
SUBDUE Manual The SUBDUE Project

The SUBDUE Project  2011

SUBDUE Manual

Version 1.5

Copyright © 2011. The SUBDUE Project.

Permission is hereby granted, free of charge, to any person obtaining a copy of

this software and associated documentation files (the "Software"), to deal in

the Software without restriction, including without limitation the rights to

use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of

the Software, and to permit persons to whom the Software is furnished to do so,

subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

The Software is provided "as is", without warranty of any kind, express or

implied, including but not limited to the warranties of merchantability, fitness

for a particular purpose and noninfringement. In no event shall the authors,

copyright holders, or contributors be liable for any claim, damages or other

liability, whether in an action of contract, tort or otherwise, arising from,

out of or in connection with the Software or the use or other dealings in the

software.

SUBDUE Manual The SUBDUE Project

Table of Contents iii June 6, 2011

Table of Contents

TABLE OF CONTENTS ... III

REVISION HISTORY ... V

PREFACE ... VI

1. INTRODUCTION... 1

1.1 Overview .. 1

1.2 Reference Documents ... 1

2. DOWNLOADING AND INSTALLING ... 2

2.1 Download ... 2

2.2 Files .. 2

2.3 Install ... 2

3. DATA FORMAT .. 4

3.1 Input ... 4
3.1.1 Graph Format ... 4
3.1.2 Samples ... 5

3.2 Output .. 5

3.3 Example ... 5

4. EXECUTING ... 9

4.1 Command... 9
4.1.1 Options .. 9

4.2 MPI Version .. 14
4.2.1 build ...14
4.2.2 run ..14

4.3 Example Continued ... 15

4.4 More Examples ... 18

SUBDUE Manual The SUBDUE Project

Table of Contents iv June 6, 2011

4.4.1 Supervised ..18
4.4.2 Overlap ...23
4.4.3 Predefined Substructure ...26
4.4.4 Recursion ...31

4.5 Other Tools .. 35
4.5.1 cvtest ..35
4.5.2 gm ...36
4.5.3 gprune ..36
4.5.4 graph2dot ...36
4.5.5 mdl ...37
4.5.6 sgiso ..37
4.5.7 subs2dot ...38
4.5.8 test ..38

5. NOTES/ISSUES ... 39

5.1 Unix .. 39

A. APPENDIX - TERMINOLOGY .. 40

SUBDUE Manual The SUBDUE Project

Preface v June 4, 2011

Revision History
Release

Version

Date Revisions

1.0 April 27, 2005 Initial release

1.1 January 27, 2006 Added –inc and –compress options; added MPI section.

1.2 April 22, 2006 Corrected typos and missing reference.

1.3 May 29, 2006 Updated SUBDUE references.

1.4 January 11, 2007 Corrected typos and minor formatting changes.

1.5 June 6, 2011 Minor updates to reflect changes in new Subdue version 5.2.2.

SUBDUE Manual The SUBDUE Project

Preface vi June 4, 2011

Preface

Conventions
The following documentation conventions are followed within this document.

bold underlined text signifies notes or comments to the reader.

Italicized text signifies file names, directories or programs.

Bold italicized text signifies a reference to another document.

SUBDUE Manual The SUBDUE Project

1 Introduction 1 June 4, 2011

1. Introduction
The following document provides a manual on how to use the SUBDUE system.

1.1 Overview
The SUBDUE graph-based pattern learning system finds relational patterns in data represented as a

graph. While the details of how SUBDUE works internally will not be discussed here (you can refer

to other documents on the SUBDUE web-site for more information), this document will provide you

with the specifics on how to install and run the application.

This document contains the following sections:

 Chapter 2: instructions on how to download and install SUBDUE

 Chapter 3: layout of the required graph input file

 Chapter 4: instructions on running SUBDUE

 Chapter 5: various notes and issues regarding the SUBDUE application

 Appendix A: terminology

1.2 Reference Documents

 SUBDUE Home Page: http://www.subdue.org/

 AT&T Labs GraphViz: http://www.graphviz.org/

 MPI: http://www.mcs.anl.gov/mpi/

http://ailab.uta.edu/subdue/
http://www.graphviz.org/
http://www.mcs.anl.gov/mpi/

SUBDUE Manual The SUBDUE Project

2 Downloading and Installing 2 June 4, 2011

2. Downloading and Installing
In order to build and run the SUBDUE application, you must first download the appropriate files.

2.1 Download
The SUBDUE system, including documentation, papers, and research, can be found on the SUBDUE

home page (http://www.subdue.org/).

In order to get the latest copy of the application, you must choose the Download option located on the

left-hand side of the SUBDUE home page. After clicking the Download link, you will be redirected

to the “Download” page, which contains a link to the latest source code for the SUBDUE application.

In order to pull a release of the SUBDUE application, you must click on the <release>.zip file (where

<release> is the version of SUBDUE that you want) located under the “Source” heading. Depending

upon your browser and settings, you will either be able to just click on the link, which will then

prompt you to either open the file or save it to your local disk, or you will be able to right-click on the

link and either open or save the file.

2.2 Files
Once you have chosen a release, downloaded the archive, and unzipped the files, the following

directory/file structure is created:

./bin/ -- directory of executables (initially empty)

./copyright.txt-- file containing the SUBDUE copyright notice

./docs/ -- directory containing this manual

./graphs/ -- directory containing some sample graph input files

./readme.txt – file containing directions on how to build SUBDUE, as well as the version histories

./src/ - directory containing the source code and make files

(Note: All of this is actually created under another directory called subdue<x>, where <x> is the

major release number.)

2.3 Install

After downloading and unzipping the files, you can now install the SUBDUE application. Installation

consists of actually building the application so that it is now native to your Unix system.

SUBDUE uses the standard make facility to build its application. In order to build the application,

you should perform the following steps:

http://ailab.uta.edu/subdue/

SUBDUE Manual The SUBDUE Project

2 Downloading and Installing 3 June 4, 2011

1. Change directory to subdue-<release>/src

2. At the command prompt, enter: make. This will compile the SUBDUE programs.

3. At the command prompt, enter: make install. This will copy the executables to the subdue-

<release>/bin directory

4. At the command prompt, enter: make clean. This will clean up the src directory (removing object

files).

SUBDUE Manual The SUBDUE Project

3 Data Format 4 June 4, 2011

3. Data Format
The following section describes the format of the input graph that must be supplied in order to run the

SUBDUE application.

3.1 Input
The input to the SUBDUE application is comprised of a textual representation of a graph.

3.1.1 Graph Format

The input file can consist of one or more graphs. Each graph is prefaced (on a line by itself) by either

an "XP", indicating a positive example, or "XN" indicating a negative example. If the first (or only)

graph in the file is positive, then the "XP" can be omitted.

3.1.1.1 Vertices

Each graph is a sequence of vertices and edges. A vertex is defined as:

v <#> <label>

where <#> is a unique vertex ID for the graph and <label> is any string or real number. Strings

containing white-space or the comment character (see below) must be surrounded by double-quotes.

Vertex IDs for a graph must start at 1 and increase by 1 for each successive vertex.

It should also be noted that there must be at least one vertex defined before any edges are defined.

3.1.1.2 Edges

An edge is defined as one of the following:

e <vertex 1 #> <vertex 2 #> <label>

d <vertex 1 #> <vertex 2 #> <label>

u <vertex 1 #> <vertex 2 #> <label>

where <vertex 1 #> and <vertex 2 #> are the vertex ID's for the source vertex and the target vertex

respectively, and <label> is any string or real number. Strings containing white-space or the comment

character (see below) must be surrounded by double-quotes. Edges beginning with “e” are assumed

directed unless the option “-undirected” is specified at the command line (see next section), in which

case all “e” edges become undirected. Edges beginning with “d” are always directed, and edges

beginning with “u” are always undirected.

SUBDUE Manual The SUBDUE Project

3 Data Format 5 June 4, 2011

3.1.1.3 Comments

You can also choose to put comments in your graph input file. Comments are designated by the

percent “%” sign. Anything after a “%” until the end of the line will be ignored (unless the “%” is part

of a quoted label).

3.1.1.4 Example

As an example, if you were trying to represent that a cat is an animal, the graph might look like the

following:

 % Cat

v 1 cat

v 2 animal

d 1 2 is-a

However, if the edge were directed the other way (eg. d 2 1 is-a), that would imply that the animal is a

cat, which is not necessarily true. It should be noted that SUBDUE would not complain if you made

that relationship, but the results would probably not be what you desired.

3.1.2 Samples
The SUBDUE kit comes with various sample graph input files, some of which include both the

textual representation as well as a simple pictorial view of the data.

3.2 Output
The output from executing SUBDUE, which will be discussed in more detail in the following section,

consists of textual information that is essentially represented in the same format as the input. In

addition to the patterns that are discovered, the output includes options, parameters and other

information about the run. By default, the output is displayed to the user‟s screen, or to wherever the

user directed the output (for example, with the Unix “>” command). However, the user can choose to

also send just the discovered patterns to another file by using the “-out <file>” option. The format of

the discovered pattern looks very much like a SUBDUE graph input file, and can be used in some of

the various utilities that come in the SUBDUE kit (like test and subs2dot). These utilities will be

discussed in a subsequent section.

3.3 Example
To illustrate what an input file might look like, let‟s take the example of a domain consisting of

geometric shapes – i.e. squares, triangles, rectangles and circles. The goal is to find the most common

patterns, or substructures, among these shapes.

First, the input file for SUBDUE contains the objects and their relationships to each other. Since this

is an “unsupervised” example, the graph does not contain any positive (XP) or negative (XN)

indicators. SUBDUE will assume that the graph is all positive.

SUBDUE Manual The SUBDUE Project

3 Data Format 6 June 4, 2011

Figure 1 illustrates the high-level view for this example. Figure 2 shows the SUBDUE input file for

this example. Figure 3 shows the graphical representation for this example.

Figure 1: High-level view for shapes example

SUBDUE Manual The SUBDUE Project

3 Data Format 7 June 4, 2011

v 1 object

v 2 object

v 3 object

v 4 object

v 5 object

v 6 object

v 7 object

v 8 object

v 9 object

v 10 object

v 11 triangle

v 12 triangle

v 13 triangle

v 14 triangle

v 15 square

v 16 square

v 17 square

v 18 square

v 19 circle

v 20 rectangle

e 1 11 shape

e 2 12 shape

e 3 13 shape

e 4 14 shape

e 5 15 shape

e 6 16 shape

e 7 17 shape

e 8 18 shape

e 9 19 shape

e 10 20 shape

e 1 5 on

e 2 6 on

e 3 7 on

e 4 8 on

e 5 10 on

e 9 10 on

e 10 2 on

e 10 3 on

e 10 4 on

Figure 2: SUBDUE input graph format for shapes example

SUBDUE Manual The SUBDUE Project

3 Data Format 8 June 4, 2011

Figure 3: Graphical representation for shapes example

This graph example is also included in the SUBDUE kit in the file sample.g.

SUBDUE Manual The SUBDUE Project

4 Executing 9 June 4, 2011

4. Executing
The purpose of the SUBDUE application is to find “interesting and repetitive subgraphs” from a

specified input graph. The ability to discover these sub-graphs, or substructures, is controlled by

various user-specified parameters, which control the methods that are used, as well as the length and

size of the discovered items (among other things).

4.1 Command

SUBDUE has what is known as a “command-line” interface. (While there are efforts to create a

Graphical User Interface (GUI) for SUBDUE, this manual deals with just the command-line

capabilities.)

In order to run SUBDUE, you must be logged on to the Unix machine where the application was

downloaded and installed. From the Unix prompt, the command would be as follows:

 subdue <options> <graph input file>

There are several points which should be noted here:

subdue is the name of the executable. The above example assumes that you are running the

application from the same directory where the executable resides (which is probably in ./bin/). If the

desire is to run the application from another directory, subdue will have to be “pathed”.

<options> will be discussed in the next section

<graph input file> is the name (and path) of the graph input file (ex. sample.g)

4.1.1 Options

Because of the nature of graphs, and the varying ways that graphs can be dissected and analyzed,

there are several command-line options available to be used. Each of these options can result in

different results when used together or by themselves.

This document will not go into graph theory, or even some of the more common algorithmic functions

used in computers, and will leave that up to you to investigate. Each of the options will be explained,

but it is assumed that there is some knowledge of the subject being discussed.

4.1.1.1 -beam <#>

This parameter specifies the beam width of SUBDUE's search. Only the best beam substructures (or

all the substructures with the best beam values) are kept on the frontier of the search. The exact

meaning of the beam width is determined by the -valuebased option described below. The default

value for this setting is 4.

SUBDUE Manual The SUBDUE Project

4 Executing 10 June 4, 2011

4.1.1.2 -compress

When the –compress option is specified, SUBDUE writes the compressed data to a file. For typical

SUBDUE processing, the file <graph>.g.cmp is created (ex. sample.g.cmp). The input graph file is

compressed using the top-valued substructure and the result is written to this file. When the the MDL

and SIZE evaluation methods are specified (see section 4.1.1.3), the positive examples are combined

into one graph, while the negative examples are combined into another graph. However, when the

SETCOVER evaluation method is chosen, all of the negative examples are written to the file

(preceded by "XN" for each example), and the positives not covered by the discovered substructure

are written to the file (preceded by "XP" for each example). Vertices for each example are numbered

starting at 1.

For incremental SUBDUE processing (see section 4.1.1.4), each of the substructures from the

<graph>_<#>.g files (i.e. each increment), is compressed using the locally best substructure. The

resulting compressed graph is written to <graph>-com_#.g (and <graph>-com_#.g, if appropriate).

4.1.1.3 -eval <#>

SUBDUE has three methods available for evaluating candidate substructures:

4.1.1.3.1 Minimum Description Length (MDL) - 1

The value of a substructure S in graph G is:

 )|()(

)(
),(

SGDLSDL

GDL
GSvalue




where DL is the description length in bits, and (G|S) is G compressed with S. If a negative graph Gn is

present, then:

 
 )|()()|()(

)()(
),(

SGnDLGnDLSGpDLSDL

GnDLGpDL
GpGnSvalue






MDL is the default evaluation method.

4.1.1.3.2 Size - 2

The value of a substructure S in graph G is:

 )|()(

)(
),(

SGsizeSsize

Gsize
GSvalue




where

SUBDUE Manual The SUBDUE Project

4 Executing 11 June 4, 2011

 )(#)(#)(GedgesGverticesGsize 

and (G|S) is G compressed with S. If a negative graph Gn is present, then

 
 )|()()|()(

)()(
),,(

SGnsizeGnsizeSGpsizeSsize

GnsizeGpsize
GnGpSvalue






The size measure is faster to compute than the MDL measure, but less consistent.

4.1.1.3.3 Set Cover - 3

The value of a substructure S is computed as the number of positive examples containing S, plus the

number of negative examples not containing S, all divided by the total number of examples. If this

evaluation method is chosen, then the compression done at the end of each iteration is replaced by just

removing all positive examples containing S.

4.1.1.4 -inc

The "-inc" option specifies that data should be handled incrementally. For this option, instead of

processing only one graph file, multiple graph files (which can be thought of as one graph file broken

up into several graph files) are handled. For example, if the input file "graph" is specified (i.e. the

name of the graph file WITHOUT the .g suffix), then SUBDUE looks for incremental graph input in

files named graph_1.g, graph_2.g, etc. The vertices in each incremental file are numbered starting at

the number of the last vertex in the previous file plus one, and edges can connect to vertices from

earlier increments. (There can NOT be edges with vertices that have not been encountered yet.)

Processing stops when the file for the next increment number does not exist.

When specifying the evaluation method, the EVAL_MDL option is not allowed. If the user specifies

EVAL_MDL, the function is changed to EVAL_SIZE and the user is alerted. Because graphs are

processed incrementally, as discoveries are made in the local iteration, values are updated for old

discoveries, and instances are found on increment boundaries. Thus, the drawback is that new

substructures will not be discovered if they exist only on increment boundaries.

If the –compress option is used (see section 4.1.1.2) in conjuction with the –inc option, when

processing files graph_#.g, at the end of each increment, the increment data is compressed using the

locally best substructure. The resulting compressed graph is written to graph_#.c-pos (and graph-#.c-

neg, if appropriate).

Due to the complexity of this process, the following options are NOT supported with the incremental

option:

 Multiple iterations (see section 4.1.1.5) of incremental SUBDUE. As a work-around, you can

run SUBDUE again using the compressed data stored in these files. In order to do this, you

must look at the output file to get the definition for the corresponding substructures (labeled

SUB_#). These vertex labels will need to be replaced by new unique identifiers before

running SUBDUE again on the compressed data files.

 MPI (see section 4.2) version of SUBDUE.

SUBDUE Manual The SUBDUE Project

4 Executing 12 June 4, 2011

 subs2dot tool (see section 4.5.7). As a work-around, you can write compressed graphs to a

file and use the graph2dot tool.

 cvtest tool (see section 4.5.1). This is not very appropriate anyway, since cross validation

assumes all examples are available.

 If the –compress option is also chosen, then predefined substructures cannot be specified (see

section 4.1.1.14). This is because of some of the issues with compression across increments.

4.1.1.5 -iterations <#>

The number of iterations made over the input graph in which the best substructure from the previous

iteration is used to compress the graph for use in the next iteration. The default value for this setting is

1, which implies only one pass, no compression. A value of 0 causes SUBDUE to iterate until no

compression is possible, which produces a hierarchical, conceptual clustering of the input graphs. If

SUBDUE is using the set-cover evaluation method (see the -eval option above), then iterations stop

when no more positive examples can be removed.

4.1.1.6 -limit <#>

The number of different substructures to consider in each iteration. The default value is computed

based on the input graph as #Edges / 2.

4.1.1.7 -maxsize <#>

This argument specifies the maximum number of vertices that can be in a reported substructure.

Larger substructures are pruned from the search space. The default value for this setting is the number

of vertices in the input graph.

4.1.1.8 -minsize <#>

This argument specifies the minimum number of vertices that must be in a substructure before it is

reported. The default value for this setting is 1.

4.1.1.9 -nsubs <#>

This argument specifies the maximum length of the list of best substructures found during the

discovery. The default value for this setting is 3.

4.1.1.10 -out <outfile>

If given, this option writes machine-readable output to the given file name. The file will contain the

best substructure found at each iteration, each prefaced by the SUB_TOKEN string specified in

subdue.h (usually just "S"). If this option is not specified, the output is written to the screen (unless

the output has been re-directed with the Unix “>” command).

4.1.1.11 -output #

This argument controls the amount of SUBDUE's screen output. Valid values are:

(1) Print best substructure found at each iteration.

(2) Print -nsubs best substructures at each iteration. (This is the default value.)

SUBDUE Manual The SUBDUE Project

4 Executing 13 June 4, 2011

(3) Same as 2, plus prints the instances of the best substructures.

(4) Same as 3, plus prints substructure countdown and the best substructure found so far.

(5) Same as 4, plus prints each substructure considered.

4.1.1.12 -overlap

SUBDUE normally will not allow overlap among the instances of a substructure. Specifying this

argument will allow overlap. During graph compression an OVERLAP_<iteration> edge is added

between each pair of overlapping instances, and external edges to shared vertices are duplicated to all

instances sharing the vertex. Allowing overlap slows SUBDUE considerably.

4.1.1.13 -prune

This option tells SUBDUE to prune the search space by discarding substructures whose value is less

than that of their parent's substructure. Since the evaluation heuristics are not monotonic, pruning may

cause SUBDUE to miss some good substructures, however, it will improve the running time. The

default is no pruning.

4.1.1.14 -ps <psfile>

This option allows the input of a file containing predefined substructures. These substructures are

used to compress the input graph with the idea that it would then be easier to find the identical

structures. The order of the substructures in the file is important, because the substructures are tried in

order and compression based on an earlier substructure may remove instances of later substructures.

Also, the matching process follows the constraints of the -overlap and -threshold options. See the

section on Predefined Substructure for a description of the format of this file. Note that this is

essentially subgraph isomorphism and therefore NP-Complete, i.e., exponential running time in the

size of the input graph.

4.1.1.15 -recursion

This option allows SUBDUE to consider recursive graph grammar rules as substructures along with

the normal subgraph substructures. All are evaluated using the same metrics and compete for being

the best substructure. A recursive substructure looks like a normal substructure except for a single "re

<label>" edge indicating that the instances of the substructure are connected by an edge with the

given label. The default is no recursive substructures.

4.1.1.16 -threshold <#>

The fraction of the size (vertices+edges) of an instance by which the instance can be different

(according to the graph transformation costs defined in subdue.h) from the substructure definition.

I.e., the graphs match if matchcost(sub,inst) <= size(inst)*threshold. The default setting is 0.0, which

implies graphs must match exactly.

4.1.1.17 -undirected

SUBDUE assumes that edges in the input graph file defined using `e' are directed edges. Specifying

this argument makes these edges undirected. Note that graph file edges defined with `u' are always

undirected, and edges defined with `d' are always directed.

SUBDUE Manual The SUBDUE Project

4 Executing 14 June 4, 2011

4.1.1.18 -valuebased

Normally, SUBDUE's beam width implies that only the beam best substructures are kept on the

frontier of the search. If the -valuebased option is given, then the beam width is interpreted as keeping

all the substructures with the top beam values on the frontier of the search.

4.2 MPI Version
Before going into some examples, there is one other way in which SUBDUE can be run, and that is by

using a version that uses a Message Passing Interface (MPI) called mpi_subdue.

For those readers not familiar with how MPI works, check out http://ww.mpi-forum.org/ , or

http://www.mcs.anl.gov/mpi/, where you can also download MPI software.

For purposes of demonstrating how the MPI version of SUBDUE works, the following sections use

the open-source MPICH2 software for building and running mpi_subdue.

4.2.1 build

We will not go into the steps for installing the MPICH2 software on your system. The README file

that comes with the MPICH2 tar kit is pretty self-explanatory, and if you follow the steps verbatim,

you should be able to install the software properly.

In order to build the mpi_subdue executable, follow the same steps as outlined in section 2.3, except

do a „make mpi_subdue‟ instead. If you have set up your MPICH2 environment correctly, you should

not receive any warnings or errors during the SUBDUE build.

4.2.2 run

Before you can start running mpi_subdue, you must initiate the message passing daemons. Depending

upon how many SUBDUE processes you want to have running will depend upon how many daemons

must be started. In order to start a daemon, you execute the following

 mpd &

from the common prompt on whatever machine you wish the daemon to reside. (Subsequent mpd

daemons from the same machine must be executed with the –n option.) You can verify the daemons

that are running and their location by executing a

 mpdtrace –l

from one of the machines in the “ring”.

mpi_subdue expects input files in the regular SUBDUE format with an added .partn suffix, where n is

the graph partition number corresponding to the child process number n that will process partition n.

http://ww.mpi-forum.org/
http://www.mcs.anl.gov/mpi/

SUBDUE Manual The SUBDUE Project

4 Executing 15 June 4, 2011

mpi_subdue also requires an additional master process, so when invoking mpi_subdue on n graph

partitions, you will need to start up n+1 MPI processes.

Once all of the necessary daemons have been started, mpi_subdue can be initiated similar to the

following:

 mpiexec –n 5 bin/mpi_subdue <options> sample.g

The above command will start up one master and four child processes („-n 5‟), which expect four

graph partition files: sample.g.part1 through sample.g.part4. You can also specify any of the

SUBDUE options described above.

mpi_subdue works by processing each partition in parallel and then evaluating each partition's best

substructure on the other partitions. mpi_subdue then returns the globally best substructures.

For more information about the MPI commands, refer to your MPI documentation.

4.3 Example Continued

Continuing with our example graph from the previous chapter, it is now time to run SUBDUE:

 bin/subdue –out sub.g graphs/sample.g

Figure 4 shows a high-level visual depiction of the best substructure discovered by SUBDUE. Figure

5 shows the textual output of SUBDUE for this same run. Figure 6 shows the substructure pattern

that was discovered, written to the file specified by the “-out” option. Figure 7 shows the graphical

representation of the substructure pattern.

Figure 4: High-level visual depiction of best substructure discovered by SUBDUE on the sample

graph.

SUBDUE Manual The SUBDUE Project

4 Executing 16 June 4, 2011

Figure 5: SUBDUE output after running on the example graph file.

Parameters:

 Input file..................... graphs/sample.g

 Predefined substructure file... none

 Output file.................... none

 Beam width..................... 4

 Evaluation method.............. MDL

 'e' edges directed............. true

 Iterations..................... 1

 Limit.......................... 9

 Minimum size of substructures.. 1

 Maximum size of substructures.. 20

 Number of best substructures... 3

 Output level................... 2

 Allow overlapping instances.... false

 Prune.......................... false

 Threshold...................... 0.000000

 Value-based queue.............. false

 Recursion...................... false

 Relations...................... false

 Variables...................... false

Read 1 positive graphs

1 positive graphs: 20 vertices, 19 edges, 252 bits

7 unique labels

3 initial substructures

Best 3 substructures:

(1) Substructure: value = 1.86819, pos instances = 4, neg instances = 0

 Graph(4v,3e):

 v 1 object

 v 2 object

 v 3 triangle

 v 4 square

 d 1 3 shape

 d 2 4 shape

 d 1 2 on

(2) Substructure: value = 1.37785, pos instances = 4, neg instances = 0

 Graph(3v,2e):

 v 1 object

 v 2 object

 v 3 square

 d 2 3 shape

 d 1 2 on

(3) Substructure: value = 1.37219, pos instances = 4, neg instances = 0

 Graph(3v,2e):

 v 1 object

 v 2 object

 v 3 triangle

 d 1 3 shape

 d 1 2 on

Subdue done (elapsed CPU time = 0.01 seconds).

SUBDUE Manual The SUBDUE Project

4 Executing 17 June 4, 2011

Figure 6: Discovered substructure after running on the example graph file.

Figure 7: Graphical representation of the substructure discovered in the example.

The first part of SUBDUE‟s output indicates the parameter settings for this run. These parameters

were mentioned previously, but we discuss some of them in more detail here. All of the parameters

are set to their default values. SUBDUE‟s default evaluation method is based on the minimum

description length (MDL) principle, which essentially says that the best pattern (or substructure) is the

one that best trades off the size of the pattern and the size of the input graph after compressing away

all the instances of the pattern. If there are negative graphs in the input, then the best pattern is the one

that best compresses the positive graphs, but least compresses the negative graphs. This approach

tends to prefer patterns that compress well, even though they may not discriminate well. Thus, for this

example, we have chosen the default evaluation method (MDL).

The limit parameter controls the extent of SUBDUE‟s search by limiting the number of different

substructures SUBDUE considers for expansion, i.e., it is an upper bound on the portion of the search

space considered by SUBDUE. The limit defaults to half the number of edges in the positive graphs.

This default value tends to be higher than necessary, as SUBDUE typically finds the best substructure

early on. After experience with running SUBDUE in a domain, the limit parameter can be decreased

to a value closer to when SUBDUE actually finds the best substructure, which can be determined by

setting the output level to 5 so that SUBDUE outputs whenever it finds a new best substructure.

S

v 1 object

v 2 object

v 3 triangle

v 4 square

d 1 3 shape

d 2 4 shape

d 1 2 on

SUBDUE Manual The SUBDUE Project

4 Executing 18 June 4, 2011

The evaluation method and limit parameters allow significant control over the efficiency and

effectiveness of SUBDUE. Other parameters (beam, iterations, prune, valuebased) exert additional

control over the amount of search, while still others (overlap, threshold, recursion) allow the

introduction of additional capabilities (see previous section on Options, and subsequent examples).

In this simple example, we see that the input graph has 1 (positive) graph. The total number of

vertices and edges are given, along with the description length in bits of this graph, according to the

MDL encoding used by SUBDUE. Next, SUBDUE indicates the number of unique labels found in the

graph with the added constraint that the label must appear at least twice in the graphs. Seven such

labels exist in the graph.

At this point, SUBDUE begins its search for the substructure maximizing the chosen evaluation

method. By default, SUBDUE returns the three best substructures, ordered from best to worse (of the

top 3).

Finally, we see that SUBDUE spent less than a second finding this substructure. As discussed above,

the running time of SUBDUE depends on a number of parameters. For large graphs, SUBDUE‟s

running time can be quite long, sometimes on the order of days. However, these long running times

can be addressed by tweaking parameters, utilizing SUBDUE‟s parallel processing features (see

previous section on Options, and subsequent examples), or possibly redesigning the graph

representation to remove information not relevant to the learning task.

4.4 More Examples

To cover some of the features of SUBDUE, the following sections present various different examples

of how the application can be used.

4.4.1 Supervised

With supervised training, both positive and negative examples are provided as input to SUBDUE. For

this example, the domain of the data is possible terrorist activity. The goal is to find patterns in the

communications activity that can distinguish threat groups from non-threat groups.

4.4.1.1 Input

First, the input file for SUBDUE contains threat groups as positive example graphs (designated by

“XP”) and non-threat groups as negative example graphs (designated by “XN”). Figure 8 illustrates

the general structure used for representing this data as a graph, and Figure 9 shows the SUBDUE

input file for one of the positive examples.

SUBDUE Manual The SUBDUE Project

4 Executing 19 June 4, 2011

Figure 8: Graphical structure used to represent threat and non-threat communication graphs.

SUBDUE Manual The SUBDUE Project

4 Executing 20 June 4, 2011

Figure 9: SUBDUE input graph file for threat communication group.

This graph example is also included in the SUBDUE kit in the file groups.g. The file contains 3

threat groups and 7 non-threat groups.

% Group 2 - Threat Group

v 1 Communication

v 2 TwoWayCommunication

d 1 2 CommType

v 3 Actor

v 4 Actor

d 1 3 Initiator

d 1 4 Respondent

v 5 Communication

v 6 TwoWayCommunication

d 5 6 CommType

d 5 3 Initiator

d 5 4 Respondent

v 7 Communication

v 8 TwoWayCommunication

d 7 8 CommType

v 9 Actor

d 7 9 Initiator

d 7 4 Respondent

v 10 Communication

v 11 TwoWayCommunication

d 10 11 CommType

d 10 9 Initiator

d 10 3 Respondent

v 12 Communication

v 13 TwoWayCommunication

d 12 13 CommType

d 12 9 Initiator

d 12 4 Respondent

v 14 Communication

v 15 TwoWayCommunication

d 14 15 CommType

d 14 9 Initiator

d 14 3 Respondent

v 16 Communication

v 17 TwoWayCommunication

d 16 17 CommType

v 18 Actor

d 16 9 Initiator

d 16 18 Respondent

v 19 Communication

v 20 TwoWayCommunication

d 19 20 CommType

v 21 Actor

v 22 Actor

d 19 21 Initiator

d 19 22 Respondent

v 23 Communication

v 24 TwoWayCommunication

d 23 24 CommType

d 23 22 Initiator

d 23 21 Respondent

SUBDUE Manual The SUBDUE Project

4 Executing 21 June 4, 2011

4.4.1.2 Execution

Now that the data is in the proper format, we can run SUBDUE using the following command

(assuming the graph file is located where you are running the application):

 bin/subdue –eval 3 groups.g

Figure 10 shows a graphical depiction of the best substructure discovered by SUBDUE. Figure 11

shows the textual output of SUBDUE for this same run. (The full output can be found in the file

groups-eval3-output.txt that comes with the kit.)

Figure 10: Graphical depiction of best substructure discovered by SUBDUE on the groups

graph.

SUBDUE Manual The SUBDUE Project

4 Executing 22 June 4, 2011

Figure 11: SUBDUE output after running on the groups graph file using the setcover evaluation

method 3. The 2
nd

 and 3
rd

 best substructures are deleted.

...

Parameters:

 Input file..................... groups.g

 Predefined substructure file... none

 Output file.................... none

 Beam width..................... 4

 Evaluation method.............. setcover

 'e' edges directed............. true

 Iterations..................... 1

 Limit.......................... 70

 Minimum size of substructures.. 1

 Maximum size of substructures.. 118

 Number of best substructures... 3

 Output level................... 2

 Allow overlapping instances.... false

 Prune.......................... false

 Threshold...................... 0.000000

 Value-based queue.............. false

 Recursion...................... false

 Relations...................... false

 Variables...................... false

Read 3 positive graphs

Read 7 negative graphs

3 positive graphs: 118 vertices, 141 edges, 1960 bits

7 negative graphs: 1406 vertices, 1683 edges, 29327 bits

7 unique labels

3 initial substructures

Best 3 substructures:

(1) Substructure: value = 1, pos instances = 4, neg instances = 0

 Graph(7v,7e):

 v 1 Communication

 v 2 Actor

 v 3 Actor

 v 4 Communication

 v 5 Actor

 v 6 Communication

 v 7 Communication

 d 1 2 Initiator

 d 1 3 Respondent

 d 4 2 Initiator

 d 4 3 Respondent

 d 6 3 Respondent

 d 7 5 Initiator

 d 7 2 Respondent

...

Subdue done (elapsed CPU time = 0.78 seconds).

SUBDUE Manual The SUBDUE Project

4 Executing 23 June 4, 2011

In this example, an eval value of 3 was chosen, which means we want SUBDUE to use the setcover

evaluation method. This method looks for patterns that discriminate well, which is the main objective

in a threat group task, without regard for how well the patterns compress.

As you will notice, the input graph has 3 positive (threat group) graphs and 7 negative (non-threat

group) graphs. Again, the total number of vertices and edges in each of these two sets is given along

with the description length in bits of these graphs, according to the MDL encoding used by SUBDUE.

While SUBDUE returns the three best substructures, for this example, we only show the best in

Figure 8. The value of this substructure is 1, meaning that it perfectly discriminates between the

positive and negative group graphs. In other words this substructure shows up only in positive graphs

and not in negative graphs. In fact, as we see from the output, one of the positive graphs has two

instances of the substructure, since we have four instances in three examples.

4.4.2 Overlap

By default, SUBDUE does not allow for instances of a substructure to contain overlapping edges.

However, you can choose to override this functionality by specifying the “-overlap” option.

The following simple example of repetitive vertices and edges shows the advantage of using this

option.

4.4.2.1 Input

Figure 12 illustrates the structure used for representing this data as a graph, and Figure 13 shows the

SUBDUE input file for this example.

1 2 3 4

6 7 8 9

5

10

Figure 12: Pictorial representation of repetitive vertices and edges example

SUBDUE Manual The SUBDUE Project

4 Executing 24 June 4, 2011

Figure 13: SUBDUE input format for overlap example

4.4.2.2 Execution

In order to better understand how this works, let‟s make two runs: one without the -overlap option and

one with the option. So, if a run were made without the –overlap option, it would look like the

following:

 bin/subdue overlap.g

Figure 14 shows a graphical depiction of the best substructure discovered by SUBDUE without the

overlap option. Figure 15 shows the textual output of SUBDUE (for this same substructure).

v 1 a

v 2 a

v 3 a

v 4 a

v 5 a

v 6 a

v 7 a

v 8 a

v 9 a

v 10 a

u 1 2 b

u 2 3 b

u 3 4 b

u 4 5 b

u 1 6 b

u 2 7 b

u 3 8 b

u 4 9 b

u 5 10 b

u 6 7 b

u 7 8 b

u 8 9 b

u 9 10 b

SUBDUE Manual The SUBDUE Project

4 Executing 25 June 4, 2011

Figure 14: Graphical depiction of best substructure discovered by SUBDUE on the example

WITHOUT the –overlap option

Figure 15: SUBDUE output after running on the example WITHOUT the –overlap option

Now try the same run WITH the –overlap option:

bin/subdue –overlap overlap.g

Figure 16 shows a graphical depiction of the best substructure discovered by SUBDUE WITH the

overlap option. Figure 17 shows the textual output of the best substructure found.

...

(1) Substructure: value = 1.16177, pos instances = 3, neg instances = 0

 Graph(3v,2e):

 v 1 a

 v 2 a

 v 3 a

 u 1 3 b

 u 2 3 b

...

SUBDUE Manual The SUBDUE Project

4 Executing 26 June 4, 2011

Figure 16: Graphical depiction of best substructure discovered by SUBDUE on the example

WITH the –overlap option

Figure 17: SUBDUE output after running on the example WITH the –overlap option

Notice how the example with the –overlap option was able to find a connected substructure, which

occurred 4 times (there were 4 instances), as opposed to the non-overlap option that only found a

substructure with two edges (of which there were 3 instances). However, while there may have been

4 instances of the substructure found with the –overlap option, there was an overlap between the

instances in that each of the instances shared an edge with another instance.

4.4.3 Predefined Substructure

The following example shows the results of using predefined substructures. As discussed in the

previous section, this option allows one to compress the input graph so that it will be easier to find the

matching structures.

...

(1) Substructure: value = 1.35206, pos instances = 4, neg instances = 0

 Graph(4v,4e):

 v 1 a

 v 2 a

 v 3 a

 v 4 a

 u 1 2 b

 u 1 3 b

 u 2 4 b

 u 3 4 b

...

SUBDUE Manual The SUBDUE Project

4 Executing 27 June 4, 2011

4.4.3.1 Input

For this example, we are going to use a chemical example, where carbons are connected by single

bonds.

Figure 18: Pictorial representation of chemical example

Figure 18 illustrates the structure used for representing this data as a graph, and Figure 19 shows part

of the SUBDUE input file for this example.

SUBDUE Manual The SUBDUE Project

4 Executing 28 June 4, 2011

Figure 19: Portion of SUBDUE input file for chemical example

If we were to run this graph through SUBDUE WITHOUT any predefined substructures, the result

would look like the SUBDUE output shown in Figure 20.

v 1 carbon

v 2 carbon

v 3 carbon

v 4 carbon

v 5 carbon

v 6 carbon

v 7 carbon

v 8 carbon

v 9 carbon

v 10 carbon

v 11 carbon

v 12 carbon

v 13 carbon

...

u 1 2 bond

u 1 3 bond

u 2 4 bond

u 3 5 bond

u 4 6 bond

u 5 6 bond

u 6 7 bond

u 7 8 bond

u 8 9 bond

u 8 10 bond

u 9 11 bond

u 10 12 bond

u 11 13 bond

u 12 13 bond

...

SUBDUE Manual The SUBDUE Project

4 Executing 29 June 4, 2011

Figure 20: Best substructure found for chemical example (SUBDUE output)

Figure 21 shows a pictorial representation of this best substructure.

Figure 21: Best substructure found for chemical example (pictorial representation)

...

Best 3 substructures:

(1) Substructure: value = 2.58538, pos instances = 10, neg instances = 0

 Graph(6v,6e):

 v 1 carbon

 v 2 carbon

 v 3 carbon

 v 4 carbon

 v 5 carbon

 v 6 carbon

 u 1 2 bond

 u 1 3 bond

 u 2 4 bond

 u 3 5 bond

 u 4 6 bond

 u 5 6 bond

...

SUBDUE Manual The SUBDUE Project

4 Executing 30 June 4, 2011

The result is that the best substructure found was a single cyclohexane ring, consisting of 6 carbons,

each connected by single bonds.

As you can see from the initial picture, this graph is composed of many cyclohexane rings, some of

which are connected by individual carbons. So, perhaps, a better substructure could be discovered if

we were to provide the single cyclohexane ring as a pre-defined substructure.

A predefined substructure is very similar in format to a regular graph. A predefined substructure file

can contain one or more substructures, each of which is prefaced with a “PS” indicator. Each

indicator is then followed by its vertices and edges, where the format is identical to the one used in

the graph input file.

Figure 22: Pre-defined substructure for chemical example (SUBDUE format)

For the purposes of this example, we will name the pre-defined substructure file carbon-ps.g.

4.4.3.2 Execution

Now that we have a predefined substructure to go along with our input graph, we can run SUBDUE

using the following command:

 bin/subdue –ps carbon-ps.g graphs/carbon.g

Figure 23 shows a graphical depiction of the best substructure discovered by SUBDUE. Figure 24

shows a portion of the textual output of SUBDUE for this same run.

PS

v 1 carbon

v 2 carbon

v 3 carbon

v 4 carbon

v 5 carbon

v 6 carbon

u 1 2 bond

u 1 3 bond

u 2 4 bond

u 3 5 bond

u 4 6 bond

u 5 6 bond

SUBDUE Manual The SUBDUE Project

4 Executing 31 June 4, 2011

Figure 23: Graphical depiction of best substructure discovered by SUBDUE on the carbon

example graph using a predefined substructure.

Figure 24: SUBDUE output using the predefined substructure on the carbon example.

By giving SUBDUE the cyclohexane ring, it was able to find the substructure of two cyclohexane

rings connected by a single carbon.

4.4.4 Recursion

The following example shows the results of looking for recursive substructures. Taken from Jonyer‟s

paper entitled “MDL-Based Context-Free Graph Grammar Induction and Applications“ (which can

be found on the SUBDUE web-site), the following example shows how recursion was used to

discover patterns.

...

Best 3 substructures:

(1) Substructure: value = 1.58538, pos instances = 5, neg instances = 0

 Graph(3v,2e):

 v 1 PS_SUB_1

 v 2 PS_SUB_1

 v 3 carbon

 u 1 3 bond

 u 3 2 bond

...

SUBDUE Manual The SUBDUE Project

4 Executing 32 June 4, 2011

4.4.4.1 Explanation

The concept of examining for recursive substructures is a little more complex than some of the

features that have been explained so far, and requires a little more explanation.

A recursive production is constructed by checking all outgoing edges of each instance to see if they

are connected to any other instance. One can see in Figure 25 that the instance in the lower left is

connected to the instance on its right, via vertex „y‟ being connected to vertex „x‟. The same can be

said of the situation on the lower right side. Abstracting out these four instances, using the recursive

option, results in the graph depicted in Figure 26.

Figure 25: Pictorial representation of SUBDUE input graph.

Figure 26: Input graph, parsed by the first production.

4.4.4.2 Input

Figure 27 shows a portion of the SUBDUE input file for the graph presented above.

a

c

b

a

d b

a

f b

a

f b

x

q z

y x

q z

y x

q z

y x

q z

y r

k

a

c b

a

d b

a

e b

a

f b

r

k

S1 S1

SUBDUE Manual The SUBDUE Project

4 Executing 33 June 4, 2011

Figure 27: (partial) SUBDUE input graph file for recursive example.

This graph example is also included in the SUBDUE kit in the file sampleGL.g.

4.4.4.3 Execution

In order to better understand how this works, let‟s make two runs: one without the -recursive option

and one with the option. So, if a run were made without the –recursion option, it would look like the

following:

 bin/subdue sampleGL.g

Figure 28 shows a graphical depiction of the best substructure discovered by SUBDUE. Figure 29

shows the textual output of SUBDUE (for this same substructure).

v 1 a

v 2 b

v 3 c

v 4 a

v 5 b

v 6 d

…

v 13 k

v 14 x

v 15 y

v 16 z

v 17 q

v 18 x

v 19 y

v 20 z

v 21 q

v 22 r

…

u 1 2 t

u 2 3 t

u 1 3 t

…

u 1 4 next

u 4 7 next

u 7 10 next

…

u 14 15 s

u 14 16 s

u 15 17 s

u 16 17 s

…

SUBDUE Manual The SUBDUE Project

4 Executing 34 June 4, 2011

Figure 28: Pictorial representation of best substructure found.

Figure 29: (partial) SUBDUE output of best substructure found.

Now try the same run WITH the –recursion option:

bin/subdue –nsubs 6 –recursion sampleGL.g

While the initial best substructures found were not any difference, if we increased the number of best

substructures past the default of 3, we can discover some new substructures. So, for this example, we

have chosen to find the six best substructures (–nsubs 6).

Figure 30 shows a graphical depiction of the new substructure discovered by SUBDUE using the “-

recursion” option. Figure 31 shows the textual output of the best substructure found.

...

(1) Substructure: value = 1.43479, pos instances = 4, neg instances = 0

 Graph(4v,4e):

 v 1 x

 v 2 y

 v 3 z

 v 4 q

 u 1 2 s

 u 1 3 s

 u 2 4 s

 u 3 4 s

…

SUBDUE Manual The SUBDUE Project

4 Executing 35 June 4, 2011

Figure 30: Pictorial representation of substructure found.

Figure 31: (partial) SUBDUE output showing a recursive substructure.

What happens is that SUBDUE checks an instance of a substructure to see if it is connected to any of

its other instances by an edge. If it is, and it is the best substructure at the end of the iteration, each

such chain of subgraphs is abstracted away and replaced by a single vertex.

4.5 Other Tools

The following sections cover various tools that are supplied in the SUBDUE kit.

4.5.1 cvtest

The cvtest utility performs a cross-validation experiment on a set of examples using the SUBDUE

system. The command line interfaces is as follows:

>cvtest [<subdue options>] [-nfolds <n>] <graphfile>

...

Best 6 substructures:

...

(6) Substructure: value = 1.17601, pos instances = 2, neg instances = 0

 Graph(4v,3e):

 v 1 x

 v 2 y

 v 3 z

 v 4 q

 u 1 2 s

 u 1 3 s

 u 3 4 s

 re next

...

x

q z

y S1 S1 x

q z

y

SUBDUE Manual The SUBDUE Project

4 Executing 36 June 4, 2011

The cvtest program first divides the examples defined in <graphfile> into <nfolds>sets of examples

using random selection. The program then runs SUBDUE to find the substructures for the training set

of each fold. It then uses the test program (see below) to evaluate the substructures on the test set of

the fold. The program reports the error rate for each fold and the mean error rate for all folds.

The cvtest program accepts all SUBDUE options (except –out), and the –nfolds <n> option MUST

come after the SUBDUE options. The default –nfolds value is 1, which means the entire set of

examples is used for both training and testing. Also, the cvtest program must be run from the same

directory where the subdue executable resides.

4.5.2 gm

The gm tool is a standalone graph matcher. The command-line interface is as follows:

>gm <first graph input file> <second graph input file>

The gm utility (an inexact graph match program), computes the cost of transforming the larger of the

input graphs into the smaller according to the transformation costs defined in SUBDUE. This

program returns the cost and the mapping of vertices in the larger graph to vertices in the smaller

graph.

4.5.3 gprune

The gprune tool removes vertices and edges with specific labels. The command-line interface is as

follows:

 >gprune <label> <input graph file> <output graph file>

The gprune utility removes all vertices and edges whose label is equal to <label> in <input graph

file> and outputs the results to <output graph file>. When a vertex is removed, all of its edges are

removed. When an edge is removed (either because it has the defined <label> or was removed as the

result of a vertex removal), any vertices left without a connecting edge are also removed.

If <input graph file> contains multiple examples, then each is pruned separately.

4.5.4 graph2dot

The graph2dot utility converts a SUBDUE graph input file into the dot format as specified in the

AT&T Labs GraphViz package.

The command-line interface is as follows:

SUBDUE Manual The SUBDUE Project

4 Executing 37 June 4, 2011

>graph2dot <SUBDUE graph file> < dot file>

This tool writes <SUBDUE graph file> to < dot file> in the dot format. The dot file can then be

displayed graphically using the GraphViz tools (see http://www.graphviz.org/).

For an example of what is produced by the GraphViz tools, refer to Figure 18, or any of the similar

figures above.

4.5.5 mdl

The mdl program is a standalone utility for computing the Minimum Description Length (MDL) of a

graph. The command-line interface is as follows:

>mdl [-dot <filename>] [-overlap] [-threshold <#>] <g1> <g2>

The mdl utility computes the description length of <g1> and <g2>, as well as <g2> compressed with

<g1>, using the following MDL compression measurement:

 D1(g2)/(D1(g1) + D1(g2|g1))

This program also prints the size-based compression information.

If –overlap is given, the instances of <g1> may overlap in <g2>. If –threshold is given, then instances

in <g2> may not be an exact match to <g1>, but the cost of transforming <g1> to the instance is less

than the threshold fraction of the size of the larger graph. The default value for the threshold is 0.0

(i.e. an exact match). If the –dot option is used, then the compressed graph is written to <filename> in

dot format. The dot file can then be displayed graphically using the GraphViz tools (see

http://www.graphviz.org/).

4.5.6 sgiso

The sgiso program is a standalone utility for performing a sub-graph isomorphism. The command-

line interface is as follows:

 >sgiso [-dot <filename>] [-overlap] [-threshold <#>] <g1> <g2>

The sgiso utility find and prints all instances of <g1> in <g2>. If –overlap is given, then instances

may overlap in <g2>. If –threshold is given, then instances may not be an exact match to <g1>, but

the cost of transforming <g1> to the instance is less than the threshold fraction of the size of the larger

graph. The default value for the threshold is 0.0 (i.e. an exact match). If the –dot option is used, then

http://www.graphviz.org/)
http://www.graphviz.org/)

SUBDUE Manual The SUBDUE Project

4 Executing 38 June 4, 2011

the compressed graph is written to <filename> in dot format. The dot file can then be displayed

graphically using the GraphViz tools (see http://www.graphviz.org/).

4.5.7 subs2dot

The subs2dot utility converts a SUBDUE output file (specified when the –out option is used) into the

dot format as specified in the AT&T Labs GraphViz package.

The command-line interface is as follows:

>subs2dot <SUBDUE output file> < dot file>

This tool writes the substructures defined in <SUBDUE output file> to < dot file> in the dot format.

The dot file can then be displayed graphically using the GraphViz tools (see

http://www.graphviz.org/).

For an example of what is produced by the GraphViz tools, refer to Figure 28, or any of the similar

figures above.

4.5.8 test

The test utility computes the following for a given set of substructures and a given set of example

graphs:

FP – false positives

TP – true positives

FN – false negatives

TN – true negatives

The command-line interfaces is as follows:

 >test <subsfile> <graphfile>

The test program reads in substructures from <subsfile> and then reads in example graphs from

<graphfile> one at a time. If any of the substructures is a sub-graph of the example graph, that

example is classified as positive. Otherwise, it is classified as negative. When the program

completes, it reports the FP/FN/TP/TN and error statistics.

It should be noted that this utility assumes that all „e‟edges are directed, and the match threshold is

0.0, despite the parameters that were run with SUBDUE.

http://www.graphviz.org/)
http://www.graphviz.org/)

SUBDUE Manual The SUBDUE Project

5 Notes/Issues 39 June 4, 2011

5. Notes/Issues
The following sections represent various notes and issues.

5.1 Unix
SUBDUE was designed and developed to run on a Unix-based system. The application was tested on

Linux, but should be compatible with any Unix system. SUBDUE was written in C, where every

effort was made to use only standard ANSI C constructs and functions.

SUBDUE Manual The SUBDUE Project

A Appendix - Terminology 40 June 4, 2011

A. Appendix - Terminology
The following terminology was referenced in this document:

MDL – Minimum Description Length

MPI – Message Passing Interface

SUBDUE – SUBstructure Discovery Using Examples

TBD – To Be Determined

