phone: +43 (0)3142/ 28 9 28-10 | fax: +43 (0)3142/ 28 9 28-20 | office@tagnology.com | www.tagnology.com

Multi-ISO (OK 5553) RFID Reader

USER MANUAL

© 2008 HID Global Corporation. All rights reserved.

1508-USM-00-0-02

Firmware Version 1.2

November 4, 2008

Doc Number: 1508-USM-00, Rev A.0

Warning - Read before start-up!

- The product may only be used for the intended purpose designed by the manufacturer. The operation manual should be conveniently kept available at all times for each user.
- Unauthorized changes that have not been sold or recommended by the manufacturer may have a negative influence on the system the program has been installed or copied on. Such unauthorized measures shall exclude any liability by the manufacturer.
- The liability-prescriptions of the manufacturer in the issue valid at the time of purchase are valid for the device. The manufacturer shall not be held legally responsible for inaccuracies, errors, or omissions in the manual or automatically set parameters for a device or for an incorrect application of a device.
- Only qualified personnel should carry out installation, operation, and maintenance procedures.
- Use of the program and its installation must be in accordance with national legal requirements.
- When working on devices the valid safety regulations must be observed.
- International copyrights are applicable to this program. Unauthorized copying, distribution or resale of this program or of parts of this program is a violation of applicable laws and will be prosecuted.

User Manual, Firmware V1.2

Read Me First

About This Guide

This manual describes the HF Multi ISO Reader. Its goal is to describe the reader, how it works, how to integrate it and how to use it.

Contacts

Europe, Middle East and Africa

HID Global Corporation, Ltd. (Haverhill, UK)

email: <u>eusupport@hidglobal.com</u> main: +44 (0) 1440 714 850 support: +44 (0) 1440 711 822 fax: +44 (0) 1440 714 840

Contents

Warni	ng - Re	ead before start-up!	2
Read	Me Firs	st	3
	Abou	t This Guide	3
	Conta	acts	3
Scope)		8
Exten	ded Do	ocumentation	8
Overv	iew		9
	Defin	itions	9
	Abbre	eviations	9
	Supp	orted tags	10
1	The I	MIFARE® Transponder Family	13
-	1.1	MIFARE® Standard	
	1.2	MIFARE® Ultralight	
	1.3	MIFARE® 4k	
	1.4	MIFARE® ProX	
	1.5	MIFARE® DESFire	
	1.6	my-d™ IC (SLE 55Rxx)	
2	ISO 1	14443 Type B	20
	2.1	SR176	20
	2.2	SRIX4K	21
3	ISO 1	15693	22
	3.1	Coding of UID	22
	3.2	Memory organization	
	3.3	my-d™ IC (SRF55VxxP)	
	3.4	EM 4135	
4	ICOD	DE	25
	4.1	Memory organization	
	4.2	Serial number	
	4.3	Write access condition	
	4.4	Special function (EAS,) AFI	25
	4.5	User data	
5	ICOD	DE EPC	27
	5.1	Memory organization	
	5.2	Serial number	
	5.3	Read Block	27

	5.4	Write Block	27
6	ICODE	UID	28
	6.1	Memory organization	28
7	Hardwa	are	29
	7.1	Dimensions	30
8	Softwa	re	37
	8.1	ASCII Protocol	37
	8.2	Binary Protocol	
	8.3	Register Set	39
9	Freque	ently Asked Questions	102
Refere	nces		104
Appen	dix A - S	SAM	104
Appen	dix B		105
		ct Serial Plug & Play Module (RDHC-020xN0-02)	
	Short R	Range Plug & Play Module (RDHS-0204N0-02)	113
		Range USB Desktop Reader (RDHS-0204D0-02)	
	Plug-In	Reader (RDHP-0206P0-02)	119
Appen	dix C - 1	Fimings	120
Appen	dix D - \	/ersion History	122
Appen	dix E - A	Approvals / Certificates	123
		claration	
		eclaration	
	ROHS	Compliance	125
List	of Fi	gures	
Figure	1 MIFAF	RE [®] Standard: sector diagram	13
Figure	2 MIFAF	RE [®] Standard: sector 0 / block 0	13
Figure	3 MIFAF	RE [®] Standard: block 3, 7, 11, 15,	13
Figure	4 State of	diagram	14
Figure	5 DESFi	re Memory	16
Figure	7 DESFi	re state diagram	17
Figure	7 Time s	slot formula	55
Figure	8 Time s	slotted answers diagram	55

Figure 9 Pin out of jumper 3	108
Figure 10 Pin out of jumper 3 in RS232 Configuration	109
Figure 11 Pin out of jumper 3 in RS422 Configuration	110
Figure 12 Pin out of jumper 3 in RS232 Configuration	111
Figure 13 Pin out of Jumper 4 (top view)	111
Figure 14 Pin out of jumper 4	112
Figure 15 Short Range Plug & Play Module - Top view	114
Figure 16 Short Range Plug & Play Module - Front View	115
Figure 17 Short Range Plug & Play Module - Bottom View	116
Figure 18 Pin out of Jumper 5 - Top View	117
List of Tables	
Table 1 MIFARE® 4k sector index table	15
Table 2 Electrical characteristics of pins	33
Table 3 ASCII protocol frame	37
Table 4 Binary Frame Version 1	37
Table 5 Binary Frame Version 2	37
Table 6 Protocol configuration register	40
Table 7 ISO 14443 A Extended Serial number of part 3 selection	42
Table 8 ISO 14443 A Extended Serial number of part 4 selection	42
Table 9 ISO 14443 A tag type	42
Table 10 ISO 14443 B Extended Serial number of part 3 selection	42
Table 11 ISO 14443 B Extended Serial number of part 4 selection	42
Table 12 Baud rate register	43
Table 13 Baud rate settings	43
Table 14 Exact baud rates	43
Table 15 Communication settings	44
Table 16 Operation mode register	44
Table 17 Protocol configuration register	47
Table 18 Protocol configuration register	47
Table 19 Command overview	48
Table 20 Error codes	50
Table 21 High Speed	58
Table 22 Frame Size	58

Table 23 Baud Rate values	59
Table 24 Frame Size	59
Table 25 Flag Type with corresponding flag	66
Table 26 Register Type with corresponding register	67
Table 27 Read USER port return values	70
Table 28 Write User port settings	71
Table 29 Sending Serial Data Frame	71
Table 30 Receiving Serial Data Frame	
Table 31 Using a MIFARE® card	103
Table 32 Get a serial number from NFC	103
Table 33 Pin out of jumper 2	108
Table 34 Pin out of jumper 5	117
Table 35 Electrical characteristics of pins	117
Table 36 Timings	120

Scope

The HID HF Multi ISO Reader Module supports a broad range of tags compliant with ISO 14443 type A and B standards, including SR176 tags, tags which belong to the Philips MIFARE® family, ISO 15693 tags, ISO 18000-3, EPC and UID tags. An open command structure allows the device to communicate with tags that use an operating system. The read/write unit supports ISO 14443-4 layer with automatic chaining, 256 byte buffer and frame length, extended time framing and up to 848kBaud transmission rates over the air interface.

Additionally this unit implements a DES cipher which enables to use MIFARE® DESFire tags. These tags are designed for use in high security algorithms.

A SAM interface is also available.

Major applications are:

- Access control, identification using high security cards
- Ticketing using standard MIFARE® cards
- Data storage
- Multi-applications using operating systems

Extended Documentation

Please note that all confidential material is excluded from this documentation.

You can obtain the extended documentation containing the confidential information after signing a NDA.

Overview

Definitions

Anti-collision loop

An algorithm used to identify and handle a dialogue between a reader and one or more tags in its antenna field.

Hex notation

A hexadecimal value is marked with the suffix 'h', i.e. A1h has the value A1 hexadecimal.

ASCII notation

ASCII characters are listed within apostrophes, i.e. 'x' means a single x.

Abbreviations

Abbreviation	Description	
AID	Application ID	
ASCII	American Standard Code for Information Interchange	
ATR	Answer to Reset	
ATS	Answer to Select	
AFI	Application Family Identifier	
block	For the MIFARE® Standard one block contains 16 bytes	
CBC	Cipher Block Chaining	
CID	Card Identifier (logical card address, ISO 14443-4)	
CRC	Cyclic Redundancy Check	
DES	Data Encryption Standard, for more details about DES refer to [3].	
DSFID	Data storage format identifier	
EDC	Error Detection Code	
EGT	Extra Guard Time	
EOF	End of Frame	
ETU	Elementary time unit	
Hex / xxh	Value in Hexadecimal notation	
I-block	Information block	
KTT	Key Transfer Transponder	
LSB	Least Significant Bit or Byte	
MSB	Most Significant Bit or Byte	
NAD	Node Address (ISO 14443-4)	
OSI	Open System Interconnection	
OTP	One time programmable	
PCB	Protocol Control Byte (ISO 14443-4)	
PCON	Protocol Configuration byte of the reader	
PPS	Protocol and Parameter Selection	

November 4, 2008 Page 9 of 125

Abbreviation	Description
RATS	Request for Answer to Select
R-block	Receive ready block
REQA	Request ISO Type A
REQB	Request ISO Type B
RFU	Reserved for Future Use
S-block	Supervisory block
Sector	For the MIFARE® Standard one sector contains 4 blocks
SID	Station ID
SFGT	Guard time after RATS
SN	Serial Number of a tag (a 32 bit number)
SOF	Start of frame
TDES	Triple DES
Value block	32 bit data block format. Used in ticketing application
<cr></cr>	Carriage return (0Dh)
<lf></lf>	Line feed (0Ah)

Supported tags

Tag	Manufacturer	Serial number	Read/Write operation	Transfer command	Comments
ISO 14443 A					
MIFARE® Standard	NXP	V	V	V	
MIFARE® 4k	NXP	V	V	V	
MIFARE® Ultralight	NXP	V	V	V	
MIFARE® ProX	NXP	V	V	V	
MIFARE® DESFire	NXP	V	-	V	
MIFARE® Mini	NXP	V	V	V	
SLE66CLX320P	Infineon	V	-	V	encryption not included
SLE 55R04 / 08	Infineon	V	-	V	encryption included
Smart MX	NXP	V	-	V	
Jewel	Innovision	V	V	V	
Topaz	Innovision	V	V	V	

Tag	Manufacturer	Serial number	Read/Write operation	Transfer command	Comments
ISO 14443 B		,		1	
SLE6666CL160S	Infineon	√	-	V	
SR176	STM	√	√	√	
SLIX 4K	STM	$\sqrt{}$	\checkmark	√	
ASK GTML2 ISO	ASK	V	-	V	
ASK GTML	ASK	V	-	√	extended setup needed
Sharp B	Sharp	V	-	V	
TOSMART P0032/64	Toshiba	√	-	V	
Dual Interface					
ISO 14443 A compliant ¹	various	V	-	V	
ISO 14443 B compliant ²	various	V	-	V	
ISO 15693					
EM 4135	EM	V	√	V	
ICode® SLI	NXP	V	√	V	
LRI12	STM	V	√	V	
LRI64	STM	V	√	V	with 10% modulation index
LRI128	STM	V	√	V	
LRI2k	STM	V	V	√	better performance with 10% modulation index
SRF55VxxP	Infineon	V	√	V	
SRF55VxxS	Infineon	V	√	V	encryption included
Tag-it™ HF-I Std	TI	V	√	V	
Tag-it™ HF-I Pro	TI	-	-	V	only in addressed mode
TempSense	KSW	V	-	V	Temperature logging

ICode

¹ Performance varies

² Performance varies

Tag	Manufacturer	Serial number	Read/Write operation	Transfer command	Comments
ICode®	NXP	V	V	$\sqrt{}$	
ICode® EPC	NXP	√	V	V	
ICode® UID	NXP	V	V	V	

1 The MIFARE® Transponder Family

The MIFARE® transponder family consists of various 13.56 MHz transponder ICs, all compliant to the ISO 14443 standard.

1.1 MIFARE® Standard

The MIFARE® Standard card consists of 16 sectors. A sector includes four blocks of 16 bytes each.

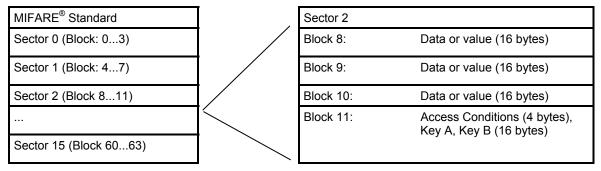


Figure 1 MIFARE® Standard: sector diagram

1.1.1 Sector 0 / Block 0

Block 0 is read only.

Serial Number (4 bytes)	Check byte (1 byte)	Manufacturer data (11 bytes)

Figure 2 MIFARE® Standard: sector 0 / block 0

1.1.2 Blocks 3, 7, 11, 15, ...

Transport keys are set on delivery:

Key	A (6 bytes)	Access Conditions (4 bytes)	Key B (6 bytes)
-----	-------------	-----------------------------	-----------------

Figure 3 MIFARE® Standard: block 3, 7, 11, 15, ...

Key A

A0 A1 A2 A3 A4 A5 (Infineon) or FF FF FF FF FF (new Philips cards)

Key B

B0 B1 B2 B3 B4 B5 (Infineon) or FF FF FF FF FF FF (new Philips cards)

Access Conditions

FF 07 80 xx (key A is used to read or write; key A itself is not readable; key B is data only). For further information refer to the MIFARE® card manual.

Remarks

Enabled keys are always read as 00 00 00 00 00 00

Using key B as a data area will cause a security gap, due to the fact that it is necessary to rewrite key A and the access conditions at each write process. It is not recommended to use key B as a

data storage area.

All MIFARE® cards use the following state diagram.

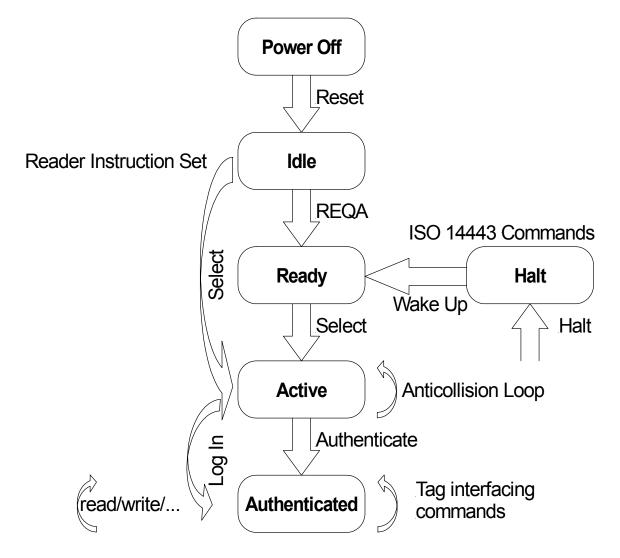


Figure 4 State diagram

1.2 MIFARE® Ultralight

MIFARE® Ultralight cards have no encryption included. They only support plain text data transmission.

MIFARE[®] Ultralight only supports 4 bytes per sector, but the command set uses 16 bytes per sector. Only the 4 least significant bytes are valid when using MIFARE[®] Ultralight.

Ensure that the other bytes match with the tag content when using the write command; otherwise the read back will fail.

1.3 MIFARE® 4k

MIFARE[®] 4k cards have an increased memory. Beginning from sector 32 (20h), sectors have 16 blocks. Due to compatibility reasons, the sector indices have changed according to the following table. The login sector has to be used to access the corresponding sector on the card.

Sector	Block	Login sector
00h	00h – 03h	00h
01h	04h – 07h	01h
1Fh	7Ch – 7Fh	1Fh
20h	80h – 8Fh	20h
21h	90h – 9Fh	24h
22h	A0h – AFh	28h
23h	B0h – BFh	2Ch
24h	C0h – CFh	30h
25h	D0h – DFh	34h
26h	E0h – EFh	38h
27h	F0h – FFh	3Ch

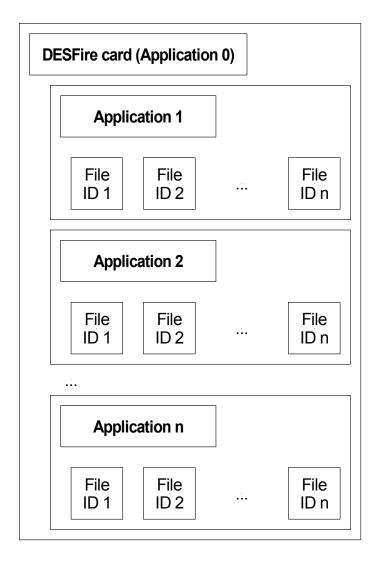
Table 1 MIFARE® 4k sector index table

1.4 MIFARE® ProX

MIFARE® ProX tags have an operating system onboard. Data organization depends on the operating system installed on the card. These cards can include additional functionalities such as DES or a proprietary encipher algorithm.

Before accessing the operating system, the card must be selected. Customized commands are issued using the transfer command.

November 4, 2008 Page 15 of 125


1.5 MIFARE® DESFire

This tag supports additional security algorithms (DES, Triple-DES, MAC) for security sensitive applications.

1.5.1 Memory organization

The memory of a DESFire card can be personalized to specific requirements. The card can be seen as data storage device like a hard disk in a PC. The memory is divided into a maximum of 28 different applications (directories) with 16 files each. An application has up to 14 keys. Depending on keys and access conditions a file can be accessed in four different ways. Plain data is never secured. Data is secured using a MAC, single DES or triple DES enciphers.

The following figure describes the memory organization of a DESFire card.

Figure 5 DESFire Memory

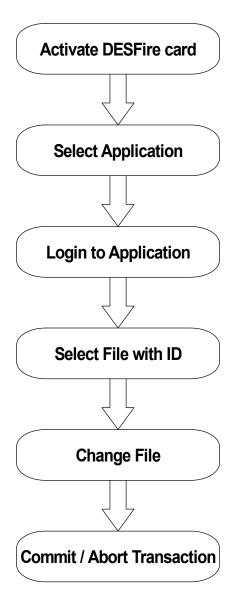


Figure 6 DESFire state diagram

1.5.1.1 Activate PICC

Before accessing a DESFire card, the card must be selected. A DESFire card has a 7 byte UID. After activation, the card is powered up and ready to accept a DESFire command. Application 0 is selected automatically.

1.5.1.2 Select application

To jump into another application, the application has to be selected. An application can be seen as a directory, which contains up to 16 files. The size of the application depends on the stored files.

1.5.1.3 Login to application

Specific access rights can be set for each application. Login to an application allows changing the organization of the application. Login to a file opens a secured file for access. A file can be accessed in four different ways: without any security or secured with MAC, single DES or triple DES.

1.5.1.4 Select file

Before accessing a file, the file must be selected

1.5.1.5 Change file

A selected file can be changed according its access rights. If a file is secured, a login is required before changes can be made.

1.5.1.6 Commit / Abort transaction

Value files, backup files, linear record files and cyclic record files only adapt their values after the commit transaction command is given. Several files can be changed within an application at the same time. The abort transactions command annuls all changes within an application. Power loss will cancel all modifications too.

For more details about application settings and access rights refer to [2].

1.6 my-d™ IC (SLE 55Rxx)

my- d^{TM} ICs are specific ICs from Infineon. These labels show a different memory organization. Two different modes of tags are supported: plain and secure mode.

Memory Size of SLE Rxx-family

Туре	User Memory	Administration Memory	Number of pages
SLE 55R01	128 Bytes	32 Bytes	16
SLE 55R02	256 Bytes	64 Bytes	32
SLE 55R04	616 Bytes	154 Bytes	77
SLE 55R08	1024 Bytes	256 Bytes	128
SLE 55R16	2048 Bytes	512 Bytes	256

Address	Byte r	number	within	a page	!								
Address	0	1	2	3	4	5	6	7					
FFh	User	data											
7Fh	User	data											
4Ch	User	data											
1Fh	User	data											
0Fh	User	data											
04h	User	data											
03h													
02h									<u>5</u>	0.5	40	803	16
01h									55R01	: 55R02	: 55R04	: 55R08	: 55R16
00h	Serial	numbe	er (UID)					SLE	SLE	SLE	SLE	SLE

November 4, 2008 Page 19 of 125

2 ISO 14443 Type B

ISO 14443 type B cards are supported.

2.1 SR176

The SR176 label contains only 30 bytes of data organized in two bytes per page.

2.1.1 Memory organization

Block address	Byte 1	Byte 0	
0Fh	Lock byte	RFU	Chip ID
0Eh	User data		
04h	User data		
03h	Serial number		
02h	Serial number		
01h	Serial number		
00h	Serial number		

2.1.2 Serial number UID

The UID is stored in the first 4 pages. Page 00h contains the LSB of the UID.

Page 03h		Page 02h		Page 01h		Page 00h	
Byte 1h	Byte 0	Byte 1	Byte 0	Byte 1	Byte 0	Byte 1	Byte 0

2.1.3 Lock byte

The lock byte defines the write access condition of a pair of pages. Each bit can only be set once. This procedure is irreversible. This byte is implemented as an OTP.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Page 0Eh Page 0Fh	Page 0Ch Page 0Dh	Page 0Ah Page 0Bh	Page 08h Page 09h	Page 06h Page 07h	Page 04h Page 05h	Page 02h Page 03h	Page 00h Page 01h

2.1.4 Chip ID

The Chip ID is defined in the low nibble of page 0Fh. It is manufacturer set and is used internally to select and separate single tags.

2.2 SRIX4K

The SRIX4K label contains 512 bytes of data organized into four-byte pages.

2.2.1 Memory organization

Block address	Byte 3	Byte 2	Byte 1	Byte 0				
FFh	OTP Lock Reg	ST Reserved	ST Reserved	Fixed Chip ID				
7Fh	User data							
07h	User data	User data						
06h	32 bits binary counter							
05h	32 bits binary counter							
04h	32 bits Boolean Area							
03h	32 bits Boolean Area							
02h	32 bits Boolean Area	32 bits Boolean Area						
01h	32 bits Boolean Area	32 bits Boolean Area						
00h	32 bits Boolean Area							

2.2.2 Lock block

Locking of blocks is not supported with this tag.

3 ISO 15693

The reader can communicate with ISO15693 tags. An anti-collision is needed if multiple instances of tags are in the same antenna field. The reader detects each type of ISO15693 labels and handles them individually

3.1 Coding of UID

The UID of a tag is defined in ISO/IEC 15693-3. All tags compliant to ISO15693 support the specified format. The UID is factory programmed and cannot be changed. The UID is needed for the anti-collision sequence to separate several tags in the same antenna field.

Byte								
7	6	5	4	3	2	1	0	
E0h	MFR Code	Serial numb	er					

The MFR Code is listed in ISO/IEC 7816-6:1996/Amd.1: 2000(E). Following manufacturer are tested with our reader.

MFR-Code	Company
02h	ST Microelectronics
04h	Philips Semiconductors
05h	Infineon Technologies AG
07h	Texas Instrument
16h	EM Microelectronic-Marin SA

3.2 Memory organization

An ISO15693 tag is separated into two blocks. An administrative block which contains the UID, AFI, DSFID and the lock page state. The user block is free for custom use. The chip manufacturer defines the amount of bytes and number of pages of each tag. As default four bytes are used for several tags.

Page address	Byte								
address	0	1	2	3					
3Fh	User data	Jser data							
00h	User data								
Administrative	Administrative block								

3.3 my-d $^{\text{TM}}$ IC (SRF55VxxP)

my-d™ ICs are specific ICs from Infineon. These labels show a different memory organization. Two different modes of tags are supported: plain and secure mode.

Two different cards with 320 bytes or 1k bytes EEPROM memory are available. The EEPROM memory is divided into pages.

Each tag is split into two parts: The administrative blocks (00h, 01h, 02h) and the user area. Administrative pages are read only and cannot be changed. User data is free for use. Additionally user data pages can be locked. This procedure is irreversible.

The EEPROM of SRF55V10P is organized in 128 pages addressed 00h to 7Fh. The EEPROM of SRF55V02P consists of 32 pages addressed 00h to 1Fh.

Address	Byte nu									
Address	0	1	2	3	4	5	6	7		
7Fh	User dat	а								
1Fh	User dat	а								
03h	User data									
02h										
01h		Serial number (UID)								
00h	Serial nu	ımber (UII	D)						SRI	SRF55V10P

3.3.1 UID

The UID of SRF55Vxx labels starts with 60h or E0h.

3.3.2 Security Bit

Bit 45 of the UID defines the secure mode of the SRF55Vxx. If set, the tag supports security algorithm.

Bit 45	Description
1	Tag supports crypto security mechanism
0	Chip supports plain mode only

3.4 EM 4135

The EM4135 is an ISO15693 compliant label of EM Microelectronic-Marin SA. It has eight bytes per page as the same as the my-d™ label. It only supports 36 pages. The administrative area holds the information of the access condition and the UID.

Address	Page									
	0	1	2	3	4	5	6	7		
23h	User data	User data								
00h	User data	User data								
	Administra	ative area								

4 ICODE

ICODE® IC data is stored in a non-volatile EEPROM. Its capacity is 512 bits organized in 16 blocks consisting 4 bytes each (1 block = 32 bits). First 3 blocks contain administrative data.

4.1 Memory organization

Page	Byte							
address	0	1	2	3				
0Fh	User data							
05h	User data							
04h	Family code identifier / User data							
03h	Special function (EAS) / User data							
02h	Write access condition							
01h	Serial number							
00h	Serial number	Serial number						

4.2 Serial number

The serial number of a label is defined at the manufacturer process. It is stored on page 00h and page 01h. LSB is stored first.

4.3 Write access condition

Page 02h contains the write access condition for each page. Each page can be set to read only (bits are set to 0). This procedure is irreversible. Locking page 2 no further changed of the access condition can be done. Always two bits must be change at the same time. This register is implemented as OTP.

Byte	0			Byte	1			Byte	2			Byte	3		
MSB		LS	SB	MSB		LS	B	MSB		LS	В	MSB		LS	SB
1 1	1 1	0 0	0 0	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
3	2	1	0	7	6	5	4	В	Α	9	8	F	E	D	С
Special function	Write access	Serial number	Serial number	User data	÷	:	÷	÷	:	:	:	i	:	:	User data

4.4 Special function (EAS,) AFI

Special Functions (EAS) and Family Code/Application Identifier are additional features. For more information refer to the ICODE® manual.

4.5 User data

All other blocks are free for use and can be changed according the state of the write access conditions.

5 ICODE EPC

ICODE EPC labels data is stored in a OTP memory. Its capacity is 136 bits organized in 17 blocks consisting of 1 bytes each. All MSB of the different fields (EPC, CRC16, Destroy Code) are located at the lowest block address.

5.1 Memory organization

Page address	Byte
14h – 16h	Destroy Code
12h – 13h	CRC 16
00h – 11h	EPC

5.2 Serial number

The serial number of a label is defined within the EPC blocks.

5.3 Read Block

It is not possible to read a block with the read block 'rb' command.

5.4 Write Block

It is possible to write the EPC data (12 bytes) with the write block 'wb' command using block address 00h.

6 ICODE UID

The memory has a capacity of 192 bits and is organized in 24 blocks, consisting of 1 byte each. All MSB of the different fields (UD, UD CRC, CRC16, Destroy Code) are located at the lowest block address.

6.1 Memory organization

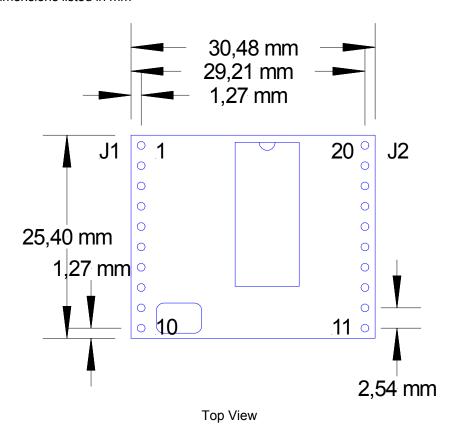
Page address	Access Condition	Description
21h – 23h	OTP	Destroy Code
19h - 20h	OTP	CRC16
14h – 18h	RO	UID
12h – 13h	R/W	UD CRC16
00h – 11h	R/W	User data (UD)

6.1.1 Read Block

It is possible to read the user data (12 bytes) with the read block 'rb' command using block address 00h.

6.1.2 Write Block

It is possible to write the UD data (12 bytes) with the write block 'wb' command using block address 00h.


Additionally it is possible to write the destroy code (3 bytes) with the write block 'wb' command using block address 01h.

7 Hardware

7.1 Dimensions

All dimensions listed in mm

7.1.1 Pin out – Jumper 1

PIN	PIN No.	Description	
ARX	1	Antenna RX	
ATX1	2	Antenna TX1	
VDD	3	Supply Voltage	
GND	4	Ground	
ATX2	5	Antenna TX2	
TGND	6	Antenna Ground	
SAM CLK	7	SAM clock	
SAM IO	8	SAM IO	
SAM RESET	9	SAM Reset	
RTS	10	Request to Send	

November 4, 2008 Page 31 of 125

7.1.2 Electrical characteristics of J1 PINs

PIN	PIN No.	Min	Тур.	Max.	Description
ARX	1	1.1V		4.4V	Antenna RX
ATX1	2		13,56 MHz 34 V _{PP}	13.56MHz 100 mA _{PP} 50V _{PP}	Antenna TX1
VDD	3	+4.5V	+5.0V	+5.5V	Supply Voltage
		32mA	150mA	250mA	Supply Current (without SAM)
GND	4		GND		Ground
ATX2	5		13,56 MHz 34 V _{PP}	13.56MHz 100 mA _{PP} 50V _{PP}	Antenna TX2
TGND	6		GND		Antenna Ground
SAM CLK	7		TTL		SAM clock
				25mA	
			3,39MHz		
SAM IO	8		TTL	25 mA	IO for SAM Input and SAM Output
SAM RESET	9		TTL	25 mA	SAM Reset
RTS	10		TTL	25 mA	Request to Send

7.1.3 Pin out - Jumper 2

PIN	PIN No.	Description			
VDD	20	Supply Voltage			
GND	19	Ground			
LEDg	18	LED green (reading LED)			
LEDr	17	LED red			
EN	16	Enable reader, open or logic high			
MCLR	15	Master clear			
USER	14	User Port			
DIR	13	Direction of RS 485			
TX	12	TX to PC			
RX	11	RX from PC			

7.1.4 Electrical characteristics of J2 PINs

Table 2 Electrical characteristics of pins

PIN	PIN No.	Min	Тур.	Max.	Description
RX	11		USART-TTL ¹	25 mA	RX to PC To RS232, RS485 or RS422 device driver
TX	12		USART-TTL ¹	25 mA	TX to PC To RS232, RS485 or RS422 device driver
DIR	13		TTL	25 mA	Direction of RS 485 Logic High = Reader to Host Logic Low = Host to Reader
USER	14		TTL ³	25 mA	User Port
MCLR	15		TTL ⁴		Master clear Leave unconnected. Low will reset the register and the key management to default values.
EN	16		ST ⁵	25 mA	Enable reader logic low will disable the reader Open or logic high

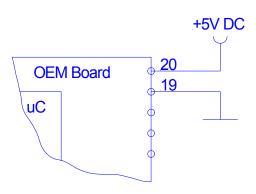
¹ Universal Synchronous Asynchronous Receiver Transmitter

November 4, 2008 Page 33 of 125

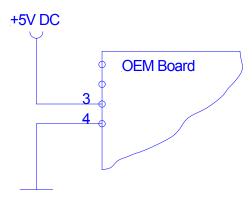
³ TTL buffer output / input

 $^{^4}$ Voltage spikes below GND at the MCLR/V_{DD} pin, including currents greater than 80mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the MCLR/V_{DD}, rather than pulling this pin directly to GND.

⁵ Schmitt trigger buffer input

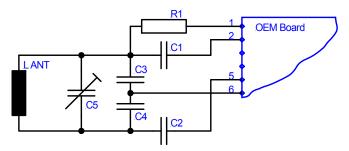

PIN	PIN No.	Min	Тур.	Max.	Description
LEDr	17	VDD _{min} @ 25mA	VDD _{typ} @ 11mA	VDD _{max} @ 0 mA	LED red Output Voltage
			11mA	25mA	External Resistor min. 200 Ω
LEDg	18		1.4V @ 11mA	VDD @ 0mA	LED green (reading LED) with 330 Ω (internal serial) resistor
			11mA	15mA	
GND	19		GND		Ground
VDD	20	+4.5V	+5.0V	+5.5V	Supply Voltage
IDD		32 mA	150 mA	250 mA	Supply Current (Without SAM)

7.1.5 External Connections


7.1.5.1 Power Supply

If the supply voltage and any noise modulated on the supply voltage remains within the specified limits, no further filtering is required. In some cases it is recommended to use additional filtering for the power supply line. Insufficient power line filtering could cause unexpected or irregular performance drops.

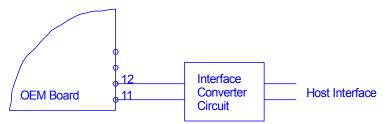
Option 1


Option 2

The board can be connected as shown above. Both alternatives are possible and can be used as they fit best into the layout of the carrier board. The two VCC PINs and the two GND PINs are connected internally.

7.1.5.2 Antenna

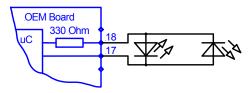
The typical antenna tuning and matching network is shown below. The external antenna has to have the right inductance and a certain resistor and capacitor combination for an optimized frequency tuning and antenna matching.

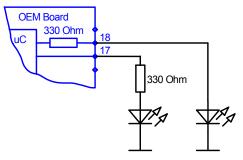


More details about the antenna design are available in the HIDid antenna design guide manual. This document can be downloaded from http://www.hidcorp.com/Omnikey.

Please refer also to the specific application notes for the Philips reader IC (MIFARE® & I-Code, Micore Reader IC family Directly Matched Antenna Design).

7.1.5.3 Serial Interface


The OEM Board can be connected directly with a micro controller. Alternatively the OEM Board also can be connected to most serial interface types by using the right interface converter circuit. In order to optimize the communication quality the specific application note of the interface converter circuit needs to be taken into consideration.


7.1.5.4 Function Control LEDs

Two external LEDs can be connected to the OEM Board. There are two alternatives possible.

Option 1

Option 2

In both cases the LED supply voltage levels are TTL levels.

8 Software

By default, data is transmitted at 9600, n, 8, 1, no handshaking. Two protocol modes are supported. The protocol mode is configured in the reader EEPROM. As factory default, the ASCII protocol is used.

8.1 ASCII Protocol

This protocol is designed for easy handling. The commands are issued using a terminal program. Data is transmitted as ASCII hexadecimal that can be displayed on any terminal program (i.e. HyperTerminal).

Table 3 ASCII protocol frame

Command	Data
Variable length	Variable length

8.2 Binary Protocol

This protocol is designed for industrial applications with synchronization and frame checking. An addressing byte for party line (master/slave, multi-drop) is also included.

The protocol usually requires a device driver. Data is transmitted in binary mode. The reader uses an internal binary watchdog timer to ensure correct framing.

Table 4 Binary Frame Version 1

STX	Station ID	Length	Data	ВСС	ETX
1 byte	1 byte	1 byte	Variable length	1 byte	1 byte

The binary frame version 2 is only sent to the host. It is implemented to give extended information to the host.

Version 2 must be enabled in the Protocol configuration 2 register.

Table 5 Binary Frame Version 2

STX	Station ID	Length	Flags	ags Data		ETX
1 byte	1 byte	1 byte	1 byte	Variable length	1 byte	1 byte

8.2.1 STX

Start of transmission (02h)

8.2.2 Station ID

Unique ID of the station

00h: Reserved for the bus master. Readers send response to this device ID.

FFh: Broadcast message. All devices will execute the command and send their response.

8.2.3 Length

Length defines the length of the data block, including the flag byte, if binary protocol version 2 is activated.

If length is set to zero, 256 data bytes are transmitted. The reader module only can send 256 data bytes, but cannot receive commands with 256 bytes.

8.2.4 Flags

The flag byte gives additional information to the host.

Bit 3 – Bit 7	Bit 1 – Bit 2	Bit 0
RFU	Leading Character Info	Error State

Error State

If cleared, the command was processed successfully.

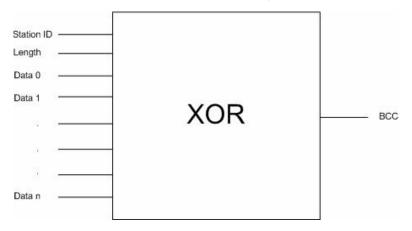
If Error State is set, an error occurred.

Leading Character Info

Bit 1 & 2 defines how to interpret the data in the binary frame.

Bit 2	Bit 1	Description			
0	0	No leading character available, all values are hexadecimal.			
0	1	he data contains one leading character.			
1	0	All data bytes are characters.			
1	1	RFU			

8.2.5 Data


This part contains the command and the data. The command values are the same as in ASCII protocol mode ('x', 's', ...) whereas data is transmitted in binary mode.

The length of the command block depends on the instruction.

8.2.6 Block Check Character (BCC)

The BCC is used to detect transmission errors. The BCC is calculated XOR-ing each byte of the transmission frame excluding the STX/BCC and ETX characters. The flags are part of the data.

 $BCC = (StatID) XOR(Length) XOR(Command / Data_0) XOR ... XOR(Command / Data_N)$

8.2.7 ETX

End of transmission. (03h)

8.2.8 Remarks

If the reader device receives an invalid instruction frame (i.e. wrong BCC) or the requested station ID does not match the internal ID of the reader, the command is not executed. The reader waits for the next valid frame.

The automatic binary time-out (see protocol configuration register) is used to detect incomplete binary frames.

8.2.9 Examples

02h	64h	01h	78h	1Dh	03h
STX	Station ID	Length	'x'	BCC	ETX

This instruction frame will reset the reader module with the station ID 64h.

8.3 Register Set

The reader has several system flags used for customization purposes. The flags are stored in its non-volatile EEPROM. The reader accepts changes to these settings only during the start-up phase. Clearing all RFU bits is recommended in order to guarantee compatibility with future releases.

The reader can store up to 32 authentication keys internally to login standard MIFARE® cards. An additional 32 keys can be stored for DESFire authentication. All keys are read only and cannot be accessed via the interface lines.

8.3.1 EEPROM memory organization

Register	Description	
00h 04h	Unique device ID; read only	
05h 09h	Administrative data; read only	
0Ah	Station ID	
0Bh	Protocol configuration	
0Ch	Baud rate	
0Dh	Command Guard Time	
0Eh	Operation Mode	
0Fh	Single shot time-out value	
10h	Internal use / Do not change	
11h	Internal use / Do not change	
12h	Internal use / Do not change	
13h	Protocol configuration 2	
14h	Reset Off Time	
15h	Reset Recovery Time	
16h	Application Family Identifier	
17h	ISO 14443A Selection Time-out	
18h	ISO 14443B Selection Time-out	
19h	SR176 Selection Time-out	

November 4, 2008 Page 39 of 125

Register	Description
1Ah	ISO 15693 Selection Time-out
1Bh	Protocol configuration 3
1Ch	Page Start
1Dh	Internal use / Do not change
1Eh	Internal use / Do not change
1Fh	Page number
20h	Protocol configuration 4
21h	CID
22h	Internal use / Do not change
23h	Internal use / Do not change
24h	Internal use / Do not change
25h	Internal use / Do not change
26h - 7Fh	RFU
80h EFh	User data

8.3.2 Unique device ID (00h - 04h)

The unique device ID identifies a reader module. It is factory programmed and cannot be changed.

8.3.3 Station ID (0Ah)

The station ID is used in binary mode to address a device in party line set up. The station ID can range from 01h to FEh and can be set freely. The value 00h is reserved for the bus master. All readers send their response to this device.

The broadcast message (FFh) forces all readers to response to the command.

Default value is 01h.

8.3.4 Protocol configuration (0Bh)

The protocol configuration register (PCON) specifies general behavior of the reader device.

Default value is 41h.

Table 6 Protocol configuration register

Protocol c	Protocol configuration register						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Extend-ed ID	Extend-ed Protocol	Single- shot	LED	New serial mode	Multitag	Protocol	Auto- start

8.3.4.1 Auto start (default 1)

If set, the reader device will start up in continuous read mode automatically.

This is only valid in ASCII mode.

8.3.4.2 Protocol (default 0)

If Protocol is set to '1', then the reader uses binary protocol mode. Refer to binary protocol for further information on the binary protocol format.

Default setting = ASCII protocol (0).

8.3.4.3 Multitag (default 0)

The Multitag flag will enable multi-tag recognition in continuous read mode. All tags are detected and displayed. Due to the more complex search algorithm, the continuous read command decreases its detection speed.

8.3.4.4 New Serial Mode (default 0)

If New Serial Mode is set to '1', new serial mode is enabled. A leading character is added to the serial number.

Leading Character	Description	
D	ICode UID	
Е	ICode EPC	
I	ICode	
J	ISO 14443 A Jewel tag	
M	ISO 14443 A	
S	SR 176	
V	ISO 15693	
Z	ISO 14443 B	

8.3.4.5 LED (default 0)

If set the reader suppresses any LED activity. The user manages the state of the LEDs.

8.3.4.6 Single Shot (default 0)

If Single Shot is set, the reader displays the serial number of a tag in continuous read mode once within a specified time-out. The time-out is defined at EEPROM register 0Fh.

The delay time can be adjusted stepwise in 100ms steps. 00h indicates no delay and FFh indicates infinite delay.

Note: The delay precision depends on reset off and reset recovery time.

8.3.4.7 Extended Protocol (default 1)

If Extended Protocol is set, the transfer data telegram command supports ISO14443-4 and automatically process the WTX and chaining for smaller frames.

If sending ISO 14443-3 commands this flag has to be switched off.

The transfer data telegram command is only supported in normal mode, not in transmit / receive mode.

8.3.4.8 Extend ID (default 0)

If set, the reader extends the serial number with additional information.

ISO 14443 A tags

Table 7 ISO 14443 A Extended Serial number of part 3 selection

Tag type / ReqA	Serial number	[SAK]
1 byte / 2 bytes	4 / 7 / 10 bytes	1 byte

Table 8 ISO 14443 A Extended Serial number of part 4 selection

Tag type / ReqA	Serial number	[SAK]	ATS	Used Speed	[CID]
1 byte / 2 bytes	4 / 7 / 10 bytes	1 byte	n bytes	1 byte	1 byte

The tag type byte indicates the type of cascade level.

Table 9 ISO 14443 A tag type

Tag type	Description
00h	Cascade level 1 transponder
01h	Cascade level 2 transponder
02h	Cascade level 3 transponder

ISO 14443 B tags

Table 10 ISO 14443 B Extended Serial number of part 3 selection

Serial number	Application data	Protocol info	MBLI/CID
4 bytes	4 bytes	3 bytes	1 byte

Table 11 ISO 14443 B Extended Serial number of part 4 selection

Serial number	Application data	Protocol info	MBLI / CID	Used Speed	[CID]
4 bytes	4 bytes	3 bytes	1 byte	1 byte	1 byte

For detailed description of Application Data, Protocol Info and MBLI/CID, refer to the ISO 14443 documentation [1].

8.3.5 BAUD, Baud rate control register (0Ch)

The baud rate register defines the communication speed of the reader device.

Default value is 00h.

Table 12 Baud rate register

Baud rate register									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RFU	RFU	RFU	RFU	RFU	BS2	BS1	BS0		

This register defines the baud rate of the device.

Table 13 Baud rate settings

BS2	BS1	BS0	Baud rate
0	0	0	9600 baud (default)
0	0	1	19200 baud
0	1	0	38400 baud
0	1	1	57600 baud
1	0	0	115200 baud
1	0	1	230400 baud (depends on the used interface chip)
1	1	0	460800 baud (depends on the used interface chip)

With the high baud rates (230400 and 460800 baud), proper operation depends on the interface chip used. Please note that some of the interface chips available do not support these high baud rates.

The following table describes the exact baud rates used by the reader.

Table 14 Exact baud rates

Baud rate	Exact baud rate	Difference
9600 baud	9603 baud	0.03 %
19200 baud	19207 baud	0.04 %
38400 baud	38305 baud	-0.25 %
57600 baud	57458 baud	-0.25 %
115200 baud	114915 baud	-0.25 %
230400 baud	233793 baud	1.47 %
460800 baud	452000 baud	-1.91 %

The following table describes the communication settings

Table 15 Communication settings

Description
8 data bits
No parity bit
1 stop bit
No flow control

8.3.5.1 CF Card Version

The Baud rate of the CF Card version is limited to 115200 baud. 230400 and 460800 are not supported.

8.3.6 Command Guard Time (0Dh)

The Command Guard Time is used to ensure that commands are not sent to fast consecutively. Following commands are sent after the guard time is elapsed. One time slice is around 37,8us. The longest timeout value is 9,6ms (FFh).

The default value is 20h (1,2ms).

8.3.7 OPMODE, operating mode register (0Eh)

The operation mode register defines which tag types the reader supports. This register enables fast tag recognition because only defined tag types are requested.

Table 16 Operation mode register

Operation mode register									
Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)		
RFU	ICODE UID	ICODE EPC	ISO 15693	ICODE	SR176	ISO 14443B	ISO 14443A		

Innovision Jewel tag

Innovision Jewel tag is part of ISO 14443 Type A. It can not be separately switched on/off.

8.3.8 Single Shot Time-out (0Fh)

The time-out value defines the delay time between two responses of the reader. It only has effect in continuous read mode. To enable the time-out, the single shot flag has to be set. See the protocol configuration register above. One time-out slice is around 100ms. Exact timing depends on the protocol used.

Value 00h indicates no delay time.

Default value is 0Ah (1 second).

8.3.9 Protocol configuration 2 (13h)

The protocol configuration register 2 (PCON2) further specifies the general behavior of the reader device.

Default value is 00h.

Protocol configuration 2 register								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Disable ISO 14443 - 4 Error Handling	Enable ISO 14443B Anti- collision	Reset Rec Time Multi	,	Noisy Environ- ment	Enable binary frame v2	Disable start- up message	Disable multi-tag reset	

8.3.9.1 Disable multi-tag reset (default 0)

If set, the reader does not reset before the multi-tag list and multi-select command have been performed.

8.3.9.2 Disable start-up message (default 0)

If Disable start-up message is set, the reader suppresses the start-up message in ASCII mode. This flag is ignored in binary protocol mode.

8.3.9.3 Enable binary frame v2 (default 0)

If Enable binary frame v2 is set, the reader sends version 2 binary frames.

The get station ID command always sends version 1 binary frames!

8.3.9.4 Noisy Environment (default 0)

If Noisy Environment is set, the continuous read mode can only be aborted with the '.' character. When working in a noisy environment, the probability for a reception of an arbitrary/stochastic signal is quite high. This implies a high probability of an unintentional command execution. To reduce this probability, only one character (out of 255) is chosen ('.') to be interpreted as the continuous read stop command.

8.3.9.5 Reset Recovery Time Multiplier (default 0)

Multiplies the Reset Recovery Time, including the recovery time of the field reset command.

Reset Recovery Time Multiplier	Reset Recovery Time
0	1x
1	2x
2	3x
3	4x

8.3.9.6 Enable ISO14443 B Anti-collision (default 0)

If set, the anti-collision algorithm for ISO 14443 B tags is enabled.

8.3.9.7 Disable ISO 14443-4 Error Handling (default 0)

If Disable ISO 14443-4 Error Handling is set, ISO14443-4 Error Handling is disabled. The error handling always uses the TMR time-out.

8.3.10 Reset Off Time (14h)

The Reset Off Time register represents the field off time in ms.

This register is used for the select, continuous read and multi-tag commands.

Default value is 0Ah.

8.3.11 Reset Recovery Time (15h)

The Reset Recovery Time register represents the recovery time in ms after the field is turned on.

This register is used for the select, continuous read and multi-tag commands.

Default value is 25h.

8.3.12 Application Family Identifier (16h)

The AFI (Application Family Identifier) is only supported for ISO14443B and ISO15693 tags. If the set value is different from 00h, the AFI is used. Only transponders with an identical AFI will answer to the reader.

Default value is 00h.

8.3.13 Selection Time-out ISO 14443A (17h)

The Selection Time-out represents the reader card communication time-out for the select, high-speed select, continuous read, multilist, multi-select and MIFARE® login command with ISO 14443A tags. Use low values for a better reaction time between the card and the reader. One time slice is around 300us.

The default value is 10h.

8.3.14 Selection Time-out ISO 14443B (18h)

The Selection Time-out represents the reader card communication time-out for the select, high-speed select, continuous read, multilist and multi-select commands with ISO 14443B tags. For a better reaction time, use low values. One time slice is around 300µs.

The default value is 10h.

8.3.15 Selection Time-out SR176 (19h)

The Selection Time-out represents the reader card communication time-out for the select, continuous read, multilist and multi-select command with SR176 tags. For a better reaction time, use low values. One time slice is around 300µs.

The default value is 10h.

8.3.16 Selection Time-out ISO 15693 (1Ah)

The Selection Time-out represents the reader card communication time-out for the select, high-speed select, continuous read, multilist, multi-select and MIFARE® login command with ISO 15693 tags. Use low values for a better reaction time between the card and the reader. One time slice is around 300us.

The default value is 20h.

8.3.17 Protocol configuration 3 (1Bh)

The protocol configuration register 3 (PCON3) further specifies the general behavior of the reader device.

Default value is 00h.

Table 17 Protocol configuration register

Protocol configuration 3 register								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SAK Extended ID	ReqA Extended ID	Internal change	Internal use / do not change			RFU	Disable automatic ISO 14443-4 timeouts	

8.3.17.1 Disable automatic ISO 14443-4 timeouts (default 0)

If Disable automatic ISO 14443-4 timeouts is set the automatic ISO 14443-4 timeouts are disabled. The timeouts specified with TMR registers are used.

8.3.17.2 Page read (default 0)

If set the continuous read mode retrieves the content of the tag instead of the serial number. The register Page Start (1Ch) defines the start block and the Page Number (1Fh) defines the number of blocks to be read.

8.3.17.3 ReqA Extended ID (default 0)

If set the Extended ID information for ISO14443 A tags replaces the cascade level information (1 byte) with Request A answer (2 bytes).

8.3.17.4 SAK Extended ID (default 0)

If set the Extended ID information for ISO 14443 A tags will include the SAK byte behind the serial number.

8.3.18 Protocol configuration 4 (20h)

The protocol configuration register (PCON4) specifies general behavior of the reader device.

Default value is 00h.

Table 18 Protocol configuration register

Protocol configuration register								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
RFU	RFU	RFU	RFU	Internal use / do not change	CID Extended ID	WupA/B	Disable Read after Write	

8.3.18.1 Disable Read after Write (default 0)

If set, the reader device will not make a read after write for the block write commands "w", "wb", "wd" and "wv".

If the read after write is deactivated, acknowledge from the write commands is a 00h byte instead of the written data.

8.3.18.2 WupA/B (default 0)

If set, the reader device will use WupA/B instead of ReqA/B during selection of an ISO 14443 tag. Supported commands are select, high-speed select and multi-select.

8.3.18.3 CID Extended ID (default 0)

If set, the extended ID information for ISO 14443 A/B tags will be extended with the CID information only for the high-speed select. The CID byte will be appended on the end of the output.

8.3.19 CID (21h)

The Card Identifier (CID) is used to activate multiple ISO 14443-4 cards at the same time. If only one tag at the same time is used this value should be left 0.

Default value is 00h.

8.3.20 User data (80h - EFh)

These registers are for free use.

8.3.21 Instruction Set

Following table describes all the commands of the reader device. Each command returns an answer to the host. Exceptions are mentioned explicitly. The green LED acknowledges a successfully executed command. The red LED indicates an error.

8.3.22 Common Commands Overview

Table 19 Command overview

Command	Description	
'!'	Test continuous read / Check KTT upload status	
'c'	Continuous read	
	Abort continuous read, refer to continuous read	
'dg' / 'dn' / 'dr'	Set LED	
'ds'	DES encryption / decryption of data	
'g'	Get ID	
'h'	High-speed select	
'k'	Lock block	
'm'	MultiTag select / tag list	
'o+a' / 'o+b' / 'o+d' / 'o+e' / 'o+i' / 'o+s' / 'o+v'	Include tag type	
'o-a' / 'o-b' / 'o-d' / 'o-e' / 'o-i' / 'o-s' / 'o-v'	Exclude tag type	
'oa' / 'ob' / 'od' / 'oe' / 'oi' / 'ot' / 'os' / 'ov'	Set tag type	
'of'	Set configuration flags	
'og'	Set configuration register	
'ox'	Reread all register	
'poff' / 'pon'	Antenna power off/on	

Command	Description		
'pr' / 'pw'	Read / write user port		
'q'	Quiet		
'ra'	Resend last answer		
'r' / 'rb'	Read block		
'rd'	Read data (multiple blocks)		
'rp'	Read EEPROM register		
's'	Select		
'V'	Get version		
'w' / 'wb'	Write block		
'wd'	Write data (multiple blocks)		
'wp'	Write EEPROM register		
'x'	Reset		
'y'	Field reset		
ISO 14443 Type A	(MIFARE®) only commands		
'+'	Increment value block (credit)		
·-	Decrement value block (debit)		
'='	Copy value block (backup)		
'I'	Login (authenticate tag)		
'rv'	Read value block		
'wv'	Write value block		
Key Management			
'ar'	Authenticate to reader		
'ia'	Get key access rights		
'it'	Get key status		
'rt'	Reset key table		
'ua'	Update key access rights		
'uc'	Change key type		
'uk'	Update key		
my-d™ secure co	mmands		
'!'	Check KTT upload status / Test continuous read		
1*1	Abort KTT upload		
'as'	Authenticate to sector		
'ik'	Issue transponder key		
'ut'	Prepare for KTT		
'z'	my-d™ command		

November 4, 2008 Page 49 of 125

8.3.23 Error Codes

Following figure shows an overview of all error messages of the reader device.

Table 20 Error codes

Error Code	Description
'?'	Unknown command
'C'	Collision or CRC/MAC Error
'F'	General failure
1'	Invalid value format, specified block does not match the value format
'N'	No tag in the field
'O'	Operation mode failure or file not selected
'R'	Command parameter out of range
'X'	Authentication failed

8.3.24 Common commands

8.3.24.1 Test Continuous Read / Check KTT Upload Status

This command tests the state of the continuous read command and the state of the Prepare for KTT 'ut' command.

The test continuous read command is only valid in ASCII mode.

Command

Command	Data
'!'	None

Answer

Answer	Description	
'!'	Continuous read mode is active.	
00h	Keys from KTT successfully uploaded	
01h	Error during key upload detected, upload aborted	
02h	No KTT found, other tag was detected	
FFh	Prepare for KTT is in awareness mode	
'F'	Continuous read and Prepare for KTT is not active.	
no response	Key uploading is in progress	

8.3.24.2 Continuous Read

The reader device reads and displays serial numbers continuously while one or more tags remain in the field. This command stops if any character is sent to the reader module. The reader module returns the character 'S' (53h).

The reader supports different tag types at the same time. To increase the reading performance switch to a single tag mode. If more than one tag of the same type should be detected at the same time, the Multitag flag must be activated. The response data length depends on the tag type.

Command

Command	Data
'c'	None

Answer

Answer	Description
Data	Serial number (n bytes)
'N'	Error: No Tag in the field (only binary protocol)

8.3.24.2.1 Multitag continuous read mode

If the Multitag flag is set in the Protocol Configuration (PCON) register the reader reads multiple tags continuously.

8.3.24.2.2 Auto start

The continuous read mode is started automatically in ASCII mode. The auto start flag must be set in the PCON register.

8.3.24.2.3 Noisy Environment

If the Noisy Environment flag is set, the continuous read mode can only be aborted with the '.' character.

This is only valid in ASCII mode.

8.3.24.2.4 Binary mode

This command is fully supported in binary protocol mode except the test continuous read command and the noisy environment flag.

Do not use this command on bus system environment in binary mode, because the continuous read mode will take possession of the bus system.

8.3.24.2.5 Simple access control applications

Serial numbers are always sent plain. Data encryption is activated after a successful login.

For simple access control applications the use read-only blocks for the identification of the tag is recommended.

Reading any block (even the manufacturer block) of the transponder will increase your security.

8.3.24.2.6 LED activity

The LED stays green as long as a tag was found and goes dark if the tag is removed from the field.

8.3.24.3 Set LED

This command controls the LED activity. If the LED flag is set, the automatic LED function is switched off. The user can set the state of the LED manually.

Command

Command	Data
'dg'	None
'dr'	None
'dn'	None

Answer

Answer	Description
'DG' 'DR'	String of LED state
'DN'	

Example

Command	Answer	Description
'dg'	DG	Switch on LED green, LED red off
'dr'	DR	Switch on LED red, LED green off
'dn'	DN	Switch off both LEDs

8.3.24.4 DES encryption / decryption of data

This command returns 8 bytes of encrypted / decrypted data.

Command

Command	Data
'ds'	Options (1 byte) Key (8/16 bytes) / Key Number (1 byte) Data (8 byte)

Answer

Answer	Description
Data	Encrypted / Decrypted data (8 bytes)

Option byte

Option byt	e						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFU	RFU	RFU	RFU	RFU	Encode	Key Length	Key Index

Key Index

If the Key Index is set, the command only needs the key number (1 byte) instead of the key (8/16 bytes).

The key number corresponds to the key number used in the key management.

Key Length

If the Key Length is set, the command uses the TDES algorithm with 16-byte key.

If cleared, the command uses the DES algorithm with 8-byte key.

If key index is used the key length flag is valid.

Encode

Setting this flag encodes the data.

Clearing this flag decodes the data.

8.3.24.5 Get ID

This command returns the station ID of the reader device. The answer is time slotted to enable the detection of all devices in party line mode.

The station ID has only effect in binary mode.

Command

Command	Data
'g'	None

Answer

Answer	Description
Data	Station ID of the reader device (1 byte)

8.3.24.5.1 Time slotted answer

In party line mode, more than one reader can be used simultaneously. The time slotted answer allows separating in time the answers from all connected devices. The station ID is used to determine the correct time slot.

The reader supports up to 254 unique time slots. The following formula calculates the duration of one time slot (only one baud rate is supported per party line):

$$T_0[s] = \frac{10}{Baudrate} * 6$$

Figure 7 Time slot formula

The following figure shows the timing diagram of time slotted answers.

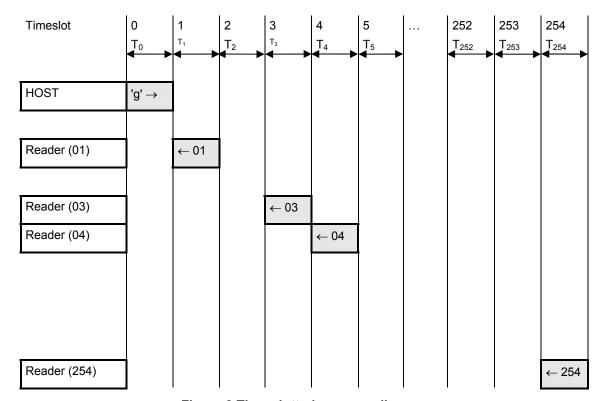


Figure 8 Time slotted answers diagram

8.3.24.5.2 Binary Protocol Version 2

This command never sends version 2 binary frames.

8.3.24.6 High-speed select

This command selects a card in the antenna field (according to the selection criteria) or prepares a multi-select command, switches to high baud rates and enables 256-byte frames. If execution is successful, the command returns the UID of the selected card and the used baud rate. The reader automatically detects the maximum frame size of the card. The reader also tries to communicate to the transponder with the specified baud rate. If no communication is possible, the reader will automatically decrease the speed to the next lower value.

In synchronous mode the up and downlink speed are identical. In asynchronous mode the up and downlink speed can be different.

This command can also force the reader to the communication speed and frame size of the tag to the specified values. This is only needed if the high-speed select is done manually with the transfer command.

Command

Command	Data
ʻh'	Option byte (1 byte)
	synchronous mode 00h select a single card with 106kBaud 02h select a single card with 212kBaud 04h select a single card with 424kBaud 08h select a single card with 848kBaud
	10h prepare next multi-select for 106kbaud 12h prepare next multi-select for 212kbaud 14h prepare next multi-select for 424kbaud 18h prepare next multi-select for 848kbaud
	20h forces reader to 106kBaud 22h forces reader to 212kBaud 24h forces reader to 424kBaud 28h forces reader to 848kBaud
	tag size 30h – 38h force tag frame size
	asynchronous mode 80h select a single card with 106kBaud 82h select a single card with 212kBaud 84h select a single card with 424kBaud 88h select a single card with 848kBaud
	90h prepare next multi-select for 106kbaud 92h prepare next multi-select for 212kbaud 94h prepare next multi-select for 424kbaud 98h prepare next multi-select for 848kbaud

Command	Data
	A0h forces reader to 106kBaud from tag to reader A2h forces reader to 212kBaud from tag to reader A4h forces reader to 424kBaud from tag to reader A8h forces reader to 848kBaud from tag to reader
	B0h forces reader to 106kBaud from reader to tag B2h forces reader to 212kBaud from reader to tag B4h forces reader to 424kBaud from reader to tag B8h forces reader to 848kBaud from reader to tag

Answer

Answer	Description
Data (n bytes) + frame size and baud rate (1byte)	Serial number + frame size used and baud rate
'F'	Error: General failure
'N'	Error: No Tag in the field

Note: If the tag does not support ISO 14443 part 4 F0h will return after serial number instead of used frame size/baud rate.

Examples

High-speed select

Command	Description
h08	1234567890ABCD84
	Select the card with UID 1234567890SABCD. The card supports a 256-byte frame size and 424kBaud on the air interface.

High-speed multi-select

Command	Description
h18	Prepare next multi-select for 848kBd
m1234567890ABCD <cr></cr>	1234567890ABCD84
	Select the card with UID 1234567890SABCD. The card supports a 256-byte frame size and 424kBaud on the air interface.

8.3.24.6.1 Answer from 0xh and 1xh

The lower nibble contains the baud rate used for the air interface.

Table 21 High Speed

Baud Rate	Description
x0	106kBaud
x2	212kBaud
x4	424kBaud
x8	848kBaud

The higher nibble contains the frame size used for the air interface.

Table 22 Frame Size

Frame Size	Description
0x	16 Bytes
1x	24 Bytes
2x	32 Bytes
3x	40 Bytes
4x	48 Bytes
5x	64 Bytes
6x	96 Bytes
7x	128 Bytes
8x	256 Bytes

8.3.24.6.2 Answer from 8xh

The lower nibble contains the baud rate used for the air interface.

The value for the baud rate is XORed with the used up and downlink speed.

Table 23 Baud Rate values

Baud Rate	Description
x1	106kBaud
x2	212kBaud
x4	424kBaud
x8	848kBaud

The higher nibble contains the frame size used for the air interface.

Table 24 Frame Size

Frame Size	Description
0x	16 Bytes
1x	24 Bytes
2x	32 Bytes
3x	40 Bytes
4x	48 Bytes
5x	64 Bytes
6x	96 Bytes
7x	128 Bytes
8x	256 Bytes

8.3.24.6.3 Answer from 2xh, 3xh, 9xh, Axh and Bxh

The option byte is returned as the answer.

8.3.24.6.4 Select a single tag

No previous continuous read is required. The command executes an automatic field reset.

8.3.24.6.5 Extended ID

See above for more information on Extended ID.

The RATS answer is inserted between the serial number and baud rate $\!\!\!/$ frame size byte for ISO14443 A tags.

8.3.24.6.6 Multiple tags

This command with parameter 1xh prepares the next multi-select command as a high-speed select. Any other command will disable the preparation.

8.3.24.6.7 RATS Guard Time SFGT

A high-speed select with parameters 0xh and 1xh automatically waits the SFGT guard time received from the tag before sending the PPS command.

8.3.24.7 Lock block

This command locks a block permanently. Only SR176 and ISO 15693 tags are supported.

Command

Command	Data
'k'	Block address (1 byte)

Answer

Answer	Description
data	'K' + page address
'F'	Error: Lock failure
'N'	Error: No tag in field
'0'	Error: Operation mode failure (only SR176 and ISO 15693 tags are supported)
'X'	Error: Block already locked

Example

Command	Description
k05	K05
	Lock block 05.

8.3.24.7.1 Operation mode failure 'O'

The presented tag is not a SR176 or a ISO 15693 tag.

8.3.24.7.2 Apply settings

After locking a block permanently, the tag needs to be selected for the settings to apply.

8.3.24.8 Multi-Tag Selection / List

This command detects several tags at the same time. It replaces the fast select command ('s') in multiple tag surroundings. The Multi-Tag List command lists all tags with their serial numbers. Use the Multi-Tag Select command to select a single tag. Each tag has to be selected separately.

Command

Command	Data
'm'	Serial number (n bytes) <cr> (1 byte)</cr>

Answer

Answer	Description
Data	serial number
'N'	Error: No Tag in the field

Example

Command	Description	
m <cr></cr>	04E9E700000000 34030F07	→ first card→ second card
	02	→ number of detected tags
m04E9E700000000 <cr></cr>	Select card with its s	erial number

8.3.24.8.1 Multi-tag list

Sending a <CR> as the first parameter, the reader returns a list of all tags present in the antenna field. In the end the total number of tags detected is returned.

8.3.24.8.2 Reading distance

Each card needs a specific amount of power. The reader always provides the same power level. Therefore, the reading distance will decrease if more tags are present. Basically, the reading distance depends on the tag, the antenna and the tuning of the antenna.

8.3.24.8.3 Multi-tag select

Using the serial number with <CR> as parameter, the corresponding tag will be selected. High-level interactions can be performed addressing only this card. All other tags remain silent.

8.3.24.8.4 Multi-tag reset

The antenna field reset can be deactivated with the Protocol configuration 2 register.

By suppressing the antenna field reset, it is possible to detect only new tags in the antenna field.

Attention: It could be possible that ISO 15693 tags are interfered from ISO14443 type B and SR 176 tags. In this case the ISO 15693 tag will always answers on a multi list command even there had been no field reset before. In this case, deactivate ISO 14443 B and SR 176 tags.

8.3.24.8.5 Maximum number of tags

The maximum number of tags in the antenna field is limited to 64 and by the physical characteristics of the antenna.

8.3.24.8.6 LED activity

The LED stays green as long as a tag was found and goes dark if the command is finished.

8.3.24.9 Include tag type

This command includes a specific tag type to those addressed by the reader device.

Command

Command	Data
'o+'	Tag type (1 byte)

Answer

Answer	Description
'O+' + tag type (1 byte)	Command code + String of tag type

Tag type character

Refer to Set tag type.

Example

Command	Description
o+a	Include ISO14443-A to the tag types addressed by the reader device.

8.3.24.10 Exclude tag type

This command excludes a specific tag type from being addressed by the reader device.

Command

Command	Data
'o-'	Tag type (1 byte)

Answer

Answer	Description
'O-' + tag type (1 byte)	Command code + String of tag type

Tag type character

Refer to Set tag type.

Example

Command	Description
o-a	Exclude ISO14443-A from the tag types addressed by the reader device.

8.3.24.11 Set tag type

This command sets up the reader for a specific tag type. The continuous read function will speed up because only this type of tag is addressed. After a reset, the reader starts as defined in its start-up configuration.

Command

Command	Data
'0'	ISO type (1 byte)
	'a' ISO 14443 Type A
	'b' ISO 14443 Type B
	'd' ICODE UID
	'e' ICODE EPC
	'i' ICODE
	's' SR176
	't' activate all tags
	'v' ISO 15693

Answer

Answer	Description
'OA' 'OB' 'OD' 'OE' 'OI' 'OS' 'OT'	String of tag type

Example

Command	Description
oa	Sets the reader device to address ISO14443-A type tags.

Innovision Jewel tag

Innovision Jewel tag is part of ISO 14443 Type A. It can not be separately switched on/off.

8.3.24.12 Set Configuration Flags

This command allows setting some configuration flags just in time; no reset is needed. The values are not stored in the EEPROM; therefore, the changed values are not available after a reset.

Command

Command	Data
of	flag type (1 byte)
	data (1 byte)

Answer

Answer	Description
Data (1 byte)	Current state of changed flag.
'R'	Error: Out of range

Example

Command	Description
of0101	Answer: 01
	Enables the New Serial Mode flag.

Flag Types

The following table shows the Flag Type with its corresponding flag from the specified Protocol Configuration Register.

Table 25 Flag Type with corresponding flag

Flag Type	Corresponding Flag	Protocol Configuration Register	Valid values
00h	Multitag	1	00 / 01
01h	New Serial Mode	1	00 / 01
02h	LED	1	00 / 01
03h	Single Shot	1	00 / 01
04h	Extended Protocol	1	00 / 01
05h	Extended ID	1	00 / 01
06h	Disable Multitag Reset	2	00 / 01
07h	Noisy Environment	2	00 / 01
08h	Reset Recovery Time Multiplier	2	00 03
09h	Enable ISO14443 B Anti-collision	2	00 / 01
0Ah	Disable ISO14443-4 Error Handling	2	00 / 01
0Bh	Disable automatic ISO14443-4 timeouts	3	00 / 01
0Dh	Page Read	3	00 / 01
11h	ReqA Extended ID	3	00 / 01
12h	Disable Read after Write	4	00 / 01
13h	SAK Extended ID	3	00 / 01
14h	WupA/B	4	00 / 01
15h	CID Extended ID	4	00 / 01
16h	Internal use / Do not change		

8.3.24.12.1 Out of range failure 'R'

The entered flag type is out of range.

8.3.24.13 Set Configuration Register

This command allows setting some configuration registers just in time; no reset is needed. The values are not stored in the EEPROM; therefore the changed values are not available after a reset.

Command

Command	Data
og	Register type (1 byte) data (1 byte)

Answer

Answer	Description
Data (1 byte)	Current state of changed register.
'R'	Error: Out of range

Example

Command	Description
og0450	Answer: 50
	Sets the Reset Recovery Time to 50h.

Register Types

The following table shows the Register Type with its corresponding register.

Table 26 Register Type with corresponding register

Register Type	Corresponding Register
00h	Single shot time-out value
01h	Internal use / Do not change
02h	Internal use / Do not change
03h	Reset Off Time
04h	Reset Recovery Time
05h	ISO 14443A Selection Time-out
06h	ISO 14443B Selection Time-out
07h	SR176 Selection Time-out
08h	AFI
0Ch	Page Read Start
0Dh	Page Read Number
0Eh	Command Guard Time
0Fh	CID
10h	Internal use / Do not change

8.3.24.13.1 Out of range failure 'R'

The entered register type is out of range.

8.3.24.14 Reread all register

This command rereads and applies all register settings.

Command

Command	Data
ОХ	none

Answer

Answer	Description
Data (3 bytes)	'X' + new protocol + new baud rate

Example

Command	Description
ox	Answer: X0106
	binary protocol and 460800 baud active

New protocol

00h means ASCII and 01h means binary protocol.

New baud rate

Values of 00h-06h are valid. For baud rate values refer to baud rate register.

8.3.24.15 Antenna power on/off

This command controls the antenna power. It can be used to decrease the power consumption of the reader.

Command

Command	Data
'pon'	Switch reader on
'poff'	Put reader in standby mode

Answer

Answer	Description
'P'	Positive acknowledge

Example

Command	Description
poff	Put reader in standby mode

8.3.24.15.1 Power off

The reader enters standby mode. Power consumption is decreased. All tags in the antenna field are powered off and reset. Standby mode is only entered manually.

To switch off the whole unit, pin 16 (Enable) has to be set to logic low.

8.3.24.15.2 Power on

The reader leaves standby mode and is ready for the next command. Sending a tag command (i.e. select, continuous read) the reader is powered up.

8.3.24.16 Read/Write user port

This command sets or reads the state of the user port (pin 14) of the OEM reader device. The port is set either as output or as input.

Command

Command	Data
'pr'	None
'pw'	State of user port (1 Byte)

Answer

Answer	Description
Data	State of user port (1 Byte)
'C'	Error: Error correction fails
'F'	Error: Transmission Error / No answer received

Example

Command	Description
pr	Reads user port
pw01	Sets user port state to high

8.3.24.16.1 Read port

The port read command returns the current state of the USER port.

Table 27 Read USER port return values

Table 27 Read GOER port retain values	
Port state	Description
00h	USER port is low
01h	USER port is high

8.3.24.16.2 Write port

If user port is used as an output, a $1k\Omega$ resistor has to be integrated into the wire. Otherwise the reader device can be damaged.

Table 28 Write User port settings

Port state	Description
00h	Sets USER port to low
01h	Sets USER port to high
02h – 7Fh	RFU
80h - FFh	Sends a serial data frame and checks the received frame

Sending a Data Frame

If the highest bit (MSB) is set in the State of the User Port, the command sends a serial data frame out the USER port.

The frame includes a start bit, 8 data bits, parity bit and a stop bit.

Table 29 Sending Serial Data Frame

Transmit Frame	Description
Low	Start bit
Low	RFU
Data Bit 6	State of the User Port Bit 6
Data Bit 5	State of the User Port Bit 5
Data Bit 4	State of the User Port Bit 4
Data Bit 3	State of the User Port Bit 3
Data Bit 2	State of the User Port Bit 2
Data Bit 1	State of the User Port Bit 1
Data Bit 0	State of the User Port Bit 0
Parity Bit	Even Parity Bit
High	Stop Bit

November 4, 2008 Page 71 of 125

After 2ms Guard Time the answer should be received on the User Port otherwise an error is returned.

Table 30 Receiving Serial Data Frame

Receive Frame	Description
Low	Start bit
Error Bit	If set, an error was detected.
Data Bit 6	State of the User Port Bit 6
Data Bit 5	State of the User Port Bit 5
Data Bit 4	State of the User Port Bit 4
Data Bit 3	State of the User Port Bit 3
Data Bit 2	State of the User Port Bit 2
Data Bit 1	State of the User Port Bit 1
Data Bit 0	State of the User Port Bit 0
Parity Bit	Even Parity Bit
High	Stop Bit

If the Error bit is set or the Parity Bit is not correct, the Write User Port command returns an error code.

8.3.24.17 Quiet

This command sets a selected tag into halt state. Only ISO14443 A+B and SR176 tags are supported.

Command

Command	Data
'q'	None

Answer

Answer	Description
'Q'	Halt state successfully set.
'N'	Error: No Tag in the field

8.3.24.17.1 ISO 14443 Type A

With ISO14443-3 Type A tags, the Quiet command always answers with 'Q' because the halt command does not send any acknowledge.

In Part 4 a 'Deselect' command will be performed.

8.3.24.17.2 ISO 14443 Type B

Some ISO14443 Type B tags do not support this command or do not respond. 'Quiet' is an ISO 14443-4 command, so it will work only if the 'Deselect' command is supported by the corresponding transponder.

8.3.24.17.3 SR176

With SR176 tags the Quiet command always answer with 'Q' because the completion command does not send any acknowledge.

8.3.24.18 Resend Last Answer

This command resends the last answer from the internal serial buffer of the reader.

Command

Command	Data
'ra'	Resend last answer

8.3.24.19 Read block

This command reads a data block on a card. The size of the returned data depends on the tag used. The block address range depends on the tag as well.

Command

Command	Data
'r'	Block address (1 byte), valid range 00h – 40h
'rb'	Block address (1 byte)

Answer

Answer	Description
Data	data block (depends on tag type)
'F'	Error: read failure
'N'	Error: No tag in field
'O'	Error: Operation mode failure
'R'	Error: Out of range

Example

Command	Description
rb05	Reads block 05.

8.3.24.19.1 Read failure 'F'

This error is returned if either the reader receives bad data or the block address exceeds the block address range of the sector.

8.3.24.19.2 No tag in field 'N'

The tag does not respond. There is either no tag present or addressed.

8.3.24.19.3 Operation mode failure 'O'

The presented tag is not ISO14443 type A, SR 176, ICode, ICode-UID and ISO 15693 compliant.

For ISO 14443 type A only MIFARE® tags are supported.

8.3.24.19.4 Out of range failure 'R'

The block address of the 'r' command is higher than 40h.

The block address of the 'r' command conflicts with other commands, therefore the block address has to be limited to 40h.

Use the 'rb' command instead.

8.3.24.20 Read data (multiple blocks)

This command reads multiple data blocks on a card. The size of the returned data depends on the tag used. The block address range depends on the tag as well.

Command

Command	Data
'rd'	Start block address (1 byte) Number of blocks to read (1 byte)

Answer

Answer	Description
Data	data block (depends on tag type)
'F'	Error: read failure
'N'	Error: No tag in field
'0'	Error: Operation mode failure

Example

Command	Description
rd0504	Reads 4 blocks starting with block 05.

8.3.24.20.1 Read failure 'F'

This error is returned if either the reader receives bad data or the block address exceeds the block address range of the sector.

8.3.24.20.2 No tag in field 'N'

The tag does not respond. There is either no tag present or addressed.

8.3.24.20.3 Operation mode failure 'O'

The presented tag is not ISO14443 type A, SR 176, ICode or ISO 15693 compliant. For ISO 14443 type A only MIFARE® tags are supported.

8.3.24.21 Read reader EEPROM

This command reads the internal reader EEPROM. It contains all start-up parameters and the device ID. Changes in the start-up settings will only go into effect after a reset of the device.

Command

Command	Data
'rp'	EEPROM address (1 byte) 00h EFh

Answer

Answer	Description
Data	EEPROM data (1 byte)
'R'	Error: Out of range failure

Example

Command	Description
rp0B	Reads protocol configuration register.

8.3.24.21.1 Out of range failure 'R'

The entered EEPROM address is not valid.

8.3.24.22 Select

This command selects a single card in the antenna field. It can only be used in single tag mode. If successfully executed, the command returns the UID of the selected card. The reader detects the length of the UID automatically.

Command

Command	Data
's'	None

Answer

Answer	Description
Data	serial number
'N'	Error: No Tag in the field

Example

Command	Description
S	1234567890ABCD
	Select the card with UID 1234567890SABCD.

8.3.24.22.1 Select a single tag

No previous continuous read is required. The command executes an automatic field reset.

8.3.24.22.2 Extended ID

See above for more information on Extended ID.

8.3.24.22.3 Multiple tags

This command is designed for fast access of a single tag in the field. If multiple cards are used the 'm' instruction has to be used instead.

8.3.24.23 Get Version

This command returns the current version of the reader module.

Command

Command	Data
'v'	None

Answer

Answer	Description
'MultiISO 1.0' + <cr> + <lf></lf></cr>	ASCII Mode
02 00 0C 4D 75 6C 74 69 49 53 4F 20 31 2E 30 1F 03	Binary Mode

Example

Command	Description
V	'MultiISO 1.0' Version of the reader module

8.3.24.24 Write block

This command writes data to a block.

Command

Command	Data
'w'	Block address (1 byte), valid range 00h – 40h Data (n bytes)
'wb'	Block address (1 byte) Data (n bytes)

Answer

Answer	Description
Data	Data block (depends on tag type)
'F'	Error: Write failure
'N'	Error: No tag in field
'O'	Error: Operation mode failure
'R'	Error: Out of range

Example

Command	Description
wb0511223344	Writes data 11223344 on block 05.

8.3.24.24.1 Write failure 'F'

This error is displayed if bad transmission conditions are given. If the block address exceeds the physical number of blocks of a tag, this error is shown.

8.3.24.24.2 No tag error 'N'

This error is returned if no tag is present or the card does not respond.

8.3.24.24.3 Operation mode failure 'O'

The presented tag is not ISO14443 type A, SR 176, ICode, ICode-UID and ISO 15693 compliant.

For ISO 14443 type A only MIFARE® tags are supported.

8.3.24.24.4 Out of range failure 'R'

The block address of the 'w' command is higher than 40h.

The block address of the 'w' command conflicts with other commands, therefore the block address has to be limited to 40h.

Use the 'wb' command instead.

8.3.24.24.5 Disable Read after Write

A read is done automatically after every write to ensure correct writing.

If the "disable Read after Write flag" is set no read is done, and the returned data is a 00h byte in case of successfully written data.

8.3.24.25 Write data (multiple blocks)

This command writes multiple blocks to a card.

Command

Command	Data
'wd'	Start block address (1 byte) Number of blocks (1 byte) Data (n bytes)

Answer

Answer	Description
Data	Data block (depends on tag type)
'F'	Error: Write failure
'N'	Error: No tag in field
'O'	Error: Operation mode failure

Example

Command	Description
wd050211223344556 67788	Writes data 11223344 on block 05 and 55667788 on block 06.

8.3.24.25.1 Write failure 'F'

This error is displayed if bad transmission conditions are given. If the block address exceeds the physical number of blocks of a tag, this error is shown.

8.3.24.25.2 No tag error 'N'

This error is returned if no tag is present or the card does not respond.

8.3.24.25.3 Operation mode failure 'O'

The presented tag is not ISO14443 type A, SR 176, ICode or ISO 15693 compliant. For ISO 14443 type A only MIFARE $^{\otimes}$ tags are supported.

8.3.24.25.4 Disable Read after Write

A read is done automatically after every write to ensure correct writing.

If the "disable Read after Write flag" is set no read is done, and the returned data is a 00h byte in case of successfully written data.

8.3.24.26 Write EEPROM

Writes to the internal reader EEPROM. It contains all start-up parameters and the device ID. Changes to the start-up settings will only go into effect after a reset of the device.

Command

Command	Data
'wp'	Address (1 byte), valid range 0Ah - EFh Data (1 byte)

Answer

Answer	Description
Data	EEPROM data (1 byte)
'F'	Error: Read after write failure
'R'	Error: Out of range failure

Example

Command	Description
wp0A01	Set EEPROM address 0A (Station ID) to 01h

8.3.24.26.1 Out of range failure 'R'

The entered address exceeds the address range.

8.3.24.27 Reset

This command executes a power on (software) reset. New configuration settings will be loaded. It resets all tags in the antenna field.

Command

Command	Data
'x'	None

Answer

Answer	Description
MultiISO 1.0' + <cr> + <lf></lf></cr>	ASCII Mode
None	Binary Mode

8.3.24.27.1 Disable Start-up Message

If the start-up message is disabled in the protocol configuration register 2, the ASCII mode does not respond with the version of the reader.

8.3.24.27.2 Reset Timing

The power up timing depends on environmental conditions such as voltage ramp up. For handheld devices the timing can vary based on the charge state of the battery.

8.3.24.27.3 Field Reset

The field reset switches off the antenna field for the specified duration. All tags need a certain amount of time to initialize before a command can be processed. The second byte specifies the field recovery time.

Command

Command	Data
'y'	Off time in milliseconds (1 byte) Field recovery time in milliseconds (1 byte)

Answer	Description
'Y'	After the field reset the reader sends back a 'Y' to acknowledge the command.

8.3.25 ISO 14443 Type A (MIFARE®) only commands

8.3.25.1 Increment value block (credit)

Increments a value block with a defined value. A read is done automatically after a write to verify data integrity. The command fails if the source block is not in value block format. A previous login is needed to access a block.

Command

Command	Data
'+'	Block (1 byte) Value (4 bytes)

Answer

Answer	Description
Data	Value (4 bytes)
'I'	Error: value block failure
'F'	Error: increment failure
'N'	Error: No tag in field
'O'	Error: Operation mode failure

Example

Command	Description
+040000001	Adds 1 to value block 4
+0500000100	Adds 256 to value block 5

8.3.25.1.1 No value block 'I'

Specified block does not match the value format. The value block is corrupted. A backup block can be used to restore the correct value.

8.3.25.1.2 Increment failure 'F'

This indicates a general failure during the increment procedure or an inability to read after the write process.

8.3.25.1.3 No tag error 'N'

The reader does not detect a response from the tag. There is either no tag present or the tag does not respond to the request.

8.3.25.1.4 Operation mode failure 'O'

8.3.25.2 Decrement value block (debit)

Decrements a value block with a defined value. A read is done automatically after the write to verify data integrity. The command fails if the source block is not in value block format. A previous login is needed to access a block.

Command

Command	Data
U	Block (1 byte) Value (4 bytes)

Answer

Answer	Description
Data	Value (4 bytes)
Т	Error: value block failure
'F'	Error: decrement failure
'N'	Error: No tag in field
'0'	Error: Operation mode failure

Example

Command	Description
-040000001	Subtract 1 to value block 4
-0500000100	Subtract 256 to value block 5

8.3.25.2.1 No value block 'I'

Specified block does not match the value format. The value block is corrupted. A backup block can be used to restore the correct value.

8.3.25.2.2 Decrement failure 'F'

This indicates a general failure during the decrement procedure or an inability to read after the write process.

8.3.25.2.3 No tag error 'N'

The reader does not detect a response from the tag. There is either no tag present or the tag does not respond to the request.

8.3.25.2.4 Operation mode failure 'O'

8.3.25.3 Copy value block (backup)

Copies a value block to another block of the same sector. A read is done automatically after the write to ensure data integrity. Used for backup and error recovery. A previous login is needed to access a block.

Command

Command	Data
' = '	Source block (1 byte) Target block (1 byte)

Answer

Answer	Description
Data	New value of target block (4 bytes).
T	Error: value block failure
'F'	Error: copy failure
'N'	Error: No tag in field
'0'	Error: Operation mode failure

Example

Command	Description
=0405	Copy value block 4 to block 5
=0506	Copy value block 5 to block 6

8.3.25.3.1 Target block

The target block does not need to be a valid value block. If the source block is not in value format, the command fails.

8.3.25.3.2 No value block 'I'

Source value block is not in a valid value block. The value block is corrupted. A backup block can be used to restore the correct value.

8.3.25.3.3 Copy failure 'F'

This indicates a general failure during the copy procedure or an inability to read after the write process.

8.3.25.3.4 No tag error 'N'

The reader does not detect a response of the tag. There is either no tag present or the tag does not respond to the request.

8.3.25.3.5 Operation mode failure 'O'

8.3.25.4 Login (authenticate tag)

Performs an authentication in order to access one sector of a MIFARE® card. Only one sector can be accessed at a time.

Command

Command	Data
יוי	Sector (1 byte), valid range 00h - 3Fh Key type (1 byte)
	AAh authenticate with key type A
	FFh authenticate with key type A, transport key FFFFFFFFFF
	BBh authenticate with key type B
	10h 2Fh authenticate with key type A using stored key (00h 1Fh)
	30h 4Fh authenticate with key type B using stored key (00h 1Fh)
	Key (6 bytes) / <cr> (1 byte), optional</cr>
	By transmitting <cr> instead of the keydata</cr>
	authentication is done with manufacturer's transport keys (A0A1A2A3A4A5h, B0B1B2B3B4B5h, FFFFFFFFFFFFh).

Answer

Answer	Description
data	Login status (1 byte)
'L'	Login success
'F'	Error: General failure
'N'	Error: No tag
'0'	Error: Operation mode failure
'R'	Error: Out of range
'X'	Error: Authentication failed

Example

Command	Description
I02AA <cr></cr>	Authenticate for sector 2, using the transport key A (A0A1A2A3A4A5h, key type A)
I3FBB <cr></cr>	Authenticate for sector 63, using the transport key 2 (B0B1B2B3B4B5h, key type B)
I04FF <cr></cr>	Authenticate for sector 4, using the transport key 3 (FFFFFFFFFFh, key type A)
10FAAFFFFFFFFFF	Authenticate for sector 15, using key FFFFFFFFFFh, key type A
I0E14	Authenticate for sector 14, using EEPROM key 4, key type A
10530	Authenticate for sector 5, using EEPROM key 0, key type B
10732	Authenticate for sector 7, using EEPROM key 2, key type B
10110	Authenticate for sector 1, using EEPROM key 0, key type A
I0ABBFF12FFFFF35	Authenticate for sector 10, using key FF12FFFFF35h, key type B

8.3.25.4.1 No tag error 'N'

The reader does not detect a response from the tag. There is either no tag present or the tag does not respond to the request.

8.3.25.4.2 Operation mode failure 'O'

The tag is not ISO14443 type A compliant.

8.3.25.4.3 Out of range failure 'R'

The entered key type or the sector is out of range.

8.3.25.4.4 <CR>

Three transport keys are implemented to access cards quickly.

By transmitting <CR> instead of the key, the reader module uses the transport keys for the login procedure.

Command	Description
LxxAA <cr></cr>	Authenticate for sector xx, using the transport key 1 (A0A1A2A3A4A5h, key type A)
LxxBB <cr></cr>	Authenticate for sector xx, using the transport key 2 (B0B1B2B3B4B5h, key type B)
LxxFF <cr></cr>	Authenticate for sector xx, using the transport key 3 (FFFFFFFFFFh, key type A)

8.3.25.4.5 Login with key data from EEPROM

Each key stored in the reader EEPROM can be used as type A or type B key. To use a key as type A, the value 10h must be added to the key index. 30h must be added to use a key as type B.

8.3.25.4.6 Usage of key A, key B

MIFARE® cards support two different crypto keys for each sector. Each key is 32 bits long and is stored in the sector trailer (last block of the sector) on the card. It is possible to set different access rights for each key.

November 4, 2008 Page 85 of 125

8.3.25.5 Read value block

Reads a value block. The command checks if data is in value block format. The read value block command needs a successful login.

Command

Command	Data
'rv'	Value block (1 byte)

Answer

Answer	Description
Data	Read value (4 bytes)
'F'	Error: General failure
'I'	Error: value block failure
'N'	Error: No tag in field
'O'	Error: Operation mode failure

Example

Command	Description
rv04	Reads value of block 4.

8.3.25.5.1 No value block 'I'

The value read back after the write value command is not a value block. Data was written corruptly.

8.3.25.5.2 No tag error 'N'

This means that the tag does not respond, because either there is no tag present or none of the tags in the field are authenticated ('I' instruction).

8.3.25.5.3 General failure 'F'

In addition to the case of a data read failure caused by bad transmission conditions, this error is returned if a sector is addressed which is not located in the authenticated area.

8.3.25.5.4 Operation mode failure 'O'

8.3.25.6 Write value block

This command formats a block as a value block containing a 32-bit value. Value blocks need a complete 16-byte block due to redundant storage. A successful login is required to run the command.

Command

Command	Data
'wv'	Value block (1 byte) Value (4 bytes)

Answer

Answer	Description
Data	Written value (4 bytes)
'I'	Error: value block failure
'F'	Error: write failure
'N'	Error: No tag in field
'O'	Error: Operation mode failure

Example

Command	Description
wv05010055EF	Writes value 010055EFh to block 5.

8.3.25.6.1 Invalid value 'I'

The value read back after the write value command is not a value block. Data was written corruptly.

8.3.25.6.2 Write failure 'F'

In addition to the case of a data read failure caused by bad transmission conditions, this error is returned if a sector is addressed which is not located in the authenticated area.

8.3.25.6.3 No tag error 'N'

This error is returned if no tag is present or the card does not respond.

8.3.25.6.4 Operation mode failure 'O'

The tag is not ISO14443 type A compliant.

8.3.25.6.5 Writing values

The write value block command is designed to create blocks in value format. This command requires write access to the specified block. Using this instruction for ticketing operations is not recommended. For ticketing applications, special instructions (Increment/Decrement/Copy) are available.

8.3.25.6.6 Disable Read after Write

A read is done automatically after every write to ensure correct writing.

If the "disable Read after Write flag" is set no read is done, and the returned data is a 00h byte in case of successfully written data.

8.3.26 Key Management

The Key Management is able to store up to 32 keys and is also able to manage 3 different key types.

If no key is available to login into the reader, it is possible to reset the key table without any authentication.

Key type	Description
01	my-d™ secure key
02	DES key
03	MIFARE [®] key

8.3.26.1 Authenticate to reader

This command logs into a reader. Only my-d™ secure and DES keys are allowed to login into reader. After successful log in the key table of the reader can be changed. The authentication does 2 two-pass authentications, defined in ISO 9798 part 2, within two steps. Following commands need a prior log in:

- Update key
- Update key access rights
- Change key type
- · Reset key table

Command

Command	Data
Step 1: 'ar'	Option x1h (1 byte) Key type (1 byte) Key index (1 byte)
Step 2: 'ar'	Option x2h (1 byte) Random number key Management (8 bytes) MAC key Management (8 bytes)

Answer	Description
Step 1	Random number reader (8 bytes)
Step 2	MAC reader (8 bytes)

Option

The option byte defines the authentication step and type of authentication.

Bit	Description
0 - 1	Authentication Steps 0: Log out 1: Step 1 2: Step 2
2 – 6	RFU
7	Authentication Algorithm 0: 2 two pass authentications 1: RFU

Key index

The key index of Step 1 points to a valid key with the access rights to login into the reader. The key index is zero based.

Log out

It is possible to log out with Authentication Step 0.

Default Keys

The following keys are default:

Key Type	Key
my-d™	01020407080B0D0E10131516191A1C1Fh
	Default Master key
DESFire	00000000000000000000000000000000000000
MIFARE®	A0A1A2A3A4A5h
MIFARE [®]	B0B1B2B3B4B5h
MIFARE®	FFFFFFFFFh

Two-Pass Authentication Flow Diagram

Host		Reader
1. Start Authentication Step 1	StartAuth →	
		2. Generate Random number RndRdr
	← RndRdr	3. Reply Random number
4. Generate Random number RndH		
5. Calculate the MAC of the key management MacH = Enc(RndRdr)		
6. Transmit Random number and MAC: RndKm,MacH	RndKm,MacH →	
		7. Check the received MacH RndRdr = Dec(MacH)
		8. Calculate the MAC of the reader MacRdr = Enc(RndH)
	← MacRdr	9. Reply MAC
10. Check the received MacRdr		
RndH = Dec(MacRdr)?		

8.3.26.2 Get Key Access Rights

This command returns the access rights of a key.

Command

Command	Data
'ia'	Key type (1 byte)
	Key index (1 byte)

Answer

Answer	Description
Data	Access rights (2 bytes). Higher Byte is send first

Access Rights

Only the default master key has all access rights. New keys got the default value 0000h.

Bit	Description
0	Allow Add Key
1	Allow Update Key
2	Allow Delete Key
3	Allow Reset Key table
4 - 7	RFU
8	RFU (Disable Serial Encryption)
9	Disable Authentication Tag
10	Allow Authentication Reader
11	Allow Changing Access rights
12	Allow Key Type changing
13	Allow 'ds' encryption
14 - 15	RFU

November 4, 2008 Page 91 of 125

8.3.26.3 Get key status

This command reports the key status of the reader. The reader lists for each key the key information. This command is used to inform the key management about the key status. The first byte of the response lists the number of stored keys.

Command

Command	Data
'it'	key type (1)

Answer

Answer	Description
my-d™ secure	Number of keys (1 byte)
Data	[Key information (8 bytes)]
	Free User part (1 byte)
	Project ID (3 bytes)
	Logical Sector ID (1 byte)
	Key type (1 byte)
	KVV (2 bytes)
DES Data	Number of keys (1 byte)
	[Key information (10 bytes)]
	Option byte (1 byte)
	Free User part (9 bytes)
MIFARE® Data	Number of keys (1 byte)
	[Key information 10 bytes)]
	Free User part (10 bytes)

More than 255 bytes

If the amount of data exceeds 255 bytes, than the answer is divided into more frames. If a frame follows, the Number of keys byte is extended with a set MSB (80h).

8.3.26.4 Reset key table

The reset key table clears all key entries in the reader. Afterwards the default keys are loaded automatically.

It is only allowed to reset the key table after a successful authentication to the reader.

If no keys are available to login into the reader, it is possible to reset the key table without an authentication.

Command

Command	Data
'rt'	None

Answer	Description
'RT'	In case of success

8.3.26.5 Update key access rights

This command is able to change the access rights of a key.

It is only allowed to change the access rights after a successful authentication to the reader with a key permitted to change the access rights.

Command

Command	Data
	Key type (1 byte) Key index (1 byte)
	Access rights (2 bytes)

Answer

Answer	Description
Data	Access rights (2 bytes). Higher Byte has to be sent first.

Access rights

For more detailed information refer to "Get key access rights".

8.3.26.6 Change key type

This command is able to change the key type. Be sure the key information data are suitable to the key type.

It is only allowed to change the key type after a successful authentication to the reader with a key permitted to change the key type.

Command

Command	Data
'uc'	Key type (1 byte) Key index (1 byte)
	New key type (1 bytes)

Answer	Description
Data	Access rights (2 bytes)

8.3.26.7 Update key

The update key command stores, modifies or deletes a key in the reader key table. A key is identified with its key information data. The key information data has to be unique within the same key type.

If a key is erased the key data must be dropped.

It is only allowed to update the key type after a successful authentication to the reader with a key permitted the necessary rights.

Command

Command	Data
my-d™ secure	Key type 01h (1 byte)
ʻuk'	Action (1 byte)
	Key information data (8 bytes)
	Free User Part (1 byte)
	Project ID (3 bytes)
	Logical Sector ID (1 byte)
	Key type (1 byte)
	KVV (2 bytes)
	Key Data (8 / 16 bytes)
DES	Key type 02h (1 byte)
'uk'	Action (1 byte)
	Key information data (10 bytes)
	Option (1 byte)
	Free user part (9 bytes)
	Key Data (16 bytes)
MIFARE®	Key type 03h (1 byte)
'uk'	Action (1 byte)
	Key information data (10 bytes)
	Free user part (10 bytes)
	Key Data (16 bytes)

Answer	Description
Data	Index of key (1 byte)

Action

The Action byte defines the action of the key.

Action	Description
Axh	Add / Update key
5xh	Delete Key
x1h	my-d™ secure key A
x2h	my-d™ secure key B

my-d™ secure key

For more detailed information on key information data refer to Infineon documentation.

DES key option byte

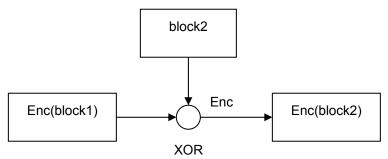
Bit	Description
0	0 16 byte key 1 8 byte key
1 - 7	RFU

In case of an 8-byte key, the first 8 bytes of the key data are valid.

MIFARE® key

Only the first 6 bytes of key data are valid.

Number of stored keys


The key management is able to store up to 32 keys.

Encryption

Key Data for DESFire and MIFARE[®] keys has to be encrypted with the login key in CBC mode. my-d™ S keys are enciphered every 8 byte block separately without CBC mode.

CBC mode

The data stream has to be divided into blocks of 8 bytes. The last enciphered block has to be XORed with the next plain block.

8.3.27 my-d™ secure

Note that ISO 14443 tags do not support the addressed mode. Bit 5 and 6 of the option byte are not used with ISO 14443 tags. The ISO 14443 tag only works in selected mode.

8.3.27.1 Abort KTT upload

This command aborts the Prepare for KTT 'ut' command, if the reader is in prepare for KTT awareness mode.

Command

Command	Data
·* ¹	None

Answer	Description
00h	Prepare for KTT successfully aborted
'F'	Prepare for KTT was not active
No response	Key uploading is in progress

8.3.27.2 Authenticate to sector

The Authenticate to sector command sets up a secured transmission to a transponder.

Command

Command	Data
'as'	Option byte (1 byte)
	[UID (8 bytes)]
	Key page (1 byte)
	Key index (1 byte)
	Counter page (2 byte)
	Diversification data (8 bytes)

Answer

Answer	Description
L'	In case of success

Option byte

The option byte defines the general behavior of the command.

Note that ISO 14443 tags are only working in selected mode.

Bit	Description
7	RFU
6	If set the tag is in addressed mode. The UID is following as first 8 bytes after the option byte. The my-d™ frame is following.
5	If set the tag is selected. No UID is needed.
4 - 0	RFU

Key page

This byte defines the key page number of the transponder

Key index

Defines the reader key index. If the index exceeds the key index of the reader the error 'R' out of range is thrown. The key index is zero based.

Counter page

This page number points to the authentication counter page. Lower byte of the page number is sent first.

Diversification data

This data is used to diversify the key data.

Example

Command	Answer / Description
'as200401030000000000000000000000000	'L' Login into tag.

8.3.27.3 Issue transponder key

Writes a diversified key to the transponder. This command uses the write and Reread my- d^{TM} command.

Command

Command	Data
ʻik'	Option byte (1 byte)
	[UID (8 bytes)]
	Key index (1 byte)
	Destination page (2 bytes)
	Diversification data (8 bytes)
	[Sector index and access conditions (2 bytes)]

Answer	Description
'IK'	Key successfully written

Option byte

The option byte defines general behavior of the command.

Note that ISO 14443 tags are only working in selected mode.

Bit	Description
7	If set the user mode is used and the MAC is calculated and added to the frame. If not set the issuer mode is used sector index and access conditions are included and no MAC is calculated.
6	If set the tag is in addressed mode. The UID is following as first 8 bytes after the option byte. The my-d™ frame is following.
5	If set the tag is selected. No UID is needed.
4 - 0	RFU

Key index

Defines the reader key index. If the index exceeds the key index of the reader the error 'R' out of range is thrown. The key index is zero based.

Destination page

Defines the transponder page index. Lower byte of the page number is sent first.

Sector index and access conditions

In issuer mode the sector index and the access conditions are added.

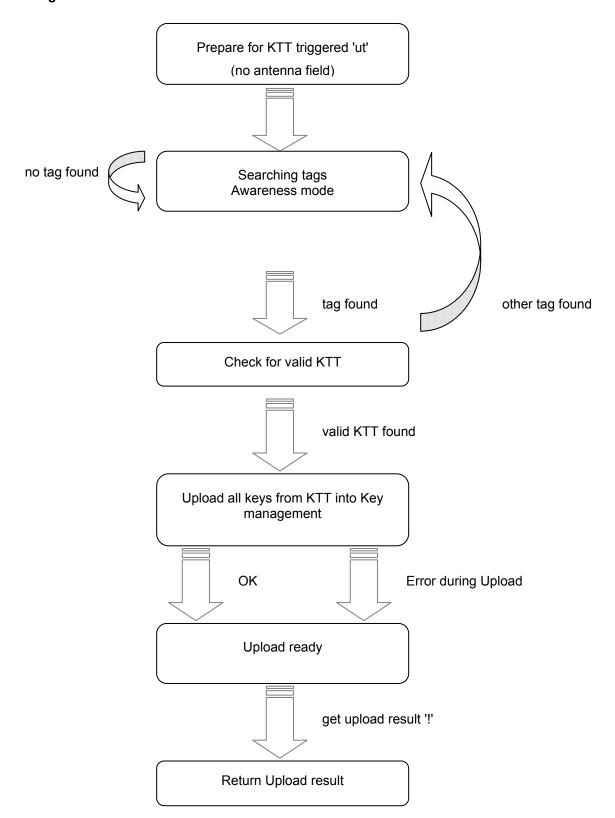
8.3.27.4 Prepare for KTT

This command sets the reader into KTT awareness mode.

Command

Command	Data
'ut'	Key page (1 byte)
	Key index (1 byte)
	Counter page (2 bytes)
	Diversification data (8 bytes)

Answer


Use the check KTT upload status '!' command to finish the upload procedure.

LED activity

The green and red LED indicates the state of the upload process.

Mode	LED activity
Awareness	Red and green LEDs are flashing slow
Upload in progress	Green LED is active
Error during upload detected	Red LED is flashing fast until the '!' command is received
Upload finished successfully	Green LED is flashing fast until the '!' command is received
Upload aborted	Red LED is active for 1 second

State diagram

8.3.27.5 my-d™ command

This command sends and receives my-d $^{\text{TM}}$ plain and secure commands including my-d $^{\text{TM}}$ secure algorithm.

Command

Command	Data
'Z'	Downlink length (1 byte)
	Option byte (1 byte)
	[UID (8 bytes)]
	my-d™ data (n bytes)

Answer

Answer	Description
Data	Status byte: 00h (1 byte)
	Data without MAC and CRC (n bytes)

Downlink length

This byte is mandatory. It will define the length of the my-d[™] data frame sent to the reader. The MAC, CRC and the framing overhead is not included.

Option byte

The option byte defines general behavior of the command.

Note that ISO 14443 tags are only working in selected mode.

Bit	Description
7	If set the MAC is calculated and added to the frame
6	If set the tag is in addressed mode. The UID is following as first 8 bytes after the option byte. The my-d™ frame is following.
5	If set the tag is selected. No UID is needed.
4 - 0	RFU

Data

Data is sent as my-d™ plain command. It contains only data that is processed by the MAC calculation. If the tag is addressed, only valid with ISO 15693 tags, with its UID the first 8 bytes are interpreted as UID and not included into the MAC calculation.

MAC calculation is done automatically if according flag is set. The ISO 15693 or the ISO 14443 frame is completed and the CRC is computed and added automatically.

The commands Write Page, Restricted Write and Write Byte do not need any MAC verification for the answer.

9 Frequently Asked Questions

9.1.1 Getting Started

To test and interface the Dual ISO Module, you do not need a sophisticated μP development system. All you need is a PC, a connection cable and a power supply for the reader. If you are using Microsoft Windows (95/98/NT/...), take the following steps:

- Make sure, that your reader has an RS232 interface
- Start HyperTerminal
- Create a new connection (FILE/NEW CONNECTION)
- Enter a name for the connection (i.e. 'MIFARE')
- Select connect COM2 (COM1) direct connection
- Connection setup 9600,8,n,1,no handshake
- Connect your reader to COM2 (COM1) of the PC and apply appropriate supply voltage. The reader transmits a string ("MultiISO 1.0") to the PC.
- This string denotes the firmware provided with your reader module
- Put a tag to your reader. Serial numbers should be displayed properly
- Enter commands via keyboard. They should be transmitted to the reader and the reader should reply

If using an operating system different from Microsoft Windows, you may use any other terminal program that is capable of receiving/transmitting data via the serial port of your PC.

9.1.2 How should the Multi ISO Reader be personalized?

In ASCII protocol applications, no personalization is necessary.

In applications that are using the binary protocol mode, personalization is required. Use the Utility program to set up your reader correctly. Contact support: eusupport@hidglobal.com to acquire the utility. Minimum requirements are WIN98SE, WIN 2000, WIN XP and a free COM port on the PC.

9.1.3 What type of MIFARE® card should I use?

The MIFARE® standard is designed for multi-application environments. It contains 16 sectors each with 2 individual keys, access conditions, and 3 data or value blocks. Some applications use the 1 Kbytes of the MIFARE® Standard Card Memory only as storage area.

MIFARE[®] Ultra light has no crypto unit on chip. It only supports 16 blocks.

 $\mathsf{MIFARE}^{\$}$ Standard 4k cards have the same features as $\mathsf{MIFARE}^{\$}$ Standard cards but increased memory capacity.

9.1.4 Using a MIFARE® card

This example demonstrates the detection of a card in the antenna field with continuous read and the reading of a page.

Table 31 Using a MIFARE® card

Command	Answer
С	Activate continuous read mode
	B2197B58 a card responds with its serial number
	S abort continuous read mode
S	B2197B58 select card
I01AAFFFFFFFFFF	L login into sector 1 with key FFFFFFFFFFh key type A
rb04	00112233445566778899AABBCCDDEEFF read block 04
С	Activate continuous read mode to detect a new card

9.1.5 Using NFC

The example shows how to communicate with NFC using the NFC demoboard PN531.

The reader is the initiator. The NFC has to be configured as passive target using MIFARE® 106kbps (other NFC modes are not supported).

As first step place the reader on top of the NFC demoboard antenna in 3 cm distance.

Then load the "passive_target_106.cmd" file from the "Scripts\Tama\P2P" subfolder into the SCRTester application. Run the code.

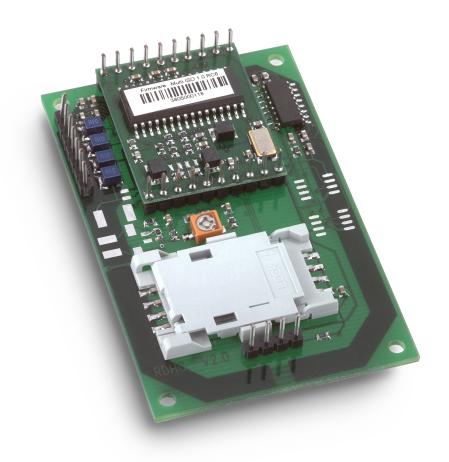
Now it is possible to get a serial number from the NFC.

Table 32 Get a serial number from NFC

Command	Answer
s	08123456

References

- [1] ISO/IEC 14443 Part 1-4, Identification Cards Contact less integrated circuit(s) cards Proximity cards
- [2] DESFire Documentation, NXP; www.nxp.com
- [3] Data Encryption Standard (DES), FIPS PUB 46-3, Reaffirmed 1995 October 25
- [4] HID Antenna Design Guide
- [5] Philips; Application Note, MIFARE® & I-Code, Micore Reader IC family Directly Matched Antenna Design


Appendix A - SAM

Note: The power supply of the SAM adapter must be turned off during the entire card insertion period; otherwise SAM card damage may occur.

For proper usage of the SAM, a 100nF capacitor between $V_{\rm cc}$ and GND is necessary.

Appendix B

Compact Serial Plug & Play Module (RDHC-020xN0-02)

Features

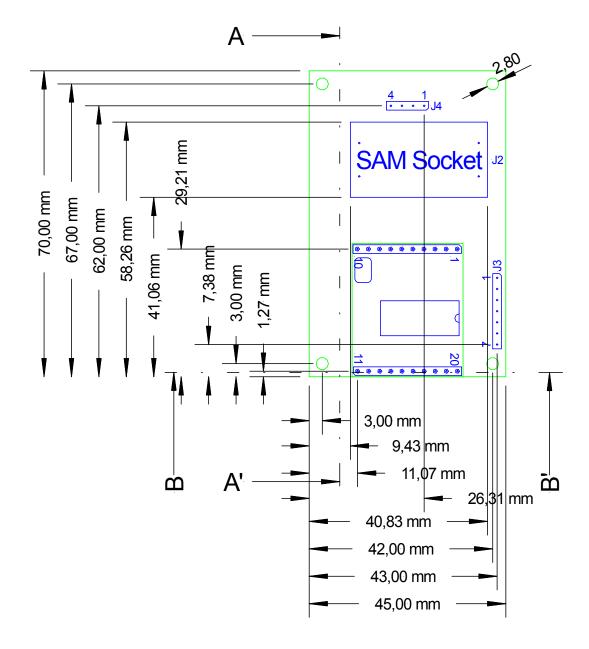
Interface type: RS232

Dimensions: 70x45x12.1 (LxWxH), all in mm
 Reading Distance: up to 75mm, depending on the tag

SAM: supported
 Boot loader: supported (²)

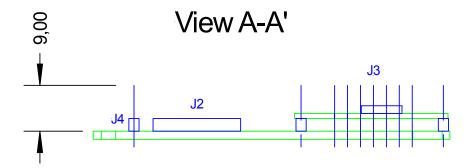
Drivers: virtual COM port driver, DLL driver available

Antenna: on board

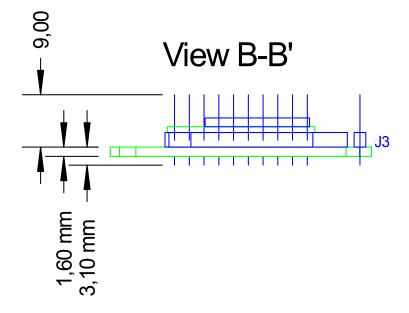

Signaling: reading LED, power LED
 Power Supply: 5VDC ± 10% regulated

(2) The boot loader enables to download a firmware update via the serial interface to the unit without replacing/dismantling the hardware.

Dimensions


Top view

All dimensions are listed in mm


Side View

All dimensions are listed in mm

Front View

All dimensions are listed in mm

Pin Out - Jumper 3

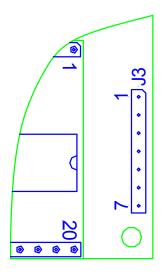


Figure 9 Pin out of jumper 3

Table 33 Pin out of jumper 2

PIN	PIN No.	Description	
RFU	1	RFU	
+5V	2	Supply Voltage	
GND	3	Ground	
RX/RXA	4	RS232 RX / RS422 RXA	
TX/TXA	5	RS232 TX / RS422 TXA	
RXB	6	RS422 RXB	
TXB	7	RS422 TXB	

Electrical characteristics of J3 PINs in RS232 Configuration.

PIN	PIN No.	Min	Тур.	Max.	Description
RFU	1				Do not connect
+5V	2	4.5V	5V	5.5V	Supply Voltage
			150mA	250mA	Supply Current (without SAM)
GND	3		GND		Ground for Power Supply and Interface
RX/RXA	4	-15V 3kΩ	5kΩ	+15V 7kΩ	RS232 Voltage Levels Input Impedance
TX/TXA	5	±5V 300kΩ	±9V		RS232 Voltage Levels Output Impedance
RXB	6				Do not connect
TXB	7				Do not connect

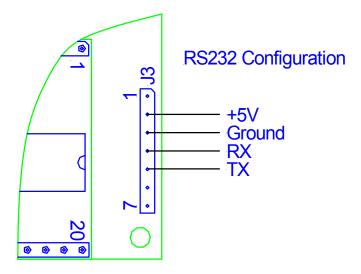


Figure 10 Pin out of jumper 3 in RS232 Configuration

Electrical characteristics of J3 PINs in RS422 Configuration

PIN	PIN No.	Min	Тур.	Max.	Description
RFU	1				Do not connect
+5V	2	4.5V	5V	5.5V	Supply Voltage
			150mA	250mA	Supply Current (without SAM)
GND	3		GND		Ground for Power Supply and Interface
RX/RXA	4	-7V		+12V	RXA RS422
TX/TXA	5	-7V		+12V	TXA RS422 / Differential
RXB	6	-7V		+12V	RXB RS422
TXB	7	-7V		+12V	TXB RS422 / Differential

Description	PIN No.	Conditions	Min	Тур.	Max.
Differential Output Voltage	4/6	Unloaded	GND		V_{CC}
Differential Output Voltage	5/7	Loaded: R _L =50Ω	2V		V _{CC}

November 4, 2008 Page 109 of 125



Figure 11 Pin out of jumper 3 in RS422 Configuration

Electrical characteristics of J3 PINs in RS485 Configuration

PIN	PIN No.	Min	Тур.	Max.	Description
RFU	1				Do not connect
+5V	2	4.5V	5V	5.5V	Supply Voltage
			150mA	250mA	Supply Current (without SAM)
GND	3		GND		Ground for Power Supply and Interface
RX/RXA	4	-7V		+12V	RX, connect to PIN 5
TX/TXA	5	-7V		+12V	TX
RXB	6	-7V		+12V	RX, connect to PIN 7
TXB	7	-7V		+12V	TX

Description	PIN No.	Conditions	Min	Тур.	Max.
Differential Output Voltage	4/6	Unloaded	GND		V_{CC}
Differential Output Voltage	5/7	Loaded: R _L =270Ω	1.5V		Vcc

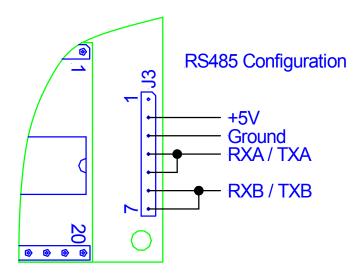


Figure 12 Pin out of jumper 3 in RS232 Configuration Pin Out - Jumper 4

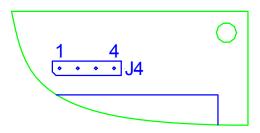


Figure 13 Pin out of Jumper 4 (top view)

PIN	PIN No.	Description		
Read+	1	Connector for green Read Indicator LED		
Read-	2	Connector for red Read Error Indicator LED		
Power-	3	Ground		
Power+	4	Connector for Power Indicator LED		

Electrical characteristics of J4 PINs

PIN	PIN No.	Min	Тур.	Max.	Description
Read+	1		1.4V @11mA	VDD _{max}	
			11mA	@15mA	
Read-	2		1.4V @11mA	VDD _{max}	
			11mA	@15mA	
Power-	3		GND		
Power+	4		1.4V @11mA	VDD _{max}	
			11mA	15mA	

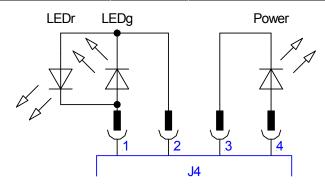


Figure 14 Pin out of jumper 4

Short Range Plug & Play Module (RDHS-0204N0-02)

Features

• Interface type: USB 2.0

Dimensions: 110x70x14 (LxWxH), all in mm
 Reading Distance: up to 90mm, depending on the tag

SAM: supported
 Boot loader: supported (²)

Drivers: virtual COM port driver, DLL driver available

Antenna: on board

• Signaling: reading LED, power LED

Power Supply: via USB

(²) The boot loader enables to download a firmware update via the serial interface to the unit without replacing/dismantling the hardware.

Dimensions

All dimensions are listed in mm

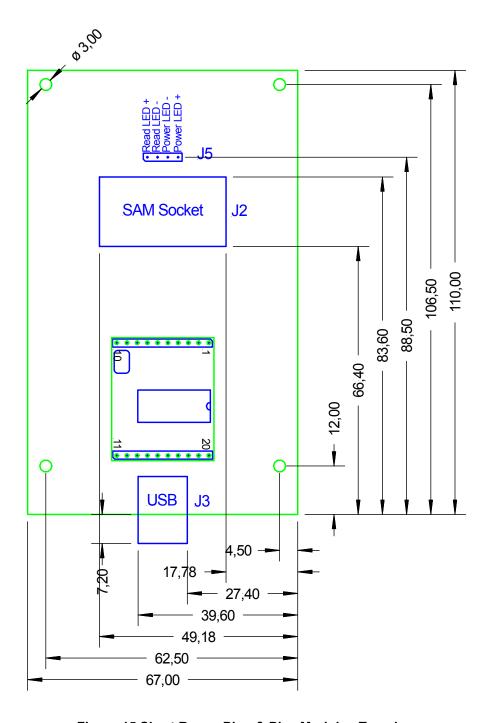


Figure 15 Short Range Plug & Play Module - Top view

Front View

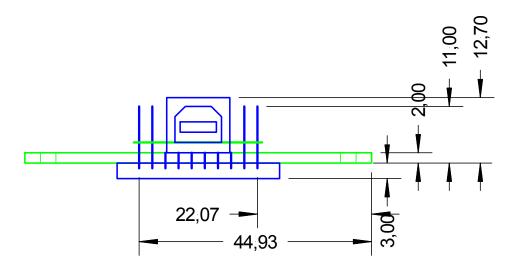


Figure 16 Short Range Plug & Play Module - Front View

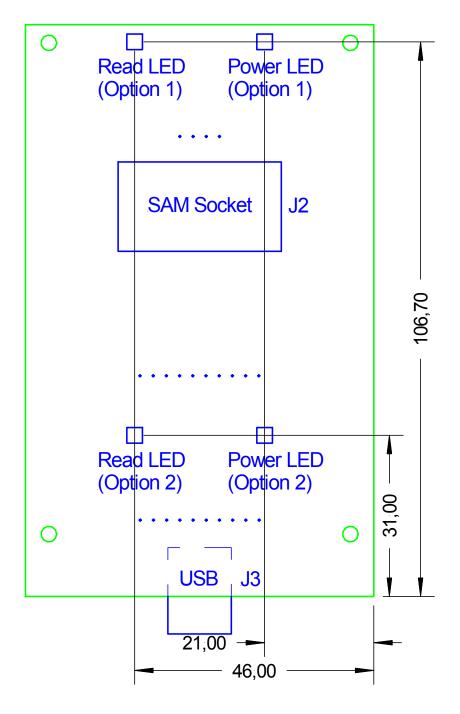


Figure 17 Short Range Plug & Play Module - Bottom View

Pin Out - Jumper 5

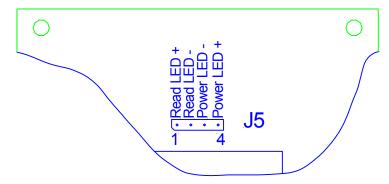


Figure 18 Pin out of Jumper 5 - Top View

Table 34 Pin out of jumper 5

PIN	PIN No.	Description
Read+	1	Connector for green Read Indicator LED
Read-	2	Connector for red Read Error Indicator LED
Power-	3	Ground
Power+	4	Connector for Power Indicator LED

Electrical characteristics of J5 PINs

Table 35 Electrical characteristics of pins

PIN	PIN No.	Min	Тур.	Max.	Description
Read+	1		1.4V @11mA	VDD _{max}	
			11mA	@15mA	
Read-	2		1.4V @11mA	VDD _{max}	
			11mA	@15mA	
Power-	3		GND		
Power+	4		1.4V @11mA	VDD _{max}	
			11mA	15mA	

Short Range USB Desktop Reader (RDHS-0204D0-02)

Features

• Interface type: USB 2.0

Dimensions: 155x82x35 (LxWxH), all in mm
 Reading Distance: up to 80mm, depending on the tag

SAM: supported
 Boot loader: supported (²)

Drivers: virtual COM port & PCSC driver available. DLL also available.

Antenna: on board

Signaling: reading LED, power LED

Power Supply: via USB

(²) The boot loader makes it easy to download a firmware to the unit without replacing/dismantling the hardware.

Plug-In Reader (RDHP-0206P0-02)

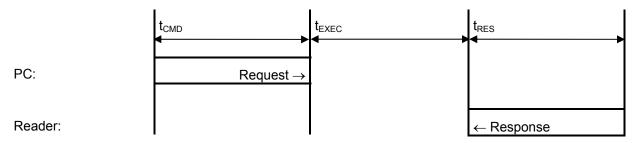
Features

Interface type: CF Card Type II

• Dimensions: (LxWxH) 86.50x43.0x10.0mm ± 0.1mm (LxWxH)

Reading Distance: up to 60mm, depending on the tag

SAM: not integrated
 Boot loader: supported (²)


Drivers: virtual COM port driver, DLL driver available

Antenna: integrated

Signaling: reading LED integratedPower Supply: via CF Card Interface

(2) The boot loader makes it easy to download a firmware to the unit without replacing/dismantling the hardware.

Appendix C - Timings

Table 36 Timings

Table 36 Timings						
t _{EXEC} [ms]	Comments					
2.8 – 22.6	+ Reset Off and Recovery Time					
54	+ 3x Reset Off and Recovery Time					
9.6 – 9.7						
28.7 – 28.8						
8.9 – 14.4	+ Reset Off and Recovery Time + SFGT					
15	+ 3x Reset Off and Recovery Time					
14.7	+ 3x Reset Off and Recovery Time + SFGT					
5.8 – 11.4	+ Reset Off and Recovery Time					
67	+ Reset Off and Recovery Time					
67	+ Reset Off and Recovery Time					
0.2	+ Reset Recovery Time					
0.2						
0.1						
0.1						
1.8 – 2.2						
8.2 – 11						
13.2						
5.4 – 22.8	+ Reset Off and Recovery Time					
38	+ 3x Reset Off and Recovery Time					
55	+ 3x Reset Off and Recovery Time					
mands						
18.4						
18.4						
18.5	140					
	2.8 – 22.6 54 9.6 – 9.7 28.7 – 28.8 8.9 – 14.4 15 14.7 5.8 – 11.4 67 67 0.2 0.2 0.1 0.1 1.8 – 2.2 8.2 – 11 13.2 5.4 – 22.8 38 55 mands 18.4 18.4					

User Manual, Firmware V1.2

Command	t _{EXEC} [ms]	Comments
Read value block	2.3	
Write value block	7.9 - 10.5	
MIFARE® Login	4.9	
Power conditions		
Power on	79	Does not include rise time of power supply
Enable on	85	

Default Command Guard Time (20h = 1.2ms) was used.

All timing data is advisory application information and does not form part of the specifications. It may change in future firmware releases. Please also note that all values specified in the above table depend on the tag used and Command Guard Time.

November 4, 2008 Page 121 of 125

Appendix D - Version History

09/02/2005	Initial Release	Version 1.0, Rev. 1.0
09/06/2006	Register default value changed for Selection Timeout ISO 14443 B	Version 1.1, Rev. 1.0
	Support of asynchronous baud rates for the high- speed select command	
	Improved support of read / write operations for LRI tags	
	Added commands to read and write multiple blocks ('rd' / 'wd')	
	Flag added to disable read after write	
	Bug fixes	
10/22/2008	Extended ID supports the ISO 14443 A SAK byte	Version 1.2, Rev. 1.0
	High Level support of the Innovision Jewel tag (selection, read and write operations)	
	Added functionality to switch between ReqA/B or WupA/B usage	
	The Quiet command now supports ISO 14443 part 3 and 4.	
	Improved ISO 14443 4 handling	
	Changed LED behavior in continuous read mode and multilist	
	Increased LED flash duration time	
	New command "ox" added to reread all register settings	
	Basic Paypass 1.0 functionality	
	 Improved SAM handling & support for new NXP SAM. 	

Appendix E - Approvals / Certificates

CE Declaration

HID Global declares that, in conformity with the European CE requirements specified in the EMC Directive 89/336/EEC, the HID HF Multi ISO Plug & Play Modules, the HID HF Multi ISO Desktop Reader and the Plug-In Reader Module, described in this manual, are

CE compliant

The relevant documents are available.

If any of the Multi ISO Plug & Play Modules or the CF Card Reader Module is operated from a mains power supply, all power connections and additional components of the final device must also comply with the EMC Directive 89/336/EEC directive.

Customers selling into Europe must themselves make sure that the final device conforms to the EMC Directive 89/336/EEC directive.

The compliance of important international regulations into business practices are a priority and the implementation of the EMC Directive 89/336/EEC is fully in line with the company's commitment to continuously improve its Quality Management System.

FCC Declaration

HID Global declares that, in conformity with the U.S. Directive FCC part 15, HID HF Multi ISO Plug & Play Modules, the HID HF Multi ISO Desktop Reader and the Plug-In Reader Module, described in this manual, are

FCC part15 compliant

The relevant documents are available.

If any of the Multi ISO Plug & Play Modules or the CF Card Reader Module is operated from a mains power supply, all power connections and additional components of the final device must also comply with the US FCC Part 15 directive.

Customers selling into the USA must themselves make sure that the final device conforms to the US FCC Part 15 directive.

Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

For HID Identification Technologies GmbH, the compliance of important international regulations into business practices are a priority and the implementation of the FCC part 15 is fully in line with the company's commitment to continuously improve its Quality Management System.

RoHS Compliance

HID Global declares that, in conformity with the Directive 2002/95/EC about the Restriction of Hazardous Substances (RoHS), its HID HF Multi ISO RFID Reader products, listed in this manual, are

RoHS compliant

The following substances are contained in accordance with the limits required by the Directive.

- Cadmium and cadmium compounds
- Lead and lead compounds
- Mercury and mercury compounds
- Hexavalent chromium compounds
- Polybrominated biphenyls (PBB)
- Polybrominated Diphenylethers (BPDE)

For HID Global, the integration of environmental considerations into business practices is a priority and the implementation of RoHS Directive is fully in line with the company's commitment to continuously improve its Quality Management System.