can be set by the application. This value is not modified by the transport, but
will be preserved and stored in the userSpecPtr of the RsslChannel returned from
rsslAccept. If this value is not set, the RsslChannel.userSpecPtr will be set to the
userSpecPtr associated with the RsslServer that is accepting this connection.

Table 36: RsslAcceptOptions Structure Members

FUNCTION NAME DESCRIPTION

rsslClearAcceptOpts Clears the RsslAcceptOptions structure. Useful for structure reuse.

Table 37: RsslAcceptOptions Utility Functions
Transport API 3.1.X C Edition – Developers Guide 90
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.4.2.3 rsslAccept Accepting Connection Example

The following example demonstrates basic rsslAccept use. The application first populates the RsslAcceptOptions and then
attempts to accept the incoming connection request. If the accept succeeds, the application then registers the new
RsslChannel.socketId with the I/O notification mechanism and continues with connection initialization, described in Section
10.5.

Code Example 7: Accepting Connection Attempts using rsslAccept

/* Accept is typically called when servers socketId indicates activity */
RsslChannel *pChnl = 0;
RsslAcceptOptions aOpts = RSSL_INIT_ACCEPT_OPTS;
/* populate accept options, then pass to rsslAccept function - RSSL should already be

initialized */

aOpts.nakMount = RSSL_FALSE; /* allow the connection */

if ((pChnl = rsslAccept(pSrvr, &aOpts, &error)) == 0)
{

printf("Error %s (%d) (errno: %d) encountered with rsslAccept. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,

error.text);

/* End application, uninitialize to clean up first */
rsslUninitialize();
return 0;

}

/* Connection was successful, add socketId to I/O notification mechanism and initialize
connection */

/* Typical FD_SET use, this may vary depending on the I/O notification mechanism the
application is using
*/

FD_SET(pChnl->socketId, &readfds);
FD_SET(pChnl->socketId, &exceptfds);

/* Continue on with connection initialization process, refer to Section 10.5 for more details
*/
Transport API 3.1.X C Edition – Developers Guide 91
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.4.3 Compression Support

As mentioned, the RSSL Transport supports the use of data compression. The client and server negotiate compression
behavior during the connection establishment process, with the server determining supported compression methods by
referencing the RsslBindOptions.compressionType parameter (refer to the ENUMs specified in Section 10.4.3.1).

Additionally:

• You can configure the server to support multiple compression types by including the appropriate bitmasks.

• When using zlib, you can configure the the quality of compression by setting the
RsslBindOptions.compressionLevel parameter.

A client requests compression by setting the RsslConnectOptions.compressionType parameter to one of the values
specified in Section 10.4.3.1. If the client’s configured compression type matches one of the types specified by the server, that
compression type is used for the connection. After establishing a connection, the server or client can verify at any time the type
of compression in use on a channel by calling rsslGetChannelInfo (refer to Section 10.14).

The server may also force compression for its connections by enabling the RsslBindOptions.forceCompression parameter,
in which case the server’s compressionType is used regardless of the client’s configuration.

10.4.3.1 Compression Types

The Transport API supports the following compression options:

10.4.3.2 Compression Level

The server’s specified compressionLevel determines the quality of the compression, where:

• Lower values favor faster compression

• Higher values compress data into smaller sizes

Currently only zlib supports the use of compression levels.

Note: If you set the server to force compression, use only one compression type in RsslBindOptions.compressionType.

ENUMERATED
NAME

COMPRESSION
LEVEL SUPPORTED

DEFAULT COMPRESSION
THRESHOLD

DESCRIPTION

RSSL_COMP_NONE n/a n/a No compression.

RSSL_COMP_ZLIB Yes 30 bytes Use zlib compression.

Zlib, an open source utility, employs a
variation of the LZ77 algorithm to
compress and decompress data.

RSSL_COMP_LZ4 No 300 bytes Use LZ4 compression.

LZ4, an open source utility, employs a
variation of the LZ77 algorithm to
compress and decompress data.

Note: Though LZ4 compression consumes
less CPU than Zlib, LZ4 does not achieve
the same reduction in size.

Table 38: RSSL Compression Types
Transport API 3.1.X C Edition – Developers Guide 92
ETAC313UM.180

http://www.zlib.net

Chapter 10 Transport Package Detailed View
10.4.3.3 Compression Threshold

Different compression types have different behaviors and compression efficiency can vary depending on buffer size. Because
small buffer sizes might not compress well, the Transport API uses a compression threshold such that all buffers exceeding
the threshold size are compressed. Default compression thresholds are specified in Section 10.4.3.1. You can change this
threshold via the rsslIoctl function (refer to Section 10.14).

If a message is larger than the compression threshold, you can prevent its compression through the use of the rsslWrite
RSSL_WRITE_DO_NOT_COMPRESS flag. For more information, refer to Section 10.9.
Transport API 3.1.X C Edition – Developers Guide 93
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.5 Channel Initialization

After an RsslChannel is returned from the client’s rsslConnect or server’s rsslAccept call, the channel may need to
continue the initialization process using the rsslInitChannel function.

Additional initialization is required as long as the RsslChannel.state is RSSL_CH_STATE_INITIALIZING.

• If using a non-blocking I/O, this is the typical state from which an RsslChannel starts and multiple initialization calls might
be needed to transition to active.

• If using a blocking I/O, when successful, rsslConnect and rsslAccept return a completely initialized channel in an active
state.

Internally, the RSSL initialization process involves several actions. The initialization includes any necessary RSSL connection
handshake exchanges, including any HTTP or HTTPS negotiation. Compression, ping timeout, and versioning related
negotiations also take place during the initialization process. This process involves exchanging several messages across the
connection, and once all message exchanges have completed the RsslChannel.state will transition.

• If the connection is accepted (i.e., all negotiations were successful), the RsslChannel.state will become
RSSL_CH_STATE_ACTIVE.

• If the connection is rejected (i.e., due to either failed negotiation or an RsslServer rejection of the connection by setting
nakMount to RSSL_TRUE), the RsslChannel.state will become RSSL_CH_STATE_CLOSED, and the application should
close the channel to clean up any associated resources.

10.5.1 rsslInitChannel Function

Note: For both client and server channels, to complete the channel initialization process, more than one call to
rsslInitChannel might be required.

function NAME DESCRIPTION

rsslInitChannel Continues initialization of an RsslChannel. This channel could originate from rsslConnect or
rsslAccept. This function exchanges various messages to perform necessary RSSL
negotiations and handshakes to complete channel initialization. If using blocking I/O, this
function is typically not used because rsslConnect and rsslAccept return active channels.

Requires the use of the RsslInProgInfo structure, refer to Section 10.5.2.

The RsslChannel can be used for all additional transport functionality (e.g. reading, writing)
after the state transitions to RSSL_CH_STATE_ACTIVE. If a connection is rejected or
initialization fails, the state transitions to RSSL_CH_STATE_CLOSED, and the application should
close the channel to clean up any associated resources.

The return values are described in Section 10.5.4.

Table 39: rsslInitChannel Function
Transport API 3.1.X C Edition – Developers Guide 94
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.5.2 RsslInProgInfo Structure

Use the RsslInProgInfo structure with the rsslInitChannel function to initialize a channel.

In certain circumstances, the initialization process might need to create new or additional underlying connections. If this
occurs, the application must unregister the previous socketId and register the new socketId with the I/O notification
mechanism in use with associated information being conveyed by RsslInProgInfo and RsslInProgFlags.

10.5.3 Calling rsslInitChannel

Typically, calls to rsslInitChannel are driven by I/O on the connection, however this can also be accomplished by using a
timer to periodically call the function or looping on a call until the channel transitions to active or a failure occurs. Other than
any overhead associated with the function call, there is no harm in calling rsslInitChannel more frequently than required. If
work is not required, the function returns, indicating that the connection is still in progress.

If using I/O, a client application should register the RsslChannel.socketId with the read, write, and exception file descriptor
sets. When the write descriptor alerts the user that the socketId is ready for writing, rsslInitChannel is called (this sends the
initial connection handshake message). When the read file descriptor alerts the user that the socketId has data to read,
rsslInitChannel is called - this typically reads the next portion of the handshake. This process would continue until the
connection is active.

A server application would typically register the RsslChannel.socketId with the read and exception file descriptor sets. When
the read descriptor alerts the user that the socketId has data to read, rsslInitChannel is called, which typically reads the
initial portion of the handshake and sends out any necessary response. This process continues until the connection is active.

10.5.4 rsslInitChannel Return Codes

The following table defines the return codes that can occur when using rsslInitChannel.

Structure Member DESCRIPTION

flags Combination of bit values to indicate special behaviors and presence of optional
RsslInProgInfo content.

flags uses the following enumeration values:

• RSSL_IP_NONE: Indicates that channel initialization is still in progress and subsequent
calls to rsslInitChannel are needed for completion. The call did not change the
socketId.

• RSSL_IP_FD_CHANGE: Indicates that the call changed the socketId. The previous
socketId is now stored in RsslInProgInfo.oldSocket so it can be unregistered with the
I/O notification mechanism. The new socketId is stored in RsslInProgInfo.newSocket
so it can be registered with the I/O notification mechanism. However, channel initialization
is still in progress and subsequent calls to rsslInitChannel are needed to complete it.

oldSocket Populated if flags indicate that rsslInitChannel needs to perform a file descriptor change. If
this occurs, the oldSocket contains the socketIdassociated with the previous connection so
the application can unregister this with the I/O notification mechanism.

newSocket Populated if flags indicate that rsslInitChannel needs to perform a file descriptor change. If
this occurs, the newSocket contains the socketIdassociated with the new connection so the
application can register this with the I/O notification mechanism.

Table 40: RsslInProgInfo Structure Members
Transport API 3.1.X C Edition – Developers Guide 95
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.5.5 rsslInitChannel Example

The example below shows general use of rsslInitChannel. Use of I/O notification is assumed, and the example assumes
that the code is being executed due to some I/O notification.

RETURN CODE DESCRIPTION

RSSL_RET_SUCCESS Indicates the initialization process completed successfully. The
RsslChannel.state should be RSSL_CH_STATE_ACTIVE.

RSSL_RET_FAILURE Indicates that initialization has failed and cannot progress. The
RsslChannel.state should be RSSL_CH_STATE_CLOSED, and the application
should close the channel to clean up associated resources. For more details, refer
to the RsslError content.

RSSL_RET_CHAN_INIT_IN_PROG
RESS

Indicates that initialization is still in progress. Check RsslInProgInfo.flags to
determine whether the socketId changed. The RsslChannel.state should be
RSSL_CH_STATE_INITIALIZING.

RSSL_RET_CHAN_INIT_REFUSED Indicates the connection was rejected. For more details, refer to the RsslError
content.

RSSL_RET_INIT_NOT_INITIALIZED Indicates that the RSSL Transport is not initialized. For more details, refer to the
RsslError content.

For information on initializing, refer to Section 10.2.

Table 41: rsslInitChannel Return Codes

/* rsslInitChannel is typically called based on activity on the socketId, though a timer or
looping can be used - the rsslInitChannel function should continue to be called until the
connection becomes active, at which point reading and writing can begin */

RsslInProgInfo inProgInfo = RSSL_INIT_IN_PROG_INFO;
if (pChnl->state == RSSL_CH_STATE_INITIALIZING)
{

if ((retCode = rsslInitChannel(pChnl, &inProgInfo, &error)) < RSSL_RET_SUCCESS)
{

printf("Error %s (%d) (errno: %d) encountered with rsslInitChannel. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,

error.text);
}
else
{

/* Handle return code appropriately */
switch (retCode)
{

case RSSL_RET_CHAN_INIT_IN_PROGRESS:
{

/* Initialization is still in progress, check the RsslInProgInfo for additional
information */
if (inProgInfo.flags & RSSL_IP_FD_CHANGE)
{

Transport API 3.1.X C Edition – Developers Guide 96
ETAC313UM.180

Chapter 10 Transport Package Detailed View
Code Example 8: RsslChannel Initialization Process Using rsslInitChannel

10.6 Reading Data

When a client or server RsslChannel.state is RSSL_CH_STATE_ACTIVE, an application can receive data from the connection
by calling rsslRead. The arrival of this data is often announced by the I/O notification mechanism with which the
RsslChannel.socketId is registered. The RSSL Transport reads data from the network as a byte stream, after which it
determines RsslBuffer boundaries and returns each buffer one by one. The numInputBuffers connect or bind option
controls the maximum length of the byte stream that the transport can internally process with each network read.

To reduce potentially unnecessary copies, returned information simply points into the internal rsslRead input buffer. If the
application requires the contents of the buffer beyond the next rsslRead call, the application can copy the contents of the
buffer and allow the user to control the duration of the life cycle of the memory.

If the connection uses compression, the rsslRead function will perform any necessary decompression prior to returning
information to the application. For available compression types, refer to Section 10.4.3.

It is possible for rsslRead to succeed and return a NULL buffer. When this occurs, it indicates that a portion of a fragmented
buffer has been received. The Transport Package internally reassembles all parts of the fragmented buffer and after
processing the last fragment, returns the entire buffer to the user through rsslRead.

If a packed buffer is received, each call to rsslRead returns an individual message (i.e., portion of contents) from the packed
buffer. Every subsequent call to rsslRead continues to return portions of the packed buffer until the buffer is emptied.

/* File descriptor has changed, unregister old and register new */
FD_CLR(inProgInfo.oldSocket, &readfds);
FD_CLR(inProgInfo.oldSocket, &writefds);
FD_CLR(inProgInfo.oldSocket, &exceptionfds);
/* newSocket should equal pChnl->socketId */
FD_SET(inProgInfo.newSocket, &readfds);
FD_SET(inProgInfo.newSocket, &writefds);
FD_SET(inProgInfo.newSocket, &exceptionfds);

}
}
break;
case RSSL_RET_SUCCESS:
printf("Channel on fd %d is now active - reading and writing can begin.\n”,

pChnl->socketId);
break;
default:
printf("Unexpected return code (%d) encountered!”, retCode);
/* Likely unrecoverable, connection should be closed */
break;

}
}

}

Note: When an RsslBuffer is returned from rsslRead, the contents are only valid until the next call to rsslRead.
Transport API 3.1.X C Edition – Developers Guide 97
ETAC313UM.180

Chapter 10 Transport Package Detailed View
Message packing is transparent to the application that receives a packed buffer. For more information about packing, refer to
Section 10.11.

10.6.1 rsslRead Function

10.6.2 rsslRead Return Codes

The following table defines return codes that can occur when using rsslRead.

function Name DESCRIPTION

RsslChannel Provides the user with data received from the connection. This function expects the
RsslChannel to be in the active state. When data is available, an RsslBuffer referring to the
information is returned, which is valid until the next call to rsslRead. If a blocking I/O is used,
the rsslRead function will not return until there is information to return or an error has
occurred.

A return code parameter passed into the function is used to convey return code information
as well as communicate whether there is additional information to read. An I/O notification
mechanism may not inform the user of this additional information as it has already been read
from the socket and is contained in the rsslRead input buffer.

Return values are described in Section 10.6.2.

Table 42: RsslChannel Function

RETURN CODE BUFFER CONTENTS DESCRIPTION

RSSL_RET_SUCCESS Populated if the full
buffer is available,
NULL otherwise. The
buffer’s length
indicates the number of
bytes to which the data
refers.

Indicates that the rsslRead call was successful and
there are no remaining bytes in the input buffer. The
I/O notification mechanism will notify the user when
additional information arrives. The ping timer should
be updated, refer to Section 10.12.

Any positive value > 0 Populated if full buffer
is available, NULL
otherwise. The buffer’s
length indicates the
number of bytes to
which the data refers.

Indicates that the rsslRead call was successful and
there are remaining bytes in the input buffer. The I/O
notification mechanism will not notify the user of
these bytes. The rsslRead function should be
called again to ensure that the remaining bytes are
processed. The ping timer should be updated (for
details, refer to Section 10.12).

Note: If there are additional bytes to process, you
should call rsslRead again. Because the bytes are
already contained in the transport input buffer, an I/
O notification mechanism will not alert the user of
their presence.

RSSL_RET_READ_WOULD_BLOCK NULL Indicates that the rsslRead call has nothing to
return to the user.

Table 43: rsslRead Return Codes
Transport API 3.1.X C Edition – Developers Guide 98
ETAC313UM.180

Chapter 10 Transport Package Detailed View
RSSL_RET_READ_PING NULL Indicates that a heartbeat message was received.
The ping timer should be updated (for details, refer
to Section 10.12).

RSSL_RET_FAILURE NULL Indicates a failure condition, often that the
connection is no longer available. The RsslChannel
should be closed (for details, refer to Section 10.13).

For more details, refer to RsslError content.

RSSL_RET_PACKET_GAP_DETECTED NULL Indicates that a packet gap was detected in the
inbound transport content. This may be recoverable
above the transport layer, so the RsslChannel is left
in a connected state. If needed, an application can
configure the transport to disconnect whenever this
occurs by using the disconnectOnGaps option. For
details on this option, refer to Section 10.3.2.3.

RSSL_RET_SLOW_READER NULL Indicates that the reader is not keeping up with the
data rate and a packet gap was detected in the
inbound transport content. This may be recoverable
above the transport layer, so the RsslChannel is left
in a connected state. If needed, an application can
configure the transport to disconnect whenever this
occurs by using the disconnectOnGaps option. For
details on this option, refer to Section 10.3.2.3.

RSSL_RET_CONGESTION_DETECTED NULL Indicates network congestion and that a gap was
detected in the inbound transport content. This may
be recoverable above the transport layer, so the
RsslChannel is left in a connected state. If needed,
an application can configure the transport to
disconnect whenever this occurs by using the
disconnectOnGaps option. For details on this
option, refer to Section 10.3.2.3.

RSSL_RET_READ_FD_CHANGE NULL Indicates that the connections socketId has
changed. This can occur as a result of internal
connection keep-alive mechanisms. The previous
socketIdis stored in the RsslChannel.oldSocket
so it can be removed from the I/O notification
mechanism. The RsslChannel.oldSocket contains
the new file descriptor, which should be registered
with the I/O notification mechanism.

RSSL_RET_READ_IN_PROGRESS NULL Indicates that an rsslRead call on the RsslChannel
is already in progress. This can be due to another
thread performing the same operation.

RSSL_RET_INIT_NOT_INITIALIZED NULL Indicates that the RSSL Transport has not been
initialized. See the RsslError content for more
details. For information on initializing, refer to
Section 10.2.

RETURN CODE BUFFER CONTENTS DESCRIPTION

Table 43: rsslRead Return Codes (Continued)
Transport API 3.1.X C Edition – Developers Guide 99
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.6.3 rsslRead Example

The following example shows typical use of rsslRead and assumes use of an I/O notification mechanism. This code would be
similar for client or server based RsslChannel structures.

/* rsslRead use, be sure to keep track of the return values from read so data is not stranded
in the
input buffer */

RsslRet retCode = RSSL_RET_FAILURE;
RsslBuffer *pBuffer = 0;

if ((pBuffer = rsslRead(pChnl, &retCode, &error)) != 0)
{

/* if a buffer is returned, we have data to process and code is success */
/* Process data and update ping monitor (Section 10.12) since data was received */

/* Check the return code to determine whether more data is available to read */
if (retCode > RSSL_RET_SUCCESS)
{

/* There is more data to read and process and I/O notification may not trigger for it */
/* Either schedule another call to read or loop on read until retCode ==

RSSL_RET_SUCCESS */
/* and there is no data left in internal input buffer */

}
}
else
{

/* Handle return codes appropriately, not all return values are failure conditions */
switch(retCode)
{
case RSSL_RET_SUCCESS:
{

/* There is more data to read and process and I/O notification may not trigger for it */
/* Either schedule another call to read or loop on read until retCode ==

RSSL_RET_SUCCESS */
/* and there is no data left in internal input buffer */

}
case RSSL_RET_READ_PING:
{

/* Update ping monitor (Section 10.12) */
}
break;
case RSSL_RET_READ_FD_CHANGE:
{

/* File descriptor changed, typically due to tunneling keep-alive */
/* Unregister old socketId and register new socketId */
FD_CLR(pChnl->oldSocketId, &readfds);
Transport API 3.1.X C Edition – Developers Guide 100
ETAC313UM.180

Chapter 10 Transport Package Detailed View
Code Example 9: Receiving Data Using rsslRead

FD_CLR(pChnl->oldSocketId, &writefds);
FD_CLR(pChnl->oldSocketId, &exceptionfds);
/* Up to application whether to register with write set - depends on need for write
 notification */
FD_SET(pChnl->socketId, &readfds);
FD_SET(pChnl->socketId, &exceptionfds);

}
break;
case RSSL_RET_READ_WOULD_BLOCK: /* Nothing to read */
case RSSL_RET_READ_IN_PROGRESS: /* Reading from multiple threads - this is dangerous */
{

/* Handle as application sees fit, output warning, etc */
}
break;
case RSSL_RET_INIT_NOT_INITIALIZED:
case RSSL_RET_FAILURE:
{

printf("Error %s (%d) (errno: %d) encountered with rsslRead. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,
error.text);

/* Connection should be closed */
}
break;
default:
printf("Unexpected return code (%d) encountered!”, retCode);
/* Likely unrecoverable, connection should be closed */

}
}

Transport API 3.1.X C Edition – Developers Guide 101
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.6.4 rsslReadEx Function

The following table describes the rsslReadEx function, which expands the functionality of rsslRead while preserving
backwards compatibility.

10.6.4.1 RsslReadOutArgs Options

The following table describes rsslReadOutArgs options.

Tip: rsslReadEx can return compression statistics via bytesRead and uncompressedBytesRead (members of
RsslReadOutArgs). This data gives the user a direct way to analyze compression ratios.

FUNCTION NAME DESCRIPTION

rsslReadEx This function behaves similarly to rsslRead, but also provides the user with additional
information about the data received.

rsslReadEx takes two additional parameters:

• RsslReadOutArgs, which consists of variables that hold data being returned to the user.
For details on RsslReadOutArgs, refer to Section 10.6.4.1.

• RsslReadInArgs, which passes in the readInFlags variable. For details on
readInFlags, refer to Section 10.6.4.3.

Table 44: rsslReadEx Function

Option DESCRIPTION

readOutFlags Flags used for returning information about the outcome of the read.

bytesRead The number of bytes read from the wire before decompression, during the call to
rsslReadEx, including any transport overhead.

uncompressedBytesRead The number of decompressed bytes read from the wire, including any transport overhead,
processed during the call to rsslReadEx.

hashId Reserved.

nodeId Reserved.

seqNum A sequence number used by Elektron Direct Feed data.

FTGroupId Reserved.

instanceId Sets the sender’s instanceId. instanceId with the IP address and port from the nodeId
uniquely identify the specific channel on which the message is sent.

Table 45: rsslReadOutArgs Options
Transport API 3.1.X C Edition – Developers Guide 102
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.6.4.2 RsslReadFlagsOut Enumerations

10.6.4.3 RsslReadInArgs Option

The rsslReadInArgs structure has only one option:

10.7 Writing Data: Overview

When a client or server RsslChannel.state is RSSL_CH_STATE_ACTIVE, it is possible for an application to write data to the
connection. Writing involves a multi-step process. Because the RSSL Transport provides efficient buffer management, the
user must obtain a RsslBuffer from the RSSL Transport buffer pool (refer to Section 10.8). This can be the guaranteed output
buffer pool associated with an RsslChannel or the shared buffer pool associated with an RsslServer.

After a buffer is acquired, the user can populate the RsslBuffer.data and set the RsslBuffer.length to the number of
bytes referred to by data.

At this point, the user can choose to pack additional information into the same buffer (refer to Section 10.11) or add the buffer
to the transports outbound queue (refer to Section 10.9). If queued information cannot be passed to the network, a function is
provided to allow the application to continue attempts to flush data to the connection (refer to Section 10.10.2). An I/O
notification mechanism can be used to help with determining when the network is able to accept additional bytes for writing.
The RSSL Transport can continue to queue data, even if the network is unable to write. The following figure depicts this
process and the following sections describe the functionality used to write information to the connection.

Transport API Writing Flow Chart

Flag Enumeration DESCRIPTION

RSSL_READ_OUT_NO_FLAGS Channel data does not have associated read flags.

RSSL_READ_OUT_FTGROUP_ID Channel data includes a valid FT Group ID.

RSSL_READ_OUT_NODE_ID Channel data includes a valid node ID.

RSSL_READ_OUT_SEQNUM Channel data includes a sequence number.

RSSL_READ_OUT_HASH_ID Channel data includes a hash ID.

RSSL_READ_OUT_UNICAST The message was sent unicast to this node.

RSSL_READ_OUT_INSTANCE_ID The message includes an instance ID.

RSSL_READ_OUT_RETRANSMIT Channel data is a retransmission of previous content.

Table 46: RsslReadFlagsOut Enumerations

Option DESCRIPTION

readInFlags Flags used when reading the buffer.

Table 47: rsslReadInArgs Option
Transport API 3.1.X C Edition – Developers Guide 103
ETAC313UM.180

Chapter 10 Transport Package Detailed View
Figure 36. Transport API Writing Flow Chart

10.8 Writing Data: Obtaining a Buffer

To write information, the user must obtain a RsslBuffer from the RSSL Transport buffer pool. This buffer can originate from
the guaranteed output buffer pool associated with the RsslChannel or the shared buffer pool associated with the RsslServer.
After acquiring a buffer, the user can populate the RsslBuffer.data and set the RsslBuffer.length to the number of bytes
referred to by data. If the buffer is not used or the rsslWrite function call fails, the buffer must be released back into the pool
to ensure proper reuse and cleanup. If the buffer is successfully passed to rsslWrite, when flushed to the network the buffer
will be returned to the correct pool by the transport.

The number of buffers made available to an RsslChannel is configurable through RsslConnectOptions or RsslBindOptions.
When connecting, the guaranteedOutputBuffers setting controls the number of available buffers. When connections are
accepted by an RsslServer, the maxOutputBuffers parameter controls the number of available buffers per connection. This
value is the sum of the number of guaranteedOutputBuffers and any available shared pool buffers. For more information
about available rsslConnect and rsslBind options, refer to Table 23 and Table 32.
Transport API 3.1.X C Edition – Developers Guide 104
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.8.1 Buffer Management Functions

10.8.2 rsslGetBuffer Return Values

The following table defines return and error code values that can occur while using rsslGetBuffer.

FUNCTION NAME DESCRIPTION

rsslGetBuffer Obtains a RsslBuffer of the requested size from the guaranteed or shared buffer pool.
When the RsslBuffer is returned, the length member indicates the number of bytes
available in the buffer (this should match the amount the application requested). When
populating, it is required that the application set length to the number of bytes actually used.
This ensures that only the required bytes are written to the network.

If the requested size is larger than the maxFragmentSize, the transport will create and return
the buffer to the user. When written, this buffer will be fragmented by the rsslWrite function
(refer to Section 10.9).

Because of some additional book keeping required when packing, the application must
specify whether a buffer should be ‘packable’ when calling rsslGetBuffer. For more
information on packing, refer to Section 10.11.

For performance purposes, an application is not permitted to request a buffer larger than
maxFragmentSize and have the buffer be ‘packable.’

If the buffer is not used or the rsslWrite call fails, the buffer must be returned to the pool
using rsslReleaseBuffer. If the rsslWrite call is successful, the buffer will be returned to
the correct pool by the transport.

Return values are described in Table 49.

Note: For shared memory connection types (RSSL_CONN_TYPE_UNIDIR_SHMEM) only
one buffer can be obtained at a time. The application must release or write the buffer it has
before the application can obtain another buffer.

rsslReleaseBuffer Releases a RsslBuffer back to the correct pool. This should only be called with buffers that
originate from rsslGetBuffer and are not successfully passed to rsslWrite.

rsslBufferUsage Returns the number of buffers currently in use by the RsslChannel, this includes buffers that
the application holds and buffers internally queued and waiting to be flushed to the
connection.

rsslServerBufferUsage Returns the number of shared pool buffers currently in use by all channels connected to the
RsslServer, this includes shared pool buffers that the application holds and shared pool
buffers internally queued and waiting to be flushed.

Table 48: Buffer Management Functions
Transport API 3.1.X C Edition – Developers Guide 105
ETAC313UM.180

Chapter 10 Transport Package Detailed View
RETURN CODE DESCRIPTION

Valid buffer returned

Success Case

An RsslBuffer is returned to the user. The RsslBuffer.length
indicates the number of bytes available to populate, and
RsslBuffer.data provides a starting location for population.

NULL buffer returned

Error Code: RSSL_RET_BUFFER_NO_BUFFERS

NULL is returned to the user. This value indicates that there are no
buffers available to the user. See RsslError content for more
details.

This typically occurs because all available buffers are queued and
pending flushing to the connection. The application can use
rsslFlush to attempt releasing buffers back to the pool (refer to
Section 10.10.2). Additionally, the rsslIoctl function can be used
to increase the number of guaranteedOutputBuffers (refer to
Section 10.14).

NULL buffer returned

Error Code: RSSL_RET_FAILURE

NULL is returned to the user. This value indicates that some type of
general failure has occurred. The RsslChannel should be closed,
refer to Section 10.13. See RsslError content for more details.

NULL buffer returned

Error Code: RSSL_RET_INIT_NOT_INITIALIZED

Indicates that the RSSL Transport has not been initialized. See the
RsslError content for more details. For information on initializing,
refer to Section 10.2.

Table 49: rsslGetBuffer Return Values
Transport API 3.1.X C Edition – Developers Guide 106
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.9 Writing Data to a Buffer

After an RsslBuffer is obtained from rsslGetBuffer and populated with the user’s data, the buffer can be passed to the
rsslWrite function. Though the name seems to imply it, this function may not write the contents of the buffer to the
connection. By queuing, the RSSL Transport can attempt to use the network layer more efficiently by combining multiple
buffers into a single socket write operation. Additionally, queuing allows the application to continue to ‘write’ data, even while
the network has no available space in the output buffer. If rsslWrite does not pass all data to the socket, unwritten data will
remain in the outbound queue for future writing. If an error occurs, any RsslBuffer that has not been successfully passed to
rsslWrite should be released to the pool using rsslReleaseBuffer. The following table describes the rsslWrite function
as well as some additional parameters associated with it.

The example in Section 10.9.7 demonstrates the use of rsslGetBuffer and rsslReleaseBuffer.

10.9.1 rsslWrite Function

FUNCTION NAME DESCRIPTION

rsslWrite Performs any writing or queuing of data. This function expects the RsslChannel to be in the
active state and the buffer to be properly populated, where length reflects the actual number
of bytes used. If blocking I/O is used, the rsslWrite function will not return until data was
written to the connection or an error has occurred.

This function allows for several modifications to be specified for this call. For more
information, refer to Section 10.9.2.

The RSSL Transport supports writing data at different priority levels. For more details on
priority levels, refer to Section 10.10.1.

The application can pass in two integer values used for reporting information about the
number of bytes that will be written.

• The uncompressedBytesWritten parameter will return the number of bytes to be
written, including any transport header overhead but not taking into account any
compression.

• The bytesWritten parameter will return the number of bytes to be written, including
any transport header overhead and taking into account any compression.

If compression is disabled, uncompressedBytesWritten and bytesWritten should match.
The number of bytes saved through the compression process can be calculated by
(uncompressedBytesWritten - bytesWritten).

Return values are described in Section 10.9.6.

Note: Before passing a buffer to rsslWrite, it is required that the application set length to the
number of bytes actually used. This ensures that only the required bytes are written to the
network.

Table 50: rsslWrite Function
Transport API 3.1.X C Edition – Developers Guide 107
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.9.2 rsslWrite Flag Enumeration Values

10.9.3 rsslWriteEx Function

The following table describes the rsslWriteEx function.

10.9.3.1 RsslWriteInArgs

Note: Before passing a buffer to rsslWrite, it is required that the application set length to the number of bytes actually used.
This ensures that only the required bytes are written to the network.

FLAG ENUMERATION MEANING

RSSL_WRITE_NO_FLAGS No modification will be performed to this rsslWrite operation.

RSSL_WRITE_DO_NOT_COMPRESS Though the connection might have compression enabled, this flag value
indicates that this message will not be compressed. This flag value applies
only to the contents of the RsslBuffer passed in with this rsslWrite call.

RSSL_WRITE_DIRECT_SOCKET_WRITE When set, the rsslWrite function will attempt to pass the contents of the
RsslBuffer directly to the socket write operation, bypassing any internal
RSSL transport queuing. If any information is currently queued, this buffer
will also be queued and the rsslFlush function will be invoked to ensure
proper ordering of outbound data.

Use of this modification will result in a higher CPU writing cost however it
might decrease latency when internal queues are empty.

This can be useful for writing at low data rates or when the return codes from
rsslWrite and rsslFlush indicate that data is not queued.

Table 51: rsslWrite Flags

FUNCTION NAME DESCRIPTION

rsslWriteEx The rsslWriteEx function expands the functionality of rsslWrite while preserving
backwards compatibility. The parameter list of this function is based on a restructuring of the
one from rsslWrite.

• Variables which hold output values are options in the RsslWriteOutArgs structure
(described in Section 10.9.3.2).

• Input variables that affect the call to rsslWriteEx are options in the RsslWriteInArgs
structure (described in Section 10.9.3.1).

Table 52: rsslWriteEx Function

Option DESCRIPTION

writeInFlags Sets any flags for use in writing the buffer.

rsslPriority Sets the priority in flushing the message.

seqNum Specifies the message’s sequence number.

Table 53: rsslReadInArgs Options
Transport API 3.1.X C Edition – Developers Guide 108
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.9.3.2 RsslWriteOutArgs

10.9.3.3 RsslWriteFlagsIn

10.9.4 Compression

The rsslWrite function performs all necessary compression associated with the connection. Because of information order
changes, compression can only be applied to a single priority level. If writing data using different priorities, the first priority level
used will leverage compression and all other priority levels will be sent uncompressed. For available compression types, refer
to Section 10.4.3.

Option DESCRIPTION

writeOutFlags Flags that return information about the write’s outcome.

bytesWritten The number of bytes written (taking compression into account) with the write call, including
any transport overhead.

uncompressedBytesWritten The number of bytes written (without taking compression into account) with the write call,
including any transport overhead.

Table 54: rsslReadInArgs Options

Note: Before passing a buffer to rsslWriteEx, it is required that the application set length to the number of bytes actually
used. This ensures that only the required bytes are written to the network.

rsslWriteFLAGsIn ENUMERATION Description

RSSL_WRITE_IN_NO_FLAGS No modification will be performed to this rsslWrite operation.

RSSL_WRITE_IN_DO_NOT_COMPRESS Though the connection might have compression enabled, this flag value
indicates that this message will not be compressed. This flag value
applies only to the contents of the RsslBuffer passed in with this
rsslWrite call.

RSSL_WRITE_IN_DIRECT_SOCKET_WRITE When set, the rsslWrite function will attempt to pass the contents of the
RsslBuffer directly to the socket write operation, bypassing any internal
RSSL transport queuing. If any information is currently queued, this buffer
will also be queued and the rsslFlush function will be invoked to ensure
proper ordering of outbound data.

Use of this modification will result in a higher CPU writing cost however it
might decrease latency when internal queues are empty.

This can be useful for writing at low data rates or when the return codes
from rsslWrite and rsslFlush indicate that data is not queued.

RSSL_WRITE_WRITE_IN_SEQNUM Indicates that the writer wants to attach a sequence number to this
message

RSSL_WRITE_WRITE_IN_RETRANSMIT Indicates that this message is a retransmission of previous content and
requires a user-supplied sequence number to indicate which packet is
being retransmitted.

Table 55: rsslWriteFlagsIn Enumerations
Transport API 3.1.X C Edition – Developers Guide 109
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.9.5 Fragmentation

In addition to compression, the rsslWrite function performs any necessary fragmentation of large buffers. This fragmentation
process subdivides one large buffer into smaller maxFragmentSize portions, where each part is placed into a buffer acquired
from the pool associated with the RsslChannel. If the fragmentation cannot fully complete, often due to a shortage of pool
buffers, this is indicated by the RSSL_RET_WRITE_CALL_AGAIN return code. In this situation, the application should use
rsslFlushto write queued buffers to the connection - this will release buffers back to the pool. When additional pool buffers
are available, the application can call rsslWritewith the same buffer to continue the fragmentation process from where it left
off. The RSSL transport keeps track of necessary information to identify and track individual fragmented messages. This
allows an application to write unrelated messages between portions of a fragmented buffer as well as writing multiple
fragmented messages that may be interleaved.

Currently, shared memory (RSSL_CONN_TYPE_UNIDIR_SHMEM) connections do not support fragmentation.

Note: In the event that the connection is unable to accept additional bytes to write, the RSSL Transport queues on the user’s
behalf. The application can attempt to pass queued data to the network by using the rsslWritefunction.
Transport API 3.1.X C Edition – Developers Guide 110
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.9.6 rsslWrite Return Codes

The following table lists all return codes that can occur when using the rsslWrite function.

Return Code Description

RSSL_RET_SUCCESS Indicates that the rsslWrite function was successful and additional bytes have
not been internally queued. The rsslFlush function does not need to be called.

The application should not release the RsslBuffer; the Transport API will release
it.

Any positive value > 0 Indicates that the rsslWrite function has succeeded and there is information
internally queued by the transport. To pass internally queued information to the
connection, the rsslFlush function must be called. This information can be
queued because there is not sufficient space in the connections output buffer. An
I/O notification mechanism can be used to indicate when the socketId has write
availability.

The application should not release the RsslBuffer; the Transport API will release
it.

RSSL_RET_WRITE_FLUSH_FAILED Indicates that the rsslWrite function has succeeded, however an internal attempt
to flush data to the socket has failed - the channel’s state should be inspected.
This might not be a failure condition and can occur if there is no available socket
output buffer space. If the flush failure is unrecoverable, the RsslChannel.state
will transition to RSSL_CH_STATE_CLOSED. If the connection closes, RsslError
information will be populated.

The application should not release the RsslBuffer; the Transport API will release
it.

RSSL_RET_WRITE_CALL_AGAIN Indicates that a large buffer could not be fully fragmented with this rsslWrite call.
This is typically due to all pool buffers being unavailable. An application can use
rsslFlush to free up pool buffers or use rsslIoctl to increase the number of
available pool buffers. After pool buffers become available again, the same buffer
should be used to call rsslWrite an additional time (the same priority level must
be used to ensure fragments are ordered properly). This will continue the
fragmentation process from where it left off.

If the application does not subsequently pass the RsslBuffer to rsslWrite, the
buffer should be released by calling rsslReleaseBuffer.

RSSL_RET_FAILURE Indicates that a general write failure has occurred. The RsslChannel should be
closed (refer to Section 10.13). For more details, refer to any RsslError content.

The application should release the RsslBuffer by calling rsslReleaseBuffer.

Table 56: rsslWrite Return Codes
Transport API 3.1.X C Edition – Developers Guide 111
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.9.7 rsslGetBuffer and rsslWrite Example

The following example shows typical use of rsslGetBuffer and rsslWrite. This code would be similar for client or server
based RsslChannel structures.

RSSL_RET_BUFFER_TOO_SMALL Indicates that either the buffer has been corrupted, possibly by exceeding the
allowable length, or it is not a valid pool buffer. For more details, refer to any
RsslError content.

If this RsslBuffer was obtained from rsslGetBuffer, the application should
release it by calling rsslReleaseBuffer.

RSSL_RET_INIT_NOT_INITIALIZED Indicates that the RSSL Transport has not been initialized.

• For more details, refer to any RsslError content.

• For information on initializing, refer to Section 10.2.

The application’s attempt to call rsslGetBuffer should have failed for the same
reason, so an RsslBuffer should not be present.

/* rsslGetBuffer and rsslWrite use, be sure to keep track of the return values from write so
data is not

 stranded in the output buffer - rsslFlush may be required to continue attempting to pass data
to the

 connection */
RsslRet retCode = RSSL_RET_FAILURE;
RsslBuffer *pBuffer = 0;
RsslUInt32 outBytes = 0;
RsslUInt32 outUncompBytes = 0;

/* Ask for a 500 byte non-packable buffer to write into */
if ((pBuffer = rsslGetBuffer(pChnl, 500, RSSL_FALSE, &error)) != 0)
{

/* if a buffer is returned, we can populate and write, encode an RsslMsg into the buffer */
/* set the buffer on an RsslEncodeIterator */
rsslSetEncodeIteratorBuffer(&encIter, pBuffer);
/* set version information of the connection on the encode iterator so proper versioning
can be
performed */
rsslSetEncodeIteratorRWFVersion(&encIter, pChnl->majorVersion, pChnl->minorVersion);
/* populate message and encode it - see 11.6.3.5 for more message encoding information */
retCode = rsslEncodeMsg(&encIter, &rsslMsg);
/* set the buffer’s encoded content length prior to writing, this can be obtained from the
iterator.*/
pBuffer->length = rsslGetEncodedBufferLength(&encIter);

/* Now write the data - keep track of return code */
/* this example writes buffer as high priority and no write modification flags */

Return Code Description

Table 56: rsslWrite Return Codes (Continued)
Transport API 3.1.X C Edition – Developers Guide 112
ETAC313UM.180

Chapter 10 Transport Package Detailed View
retCode = rsslWrite(pChnl, pBuffer, RSSL_HIGH_PRIORITY, 0, &outBytes, &outUncompBytes,
&error);

if (retCode > RSSL_RET_SUCCESS)
{

/* The write was successful and there is more data queued in RSSL Transport.
 The rsslFlush function (see Section 10.10.2) should be used to continue attempting to

flush
data to the connection. UPA will release buffer.*/

}
else
{

/* Handle return codes appropriately, not all return values are failure conditions */
switch(retCode)
{

case RSSL_RET_SUCCESS:
{

/* Successful write and all data has been passed to the connection */
/* Continue with next operations. UPA will release buffer.*/

}
break;
case RSSL_RET_WRITE_CALL_AGAIN:
{

/* Large buffer is being split by transport, but out of output buffers */
/* Schedule a call to rsslFlush (see Section 10.10.2) and then call the rsslWrite

function
 Again with this same exact buffer to continue the fragmentation process. */
/* Only release the buffer if not passing it to rsslWrite again. */

}
break;
case RSSL_RET_WRITE_FLUSH_FAILED:
{

/* The write was successful, but an attempt to flush failed. UPA will release
 buffer.*/
/* Must check channel state to determine if this is unrecoverable or not */
if (pChnl->state == RSSL_CH_STATE_CLOSED)
{

printf("Error %s (%d) (errno: %d) encountered with rsslWrite. Error Text:
%s\n", rsslRetCodeToString(error.rsslErrorId),
error.rsslErrorId, error.sysError, error.text);

/* Connection should be closed, return failure */
}
else
{

/* Successful write call, data is queued. The rsslFlush function
 (see Section 10.10.2) should be used to continue attempting to flush data to
 the connection. */
Transport API 3.1.X C Edition – Developers Guide 113
ETAC313UM.180

Chapter 10 Transport Package Detailed View
Code Example 10: Writing Data Using rsslWrite, rsslGetBuffer, and rsslReleaseBuffer

}

}
break;
case RSSL_RET_BUFFER_TOO_SMALL: /* Nothing to read */
{

/* Buffer somehow got corrupted, if it was from rsslGetBuffer, release it */
rsslReleaseBuffer(pBuffer, &error);

}
break;
case RSSL_RET_INIT_NOT_INITIALIZED:
case RSSL_RET_FAILURE:
{

printf("Error %s (%d) (errno: %d) encountered with rsslWrite. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,
error.text);

/* Buffer must be released - return code from rsslReleaseBuffer can be checked */
rsslReleaseBuffer(pBuffer, &error);
/* Connection should be closed, return failure */

}
break;
default:
printf("Unexpected return code (%d) encountered!”, retCode);
/* Likely unrecoverable, connection should be closed */

}
}

}
else
{

/* Check to see if this is just out of buffers or if it’s unrecoverable */
if (error.rsslErrorId == RSSL_RET_BUFFER_NO_BUFFERS)
{

/* The rsslFlush function (Section 10.10.2) should be used to attempt to free buffers
back to the

 pool */
}
else
{

printf("Error %s (%d) (errno: %d) encountered with rsslGetBuffer. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,

error.text);
/* Connection should be closed, return failure */

}
}

Transport API 3.1.X C Edition – Developers Guide 114
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.10 Managing Outbound Queues

Because it may not be possible for the rsslWrite function to pass all data to the underlying socket, some data may be queued
by the RSSL Transport. Applications can use the rsslFlush function to continue attempting to pass queued data to the
connection.

10.10.1 Ordering Queued Data: rsslWrite Priorities

Using the rsslWrite function, an application can associate a priority with each RsslBuffer. Priority information is used to
determine outbound ordering of data, and can allow for higher priority information to be written to the connection before lower
priority data, even if the lower priority data was passed to rsslWrite first. Only queued data will incur any ordering changes
due to priority, and data directly written to the socket by rsslWrite will not be impacted.

Priority ordering occurs as part of the rsslFlush call (refer to Section 10.10.2), where the priorityFlushStrategy
determines how to handle each priority level. The default priorityFlushStrategy writes buffers in the order: High, Medium,
High, Low, High, Medium. This provides a slight advantage to the medium priority level and a greater advantage to high priority
data. Data order is preserved within each priority level (thus, if all buffers are written with the same priority, data is not
reordered). If a particular priority level being flushed does not have content, rsslFlush will move to the next priority in the
priorityFlushStrategy. The priorityFlushStrategy can be changed for each RsslChannel by using the rsslIoctl
function (refer to Section 10.14).

10.10.1.1 Priority Ordering

The following figure presents an example of a possible priority write ordering. On the left, there are three queues and each
queue is associated with one of the available rsslWrite priority values. As the user calls rsslWrite and assigns priorities to
their buffers, they will be queued at the appropriate priority level. As the rsslFlush function is called, buffers are removed
from the queues in a manner that follows the priorityFlushStrategy.

Figure 37. rsslWrite Priority Scenario

On the left side of the figure there are three outbound queues, one for each priority value. As buffers enter the queues (as a
result of an rsslWrite call), they are marked with a number and the priority value associated with their queue. The number
indicates the order the buffers were passed to rsslWrite, so the buffer marked 1 was the first buffer into rsslWrite, the

buffer marked 5 was the 5th buffer into rsslWrite. Buffers are marked H if they are in the high priority queue, M if they are in
the medium priority queue, or L if they are in the low priority queue. Buffers leave the queue (as a result of an rsslFlush call)
in the order specified by the priorityFlushStrategy, which by default is HMHLHM. In Figure 37, the queue on the right side
represents the order in which buffers are written to the network and the order that they will be returned when rsslRead is
called. The buffers will still be marked with their number:priority information so it is easy to see how data is reordered by
any priority writing.

Notice that though data was reordered between various priorities, individual priority levels are not reordered. Thus, all buffers
in the high priority are written in the order they are queued, even though some medium and low buffers are sent as well.
Transport API 3.1.X C Edition – Developers Guide 115
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.10.1.2 Priority Value Enumerations

ENUMERATION MEANING

RSSL_HIGH_PRIORITY If not directly written to the socket, this RsslBuffer will be flushed at the high priority.

RSSL_MEDIUM_PRIORITY If not directly written to the socket, this RsslBuffer will be flushed at the medium priority.

RSSL_LOW_PRIORITY If not directly written to the socket, this RsslBuffer will be flushed at the low priority.

Table 57: rsslWrite Priority Value Enumerations
Transport API 3.1.X C Edition – Developers Guide 116
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.10.2 rsslFlush Function

If all available output space is used for a connection, data might be queued as a result. An I/O notification mechanism can be
used to alert the application when output space becomes available on a connection.

10.10.3 rsslFlush Return Codes

The following table defines the return codes that can occur when using rsslFlush.

Note: The return value from rsslFlush indicates whether there are any queued bytes left to pass to the connection. If this is a
positive value (typical when operating system output buffers lack space), the application should continue to call rsslFlush
until all bytes have been written.

FUNCTION NAME DESCRIPTION

rsslFlush Writes queued data to the connection. This function expects the RsslChannel to be in the
active state. If data is not queued, the rsslFlush function is not required and should return
immediately.

This function performs any buffer reordering that might occur due to priorities passed in on
the rsslWrite function. For more information about priority writing, refer to Section 10.10.1.

Return values are described in Table 59.

Table 58: rsslFlush Function

RETURN CODE DESCRIPTION

RSSL_RET_SUCCESS Indicates that the rsslFlush function has succeeded and additional bytes are not
internally queued. The rsslFlush function need not be called.

Any positive value > 0 Indicates that the rsslFlush function has succeeded, however data is still
internally queued by the transport. The rsslFlush function must be called again.
Data might still be queued because the connections output buffer does not have
sufficient space. An I/O notification mechanism can indicate when the socketId
has write availability.

RSSL_RET_FAILURE Indicates that a general failure has occurred, often because the underlying
connection is unavailable or closed. The RsslChannel should be closed (refer to
Section 10.13). For more details, refer to the RsslError content.

RSSL_RET_INIT_NOT_INITIALIZED Indicates that the RSSL Transport is not initialized. For more details, refer to the
RsslError content. For information on initializing, refer to Section 10.2.

Table 59: rsslFlush Return Codes
Transport API 3.1.X C Edition – Developers Guide 117
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.10.4 rsslFlush Example

The following example shows typical use of rsslFlush. This example assumes use of an I/O notification mechanism. This
code would be similar for client or server based RsslChannel structures.

Code Example 11: rsslFlush Use

/* rsslFlush use, be sure to keep track of the return values from rsslFlush so data is not
 stranded in the output buffer - rsslFlush may need to be called again to continue attempting

to
 pass data to the connection */
RsslRet retCode = RSSL_RET_FAILURE;

/* Assuming this section of code was called because of a write file descriptor alert */
if ((retCode = rsslFlush(pChnl, &error)) > RSSL_RET_SUCCESS)
{

/* There is still data left to flush, leave our write notification enabled so we get called
again,
 If everything wasn’t flushed, it usually indicates that the TCP output buffer cannot
accept more
 yet */

}
else
{

switch (retCode)
{

case RSSL_RET_SUCCESS:
{

/* Everything has been flushed, no data is left to send - unset write notification */
FD_CLR(pChnl->socketId, &writefds);

}
break;
case RSSL_RET_INIT_NOT_INITIALIZED:
case RSSL_RET_FAILURE:
{

printf("Error %s (%d) (errno: %d) encountered with rsslFlush. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,
error.text);

/* Connection should be closed, return failure */
}
break;
default:
printf("Unexpected return code (%d) encountered!”, retCode);
/* Likely unrecoverable, connection should be closed */

}
}

Transport API 3.1.X C Edition – Developers Guide 118
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.11 Packing Additional Data into a Buffer

If an application is writing many small buffers, it might be advantageous to combine the small buffers into one larger buffer.
This can increase the efficiency of the transport layer by reducing overhead associated with each write operation, though it
might increase latency associated with each smaller buffer.

It is up to the writing application to determine when to stop packing, and the mechanism used can vary greatly. One simple
algorithm is to pack a fixed number of messages each time. A slightly more complex technique could use the returned
RsslBuffer.length to determine the amount of remaining space and pack until the buffer is nearly full. Both of these
mechanisms can introduce a variable amount of latency as they both depend on the rate at which data arrives (i.e., the packed
buffer will not be written until enough data arrives to fill it). One method that can balance this is to use a timer to limit the
amount of time a packed buffer is held. If the buffer is full prior to the timer expiring, the data is written, otherwise whenever the
timer expires, whatever is in the buffer will be written (regardless of the amount of data in the buffer). This limits latency to a
maximum, acceptable amount as set by the duration of the timer.

The RsslPackBuffer method packs multiple messages into one RsslBuffer.

10.11.1 RsslPackBuffer Return Values

The following table defines return and error code values that can occur when using RsslPackBuffer.

function NAME DESCRIPTION

RsslPackBuffer Packs the contents of a passed-in RsslBuffer and returns a new RsslBuffer to continue
packing. The returned buffer provides a data pointer for populating and the length conveys
number of bytes available in the buffer. An application can use the RsslBuffer.length to
determine the amount of space available to continue packing buffers.

For a buffer to allow packing, it must be requested from rsslGetBuffer as ‘packable’ and
cannot exceed the maxFragmentSize.

After each buffer is populated, the length should be set to reflect the actual number of bytes
contained in the buffer. This will ensure that only the necessary space is reserved while
packing.

Return values are described in Table 61.

Packing is not supported for shared memory (RSSL_CONN_TYPE_UNIDIR_SHMEM)
connections.

Table 60: RsslPackBuffer Function

RETURN CODE DESCRIPTION

Valid buffer returned

Success Case

An RsslBuffer is returned to the user. The RsslBuffer.length indicates the
number of bytes available to populate and the RsslBuffer.data provides a
starting location for population.

NULL buffer returned

Error Code: RSSL_RET_FAILURE

NULL is returned to the user. This value indicates that some type of general failure
has occurred. The RsslChannel should be closed (refer to Section 10.13). For
more details, refer to RsslError content.

NULL buffer returned

Error Code:
RSSL_RET_INIT_NOT_INITIALIZED

Indicates that the RSSL Transport has not been initialized. See the RsslError
content for more details. For information on initializing, refer to Section 10.2.

Table 61: RsslPackBuffer Return Values
Transport API 3.1.X C Edition – Developers Guide 119
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.11.2 Example: rsslGetBuffer, RsslPackBuffer, and rsslWrite

The following example shows typical use of rsslGetBuffer, RsslPackBuffer, and rsslWrite. This code would be similar for
client or server based RsslChannel structures.

/* rsslGetBuffer, rsslPackBuffer and rsslWrite use, be sure to keep track of the return values
from

 write so data is not stranded in the output buffer - rsslFlush may be required to continue
 attempting to pass data to the connection */
RsslRet retCode = RSSL_RET_FAILURE;
RsslBuffer *pBuffer = 0;
RsslBuffer *pOrigBuffer = 0;
RsslUInt32 outBytes = 0;
RsslUInt32 outUncompBytes = 0;

/* Ask for a 6000 byte packable buffer to write multiple messages into */
if ((pBuffer = rsslGetBuffer(pChnl, 6000, RSSL_TRUE, &error)) != 0)
{

/* if a buffer is returned, we can populate and write, encode an RsslMsg into the buffer */
/* store a copy of the original buffer pointer. This can be used to properly release if
an error occurs in rsslPackBuffer */
pOrigBuffer = pBuffer;
/* set the buffer on an RsslEncodeIterator */
rsslSetEncodeIteratorBuffer(&encIter, pBuffer);
/* set version information of the connection on the encode iterator so proper versioning
can be
performed */
rsslSetEncodeIteratorRWFVersion(&encIter, pChnl->majorVersion, pChnl->minorVersion);
/* populate message and encode it - see (Section 12.2.9.1) for more message encoding
information */
retCode = rsslEncodeMsg(&encIter, &rsslMsg);
/* set the buffer’s encoded content length prior to writing, this can be obtained from the
iterator.*/
pBuffer->length = rsslGetEncodedBufferLength(&encIter);

/* Instead of writing, let’s continue packing messages into the buffer */
/* This will take the existing buffer and return a new location to continue encoding into */
if ((pBuffer = rsslPackBuffer(pChnl, pBuffer, &error)) == 0)
{

printf("Error %s (%d) (errno: %d) encountered with rsslPackBuffer. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,

error.text);
/* Buffer must be released - return code from rsslReleaseBuffer can be checked */
rsslReleaseBuffer(pOrigBuffer, &error);
/* Connection should be closed, return failure */

}

Transport API 3.1.X C Edition – Developers Guide 120
ETAC313UM.180

Chapter 10 Transport Package Detailed View
/* if a buffer is returned, encode an additional message */
/* set the buffer on an RsslEncodeIterator */
rsslSetEncodeIteratorBuffer(&encIter, pBuffer);
/* set version information of the connection on the encode iterator so proper versioning
can be performed */
rsslSetEncodeIteratorRWFVersion(&encIter, pChnl->majorVersion, pChnl->minorVersion);
/* populate message and encode it - see (Section 12.2.9.1) for more message encoding
information */
retCode = rsslEncodeMsg(&encIter, &rsslMsg);
/* set the buffer’s encoded content length prior to writing, this can be obtained from the
iterator.*/
pBuffer->length = rsslGetEncodedBufferLength(&encIter);
/* Instead of writing, lets continue packing messages into the buffer */
/* This will take the existing buffer and return a new location to continue encoding into */
if ((pBuffer = rsslPackBuffer(pChnl, pBuffer, &error)) == 0)
{

printf("Error %s (%d) (errno: %d) encountered with rsslPackBuffer. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,

error.text);
/* Buffer must be released - return code from rsslReleaseBuffer can be checked */
rsslReleaseBuffer(pOrigBuffer, &error);
/* Connection should be closed, return failure */

}

/* Packing can continue like this until the application determines its time to stop -
 this can be due to the pBuffer->length not containing enough space for an additional
message,
 a timer alerting that enough pack time has elapsed, etc */

/* If rsslPackBuffer is called and nothing is put into the last buffer before rsslWrite is
called,
 buffer.length should be set to 0. If content is encoded into last buffer before
rsslWrite,
 buffer.length should be set to encoded length of content. */
pBuffer->length = 0;

/* After packing is complete, write the buffer as normal */
retCode = rsslWrite(pChnl, pBuffer, RSSL_HIGH_PRIORITY, 0, &outBytes, &outUncompBytes,
&error);

/* See Example in Section 10.9 for full rsslWrite error handling example */
}
else
{

/* Check to see if this is just out of buffers or if it’s unrecoverable */
if (error.rsslErrorId == RSSL_RET_BUFFER_NO_BUFFERS)
{

Transport API 3.1.X C Edition – Developers Guide 121
ETAC313UM.180

Chapter 10 Transport Package Detailed View
Code Example 12: Message Packing Using RsslPackBuffer

/* The rsslFlush function (Section 10.10.2) should be used to attempt to free buffers
back to the

 pool */
}
else
{

printf("Error %s (%d) (errno: %d) encountered with rsslGetBuffer. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,

error.text);
/* Connection should be closed, return failure */

}
}

Transport API 3.1.X C Edition – Developers Guide 122
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.12 Ping Management

Ping or heartbeat messages indicate the continued presence of an application. These are typically required only when no
other data is exchanged. For example, there may be long periods of time that elapse between requests made from an OMM
consumer application. In this situation, the consumer sends periodic heartbeat messages to inform the providing application
that it is still connected. Because the provider application is likely sending data more frequently (providing updates on any
streams the consumer has requested), the provider might not need to send heartbeats (as the other data sufficiently
announces its continued presence). The application is responsible for managing the sending and receiving of heartbeat
messages on each connection.

10.12.1 Ping Timeout

Applications are able to configure their desired pingTimeout values, where the ping timeout is the point at which a
connection is terminated due to inactivity. Heartbeat messages are typically sent every one-third of the pingTimeout, ensuring
that heartbeats are exchanged prior to a ping timeout. This can be useful for detecting a connection loss prior to any kind of
network or operating system notification.

pingTimeout values are negotiated between a connecting client application and the server application, where the server can
specify a minimum allowable ping timeout (via the minPingTimeout option) and the direction in which heartbeats flow (via
serverToClientPings and clientToServerPings). For more information on specifying these options, refer to Section
10.3.2.1 and Section 10.4.1.1. During negotiation, the lowest pingTimeout value is selected. Because minPingTimeout sets
the lowest possible value, if a client’s specified pingTimeout value is less than minPingTimeout, the connection uses the
minPingTimeout as its pingTimeout value. After a connection transitions to the active state, the negotiated pingTimeout is
available through the RsslChannel.pingTimeout.

The RSSL Transport uses the following formula to determine the negotiated pingTimeout value:

Code Example 13: Ping Negotiation Calculation

/* Determine lesser of client or servers pingTimeout */
if (client.pingTimeout < server.pingTimeout)

connection.pingTimeout = clientPingTimeout;
else

connection.pingTimeout = server.pingTimeout;
/* Determine whether timeout is less than minimum allowable timeout */
if (connection.pingTimeout < server.minPingTimeout)

connection.pingTimeout = server.minPingTimeout;
Transport API 3.1.X C Edition – Developers Guide 123
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.12.2 rsslPing Function

An application typically monitors both messages and heartbeats. If bytes are flushed to the network, this is considered
sufficient as a heartbeat so any timer mechanism associated with sending heartbeats can be reset. When bytes are received
or rsslRead returns RSSL_RET_READ_PING (refer to Section 9.6), this is comparable to receiving a heartbeat so any timer
mechanism associated with receiving heartbeats can be reset. If either the sending or receiving heartbeat timer mechanism
reaches or surpasses the RsslChannel.pingTimeout value, the connection should be closed.

The following table describes the rsslPing function, used to send heartbeat messages.

10.12.3 rsslPing Return Values

The following table defines the return codes that can occur when using rsslPing.

function NAME DESCRIPTION

rsslPing Attempts to write a heartbeat message on the connection. This function expects an active
RsslChannel.

If an application calls the rsslPing function while other bytes are queued for output, the
RSSL Transport layer suppresses the heartbeat message and attempts to flush bytes to the
network on the user’s behalf.

When using a shared memory (RSSL_CONN_TYPE_UNIDIR_SHMEM) connection type,
pings can only be sent from server to client.

Return values are described in Table 63.

Table 62: rsslPing function

RETURN CODE DESCRIPTION

RSSL_RET_SUCCESS Indicates that the rsslPing function succeeded and additional bytes are not
internally queued.

Any positive value > 0 Indicates that queued data was sent as a heartbeat but data is still internally
queued by the transport. The rsslFlush function must be called to continue
passing queued bytes to the connection. Data might still be queued because the
connections output buffer does not have sufficient space.

An I/O notification mechanism indicate when the socketId has write availability.

RSSL_RET_FAILURE This value indicates that some type of general failure has occurred. The
RsslChannel should be closed (refer to Section 10.13). For more details, refer to
the RsslError content.

RSSL_RET_INIT_NOT_INITIALIZED Indicates that the RSSL Transport has not been initialized.

• For more details, refer to the RsslError content.

• For information on initializing the transport, refer to Section 10.2.

Table 63: rsslPing Return Codes
Transport API 3.1.X C Edition – Developers Guide 124
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.12.4 rsslPing Example

The following example shows typical use of rsslPing. This example assumes use of some kind of timer mechanism to
execute when necessary. This code would be similar for client or server based RsslChannel structures.

Code Example 14: rsslPing Use

/* rsslPing use - this demonstrates sending of heartbeats */
/* Additionally, an application should determine if data or pings have been received, if not

the
application should determine if pingTimeout has elapsed, and if so connection should be
closed */

RsslRet retCode = RSSL_RET_FAILURE;

/* First, send our ping, if there is other data queued, that will be flushed instead */
if ((retCode = rsslPing(pChnl, &error)) > RSSL_RET_SUCCESS)
{

/* There is still data left to flush, leave our write notification enabled so we get called
again,

If everything wasn’t flushed, it usually indicates that the TCP output buffer cannot
accept more

yet */
}
else
{

switch (retCode)
{

case RSSL_RET_SUCCESS:
{

/* Ping message has been sent successfully */
}
break;
case RSSL_RET_INIT_NOT_INITIALIZED:
case RSSL_RET_FAILURE:
{

printf("Error %s (%d) (errno: %d) encountered with rsslPing. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,
error.text);

/* Connection should be closed, return failure */
}
break;
default:
printf("Unexpected return code (%d) encountered!”, retCode);
/* Likely unrecoverable, connection should be closed */

}
}

Transport API 3.1.X C Edition – Developers Guide 125
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.13 Closing Connections

10.13.1 Functions for Closing Connections

When an error occurs on a connection or an RsslChannel is being disconnected, the rsslCloseChannel function should be
called to perform any necessary cleanup and to shutdown the underlying socket. This will release any pool-based resources
back to their respective pools. If the application is holding any buffers obtained from rsslGetBuffer, they should be released
using rsslReleaseBuffer prior to closing the channel.

If a server is being shut down, use the rsslCloseServer function to close the listening socket and perform any necessary
cleanup. All currently connected RsslChannels will remain open. This allows applications to continue sending and receiving
data, while preventing new applications from connecting. The server has the option of calling rsslCloseChannel to shut down
any currently connected applications.

10.13.2 Close Connections Example

The following example shows typical use of rsslCloseChannel and rsslCloseServer.

Code Example 15: Closing a Connection Using rsslCloseChannel and rsslCloseServer

function NAME DESCRIPTION

rsslCloseChannel Closes a client- or server-based RsslChannel. This releases any pool-based resources back
to their respective pools, closes the connection, and performs any additional necessary
cleanup.

Note: If an application is multi-threaded, all other threads that depend on the closed channel
should complete their use prior to calling rsslCloseChannel.

rsslCloseServer Closes a listening socket associated with an RsslServer. rsslCloseServer releases any
pool-based resources back to their respective pools, closes the listening socket, and
performs any additional necessary cleanup. Established connections remain open, allowing
for continued exchange of data. If needed, the server can use rsslCloseChannel to
shutdown any remaining connections.

Table 64: RSSL Connection Closing Functionality

/* rsslCloseChannel */
if (rsslCloseChannel(pChnl, &error) < RSSL_RET_SUCCESS)
{

printf("Error %s (%d) (errno: %d) encountered with rsslCloseChannel. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,

error.text);
}
/* rsslCloseServer */
if (rsslCloseServer(pSrvr, &error) < RSSL_RET_SUCCESS)
{

printf("Error %s (%d) (errno: %d) encountered with rsslCloseServer. Error Text: %s\n",
rsslRetCodeToString(error.rsslErrorId), error.rsslErrorId, error.sysError,

error.text);
}

Transport API 3.1.X C Edition – Developers Guide 126
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.14 Utility Functions

The RSSL Transport layer provides several additional utility functions. These functions can be used to query more detailed
information for a specific connection or change certain RsslChannel or RsslServer parameters during run-time. These
functions are described in the following tables.

10.14.1 General Transport Utility Functions

FUNCTION NAME DESCRIPTION

rsslGetChannelInfo Allows the application to query RsslChannel negotiated parameters and settings and retrieve
all current settings. This includes maxFragmentSize and negotiated compression information
as well as many other values. See RsslChannelInfo structure, defined in Table 66, for a full
list of available settings.

rsslGetServerInfo Allows the application to query RsslServer related values, such as current and peak shared
pool buffer usage statistics. This populates an RsslServerInfo structure, defined in Table
69.

rsslIoctl Allows the application to change various settings associated with the RsslChannel. The
available options are defined in Table 70.

rsslServerIoctl Allows the application to change various settings associated with the RsslServer. The
available options are defined in Table 71.

rsslHostByName Takes an RsslBuffer populated with a hostname, where length is set to the length of the
contained hostname. The hostname is used to look up and return a four-byte IP address, in
host byte order.

rsslGetUserName Takes an RsslBuffer with associated memory pointed to by data, where length is set to the
amount of space available. Queries the username associated with the owner of the current
process, and returns it in the provided buffer.

rsslIPAddrStringToUInt Takes a dotted-decimal IP address string (e.g. “127.0.0.1”) and converts to a host byte order
integer equivalent.

rsslIPAddrUIntToString Takes a host byte order integer representation of an IP address and converts to a dotted-
decimal IP address string.

Table 65: Transport Utility Functions
Transport API 3.1.X C Edition – Developers Guide 127
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.14.2 RsslChannelInfo Structure Members

The following table describes the values available to the user through using the rsslGetChannelInfo function. This
information is returned as part of the RsslChannelInfo structure.

Structure Member DESCRIPTION

maxFragmentSize The maximum allowed buffer size which can be written to the network. If a larger buffer is
required, the RSSL Transport will internally fragment the larger buffer into smaller buffers
whose size is set to maxFragmentSize.

This is the largest size a user can request while still being ‘packable.’

numInputBuffers The number of sequential input buffers into which the RsslChannel reads data. This controls
the maximum number of bytes that can be handled with a single network read operation on
each channel. Each input buffer can contain maxFragmentSize bytes. Input buffers are
allocated at initialization time.

guaranteedOutputBuffers The guaranteed number of buffers which this RsslChannel can use while writing data. Each
buffer can contain maxFragmentSize bytes. Guaranteed output buffers are allocated at
initialization time. For more details on obtaining a buffer, refer to Section 10.8.

You can configure guaranteedOutputBuffers using rsslIoctl, as described in Section
10.14.6.

maxOutputBuffers The maximum number of output buffers which this RsslChannel can use. (maxOutputBuffers
- guaranteedOutputBuffers) is equal to the number of shared pool buffers that this
RsslChannel can use. Shared pool buffers are only used if all guaranteedOutputBuffers are
unavailable. If maxOutputBuffers is equal to the guaranteedOutputBuffers value, shared
pool buffers are unavailable.

You can configure maxOutputBuffers using rsslIoctl, as described in Section 10.14.6.

pingTimeout The negotiated ping timeout value. Typically, the rule of thumb in handling heartbeats is to send
a heartbeat every pingTimeout/3 seconds.

For more details on pingTimeout, refer to Section 10.12.1.

serverToClientPings Sets whether server is expected to send heartbeat messages:

• If set to RSSL_TRUE, heartbeat messages must flow from server to client.

• If set to RSSL_FALSE, the server is not required to send heartbeats.

TREP and other Thomson Reuters components typically require this value to be set to
RSSL_TRUE.

clientToServerPings Sets whether the client is expected to send heartbeat messages:

• If set to RSSL_TRUE, heartbeat messages must flow from client to server.

• If set to RSSL_FALSE, the client is not required to send heartbeats.

TREP and other Thomson Reuters components typically require this value to be set to
RSSL_TRUE.

tcpSendBufSize DEPRECATED. To configure equivalent functionality, refer to sysSendBufSize (in this table).

Table 66: RsslChannelInfo Structure Members
Transport API 3.1.X C Edition – Developers Guide 128
ETAC313UM.180

Chapter 10 Transport Package Detailed View
sysSendBufSize Sets the size of the send or output buffer associated with the underlying transport. The RSSL
Transport has additional output buffers, controlled by maxOutputBuffers and
guaranteedOutputBuffers. For some connection types, you can configure sysSendBufSize
using rsslIoctl, as described in Section 10.14.6.

tcpRecvBufSize DEPRECATED. To configure equivalent functionality, refer to sysRecvBufSize in this table.

sysRecvBufSize Sets the size of the receive or input buffer associated with the underlying transport. The RSSL
Transport has an additional input buffer controlled by numInputBuffers.

For some connection types, you can configure sysRecvBufSize using rsslIoctl, as
described in Section 10.14.6.

compressionType Sets the type of compression to use on this connection.

Refer to Section 10.4.3 for more information about supported compression types.

compressionThreshold Sets the compression threshold. Messages smaller than the threshold are not compressed;
messages larger than the threshold are compressed.

priorityFlushStrategya The currently priority level order used when flushing buffers to the connection, where H = High
priority, M = Medium priority, and L = Low priority. When passed to rsslWrite, each buffer is
associated with the priority level at which it should be written. The default
priorityFlushStrategy writes buffers in the order: High, Medium, High, Low, High, Medium.
This provides a slight advantage to the medium-priority level and a greater advantage to high-
priority data. Data order is preserved within each priority level and if all buffers are written with
the same priority, the order of data does not change.

You can configure priorityFlushStrategy using rsslIoctl, as described in Section
10.14.6.

multicastStats If using a connection type of either RSSL_CONN_TYPE_RELIABLE_MCAST or
RSSL_CONN_TYPE_SEQ_MCAST, this substructure reports information about sent and
received packets, including any gap or retransmission information. For details on options used
with multicastStats, refer to Section 10.14.3.

componentInfoCount Indicates the number of RsslComponentInfo structures referred to by the componentInfo
member. This information is only available when communicating with devices that support
connected component versioning; otherwise this count is set to 0.

componentInfo A pointer to an array of RsslComponentInfo structures. One RsslComponentInfo structure will
be present for each connected device that supports connected component versioning. The
count is indicated by the componentInfoCount. For more detailed information on the
RsslComponentInfo structure, refer to Section 10.14.4.

a. Allows for up to 32 one-byte characters to be represented. ‘H’ = high priority, ‘M’ = medium priority, and ‘L’ = low priority.

Structure Member DESCRIPTION

Table 66: RsslChannelInfo Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 129
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.14.3 multicastStats Options

10.14.4 ComponentInfo Option

Option DESCRIPTION

mcastSent The number of multicast packets sent by this RsslChannel.

mcastRcvd The number of multicast packets received by this RsslChannel.

unicastSent The number of unicast UDP packets sent by this RsslChannel.

unicastRcvd The number of unicast UDP packets received by this RsslChannel.

retransReqSent The number of retransmission requests sent by this RsslChannel. Retransmission requests are
sent in an attempt to recover a missed packet and may indicate a network problem if gaps are also
detected. This is populated only for reliable multicast type connections.

retransReqRcvd This is the number of retransmission requests received by this RsslChannel. Retransmission
requests are received if another component on the network missed a packet sent by this channel
and may indicate a network problem if gaps are also being detected. This is populated only for
reliable multicast type connections.

retransPktsSent The number of retransmitted packets sent by this RsslChannel. Packets are retransmitted in
response to retransmission requests. If a packet cannot be retransmitted, this results in a gap
occurring and indicates a network problem, which applications are notified of via rsslRead. This is
populated only for reliable multicast type connections.

retransPktsRcvd The number of retransmitted packets received by this RsslChannel. This is populated only for
reliable multicast type connections.

gapsDetected Returns a count of the number of detected packet gaps detected and reported to the application.
This is a result of packet loss on the network and may indicate a more serious network problem.

Table 67: multicastStats Options

Option DESCRIPTION

componentVersion An RsslBuffer containing an ASCII string that indicates the product version of the connected
component.

Table 68: componentInfo Option
Transport API 3.1.X C Edition – Developers Guide 130
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.14.5 RsslServerInfo Structure Members

The following table describes values available to the user through the use of the rsslGetServerInfo function. This
information is returned as part of the RsslServerInfo structure.

10.14.6 rsslIoctl Option Values

The following table provides a description of the options available for use with the rsslIoctl function.

Structure Member DESCRIPTION

currentBufferUsage The number of currently used shared pool buffers across all users connected to the
RsslServer.

peakBufferUsage The maximum achieved number of used shared pool buffers across all users connected to
the RsslServer. This value can be reset through the use of rsslServerIoctl, as described
in Section 10.14.7.

Table 69: RsslServerInfo Structure Members

OPTION ENUMERATION DESCRIPTION

RSSL_MAX_NUM_BUFFERS Allows an RsslChannel to change its maxOutputBuffers setting. Value should
be pointer to RsslUInt32.

RSSL_NUM_GUARANTEED_BUFFERS Allows an RsslChannel to change its guaranteedOutputBuffers setting.
Value should be pointer to RsslUInt32.

RSSL_HIGH_WATER_MARK Allows an RsslChannel to change the internal RSSL output queue depth water
mark, which has a default value of 6,144 bytes. When the RSSL output queue
exceeds this number of bytes, the rsslWrite function internally attempts to
flush content to the network. Value should be pointer to RsslUInt32.

RSSL_SYSTEM_READ_BUFFERS Allows an RsslChannel to change the TCP receive buffer size associated with
the connection. Value should be pointer to RsslUInt32.

RSSL_SYSTEM_WRITE_BUFFERS Allows an RsslChannel to change the TCP send buffer size associated with the
connection. Value should be pointer to RsslUInt32.

RSSL_COMPRESSION_THRESHOLD Allows an RsslChannel to change the size (in bytes) at which buffer
compression occurs, must be greater than 30 bytes. Value should be pointer to
RsslUInt32.

RSSL_PRIORITY_FLUSH_ORDER Allows an RsslChannel to change its priorityFlushStrategy. Value should
be a character array, where each entry is either:

• H for high priority

• M for medium priority

• L for low priority

The array should not exceed 32 characters. At least one H and one M must be
present, however no L is required. If low priority flushing is not specified, the
low priority queue is flushed only when other data is not available for output.

RSSL_TRACE Allows an RsslChannel to write incoming and outgoing messages in XML
format to a file and/or the stdout. The value should be a pointer to
RsslTraceOptions.

Table 70: rsslIoctl Option Values
Transport API 3.1.X C Edition – Developers Guide 131
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.14.7 rsslServerIoctl Option Values

The following table provides a description of the options available for use with the rsslServerIoctl function.

10.15 HTTPS Tunneling on Linux

On Linux, if you want to tunnel your connection, you must set the RsslChannel.connectionType to
RSSL_CONN_TYPE_ENCRYPTED (for details on connection types, refer to Section 10.15.2). You can specify further
customizations as follows:

• Whether ETA uses a proxy in the HTTPS connection. To specify a proxy hostname and port, use proxyOpts (an
RsslConnectOption structure member). For details on proxyOpts, refer to Section 10.3.2.1. By default, ETA does not
use a proxy in its tunneling connections.

• Whether ETA uses an encryption protocol. To specify an encryption protocol, use encryptionOpts (an
RsslConnectOption structure member). For details on encryptionOpts, refer to Section 10.3.2.1. By default, ETA
uses the encryption protocol TLS1.2.

• Whether ETA uses a customized filename for its just-in-time loaded libraries. To use a custom name, you must call
rsslInitializeEx (not rsslInitialize) and then use the jitOpts option inside the rsslInitializeExOpts
structure. For details on using jitOpts, refer to Section 10.2.3. By default, ETA uses an OpenSSL library name of
libssl.so.10 and a cryptography library name of libcrypto.so.10.

10.16 XML Tracing

When using the RSSL transport layer with RWF, you can configure XML tracing on a per channel basis. Once enabled, tracing
logs the contents of incoming and outgoing messages in an XML format. This data can be written to a file of the user’s choice
and/or to the stdout. XML tracing is configurable through rsslIoctl by using RSSL_TRACE for the RsslIoctlCodes. The
Value field should be an RsslTraceOptions pointer, which holds associated configuration parameters.

10.16.1 RsslTraceOptions Structure Members

The following table describes the XML trace options available for use with the RsslTraceOptions structure.

OPTION ENUMERATION DESCRIPTION

RSSL_SERVER_NUM_POOL_BUFFERS Allows an RsslServer to change its sharedPoolSize setting. Value should be
pointer to RsslUInt32

RSSL_SERVER_PEAK_BUF_RESET Allows an RsslServer to reset the peakBufferUsage statistic. Value is not
required.

Table 71: rsslServerIoctl Option Values
Transport API 3.1.X C Edition – Developers Guide 132
ETAC313UM.180

Chapter 10 Transport Package Detailed View
10.16.2 RsslTraceCodes Flag Enumeration Values

The following table describes the flag enumeration values for the traceFlags member of the RsslTraceOptions structure.

STRUCTURE MEMBER DESCRIPTION

traceMsgFileName Sets the base, user-defined trace message file name. The Transport API appends the
number of milliseconds since January, 1, 1970 and the .xml extension to this file name. If
tracing to a file is enabled, you must provide a non-null traceMsgFileName in the initial call to
rsslIoctl when using the RSSL_TRACE option. Subsequent calls to rsslIoctl to modify
RSSL_TRACE options do not require a file name.

traceMsgMaxFileSize Sets the maximum file size (in bytes) for the trace message file. If you enable the
RSSL_TRACE_TO_MULTIPLE_FILES trace flag, a new file begins when the current long
reaches this size. Otherwise, tracing to a file stops when this size is reached.

traceFlags Combination of bit values that indicate additional RsslTraceOptions settings.

Table 72: RsslTraceOptions Structure Members

ENUMERATION DESCRIPTION

RSSL_TRACE_READ Sets the Transport API channel to trace messages read from the wire.

RSSL_TRACE_WRITE Sets the Transport API channel to trace messages written to the wire.

RSSL_TRACE_PING Sets the Transport API channel to trace ping messages.

RSSL_TRACE_HEX Sets the Transport API channel to display hex values for all messages.

RSSL_TRACE_TO_FILE_ENABLE Sets the Transport API channel to write the XML trace to a file. Specify the file
name in the traceMsgFileName member of the RsslTraceOptions structure.

RSSL_TRACE_TO_MULTIPLE_FILES Sets the Transport API channel to break up trace files according to the
traceMsgMaxFileSize member of the RsslTraceOptions structure.

If set to true, the Transport API creates a new trace file whenever the current
trace file reaches traceMsgMaxFileSize bytes in size.

All trace files receive a time stamp (appended to the base name as set by the
traceMsgFileName member of the RsslTraceOptions structure) to differentiate it
from previous files.

RSSL_TRACE_TO_STDOUT Sets the Transport API channel to write the XML trace to stdout.

Table 73: RsslTraceCodes Option Values
Transport API 3.1.X C Edition – Developers Guide 133
ETAC313UM.180

Chapter 11 Data Package Detailed View
Chapter 11 Data Package Detailed View

11.1 Concepts

The Data Package exposes a collection of types that can combine in a variety of ways to assist with modeling user’s data.
These types are split into two categories:

• A Primitive Type represents simple, atomically updating information. Primitive types represent values like integers, dates,
and ASCII string buffers (refer to Section 11.2).

• A Container Type models more intricate data representations than Transport API primitive types and can manage
dynamic content at a more granular level. Container types represent complex types like field identifier-value, name-value,
or key-value pairs (refer to Section 11.3). The Transport API offers several uniform (i.e., homogeneous) container types
whose entries house the same type of data. Additionally, there are several non-uniform (i.e., heterogeneous) container
types in which different entries can hold different types of data.

Some system-level types are provided as simple typedef values and more complex types are provided as structure
definitions that represent type contents. Primitive and Container types are also presented as a part of the RsslDataTypes
enumeration in the ranges:

• 0 to 127 are Primitive Types as described in Section 11.2.

• 128 to 255 are Container Types as described in Section 11.3.

Each type represented with an enumeration has a corresponding system typedef or structural definition used when encoding
or decoding that type.

11.2 Primitive Types

A primitive type represents some type of base, system information (such as integers, dates, or array values). If contained in a
set of updating information, primitive types update atomically (incoming data replaces any previously held values). Primitive
types support ranges from simple primitive types (e.g., an integer) to more complex primitive types (e.g., an array).

The RsslDataTypes enumeration includes values that define the type of a primitive:

• Values between 0 and 63 are base primitive types. Base primitive types support the full range of values allowed by the
primitive type and are discussed in Table 74.

When contained in an RsslFieldEntry or RsslElementEntry, base primitive types can also represent a blank value. A
blank value indicates that no value is currently present and any previously stored or displayed primitive value should be
cleared. When decoding any base primitive value, the interface function (See Table 74) returns
ReturnCodesPrefix_VarBLANK_DATA. To encode blank data into an RsslFieldEntry or RsslElementEntry, refer to
Section 11.3.1 and Section 11.3.2.

• Values between 64 and 127 are set-defined primitive types, which define fixed-length encodings for many of the base
primitive types (e.g., RSSL_DT_INT_1 is a one byte fixed-length encoding of RSSL_DT_INT_1). These types can be
leveraged only within a Set Definition and encoded or decoded as part of an RsslFieldList or RsslElementList. Only
certain set-defined primitive types can represent blank values. For more details about set-defined primitive types, refer to
Section 11.6.

The following table provides a brief description of each base primitive type, along with interface functions used for encoding
and decoding. Several primitive types have a more detailed description following the table.
Transport API 3.1.X C Edition – Developers Guide 134
ETAC313UM.180

Chapter 11 Data Package Detailed View
ENUM TYPE
PRIMITIVE

TYPE
TYPE DESCRIPTION

RSSL_DT_UNKNOWN None Indicates that the type is unknown. RSSL_DT_UNKNOWN is valid only when
decoding a Field List type and a dictionary look-up is required to
determine the type. This type cannot be passed into encoding or decoding
functions.

Encode Interface: None

Decode Interface: None

RSSL_DT_INT RsslInta A signed integer type. Can currently represent a value of up to 63 bits
along with a one bit sign (positive or negative).

Encode Interface: rsslEncodeInt

Decode Interface: rsslDecodeInt

RSSL_DT_UINT RsslUIntb An unsigned integer type. Can currently represent an unsigned value with
precision of up to 64 bits.

Encode Interface: rsslEncodeUInt

Decode Interface: rsslDecodeUInt

RSSL_DT_FLOAT RsslFloat A four-byte, floating point type. Can represent the same range of values
allowed with the system RsslFloat type. Follows IEEE 754 specification.

Encode Interface: rsslEncodeFloat

Decode Interface: rsslDecodeFloat

RSSL_DT_DOUBLE RsslDouble An eight-byte, floating point type. Can represent the same range of values
allowed with the system RsslDouble type. Follows IEEE 754
specification.

Encode Interface: rsslEncodeDouble

Decode Interface: rsslDecodeDouble

RSSL_DT_REAL RsslRealc An optimized RWF representation of a decimal or fractional value which
typically requires less bytes on the wire than RsslFloat or RsslDouble
types. The user specifies a value with a hint for converting to decimal or
fractional representation. For more details on this type, refer to Section
11.2.1.

Encode Interface: rsslEncodeReal

Decode Interface: rsslDecodeReal

RSSL_DT_DATE RsslDate Defines a date with month, day, and year values. For more details on this
type, refer to Section 11.2.2.

Encode Interface: rsslEncodeDate

Decode Interface: rsslDecodeDate

RSSL_DT_TIME RsslTime Defines a time with hour, minute, second, millisecond, microsecond, and
nanosecond values. For more details on this type, refer to Section 11.2.3.

Encode Interface: rsslEncodeTime

Decode Interface: rsslDecodeTime

Table 74: Transport API Primitive Types
Transport API 3.1.X C Edition – Developers Guide 135
ETAC313UM.180

Chapter 11 Data Package Detailed View
RSSL_DT_DATETIME RsslDateTime Combined representation of date and time. Contains all members of
RSSL_DT_DATE and RSSL_DT_TIME. For more details on this type, refer to
Section 11.2.4.

Encode Interface: rsslEncodeDateTime

Decode Interface: rsslDecodeDateTime

RSSL_DT_QOS RsslQos Defines QoS information such as data timeliness (e.g., real time) and rate
(e.g., tick-by-tick). Allows a user to send QoS information as part of the
data payload. Similar information can also be conveyed using multiple
Transport API message headers. For more details on this type, refer to
Section 11.2.5.

Encode Interface: rsslEncodeQos

Decode Interface: rsslDecodeQos

RSSL_DT_STATE RsslState Represents data and stream state information. Allows a user to send state
information as part of data payload. Similar information can also be
conveyed in several Transport API message headers. For more details on
this type, refer to Section 11.2.6.

Encode Interface: rsslEncodeState

Decode Interface: rsslDecodeState

RSSL_DT_ENUM RsslEnumd Represents an enumeration type, defined as an unsigned, two-byte value.
Many times, this enumeration value is cross-referenced with an
enumeration dictionary (e.g., enumtype.def) or a well-known,
enumeration definition (e.g., those contained in rsslRDM.h).

Encode Interface: rsslEncodeEnum

Decode Interface: rsslDecodeEnum

RSSL_DT_ARRAY RsslArray The array type allows users to represent a simple base primitive type list
(all primitive types except RsslArray). The user can specify the base
primitive type that an array carries and whether each is of a variable or
fixed-length. Because the array is a primitive type, if any primitive value in
the array updates, the entire array must be resent. For more details on
this type, refer to Section 11.2.7.

Encode Interface: Refer to Section 11.2.7.2.

Decode Interface: Refer to Section 11.2.7.5.

RSSL_DT_BUFFER RsslBuffere Represents a raw byte buffer type. Any semantics associated with the
data in this buffer is provided from outside of the Transport API, either via
a field dictionary (e.g., RDMFieldDictionary) or a DMM definition. For
more details on this type, refer to Section 11.2.8.

Encode Interface: rsslEncodeBuffer

Decode Interface: rsslDecodeBuffer

ENUM TYPE
PRIMITIVE

TYPE
TYPE DESCRIPTION

Table 74: Transport API Primitive Types (Continued)
Transport API 3.1.X C Edition – Developers Guide 136
ETAC313UM.180

Chapter 11 Data Package Detailed View
RSSL_DT_ASCII_STRING RsslBuffere Represents an ASCII string which should contain only characters that are
valid in ASCII specification. Because this might be NULL terminated, use
the provided length when accessing content. The Transport API does not
enforce or validate encoding standards: this is the user’s responsibility.
For more details on this type, refer to Section 11.2.8.

Encode Interface: rsslEncodeBuffer

Decode Interface: rsslDecodeBuffer

RSSL_DT_UTF8_STRING RsslBuffere Represents a UTF8 string which should follow the UTF8 encoding
standard and contain only characters valid within that set. Because this
might be NULL terminated, use the provided length when accessing
content. The Transport API does not enforce or validate encoding
standards: this is the user’s responsibility. For more details on this type,
refer to Section 11.2.8.

Encode Interface: rsslEncodeBuffer

Decode Interface: rsslDecodeBuffer

RSSL_DT_RMTES_STRING RsslBuffere Represents an RMTES (Reuters Multilingual Text Encoding Standard)
string which should follow the RMTES encoding standard and contain
only characters valid within that set. For more details on this type, refer to
Section 11.2.8.

The Transport API provide utility functions to help with proper storage and
converting RMTES strings. For more information, including examples
refer to Section 11.2.9.

Encode Interface: rsslEncodeBuffer

Decode Interface: rsslDecodeBuffer

a. This type allows a value ranging from (-263) to (263 - 1).
b. This type allows a value ranging from 0 up to (264 - 1).
c. This type allows a value ranging from (-263) to (263 - 1). This can be combined with hint values to add or remove up to seven trail-
ing zeros, fourteen decimal places, or fractional denominators up to 256.
d. This type allows a value ranging from 0 to 65,535.
e. The Transport API handles this type as opaque data, simply passing the length specified by the user and that number of bytes, no
additional encoding or processing is done to any information contained in this type. Any specific encoding or decoding required for
the information contained in this type is done outside of the scope of the Transport API, before encoding or after decoding this type.
This type allows for a length of up to 65,535 bytes.

ENUM TYPE
PRIMITIVE

TYPE
TYPE DESCRIPTION

Table 74: Transport API Primitive Types (Continued)
Transport API 3.1.X C Edition – Developers Guide 137
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.1 RsslReal

RsslReal is a structure that represents decimals or fractional values in a bandwidth-optimized format.

The RsslReal preserves the precision of encoded numeric values by separating the numeric value from any decimal point or
fractional denominator. Developers should note that in some conversion cases, there may be a loss of precision; this is an
example of a narrowing precision conversion. Because the IEEE 754 specification (used for float and double types) cannot
represent some values exactly, rounding (per the IEEE 754 specification) may occur when converting between RsslReal
representation and float or double representations, either using the provided helper methods or manually (using the
conversion formulas provided). In cases where precision may be lost, converting to a string or using the provided string
conversion helper as an intermediate point can help avoid the rounding precision loss.

11.2.1.1 Structure Members

RsslReal contains the following members:

11.2.1.2 hint Values

The following table defines the available hint values for use with RsslReal. The conversion routines described in Section
11.2.1.3 use RsslReal’s hint and value.

MEMBER DESCRIPTION

isBlank A Boolean value. Indicates whether data is considered blank. If true, other members should
be ignored, if false other members determine the resultant value. This allows RsslReal to be
represented as blank when used as either a primitive type or a set-defined primitive type.

hint A hint enumeration value which defines how to interpret the value contained in RsslReal.
Hint values can add or remove up to seven trailing zeros, 14 decimal places, or fractional
denominators up to 256. For more information about hint values, refer to Table 76.

value The raw value represented by the RsslReal (omitting any decimal or denominator). Typically
requires application of the hint before interpreting or performing any calculations. This
member can currently represent up to 63 bits and a one-bit sign (positive or negative).

Table 75: RsslReal Structure Members

ENUM DESCRIPTION

RSSL_RH_EXPONENT_14 Negative exponent operation, equivalent to 10-14. Shifts decimal by 14 positions.

RSSL_RH_EXPONENT_13 Negative exponent operation, equivalent to 10-13. Shifts decimal by 13 positions.

RSSL_RH_EXPONENT_12 Negative exponent operation, equivalent to 10-12. Shifts decimal by 12 positions.

RSSL_RH_EXPONENT_11 Negative exponent operation, equivalent to 10-11. Shifts decimal by 11 positions.

RSSL_RH_EXPONENT_10 Negative exponent operation, equivalent to 10-10. Shifts decimal by ten positions.

RSSL_RH_EXPONENT_9 Negative exponent operation, equivalent to 10-9. Shifts decimal by nine positions.

RSSL_RH_EXPONENT_8 Negative exponent operation, equivalent to 10-8. Shifts decimal by eight positions.

RSSL_RH_EXPONENT_7 Negative exponent operation, equivalent to 10-7. Shifts decimal by seven positions.

RSSL_RH_EXPONENT_6 Negative exponent operation, equivalent to 10-6. Shifts decimal by six positions.

RSSL_RH_EXPONENT_5 Negative exponent operation, equivalent to 10-5. Shifts decimal by five positions.

Table 76: RsslRealHints Enumeration Values
Transport API 3.1.X C Edition – Developers Guide 138
ETAC313UM.180

Chapter 11 Data Package Detailed View
RSSL_RH_EXPONENT_4 Negative exponent operation, equivalent to 10-4. Shifts decimal by four positions.

RSSL_RH_EXPONENT_3 Negative exponent operation, equivalent to 10-3. Shifts decimal by three positions.

RSSL_RH_EXPONENT_2 Negative exponent operation, equivalent to 10-2. Shifts decimal by two positions.

RSSL_RH_EXPONENT_1 Negative exponent operation, equivalent to 10-1. Shifts decimal by one position.

RSSL_RH_EXPONENT0 Exponent operation, equivalent to 100. value does not change.

RSSL_RH_EXPONENT1 Positive exponent operation, equivalent to 101. Depending on the type of conversion, this
adds or removes one trailing zero.

RSSL_RH_EXPONENT2 Positive exponent operation, equivalent to 102. Depending on the type of conversion, this
adds or removes two trailing zeros.

RSSL_RH_EXPONENT3 Positive exponent operation, equivalent to 103. Depending on the type of conversion, this
adds or removes three trailing zeros.

RSSL_RH_EXPONENT4 Positive exponent operation, equivalent to 104. Depending on the type of conversion, this
adds or removes four trailing zeros.

RSSL_RH_EXPONENT5 Positive exponent operation, equivalent to 105. Depending on the type of conversion, this
adds or removes five trailing zeros.

RSSL_RH_EXPONENT6 Positive exponent operation, equivalent to 106. Depending on the type of conversion, this
adds or removes six trailing zeros.

RSSL_RH_EXPONENT7 Positive exponent operation, equivalent to 107. Depending on the type of conversion, this
adds or removes seven trailing zeros.

RSSL_RH_FRACTION_1 Fractional denominator operation, equivalent to 1/1. Value does not change.

RSSL_RH_FRACTION_2 Fractional denominator operation, equivalent to 1/2. Depending on the type of conversion,
this adds or removes a denominator of two.

RSSL_RH_FRACTION_4 Fractional denominator operation, equivalent to 1/4. Depending on the type of conversion,
this adds or removes a denominator of four.

RSSL_RH_FRACTION_8 Fractional denominator operation, equivalent to 1/8. Depending on the type of conversion,
this adds or removes a denominator of eight.

RSSL_RH_FRACTION_16 Fractional denominator operation, equivalent to 1/16. Depending on the type of conversion,
this adds or removes a denominator of 16.

RSSL_RH_FRACTION_32 Fractional denominator operation, equivalent to 1/32. Depending on the type of conversion,
this adds or removes a denominator of 32.

RSSL_RH_FRACTION_64 Fractional denominator operation, equivalent to 1/64. Depending on the type of conversion,
this adds or removes a denominator of 64.

RSSL_RH_FRACTION_128 Fractional denominator operation, equivalent to 1/128. Depending on the type of
conversion, this adds or removes a denominator of 128.

RSSL_RH_FRACTION_256 Fractional denominator operation, equivalent to 1/256. Depending on the type of
conversion, this adds or removes a denominator of 256.

ENUM DESCRIPTION

Table 76: RsslRealHints Enumeration Values (Continued)
Transport API 3.1.X C Edition – Developers Guide 139
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.1.3 hint Use Case: Converting an RsslReal to a Float or a Double

An application can convert between an RsslReal and a system float or double as needed. Converting an RsslReal to a
double or float is typically done to perform calculations or display data after receiving it.

The conversion process adds or removes decimal or denominator information from the value to optimize transmission sizes. In
an RsslReal type, the decimal or denominator information is indicated by the RsslReal.hint, and the RsslReal.value
indicates the value (less any decimal or denominator). If the RsslReal.isBlank member is true, this is handled as blank
regardless of information contained in the RsslReal.hint and RsslReal.value members.

For this conversion, both the hint and its value are stored in the RsslReal structure. You can use the following example to
perform this conversion, where outputValue is a system float or double to store output:

Code Example 16: RsslReal Conversion to Double/Float

11.2.1.4 hint Use Case: Converting Double or Float to an RsslReal

To convert a double or float type to an RsslReal type (typically done to prepare for transmission), the user must determine
which hint value to use based on the type of value used:

• When converting a decimal value, the chosen hint value must be less than RSSL_RH_FRACTION_1.

• When converting a fractional value, the chosen hint value must be greater than or equal to RSSL_RH_FRACTION_1.

You can use the following example to perform the conversion, where inputValue is the unmodified input float or double
value and inputHint is the hint chosen by the user:

 /* perform calculation and assign output to outputValue - may require appropriate float or double casts

 * depending on type of outputValue */

if (RsslReal.hint < RSSL_RH_FRACTION_1)

{

/* insert the decimal point back into a decimal value */

outputValue = rsslReal.value*(pow(10,(RsslReal.hint - RSSL_RH_EXPONENT0)));

}

else

{

/* apply the denominator to the value to convert back to fraction */

outputValue = RsslReal.value/(pow(2,(RsslReal.hint - RSSL_RH_FRACTION_1)));

}

/* rsslReal value is not blank so set to false */

RsslReal.isBlank = RSSL_FALSE;

/* store input hint value in the rsslReal structure */

RsslReal.hint = inputHint;

/* perform calculation and store output in rsslReal structure - may require appropriate

 * float or double casts depending on type of inputValue */

if (inputHint < RSSL_RH_FRACTION_1)

{

/* removing the decimal point from a decimal value */

RsslReal.value = floor(((inputValue)/(pow(10,(inputHint - RSSL_RH_EXPONENT0)))) + 0.5);
Transport API 3.1.X C Edition – Developers Guide 140
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 17: RsslReal Conversion from Double/Float

11.2.1.5 Utility Functions

The Transport API provides the following utility functions for use with the RsslReal type:

}

else

{

/* removing the denominator from a fractional value */

RsslReal.value = floor(((inputValue)*(pow(2,(inputHint - RSSL_RH_FRACTION_1)))) + 0.5);

}

UTILITY DESCRIPTION

rsslClearReal Sets all members in RsslReal to 0. isBlank is set to false.

rsslBlankReal Sets all members in RsslReal to 0. isBlank is set to true.

rsslRealIsEqual Compares two RsslReal structures. Returns true if equal, false otherwise.

rsslDoubleToReal Uses the formulas described in Section 11.2.1.4 to convert a system double to an RsslReal
type.

rsslFloatToReal Uses the formulas described in Section 11.2.1.4 to convert a system float to an RsslReal
type.

rsslRealToDouble Uses the formulas described above in Section 11.2.1.3 to convert an RsslReal to a system
double type.

rsslNumericStringToDouble Converts a numeric string with denominator or decimal information to a system double type.

rsslNumericStringToReal Converts a numeric string with denominator or decimal information to an RsslReal type.
Interprets string of +0 as a blank RsslReal.

rsslRealToString Converts an RsslReal type to a numeric string representation. Blank is output as an empty
zero length string.

Table 77: RsslReal Utility Functions
Transport API 3.1.X C Edition – Developers Guide 141
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.2 RsslDate

RsslDate represents the date (i.e., day, month, and year) in a bandwidth-optimized fashion.

11.2.2.1 Structure Members

RsslDate represents the date (i.e., day, month, and year) in a bandwidth-optimized fashion.

If day, month, and year are all set to 0 the RsslDate is blank. If any individual member is represented as a blank value (0),
only that member is blank. This is useful for representing dates which specify month and year, but not day. The RsslDate type
can be represented as blank when used as a primitive type and a set-defined primitive type.

MEMBER DESCRIPTION

day Represents the day of the month, where 0 indicates a blank entry. day allows a range of 0 to 255, though
the value typically does not exceed 31.

month Represents the month of the year, where 0 indicates a blank entry. month allows a range of 0 to 255,
though the value typically does not exceed 12.

year Represents the year, where 0 indicates a blank entry. You can use this member to specify a two- or four-
digit year (where specific usage is indicated outside of the Transport API). year allows a range of 0 to
65,535.

Table 78: RsslDate Structure Members
Transport API 3.1.X C Edition – Developers Guide 142
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.2.2 Utility Functions

The Transport API provides the following utility functions for use with the RsslDate type:

11.2.2.3 RsslDateTimeStringFormatTypes Enum Values

UTILITY DESCRIPTION

rsslBlankDate Sets all members in RsslDate to 0. Because 0 represents a clear date value, this performs
the same functionality as rsslClearDate.

rsslClearDate Sets all members in RsslDate to 0. Because 0 represents a blank date value, this performs
the same functionality as rsslBlankDate.

rsslDateIsEqual Compares two RsslDate structures. If equal, returns true; false otherwise.

rsslDateIsValid Verifies the contents of a populated RsslDate structure. Determines whether the specified
day is valid within the specified month (e.g., a day greater than 31 is considered invalid for
any month). This function uses the year member to determine leap year validity of day
numbers for February. If RsslDate is blank or valid, true is returned; False otherwise.

rsslDateStringToDate Converts a string representation of a date to a populated RsslDate structure. This function
supports the following formats:

• strftime() %d %b %Y format (e.g., 01 JUN 2017)

• %m/%d/%y format (e.g., 11/30/2010)

• ISO 8601 format: "YYYY-MM-DD” (e.g., 2017-06-01).

rsslDateTimeToString Deprecated.

Converts part of an RsslDateTime structure to string (the appropriate portion must be
populated with data).

For example, if only converting RsslDate to string, populates RsslDateTime.date portion
and passes in the dataType parameter as RSSL_DT_DATE. Outputs RsslDateTime as a
string in strftime() “%d %b %Y” format (e.g., 30 NOV 2017).

rsslDateTimeToStringFormat Converts part of an RsslDateTime structure (the appropriate portion must be populated
with data) to a string in the specified format.

For example, if only converting RsslDate to string, populates the RsslDateTime.date
portion and passes in the parameter dataType as RSSL_DT_DATE in one of the following
specified formats:

• RSSL_STR_DATETIME_ISO8601: Outputs RsslDateTime as a string in ISO8601
“YYYY-MM-DD” format (e.g., 2018-01-20).

• RSSL_STR_DATETIME_RSSL: Outputs RsslDateTime as a string in strftime() “%d
%b %Y” format (e.g., 20 JAN 2018).

Table 79: RsslDate Utility Functions

ENUM DESCRIPTION

RSSL_STR_DATETIME_ISO8601 Converts the RsslDate structure to a string in ISO8601's dateTime format: “YYYY-
MM-DD” (e.g., 2018-01-20).

RSSL_STR_DATETIME_RSSL Converts the RsslDate structure to a string in the format of the deprecated
rsslDateTimeToString function: “%d %b %Y” (e.g., 20 JAN 2018).

Table 80: RsslDateTimeStringFormatTypes
Transport API 3.1.X C Edition – Developers Guide 143
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.3 RsslTime

RsslTime represents time (hour, minute, second, millisecond, microsecond, and nanosecond) in a bandwidth-optimized

fashion. This type is represented as Greenwich Mean Time (GMT) unless noted otherwise1.

11.2.3.1 Structure Members

RsslTime is a structure that uses the members listed in Table 81 (hour, minute, second, millisecond, microsecond, and
nanosecond).

If all members are set to their respective blank values, RsslTime is blank. If any individual member is set to a blank value, only
that member is blank. This is useful for representing times without second, millisecond, microsecond, or nanosecond
values. The RsslTime type can be represented as blank when it is used as a primitive type and a set-defined primitive type.

11.2.3.2 Utility Functions

The Transport API provides the following utility functions for use with the RsslTime type:

1. The provider’s documentation should indicate whether the providing application provides times in another representation.

STRUCTURE
MEMBER

DESCRIPTION

hour Represents the hour of the day using a range of 0 to 255 (255 represents a blank hour value), though the
value does not typically exceed 23.

minute Represents the minute of the hour using a range of 0 to 255 (255 represents a blank minute value),
though the value does not typically exceed 59.

second Represents the second of the minute using a range of 0 to 255 (255 represents a blank second value),
though the value does not typically exceed 59.

millisecond Represents the millisecond of the second using a range of 0 - 65,535 (65535 represents a blank
millisecond value), though the value does not typically exceed 999.

microsecond Represents the microsecond of the millisecond using a range of 0 - 2047 (2047 represents a blank
microsecond value), though the value does not typically exceed 999.

nanosecond Represents the nanosecond of the microsecond using a range of 0 - 2047 (where 2047 represents a
blank nanosecond value), though the value does not typically exceed 999.

Table 81: RsslTime Structure Members

FUNCTION NAME DESCRIPTION

rsslBlankTime Sets all members in RsslTime to the values used to signify blank. A blank RsslTime
contains hour, minute, and second values of 255, a millisecond value of 65535, and
microsecond and nanosecond values of 2047.

rsslClearTime Sets all members in RsslTime to 0.

rsslTimeIsEqual Compares two RsslTime structures. If equal, returns true; false otherwise.

Table 82: RsslTime Utility Functions
Transport API 3.1.X C Edition – Developers Guide 144
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.3.3 RsslDateTimeStringFormatTypes Enum Values

rsslTimeIsValid Verifies contents of populated RsslTime structure. Validates the ranges of the hour,
minute, second, millisecond, microsecond, and nanosecond members. If RsslTime is
blank or valid, true is returned; false otherwise.

rsslDateTimeToString Deprecated.

Takes an RsslDateTime structure populated with appropriate portion to convert. If only
converting RsslTime to string, this function populates the RsslDateTime.time portion and
passes in the dataType parameter as RSSL_DT_TIME. Outputs RsslTime as a string in
“hour:minute:second:milli:micro:nano” format (e.g. 15:24:54:627:843:143).

rsslDateTimeToStringFormat Converts part of an RsslDateTime structure (the appropriate portion must be populated
with data) to a string in the specified format.

For example, if only converting RsslTime to string, populates the RsslDateTime.time
portion and passes in the parameter dataType as RSSL_DT_TIME in one of the following
specified formats:

• RSSL_STR_DATETIME_ISO8601: Outputs RsslTime as a string in ISO8601
“hour:minute:second.nnnnnnnnn” format (e.g., “15:24:54.5006619) with trailing
zeros truncated, where nnnnnnnnn is millisecond microsecond nanosecond.

• RSSL_STR_DATETIME_RSSL: Outputs RsslTime as a string in
“hour:minute:second:milli:micro:nano” format (e.g., 20 JAN 2018).

rsslTimeStringToTime Converts a string representation of a time to a populated RsslTime structure. This function
supports the following formats:

• strftime() “%H:%M” (e.g., 15:24)

• “%H:%M:%S” (e.g., 15:24:54)

• “hour:minute:second:milli:micro:nano” (e.g. 15:24:54:627:843:143)

• ISO8601 format "hour:minute:second:nnnnnnnnn" (e.g., 15:24:54.627843143) with
trailing zeros trimmed, where nnnnnnnnn is millisecond microsecond nanosecond.

ENUM DESCRIPTION

RSSL_STR_DATETIME_ISO8601 Converts the RsslTime structure to a string in ISO8601's dateTime format:
"hour:minute:second:nnnnnnnnn" (e.g., 15:24:54.627843143) with trailing zeros
trimmed, where nnnnnnnnn is millisecond microsecond nanosecond.

RSSL_STR_DATETIME_RSSL Converts the RsslTime structure to a string in the format of the deprecated
rsslDateTimeToString function: “hour:minute:second:milli:micro:nano” (e.g.,
20 JAN 2018).

Table 83: RsslDateTimeStringFormatTypes

FUNCTION NAME DESCRIPTION

Table 82: RsslTime Utility Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 145
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.4 RsslDateTime

RsslDateTime represents the date (date) and time (time) in a bandwidth-optimized fashion. This time value is represented as

Greenwich Mean Time (GMT) unless noted otherwise2.

11.2.4.1 Structure Members

If date and time values are set to their respective blank values, RsslDateTime is blank. If any individual member is set to a
blank value, only that member is blank. The RsslDateTime type can be represented as blank when it is used as a primitive
type and a set-defined primitive type.

RsslDateTime is a structure with the following members:

11.2.4.2 Utility Functions

The Transport API provides the following utility functions for use with RsslDateTime:

2. The provider’s documentation should indicate whether the providing application provides times in another representation.

MEMBER DESCRIPTION

date Represents the date values as an RsslDate structure and conforms to the behaviors
described in Section 11.2.2.

time Represents the time values as an RsslTime structure and conforms to the behaviors
described in Section 11.2.3.

Table 84: RsslDateTime Structure Members

FUNCTION NAME DESCRIPTION

rsslBlankDateTime Sets all members in RsslDateTime to their respective blank values.

• For date, all values are set to 0.

• For time, the hour, minute, and second are set to 255, millisecond is set to 65535,
and microsecond and nanosecond are set to 2047.

rsslClearDateTime Sets all members in RsslDateTime to 0.

rsslDateTimeIsEqual Compares two RsslDateTime structures. Returns true if equal; false otherwise.

rsslDateTimeIsValid Verifies the contents of a populated RsslDateTime structure. Determines whether day
is valid for the specified month (e.g., a day greater than 31 is considered invalid for any
month) as determined by the specified year (to calculate whether it is a leap year). Also
validates the range of hour, minute, second, millisecond, microsecond, and
nanosecond members. If RsslDateTime is blank or valid, true is returned; false
otherwise.

Table 85: RsslDateTime Utility Functions
Transport API 3.1.X C Edition – Developers Guide 146
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.4.3 RsslDateTimeStringFormatTypes Enum Values

rsslDateTimeStringToDateTime Converts a string representation of a date and time to a populated RsslDateTime
structure. This function supports the following formats for date values:

• strftime() %d %b %Y format (e.g., 30 JAN 2018)

• %m/%d/%y (e.g., 01/30/2018)

• ISO8601 format “YYYY-MM-DD” (e.g., 2018-01-30)

This function supports the following formats for time values:

• strftime() %H:%M (e.g., 15:24)

• %H:%M:%S (e.g., 15:24:54)

• hour:minute:second:milli:micro:nano (e.g., 15:24:54:627:843:143)

• ISO8601 format "hh:mm:ss.nnnnnnnnn" format (e.g., 15:24:54.627843143).

rsslDateTimeToString Deprecated.

Takes an RsslDateTime structure populated with the appropriate portion to convert to a
string representation. If converting a date and time to string, populates all portions of
RsslDateTime and passes in the dataType parameter as RSSL_DT_DATETIME.
Outputs RsslDateTime as a string in %d %b %Y
hour:minute:second:milli:micro:nano format (e.g., 30 NOV 2010
15:24:54:627:843:143).

rsslDateTimeToStringFormat Converts part of an RsslDateTime structure (the appropriate portion must be populated
with data) to a string in the specified format.

For example, if converting an RsslDateTime structure to string, populates all portions of
the RsslDateTime and passes in the parameter dataType as RSSL_DT_DATETIME in
one of the following specified formats:

• RSSL_STR_DATETIME_ISO8601: Outputs RsslDateTime as a string in
ISO8601format “YYYY-MM-DDThour:minute:second.nnnnnnnnn” (e.g., 2018-
01-20T15:24:54.5006619) with trailing zeros trimmed, where nnnnnnnnn is
millisecond microsecond nanosecond.

• RSSL_STR_DATETIME_RSSL: Outputs RsslDateTime as a string in “%d %b %Y
hour:minute:second:milli:micro:nano” format (e.g., 20 JAN 2018
15:24:54:500:661:900).

ENUM DESCRIPTION

RSSL_STR_DATETIME_ISO8601 Converts the RsslDateTime structure to a string in ISO8601's dateTime format:
“YYYY-MM-DDThour:minute:second.nnnnnnnnn” (e.g., 2018-01-
20T15:24:54.5006619) with trailing zeros trimmed, where nnnnnnnnn is
millisecond microsecond nanosecond.

RSSL_STR_DATETIME_RSSL Converts the RsslDateTime structure to a string in the format of the deprecated
rsslDateTimeToString function: “%d %b %Y
hour:minute:second:milli:micro:nano” (e.g., 20 JAN 2018
15:24:54:500:661:900).

Table 86: RsslDateTimeStringFormatTypes

FUNCTION NAME DESCRIPTION

Table 85: RsslDateTime Utility Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 147
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.5 RsslQos

RsslQos classifies data into two attributes:

• Timeliness: Conveys the age of data.

• Rate: Conveys the rate at which data changes.

Some timeliness or rate values allow you to provide additional time or rate data, for more details refer to Section 11.2.5.1,
Section 11.2.5.2, Section 11.2.5.3, and Section 11.2.5.4.

If present in a data payload, specific handling and interpretation associated with QoS information is provided from outside of
the Transport API, possibly via the specific DMM definition.

Several Transport API message headers also contain QoS data. When present, this data is typically used to request or convey
the QoS associated with a particular stream. For more information about QoS use within a message, refer to Section 12.2.1
and Section 12.2.2. When conflated data is sent, additional conflation data might be included with update messages. For
further details on conflation, refer to Section 12.2.3.

11.2.5.1 Structure Members

RsslQos is a structure with the followingmembers:

STRUCTURE
MEMBER

DESCRIPTION

timeliness Describes the age of the data (e.g., real time). Timeliness values are described in Section 11.2.5.2.

rate Describes the rate at which the data changes (e.g., tick-by-tick). Rate values are described in Section
11.2.5.3.

dynamic Describes the changeability of the QoS within the requested range, typically over the life of a data
stream.

• If set to false, the QoS should not change following the initial establishment.

• If set to true, the QoS can change over time to other values within the requested range.

QoS can change due to permissioning information, stream availability, network congestion, or other
reasons. Specific information about dynamically changing QoS should be described in documentation
for components that support this behavior.

timeInfo Conveys detailed information about data timeliness, typically the amount of time delay. timeInfo
allows for a range of 0 to 65,535.

This information is present only when timeliness is set to RSSL_QOS_TIME_DELAYED.

rateInfo Conveys detailed information about rate, typically the interval of time during which data are conflated.
Conflation combines multiple information updates into a single update, usually reducing network traffic.
rateInfo allows for a range of 0 to 65,535.

This information is present only when rate is set to RSSL_QOS_RATE_TIME_CONFLATED.

Table 87: RsslQos Structure Members
Transport API 3.1.X C Edition – Developers Guide 148
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.5.2 Timeliness Enum Values

11.2.5.3 Rate Enum Values

ENUM DESCRIPTION

RSSL_QOS_TIME_UNSPECIFIED timeliness is unspecified. Typically used by QoS initialization functions and
not intended to be encoded or decoded.

RSSL_QOS_TIME_REALTIME timeliness is real time: data is updated as soon as new data is available.
This is the highest-quality timeliness value. In conjunction with a rate of
RSSL_QOS_RATE_TICK_BY_TICK, real time is the best overall QoS.

RSSL_QOS_TIME_DELAYED_UNKNOWN timeliness is delayed, though the amount of delay is unknown. This is a
lower quality than RSSL_QOS_TIME_REALTIME and might be worse than
RSSL_QOS_TIME_DELAYED (in which case the delay is known).

RSSL_QOS_TIME_DELAYED timeliness is delayed and the amount of delay is provided in
RsslQos.timeInfo. This is lower quality than RSSL_QOS_TIME_REALTIME
and might be better than RSSL_QOS_TIME_DELAYED_UNKNOWN.

Table 88: RsslQos Timeliness Values

ENUM DESCRIPTION

RSSL_QOS_RATE_UNSPECIFIED rate is unspecified. Typically used by QoS initialization functions and not
intended to be encoded or decoded.

RSSL_QOS_RATE_TICK_BY_TICK rate is tick-by-tick (i.e., data is sent for every update). This is the highest quality
rate value. The best overall QoS is a tick-by-tick rate with a timeliness of
RSSL_QOS_TIME_REALTIME.

RSSL_QOS_RATE_JIT_CONFLATED rate is Just-In-Time (JIT) Conflated, meaning that quality is typically tick-by-
tick, but if a data burst occurs (or if a component cannot keep up with tick-by-tick
delivery), multiple updates are combined into a single update to reduce traffic.
This value is usually considered a lower quality than
RSSL_QOS_RATE_TICK_BY_TICK.

Because JIT conflation is triggered by an application’s inability to keep up with
data rates, the effective rate depends on whether the application can sustain full
data rates.

Use of this value typically results in a rate similar to
RSSL_QOS_RATE_TICK_BY_TICK. However, when the application cannot keep up
with data rates, it results in a rate similar to RSSL_QOS_RATE_TIME_CONFLATED,
where rateInfo is determined by the provider. Specific information about
conflationTime or conflationCount might be present in an RsslUpdateMsg.
For further details, refer to Section 12.2.3.

RSSL_QOS_RATE_TIME_CONFLATED rate is time-conflated. The interval of time (usually in milliseconds) over which
data are conflated is provided in RsslQos.rateInfo. This is lower quality than
RSSL_QOS_RATE_TICK_BY_TICK and at times even lower than
RSSL_QOS_RATE_JIT_CONFLATED. Specific information about the
conflationTime or conflationCount might be present in the RsslUpdateMsg.
For more details, refer to Section 12.2.3.

Table 89: RsslQos Rate Values
Transport API 3.1.X C Edition – Developers Guide 149
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.5.4 Utility Functions

The Transport API provides the following utility functions for use with RsslQos:

11.2.6 RsslState

RsslState conveys data and stream health information. When present in a header, RsslState applies to the state of the
stream and data. When present in a data payload, the meaning of RsslState should be defined by the DMM.

Several Transport API message headers also contain RsslState data. When present in a message header, RsslState
typically conveys the overall data and stream health of messages flowing over a particular stream. For more information on
using RsslState in a message, refer to Section 12.2.1, Section 12.2.2, and Section 12.2.4. A decision table that provides
example behaviors for various state combinations is available in Appendix A, Item and Group State Decision Table.

11.2.6.1 Structure Members

RsslState contains the following members:

FUNCTION NAME DESCRIPTION

rsslClearQos Sets all members in RsslQos to an initial value of 0.

This includes setting rate and timeliness to their unspecified values (which are not
intended to be encoded or decoded).

rsslCopyQos Copies one RsslQos into another.

rsslQosIsEqual Compares two RsslQos structures.

• Returns true if the values contained in the structure are identical.

• Returns false if the values contained in the structure differ.

rsslQosIsBetter Compares a new RsslQos with a previous RsslQos to determine which has better overall
quality.

• Returns true if the new RsslQos is better.

• Returns false if the new RsslQos is not better.

rsslQosIsInRange Determines whether a specified RsslQos lies within a range from best RsslQos to worst
RsslQos.

• Returns true if the specified value inclusively falls between best and worst RsslQos

• Returns false if the value falls outside of the best or worst RsslQos range.

Table 90: RsslQos Utility Functions

STRUCTURE MEMBER DESCRIPTION

streamState Conveys data about the stream’s health.

StreamState values are described in Section 11.2.6.2.

dataState Conveys data about the health of data flowing within a stream.

dataState values are described in Section 11.2.6.3.

Table 91: RsslState Structure Members
Transport API 3.1.X C Edition – Developers Guide 150
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.6.2 Stream State Enum Values

code An enumerated code value that conveys additional information about the current state.
Typically indicates more specific information (e.g., pertaining to a condition occurring
upstream causing current data and stream states). code is typically used for informational
purposes.

State Code values are described in Section 11.2.6.4.

Note: An application should not trigger specific behavior based on this content.

text Specific text regarding the current data and stream state. Typically used for informational
purposes.

Encoded text has a maximum allowed length of 32,767 bytes.

Note: An application should not trigger specific behavior based on this content.

ENUM DESCRIPTION

RSSL_STREAM_UNSPECIFIED streamState is unspecified. Typically used as a structure initialization value and
is not intended to be encoded or decoded.

RSSL_STREAM_OPEN streamState is open. This typically means that data is streaming: as data
changes, they are sent on the stream.

RSSL_STREAM_NON_STREAMING streamState is non-streaming. After receiving a final RsslRefreshMsg or
RsslStatusMsg, the stream is closed and updated data is not delivered without a
subsequent re-request. Update messages might still be received between the
first and final part of a multi-part refresh.

For further details, refer to Section 13.1.

RSSL_STREAM_CLOSED_RECOVER streamState is closed, however data can be recovered on this service and
connection at a later time. This state can occur via either an RsslRefreshMsg or
an RsslStatusMsg.

Single Open behavior can modify this state (continuing to indicate a stream state
of RSSL_STREAM_OPEN) and attempt to recover data on the user’s behalf.

For further details on Single Open behavior, refer to Section 13.5.

RSSL_STREAM_CLOSED streamState is closed. Data is not available on this service and connection and
is not likely to become available, though the data might be available on another
service or connection. This state can result from either an RsslRefreshMsg or an
RsslStatusMsg.

RSSL_STREAM_REDIRECTED streamState is redirected. The current stream is closed and has new identifying
information. The user can issue a new request for the data using the new
message key data from the redirect message. This state can result from either
an RsslRefreshMsg or an RsslStatusMsg.

For further details, refer to Section 12.1.3.3.

Table 92: RsslState Stream State Values

STRUCTURE MEMBER DESCRIPTION

Table 91: RsslState Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 151
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.6.3 Data State Enum Values

11.2.6.4 Code Values

ENUM DESCRIPTION

RSSL_DATA_NO_CHANGE Indicates there is no change in the current state of the data. When available, it is preferable
to send more concrete state information (such as OK or SUSPECT) instead of NO_CHANGE.
This typically conveys code or text information associated with an item group, but no
change to the group’s previous data and stream state has occurred.

RSSL_DATA_OK dataState is OK. All data associated with the stream is healthy and current.

RSSL_DATA_SUSPECT dataState is SUSPECT (also known as a stale-data state). A suspect data state means
some or all of the data on a stream is out-of-date (or that it cannot be confirmed as current,
e.g., the service is down). If an application does not allow suspect data, a stream might
change from open to closed or closed recover as a result.

For further details, refer to Section 13.5.

Table 93: RsslState Data State Values

ENUMERATED NAME DESCRIPTION

RSSL_SC_ALREADY_OPEN Indicates that a stream is already open on the connection for
the requested data.

RSSL_SC_APP_AUTHORIZATION_FAILED Indicates that application authorization using the secure token
has failed.

RSSL_SC_DACS_DOWN Indicates that the connection to DACS is down and users are
not allowed to connect.

RSSL_SC_DACS_MAX_LOGINS_REACHED Indicates that the maximum number of logins has been
reached.

RSSL_SC_DACS_USER_ACCESS_TO_APP_DENIED Indicates that the application is denied access to the system.

RSSL_SC_ERROR Indicates an internal error from the sender.

RSSL_SC_EXCEEDED_MAX_MOUNTS_PER_USER Indicates that the login was rejected because the user
exceeded their maximum number of allowed mounts.

RSSL_SC_FAILOVER_COMPLETED Indicates that recovery from a failover condition has finished.

RSSL_SC_FAILOVER_STARTED Indicates that a component is recovering due to a failover
condition. User is notified when recovery finishes via
RSSL_SC_FAILOVER_COMPLETED.

RSSL_SC_FULL_VIEW_PROVIDED Indicates that the full view (e.g., all available fields) is being
provided, even though only a specific view was requested.
Section 13.8 discusses views in more detail.

Table 94: RsslState Code Values
Transport API 3.1.X C Edition – Developers Guide 152
ETAC313UM.180

Chapter 11 Data Package Detailed View
RSSL_SC_GAP_DETECTED Indicates that a gap was detected between messages. A gap
might be detected via an external reliability mechanism (e.g.,
transport) or using the seqNum present in Transport API
messages.

RSSL_SC_GAP_FILL Indicates that the received content is meant to fill a recognized
gap.

RSSL_SC_INVALID_ARGUMENT Indicates that the request includes an invalid or unrecognized
parameter. Specific information should be contained in the
text.

RSSL_SC_INVALID_VIEW Indicates that the requested view is invalid, possibly due to bad
formatting. Additional information should be available in the
text.

Section 13.8 discusses views in more detail.

RSSL_SC_JIT_CONFLATION_STARTED Indicates that JIT conflation has started on the stream. User is
notified when JIT Conflation ends via
RSSL_SC_REALTIME_RESUMED.

RSSL_SC_NO_BATCH_VIEW_SUPPORT_IN_REQ Indicates that the provider does not support batch and/or view
functionality.

RSSL_SC_NO_RESOURCES Indicates that no resources are available to accommodate the
stream.

RSSL_SC_NON_UPDATING_ITEM Indicates that a streaming request was made for non-updating
data.

RSSL_SC_NONE Indicates that additional state code information is not required,
nor present.

RSSL_SC_NOT_ENTITLED Indicates that the request was denied due to permissioning.
Typically indicates that the requesting user does not have
permission to request on the service, to receive requested
data, or to receive data at the requested QoS.

RSSL_SC_NOT_FOUND Indicates that requested information was not found, though it
might be available at a later time or through changing some
parameters used in the request.

RSSL_SC_NOT_OPEN Indicates that the stream was not opened. Additional
information should be available in the text.

RSSL_SC_PREEMPTED Indicates the stream was preempted, possibly by a caching
device. Typically indicates the user has exceeded an item limit,
whether specific to the user or a component in the system.
Relevant information should be contained in the text.

RSSL_SC_REALTIME_RESUMED Indicates that JIT conflation on the stream has finished.

RSSL_SC_SOURCE_UNKNOWN Indicates that the requested service is not known, though the
service might be available at a later point in time.

ENUMERATED NAME DESCRIPTION

Table 94: RsslState Code Values(Continued)
Transport API 3.1.X C Edition – Developers Guide 153
ETAC313UM.180

Chapter 11 Data Package Detailed View
RSSL_SC_TIMEOUT Indicates that a timeout occurred somewhere in the system
while processing requested data.

RSSL_SC_TOO_MANY_ITEMS Indicates that a request cannot be processed because too
many other streams are already open.

RSSL_SC_UNABLE_TO_REQUEST_AS_BATCH Indicates that a batch request cannot be used for this request.
The user can instead split the batched items into individual
requests. Section 13.7 discusses batch requesting in more
detail.

RSSL_SC_UNSUPPORTED_VIEW_TYPE Indicates that the domain on which a request is made does not
support the requested viewType. Section 13.8 discusses views
in more detail.

RSSL_SC_USAGE_ERROR Indicates invalid usage within the system. Specific information
should be contained in the text.

RSSL_SC_USER_UNKNOWN_TO_PERM_SYS Indicates that the user is unknown to the permissioning system
and is not allowed to connect.

ENUMERATED NAME DESCRIPTION

Table 94: RsslState Code Values(Continued)
Transport API 3.1.X C Edition – Developers Guide 154
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.6.5 Utility Functions

The Transport API provides the following utility functions for use with RsslState:

FUNCTION NAME DESCRIPTION

rsslClearState Use rsslClearState to set all members in RsslState to an initial value. This includes setting
streamState to its unspecified value, which is not intended to be encoded or decoded.

rsslIsFinalState Use rsslIsFinalState to determine whether the RsslState represents a final state for a
stream.

• Returns true if the RsslState represents a final state for a stream (e.g. stream is Closed,
Closed Recover, Redirected, or NonStreaming).

• Returns false if the RsslState is not final.

rsslStreamStateToString Use rsslStreamStateToString to convert an RsslState.streamState enum to a string
representation.

rsslDataStateToString Use rsslDataStateToString to convert an RsslState.dataState enum to a string
representation.

rsslToString Use rsslToString to convert an RsslState.code enum to a string representation.

rsslStreamStateInfo Use rsslStreamStateInfo to convert an RsslState.streamState enum to text (e.g.,
RSSL_DATA_OK to “Data state is OK”) and returns as a string for the streamState.

rsslDataStateInfo Use rsslDataStateInfo to convert an RsslState.dataState enum to text (e.g.,
RSSL_DATA_OK to “Data state is OK”) and returns as a string for the dataState.

rsslStateCodeInfo Use rsslStateCodeInfo to convert an RsslState.code enum to text (e.g., RSSL_DATA_OK
to “Data state is OK”) and returns as a string for the code.

Table 95: RsslState Utility Functions
Transport API 3.1.X C Edition – Developers Guide 155
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.7 RsslArray

The RsslArray is a uniform primitive type that can contain multiple simple primitive entries. An RsslArray can contain zero to

N primitive type entries3, where zero entries indicates an empty RsslArray.

Each RsslArray entry can house only simple primitive types such as RsslInt, RsslReal, or RsslDate. An RsslArray entry
cannot house any container types or other RsslArray types. This is a uniform type, where RsslArray.primitiveType
indicates the single, simple primitive type of each entry. RsslArray uses simple replacement rules for change management.
When new entries are added, or any array entry requires a modification, all entries must be sent with the RsslArray. This new
RsslArray entirely replaces any previously stored or displayed data.

An RsslArray entry can be encoded from pre-encoded data or by encoding individual pieces of data as provided. The
RsslArray does not use a specific entry structure. When encoding, the application passes a pointer to the primitive type value
(when data is not encoded) or an RsslBuffer (containing the pre-encoded primitive).

When decoding, an RsslBuffer structure is given, which provides access to the encoded content of the array entry. Further
decoding of the entry’s content can be skipped by invoking the entry decoder to move to the next RsslArray entry or the
contents can be further decoded by invoking the specifically contained type’s primitive decode function (refer to Section 11.2).

11.2.7.1 Structure Members

3. An RsslArray currently has a maximum entry count of 65,535. This type has an approximate maximum encoded length of 4 gigabytes but may be
limited to 65,535 bytes if housed inside of a container entry. The content of an RsslArray entry is bound by the maximum encoded length of the prim-
itive types being contained. These limitations can change in subsequent releases.

Note: Although it can house other primitive types, RsslArray is itself considered a primitive type and can be represented as a
blank value.

STRUCTURE MEMBER DESCRIPTION

primitiveType Using an RsslDataTypes enum, primitiveType describes the base primitive type of each
entry. RsslArray can only contain simple primitive types and cannot house container types or
other RsslArrays.

itemLengtha

a. Only specific types are allowed as fixed-length encodings. RSSL_DT_INT and RSSL_DT_UINT can support one-, two-, four-, or eight-byte fixed
lengths. RSSL_DT_TIME supports three- or five-byte fixed lengths. RSSL_DT_DATETIME supports seven- or nine-byte fixed lengths.
RSSL_DT_ENUM supports one- or two-byte fixed lengths. RSSL_DT_BUFFER, RSSL_DT_ASCII_STRING, RSSL_DT_UTF8_STRING, and
RSSL_DT_RMTES_STRING support any legal length value; see those types for allowable lengths.

Sets the expected length of all array entries.

• If set to 0, entries are variable length and each encoded entry can have a different length.

• If set to a non-zero value, each entry must be the specified length (e.g. sending
primitiveType of RSSL_DT_ASCII_STRING with itemLength set to 3 indicates that
each array entry will be a fixed-length three-byte string).

When using a fixed length, the application still passes in the base primitive type when
encoding (e.g., if encoding fixed length RSSL_DT_INT types, an RsslInt is passed in
regardless of itemLength). When encoding buffer types as fixed length:

• Any content that exceeds itemLength will be truncated.

• Any content that is shorter than itemLength will be padded with the \0 (NULL) character.

encData Length and pointer to all encoded primitive types in the contents (if any). This refers to
encoded RsslArray payload and length information.

Table 96: RsslArray Structure Members
Transport API 3.1.X C Edition – Developers Guide 156
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.7.2 Encoding Interfaces

11.2.7.3 Encoding: Example 1

The following code samples demonstrate how to encode an RsslArray. In the first example, the array is set to encode
unsigned integer entries, where the entries have a fixed length of two bytes each. The example encodes two array entries:

• The first entry is encoded from a primitive RsslUInt type

• The second entry is encoded from an RsslBuffer containing a pre-encoded RsslUInt type.

The following example includes error handling for the initial encode function only, and omits additional error handling to
simplify the sample code.

ENCODE INTERFACE DESCRIPTION

rsslEncodeArrayInit Begins encoding an RsslArray. This function expects that the members
RsslArray.primitiveType and RsslArray.itemLength are properly populated. The
RsslEncodeIterator specifies the RsslBuffer into which it encodes data. Entries can be
encoded after this function returns.

rsslEncodeArrayComplete Completes encoding of an RsslArray. This function expects the same RsslEncodeIterator
used with rsslEncodeArrayInit and rsslEncodeArrayEntry. Set the RsslBool parameter
to:

• true if encoding was successful, to finish encoding.

• false if encoding of any entry failed, to roll back encoding to the last successfully-encoded
point in the contents.

All entries should be encoded before calling rsslEncodeArrayComplete.

rsslEncodeArrayEntry Encodes an RsslArray entry. This function expects the RsslEncodeIterator which was
used with rsslEncodeArrayInit.

•If encoding from pre-encoded data, this can be passed in via the RsslBuffer* parameter,
and the void* parameter should be passed in as NULL.

•If encoding from a primitive type, a pointer to the populated primitive type should be passed
via the void* and the RsslBuffer* should be passed in as NULL.

This function should be called for each entry being encoded. The passed-in type must match
RsslArray.primitiveType.

Table 97: RsslArray Encode Functions

/* EXAMPLE 1 - Array of fixed length unsigned integer values */

/* populate array structure prior to call to rsslEncodeArrayInit encode unsigned integers in the array */

rsslArray.primitiveType = RSSL_DT_UINT;

/* send fixed length values where each uint is 2 bytes */

rsslArray.itemLength = 2;

/* begin encoding of array - assumes that encIter is already populated with buffer and version

 information, store return value to determine success or failure */

if ((retVal = rsslEncodeArrayInit(&encIter, &rsslArray)) < RSSL_RET_SUCCESS)

{

/* error condition - switch our success value to false so we can roll back */

success = RSSL_FALSE;
Transport API 3.1.X C Edition – Developers Guide 157
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 18: RsslArray Encoding Example #1

11.2.7.4 Encoding: Example 2

This example demonstrates encoding an RsslArray containing ASCII string values. The example includes error handling for
the initial encode function only, and omits additional error handling to simplify the sample code.

/* print out message with return value string, value, and text */

printf("Error %s (%d) encountered with rsslEncodeArrayInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

RsslUInt uInt = 23456;

/* array encoding was successful */

/* encode first entry from a UInt from a primitive type */

retVal = rsslEncodeArrayEntry(&encIter, NULL, &uInt);

/* encode second entry from a UInt from pre-encoded integer contained in a buffer */

/* this buffer.data should point to encoded int and the length should be number of bytes encoded */

retVal = rsslEncodeArrayEntry(&encIter, pEncUInt, NULL);

}

/* complete array encoding. If success parameter is true, this will finalize encoding. */

/* If success parameter is false, this will roll back encoding prior to rsslEncodeArrayInit */

retVal = rsslEncodeArrayComplete(&encIter, success);

/* EXAMPLE 2 - Array of variable length ASCII string values populate array structure prior to call */

/* to rsslEncodeArrayInit encode ASCII Strings in the array */

RsslBuffer stringBuf = RSSL_INIT_BUFFER;

rsslArray.primitiveType = RSSL_DT_ASCII_STRING;

/* itemLength 0 indicates variable length entries */

rsslArray.itemLength = 0;

/* begin encoding of array - assumes that encIter is already populated with buffer and version

information, store return value to determine success or failure */

if ((retVal = rsslEncodeArrayInit(&encIter, &rsslArray)) < RSSL_RET_SUCCESS)

{

/* error condition - switch our success value to false so we can roll back */

success = RSSL_FALSE;

/* print out message with return value string, value, and text */

printf("Error %s (%d) encountered with rsslEncodeArrayInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

Transport API 3.1.X C Edition – Developers Guide 158
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 19: RsslArray Encoding Example #2

11.2.7.5 Decoding Interfaces

stringBuf.data = ‘ENTRY 1’;

stringBuf.length = 7;

/* array encoding was successful */

/* encode first entry from a buffer containing an ASCII_STRING primitive type */

retVal = rsslEncodeArrayEntry(&encIter, NULL, &stringBuf);

}

/* complete array encoding. If success parameter is true, this will finalize encoding.

If success parameter is false, this will roll back encoding prior to rsslEncodeArrayInit */

retVal = rsslEncodeArrayComplete(&encIter, success);

DECODE INTERFACE DESCRIPTION

rsslDecodeArray Begins decoding an RsslArray. This function decodes from the RsslBuffer referred to by
the passed-in RsslDecodeIterator.

rsslDecodeArrayEntry Decodes an RsslArray entry and populates RsslBuffer with encoded entry contents. This
function expects the same RsslDecodeIterator which was used with rsslDecodeArray.
Any contained primitive type’s decode function can be called based on
RsslArray.primitiveType (refer to Table 74). Calling rsslDecodeArrayEntry again will
decode and provide the next entry in the RsslArray until no more entries are available.

Table 98: RsslArray Decode Functions
Transport API 3.1.X C Edition – Developers Guide 159
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.7.6 Decoding: Example

The following example decodes an RsslArray and each of its entries to the primitive value. This sample code assumes the
contained primitive type is an RsslUInt. Typically an application invokes the specific primitive decoder for the contained type
or uses a switch statement to allow for a more generic array entry decoder. This example uses the same
RsslDecodeIterator when calling the primitive decoder function. An application could optionally use a new
RsslDecodeIterator by setting the encoded entry buffer on a new iterator. To simplify the example, some error handling is
omitted.

11.2.7.7 Utility Functions

/* decode into the array structure header */

if ((retVal = rsslDecodeArray(&decIter, &rsslArray)) >= RSSL_RET_SUCCESS)

{

/* decode each array entry */

while ((retVal = rsslDecodeArrayEntry(&decIter, &entryBuffer)) != RSSL_RET_END_OF_CONTAINER)

{

if (retVal < RSSL_RET_SUCCESS)

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeArrayEntry. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* decode array entry into primitive type we can use the same decode iterator, */

/* or set the encoded entry buffer onto a new iterator */

retVal = rsslDecodeUInt(&decIter, &uInt);

}

}

}

else

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeArray. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

FUNCTION NAME DESCRIPTION

rsslClearArray Sets all members in RsslArray to an initial value.

Table 99: RsslArray Utility Functions
Transport API 3.1.X C Edition – Developers Guide 160
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.8 RsslBuffer

RsslBuffer represents some type of user-provided content along with the content’s length. RsslBuffer can:

• Represent various buffer and string types, such as ASCII, RMTES, or UTF8 strings.

• Contain or reference encoded data on both container and message header structures.

No validation or enforcement checks are performed on the contents of an RsslBuffer. Any desired validation can be
performed by the user depending on the specific type of content represented by RsslBuffer. Null termination is not required
with this type.

Blank buffers are conveyed as an RsslBuffer.length of 0.

11.2.8.1 Structure Members

RsslBuffer is a structure with the following members:

11.2.8.2 Example

For performance purposes contents are not copied while decoding RsslBuffer type. This may result in the RsslBuffer.data
exposing additional encoded contents beyond the RsslBuffer.length to be exposed. The user can determine appropriate
handling to suit their needs. Some options are to copy contents and add NULL termination or use appropriate printf
modifiers to only display specified content length as illustrated in the following example:

Code Example 20: Displaying Contents of an RsslBuffer

STRUCTURE MEMBER DESCRIPTION

length The length, in bytes, of the content pointed to by data.

data Points to some type of content, where the specific type description of the content is provided
outside of Transport API via an external source (domain model definition, field dictionary,
etc.). The length member should be set to the number of bytes pointed to by data.

Table 100: RsslBuffer Structure Members

/* display only the specified length of RsslBuffer contents */

printf("%.*s", RsslBuffer.length, RsslBuffer.data);
Transport API 3.1.X C Edition – Developers Guide 161
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.9 RMTES Decoding

Use special consideration when handling and converting RsslBuffers that contain RMTES data. This allows for the
application of partial content updates, used to efficiently change already received RMTES content by sending only those
portions that need to be changed. For a more detailed description of RMTES, refer to the Reuters Multilingual Text Encoding
Standard Specification.

The typical process for handling RMTES content contained in an RsslBuffer involves storing content, applying partial
updates, and converting to the desired character set. The Transport API provides several structures and functions to help with
this storage and conversion as described in the following sections.

11.2.9.1 RsslRmtesCacheBuffer: Structure

The RsslRmtesCacheBuffer is a simple structure used to store initial RMTES content and when applying partial updates. Any
character set conversions should be performed on the content stored in the RsslRmtesCacheBuffer.

RsslRmtesCacheBuffer includes the following members:

11.2.9.2 RsslRmtesCacheBuffer: Decoding Interfaces

Warning! RMTES processing is an expensive procedure that incurs multiple content copies. To avoid unnecessary
processing, users should confirm that content providers are actually sending RMTES prior to using this function. If the

content type is not RMTES, do not use this functiona.

a. Although the type specified in the field dictionary may indicate RMTES, the actual content might not be encoded as such. Unless
content uses RMTES encoding, this functionality is not necessary.

STRUCTURE MEMBER DESCRIPTION

length Returns the length (in bytes) of the content pointed to by data; it represents the number of
bytes used in the cache. For example, if data refers to 100 bytes and nothing is cached,
length should be set to 0. If data refers to 100 bytes, and 50 bytes are currently in cache,
length should be set to 50.

data Points to the RMTES content. The length member should be set to the number of bytes
pointed to by data.

allocatedLength Returns the length (in bytes) allocated when creating data. This is typically larger than
length to allow for the growth of data when applying future partial updates.

Table 101: RsslRmtesCacheBuffer Structure Members

DECODE INTERFACE DESCRIPTION

rsslRMTESApplyToCache(Buffer,
RmtesCacheBuffer)

Applies encoded RMTES content to the RsslRmtesCacheBuffer.data. If any partial
update commands reside in the given RsslBuffer, these are applied as well.
Generally, one of the character set conversion functions are invoked after content is
applied to the cache buffer.

Note: The RsslRmtesCacheBuffer.data must refer to enough memory for storing
and modifying the RMTES content.

Table 102: RsslRmtesCacheBuffer Decode Functions
Transport API 3.1.X C Edition – Developers Guide 162
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.9.3 RsslRmtesCacheBuffer: Utility Functions

11.2.9.4 Conversion Functionality: Interfaces and Structure Members

With the Transport API, users can convert RMTES content to either the UTF-8 or UCS-2 character sets. Both character sets
can represent the full spectrum of RMTES content. The user can decide which character set best meets their requirements.

The RsslU16Buffer is used only when converting from RMTES to UCS-2. The structure has the following members:

FUNCTION NAME DESCRIPTION

rsslHasPartialRMTESUpdate Specifies whether RMTES content in an RsslBuffer contains a partial update command.
Available values are:

• true: the RMTES content in an RsslBuffer contains a partial update command.

• false: the RMTES content in an RsslBuffer does not contain a partial update
command.

Table 103: RsslRmtesCacheBuffer Utility Functions

DECODE INTERFACE DESCRIPTION

rsslRMTESToUTF8 Converts cached RMTES content into UTF-8 Unicode content. This converts from
RsslRmtesCacheBuffer.data into the memory provided in the RsslBuffer.

Note: The RsslBuffer must have access to enough memory for the conversion process.
Conversion will typically need a similar size memory as required by the storage.

rsslRMTESToUCS2 Converts cached RMTES content into UCS-2 Unicode. This converts from
RsslRmtesCacheBuffer.data into the memory provided in the RsslU16Buffer.data. The
RsslU16Buffer members are defined in Table 105.

Note: The RsslU16Buffer must have access to enough memory for the conversion process,
which is similar in size as the memory required by storage.

Table 104: RMTES to Unicode Conversion Functions

STRUCTURE MEMBER DESCRIPTION

length The length (in 16-bit unsigned integers) of the content pointed to by data.

data Points to the memory to use prior to conversion and the UCS-2 content after conversion. The
length member should be set to the number of bytes pointed to by data.

Table 105: RsslU16Buffer Structure Members
Transport API 3.1.X C Edition – Developers Guide 163
ETAC313UM.180

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-16

Chapter 11 Data Package Detailed View
11.2.9.5 Example: Converting RMTES to UTF-8

The following example illustrates how to store and convert RMTES content. This example converts from RMTES to UTF-8 and
assumes that:

• The input buffer is populated with RMTES content.

• The allocated size of 100 bytes is sufficient for conversion and storage.

To simplify the example, some error handling is omitted.

Code Example 21: Converting RMTES to UTF-8 Example

/* create cache buffer for storing RMTES and applying partial updates */

RsslRmtesCacheBuffer rmtesCache;

char cacheSpace[100];

/* create RsslBuffer to convert into */

RsslBuffer utf8Buffer;

char convertSpace[100];

/* populate cache and conversion buffers with created memory */

rmtesCache.data = cacheSpace;

rmtesCache.length = 0; /* this is the used length, since cache starts out empty it should start at 0 */

rmtesCache.allocatedLength = 100;

utf8Buffer.data = convertSpace;

utf8Buffer.length = 100;

/* apply RMTES content to cache, if successful convert to UTF-8 */

if ((retVal = rsslRMTESApplyToCache(&inputBuf, &rmtesCache)) < RSSL_RET_SUCCESS)

{

/* error while applying to cache */

printf("Error %s (%d) encountered while applying buffer to RMTES cache. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else if ((retVal = rsslRMTESToUTF8(&rmtesCache, &utf8Buffer)) < RSSL_RET_SUCCESS)

{

/* error when converting */

printf("Error %s (%d) encountered while converting from RMTES to UTF-8. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* SUCCESS: conversion was successful – application can now use converted content */

}

Transport API 3.1.X C Edition – Developers Guide 164
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.9.6 Example: Converting RMTES to UCS-2

The following example illustrates storing and converting RMTES content. This example converts from RMTES to UCS-2 and
assumes that:

• The input buffer is populated with RMTES content.

• The allocated size of 100 bytes is sufficient for conversion and storage.

To simplify the example, some error handling is omitted.

Code Example 22: Converting RMTES to UCS-2 Example

/* create cache buffer for storing RMTES and applying partial updates */
RsslRmtesCacheBuffer rmtesCache;
char cacheSpace[100];
/* create RsslU16Buffer to convert into */
RsslU16Buffer ucs2Buffer;
RsslUInt16 convertSpace[100];

/* populate cache and conversion buffers with created memory */
rmtesCache.data = cacheSpace;
rmtesCache.length = 0; /* this is the used length, since cache starts out empty it should

start at 0 */
rmtesCache.allocatedLength = 100;

ucs2Buffer.data = convertSpace;
ucs2Buffer.length = 100;

/* apply RMTES content to cache, if successful convert to UCS-2 */
if ((retVal = rsslRMTESApplyToCache(&inputBuf, &rmtesCache)) < RSSL_RET_SUCCESS)
{

/* error while applying to cache */
printf("Error %s (%d) encountered while applying buffer to RMTES cache. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));
}
else if ((retVal = rsslRMTESToUCS2(&rmtesCache, &ucs2Buffer)) < RSSL_RET_SUCCESS)
{

/* error when converting */
printf("Error %s (%d) encountered while converting from RMTES to UCS-2. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));
}
else
{

/* SUCCESS: conversion was successful – application can now use converted content */
}

Transport API 3.1.X C Edition – Developers Guide 165
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.2.10 General Primitive Type Utility Functions

The Transport API provides the following utility functions for use with primitive types.

FUNCTION NAME DESCRIPTION

rsslDataTypeToString Converts an RsslDataType enum to a string representation.

rsslPrimitiveTypeSize Returns the maximum encoded size for base and set-defined primitive types. If the
type allows for content of varying length (e.g. RsslArray, RsslBuffer), a value of 255
is returned (though the maximum encoded length may exceed 255).

rsslIsPrimitiveType • If RsslDataType enum represents a primitive type, returns true

• If RsslDataType enum represents a container type, returns false.

rsslIsContainerType • If RsslDataType enum represents a container type, returns true.

• If RsslDataType enum represents a primitive type, returns false.

rsslEncodePrimitiveType This is an abstraction of individual encode functions for base primitive types. The user
can pass in a base primitive-type enumeration and a pointer to that primitive-type
representation (e.g., RsslInt, RsslReal). This value will then be encoded using the
buffer contained referenced by RsslEncodeIterator.

rsslDecodePrimitiveType This is an abstraction of individual decode functions for base primitive types. The user
can pass in an enumeration for a base primitive type and an RsslDecodeIterator
that contains that encoded primitive type. The encoded primitive type will be decoded
and stored in a representation of the provided primitive type (e.g., RsslInt,
RsslReal).

rsslPrimitiveToString Converts a primitive type to a string representation. The user can pass in a base
primitive-type enumeration and a pointer to that primitive-type representation (e.g.
RsslInt, RsslReal). This value will be converted to a string and stored in the
provided RsslBuffer. The user should ensure that the provided RsslBuffer has
enough memory to properly store the converted value.

rsslEncodedPrimitiveToString Converts an encoded primitive type to a string representation. The user can pass in a
base primitive type enumeration in addition to an RsslDecodeIterator that contains
the encoded primitive type. This function decodes the primitive type and converts it to
a string, which is stored in the provided RsslBuffer. The user should ensure that the
provided RsslBuffer has enough memory to properly store the converted value.

Table 106: General Primitive Type Utility Functions
Transport API 3.1.X C Edition – Developers Guide 166
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3 Container Types

Container Types can model more complex data representations and have their contents modified at a more granular level
than primitive types. Some container types leverage simple entry replacement when changes occur, while other container
types offer entry-specific actions to handle changes to individual entries. The Transport API offers several uniform (i.e.,
homogeneous) container types, meaning that all entries house the same type of data. Additionally, there are several non-
uniform (i.e., heterogeneous) container types in which different entries can hold varying types of data.

The RsslDataTypes enumeration exposes values that define the type of a container. For example, when a containerType is
housed in an RsslMsg, the message would indicate the containerType’s enumerated value. Values ranging from 128 to 224
represent container types. Transport API messages and container types can house other Transport API container types. Only
the RsslFieldList and RsslElementList container types can house both primitive types and other container types.

The following table provides a brief description of each container type and its housed entries.

ENUM TYPE NAME DESCRIPTION ENTRY TYPE INFORMATION

RSSL_DT_FIELD_LIST Container Type: RsslFieldList

A highly optimized, non-uniform type, that contains
field identifier-value paired entries. fieldId refers
to specific name and type information as defined in
an external field dictionary (such as
RDMFieldDictionary). You can further optimize
this type by using set-defined data as described in
Section 11.6. For more details on this container,
refer to Section 11.3.1.

Entry type is RsslFieldEntry, which
can house any RsslDataType,
including set-defined data (Section
11.6), base primitive types (Section
11.2), and container types.

• If the information and entry being
updated contains a primitive type,
previously stored or displayed data
is replaced.

• If the entry contains another
container type, action values
associated with that type specify
how to update the information.

RSSL_DT_ELEMENT_LIST Container Type: RsslElementList

A self-describing, non-uniform type, with each entry
containing name, dataType, and a value. This type
is equivalent to RsslFieldList, but without the
optimizations provided through fieldId use. Use
of set-defined data allows for further optimization,
as discussed in Section 11.6. For more details on
this container, refer to Section 11.3.2.

Entry type is RsslElementEntry,
which can house any RsslDataType,
including set-defined data (Section
11.6), base primitive types (Section
11.2), and container types.

• If the updating information and
entry contain a primitive type, any
previously stored or displayed data
is replaced.

• If the entry contains another
container type, action values
associated with that type specify
how to update the information.

Table 107: Transport API Container Types
Transport API 3.1.X C Edition – Developers Guide 167
ETAC313UM.180

Chapter 11 Data Package Detailed View
RSSL_DT_MAP Container Type: RsslMap

A container of key-value paired entries. RsslMap is
a uniform type, where the base primitive type of
each entry’s key and the containerType of each
entry’s payload are specified on the RsslMap.

• For more information on base primitive types,
refer to Section 11.2.

• For more details on this container, refer to
Section 11.3.3.

Entry type is RsslMapEntry, which
can include only container types, as
specified on the RsslMap. Each
entry’s key is a base primitive type, as
specified on the RsslMap. Each entry
has an associated action, which
informs the user of how to apply the
information stored in the entry.

RSSL_DT_SERIES Container Type: RsslSeries

A uniform type, where the containerType of each
entry is specified on the RsslSeries. This
container is often used to represent table-based
information, where no explicit indexing is present or
required. As entries are received, the user should
append them to any previously-received entries.
For more details on this container, refer to Section
11.3.4.

Entry type is RsslSeriesEntry, which
can include only container types, as
specified on the RsslSeries.
RsslSeriesEntry types do not
contain explicit actions; though as
entries are received, the user should
append them to any previously
received entries.

RSSL_DT_VECTOR Container Type: RsslVector

A container of position index-value paired entries.
This container is a uniform type, where the
containerType of each entry’s payload is
specified on the RsslVector. Each entry’s index is
represented by an unsigned integer. For more
details on this container, refer to Section 11.3.5.

Entry type is RsslVectorEntry, which
can house only container types, as
specified on the RsslVector. Each
entry’s index is an unsigned integer.
Each entry has an associated action,
which informs the user on how to
apply the information stored in the
entry.

RSSL_DT_FILTER_LIST Container Type: RsslFilterList

A non-uniform container of filterId-value paired
entries. A filterId corresponds to one of 32
possible bit-value identifiers, typically defined by a
domain model specification. FilterId’s can be
used to indicate interest or presence of specific
entries through the inclusion of the filterId in the
message key’s filter member.

• For more information about the message key,
refer to Section 12.1.2.

• For more details on this container, refer to
Section 11.3.6.

Entry type is RsslFilterEntry, which
can house only container types.
Though the RsslFilterList can
specify a containerType, each entry
can override this specification to
house a different type. Each entry has
an associated action, which informs
the user of how to apply the
information stored in the entry.

RSSL_DT_MSG Container Type: RsslMsg

Indicates that the contents are another message.
This allows the application to house a message
within a message or a message within another
container’s entries. This type is typically used with
posting (described in Section 13.9). For more
details on message encoding and decoding, refer
to Chapter 12, Message Package Detailed View.

None

ENUM TYPE NAME DESCRIPTION ENTRY TYPE INFORMATION

Table 107: Transport API Container Types (Continued)
Transport API 3.1.X C Edition – Developers Guide 168
ETAC313UM.180

Chapter 11 Data Package Detailed View
RSSL_DT_NO_DATA Container Type: None

Indicates there are no contents.

• When RSSL_DT_NO_DATA is housed in a
message, the message has no payload.

• If RSSL_DT_NO_DATA is housed in a
container type, each container entry has no
payload.a

None

RSSL_DT_ANSI_PAGE Container Type: None

Indicates that contents are ANSI Page format.
Though the Transport API does not natively
support encoding and decoding for the ANSI Page
format, the Transport API supports the use of a
separate ANSI Page encoder/decoder. For further
details, refer to the Transport API ANSI Library
Manual. For more details on housing non-RWF
types inside of container types, refer to Section
11.3.7.

None

RSSL_DT_XML Container Type: None

Indicates that contents are XML-formatted data.
Though the Transport API does not natively
support encoding and decoding XML, the Transport
API supports the use of a separate XML encoder/
decoder. For more details on housing non-RWF
types inside of container types, refer to Section
11.3.7.

None

RSSL_DT_OPAQUE Container Type: None

Indicates that the contents are opaque and
additional details are not provided through the
Transport API. Any specific information about the
concrete type housed in the opaque payload
should be defined in the specific domain model
associated with the message. For more details on
housing non-RWF types inside of container types,
refer to Section 11.3.7.

None

a. An RsslFilterList can indicate a type of RSSL_DT_NO_DATA, however an individual RsslFilterEntry can override
using the entry-specific containerType.

ENUM TYPE NAME DESCRIPTION ENTRY TYPE INFORMATION

Table 107: Transport API Container Types (Continued)
Transport API 3.1.X C Edition – Developers Guide 169
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.1 RsslFieldList

The RsslFieldList is a container of entries (known as RsslFieldEntrys) paired by the values of their field identifiers. A field
identifier (known as a fieldId), is a signed, two-byte value that refers to specific name and type information defined by an

external field dictionary (e.g., RDMFieldDictionary). A field list can contain zero to N4 entries, where zero indicates an empty
field list.

11.3.1.1 Structure Members

RsslFieldList includes the following structures:

4. A field list currently has a maximum entry count of 65,535, where the first 255 entries may contain set-defined types. This type has an approximate
maximum encoded length of 5 gigabytes but may be limited to 65,535 bytes if housed inside of a container entry. The content of each field entry has a
maximum encoded length of 65,535 bytes. These limitations could be changed in subsequent releases.

STRUCTURE
MEMBER

DESCRIPTION

flags A combination of bit values that indicate the presence of optional field list content. For more
information about flag values, refer to Section 11.3.1.2.

dictionaryId A two-byte, signed integer (dictionaryId) that refers to the external dictionary family for use when
interpreting content in this RsslFieldEntry. The field dictionary contains specific name and type
information which correlates to fieldId values present in each RsslFieldEntry. An example of this
would be the RDMFieldDictionary, which has a dictionaryId value of 1.

If not present, a value of 1 should be assumed. If using the default dictionary (RDMFieldDictionary),
dictionaryId is not required and is assumed have an id value of 1. A dictionaryId should be
provided as part of the initial refresh message on a stream or on the first refresh message after
issuing a CLEAR_CACHE command.

A dictionaryId can be changed in two ways.

• If a dictionaryId is provided on a refresh message (solicited or unsolicited), the specified
dictionary is used across all messages on the stream until a new dictionaryId is provided in a
subsequent refresh. This new dictionary is now used for all messages on the stream until another
dictionaryId is provided.

• If an RsslFieldEntry contains a fieldId of 0, this reserved value indicates a temporary
dictionary change. In this situation, this entry’s value is the new dictionaryId (encoded /
decoded as an RsslInt). When a dictionaryId is changed in this manner, the change is only in
effect on the remaining entries in the field list or until another fieldId of 0 is encountered. Any
containerTypes housed inside the remaining entries also adopt this temporary dictionary. When
the end of the field list is reached, the dictionaryId from the refresh takes precedence once
again.

dictionaryId values have an allowed range of -16,384 to 16,383.

fieldListNum A two-byte, signed integer referring to an external fieldlist template, also known as a record
template. The record template contains information about all possible fields in a stream and is
typically used by caching implementations to pre-allocate storage.

fieldListNum values have an allowed range of -32,768 to 32,767.

Table 108: RsslFieldList Structure Members
Transport API 3.1.X C Edition – Developers Guide 170
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.1.2 Flag Enumerations

setId A two-byte, unsigned integer corresponding to the set definition used for encoding or decoding the
set-defined data in this RsslFieldList.

• When encoding, this is the set definition used to encode any set-defined content.

• When decoding, this is the set definition used for decoding any set-defined content.

If a setId value is not present on a message containing set-defined data, a setId of 0 is implied.
setId values have an allowed range of 0 to 32,767. Currently, only values 0 to 15 are used. These
indicate locally-defined set definition use. Refer to Section 11.6 for more information.

encSetData Length and pointer to the encoded set-defined data, if any, contained in the message. If populated,
contents are described by the set definition associated with the setId member. If this is populated
while encoding, this is assumed to be pre-encoded set data. If this is populated while decoding, this
represents encoded set data. For more information, refer to Section 11.6.

encEntries Length and pointer to the encoded fieldId-value pair encoded data, if any, contained in the
message. This would refer to encoded RsslFieldList payload and length information.

FLAG ENUMERATION MEANING

RSSL_FLF_HAS_FIELD_LIST_INFO Indicates that dictionaryId and fieldListNum members are present, which
should be provided as part of the initial refresh message on a stream or on the
first refresh message after issuance of a CLEAR_CACHE command.

RSSL_FLF_HAS_STANDARD_DATA Indicates that the RsslFieldList contains standard fieldId-value pair
encoded data. This value can be set in addition to
RSSL_FLF_HAS_SET_DATA if both standard and set-defined data are present
in this RsslFieldList. If no entries are present in the RsslFieldList, this flag
value should not be set.

RSSL_FLF_HAS_SET_DATA Indicates that the RsslFieldList contains set-defined data. This value can be
set in addition to RSSL_FLF_HAS_STANDARD_DATA if both standard and
set-defined data are present in this RsslFieldList. If no entries are present in
the RsslFieldList, this flag value should not be set. For more information,
refer to Section 11.6.

RSSL_FLF_HAS_SET_ID Indicates the presence of a setId, used to determine the set definition used for
encoding or decoding the set data on this RsslFieldList. For more
information, refer to Section 11.6.

Table 109: RsslFieldList Flags

STRUCTURE
MEMBER

DESCRIPTION

Table 108: RsslFieldList Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 171
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.1.3 RsslFieldEntry Structure Members

An RsslFieldList can contain multiple RsslFieldEntrys, and each RsslFieldEntry can house any RsslDataType. This
includes primitive types (as described in Section 11.2), set-defined types (as described in Section 11.6), or container types. If
updating information, when the RsslFieldEntry contains a primitive type, it replaces any previously stored or displayed data
associated with the same fieldId. If the RsslFieldEntry contains another container type, action values associated with that
type indicate how to modify the information.

STRUCTURE MEMBER DESCRIPTION

fieldId A signed two-byte value (fieldId) that refers to specific name and type information defined
by an external field dictionary, such as the RDMFieldDictionary. Negative fieldId values
typically refer to user-defined values while positive fieldId values typically refer to Thomson
Reuters-defined values.

fieldId has an allowable range of -32,768 to 32,767 where Thomson Reuters defines
positive values and the user defines negative values. A fieldId value of 0 is reserved to
indicate dictionaryId changes, where the type of fieldId 0 is an RsslInt.

dataType Defines the RsslDataType of this RsslFieldEntry’s contents.

• While encoding, dataType must be set to the enumerated value of the type being
encoded.

• While decoding, if dataType is RSSL_DT_UNKNOWN, the user must determine the type of
contained information from the associated field dictionary.

If set-defined data is used, dataType will indicate specific RsslDataType information as
indicated by the set definition.

encData Length and pointer to the encoded content of this RsslFieldEntry.

• If populated on encode functions, this indicates that data is pre-encoded and encData will
be copied while encoding.

• If populated on decoding functions, this refers to the encoded RsslFieldEntry’s payload
and length information.

Table 110: RsslFieldEntry Structure Members
Transport API 3.1.X C Edition – Developers Guide 172
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.1.4 Encoding Interfaces

An RsslFieldEntry can be encoded from pre-encoded data or from individual pieces of data as they are provided.

ENCODE INTERFACE DESCRIPTION

rsslEncodeFieldListInit Begins encoding an RsslFieldList. The Transport API will encode all content into
the RsslBuffer to which the passed in RsslEncodeIterator refers. Entries can be
encoded after this function returns.

• If encoding set-defined data, the set definition database should be passed into this
function. The Transport API will use the specified definition to validate and optimize
content while encoding.

• To reserve space for encoding, a maximum length hint value (associated with the
expected maximum encoded length of set-defined content in this RsslFieldList)
can be passed into this function. If the approximate encoded set data length is not
known, a value of 0 can be passed in.

For more details on local set definitions, refer to Section 11.6.

rsslEncodeFieldListComplete Completes encoding of an RsslFieldList. This function expects the same
RsslEncodeIterator that was used with rsslEncodeFieldListInit and all entries.

• If encoding of all entries was successful, an RsslBool success parameter setting
of true finishes the encoding.

• If encoding of any entry failed, an RsslBool success parameter setting of false
rolls back encoding to the last successfully encoded point in the contents.

Field entries should be encoded prior to this call.

rsslEncodeFieldEntry Encodes an RsslFieldEntry from a primitive type or pre-encoded data, or encodes
an RsslFieldEntry as a blank primitive. This function expects the same
RsslEncodeIterator that was used with rsslEncodeFieldListInit. You must
properly populate RsslFieldEntry.fieldId and RsslFieldEntry.dataType.

• If encoding from pre-encoded data, pass in rsslEncodeFieldEntry via the
RsslFieldEntry.encData parameter and set the void* parameter to NULL.

• If encoding from a primitive type, pass a pointer to the populated primitive type via
the void* parameter and leave RsslFieldEntry.encData empty.

• If encoding a blank value, set the void* parameter to NULL and leave
RsslFieldEntry.encData empty.

Table 111: RsslFieldList Encode Functions
Transport API 3.1.X C Edition – Developers Guide 173
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.1.5 Rippling

The RsslFieldList container supports rippling fields. When rippling, newly received content associated with a fieldId
replaces previously received content associated with the same fieldId. The previously-received content is moved to a new

fieldId (typically indicated in a field dictionary5). Rippling is typically used as a way to reduce bandwidth consumption.
Normally, if previously-received data were still relevant, it would need to be sent with subsequent updates even though the
value was not changing. Rippling allows this data to be removed from subsequent updates; however the consumer must use
the ripple information from a field dictionary to correctly propagate previously received content. Rippling is the responsibility of
the consumer application, and the Transport API does not perform entry rippling.

11.3.1.6 Encoding Example

The following example illustrates how to encode an RsslFieldList. The example encodes four RsslFieldEntry values:

• The first encodes an entry from a primitive RsslDate type

• The second from a pre-encoded buffer containing an encoded RsslUInt

• The third as a blank RsslReal value

• The fourth as an RsslArray complex type. The pattern followed while encoding the fourth entry can be used for
encoding of any container type into an RsslFieldEntry.

This example demonstrates error handling for the initial encode function. To simplify the example, additional error handling is
omitted (though it should be performed). This example shows encoding of standard fieldId-value data.

rsslEncodeFieldEntryInit Encodes an RsslFieldEntry from a complex type, such as a container type or an
array. This function expects the same RsslEncodeIterator that was used with
rsslEncodeFieldListInit. After this call, housed-type encode functions can be
used to encode the contained type. You must properly populate
RsslFieldEntry.fieldId and RsslFieldEntry.dataType.

• A maximum-length hint value, associated with the expected maximum-encoded
length of this field, can be passed into this function to reserve the space needed for
encoding.

• If the approximate encoded length is not known, a value of 0 can be passed in
which allows for up to the maximum content length.

rsslEncodeFieldEntryComplete Completes the encoding of an RsslFieldEntry. This function expects the same
RsslEncodeIterator that was used with rsslEncodeFieldListInit,
rsslEncodeFieldEntryInit, and all other entry encoding.

• If encoding the entry succeeds, setting RsslBool success to true finishes entry
encoding.

• If encoding the entry fails, setting RsslBool success parameter to false rolls back
the encoding of this particular RsslFieldEntry.

5. In the RDM Field Dictionary, the RIPPLES TO column defines the fieldId information to use when rippling.

/* populate field list structure prior to call to rsslEncodeFieldListInit */

/* NOTE: the fieldId, dictionaryId and fieldListNum values used for this example do not correspond to

/* actual id values

ENCODE INTERFACE DESCRIPTION

Table 111: RsslFieldList Encode Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 174
ETAC313UM.180

Chapter 11 Data Package Detailed View
/* indicate that standard data will be encoded and that dictionaryId and fieldListNum are included */

fieldList.flags = RSSL_FLF_HAS_STANDARD_DATA | RSSL_FLF_HAS_FIELD_LIST_INFO;

/* populate dictionaryId and fieldListNum with info needed to cross-reference fieldIds and cache */

fieldList.dictionaryId = 2;

fieldList.fieldListNum = 5;

/* begin encoding of field list - assumes that encIter is already populated with buffer and version

/* information, store return value to determine success or failure */

if ((retVal = rsslEncodeFieldListInit(&encIter, &fieldList, 0, 0)) < RSSL_RET_SUCCESS)

{

/* error condition - switch our success value to false so we can roll back */

success = RSSL_FALSE;

/* print out message with return value string, value, and text */

printf("Error %s (%d) encountered with rsslEncodeFieldListInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* fieldListInit encoding was successful */

/* create a single RsslFieldEntry and reuse for each entry */

RsslFieldEntry fieldEntry = RSSL_INIT_FIELD_ENTRY;

/* stack allocate a date and populate {day, month, year} */

RsslDate rsslDate = {30, 11, 2010};

RsslArray rsslArray = RSSL_INIT_ARRAY;

/* FIRST Field Entry: encode entry from the RsslDate primitive type */

/* populate and encode field entry with fieldId and dataType information for this field */

fieldEntry.fieldId = 16;

fieldEntry.dataType = RSSL_DT_DATE;

retVal = rsslEncodeFieldEntry(&encIter, &fieldEntry, &rsslDate);

/* SECOND Field Entry: encode entry from preencoded buffer containing an encoded RsslUInt type */

/* populate and encode field entry with fieldId and dataType information for this field */

/* because we are re-populating all values on RsslFieldEntry, there is no need to clear it */

fieldEntry.fieldId = 1080;

fieldEntry.dataType = RSSL_DT_UINT;

/* assuming pEncUInt is an RsslBuffer with length and data properly populated */

fieldEntry.encData.length = pEncUInt->length;

fieldEntry.encData.data = pEncUInt->data;

/* void* parameter is passed in as NULL because pre-encoded data is set on RsslFieldEntry itself */

retVal = rsslEncodeFieldEntry(&encIter, &fieldEntry, NULL);

/* THIRD Field Entry: encode entry as a blank RsslReal primitive type */

/* populate and encode field entry with fieldId and dataType information for this field */

/* need to ensure that RsslFieldEntry is appropriately cleared

/* - clearing will ensure that encData is properly emptied */

rsslClearFieldEntry(&fieldEntry);

fieldEntry.fieldId = 22;

fieldEntry.dataType = RSSL_DT_REAL;
Transport API 3.1.X C Edition – Developers Guide 175
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 23: RsslFieldList Encoding Example

/* void* parameter is passed in as NULL and encData is empty due to clearing */

retVal = rsslEncodeFieldEntry(&encIter, &fieldEntry, NULL);

/* FOURTH Field Entry: encode entry as a complex type, RsslArray primitive */

/* populate and encode field entry with fieldId and dataType information for this field */

/* need to ensure that RsslFieldEntry is appropriately cleared

/* - clearing will ensure that encData is properly emptied */

rsslClearFieldEntry(&fieldEntry);

fieldEntry.fieldId = 1021;

fieldEntry.dataType = RSSL_DT_ARRAY;

/* begin complex field entry encoding, we are not sure of the approximate max encoding length */

retVal = rsslEncodeFieldEntryInit(&encIter, &fieldEntry, 0);

{

/* now encode nested container using its own specific encode functions */

/* encode RsslReal values into the array */

rsslArray.primitiveType = RSSL_DT_REAL;

/* values are variable length */

rsslArray.itemLength = 0;

/* begin encoding of array - using same encIterator as field list */

if ((retVal = rsslEncodeArrayInit(&encIter, &rsslArray)) < RSSL_RET_SUCCESS)

/*----- Continue encoding array entries. See example in Section 11.2.7 ---- */

/* Complete nested container encoding */

retVal = rsslEncodeArrayComplete(&encIter, success);

}

/* complete encoding of complex field entry. If any array encoding failed, success is false */

retVal = rsslEncodeFieldEntryComplete(&encIter, success);

}

/* complete fieldList encoding. If success parameter is true, this will finalize encoding.

If success parameter is false, this will roll back encoding prior to rsslEncodeFieldListInit */

retVal = rsslEncodeFieldListComplete(&encIter, success);
Transport API 3.1.X C Edition – Developers Guide 176
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.1.7 Decoding Interfaces

A decoded RsslFieldEntry structure provides access to the encoded content of the field entry. Further decoding of the
entry’s contents can be skipped by invoking the entry decoder to move to the next RsslFieldEntry or the contents can be
further decoded by invoking the decode function of the contained type.

DECODE INTERFACE DESCRIPTION

rsslDecodeFieldList Begins decoding of an RsslFieldList from the RsslBuffer referenced in the
RsslDecodeIterator. This function allows the user to pass local set definitions.

If the RsslFieldList structure contains set-defined data (e.g. if the
RSSL_FLF_HAS_SET_DATA flag is present), the Transport API decodes the set-defined
entries when definitions are present. Otherwise, set-defined entries are skipped while
decoding entries.

rsslDecodeFieldEntry Decodes an RsslFieldEntry, expecting the same RsslDecodeIterator that was used with
rsslDecodeFieldList. This populates encData with the entry’s encoded contents.

• If decoding set-defined entries, the RsslFieldEntry.dataType populates with the type
from the set definition.

• If decoding standard fieldId-value data, RsslFieldEntry.dataType is set to
RSSL_DT_UNKNOWN, indicating that the user must determine the type from a field
dictionary.

After determining the type, the specific decode function can be called if needed. Calling
rsslDecodeFieldEntry again will begin decoding the next entry in the RsslFieldList until
no more entries are available.

Table 112: RsslFieldList Decode Functions
Transport API 3.1.X C Edition – Developers Guide 177
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.1.8 Decoding Example

The following example demonstrates how to decode an RsslFieldList and is structured to decode each entry to the
contained value. This example uses a switch statement to invoke the specific decoder for the contained type, however to
simplify the example, necessary cases and some error handling are omitted. This example uses the same
RsslDecodeIterator when calling the primitive decoder function. An application could optionally use a new
RsslDecodeIterator by setting the encData on a new iterator.

Code Example 24: RsslFieldList Decoding Example

/* decode into the field list structure */

if ((retVal = rsslDecodeFieldList(&decIter, &fieldList, &localSetDefs)) >= RSSL_RET_SUCCESS)

{

/* decode each field entry */

while ((retVal = rsslDecodeFieldEntry(&decIter, &fieldEntry)) != RSSL_RET_END_OF_CONTAINER)

{

if (retVal < RSSL_RET_SUCCESS)

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeFieldEntry. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* look up type in field dictionary and call correct primitive decode function */

switch (fieldDict->entriesArray[fieldEntry->fieldId]->rwfType)

{

case RSSL_DT_REAL:

retVal = rsslDecodeReal(&decIter, &rsslReal);

break;

case RSSL_DT_DATE:

retVal = rsslDecodeDate(&decIter, &rsslDate);

break;

/* full switch statement omitted to shorten sample code */

}

}

}

}

else

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeFieldList. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

Transport API 3.1.X C Edition – Developers Guide 178
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.1.9 Type Utility Functions

The Transport API provides the following utility functions for use with RsslFieldList.

11.3.2 RsslElementList

RsslElementList is a self-describing container type. Each entry, known as an RsslElementEntry, contains an element name,
dataType enumeration, and value. An element list is equivalent to RsslFieldList, where name and type information is

present in each element entry instead of optimized via a field dictionary. An element list can contain zero to N6 entries, where
zero indicates an empty element list.

11.3.2.1 Structure Members

FUNCTION NAME DESCRIPTION

rsslClearFieldList Clears members from an RsslFieldList structure. Useful for structure reuse.

rsslClearFieldEntry Clears members from an RsslFieldEntry structure. Useful for structure reuse.

Table 113: RsslFieldList Utility Functions

6. An element list currently has a maximum entry count of 65,535, where the first 255 entries may contain set-defined types. This type has an approxi-
mate maximum encoded length of 5 gigabytes but may be limited to 65,535 bytes if housed inside of a container entry. The content of element entry
has a maximum encoded length of 65,535 bytes. These limitations can change in subsequent releases.

STRUCTURE MEMBER DESCRIPTION

flags Combination of bit values that indicate whether optional, element-list content is present. For
more information about flag values, refer to Section 11.3.2.2.

elementListNum A two-byte signed integer that refers to an external element-list template, also known as a
record template. A record template contains information about all possible entries contained
in the stream and is typically used by caching mechanisms to pre-allocate storage.

elementListNum values have a range of -32,768 to 32,767.

setId A two-byte unsigned integer that corresponds to the set definition used for encoding or
decoding the set-defined data in this RsslElementList.

• When encoding, this is the set definition used to encode any set-defined content.

• When decoding, this is the set definition used for decoding any set-defined content.

setId values have an allowed range of 0 to 32,767. Currently, only values 0 to 15 are used.
These indicate locally-defined set definition use. If a setId value is not present on a message
containing set-defined data, a setId of 0 is implied.

For more information, refer to Section 11.6.

Table 114: RsslElementList Structure Members
Transport API 3.1.X C Edition – Developers Guide 179
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.2.2 Flag Enumerations

11.3.2.3 RsslElementEntry Structure Members

Each RsslElementList can contain multiple RsslElementEntrys and each RsslElementEntry can house any
RsslDataType, including primitive types (refer to Section 11.2), set-defined types (refer to Section 11.6), or container types. If
an RsslElementEntry is a part of updating information and contains a primitive type, any previously stored or displayed data
is replaced. If an RsslElementEntry contains another container type, action values associated with that type indicate how to
modify data.

encSetData Length and pointer to the encoded set-defined data (encSetData), if any, contained in the
message. If populated, contents are described by the set definition associated with the setId
member.

• If this is populated while encoding, this is assumed to be pre-encoded set data.

• If this is populated while decoding, this represents encoded set data.

For more information, refer to Section 11.6.

encEntries Length and pointer to all encoded element name, dataType, value encoded data, if any,
contained in the message. This would refer to encoded RsslElementList payload and length
information.

FLAG ENUMERATION MEANING

RSSL_ELF_HAS_ELEMENT_LIST_INFO Indicates the presence of the elementListNum member. This member is
provided as part of the initial refresh message on a stream or on the first
refresh message after a CLEAR_CACHE command.

RSSL_ELF_HAS_STANDARD_DATA Indicates that the RsslElementList contains standard element name,
dataType, value-encoded data. You can set this value in addition to
RSSL_ELF_HAS_SET_DATA if both standard and set-defined data are
present in this RsslElementList. If the RsslElementList does not have
entries, do not set this flag value.

RSSL_ELF_HAS_SET_DATA Indicates that RsslElementList contains set-defined data.

• If both standard and set-defined data are present in this
RsslElementList, this value can be set in addition to
RSSL_ELF_HAS_STANDARD_DATA.

• If the RsslElementList does not have entries, do not set this flag
value.

For more information, refer to Section 11.6.

RSSL_ELF_HAS_SET_ID Indicates the presence of a setId and determines the set definition to
use when encoding or decoding set data on this RsslElementList. For
more information, refer to Section 11.6.

Table 115: RsslElementList Flags

STRUCTURE MEMBER DESCRIPTION

Table 114: RsslElementList Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 180
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.2.4 Encoding Interfaces

RsslElementEntry can be encoded from pre-encoded data or by encoding individual data as they are provided.

STRUCTURE
MEMBER

DESCRIPTION

name An RsslBuffer containing the name associated with this RsslElementEntry. Element names are
defined outside of the Transport API, typically as part of a domain model specification or dictionary. A
name can be empty; however this provides no identifying information for the element.

The name buffer allows for content length ranging from 0 bytes to 32,767 bytes.

dataType Defines the RsslDataType of this RsslElementEntry’s contents.

• While encoding, set this to the enumerated value of the target type.

• While decoding, dataType describes the type of contained data so that the correct decoder can
be used.

If set-defined data is used, dataType will indicate any specific RsslDataType information as defined
in the set definition.

encData Length and pointer to the encoded content (encData) of this RsslElementEntry. If populated on
encode functions, this indicates that data is pre-encoded and encDatacopies while encoding. While
decoding, this refers to the encoded RsslElementEntry’s payload and length data.

Table 116: RsslElementEntry Structure Members

ENCODE INTERFACE DESCRIPTION

rsslEncodeElementListInit Begins encoding of an RsslElementList. The Transport API encodes data into the
RsslBuffer referred to by the RsslEncodeIterator. Entries can be encoded after
this function returns.

• If encoding set-defined data, pass the set definition database into this function.
The Transport API uses the specified definition to validate and optimize content
while encoding.

• To reserve space for encoding, a maximum-length hint value (associated with the
expected maximum-encoded length of set-defined content in this
RsslElementList) can be passed into this function. If the approximate length of
encoded set data is not known, you can pass in a value of 0.

For more details on local set definitions, refer to Section 11.6.

rsslEncodeElementListComplete Completes encoding of an RsslElementList. This function expects the same
RsslEncodeIterator that was used with rsslEncodeElementListInit and all
entries.

• If all entries were encoded successfully, an RsslBool success parameter setting
of true finishes encoding.

• If encoding of any entry failed, an RsslBool success parameter setting of false
rolls back encoding to the last successfully encoded point in the contents.

Any element entries should be encoded prior to this call.

Table 117: RsslElementList Encoding Interfaces
Transport API 3.1.X C Edition – Developers Guide 181
ETAC313UM.180

Chapter 11 Data Package Detailed View
rsslEncodeElementEntry Encodes RsslElementEntry from primitive type representation or pre-encoded data
or encodes an RsslElementEntry as a blank primitive. This function expects the
same RsslEncodeIterator that was used with rsslEncodeElementListInit.

• If encoding from pre-encoded data, pass in rsslEncodeElementEntry via the
RsslElementEntry.encData parameter and set the void* parameter to NULL.

• If encoding from a primitive type, pass a pointer to the populated primitive type
via the void* parameter and leave RsslElementEntry.encData empty.

• If encoding a blank value, set the void* parameter to NULL and leave
RsslElementEntry.encData empty.

Call this function for each entry being encoded. RsslElementEntry.name and
RsslElementEntry.dataType must be properly populated.

rsslEncodeElementEntryInit Encodes an RsslElementEntry from a complex type, such as a container type or
an array. This function expects the same RsslEncodeIterator that was used with
rsslEncodeElementListInit. After this call, the encode functions from the housed
type can be used to encode the contained type. You must properly populate
RsslElementEntry.name and RsslElementEntry.dataType.

To reserve an appropriate amount of space while encoding, you can pass a max-
length hint value (associated with the expected maximum-encoded length of this
element) into this function. If the approximate encoded length is not known, you can
pass in a value of 0.

rsslEncodeElementEntryComplete Completes the encoding of an RsslElementEntry. This function expects the same
RsslEncodeIterator that was used with rsslEncodeElementListInit,
rsslEncodeElementEntryInit, and all other entry encoding.

• If this specific entry was encoded successfully, an RsslBool success parameter
setting of true finishes entry encoding.

• If this specific entry was not encoded successfully, an RsslBool success
parameter setting of false rolls back the encoding of only this
RsslElementEntry.

ENCODE INTERFACE DESCRIPTION

Table 117: RsslElementList Encoding Interfaces (Continued)
Transport API 3.1.X C Edition – Developers Guide 182
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.2.5 RsslElementEntry Encoding Example

The following example demonstrates how to encode an RsslElementList and encodes four RsslElementEntry values:

• The first encodes an entry from a primitive RsslTime type

• The second encodes from a pre-encoded buffer containing an encoded RsslUInt

• The third encodes as a blank RsslReal value

• The fourth encodes as an RsslFieldList container type

The pattern used to encode the fourth entry can be used to encode any container type into an RsslElementEntry. This
example demonstrates error handling for the initial encode function. However, additional error handling is omitted to simplify
the example. This example shows the encoding of standard name, dataType, and value data.

/* populate element list structure prior to call to rsslEncodeElementListInit */

/* NOTE: the element names and elementListNum values used for this example may not correspond to actual

/* name values */

/* indicate that standard data will be encoded and that elementListNum is included */

elemList.flags = RSSL_ELF_HAS_STANDARD_DATA | RSSL_ELF_HAS_ELEMENT_LIST_INFO;

/* populate elementListNum with info needed to cache */

elemList.elementListNum = 5;

/* begin encoding of element list - assumes that encIter is already populated with buffer and version

/* information, store return value to determine success or failure */

if ((retVal = rsslEncodeElementListInit(&encIter, &elemList, 0, 0)) < RSSL_RET_SUCCESS)

{

/* error condition - switch our success value to false so we can roll back */

success = RSSL_FALSE;

/* print out message with return value string, value, and text */

printf("Error %s (%d) encountered with rsslEncodeElementListInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* elementListInit encoding was successful */

/* create a single RsslElementEntry and reuse for each entry */

RsslElementEntry elemEntry = RSSL_INIT_ELEMENT_ENTRY;

/* stack allocate a time and populate {hour, minute, second, millisecond} */

RsslTime rsslTime = {10, 21, 16, 777};

RsslFieldList fieldList = RSSL_INIT_FIELD_LIST;

/* FIRST Element Entry: encode entry from the RsslTime primitive type */

/* populate and encode element entry with name and dataType information for this element */

elemEntry.name.data = “Element1 - Primitive”;

elemEntry.name.length = 20;

elemEntry.dataType = RSSL_DT_TIME;

retVal = rsslEncodeElementEntry(&encIter, &elemEntry, &rsslTime);

/* SECOND Element Entry: encode entry from preencoded buffer containing an encoded RsslUInt type */

/* populate and encode element entry with name and dataType information for this element */
Transport API 3.1.X C Edition – Developers Guide 183
ETAC313UM.180

Chapter 11 Data Package Detailed View
/* because we are re-populating all values on RsslElementEntry, there is no need to clear it */

elemEntry.name.data = “Element2 - Pre-Encoded”;

elemEntry.name.length = 22;

elemEntry.dataType = RSSL_DT_UINT;

/* assuming pEncUInt is an RsslBuffer with length and data properly populated */

elemEntry.encData.length = pEncUInt->length;

elemEntry.encData.data = pEncUInt->data;

/* void* parameter is passed in as NULL because pre-encoded data is set on RsslElementEntry itself */

retVal = rsslEncodeElementEntry(&encIter, &elemEntry, NULL);

/* THIRD Element Entry: encode entry as a blank RsslReal primitive type */

/* populate and encode element entry with name and dataType information for this element need to */

/* ensure that RsslElementEntry is appropriately cleared - clearing will ensure that encData is */

/* properly emptied */

rsslClearElementEntry(&elemEntry);

elemEntry.name.data = “Element3 - Blank”;

elemEntry.name.length = 16;

elemEntry.dataType = RSSL_DT_REAL;

/* void* parameter is passed in as NULL and encData is empty due to clearing */

retVal = rsslEncodeElementEntry(&encIter, &elemEntry, NULL);

/* FOURTH Element Entry: encode entry as a container type, RsslFieldList */

/* populate and encode element entry with name and dataType information for this element need to */

/* ensure that RsslElementEntry is appropriately cleared - clearing will ensure that encData is

/* properly emptied */

rsslClearElementEntry(&elemEntry);

elemEntry.name.data = “Element4 - Container”;

elemEntry.name.length = 20;

fieldEntry.dataType = RSSL_DT_FIELD_LIST;

/* begin complex element entry encoding, we are not sure of the approximate max encoding length */

retVal = rsslEncodeElementEntryInit(&encIter, &elemEntry, 0);

{

/* now encode nested container using its own specific encode functions */

/* begin encoding of field list - using same encIterator as element list */

fieldList.flags = RSSL_FLF_HAS_STANDARD_DATA;

if ((retVal = rsslEncodeFieldListInit(&encIter, &fieldList, 0, 0)) < RSSL_RET_SUCCESS)

/*----- Continue encoding field entries. See example in Section 11.3.1.6 ---- */

/* Complete nested container encoding */

retVal = rsslEncodeFieldListComplete(&encIter, success);

}

/* complete encoding of complex element entry. If any field list encoding failed, success is false */

retVal = rsslEncodeElementEntryComplete(&encIter, success);

}

/* complete elementList encoding. If success parameter is true, this will finalize encoding.
Transport API 3.1.X C Edition – Developers Guide 184
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 25: RsslElementList Encoding Example

11.3.2.6 RsslElementList Decoding Interfaces

A decoded RsslElementEntry structure provides access to the encoded content of the element entry. The entry’s contents
can be further decoded by invoking the specific contained type’s decode function or can be skipped by invoking the entry
decoder to move to the next RsslElementEntry.

/* If success parameter is false, this will roll back encoding prior to rsslEncodeElementListInit */

retVal = rsslEncodeElementListComplete(&encIter, success);

DECODE INTERFACE DESCRIPTION

rsslDecodeElementList Begins decoding an RsslElementList. This function will decode from the RsslBuffer
referred to by the passed-in RsslDecodeIterator. This function allows for the user to pass
local set definitions. If the RsslElementList structure contains set-defined data (e.g.,
RSSL_ELF_HAS_SET_DATA is present), the Transport API will decode set-defined entries
when their definitions are present. Otherwise, the Transport API skips set-defined entries
when decoding entries.

rsslDecodeElementEntry Decodes an RsslElementEntry. This function expects the same RsslDecodeIterator used
with rsslDecodeElementList and populates encData with encoded entry contents. After this
function returns, you can use the RsslElementEntry.dataType to invoke the correct
contained type’s decode functions. Calling rsslDecodeElementEntry again will begin
decoding the next entry in the RsslElementList until no more entries are available.

Table 118: RsslElementList Decode Functions
Transport API 3.1.X C Edition – Developers Guide 185
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.2.7 RsslElementList Decoding Examples

The following sample demonstrates how to decode an RsslElementList and is structured to decode each entry to its
contained value. This example uses a switch statement to invoke the specific decoder for the contained type, however for
sample clarity, unnecessary cases have been omitted. This example uses the same RsslDecodeIterator when calling the
primitive decoder function. An application could optionally use a new RsslDecodeIterator by setting the encData on a new
iterator. For simplification, the example omits some error handling.

Code Example 26: RsslElementList Decoding Example

/* decode into the element list structure */

if ((retVal = rsslDecodeElementList(&decIter, &elemList, &localSetDefs)) >= RSSL_RET_SUCCESS)

{

/* decode each element entry */

while ((retVal = rsslDecodeElementEntry(&decIter, &elemEntry)) != RSSL_RET_END_OF_CONTAINER)

{

if (retVal < RSSL_RET_SUCCESS)

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeElementEntry. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* use elemEntry.dataType to call correct primitive decode function */

switch (elemEntry.dataType)

{

case RSSL_DT_REAL:

retVal = rsslDecodeReal(&decIter, &rsslReal);

break;

case RSSL_DT_TIME:

retVal = rsslDecodeTime(&decIter, &rsslTime);

break;

/* full switch statement omitted to shorten sample code */

}

}

}

}

else

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeElementList. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

Transport API 3.1.X C Edition – Developers Guide 186
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.2.8 RsslElementList Utility Functions

The Transport API provides the following utility functions for use with the RsslElementList type:

11.3.3 RsslMap

The RsslMap is a uniform container type of associated key-value pair entries. Each entry, known as an RsslMapEntry,

contains an entry key, which is a base primitive type (Section 11.2) and value. An RsslMap can contain zero to N7 entries,
where zero entries indicate an empty RsslMap.

11.3.3.1 RsslMap Structure Members

An RsslMap structure contains the following Structure Members:

FUNCTION NAME DESCRIPTION

rsslClearElementList Clears members from an RsslElementList structure. Useful for structure reuse.

rsslClearElementEntry Clears members from an RsslElementEntry structure. Useful for structure reuse.

Table 119: RsslElementList Utility Functions

7. An RsslMap currently has a maximum entry count of 65,535. This type has an approximate maximum encoded length of 5 gigabytes but may be
limited to 65,535 bytes if housed inside of a container entry. The content of an RsslMapEntry has a maximum encoded length of 65,535 bytes. These
limitations could be changed in subsequent releases.

STRUCTURE MEMBER DESCRIPTION

flags Combination of bit values to indicate the presence of optional RsslMap content. For more
information about flag values, refer to Section 11.3.3.2.

keyPrimitiveType The RsslDataType enumeration value that describes the base primitive type of each
RsslMapEntry’s key. keyPrimitiveType accepts values between 1 and 63, cannot be
specified as blank, and cannot be the RSSL_DT_ARRAY or RSSL_DT_UNKNOWN
primitive types.

For more information about base primitive types, refer to Section 11.2.

keyFieldId (Optional) Specifies a fieldId associated with the entry key information. This is mainly
used as an optimization to avoid inclusion of redundant data. In situations where key
information is also a member of the entry payload (e.g., Order Id for Market By Order
domain type), this allows removal of data from each entry’s payload prior to encoding as
it is already present via the key and keyFieldId.

keyFieldId has an allowable range of -32,768 to 32,767 where positive values are
Thomson Reuters-defined and negative values are user-defined.

containerType The RsslDataType enumeration value that describes the container type of each
RsslMapEntry’s payload.

Table 120: RsslMap Structure Members
Transport API 3.1.X C Edition – Developers Guide 187
ETAC313UM.180

Chapter 11 Data Package Detailed View
totalCountHint A four-byte unsigned integer that indicates an approximate total number of entries
associated with this stream. This is typically used when multiple RsslMap containers are
spread across multiple parts of a refresh message (for more information about message
fragmentation and multi-part message handling, refer to Section 13.1). totalCountHint
provides an approximation of the total number of entries sent across all maps on all parts
of the refresh message. This information is useful when determining the amount of
resources to allocate for caching or displaying all expected entries.

totalCountHint values have a range of 0 to 1,073,741,824.

encSummaryData Length and pointer to the encoded summary data, if any, contained in the message. If
populated, summary data contains information that applies to every entry encoded in the
RsslMap (e.g., currency type). The container type of summary data should match the
containerType specified on the RsslMap. If encSummaryData is populated while
encoding, contents are used as pre-encoded summary data.

Encoded summary data has maximum allowed length of 32,767 bytes.

For more information, refer to Section 11.5.

encSetDefs Length and pointer to the encoded local set definitions, if any, contained in the message.
If populated, these definitions correspond to data contained within the RsslMap’s entries
and are used for encoding or decoding their contents.

Encoded local set definitions have a maximum allowed length of 32,767 bytes.

For more information, refer to Section 11.6.

encEntries Length and pointer to the all encoded key-value pair data, if any, contained in the
message. This would refer to encoded RsslMap payload and length information.

STRUCTURE MEMBER DESCRIPTION

Table 120: RsslMap Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 188
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.3.2 RsslMap Flag Enumeration Values

11.3.3.3 RsslMapEntry Structure Members

RsslMapEntrys can house only other container types. RsslMap is a uniform type, where the RsslMap.containerType
indicates the single type housed in each entry. Each entry has an associated action which informs the user of how to apply the
information contained in the entry.

FLAG ENUMERATION MEANING

RSSL_MPF_HAS_KEY_FIELD_ID Indicates the presence of the keyFieldId member. keyFieldId should
be provided if the key information is also a field that would be contained
in the entry payload. This optimization allows keyFieldId to be included
once instead of in every entry’s payload.

RSSL_MPF_HAS_TOTAL_COUNT_HINT Indicates the presence of the totalCountHint member. This member
can provide an approximation of the total number of entries sent across
all maps on all parts of the refresh message. This information is useful
when determining the amount of resources to allocate for caching or
displaying all expected entries.

RSSL_MPF_HAS_PER_ENTRY_PERM_DATA Indicates that permission information is included with some map entries.
The RsslMap encoding functionality sets this flag value on the user’s
behalf if any entry is encoded with its own permData. A decoding
application can check this flag to determine if any contained entry has
permData, often useful for fan out devices (if an entry does not have
permData, the fan out device can likely pass on data and not worry about
special permissioning for the entry). Each entry will also indicate the
presence of permission data via the use of
RSSL_MPEF_HAS_PERM_DATA.

RSSL_MPF_HAS_SUMMARY_DATA Indicates that the RsslMap contains summary data. If this flag is set while
encoding, summary data must be provided by encoding or populating
encSummaryData with pre-encoded information. If this flag is set while
decoding, summary data is contained as part of the RsslMap and the
user can choose whether to decode it.

RSSL_MPF_HAS_SET_DEFS Indicates that the RsslMap contains local set definition information. Local
set definitions correspond to data contained within this RsslMap’s entries
and are used for encoding or decoding their contents. For more
information, refer to Section 11.6.

Table 121: RsslMap Flags

STRUCTURE MEMBER DESCRIPTION

flags Combination of bit values to indicate the presence of any optional RsslMapEntry content. For
more information about flag values, refer to Table 11.3.3.4.

action The entry action helps to manage change processing rules and tells the consumer how to
apply the information contained in the entry. For specific information about possible action’s
associated with an RsslMapEntry, refer to Table 11.3.3.5.

Table 122: RsslMapEntry Structure Members
Transport API 3.1.X C Edition – Developers Guide 189
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.3.4 RsslMapEntry Flag Enumeration Value

11.3.3.5 RsslMapEntry Action Enumeration Values

encKey Length and pointer to the encoded map entry key information. The encoded type of the key
corresponds to the RsslMap’s keyPrimitiveType. The key value must be a base primitive
type and cannot be blank, RSSL_DT_ARRAY, or RSSL_DT_UNKNOWN primitive types. If
populated on encode functions, this indicates that the key is pre-encoded and encKey will be
copied while encoding. While decoding, this would contain only this encoded RsslMapEntry
key’s payload and length information.

permData (Optional) Specifies authorization information for this specific entry. If present,
RSSL_MPEF_HAS_PERM_DATA should be set. permData has a maximum allowed length
of 32,767 bytes.

• For more information on permissioning, refer to Section 11.4.

• For more information about RsslMapEntry flag values, refer to Table 11.3.3.4.

encData Length and pointer to the encoded content of this RsslMapEntry. If populated on encode
functions, this indicates that data is pre-encoded, and encData will be copied while encoding.
While decoding, this would refer to this encoded RsslMapEntry’s payload and length
information.

FLAG ENUMERATION MEANING

RSSL_MPEF_HAS_PERM_DATA Indicates that the container entry includes a permData member and also specifies any
authorization information for this entry. For more information, refer to Section 11.4.

Table 123: RsslMapEntry Flags

ACTION ENUMERATION MEANING

RSSL_MPEA_ADD_ENTRY Indicates that the consumer should add the entry. An add action typically occurs when
an entry is initially provided. It is possible for multiple add actions to occur for the same
entry. If this occurs, any previously received data associated with the entry should be
replaced with the newly added information.

RSSL_MPEA_UPDATE_ENTRY Indicates that the consumer should update any previously stored or displayed
information with the contents of this entry. An update action typically occurs when an
entry has already been added and changes to the contents need to be conveyed. If an
update action occurs prior to the add action for the same entry, the update action should
be ignored.

RSSL_MPEA_DELETE_ENTRY Indicates that the consumer should remove any stored or displayed information
associated with the entry. No map entry payload is included when the action is delete.

Table 124: RsslMapEntry Actions

STRUCTURE MEMBER DESCRIPTION

Table 122: RsslMapEntry Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 190
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.3.6 RsslMapEntry Encoding Interfaces

An RsslMapEntry can be encoded from pre-encoded data or by encoding individual pieces of information as they are
provided.

ENCODE INTERFACE DESCRIPTION

rsslEncodeMapInit Begins encoding of an RsslMap which can include summary data (Section 11.5)
and local set definitions (Section 11.2).

• If summary data and set definitions are pre-encoded, they can be populated
on the encSummaryData and encSetDefs prior to calling
rsslEncodeMapInit. Additional work is not needed to complete encoding
this content.

• If summary data and set definitions are not pre-encoded,
rsslEncodeMapInit performs the Init for these values. You must call the
corresponding Complete functions after this content is encoded.

• Summary data and set definition encoded length hint values can be passed
into this function to reserve the appropriate amount of space while encoding.
If either is not being encoded or the approximate encoded length is unknown,
a value of 0 can be passed in. This is required only when content is not pre-
encoded.

rsslEncodeMapComplete Completes the encoding of an RsslMap. This function expects the same
RsslEncodeIterator that was used with rsslEncodeMapInit, any summary
data, set data, and all entries.

• If encoding was successful, the RsslBool success parameter should be set
to true to finish encoding.

• If encoding of any component failed, the RsslBool success parameter
should be set to false to roll back to the last previously successful encoded
point in the contents.

All map content should be encoded prior to this call.

rsslEncodeMapSummaryDataComplete Completes encoding of any non-pre-encoded RsslMap summary data. If
RSSL_MPF_HAS_SUMMARY_DATA is set and encSummaryData is not
populated, summary data is expected after rsslEncodeMapInit or
rsslEncodeMapSetDefsComplete returns. This function expects the same
RsslEncodeIterator that was used with previous map encoding functions.

• If encoding of summary data was successful, the RsslBool success
parameter should be true to finish encoding.

• If encoding of summary data failed, the RsslBool success parameter should
be set to false to roll back to the last previously successful encoded point in
the contents.

If both RSSL_MPF_HAS_SUMMARY_DATA and
RSSL_MPF_HAS_SET_DEFS are present, then set definitions are expected
first, and summary data is encoded after the call to
rsslEncodeMapSetDefsComplete.

Table 125: RsslMapEntry Encode Functions
Transport API 3.1.X C Edition – Developers Guide 191
ETAC313UM.180

Chapter 11 Data Package Detailed View
rsslEncodeMapSetDefsComplete Completes encoding of any non pre-encoded local set definition data. If
RSSL_MPF_HAS_SET_DEFS is set and encSetDefs is not populated, local set
definition data is expected after rsslEncodeMapInit returns. This function
expects the same RsslEncodeIterator that was used with
rsslEncodeMapInit.

• If set definition data is encoded successfully, the RsslBool success
parameter should be true to finish encoding.

• If set definition data failed to encode, the RsslBool success parameter
should be set to false to roll back to the last previously successful encoded
point in the contents.

If both RSSL_MPF_HAS_SUMMARY_DATA and
RSSL_MPF_HAS_SET_DEFS are present, set definitions are expected first,
while any summary data is encoded after the call to
rsslEncodeMapSetDefsComplete.

rsslEncodeMapEntry Encodes an RsslMapEntry from pre-encoded data. This function expects the
same RsslEncodeIterator that was used with rsslEncodeMapInit. The pre-
encoded map entry payload can be passed in via the RsslMapEntry.encData
parameter.

• If the entry key is pre-encoded, this can be passed in via
RsslMapEntry.encKey void* set to NULL.

• If the entry key is not pre-encoded, a pointer to the primitive key
representation can be passed in via void* without populating encKey.

This function is called after rsslEncodeMapInit and after completing any
summary data and local set definition data encoding.

rsslEncodeMapEntryInit Encodes an RsslMapEntry from a container type. This function expects the
same RsslEncodeIterator used with rsslEncodeMapInit. After this call,
housed-type encode functions can be used to encode contained types.

• If the entry key is pre-encoded, it can be passed in via RsslMapEntry.encKey
with void* set to NULL.

• If the entry key is not pre-encoded, a pointer to the primitive key
representation can be passed in via void* without populating encKey.

This function would be called after rsslEncodeMapInit and any summary data
and local set definition data encoding has been completed. A max length hint
value, associated with the expected maximum encoded length of this entry, can
be passed into this function to allow for appropriate space to be reserved while
encoding. If the approximate encoded length is unknown, a value of 0 can be
passed in.

rsslEncodeMapEntryComplete Completes the encoding of an RsslMapEntry. This function expects the same
RsslEncodeIterator used with rsslEncodeMapInit,
rsslEncodeMapEntryInit, and all other encoding for this container.

• If encoding of this specific map entry was successful, the RsslBool success
parameter should be set to true to finish entry encoding.

• If encoding of this specific entry failed, the RsslBool success parameter
should be set to false to roll back the encoding of only this RsslMapEntry.

ENCODE INTERFACE DESCRIPTION

Table 125: RsslMapEntry Encode Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 192
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.3.7 RsslMapEntry Encoding Example

The following sample illustrates the encoding of an RsslMap containing RsslFieldList values. The example encodes three
RsslMapEntry values as well as summary data:

• The first entry is encoded with an update action type and a passed in key value.

• The second entry is encoded with an add action type, pre-encoded data, and pre-encoded key.

• The third entry is encoded with a delete action type.

This example also demonstrates error handling for the initial encode function. To simplify the example, additional error
handling is omitted, though it should be performed.

/* populate map structure prior to call to rsslEncodeMapInit */

/* NOTE: the key names used for this example may not correspond to actual name values */

/* indicate that summary data and a total count hint will be encoded */

rsslMap.flags = RSSL_MPF_HAS_SUMMARY_DATA | RSSL_MPF_HAS_TOTAL_COUNT_HINT;

/* populate maps keyPrimitiveType and containerType */

rsslMap.containerType = RSSL_DT_FIELD_LIST;

rsslMap.keyPrimitiveType = RSSL_DT_UINT;

/* populate total count hint with approximate expected entry count */

rsslMap.totalCountHint = 3;

/* begin encoding of map - assumes that encIter is already populated with buffer and version */

/* information, store return value to determine success or failure */

/* expect summary data of approx. 100 bytes, no set definition data */

if ((retVal = rsslEncodeMapInit(&encIter, &rsslMap, 100, 0)) < RSSL_RET_SUCCESS)

{

/* error condition - switch our success value to false so we can roll back */

success = RSSL_FALSE;

/* print out message with return value string, value, and text */

printf("Error %s (%d) encountered with rsslEncodeMapInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* mapInit encoding was successful */

/* create a single RsslMapEntry and RsslFieldList and reuse for each entry */

RsslMapEntry mapEntry = RSSL_INIT_MAP_ENTRY;

RsslFieldList fieldList = RSSL_INIT_FIELD_LIST;

RsslUInt entryKeyUInt = 0;

/* encode expected summary data, init for this was done by rsslEncodeMapInit - this type should */

/* match rsslMap.containerType */

{

/* now encode nested container using its own specific encode functions */

/* begin encoding of field list - using same encIterator as map list */

fieldList.flags = RSSL_FLF_HAS_STANDARD_DATA;

if ((retVal = rsslEncodeFieldListInit(&encIter, &fieldList, 0, 0)) < RSSL_RET_SUCCESS)
Transport API 3.1.X C Edition – Developers Guide 193
ETAC313UM.180

Chapter 11 Data Package Detailed View
/*----- Continue encoding field entries. Refer to the example in Section 11.3.1.6 ---- */

/* Complete nested container encoding */

retVal = rsslEncodeFieldListComplete(&encIter, success);

}

/* complete encoding of summary data. If any field list encoding failed, success is false */

retVal = rsslEncodeMapSummaryDataComplete(&encIter, success);

/* FIRST Map Entry: encode entry from non pre-encoded data and key. Approx. encoded length unknown */

mapEntry.action = RSSL_MPEA_UPDATE_ENTRY;

entryKeyUInt = 1;

retVal = rsslEncodeMapEntryInit(&encIter, &mapEntry, &entryKeyUInt, 0);

/* encode contained field list - this type should match rsslMap.containerType */

{

/* now encode nested container using its own specific encode functions */

/* clear, then begin encoding of field list - using same encIterator as map */

rsslClearFieldList(&fieldList);

fieldList.flags = RSSL_FLF_HAS_STANDARD_DATA;

if ((retVal = rsslEncodeFieldListInit(&encIter, &fieldList, 0, 0)) < RSSL_RET_SUCCESS)

/*----- Continue encoding field entries. Refer to the example in Section 11.3.1.6 ---- */

/* Complete nested container encoding */

retVal = rsslEncodeFieldListComplete(&encIter, success);

}

retVal = rsslEncodeMapEntryComplete(&encIter, success);

/* SECOND Map Entry: encode entry from pre-encoded buffer containing an encoded RsslFieldList */

/* because we are re-populating all values on RsslMapEntry, there is no need to clear it */

mapEntry.action = RSSL_MPEA_ADD_ENTRY;

/* assuming pEncUInt RsslBuffer contains the pre-encoded key with length and data properly populated

/*

mapEntry.encKey.length = pEncUInt->length;

mapEntry.encKey.data = pEncUInt->data;

/* assuming pEncFieldList RsslBuffer contains the pre-encoded payload with data and length populated

/*

mapEntry.encData.length = pEncFieldList->length;

mapEntry.encData.data = pEncFieldList->data;

/* void* parameter is passed in as NULL because pre-encoded key is set on RsslMapEntry itself */

retVal = rsslEncodeMapEntry(&encIter, &mapEntry, NULL);

/* THIRD Map Entry: encode entry with delete action. Delete actions have no payload */

/* need to ensure that RsslMapEntry is appropriately cleared

/* - clearing will ensure that encData and encKey are properly emptied */

rsslClearMapEntry(&mapEntry);

mapEntry.action = RSSL_MPEA_DELETE_ENTRY;

entryKeyUInt = 3;
Transport API 3.1.X C Edition – Developers Guide 194
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 27: RsslMap Encoding Example

11.3.3.8 RsslMapEntry Decoding Interfaces

A decoded RsslMapEntry structure provides access to the encoded content of the map entry. You can skip further decoding of
the entry’s content by invoking the entry decoder to move to the next RsslMapEntry or you can further decode the contents by
invoking the specific contained-type’s decode function.

11.3.3.9 RsslMapEntry Decode Example

The following sample demonstrates the decoding of an RsslMap and is structured to decode each entry to the contained value.
This sample assumes that the housed container type is an RsslFieldList and that the keyPrimitiveType is RSSL_DT_INT.
This sample also uses the rsslDecodeMapEntry function to perform key decoding. Typically an application would invoke the
specific container-type decoder for the housed type or use a switch statement to allow for a more generic map entry decoder.
This example uses the same RsslDecodeIterator when calling the content’s decoder function. An application could
optionally use a new RsslDecodeIterator by setting the encData on a new iterator. To simplify the sample, some error
handling is omitted.

/* void* parameter is passed in as pointer to key primitive value. encData is empty for delete */

retVal = rsslEncodeMapEntry(&encIter, &mapEntry, &entryKeyUInt);

}

/* complete map encoding. If success parameter is true, this will finalize encoding.

/* If success parameter is false, this will roll back encoding prior to rsslEncodeMapInit */

retVal = rsslEncodeMapComplete(&encIter, success);

DECODE INTERFACE DESCRIPTION

rsslDecodeMap Begins decoding an RsslMap. This function will decode from the RsslBuffer referred to by
the passed-in RsslDecodeIterator.

rsslDecodeMapEntry Decodes an RsslMapEntry and can optionally decode the RsslMapEntry.encKey. This
function expects the same RsslDecodeIterator that was used with rsslDecodeMap. This
populates encData with encoded entry contents and encKey with the encoded entry key. After
this function returns, you can use the RsslMap.containerType to invoke the correct
contained-type’s decode functions. Calling rsslDecodeMapEntry again continues the
decoding of the next entry in the RsslMap until no more entries are available.

• If void* parameter is NULL, decoding of entry key is not performed.

• If void* is passed in as a pointer to the type defined in RsslMap.keyPrimitiveType, the
entry key will also be decoded into the passed-in primitive.

As entries are received, the action indicates how to apply contents.

Table 126: RsslMapEntry Decode Functions

/* decode contents into the map structure */

if ((retVal = rsslDecodeMap(&decIter, &rsslMap)) >= RSSL_RET_SUCCESS)

{

/* create primitive value to have key decoded into and a single map entry to reuse */

RsslInt rsslInt = 0;

RsslMapEntry mapEntry = RSSL_INIT_MAP_ENTRY;

/* if summary data is present, invoking decoder for that type (instead of DecodeEntry)
Transport API 3.1.X C Edition – Developers Guide 195
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 28: RsslMap Decoding Example

11.3.3.10 RsslMap Utility Functions

The Transport API provides the following utility functions to aid with the use of the RsslMap type:

/* indicates to UPA that user wants to decode summary data */

if (rsslMap.flags & RSSL_MPF_HAS_SUMMARY_DATA)

{

/* summary data is present. Its type should be an rsslMap.containerType */

RsslFieldList fieldList;

retVal = rsslDecodeFieldList(&decIter, &fieldList, 0);

/* Continue decoding field entries. Refer to the example in Section 11.3.1.8 */

}

/* decode each map entry, passing in pointer to keyPrimitiveType decodes mapEntry key as well */

while ((retVal = rsslDecodeMapEntry(&decIter, &mapEntry, &rsslInt)) != RSSL_RET_END_OF_CONTAINER)

{

if (retVal < RSSL_RET_SUCCESS)

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeMapEntry. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

RsslFieldList fieldList;

retVal = rsslDecodeFieldList(&decIter, &fieldList, 0);

/* Continue decoding field entries. Refer to the example in Section 11.3.1.8 */

}

}

}

else

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeMap. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

FUNCTION NAME DESCRIPTION

rsslClearMap Clears members from an RsslMsg structure. Useful for structure reuse.

rsslClearMapEntry Clears members from an RsslMapEntry structure. Useful for structure reuse.

Table 127: RsslMap Utility Functions
Transport API 3.1.X C Edition – Developers Guide 196
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.4 RsslSeries

The RsslSeries is a uniform container type. Each entry, known as an RsslSeriesEntry, contains only encoded data. This
container is often used to represent table-based information, where no explicit indexing is present or required. An RsslSeries

can contain zero to N8 entries, where zero entries indicates an empty RsslSeries.

11.3.4.1 RsslSeries Structure Members

i

8. An RsslSeries currently has a maximum entry count of 65,535. This type has an approximate maximum encoded length of 4 gigabytes but may
be limited to 65,535 bytes if housed inside of a container entry. The content of an RsslSeriesEntry has a maximum encoded length of 65,535
bytes. These limitations can change in subsequent releases.

STRUCTURE MEMBER DESCRIPTION

flags A combination of bit values (flags) that indicates the presence of optional RsslSeries
content. For more information about flag values, refer to Section 11.3.4.2.

containerType The RsslDataType enumeration value that describes the container type of each
RsslSeriesEntry’s payload.

totalCountHint A four-byte unsigned integer that indicates an approximate total number of entries
associated with this stream.

This is typically used when multiple RsslSeries containers are spread across multiple
parts of a refresh message (For more information about message fragmentation and
multi-part message handling, refer to Section 13.1). The totalCountHint provides an
approximation of the total number of entries sent across all series on all parts of the
refresh message. This information is useful when determining the amount of resources to
allocate for caching or displaying all expected entries.

totalCountHint values have a range of 0 to 1,073,741,824.

encSummaryData Sets the length and pointer to encoded summary data, if any, contained in the message.
If populated, summary data contains information that applies to every entry encoded in
the RsslSeries (e.g., currency type). The container type of summary data should match
the containerType specified on the RsslSeries. If encSummaryData is populated while
encoding, the contents will be used as pre-encoded summary data. For more
information, refer to Section 11.5.

Encoded summary data a maximum allowed length of 32,767 bytes.

encSetDefs Sets the length and pointer to the encoded local set definitions, if any, contained in the
message. If populated, these definitions correspond to data contained within this
RsslSeries’s entries and are used to encode or decode their contents. For more
information, refer to Section 11.6.

Encoded local set definitions have a maximum allowed length of 32,767 bytes.

encEntries Sets the length and pointer to the all encoded key-value pair encoded data, if any,
contained in the message. This refers to encoded RsslSeries payload and length data.

Table 128: RsslSeries Structure Members
Transport API 3.1.X C Edition – Developers Guide 197
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.4.2 RsslSeries Flag Enumeration Values

11.3.4.3 RsslSeriesEntry Structure Members

Each RsslSeriesEntry can house other Container Types only. RsslSeries is a uniform type, where
RsslSeries.containerType indicates the single type housed in each entry. As entries are received, they are appended to
any previously received entries.

FLAG ENUMERATION MEANING

RSSL_SRF_HAS_TOTAL_COUNT_HINT Indicates the presence of the totalCountHint member, which can provide an
approximation of the total number of entries sent across maps on all parts of
the refresh message. Such information is useful when determining resource
allocation for caching or displaying all expected entries.

RSSL_SRF_HAS_SUMMARY_DATA Indicates that the RsslSeries contains summary data.

• If set while encoding, summary data must be provided by encoding or
populating encSummaryData with pre-encoded information.

• If set while decoding, summary data is contained as part of RsslSeries
and the user can choose to decode it.

RSSL_SRF_HAS_SET_DEFS Indicates that the RsslSeries contains local set definition information. Local
set definitions correspond to data contained in this RsslSeries’s entries and
encode or decode their contents.

For more information, refer to Section 11.6.

Table 129: RsslSeries Flags

STRUCTURE
MEMBER

DESCRIPTION

encData Length and pointer to the encoded content of this RsslSeriesEntry.

• If populated on encode functions, this indicates that data is pre-encoded and encData will be
copied while encoding.

• If populated while decoding, this refers to this encoded RsslSeriesEntry’s payload and length
data.

Table 130: RsslSeriesEntry Structure Members
Transport API 3.1.X C Edition – Developers Guide 198
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.4.4 RsslSeriesEntry Encoding Interfaces

An RsslSeriesEntry can be encoded from pre-encoded data or by encoding individual pieces of information as they are
provided.

ENCODE INTERFACE DESCRIPTION

rsslEncodeSeriesInit Begins encoding an RsslSeries and allows for the encoding of summary data
(Section 11.5) and local set definitions (Section 11.6). Further summary data,
set definitions, or entries can be encoded after this function returns.

• If summary data or set definitions are pre-encoded they can be populated
on the encSummaryData and encSetDefs prior to calling
rsslEncodeSeriesInit. No additional work is needed to complete the
encoding of this content.

• If summary data or set definitions are not pre-encoded,
rsslEncodeSeriesInit will perform the Init for these components. After
this content is encoded, the corresponding Complete functions must be
called.

• Summary data and set definition encoded length hint values can be passed
into this function to reserve space while encoding. If either is not being
encoded or the approximate encoded length is unknown, a value of 0 can
be passed in. This is only needed when the content is not pre-encoded.

rsslEncodeSeriesComplete Completes the encoding of an RsslSeries. This function expects the same
RsslEncodeIterator used with rsslEncodeSeriesInit, any summary data,
set data, and all entries.

• If encoding was successful, the RsslBool success parameter should be
set to true to finish encoding.

• If the encoding of any component failed, the RsslBool success parameter
should be false to roll back to the last previously successful encoded point
in the contents.

All series content should be encoded prior to this call.

rsslEncodeSeriesSummaryDataComplete Completes the encoding of any non-pre-encoded RsslSeries summary data.
If the RSSL_SRF_HAS_SUMMARY_DATA flag is set and encSummaryData is
not populated, summary data is expected after rsslEncodeSeriesInit or
rsslEncodeSeriesSetDefsComplete returns. This function expects the same
RsslEncodeIterator used with previous series encoding functions.

• If encoding of summary data was successful, the RsslBool success
parameter should be true to finish encoding.

• If encoding of summary data failed, the RsslBool success parameter
should be false to roll back to the encoding prior to summary data.

• If both RSSL_SRF_HAS_SUMMARY_DATA and
RSSL_SRF_HAS_SET_DEFS are present, set definitions are expected
first, while any summary data is encoded after the call to
rsslEncodeSeriesSetDefsComplete.

Table 131: RsslSeries Encode Functions
Transport API 3.1.X C Edition – Developers Guide 199
ETAC313UM.180

Chapter 11 Data Package Detailed View
rsslEncodeSeriesSetDefsComplete Completes encoding of any non pre-encoded local set definition data. If the
RSSL_SRF_HAS_SET_DEFS flag is set and encSetDefs is not populated,
local set definition data is expected after rsslEncodeSeriesInit returns. This
function expects the same RsslEncodeIterator used with
rsslEncodeSeriesInit.

• If encoding of set definition data was successful, the RsslBool success
parameter should be true to finish encoding.

• If encoding of set definition data failed, the RsslBool success parameter
should be false to roll back to the encoding prior to set definition data.

If both RSSL_SRF_HAS_SUMMARY_DATA and
RSSL_SRF_HAS_SET_DEFS are present, set definitions are expected first,
while any summary data is encoded after the call to
rsslEncodeSeriesSetDefsComplete.

rsslEncodeSeriesEntry Encodes an RsslSeriesEntry from pre-encoded data. This function expects
the same RsslEncodeIterator used with rsslEncodeSeriesInit. The pre-
encoded series entry payload can be passed in via
RsslSeriesEntry.encData. rsslEncodeSeriesEntry is called after
rsslEncodeSeriesInit and any summary data and local set definition data
encoding has been completed.

rsslEncodeSeriesEntryInit Encodes an RsslSeriesEntry from a container type.
rsslEncodeSeriesEntryInit expects the same RsslEncodeIterator used
with rsslEncodeSeriesInit. After this call, you can use housed-type encode
functions to encode the contained type. The contained type’s encode function
would be called after rsslEncodeSeriesInit and any summary data and
local set definition data encoding has been completed.

A max length hint value, associated with the expected maximum encoded
length of this entry, can be passed into this function reserve space while
encoding. If the approximate encoded length is not known, a value of 0 can be
passed in.

rsslEncodeSeriesEntryComplete Completes the encoding of an RsslSeriesEntry. This function expects the
same RsslEncodeIterator used with rsslEncodeSeriesInit,
rsslEncodeSeriesEntryInit, and all other encoding for this container.

• If encoding was successful, the RsslBool success parameter should be
true to finish entry encoding.

• If encoding of this specific entry fails, RsslBool success parameter should
be false to roll back the encoding of only this RsslSeriesEntry.

ENCODE INTERFACE DESCRIPTION

Table 131: RsslSeries Encode Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 200
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.4.5 RsslSeries Encoding Example

The following sample illustrates how to encode an RsslSeries containing RsslElementList values. The example encodes
two RsslSeriesEntry values as well as summary data.

• The first entry is encoded from an unencoded element list.

• The second entry is encoded from a buffer containing a pre-encoded element list.

The example demonstrates error handling for the initial encode function. To simplify the example, additional error handling is
omitted, though it should be performed.

/* populate series structure prior to call to rsslEncodeSeriesInit */

/* indicate that summary data and a total count hint will be encoded */

rsslSeries.flags = RSSL_SRF_HAS_SUMMARY_DATA | RSSL_SRF_HAS_TOTAL_COUNT_HINT;

/* populate containerType and total count hint */

rsslSeries.containerType = RSSL_DT_ELEMENT_LIST;

rsslSeries.totalCountHint = 2;

/* begin encoding of series - assumes that encIter is already populated with buffer and version

/* information, store return value to determine success or failure */

/* summary data approximate encoded length is unknown, pass in 0 */

if ((retVal = rsslEncodeSeriesInit(&encIter, &rsslSeries, 0, 0)) < RSSL_RET_SUCCESS)

{

/* error condition - switch our success value to false so we can roll back */

success = RSSL_FALSE;

/* print out message with return value string, value, and text */

printf("Error %s (%d) encountered with rsslEncodeSeriesInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* series init encoding was successful */

/* create a single RsslSeriesEntry and RsslElementList and reuse for each entry */

RsslSeriesEntry seriesEntry = RSSL_INIT_SERIES_ENTRY;

RsslElementList elementList = RSSL_INIT_ELEMENT_LIST;

/* encode expected summary data, init for this was done by rsslEncodeSeriesInit - this type should

/* match rsslSeries.containerType */

{

/* now encode nested container using its own specific encode functions */

/* begin encoding of element list - using same encIterator as series */

elementList.flags = RSSL_ELF_HAS_STANDARD_DATA;

if ((retVal = rsslEncodeElementListInit(&encIter, &elementList, 0, 0)) < RSSL_RET_SUCCESS)

/*----- Continue encoding element entries. See example in Section 11.3.2 ---- */

/* Complete nested container encoding */

retVal = rsslEncodeElementListComplete(&encIter, success);

}

Transport API 3.1.X C Edition – Developers Guide 201
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 29: RsslSeries Encoding Example

/* complete encoding of summary data. If any element list encoding failed, success is false */

retVal = rsslEncodeSeriesSummaryDataComplete(&encIter, success);

/* FIRST Series Entry: encode entry from unencoded data. Approx. encoded length unknown */

retVal = rsslEncodeSeriesEntryInit(&encIter, &seriesEntry, 0);

/* encode contained element list - this type should match rsslSeries.containerType */

{

/* now encode nested container using its own specific encode functions */

/* clear, then begin encoding of element list - using same encIterator as series */

rsslClearElementList(&elementList);

elementList.flags = RSSL_ELF_HAS_STANDARD_DATA;

if ((retVal = rsslEncodeElementListInit(&encIter, &elementList, 0, 0)) < RSSL_RET_SUCCESS)

/*----- Continue encoding element entries. See example in Section 11.3.2 ---- */

/* Complete nested container encoding */

retVal = rsslEncodeElementListComplete(&encIter, success);

/* SECOND Series Entry: encode entry from pre-encoded buffer containing an encoded RsslElementList */

/* assuming pEncElementList RsslBuffer contains the pre-encoded payload with data and length */

/* populated */

seriesEntry.encData.length = pEncElementList->length;

seriesEntry.encData.data = pEncElementList->data;

retVal = rsslEncodeSeriesEntry(&encIter, &seriesEntry);

}

/* complete series encoding. If success parameter is true, this will finalize encoding.

/* If success parameter is false, this will roll back encoding prior to rsslEncodeSeriesInit */

retVal = rsslEncodeSeriesComplete(&encIter, success);
Transport API 3.1.X C Edition – Developers Guide 202
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.4.6 RsslSeriesEntry Decoding Interfaces

A decoded RsslSeriesEntry structure provides access to the encoded content of the series entry. Further decoding of the
entry’s content can be skipped (by invoking the entry decoder to move to the next RsslSeriesEntry) or the contents can be
further decoded (by invoking the specific contained type’s decode function).

11.3.4.7 RsslSeries Decoding Example

The following sample illustrates how to decode an RsslSeries and is structured to decode each entry to the contained value.
The sample code assumes the housed container type is an RsslElementList. Typically an application invokes the specific
container type decoder for the housed type or uses a switch statement to allow for a more generic series entry decoder. This
example uses the same RsslDecodeIterator when calling the content’s decoder function. An application could optionally use
a new RsslDecodeIterator by setting encData on a new iterator. To simplify the sample, some error handling is omitted.

DECODE INTERFACE DESCRIPTION

rsslDecodeSeries Begins decoding an RsslSeries. This function decodes from the RsslBuffer specified by
RsslDecodeIterator.

rsslDecodeSeriesEntry Decodes an RsslSeriesEntry. This function expects the same RsslDecodeIterator used
with rsslDecodeSeries and populates encData with encoded entry. After
rsslDecodeSeriesEntry returns, you can use RsslSeries.containerType to invoke the
correct contained type’s decode functions. Calling rsslDecodeSeriesEntry again decodes
the next entry in the RsslSeries until no more entries are available. As entries are received,
they are appended to previously received entries.

Table 132: RsslSeries Decode Functions

/* decode contents into the series structure */

if ((retVal = rsslDecodeSeries(&decIter, &rsslSeries)) >= RSSL_RET_SUCCESS)

{

/* create single series entry and reuse while decoding each entry */

RsslSeriesEntry seriesEntry = RSSL_INIT_SERIES_ENTRY;

/* if summary data is present, invoking decoder for that type (instead of DecodeEntry)

indicates to UPA that user wants to decode summary data */

if (rsslSeries.flags & RSSL_SRF_HAS_SUMMARY_DATA)

{

/* summary data is present. Its type should be that of rsslSeries.containerType */

RsslElementList elementList;

retVal = rsslDecodeElementList(&decIter, &elementList, 0);

/* Continue decoding element entries. See example in Section 11.3.2 */

}

/* decode each series entry until there are no more left */

while ((retVal = rsslDecodeSeriesEntry(&decIter, &seriesEntry)) != RSSL_RET_END_OF_CONTAINER)

{

if (retVal < RSSL_RET_SUCCESS)

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeSeriesEntry. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else
Transport API 3.1.X C Edition – Developers Guide 203
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 30: RsslSeries Decoding Example

11.3.4.8 RsslSeries Utility Functions

The Transport API provides the following utility functions for use with the RsslSeries type.

{

RsslElementList elementList;

retVal = rsslDecodeElementList(&decIter, &elementList, 0);

/* Continue decoding element entries. See example in Section 11.3.2 */

}

}

}

else

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeSeries. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

FUNCTION NAME DESCRIPTION

rsslClearSeries Clears members from an RsslSeries structure. Useful for structure reuse.

rsslClearSeriesEntry Clears members from an RsslSeriesEntry structure. Useful for structure reuse.

Table 133: RsslSeries Utility Functions
Transport API 3.1.X C Edition – Developers Guide 204
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.5 RsslVector

The RsslVector is a uniform container type of index-value pair entries. Each entry, known as an RsslVectorEntry, contains

an index that correlates to the entry’s position in the information stream and value. An RsslVector can contain zero to N9
entries (zero entries indicates an empty RsslVector).

11.3.5.1 RsslVector Structure Members

9. An RsslVector currently has a maximum entry count of 65,535. This type has an approximate maximum encoded length of 4 gigabytes but may
be limited to 65,535 bytes if housed inside of a container entry. The content of an RsslVectorEntry has a maximum encoded length of 65,535
bytes. These limitations can change in future releases.

STRUCTURE MEMBER DESCRIPTION

flags A combination of bit values that indicate special behaviors and whether optional RsslVector
content is present. For more information about flag values, refer to Section 11.3.5.2.

containerType An RsslDataType enumeration value that describes the container type of each
RsslVectorEntry’s payload.

totalCountHint A four-byte, unsigned integer that indicates the approximate total number of entries sent
across all vectors on all parts of the refresh message. totalCountHint is typically used when
multiple RsslVector containers are spread across multiple parts of a refresh message (for
more information about message fragmentation and multi-part message handling, refer to
Section 13.1). Such information helps in determining the amount of resources to allocate for
caching or displaying all expected entries.

totalCountHint values have a range of 0 to 1,073,741,824.

encSummaryData The length and pointer to any encoded summary data contained in the message. If
populated, summary data contains information that applies to every entry encoded in the
RsslVector (e.g. currency type). The container type of summary data must match the
containerType specified on the RsslVector. If encSummaryData is populated while
encoding, contents are used as pre-encoded summary data.

Encoded summary data a maximum allowed length of 32,767 bytes.

For more information, refer to Section 11.5.

encSetDefs Length and pointer to any encoded local set definitions contained in the message. If
populated, these definitions correspond to data contained within this RsslVector’s entries
and are used to encode or decode their contents.

Encoded local set definitions have a maximum allowed length of 32,767 bytes.

For more information, refer to Section 11.6.

encEntries Length and pointer to any encoded index-value pair encoded data contained in the message.
This would refer to encoded RsslVector payload and length information.

Table 134: RsslVector Structure Members
Transport API 3.1.X C Edition – Developers Guide 205
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.5.2 RsslVector Flag Enumeration Values

FLAG ENUMERATION MEANING

RSSL_VTF_HAS_TOTAL_COUNT_HINT Indicates that the totalCountHint member is present. totalCountHint
can provide an approximation of the total number of entries sent across
all vectors on all parts of the refresh message. Such information is useful
in determining the amount of resources to allocate for caching or
displaying all expected entries.

RSSL_VTF_HAS_PER_ENTRY_PERM_DATA Indicates that permission information is included with some vector entries.
The RsslVector encoding functionality sets this flag value on the user’s
behalf if an entry is encoded with its own permData. A decoding
application can check this flag to determine whether a contained entry
has permData and is often useful for fan out devices (if an entry does not
have permData, the fan out device can likely pass on data and not worry
about special permissioning for the entry). Each entry also indicates the
presence of permission data via the use of
RSSL_VTEF_HAS_PERM_DATA.

Refer to Section 11.3.5.4.

RSSL_VTF_HAS_SUMMARY_DATA Indicates that the RsslVector contains summary data.

• If this flag is set while encoding, summary data must be provided by
encoding or populating encSummaryData with pre-encoded data.

• If this flag is set while decoding, summary data is contained as part of
RsslVector and the user can choose whether to decode it.

RSSL_VTF_HAS_SET_DEFS Indicates that the RsslVector contains local set definition information.
Local set definitions correspond to data contained in this RsslVector’s
entries and are used for encoding or decoding their contents.

For more information, refer to Section 11.6.

RSSL_VTF_SUPPORTS_SORTING Indicates that the RsslVector may leverage sortable action types. If an
RsslVector is sortable, all components must properly handle changing
index values based on insert and delete actions. If a component does not
properly handle these action types, it can result in the corruption of the
RsslVector’s contents.

For more information on proper handling, refer to Section 11.3.5.5.

Table 135: RsslVector Flags
Transport API 3.1.X C Edition – Developers Guide 206
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.5.3 RsslVectorEntry Structure Members

Each RsslVectorEntry can house other Container Types only. RsslVector is a uniform type, whereas
RsslVector.containerType indicates the single-type housed in each entry. Each entry has an associated action which
informs the user of how to apply the data contained in the entry.

11.3.5.4 RsslVectorEntry Flag Enumeration Value

STRUCTURE MEMBER DESCRIPTION

flags A combination of bit values that indicate whether optional RsslVectorEntry content is
present.

For more information about flag values, refer to Section 11.3.5.4.

action action helps to manage change processing rules and informs the consumer of how to apply
the entry’s data.

For specific information about possible action’s associated with an RsslVectorEntry, refer
to Section 11.3.5.5.

index Indicates the entry’s position in the RsslVector. This value can change over time based on
other RsslVectorEntry actions.

index has an allowable range of 0 to 1,073,741,823.

permData (Optional) Specifies authorization information for this specific entry. If present, the
RSSL_VTEF_HAS_PERM_DATA flag should be set.

• For more information, refer to Section 11.4.

• For more information about RsslVectorEntry flag values, refer to Section 11.3.5.4.

permData has a maximum allowed length of 32,767 bytes.

encData Length and pointer to this RsslVectorEntry’s encoded content.

• If populated using encode functions, this indicates that data is pre-encoded and encData
is copied while encoding.

• If populated while decoding, this refers to this encoded RsslVectorEntry’s payload and
length information.

Table 136: RsslVectorEntry Structure Members

FLAG ENUMERATION MEANING

RSSL_VTEF_HAS_PERM_DATA Indicates the presence of the permData member in this container entry and indicates
authorization information for this entry.

For more information, refer to Section 11.4.

Table 137: RsslVectorEntry Flag
Transport API 3.1.X C Edition – Developers Guide 207
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.5.5 RsslVectorEntry Action Enumeration Values

ACTION ENUMERATION MEANING

RSSL_VTEA_SET_ENTRY Indicates that the consumer should set the entry at this index position. A set action
typically occurs when an entry is initially provided. It is possible for multiple set actions to
target the same entry. If this occurs, any previously received data associated with the
entry should be replaced with the newly-added information. RSSL_VTEA_SET_ENTRY
can apply to both sortable and non-sortable vectors.

RSSL_VTEA_UPDATE_ENTRY Indicates that the consumer should update any previously stored or displayed
information with the contents of this entry. An update action typically occurs when an
entry is already set or inserted and changes to the contents are required. If an update
action occurs prior to the set or insert action for the same entry, the update action should
be ignored.

RSSL_VTEA_UPDATE_ENTRY can apply to both sortable and non-sortable vectors.

RSSL_VTEA_CLEAR_ENTRY Indicates that the consumer should remove any stored or displayed information
associated with this entry’s index position. RSSL_VTEA_CLEAR_ENTRY can apply to
both sortable and non-sortable vectors. No entry payload is included when the action is
a ‘clear.’

RSSL_VTEA_INSERT_ENTRY Applies only to a sortable vector. The consumer should insert this entry at the index
position. Any higher order index positions are incremented by one (e.g., if inserting at
index position 5 the existing position 5 becomes 6, existing position 6 becomes 7, and
so forth).

RSSL_VTEA_DELETE_ENTRY Applies only to a sortable vector. The consumer should remove any stored or displayed
data associated with this entry’s index position. Any higher order index positions are
decremented by one (e.g., if deleting at index position 5 the existing position 5 is
removed, position 6 becomes 5, position 7 becomes 6, and so forth). No entry payload is
included when the action is a ‘delete.’

Table 138: RsslVectorEntry Actions
Transport API 3.1.X C Edition – Developers Guide 208
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.5.6 RsslVectorEntry Encoding Interfaces

An RsslVectorEntry can be encoded from pre-encoded data or by encoding data as it arrives.

ENCODE INTERFACE DESCRIPTION

rsslEncodeVectorInit Begins encoding an RsslVector. This function allows for the encoding of
summary data (Section 11.5) and local set definitions (Section 11.6). Further
summary data, set definitions, and/or entries can be encoded after this
function returns.

• If summary data and set definitions are pre-encoded, they can be
populated on the encSummaryData and encSetDefs prior to calling
rsslEncodeVectorInit. No additional work is needed to complete the
encoding of this content.

• If summary data and set definitions are not pre-encoded,
rsslEncodeVectorInit will perform the Init for these components. After
encoding this content, the corresponding Complete functions must be
called.

• Summary data and set definition encoded length hint values can be
passed into this function to allow reserve space while encoding. If either is
not being encoded or the approximate encoded length is unknown, a
value of 0 can be passed in. This is only needed when the content is not
pre-encoded.

rsslEncodeVectorComplete Completes the encoding of an RsslVector. This function expects the same
RsslEncodeIterator used with rsslEncodeVectorInit, any summary
data, set data, and all entries.

• If all components encoded successfully, the RsslBool success parameter
should be true to finish encoding.

• If any component failed to encode, the RsslBool success parameter
should be false to roll back encoding to the last successfully-encoded
point in the contents.

Vector content should be encoded prior to this call.

rsslEncodeVectorSummaryDataComplete Completes the encoding of any non-pre-encoded RsslVector summary data.
If RSSL_VTF_HAS_SUMMARY_DATA is set and encSummaryData is not
populated, summary data is expected after rsslEncodeVectorInit or
rsslEncodeVectorSetDefsComplete returns. This function expects the
same RsslEncodeIterator used with previous vector encoding functions.

• If summary data was encoded successfully, the RsslBool success
parameter should be true to finish encoding.

• If summary data failed to encode, the RsslBool success parameter
should be false to roll back to the last successfully-encoded point prior to
summary data.

• If both RSSL_VTF_HAS_SUMMARY_DATA and
RSSL_VTF_HAS_SET_DEFS are present, set definitions are expected
first, while summary data is encoded after the call to
rsslEncodeVectorSetDefsComplete.

Table 139: RsslVector Encode Functions
Transport API 3.1.X C Edition – Developers Guide 209
ETAC313UM.180

Chapter 11 Data Package Detailed View
rsslEncodeVectorSetDefsComplete Completes encoding of any non-pre-encoded local set definition data. If
RSSL_VTF_HAS_SET_DEFS is set and encSetDefs is not populated, local
set definition data is expected after rsslEncodeVectorInit returns. This
function expects the same RsslEncodeIterator used with
rsslEncodeVectorInit.

• If set definition data encoded successfully, the RsslBool success
parameter should be true to finish encoding.

• If set definition data failed to encode, the RsslBool success parameter
should be false to roll back to the last successfully-encoded point prior to
set definition data.

• If both RSSL_VTF_HAS_SUMMARY_DATA and
RSSL_VTF_HAS_SET_DEFS are present, set definitions are expected
first, and then any summary data is encoded after the call to
rsslEncodeVectorSetDefsComplete.

rsslEncodeVectorEntry Encodes an RsslVectorEntry from pre-encoded data. This function expects
the same RsslEncodeIterator used with rsslEncodeVectorInit. The pre-
encoded vector entry payload can be passed in via
RsslVectorEntry.encData. This function is called after
rsslEncodeVectorInit and after the completion of any summary data and
local set definition data encoding.

rsslEncodeVectorEntryInit Encodes an RsslVectorEntry from a container type. This function expects
the same RsslEncodeIterator used with rsslEncodeVectorInit. After this
call, housed-type encode functions can encode the contained type. This
function is called after rsslEncodeVectorInit and after the completion of
any summary data and local set definition data encoding.

A max length hint value, corresponding to the expected maximum encoded
length of this entry, can be passed into this function to reserve space while
encoding. If you do not know the approximate encoded length, you can pass
in a value of 0.

rsslEncodeVectorEntryComplete Completes the encoding of an RsslVectorEntry. This function expects the
same RsslEncodeIterator used with rsslEncodeVectorInit,
rsslEncodeVectorEntryInit, and all other encoding for this container.

• If encoding of this specific vector entry was successful: the RsslBool
success parameter should be true to finish entry encoding.

• If encoding of this specific entry failed, RsslBool success parameter
should be false to roll back encoding of only this RsslVectorEntry.

ENCODE INTERFACE DESCRIPTION

Table 139: RsslVector Encode Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 210
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.5.7 RsslVector Encoding Example

The following sample demonstrates how to encode an RsslVector containing RsslSeries values. The example encodes
three RsslVectorEntry values as well as summary data:

• The first entry is encoded from an unencoded series

• The second entry is encoded from a buffer containing a pre-encoded series and has perm data

• The third is a clear action type with no payload.

This example demonstrates error handling for the initial encode function. To simplify the example, additional error handling is
omitted (though it should be performed).

/* populate vector structure prior to call to rsslEncodeSeriesInit */

/* indicate that summary data and a total count hint will be encoded */

rsslVector.flags = RSSL_VTF_HAS_SUMMARY_DATA | RSSL_VTF_HAS_TOTAL_COUNT_HINT |
RSSL_VTF_HAS_PER_ENTRY_PERM_DATA;

/* populate containerType and total count hint */

rsslVector.containerType = RSSL_DT_SERIES;

rsslVector.totalCountHint = 3;

/* begin encoding of vector - assumes that encIter is already populated with

/* buffer and version information, store return value to determine success or failure */

/* summary data approximate encoded length is 50 bytes */

if ((retVal = rsslEncodeVectorInit(&encIter, &rsslVector, 50, 0)) < RSSL_RET_SUCCESS)

{

/* error condition - switch our success value to false so we can roll back */

success = RSSL_FALSE;

/* print out message with return value string, value, and text */

printf("Error %s (%d) encountered with rsslEncodeVectorInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* vector init encoding was successful */

/* create a single RsslVectorEntry and RsslSeries and reuse for each entry */

RsslVectorEntry vectorEntry = RSSL_INIT_VECTOR_ENTRY;

RsslSeries rsslSeries = RSSL_INIT_SERIES;

/* encode expected summary data, init for this was done by rsslEncodeVectorInit

/* - this type should match rsslVector.containerType */

{

/* now encode nested container using its own specific encode functions */

/* begin encoding of series - using same encIterator as vector */

if ((retVal = rsslEncodeSeriesInit(&encIter, &rsslSeries, 0, 0)) < RSSL_RET_SUCCESS)

/*----- Continue encoding series entries. Refer to the example in Section 11.3.4.5*/

/* Complete nested container encoding */

retVal = rsslEncodeSeriesComplete(&encIter, success);

}

Transport API 3.1.X C Edition – Developers Guide 211
ETAC313UM.180

Chapter 11 Data Package Detailed View
/* complete encoding of summary data. If any series entry encoding failed, success is false */

retVal = rsslEncodeVectorSummaryDataComplete(&encIter, success);

/* FIRST Vector Entry: encode entry from unencoded data. Approx. encoded length 90 bytes */

/* populate index and action, no perm data on this entry */

vectorEntry.index = 1;

vectorEntry.flags = RSSL_VTEF_NONE;

vectorEntry.action = RSSL_VTEF_UPDATE_ENTRY;

retVal = rsslEncodeVectorEntryInit(&encIter, &vectorEntry, 90);

/* encode contained series - this type should match rsslVector.containerType */

{

/* now encode nested container using its own specific encode functions */

/* clear, then begin encoding of series - using same encIterator as vector */

rsslClearSeries(&rsslSeries);

if ((retVal = rsslEncodeSeriesInit(&encIter, &rsslSeries, 0, 0)) < RSSL_RET_SUCCESS)

/*----- Continue encoding series entries. See example in Section 11.3.4 ---- */

/* Complete nested container encoding */

retVal = rsslEncodeSeriesComplete(&encIter, success);

}

retVal = rsslEncodeVectorEntryComplete(&encIter, success);

/* SECOND Vector Entry: encode entry from pre-encoded buffer containing an encoded RsslSeries */

/* assuming pEncSeries RsslBuffer contains the pre-encoded payload with data and length populated

/* and pPermData contains permission data information */

vectorEntry.index = 2;

/* by passing permData on an entry, the map encoding functionality will implicitly set the

/* RSSL_VTF_HAS_PER_ENTRY_PERM flag */

vectorEntry.flags = RSSL_VTEF_HAS_PERM_DATA;

vectorEntry.action = RSSL_VTEF_SET_ENTRY;

vectorEntry.permData.length = pPermData->length;

vectorEntry.permData.data = pPermData->data;

vectorEntry.encData.length = pEncSeries->length;

vectorEntry.encData.data = pEncSeries->data;

retVal = rsslEncodeVectorEntry(&encIter, &vectorEntry);

/* THIRD Vector Entry: encode entry with clear action, no payload on clear */

/* Should clear entry for safety, this will set flags to NONE */

rsslClearVectorEntry(&vectorEntry);

vectorEntry.index = 3;

vectorEntry.action = RSSL_VTEF_CLEAR_ENTRY;

retVal = rsslEncodeVectorEntry(&encIter, &vectorEntry);

}

Transport API 3.1.X C Edition – Developers Guide 212
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 31: RsslVector Encoding Example

11.3.5.8 RsslVectorEntry Decoding Interfaces

A decoded RsslVectorEntry structure provides access to the encoded content of the vector entry. Further decoding of the
entry’s content can be skipped by invoking the entry decoder to move to the next RsslVectorEntry or the contents can be
further decoded by invoking the specific contained type’s decode function.

11.3.5.9 RsslVector Decoding Example

The following sample illustrates how to decode an RsslVector and is structured to decode each entry to the contained value.
This sample code assumes the housed container type is an RsslSeries. Typically an application would invoke the specific
container type decoder for the housed type or use a switch statement to allow a more generic series entry decoder. This
example uses the same RsslDecodeIterator when calling the content’s decoder function. Optionally, an application could
use a new RsslDecodeIterator by setting the encData on a new iterator. To simplify the sample, some error handling is
omitted.

/* complete vector encoding. If success parameter is true, this will finalize encoding.

/* If success parameter is false, this will roll back encoding prior to rsslEncodeVectorInit */

retVal = rsslEncodeVectorComplete(&encIter, success);

DECODE INTERFACE DESCRIPTION

rsslDecodeVector Begins decoding an RsslVector. This function decodes from the RsslBuffer referred to by
the passed-in RsslDecodeIterator.

rsslDecodeVectorEntry Decodes an RsslVectorEntry. This function expects the same RsslDecodeIterator used
with rsslDecodeVector and populates encData with an encoded entry. After this function
returns, you can use the RsslVector.containerType to invoke the correct contained type’s
decode functions. Calling rsslDecodeVectorEntry again will continue to decode
subsequent entries in RsslVector until no more entries are available. As entries are
received, the action will indicate how to apply their contents.

Table 140: RsslVector Decode Functions

/* decode contents into the vector structure */

if ((retVal = rsslDecodeVector(&decIter, &rsslVector)) >= RSSL_RET_SUCCESS)

{

/* create single vector entry and reuse while decoding each entry */

RsslVectorEntry vectorEntry = RSSL_INIT_VECTOR_ENTRY;

/* if summary data is present, invoking decoder for that type (instead of DecodeEntry)

/* indicates to UPA that user wants to decode summary data */

if (rsslVector.flags & RSSL_VTF_HAS_SUMMARY_DATA)

{

/* summary data is present. Its type should be that of rsslVector.containerType */

RsslSeries rsslSeries;

retVal = rsslDecodeSeries(&decIter, &rsslSeries);

/* Continue decoding series entries. See example in Section 11.3.4 */

}

/* decode each vector entry until there are no more left */

while ((retVal = rsslDecodeVectorEntry(&decIter, &vectorEntry)) != RSSL_RET_END_OF_CONTAINER)
Transport API 3.1.X C Edition – Developers Guide 213
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 32: RsslVector Decoding Example

11.3.5.10 RsslVector Utility Functions

The Transport API provides the following utility functions for use with RsslVector.

{

if (retVal < RSSL_RET_SUCCESS)

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeVectorEntry. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

RsslSeries rsslSeries;

retVal = rsslDecodeSeries(&decIter, &rsslSeries);

/* Continue decoding series entries. Refer to the example in Section 11.3.4*/

}

}

}

else

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeVector. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

FUNCTION NAME DESCRIPTION

rsslClearVector Clears members from an RsslVector structure. Useful for structure reuse.

rsslClearVectorEntry Clears members from an RsslVectorEntry structure. Useful for structure reuse.

Table 141: RsslVector Utility Functions
Transport API 3.1.X C Edition – Developers Guide 214
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.6 RsslFilterList

The RsslFilterList is a non-uniform container type of filterId-value pair entries. Each entry, known as an
RsslFilterEntry, contains an id corresponding to one of 32 possible bit-value identifiers. These identifiers are typically
defined by a domain model specification and can indicate interest in or the presence of specific entries through the inclusion of

the filterId in the message key’s filter member. An RsslFilterList can contain zero to N10 entries, where zero
indicates an empty RsslFilterList, though this type is typically limited by the number of available of filterId values.

11.3.6.1 RsslFilterList Structure Members

10. An RsslFilterList currently has a maximum entry count of 65,535, though due to the allowable range of id values, this typically does not
exceed 32. If all entry count values are allowed, this type has an approximate maximum encoded length of 4 GB but may be limited to 65,535 bytes if
housed inside a container entry. The content of an RsslFilterEntry has a maximum encoded length of 65,535 bytes. These limitations can change
in future releases.

STRUCTURE
MEMBER

DESCRIPTION

flags A combination of bit values to indicate presence of optional RsslFilterList content. For more
information about flag values, refer to Section 11.3.6.2.

containerType An RsslDataType value that, for most efficient bandwidth use, should describe the most common
container type across all housed filter entries. All housed entries may match this type, though one or
more entries may differ. If an entry differs, the entry specifies its own type via the
RsslFilterEntry.containerType member.

totalCountHint A four-byte unsigned integer that indicates an approximate total number of entries associated with this
stream. totalCountHint is used typically when multiple RsslFilterList containers are spread
across multiple parts of a refresh message (for more information about message fragmentation and
multi-part message handling, refer to Section 13.1). totalCountHint is useful in determining the
amount of resources to allocate for caching or displaying all expected entries.

totalCountHint values have a range of 0 to 1,073,741,824, though the RsslFilterList is typically
limited by available filterId values.

encEntries Length and pointer to the filterId-value pair encoded data, if any, contained in the message. This
would refer to the encoded RsslFilterList payload and length information.

Table 142: RsslFilterList Structure Members
Transport API 3.1.X C Edition – Developers Guide 215
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.6.2 RsslFilterList Flag Enumeration Values

11.3.6.3 RsslFilterEntry Structure Members

Each RsslFilterEntry can house only other container types. RsslFilterList is a non-uniform type, where the
RsslFilterList.containerType should indicate the most common type housed in each entry. Entries that differ from this
type must specify their own type via RsslFilterEntry.containerType.

FLAG MEANING

HAS_TOTAL_COUNT_HINT Indicates the presence of the totalCountHint member.
totalCountHint provides an approximation of the total number of
entries sent across all filter lists on all parts of the refresh message. This
information is useful in determining the amount of resources to allocate
for caching or displaying all expected entries.

HAS_PER_ENTRY_PERM_DATA Indicates some filter entries include permission information. The
RsslFilterList encoding functionality sets this flag value on the user’s
behalf if any entry is encoded with its own permData. A decoding
application can check this flag to determine whether any contained entry
has permData, often useful for fan out devices (if entries do not have
permData, the fan out device can pass along the data and not worry
about special permissioning for an entry). Each entry will also indicate
permission data presence via the use of the
RSSL_FTEF_HAS_PERM_DATA flag. Refer to Section 11.3.6.4.

Table 143: RsslFilterList Flags

STRUCTURE MEMBER DESCRIPTION

flags A combination of bit values that indicate the presence of optional RsslFilterEntry content.
For more information about flag values, refer to Section 11.3.6.4.

action Helps manage change processing rules and informs the consumer how to apply the
information contained in the entry.

For specific information about possible action’s associated with an RsslFilterEntry, refer
to Section 11.3.6.5.

id An ID associated with the entry. Each possible id corresponds to a bit-value that can be used
with the message key’s filter member. This bit-value can be specified on the filter to
indicate interest in the id when present in an RsslRequestMsg or to indicate presence of the
id when present in other messages.

For additional information about the filter, refer to Section 12.1.2.

containerType An RsslDataType enumeration value describing the type of this RsslFilterEntry. If
present, the RsslFilterEntry flag (RSSL_FTEF_HAS_CONTAINER_TYPE) should be set
by the user.

For more information about RsslFilterEntry flag values, refer to Section 11.3.6.4.

Table 144: RsslFilterEntry Structure Members
Transport API 3.1.X C Edition – Developers Guide 216
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.6.4 RsslFilterEntry Flag Enumeration Values

11.3.6.5 RsslFilterEntry Action Flag Values

Each entry has an associated action which informs the user of how to apply the entry’s contents.

permData (Optional) Specifies authorization information for this entry. If permData is present, the user
should set the RsslFilterEntryflag (RSSL_FTEF_HAS_PERM_DATA).

permData has a maximum allowed length of 32,767 bytes.

• For more information about RsslFilterEntry flag values, refer to Section 11.3.6.4.

• For more information, refer to Section 11.4.

encData Length and pointer to the RsslFilterEntry’s encoded content.

• If populated on encode functions, encData indicates that data is pre-encoded, and
encData will be copied while encoding.

• If populated while decoding, this refers to this encoded RsslFilterEntry’s payload and
length information.

FLAG ENUMERATION MEANING

RSSL_FTEF_HAS_PERM_DATA Indicates the presence of permData in this container entry and indicates
authorization information for this entry.

For more information, refer to Section 11.4.

RSSL_FTEF_HAS_CONTAINER_TYPE Indicates the presence of containerType in this entry. This flag is used when
the entry’s containerType differs from the specified
RsslFilterList.containerType.

Table 145: RsslFilterEntry Flags

ACTION ENUMERATION MEANING

RSSL_FTEA_SET_ENTRY Indicates that the consumer should set the entry corresponding to this id. A set action
typically occurs when an entry is initially provided. Multiple set actions can occur for the
same entry id, in which case, any previously received data associated with the entry id
should be replaced with the newly-added information.

RSSL_FTEA_UPDATE_ENTRY Indicates that the consumer should update any previously stored or displayed
information with the contents of this entry. An update action typically occurs when an
entry is set and changes to the contents need to be conveyed. An update action can
occur prior to the set action for the same entry id, in which case, the update action
should be ignored.

RSSL_FTEA_CLEAR_ENTRY Indicates that the consumer should remove any stored or displayed information
associated with this entry’s id. No entry payload is included when the action is a clear.

Table 146: RsslFilterEntry Actions

STRUCTURE MEMBER DESCRIPTION

Table 144: RsslFilterEntry Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 217
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.6.6 RsslFilterEntry Encoding Interfaces

An RsslFilterEntry can be encoded from pre-encoded data or by encoding individual pieces of information as they are
provided.

ENCODE INTERFACE DESCRIPTION

rsslEncodeFilterListInit Begins encoding an RsslFilterList. containerType should define the most common
entry type.

rsslEncodeFilterListComplete Completes the encoding of an RsslFilterList. This function expects the same
RsslEncodeIterator used with rsslEncodeFilterListInit.

• If all entries encoded successfully, the RsslBool success parameter should be set to
true to finish encoding.

• If any entry fails to encode, the RsslBool success parameter should be set to false
to roll back to the last successfully encoded point in the contents.

All entries should be encoded prior to this call.

rsslEncodeFilterEntry Encodes an RsslFilterEntry from pre-encoded data. This function expects the same
RsslEncodeIterator used with rsslEncodeFilterInit. The pre-encoded filter entry
payload can be passed in via RsslFilterEntry.encData. This function can be called
after rsslEncodeFilterListInit completes.

If this filter entry houses a type other than what is specified in
RsslFilterList.containerType, the entry’s containerType should be populated to
indicate the difference.

rsslEncodeFilterEntryInit Encodes an RsslFilterEntry from a container type. This function expects the same
RsslEncodeIterator used with rsslEncodeFilterListInit. After this call, the housed
type encode function can begin to encode the contained type. This function can be called
after rsslEncodeFilterListInit has been completed.

• A max length hint value, associated with the expected maximum encoded length of
the entry, can be passed into rsslEncodeFilterEntryInit to reserve space while
encoding. If the approximate encoded length is not known, a value of 0 can be passed
in.

• If this filter entry houses a type other than that specified in
RsslFilterList.containerType, the entry’s containerType value must indicate
the difference.

rsslEncodeFilterEntryComplete Completes the encoding of an RsslFilterEntry. This function expects the same
RsslEncodeIterator used with rsslEncodeFilterListInit,
rsslEncodeFilterEntryInit, and all other encoding for this container.

• If the filter entry encoded successfully, the RsslBool success parameter should be
set to true to finish entry encoding.

• If the entry failed to encode, the RsslBool success parameter should be set to false
to roll back the encoding of this RsslFilterEntry.

Table 147: RsslFilterList Encode Functions
Transport API 3.1.X C Edition – Developers Guide 218
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.6.7 RsslFilterList Encoding Example

The following sample illustrates how to encode an RsslFilterList containing a mixture of housed types. The example
encodes three RsslFilterEntry values:

• The first is encoded from an unencoded element list.

• The second is encoded from a buffer containing a pre-encoded element list.

• The third is encoded from an unencoded map value.

This example demonstrates error handling only for the initial encode function, and to simplify the example, omits additional
error handling (though it should be performed).

/* populate filterList structure prior to call to rsslEncodeFilterListInit */

filterList.flags = RSSL_FTF_NONE;

/* populate containerType. Because there are two element lists, this is most common so specify that type
*/

filterList.containerType = RSSL_DT_ELEMENT_LIST;

/* begin encoding of filterList - assumes that encIter is already populated with buffer and version

/* information, store return value to determine success or failure */

if ((retVal = rsslEncodeFilterListInit(&encIter, &filterList)) < RSSL_RET_SUCCESS)

{

/* error condition - switch our success value to false so we can roll back */

success = RSSL_FALSE;

/* print out message with return value string, value, and text */

printf("Error %s (%d) encountered with rsslEncodeFilterListInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* filterList init encoding was successful */

/* create a single RsslFilterEntry and reuse for each entry */

RsslFilterEntry filterEntry = RSSL_INIT_FILTER_ENTRY;

/* FIRST Filter Entry: encode entry from unencoded data. Approx. encoded length 350 bytes */

/* populate id and action */

filterEntry.id = 1;

filterEntry.action = RSSL_FTEF_SET_ENTRY;

retVal = rsslEncodeFilterEntryInit(&encIter, &filterEntry, 350);

/* encode contained element list */

{

RsslElementList elementList = RSSL_INIT_ELEMENT_LIST;

elementList.flags = RSSL_ELF_HAS_STANDARD_DATA;

/* now encode nested container using its own specific encode functions */

if ((retVal = rsslEncodeElementListInit(&encIter, &elementList, 0, 0)) < RSSL_RET_SUCCESS)

/*----- Continue encoding element entries. See example in Section 11.3.2 ---- */

/* Complete nested container encoding */

retVal = rsslEncodeElementListComplete(&encIter, success);

}

retVal = rsslEncodeFilterEntryComplete(&encIter, success);
Transport API 3.1.X C Edition – Developers Guide 219
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 33: RsslFilterList Encoding Example

/* SECOND Filter Entry: encode entry from pre-encoded buffer containing an encoded element list */

/* assuming pEncElemList RsslBuffer contains the pre-encoded payload with data and length populated
*/

filterEntry.id = 2;

filterEntry.action = RSSL_FTEF_UPDATE_ENTRY;

filterEntry.encData.length = pEncElemList->length;

filterEntry.encData.data = pEncElemList->data;

retVal = rsslEncodeFilterEntry(&encIter, &filterEntry);

/* THIRD Filter Entry: encode entry from an unencoded map */

filterEntry.id = 3;;

filterEntry.action = RSSL_FTEF_UPDATE_ENTRY;

/* because type is different from filterList.containerType, we need to specify on entry */

filterEntry.flags = RSSL_FTEF_HAS_CONTAINER_TYPE;

filterEntry.containerType = RSSL_DT_MAP;

retVal = rsslEncodeFilterEntryInit(&encIter, &filterEntry, 0);

/* encode contained map */

{

RsslMap rsslMap = RSSL_INIT_MAP;

rsslMap.keyPrimitiveType = RSSL_DT_ASCII_STRING;

rsslMap.containerType = RSSL_DT_FIELD_LIST;

/* now encode nested container using its own specific encode functions */

if ((retVal = rsslEncodeMapInit(&encIter, &rsslMap, 0, 0)) < RSSL_RET_SUCCESS)

/*----- Continue encoding map entries. Refer to the example in Section 11.3.3 ---- */

/* Complete nested container encoding */

retVal = rsslEncodeMapComplete(&encIter, success);

}

retVal = rsslEncodeFilterEntryComplete(&encIter, success);

}

/* complete filterList encoding. If success parameter is true, this will finalize encoding.

 If success parameter is false, this will roll back encoding prior to rsslEncodeFilterListInit */

retVal = rsslEncodeFilterListComplete(&encIter, success);
Transport API 3.1.X C Edition – Developers Guide 220
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.6.8 RsslFilterEntry Decoding Interfaces

A decoded RsslFilterEntry structure provides access to the encoded content of the filter entry. You can skip further
decoding of an entry’s content by invoking the entry decoder to move to the next RsslFilterEntry or the contents can be
further decoded by invoking the specific contained type’s decode function.

11.3.6.9 RsslFilterEntry Decoding Example

The following sample illustrates how to decode an RsslFilterList and is structured to decode each entry to its contained
value. The sample code uses a switch statement to decode the contents of each filter entry. Typically an application invokes
the specific container type decoder for the housed type or uses a switch statement to use a more generic series entry decoder.
This example uses the same RsslDecodeIterator when calling the content’s decoder function. Optionally, an application
could use a new RsslDecodeIterator by setting the encData on a new iterator. To simplify the example, some error handling
is omitted.

DECODE INTERFACE DESCRIPTION

rsslDecodeFilterList Begins decoding of an RsslFilterList. This function decodes from the RsslBuffer specified
in RsslDecodeIterator.

rsslDecodeFilterEntry Decodes an RsslFilterEntry. This function expects the same RsslDecodeIterator that was
used with rsslDecodeFilterList. This populates encData with an encoded entry. As an entry
is received, its action indicates how to apply contents.

After this function returns, the RsslFilterList.containerType (or
RsslFilterEntry.containerType if present) can invoke the correct contained type’s decode
functions.

Calling rsslDecodeFilterEntry again decodes the remaining entries in the RsslFilterList.

Table 148: RsslFilterList Decode Functions

/* decode contents into the filter list structure */

if ((retVal = rsslDecodeFilterList(&decIter, &filterList)) >= RSSL_RET_SUCCESS)

{

/* create single filter entry and reuse while decoding each entry */

RsslFilterEntry filterEntry = RSSL_INIT_FILTER_ENTRY;

/* decode each filter entry until there are no more left */

while ((retVal = rsslDecodeFilterEntry(&decIter, &filterEntry)) != RSSL_RET_END_OF_CONTAINER)

{

if (retVal < RSSL_RET_SUCCESS)

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeFilterEntry. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* if filterEntry.containerType is present, switch on that,

 Otherwise switch on filterList.containerType */

RsslContainerType cType;

if (filterEntry.flags & RSSL_FTEF_HAS_CONTAINER_TYPE)
Transport API 3.1.X C Edition – Developers Guide 221
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 34: RsslFilterList Decoding Example

11.3.6.10 RsslFilterEntry Utility Functions

The Transport API provides the following utility functions for use with RsslFilterList.

cType = filterEntry.containerType;

else

cType = filterList.containerType;

switch (cType)

{

case RSSL_DT_MAP:

retVal = rsslDecodeMap(&decIter, &rsslMap);

/* Continue decoding map entries. See example in Section 11.3.3 */

break;

case RSSL_DT_ELEMENT_LIST:

retVal = rsslDecodeElementList(&decIter, &elementList, 0);

/* Continue decoding element entries. See example in Section 11.3.2 */

break;

/* full switch statement omitted to shorten sample code */

}

}

}

}

else

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeFilterList. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

FUNCTION NAME DESCRIPTION

rsslClearFilterList Clears members from an RsslFilterList structure. Useful for structure reuse.

rsslClearFilterEntry Clears members from an RsslFilterEntry structure. Useful for structure reuse.

Table 149: RsslFilterList Utility Functions
Transport API 3.1.X C Edition – Developers Guide 222
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.3.7 Non-RWF Container Types

Transport API messages and container entries allow non-RWF content. Non-RWF content can be:

• A specific type of formatted data such as ANSI Page or XML, where an RsslDataType enumeration value aids in
identifying the type.

• A type of customized, user-defined information. You can use RsslDataType’s enumerated range of 225 - 255 to define
custom types.

11.3.7.1 Non-RWF Encode Functions

The Transport API provides utility functions to help encode non-RWF types. These functions work in conjunction with
RsslEncodeIterator to provide appropriate encoding position and length data to the user, which can then be used with
specific functions for the non-RWF type being encoded.

11.3.7.2 Non-RWF Encoding Example

The following sample demonstrates how to encode an RsslSeries containing a non-RWF type of ANSI Page. This example
demonstrates error handling for the initial encode function while omitting additional error handling (though it should be
performed).

FUNCTION NAME DESCRIPTION

rsslEncodeNonRWFDataTypeInit Uses the RsslEncodeIterator to populate an RsslBuffer with encoding
information for the user. RsslBuffer.data contains the position where
encoding begins and RsslBuffer.length contains the number of available
bytes for encoding. You can populate this buffer using non-RWF encode
functions.

rsslEncodeNonRWFDataTypeComplete Integrates content encoded into RsslBuffer with other pre-encoded
information. RsslBuffer.length should be set to the actual number of bytes
encoded prior to this function being called.

Table 150: Non-RWF Type Encode Functions

Note: Do not change the value of RsslBuffer.data between calls to rsslEncodeNonRWFDataTypeInit and
rsslEncodeNonRWFDataTypeComplete.

rsslSeries.flags = RSSL_SRF_NONE;

/* populate containerType with the ANSI dataType enumerated value - this could be any non-RWF type enum
*/

rsslSeries.containerType = RSSL_DT_ANSI_PAGE;

/* begin encoding of series - assumes that encIter is already populated with buffer and version

/* information, store return value to determine success or failure */

if ((retVal = rsslEncodeSeriesInit(&encIter, &rsslSeries, 0, 0)) < RSSL_RET_SUCCESS)

{

/* error condition - switch our success value to false so we can roll back */

success = RSSL_FALSE;

/* print out message with return value string, value, and text */

printf("Error %s (%d) encountered with rsslEncodeSeriesInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

Transport API 3.1.X C Edition – Developers Guide 223
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 35: Non-RWF Type Encoding Example

11.3.7.3 Decoding Non-RWF Types

When decoding, the user can obtain non-RWF data via the encData member and use this with functions specific to the non-
RWF type being decoded.

else

{

/* series init encoding was successful */

/* begin our series entry and then nest ANSI Page inside of it using non-RWF encode functions */

RsslSeriesEntry seriesEntry = RSSL_INIT_SERIES_ENTRY;

/* create an empty buffer for information to be populated into */

RsslBuffer nonRWFBuffer = RSSL_INIT_BUFFER;

retVal = rsslEncodeSeriesEntryInit(&encIter, &seriesEntry, 0);

/* encode contained non-RWF type using non-RWF encode functions */

{

retVal = rsslEncodeNonRWFDataTypeInit(&encIter, &nonRWFBuffer);

/* now encode nested container using its own specific encode functions -

Ensure that we do not exceed nonRWFBuffer.length */

/* we could memcpy into the nonRWFBuffer.data or use it with other encode functions */

/* The encAnsiBuffer shown here is expected to be populated with data from an

external ANSI encoder. The native ANSI encode functions could be called, instead

of a memcpy with pre-encoded ANSI content, to directly encode into the nonRWFBuffer */

memcpy(&nonRWFBuffer.data, &encAnsiBuffer.data, encAnsiBuffer.length);

/* Set nonRWFBuffer.length to amount of data encoded into buffer and complete */

nonRWFBuffer.length = encAnsiBuffer.length;

retVal = rsslEncodeNonRWFDataTypeComplete(&encIter, &nonRWFBuffer, success);

}

retVal = rsslEncodeSeriesEntryComplete(&encIter, success);

}

 /* complete series encoding. If success parameter is true, this will finalize encoding.

 If success parameter is false, this will roll back encoding prior to rsslEncodeSeriesInit */

retVal = rsslEncodeSeriesComplete(&encIter, success);
Transport API 3.1.X C Edition – Developers Guide 224
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.4 Permission Data

Permission Data is optional authorization information. The DACS Lock API provides functionality for creating and
manipulating permissioning information. For more information on DACS usage and permission data creation, refer to the
Transport API DACS LOCK Library Reference Manual.

Permission data can be specified in some messages. When permission data is included in an RsslRefreshMsg or an
RsslStatusMsg, this generally defines authorization information associated with all content on the stream. You can change
permission data on an existing stream by sending a subsequent RsslStatusMsg or RsslRefreshMsg which contains the new
permission data. When permission data is included in an RsslUpdateMsg, this generally defines authorization information that
applies only to that specific RsslUpdateMsg.

Permission data can also be specified in some container entries. When a container entry includes permission data, it generally
defines authorization information that applies only to that specific container entry. Specific usage and inclusion of
permissioning information can be further defined within a domain model specification.

Permission data typically ensures that only entitled parties can access restricted content. On TREP, all content is restricted (or
filtered) based on user permissions.

When content is contributed, permission data in an RsslPostMsg is used to permission the user who posts the information. If
the payload of the RsslPostMsg is another message type with permission data (i.e., RsslRefreshMsg), the nested message’s
permissions can change the permission expression associated with the posted item. If permission data for the nested
message is the same as permission data on the RsslPostMsg, the nested message does not need permission data.

11.5 Summary Data

Some container types allow summary data. Summary data conveys information that applies to every entry housed in the
container. Using summary data ensures data is sent only once, instead of repetitively including data in each entry. An example
of summary data is the currency type because it is likely that all entries in the container share the same currency. Summary
data is optional and applications can determine when to employ it.

Specific domain model definitions typically indicate whether summary data should be present, along with information on its
content. When included, the containerType of the summary data is expected to match the containerType of the payload
information (e.g., if summary data is present on an RsslVector, the RsslVector.containerType defines the type of
summary data and RsslVectorEntry payload).
Transport API 3.1.X C Edition – Developers Guide 225
ETAC313UM.180

d
V

ie
w

T
ra

ns
p

or
t A

P
I 3

.1
.3

 C
 E

di
tio

n
–

D
e

ve
lo

pe
rs

 G
ui

de
22

6
E

T
A

C
31

3
U

M
.1

80

11.6 Set Definitions and Set-Defined Data

rimitive types can be encoded
lp reduce the number of bytes

itive types and set fixed-
NT). Whereas all primitive
 use primitive type definitions
n exposes values that define
es, a set definition is required

 Use of a set definition can

 contents are arranged in the

r as the contents are arranged

t. Internally the RSSL encoder
nly in the definition.

nt. Internally, the RSSL
n omitted during the encoding.

ieldList content in each
formation contained in the
he set definition.

ner type enumerations
.

C
h

ap
te

r
11

 D

at
a

P
ac

ka
ge

 D
et

ai
le

A Set-Defined Primitive Type is similar to a primitive type (described in Section 11.2) with several key differences. While p
as a variable number of bytes, most set-defined primitive types use a fixed-length encoding. Fixed-length encoding can he
required to contain the encoded primitive type. RsslDataType enumerated values between 64 and 127 are set-defined prim
length encodings for many base primitive types (e.g., RSSL_DT_INT_1 is a one-byte fixed-length encoding of RSSL_DT_I
types can represent blank data, only several set-defined primitive types can do so. All encoding and decoding continues to
and should continue to function in the same manner as described in the previous sections. The RsslDataType enumeratio
each set-defined primitive, though these values are only used inside of a set definition. When using set-defined primitive typ
to encode or decode content.

A Set Definition can define the contents of an RsslFieldList or an RsslElementList and allow additional optimizations.
reduce overall encoded content by eliminating repetitive type and length information.

• A set definition describing an RsslFieldList contains fieldId and type information specified in the same order as the
encoded field list.

• A set definition describing an RsslElementList contains element name and type information specified in the same orde
in the encoded element list.

When encoding, in addition to providing set definition information, an application encodes the field list or element list conten
uses the provided set definition to perform type encoding specific to the definition and omit redundant information needed o

When decoding, in addition to providing set definition information, an application decodes the field list or element list conte
decoder uses the provided set definition to decode any type-specific optimizations and to reintroduce redundant informatio

Instead of including multiple instances of the same content, you can use a set definition (i.e., an RsslMap containing RsslF
entry). In this case, a set definition can be provided once as part of the RsslMap to define the layout of repetitive field list in
RsslMapEntry (i.e., fieldId). When encoding each RsslFieldList, this content will be omitted because it is included in t

A set definition can contain primitive type enumerations (Section 11.2), set-defined primitive type enumerations, and contai
(Section 11.3). Encoding and decoding occurs exactly the same as primitive type and container type encoding or decoding

d
V

ie
w

T
ra

ns
p

or
t A

P
I 3

.1
.3

 C
 E

di
tio

n
–

D
e

ve
lo

pe
rs

 G
ui

de
22

7
E

T
A

C
31

3
U

M
.1

80

11.6.1 Set-Defined Primitive Types

e decoder used when
ing occurs as usual by calling
sing the base primitive type.
type enumeration and its

ESCRIPTION

er type that represents a
 one-bit sign (positive or
ge is (-27) to (27 - 1).

resented as blank.

er type that represents a
a one-bit sign (positive or
ge is (-215) to (215 - 1).

resented as blank.

er type that represents a
a one-bit sign (positive or
ge is (-231) to (231 - 1).

resented as blank.

ger type that represents a
a one-bit sign (positive or
ge is (-263) to (263 - 1).

resented as blank.

nteger type that represents
precision of up to 8 bits.
28 - 1).

resented as blank.

nteger type that represents
precision of up to 16 bits.
216 - 1).

resented as blank.
C
h

ap
te

r
11

 D

at
a

P
ac

ka
ge

 D
et

ai
le Set primitive types do not use separate interface functions for encoding or decoding. Decoding uses the same primitive typ

decoding the primitive type. Because these types can only be contained in an RsslFieldList or RsslElementList, encod
rsslEncodeFieldEntry or rsslEncodeElementEntry. When calling these functions, populate the field or element entry u
The table below provides a brief description of each set-defined primitive type, along with its corresponding base primitive
respective RSSL decode interface.

ENUMERATED TYPE
NAME

BASE PRIMITIVE
TYPE ENUMERATION

PRIMITIVE
TYPE

DECODE
INTERFACE

TYPE D

RSSL_DT_INT_1 RSSL_DT_INT RsslInt rsslDecodeIntInt.deco
de

A signed, one-byte integ
value up to 7 bits with a
negative). Allowable ran

This type cannot be rep

RSSL_DT_INT_2 RSSL_DT_INT RsslInt rsslDecodeIntInt.deco
de

A signed, two-byte integ
value up to 15 bits with
negative). Allowable ran

This type cannot be rep

RSSL_DT_INT_4 RSSL_DT_INT RsslInt rsslDecodeIntInt.deco
de

A signed, four-byte integ
value up to 31 bits with
negative). Allowable ran

This type cannot be rep

RSSL_DT_INT_8 RSSL_DT_INT RsslInt rsslDecodeIntInt.deco
de

A signed, eight-byte inte
value up to 63 bits with
negative). Allowable ran

This type cannot be rep

RSSL_DT_UINT_1 RSSL_DT_UINT RsslUInt rsslDecodeUIntUInt.d
ecode

An unsigned, one-byte i
an unsigned value with
Allowable range is 0 to (

This type cannot be rep

RSSL_DT_UINT_2 RSSL_DT_UINT RsslUInt rsslDecodeUIntUInt.d
ecode

An unsigned, two-byte i
an unsigned value with
Allowable range is 0 to (

This type cannot be rep

Table 151: Set-Defined Primitive Types

d
V

ie
w

T
ra

ns
p

or
t A

P
I 3

.1
.3

 C
 E

di
tio

n
–

D
e

ve
lo

pe
rs

 G
ui

de
22

8
E

T
A

C
31

3
U

M
.1

80

nteger type that represents
precision of up to 32 bits.
232 - 1).

resented as blank.

 integer type that represents
precision of up to 64 bits.
264 - 1).

e type cannot be represented

t type that represents the
llowed by the system float
54 specification.

resented as blank.

oint type that represents the
llowed by the system double
54 specification.

resented as blank.

esentation of a decimal or
pically requires less bytes on
ouble types. This type
value, with a hint value,
e up to seven trailing zeros,
actional denominators up to
(-231) to (231 - 1)

ented as blank.

 type, refer to Section 11.2.1.

esentation of a decimal or
pically requires less bytes on
uble types. This type allows
, with a hint value, which can
en trailing zeros, 14 decimal
ominators up to 256.
) to (263 - 1)

ented as blank.

 type, refer to Section 11.2.1.

ENUMERATED TYPE
NAME

BASE PRIMITIVE
TYPE ENUMERATION

PRIMITIVE
TYPE

DECODE
INTERFACE

TYPE DESCRIPTION

C

h
ap

te
r

11

 D
at

a
P

ac
ka

ge
 D

et
ai

le

RSSL_DT_UINT_4 RSSL_DT_UINT RsslUInt rsslDecodeUIntUInt.d
ecode

An unsigned, four-byte i
an unsigned value with
Allowable range is 0 to (

This type cannot be rep

RSSL_DT_UINT_8 RSSL_DT_UINT RsslUInt rsslDecodeUIntUInt.d
ecode

An unsigned, eight-byte
an unsigned value with
Allowable range is 0 to (

This set-defined primitiv
as blank.

RSSL_DT_FLOAT_4 RSSL_DT_FLOAT RsslFloat rsslDecodeFloatFloat.
decode

A four-byte, floating poin
same range of values a
type. Follows the IEEE 7

This type cannot be rep

RSSL_DT_DOUBLE_8 RSSL_DT_DOUBLE RsslDouble rsslDecodeDoubleDo
uble.decode

An eight-byte, floating p
same range of values a
type. Follows the IEEE 7

This type cannot be rep

RSSL_DT_REAL_4RB RSSL_DT_REAL RsslReal rsslDecodeRealReal.
decode

An optimized RWF repr
fractional value which ty
the wire than float or d
allows up to a four-byte
which can add or remov
ten decimal places, or fr
256. Allowable range is

This type can be repres

For more details on this

RSSL_DT_REAL_8RB RSSL_DT_REAL RsslReal rsslDecodeRealReal.
decode

An optimized RWF repr
fractional value which ty
the wire than float or do
up to an eight byte value
add or remove up to sev
places, or fractional den
Allowable range is (-263

This type can be repres

For more details on this

Table 151: Set-Defined Primitive Types (Continued)

Chapter 11 Data Package Detailed View

ainin

d as

 refe

ainin

d as

 refe

ainin
s.

d as

 refe

ate
TE

TIME

d as

 refe

ate
TE a

d as

 refe

IPT
RSSL_DT_DATE_4 RSSL_DT_DATE RsslDate rsslDecodeDateDate.
decode

Representation of a date cont
year values.

This value can be represente

For more details on this type,

RSSL_DT_TIME_3 RSSL_DT_TIME RsslTime rsslDecodeTimeTime.
decode

Representation of a time cont
and second values.

This value can be represente

For more details on this type,

RSSL_DT_TIME_5 RSSL_DT_TIME RsslTime rsslDecodeTimeTime.
decode

Representation of a time cont
second, and millisecond value

This value can be represente

For more details on this type,

RSSL_DT_DATETIME_7 RSSL_DT_DATETIME RsslDateTime rsslDecodeDateTime
DateTime.decode

Combined representation of d
all members of RSSL_DT_DA
and second from RSSL_DT_

This value can be represente

For more details on this type,

RSSL_DT_DATETIME_9 RSSL_DT_DATETIME RsslDateTime rsslDecodeDateTime
DateTime.decode

Combined representation of d
all members of RSSL_DT_DA
RSSL_DT_TIME.

This value can be represente

For more details on this type,

ENUMERATED TYPE
NAME

BASE PRIMITIVE
TYPE ENUMERATION

PRIMITIVE
TYPE

DECODE
INTERFACE

TYPE DESCR

Table 151: Set-Defined Primitive Types (Continued)
Transport API 3.1.X C Edition – Developers Guide 229
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.6.2 Set Definition Use

In the Transport API, an application can leverage local set definitions. A local set definition is a set definition sent along with
the content it defines. Local set definitions are valid only within the scope of the container of which they are a part and apply
only to the information in the container on which they are specified (e.g., an RsslMap’s set definition content applies only to the
payload within the map’s entries). Set definitions are divided into two concrete types

• Field set definition: A set definition that defines RsslFieldList content

• Element set definition: A set definition that defines RsslElementList content

Set definitions can contain multiple entries, each defining a specific encoding type for an RsslFieldEntry or
RsslElementEntry.

11.6.2.1 RsslFieldSetDef Structure Members

The following table defines RsslFieldSetDef Structure Members. RsslFieldSetDef represents a single field set definition
and can define the contents of multiple entries in an RsslFieldList.

STRUCTURE MEMBER DESCRIPTION

setId The field set definition’s identifier value. Any field list content that leverages this definition
should have RsslFieldList.setId match this identifier.

setId values have an allowed range of 0 to 32,767. However, only values 0 to 15 are valid for
local set definition content. For more information, refer to Section 11.6.

For more details on how RsslFieldList indicates the use of a set definition, refer to Section
11.3.1

count The number of RsslFieldSetDefEntrys contained in this definition. Each entry defines how
an RsslFieldEntry is encoded or decoded. A set definition is limited to 255 entries.

For more information, refer to Section 11.6.2.2

pEntries A pointer to the array of RsslFieldSetDefEntrys. Each entry defines how an
RsslFieldEntry is encoded or decoded.

For more information, refer to Section 11.6.2.2.

Table 152: RsslFieldSetDef Structure Member
Transport API 3.1.X C Edition – Developers Guide 230
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.6.2.2 RsslFieldSetDefEntry Structure Members

11.6.2.3 RsslElementSetDef Structure members

The following table defines RsslElementSetDef Structure Members. RsslElementSetDef represents a single element set
definition, and can define content for multiple entries in an RsslElementList.

STRUCTURE MEMBER DESCRIPTION

fieldId The fieldId value that corresponds to this entry in the set-defined RsslFieldList content.
fieldId is a signed, two-byte value that refers to specific name and type information defined
by an external field dictionary, such as the RDMFieldDictionary. Negative fieldId values
typically refer to user-defined values while positive fieldId values typically refer to Thomson
Reuters-defined values. When encoding, the RsslFieldEntry.fieldId should match the
value that the set definition expects. When decoding, the RsslFieldEntry.fieldId is
populated with the fieldId value indicated in the set definition.

fieldId has an allowable range of -32,768 to 32,767 where positive values are Thomson
Reuters-defined and negative values are user-defined. The fieldId value of 0 is reserved
to indicate dictionaryId changes, where the type of fieldId 0 is an RsslInt.

dataType Defines the RsslDataType of the entry as it encodes or decodes when using this set
definition. This can be a base primitive type, a set-defined primitive type, or a container type.

• While encoding, populate the RsslFieldEntry.dataType with the base primitive type or
container type value that corresponds to the type contained in this definition.

• While decoding, RsslFieldEntry.dataType is populated with the specific RsslDataType
information as indicated by the Set Definition, where any set-defined primitive type is
converted to the corresponding base primitive type.

For a map of set-defined primitive types and their corresponding base primitive types, refer to
Section 11.6.1.

Table 153: RsslFieldSetDefEntry Structure Members

STRUCTURE MEMBER DESCRIPTION

setId The field set definition’s identifier value. Any element list content that leverages this definition
should have the RsslElementList.setId matching this identifier.

Though setId values have an allowed range of 0 to 32,767, the only values valid for local set
definition content are 0 - 15. These indicate locally defined set definition use. For more
information, refer to Section 11.6.

For more information about how an RsslElementList indicates use of a set definition, refer
to Section 11.3.2.

count The number of RsslElementSetDefEntrys contained in this definition. Each entry defines
how to encode or decode an RsslElementEntry. A set definition is limited to 255 entries.

For more information, refer to Section 11.6.2.4.

pEntries A pointer to the array of RsslElementSetDefEntrys. Each entry defines how to encode or
decode an RsslElementEntry.

For more information, refer to Section 11.6.2.4.

Table 154: RsslElementSetDef Structure Members
Transport API 3.1.X C Edition – Developers Guide 231
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.6.2.4 RsslElementSetDefEntry Structure Members

STRUCTURE MEMBER DESCRIPTION

name The name that corresponds to this set-defined element; contained in the structure as an
RsslBuffer. Element names are defined outside of the Transport API, typically as part of a
domain model specification or dictionary. When encoding, you can optionally populate
RsslElementEntry.name with the name expected in the set definition.

If name is not used, validation checking is not provided and information might be encoded that
does not properly correspond to the definition. When decoding, RsslElementEntry.name is
populated with the information indicated in the set definition.

The name buffer allows content length ranging from 0 bytes to 32,767 bytes.

dataType When encoding or decoding an entry using this set definition, dataType defines the entry’s
RsslDataType. This can be a base primitive type, a set-defined primitive type, or a container
type.

• While encoding, populate RsslElementEntry.dataType with the base primitive type or
container type value that corresponds to the type contained in this definition.

• While decoding, populate RsslElementEntry.dataType with the specific RsslDataType
information as indicated by set definition, where any set-defined primitive type is
converted to the corresponding base primitive type.

For a map of set-defined primitive types and their corresponding base primitive types, refer to
Section 11.6.1.

Table 155: RsslElementSetDefEntry Structure Members
Transport API 3.1.X C Edition – Developers Guide 232
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.6.3 Set Definition Database

A set definition database can group definitions together. Using a database can be helpful when the content leverages
multiple definitions; the database provides an easy way to pass around all set definitions necessary to encode or decode
information. For instance, an RsslVector can contain multiple set definitions via a set definition database with the contents of
each RsslVectorEntry requiring a different definition from the database.

11.6.3.1 RsslLocalFieldSetDefDb Structure Members

RsslLocalFieldSetDefDb represents multiple local field set definitions and uses the following Structure Members.

STRUCTURE MEMBER DESCRIPTION

definitions An array containing up to fifteen RsslFieldSetDefs. Each contained field set definition
defines a unique setId for use in the container.

entriesa

a. If an application uses multiple RsslDecodeIterator structures in the same thread, where each decode iterator requires the
use of a local set definition database, the application must provide the memory into which entries decode.

An RsslBuffer that helps manage memory associated with set definition entries for each
RsslFieldSetDef. Optionally, a decoding application can populate RsslBuffer.data and
length with its own memory, causing RSSL to decode the definitions into user-provided
storage. If RsslBuffer.data and length are not populated, RSSL uses internal memory
which will no longer be valid after decoding completes. Though an encoding application does
not need to use this, it can be helpful to populate the RsslBuffer.data and length with its
own memory, referring to its entry array content.

Note: If an application decodes content over multiple threads and data might contain set
definitions, to ensure thread safety, the application should populate the
RsslLocalFieldSetDefDb.entries or RsslLocalElementSetDefDb.entries buffer with its
own memory.

Table 156: RsslLocalFieldSetDefDb Structure Members
Transport API 3.1.X C Edition – Developers Guide 233
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.6.3.2 RsslLocalElementSetDefDb Structure Members

RsslLocalElementSetDefDb (which represents multiple local element set definitions) has the following members:

11.6.3.3 Local Set Definition Database Encoding Interfaces

Applications can send or receive local set definitions while using the RsslMap, RsslVector, or RsslSeries container types. To
provide local set definition information, an application can populate the encSetDefs member with a pre-encoded set definition
database, or encode this using the Transport API-provided functionality described in this section.

The following table describes all available encoding functions required to provide set definition database content on an
RsslMap, RsslVector, or RsslSeries. When present, this information should apply to any RsslFieldList or
RsslElementList content within the types’ entries. When encoding set-defined field or element list content, the application
must pass RsslLocalFieldSetDefDb or RsslLocalElementSetDefDb into the rsslEncodeFieldListInit and
rsslEncodeElementListInit functions.

STRUCTURE MEMBER DESCRIPTION

definitions An array containing up to fifteen RsslElementSetDef structures. Each contained element set
definition defines a unique setId for use within the container on which this is present.

entriesa

a. Within the same thread, if an application is using multiple RsslDecodeIterator structures, where each decode iterator
requires the use of a local set definition database, the application must provide entries memory for decoding into.

An RsslBuffer that helps manage memory associated with set definition entries for each
RsslElementSetDef. Optionally, a decoding application can populate RsslBuffer.data and
length with its own memory, causing RSSL to decode definitions in user-provided storage. If
RsslBuffer.data and length are not populated, RSSL uses internal memory, which is no
longer valid after the container decoding completes. Though an encoding application does
not need to use this, it might be helpful to populate the RsslBuffer.data and length with its
own memory referring to its entry array content.

Note: If an application decodes content over multiple threads and the data may contain set
definitions, to ensure thread safety, the application should populate the
RsslLocalFieldSetDefDb.entries or RsslLocalElementSetDefDb.entries buffer with its
own memory.

Table 157: RsslLocalElementSetDefDb Structure Members

ENCODE INTERFACE DESCRIPTION

rsslEncodeLocalFieldSetDefDb Encodes a non-pre-encoded local field set definition database into its own buffer
for use with encSetDefs or directly into an RsslMap, RsslVector, or RsslSeries.
After the container’s EncodeInit function, local set definition encoding is expected
prior to any summary data or container entries.

rsslEncodeLocalElementSetDefDb Encodes a non-pre-encoded local element set definition database into its own
buffer for use with encSetDefs or directly into an RsslMap, RsslVector, or
RsslSeries. After the containers EncodeInit function, local set definition
encoding is expected prior to any summary data or container entries.

rsslEncodeMapSetDefsComplete Completes encoding non-pre-encoded element or field set definition database
content.

This applies to local set definition database content on an RsslMap, refer to
Section 11.3.3.

Table 158: Local Set Definition Database Encode Functions
Transport API 3.1.X C Edition – Developers Guide 234
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.6.3.4 Local Set Definition Database Decoding Interfaces

The following table describes decoding functions for use with a local set definition database. When decoding set-defined
content, the application can pass the RsslLocalFieldSetDefDb or RsslLocalElementSetDefDb into the
rsslDecodeFieldList and rsslDecodeElementList functions. If this information is not provided, RSSL skips decoding set-
defined content.

rsslEncodeSeriesSetDefsComplete Completes encoding non-pre-encoded element or field set definition database
content.

This applies to local set definition database content on an RsslSeries, refer to
Section 11.3.4.

rsslEncodeVectorSetDefsComplete Completes encoding non-pre-encoded element or field set definition database
content.

This applies to local set definition database content on an RsslVector, refer to
Section 11.3.5.

DECODE INTERFACE DESCRIPTION

rsslDecodeLocalFieldSetDefDb Decodes encSetDefs into a local field set definition database for use when decoding
contained RsslFieldList information.

rsslDecodeLocalElementSetDefDb Decodes encSetDefs into a local field set definition database for use when decoding
contained RsslElementList information.

Table 159: Local Set Definition Database Decode Functions

ENCODE INTERFACE DESCRIPTION

Table 158: Local Set Definition Database Encode Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 235
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.6.3.5 Local Set Definition Database Utility Functions

The Transport API provides the following utility functions for use with RsslLocalFieldSetDefDb and
RsslLocalElementSetDefDb types:

FUNCTION NAME DESCRIPTION

rsslClearFieldSetDefEntry Clears members from an RsslFieldSetDefEntry structure. Useful for structure
reuse.

rsslClearFieldSetDef Clears members from an RsslFieldSetDef structure. This will not free memory
pointed to by pEntries. Useful for structure reuse.

rsslClearLocalFieldSetDefDb Clears members from an RsslLocalFieldSetDefDb structure. If the user populated
the entries buffer with their own memory, this function will not free up memory: it
sets length and data to 0. This structure must be cleared prior to use.

rsslClearElementSetDefEntry Clears members from an RsslElementSetDefEntry structure. This will not free
memory associated with name.data. Useful for structure reuse.

rsslClearElementSetDef Clears members from an RsslElementSetDef structure. This will not free memory
pointed to by pEntries. Useful for structure reuse.

rsslClearLocalElementSetDefDb Clears members from an RsslLocalElementSetDefDb structure. If the user
populated the entries buffer with their own memory, this function does not free up
memory: it sets length and data to 0. This structure must be cleared prior to use.

Table 160: Local Set Definition Database Utility Functions
Transport API 3.1.X C Edition – Developers Guide 236
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.6.3.6 Field Set Definition Database Encoding Example

The following example demonstrates encoding of a field set definition database into an RsslMap. The field set definition
database contains one definition, made up of three field set definition entries. After set-defined content encoding is completed,
an additional standard data field entry is encoded.

RsslMap rsslMap = RSSL_INIT_MAP;

/* Create the fieldSetDefDb and field set definition */

RsslLocalFieldSetDefDb fieldSetDefDb;

RsslFieldSetDef fieldSetDef;

/* create entries arrays */

RsslFieldSetDefEntry fieldSetDefEntries[3] =

{

{ 22, RSSL_DT_REAL }, /* Contains BID as an RsslReal */

{ 25, RSSL_DT_REAL_8RB }, /* Contains ASK as an optimized RsslReal */

{ 18, RSSL_DT_TIME_3 } /* Contains TRADE TIME as an optimized RsslTime */

};

/* Populate the entries into our set definition */

fieldSetDef.setId = 5; /* This definition has an ID of 5 */

fieldSetDef.count = 3; /* There are three entries in this definition */

fieldSetDef.pEntries = fieldSetDefEntries; /* Set this to the array containing the definitions */

/* Now populate the definition into the set definition Db. If there were more than one definition,

/* all required defs would be populated into the same Db */

/* Structure must be cleared first */

rsslClearLocalFieldSetDefDb(&fieldSetDefDb);

/* set the definition into the slot that corresponds to its ID */

/* since this definition is ID 5, it goes into definitions array position 5 */

fieldSetDefDb.definitions[5] = fieldSetDef;

/* begin encoding of map that will contain set def DB - assumes that encIter is already populated with

/* buffer and version information, store return value to determine success or failure */

rsslMap.flags = RSSL_MPF_HAS_SET_DEFS;

rsslMap.containerType = RSSL_DT_FIELD_LIST;

rsslMap.keyPrimitiveType = RSSL_DT_UINT;

if ((retVal = rsslEncodeMapInit(&encIter, &rsslMap, 0, 0)) < RSSL_RET_SUCCESS)

{

/* error condition - switch our success value to false so we can roll back */

success = RSSL_FALSE;

/* print out message with return value string, value, and text */

printf("Error %s (%d) encountered with rsslEncodeMapInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* map init encoding was successful */

RsslMapEntry mapEntry = RSSL_INIT_MAP_ENTRY;

RsslFieldList fieldList = RSSL_INIT_FIELD_LIST;

RsslFieldEntry fieldEntry = RSSL_INIT_FIELD_ENTRY;

RsslReal rsslReal = RSSL_INIT_REAL;
Transport API 3.1.X C Edition – Developers Guide 237
ETAC313UM.180

Chapter 11 Data Package Detailed View
RsslTime rsslTime = RSSL_INIT_TIME;

RsslInt rsslUInt = 0;

/* It expects the local set definition database to be encoded next */

/* because we are encoding a local field set definition database, we have to call the correct function
*/

retVal = rsslEncodeLocalFieldSetDefDb(&encIter, &fieldSetDefDb);

/* Our set definition db is now encoded into the map, we must complete the map portion of this

/* encoding and then begin encoding entries */

retVal = rsslEncodeMapSetDefsComplete(&encIter, RSSL_TRUE);

/* begin encoding of map entry - this contains a field list using the set definition encoded above */

mapEntry.action = RSSL_MPEA_ADD_ENTRY;

mapEntry.flags = RSSL_MPEF_NONE;

rsslUInt = 100212; /* populate map entry key */

retVal = rsslEncodeMapEntryInit(&encIter, &mapEntry, & rsslUInt, 0);

/* set field list flags - this has a setId and set defined data - we can also have standard data after

/* set defined data is encoded */

fieldList.flags = RSSL_FLF_HAS_SET_ID | RSSL_FLF_HAS_SET_DATA | RSSL_FLF_HAS_STANDARD_DATA;

fieldList.setId = 5; /* this field list will use the set definition from above */

/* when encoding set defined data, the database containing the necessary definitions must be passed
in */

retVal = rsslEncodeFieldListInit(&encIter, &fieldList, &fieldSetDefDb, 0);

/* for each field entry we encode that is set defined, the Rssl encoder verifies that the correct

/* fieldId and content type are passed in. Order must match definition */

/* Encode FIRST field in set definition */

fieldEntry.fieldId = 22; /* fieldId of the first set definition entry */

fieldEntry.dataType = RSSL_DT_REAL; /* base primitive type of the first set definition entry */

rsslReal.hint = RSSL_RH_EXPONENT_2;

rsslReal.value = 227;

/* encode the first entry - this matches the fieldId and type specified in the first definition entry
*/

retVal = rsslEncodeFieldEntry(&encIter, &fieldEntry, &rsslReal);

/* Encode SECOND field in set definition */

fieldEntry.fieldId = 25; /* fieldId of the second set definition entry */

fieldEntry.dataType = RSSL_DT_REAL; /* base primitive type of the second set definition entry */

rsslReal.hint = RSSL_RH_EXPONENT_4;

rsslReal.value = 22801;

/* encode the second entry - this matches the fieldId and type specified in the first definition entry

*/

retVal = rsslEncodeFieldEntry(&encIter, &fieldEntry, &rsslReal);

/* Encode THIRD field in set definition */

fieldEntry.fieldId = 18; /* fieldId of the third set definition entry */

fieldEntry.dataType = RSSL_DT_TIME; /* base primitive type of the third set definition entry */

rsslTime.hour = 8;

rsslTime.minute = 39;

rsslTime.second = 24;

/* encode the third entry - this matches the fieldId and type specified in the first definition entry
*/
Transport API 3.1.X C Edition – Developers Guide 238
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 36: Field Set Definition Database Encoding Example

retVal = rsslEncodeFieldEntry(&encIter, &fieldEntry, &rsslTime);

/* Encode standard data after field set definition is complete */

fieldEntry.fieldId = 2; /* fieldId of the first standard data entry after set definition is

/* complete*/

fieldEntry.dataType = RSSL_DT_UINT; /* base primitive type of the first set definition entry */

/* encode the standard data in the message after set data is complete */

retVal = rsslEncodeFieldEntry(&encIter, &fieldEntry, &rsslUInt);

/* complete encoding of the content */

retVal = rsslEncodeFieldListComplete(&encIter, RSSL_TRUE);

retVal = rsslEncodeMapEntryComplete(&encIter, RSSL_TRUE);

retVal = rsslEncodeMapComplete(&encIter, RSSL_TRUE);
Transport API 3.1.X C Edition – Developers Guide 239
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.6.3.7 Field Set Definition Database Decoding Example

The following example illustrates how to decode a field set definition database from an RsslMap. After decoding the database,
it can be passed in while decoding RsslFieldList content.

Code Example 37: Field Set Definition Database Decoding Example

RsslMap rsslMap = RSSL_INIT_MAP;

RsslMapEntry mapEntry = RSSL_INIT_MAP_ENTRY;

RsslUInt rsslUInt = 0; /* for decoding map entry keys */

/* Create the fieldSetDefDb to decode into */

RsslLocalFieldSetDefDb fieldSetDefDb;

/* Decode the map */

retVal = rsslDecodeMap(&decIter, &rsslMap);

/* If the map flags indicate that set definition content is present, decode the set def db */

if (rsslMap.flags & RSSL_MPF_HAS_SET_DEFS)

{

/* must ensure it is the correct type - if map contents are field list, this is a field set definition

/* db */

if (rsslMap.containerType == RSSL_DT_FIELD_LIST)

{

rsslClearLocalFieldSetDefDb(&fieldSetDefDb);

retVal = rsslDecodeLocalFieldSetDefDb(&decIter, &fieldSetDefDb);

}

/* If map contents are an element list, this is an element set definition db */

if (rsslMap.containerType == RSSL_DT_ELEMENT_LIST)

/* this is an element list set definition db */

}

/* decode map entries */

while ((retVal = rsslDecodeMapEntry(&decIter, &mapEntry, &rsslUInt)) != RSSL_RET_END_OF_CONTAINER)

{

if (retVal < RSSL_RET_SUCCESS)

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeMapEntry. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

RsslFieldList fieldList;

/* entries contain field lists - since there were definitions provided they should be passed

/* in for field list decoding. Any set defined content will use the definition when decoding.

/* If set definition db is not passed in, any set content will not be decoded */

retVal = rsslDecodeFieldList(&decIter, &fieldList, &fieldSetDefDb);

/* Continue decoding field entries. See example in Section 11.3.1.8 */

}

}

Transport API 3.1.X C Edition – Developers Guide 240
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.6.3.8 Element Set Definition Database Encoding Example

The following example illustrates how to encode an element set definition database into an RsslSeries. The database
contains one element set definition with three element set definition entries. After encoding is completed, the sample encodes
an additional standard data element entry.

RsslSeries rsslSeries = RSSL_INIT_SERIES;

/* Create the elementSetDefDb and element set definition */

RsslLocalElementSetDefDb elementSetDefDb;

RsslElementSetDef elementSetDef;

/* create entries arrays */

RsslElementSetDefEntry elementSetDefEntries[3] =

{

{ { 3, “BID” }, RSSL_DT_REAL }, /* Contains BID as an RsslReal */

{ { 3, “ASK” }, RSSL_DT_REAL_8RB }, /* Contains ASK as an optimized RsslReal */

{ { 10, “TRADE TIME” }, RSSL_DT_TIME_3 } /* Contains TRADE TIME as an optimized RsslTime */

};

/* Populate the entries into our set definition */

elementSetDef.setId = 10; /* This definition has an ID of 10 */

elementSetDef.count = 3; /* There are three entries in this definition */

elementSetDef.pEntries = elementSetDefEntries; /* Set this to the array containing the definitions */

/* Now populate the definition into the set definition Db. If there were more than one definition,

/* all required defs would be populated into the same Db */

/* Structure must be cleared first */

rsslClearLocalElementSetDefDb(&elementSetDefDb);

/* set the definition into the slot that corresponds to its ID */

/* since this definition is ID 10, it goes into definitions array position 10 */

elementetDefDb.definitions[10] = elementSetDef;

/* begin encoding of series that will contain set def DB - assumes that encIter is already populated with

/* buffer and version information, store return value to determine success or failure */

rsslSeries.flags = RSSL_SRF_HAS_SET_DEFS;

rsslSeries.containerType = RSSL_DT_ELEMENT_LIST;

if ((retVal = rsslEncodeSeriesInit(&encIter, &rsslSeries, 0, 0)) < RSSL_RET_SUCCESS)

{

/* error condition - switch our success value to false so we can roll back */

success = RSSL_FALSE;

/* print out message with return value string, value, and text */

printf("Error %s (%d) encountered with rsslEncodeSeriesInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

/* series init encoding was successful */

RsslSeriesEntry seriesEntry = RSSL_INIT_SERIES_ENTRY;

RsslElementList elementList = RSSL_INIT_ELEMENT_LIST;

RsslElementEntry elementEntry = RSSL_INIT_ELEMENT_ENTRY;

RsslReal rsslReal = RSSL_INIT_REAL;

RsslTime rsslTime = RSSL_INIT_TIME;
Transport API 3.1.X C Edition – Developers Guide 241
ETAC313UM.180

Chapter 11 Data Package Detailed View
RsslInt rsslUInt = 2112;

/* It expects the local set definition database to be encoded next */

/* because we are encoding a local element set definition database, we have to call the correct

/* function */

retVal = rsslEncodeLocalElementSetDefDb(&encIter, &elementSetDefDb);

/* Our set definition db is now encoded into the series, we must complete the series portion of this

/* encoding and then begin encoding entries */

retVal = rsslEncodeSeriesSetDefsComplete(&encIter, RSSL_TRUE);

/* begin encoding of series entry - this contains an element list using the set definition encoded

/* above */

retVal = rsslEncodeSeriesEntryInit(&encIter, &seriesEntry, 0);

/* set element list flags - this has a setId and set defined data - we can also have standard data

/* after set defined data is encoded */

elementList.flags = RSSL_ELF_HAS_SET_ID | RSSL_ELF_HAS_SET_DATA | RSSL_ELF_HAS_STANDARD_DATA;

elementList.setId = 10; /* this element list will use the set definition from above */

/* when encoding set defined data, the database containing the necessary definitions must be passed

/* in */

retVal = rsslEncodeElementListInit(&encIter, &elementList, &elementSetDefDb, 0);

/* for each element entry we encode that is set defined, the Rssl encoder verifies that the correct

/* element name and content type are passed in. Order must match definition */

/* Encode FIRST element in set definition */

elementEntry.name.length = 3; /* name of the first set definition entry */

elementEntry.name.data = “BID”;

elementEntry.dataType = RSSL_DT_REAL; /* base primitive type of the first set definition entry */

rsslReal.hint = RSSL_RH_EXPONENT_2;

rsslReal.value = 227;

/* encode the first entry - this matches the name and type specified in the first definition entry */

retVal = rsslEncodeElementEntry(&encIter, &elementEntry, &rsslReal);

/* Encode SECOND element in set definition */

elementEntry.name.length = 3; /* name of the second set definition entry */

elementEntry.name.data = “ASK”;

elementEntry.dataType = RSSL_DT_REAL; /* base primitive type of the second set definition entry */

rsslReal.hint = RSSL_RH_EXPONENT_4;

rsslReal.value = 22801;

/* encode the second entry - this matches the name and type specified in the first definition entry */

retVal = rsslEncodeElementEntry(&encIter, &elementEntry, &rsslReal);

/* Encode THIRD field in set definition */

elementEntry.name.length = 10; /* name of the third set definition entry */

elementEntry.name.data = “TRADE TIME”;

elementEntry.dataType = RSSL_DT_TIME; /* base primitive type of the third set definition entry */

rsslTime.hour = 8;

rsslTime.minute = 39;

rsslTime.second = 24;

/* encode the third entry - this matches the name and type specified in the first definition entry */

retVal = rsslEncodeElementEntry(&encIter, &elementEntry, &rsslTime);
Transport API 3.1.X C Edition – Developers Guide 242
ETAC313UM.180

Chapter 11 Data Package Detailed View
Code Example 38: Element Set Definition Database Encoding Example

/* Encode standard data after element set definition is complete */

elementEntry.name.length = 15; /* name of the first standard data entry after set definition is

/* complete*/

elementEntry.name.data = “DISPLAYTEMPLATE”;

elementEntry.dataType = RSSL_DT_UINT; /* base primitive type of the first set definition entry */

/* encode the standard data in the message after set data is complete */

retVal = rsslEncodeElementEntry(&encIter, &elementEntry, &rsslUInt);

/* complete encoding of the content */

retVal = rsslEncodeElementListComplete(&encIter, RSSL_TRUE);

retVal = rsslEncodeSeriesEntryComplete(&encIter, RSSL_TRUE);

retVal = rsslEncodeSeriesComplete(&encIter, RSSL_TRUE);

}

Transport API 3.1.X C Edition – Developers Guide 243
ETAC313UM.180

Chapter 11 Data Package Detailed View
11.6.3.9 Element Set Definition Database Decoding Example

The following example illustrates how to decode an element set definition database from an RsslSeries. After decoding the
database, it can be passed in while decoding RsslElementList content.

Code Example 39: Element Set Definition Database Decoding Example

RsslSeries rsslSeries = RSSL_INIT_SERIES;

RsslSeriesEntry seriesEntry = RSSL_INIT_SERIES_ENTRY;

/* Create the elementSetDefDb to decode into */

RsslLocalElementSetDefDb elementSetDefDb;

/* Decode the series */

retVal = rsslDecodeSeries(&decIter, &rsslSeries);

/* If the series flags indicate that set definition content is present, decode the set def db */

if (rsslSeries.flags & RSSL_SRF_HAS_SET_DEFS)

{

/* must ensure it is the correct type - if series contents are element list, this is an element set

/* definition db */

if (rsslSeries.containerType == RSSL_DT_ELEMENT_LIST)

{

rsslClearLocalElementSetDefDb(&elementSetDefDb);

retVal = rsslDecodeLocalElementSetDefDb(&decIter, &elementSetDefDb);

}

/* If map contents are an field list, this is a field set definition db */

if (rsslSeries.containerType == RSSL_DT_FIELD_LIST)

/* this is a field list set definition db */

}

/* decode series entries */

while ((retVal = rsslDecodeSeriesEntry(&decIter, &seriesEntry)) != RSSL_RET_END_OF_CONTAINER)

{

if (retVal < RSSL_RET_SUCCESS)

{

/* decoding failure tends to be unrecoverable */

printf("Error %s (%d) encountered with rsslDecodeSeriesEntry. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));

}

else

{

RsslElementList elementList;

/* entries contain element lists - since there were definitions provided they should be passed

/* in for element list decoding. Any set defined content will use the definition when decoding.

/* If set definition db is not passed in, any set content will not be decoded */

retVal = rsslDecodeElementList(&decIter, &elementList, &elementSetDefDb);

/* Continue decoding element entries. See example in Section 11.3.2 */

}

}

Transport API 3.1.X C Edition – Developers Guide 244
ETAC313UM.180

Chapter 12 Message Package Detailed View
Chapter 12 Message Package Detailed View

12.1 Concepts

Messages communicate data between system components: to exchange information, indicate status, permission users and
access, and for a variety of other purposes. Many messages have associated semantics for efficient use in market data
systems to request information, respond to information, or provide updated information. Other messages have relatively loose
semantics, allowing for a more dynamic use either inside or outside market data systems.

An individual flow of related messages within a connection is typically referred to as a stream, and the message package
allows multiple simultaneous streams to coexist in a connection. An information stream is instantiated between a consuming
application and a providing application when the consumer issues an RsslRequestMsg followed by the provider responding
with an RsslRefreshMsg or RsslStatusMsg. At this point the stream is established and allows other messages to flow within
the stream. The remainder of this chapter discusses streams, stream identification, and stream uniqueness.

The Message Package offers a suite of message header definitions; each optimized to communicate a specific set of
information. There are constructs to allow for communication stream identification and to determine uniqueness of streams
within a connection. The following sections describe the various constructs, concepts, and processes involved with use of the
Message Package.

12.1.1 Common Message Base

Each Transport API message consists of both unique members and common message members. The common members
form the msgBase portion of the message structure.

12.1.1.1 Message Base Structure Members

STRUCTURE MEMBER DESCRIPTION

msgClass Required on all messages.

Identifies the specific type of a message (e.g. RsslUpdateMsg, RsslRequestMsg). msgClass
allows a range from 0 to 31, with all values reserved for use by Thomson Reuters.

For more details about the various message classes, refer to Section 12.1.1.2.

domainType Required on all messages.

Identifies the specific domain message model type. domainType allows a range from 0 to
255, where Thomson Reuters-defined values are between 0 and 127 and user-defined
values are between 128 and 255.

The domain model definition is decoupled from the API and domain models are typically
defined in a specification document. Domain models defined by Thomson Reuters are
specified in the Transport API RDM Usage Guide.

containerType Required on all messages.

Identifies the type of message payload content and indicates the presence of a Transport API
container type (value 129 - 224), some type of customer-defined, or non-RWF container type
(225 - 255), or no message payload (128).

For more details about container type definitions and use, refer to Section 11.3.

Table 161: Message Base Structure Members
Transport API 3.1.X C Edition – Developers Guide 245
ETAC313UM.180

Chapter 12 Message Package Detailed View
msgKey Required on an RsslRequestMsg and optional on RsslRefreshMsg, RsslStatusMsg,
RsslUpdateMsg, RsslGenericMsg, RsslPostMsg, and RsslAckMsg.

Houses various attributes that help identify contents flowing within a stream. The msgKey on
the initial RsslRefreshMsg, in conjunction with QoS and domainType, uniquely identifies the
stream. The key typically includes naming and service-related information.

For more information about the message key and stream identification, refer to Section 12.1.2
and Section 12.1.3.

streamId Required on all messages.

Specifies a unique, signed-integer identifier associated with all messages flowing within a
stream. streamId allows a range from
-2,147,483,648 to 2,147,483,647, where:

• Positive values indicate a consumer-instantiated stream (typically via RsslRequestMsg).

• Negative values indicate a provider-instantiated stream (often associated with NIPs).

For more information about stream identification and streamId use, refer to Section 12.1.3.

encDataBody Length and pointer to any encoded data contained in the message. If populated, the content
type is described by containerType. encDataBody would contain only encoded message
payload and length information.

encDataBody can represent up to 4,294,967,295 bytes of payload. This payload length is
typically limited by the contained type’s specification.

• When encoding, encDataBody refers to any pre-encoded message payload.

• When decoding, encDataBody refers to any encoded message payload.

encMsgBuffer Length and pointer to the entire encoding of the message. encMsgBuffer would contain both
encoded message header and encoded message payload and length information.

encMsgBuffer is typically populated only while decoding, and refers to the entire encoded
message header and payload.

STRUCTURE MEMBER DESCRIPTION

Table 161: Message Base Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 246
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.1.1.2 Message Class Information

ENUMERATED
MESSAGE CLASS

MESSAGE
STRUCTURE NAME

DESCRIPTION

RSSL_MC_REQUEST RsslRequestMsg Consumers use RsslRequestMsg to express interest in a new stream or
modify some parameters on an existing stream; typically results in the
delivery of an RsslRefreshMsg or RsslStatusMsg.

For more information, refer to Section 12.2.1.

RSSL_MC_REFRESH RsslRefreshMsg The Interactive Provider can use this class to respond to a consumer’s
request for information (solicited) or provide a data resynchronization
point (unsolicited).

The NIP can use this class to initiate a data flow on a new item stream.

Conveys state information, QoS, stream permissioning information, and
group information in addition to payload.

For more information, refer to Section 12.2.2.

RSSL_MC_UPDATE RsslUpdateMsg Interactive or NIPs use the RsslUpdateMsg to convey changes to
information on a stream. Update messages typically flow on a stream
after delivery of a refresh.

For more information, refer to Section 12.2.3.

RSSL_MC_STATUS RsslStatusMsg Indicates changes to the stream or data properties. A provider uses
RsslStatusMsg to close streams and to indicate successful
establishment of a stream when there is no data to convey. For more
information, refer to Section 12.2.4.

This message can indicate changes:

• In streamState or dataState

• In a stream’s permissioning information

• To the item group to which the stream belongs

RSSL_MC_CLOSE RsslCloseMsg A consumer uses RsslCloseMsg to indicate no further interest in a
stream. As a result, the stream should be closed.

For more information, refer to Section 12.2.5.

RSSL_MC_GENERIC RsslGenericMsg A bi-directional message that does not have any implicit interaction
semantics associated with it, thus the name generic. For more
information, refer to Section 12.2.6.

After a stream is established via a request-refresh/status interaction:

• A consumer can send this message to a provider.

• A provider can send this message to a consumer.

• NIPs can send this message to the ADH.

Table 162: Message Class Information
Transport API 3.1.X C Edition – Developers Guide 247
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.1.2 Message Key

The Message Key (msgKey) houses a variety of attributes that help identify content that flows in a particular stream. A data
stream is uniquely identified by the domainType, QoS data, and message key.

12.1.2.1 Message Key Structure Members

RSSL_MC_POST RsslPostMsg A consumer uses RsslPostMsg to push content upstream. This
information can be applied to an Enterprise Platform cache or routed
further upstream to a data source. After receiving posted data, upstream
components can republish it to downstream consumers.

For more information, refer to Section 12.2.7.

RSSL_MC_ACK RsslAckMsg A provider uses RsslAckMsg to inform a consumer of success or failure
for a specific RsslPostMsg or RsslCloseMsg.

For more information, refer to Section 12.2.8.

Structure Member DESCRIPTION

flags Combination of bit values to indicate the presence of optional msgKey members. For more
information about flag values, refer to Section 12.1.2.2.

serviceId The two-byte, unsigned integer identifier associated with a service (a logical mechanism that
provides or enables access to a set of capabilities). serviceId allows a range from 0 to
65,535, with 0 being reserved. This value should correspond to the service content being
requested or provided.

In the Transport API, a service corresponds to a subset of content provided by a component,
where the Source Directory domain defines specific attributes associated with each service.
These attributes include information such as QoS, the specific domain types available, and
any dictionaries required to consume information from the service. The Source Directory
domain model can obtain this and other types of information.

For details, refer to the Transport API RDM Usage Guide.

nameType Numeric value, typically enumerated, that indicates the type of the name member. Examples
are User Name or RIC (i.e., the Reuters Instrument Code). nameTypes are defined on a per-
domain model basis.

nameType allows a range from 0 to 255. Name type values and rules are defined within
domain message model specifications. Values associated with Thomson Reuters domain
models can be found in the rsslRDM.h header file.

name The name associated with the contents of the stream. Specific name type and contents should
comply with the rules associated with the nameType member.

name is an RsslBuffer type that allows for a name of up to 255 bytes.

Table 163: msgKey Structure Members

ENUMERATED
MESSAGE CLASS

MESSAGE
STRUCTURE NAME

DESCRIPTION

Table 162: Message Class Information (Continued)
Transport API 3.1.X C Edition – Developers Guide 248
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.1.2.2 Message Key Flag Enumeration Values

filter Combination of up to 32 unique filterId bit-values (where each filterId corresponds to a
filter bit-value) that describe content for domain model types with an RsslFilterList
payload. Filter identifier values are defined by the corresponding domain model specification.

• When specified in an RsslRequestMsg, filter conveys information which entries to
include in responses.

• When specified on a message housing an RsslFilterList payload, filter conveys
information about which filter entries are present.

For more information, refer to Section 11.3.6.

identifier User-specified numeric identifier defined on a per-domain model basis.

identifier allows a range from -2,147,483,648 to 2,147,483,647.

Note: More information should be present as part of the specific domain model definition.

attribContainerType Identifies the content type of the msgKey.encAttrib information. Can indicate the presence
of a Transport API container type (value 129 - 224) or some type of customer-defined
container type (225 - 255).

For more details about container type definitions and use, refer to Section 11.3.

encAttrib Length and pointer to additional, encoded, message key attribute information. If populated,
contents are described by the attribContainerType member. Additional attribute
information typically allows for further uniqueness in the identification of a stream.

encAttrib is an RsslBuffer that can represent up to 32,767 bytes of information.

FLAG ENUMERATION MEANING

RSSL_MKF_HAS_SERVICE_ID Indicates the presence of the serviceId member.

RSSL_MKF_HAS_NAME Indicates the presence of the name member.

RSSL_MKF_HAS_NAME_TYPE Indicates the presence of the nameType member.

RSSL_MKF_HAS_FILTER Indicates the presence of the filter member.

RSSL_MKF_HAS_IDENTIFIER Indicates the presence of the identifier member.

RSSL_MKF_HAS_ATTRIB Indicates the presence of the attribContainerType and encAttrib members.

Table 164: Message Key Flags

Structure Member DESCRIPTION

Table 163: msgKey Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 249
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.1.2.3 Message Key Utility Functions

FUNCTION NAME DESCRIPTION

rsslClearMsgKey Clears a msgKey structure on an RsslMsg. Useful in clearing only the key members in a
message for reuse.

rsslCompareMsgKeys Compares two msgKey structures to determine whether they are the same. Returns success if
the keys match; failure otherwise.

rsslCopyMsgKey Performs a deep copy of a msgKey and expects the destination msgKey to have sufficient
memory to receive the copied data.

rsslAddFilterIdToFilter Converts a filterId value into the bit-value representation and adds bit-value to the
msgKey.filter member. Used with RsslFilterList container types.

For more information, refer to Section 11.3.6.

rsslCheckFilterForFilterId Converts a filterId value into the bit-value representation and checks for the bit-value
presence in the msgKey.filter member. Used with RsslFilterList container types.

For more information, refer to Section 11.3.6.

Table 165: MsgKey Utility Functions
Transport API 3.1.X C Edition – Developers Guide 250
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.1.3 Stream Identification

The Transport API allows users to simultaneously interact across multiple, independent data streams within a single network

connection. Each data stream can be uniquely identified by the specified domainType1, QoS, and msgKey contents. The
msgKey contains a variety of attributes used in defining a stream. To avoid repeatedly sending msgKey and QoS on all

messages in a stream2, a signed integer (referred to as a streamId or stream identifier) is used. This streamId can convey all
of the same stream identification information, but consumes only a small, fixed-size (four bytes). A positive value streamId
indicates a consumer-instantiated stream while a negative value streamId indicates a provider-instantiated stream, usually,
but not always, associated with a NIP application.

For a consumer application, a positive value streamId should be specified on any RsslRequestMsg, along with the
domainType, msgKey and additional key attributes, and desired QoS information. An interactive provider application should
provide a response, typically an RsslRefreshMsg, which contains the same streamId, domainType, and message key
information. If the request specified a QoS range, this response will also contain the concrete or actual QoS being provided for
the stream. For more information about QoS, refer to Section 11.2.5.

For an NIP, the initial RsslRefreshMsg published for each item should contain domainType, message key information, and the
QoS being provided for the stream. In addition, the NIP should specify a negative value streamId to be associated with the
stream for the remainder of the run-time.

12.1.3.1 Stream Comparison

To most efficiently use a connection’s bandwidth, Thomson Reuters recommends that you combine like streams when
possible. Two streams are identical when all identifying aspects match - that is the two streams have the same domainType,
provided QoS, and all msgKey members. When these message members match, a new stream should not be established,
rather the existing stream and streamId should be leveraged to consume or provide this content.

A consumer application can issue a subsequent RsslRequestMsg using the existing streamId, referred to as a reissue. This
allows the consumer application to obtain an additional refresh, if desired, and to indicate a change in the priority of the
stream. The additional solicited RsslRefreshMsg can satisfy the additional request, and any RsslStatusMsg, RsslUpdateMsg,
and RsslGenericMsg content can be provided to both requestors, if different. This behavior is called fan-out and is the
responsibility of the consumer application when combining multiple like-streams into a single stream.

A provider application can choose to allow multiple like-streams to be simultaneously established or, more commonly, it can
reject any subsequent requests on a different streamId using an RsslStatusMsg. In this case, the RsslStatusMsg would
contain a streamState of RSSL_STREAM_CLOSED_RECOVER, a dataState of RSSL_DATA_SUSPECT, and a state code of
RSSL_SC_ALREADY_OPEN. This status message informs the consumer that they already have a stream open for this
information and that they should use the existing streamId when re-requesting this content. For more details about the state
information, refer to Section 11.2.6.

1. When off-stream posting, it is possible for the post messages sent on the Login stream to contain a different domainType. This is a specialized use
case and more information is available in Section 13.9.
2. domainType is present on all messages and cannot be optimized out like quality of service and msgKey information.
Transport API 3.1.X C Edition – Developers Guide 251
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.1.3.2 Private Streams

The Transport API provides private stream functionality, an easy way to ensure delivery of content only between a stream’s
two endpoints. Private streams behave in a manner similar to standard streams, with the following exceptions:

• All data on a private stream flow between the end provider and the end consumer of the stream.

• Intermediate components do not fan out content (i.e., do not distribute it to other consumers).

• Intermediate components should not cache content.

• In the event of connection or data loss, intermediate components do not recover content. All private stream recovery is
the responsibility of the consumer application.

These behaviors ensure that only the two endpoints of the private stream send or receive content associated with the stream.
As a result, a private stream can exchange identifying information so the provider can validate the consumer, even through
multiple intermediate components (such as might exist in a TREP deployment). After a private stream is established, content
can flow freely within the stream, following either existing market data semantics (i.e., private Market Price domain) or any
other user-defined semantics (i.e., bidirectional exchange of RsslGenericMsgs).

For more information about private stream instantiation, refer to Section 13.12.

12.1.3.3 Changeable Stream Attributes

A select number of attributes may change during the life of a stream. A consumer can change attributes via a subsequent
RsslRequestMsg that uses the same streamId as previous requests. An Interactive or NIP can change attributes via a
subsequent solicited or unsolicited RsslRefreshMsg.

The message key’s filter member, though not typical, can change between the consumer request and provider response. A
change is likely due to a difference between the filter entries for which the consumer asks and the filter entries that the provider
can provide. If this behavior is allowed within a domain, it is defined on a per-domain model basis. More information should be
present as part of the specific domain model definition.

Contents of the message key’s encAttrib may change. If this behavior is allowed within a domain, it is defined on a per-
domain model basis. More information should be present as part of the specific domain model definition.

A consumer can change the priorityClass or priorityCount via a subsequent RsslRequestMsg to indicate more or less
interest in a stream. For more information, refer to Section 13.2.

If a QoS range is requested, the provided RsslRefreshMsg includes only the concrete QoS, which may be different from the
best and worst specified. If a dynamic QoS is supported, QoS may occasionally change over the life of the stream, however
this should stay within the range requested in RsslRequestMsg.

An item’s identification might also change, which can result in changes to multiple msgKey members. Such a case can occur
via a redirect, an RsslRefreshMsg or RsslStatusMsg with a streamState of RSSL_STREAM_REDIRECTED (for more
information on the redirected state value, refer to see Section 11.2.6.2). The user can determine the original item identification
from the msgKey information previously associated with the streamId contained in the redirect message. The new item
identification that should be requested is provided via the redirect’s msgKey member. When a redirect occurs, the stream
closes. At this point, the user can open a new stream and continue the flow of data by issuing a new RsslRequestMsg,
containing the redirected msgKey.

Some RsslRequestMsg.flag values are allowed to change over the life of a stream. These values include the
RSSL_RQMF_PAUSE and RSSL_RQMF_STREAMING flags, used when pausing or resuming content flow on a stream. For
more details, refer to Section 13.6. Additionally, the RSSL_RQMF_NO_REFRESH flag can be changed. This allows
subsequent reissue requests to be performed where the user does not require a response - this can be useful for a reissue to
change the priority of a stream.
Transport API 3.1.X C Edition – Developers Guide 252
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2 RSSL Messages

12.2.1 RSSL Request Message Class

An OMM consumer uses an RsslRequestMsg to express interest in a particular information stream. The request’s msgKey
members help identify the stream and priority information can be used to indicate the stream’s importance to the consumer.
QoS information can be used to express either a specific desired QoS or a range of acceptable qualities of service that can
satisfy the request (refer to Section 13.3).

When an RsslRequestMsg is issued with a new streamId, this is considered a request to open the stream. If requested
information is available and the consumer is entitled to receive the information, this typically results in an RsslRefreshMsg
being delivered to the consumer, though an RsslStatusMsg is also possible - either message can be used to indicate a stream
is open. If information is not available or the user is not entitled, an RsslStatusMsg is typically delivered to provide more
detailed information to the consumer.

Issuing an RsslRequestMsg on an existing stream allows a consumer to modify some parameters associated with the stream
(also refer to Section 12.1.3.2). Also known as a reissue, this can be used to pause or resume a stream (also refer to Section
13.6), change a Dynamic View (also refer to Section 13.8), increase or decrease the stream’s priority (also refer to Section
13.2) or request a new refresh.

12.2.1.1 RSSL Request Message Structure Members

Structure Member DESCRIPTION

msgBase Members common to all messages. An RsslRequestMsg requires msgKey information to be
populated.

For details, refer to Section 12.1.1.

extendedHeader Available for domain-specific user-specified header information. Contents and formatting are
defined by the domain model specification. This data is not used in determining stream
uniqueness and may not pass through all components. To determine support, refer to the
relevant component documentation.

flags Combination of bit values to indicate special behaviors and the presence of optional
RsslRequestMsg content.

For more information about flag values, refer to Section 12.2.1.2.

priorityClass Indicates the class level to associate with the stream. priorityClass can contain values
ranging from 0 to 255.

For more information about priority and its use, refer to Section 13.2.

priorityCount Indicates the count at the specified priorityClass level. priorityCount can contain values
ranging from 0 to 65,535.

For more information about priority and its use, refer to Section 13.2.

Table 166: RsslRequestMsg Structure Members
Transport API 3.1.X C Edition – Developers Guide 253
ETAC313UM.180

Chapter 12 Message Package Detailed View
qos Sets the allowable QoS for the requested stream.

• When specified without a worstQos member, this is the only allowable QoS for the
requested stream. If this QoS is unavailable, the stream is not opened.

• When specified with a worstQos, this is the best in the range of allowable QoSs. When a
QoS range is specified, any QoS within the range is acceptable for servicing the stream.

• If neither qos nor worstQos are present on the request, this indicates that any available
QoS will satisfy the request.

Some components may require qos on initial request and reissue messages. See specific
component documentation for details.

• For more information, refer to Section 11.2.5.

• For specific handling information, refer to Section 13.3.

worstQos The least acceptable QoS for the requested stream. When specified with a qos value, this is
the worst in the range of allowable QoSs. When a QoS range is specified, any QoS within the
range is acceptable for servicing the stream.

• For more information, refer to Section 11.2.5.

• For specific handling information, refer to Section 13.3.

Structure Member DESCRIPTION

Table 166: RsslRequestMsg Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 254
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.1.2 RSSL Request Message Flag Enumeration Values

FLAG ENUMERATION MEANING

RSSL_RQMF_STREAMING Indicates whether the request is for streaming data.

• If present, the OMM consumer wants to continue to receive changes to
information after the initial refresh is complete.

• If absent, the OMM consumer wants to receive only the refresh, after
which the OMM Provider should close the stream. Such a request is
typically referred to as a non-streaming or snapshot data request.

Because a refresh can be split into multiple parts, it is possible for updates
to occur between the first and last part of the refresh, even as part of a non-
streaming request.

For more information about multi-part message handling, refer to Section
13.1.

RSSL_RQMF_NO_REFRESH Indicates that the consumer application does not require a refresh for this
request.

This typically occurs after an initial request handshake is completed, usually
to change stream attributes (e.g., priority). In some instances, a provider
might still deliver a refresh message (but if the consumer does not explicitly
ask for it, the message is unsolicited).

RSSL_RQMF_PAUSE Indicates that the consumer would like to pause the stream, though this
does not guarantee that the stream will pause.

To resume data flow, the consumer must send a subsequent request
message with the RSSL_RQMF_STREAMING flag set.

For more information, refer to Section 13.6.

RSSL_RQMF_HAS_PRIORITY Indicates the presence of priority information via the priorityClass and
priorityCount members.

For more information about using priority, refer to Section 13.2.

RSSL_RQMF_HAS_QOS Indicates the presence of the qos member.

• For more information, refer to Section 12.2.1.1 and Section 11.2.5.

• For specific handling information, refer to Section 13.3.

RSSL_RQMF_HAS_WORST_QOS Indicates the presence of the worstQos member.

• For more information, refer to Section 12.2.1.1 and Section 11.2.5.

• For specific handling information, refer to Section 13.3.

RSSL_RQMF_HAS_VIEW Indicates that the request message payload might contain a dynamic view,
specifying information the application wishes to receive (or that the
application wishes to continue receiving a previously specified view). If this
flag is not present, any previously specified view is discarded and a full view
is provided.

For more information about using dynamic views, refer to Section 13.8.

RSSL_RQMF_HAS_BATCH Indicates that the request message payload contains a list of items of
interest, all with matching msgKey information.

For more information on using batch requests, refer to Section 13.7.

Table 167: RsslRequestMsg Flags
Transport API 3.1.X C Edition – Developers Guide 255
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.1.3 RSSL Request Message Utility Functions

The Transport API provides the following utility functions for use with the RsslRequestMsg:

RSSL_RQMF_HAS_EXTENDED_HEADER Indicates that the extendedHeader member is present. Information in the
extendedHeader is defined outside of the scope of the Transport API.

RSSL_RQMF_MSG_KEY_IN_UPDATES Indicates that the consumer wants to receive the full msgKey in update
messages.

This flag does not guarantee that the msgKey is present in an update
message. Instead, the provider application determines whether this
information is present (the consumer should be written to handle either the
presence or absence of msgKey in any RsslUpdateMsg). When specified on
a request to ADS, the ADS fulfills the request.

RSSL_RQMF_CONF_INFO_IN_UPDATES Indicates that the consumer wants to receive conflation information in
update messages delivered on this stream.

This flag does not guarantee that conflation information is present in update
messages. Instead, the provider application determines whether this
information is present (the consumer should be capable of handling
conflation information in any RsslUpdateMsg).

For details about conflation information on update messages, refer to
Section 12.2.3.

RSSL_RQMF_PRIVATE_STREAM Requests that the stream be opened as private.

For details, refer to Section 13.12.

FUNCTION NAME DESCRIPTION

rsslClearRequestMsg Clears an RsslRequestMsg structure. Useful for structure reuse.

rsslSetStreamingFlag Sets the RSSL_RQMF_STREAMING flag on an already encoded RsslRequestMsg.

rsslUnsetStreamingFlag Removes the RSSL_RQMF_STREAMING flag on an already encoded
RsslRequestMsg.

rsslSetNoRefreshFlag Sets the RSSL_RQMF_NO_REFRESH flag on an already encoded RsslRequestMsg.

rsslUnsetNoRefreshFlag Removes the RSSL_RQMF_NO_REFRESH flag on an already encoded
RsslRequestMsg.

rsslSetMsgKeyInUpdatesFlag Sets the RSSL_RQMF_MSG_KEY_IN_UPDATES flag on an already encoded
RsslRequestMsg.

rsslUnsetMsgKeyInUpdatesFlag Removes the RSSL_RQMF_MSG_KEY_IN_UPDATES flag on an already encoded
RsslRequestMsg.

rsslSetConfInfoInUpdatesFlag Sets the RSSL_RQMF_CONF_INFO_IN_UPDATES flag on an already encoded
RsslRequestMsg.

rsslUnsetConfInfoInUpdatesFlag Removes the RSSL_RQMF_CONF_INFO_IN_UPDATES flag on an already encoded
RsslRequestMsg.

Table 168: RsslRequestMsg Utility Functions

FLAG ENUMERATION MEANING

Table 167: RsslRequestMsg Flags (Continued)
Transport API 3.1.X C Edition – Developers Guide 256
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.2 RSSL Refresh Message Class

RsslRefreshMsg is often provided as an initial response or when an upstream source requires a data resynchronization point.
An RsslRefreshMsg contains payload information along with state, QoS, permissioning, and group information.

• If provided as a response to an RsslRequestMsg, the refresh is a solicited refresh. Typically, solicited refresh
messages are delivered only to the requesting consumer application

• If some kind of information change occurs (e.g., some kind of error is detected on a stream), an upstream provider can
push out an RsslRefreshMsg to downstream consumers. This type of refresh is an unsolicited refresh. Typically,
unsolicited refresh messages are delivered to all consumers using each consumer’s respective stream.

When an OMM Interactive Provider sends an RsslRefreshMsg, the streamId should match the streamId on the
corresponding RsslRequestMsg. The msgKey should be populated with the appropriate stream identifying information, and
often matches the msgKey of the request. When an OMM NIP sends an RsslRefreshMsg, the provider should assign a
negative streamId (when establishing a new stream, the streamId should be unique). In this scenario, the msgKey should
define the information that the stream provides.

Using RsslRefreshMsg, an application can fragment the contents of a message payload and deliver the content across
multiple messages, with the final message indicating that the refresh is complete. This is useful when providing large sets of
content that may require multiple cache look-ups or be too large for an underlying transport layer. Additionally, an application
receiving multiple parts of a response can potentially begin processing received portions of data before all content has been
received. For more details on multi-part message handling, refer to Section 13.1.

12.2.2.1 RSSL Refresh Message Structure Members

Structure Member DESCRIPTION

msgBase Specifies the members common to all messages. An RsslRefreshMsg can optionally contain
msgKey information.

For details, refer to Section 12.1.1.

flags A combination of bit values that indicate special behaviors and the presence of optional
RsslRefreshMsg content.

For more information about flag values, refer to Section 12.2.2.2.

partNum Sets the part number of this refresh. partNum can contain values ranging from 0 to 32,767
where a value of 0 indicates the initial part of a refresh.

• On multi-part refresh messages, partNum should start at 0 (to indicate the initial part) and
increment by 1 for each subsequent message in the multi-part message.

• If sent on a single-part refresh, a partNum of 0 should be used.

seqNum A user-defined sequence number, which allows for values ranging from 0 to 4,294,967,295.
seqNum should typically increase to help with temporal ordering, but may have gaps
depending on the sequencing algorithm in use. Details about sequence number use should
be defined within the domain model specification or any documentation for products which
require the use of seqNum.

state Conveys stream and data state information, which can change over time via subsequent
refresh, status messages, or group status notifications.

• For details about state information, refer to Section 11.2.6.

• For a decision table that provides example behavior for various state combinations, refer
to Appendix A.

Table 169: RsslRefreshMsg Structure Members
Transport API 3.1.X C Edition – Developers Guide 257
ETAC313UM.180

Chapter 12 Message Package Detailed View
qos The concrete QoS of the stream. If a range was requested by the RsslRequestMsg, the qos
should fall somewhere in this range, otherwise qos should exactly match what was
requested.

• For more details on QoS, refer to Section 11.2.5.

• For specific handling information, refer to Section 13.3.

permData Optional.

Specifies authorization information for this stream. permData has a maximum allowed length
of 32,767 bytes.

When permData is specified on an RsslRefreshMsg, this indicates authorization information
for all content on the stream, unless additional permission information is provided with
specific content (e.g., RsslMapEntry.permData).

For more information, refer to Section 11.4.

groupId An RsslBuffer containing information about the item group to which this stream belongs.
The groupId RsslBuffer has a maximum allowed length of 255 bytes.

You can change the associated groupId via a subsequent RsslStatusMsg or
RsslRefreshMsg. Group status notifications can change the state of an entire group of items.

For more information about item groups, refer to Section 13.4.

postUserInfo Optional.

Contains information that identifies the user posting this information. If present on an
RsslRefreshMsg, this implies that the refresh was posted to the system by the user
described in postUserInfo.

• For more information about posting, refer to Section 13.9.

• For more information about the Visible Publisher Identifier (VPI), refer to Section 13.10.

extendedHeader Available for domain-specific user-specified header information. The domain model
specification defines contents and formatting. This information is not used in determining
stream uniqueness, and may not pass through all components.

To determine support, see appropriate component documentation.

reqMsgKey Houses various attributes about requested item data. Used to identify data on client multicast
networks.

This does not need to be set by Interactive or Non-Interactive Provider applications.

Structure Member DESCRIPTION

Table 169: RsslRefreshMsg Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 258
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.2.2 RSSL Refresh Message Flag Enumeration Values

FLAG ENUMERATION MEANING

RSSL_RFMF_REFRESH_COMPLETE Indicates that the message is the final part of the RsslRefreshMsg. This flag
value should be set when:

• The message is a single-part refresh (i.e., atomic refresh).

• The message is the final part of a multi-part refresh.

For more information about multi-part message handling, refer to Section
13.1.

RSSL_RFMF_SOLICITED Indicates that the refresh is sent as a response to a request, referred to as a
solicited refresh.

A refresh sent to inform a consumer of an upstream change in information
(i.e., an unsolicited refresh) must not include this flag.

RSSL_RFMF_DO_NOT_CACHE Indicates that the message’s payload information should not be cached. This
flag value applies only to the message on which it is present.

RSSL_RFMF_CLEAR_CACHE Indicates that the stream’s stored payload information should be cleared.

This is typically set by providers when:

• Sending the initial solicited RsslRefreshMsg.

• Sending the first part of a multi-part RsslRefreshMsg.

• Some portion of data is known to be invalid.

RSSL_RFMF_HAS_MSG_KEY Indicates that the RsslRefreshMsg contains a populated msgKey.

This can aid in associating a request with its corresponding refresh or
identify an item sent from an NIP application.

RSSL_RFMF_HAS_REQ_MSG_KEY Indicates the presence of the reqMsgKey member.

RSSL_RFMF_HAS_QOS Indicates the presence of the qos member.

For specific handling information, refer to Section 13.3.

RSSL_RFMF_HAS_SEQ_NUM Indicates the presence of the seqNum member.

RSSL_RFMF_HAS_PART_NUM Indicates the presence of the partNum member.

RSSL_RFMF_HAS_PERM_DATA Indicates the presence of the permData member.

RSSL_RFMF_HAS_POST_USER_INFO Indicates that this message includes postUserInfo, implying that this
RsslRefreshMsg was posted by the user described in postUserInfo.

RSSL_RFMF_HAS_EXTENDED_HEADER Indicates the presence of the extendedHeader member.

RSSL_RFMF_PRIVATE_STREAM Acknowledges the initial establishment of a private stream or, when
combined with a streamState value of RSSL_STREAM_REDIRECTED,
indicates that a stream can only be opened as private.

For details, refer to Section 13.12.

Table 170: RsslRefreshMsg Flags
Transport API 3.1.X C Edition – Developers Guide 259
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.2.3 RSSL Refresh Message Utility Functions

The Transport API provides the following utility functions for use with RsslRefreshMsg:

FUNCTION NAME DESCRIPTION

rsslClearRefreshMsg Clears an RsslRefreshMsg structure. Useful for structure reuse.

rsslSetSolicitedFlag Sets the RSSL_RFMF_SOLICITED flag on an already encoded RsslRefreshMsg.

rsslUnsetSolicitedFlag Removes the RSSL_RFMF_SOLICITED flag on an already encoded RsslRefreshMsg.

rsslSetRefreshCompleteFlag Sets the RSSL_RFMF_REFRESH_COMPLETE flag on an already encoded
RsslRefreshMsg.

rsslUnsetRefreshCompleteFlag Removes the RSSL_RFMF_REFRESH_COMPLETE flag on an already encoded
RsslRefreshMsg.

Table 171: RsslRefreshMsg Utility Functions
Transport API 3.1.X C Edition – Developers Guide 260
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.3 RSSL Update Message Class

Providers (both interactive and non-interactive) use RsslUpdateMsg to convey changes to data associated with an item
stream. When streaming, update messages typically flow after the delivery of an initial refresh. Update messages can be
delivered between parts of a multi-part refresh message, even in response to a non-streaming request. For more information
on multi-part message handling, refer to Section 13.1.

Some providers can aggregate the information from multiple update messages into a single update message using a
technique called conflation. Conflation typically occurs if a conflated QoS is requested (refer to Section 11.2.5), a stream is
paused (refer to Section 13.6), or if a consuming application is unable to keep up with a stream’s data rates. If conflation is
used, specific information can be provided with RsslUpdateMsg via optional conflation information.

12.2.3.1 RSSL Update Message Structure Members

Structure Member DESCRIPTION

msgBase Specifies the members common to all messages. An RsslUpdateMsg can optionally contain
msgKey information.

For details, refer to Section 12.1.1.

flags A combination of bit values that indicate special behaviors and the presence of optional
content.

For more information about flag values, refer to Section 12.2.3.2.

updateType Specifies the type of data in the RsslUpdateMsg, where values are typically defined in an
enumeration (valid values range from 0 to 255). Examples of possible update types include:
Trade, Quote, or Closing Run.

• Domain message model specifications define available update types.

• For Thomson Reuters’s provided domain models, the rsslRDM.h header file defines
available update types.

seqNum Specifies a user-defined sequence number, which can range in value from 0 to
4,294,967,295. To help with temporal ordering, seqNum should increase across messages,
but can have gaps depending on the sequencing algorithm in use.

Details about sequence number use should be defined within the domain model
specification or any documentation for products which require the use of seqNum.

conflationCount When conflating data, this value indicates the number of updates conflated or aggregated
into this RsslUpdateMsg.

conflationCount allows for values ranging from 1 to 32,767.

conflationTime When conflating data, this value indicates the period of time over which individual updates
were conflated or aggregated into this RsslUpdateMsg (typically in milliseconds; for further
details, refer to specific component documentation).

conflationTime allows for values ranging from 1 to 65,535.

permData Optional. Specifies authorization information for this stream. When specified, permData
indicates authorization information for only the content within this message, though this can
be overridden for specific content within the message (e.g., RsslMapEntry.permData).

permData has a maximum allowed length of 32,767 bytes.

For more information, refer to Section 11.4.

Table 172: RsslUpdateMsg Structure Members
Transport API 3.1.X C Edition – Developers Guide 261
ETAC313UM.180

Chapter 12 Message Package Detailed View
postUserInfo Optional. Identifies the user that posted this information.

• For more information about posting, refer to Section 13.9.

• For more information about the Visible Publisher Identifier, refer to Section 13.10.

extendedHeader Available for domain-specific user-specified header information. The domain model
specification defines the contents and formatting. extendedHeader information is not used
to determine stream uniqueness, and might not pass through all components.

To determine support, refer to the appropriate component documentation.

Structure Member DESCRIPTION

Table 172: RsslUpdateMsg Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 262
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.3.2 RSSL Update Message Flag Enumeration Values

12.2.3.3 RSSL Update Message Utility Function

The Transport API provides the following utility function for use with the RsslUpdateMsg:

FLAG ENUMERATION MEANING

RSSL_UPMF_DO_NOT_CACHE Indicates that payload information associated with this message should not
be cached. RSSL_UPMF_DO_NOT_CACHE applies only to the message
on which it is present.

RSSL_UPMF_DO_NOT_CONFLATE Indicates that this message should not be conflated. This flag value only
applies to the message on which it is present.

RSSL_UPMF_DO_NOT_RIPPLE Indicates that the contents of this message should not be rippled. Rippling is
typically associated with an RsslFieldList.

For additional information, refer to Section 11.3.1.5.

RSSL_UPMF_HAS_MSG_KEY Indicates that the RsslUpdateMsg contains a populated msgKey. The
additional key information can help associate a request with updates or
identify an item being sent from an NIP application. This information is
typically not necessary in an RsslUpdateMsg as the streamId can be used
to determine the same information with less bandwidth cost.

RSSL_UPMF_HAS_SEQ_NUM Indicates the presence of the seqNum member.

RSSL_UPMF_HAS_CONF_INFO Indicates the presence of conflationTime and conflationCount
information.

RSSL_UPMF_HAS_PERM_DATA Indicates the presence of the permData member.

RSSL_UPMF_HAS_POST_USER_INFO Indicates that this message includes postUserInfo, implying that this
RsslUpdateMsg was posted by the user described in the postUserInfo.

RSSL_UPMF_HAS_EXTENDED_HEADER Indicates the presence of the extendedHeader member.

Table 173: RsslUpdateMsg Flags

FUNCTION NAME DESCRIPTION

rsslClearUpdateMsg Clears an RsslUpdateMsg structure. Useful for structure reuse.

Table 174: RsslUpdateMsg Utility Functions
Transport API 3.1.X C Edition – Developers Guide 263
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.4 RSSL Status Message Class

An RsslStatusMsg can convey changes in streamState or dataState (refer to Section 11.2.6), changes in a stream’s
permissioning information (refer to Section 9.4), or changes to the item group of which the stream is a part (refer to Section
13.4). A Provider application uses RsslStatusMsg to close streams to a consumer, in conjunction with an initial request or
later after the stream has been established. An RsslStatusMsg can also indicate the successful establishment of a stream,
though the message might not contain data (useful in establishing a stream solely to exchange bi-directional
RsslGenericMsgs).

12.2.4.1 RSSL Status Message Structure Members

Structure Member DESCRIPTION

msgBase Specifies the members common to all messages. Optionally, an RsslStatusMsg can contain
msgKey information.

For details, refer to Section 12.1.1.

flags Specifies a combination of bit values indicating special behaviors and the presence of
optional content.

For more information about flag values, refer to Section 12.2.4.2.

state Conveys stream and data state information, which can change over time via subsequent
refresh or status messages or group status notifications.

• For details about state information, refer to Section 11.2.6.

• For a decision table that provides example behavior for various state combinations, refer
to Appendix A.

permData Optional. When specified on an RsslStatusMsg, permData indicates authorization
information for this stream, unless additional permission information is provided with specific
content (e.g., RsslMapEntry.permData). permData allows a maximum length of 32,767
bytes.

For more information, refer to Section 11.4.

groupId An RsslBuffer with a maximum allowed length of 255 bytes that contains information about
the item group to which this stream belongs.

A subsequent RsslStatusMsg or RsslRefreshMsg can change the item group’s associated
groupId, while group status notifications can change the state of an entire group of items.

For more information about item groups, refer to Section 13.4.

postUserInfo Optional. Identifies the user who posted this information.

• For more information about posting, refer to Section 13.9.

• For more information about Visible Publisher Identifier, refer to Section 13.10.

extendedHeader Available for domain-specific user-specified header information. Contents and formatting are
determined by the domain model specification. This header information is not used to
determine stream uniqueness, and might not pass through all components.

To determine support, see appropriate component documentation.

reqMsgKey Houses various attributes about requested item data. Used to identify data on client multicast
networks. This does not need to be set by Interactive or Non-Interactive Provider
applications.

Table 175: RsslStatusMsg Structure Members
Transport API 3.1.X C Edition – Developers Guide 264
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.4.2 RSSL Status Message Flag Enumeration Values

12.2.4.3 RSSL Status Message Utility Function

The Transport API provides the following utility function to aid in using RsslStatusMsg.

FLAG ENUMERATION MEANING

RSSL_STMF_CLEAR_CACHE Indicates that the application should clear stored header or payload
information associated with the stream. This can happen if some portion of
data is invalid.

RSSL_STMF_HAS_MSG_KEY Indicates that the RsslStatusMsg contains a populated msgKey. The msgKey
can be used to aid in associating a request to a status message or identify an
item sent from an NIP application.

RSSL_STMF_HAS_REQ_MSG_KEY Indicates presence of the reqMsgKey member.

RSSL_STMF_HAS_STATE Indicates the presence of state information.

If state information is not present, the message might be changing the
stream’s permission information or groupId.

RSSL_STMF_HAS_PERM_DATA Indicates the presence of permData. When present, the message might be
changing the stream’s permission information.

RSSL_STMF_HAS_GROUP_ID Indicates the presence of groupId. When present, the message might be
changing the stream’s groupId.

RSSL_STMF_HAS_POST_USER_INFO Indicates the presence of postUserInfo, which identifies the user who
posted the RsslStatusMsg.

RSSL_STMF_HAS_EXTENDED_HEADER Indicates the presence of extendedHeader.

RSSL_STMF_PRIVATE_STREAM Acknowledges the establishment of a private stream, or when combined with
a streamState value of RSSL_STREAM_REDIRECTED, indicates that a
stream can be opened only as private.

For details, refer to Section 13.12.

Table 176: RsslStatusMsg Flags

FUNCTION NAME DESCRIPTION

rsslClearStatusMsg Clears an RsslStatusMsg structure. Useful for structure reuse.

Table 177: RsslStatusMsg Utility Functions
Transport API 3.1.X C Edition – Developers Guide 265
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.5 RSSL Close Message Class

A consumer uses RsslCloseMsg to indicate no further interest in an item stream and to close the stream. The streamId
indicates the item stream to which RsslCloseMsg applies.

12.2.5.1 RSSL Close Message Structure Members

12.2.5.2 RSSL Close Message Flag Enumeration Values

12.2.5.3 RSSL Close Message Utility Functions

The Transport API provides the following utility function for use with RsslCloseMsg.

STRUCTURE MEMBER DESCRIPTION

msgBase Specifies the members common to all messages. An RsslCloseMsg does not contain any
msgKey information.

For details, refer to Section 12.1.1.

flags Specifies a combination of bit values indicating special behaviors and the presence of
optional content.

For available flag values, refer to Table 179.

extendedHeader Available for domain-specific user-specified header information. Contents and formatting are
specified by a domain model specification. extendedHeader information does not determine
stream uniqueness, and might not pass through all components.

To determine support, see the appropriate component documentation.

Table 178: RsslCloseMsg Structure Members

FLAG ENUMERATION MEANING

RSSL_CLMF_ACK If present, the consumer wants the provider to send an RsslAckMsg to
indicate that the RsslCloseMsg has been processed properly and the stream
is properly closed. This functionality might not be available with some
components; for details, refer to the component’s documentation.

RSSL_CLMF_HAS_EXTENDED_HEADER Indicates the presence of extendedHeader.

Table 179: RsslCloseMsg Flags

FUNCTION NAME DESCRIPTION

rsslClearCloseMsg Clears an RsslCloseMsg structure. Useful for structure reuse.

Table 180: RsslCloseMsg Utility Functions
Transport API 3.1.X C Edition – Developers Guide 266
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.6 RSSL Generic Message Class

RsslGenericMsg is a bi-directional message without any implicit interaction semantics associated with it, hence the name
generic. After a stream is established via a request-refresh/status interaction, both consumers and providers can send
RsslGenericMsgs to one another, and NIP applications can leverage them. Generic messages are transient and typically not
cached by Enterprise Platform components.

The msgKey of an RsslGenericMsg does not need to match the msgKey information of the stream over which the generic
message flows. Thus, key information can be used independently within the stream. A domain message model specification
typically defines any specific message usage, msgKey usage, expected interactions, and handling instructions.

12.2.6.1 RSSL Generic Message Structure Members

Structure Member DESCRIPTION

msgBase Specifies the members common to all messages. An RsslGenericMsg can optionally contain
msgKey information.

For details, refer to Section 12.1.1.

flags Specifies a combination of bit values that indicate special behaviors and the presence of
optional content.

For more information about flag values, refer to Section 12.2.6.2.

partNum Specifies the part number of this generic message, typically used with multi-part generic
messages. partNum can contain values ranging from 0 to 32,767.

• If sent on a single-part post message, use a partNum of 0.

• On multi-part post messages, use a partNum of 0 on the initial part and increment
partNum in each subsequent part by 1.

seqNum Specifies a user-defined sequence number ranging in value from 0 to 4,294,967,295. A
seqNum typically corresponds to the sequencing of this message.

To help with temporal ordering, seqNum should increase across messages, but can have gaps
depending on the sequencing algorithm in use. Details about using seqNum should be defined
in the domain model specification or the documentation for products that must use seqNum.

secondarySeqNum Specifies an additional user-defined sequence number ranging in value from 0 to
4,294,967,295. When using RsslGenericMsg on a stream in a bi-directional manner,
secondarySeqNum is often used as an acknowledgment sequence number.

For example, a consumer sends a generic message with seqNum populated to indicate the
sequence of this message in the stream and secondarySeqNum set to the seqNum last
received from the provider. This effectively acknowledges all messages received up to that
point while still sending additional information.

Sequence number use should be defined within the domain model specification or any
documentation for products that use secondarySeqNum.

permData Optional. Indicates authorization information for content within this message only, though this
can be overridden for specific content within the message (e.g. RsslMapEntry.permData).

permData allows a maximum length of 32,767 bytes.

For more information, refer to Section 11.4.

Table 181: RsslGenericMsg Structure Members
Transport API 3.1.X C Edition – Developers Guide 267
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.6.2 RSSL Generic Message Flag Enumeration Values

12.2.6.3 RSSL Generic Message Utility Function

The Transport API provides the following utility function for use with RsslGenericMsg.

extendedHeader Available for domain-specific user-specified header information. The domain model
specification defines content and formatting.

extendedHeader does not determine stream uniqueness, and might not pass through all
components. To determine support, refer to the appropriate component documentation.

reqMsgKey Houses various attributes about requested item data. Used to identify data on client multicast
networks. This does not need to be set by Interactive or Non-Interactive Provider
applications.

FLAG ENUMERATION MEANING

RSSL_GNMF_MESSAGE_COMPLETE When set, this flag indicates that the message is the final part of an
RsslGenericMsg. This flag should be set on:

• Single-part generic messages (i.e., an atomic generic message).

• The last message (final part) in a multi-part generic message. For
more information on handling multi-part messages, refer to Section
13.1.

RSSL_GNMF_HAS_MSG_KEY Indicates the presence of a populated msgKey.

Use of a msgKey differentiates a generic message from the msgKey
information specified for other messages within the stream. Contents
and semantics associated with an RsslGenericMsg.msgKey should be
defined by the domain model specification that employs them.

RSSL_GNMF_HAS_REQ_MSG_KEY Indicates the presence of the reqMsgKey member.

RSSL_GNMF_HAS_SEQ_NUM Indicates the presence of the seqNum member.

RSSL_GNMF_HAS_SECONDARY_SEQ_NUM Indicates the presence of the secondarySeqNum member.

RSSL_GNMF_HAS_PART_NUM Indicates the presence of the partNum member.

RSSL_GNMF_HAS_PERM_DATA Indicates the presence of the permData member.

RSSL_GNMF_HAS_EXTENDED_HEADER Indicates presence of the extendedHeader member.

Table 182: RsslGenericMsg Flags

FUNCTION NAME DESCRIPTION

rsslClearGenericMsg Clears an RsslGenericMsg structure. Useful for structure reuse.

rsslSetGenericCompleteFlag Sets the RSSL_GNMF_MESSAGE_COMPLETE flag on an already encoded

RsslGenericMsg.

Table 183: RsslGenericMsg Utility Functions

Structure Member DESCRIPTION

Table 181: RsslGenericMsg Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 268
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.7 RSSL Post Message Class

A consumer application uses RsslPostMsg to push content to upstream components. Such content can be applied to a TREP
cache or routed further upstream to the source of data. After upstream components receive the content, the components can
republish the data to their downstream consumers.

Post messages can be routed along a specific item stream, referred to as on-stream posting, or along a user’s Login stream,
referred to as off-stream posting. RsslPostMsg can contain any Transport API container type, including other messages. User
identification information can be associated with a post message and be provided along with posted content. For more details,
refer to Section 13.9.

12.2.7.1 RSSL Post Message Structure Members

rsslUnsetGenericCompleteFlag Removes the RSSL_GNMF_MESSAGE_COMPLETE flag on an already encoded

RsslGenericMsg.

Structure Member DESCRIPTION

msgBase Specifies the members common to all messages. An RsslPostMsg can optionally contain
msgKey information.

For details, refer to Section 12.1.1.

flags Specifies a combination of bit values that indicate special behaviors and the presence of
optional content.

For more information about flag values, refer to Section 12.2.7.2.

partNum Specifies the part number for this post message, typically used with multi-part post
messages. partNum can contain values ranging from 0 to 32,767.

• If sent on a single-part post message, use a partNum of 0.

• On multi-part post messages, use a partNum of 0 on the initial part and in each
subsequent part, increment partNum part by 1.

postId Specifies a consumer-assigned identifier, which can range in value from 0 to 4,294,967,295.
postId distinguishes different post messages. In multi-part post messages, each part must
use the same postId value.

seqNum Specifies a user-defined sequence number, typically corresponding to the sequencing of the
message. seqNum allows for values ranging from 0 to 4,294,967,295.

To help with temporal ordering, seqNum should increase, though gaps might exist depending
on the sequencing algorithm in use. Details about seqNum use should be defined in the
domain model specification or any documentation for products that use seqNum. When
acknowledgments are requested, the seqNum will be provided back in the RsslAckMsg to help
identify the RsslPostMsg being acknowledged.

Table 184: RsslPostMsg Structure Members

FUNCTION NAME DESCRIPTION

Table 183: RsslGenericMsg Utility Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 269
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.7.2 RSSL Post Message Flag Enumeration Values

permData Optional. When present, permData indicates authorization information for content in this
message only. permData can be overridden for specific content within the message (e.g.
RsslMapEntry.permData).

permData allows a maximum length of 32,767 bytes.

For more information, refer to Section 11.4.

postUserInfo Identifies the posting user. postUserInfo can optionally be provided along with posted
content via a RsslRefreshMsg, RsslUpdateMsg, and RsslStatusMsg.

• For more information about posting, refer to Section 13.9.

• For more information about Visible Publisher Identifier, refer to Section 13.10.

postUserRights Conveys the rights or abilities of the user posting this content, which can indicate whether the
user is permissioned to:

• Create items in the cache of record,

• Delete items from the cache of record, or

• Modify the permData on items already present in the cache of record.

For details about different rights, refer to Section 12.2.7.3.

extendedHeader Available for domain-specific, user-specified header information. The domain model
specification defines the contents and formatting. The extendedHeader does not determine
stream uniqueness and might not pass through all components.

To determine support, see appropriate component documentation.

FLAG ENUMERATION MEANING

RSSL_PSMF_POST_COMPLETE Indicates that this is the final part of the RsslPostMsg. This flag should be
set on:

• Single-part post messages (i.e., an atomic post message).

• The final part of a multi-part post message.

For more information about multi-part message handling, refer to Section
13.1.

RSSL_PSMF_ACK Specifies that the consumer wants the provider to send an RsslAckMsg to
indicate that the RsslPostMsg was processed properly. When
acknowledging an RsslPostMsg, the provider must include the postId in
the ackId and communicate any associated seqNum.

RSSL_PSMF_HAS_MSG_KEY Indicates that the RsslPostMsg contains a populated msgKey that identifies
the stream on which the information is posted. A msgKey is typically required
for off-stream posting and is not necessary when on-stream posting.

For more detailed information about posting, refer to Section 13.9.

RSSL_PSMF_HAS_SEQ_NUM Indicates the presence of the seqNum member.

RSSL_PSMF_HAS_POST_ID Indicates the presence of the postId member.

Table 185: RsslPostMsg Flags

Structure Member DESCRIPTION

Table 184: RsslPostMsg Structure Members (Continued)
Transport API 3.1.X C Edition – Developers Guide 270
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.7.3 RSSL Post User Rights Flag Enumeration Values

12.2.7.4 RSSL Post Message Utility Function

The Transport API provides the following utility function for use with the RsslPostMsg.

RSSL_PSMF_HAS_POST_USER_RIGHTS Indicates the presence of the postUserRights member.

RSSL_PSMF_HAS_PART_NUM Indicates the presence of the partNum member.

RSSL_PSMF_HAS_PERM_DATA Indicates the presence of the permData member.

RSSL_PSMF_HAS_EXTENDED_HEADER Indicates the presence of the extendedHeader member.

FLAG ENUMERATION MEANING

RSSL_PSUR_NONE The user has no additional posting abilities.

RSSL_PSUR_CREATE The user is allowed to create items in the cache of record.

RSSL_PSUR_DELETE The user is allowed to remove items from the cache of record.

RSSL_PSUR_MODIFY_PERM The user is allowed to modify the permData associated with items already in the cache of
record.

Table 186: RsslPostRights Flags

FUNCTION NAME DESCRIPTION

rsslClearPostMsg Clears an RsslPostMsg structure. Useful for structure reuse.

Table 187: RsslPostMsg Utility Functions

FLAG ENUMERATION MEANING

Table 185: RsslPostMsg Flags (Continued)
Transport API 3.1.X C Edition – Developers Guide 271
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.8 RSSL Acknowledgment Message Class

A provider can send an RsslAckMsg to a consumer to indicate receipt of a specific message. The acknowledgment carries
success or failure (i.e., a negative acknowledgment or ‘NAK’) information to the consumer. Currently, a consumer can request
acknowledgment for an RsslPostMsg or RsslCloseMsg.

12.2.8.1 RSSL Acknowledgment Message Structure Members

Structure Member DESCRIPTION

msgBase The common message base members. An RsslAckMsg can optionally contain msgKey
information.

For details, refer to Section 12.1.1.

flags Specifies a combination of bit values indicating special behaviors and the presence of
optional content.

For more information about flag values, refer to Section 12.2.8.2.

ackId Associates the RsslAckMsg with the message it acknowledges. ackId allows for values
ranging from 0 to 4,294,967,295.

When acknowledging an RsslPostMsg, ackId typically matches the post message’s postId.

seqNum Specifies a user-defined sequence number, ranging in value from 0 to 4,294,967,295. To help
with temporal ordering, seqNum should increase, though gaps might exist depending on the
sequencing algorithm in use. The acknowledgment message may populate this with the
seqNum of the RsslPostMsg being acknowledged. This helps correlate the message being
acknowledged when the postId alone is not sufficient (e.g., multi-part post messages).

nakCode If present, this message indicates a NAK. The nakCode is an enumerated code value (ranging
in value from 1 to 255) that provides additional information about the reason for the NAK.

nakCode values are defined in Section 12.2.8.3

text Optional. Provides additional information about the acceptance or rejection of the message
being acknowledged. text has a maximum allowed length of 65,535 bytes.

extendedHeader Available for domain-specific user-specified header information. The domain model
specification defines contents and formatting. extendedHeader does not determine stream
uniqueness and might not pass through all components.

To determine support, refer to the appropriate component documentation.

Table 188: RsslAckMsg Structure Members
Transport API 3.1.X C Edition – Developers Guide 272
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.8.2 RSSL Acknowledgment Message Flag Enumeration Values

12.2.8.3 RSSL Acknowledgment Message Enumerated Names

FLAG ENUMERATION MEANING

RSSL_AKMF_HAS_MSG_KEY Indicates the presence of a populated msgKey. When present, this is typically
populated to match the information being acknowledged.

RSSL_AKMF_HAS_SEQ_NUM Indicates the presence of the seqNum member.

RSSL_AKMF_HAS_NAK_CODE Indicates the presence of the nakCode member.

RSSL_AKMF_HAS_TEXT Indicates the presence of the text member.

RSSL_AKMF_HAS_EXTENDED_HEADER Indicates presence of the extendedHeader member.

RSSL_AKMF_PRIVATE_STREAM Acknowledges the initial establishment of a private stream.

For details, refer to Section 13.12.

Table 189: RsslAckMsg Flags

ENUMERATED NAME DESCRIPTION

RSSL_NAKC_ACCESS_DENIED The user is not permissioned to post on the item or service.

RSSL_NAKC_DENIED_BY_SRC The source being posted to has denied accepting this post message.

RSSL_NAKC_SOURCE_DOWN The source being posted to is down or unavailable.

RSSL_NAKC_SOURCE_UNKNOWN The source being posted to is unknown and unreachable.

RSSL_NAKC_NO_RESOURCES Some component along the path of the post message does not have
appropriate resources available to continue processing the post.

RSSL_NAKC_NO_RESPONSE There is no response from the source being posted to.

This may mean that the source is unavailable or that there is a delay in
processing the posted information.

RSSL_NAKC_GATEWAY_DOWN A gateway device for handling posted or contributed information is down or
unavailable.

RSSL_NAKC_SYMBOL_UNKNOWN The system does not recognize the item information provided with the post
message.

This may be an invalid item.

RSSL_NAKC_NOT_OPEN The item being posted to does not have an available stream.

RSSL_NAKC_INVALID_CONTENT The content of the post message is invalid (it does not match the expected
formatting) and cannot be posted.

Table 190: RsslAckMsg NakCode Values
Transport API 3.1.X C Edition – Developers Guide 273
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.8.4 RSSL Acknowledgement Message Utility Function

The Transport API provides the following utility function for use with the RsslAckMsg.

12.2.9 The RSSL Message Union

The RsslMsg structure is a union of the various classes of Messages. For example:

Code Example 40: RsslMsg Union

12.2.9.1 RsslMsg Encoding Interfaces

All message encoding and decoding functions expect the RsslMsg type. Any specific message class can be cast to the
RsslMsg, and an RsslMsg can be cast to any specific message class. An RsslMsg can be encoded from pre-encoded data or
by encoding individual pieces of data as they are provided.

FUNCTION NAME DESCRIPTION

rsslClearAckMsg Clears an RsslAckMsg structure. Useful for structure reuse.

Table 191: RsslAckMsg Utility Functions

typedef union {
RsslMsgBase msgBase;/* Common Message Base; refer to Section 12.1.1 */
RsslRequestMsg requestMsg; /* RSSL Request Message; refer to Section 12.2.1 */
RsslAckMsg ackMsg; /* RSSL Acknowledgement Message; refer to Section 12.2.8 */
RsslRefreshMsg refreshMsg;/* RSSL Refresh Message; refer to Section 12.2.2 */
RsslStatusMsg statusMsg; /* RSSL Status Message; refer to Section 12.2.4 */
RsslUpdateMsg updateMsg;/* RSSL Update Message; refer to Section 12.2.3 */
RsslCloseMsg closeMsg;/* RSSL Close Message; refer to Section 12.2.5 */
RsslGenericMsg genericMsg;/* RSSL Generic (Bidirectional) Message; refer to

Section 12.2.6 */
RsslPostMsg postMsg;/* RSSL Post Message; refer to Section 12.2.7 */

} RsslMsg;

ENCODE INTERFACE DESCRIPTION

rsslEncodeMsg Encodes a message where all message content is pre-encoded.

• msgKey attribute information should be encoded and populated on
msgKey.encAttrib prior to this call.

• extendedHeader information should be encoded and populated on the
message’s extendedHeader member prior to this call.

• Message payload information should be encoded and populated on the
encDataBody member prior to this call.

Table 192: RsslMsg Encode Functions
Transport API 3.1.X C Edition – Developers Guide 274
ETAC313UM.180

Chapter 12 Message Package Detailed View
rsslEncodeMsgInit Begins encoding of an RsslMsg.

All message header elements should be properly populated. The containerType
member should be populated with the specific type of message payload.

• If encoding msgKey attribute information: pre-encoded msgKey attribute
information should be populated in msgKey.encAttrib. Unencoded msgKey
attribute information should be encoded after rsslEncodeMsgInit returns,
followed by rsslEncodeMsgKeyAttribComplete.

• If encoding extendedHeader information: pre-encoded extendedHeader
information should be populated in the extendedHeader member of the
message. Unencoded extendedHeader information should be encoded after
the call to rsslEncodeMsgInit and after msgKey attribute information is
encoded. When extendedHeader encoding is completed, call
rsslEncodeExtendedHeaderComplete.

rsslEncodeMsgComplete Completes encoding of an RsslMsg.

All message content should be encoded prior to this call. This function expects the
same RsslEncodeIterator that was used with rsslEncodeMsgInit.

• If the content (i.e., payload, msgKey attrib, and extendedHeader) encodes
successfully, the RsslBool success parameter should be set to true to finish
encoding.

• If any of the content fails to encode, the RsslBool success parameter should
be set to false to roll back the encoding of the message.

rsslEncodeMsgKeyAttribComplete Completes encoding of any non-pre-encoded msgKey attribute information.

Can be used only when message encoding leverages rsslEncodeMsgInit. If the
RSSL_MKF_HAS_ATTRIB flag is set and msgKey.encAttrib is not populated,
msgKey attribute information is expected after rsslEncodeMsgInit returns, with
the specific attribContainerType functions being used to encode it. This
function expects the same RsslEncodeIterator used with rsslEncodeMsgInit.

• If encoding of the msgKey attribute information succeeds, the RsslBool
success parameter should be set to true to finish attribute encoding.

• If encoding of attributes fails, the RsslBool success parameter should be set
to false to roll back encoding prior to msgKey attributes.

If both msgKey attributes and extendedHeader information are being encoded,
msgKey attributes are expected first with extendedHeader being encoded after the
call to rsslEncodeMsgKeyAttribComplete.

ENCODE INTERFACE DESCRIPTION

Table 192: RsslMsg Encode Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 275
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.9.2 RsslMsg Encoding Example 1

The following code sample demonstrates RsslMsg encoding, showing the use of rsslEncodeMsgInit with
rsslEncodeMsgComplete and includes unencoded msgKey attribute information, unencoded payload, and unencoded
extendedHeader information. While this example demonstrates error handling for the initial encode function, it omits additional
error handling to simplify the example (though it should still be performed).

rsslEncodeExtendedHeaderComplete Completes encoding of any non-pre-encoded extendedHeader information.

Can be used only when the message encoding leverages rsslEncodeMsgInit. If
the specific message’s HAS_EXTENDED_HEADER flag is set and
extendedHeader is not populated, this information is expected after
rsslEncodeMsgInit (and rsslEncodeMsgKeyAttribComplete if encoding
msgKey attributes) returns. This function expects the same RsslEncodeIterator
used with previous message encoding functions.

• If encoding of extendedHeader succeeds, the RsslBool success parameter
should be set to true to finish encoding.

• If encoding of extendedHeader fails, the RsslBool success parameter should
be set to false to roll back to encoding prior to extendedHeader.

If both msgKey attributes and extendedHeader information are being encoded,
msgKey attributes are expected first, while extendedHeader should be encoded
after the call to rsslEncodeMsgKeyAttribComplete.

/* EXAMPLE 1 - EncodeMsgInit/Complete with unencoded msgKey attribute, payload, and
/* extendedHeader */

/* Populate and encode a requestMsg */
RsslRequestMsg reqMsg = RSSL_INIT_REQUEST_MSG;
reqMsg.msgBase.msgClass = RSSL_MC_REQUEST; /* message is a request */
reqMsg.msgBase.domainType = RSSL_DMT_MARKET_PRICE;
reqMsg.msgBase.containerType = RSSL_DT_ELEMENT_LIST;
/* Choose a stream Id that is not in use if this is a new request, otherwise reuse associated
/* id */
reqMsg.msgBase.streamId = 6;
/* Populate flags for request message members and behavior - our message is for a streaming
/* request, will specify a quality of service range, priority, contains an extended header and
/* payload is a dynamic view request */
reqMsg.flags = RSSL_RQMF_STREAMING | RSSL_RQMF_HAS_PRIORITY | RSSL_RQMF_HAS_QOS |

RSSL_RQMF_HAS_WORST_QOS | RSSL_RQMF_HAS_EXTENDED_HEADER | RSSL_RQMF_HAS_VIEW;

/* Populate qos range and priority */
reqMsg.priorityClass = 2;
reqMsg.priorityCount = 1;
/* Populate best qos allowed */
reqMsg.qos.rate = RSSL_QOS_RATE_TICK_BY_TICK;
reqMsg.qos.timeliness = RSSL_QOS_TIME_REALTIME;

ENCODE INTERFACE DESCRIPTION

Table 192: RsslMsg Encode Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 276
ETAC313UM.180

Chapter 12 Message Package Detailed View
/* Populate worst qos allowed, rate and timeliness values allow for rateInfo and timeInfo to
/* be sent */
reqMsg.worstQos.rate = RSSL_QOS_RATE_TIME_CONFLATED;
reqMsg.worstQos.rateInfo = 1500;
reqMsg.worstQos.timeliness = RSSL_QOS_TIME_DELAYED;
reqMsg.worstQos.timeInfo = 20;

/* Populate msgKey to specify a serviceId, a name with type of RIC (which is default nameType)
/* and attrib */
reqMsg.msgBase.msgKey.flags = RSSL_MKF_HAS_SERVICE_ID | RSSL_MKF_HAS_NAME |

RSSL_MKF_HAS_ATTRIB;
reqMsg.msgBase.msgKey.serviceId = 1;
/* Specify name and length of name. Because this is a RIC, no nameType is required. */
reqMsg.msgBase.msgKey.name.data = “TRI”;
reqMsg.msgBase.msgKey.name.length = 3;
/* Msg Key attribute info will be encoded after rsslEncodeMsgInit returns */
reqMsg.msgBase.msgKey.attribContainerType = RSSL_DT_ELEMENT_LIST;

/* begin encoding of message - assumes that encIter is already populated with buffer and
/* version information, store return value to determine success or failure data max */
/* encoded size is unknown so 0 is used */
if ((retVal = rsslEncodeMsgInit(&encIter, (RsslMsg*)&reqMsg, 0)) < RSSL_RET_SUCCESS)
{

/* error condition - switch our success value to false so we can roll back */
success = RSSL_FALSE;
/* print out message with return value string, value, and text */
printf("Error %s (%d) encountered with rsslEncodeMsgInit. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));
}
else
{

RsslElementList elementList = RSSL_INIT_ELEMENT_LIST;
RsslBuffer nonRWFBuffer = RSSL_INIT_BUFFER;
/* retVal should be RSSL_RET_ENCODE_MSG_KEY_OPAQUE */
/* encode msgKey attrib as element list to match setting of attribContainerType */
{

RsslElementList elementList = RSSL_INIT_ELEMENT_LIST;
elementList.flags = RSSL_ELF_HAS_STANDARD_DATA;
/* now encode nested container using its own specific encode functions */
if ((retVal = rsslEncodeElementListInit(&encIter, &elementList, 0, 0)) <

RSSL_RET_SUCCESS)
/*----- Continue encoding element entries. See example in Section 11.3.2 ---- */
/* Complete nested container encoding */
retVal = rsslEncodeElementListComplete(&encIter, success);

}
/* now that it is done, complete msgKey attrib encoding. */
retVal = rsslEncodeMsgKeyAttribComplete(&encIter, success);
Transport API 3.1.X C Edition – Developers Guide 277
ETAC313UM.180

Chapter 12 Message Package Detailed View
Code Example 41: RsslMsg Encoding Example #1, rsslEncodeMsgInit / rsslEncodeMsgComplete Use

12.2.9.3 RsslMsg Encoding Example 2

The following code sample demonstrates RsslMsg encoding and shows the use of rsslEncodeMsg with pre-encoded msgKey
attribute information and payload. While this example demonstrates error handling for the initial encode function, it omits
additional error handling to simplify the example (though it should still be performed).

/* retVal should be RSSL_RET_ENCODE_EXTENDED_HEADER */
/* encode extended header as non-RWF type using non-RWF encode functions */
{

retVal = rsslEncodeNonRWFDataTypeInit(&encIter, &nonRWFBuffer);
/* now encode extended header using its own specific encode functions -
Ensure that we do not exceed nonRWFBuffer.length */
/* we could memcpy into the nonRWFBuffer.data or use it with other encode functions */
memcpy(&nonRWFBuffer.data, &data, length);
/* Set nonRWFBuffer.length to amount of data encoded into buffer and complete */
nonRWFBuffer.length = encAnsiBuffer.length;
retVal = rsslEncodeNonRWFDataTypeComplete(&encIter, &nonRWFBuffer, success);

}
retVal = rsslEncodeExtendedHeaderComplete(&encIter, success);

/* retVal should be RSSL_RET_ENCODE_CONTAINER */
/* encode message payload to match msgBase.containerType */
{

RsslElementList elementList = RSSL_INIT_ELEMENT_LIST;
elementList.flags = RSSL_ELF_HAS_STANDARD_DATA;
/* now encode nested container using its own specific encode functions */
if ((retVal = rsslEncodeElementListInit(&encIter, &elementList, 0, 0)) <

RSSL_RET_SUCCESS)
/*----- Continue encoding element entries. See example in Section 11.3.2 ---- */
/* Complete nested container encoding */
retVal = rsslEncodeElementListComplete(&encIter, success);

}
/* now that specified msgKey attrib, extendedHeader and payload are done, complete message
/* encoding. */
retVal = rsslEncodeMsgComplete(&encIter, success);

}

/* EXAMPLE 2 - EncodeMsg with pre-encoded msgKey.attrib and pre-encoded payload, no
/* extendedHeader */

/* Populate and encode a refreshMsg */
RsslRefreshMsg refreshMsg = RSSL_INIT_REFRESH_MSG;
refreshMsg.msgBase.msgClass = RSSL_MC_REFRESH; /* message is a refresh */
Transport API 3.1.X C Edition – Developers Guide 278
ETAC313UM.180

Chapter 12 Message Package Detailed View
Code Example 42: RsslMsg Encoding Example #2, rsslEncodeMsg Use

refreshMsg.msgBase.domainType = RSSL_DMT_MARKET_PRICE;
refreshMsg.msgBase.containerType = RSSL_DT_FIELD_LIST;
/* Use the stream Id corresponding to the request, because it is in reply to a request, it’s
/* solicited */
refreshMsg.msgBase.streamId = 6;
/* Populate stream and data state information. This is required on an RsslRefreshMsg */
refreshMsg.state.streamState = RSSL_STREAM_OPEN;
refreshMsg.state.dataState = RSSL_DATA_OK;
/* Populate flags for refresh message members and behavior - because this in response to a
/* request this should be solicited, msgKey should be present, single part refresh so it is
/* complete, and also want the concrete qos of the stream */
refreshMsg.flags = RSSL_RFMF_SOLICITED | RSSL_RFMF_HAS_MSG_KEY | RSSL_RFMF_REFRESH_COMPLETE

| RSSL_RFMF_HAS_QOS | RSSL_RFMF_CLEAR_CACHE;
/* Populate msgKey to specifie a serviceId, a name with type of RIC (which is default nameType)
/* and attrib */
refreshMsg.msgBase.msgKey.flags = RSSL_MKF_HAS_SERVICE_ID | RSSL_MKF_HAS_NAME |

RSSL_MKF_HAS_ATTRIB;
refreshMsg.msgBase.msgKey.serviceId = 1;
/* Specify name and length of name. Because this is a RIC, no nameType is required. */
refreshMsg.msgBase.msgKey.name.data = “TRI”;
refreshMsg.msgBase.msgKey.name.length = 3;
/* Msg Key attribute info is pre-encoded, should be set in encAttrib */
refreshMsg.msgBase.msgKey.attribContainerType = RSSL_DT_ELEMENT_LIST;
/* assuming pEncodedAttrib RsslBuffer contains the pre-encoded msgKey attribute info with
/* data and length populated */
refreshMsg.msgBase.msgKey.encAttrib.data = pEncodedAttrib->data;
refreshMsg.msgBase.msgKey.encAttrib.length = pEncodedAttrib->length;
/* assuming pEncodedPayload RsslBuffer contains the pre-encoded payload information with
/* data and length populated */
refreshMsg.msgBase.encDataBody.data = pEncodedPayload->data;
refreshMsg.msgBase.encDataBody.length = pEncodedPayload->length;

/* encode message - assumes that encIter is already populated with buffer and version
/* information, store return value to determine success or failure */
/* Because this function expects all portions to be populated and pre-encoded, all message
/* encoding is complete after this returns. */
if ((retVal = rsslEncodeMsg(&encIter, (RsslMsg*)&refreshMsg)) < RSSL_RET_SUCCESS)
{

/* error condition - switch our success value to false so we can roll back */
success = RSSL_FALSE;
/* print out message with return value string, value, and text */
printf("Error %s (%d) encountered with rsslEncodeMsg. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));
}

Transport API 3.1.X C Edition – Developers Guide 279
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.9.4 RsslMsg Decoding Interfaces

When decoding, RsslMsg.msgBase contains common members that can identify the specific message class or domain type.
Because msgKey is optional and specified on a per-message class basis, do not use msgBase.msgKey until the specific
message class flags are consulted to determine whether the msgKey is present.

A decoded RsslMsg structure provides access to the encoded content of the message. You can further decode the message’s
content by invoking the specific contained type’s decode function.

All message encoding and decoding functions expect the RsslMsg type. Any specific message class can be cast to the
RsslMsg, and an RsslMsg can be cast to any specific message class.

DECODE INTERFACE DESCRIPTION

rsslDecodeMsg Decodes RsslMsg header members.

Any msgKey attribute information remains encoded unless the user chooses to decode it. This
can be accomplished by setting the encAttrib buffer on a separate RsslDecodeIterator or
by calling rsslDecodeMsgKeyAttrib followed by decode functions for the specified
attribContainerType.

Any message payload content will be described by the message’s containerType member
and will be present in the encDataBody. This can be decoded by calling the containerType’s
specific decode functions using the same RsslDecodeIterator or by setting the
encDataBody on a new decode iterator. Any extendedHeader information is expected to be
decoded by using a separate RsslDecodeIterator. This function will decode from the
RsslBuffer to which the passed in RsslDecodeIterator refers.

rsslDecodeMsgKeyAttrib Prepares the RsslDecodeIterator to decode RsslMsg.msgKey.encAttrib information.

This function expects the same RsslDecodeIterator as was used with rsslDecodeMsg and
the RsslMsg.msgKey member that was populated by calling rsslDecodeMsg . This populates
encData with an encoded entry. After this function returns, you can call the
msgKey.attribContainerType decode functions to decode attribute information. If you do
not want to decode msgKey attribute information, you can decode the payload by using the
containerType’s decode functions after rsslDecodeMsg returns.

Table 193: RsslMsg Decode Functions
Transport API 3.1.X C Edition – Developers Guide 280
ETAC313UM.180

Chapter 12 Message Package Detailed View
12.2.9.5 RsslMsg Decoding Example

The following code sample demonstrates how to decode an RsslMsg. This sample code uses a switch statement to decode
the message’s content. Typically an application would invoke the specific container type decoder for the housed type or use a
switch statement to allow for a more generic message decoding. The example uses the same RsslDecodeIterator when
decoding the msgKey.encAttrib and the message payload. An application could optionally use a new RsslDecodeIterator
by setting the encAttrib or encDataBody on a new iterator. To simplify the sample code, some error handling is omitted.

/* decode contents into the RsslMsg structure */
if ((retVal = rsslDecodeMsg(&decIter, &rsslMsg)) >= RSSL_RET_SUCCESS)
{

/* we can cast to the appropriate message class for convenience or use the accessor */
/* methods */
const RsslMsgKey *pKey;
/* use the ease of use accessor to get the msgKey if it exists on this msgClass */
pKey = rsslGetMsgKey(&rsslMsg);
/* if we have a key and it has attribute information, decode it */
if (pKey && (pKey->flags & RSSL_MKF_HAS_ATTRIB))
{

/* need to set up the decodeIterator to expect decoding of attribute information,
/* Otherwise it will assume we are decoding the payload */
retVal = rsslDecodeMsgKeyAttrib(&decIter, pKey));

switch (pKey->attribContainerType)
{

case RSSL_DT_FIELD_LIST:
retVal = rsslDecodeFieldList(&decIter, &fieldList, 0);
/* Continue decoding field entries. Refer to the example in Section 11.3.1 */
break;

case RSSL_DT_ELEMENT_LIST:
retVal = rsslDecodeElementList(&decIter, &elementList, 0);
/* Continue decoding element entries. Refer to the example in Section 11.3.2*/
break;

/* full switch statement omitted to shorten sample code */
}

}

/* Decode any contained payload information */
switch (rsslMsg.msgBase.containerType)
{

case RSSL_DT_NO_DATA:
printf("No payload contained in message.\n”);

break;
case RSSL_DT_FIELD_LIST:

retVal = rsslDecodeFieldList(&decIter, &fieldList, 0);
/* Continue decoding field entries. Refer to the example in Section 11.3.1 */
Transport API 3.1.X C Edition – Developers Guide 281
ETAC313UM.180

Chapter 12 Message Package Detailed View
Code Example 43: RsslMsg Decoding Example

12.2.9.6 RsslMsg Utility Functions

The Transport API provides the following utility functions for use with the RsslMsg.

break;
case RSSL_DT_ELEMENT_LIST:

retVal = rsslDecodeElementList(&decIter, &elementList, 0);
/* Continue decoding element entries. Refer to the example in Section 11.3.2 */

break;
/* full switch statement omitted to shorten sample code */

}

}
else
{

/* decoding failure tends to be unrecoverable */
printf("Error %s (%d) encountered with rsslDecodeMsg. Error Text: %s\n",

rsslRetCodeToString(retVal), retVal, rsslRetCodeInfo(retVal));
}

FUNCTION NAME DESCRIPTION

rsslClearMsg Clears members from an RsslMsg structure. Useful for structure reuse.

rsslValidateMsg Performs a basic validation on the populated RsslMsg structure (useful when encoding)
ensuring that optional members indicated as present are correctly populated (e.g., that length
and data are both populated).

rsslIsFinalMsg Returns true if the message is the last message received on a stream, such as:

• Final response to non-streaming requests

• Messages with a streamState indicating a closed stream (refer to Section 11.2.6)

• Explicitly closed streams (e.g. closed with an RsslCloseMsg).

Returns false if data is to continue streaming.

rsslSizeOfMsg Performs a deep sizeof function on an RsslMsg structure.

rsslSizeOfMsg is not the same as the encoded size of the message, though it can be useful
for approximating the encoded size (it is typically smaller than the structural representation).

rsslCopyMsg Performs a deep copy of an RsslMsg structure.

rsslCopyMsg can internally create the memory needed for copying or the user can pass in
the needed memory.

• If memory is passed in by the user, the user is responsible for managing the memory.

• If rsslCopyMsg creates memory for copying, you must call rsslReleaseCopiedMsg to
ensure proper cleanup.

Table 194: RsslMsg Utility Functions
Transport API 3.1.X C Edition – Developers Guide 282
ETAC313UM.180

Chapter 12 Message Package Detailed View
rsslReleaseCopiedMsg Performs proper cleanup of memory allocated by rsslCopyMsg.

Only memory internally created by rsslCopyMsg should be passed into this function. This
function cleans up on a per-message basis (e.g., each message created by rsslCopyMsg
requires individual calls to rsslReleaseCopiedMsg).

rsslGetFlags Takes a populated RsslMsg structure and returns the specific msgClass’s flags.

rsslGetMsgKey Takes a populated RsslMsg structure, determines whether msgKey is present and returns it if
available, NULL otherwise.

For more details about the msgKey, refer to Section 12.1.2.

rsslGetSeqNum Takes a populated RsslMsg structure, determines whether seqNum is present and returns it if
available, NULL otherwise.

rsslGetState Takes a populated RsslMsg structure, determines whether state information is present and
returns it if available, NULL otherwise.

For more information about state values, refer to Section 11.2.6.

rsslGetPermData Takes a populated RsslMsg structure, determines whether permData information is present
and returns it when available, NULL otherwise.

For more information about permission data, refer to Section 11.4.

rsslGetGroupId Takes a populated RsslMsg structure, determines whether groupId information is present
and returns it when available, NULL otherwise.

For more information about group use, refer to Section 13.4.

rsslGetExtendedHeader Takes a populated RsslMsg structure, determines whether extendedHeader information is
present, and returns it if available, NULL otherwise.

rsslExtractMsgClass Takes an encoded message and returns the msgClass information without fully decoding the
message header.

Note: Multiple rsslExtract* calls on the same encoded message will likely be less efficient
than a single call to rsslDecodeMsg.

rsslExtractDomainType Takes an encoded message and returns the domainType information without fully decoding
the message header.

Note: Multiple rsslExtract* calls on the same encoded message will likely be less efficient
than a single call to rsslDecodeMsg.

rsslExtractStreamId Takes an encoded message and returns the streamId information without fully decoding the
message header.

For more details on the streamId, refer to Section 12.1.3.

Note: Multiple rsslExtract* calls on the same encoded message will likely be less efficient
than a single call to rsslDecodeMsg.

rsslExtractSeqNum Takes an encoded message and returns the seqNum information without fully decoding the
message header.

Note: Multiple rsslExtract* calls on the same encoded message will likely be less efficient
than a single call to rsslDecodeMsg.

FUNCTION NAME DESCRIPTION

Table 194: RsslMsg Utility Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 283
ETAC313UM.180

Chapter 12 Message Package Detailed View
rsslExtractGroupId Takes an encoded message and returns the groupId information without fully decoding the
message header.

For more information about group use, refer to Section 13.4.

Note: Multiple rsslExtract* calls on the same encoded message will likely be less efficient
than a single call to rsslDecodeMsg.

rsslExtractPostId Takes an encoded message and returns the postId information without fully decoding the
message header.

For more information, refer to Section 13.9.

Note: Multiple rsslExtract* calls on the same encoded message will likely be less efficient
than a single call to rsslDecodeMsg.

rsslReplaceDomainType Takes an encoded message and replaces the domainType without re-encoding the message.

rsslReplaceStreamId Takes an encoded message and replaces the streamId without re-encoding the message.

For more details on the streamId, refer to Section 12.1.3.

rsslReplaceSeqNum Takes an encoded message and replaces the seqNum without re-encoding the message.

rsslReplaceGroupId Takes an encoded message and replaces the groupId without re-encoding the message.

For more information about group use, refer to Section 13.4.

rsslReplacePostId Takes an encoded message and replaces the postId without re-encoding the message.

For more information, refer to Section 13.9.

rsslReplaceStreamState Takes an encoded message and replaces the streamState without re-encoding the
message.

For more information about state values, refer to Section 11.2.6.

rsslReplaceDataState Takes an encoded message and replaces the dataState without re-encoding the message.

For more information about state values, refer to Section 11.2.6.

rsslReplaceStateCode Takes an encoded message and replaces the state.code without re-encoding the message.

For more information about state values, refer to Section 11.2.6.

FUNCTION NAME DESCRIPTION

Table 194: RsslMsg Utility Functions (Continued)
Transport API 3.1.X C Edition – Developers Guide 284
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
Chapter 13 Advanced Messaging Concepts

13.1 Multi-Part Message Handling

RsslRefreshMsg, RsslPostMsg, and RsslGenericMsg all support splitting payload content across multiple message parts,
commonly referred to as message fragmentation. Each message part includes relevant message header information along
with the part’s payload, where payload can be combined by following the modification semantics associated with the specific
containerType (for specific container details, refer to Section 11.3). Message fragmentation is typically used to split large
payload information into smaller, more manageable pieces. The size of each message part can vary, and is controlled by the
application that performs the fragmentation. Often, sizes are chosen based on a specific transport layer frame or packet size.

When sending a multi-part message, several message members can convey additional part information. Each message class
that supports fragmentation has an optional partNum member that can order and ensure receipt of every part of the message.
For consistency and compatibility with TREP components, partNum should begin with 0 and increment by one for each
subsequent part. Several container types have an optional totalCountHint value. This can convey information about the
expected entry count across all message parts, and often helps size needed storage or display for the message contents.

These message classes have an associated COMPLETE flag value (specifically RSSL_RFMF_REFRESH_COMPLETE,
RSSL_PSMF_POST_COMPLETE, and RSSL_GNMF_MESSAGE_COMPLETE). A flag value of COMPLETE indicates the
final part of a multi-part message (or that the message is a single-part and no subsequent parts will be delivered).

For both streaming and non-streaming information, other messages might arrive between parts of a fragmented message. For
example, it is expected that update messages be received between individual parts of a multi-part refresh message. Such
updates indicate changes to data being received on the stream and should be applied according to the modification semantics
associated with the containerType of the payload. If non-streaming, no additional messages should be delivered after the
final part.

If a transport layer is used, messages can fan out in the order in which they are received. On a transport where reliability is not
guaranteed and the order can be determined by a sequence number, special rules should be used by consumers when
processing a multi-part message. The following description explains how a multi-part refresh message can be handled. After
the request is issued, any messages received on the stream should be stored and properly ordered based on sequence
number. When an application encounters the first part of the RsslRefreshMsg, the application should process the part and
note its sequence number. The application can drop (i.e., not process) stored messages with earlier sequence numbers. When
the application encounters the next part of the RsslRefreshMsg, the application should first process any stored message with
a sequence number intermediate between this refresh part and the previous part then the application should process the
refresh part. This process should continue until the final part of the RsslRefreshMsg is encountered, at which time any
remaining stored messages with a later sequence number should be processed and the stream’s data flow can continue as
normal.

13.2 Stream Priority

Consumers use RsslRequestMsg to indicate the stream’s level of importance, conveyed by the priority information. When a
consumer is aggregating streams on behalf of multiple users, the priority typically corresponds to the number of users
interested in the particular stream. A consumer can increase or decrease a stream’s associated priority information by issuing
a subsequent request message on an already open stream.

A Provider application tracks the priority of each of its open streams. If the consumer reaches some kind of item count
limitation (i.e., the maximum allowable number of streams), the provider can employ a preemption algorithm. Specific details
must be defined by the provider application. The ADH uses the combination of priorityCount and priorityClass to
preempt items when the user’s allowable cache list size is exceeded. ADH always preempts the item with the lowest
priorityCount within the priorityClass and then provides an RsslStatusMsg with a streamState of
RSSL_STREAM_CLOSED_RECOVER for the item.

Priority is represented by a priorityClass value and a priorityCount value.
Transport API 3.1.X C Edition – Developers Guide 285
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
• The priority class indicates the general importance of the stream to the consumer.

• The priority count indicates the stream’s specific importance within the priority class.

The priorityClass value takes precedence over any priorityCount value. For example, a stream with a priorityClass of
5 and priorityCount of 1 has a higher overall priority than a stream with a priorityClass of 3 and a priorityCount of
10,000.

Because priority information is optional on an RsslRequestMsg:

• If priority information is not present on an initial request to open a stream, it is assumed that the stream has a
priorityClass and a priorityCount of 1.

• If priority information is not present on a subsequent request message on an open stream, this means that the priority has
not changed and previously stored priority information continues to apply.

If a consumer aggregates identical streams, the consumer should use the highest priorityClass value. Individual
priorityCount values are always combined on a per-priorityClass basis.

For example, if a consumer application combines three identical streams:

• One with priorityClass 3 and priorityCount 5

• One with priorityClass 2 and priorityCount 10

• One with priorityClass 3 and priorityCount of 1

In this case, the aggregate priority information would be priorityClass 3 (i.e., the highest priorityClass) and
priorityCount of 6 (the combined priorityCount values for that class level).

13.3 Stream Quality of Service

A consumer can use RsslRequestMsg to indicate the desired QoS for its streams. This can be a request for a specific QoS or
a range of qualities of service, where any value within the range will satisfy the request. The RsslRefreshMsg includes the
QoS used to indicate the QoS being provided for a stream. When issuing a request, the QoS specified on the request typically
matches the advertised QoS of the service, as conveyed via the Source Directory domain model. For more information, refer
to the Transport API C Edition RDM Usage Guide.

• An initial request containing only RsslRequestMsg.qos indicates a request for the specified QoS. If a provider cannot
satisfy this QoS, the request should be rejected.

• An initial request containing both RsslRequestMsg.qos and RsslRequestMsg.worstQos sets the range of acceptable
QoSs. Any QoS within the range, inclusive of the specified qos and worstQos, will satisfy the request. If a provider cannot
provide a QoS within the range, the provider should reject the request.

When a provider responds to an initial request, the RsslRefreshMsg.qos should contain the actual QoS being provided for the
stream. Subsequent requests issued on the stream should not specify a range as the QoS has been established for the
stream.

Because QoS information is optional on an RsslRequestMsg some special handling is required when it is absent.

• If neither qos nor worstQos are specified on an initial request to open a stream, it is assumed that any QoS will satisfy the
request.

• If QoS information is absent on a subsequent reissue request, it is assumed that QoS, timeliness, and rate conform to the
stream’s currently established settings.

• If QoS information is absent in an initial RsslRefreshMsg, this should be assumed to have a timeliness of
RSSL_QOS_TIME_REALTIME and a rate of RSSL_QOS_RATE_TICK_BY_TICK. On any subsequent solicited or unsolicited
refresh, this should be assumed to match any QoS already established by the initial RsslRefreshMsg.
Transport API 3.1.X C Edition – Developers Guide 286
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
To determine whether components require QoS information on initial and reissue requests, refer to the documentation for the
specific component.

13.4 Item Group Use

You can use item groups to efficiently update the state for multiple item streams via a single group status message (instead of
using multiple, individual item status messages). Each open data stream is assigned an item group. This information is
associated with the stream through the RsslRefreshMsg.groupId (refer to Section 12.2.2) or RsslStatusMsg.groupId (refer
to Section 12.2.4) members. Once established, item group information can be modified via a subsequent RsslStatusMsg or
RsslRefreshMsg containing a different groupId affiliation.

Item groups are defined on a per-service basis. While two item groups can have the same groupId, each group’s serviceId
will be unique. A consumer application should track serviceId-groupId pairings to ensure the correct sets of items are
modified whenever group status messages are received. A provider can establish item group assignments according to the
application's needs, but must maintain the uniqueness of each item group within a service. For example, a provider that
aggregates multiple upstream services into a single downstream service might establish a different item group for each
aggregated service. Thus, should an upstream service become unavailable, the provider can mark all items as being suspect
while items from other upstream services remain in their prior state.

13.4.1 Item Group Buffer Contents

The consuming application should treat data (which may be of varying length) contained in the groupId buffer as opaque. A
simple memory comparison operation can determine whether two groups are equivalent. The actual data contained in the
groupId buffer is a collection of one or more unsigned two-byte, unsigned integer values, where each two-byte value is
appended to the end of the current groupId RsslBuffer. Providers that combine multiple data sources must ensure that the
item groups in the resulting service are unique, which can be accomplished by appending an additional two-byte value to each
on-passed groupId.

For example, the following figure depicts two NIP applications, each publishing item streams belonging to specific services
and item groups.

Figure 38. Item Group Example

Though the providers in this diagram use the same groupId for an item, using different serviceIds makes items unique. Both
providers communicate with an application that consumes data from both services, aggregates the data into a single service,
and then distributes the data to consumer applications. To ensure uniqueness to downstream components, the service
aggregation provider appends additional identifiers to the group information it receives from the provider applications. In this
Transport API 3.1.X C Edition – Developers Guide 287
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
example, the aggregation device modifies serviceId 5, groupId 1 into a groupId of 1.5 and serviceId 10, groupId 1 into a
groupId of 1.10. If for any reason NIP #1’s service becomes unavailable, the aggregation device can send a single group
status message to inform the consumer that all items belonging to groupId 1.5 are suspect. This would have no impact to any
items belonging to groupId 1.10.

13.4.2 Item Group Utility Functions

The Transport API provides the following utility functions for use with and modification of the groupId RsslBuffer.

13.4.3 Group Status Message Information

Information regarding state changes and the merging of item groups occurs via group status messages. A group status
message is communicated via the Source Directory domain message model. Specific group information is contained in the
Directory’s Group RsslFilterEntry which corresponds to the specific service associated with the group.

• For more specific information, refer to the Source Directory Domain section in the Transport API C Edition RDM Usage
Guide.

• For a decision table providing example behavior for various state combinations, refer to Appendix A.

13.4.4 Group Status Responsibilities by Application Type

Dissemination and handling of group status information is distributed across providers and consumers. This section discusses
responsibilities by application type.

An OMM interactive provider or NIP application is responsible for:

• Assigning and providing item group id values. This is accomplished by specifying the RsslRefreshMsg.groupId or
RsslStatusMsg.groupId for all provided content1.

• If a group of items becomes unavailable (i.e., an upstream service or provider goes down), group status messages
should be sent out for all affected item groups. These are sent via the Source Directory domain.

function NAME DESCRIPTION

rsslAddGroupId Appends a two-byte, unsigned integer to existing groupId content. Useful when
modifying groupId buffers to ensure uniqueness.

rsslGetGroupId

(from RsslRefreshMsg and
RsslStatusMsg)

Takes a populated RsslMsg structure, determines if groupId information is present and if
available, returns it; NULL otherwise.

rsslExtractGroupId Takes an encoded message and returns the groupId without fully decoding the message
header.

Note: Multiple rsslExtract* calls on the same encoded message will likely be less
efficient than a single call to rsslDecodeMsg.

rsslReplaceGroupId Takes an encoded message and replaces the groupId without re-encoding the message.

Table 195: Item Group Utility Functions

Note: If an application does not subscribe to the Source Directory’s group filter, the application will not receive group status
messages. This can result in potentially incorrect item state information, as relevant status information might be missed.

1. This does not include administrative domains such as Login, Source Directory, and Dictionary.
Transport API 3.1.X C Edition – Developers Guide 288
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
For more information about group status messages (including specific message content and formatting), refer to the
Transport API C Edition RDM Usage Guide.

• If items become available again, recovery should occur and items’ states should be updated via a subsequent
RsslRefreshMsg or RsslStatusMsg provided to any downstream components interested in the item.

An OMM consumer application is responsible for:

• Subscribing to the item group filter when requesting Source Directory information.

For more information about the item group filter and group status messages (including specific message content and
formatting), refer to the Transport API C Edition RDM Usage Guide.

• If group status changes are received, the state change should be propagated to all items associated with the indicated
group, as noted by the RsslRefreshMsg.groupId or RsslStatusMsg.groupId provided with the item stream.

• Any recovery should follow SingleOpen and AllowSuspectData rules, as described in the Transport API C Edition
RDM Usage Guide.

13.5 Single Open and Allow Suspect Data Behavior

A consumer application can specify desired item recovery and state transition information on its Login domain
RsslRequestMsg using the SingleOpen and AllowSuspectData msgKey attributes. A providing application can acknowledge
support for the behavior in the Login domain RsslRefreshMsg, in which case the provider performs certain state transitions.
This section offers a high-level description of item recovery and state transition behavior modifications.

• Single open behavior allows a consumer application to open an item stream once and have an upstream component
handle stream recovery (if needed). With single open enabled, a consumer should not receive a streamState of
CLOSED_RECOVER, as the providing application should convert to SUSPECT and attempt to recover on the consumer’s
behalf. If a stream is CLOSED, this will be propagated to the consumer application.

• Allow suspect data behavior indicates whether an application can tolerate an open stream with a dataState of SUSPECT,
or if it is preferable to have the stream closed. If an application indicates that it does not wish to allow SUSPECT streams to
remain open, the providing application should transition the streamState to CLOSED_RECOVER.

If the providing application does not support either behavior, the application should indicate such a restriction in the Login
domain’s RsslRefreshMsg. For additional information, including on the RSSL_DMT_LOGIN domain definition, refer to the
Transport API C Edition RDM Usage Guide.

The following table shows how a provider can convert messages to correspond with the consumer’s SingleOpen and
AllowSuspectData settings. The first column in the table shows the actual streamState and dataState. Each subsequent
column shows how this state information can be modified to follow the column’s specific SingleOpen and AllowSuspectData
settings. If a SingleOpen and AllowSuspectData configuration causes a behavioral contradiction (e.g., SingleOpen indicates
that the provider should handle recovery, but AllowSuspectData indicates that the consumer does not want to receive
suspect status), the SingleOpen configuration takes precedence.

Note: The Transport API does not perform special processing based on the SingleOpen and AllowSuspectData settings. The
provider application must perform any necessary conversion.
Transport API 3.1.X C Edition – Developers Guide 289
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
13.6 Pause and Resume

The Transport API allows applications to send or receive requests to pause or resume content flow on a stream.

• Issuing a pause on a stream can result in the temporary stop of RsslUpdateMsg flow.

• Issuing a resume on a paused stream restarts the RsslUpdateMsg flow.

Pause and resume can help optimize bandwidth by pausing streams that are only temporarily not of interest, instead of closing
and re-requesting a stream. Though a pause request may be issued on a stream, it does not guarantee that the contents of the
stream will actually be paused. Additionally, if the contents of the stream are paused, state-conveying messages can still be
delivered (i.e., status messages and unsolicited refresh messages). Pause and resume is only valid for data streams
instantiated as streaming (RSSL_RQMF_STREAMING). The consumer application is responsible for continuing to handle all
delivered messages, even after the issuance of a pause request.

A consumer application can request to pause an individual item stream by issuing RsslRequestMsg with the
RSSL_RQMF_PAUSE flag set. This can occur on the initial RsslRequestMsg or via a subsequent RsslRequestMsg on an
established stream (i.e., a reissue). If a pause is issued on the initial request, it should always result in the delivery of the initial
RsslRefreshMsg (this conveys initial state, permissioning, QoS, and group association information necessary for the stream).
A paused stream remains paused until a resume request is issued. To resume data flow on a stream a consumer application
can issue a subsequent RsslRequestMsg with the RSSL_RQMF_STREAMING flag set.

If a provider application receives a pause request from a consumer, it can choose to pause the content flow or continue
delivering information. When pausing a stream, where possible, the provider should aggregate information updates until the
consumer application resumes the stream. When resuming, an aggregate update message should be delivered to
synchronize the consumer’s information to the current content. However, if data cannot be aggregated, resuming the stream
should result in a full, unsolicited RsslRefreshMsg to synchronize the consumer application’s information to a current state.

A pause request issued on the streamId associated with a user’s login is interpreted as a request to pause all streams
associated with the user. A pause all request is only valid for use on an already established login stream and cannot be issued
on the initial login request. A ‘pause all’ request affects open streams only. Any newly requested streams should follow
behaviors specified on the request message itself (e.g. streaming, non-streaming, paused, etc). After a pause all request, the
application can choose to either resume individual item streams or resume all streams. A resume all will result in all paused
streams being transitioned to a resumed state. This is performed by issuing a subsequent RsslRequestMsg with the
RSSL_RQMF_STREAMING flag set using the streamId associated with the applications login.

For more information about the RsslRequestMsg and the RSSL_RQMF_PAUSE or RSSL_RQMF_STREAMING flag values,
refer to Section 12.2.1.

A provider application can indicate support for pause and resume behavior by sending the msgKey attribute
supportOptimizedPauseResume in the Login domain RsslRefreshMsg. For more details on the Login domainType
(RSSL_DMT_LOGIN), refer to the Transport API C Edition RDM Usage Guide.

ACTUAL STATE
INFORMATION

CONVERSION WHEN:
SINGLEOPEN = 1

ALLOWSUSPECTDATA = 1

CONVERSION WHEN:
SINGLEOPEN =1

ALLOWSUSPECTDATA = 0

CONVERSION WHEN:
SINGLEOPEN = 0

ALLOWSUSPECTDATA = 1

CONVERSION WHEN:
SINGLEOPEN = 0

ALLOWSUSPECTDATA = 0

streamState =
OPEN

dataState =
SUSPECT

No conversion required No conversion required No conversion required streamState =
CLOSED_RECOVER

dataState = SUSPECT

streamState =
CLOSED_RECOVER

dataState =
SUSPECT

streamState = OPEN

dataState = SUSPECT

streamState = OPEN

dataState = SUSPECT

No conversion required No conversion required

Table 196: SingleOpen and AllowSuspectData Effects
Transport API 3.1.X C Edition – Developers Guide 290
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
13.7 Batch Messages

Applications can use the Transport API to send and / or receive batch messages as a more efficient way to handle requests,
reissues, or closes of multiple items. When a consumer application wishes to open multiple similar items at once, or close
multiple streams, it may perform the operation using a single message instead of sending a message for each individual
stream.

This section defines the following types of operations that can be performed using a batch message:

• Batch Requests, to open streams for items that have that have different names but for which other key content (if any) is
identical.

• Batch Reissues, to change attributes of multiple open streams such as priority, or to pause or resume streams.

• Batch Closes, to close multiple open streams.

• A provider application can indicate support for each form of batch messaging by sending a bitmask in the msgKey attribute
supportBatchRequests in the Login domain RsslRefreshMsg. For more details on the Login domainType
(RSSL_DMT_LOGIN) and the general use of batch messages, refer to the Transport API RDM Usage Guide. The
rsslRDM.h header file included with the Transport API defines batch request-related enumerations and element name
string constants.

13.7.1 Batch Request

Consumers use a batch request to indicate interest in multiple like-item streams with a single RsslRequestMsg. In this
message, the consumer specifies a list of names in the message payload representing the items that the consumer wishes to

open. Batch requesting can be leveraged across all non-administrative2 domain model types.

A consumer application can issue a batch request by using an RsslRequestMsg with the RSSL_RQMF_HAS_BATCH flag set and
including a specifically formatted payload. The payload should contain an RsslElementList along with an RsslElementEntry
named :ItemList.

The :ItemList contains an RsslArray, where the RsslArray.primitiveType is RSSL_DT_ASCII_STRING. Each contained
string (populated in an RsslBuffer) corresponds to a requested name. The msgKey contents, domainType, and any specified
qos will be applied to all names in the list, and a msgKey.name (or RSSL_MKF_HAS_NAME) should not be present.

When a provider application receives a batch request, it should respond on the same stream with an RsslStatusMsg that
acknowledges receipt of the batch by indicating the dataState is OK and streamState is CLOSED. The stream on which the
batch request was sent (i.e., the ‘batch stream’) then closes, because all additional responses are provided on individual
streams. The :ItemList should be traversed to obtain each requested name and the batch RsslRequestMsg.msgKey content
should be associated with each item. If any request cannot be fulfilled, the provider should send an RsslStatusMsg to close
the stream and indicate the reason (for further details, refer to Section 12.2.4). If the provider is unable to process the batch
request itself, it should use a SUSPECT dataState in its response to the batch message.

Assignment of streamId values for all requested items is sequential according to the order of the entries in the RsslArray,
beginning with (1 + streamId) of the batch RsslRequestMsg. Because an OMM consumer requests the batch, positive
streamId values should be assigned. By setting the initial streamId, the consumer application can control the resultant

Note: Batch messages use the RsslElementEntry names :ItemList and :StreamIdList in message payloads. These
names follow a namespacing scheme in which a name’s content prior to the character : indicates a namespace. Thomson
Reuters reserves the empty namespace (e.g., :Element), while other namespaces are left for custom element names (e.g.,
Customer:Element)

2. Administrative domain types are considered to be the Login, Directory, and Dictionary domain models. All other domains are considered non-admin-
istrative.
Transport API 3.1.X C Edition – Developers Guide 291
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
streamId range, ensuring enough available streamId values exist to allocate identifiers for all requested items. Consider the
following example:

Figure 39. Batch Request Interaction Example‘‘

In the above figure, the consumer uses streamId 4 to send a batch request for three items, having ensured that streamIds 5,
6, and 7 are available. The provider acknowledges the batch request by responding with an RsslStatusMsg on streamId 4,
and provides the response for each of the three items on streamIds 5, 6, and 7, respectively.

Any view information (described in Section 13.8) included in a batch request should be applied for each item in the request. If
a consumer application wants to reissue any item that was requested as part of a batch, the application can either issue a
subsequent RsslRequestMsg on that item’s streamId, or use a batch reissue to apply the reissue to multiple streams
(described in Section 13.7.2).

• For an example of encoding a batch request, refer to Section 13.7.1.

• For more information about RsslRequestMsg and RSSL_RQMF_HAS_BATCH flag values, refer to Section 12.2.1.

• For more information about RsslElementList, refer to Section 11.3.2.

13.7.2 Batch Reissue

Consumers may use a batch reissue message to change attributes of multiple open streams (such as changing priority, or to
pause or resume them) using a single RsslRequestMsg. In a batch reissue message, the consumer specifies a list of
streamIds in the message payload representing the streams it wishes to reissue. Batch reissues can be leveraged across all
non-Login domain model types.

A consumer application can issue a batch reissue by using an RsslRequestMsg with the RSSL_RQMF_HAS_BATCH flag set
and including a specifically formatted payload. The payload should contain an RsslElementList along with an
RsslElementEntry named :StreamIdList.

The :StreamIdList contains an RsslArray, where the RsslArray.primitiveType is RSSL_DT_INT. Each contained
streamId (populated in an RsslInt) corresponds to the streamId of an open stream. The stream attributes specified (e.g.,
specifying the RSSL_RQMF_PAUSE flag, or changes to priorityClass and priorityCount) will be applied to each
streamId in the list.

The consumer application may specify streamIds from from any non-Login domain in the :StreamIdList of a batch reissue
message; only the streamId is needed to identify the stream. The qos, worstQos, msgKey, domainType, and extendedHeader
of the RsslRequestMsg are not used (do not set the RSSL_RQMF_HAS_QOS, RSSL_RQMF_HAS_WORST_QOS, or
RSSL_RQMF_HAS_EXTENDED_HEADER flags. Set msgKey.flags to RSSL_MKF_NONE. Thomson Reuters recommends
setting the domainType to RSSL_DMT_MARKET_PRICE).As with a batch request, a provider should respond on the same
stream with an RsslStatusMsg that acknowledges receipt of the batch by indicating the dataState is OK and streamState is
CLOSED, and the provider sends any additional responses on the individual streams. If any stream’s reissue cannot be
fulfilled, the provider should send an RsslStatusMsg on that stream to indicate the reason (for further details, refer to Section
12.2.4). If the provider is unable to process the batch message itself, it should use a SUSPECT dataState in the response to
the batch message.
Transport API 3.1.X C Edition – Developers Guide 292
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
Consider the following interaction example:

Figure 40. Batch Reissue (Pause) Interaction Example

In the above figure, the consumer currently has three items open on streamIds 5, 6, and 7 to a provider that supports pausing
those streams. The consumer wishes to pause these three streams, so it sends an RsslRequestMsg using an unused
streamId, 8. This message includes the RSSL_RQMF_PAUSE flag, and encodes the streamIds 5, 6, and 7 in the
:StreamIdList element. The provider then responds with an RsslStatusMsg on streamId 8 to acknowledge the reissue
message, and considers streams 5, 6, and 7 to be paused.

• For an example of encoding a batch reissue, refer to Section 13.7.5.

• For more information about RsslRequestMsg and RSSL_RQMF_HAS_BATCH flag values, refer to Section 12.2.1.

• For more information about the RsslElementList, refer to Section 11.3.2.

13.7.3 Batch Close

Consumers may use a batch close to close multiple open streams using a single RsslCloseMsg. In a batch close message,
the consumer specifies a list of streamIds in the message payload representing the streams it wishes to close. Batch closes
can be leveraged across all non-Login domain model types.

A consumer application can issue a batch close by using an RsslCloseMsg with the RSSL_CLMF_HAS_BATCH flag set and
including a specifically formatted payload. The payload should contain an RsslElementList along with an RsslElementEntry
named :StreamIdList.

The :StreamIdList contains an RsslArray, where the RsslArray.primitiveType is RSSL_DT_INT. Each contained
streamId (populated in an RsslInt) corresponds to the streamId of an open stream which the consumer wishes to close.

The consumer application may specify streamIds from from any non-Login domain in the :StreamIdList of a batch close
message; only the streamId is needed to identify the stream. The domainType is not used (Thomson Reuters recommends
setting the domainType to RSSL_DMT_MARKET_PRICE).As with a batch request, a provider should respond on the same
stream with an RsslStatusMsg that acknowledges receipt of the batch by indicating the dataState is OK and streamState is
CLOSED. If the provider is unable to process the batch message itself, it should use a SUSPECT dataState in the response
to the batch message.

Consider the following interaction example:
Transport API 3.1.X C Edition – Developers Guide 293
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
Figure 41. Batch Close Interaction Example

In the above figure, the consumer currently has streams open for three items with streamIds 5, 6, and 7. The consumer
wishes to close these three streams, so it encodes streamIds 5, 6, 7, in the :StreamIdList element of an RsslCloseMsg
using an unused streamId, 8. This message encoded the streamIds 5, 6, and 7 in the :StreamIdList element. The provider
then responds with an RsslStatusMsg on streamId 8 to acknowledge the reissue message. The provider then responds with
an RsslStatusMsg to acknowledge the close message and considers streams 5, 6, and 7 to be closed.

• For an example of encoding a batch close, refer to Section 13.7.6.

• For more information about RsslCloseMsg and RSSL_CLMF_HAS_BATCH flag values, refer to Section 12.2.5.

• For more information about the RsslElementList, refer to Section 11.3.2.

13.7.4 Batch Request Encoding Example

The following example demonstrates how to encode a batch request using an RsslRequestMsg. The request is sent using a
streamId of 10 and contains an :ItemList of three items. Such a message should result in four responses:

• An RsslStatusMsg delivered on streamId 10 which indicates that the batch is being processed and closes the
stream.

• Three RsslRefreshMsgs are delivered, where the first item returns on streamId 11, the second on streamId 12, and
the third on streamId 13.

To simplify the example, some error handling has been omitted; though applications should perform all appropriate error
handling.

/* Example assumes encode iterator is properly initialized */
/* Create and populate request message with information pertaining to all items in batch, set
/* batch flag */
RsslRequestMsg reqMsg = RSSL_INIT_REQUEST_MSG;
reqMsg.msgBase.msgClass = RSSL_MC_REQUEST;
reqMsg.msgBase.domainType = RSSL_DMT_MARKET_PRICE;
/* Set RSSL_RQMF_HAS_BATCH so provider application is alerted to batch payload */
reqMsg.flags = RSSL_RQMF_HAS_QOS | RSSL_RQMF_STREAMING | RSSL_RQMF_HAS_BATCH;
reqMsg.qos.timeliness = RSSL_QOS_TIME_REALTIME;
/* Populate msgKey - no name should be provided as all names should be in payload */
reqMsg.msgBase.msgKey.flags = RSSL_MKF_HAS_NAME_TYPE | RSSL_MKF_HAS_SERVICE_ID;
reqMsg.msgBase.msgKey.nameType = RDM_INSTRUMENT_NAME_TYPE_RIC;
reqMsg.msgBase.msgKey.serviceId = 5;
Transport API 3.1.X C Edition – Developers Guide 294
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
/* Payload type is an element list */
reqMsg.msgBase.containerType = RSSL_DT_ELEMENT_LIST;
/* Populate streamId with value to start streamId assignment */
reqMsg.msgBase.streamId = 10; /* Batch status response should be delivered using streamId 10*/
/* Begin message encoding */
retVal = rsslEncodeMsgInit(&encIter, (RsslMsg*)&reqMsg, 0);
{

RsslElementList elementList = RSSL_INIT_ELEMENT_LIST;
RsslElementEntry element = RSSL_INIT_ELEMENT;
RsslArray nameList = RSSL_INIT_ARRAY;
elementList.flags = RSSL_ELF_HAS_STANDARD_DATA;
/* now encode nested container using its own specific encode functions */
retVal = rsslEncodeElementListInit(&encIter, &elementList, 0, 0);
/* Batch requests require an element with the name of :ItemList */
element.name.data = “:ItemList”;
element.name.length = 9;
element.dataType = RSSL_DT_ARRAY;
/* encode array of item names in the element entry */
retVal = rsslEncodeElementEntryInit(&encIter, &element, 0);
{

RsslBuffer nameBuf = RSSL_INIT_BUFFER;
/* Encode the array and the names */
nameList.primitiveType = RSSL_DT_ASCII_STRING;
nameList.itemLength = 0; /* Array will have variable length entries */
retVal = rsslEncodeArrayInit(&encIter, &nameList);
/* Populate first name in the list. This should use streamId 11 when the response */
/* comes */
nameBuf.data = “TRI”;
nameBuf.length = 3;
/* Passed in as third parameter as data is not pre-encoded */
rsslEncodeArrayEntry(&encIter, 0, &nameBuf);
/* Populate the second name in the list. This should use streamId 12 when the response*/
/* comes */
nameBuf.data = “GOOG.O”;
nameBuf.length = 6;
rsslEncodeArrayEntry(&encIter, 0, &nameBuf);
/* Populate the third name in the list. This should use streamId 13 when the response */
/* comes */
nameBuf.data = “AAPL.O”;
nameBuf.length = 6;
rsslEncodeArrayEntry(&encIter, 0, &nameBuf);
/* List is complete, finish encoding array */
retVal = rsslEncodeArrayComplete(&encIter, RSSL_TRUE);

}
/* Complete the element encoding and then the element list */
retVal = rsslEncodeElementEntryComplete(&encIter, RSSL_TRUE);
retVal = rsslEncodeElementListComplete(&encIter, RSSL_TRUE);
Transport API 3.1.X C Edition – Developers Guide 295
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
Code Example 44: Batch Request Encoding Example

13.7.5 Batch Reissue Encoding Example

The following example demonstrates how to encode a batch reissue RsslRequestMsg to pause three streams. The request is
sent using a streamId of 10 and contains a :StreamIdList of three streams, 11, 12, and 13. Such a message should result in
an RsslStatusMsg delivered on streamId 10 which indicates that the batch is being processed and closes the stream.

To simplify the example, some error handling has been omitted; though applications should perform all appropriate error
handling.

}
/* now that :ItemList is encoded in the payload, complete the message encoding */
retVal = rsslEncodeMsgComplete(&encIter, RSSL_TRUE);

/* Example assumes encode iterator is properly initialized */
/* Create and populate request message. Set batch flag */
RsslRequestMsg reqMsg = RSSL_INIT_REQUEST_MSG;
reqMsg.msgBase.msgClass = RSSL_MC_REQUEST;
reqMsg.msgBase.domainType = RSSL_DMT_MARKET_PRICE;
/* Set RSSL_RQMF_HAS_BATCH so provider application is alerted to batch payload. Set pause flag
/* to indicate that we are requesting that these items be paused, and don't request a refresh.
/* Do not request a QoS. */
reqMsg.flags = RSSL_RQMF_STREAMING | RSSL_RQMF_HAS_BATCH | RSSL_RQMF_NO_REFRESH |

RSSL_RQMF_PAUSE;
/* MsgKey is not used. */
reqMsg.msgBase.msgKey.flags = RSSL_MKF_NONE;
/* Payload type is an element list */
reqMsg.msgBase.containerType = RSSL_DT_ELEMENT_LIST;
/* Use a currently-unused streamId. */
reqMsg.msgBase.streamId = 10; /* Batch status response should be delivered using streamId 10*/
/* Begin message encoding */
retVal = rsslEncodeMsgInit(&encIter, (RsslMsg*)&reqMsg, 0);
{

RsslElementList elementList = RSSL_INIT_ELEMENT_LIST;
RsslElementEntry element = RSSL_INIT_ELEMENT_ENTRY;
RsslArray streamIdList = RSSL_INIT_ARRAY;
elementList.flags = RSSL_ELF_HAS_STANDARD_DATA;
/* now encode nested container using its own specific encode functions */
retVal = rsslEncodeElementListInit(&encIter, &elementList, 0, 0);
/* Batch reissues require an element with the name of :StreamIdList */
element.name.data = ":StreamIdList";
element.name.length = 13;
element.dataType = RSSL_DT_ARRAY;
/* encode array of streamIds in the element entry */
retVal = rsslEncodeElementEntryInit(&encIter, &element, 0);
{

Transport API 3.1.X C Edition – Developers Guide 296
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
Code Example 45: Batch Reissue Encoding Example

13.7.6 Batch Close Encoding Example

The following example demonstrates how to encode a batch reissue RsslCloseMsg to close three streams. The close
message is sent using a streamId of 10 and contains a :StreamIdList of three streams, 11, 12, and 13. Such a message
should result in an RsslStatusMsg delivered on streamId 10 which indicates that the batch is being processed and closes the
stream.

For simplicity, the following example omits some error handling; though applications should perform error handling as
appropriate.

RsslInt streamId;
/* Encode the array and the streamIds */
streamIdList.primitiveType = RSSL_DT_INT;
streamIdList.itemLength = 0; /* Use the default variable-length encoding. */
retVal = rsslEncodeArrayInit(&encIter, &streamIdList);
/* Encode an entry with a streamId of 11. */
streamId = 11;
rsslEncodeArrayEntry(&encIter, 0, &streamId);
/* Encode an entry with a streamId of 12. */
streamId = 12;
rsslEncodeArrayEntry(&encIter, 0, &streamId);
/* Encode an entry with a streamId of 13. */
streamId = 13;
rsslEncodeArrayEntry(&encIter, 0, &streamId);
/* List is complete, finish encoding array */
retVal = rsslEncodeArrayComplete(&encIter, RSSL_TRUE);

}
/* Complete the element encoding and then the element list */
retVal = rsslEncodeElementEntryComplete(&encIter, RSSL_TRUE);
retVal = rsslEncodeElementListComplete(&encIter, RSSL_TRUE);

}
/* now that :StreamIdList is encoded in the payload, complete the message encoding */
retVal = rsslEncodeMsgComplete(&encIter, RSSL_TRUE);

/* Example assumes encode iterator is properly initialized */
/* Create and populate close message, and set batch flag. */
RsslCloseMsg closeMsg = RSSL_INIT_CLOSE_MSG;
closeMsg.msgBase.domainType = RSSL_DMT_MARKET_PRICE;
/* Set RSSL_CLMF_HAS_BATCH so provider application is alerted to batch payload */
closeMsg.flags = RSSL_CLMF_HAS_BATCH;
/* Payload type is an element list */
closeMsg.msgBase.containerType = RSSL_DT_ELEMENT_LIST;
/* Use a currently-unused streamId. */
closeMsg.msgBase.streamId = 10; /* Batch status response should be delivered using streamId

/* 10 */
Transport API 3.1.X C Edition – Developers Guide 297
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
Code Example 46: Batch Close Encoding Example

13.8 Dynamic View Use

Applications can use the Transport API to send or receive requests for a dynamic view of a stream’s content. A consumer
application uses a dynamic view to specify a subset of data in which the application has interest. A provider can choose to

/* Begin message encoding */
retVal = rsslEncodeMsgInit(&encIter, (RsslMsg*)&closeMsg, 0);
{

RsslElementList elementList = RSSL_INIT_ELEMENT_LIST;
RsslElementEntry element = RSSL_INIT_ELEMENT_ENTRY;
RsslArray streamIdList = RSSL_INIT_ARRAY;
elementList.flags = RSSL_ELF_HAS_STANDARD_DATA;
/* now encode nested container using its own specific encode functions */
retVal = rsslEncodeElementListInit(&encIter, &elementList, 0, 0);
/* Batch closes require an element with the name of :StreamIdList */
element.name.data = ":StreamIdList";
element.name.length = 13;
element.dataType = RSSL_DT_ARRAY;
/* encode array of streamIds in the element entry */
retVal = rsslEncodeElementEntryInit(&encIter, &element, 0);
{

RsslInt streamId;
/* Encode the array and the streamIds */
streamIdList.primitiveType = RSSL_DT_INT;
streamIdList.itemLength = 0; /* Use the default variable-length encoding. */
retVal = rsslEncodeArrayInit(&encIter, &streamIdList);
/* Encode an entry with a streamId of 11. */
streamId = 11;
rsslEncodeArrayEntry(&encIter, 0, &streamId);
/* Encode an entry with a streamId of 12. */
streamId = 12;
rsslEncodeArrayEntry(&encIter, 0, &streamId);
/* Encode an entry with a streamId of 13. */
streamId = 13;
rsslEncodeArrayEntry(&encIter, 0, &streamId);
/* List is complete, finish encoding array */
retVal = rsslEncodeArrayComplete(&encIter, RSSL_TRUE);

}
/* Complete the element encoding and then the element list */
retVal = rsslEncodeElementEntryComplete(&encIter, RSSL_TRUE);
retVal = rsslEncodeElementListComplete(&encIter, RSSL_TRUE);

}
/* now that :StreamIdList is encoded in the payload, complete the message encoding */
retVal = rsslEncodeMsgComplete(&encIter, RSSL_TRUE);
Transport API 3.1.X C Edition – Developers Guide 298
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
supply only this requested subset of content across all response messages. Filtering content in this manner can reduce the

volume of data that flows across the connection. View use can be leveraged across all non-administrative3 domain model
types, where the model definition should specify associated usage and support. Though a consumer might request a specific
view, the provider might still send additional content and/or content might be unavailable (and not provided).

A consumer application can request a view through an RsslRequestMsg with the RSSL_RQMF_HAS_VIEW flag set and by
including a specially-formatted payload. The payload should contain an RsslElementList along with:

• An RsslElementEntry for :ViewType which contains an RSSL_DT_UINT value indicating the specific type of view
requested. Section 13.8.1 describes the currently defined :ViewType values.

• An RsslElementEntry for :ViewData which contains an RsslArray populated with the content being requested. For
instance, when specifying a fieldId list, the array would contain two-byte fixed length RSSL_DT_INT entries. The
specific contents of the :ViewData are indicated in the definition of the :ViewType.

Because payload content can include customer-defined portions and Thomson Reuters-defined portions, the Transport API
uses a name-spacing scheme. Any content in the name member prior to the colon (:) is used as name space information (e.g.,
Customer:Element). Thomson Reuters reserves the empty name space (e.g., :Element). View-related enumerations and
element name string constants are defined in the rsslRDM.h header file.

If a consumer application wishes to change a previously-specified view, the same process can be followed by issuing a
subsequent RsslRequestMsg using the same streamId (a reissue). In this case, :ViewData would contain the newly desired
view. If a reissue is required and the consumer wants to continue using the same view, the RsslRequestMsg should continue
to include the RSSL_RQMF_HAS_VIEW flag,:ViewType or :ViewData are not required. Sending an RsslRequestMsg without
the RSSL_RQMF_HAS_VIEW flag removes any view associated with a stream.

A provider application can receive a view request and determine an appropriate way to respond. Response content can be
filtered to abide by the view specification, or the provider can send full/additional content. Several RsslState.code values are
available to convey view-related status. If a view’s possible content changes (e.g., a previously requested field becomes
available), an RsslRefreshMsg should be provided to convey such a change to the data. This refresh should follow the rules
associated with solicited or unsolicited refresh messages.

A provider application can indicate support for dynamic view handling by sending the msgKey attribute supportViewRequests
in the Login domain RsslRefreshMsg.

• For details on RsslState.code values, refer to Section 11.2.6.4.

• For details on the RsslRequestMsg and RSSL_RQMF_HAS_VIEW flag values, refer to Section 12.2.1.

• For details on the RsslElementList, refer to Section 11.3.2.

• For rules associated with refresh messages, refer to Section 12.2.2.

• For details on the Login domainType (RSSL_DMT_LOGIN) and general view use, refer to the Transport API RDM Usage
Guide.

3. Administrative domain types are considered to be the Login, Directory, and Dictionary domain models. Other domains are considered non-adminis-
trative.
Transport API 3.1.X C Edition – Developers Guide 299
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
13.8.1 RDMViewTypes Enumerated Names

13.8.2 Dynamic View RsslRequestMsg Encoding Example

The following example demonstrates how to encode an RsslRequestMsg which specifies a fieldId-based view. The request
asks for two fields, though it is possible that more will be delivered. For the sake of simplicity, some error handling is omitted
from the example; though applications should perform all appropriate error handling.

ENUMERATED NAME DESCRIPTION

RDM_VIEW_TYPE_FIELD_ID_LIST Indicates that :ViewData contains an array populated with fieldId values.
The array should specify a primitiveType of RSSL_DT_INT and a fixed
two-byte itemLength.

For specific details about the RsslArray, refer to Section 11.2.7.

RDM_VIEW_TYPE_ELEMENT_NAME_LIST Indicates that :ViewData contains an array populated with element name
values. The array should specify a primitiveType corresponding to the
type used for the domain model’s element names (e.g.
RSSL_DT_ASCII_STRING).

For specific details about the RsslArray, refer to Section 11.2.7.

Table 197: RDMViewTypes Values

/* Example assumes encode iterator is properly initialized */
/* Create and populate request message, set view flag */
RsslRequestMsg reqMsg = RSSL_INIT_REQUEST_MSG;
reqMsg.msgBase.msgClass = RSSL_MC_REQUEST;
reqMsg.msgBase.domainType = RSSL_DMT_MARKET_PRICE;
/* Set RSSL_RQMF_HAS_VIEW so provider is alerted to view payload */
reqMsg.flags = RSSL_RQMF_HAS_QOS | RSSL_RQMF_STREAMING | RSSL_RQMF_HAS_VIEW;
reqMsg.msgBase.streamId = 15;
reqMsg.qos.timeliness = RSSL_QOS_TIME_REALTIME;
reqMsg.qos.rate = RSSL_QOS_RATE_TICK_BY_TICK;
/* Populate msgKey */
reqMsg.msgBase.msgKey.flags = RSSL_MKF_HAS_NAME | RSSL_MKF_HAS_NAME_TYPE |

RSSL_MKF_HAS_SERVICE_ID;
reqMsg.msgBase.msgKey.nameType = RDM_INSTRUMENT_NAME_TYPE_RIC;
reqMsg.msgBase.msgKey.name.data = “TRI”;
reqMsg.msgBase.msgKey.name.length = 3;
reqMsg.msgBase.msgKey.serviceId = 5;
/* Payload type is an element list */
reqMsg.msgBase.containerType = RSSL_DT_ELEMENT_LIST;
/* Begin message encoding */
retVal = rsslEncodeMsgInit(&encIter, (RsslMsg*)&reqMsg, 0);
{

RsslElementList elementList = RSSL_INIT_ELEMENT_LIST;
RsslElementEntry element = RSSL_INIT_ELEMENT;
RsslUIntviewTypeUInt;
Transport API 3.1.X C Edition – Developers Guide 300
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
Code Example 47: View Request Encoding Example

RsslArray fidList = RSSL_INIT_ARRAY;
elementList.flags = RSSL_ELF_HAS_STANDARD_DATA;
/* now encode nested container using its own specific encode functions */
retVal = rsslEncodeElementListInit(&encIter, &elementList, 0, 0);
/* Initial view requests require two elements, one with the name of :ViewType and the other
/* :ViewData */
element.name.data = “:ViewType”;
element.name.length = 9;
element.dataType = RSSL_DT_UINT;
viewTypeUInt = RDM_VIEW_TYPE_FIELD_ID_LIST;
retVal = rsslEncodeElementEntry(&encIter, &element, &viewTypeUInt);
/* encode array of fieldIds in the element entry */
element.name.data = “:ViewData”;
element.name.length = 9;
element.dataType = RSSL_DT_ARRAY;
retVal = rsslEncodeElementEntryInit(&encIter, &element, 0);
{

RsslInt fieldIdInt = 0;
/* Encode the array and the fieldIds. FieldId list should be fixed two byte integers */
nameList.primitiveType = RSSL_DT_INT;
nameList.itemLength = 2; /* Array will have fixed 2 byte length entries */
retVal = rsslEncodeArrayInit(&encIter, &nameList);
/* Populate first fieldId in the list. */
/* Passed in as third parameter as data is not pre-encoded */
fieldIdInt = 22; /* fieldId for BID */
rsslEncodeArrayEntry(&encIter, 0, &fieldIdInt);
/* Populate the second fieldId in the list */
fieldIdInt = 25; /* fieldId for ASK */
rsslEncodeArrayEntry(&encIter, 0, &fieldIdInt);
/* List is complete, finish encoding array */
retVal = rsslEncodeArrayComplete(&encIter, RSSL_TRUE);

}
/* Complete the element encoding and then the element list */
retVal = rsslEncodeElementEntryComplete(&encIter, RSSL_TRUE);
retVal = rsslEncodeElementListComplete(&encIter, success);

}
/* now that :ViewType and :ViewData are encoded in the payload, complete the message
/* encoding */
retVal = rsslEncodeMsgComplete(&encIter, success);
Transport API 3.1.X C Edition – Developers Guide 301
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
13.9 Posting

The Transport API provides posting functionality: an easy way for OMM consumer applications to publish content to upstream
components for further distribution. Posting is similar in concept to unmanaged publications or SSL Inserts, where content
originates from a consuming application and flows upstream to some destination component. After arriving at the destination
component, content can be incorporated into cache and republished to downstream applications with an acknowledgment

issued to the posting application. Via posting, the Transport API can push content to all non-administrative4 domain model
types, where specific usage and support should be indicated in the model definition. RsslPostMsg payloads can include any
Transport API container type; often this is an RsslMsg (RSSL_DT_MSG). When payload is an RsslMsg, the contained
message should be populated with any contributed header and payload information. For additional information on how to
encode and decode container types, refer to Section 11.3.

The Transport API offers two types of posting:

• On-stream posting, where you send an RsslPostMsg on an existing data stream, in which case posted content
corresponds to the stream on which it is posted. The upstream route of an on-stream post is determined by the route of the
data stream over which it is sent. On-stream posting should be directed towards the provider that sources the item.
Because on-stream post messages are flowing on the stream related to the item, a msgKey is not required. If the content is
republished by the upstream provider, the consumer should receive it on the same stream over which they posted it.

• Off-stream posting, where you send an RsslPostMsg on the streamId associated with the users Login. Thus a
consumer application can post data, regardless of whether they have an open stream associated with the post-related
item. Post messages issued on this stream must indicate the specific domainType and msgKey corresponding to the
content being posted. Off-stream posting is typically routed by configuration values on the upstream components.

An RsslPostMsg contains Visible Publisher Identifier (VPI) information (contained in RsslPostMsg.postUserInfo), which
identifies the user who posted it. RsslPostMsg.postUserInfo must be populated and consists of:

• postUserId: which should be an ID associated with the user. For example, a DACS user ID or if unavailable, a process id)

• postUserAddr: which should contain the IP address5 of the application posting the content.

Optionally, such information can be carried along with republished RsslRefreshMsgs, RsslUpdateMsgs, or RsslStatusMsgs
so that receiving consumers can identify the posting user. For more information about VPI, refer to Section 13.10.

RsslPostMsg.permData permissions the user who posts data. If the payload of the RsslPostMsg is another nested message
type (i.e., RsslRefreshMsg) with permission data, such permission data can change the permission expression of the item
being posted. However, if the permission data for the nested message is the same as the permission data on the
RsslPostMsg, the nested message does not need to include permission data. The permission data is used in conjunction with
the RsslPostMsg.postUserRights, which indicate:

• Whether the posting user can create or destroy items in the cache of record.

• Whether the user has the ability to change the permData associated with an item in the cache of record.

Each independent post message flowing in a stream should use a unique postId to distinguish between individual post
messages and those used for acknowledgment purposes. The consumer can request an acknowledgment upon the
successful receipt and processing of content. When the provider responds, the RsslAckMsg.ackId should be populated using
the RsslPostMsg.postId to match the two messages. seqNum information can also be used during acknowledgment.

4. Administrative domain types are considered to be the Login, Directory, and Dictionary domain models. Other domains are considered non-adminis-
trative.
5. The rsslHostByName function can be used to help obtain the IP address of the application. Refer to Section 10.14.

Note: Provider applications that support posting must have the ability to properly acknowledge posted content.
Transport API 3.1.X C Edition – Developers Guide 302
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
You can split content across multiple RsslPostMsg messages. When sending a multi-part RsslPostMsg, the postId should
match all parts of the post. If the consumer requests an acknowledgment, the seqNum is also required. Each part should be
acknowledged by the receiving component, where each RsslAckMsg.ackId is populated using the RsslPostMsg.postId, and
each RsslAckMsg.seqNum is populated using the RsslPostMsg.seqNum. Each part of the RsslPostMsg should specify a
partNum, where the first part begins with 0. The final part of a multi-part RsslPostMsg should have the
RSSL_PSMF_POST_COMPLETE flag set to indicate that it is the final part.

A provider application can indicate support for posting and acknowledgment use by sending the msgKey attribute
supportOmmPost in the Login domain RsslRefreshMsg.

• For more information on the RsslPostMsg, refer to Section 12.2.7.

• For more information on the RsslAckMsg, refer to Section 12.2.8.

• For more information on managing multi-part RsslPostMsgs, refer to Section 13.1.

• For more details on the Login domainType (RSSL_DMT_LOGIN), see the Transport API RDM Usage Guide.

13.9.1 Post Message Encoding Example

The following example demonstrates how to encode an off-stream RsslPostMsg with a nested RsslMsg.

/* Example assumes encode iterator is properly initialized */
/* Create and populate post message - since it’s off stream, msgKey is required */
RsslPostMsg postMsg = RSSL_INIT_POST_MSG;
postMsg.msgBase.msgClass = RSSL_MC_POST;
postMsg.msgBase.streamId = 1; /* Use streamId of the Login stream for off-stream posting */
postMsg.msgBase.domainType = RSSL_DMT_MARKET_PRICE; /* domainType of data being posted */
/* off stream requires key. Post asking for ACK and including postId and seqNum for ack
/* purposes. Since it’s a single part post, the POST_COMPLETE flag must be set as well */
postMsg.flags = RSSL_PSMF_HAS_MSG_KEY | RSSL_PSMF_ACK | RSSL_PSMF_HAS_POST_ID |

RSSL_PSMF_HAS_SEQ_NUM | RSSL_PSMF_POST_COMPLETE;
/* Populate msgKey with information about the item being posted to */
postMsg.msgBase.msgKey.flags = RSSL_MKF_HAS_NAME | RSSL_MKF_HAS_NAME_TYPE |

RSSL_MKF_HAS_SERVICE_ID;
postMsg.msgBase.msgKey.nameType = RDM_INSTRUMENT_NAME_TYPE_RIC;
postMsg.msgBase.msgKey.name.data = “TRI”;
postMsg.msgBase.msgKey.name.length = 3;
postMsg.msgBase.msgKey.serviceId = 5;
/* populate postId with a unique ID for this posting, this and seqNum are used on ack */
postMsg.postId = 42;
postMsg.seqNum = 124;
/* postUserInfo must be populated, with processId and IP address */
postMsg.postUserInfo.postUserId = getpid();
/* Use RSSL Transport Helper function - refer to Section 10.14 */
/* example assumes hostNameBuf.data contains hostname and hostNameBuf.length indicates length
/* of hostname */
rsslHostByName(&hostNameBuf, &ipAddrUInt32);
postMsg.postUserInfo.postUserAddr = ipAddrUInt32;
/* put a message in the postMsg */
postMsg.containerType = RSSL_DT_MSG;
Transport API 3.1.X C Edition – Developers Guide 303
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
Code Example 48: Off-Stream Posting Encoding Example

13.9.2 Post Acknowledgement Encoding Example

The following example demonstrates how to encode an RsslAckMsg.

Code Example 49: Post Acknowledgment Encoding Example

/* Begin message encoding */
retVal = rsslEncodeMsgInit(&encIter, (RsslMsg*)&postMsg, 0);
{

/* populate the message that is in the payload of the post message */
RsslUpdateMsg updMsg = RSSL_INIT_UPDATE_MSG;
updMsg.msgBase.msgClass = RSSL_MC_UPDATE;
updMsg.msgBase.streamId = 1;
updMsg.msgBase.domainType = RSSL_DMT_MARKET_PRICE;
updMsg.flags = RSSL_UPMF_NONE;
updMsg.updateType = RDM_UPD_EVENT_TYPE_QUOTE;
updMsg.containerType = RSSL_DT_FIELD_LIST;
/* begin encoding of the payload message */
retVal = rsslEncodeMsgInit(&encIter, (RsslMsg*)&updMsg, 0);
/* Continue encoding field list contents of the message - see example in Section 11.3.1.6
*/
/* Complete the postMsg payload messages encoding */
retVal = rsslEncodeMsgComplete(&encIter, RSSL_TRUE);

}
/* now complete encoding of postMsg */
retVal = rsslEncodeMsgComplete(&encIter, success);

/* Example assumes encode iterator is properly initialized */
/* Create and populate ack message with information used to acknowledge the post */
RsslAckMsg ackMsg = RSSL_INIT_ACK_MSG;
ackMsg.msgBase.msgClass = RSSL_MC_ACK;
ackMsg.msgBase.domainType = RSSL_DMT_MARKET_PRICE;
ackMsg.msgBase.streamId = 1; /* Ack should be sent back on same stream that post came on */
ackMsg.flags = RSSL_AKMF_HAS_SEQ_NUM;
/* Acknowledge the post from above, use its postId and seqNum */
ackMsg.ackId = postMsg.postId;
ackMsg.seqNum = postMsg.seqNum;
/* No payload associated with this acknowledgment */
ackMsg.containerType = RSSL_DT_NO_DATA;
/* Since there is no payload, no need for Init/Complete as everything is in the msg header */
retVal = rsslEncodeMsg(&encIter, (RsslMsg*)&ackMsg);
Transport API 3.1.X C Edition – Developers Guide 304
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
13.10 Visible Publisher Identifier (VPI)

The Transport API offers the Visible Publisher Identifer (VPI) feature, which inserts originating publisher information into
both RSSL and SSL message payloads. You can use VPI to identify the user ID and user address for users who post, insert,
or publish to an interactive service or to a non-interactive service cache on the ADH.

VPI is present on Post, Refresh, Update, and Status Messages and is carried in RsslPostMsg.postUserInfo, which consists
of:

• Post user ID (i.e., publisher ID)

• Post user address (i.e., publisher address)

They can both contain values assigned by and specific to the application.

An RsslPostMsg contains data (in RsslPostMsg.postUserInfo) that identifies the user who posts content. For this reason,
RsslPostMsg.postUserInfo must be populated with a:

• postUserId: An ID associated with the posting user. The application should determine what information to put into this
field (e.g., a DACS user ID).

• postUserAddr The address of the posting user’s application that posted the contents. The application should decide what
information to put into this field (e.g., an IP address6).

Optionally, this data can be republished by the provider in a RsslRefreshMsgs, RsslUpdateMsgs, or RsslStatusMsgs so that
receiving consumers can identify the posting user.

The Transport API allows the VPI to be populated on Post messages submitted by an OMM Consumer application before the
post is sent over the network.

Provider applications receive VPI in Post Messages. Additionally, OMM providers can optionally set VPI in their response
messages. If the upstream provider is an intermediary device getting data from an upstream source, then the intermediary
device will route the VPI as set in the RsslPostMsg to the upstream source. The final publisher in the upward chain decides
whether to set the VPI in its published responses.

VPI information can also be communicated using FIDs defined in the publisher component. For further details refer to the
publishing component’s documentation.

6. You can use the rsslHostByName function to help obtain the IP address of the application. Refer to Section 10.14.
Transport API 3.1.X C Edition – Developers Guide 305
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
13.10.1 VPI Example: Using RsslPostUserInfo to Obtain VPI Data

The following example shows the rsslConsumer application using RsslPostUserInfo to obtain VPI data in the
processMarketPriceResponse() function:

Code Example 50: Consumer Using RsslPostUserInfo to Obtain VPI Information

13.10.2 VPI Example: Populating VPI in Post Messages from Consumer Applications

The following example populates VPI on the Post messages submitted by a Transport API OMM consumer application in the
encodePostWithMsg() function internally used by the sendPostMsg() function. It encodes a PostMsg and populates the
PsslPostUserInfo with the IP address and process ID of the machine running the application.

/* The Visible Publisher Identifier (VPI) can be found within the RsslPostUserInfo.
/* This will provide both the publisher ID and publisher address. Consumer can obtain the
/* information from the msg - The partially decoded message. */

if (msg->refreshMsg.flags & RSSL_RFMF_HAS_POST_USER_INFO)
{

rsslIPAddrUIntToString(msg->refreshMsg.postUserInfo.postUserAddr, postUserAddrString);
printf("\nReceived RefreshMsg for stream %i ", msg->refreshMsg.msgBase.streamId);
printf("from publisher with user ID: \"%u\" at user address: \"%s\"\n",

msg->refreshMsg.postUserInfo.postUserId, postUserAddrString);
}

// Note: post message key not required for on-stream post
postMsg.flags = RSSL_PSMF_POST_COMPLETE

| RSSL_PSMF_ACK // request ACK
| RSSL_PSMF_HAS_POST_ID
| RSSL_PSMF_HAS_SEQ_NUM
| RSSL_PSMF_HAS_POST_USER_RIGHTS
| RSSL_PSMF_HAS_MSG_KEY;

postMsg.postId = nextPostId++;
postMsg.seqNum = nextSeqNum++;
postMsg.postUserRights = RSSL_PSUR_CREATE | RSSL_PSUR_DELETE;

/* populate post user info */
hostName.data = hostNameBuf;
hostName.length = 256;
gethostname(hostName.data, hostName.length);
hostName.length = (RsslUInt32)strlen(hostName.data);
if ((ret = rsslHostByName(&hostName, &postMsg.postUserInfo.postUserAddr)) <

RSSL_RET_SUCCESS)
{

printf("Populating postUserInfo failed. Error %s (%d) with rsslHostByName: %s\n",
Transport API 3.1.X C Edition – Developers Guide 306
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
Code Example 51: Populating VPI on Post Messages Submitted by Transport API OMM Consumer Application

13.10.3 VPI Example: Getting VPI from Post Messages

rsslRetCodeToString(ret), ret, rsslRetCodeInfo(ret));
return ret;

}
postMsg.postUserInfo.postUserId = getpid();

/* The Visible Publisher Identifier (VPI) can be found within the RsslPostUserInfo.
/* This will provide both the publisher ID and publisher address. Providers may define this
/* when publishing from the postMsg. */
rsslIPAddrUIntToString(postMsg->postUserInfo.postUserAddr, postUserAddrString);
printf(" from client with publisher user ID: \"%u\" at user address: \"%s\"\n\n",

postMsg->postUserInfo.postUserId, postUserAddrString);

// if the post message contains another message, then use the "contained" message as the
// update/refresh/status
if (postMsg->msgBase.containerType == RSSL_DT_MSG)
{

rsslClearMsg(&nestedMsg);
rsslDecodeMsg(dIter, &nestedMsg);
switch(nestedMsg.msgBase.msgClass)
{
case RSSL_MC_REFRESH:

nestedMsg.refreshMsg.postUserInfo = postMsg->postUserInfo;
nestedMsg.refreshMsg.flags |= RSSL_RFMF_HAS_POST_USER_INFO;
if (updateItemInfoFromPost(itemInfo, &nestedMsg, dIter, &error) != RSSL_RET_SUCCESS)
{

if (sendAck(chnl, postMsg, RSSL_NAKC_INVALID_CONTENT, error.text) !=
RSSL_RET_SUCCESS) return RSSL_RET_FAILURE;

return RSSL_RET_SUCCESS;
}
break;

case RSSL_MC_UPDATE:
nestedMsg.updateMsg.postUserInfo = postMsg->postUserInfo;
nestedMsg.updateMsg.flags |= RSSL_UPMF_HAS_POST_USER_INFO;
if (updateItemInfoFromPost(itemInfo, &nestedMsg, dIter, &error) != RSSL_RET_SUCCESS)
{

if (sendAck(chnl, postMsg, RSSL_NAKC_INVALID_CONTENT, error.text) !=
RSSL_RET_SUCCESS) return RSSL_RET_FAILURE;

return RSSL_RET_SUCCESS;
}
break;
Transport API 3.1.X C Edition – Developers Guide 307
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
Code Example 52: Getting VPI from Post Messages and Setting VPI on Response Messages

13.11 TREP Authentication

The Transport API can use the TREP Authentication feature, which provides enhanced authentication functionality when used
with TREP and DACS. This feature requires TREP 3.1 or later.

A consumer or non-interactive provider application can pass a token generated from a token generator based on the user's
credentials to TREP. TREP passes this token to a local token authenticator for verification.

The token must be encoded in the initial login RsslRequestMsg with:

• msgKey.Name set to one byte of 0x00, and

• msgKey.NameType set to RDM_LOGIN_USER_AUTHN_TOKEN.

The token will be in the msgKey.attrib's RsslElementList, with an RsslElementEntry named authenticationToken.

For additional information, refer to the Transport API RDM Usage Guide for encoding and decoding Login messages, and the

TREP Authentication User Manual7 for details on setting up TREP and the token generator.

case RSSL_MC_STATUS:
nestedMsg.statusMsg.postUserInfo = postMsg->postUserInfo;
nestedMsg.statusMsg.flags |= RSSL_STMF_HAS_POST_USER_INFO;
if ((nestedMsg.statusMsg.flags & RSSL_STMF_HAS_STATE) != 0 &&

nestedMsg.statusMsg.state.streamState == RSSL_STREAM_CLOSED)
{

// check if the user has the rights to send a post that closes an item
if ((postMsg->flags & RSSL_PSMF_HAS_POST_USER_RIGHTS) == 0 ||

(postMsg->postUserRights & RSSL_PSUR_DELETE) == 0)
{

errText = (char *)"client has insufficient rights to close/delete an item";
if (sendAck(chnl, postMsg, RSSL_NAKC_INVALID_CONTENT, errText) !=

RSSL_RET_SUCCESS)
return RSSL_RET_FAILURE;

printf(errText);
return RSSL_RET_SUCCESS;

}
}
break;

}
}

7. For further details on TREP Authentication, refer to the TREP Authentication User Manual, accessible on Thomson Reuters MyAccount in the DACS
product documentation set.
Transport API 3.1.X C Edition – Developers Guide 308
ETAC313UM.180

https://my.thomsonreuters.com/products

Chapter 13 Advanced Messaging Concepts
13.12 Private Streams

The Transport API provides private stream functionality, an easy way to ensure delivery of content only between a stream’s
two endpoints. Private streams behave in a manner similar to standard streams, with the following exceptions:

• All data on a private stream flow between the end provider and the end consumer of the stream.

• Intermediate components do not fan out content (i.e., do not distribute it to other consumers).

• Intermediate components should not cache content.

• In the event of connection or data loss, intermediate components do not recover content. All private stream recovery is
the responsibility of the consumer application.

These behaviors ensure that only the two endpoints of the private stream send or receive content associated with the stream.
As a result, a private stream can exchange identifying information so the provider can validate the consumer, even through
multiple intermediate components (such as might exist in a TREP deployment). After a private stream is established, content
can flow freely within the stream, following either existing market data semantics (i.e., private Market Price domain) or any
other user-defined semantics (i.e., bidirectional exchange of RsslGenericMsgs).

In standard streams, if an application attempts to open the same stream using multiple, unique streamId values, provider
applications reject subsequent requests. With private streams, even if the streams’ identifying information (msgKey, domain
type, etc.) matches, multiple private stream instances can be opened, allowing for the possibility of different user data
contained in each private stream.

To establish a private stream, an OMM consumer observes the following general process:

• The OMM consumer application issues a request for the item data it wants on a private stream. This RsslRequestMsg
should include the RSSL_RQMF_PRIVATE_STREAM flag. If user-identifying information is required, it should be described in
the respective domain message model definition.

• When a capable OMM provider application receives a request for a private stream, if it can honor the request, the provider
application should acknowledge that the stream is established and is private by sending:

• RsslRefreshMsg with the RSSL_RFMF_PRIVATE_STREAM flag; typically sent when there is immediate content to provide
in the response.

• RsslStatusMsg with the RSSL_STMF_PRIVATE_STREAM flag; typically sent when there is no immediate content to
provide in the response but the provider wants to acknowledge the establishment of the private stream.

• RsslAckMsg with the RSSL_AKMF_PRIVATE_STREAM flag; can be used as an alternative to the RsslStatusMsg.

• When the consumer application receives the above acknowledgment, the private stream is established and content can
be exchanged. The PRIVATE_STREAM flag is no longer required on any messages exchanged within the stream.

• If the consumer application receives any other message, or the above messages without their respective PRIVATE_STREAM
flag, the private stream is not established and the consumer should close the stream if it does not want to consume a
standard stream.

Some content might be available as both standard stream and private stream delivery mechanisms. In the standard stream
case, all users see the same stream content. Because private streams can support user identification, each private stream
instance can contain modified or additional content tailored for the specific user.

Some content might be available only as standard streams, in which case the private stream request is ignored or rejected by
sending an RsslStatusMsg with a streamState of RSSL_STREAM_CLOSED or RSSL_STREAM_CLOSED_RECOVER, or by
responding to the request with a standard stream (e.g., no PRIVATE_STREAM flag).

Some content might be available only as a private stream (e.g., some kind of restricted data set where users must be
validated). If an OMM provider has private-only content, the provider can indicate to downstream applications that its content is
private by redirecting standard stream requests.
Transport API 3.1.X C Edition – Developers Guide 309
ETAC313UM.180

Chapter 13 Advanced Messaging Concepts
If a standard stream RsslRequestMsg is received for private-only content, a provider can:

• Inform downstream applications that its content is private by sending a message (including the msgKey), with a
streamState of RSSL_STREAM_REDIRECTED in an:

• RsslStatusMsg including the RSSL_STMF_PRIVATE_STREAM flag; typically sent when there is not any content to
provide as part of the redirect.

• RsslRefreshMsg including the RSSL_RFMF_PRIVATE_STREAM flag; typically sent when there is some kind of content to
provide as part of the redirect.

• If the consumer application sees a streamState of RSSL_STREAM_REDIRECTED and a PRIVATE_STREAM flag, it can
issue a new RsslRequestMsg and use the RSSL_RQMF_PRIVATE_STREAM flag. This process follows standard stream
redirect logic and the private stream establishment protocol described above.
Transport API 3.1.X C Edition – Developers Guide 310
ETAC313UM.180

Appendix A Item and Group State Decision Table

The following table describes various item and group status combinations and the common results in terms of application
behavior. Though applications are not required to follow this behavior, the information is provided as an example of one
possible behavior.

• For general information about RsslState, refer to Section 11.2.6.

• For general information about Item Groups, refer to Section 13.4.

• For information about group status delivery and formatting, refer to the Transport API RDM Usage Guide.

• For information about how item state is conveyed, refer to Section 12.2.2 and Section 12.2.4.

STATUS
TYPE

STREAM STATE DATA STATE DESCRIPTION
APPLICATION

ACTION

Item RSSL_STREAM_OPEN RSSL_DATA_OK Stream is open and
streaming.

Data is ok.

No action.

Item RSSL_STREAM_OPEN RSSL_DATA_SUSPECT Stream is open and
streaming.

Data is suspect.

No action.

Upstream device
should recover
data and onpass.

Item RSSL_STREAM_NON_STREAMING RSSL_DATA_OK Stream was opened
as non-streaming.

Data was provided
for item and was OK.

No action.

Item RSSL_STREAM_CLOSED RSSL_DATA_SUSPECT Stream is closed.

Data is suspect.

Application can
attempt to recover
this or another
service or provider.

Item RSSL_STREAM_CLOSED_RECOVER RSSL_DATA_SUSPECT Stream is closed, but
may become
available on same
service and provider
later.

Data is suspect.

Application can
attempt to recover
to this or another
service or provider.

Item RSSL_STREAM_CLOSED RSSL_DATA_OK Stream is closed.

Data provided was
OK.

Application can
attempt to recover
to this or another
service or provider.

This state
combination is not
common.

Table 198: Item and Group State Decision Table
Transport API 3.1.X C Edition – Developers Guide 311
ETAC313UM.180

Item RSSL_STREAM_CLOSED_RECOVER RSSL_DATA_OK Stream is closed, but
may become
available on same
service and provider
later.

Data provided was
OK.

Application can
attempt to recover
to this or another
service or provider.

This state
combination is not
common.

Group RSSL_STREAM_OPEN RSSL_DATA_NO_CHANGE All streams
associated with the
group remain open.
Previous state
communicated via
item or group status
continues to apply.

No action.

Group RSSL_STREAM_OPEN RSSL_DATA_SUSPECT All streams
associated with the
group remain open.

Data on all streams
associated with the
group is suspect.

Application should
fan out dataState
change to all items
that are part of the
group. Upstream
device should
recover data and
onpass.

Group RSSL_STREAM_OPEN RSSL_DATA_OK All streams
associated with the
group remain open.

Data on all streams
associated with the
group is ok.

Application should
fan out dataState
change to all items
that are part of the
group.

This state
combination is not
common. Typically
individual item
statuses are used
to change items
from suspect to ok.

Group RSSL_STREAM_CLOSED_RECOVER RSSL_DATA_SUSPECT All streams
associated with the
group are closed,
but may become
available on same
service and provider
later.

Data on all streams
associated with the
group is suspect.

Application should
fan out
streamState and
dataState change
to all items that are
part of the group.

Application can
attempt to recover
to this or another
service or provider.

STATUS
TYPE

STREAM STATE DATA STATE DESCRIPTION
APPLICATION

ACTION

Table 198: Item and Group State Decision Table (Continued)
Transport API 3.1.X C Edition – Developers Guide 312
ETAC313UM.180

Appendix B Error Codes

The following table describes the various error codes returned through the use of an RsslError structure in the Transport
Package, the meaning of the code, and the issue’s recommended resolution.

For general information about RsslError, refer to Section 10.1.4.

Note: These return codes are provided as additional information for the purposes of debugging or logging. The user should
rely on the return codes provided by the transport functions to respond programmatically to these errors.

ERROR
CODE

DESCRIPTION RECOMMENDED SOLUTION

0001 The Transport API has not been initialized. Ensure that rsslInitialize has been called before any
other function in the Transport Package.

0002 One or more arguments passed into this function
were incorrectly passed in as NULL.

Verify that the argument indicated in the error string was
properly allocated and set.

0003 Codec error in multicast transport. This can indicate either:

• An incorrectly formatted or corrupt message was
passed into the transport, or

• Data corruption (if reading).

0004 Cannot change mutex locking type After rsslInitialize has been called, it is not possible
to change the transport’s locking strategy.

0005 Memory allocation error. The function is
attempting to allocate new memory, but that
attempt has failed.

Ensure that the application is not attempting to allocate
more memory than required.

0006 The connection type is not supported. Ensure that the proper configuration is used for rsslBind
or rsslConnect.

0007 The channel state is incorrect for this operation. The function that returns this error can only be called if the
RsslChannel passed in is in a certain state, as noted by
the error. Ensure that rsslInitChannel has been called
on the channel, and that the channel’s state matches the
state listed in the error text.

0008 Buffer overflow. The buffer from the Transport
Package is fully overwritten, and data might be
corrupt.

Check encoding and decoding calls to ensure there is not
a buffer overflow condition. If copying data into the
transport buffer, ensure that the length of the copied data
is less than the transport buffer’s length.

0009 Buffer of length zero cannot be written by the
transport.

Do not call rsslWrite with a buffer of length 0.

0010 Invalid buffer size specified. Ensure that the requested buffer size is larger than zero.

0011 Buffer cannot be released due to integrity issues. Data is corrupt. Ensure that the buffer received from
rsslGetBuffer was not modified (except for its length).

Table 199: Error Codes
Transport API 3.1.X C Edition – Developers Guide 313
ETAC313UM.180

0012 Configuration error. Follow the recommendation in the error message.

0013 Missing configuration. Populate the missing configuration element before making
the function call.

0014 Fragmentation error. This may indicate network issues, or corrupt data.

0015 Cannot obtain a packed, fragmented buffer. Buffers larger than the maximum fragment size on a
connection cannot be packed. When requesting a packed
buffer, ensure that the size of the requested buffer is
smaller than the maximum fragment size.

0016 Indicates there is an issue with allocating or
obtaining a buffer.

Ensure that the application is not using more memory than
necessary.

0017 Invalid IOCtl code. Ensure that the proper code or value is passed into the
function.

0018 Channel does not own this buffer. Ensure that the channel used for rsslGetBuffer and the
buffer received from rsslGetBuffer are correctly passed
into the function call.

0019 Corrupt or incomplete data. This error indicates that the requested operation cannot
be completed, and the data might have quality issues.

0020 Buffer too small. The requested operation needs a larger buffer (or
additional buffers) to complete. Ensure that enough data
has been allocated to the buffer(s) to complete the
operation.

1000 One or more arguments passed into this function
were incorrectly passed in as NULL.

Check that the argument indicated in the error string has
been properly allocated and set.

1001 Memory allocation error. The function is failing to
allocate new memory.

Ensure that the application is not attempting to allocate
more memory than is required.

1002 System error. The system call has returned an
error.

The system errno in the error text corresponds to the
errno value populated by the system after the call. This
errno can be different depending on the underlying OS.

Check the OS documentation for more information about
the specific return code.

1003 The function failed because the channel is
shutting down.

This might indicate a potential race condition in a
multithreaded application. To avoid this error, do not make
Transport Package calls after calling rsslCloseChannel.

1004 IOCtl configuration error. Ensure that the configuration passing into rsslIoctl is
correct according to the error text.

1005 Internal error If this error code is received, contact support with the error
text and any information regarding the circumstances
behind it.

ERROR
CODE

DESCRIPTION RECOMMENDED SOLUTION

Table 199: Error Codes (Continued)
Transport API 3.1.X C Edition – Developers Guide 314
ETAC313UM.180

1006 Incoming connection has been rejected. This may not be an error, depending on the text. The
channel associated with this error should be closed in any
case.

1007 Issue with the transport header has resulted in an
error.

This might be a result of client or server misconfiguration
of a TCP connection or misconfiguration of a UDP
multicast peer.

1008 Internal error. If you receive this error code, contact support with the
error text and any information regarding the
circumstances behind it.

1009 Out of output buffers. Attempt to flush the channel before attempting to write
again.

ERROR
CODE

DESCRIPTION RECOMMENDED SOLUTION

Table 199: Error Codes (Continued)
Transport API 3.1.X C Edition – Developers Guide 315
ETAC313UM.180

Transport API 3.1.X C Edition – Developers Guide 316
ETAC313UM.180

Appendix C Document Revision History

Document Version Revision List

1.0 • Rebranded product as the Elektron Transport API.

• For document revisions prior to UPA being rebranded as the Transport API, refer to the
UPA Developers Guide for release 7.6.1.

• Added content for Sequenced Multicast connections.

Table 200: Transport API C Edition Document Revision History

© 2015 - 2018 Thomson Reuters. All rights reserved.

Republication or redistribution of Thomson Reuters content, including by framing or
similar means, is prohibited without the prior written consent of Thomson Reuters.
'Thomson Reuters' and the Thomson Reuters logo are registered trademarks and
trademarks of Thomson Reuters and its affiliated companies.

Any third party names or marks are the trademarks or registered trademarks of the
relevant third party.

Document ID: ETAC313UM.180
Date of issue: 30 January 2018

	Chapter 1 Transport API Developers Guide Introduction
	1.1 About this Manual
	1.2 Audience
	1.3 Programming Language
	1.4 Acronyms and Abbreviations
	1.5 References
	1.6 Documentation Feedback
	1.7 Document Conventions
	1.7.1 Typographic
	1.7.2 Diagrams

	1.8 What’s New in this Document

	Chapter 2 Product Description
	2.1 What is the Transport API?
	2.2 Transport API Features
	2.2.1 General Capabilities
	2.2.2 Consumer Applications
	2.2.3 Provider Applications: Interactive
	2.2.4 Provider Applications: Non-Interactive

	2.3 Performance and Feature Comparison
	2.4 Functionality: Which API to Choose?
	2.4.1 General Capability Comparison
	2.4.2 Layer-Specific Capability Comparison

	Chapter 3 Consumers and Providers
	3.1 Overview
	3.2 Consumers
	3.2.1 Subscriptions: Request/Response
	3.2.2 Batches
	3.2.3 Views
	3.2.4 Pause and Resume
	3.2.4.1 Pause / Resume Use Case 1: Back-end Processing
	3.2.4.2 Pause / Resume Use Case 2: Display Applications

	3.2.5 Symbol Lists
	3.2.5.1 Requesting Symbol List Data Streams
	3.2.5.2 Server Symbol Lists

	3.2.6 Posting
	3.2.6.1 Local Publication
	3.2.6.2 Contribution/Inserts

	3.2.7 Generic Message
	3.2.8 Private Streams

	3.3 Providers
	3.3.1 Interactive Providers
	3.3.1.1 Request /Response
	3.3.1.2 Posts
	3.3.1.3 Generic Messages
	3.3.1.4 Private Streams
	3.3.1.5 Tunnel Streams (Available Only in ETA Reactor and EMA)

	3.3.2 Non-Interactive Providers

	Chapter 4 System View
	4.1 System Architecture Overview
	4.2 Advanced Distribution Server (ADS)
	4.3 Advanced Data Hub (ADH)
	4.4 Elektron
	4.5 Data Feed Direct
	4.6 Internet Connctivity via HTTP and HTTPS
	4.7 Direct Connect

	Chapter 5 Model and Package Overviews
	5.1 Transport API Models
	5.1.1 Open Message Model (OMM)
	5.1.2 Reuters Wire Format (RWF)
	5.1.3 Domain Message Model
	5.1.3.1 Reuters Domain Model
	5.1.3.2 User-Defined Domain Model

	5.2 Packages
	5.2.1 Transport Package
	5.2.2 Data Package
	5.2.3 Message Package

	Chapter 6 Building an OMM Consumer
	6.1 Overview
	6.2 Establish Network Communication
	6.3 Perform Login Process
	6.4 Obtain Source Directory Information
	6.5 Load or Download Necessary Dictionary Information
	6.6 Issue Requests and/or Post Information
	6.7 Log Out and Shut Down
	6.8 Additional Consumer Details

	Chapter 7 Building an OMM Interactive Provider
	7.1 Overview
	7.2 Establish Network Communication
	7.3 Perform Login Process
	7.4 Provide Source Directory Information
	7.5 Provide or Download Necessary Dictionaries
	7.6 Handle Requests and Post Messages
	7.7 Disconnect Consumers and Shut Down
	7.8 Additional Interactive Provider Details

	Chapter 8 Building an OMM NIP
	8.1 Overview
	8.2 Establish Network Communication
	8.3 Perform Login Process
	8.4 Perform Dictionary Download
	8.5 Provide Source Directory Information
	8.6 Provide Content
	8.7 Log Out and Shut Down
	8.8 Additional NIP Details

	Chapter 9 Encoding and Decoding Conventions
	9.1 Concepts
	9.1.1 Data Types
	9.1.2 Composite Pattern of Data Types

	9.2 Encoding Semantics
	9.2.1 Init and Complete Suffixes
	9.2.2 The Encode Iterator: RsslEncodeIterator
	9.2.2.1 RsslEncodeIterator Functions
	9.2.2.2 RsslEncodeIterator: Basic Use Example

	9.2.3 Content Roll Back with Example

	9.3 Decoding Semantics and RsslDecodeIterator
	9.3.1 The Decode Iterator: RsslDecodeIterator
	9.3.2 Functions for use with RsslDecodeIterator
	9.3.3 RsslDecodeIterator: Basic Use Example

	9.4 Return Code Values
	9.4.1 Success Codes
	9.4.2 Failure Codes

	9.5 Versioning
	9.5.1 Protocol Versioning
	9.5.2 Library Versioning

	Chapter 10 Transport Package Detailed View
	10.1 Concepts
	10.1.1 Transport Types
	10.1.1.1 Socket Transport
	10.1.1.2 Reliable Multicast Transport
	10.1.1.3 Sequenced Multicast Transport

	10.1.2 RSSL Channel Structure
	10.1.2.1 RsslChannel Enumerated Name Values
	10.1.2.2 RSSL Connection Enumerated Names Values

	10.1.3 RSSL Server Structure
	10.1.4 Transport Error Handling
	10.1.5 General Transport Return Codes
	10.1.6 Application Lifecycle

	10.2 Initializing and Uninitializing the Transport
	10.2.1 RSSL Initialization and Uninitialization Functions
	10.2.2 Initialization Reference Counting with Example
	10.2.3 Just-in-Time Loaded Library Names (Linux Only)
	10.2.4 Transport Locking Models

	10.3 Creating the Connection
	10.3.1 Network Topologies
	10.3.1.1 TCP-based Networks
	10.3.1.2 Multicast-based Networks: Unified
	10.3.1.3 Multicast-based Networks: Segmented

	10.3.2 Creating the Outbound Connection: rsslConnect
	10.3.2.1 RsslConnectOptions Structure Members
	10.3.2.2 RsslConnectOptions.connectionInfo Options
	10.3.2.3 RsslConnectOptions.multicastOpts
	10.3.2.4 RsslConnectOptions.shmemOpts Options
	10.3.2.5 RsslConnectOptions.seqMulticastOpts Options
	10.3.2.6 RsslConnectOptions.tcpOpts Options
	10.3.2.7 RsslConnectOptions.encryptionOpts Option
	10.3.2.8 RsslConnectOptions.proxyOpts Options
	10.3.2.9 RsslConnectOptions Utility Function

	10.3.3 rsslConnect Outbound Connection Creation Example
	10.3.4 Tunneling Connection Keep Alive

	10.4 Server Creation and Accepting Connections
	10.4.1 Creating a Listening Socket
	10.4.1.1 RsslBindOptions Structure Members
	10.4.1.2 RsslBindOptions.tcpOpts Structure Members
	10.4.1.3 RsslBindOptions Utility Function
	10.4.1.4 rsslBind Listening Socket Connection Creation Example

	10.4.2 Accepting Connection Requests
	10.4.2.1 RsslAcceptOptions Structure Member
	10.4.2.2 RsslAcceptOptions Utility Function
	10.4.2.3 rsslAccept Accepting Connection Example

	10.4.3 Compression Support
	10.4.3.1 Compression Types
	10.4.3.2 Compression Level
	10.4.3.3 Compression Threshold

	10.5 Channel Initialization
	10.5.1 rsslInitChannel Function
	10.5.2 RsslInProgInfo Structure
	10.5.3 Calling rsslInitChannel
	10.5.4 rsslInitChannel Return Codes
	10.5.5 rsslInitChannel Example

	10.6 Reading Data
	10.6.1 rsslRead Function
	10.6.2 rsslRead Return Codes
	10.6.3 rsslRead Example
	10.6.4 rsslReadEx Function
	10.6.4.1 RsslReadOutArgs Options
	10.6.4.2 RsslReadFlagsOut Enumerations
	10.6.4.3 RsslReadInArgs Option

	10.7 Writing Data: Overview
	10.8 Writing Data: Obtaining a Buffer
	10.8.1 Buffer Management Functions
	10.8.2 rsslGetBuffer Return Values

	10.9 Writing Data to a Buffer
	10.9.1 rsslWrite Function
	10.9.2 rsslWrite Flag Enumeration Values
	10.9.3 rsslWriteEx Function
	10.9.3.1 RsslWriteInArgs
	10.9.3.2 RsslWriteOutArgs
	10.9.3.3 RsslWriteFlagsIn

	10.9.4 Compression
	10.9.5 Fragmentation
	10.9.6 rsslWrite Return Codes
	10.9.7 rsslGetBuffer and rsslWrite Example

	10.10 Managing Outbound Queues
	10.10.1 Ordering Queued Data: rsslWrite Priorities
	10.10.1.1 Priority Ordering
	10.10.1.2 Priority Value Enumerations

	10.10.2 rsslFlush Function
	10.10.3 rsslFlush Return Codes
	10.10.4 rsslFlush Example

	10.11 Packing Additional Data into a Buffer
	10.11.1 RsslPackBuffer Return Values
	10.11.2 Example: rsslGetBuffer, RsslPackBuffer, and rsslWrite

	10.12 Ping Management
	10.12.1 Ping Timeout
	10.12.2 rsslPing Function
	10.12.3 rsslPing Return Values
	10.12.4 rsslPing Example

	10.13 Closing Connections
	10.13.1 Functions for Closing Connections
	10.13.2 Close Connections Example

	10.14 Utility Functions
	10.14.1 General Transport Utility Functions
	10.14.2 RsslChannelInfo Structure Members
	10.14.3 multicastStats Options
	10.14.4 ComponentInfo Option
	10.14.5 RsslServerInfo Structure Members
	10.14.6 rsslIoctl Option Values
	10.14.7 rsslServerIoctl Option Values

	10.15 HTTPS Tunneling on Linux
	10.16 XML Tracing
	10.16.1 RsslTraceOptions Structure Members
	10.16.2 RsslTraceCodes Flag Enumeration Values

	Chapter 11 Data Package Detailed View
	11.1 Concepts
	11.2 Primitive Types
	11.2.1 RsslReal
	11.2.1.1 Structure Members
	11.2.1.2 hint Values
	11.2.1.3 hint Use Case: Converting an RsslReal to a Float or a Double
	11.2.1.4 hint Use Case: Converting Double or Float to an RsslReal
	11.2.1.5 Utility Functions

	11.2.2 RsslDate
	11.2.2.1 Structure Members
	11.2.2.2 Utility Functions
	11.2.2.3 RsslDateTimeStringFormatTypes Enum Values

	11.2.3 RsslTime
	11.2.3.1 Structure Members
	11.2.3.2 Utility Functions
	11.2.3.3 RsslDateTimeStringFormatTypes Enum Values

	11.2.4 RsslDateTime
	11.2.4.1 Structure Members
	11.2.4.2 Utility Functions
	11.2.4.3 RsslDateTimeStringFormatTypes Enum Values

	11.2.5 RsslQos
	11.2.5.1 Structure Members
	11.2.5.2 Timeliness Enum Values
	11.2.5.3 Rate Enum Values
	11.2.5.4 Utility Functions

	11.2.6 RsslState
	11.2.6.1 Structure Members
	11.2.6.2 Stream State Enum Values
	11.2.6.3 Data State Enum Values
	11.2.6.4 Code Values
	11.2.6.5 Utility Functions

	11.2.7 RsslArray
	11.2.7.1 Structure Members
	11.2.7.2 Encoding Interfaces
	11.2.7.3 Encoding: Example 1
	11.2.7.4 Encoding: Example 2
	11.2.7.5 Decoding Interfaces
	11.2.7.6 Decoding: Example
	11.2.7.7 Utility Functions

	11.2.8 RsslBuffer
	11.2.8.1 Structure Members
	11.2.8.2 Example

	11.2.9 RMTES Decoding
	11.2.9.1 RsslRmtesCacheBuffer: Structure
	11.2.9.2 RsslRmtesCacheBuffer: Decoding Interfaces
	11.2.9.3 RsslRmtesCacheBuffer: Utility Functions
	11.2.9.4 Conversion Functionality: Interfaces and Structure Members
	11.2.9.5 Example: Converting RMTES to UTF-8
	11.2.9.6 Example: Converting RMTES to UCS-2

	11.2.10 General Primitive Type Utility Functions

	11.3 Container Types
	11.3.1 RsslFieldList
	11.3.1.1 Structure Members
	11.3.1.2 Flag Enumerations
	11.3.1.3 RsslFieldEntry Structure Members
	11.3.1.4 Encoding Interfaces
	11.3.1.5 Rippling
	11.3.1.6 Encoding Example
	11.3.1.7 Decoding Interfaces
	11.3.1.8 Decoding Example
	11.3.1.9 Type Utility Functions

	11.3.2 RsslElementList
	11.3.2.1 Structure Members
	11.3.2.2 Flag Enumerations
	11.3.2.3 RsslElementEntry Structure Members
	11.3.2.4 Encoding Interfaces
	11.3.2.5 RsslElementEntry Encoding Example
	11.3.2.6 RsslElementList Decoding Interfaces
	11.3.2.7 RsslElementList Decoding Examples
	11.3.2.8 RsslElementList Utility Functions

	11.3.3 RsslMap
	11.3.3.1 RsslMap Structure Members
	11.3.3.2 RsslMap Flag Enumeration Values
	11.3.3.3 RsslMapEntry Structure Members
	11.3.3.4 RsslMapEntry Flag Enumeration Value
	11.3.3.5 RsslMapEntry Action Enumeration Values
	11.3.3.6 RsslMapEntry Encoding Interfaces
	11.3.3.7 RsslMapEntry Encoding Example
	11.3.3.8 RsslMapEntry Decoding Interfaces
	11.3.3.9 RsslMapEntry Decode Example
	11.3.3.10 RsslMap Utility Functions

	11.3.4 RsslSeries
	11.3.4.1 RsslSeries Structure Members
	11.3.4.2 RsslSeries Flag Enumeration Values
	11.3.4.3 RsslSeriesEntry Structure Members
	11.3.4.4 RsslSeriesEntry Encoding Interfaces
	11.3.4.5 RsslSeries Encoding Example
	11.3.4.6 RsslSeriesEntry Decoding Interfaces
	11.3.4.7 RsslSeries Decoding Example
	11.3.4.8 RsslSeries Utility Functions

	11.3.5 RsslVector
	11.3.5.1 RsslVector Structure Members
	11.3.5.2 RsslVector Flag Enumeration Values
	11.3.5.3 RsslVectorEntry Structure Members
	11.3.5.4 RsslVectorEntry Flag Enumeration Value
	11.3.5.5 RsslVectorEntry Action Enumeration Values
	11.3.5.6 RsslVectorEntry Encoding Interfaces
	11.3.5.7 RsslVector Encoding Example
	11.3.5.8 RsslVectorEntry Decoding Interfaces
	11.3.5.9 RsslVector Decoding Example
	11.3.5.10 RsslVector Utility Functions

	11.3.6 RsslFilterList
	11.3.6.1 RsslFilterList Structure Members
	11.3.6.2 RsslFilterList Flag Enumeration Values
	11.3.6.3 RsslFilterEntry Structure Members
	11.3.6.4 RsslFilterEntry Flag Enumeration Values
	11.3.6.5 RsslFilterEntry Action Flag Values
	11.3.6.6 RsslFilterEntry Encoding Interfaces
	11.3.6.7 RsslFilterList Encoding Example
	11.3.6.8 RsslFilterEntry Decoding Interfaces
	11.3.6.9 RsslFilterEntry Decoding Example
	11.3.6.10 RsslFilterEntry Utility Functions

	11.3.7 Non-RWF Container Types
	11.3.7.1 Non-RWF Encode Functions
	11.3.7.2 Non-RWF Encoding Example
	11.3.7.3 Decoding Non-RWF Types

	11.4 Permission Data
	11.5 Summary Data
	11.6 Set Definitions and Set-Defined Data
	11.6.1 Set-Defined Primitive Types
	11.6.2 Set Definition Use
	11.6.2.1 RsslFieldSetDef Structure Members
	11.6.2.2 RsslFieldSetDefEntry Structure Members
	11.6.2.3 RsslElementSetDef Structure members
	11.6.2.4 RsslElementSetDefEntry Structure Members

	11.6.3 Set Definition Database
	11.6.3.1 RsslLocalFieldSetDefDb Structure Members
	11.6.3.2 RsslLocalElementSetDefDb Structure Members
	11.6.3.3 Local Set Definition Database Encoding Interfaces
	11.6.3.4 Local Set Definition Database Decoding Interfaces
	11.6.3.5 Local Set Definition Database Utility Functions
	11.6.3.6 Field Set Definition Database Encoding Example
	11.6.3.7 Field Set Definition Database Decoding Example
	11.6.3.8 Element Set Definition Database Encoding Example
	11.6.3.9 Element Set Definition Database Decoding Example

	Chapter 12 Message Package Detailed View
	12.1 Concepts
	12.1.1 Common Message Base
	12.1.1.1 Message Base Structure Members
	12.1.1.2 Message Class Information

	12.1.2 Message Key
	12.1.2.1 Message Key Structure Members
	12.1.2.2 Message Key Flag Enumeration Values
	12.1.2.3 Message Key Utility Functions

	12.1.3 Stream Identification
	12.1.3.1 Stream Comparison
	12.1.3.2 Private Streams
	12.1.3.3 Changeable Stream Attributes

	12.2 RSSL Messages
	12.2.1 RSSL Request Message Class
	12.2.1.1 RSSL Request Message Structure Members
	12.2.1.2 RSSL Request Message Flag Enumeration Values
	12.2.1.3 RSSL Request Message Utility Functions

	12.2.2 RSSL Refresh Message Class
	12.2.2.1 RSSL Refresh Message Structure Members
	12.2.2.2 RSSL Refresh Message Flag Enumeration Values
	12.2.2.3 RSSL Refresh Message Utility Functions

	12.2.3 RSSL Update Message Class
	12.2.3.1 RSSL Update Message Structure Members
	12.2.3.2 RSSL Update Message Flag Enumeration Values
	12.2.3.3 RSSL Update Message Utility Function

	12.2.4 RSSL Status Message Class
	12.2.4.1 RSSL Status Message Structure Members
	12.2.4.2 RSSL Status Message Flag Enumeration Values
	12.2.4.3 RSSL Status Message Utility Function

	12.2.5 RSSL Close Message Class
	12.2.5.1 RSSL Close Message Structure Members
	12.2.5.2 RSSL Close Message Flag Enumeration Values
	12.2.5.3 RSSL Close Message Utility Functions

	12.2.6 RSSL Generic Message Class
	12.2.6.1 RSSL Generic Message Structure Members
	12.2.6.2 RSSL Generic Message Flag Enumeration Values
	12.2.6.3 RSSL Generic Message Utility Function

	12.2.7 RSSL Post Message Class
	12.2.7.1 RSSL Post Message Structure Members
	12.2.7.2 RSSL Post Message Flag Enumeration Values
	12.2.7.3 RSSL Post User Rights Flag Enumeration Values
	12.2.7.4 RSSL Post Message Utility Function

	12.2.8 RSSL Acknowledgment Message Class
	12.2.8.1 RSSL Acknowledgment Message Structure Members
	12.2.8.2 RSSL Acknowledgment Message Flag Enumeration Values
	12.2.8.3 RSSL Acknowledgment Message Enumerated Names
	12.2.8.4 RSSL Acknowledgement Message Utility Function

	12.2.9 The RSSL Message Union
	12.2.9.1 RsslMsg Encoding Interfaces
	12.2.9.2 RsslMsg Encoding Example 1
	12.2.9.3 RsslMsg Encoding Example 2
	12.2.9.4 RsslMsg Decoding Interfaces
	12.2.9.5 RsslMsg Decoding Example
	12.2.9.6 RsslMsg Utility Functions

	Chapter 13 Advanced Messaging Concepts
	13.1 Multi-Part Message Handling
	13.2 Stream Priority
	13.3 Stream Quality of Service
	13.4 Item Group Use
	13.4.1 Item Group Buffer Contents
	13.4.2 Item Group Utility Functions
	13.4.3 Group Status Message Information
	13.4.4 Group Status Responsibilities by Application Type

	13.5 Single Open and Allow Suspect Data Behavior
	13.6 Pause and Resume
	13.7 Batch Messages
	13.7.1 Batch Request
	13.7.2 Batch Reissue
	13.7.3 Batch Close
	13.7.4 Batch Request Encoding Example
	13.7.5 Batch Reissue Encoding Example
	13.7.6 Batch Close Encoding Example

	13.8 Dynamic View Use
	13.8.1 RDMViewTypes Enumerated Names
	13.8.2 Dynamic View RsslRequestMsg Encoding Example

	13.9 Posting
	13.9.1 Post Message Encoding Example
	13.9.2 Post Acknowledgement Encoding Example

	13.10 Visible Publisher Identifier (VPI)
	13.10.1 VPI Example: Using RsslPostUserInfo to Obtain VPI Data
	13.10.2 VPI Example: Populating VPI in Post Messages from Consumer Applications
	13.10.3 VPI Example: Getting VPI from Post Messages

	13.11 TREP Authentication
	13.12 Private Streams

	Appendix A Item and Group State Decision Table
	Appendix B Error Codes
	Appendix C Document Revision History

