

TestNg Beginner's Guide

Write robust unit and functional tests with the
power of TestNG

Varun Menon

BIRMINGHAM - MUMBAI

TestNg Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1190713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-600-9

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

Credits

Author
Varun Menon

Reviewers
Yagna Narayana Dande

Mihai Vilcu

Acquisition Editor
Usha Iyer

Lead Technical Editor
Anila Vincent

Technical Editors
Pragati Singh

Mausam Kothari

Dipika Gaonkar

Sampreshita Maheshwari

Hardik B. Soni

Project Coordinator
Rahul Dixit

Proofreaders
Lindsey Thomas

Bernadette Watkins

Indexers
Hemangini Bari

Tejal R. Soni

Rekha Nair

Priya Subramani

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Varun Menon is a QA consultant with several years of experience in developing
automation frameworks on various technologies and languages such as Java, JavaScript,
Ruby, and Groovy. He has worked on web and mobile applications for some of the leading
clients in the field of supply chain management, online photo books, video analytics, and
market research.

He blogs at http://blog.varunin.com and is active on Stack Overflow, Selenium,
and robotium groups. He is also the author of an upcoming open source android
automation tool Bot-bot, which has record and re-play features like Selenium.

He currently holds the position of QA Architect at Pramati Technologies Private Limited,
Hyderabad, India.

Acknowledgement

First of all I would like to thank my mother and father for supporting me and guiding me on
the correct path throughout my life.

I would like to thank my wife, Sandhya, who has tolerated me and my passion towards work
and has always been supportive. Thanks for all your support.

I would like to thank Pramati Technologies where I have learned most of the things that
I know now. I would like to thank Mr Jay and Vijay Pullur for starting such a wonderful
company and providing such a great environment to learn and work.

I would like to thank my managers, Reddy Raja and Sharad Solanki, without their support,
inspiration, and motivation I may not have been able to reach my current position. A special
thanks to Apurba Nath and Rohit Rai for relying on me and my skills.

I would like to thank all my friends without whom life may not be as fruitful as it is now.

I would also like to thank Cedric Beust, the creator of TestNG unit testing framework, for
coming up with such a good unit test framework, for solving developer and QA engineer's
problems and for being an inspiration of what we can aspire to in QA.

Last but by no means the least I would like to thank Packt Publishing for giving this wonderful
opportunity to write this book and share my knowledge.

About the Reviewers

Yagna Narayana Dande is currently working as a Lead Software Engineer in Testing
at Komli Media, a digital advertising and technology company. She previously worked
as a QA Engineer at MapR Technologies. MapR Technologies focuses on engineering
game-changing, Map/Reduce-related technologies.

She has also worked as a Software Engineer at Symantec, helping consumers and
organizations secure and manage the information-driven world.

Mihai Vilcu has been involved in large-scale testing projects for several years
and has exposure to top technologies for both automated and manual testing
and functional and non-functional testing. "Software testing excellence" is the
motto that drives Mihai's career.

Some of the applications covered by Mihai in his career are CRMs, ERPs, billing
platforms, and rating, collection and business process management applications.

Since software platforms are spread and intensely used in many industries in our
times, Mihai has performed in fields such as telecom, banking, healthcare, software
development, and more.

Readers are welcome to contact Mihai for questions regarding testing as well as requesting
his involvement in your projects. He can be contacted via his e-mail: mvilcu@mvfirst.ro
or directly on his website: www.mvfirst.ro.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt
 � Copy and paste, print and bookmark content
 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface 1
Chapter 1: Getting Started 5

Testing and test automation 6
TestNG 6
Features of TestNG 7
Downloading TestNG 8

Prerequisites 8
Installing TestNG onto Eclipse 8
Time for action – installing TestNG onto Eclipse 9
Writing your first TestNG test 13

The Java project 13
Time for action – creating a Java project 13
Time for action – creating your first TestNG class 16
Running your first test program 18
Time for action – running tests through Eclipse 18
Summary 21

Chapter 2: Understanding testng.xml 23
About testng.xml 23
Creating a test suite 24
Time for action – creating a test suite 24
Running testng.xml 26

Using command prompt 26
Time for action – running testng.xml through the command prompt 26

Using Eclipse 28
Time for action – executing testng.xml using Eclipse 28
Time for action – configuring Eclipse to run a particular TestNG XML file 29
Creating multiple tests 31
Time for action – testng XML with multiple tests 31

Table of Contents

[ii]

Adding classes, packages, and methods to test 33
Sample project 34
Creating a test with classes 34

Time for action – creating a test with classes 35
Creating a test using packages 36

Time for action – creating a test with packages 36
Creating a test with methods 38

Time for action – creating a test with methods 38
Creating a test with packages, classes, and methods 39

Time for action – creating a test suite with package, class, and test method 40
Including and excluding 42

Include/exclude packages 42
Time for action – test suite to include a particular package 42
Time for action – test suite to exclude a particular package 43

Include/exclude methods 45
Time for action – test suite to exclude a particular method 45

Using regular expressions to include/exclude 46
Prerequisite – creating a sample project 46

Time for action – using regular expressions for test 48
Summary 50

Chapter 3: Annotations 51
Annotations in TestNG 52
Before and After annotations 53
Time for action – running the Before and After annotations 54
Time for action – Before and After annotation when extended 59
Test annotation 62
Time for action – using test annotation on class 63
Disabling a test 64
Time for action – disabling a test method 65
Exception test 66
Time for action – writing an exception test 66
Time for action – writing a exception test verifying message 68
Time test 69
Time for action – time test at suite level 70
Time for action – time test at test method level 71
Parameterization of test 73

Parameterization through testng.xml 73
Time for action – parameterization through testng.xml 73
Time for action – providing optional values 76
DataProvider 78
Time for action – using Test annotation on Class 79

Table of Contents

[iii]

Time for action – DataProvider in different class 81
Summary 84

Chapter 4: Groups 85
Grouping tests 85
Time for action – creating test that belong to a group 86
Running a TestNG group 87

Using Eclipse 88
Time for action – running a TestNG group through Eclipse 88

Using the testng XML 89
Time for action – running a TestNG group using the testng XML 89
Test that belong to multiple groups 91
Time for action – creating a test having multiple groups 91
Including and excluding groups 93
Time for action – including/excluding groups using the testng XML 93
Using regular expressions 95
Time for action – using regular expressions in the testng XML 96
Default group 98
Time for action – assigning a default group to a set of tests 98
Group of groups 100
Time for action – running a TestNG group using the testng XML 101
Summary 103

Chapter 5: Dependencies 105
Dependency test 105

Test with single test method dependency 105
Time for action – creating a test that depends on another test 106

Test that depends on multiple tests 107
Time for action – creating a test that depends on multiple tests 108

Inherited dependency test 109
Time for action – creating a test that depends on inherited tests 110
Dependent groups 112
Time for action – creating a test that depends on a group 112

Depending on methods from different classes 113
Time for action – depending on a method from a different class 114
Using regular expressions 115
Time for action – using regular expressions 115
XML-based dependency configuration 117

Simple group dependency 117
Time for action – using simple dependency in XML 117

Multigroup dependency 119
Time for action – defining multigroup dependency in XML 119

Table of Contents

[iv]

Using regular expressions for defining dependency 121
Time for action – using regular expressions for dependency 121
Summary 124

Chapter 6: The Factory Annotation 125
What is factory? 125

First factory program 125
Time for action – first factory test 126
Passing parameters to test classes 127
Time for action – passing parameters to test classes 128
Using DataProvider along with the @Factory annotation 129
Time for action – using DataProvider with Factory 130
DataProvider or Factory 131
Time for action – the DataProvider test 132
Time for action – the Factory test 133
Dependency with the @Factory annotation 135
Time for action – dependency with the @Factory annotation 135
Time for action – running a dependency test sequentially 137
Summary 138

Chapter 7: Parallelism 139
Parallelism 140

A simple multithreaded test 140
Time for action – writing first parallel test 140
Running test methods in parallel 142
Time for action – running test methods in parallel 142
Running test classes in parallel 144
Time for action – running test classes in parallel 145
Running tests inside a suite in parallel 148
Time for action – running tests inside a suite in parallel 148
Configuring an independent test method to run in multiple threads 151
Time for action – running independent test in threads 151
Advantages and uses 153
Summary 154

Chapter 8: Using Build Tools 155
Build automation 155

Advantages of build automation 156
Different build tools available 156

Ant 156
Installing Ant 156
Using Ant 157

Time for action – using Ant to run TestNG tests 157

Table of Contents

[v]

Different configurations to be used with TestNG task 161
Maven 162

Installing Maven 162
Using Maven 163

Time for action – using Maven to run TestNG tests 163
Different configurations to be used with Maven 166

Summary 167
Chapter 9: Logging and Reports 169

Logging and reporting 169
Writing your own logger 170
Time for action – writing a custom logger 170
Writing your own reporter 175
Time for action – writing a custom reporter 175
TestNG HTML and XML report 177
Time for action – generating TestNG HTML and XML reports 177
Generating a JUnit HTML report 180
Time for action – generating a JUnit report 180
Generating a ReportNG report 182
Time for action – generating a ReportNG report 183

ReportNG configuration options 186
Generating a Reporty-ng (former TestNG-xslt) report 187
Time for action – generating a Reporty-ng report 187

Configuration options for Reporty-ng report 190
Summary 191

Chapter 10: Creating a Test Suite through Code 193
Running TestNG programmatically 193
Time for action – running TestNG programmatically 194
Parameterization of tests 197
Time for action – passing parameter values 197
Include and exclude 200

Include/exclude methods 200
Time for action – including test methods 201

Include/exclude groups 204
Time for action – including/excluding groups 204
Dependency test 207
Time for action – configuring a dependency test 207
Summary 210

Chapter 11: Migrating from JUnit 211
Running your JUnit tests through TestNG 211
Time for action – writing a JUnit test 212

Table of Contents

[vi]

Running your JUnit Tests through TestNG using the testng XML 214
Time for action – running JUnit tests through TestNG 214

Running JUnit and TestNG tests together with TestNG XML 215
Time for action – running JUnit and TestNG tests together 215
Running JUnit tests along with TestNG through Ant 217
Time for action – running JUnit and TestNG tests through Ant 217
Migrating from JUnit to TestNG 220
Time for action – converting a JUnit test to a TestNG test 221
Summary 224

Chapter 12: Unit and Functional Testing 225
Unit testing with TestNG 225
Time for action – unit testing with TestNG 226
Assertion with TestNG 228
Mocking 228

Different mocking strategies 229
Mocking with TestNG 229

Jmock 229
Time for action – using JMock with TestNG 230

Mockito 235
Time for action – using Mockito 235
Functional testing 239
TestNG with Selenium 239
Time for action – using Selenium with TestNG 240
Summary 245

Pop Quiz Answers 247
Index 251

Preface

Introduction
Currently, TestNG is the most widely used testing framework in the software industry.
It provides a lot of features over the conventional JUnit framework and is used for
different kinds of testing like unit, functional, integration testing, and so on. This book
explains different features of TestNG with examples. You will learn about the basic
features as well as some of the advanced features provided by TestNG.

What this book covers
Chapter 1, Getting Started, explains TestNG and its advantages over other existing
frameworks. It also explains how to install and run your first TestNG test.

Chapter 2, Understanding testng.xml, explains the testng.xml file which is used to configure
the TestNG tests. It also explains different ways to create test suites by adding test packages,
test classes, and test methods to the respective test suite, according to test needs.

Chapter 3, Annotations, explains the various annotations in TestNG and the different features
supported by using them.

Chapter 4, Groups, explains the grouping feature provided by TestNG and how you
can use it to include or exclude a group of tests in test execution.

Chapter 5, Dependencies, explains the dependency feature provided by TestNG. You will
learn how test methods can depend upon another method or a group of methods.

Chapter 6, The Factory Annotation, explains the Factory annotation and how tests can be
created at runtime based on a set of data. You will also learn about the difference between
Factory and DataProvider annotation and how they can be used together.

Preface

[2]

Chapter 7, Parallelism, explains a very important feature of TestNG which allows different
configurations for different tests to be run in parallel.

Chapter 8, Using Build Tools, explains build automation and its advantages. It also explains
the different build automation tools available and how TestNG can be used along with them.

Chapter 9, Logging and Reports, explains about the default logging and report options
available with TestNG. It also explains how to extend and write your own logging and
reporting framework above it.

Chapter 10, Creating a Test Suite through Code, explains the different ways to write and
configure TestNG tests through code without the need of an XML configuration file.

Chapter 11, Migrating from JUnit, explains different ways to migrate to JUnit from TestNG
and things that need to be taken care of while migrating.

Chapter 12, Unit and Functional Testing, explains the unit and functional testing usage of
TestNG. It also explains the few mocking techniques to be used for Unit testing and covers
the use of Selenium with TestNG for functional testing.

What you need for this book
 � Java JDK

 � Eclipse

 � Ubuntu/Linux or Windows

 � Basic knowledge of Java and testing

Who this book is for
This book is for any Java developer who would like to improve their unit tests and would
like to do more with functional, integration, and API testing. This book will also interest QA
guys who are exploring new unit testing frameworks for their functional automation, API, or
integration testing needs.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Preface

[3]

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own
understanding.

Have a go hero
These practical challenges give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
previous XML defines a TestNG suite using the tag name suite. The name of the suite
is mentioned using the name attribute (in this case First Suite)."

A block of code is set as follows:

<suite name="First Suite" verbose="1" >
 <test name="First Test" >
 <classes>
 <class name="test.FirstTest" />
 </classes>
 </test>
</suite>

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes, for example, appear in the text like this: "Select the project
and then right-click on it to select New | File."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

1
Getting Started

Testing is an important part of software development and holds a key position
in the software development life cycle. Testing can be of multiple types such as
unit, integration, functional, manual, automation, and so on; it's a huge list.
TestNG is one of the most popular testing, or test automation frameworks in
Java, which is widely used nowadays. This book will familiarize you with the
different features offered by TestNG and how to make best use of them.

In this chapter we'll cover the following topics:

 � Testing and test automation

 � Features of TestNG

 � Downloading TestNG

 � Installing TestNG onto Eclipse

 � Writing your first test program

 � Running your first test program

Getting Started

[6]

Testing and test automation
Testing as you may know is the process of validating and verifying that a piece of software
or hardware is working according to the way it's expected to work. Testing is a very important
part of the software development life cycle (SDLC) as it helps in improving the quality of the
product developed. There are multiple types and levels of testing, for example, white-box,
black-box, unit, integration, system, acceptance, performance, security, functional,
non-functional, and so on. Each of these types of testing are done either manually
or through automation, using automation tools.

Test automation, as the name suggests, refers to automating the testing process. This
can be done for different testing types and levels such as unit testing, integration testing,
functional testing, and so on, through different means either by coding or by using tools.
Test automation gives an advantage of running tests in numerous ways such as at regular
intervals or as part of the application build. This helps in identifying bugs at the initial phase
of development itself, hence reducing the product timeline and improving the product
quality. It also helps in reducing the repetitive manual testing effort and allows manual
testing teams to focus on testing new features and complex scenarios.

TestNG
TestNG, where NG stands for "next generation" is a test automation framework inspired
by JUnit (in Java) and NUnit (in C#). It can be used for unit, functional, integration, and
end-to-end testing. TestNG has gained a lot of popularity within a short time and is one
of the most widely used testing frameworks among Java developers. It mainly uses Java
annotations to configure and write test methods.

TestNG was developed by Cedric Beust. He developed it to overcome a deficiency in JUnit.
A few of the features that TestNG has over JUnit 4 are:

 � Extra Before and After annotations such as Before/After Suite and Before/After Group

 � Dependency test

 � Grouping of test methods

 � Multithreaded execution

 � In-built reporting framework

So, let's get familiarized with TestNG. As I mentioned earlier, TestNG is a testing framework.
It is written in Java and can be used with Java as well as with Java-related languages such
as Groovy. In TestNG, suites and tests are configured or described mainly through XML
files. By default, the name of the file is testng.xml, but we can give it any other name
if we want to.

Chapter 1

[7]

TestNG allows users to do test configuration through XML files and allows them to include
(or exclude) respective packages, classes, and methods in their test suite. It also allows users
to group test methods into particular named groups and to include or exclude them as part
of the test execution.

Parameterization of test methods is very easy using TestNG and it also provides an easy
method of creating data-driven tests.

TestNG exposes its API which makes it easy to add custom functionalities or extensions,
if required.

Features of TestNG
Now that you are at least a little familiarized with TestNG, let's go forward and discover more
about the features offered by TestNG. The following are a few of the most important features:

 � Multiple Before and After annotation options: TestNG provides multiple kinds
of Before/After annotations for support of different setup and cleanup options.

 � XML-based test configuration and test suite definition: Test suites in TestNG are
configured mainly using XML files. An XML file can be used to create suites using
classes, test methods, and packages, as well as by using TestNG groups. This file is
also used to pass parameters to test methods or classes.

 � Dependent methods: This is one of the major features of TestNG where you can
tell TestNG to execute a dependent test method to run after a given test method.
You can also configure whether the dependent test method has to be executed
or not in case the earlier test method fails.

 � Groups/group of groups: Using this feature you can assign certain test methods
into particular named groups and tell TestNG to include or exclude a particular
group in a test.

 � Dependent groups: Like dependent methods, this feature allows test methods
belonging to one group being dependent upon another group.

 � Parameterization of test methods: This feature helps users to pass parameter
values through an XML configuration file to the test methods, which can then
be used inside the tests.

 � Data-driven testing: TestNG allows users to do data-driven testing of test methods
using this feature. The same test method gets executed multiple times based on
the data.

 � Multithreaded execution: This allows execution of test cases in a multithreaded
environment. This feature can be used for parallel test execution to reduce
execution time or to test a multithreaded test scenario.

Getting Started

[8]

 � Better reporting: TestNG internally generates an XML and HTML report by default
for its test execution. You can also add custom reports to the framework if required.

 � Open API: TestNG provides easy extension of API, this helps in adding custom
extensions or plugins to the framework depending upon the requirement.

We will discuss these features in more detail in coming chapters.

Downloading TestNG
Before we can download and start using TestNG, there are certain prerequisites we need.
So, let's go ahead with the prerequisites first.

Prerequisites
Before you start using TestNG please make sure that Java JDK5 or above is installed on
your system. Also make sure that JDK is set in the system path. In case JDK is not available
on your system, you can download it from the following link:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

TestNG can be downloaded, installed, and run in multiple ways as follows:

 � Using command line

 � As an Eclipse plugin

 � As an IntelliJ IDEA plugin

 � Using ANT

 � Using Maven

In case you just want to download the TestNG JAR, you can get it from the following URL:

http://testng.org/testng-6.8.zip

Installing TestNG onto Eclipse
Before we go forward with installing the TestNG plugin onto Eclipse, please make sure
you have Eclipse installed on your system. You can get the latest version of eclipse from
http://www.eclipse.org/downloads/. At the time of writing this book, I am
using Eclipse JEE Juno-SR1 version.

Chapter 1

[9]

Time for action – installing TestNG onto Eclipse
Let's start with the installation process of TestNG onto Eclipse:

1. Open your Eclipse application.

2. Go to Help | Install New Software.

3. Click on the Add… button next to the Work with text box.

Getting Started

[10]

4. Enter TestNG site into the Name box and enter URL http://beust.com/
eclipse into the Location box. Once done, click on the OK button.

5. On clicking OK, TestNG update site will get added to Eclipse. The available software
window will show the tools available to download under the TestNG site.

Chapter 1

[11]

6. Select TestNG and click on Next.

7. Eclipse will calculate the software requirements to download the selected TestNG
plugin and will show the Install Details screen. Click on Next on the details screen.

Getting Started

[12]

8. Accept the License Information and click on Finish. This will start the download
and installation of the TestNG plugin onto Eclipse.

9. In case you get the following warning window, click on the OK button.

10. Once the installation is complete, Eclipse will prompt you to restart it.
Click on Yes on the window prompt.

11. Once Eclipse is restarted, verify the TestNG plugin installation by going to Window |
Preferences. You will see a TestNG section under the preferences window.

Chapter 1

[13]

What just happened?
We have successfully installed the TestNG plugin into our Eclipse installation. This will help us
in executing our TestNG tests or suite using Eclipse. Now we can go ahead and write our first
TestNG test.

Writing your first TestNG test
Before we write our first TestNG test, we have to create a Java project in Eclipse to add our
TestNG test classes.

The Java project
A Java project is a place which contains Java source code and related files to compile
your program. It can be used to maintain your source code and related files for proper
management of the files. Let's create a Java project in Eclipse. If you already know
how to create a Java project in Eclipse, you can skip this section.

Time for action – creating a Java project
Perform the following steps to create a Java project:

1. Open Eclipse.

2. Go to File | New | Other. A window with multiple options will be shown.

3. Select Java Project as shown in the following screenshot and click on Next:

Getting Started

[14]

4. On the next screen, enter a Project name for a Java project, let's say
FirstProject, as shown in the following screenshot, and click on Finish:

This will create a new Java project in Eclipse.

5. Now go to Project | Properties. Select Java Build Path on the left-hand side on the
Properties window as shown in the following screenshot. This will display the build
path for the newly created project.

Chapter 1

[15]

6. Click on the Libraries tab and click on the Add Library... option.

7. Select TestNG on the Add Library window as shown in the following screenshot
and click on Next:

8. Click on Finish on your next window. This will add the TestNG library to your
Eclipse project.

Getting Started

[16]

What just happened?
We have successfully created a new Java project in Eclipse and added a TestNG library to the
build path of the project. Now we can go ahead and add new test classes for adding TestNG
tests. Now let's create our first TestNG test class for this newly created Java project.

Time for action – creating your first TestNG class
Perform the following steps to create your first TestNG class:

1. Go to File | New | Other. This will open a new Add wizard window in Eclipse.

2. Select TestNG class from the Add wizard window and click on Next.

3. On the next window click on the Browse button and select the Java project where
you need to add your class.

Chapter 1

[17]

4. Enter the package name and the test class name and click on Finish.

This window also gives you an option to select different annotations while creating
a new TestNG class. If selected, the plugin will generate dummy methods for these
annotations while generating the class.

This will add a new TestNG class to your project.

5. Write the following code to your newly created test class:

package test;

import org.testng.annotations.Test;

public class FirstTest {
 @Test

Getting Started

[18]

 public void testMethod() {
 System.out.println("First TestNG test");
 }
}

The preceding code contains a class named FirstTest, which has a test method
named testMethod, denoted by the TestNG annotation @Test mentioned before
the testMethod() function. The test method will print First TestNG test
when it is executed.

What just happened?
We have successfully added a new TestNG test class to the newly created Java project
in Eclipse. Now let's run the newly created test class through Eclipse.

Running your first test program
Now we will learn about how to run the newly added test class through Eclipse as well
as about different options available for running your tests.

Time for action – running tests through Eclipse
Perform the following steps to run tests through Eclipse:

1. Select the Java project in the Eclipse and go to Run | Run Configuration.

Chapter 1

[19]

2. Select TestNG in the given options and click on the New button to create a
new configuration.

3. TestNG plugin provides multiple options for running your test cases as follows:

 � Class: Using this option you can provide the class name along with the
package to run only the said specific test class.

 � Method: Using this you can run only a specific method in a test class.

 � Groups: In case you would like to run specific test methods belonging to
a particular TestNG group, you can enter those here for executing them.

 � Package: If you would like to execute all the tests inside a package, you
can specify these in this box.

 � Suite: In case you have suite files in the form of testng.xml files, you
can select those here for execution.

Let's enter the configuration name as FirstProject and select the newly
created class under the Class section and click on Apply.

4. Now if you would like to run the newly created configuration, just click on Run
after clicking on Apply. This will compile and run the TestNG test class that we
have written. The result of the test execution is displayed in the Console and
Results windows of Eclipse as shown in the following screenshot.

You can also run the test class by selecting it and then right-clicking on it,
selecting Run as from the menu, and then choosing TestNG Test.

Getting Started

[20]

Following is the results output on the Eclipse Console window for the test execution:

Following is the results output on the TestNG Results window in Eclipse for the
test execution:

Have a go hero
Run a particular method of a test class through TestNG using the Run Configuration
feature in Eclipse.

Chapter 1

[21]

Pop quiz – about TestNG
Q1. TestNG is a unit testing framework.

1. True

2. False

Q2. Suites in TestNG are configured using:

1. The XML file

2. The HTML file

3. The CSV file

Summary
In this chapter we learned about TestNG, features offered by TestNG, installing the TestNG
plugin into Eclipse and writing and executing a TestNG test class through Eclipse. In the
next chapter, we will learn about testng.xml and how to define test suites using XML.

2
Understanding testng.xml

In the previous chapter we had learned about TestNG, its features, how to
set it up and run it through Eclipse. In this chapter we will learn about testng.
xml, the main configuration file of TestNG used to define suites, tests, and
configure TestNG.

In this chapter we'll cover the following topics:

 � About testng.xml

 � Creating a test suite

 � Running testng.xml

 � Creating multiple tests in suite

 � Adding classes, packages, and method to tests

 � Including and excluding classes, packages, and methods in tests

About testng.xml
testng.xml is a configuration file for TestNG. It is used to define test suites and tests
in TestNG. It is also used to pass parameters to test methods, which we will discuss under
the Parameterization of test section in Chapter 3, Annotations.

testng.xml provides different options to include packages, classes, and independent test
methods in our test suite. It also allows us to configure multiple tests in a single test suite
and run them in a multithreaded environment.

Understanding testng.xml

[24]

TestNG allows you to do the following:

 � Create tests with packages

 � Create tests using classes

 � Create tests using test methods

 � Include/exclude a particular package, class, or test method

 � Use of regular expression while using the include/exclude feature

 � Store parameter values for passing to test methods at runtime

 � Configure multithreaded execution options

In the following sections and chapters we will be discussing more about these features.

Creating a test suite
Let's now create our first TestNG test suite using testng.xml. We will create a simple test
suite with only one test method.

Time for action – creating a test suite
Perform the following steps for creating a test suite:

1. Go to the Eclipse project that we created in the previous chapter.

2. Select the project and then right-click on it and select New | File.

3. Select the project in the File window.

Chapter 2

[25]

4. Enter text testng.xml in the File name section, and click on Finish.

5. Eclipse will add the new file to your project and will open the file in the editor,
as shown in the following screenshot:

Note that the previous screen may look different in your Eclipse
depending upon the plugins that are installed in it.

6. Add the following snippet to the newly created tesntg.xml file and save it.
<suite name="First Suite" verbose="1" >
 <test name="First Test" >
 <classes>
 <class name="test.FirstTest" />
 </classes>
 </test>
</suite>

The preceding XML defines a TestNG suite using the tag name suite. The name of the suite
is mentioned using the name attribute (in this case First Suite).

It contains a test, declared using the XML tag test and the name of the test is given using
the name attribute. The test contains a class (test.FirstTest) to be considered for test
execution which is configured using the classes and class tags as mentioned in the XML
file. We will discuss these in more detail going forward.

Let's go ahead and learn how to run the previously created testng.xml file.

Understanding testng.xml

[26]

Running testng.xml
In the earlier section we had created a testng.xml file but haven't yet verified it by running
it. In this section we will learn how to run the testng.xml configuration file. There are
multiple ways of running the testng.xml file as a TestNG suite.

Using command prompt
You can execute the testng.xml file through the command prompt. This also allows the
use of multiple testng.xml files to execute simultaneously through TestNG. Before running
a testng.xml suite through the command prompt, we need to compile our project code.
However, compilation of project code using Java is out of the scope of this book and is not
covered. Hence, we will use the class files compiled by Eclipse. The code compiled by Eclipse
can be found under a folder named bin inside your Test Java project folder.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Time for action – running testng.xml through the command
prompt

Perform the following steps for running testng.xml through the command prompt:

1. Open the command prompt on your system.

2. Go to the Test Java project folder where the new testng.xml is created.

3. Type the following line.
java -cp "/opt/testng-6.8.jar:bin" org.testng.TestNG testng.xml

In the preceding command we are adding the TestNG JAR and the project compiled
code to the Java classpath by using the -cp option of Java.

Here /opt/testng-6.8.jar is the path to the testng JAR where you had
downloaded it and it may be different for your system. Also, bin is the folder
containing the compiled code of the Java project. This can be found under the
Eclipse project, which is under consideration. We will talk about compiling code
and running tests in later chapters of this book.

Here org.testng.TestNG consists of the main method that Java will use to
execute the testng.xml file, which is passed as an argument at the command line.

Chapter 2

[27]

4. Run the previous command line by pressing the Enter key. This will execute the
test suite mentioned in the testng.xml file using TestNG. After execution an
HTML report is generated by TestNG in a folder named test-output under
the same directory where you had run the command. The following is the HTML
test report generated by TestNG:

Following is the console output:

What just happened?
We have successfully created our first testng.xml test suite and executed it using the
command prompt. In case you would like to execute multiple testng.xml files, you
can use the previous method by passing the other XML files as added arguments to
the command line. The following is a sample command:

java -cp "/opt/testng-6.8.jar:bin" org.testng.TestNG testng.xml testng1.
xml

TestNG will execute all the tests declared under these testng XML files.

Understanding testng.xml

[28]

TestNG also allows executing a particular test from the testng.xml file. To execute a
particular test from the testng XML file, use the option -testnames at the command
line with comma-separated names of tests that need to be executed. The following is a
sample command:

java -cp "/opt/testng-6.8.jar:bin" org.testng.TestNG -testnames "Second
Test" testng.xml

The preceding command will execute a test with the name Second Test from testng.xml
if it exists in the defined suite.

Using Eclipse
As we had already learned about how to run the testng.xml file using the command
prompt, we will now learn how to run it using Eclipse. This is one of the methods which
will help us to verify our testng.xml file while modifying it.

Time for action – executing testng.xml using Eclipse
Perform the following steps for executing testng.xml using Eclipse:

1. Open Eclipse and go to the project where we have created the testng.xml file.

2. Select the testng.xml file, right-click on it, and select Run As | TestNG suite.

3. Eclipse will execute the XML file as TestNG suite and you can see the following
report in Eclipse:

The preceding window may not be shown by default in Eclipse after
execution and you may have to click on the window to see the results.

You can also use the Run Configuration option provided by Eclipse to customize your TestNG
tests in Eclipse. Let's learn how to configure Eclipse to run testng XML files.

Chapter 2

[29]

Time for action – configuring Eclipse to run a particular TestNG
XML file

Perform the following steps to configure Eclipse to run a particular TestNG XML file:

1. On the top-bar menu of Eclipse, go to Run | Run Configurations.

2. Select TestNG from the set of configurations and click on the New Launch
Configuration icon.

3. On the configuration window give a name My Test to the configuration.

4. Go to the Project section, click on Browse and select your project on the
project window.

Understanding testng.xml

[30]

5. Now go to the Suite section and click on Browse. Select the mytestng.xml
configuration.

6. Click on Apply, and then click on Run. This will run the selected testng XML
configuration file.

What just happened?
We have successfully learned to configure and execute the testng XML file using
Eclipse. The configuration also provides the option to select multiple testng XML
files and pass extra arguments to configure execution. Arguments can be passed by
going to the Arguments tab and entering them in the Program Argument section.

Let's now learn to create multiple test sections inside a testng XML file.

Chapter 2

[31]

Creating multiple tests
Earlier we had created a simple testng.xml file with a single test in a suite. TestNG allows you
to define multiple test sections in a single suite. This helps you in segregating your tests and
creating different tests based on modules, features, type of test (integration or unit), and so on.

Time for action – testng XML with multiple tests
Let's create a testng XML file with multiple tests and run it:

1. Open Eclipse and create a new project with the name MultiTest and with the
following structure:

2. Open the FirstTestClass.java file and add the following code snippet onto it:
package test.firstpackage;

import org.testng.annotations.Test;

public class FirstTestClass {
 @Test
 public void firstTest(){
 System.out.println("First test method");
 }

}

The preceding class contains one test method, which is annotated by the @Test
annotation. We will be discussing this annotation in more detail in our next chapter.
The test method prints a message onto the console upon execution.

Understanding testng.xml

[32]

3. Open the SecondTestClass.java file and add the following code snippet to it:
package test.firstpackage;

import org.testng.annotations.Test;

public class SecondTestClass {
 @Test
 public void secondTest(){
 System.out.println("Second test method");
 }

}

4. Now open the testng.xml file and add the following snippet to it:
<suite name="Suite" verbose="1" >
 <test name="FirstTest" >
 <classes>
 <class name="test.firstpackage.FirstTestClass" />
 </classes>
 </test>
 <test name="SecondTest" >
 <classes>
 <class name="test.firstpackage.SecondTestClass" />
 </classes>
 </test>
</suite>

The XML file defines a suite with the name Suite. The suite contains two tests
with names FirstTest and SecondTest respectively. These tests are configured
to execute separate classes test.firstpackage.FirstTestClass and test.
firstpackage.SecondTestClass.

When the XML file is executed as a suite in TestNG, each class is executed by a
separate test section of a suite.

Chapter 2

[33]

5. Now run the testng.xml file using Eclipse. Once executed you will see the
following output generated in Eclipse:

What just happened?
We have successfully created a testng XML configuration file with multiple test
sections and then ran it using TestNG. You can run these tests individually by the
different -testnames configuration supported by TestNG as explained in the
Time for action – running testng.xml through the command prompt section.

Adding classes, packages, and methods to test
Earlier we learned about creating test suites, suites with multiple tests, and running them
through TestNG. Now we will learn how to create and configure suites to execute only the
tests belonging to a particular class or a package or just a particular test method.

In earlier examples you may have noticed tests with a single class. In this section we will
learn how to add multiple classes to a test.

Understanding testng.xml

[34]

Sample project
Before going ahead with creation of test suite with classes, packages, and test methods,
we will need a sample project in place for defining test suites for test execution. Let's
create a sample project first:

1. Open Eclipse and create a new project with three packages, each package
containing two classes, as mentioned in the following screenshot. Also, add
TestNG library to the project as mentioned in Chapter 1, Getting Started.

2. Add the following two test methods to each class with the following code:
 @Test
 public void firstTest(){
 System.out.println("First test method");
 }

 @Test
 public void secondTest(){
 System.out.println("Second test method");
 }

These methods print messages First test method and Second test method
to the console when executed.

3. Save the project.

Now the project is created for writing our test suites.

Creating a test with classes
In this section we will learn how to create and configure TestNG test suite using classes.

We will use the sample project created earlier and use it to write an example.

Chapter 2

[35]

Time for action – creating a test with classes
Perform the following steps to create a test with classes:

1. Open the sample project that we created earlier.

2. Add new file TestNG configuration XML by name class-testng.xml to the project
with following content.
<suite name="Class Suite" verbose="1">
 <test name="Test">
 <classes>
 <class name="test.firstpackage.FirstTestClass" />
 <class name="test.secondpackage.FirstTestClass" />
 <class name="test.thirdpackage.FirstTestClass" />
 </classes>
 </test>
</suite>

The preceding testng XML suite defines a test with three classes (one from each
package). To add a class to your test suite just use a combination of classes and
class tag as shown. Use the class tag with the attribute name having a value of
the class name along with the package name (for example, test.firstpackage.
FirstTestClass) to add a test class to your test.

3. Now run the preceding testng XML file as a TestNG suite through Eclipse.
You will see the following results in Eclipse:

Understanding testng.xml

[36]

As you can see in the previous screenshot, TestNG executes all the test methods
present inside the test class added to the test suite, and excludes all the other test
classes present in the project.

What just happened?
We have successfully created and executed a TestNG test suite by adding few test classes
to the suite. We can use multiple class tags as and when required under the classes tag
section to add multiple test classes to the tests. Now let's go ahead and create a test with
only packages.

Creating a test using packages
In this section we will learn how to create and configure TestNG test suite using project
packages. A package may contain one or many classes in it. Using this configuration we
can include all the classes under a package or its subpackages to the test suite.

We will use the sample project created earlier and use it to write an example.

Time for action – creating a test with packages
Perform the following steps to create a test with packages:

1. Let's use the same sample project created earlier.

2. Add new file TestNG configuration XML by name package-testng.xml to the
project with following content:
<suite name="Package Suite" verbose="1">
 <test name="Package Test">
 <packages>
 <package name="test.firstpackage" />
 <package name="test.secondpackage" />
 </packages>
 </test>
</suite>

The preceding testng XML suite defines a test with two packages (test.
firstpackage and test.secondpackage, respectively) as you can see. To add a
package to your test suite just use a combination of the packages and package tag
as shown in the previous code. Use the package tag with the attribute name having
a value of the package name (for example, test.firstpackage) under the tag
packages to add packages to your tests.

Chapter 2

[37]

3. Now run the previous testng XML file as a TestNG suite. You will see the following
results in Eclipse:

As you can see in the previous screenshot TestNG executes all the test classes that are using
TestNG annotations in them under the added packages of the test suite and excludes all the
other test classes present in other packages of the project.

What just happened?
We have successfully created and executed a TestNG test suite by adding test packages
to the suite. TestNG executes all the test methods inside the test classes present in the
packages. In case you want to add all the subpackages under a particular package, you
can use .* at the end of the package name (as shown in the following code snippet).

<suite name="Package Suite" verbose="1">
 <test name="Package Test">
 <packages>
 <package name="test.*" />
 </packages>
 </test>
</suite>

Understanding testng.xml

[38]

This will execute all the subpackages present under the package test.

Now let's go ahead and create a test by configuring it to execute only a particular test method.

Creating a test with methods
In this section we will learn how to create and configure the TestNG test suite by adding
specific test methods from test classes. Using this configuration, we can add specific test
methods from the test classes to the test suite for including them as part of the test execution.

We will use the sample project created earlier and use it to write an example.

Time for action – creating a test with methods
Perform the following steps to create a test with methods:

1. We will use the same sample project created earlier for defining a test suite.

2. Add a new file TestNG configuration XML by name method-testng.xml to the
project with following content:
<suite name="Method Suite" verbose="1">
 <test name="Method Test">
 <classes>
 <class name="test.firstpackage.FirstTestClass">
 <methods>
 <include name="firstTest" />
 </methods>
 </class>
 </classes>
 </test>
</suite>

The preceding testng XML suite defines a class that needs to be considered for
test execution and the test method that needs to be included for execution. To
add methods to your test suite we have to use the tags methods and include/
exclude under them to add or remove particular methods from a test class.

Chapter 2

[39]

3. Now run the previous testng XML file as a TestNG suite. You will see the following
results in Eclipse:

What just happened?
We have successfully created a TestNG suite, considering only a particular method from a
test class, and executed it. In case you would like to add more methods, you can use multiple
include tags mentioning the name of the method that you want to include in the test
execution. Let's go ahead and create a test suite with all the combinations: package, class,
and test method in a single test.

Creating a test with packages, classes, and methods
In this section we will learn how to create and configure the TestNG test suite by including
packages, classes, and test methods.

We will use the sample project created earlier and use it to write an example.

Understanding testng.xml

[40]

Time for action – creating a test suite with package, class, and
test method

Perform the following steps to create a test suite with package, class, and test method:

1. We will use the same sample project created earlier for defining a test suite.

2. Add a new file TestNG configuration XML by name combine-testng.xml to
the project with following content:
<suite name="Combine Suite" verbose="1">
 <test name="Combine Test">
 <packages>
 <package name="test.firstpackage" />
 </packages>
 <classes>
 <class name="test.secondpackage.FirstTestClass" />
 <class name="test.thirdpackage.FirstTestClass">
 <methods>
 <include name="firstTest" />
 </methods>
 </class>
 </classes>
 </test>
</suite>

The preceding testng XML suite defines a test with a package (test.
firstpackage), a particular class (test.secondpackage.FirstTestClass),
and a particular test method (firstTest under the class test.thirdpackage.
FirstTestClass) as part of the test suite.

Chapter 2

[41]

3. Now run the previous testng XML file as a TestNG suite. You will see the following
results in Eclipse:

What just happened?
We have successfully created a TestNG suite by adding a particular package, class, and test
method to the test, and then executed it. This gives us the flexibility of creating a test with
different packages, classes, and test methods depending upon the test requirement.

Understanding testng.xml

[42]

Including and excluding
TestNG provides the flexibility to include or exclude tests while defining a test suite. This
helps in defining a test suite with a particular set of tests. While defining the testng XML
configuration file, we can use the include and exclude tags to include or exclude tests.
Let's create a few test suites to include and exclude particular tests and execute them.

Include/exclude packages
You can use the TestNG feature of including and excluding to include and exclude certain
test packages from a set of tests. Let's create a few test suites by including and excluding
test package in a test.

Time for action – test suite to include a particular package
Perform the following steps to create a test suite and include a particular package:

1. Let's take the sample project created earlier for our tests.

2. Create a testng XML file with name include-package-testng.xml in the
project. Add the following code to it:
<suite name="Include Package Suite" verbose="1">
 <test name="Include Package Test">
 <packages>
 <package name="test.*">
 <include name="test.secondpackage" />
 </package>
 </packages>
 </test>
</suite>

The preceding test suite defines a test, which includes all subpackages of the test
package (defined by using regular expression test.*) and includes only a particular
package from all the packages for test execution. This is done by using the include
tag with the name attribute value as the package name that needs to be included
(that is, test.secondpackage). This informs TestNG to include classes belonging
to the included package for test execution.

Chapter 2

[43]

3. Execute the previous XML file as a TestNG suite and check the results.
The following report will be shown on the Eclipse report window:

As you can see the results, TestNG has executed test methods from all the classes present
under the included package test.secondpackage and skipped the other test methods.

Time for action – test suite to exclude a particular package
Perform the following steps to create a test suite and exclude a particular package:

1. Let's take the sample project created earlier for our tests.

2. Create a testng XML file with name exclude-package-testng.xml
in the project. Add the following code to it:
<suite name="Exclude Package Suite" verbose="1">
 <test name="Exclude Package Test">
 <packages>
 <package name="test.*">
 <exclude name="test.secondpackage" />
 </package>
 </packages>
 </test>
</suite>

Understanding testng.xml

[44]

The preceding test suite defines a test by including all subpackages of the test
package (defined by using the regular expression test.*) and excluding only a
particular package from all the packages for test execution. This is done by using
the exclude tag with the name attribute value as the package name (that is, test.
secondpackage) that needs to be excluded. This informs TestNG to exclude classes
belonging to the package from test execution.

3. Execute the previous XML file as a TestNG suite and check the results. The following
report will be shown on the Eclipse report window:

As you can see from the results, TestNG has executed test methods from all the classes
present under all the packages under the test package excluding those that belong to
test.secondpackage.

What just happened?
We have successfully created test suites by including and excluding packages from the
test execution. This helps us in creating tests by including or excluding particular packages.

Chapter 2

[45]

Include/exclude methods
The include/exclude feature can also be used for including and excluding test
methods. It even supports pattern matching options to include/exclude methods
using regular expressions.

Let's first create a simple test suite by including and excluding some test methods,
and then we will create a test suite by using regular expressions for including and excluding.

Including a test method for test suite is the same as creating a test suite with test methods.
This was already covered earlier so I will go forward and tell you how to exclude a particular
test method from a test suite.

Time for action – test suite to exclude a particular method
Perform the following steps to create a test suite and exclude a particular method:

1. We will use the same project created earlier.

2. Add a new file TestNG configuration XML named exclude-method-testng.xml
to the project with the following content:
<suite name="Exclude Method Suite" verbose="1">
 <test name="Exclude Method Test">
 <classes>
 <class name="test.firstpackage.FirstTestClass">
 <methods>
 <exclude name="firstTest" />
 </methods>
 </class>
 </classes>
 </test>
</suite>

The preceding testng XML suite defines a class that needs to be considered for test
execution and the test method that needs to be excluded from execution. To exclude
a method from your test suite we have to use the tags methods and exclude
under them to exclude a particular method from a test class.

Understanding testng.xml

[46]

3. Now run the previous testng XML file as a TestNG suite. You will see the following
results in Eclipse:

As you can see in the test report, TestNG excluded the said test method from test
execution and executed the rest of the test methods from the respective test class.

Using regular expressions to include/exclude
The include and exclude features of TestNG support the use of regular expressions
for including and excluding particular test methods based on certain search names.
Let's go ahead and create a test suite using regular expressions.

Prerequisite – creating a sample project
Before we go forward with writing a test suite using a regular expression we need a
sample project. So, let's first create a sample project for our test:

1. Create a new Java project in Eclipse with the following structure.

Chapter 2

[47]

2. Add the following code to the RegularExpClass file under the package test.
regularexppackage:

package test.regularexppackage;

import org.testng.annotations.Test;

public class RegularExpClass {

 @Test
 public void includeTestFirst(){
 System.out.println("First include test method");
 }

 @Test
 public void includeTestSecond(){
 System.out.println("Second include test method");
 }

 @Test
 public void excludeTestFirst(){
 System.out.println("First exclude test method");
 }

 @Test
 public void excludeTestSecond(){
 System.out.println("Second exclude test method");
 }

 @Test
 public void includeMethod(){
 System.out.println("Include method");
 }

 @Test
 public void excludeMethod(){
 System.out.println("Exclude method");
 }

}

The preceding code contains multiple test methods with different names, and we will use
these methods to learn about usage of regular expressions in the include and exclude
tags in TestNG.

Understanding testng.xml

[48]

Time for action – using regular expressions for test
Perform the following steps for using regular expressions for test:

1. We will use the sample project created earlier for regular expressions.

2. Add a new file TestNG configuration XML named regexp-testng.xml to the
project with the following content:
<suite name="Regular Exp Suite" verbose="1">
 <test name="Regular Exp Test">
 <classes>
 <class name="test.regularexppackage.RegularExpClass">
 <methods>
 <include name=".*Test.*" />
 </methods>
 </class>
 </classes>
 </test>
</suite>

The preceding testng XML suite is configured to consider only those test methods
from a particular class whose name contains the word Test in it. The regular
expression is considered by use of .* before and after the text.

3. Now run the previous testng XML file as a TestNG suite. You will see the following
results in Eclipse:

Chapter 2

[49]

As you can see in the test report TestNG has executed only those test methods whose
name contains the word Test in it. You can use the regular expression (.*) at the beginning
or end of a text to perform an ends-with and starts-with search, respectively. This regular
expression can also be used with the exclude tag to exclude particular test methods from
test execution.

What just happened?
We have successfully created a TestNG suite to include and exclude particular test methods
from a class. Also we have learned about how to use regular expressions and use a name-
based search to include and exclude a test method in a test based on the test method name.

Have a go hero
Having gone through the chapter, feel free to attempt the following:

 � Write a testng XML configuration file to exclude all the methods that start with a
particular text

 � Create a testng XML configuration file to include all the subpackages in a package

Pop quiz – TestNG XML
Q1. Can we define a multiple test inside a test suite inside a testng XML?

1. Yes

2. No

Q2. Which of the following options should be used to execute a particular test from a
testng XML test suite containing a multiple tests section in it?

1. -test

2. -testnames

3. -testopts

Q3. Which of the following regular expressions should be used in TestNG for a regular search?

1. * (Star)

2. .* (Dot Star)

3. x (X)

Understanding testng.xml

[50]

Summary
In this chapter, we learned about testng XML configuration files of TestNG to
define different tests using classes, packages, and test methods. We also learned
about how to include/exclude packages and test methods from a particular test.

We looked at how to use regular expressions to add particular packages and test
methods to the methods based on matching names.

In the next chapter we will learn about different annotations provided by TestNG
and how to use them.

3
Annotations

In the previous chapter we had learned about the TestNG XML configuration
file, the different features it provides, and the different ways to create a TestNG
test suite.

In this chapter we will learn about TestNG annotations and the different
features supported through them. These are the base of TestNG and most
of the features are supported through their use of TestNG.

In this chapter we'll cover the following topics:

 � Annotations in TestNG

 � Before and After annotations

 � Test annotation

 � Disabling a test

 � Exception test

 � Time test

 � Parameterization of test

 � Passing parameters to the test methods

 � Using DataProvider for parameterized tests

Annotations

[52]

Annotations in TestNG
Annotation is a feature introduced in Java 5 and is used to add metadata (data about data)
to Java source code. This will allow you to add information to an existing data object in your
source code. It can be applied for classes, methods, variables, and parameters. Annotations
may affect the way different programs or tools use your source code. There are certain
predefined set of annotations defined in Java. For example, @Override, @Deprecated,
@SupressWarnings, and so on, but Java allows users to define their own annotations too.

TestNg makes use of the same feature provided by Java to define its own annotations and
build an execution framework by using it. The following is a table containing information
about all the annotations provided by TestNG and a brief description of them:

Annotation Description

@BeforeSuite or
@AfterSuite

The annotated method will be executed before and after
any tests declared inside a TestNG suite.

@BeforeTest or
@AfterTest

The annotated methods will be executed before and after
each test section declared inside a TestNG suite.

@BeforeGroups or
@AfterGroups

These annotations are associated with the groups feature
in TestNG.

BeforeGroups annotated method will run before any
of the test method of the specified group is executed.

AfterGroups annotated method will run after any of
the test method of the specified group gets executed.

For this method to be executed, the user has to mention
the list of groups this method belongs to using groups
attribute with the said annotation. You can specify more
than multiple groups if required.

@BeforeClass or
@AfterClass

BeforeClass annotated method is executed before
any of the test method of a test class.

AfterClass annotated method is executed after the
execution of every test methods of a test class are executed.

@BeforeMethod or
@AfterMethod

These annotated methods are executed before/after the
execution of each test method.

@DataProvider Marks a method as a data providing method for a test
method. The said method has to return an Object
double array (Object[][]) as data.

Chapter 3

[53]

Annotation Description
@Factory Marks a annotated method as a factory that returns an

array of class objects (Object[]). These class objects
will then be used as test classes by TestNG. This is used to
run a set of test cases with different values.

@Listeners Applied on a test class. Defines an array of test listeners
classes extending org.testng.ITestNGListener.
Helps in tracking the execution status and logging purpose.

@Parameters This annotation is used to pass parameters to a test
method. These parameter values are provided using the
testng.xml configuration file at runtime.

@Test Marks a class or a method as a test method. If used at class
level, all the public methods of a class will be considered as
a test method.

Before and After annotations
Before and After annotations are mainly used to execute a certain set of code before
and after the execution of test methods. These are used to basically set up some variables
or configuration before the start of a test execution and then to cleanup any of these things
after the test execution ends.

TestNG provides five different kinds of Before and After annotation options, each of which
can be used depending upon the test requirements. The following are the different before
and after options provided by TestNG:

 � @BeforeSuite/@AfterSuite

 � @BeforeTest/@AfterTest

 � @BeforeGroups/@AfterGroups

 � @BeforeClass/@AfterClass

 � @BeforeMethod/@AfterMethod

Let's try out an example containing all the preceding annotated methods and learn about
how and when they are executed.

Annotations

[54]

Time for action – running the Before and After annotations
1. Perform the following steps to run the Before and After annotations: Open Eclipse

and create a Java Project with following structure. Please make sure that TestNG
library is added to the build path of the project as mentioned in Chapter 1,
Getting Started.

2. Add the following code to the TestClass.java file shown in the
previous screenshot:
package test.beforeafter;

import org.testng.annotations.AfterClass;
import org.testng.annotations.AfterGroups;
import org.testng.annotations.AfterMethod;
import org.testng.annotations.AfterSuite;
import org.testng.annotations.AfterTest;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.BeforeGroups;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.BeforeSuite;
import org.testng.annotations.BeforeTest;
import org.testng.annotations.Test;

public class TestClass {
 /**
 * Before suite method which is executed before
 * starting of any of the test in the suite.
 */
 @BeforeSuite
 public void beforeSuite(){
 System.out.println("Before Suite method");
 }

 /**

Chapter 3

[55]

 * After suite method which gets executed after
 * execution of all the tests in a suite.
 */
 @AfterSuite
 public void afterSuite(){
 System.out.println("After Suite method");
 }

 /**
 * Before Test method which gets executed before the first
 * test-method mentioned in each test inside the 'test'
 * tag in test suite.
 /
 @BeforeTest
 public void beforeTest(){
 System.out.println("Before Test method");
 }

 /**
 * After Test method which gets executed after
 * the last test-method
 */
 @AfterTest
 public void afterTest(){
 System.out.println("After Test method");
 }

 /**
 * Before Class method which gets executed before
 * any of the test-methods inside a class.
 */
 @BeforeClass
 public void beforeClass(){
 System.out.println("Before Class method");
 }

 /**
 * After Class method which gets executed after
 * all of the test-methods inside a class gets executed.
 */
 @AfterClass

Annotations

[56]

 public void afterClass(){
 System.out.println("After Class method");
 }

 /**
 * Before group method gets executed before executing any of
 * the tests belonging to the group as mentioned in the 'groups'
 * attribute.
 * The following method gets executed before execution of the
 * test-method belonging to group "testOne".
 */
 @BeforeGroups(groups={"testOne"})
 public void beforeGroupOne(){
 System.out.println("Before Group Test One method");
 }

 /**
 * After group method gets executed after executing all the
 * tests belonging to the group as mentioned in the 'groups'
 * attribute.
 * The following method gets executed after execution of the
 * test-methods belonging to group "testOne".
 */
 @AfterGroups(groups={"testOne"})
 public void afterGroupOne(){
 System.out.println("After Group Test One method");
 }

 /**
 * Before group method gets executed before executing any of the
tests
 * belonging to the group as mentioned in the 'groups' attribute.
 * The following method gets executed before execution of the
 * test-method belonging to group "testTwo".
 */
 @BeforeGroups(groups={"testTwo"})
 public void beforeGroupTwo(){
 System.out.println("Before Group Test two method");
 }

 /**
 * After group method gets executed after executing all the tests
 * belonging to the group as mentioned in the 'groups' attribute.
 * The following method gets executed after execution of the
 * test-methods belonging to group "testTwo".
 */
 @AfterGroups(groups={"testTwo"})
 public void afterGroupTwo(){

Chapter 3

[57]

 System.out.println("After Group Test two method");
 }

 /**
 * Before method which gets executed before each test-method.
 */
 @BeforeMethod
 public void beforeMethod(){
 System.out.println("Before Method");
 }

 /**
 * After method which gets executed after each test-method.
 */
 @AfterMethod
 public void afterMethod(){
 System.out.println("After Method");
 }

 /**
 * Test-method which belongs to group "testOne".
 */
 @Test(groups={"testOne"})
 public void testOneMethod(){
 System.out.println("Test one method");
 }

 /**
 * Test-method which belongs to group "testTwo".
 */
 @Test(groups={"testTwo"})
 public void testTwoMethod(){
 System.out.println("Test two method");
 }
}

As you can see there are multiple Before and After annotations defined in the
preceding test class. Preceding each one, you will also see a small detail about
each of the annotated methods along with the details of when they are executed.

3. Create a new testng.xml file to the project and add the following code onto it:
<suite name="First Suite" verbose="1" >
 <test name="First Test" >
 <classes>
 <class name="test.beforeafter.TestClass" >
 <methods>
 <include name="testOneMethod"/>
 </methods>
 </class>

Annotations

[58]

 </classes>
 </test>
 <test name="Second Test" >
 <classes>
 <class name="test.beforeafter.TestClass" >
 <methods>
 <include name="testTwoMethod"/>
 </methods>
 </class>
 </classes>
 </test>
</suite>

The preceding testng.xml file contains two tests containing the same test
class but with different test methods.

4. Execute the preceding testng.xml file as a TestNG suite. You will be shown
the following results in the Console window:

You can see the sequence in which the Before and After methods are executed.
The BeforeGroups and AfterGroups of the respective test method group are
called before and after the respective group test method is executed.

Chapter 3

[59]

What just happened?
We have successfully created a test class with all kinds of Before and After annotations and
executed it using a testng.xml. We had learned from the previous example the sequence
in which each of the respective before and after test methods are executed.

The current example only contains Before and After annotations that are present in the same
class. Lets learn the execution flow when a class containing a Before and After annotation is
extended by another class having another set of Before and After annotations.

Time for action – Before and After annotation when extended
1. Open eclipse and create a Java project with a package structure as mentioned

below. Make sure that you have added TestNG library to the build path.

2. Add the following code to the BaseClass.java file:
package test.beforeafter;

import org.testng.annotations.AfterClass;
import org.testng.annotations.AfterMethod;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.BeforeMethod;

public class BaseClass {
 @BeforeClass
 public void beforeBaseClass(){
 System.out.println("Parent Before Class method");
 }

 @AfterClass
 public void afterBaseClass(){
 System.out.println("Parent After Class method");
 }

 @BeforeMethod

Annotations

[60]

 public void beforeBaseMethod(){
 System.out.println("Parent Before method");
 }

 @AfterMethod
 public void afterBaseMethod(){
 System.out.println("Parent After method");
 }
}

The preceding class contains BeforeClass, AfterClass, BeforeMethod,
and AfterMethod annotated methods. Each of these methods prints a text
to the console when executed.

3. Add the following code to the TestClass.java file:
package test.beforeafter;

import org.testng.annotations.AfterClass;
import org.testng.annotations.AfterMethod;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

public class TestClass extends BaseClass{
 @BeforeClass
 public void beforeChildClass(){
 System.out.println("Child Before Class method");
 }

 @AfterClass
 public void afterChildClass(){
 System.out.println("Child After Class method");
 }

 @BeforeMethod
 public void beforeChildMethod(){
 System.out.println("Child Before method");
 }

 @AfterMethod
 public void afterChildMethod(){
 System.out.println("Child After method");
 }

Chapter 3

[61]

 @Test
 public void testMethod(){
 System.out.println("Test method under TestClass");
 }
}

The preceding test class extends the BaseClass file created earlier and also
contains certain methods having BeforeClass/AfterClass and BeforeMethod/
AfterMethod annotations. It also contains the test method denoted by the Test
annotation. All the methods print a sample text to the console when executed.

4. Add a testng.xml file to the project and add the following code to it:
<suite name="Inheritance Suite" verbose="1" >
 <test name="Inheritance Test" >
 <classes>
 <class name="test.beforeafter.TestClass" />
 </classes>
 </test>
</suite>

The preceding testng.xml file defines a single test inside a suite with only one
class TestClass considered for test.

5. Execute the previously created testng.xml file as a TestNG suite. You will see
the following output in the Eclipse's Console window:

Annotations

[62]

What just happened?
We have successfully seen an example of a test class which contains a Before/After
annotation. We also executed a test class, where the base class that the test class extends,
also contains similar Before/After annotated methods. As you can see, the report output
of TestNG executes the parent class before annotated methods and then the child before
annotated methods. After annotated methods, the child class method is executed and
then the parent class.

This helps us to have a common before annotated methods across all test classes and have
specific Before/After annotated methods for each test class where ever required.

Test annotation
One of the basic annotations of TestNG is the Test annotation. This annotation marks a
method or a class as part of the TestNG test. If applied at class level this annotation will mark
all the public methods present inside the class as test methods for TestNG test. It supports
lot of attributes which you can use along with the annotation, which will enable you to use
the different features provided by TestNG. The following is a list of attributes supported by
the Test annotation:

Supported attributes Description
alwaysRun Takes a true or false value. If set to true this method will always

run even if its depending method fails.
dataProvider The name of the data provider, which will provide data for

data-driven testing to this method.
dataProviderClass The class where TestNG should look for the data-provider method

mentioned in the dataProvider attribute. By default its the
current class or its base classes.

dependsOnGroups Specifies the list of groups this method depends on.
dependsOnMethods Specifies the list of methods this method depends on.
description The description of this method.
enabled Sets whether the said method or the methods inside the said class

should be enabled for execution or not. By default its value is true.
expectedExceptions This attribute is used for exception testing. This attribute specifies

the list of exceptions this method is expected to throw. In case a
different exception is thrown.

groups List of groups the said method or class belongs to.
timeOut This attribute is used for a time out test and specifies the time

(in millisecs) this method should take to execute.

Chapter 3

[63]

We will learn about these attributes and how to use them in future sections in this chapter
or in future chapters. As we have already seen sample tests using the Test annotation on
methods, we will skip it and learn on how we can use the Test annotation on a class.

Time for action – using test annotation on class
1. Open Eclipse and create a sample Java project as shown in the following screenshot

with TestNG library added to its build path:

2. Add a new test class with the name TestClass under the test package and add
the following code to it:
package test;

import org.testng.annotations.Test;

@Test
public class TestClass {

 public void testMethodOne(){
 System.out.println("Test method one.");
 }

 public void testMethodTwo(){
 System.out.println("Test method two.");
 }

 private void testMethodThree(){
 System.out.println("Test method three.");
 }
}

The preceding class contains three methods out of which two are public
methods and one is a private method. The class has been annotated with
the Test annotation.

Annotations

[64]

3. Select the preceding test class in Eclipse and run it as TestNG test. You will see
the following results in the TestNG Results window in Eclipse:

What just happened?
We have successfully run a class which is being annotated by a Test annotation of TestNG.
As you can see from the results, only two methods out of the three methods of the class
were executed by TestNG. If a class is annotated by the Test annotation, TestNG will
consider only the methods with public access modifiers as test methods. All the methods
with other access modifiers will be neglected by TestNG.

Disabling a test
There may be some scenarios where you may have to disable a particular test or a set of
tests from getting executed. For example, consider a scenario where a serious bug exists
in a feature due to certain tests belonging to certain scenarios that cannot be executed.
As the issue has already been identified we may need to disable the said test scenarios
from being executed.

Disabling a test can be achieved in TestNG by setting the enable attribute of the Test
annotation to false. This will disable the said test method from being executed as part
of the test suite. If this attribute is set for the Test annotation at class level, all the public
methods inside the class will be disabled.

Lets go ahead and create a sample project to see how this feature works.

Chapter 3

[65]

Time for action – disabling a test method
1. Create a new class inside the package test with name the DisableTestClass

inside the same Java project created earlier.

2. Add the following code to the newly created class:
package test;

import org.testng.annotations.Test;

public class DisableTestClass {

 @Test(enabled=true)
 public void testMethodOne(){
 System.out.println("Test method one.");
 }

 @Test(enabled=false)
 public void testMethodTwo(){
 System.out.println("Test method two.");
 }

 @Test
 public void testMethodThree(){
 System.out.println("Test method three.");
 }

}

The preceding class contains three test methods out of which, two contain the
attribute enabled with the values true and false respectively.

3. Select and run the previous class as TestNG test in Eclipse. You will see following
results in the Results window of TestNG in Eclipse:

Annotations

[66]

What just happened?
We have successfully created test methods with a Test annotation and used the attribute
enabled along with it. As you can see in the previous results, only two methods were
executed by TestNG. The method with attribute enabled value as false was ignored from
test execution. By default the attribute value of enabled is true, hence you can see the test
method with name testMethodThree was executed by TestNG even when the attribute
value was not specified.

Exception test
While writing unit tests there can be certain scenarios where we need to verify that an
exception is being thrown by the program during execution. TestNG provides a feature to
test such scenarios by allowing the user to specify the type of exceptions that are expected
to be thrown by a test method during execution. It supports multiple values being provided
for verification. If the exception thrown by the test is not part of the user entered list, the
test method will be marked as failed.

Let's create a sample test and learn how exception test works in TestNG.

Time for action – writing an exception test
1. Create a new Java project with the following structure in Eclipse:

2. Create a new class with name ExceptionTest and add the following code to it:
package test.exception;

import java.io.IOException;

import org.testng.annotations.Test;

public class ExceptionTest {
 @Test(expectedExceptions={IOException.class})
 public void exceptionTestOne() throws Exception{
 throw new IOException();
 }

Chapter 3

[67]

 @Test(expectedExceptions={IOException.class,
 NullPointerException.class})
 public void exceptionTestTwo() throws Exception{
 throw new Exception();
 }

}

The preceding class contains two test methods, each throwing one particular
kind of exception, exceptionTestOne throws IOException where as
exceptionTestTwo throws Exception. The expected exception to validate
while running these tests is mentioned using the expectedExceptions
attribute value while using the Test annotation.

3. Select and run the preceding class as TestNG test in Eclipse. You will see following
results in the Results window of TestNG in Eclipse:

What just happened?
We have successfully created an exception test and ran it. As you can see from the test
results, exceptionTestTwo was marked as failed by TestNG during execution. The test
failed because the exception thrown by the said method does not match the exception
list provided in the expectedExceptions list. The value to this list takes the expected
exceptions to be passed as class as shown in the code.

TestNG also supports multiple expected exceptions to be provided for verification while
executing a particular test, this is shown in the preceding class for exceptionTestTwo test
method. You can also verify a test based on the exception message that was thrown by the
test. Let's learn how to write a exception test based on the exception message thrown.

Annotations

[68]

Time for action – writing a exception test verifying message
1. Create a new class with the name ExceptionMessageTest inside the Java project

created in the earlier section.

2. Add the following code to it:
package test.exception;

import java.io.IOException;

import org.testng.annotations.Test;

public class ExceptionMessageTest {
 /**
 * Verifies the exception message based on the exact error
message thrown.
 */
 @Test(expectedExceptions={IOException.class},
 expectedExceptionsMessageRegExp="Pass Message test")
 public void exceptionMsgTestOne() throws Exception{
 throw new IOException("Pass Message test");
 }

 /**
 * Verifies the exception message using the regular exception.
 * This test verifies that the exception message contains a
 text "Message" in it.
 */
 @Test(expectedExceptions={IOException.class},
 expectedExceptionsMessageRegExp=".* Message .*")
 public void exceptionMsgTestTwo() throws Exception{
 throw new IOException("Pass Message test");
 }

 /**
 * Verifies the exception message based on the exact error
message thrown.
 * This is to show that TestNG fails a test when the exception
message does not match.
 */
 @Test(expectedExceptions={IOException.class},
 expectedExceptionsMessageRegExp="Pass Message test")
 public void exceptionMsgTestThree() throws Exception{
 throw new IOException("Fail Message test");
 }
}

Chapter 3

[69]

The preceding class contains three test methods each throwing the same
exception but with different error messages. Verification for each test is done
based on the exception error message thrown by them using the attribute
expectedExceptionsMessageRegExp while using the Test annotation.

3. Select and run the preceding class as TestNG test in Eclipse. You will see following
results in the Results window of TestNG in Eclipse:

What just happened?
We successfully created a sample program to verify a test based on the exception message
thrown. We executed and verified the previous test based on the exception message thrown
by each of them. The attribute expectedExceptionsMessageRegExp can only be used
with the use of expectedExceptions attribute. Regular expression can also be used to
verify the error message, this can be done using .*. Depending upon the position of the
regular expression we can use it to do pattern matching such as starts-with, contains, and
ends-with while verifying the exception message.

Time test
While running tests there can be cases where certain tests get stuck or may take much more
time than expected. In such a case you may need to mark the said test case as fail and then
continue. TestNG allows user to configure a time period to wait for a test to completely
execute. This can be configured in two ways:

 � At suite level: This will be applicable for all the tests in the said TestNG test suite

 � At each test method level: This will be applicable for the said test method and will
override the time period if configured at the suite level

Let's go ahead and create a sample project to see how this feature works.

Annotations

[70]

Time for action – time test at suite level
1. Open Eclipse and create a sample Java project with the structure shown in the

following screenshot:

2. Add a sample test class with name TimeSuite and add the following code to it:
package test.timetest;

import org.testng.annotations.Test;

public class TimeSuite {
 @Test
 public void timeTestOne() throws InterruptedException{
 Thread.sleep(1000);
 System.out.println("Time test method one");
 }

@Test
 public void timeTestTwo() throws InterruptedException{
 Thread.sleep(400);
 System.out.println("Time test method two");
 }

}

The preceding test class contains two test methods which print a message onto to
the console on successful execution. Both also contain the Thread.sleep method
which pause the test execution depending upon the argument passed for the time
specified in milliseconds.

3. Add a testng.xml file to the project and put the following code to it:
<suite name="Time test Suite" time-out="500" verbose="1" >
 <test name="Timed Test" >
 <classes>
 <class name="test.timetest.TimeSuite" />
 </classes>
 </test>
</suite>

Chapter 3

[71]

The preceding testng.xml contains a suite with a single test considering a test
class for test execution. You'll notice that the suite tag contains a new attribute
named time-out which is set with a value 500. This attribute applies a time-out
period for test methods for the whole suite. That means if any test method in
the said suite takes more than the specified time period (in this case 500
milliseconds) to complete execution it will be marked as failed.

4. Run the preceding testng.xml file as TestNG suite in Eclipse. You will see the
following test results in the Results window of TestNG in Eclipse:

What just happened?
As you can see for the test result, TestNG executed the said tests and failed the first test
as the test took more time to execute than the time mentioned in the time-out section. This
feature is useful while doing time testing and to recover from lock conditions in multithreaded
execution. Let's now go ahead and learn to set the timeout at a test method level.

Time for action – time test at test method level
1. Add a new test class to the project created in the earlier section under the

timetest package with the name TimeMethod:

2. Add the following code to it:
package test.timetest;

import org.testng.annotations.Test;

Annotations

[72]

public class TimeMethod {
 @Test(timeOut=500)
 public void timeTestOne() throws InterruptedException{
 Thread.sleep(1000);
 System.out.println("Time test method one");
 }

 @Test
 public void timeTestTwo() throws InterruptedException{
 Thread.sleep(400);
 System.out.println("Time test method two");
 }

}

The preceding test class contains two test methods which print a message onto to
the console on successful execution. Both also contain Thread.sleep method
which pauses the test execution depending upon the argument passed for the time
specified in milliseconds. A time-out value 500 at test level is specified for test
method timeTestOne using the attribute timeOut while using Test annotation
as shown in the preceding code.

3. Select the respective test class and execute it as TestNG test using Eclipse. You will
see the following test results in the TestNG Results window in Eclipse:

Chapter 3

[73]

What just happened?
As you can see from the test result, TestNG executed the said tests and failed the first test.
The test failed because the test took more time to execute than the time mentioned in the
timeOut attribute of the Test annotation. This helps in specifying a predefined execution
time limit for a specific method. The timeout value mentioned at a test method level always
takes precedence over the the time-out specified at test suite level.

Parameterization of test
One of the important features of TestNG is parameterization. This feature allows user to pass
parameter values to test methods as arguments. This is supported by using the Parameters
and DataProvider annotations. There are mainly two ways through which we can provide
parameter values to test-methods:

 � Through testng XML configuration file

 � Through DataProviders

Parameterization through testng.xml
If you need to pass some simple values such as String types to the test methods at
runtime, you can use this approach of sending parameter values through TestNG XML
configuration files. You have to use the Parameters annotation for passing parameter
values to the test method.

Let's write a simple example of passing parameters to test methods through the XML
configuration file.

Time for action – parameterization through testng.xml
1. Open Eclipse and create simple Java project with the following package structure.

Make sure that you have added TestNG library to the project build path.

Annotations

[74]

2. Add a new Java class file with the name ParameterTest and copy the following
code to it:
package test.parameter;

import org.testng.annotations.Parameters;
import org.testng.annotations.Test;

public class ParameterTest {
 /**
 * Following method takes one parameter as input. Value of the
 * said parameter is defined at suite level.
 */
 @Parameters({ "suite-param" })
 @Test
 public void prameterTestOne(String param) {
 System.out.println("Test one suite param is: " + param);
 }

 /**
 * Following method takes one parameter as input. Value of the
 * said parameter is defined at test level.
 */
 @Parameters({ "test-two-param" })
 @Test
 public void prameterTestTwo(String param) {
 System.out.println("Test two param is: " + param);
 }

 /**
 * Following method takes two parameters as input. Value of the
 * test parameter is defined at test level. The suite level
 * parameter is overridden at the test level.
 */
 @Parameters({ "suite-param", "test-three-param" })
 @Test
 public void prameterTestThree(String param,
 String paramTwo) {
 System.out.println("Test three suite param is: " + param);
 System.out.println("Test three param is: " + paramTwo);
 }

}

Chapter 3

[75]

The preceding class contains three test methods, each of them require a different
set of parameter values. The Parameters annotation is mentioned for each of the
tests with the name of the parameter that needs to be passed to the test method
at the time of the test execution. The value of these parameters needs to be
mentioned in the testng XML file that will be defined for suite definition.

3. Create a testng. xml configuration file with name param-testng.xml
and copy the following code to it:
<suite name="Parameter test Suite" verbose="1">
 <parameter name="suite-param" value="suite level
 parameter" />
 <test name="Parameter Test one">
 <classes>
 <class name="test.parameter.ParameterTest">
 <methods>
 <include name="prameterTestOne" />
 </methods>
 </class>
 </classes>
 </test>
 <test name="Parameter Test two">
 <parameter name="test-two-param" value="Test two
 parameter" />
 <classes>
 <class name="test.parameter.ParameterTest">
 <methods>
 <include name="prameterTestTwo" />
 </methods>
 </class>
 </classes>
 </test>
 <test name="Parameter Test three">
 <parameter name="suite-param" value="overiding suite
 parameter" />
 <parameter name="test-three-param" value="test three
 parameter" />
 <classes>
 <class name="test.parameter.ParameterTest">
 <methods>
 <include name="prameterTestThree" />
 </methods>
 </class>
 </classes>
 </test>
</suite>

Annotations

[76]

The preceding XML file contains three tests in it, each explains a different way of
passing the parameters to the test methods. The parameter is declared in testng
XML file using the parameter tag. The name attribute of the tag defines name of
the parameter whereas the value attribute defines the value of the said parameter.
The tag can be used at suite level as well as at test level, as you can see from the
preceding XML file.

4. Run the preceding testng.xml as TestNG test suite. You will see the following
test results on the Console window:

What just happened?
We created a test class with multiple methods that accepts parameters from TestNG. The
parameter values are set at both suite and test level in the testng XML file. Any parameter
value defined at the test level will override the value of a parameter, with same name, if
defined at suite level. You can see this in test three for test method prameterTestThree.

TestNG also provides an option to provide optional values for a parameter, this value will be
used if parameter value is not found in the defined file.

Time for action – providing optional values
Perform the following steps to provide optional values:

1. Create a new class file with the name OptionalTest inside the Java project
created earlier.

2. Copy the following code to the said Java file and save it.
package test.parameter;

import org.testng.annotations.Optional;

Chapter 3

[77]

import org.testng.annotations.Parameters;
import org.testng.annotations.Test;

public class OptionalTest {
 @Parameters({"optional-value"})
 @Test
 public void optionTest(@Optional("optional value")
 String value){
 System.out.println("This is: "+value);
 }

}

The preceding class file contains a single test method that takes one parameter
as input. The said test method on execution prints the parameter value that is
passed onto the console using the System.out.println method. The Parameter
value is passed to the test method using the parameter named optional-value
from the XML file. An optional value for the said parameter is defined using the
Optional annotation against the said parameter.

3. Create a new testng XML file with name optional-testng.xml and copy the
following code to it:
<suite name="Optional test Suite" verbose="1">
 <test name="Optional Test one">
 <classes>
 <class name="test.parameter.OptionalTest" />
 </classes>
 </test>
 <test name="Optional Test two">
 <parameter name="optional-value" value="passed from xml" />
 <classes>
 <class name="test.parameter.OptionalTest" />
 </classes>
 </test>
</suite>

The preceding XML file has two tests defined in it. No parameter is defined in the
first test where as the second test declares a parameter named optional-value
in it. Both contain the same test class for test execution.

Annotations

[78]

4. Select the above testng XML file and run it as a TestNG suite. You will see the
following results in the Console window of Eclipse:

What just happened?
We have successfully created a test using Optional annotation of TestNG. As you can see
from the previous test results, TestNG has passed the optional value to the test method during
first test execution. This happened because TestNG was unable to find a parameter named
optional-value in the XML file from the first test. During the second test it found the
parameter value in the XML and passed the said value to the test method during execution.

The parameter annotation can be used for any of the Before/After, Factory, and Test
annotated methods. It can be used to initialize variables and use them in a class, test,
or may be for the whole test execution.

DataProvider
One of the important features provided by TestNG is the DataProvider feature. It helps
the user to write data-driven tests, that means same test method can be run multiple
times with different datasets. DataProvider is the second way of passing parameters
to test methods. It helps in providing complex parameters to the test methods as it is
not possible to do this from XML.

To use the DataProvider feature in your tests you have to declare a method annotated by
DataProvider and then use the said method in the test method using the dataProvider
attribute in the Test annotation.

Lets write a simple example and learn how to use the DataProvider feature in our tests.

Chapter 3

[79]

Time for action – using Test annotation on Class
1. Open Eclipse and create a Java project with the structure shown in the

following screenshot:

2. Create a new Java class with the name SameClassDataProvider and copy
the following code to it:
package test.dataprovider;

import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;

public class SameClassDataProvider {
 @DataProvider(name = "data-provider")
 public Object[][] dataProviderMethod() {
 return new Object[][] { { "data one" }, { "data two" } };
 }

 @Test(dataProvider = "data-provider")
 public void testMethod(String data) {
 System.out.println("Data is: " + data);
 }
}

The preceding test class contains a test method which takes one argument as
input and prints it to console when executed. A DataProvider method is also
available in the same class by using the DataProvider annotation of TestNG.
The name of the said DataProvider method is mentioned using the name attribute
of the DataProvider annotation. The DataProvider returns a double Object class
array with two sets of data, data one and data two.

The DataProvider to provide parameter values to a test method is defined by
giving the name of the data provider using the dataProvider attribute while
using the Test annotation.

Annotations

[80]

3. Add a new testng xml file to said project with the name simple-testng.xml
and add the following code to it:
<suite name="DataProvider test Suite" verbose="1">
 <test name="DataProvider Test">
 <classes>
 <class name="test.dataprovider.SameClassDataProvider" />
 </classes>
 </test>
</suite>

The preceding testng XML file defines a simple test suite with the said test
class created earlier.

4. Select the testng xml file in eclipse and run it as a TestNG suite. You will see
following test result in the Console window:

What just happened?
As you can see from the above test result the respective test method in the class was
executed two times. The execution of the test method is dependent upon the number
of datsets passed by the DataProvider method, in this case as two different sets of
data were returned by the DataProvider, the test method was executed two times.

It is mandatory for a DataProvider method to return the data in the form of double
array of Object class (Object [][]). The first array represents a data set where as the
second array contains the parameter values.

In the current example the DataProvider method was written in the same class. TestNG
by default looks for the DataProvider method in the same class or in any of the base
classes. But if you want to put your DataProvider method in another class, you can do
so by making it a static method and providing the name of the class containing it to TestNG.
Lets take a look at this and learn how it works.

Chapter 3

[81]

Time for action – DataProvider in different class
1. Open Eclipse and add two new classes with the names DataProviderClass

and TestClass to the Java project created earlier.

2. Add the following code to TestClass:
package test.dataprovider;

import org.testng.annotations.Test;

public class TestClass {

 @Test(dataProvider = "data-provider",dataProviderClass=DataProvi
derClass.class)
 public void testMethod(String data) {
 System.out.println("Data is: " + data);
 }

}

The preceding test class contains a test method which takes one argument
as input and prints it onto the console when executed. The DataProvider to
provide parameter values to a test method is defined by giving the name of the
DataProvider using the DataProvider attribute while using Test annotation.
As the DataProvider method is in a different class, the class name to refer for getting
the DataProvider is provided to TestNG using the dataProviderClass attribute as
seen in the preceding code.

3. Add the following code to DataProviderClass:
package test.dataprovider;

import org.testng.annotations.DataProvider;

public class DataProviderClass {
 @DataProvider(name="data-provider")
 public static Object[][] dataProviderMethod(){
 return new Object[][] { { "data one" }, { "data two" } };
 }

}

The preceding class only contains the DataProvider method to provide data to a test
method. The method returns two sets of data when called.

Annotations

[82]

4. Add a new testng XML file to said project with the name different-class-
testng.xml and add the following code to it:
<suite name="Different class test Suite" verbose="1">
 <test name="Different class Test">
 <classes>
 <class name="test.dataprovider.TestClass" />
 </classes>
 </test>
</suite>

The preceding testng XML file defines a simple test suite with a single test class.

5. Select the testng XML file in Eclipse and run it as a TestNG suite. You will see the
following test result in the Console window:

What just happened?
As you can see from the above test results the test method was executed two times
depending upon the data passed to it by DataProvider method. In this scenario the
DataProvider method was in a different class. In such a case the DataProvider has to be
declared static so that it can be used by a test method in a different class for providing data.

Have a go hero
Having gone through the chapter, feel free to attempt the following:

 � Write an Exception test to verify that the exception message thrown starts
with a specific text

 � Write a test method which accepts two parameters out of which one of
them is optional

Chapter 3

[83]

Pop quiz – annotations
Q1. How many different type of Before and After annotations are provided by TestNG?

1. 3

2. 4

3. 5

Q2. Using which attribute with the Test annotation you can disable a test method?

1. disableTest

2. enableTest

3. enabled

4. disabled

Q3. We can provide multiple exceptions while verifying a exception in a test.

1. True

2. False

Q4. The time for performing time test is provided in?

1. seconds

2. milliseconds

3. minutes

4. hours

Q5. Which annotation has to be used to provide a parameter to a test method?

1. Parameterization

2. Parameter

3. Parameters

Q6. What kind of return value does a DataProvider method have to return in TestNG?

1. Object

2. Object[]

3. Object[][]

4. List<Object>

Annotations

[84]

Summary
In this chapter we had learned about the different annotations provided by TestNG.
We have covered how and in which sequence the Before and After annotation is executed.
We have also learned about the Test annotation and parameterization feature in TestNG.
Finally, we then covered with examples, the time test, exception test, and disabling a test
features of TestNG.

In the next chapter we will talk about the grouping feature of TestNG using the test methods
that can be grouped into a named group.

4
Groups

In the previous chapter we learned about different annotations provided by
TestNG and how to use them. In this chapter we will cover the grouping of test
methods, which is one of the most important concepts of TestNG.

In this chapter we'll cover the following topics:

 � Grouping tests

 � Running tests in a group

 � Tests belonging to multiple groups

 � Including/excluding groups

 � Using regular expressions

 � Default group

 � Group of groups

Grouping tests
As we have mentioned previously, grouping test methods is one of the most important features
of TestNG. In TestNG users can group multiple test methods into a named group. You can also
execute a particular set of test methods belonging to a group or multiple groups. This feature
allows the test methods to be segregated into different sections or modules. For example, you
can have a set of tests that belong to sanity test where as others may belong to regression
tests. You can also segregate the tests based on the functionalities/features that the test
method verifies. This helps in executing only a particular set of tests as and when required.

Let's create a few tests that belong to a particular group.

Groups

[86]

Time for action – creating test that belong to a group
Perform the following steps to create a test that belongs to a group:

1. Open Eclipse and create a Java project with the structure shown in the following
screenshot. Please make sure that the TestNG library is added to the build path
of the project as mentioned in Chapter 1, Getting Started.

2. Create a new class with the name TestGroup under the test.groups package
and replace the following code in it:
package test.groups;

import org.testng.annotations.Test;

public class TestGroup {
 @Test(groups={"test-group"})
 public void testMethodOne(){
 System.out.println("Test method one belonging to group.");
 }

 @Test
 public void testMethodTwo(){
 System.out.println("Test method two not belonging to group.");
 }

 @Test(groups={"test-group"})
 public void testMethodThree(){
 System.out.println("Test method three belonging to group.");
 }
}

The preceding test class contains three test methods out of which two belong to a
group named test-group. A test method can be assigned to test-group using
the groups attribute while using the @Test annotation as shown.

Chapter 4

[87]

3. Select the preceding test class in Eclipse and run it as a TestNG test. You will see the
following test result in the TestNG's Results window of Eclipse:

What just happened?
We have successfully created a test class, which contains certain test methods that belong to
a group. The preceding test execution does not consider the group for execution and hence
executes all the tests in the specified test class.

TestNG automatically creates a group when it is mentioned inside the groups section of the
@Test annotation. These groups can then be used to execute the test methods that belong
to them. In the coming section we will learn how to execute test methods that belong to a
particular group.

Running a TestNG group
In the earlier section we created a test class with certain test methods that belonged to a
test group. In this section we will learn how to run such tests in different ways.

We can run test methods belonging to a certain group in mainly two ways:

 � Through Eclipse

 � Using the testng XML file

Groups

[88]

Using Eclipse
In this section we will learn how to run test methods that belong to a specific group
using Eclipse.

Time for action – running a TestNG group through Eclipse
Perform the following steps to run a TestNG group through Eclipse:

1. Open Eclipse and go to Run | Run Configurations.

2. Select TestNG from the list of available configurations and click on the new
configuration icon.

3. In the new configuration window give a configuration name, for example,
GroupTest.

4. Go to the Project section and click on the Browse button. Select the previously
created project that is GroupsProject:

5. Go to the Groups section and click on the Browse button. Select the group which
you would like to execute from the list, in this case it's test-group:

Chapter 4

[89]

6. Click on the Apply button and then click on Run. The following results will be shown
in the TestNG's Results window of Eclipse:

What just happened?
We have successfully executed test methods that belonged to a particular group using
the TestNG runner configuration in Eclipse. You can also use the utility to execute multiple
groups by selecting the respective groups in the Browse section. Normally it's better to use
the TestNG-XML-based execution to execute test methods that belong to a particular group.

Using the testng XML
In this section we will learn how to create a testng XML file to execute test methods that
belong to a particular group. This method is the preferred and easy way to execute groups.
Also, these testng XML files can then be used with build tools to execute TestNG test suites.

Time for action – running a TestNG group using the testng XML
Perform the following steps to run a TestNG group using the testng XML:

1. Open Eclipse and create a new file with the name testng.xml in the previously
created project.

2. Add the following code to the said file:
<suite name="Time test Suite" verbose="1">
 <test name="Timed Test">
 <groups>
 <run>

Groups

[90]

 <include name="test-group" />
 </run>
 </groups>
 <classes>
 <class name="test.groups.TestGroup" />
 </classes>
 </test>
</suite>

The preceding XML file contains only one test inside a suite. This contains the
groups section defined by using the groups tag as shown in the code. The run
tag represents the group that needs to be run. The include tag represents the
name of the group that needs to be executed.

3. Select the previously created testng XML file and run it as a TestNG suite.
You will see the following test results in the TestNG's Results window of Eclipse:

What just happened?
In the previous section we successfully created a testng XML file that creates a test in the
said suite by including a group in it. This is done by including the said group inside the run
section. The run section is in turn part of the groups tag section inside the test. TestNG will
look for test methods that belong to the said group under the class that is mentioned in the
classes section of the test. The user can also provide packages for the tests. TestNG will
search all the classes that are added to the test to include or exclude particular test methods
that belong to particular groups. Once found, these test methods will then be executed by
TestNG as a test suite.

Chapter 4

[91]

Test that belong to multiple groups
Earlier we learned about creating tests that belonged to a single group, but TestNG allows
test methods to belong to multiple groups also. This can be done by providing the group
names as an array in the groups attribute of the @Test annotation. Let's create a sample
program with multiple groups to learn how it is done.

Time for action – creating a test having multiple groups
Perform the following steps to create a test having multiple groups:

1. Open Eclipse and create a new Java class file with the name MultiGroup under
the test.groups package in the previously created project.

2. Replace the existing code with the following code and save the file:
package test.groups;

import org.testng.annotations.Test;

public class MultiGroup {
 @Test(groups={"group-one"})
 public void testMethodOne(){
 System.out.println("Test method one belonging to group.");
 }

 @Test(groups={"group-one","group-two"})
 public void testMethodTwo(){
 System.out.println("Test method two belonging to both
group.");
 }

 @Test(groups={"group-two"})
 public void testMethodThree(){
 System.out.println("Test method three belonging to group.");
 }
}

The preceding class contains three test methods. Two of the test methods belong to
one group each, where as one of the methods belongs to two groups, group-one
and group-two respectively.

3. Create a new testng XML file with the name multi-group-testng.xml in the
said project.

Groups

[92]

4. Replace the existing code with the following code:
<suite name="Multi Group Suite" verbose="1">
 <test name="Group Test one">
 <groups>
 <run>
 <include name="group-one" />
 </run>
 </groups>
 <classes>
 <class name="test.groups.MultiGroup" />
 </classes>
 </test>
 <test name="Group Test two">
 <groups>
 <run>
 <include name="group-two" />
 </run>
 </groups>
 <classes>
 <class name="test.groups.MultiGroup" />
 </classes>
 </test>
</suite>

The preceding testng XML suite contains two tests, each of them executing test
methods belonging to a particular group.

5. Select the previous XML file and run it as a TestNG suite. The following results
will be shown on the Results window of TestNG:

Chapter 4

[93]

What just happened?
We have successfully created a test method, which belongs to multiple groups and can
be executed successfully. As you can see in the previous test result, testMethodTwo was
executed in both the tests of the test suite. This is because it belongs to both of the groups
whose test methods are executed by TestNG.

TestNG allows a test method to belong to multiple groups. There is no limit on number of
groups that a test may belong to. To assign a test method to multiple groups just provide
the names of groups as comma-separated values to the groups attribute of the @Test
annotation as shown in the previous example.

Including and excluding groups
TestNG also allows you to include and exclude certain groups from test execution. This helps
in executing only a particular set of tests and excluding certain tests. A simple example can
be when a feature is broken and you need to exclude a fixed set of tests from execution since
these test will fail upon execution. Once the feature is fixed you can then verify the feature
by just executing the respective group of tests.

Let's create a sample program and learn how to exclude a group of tests.

Time for action – including/excluding groups using the
testng XML

Perform the following steps to include/exclude groups using the testng XML:

1. Open Eclipse and create a new Java file with the name ExcludeGroup under the
test.groups package in the previously created project.

2. Replace the existing code in the file with the following code:
package test.groups;

import org.testng.annotations.Test;

public class ExcludeGroup {
 @Test(groups={"include-group"})
 public void testMethodOne(){
 System.out.println("Test method one belonging to group.");
 }

 @Test(groups={"include-group"})
 public void testMethodTwo(){

Groups

[94]

 System.out.println("Test method two belonging to a group.");
 }

 @Test(groups={"include-group","exclude-group"})
 public void testMethodThree(){
 System.out.println("Test method three belonging to two
groups.");
 }
}

The preceding class contains three test methods that print a message onto console
when executed. All the three methods belong to a group include-group whereas
the testMethodThree method also belongs to the group exclude-group.

3. Create a new testng XML file with the name exclude-group-testng.xml in
the same project.

4. Replace any existing code with the following code:
<suite name="Exlude Group Suite" verbose="1">
 <test name="Exclude Group Test">
 <groups>
 <run>
 <include name="include-group" />
 <exclude name="exclude-group" />
 </run>
 </groups>
 <classes>
 <class name="test.groups.ExcludeGroup" />
 </classes>
 </test>
</suite>

The preceding XML contains a simple test in which the group include-group is
included in the test using the include XML tag and the group exclude-group
is being excluded from the test execution by using the exclude tag.

Chapter 4

[95]

5. Select the previous testng XML file and run it as a TestNG suite. The following
results will be shown on the Results window of TestNG:

What just happened?
As you can see from the previous test results TestNG executed two methods from
the group include-group and excluded the third method that belonged to the group
exclude-group, which was excluded from the test execution. If a test method belongs
to both included and excluded group, the excluded group takes the priority and the test
method will be excluded from the test execution.

You can have as many include and exclude groups as you want while creating a test suite
in TestNG.

Using regular expressions
While configuring your tests for including or excluding groups, TestNG allows the user to
use regular expressions. This is similar to including and excluding the test methods that
we covered earlier. This helps users to include and exclude groups based on a name search.

Let's create a sample program and learn how to use regular expressions while including
and excluding groups.

Groups

[96]

Time for action – using regular expressions in the testng XML
Perform the following steps to use regular expressions in the testng XML:

1. Open Eclipse and create a new Java file with the name RegularExpressionGroup
under the test.groups package in the previously created project.

2. Replace the existing code in the file with the following code:
package test.groups;

import org.testng.annotations.Test;

public class RegularExpressionGroup {
 @Test(groups={"include-test-one"})
 public void testMethodOne(){
 System.out.println("Test method one");
 }

 @Test(groups={"include-test-two"})
 public void testMethodTwo(){
 System.out.println("Test method two");
 }

 @Test(groups={"test-one-exclude"})
 public void testMethodThree(){
 System.out.println("Test method three");
 }

 @Test(groups={"test-two-exclude"})
 public void testMethodFour(){
 System.out.println("Test method Four");
 }
}

The preceding class contains four test methods that print a message onto console
when executed. All of the test methods belong to a test group.

3. Create a new testng XML file with the name regexp-group-testng.xml in the
same project.

4. Replace any existing code with the following code:
<suite name="Regular Exp. Group Suite" verbose="1">
 <test name="Regular Exp. Test">
 <groups>
 <run>

Chapter 4

[97]

 <include name="include.*" />
 <exclude name=".*exclude" />
 </run>
 </groups>
 <classes>
 <class name="test.groups.RegularExpressionGroup" />
 </classes>
 </test>
</suite>

The preceding XML contains a simple test in which all the groups with a name
starting with include are included, whereas all the groups with name ending
with exclude are excluded from your test execution.

5. Select the previous testng XML file and run it as TestNG suite. The following results
will be shown on the Results window of TestNG:

What just happened?
As you can see from the previous test results, TestNG executed two methods that belong
to groups with a name starting with include and excluded the test methods that belonged
to groups with names ending with exclude.

To use regular expressions to include and exclude groups you have to use .* for matching
names. In the previous example you can see the use of regular expression to search groups,
which starts and ends with a certain string. We can also use it for searching groups that
contains a certain string in their names by using the expression at start and end of the
search string (for example, .*name.*).

Groups

[98]

Default group
Sometimes we may need to assign a default group to a set of test methods that belong to
a class. This can be achieved by using the @Test annotation at class level and defining the
default group in the said @Test annotation. This way all the public methods that belong
to the said class will automatically become TestNG test methods and become part of the
said group.

Let's write an example and learn how it works.

Time for action – assigning a default group to a set of tests
Perform the following steps to assign a default group to a set of tests:

1. Open Eclipse and create a new Java file with the name DefaultGroup under
the test.groups package in the previously created project.

2. Replace the existing code in the file with the following code:
package test.groups;

import org.testng.annotations.Test;

@Test(groups={"default-group"})
public class DefaultGroup {
 public void testMethodOne(){
 System.out.println("Test method one.");
 }

 public void testMethodTwo(){
 System.out.println("Test method two.");
 }

 @Test(groups={"test-group"})
 public void testMethodThree(){
 System.out.println("Test method three.");
 }
}

The preceding class contains three methods that print a message onto console
when executed. All of the methods are considered as test methods by the use
of the @Test annotation on the class. All of the methods belong to the group
default-group by mentioning the group name at the class level. One of the
test methods also belong to the group test-group, this is done by using the
@Test annotation at the method level as shown in the preceding code.

Chapter 4

[99]

3. Create a new testng XML file with the name default-group-testng.xml
in the same project.

4. Replace any existing code with the following code:
<suite name="Default Group Suite" verbose="1">
 <test name="Default Group Test one">
 <groups>
 <run>
 <include name="default-group" />
 </run>
 </groups>
 <classes>
 <class name="test.groups.DefaultGroup" />
 </classes>
 </test>
 <test name="Default Group Test two">
 <groups>
 <run>
 <include name="test-group" />
 </run>
 </groups>
 <classes>
 <class name="test.groups.DefaultGroup" />
 </classes>
 </test>
</suite>

The preceding XML contains two separate tests, which execute two separate groups,
default-group and test-group respectively. Both tests consider the same test
class to search for the test method that belongs to the group.

Groups

[100]

5. Select the previous testng XML file and run it as a TestNG suite.
The following results will be shown on the Results window of TestNG:

What just happened?
As you can see from the previous test results, TestNG executed all the test methods
of the class when the default-group tests were executed in the first test. Whereas,
in the second test, only one method that belongs to the group test-group was executed.
This feature helps in assigning a default group to a set of tests.

This has to be used carefully as the use of the @Test annotation at class level enables all
the public methods of the class to be considered as test methods.

Group of groups
TestNG allows users to create groups out of existing groups and then use them during
the creation of the test suite. You can create new groups by including and excluding
certain groups and then use them.

Let's create a sample test program and learn how to create group of groups
called MetaGroups.

Chapter 4

[101]

Time for action – running a TestNG group using the testng XML
Perform the following steps to run a TestNG group using the testing XML:

1. Let's use the existing test class RegularExpressionGroup that was created
earlier under the Using regular expressions section for this sample.

2. Create a new testng XML file with the name groupofgroup-testng.xml
under the same project which we created earlier.

3. Replace any existing code with the following code and save it:
<suite name="Group of group Suite" verbose="1">
 <test name="Group of group Test">
 <groups>
 <define name="include-group">
 <include name="include-test-one" />
 <include name="include-test-two" />
 </define>
 <define name="exclude-group">
 <include name="test-one-exclude" />
 <include name="test-two-exclude" />
 </define>
 <run>
 <include name="include-group" />
 <exclude name="exclude-group" />
 </run>
 </groups>
 <classes>
 <class name="test.groups.RegularExpressionGroup" />
 </classes>
 </test>
</suite>

The preceding XML contains one test in it. Two groups of groups have been defined
inside the test, and then these groups are used for test execution. The MetaGroup is
created using the define tag inside the groups tag as shown in the previous code.
The name of the new group is defined using the name attribute under the define
tag. Groups are included and excluded from the new group by using the include
and exclude tags.

Groups

[102]

4. Select the previous testng XML file and run it as a TestNG suite.
The following results will be shown on the Results window of TestNG:

What just happened?
As you can see in the previous test results, TestNG executed only two methods, as
mentioned in the included-group group and excluded the test methods that belong
to excluded-group. You can define as many groups of groups as you want. This feature
is helpful in creating specific groups for regression, sanity, and module-wise testing.

Have a go hero
Having gone through the chapter, feel free to attempt the following:

 � Write a sample testng XML, which will run all the groups that contains a particular
text in their names

 � Create a sample testng XML, which uses regular expressions for including and
excluding groups, for a group of groups

Pop quiz – groups
Q1. Which attribute has to be used with the @Test annotation to assign a group to
a test method?

1. groups

2. group

3. list-group

Chapter 4

[103]

Q2. Can we assign a default group to all the test methods in a class?

1. Yes

2. No

Q3. Can we use regular expressions for including and excluding groups in a test?

1. Yes

2. No

Q4. Which of the following is the correct format to search for group that contains
a text string?

1. .*test

2. test.*

3. .*test.*

4. *test*

Summary
In this chapter we have learned about the grouping of tests functionality provided by
TestNG. As we can see this feature helps us in organizing our test execution by grouping
tests into multiple sections based on feature, type of test, and so on.

We can create as many groups as we want in TestNG and include and exclude these
groups in our tests based on the test requirement. Support of regular expressions and
the creation of a group from other groups helps in including or excluding multiple groups
from the test execution.

In the next chapter we will cover the dependency feature provided by TestNG. This
feature helps in defining a dependency of a test method or a group of test methods
on other test methods or a group. This gives the user a lot of power to configure or
control the execution flow.

5
Dependencies

In the previous chapter we learned about grouping of tests which allows users
to group the tests into specific named groups. In this chapter we will learn
about the dependency feature in TestNG. Dependency allows users of TestNG
to specify a dependency method or a dependency group for a test method.

In this chapter we'll cover the following topics:

 � Dependency test

 � Writing a multiple dependency test

 � Dependency on group

 � Using regular expressions

 � Defining dependency through XML

Dependency test
As said earlier dependency is a feature in TestNG that allows a test method to depend on
a single or a group of test methods. This will help in executing a set of tests to be executed
before a test method. Method dependency only works if the depend-on-method is part of
the same class or any of the inherited base class (that is, while extending a class).

Test with single test method dependency
To start with, dependency in TestNG lets you create a sample test method that depends on
another test method of the same class.

Dependencies

[106]

Time for action – creating a test that depends on another test
Perform the following steps to create a test that depends on another test:

1. Open Eclipse and create a Java project with the following structure. Please make
sure that the TestNG library is added to the build path of the project as mentioned
in Chapter 1, Getting Started.

2. Create a new package named method under the existing test.depends package.

3. Create new class named SimpleDependencyTest under the test.depends.
method package and replace the following code in it:
package test.depends.method;

import org.testng.annotations.Test;

public class SimpleDependencyTest {
 @Test(dependsOnMethods={"testTwo"})
 public void testOne(){
 System.out.println("Test method one");
 }

 @Test
 public void testTwo(){
 System.out.println("Test method two");
 }
}

The preceding test class contains two test methods which print a message name
onto the console when executed. Here, test method testOne depends on test
method testTwo. This is configured by using the attribute dependsOnMethods
while using the Test annotation as shown is the preceding code.

Chapter 5

[107]

4. Select the above test class in Eclipse and run it as TestNG test. You will see
the following test result in the Console window of Eclipse:

What just happened?
We successfully created a test class that contains a test method that depends upon
another test method. In the above test result you can see the message Test method
two printed before the Test method one message. This shows that the testOne
method got executed after testTwo as it depends on testTwo.

The dependency on a test method is configured for a test by providing the dependent
test method name to the attribute dependsOnMethods while using the Test annotation,
as mentioned in the previous sample code.

Test that depends on multiple tests
Sometimes it may be required for a test method to depend upon multiple other methods.
This feature is very well supported by TestNG as part of the dependency support. Let's create
a sample program and see how to create a test with multiple dependency.

Dependencies

[108]

Time for action – creating a test that depends on multiple tests
1. Create a new class named MultiDependencyTest under the test.depends.

method package and replace the following code in it:
package test.depends.method;

import org.testng.annotations.Test;

public class MultiDependencyTest {
 @Test(dependsOnMethods={"testTwo","testThree"})
 public void testOne(){
 System.out.println("Test method one");
 }

 @Test
 public void testTwo(){
 System.out.println("Test method two");
 }

 @Test
 public void testThree(){
 System.out.println("Test method three");
 }
}

The preceding test class contains three test methods which print a
message name onto the console when executed. Here test method testOne
depends on test methods testTwo and testThree. This is configured by using
the attribute dependsOnMethods while using the Test annotation as shown in
the preceding code.

Chapter 5

[109]

2. Select the above test class in Eclipse and run it as TestNG test. You will see the
following test result in the Console window of Eclipse.

What just happened?
We successfully created a test class that contains a test method that depends upon multiple
test methods. By looking at the console message we can see that methods testTwo and
testThree got executed before testOne.

The dependency on multiple test methods is configured for a test by providing comma
separated dependent test method names to the attribute dependsOnMethods while
using the Test annotation as mentioned in the preceding sample code.

Inherited dependency test
Till now we have seen samples in which the dependent test methods were part of the
same class. As I said earlier, dependency on test methods can only be mentioned for test
methods that belong to the same class or any of the inherited base classes. In this section
we will see how TestNG executes the test methods when the dependent methods are part
of the inherited base class.

Dependencies

[110]

Time for action – creating a test that depends on inherited tests
1. Create a new class named InheritedTest under the test.depends.method

package and replace the following code in it:
package test.depends.method;

import org.testng.annotations.Test;

public class InheritedTest extends SimpleDependencyTest{
 @Test(dependsOnMethods={"testOne"})
 public void testThree(){
 System.out.println("Test three method in Inherited test");
 }

 @Test
 public void testFour(){
 System.out.println("Test four method in Inherited test");
 }
}

The preceding test class contains two test methods which print a message name
onto the console when executed. Here test method testThree depends on test
method testOne. This is configured by using the attribute dependsOnMethods
while using the Test annotation as shown in the preceding code.

Following is the code of the SimpleDependencyTest class:
package test.depends.method;

import org.testng.annotations.Test;

public class SimpleDependencyTest {
 @Test(dependsOnMethods={"testTwo"})
 public void testOne(){
 System.out.println("Test method one");
 }

 @Test
 public void testTwo(){
 System.out.println("Test method two");
 }
}

Chapter 5

[111]

The preceding class also contains two test methods which print a message to the
console. As you can see, the testOne method in the preceding class depends on
the testTwo method.

2. Select the preceding test class in Eclipse and run it as TestNG test. You will see
the following test result in the Console window of Eclipse:

What just happened?
We successfully created a test class that contains a test method that depends upon the
parent class test method. As you can see from the test results the sequence of execution
is testFour, testTwo, testOne, and lastly, testThree. As testThree depends on
testOne and on testTwo, TestNG executes all the test methods based on the dependency
and finally the respective test method. TestNG by default executes methods based on the
ascending order of their names, so in this case, it executes testFour first because it comes
at the top in the current list of the test methods, then when it encounters the dependency
of testThree, it executes its dependent methods and then the said method itself.

Using the dependency feature, you can also make certain methods run sequentially by
configuring the dependency accordingly.

Dependencies

[112]

Have a go hero
Having gone through the chapter, feel free to attempt the following:

 � Create a test class which contains three test methods and configure dependency
for these test methods in such a way that all of them get executed in a particular
sequential order.

 � Create a test class that is inherited from another test class and has overriding
test methods in it. Configure one of the test methods such that it depends on
the overriding test method.

Dependent groups
Similar to dependent methods TestNG also allows test methods to depend on groups. This
makes sure that a group of test methods get executed before the dependent test method.

Time for action – creating a test that depends on a group
1. Create a new package named groups under the test.depends package in the

earlier project.

2. Create a new class named SimpleGroupDependency under the test.depends.
groups package and replace the following code in it:
package test.depends.groups;

import org.testng.annotations.Test;

public class SimpleGroupDependency {
 @Test(dependsOnGroups={"test-group"})
 public void groupTestOne(){
 System.out.println("Group Test method one");
 }

 @Test(groups={"test-group"})
 public void groupTestTwo(){
 System.out.println("Group test method two");
 }

 @Test(groups={"test-group"})
 public void groupTestThree(){
 System.out.println("Group Test method three");
 }
}

Chapter 5

[113]

The preceding test class contains three test methods which print a message onto the
console when executed. Two of the test methods belong to a group named test group
whereas the third method named groupTestOne depends on the group test group.
The dependency on the group is configured using the attribute dependsOnGroups
while using the Test annotation, as shown in the preceding code.

3. Select the preceding test class in Eclipse and run it as TestNG test. You will see the
following test result in the Console window of Eclipse.

What just happened?
We have successfully created a test class that contains a test method that depends upon a
test group. The dependency is configured by providing the dependent group names to the
attribute dependsOnGroups, which uses the Test annotation.

Like method dependency, group dependency also supports configuration for a method to
depend on multiple groups. All dependent group names have to be provided as array names
to the attribute dependsOnGroups.

Depending on methods from different classes
As explained in the earlier examples, method dependency only works with other methods
that belong to the same class or in one of the inherited classes but not across different
classes. In case you need a test method that exists in a separate class; you can achieve this
by assigning the said test method to a group and configuring the dependent test method to
be dependent on the said group.

Let's create a sample test to learn how to create dependency across multiple classes.

Dependencies

[114]

Time for action – depending on a method from a different class
1. Create a new class named DifferentClassDependency under the test.

depends.groups package and replace the following code in it:
package test.depends.groups;

import org.testng.annotations.Test;

public class DifferentClassDependency {
 @Test(dependsOnGroups={"test-group","same-class"})
 public void testOne(){
 System.out.println("Different class test method one");
 }

 @Test(groups={"same-class"})
 public void testTwo(){
 System.out.println("Different class test method two");
 }

 @Test(groups={"same-class"})
 public void testThree(){
 System.out.println("Different class test method three");
 }
}

The preceding test class contains three test methods which print a message onto
the console when executed. Two of the test methods belong to group named same-
class whereas the third method, named testOne, depends on the groups named
test-group and same-class. The group test-group refers to the test that
belongs to the earlier created class named SimpleGroupTest.

2. Create a new file named diff-class-testng.xml under the current project
and replace the existing code with the following code:
<suite name="Different class dependency Suite" verbose="1">
 <test name="Different class dependency Test">
 <packages>
 <package name="test.depends.groups" />
 </packages>
 </test>
</suite>

The preceding testng XML contains a test that considers all the test class under
the package named test.depends.groups.

Chapter 5

[115]

3. Select the preceding testng XML in Eclipse and run it as TestNG suite.
You will see the following test result in the Console window of Eclipse.

What just happened?
We successfully created a test class that contains a test method which depends upon a
test method that belongs to another class. This is achieved using the dependsOnGroup
feature supported by TestNG. The previous results show that all the dependent methods
were executed prior to the execution of the depending method.

Using regular expressions
Regular expressions feature as discussed in earlier chapters of this book is also supported
while using the dependsOnGroups feature in TestNG. This helps users to do name based
search on groups and add dependency onto the said groups for a test method.

In this section we will create a sample program that does a regular expression search to
look for dependOnGroups.

Time for action – using regular expressions
1. Create a new package named regularexp under the existing package test.

depends in the earlier project.

2. Create a new class named RegularExpressionTest under the test.depends.
regularexp package and replace the following code in it:
package test.depends.regularexp;

Dependencies

[116]

import org.testng.annotations.Test;

public class RegularExpressionTest {
 @Test(dependsOnGroups={"starts-with.*"})
 public void regularExpMethod(){
 System.out.println("Dependent method");
 }

 @Test(groups={"starts-with-one"})
 public void startsWithMethodOne(){
 System.out.println("Starts with method one");
 }

 @Test(groups={"starts-with-two"})
 public void startsWithMethodTwo(){
 System.out.println("Starts with method two");
 }
}

The preceding test class contains three test methods which print a message onto
the console when executed. Two of the test methods belong to different groups
named starts-with-one and starts-with-two, respectively, whereas the
third method named regularExpMethod depends on all the groups whose
names start with the text starts-with.

3. Select the above test class in Eclipse and run it as TestNG test. You will see the
following test result in the Console window of Eclipse.

Chapter 5

[117]

What just happened?
We successfully created a test class which contains a test method that depends on groups
whose names start with the text starts-with. As you can see from the test results, all
the test methods that belonged to the particular group got executed before the dependent
method. Regular expression-based search can be done on a text by using .* as discussed in
earlier chapters. Other than the preceding example of a search based on starts-with we
can easily do contains and ends-with search too.

Have a go hero
Create a sample program where a test method depends on all the groups whose name
contains a specific text in it.

XML-based dependency configuration
TestNG also allows group-based dependency to be defined inside the testng XML
configuration file. This can be done when defining a test inside a suite. We write
some similar dependency programs that we have written earlier using XML configuration.

Simple group dependency
In this section we will write a simple XML configuration file to define a simple group
dependency for a test method.

Time for action – using simple dependency in XML
1. Create a new package named xml under the existing package test.depends

in the earlier project.

2. Create a new class named SimpleXmlDependency under the test.depends.xml
package and replace the following code in it:
package test.depends.xml;

import org.testng.annotations.Test;

public class SimpleXmlDependency {
 @Test(groups={"dependent-group"})
 public void groupTestOne(){
 System.out.println("Group Test method one");
 }

Dependencies

[118]

 @Test(groups={"test-group"})
 public void groupTestTwo(){
 System.out.println("Group test method two");
 }

 @Test(groups={"test-group"})
 public void groupTestThree(){
 System.out.println("Group Test method three");
 }
}

The preceding test class contains three test methods which print a message onto
the console when executed. Two of the test methods belong to a different group
named test-group, whereas the third method named groupTestOne belongs
to group a named dependent-group.

3. Create a new XML named simple-xml-dependency.xml and add the following
code to it:
<suite name="Simple xml dependency Suite" verbose="1">
 <test name="Simple xml dependency Test">
 <groups>
 <dependencies>
 <group name="dependent-group" depends-on="test-group" />
 </dependencies>
 <run>
 <include name="dependent-group" />
 </run>
 </groups>

 <classes>
 <class name="test.depends.xml.SimpleXmlDependency" />
 </classes>
 </test>
</suite>

The preceding testng XML configuration file contains a single test inside the suite.
Group dependency is defined using the dependencies attribute under the groups
block. The group tag is used with the group name and the names of the group that
the said group depends on, as shown in the previous XML file.

Chapter 5

[119]

4. Select the previous XML file in Eclipse and run it as TestNG suite. You will see the
following test result in the Console window of Eclipse:

What just happened?
We successfully created a test class which contains a test method that depends on groups,
and the dependency configuration was done using the testng XML file. As you can see
from the results, the test methods from the group test-group got executed before the
dependent test method.

Multigroup dependency
In this section we will create a sample XML configuration for defining a multigroup
dependency for a particular group.

Time for action – defining multigroup dependency in XML
1. Create a new class named MultiGrpXmlDependency under the test.depends.

xml package and replace the following code in it:
package test.depends.xml;

import org.testng.annotations.Test;

public class MultiGrpXmlDependency {
 @Test(groups={"dependent-group"})
 public void groupTestOne(){
 System.out.println("Group Test method one");
 }

Dependencies

[120]

 @Test(groups={"test-group-one"})
 public void groupTestTwo(){
 System.out.println("Group test method two");
 }

 @Test(groups={"test-group-two"})
 public void groupTestThree(){
 System.out.println("Group Test method three");
 }
}

The preceding test class contains three test methods which print a message onto
the console when executed. Each of the test methods belong to a different group.

2. Create a new XML with the name multigroup-xml-dependency.xml and add
the following code to it:
<suite name="Multi group xml dependency Suite" verbose="1">
 <test name="Multi group xml dependency Test">
 <groups>
 <dependencies>
 <group name="dependent-group" depends-on="test-group-one
test-group-two" />
 </dependencies>
 <run>
 <include name="dependent-group" />
 </run>
 </groups>

 <classes>
 <class name="test.depends.xml.MultiGrpXmlDependency" />
 </classes>
 </test>
</suite>

The preceding testng XML configuration contains a single test inside the suite.
Group dependency is defined using the dependencies attribute under the groups
block. The group tag is used with the group name and the names of the groups that
the said group depends on, as shown in the preceding XML file. In case the group is
dependent upon multiple groups, each group is separated by a space, as shown in
the preceding XML file.

Chapter 5

[121]

3. Select the preceding XML file in Eclipse and run it as TestNG suite. You will see the
following test result in the Console window of Eclipse:

What just happened?
We successfully created a test class which contains a test method that depends on multiple
groups, and where the dependency configuration was done using the testng XML file. You
can see from the results that the test methods from the group test-group-one and
test-group-two got executed before the dependent test method which belongs to the
dependent-group. Multiple group dependency is defined in XML by providing all the
group names separated by a space.

Using regular expressions for defining dependency
In this section we will create a sample XML configuration file that defines a group
dependency using regular expressions.

Time for action – using regular expressions for dependency
1. Create a new class named RegularExpressionXmlTest under the test.

depends.xml package and replace the following code in it:
package test.depends.xml;

import org.testng.annotations.Test;

public class RegularExpressionXmlTest {
 @Test(groups={"test"})

Dependencies

[122]

 public void regularExpMethod(){
 System.out.println("Dependent method");
 }

 @Test(groups={"starts-with-one"})
 public void startsWithMethodOne(){
 System.out.println("Starts with method one");
 }

 @Test(groups={"starts-with-two"})
 public void startsWithMethodTwo(){
 System.out.println("Starts with method two");
 }
}

The preceding test class contains three test methods which print a message onto
the console when executed. Each of the test methods belongs to a different group.

2. Create a new XML file named regexp-xml-dependency.xml and add the
following code to it:
<suite name="Regexpxmldependency Suite" verbose="1">
 <test name="Regexp xml dependency Test">
 <groups>
 <dependencies>
 <group name="test" depends-on="starts-with.*" />
 </dependencies>
 <run>
 <include name="test" />
 </run>
 </groups>

 <classes>
 <class name="test.depends.xml.RegularExpressionXmlTest" />
 </classes>
 </test>
</suite>

The preceding testng XML configuration contains a single test inside the suite.
Group dependency is defined using the dependencies attribute under the
groups block. The group tag is used with the group name. Dependent group
is defined using the regular expressions.

Chapter 5

[123]

3. Select the preceding XML file in Eclipse and run it as TestNG suite. You will see the
following test result in the Console window of Eclipse:

What just happened?
We successfully created a test class which contains a test method for which the
dependency was configured using a regular expression. In the preceding sample program
dependent groups were added based on the names that start with starts with. For
regular expressions, search is done using the expression .*. This can also be used for ends
with and contains text-based search.

Pop quiz – dependencies
Q1. Which attribute has to be used with annotation Test to define a method dependency?

1. dependsOnMethods

2. dependsONMethod

3. methodsDependent

Q2. What kind of dependency can be configured using the testng XML configuration file?

1. Methods

2. Groups

3. Both of the above

Dependencies

[124]

Summary
In this chapter we have learned about dependency feature in TestNG. We have learned
multiple ways to define/configure test methods to be dependent on other test methods.

The dependency can be configured for both test methods and also for groups. We can
even configure/define a dependency through the testng XML suite file. Use of regular
expressions is supported for groups and can be used for name-based search to add
groups to dependency.

In the next chapter we will cover the Factory annotation provided by TestNG. We will
learn about its usage and how it's different from the DataProvider annotation.

6
The Factory Annotation

In the previous chapter we learned about defining the dependency of tests on
other tests or a group of tests. In this section we will learn about the @Factory
annotation provided by TestNG. Factory allows tests to be created at runtime
depending on certain datasets or conditions.

In this chapter we'll cover the following topics:

 � What is factory

 � Passing parameters to test classes

 � The DataProvider annotation with the @Factory annotation

 � The DataProvider or @Factory annotation

 � Dependency with the @Factory annotation

What is factory?
Sometimes we may need to run a set of tests with different data values. To achieve this
we may define a separate set of tests inside a suite in the testng XML and test the
required scenario. The problem with this approach is that, if you get an extra set of data,
you will need to redefine the test. TestNG solves this problem by providing the @Factory
annotation feature. Factory in TestNG defines and creates tests dynamically at runtime.

First factory program
Let's create a sample program using the @Factory annotation of TestNG.

The Factory Annotation

[126]

Time for action – first factory test
Perform the following steps create your first factory test:

1. Open Eclipse and create a Java project with the name FactoryProject with the
structure shown in the following screenshot. Please make sure that the TestNG library
is added to the build path of the project as mentioned in Chapter 1, Getting Started.

2. Create a new class with name SimpleTest under the test.classes package
and replace the following code in it:
package test.classes;

import org.testng.annotations.Test;

public class SimpleTest {

 @Test
 public void simpleTest(){
 System.out.println("Simple Test Method.");
 }
}

The preceding test class contains only one test method, which prints a message
onto the console when executed.

3. Create another class with name SimpleTestFactory under the test.factory
package and replace the following code in it:
package test.factory;

import org.testng.annotations.Factory;

import test.classes.SimpleTest;

public class SimpleTestFactory {

 @Factory
 public Object[] factoryMethod(){

Chapter 6

[127]

 return new Object[]{
 new SimpleTest(),
 new SimpleTest()
 };
 }
}

The preceding class defines a factory method inside it. A factory method is
defined by declaring @Factory above the respective test method. It's mandatory
that a factory method should return an array of Object class (Object []) as
mentioned in the preceding code snippet.

4. Select the previous factory test class in Eclipse and run it as a TestNG test. You will
see the following test result in the Console window of Eclipse:

What just happened?
We have successfully created a simple factory test class in the previous example. As you can
see in the preceding test results, the test method from the SimpleTestFactory class was
executed two times. The execution is based on the Object array returned by the factory
method. As the said method returns two objects of the SimpleTest class, TestNG looks
inside the specified returned object and executes all the test methods inside it. In this case,
as there was only one test method, TestNG executes the respective test method.

Passing parameters to test classes
One of the main advantages of using the factory methods is that you can pass parameters
to test classes while initializing them. These parameters can then be used across all the test
methods present in the said classes. Let's write a small example, which passes parameters to
test classes.

The Factory Annotation

[128]

Time for action – passing parameters to test classes
Perform the following steps for passing parameters to test classes:

1. Create new class with the name ParameterTest under the test.classes
package and replace the following code in it:
package test.classes;

import org.testng.annotations.Test;

public class ParameterTest {
 private int param;
 public ParameterTest(int param){
 this.param = param;
 }

 @Test
 public void testMethodOne(){
 int opValue=param+1;
 System.out.println("Test method one output: "+ opValue);
 }

 @Test
 public void testMethodTwo(){
 int opValue=param+2;
 System.out.println("Test method two output: "+ opValue);
 }
}

The constructor of the previous test class takes one argument as an integer,
which is assigned to a local variable param. This variable then is used in the two
test methods present in the test class. Each of the test methods adds a value to
param and prints it to the console on execution.

2. Create another class with name ParameterFactory under the test.factory
package and replace the following code in it:

package test.factory;

import org.testng.annotations.Factory;

import test.classes.ParameterTest;

public class ParameterFactory {

 @Factory
 public Object[] paramFactory(){
 return new Object[]{

Chapter 6

[129]

 new ParameterTest(0),
 new ParameterTest(1)
 };
 }
}

The preceding class defines a factory method inside it. This factory method
returns an array of the Object class containing two objects of ParameterTest
class. Select the previous factory test class in Eclipse and run it as a TestNG test.
You will see the following test result in the Console window of Eclipse:

What just happened?
We successfully created a factory method that passes a parameter to the test class
ParameterTest, which has been initialized with arguments 0 and 1 respectively,
as shown in the previous code snippet. This parameter value is then used by the test
methods on execution. As you can see from the preceding test results, each of the test
methods are executed two times each. The parameters passed while initializing the test
class are used by the test methods and the console shows the respective output.

Using DataProvider along with the @Factory annotation
The DataProvider feature can also be used with the @Factory annotation for creating tests
at runtime. This can be done by declaring the @Factory annotation on a constructor of a
class or on a regular method.

Let's create an example, which uses the DataProvider annotation along with the
@Factory annotation.

The Factory Annotation

[130]

Time for action – using DataProvider with Factory
Create a new class by the name DataProviderConsTest under the test.classes
package and replace the following code in it:

package test.classes;

import org.testng.annotations.DataProvider;
import org.testng.annotations.Factory;
import org.testng.annotations.Test;

public class DataProviderConsTest {
 private int param;

 @Factory(dataProvider="dataMethod")
 public DataProviderConsTest(int param){
 this.param=param;
 }
 @DataProvider
 public static Object[][] dataMethod(){
 return new Object[][]{
 {0},
 {1}
 };
 }
 @Test
 public void testMethodOne(){
 int opValue=param+1;
 System.out.println("Test method one output: "+ opValue);
 }
 @Test
 public void testMethodTwo(){
 int opValue=param+2;
 System.out.println("Test method two output: "+ opValue);
 }
}

The preceding class is similar to the test class, which we used earlier. The constructor of this
test class takes one argument as integer, which is assigned to a local variable param. This
variable then is used in the two test methods present in the test class. Each of the test methods
adds a value to param and prints it to the console on execution. The constructor of the test
class is annotated with the @Factory annotation. This annotation uses a DataProvider method
named dataMethod for providing values to the constructor of the test class. The DataProvider
method returns a double object array in which the first array represents the dataset, which
decides the number of times the test will be iterated, whereas the second array is the actual
parameter value that will be passed to the test method per iteration. The said double object
array contains two datasets with values 0 and 1. Select the previous test class in Eclipse and
run it as a TestNG test. You will see the following test result in the Console window of Eclipse:

Chapter 6

[131]

What just happened?
We have successfully created a test class that uses both, the @Factory annotation along with
DataProvider to provide values to the factory method. The @Factory annotation is applied to
the constructor of the test class. This initializes the test class multiple times depending upon
the number of values provided by the DataProvider method. If there is an increase or decrease
in the datasets that are provided, it will reflect test class initialization accordingly.

DataProvider or Factory
Many people get confused when they read about the DataProvider and @Factory
annotations – what to use when? and what is better?

Let's take a look at both of their functionalities:

 � DataProvider: A test method that uses DataProvider will be executed a
multiple number of times based on the data provided by the DataProvider.
The test method will be executed using the same instance of the test class
to which the test method belongs.

 � Factory: A factory will execute all the test methods present inside a test class
using a separate instance of the respective class.

Let's create an example that shows the clear difference between these two.

The Factory Annotation

[132]

Time for action – the DataProvider test
1. Create a new class by the name DataProviderClass under the test.classes

package and replace the following code in it:
package test.classes;

import org.testng.annotations.BeforeClass;
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;

public class DataProviderClass {

 @BeforeClass
 public void beforeClass(){
 System.out.println("Before class executed");
 }

 @Test(dataProvider="dataMethod")
 public void testMethod(String param){
 System.out.println("The parameter value is: "+param);
 }

 @DataProvider
 public Object[][] dataMethod(){
 return new Object[][]{
 {"one"},
 {"two"}
 };
 }
}

The preceding class contains the testMethod and beforeClass methods.
testMethod takes a String argument and the value of the argument is provided by
the DataProvider method, dataMethod. The beforeClass method prints a message
onto the console when executed, and the same is the case with testMethod.
testMethod prints the argument passed onto it to the console when executed.

Chapter 6

[133]

2. Select the previous test class in Eclipse and run it as a TestNG test. You will see the
following test result in the Console window of Eclipse:

What just happened?
This example shows a test class that contains a test method, which uses a DataProvider
annotation to provide data for its arguments. As you can see from the preceding test results
the class beforeClass is executed only one time irrespective of how many times the test
method is executed.

Time for action – the Factory test
1. Create a new class by the name ExampleTest under the test.classes package

and replace the following code in it:
package test.classes;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;
public class ExampleTest {
 private String param="";

 public ExampleTest(String param){
 this.param=param;
 }

 @BeforeClass
 public void beforeClass(){
 System.out.println("Before class executed.");
 }

The Factory Annotation

[134]

 @Test
 public void testMethod(){
 System.out.println("The the parameter value is: "+param);
 }
}

The preceding class contains the testMethod and beforeClass methods. The
constructor of the test class takes a String argument value. Both beforeClass
and testMethod print a message onto console.

2. Create a new class with the name ExampleFactory under the test.factory
package and replace the following code in it:
package test.factory;
import org.testng.annotations.Factory;
import test.classes.ExampleTest;
public class ExampleFactory {

@Factory
 public Object[] factoryMethod(){
 return new Object[]{
 new ExampleTest("one"),
 new ExampleTest("two")
 };
 }
}

The preceding class contains a factory method that returns an Object array
of ExampleTest with different parameters.

3. Select the previous test class in Eclipse and run it as a TestNG test. You will
see the following test result in the Console window of Eclipse:

Chapter 6

[135]

What just happened?
This test class shows a factory class. As you can see from the previous test results, the
beforeClass method is executed before each execution of testMethod. This shows that
factory implementation executes the test method for each individual instance of the test
class. As we saw earlier DataProvider executes the test method (testMethod) for a single
instance of the test class.

Dependency with the @Factory annotation
We have seen different examples of factory implementation in this chapter. In this section
we will see how a dependency method is executed when used with the factory class.

Time for action – dependency with the @Factory annotation
1. Create a new class by the name DependencyTest under the test.classes

package and replace the following code in it:
package test.classes;
import org.testng.annotations.Test;
public class DependencyTest {
 private int param;
 public DependencyTest(int param){
 this.param = param;
 }
 @Test(dependsOnMethods={"testMethodTwo"})
 public void testMethodOne(){
 System.out.println("Test method one with param values: "+
this.param);
 }

 @Test
 public void testMethodTwo(){
 System.out.println("Test method two with param values: "+
this.param);
 }
}

This class contains two test methods testMethodOne and testMethodTwo, where
testMethodOne depends on testMethodTwo. The constructor of the class takes
one argument as integer, and sets its value to an internal variable named param.
Both of the test methods print their method name along with the param variable
value to console when executed.

The Factory Annotation

[136]

2. Create another class under the test.factory package with the name
DependencyFactory and replace any existing code with the following code:
package test.factory;
import org.testng.annotations.Factory;
import test.classes.DependencyTest;
public class DependencyFactory {
 @Factory
 public Object[] factoryMethod(){
 return new Object[]{
 new DependencyTest(1),
 new DependencyTest(2)
 };
 }
}

3. Select the preceding factory class in Eclipse and run it as a TestNG test. You will see
the following test result in the Console window of Eclipse:

What just happened?
This example shows a test class that contains dependency test methods, where one test
method depends on another test method. As you can see from the previous test results both
the instances of testMethodTwo were executed before any instance of testMethodOne.
This is the default behavior of a factory implementation in TestNG, it will execute all the
instances of the dependent test methods before the actual test method. Unfortunately,
this behavior may not fulfill our testing needs sometimes. To execute the test methods in
sequential order for each instance we need to use a testng XML configuration file.

Chapter 6

[137]

Let's create a testng XML configuration to execute the previous test in sequential order
based on the instance.

Time for action – running a dependency test sequentially
Perform the following test to run a dependency test sequentially:

1. Create a new file with the name factory-testng.xml under the existing project:
<suite name="Factory suite" verbose="1" >
 <test name="Factory test" group-by-instances="true">
 <classes>
 <class name="test.factory.DependencyFactory" />
 </classes>
 </test>
</suite>

This XML configuration contains only a test inside it. This test executes the
DependencyFatory class. To run the dependent methods according to the
sequence, they are supposed to run a configuration attribute group-by-
instance, which is set to true.

2. Select the preceding testng XML in Eclipse and run it as a TestNG suite.
You will see the following test result in the Console window of Eclipse:

What just happened?
This example shows how to run dependent methods run for each sequence rather
than running the dependent methods with all first and then the rest methods. The
attribute group-by-instances is currently used along with the test tag but can
also be used with the suite tag.

The Factory Annotation

[138]

Have a go hero
Having gone through the chapter, feel free to attempt the following:

 � Create a factory test with DataProvider test that has a depend-on-method configured

 � Create a factory method that defines tests from multiple test classes

Pop quiz – the Factory annotation
Q1. Factory annotation can be applied at class level.

1. True

2. False

Q2. Which of the following attributes has to be used to order the execution tests by instance
in a factory class?

1. order-by-instances

2. group-by-instances

3. execute-by-instances

Summary
In this chapter we have learned about the Factory feature provided by TestNG. Factory allows
users to create tests at runtime. We can create n number of tests at runtime depending upon
some data sets. We have learned the differences between DataProvider and the @Factory
annotation and how each of them executes the tests. We also learned on how to use
DataProvider along with the factory implementation for defining tests at runtime.

In the next chapter we will cover the parallelism feature of TestNG, which allows users to
configure their tests to be run in a parallel/multithreaded environment.

7
Parallelism

In the previous chapter we had learned about the @Factory annotation,
its advantages, its comparison with data-driven tests, and how it can be
used along with data-driven tests. In this chapter we will cover the parallelism
or the multithreading feature provided by TestNG. We will also learn about
the different configuration options provided by TestNG for running the tests
in parallel or multithreaded mode.

In this chapter we'll cover the following topics:

 � Parallelism

 � A simple multithreaded test

 � Running test methods in parallel

 � Running test classes in parallel

 � Running tests in a suite in parallel

 � Configuring an independent test method to run in parallel

 � Advantages and uses

Parallelism

[140]

Parallelism
Parallelism or multithreading in software terms is defined as the ability of the software,
operating system, or program to execute multiple parts or subcomponents of another
program simultaneously. This ability is provided by TestNG too, it allows the tests to run
in parallel or multithreaded mode. This means that based on the test suite configuration,
different threads are started simultaneously and the test methods are executed in them.
This gives a user a lot of advantages over normal execution, mainly reduction in execution
time and ability to verify a multithreaded code. There are different ways in which this feature
can be configured in TestNG. We will learn about these configurations going forward in this
chapter. Let's start with a sample program first.

A simple multithreaded test
Let's write our first multithreaded program and see how it works.

Time for action – writing first parallel test
Carry out the following steps to write the first parallel test:

1. Open Eclipse and create a Java project with the name Parallelism with the
structure shown in the following screenshot. Please make sure that the TestNG
library is added to the build path of the project as mentioned in Chapter 1,
Getting Started.

2. Create a new class with the name SimpleClass under the test.parallelism
package and replace the following code in it:
package test.parallelism;

import org.testng.annotations.Test;

public class SimpleClass {
 @Test
 public void testMethodsOne() {
 long id = Thread.currentThread().getId();
 System.out.println("Simple test-method One. Thread id is:
"+id);
 }
 @Test

Chapter 7

[141]

 public void testMethodsTwo() {
 long id = Thread.currentThread().getId();
 System.out.println("Simple test-method Two. Thread id is:
"+id);
 }
}

The preceding test class contains two test methods, which prints a message onto
the console when executed. The ID of the thread on which the current method is
being executed is evaluated using the Thread.currentThread.getId() code.

3. Create a new file named simple-test-testng.xml under the project and
replace the following code in it:
<suite name="Simple Suite" parallel="methods" thread-count="2" >
 <test name="Simple test">
 <classes>
 <class name="test.parallelism.SimpleClass" />
 </classes>
 </test>
</suite>

The preceding XML defines a simple test suite which contains only a single
test inside it. The test considers the class SimpleClass for test execution.
Multithreading or parallelism is configured using the attribute parallel
and thread-count at the suite level as shown in the previous XML file.
The parallel be done for each class, each method, or for each test in the
suite. The thread-count attribute is used to configure the maximum number
of threads to be spawned for each suite.

4. Select the previous testng XML file in Eclipse and run it as a TestNG suite.
You will see the following test result in the Console window of Eclipse:

Parallelism

[142]

What just happened?
We have successfully created a test class, which is executed in multithreaded or parallel
mode. The testng XML configures TestNG to execute the said test in multithreaded mode
for each method. This is done by using the attributes parallel and thread-count at
suite level while defining the testng XML. The values of these attributes are methods
and 2 respectively. The first value configures TestNG for executing each test method in a
separate thread whereas the latter configures it to spawn 2 threads for the said execution.

The previous test result clearly shows that each test method is executed in a different thread.
This is identified by the ID of the thread that is printed on the console.

Running test methods in parallel
In our previous example we had seen a simple class having two test methods being executed
in multiple threads. As mentioned previously, TestNG provides multiple ways to execute the
tests in a multithreaded condition, one of them is executing each test method in a single
thread. This mode reduces the execution time significantly because more tests are executed
in parallel, hence reducing the total execution time. In this section we will learn about
executing test methods in parallel and will write a sample program, which executes
multiple test methods from different classes in parallel.

Time for action – running test methods in parallel
Perform the following steps to create test methods in parallel:

1. Create new class with the name SampleTestMethod under the test.
parallelism package and replace the following code in it:
package test.parallelism;

import org.testng.annotations.AfterMethod;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

public class SampleTestMethod {
 @BeforeMethod
 public void beforeMethod(){
 long id = Thread.currentThread().getId();
 System.out.println("Before test-method. Thread id is: "+id);
 }

 @Test
 public void testMethodsOne() {
 long id = Thread.currentThread().getId();

Chapter 7

[143]

 System.out.println("Simple test-method One. Thread id is:
"+id);
 }

 @Test
 public void testMethodsTwo() {
 long id = Thread.currentThread().getId();
 System.out.println("Simple test-method Two. Thread id is:
"+id);
 }

 @AfterMethod
 public void afterMethod(){
 long id = Thread.currentThread().getId();
 System.out.println("After test-method. Thread id is: "+id);
 }

}

The preceding test class contains two test methods, which prints a message onto
the console when executed. The ID of the thread on which the current method is
being executed is evaluated using the Thread.currentThread.getId() code.
It also contains the before and after methods, which also prints the thread ID of
the current thread onto the console when executed.

2. Create a new file named methods-test-testng.xml under the project and
replace the following code in it:
<suite name="Test-method Suite" parallel="methods" thread-
count="2" >
 <test name="Test-method test" group-by-instances="true">
 <classes>
 <class name="test.parallelism.SampleTestMethod" />
 </classes>
 </test>
</suite>

The preceding XML defines a simple test suite, which contains only a single test
inside it. The test considers the class SampleTestMethod for test execution.

Parallelism

[144]

3. Select the previous testng XML file in Eclipse and run it as a TestNG suite.
You will see the following test result in the Console window of Eclipse:

Note that the Id value shown in the previous screenshot may not be
the same in your console output. The Id value is assigned at runtime
by the Java virtual machine (JVM) during execution.

What just happened?
We have successfully created a test class, which is executed in multithreaded or parallel
mode. Here, for executing the tests in parallel we have configured TestNG to run test
methods in parallel by providing the value methods to the parallel attribute of suite.
Also the test is configured to spawn two threads for the said test suite; this is done by
providing the value 2 to the thread-count attribute at the suite level.

The previous test result clearly shows that each test method and its respective before and
after method is executed in a different thread. This is identified by the ID of the thread that
is printed on the console.

Running test classes in parallel
In our earlier example we had written a sample program that shows how to configure and
run test methods in parallel in TestNG. In this section we will learn about executing test
classes in parallel; each test class that is part of the test execution will be executed in its
own thread. Let's write a sample program, which executes multiple test classes in parallel.

Chapter 7

[145]

Time for action – running test classes in parallel
Perform the following steps to create test classes in parallel:

1. Create new class with the name SampleTestClassOne under the test.
parallelism package and replace the following code in it:
package test.parallelism;

import org.testng.annotations.AfterClass;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;

public class SampleTestClassOne {
 @BeforeClass
 public void beforeClass(){
 long id = Thread.currentThread().getId();
 System.out.println("Before test-class. Thread id is: "+id);
 }

 @Test
 public void testMethodOne() {
 long id = Thread.currentThread().getId();
 System.out.println("Sample test-method One. Thread id is:
"+id);
 }

 @Test
 public void testMethodTwo() {
 long id = Thread.currentThread().getId();
 System.out.println("Sample test-method Two. Thread id is:
"+id);
 }

 @AfterClass
 public void afterClass(){
 long id = Thread.currentThread().getId();
 System.out.println("After test-class. Thread id is: "+id);
 }
}

The preceding test class contains two test methods, which prints a message onto
the console when executed. The ID of the thread on which the current method
is being executed is evaluated using the Thread.currentThread.getId() code.
It also contains the before and after class methods, which also print the thread ID
of the current thread onto the console when executed at start and end of the
class execution.

Parallelism

[146]

2. Create a new class with the name SampleTestClassTwo under the
test.parallelism package and replace the following code in it:
package test.parallelism;

import org.testng.annotations.AfterClass;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;

public class SampleTestClassTwo {
 @BeforeClass
 public void beforeClass(){
 long id = Thread.currentThread().getId();
 System.out.println("Before test-class. Thread id is: "+id);
 }

 @Test
 public void testMethodOne() {
 long id = Thread.currentThread().getId();
 System.out.println("Sample test-method One. Thread id is:
"+id);
 }

 @Test
 public void testMethodTwo() {
 long id = Thread.currentThread().getId();
 System.out.println("Sample test-method Two. Thread id is:
"+id);
 }

 @AfterClass
 public void afterClass(){
 long id = Thread.currentThread().getId();
 System.out.println("After test-class. Thread id is: "+id);
 }
}

The preceding test class also contains two test methods, which print a message
onto the console when executed. The ID of the thread on which the current
method is being executed is evaluated using the Thread.currentThread.
getId() code. It also contains the before and after class methods which also
print the thread ID of the current thread onto the console when executed at
start and end of the class execution.

Chapter 7

[147]

3. Create a new file named classes-test-testng.xml under the project and
replace the following code in it:
<suite name="Test-class Suite" parallel="classes" thread-count="2" >
 <test name="Test-class test" >
 <classes>
 <class name="test.parallelism.SampleTestClassOne" />
 <class name="test.parallelism.SampleTestClassTwo" />
 </classes>
 </test>
</suite>

The preceding XML defines a simple test suite, which contains two classes in it:
SampleTestClassOne and SampleTestClassTwo.

4. Select the previous testng XML file in Eclipse and run it as a TestNG suite.
You will see the following test result in the Console window of Eclipse:

Note that the Id value in the preceding output may not be the same
in your console output. The Id value is assigned at runtime by the Java
virtual machine (JVM) during execution.

Parallelism

[148]

What just happened?
We have successfully created a test suite, which is executed in multithreaded or parallel
mode. Here for executing each class in parallel we have configured TestNG by providing the
value classes to the parallel attribute of suite. Also the test is configured to spawn two
threads for the said test suite; this is done by providing the value 2 to the thread-count at
the suite level.

The previous test result clearly shows that each test class and its respective beforeClass
and afterClass methods are executed in a different thread. This is identified by the ID
of the thread that is printed on the console.

Running tests inside a suite in parallel
In our previous example we had written a sample program that demonstrates how to
configure and run test classes in parallel in TestNG. In this section we will learn about
executing each test inside a suite in parallel, that is, each test that is part of the test
suite execution will be executed in its own separate respective thread. Let's write a
sample program, which executes multiple tests present in a suite in parallel.

Time for action – running tests inside a suite in parallel
Perform the following steps for running tests inside a suite in parallel:

1. Create a new class with the name SampleTestSuite under the test.
parallelism package and replace the following code in it:
package test.parallelism;

import org.testng.annotations.AfterClass;
import org.testng.annotations.AfterTest;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.BeforeTest;
import org.testng.annotations.Parameters;
import org.testng.annotations.Test;

public class SampleTestSuite {
 String testName="";

 @BeforeTest
 @Parameters({ "test-name" })
 public void beforeTest(String testName){
 this.testName=testName;
 long id = Thread.currentThread().getId();
 System.out.println("Before test "+testName+". Thread id is:

Chapter 7

[149]

"+id);
 }

 @BeforeClass
 public void beforeClass(){
 long id = Thread.currentThread().getId();
 System.out.println("Before test-class "+testName+". Thread id
is: "+id);
 }

 @Test
 public void testMethodOne() {
 long id = Thread.currentThread().getId();
 System.out.println("Sample test-method "+testName+". Thread id
is: "+id);
 }

 @AfterClass
 public void afterClass(){
 long id = Thread.currentThread().getId();
 System.out.println("After test-method "+testName+". Thread id
is: "+id);
 }

 @AfterTest
 public void afterTest(){
 long id = Thread.currentThread().getId();
 System.out.println("After test "+testName+". Thread id is:
"+id);
 }
}

The preceding test class contains a test method, which prints a message onto
the console when executed. The ID of the thread on which the current method
is being executed is printed along with the said message. The class also contains
the beforeTest/afterTest and beforeClass/afterClass methods. The
beforeTest method takes a parameter, which passed through the testng XML file.

2. Create a new file named test-testng.xml under the project and replace the
following code in it:
<suite name="Parallel tests" parallel="tests" thread-count="2" >
 <test name="Test One">
 <parameter name="test-name" value="Test One"/>
 <classes>
 <class name="test.parallelism.SampleTestSuite" />
 </classes>

Parallelism

[150]

 </test>
 <test name="Test Two">
 <parameter name="test-name" value="Test Two"/>
 <classes>
 <class name="test.parallelism.SampleTestSuite" />
 </classes>
 </test>
</suite>

The preceding XML contains two tests in it, each including the SampleTestSuite
class for test execution. Each test passes the parameter value Test One and Test
Two to test-name. This is passed to the beforeTest method, which sets the value
of testName in the test class. This value is then used by the test methods to identify
the test that is being executed.

3. Select the previous testng XML file in Eclipse and run it as a TestNG suite. You will
see the following test result in the Console window of Eclipse:

What just happened?
We have successfully created a test suite, which is executed in multithreaded or parallel
mode. Multithreading or parallelism is configured to execute each test in a separate thread.
Here, for executing each test in parallel we have configured TestNG by providing the value
tests to the parallel attribute of suite. Also the test is configured to spawn two threads
for the said test suite; this is done by providing the value 2 to the thread-count attribute
at the suite level.

Chapter 7

[151]

The previous test result clearly shows that each test in a suite is executed in its respective
thread. This is identified by the ID of the thread that is printed on the console.

Configuring an independent test method to run in
multiple threads
Earlier we discussed how to run classes, methods, and tests in parallel or in multithreaded
mode. TestNG also provides the flexibility to configure a test method to be run in a
multithreaded environment. This is achieved by configuring it while using the Test
annotation on a method.

Let's look at an example of how to configure a test method to run in a multithreaded
environment.

Time for action – running independent test in threads
Perform the following steps to run independent tests in threads:

1. Create new class with the name IndependentTestThreading under the test.
parallelism package and replace the following code in it:
package test.parallelism;
import org.testng.annotations.Test;

public class IndependentTestThreading {

@Test(threadPoolSize=3,invocationCount=6,timeOut=1000)
 public void testMethod(){
 Long id = Thread.currentThread().getId();
 System.out.println("Test method executing on thread with id:
"+id);
 }
}

The preceding test class contains a test method, which prints a message onto the
console when executed. The ID of the thread on which the current method is being
executed is printed along with the said message. The method is configured to run in
multithreaded mode by using the threadPoolSize attribute along with the Test
annotation. The value of the threadPoolSize is set to 3 in the previous class;
this configures the test method to be run in three different threads. The other two
attributes, invocationCount and timeOut, configures the test to be invoked a
multiple number of times and fail if the execution takes more time. The value of these
two attributes is set to 6 and 1000 respectively, configuring the test method to be run
six times and fail if the execution takes more than 1000 milliseconds.

Parallelism

[152]

2. Create a new file named independent-test-testng.xml under the project
and replace the following code in it:
<suite name="Independent test Suite" >
 <test name="Independent test">
 <classes>
 <class name="test.parallelism.IndependentTestThreading" />
 </classes>
 </test>
</suite>

The preceding code defines a single test, which includes the
IndependentTestThreading class for the test execution. The
test is not configured with any multithreading or parallel execution.

3. Select the previous testng XML file in Eclipse and run it as TestNG suite.
You will see the following test result in the Console window of Eclipse:

What just happened?
We have successfully created a test class, which contains a test method that is configured
to run in multithreaded or parallel mode. The test method is executed multiple times based
on the invocationCount attribute value. Each execution is done in a separate thread that
is clearly visible from the test report output. This feature is useful when you want to run only
a fixed number of test methods in multithreaded mode and not the whole test suite.

Chapter 7

[153]

Have a go hero
Create a class that contains the BeforeClass and AfterClass annotated methods
along with a test method. Run the said class in parallel by configuring it to run each
method in parallel. Verify in which thread the BeforeClass/AfterClass annotated
methods are executed.

Advantages and uses
Parallelism or multithreaded execution can provide a lot of advantages to the users.
The following are two:

 � Reduces execution time: As tests are executed in parallel, multiple tests get
executed simultaneously, hence reducing the overall time taken to execute the tests

 � Allows multithreaded tests: Using this feature, we can write tests to verify certain
multithreaded code in the applications

This feature is vastly used by the QA industry for functional automation testing. This feature
helps QA guys configure their tests to be executed easily in multiple browsers or operating
systems simultaneously.

Pop quiz – parallelism
Q1. What is the attribute that needs to be used to configure TestNG tests to run in parallel?

1. threading

2. thread-count

3. parallel

Q2. Which of the following values have to be mentioned in the XML configuration file to
run test methods in parallel?

1. test-methods

2. method

3. methods

Parallelism

[154]

Summary
In this chapter we learned about the parallel or multithreading feature of TestNG.
We have looked into different ways a test suite can be configured to run tests in parallel.

This feature has a wide range of uses when combined with other features such as
parameterization and grouping of tests. These can be used in different ways depending
upon different requirements and scenarios.

In the next chapter we will learn about build automation tools and how to use them to build
and run TestNG tests. We will learn about the advantages of using build tools and how the
use of such tools can help us with testing.

8
Using Build Tools

In the previous chapter we had covered the parallelism feature provided by
TestNG which helps users to run the tests in parallel. In this chapter we will
learn about the build automation tools available, their advantages, and
how to use them to automate our TestNG tests.

In this chapter we'll cover the following topics:

 � Build automation

 � Different build automation tools available

 � Ant and using Ant with TestNG

 � Maven and using Maven with TestNG

Build automation
Build automation can be defined as the process of scripting and automating the compiling,
running, deploying, and packaging of a source code. This is applicable for every kind of
software language irrespective of the type. There are certain common tasks that every
build tool supports as part of the build automation such as cleanup, compiling, executing,
reporting, and publishing.

Every tool has a different way of achieving the said tasks. For some tools certain tasks are
predefined but for other tools utilities are provided and user can use them to manually
configure them.

Using Build Tools

[156]

Advantages of build automation
Following are the advantages of automating a build:

 � Eliminates manual effort in building and deploying process
 � Eliminates the redundant tasks
 � Can be used to keep history of the builds made
 � Saves time
 � Improves product quality
 � Build automation tools when used with continuous integration tools such

as Hudson, helps in schedule triggering the builds at regular intervals

Different build tools available
For each kind of software language in the industry there are a variety of build tools
that can be used for build automation. When it comes to Java or Java related languages,
following are the major build tools that are being used by the software industry:

 � Ant

 � Maven

 � Gradle

As part of this chapter we will cover Ant and Maven for automating our builds to compile
and run our TestNG tests.

Ant
Ant is one of the most commonly used build tools by the software industry for the build
automation of Java-based products. It is configured using an XML file and by default the
configuration file name for Ant is named as build.xml. In this section we will learn how
to install the Ant tool and use it to run TestNG tests.

Installing Ant
Follow the given steps to install Ant onto your system:

1. Download Ant from the Apache site:
http://ant.apache.org/bindownload.cgi.

2. Download Java JDK and set JAVA_HOME as an environment variable pointing to
your JDK installation directory.

3. Also add ANT_HOME pointing to the downloaded ant directory as an
environment variable.

Chapter 8

[157]

4. Add the path to the bin directory which exists under the ant directory to
your system path (path variable).

5. Open a terminal window and type the command ant and press Enter. You will
see a message as shown in the following screenshot:

Using Ant
Before we go ahead and start using Ant, there are certain terminologies that we should
be familiar with before we actually use Ant for running our TestNG tests:

 � Project: Project is the starting point of the Ant configuration file and consists of
the entire configuration with respect to building a project.

 � Tasks: These are mainly called Ant tasks. These are the different functionalities
that Ant provides. A task in Ant can be identified by the XML tag used. Some of
the common tasks are mkdir, delete, target, path, and so on.

 � Target: An Ant target is nothing but enclosing a set of steps or task into defined
section. Targets act as commands while using the Ant build.

Any in-detail information about Ant is out of scope of this book but, you can find the same
information on its website, http://ant.apache.org/manual/.

Now let's create a sample project and write an Ant configuration file to build and run the
respective sample project.

Time for action – using Ant to run TestNG tests
1. Open Eclipse and create a new Java project named BuildToolProject with

following structure:

Using Build Tools

[158]

2. Create a new class file named SampleBuildTest under the test package
and replace the existing code with the following code:
package test;

import org.testng.annotations.Test;

public class SampleBuildTest {

 @Test
 public void testMethodOne(){
 System.out.println("Test method one executed");
 }

 @Test
 public void testMethodTwo(){
 System.out.println("Test method two executed");
 }
}

The above class contains two test methods which print a message onto the
console when executed.

3. Download the TestNG JAR as mentioned in the Chapter 1, Getting Started, and copy
the said JAR onto the lib folder under the Java project.

4. Create a new file named testng.xml under the said project and paste the
following code onto it:
<suite name="Sample Build Suite">
 <test name="Sample Build test">
 <classes>
 <class name="test.SampleBuildTest" />
 </classes>
 </test>
</suite>

The preceding XML defines a simple test suite with a single test. The test considers
the test class SampleBuildTest as part of the test.

5. Create a new file named build.xml under the project and add the following
code to it:
<project name="Testng Ant build" basedir=".">
 <!-- Sets the property variables to point to respective
directories -->
 <property name="report-dir" value="${basedir}/html-report" />
 <property name="testng-report-dir" value="${report-dir}/TestNG-
report" />
 <property name="lib-dir" value="${basedir}/lib" />

Chapter 8

[159]

 <property name="bin-dir" value="${basedir}/bin-dir" />
 <property name="src-dir" value="${basedir}/src" />

 <!-- Sets the classpath including the bin directory and all the
jars underthe lib folder -->
 <path id="test.classpath">
 <pathelement location="${bin-dir}" />
 <fileset dir="${lib-dir}">
 <include name="*.jar" />
 </fileset>
 </path>

 <!-- Deletes and recreate the bin and report directory -->
 <target name="init">
 <delete dir="${bin-dir}" />
 <mkdir dir="${bin-dir}" />
 <delete dir="${report-dir}" />
 <mkdir dir="${report-dir}" />
 </target>

 <!-- Compiles the source code present under the "src-dir" and
place classfiles under bin-dir -->
 <target name="compile" depends="init">
 <javac srcdir="${src-dir}" classpathref="test.classpath"
 includeAntRuntime="No" destdir="${bin-dir}" />
 </target>

 <!-- Defines a TestNG task with name "testng" -->
 <taskdef name="testng" classname="org.testng.TestNGAntTask"
 classpathref="test.classpath" />

 <!-- Executes the testng tests configured in the testng.xml file
-->
 <target name="testng-execution" depends="compile">
 <mkdir dir="${testng-report-dir}" />
 <testng outputdir="${testng-report-dir}" classpathref="test.
 classpath" useDefaultListeners="true">
 <!-- Configures the testng xml file to use as test-suite -->
 <xmlfileset dir="${basedir}" includes="testng.xml" />
 </testng>
 </target>
</project>

Using Build Tools

[160]

The preceding XML defines an Ant build XML file. The file defines different steps in
the build process as Ant targets:

 � init: Cleans the compiled code and report directory

 � compile: Compiles the java source code and puts it under the bin directory

 � testng-execution: Uses the defined testng xml file for TestNG test
execution and generates the test report for it

6. Open command prompt and go to the respective Java project path in the system.
You can find the system path of a particular project by selecting the said project,
then right-click and go to the Properties | Resources section. Under the Resource
section you will find a property named Location which shows the project folder path.

7. Under the respective Java project folder type the command ant testng-
execution and press Enter.

8. Ant will compile and execute your TestNG tests. You will see the following screen:

What just happened?
We have successfully created an Ant script file for compiling, building, and running our
TestNG tests. Ant target gets executed in the following sequence:

 � init

 � compile

 � testng-execution

Chapter 8

[161]

You can see in the previous screenshot of Ant execution where the different targets were
executed and the Ant tasks that were executed as part of each Ant target. We can define and
execute as many Ant targets as we want depending upon our project build requirements.

Different teams have different requirements for build automation. There are a lot of
advantages and disadvantages of Ant. Certain advantages include ability to manually
define the steps that need to be executed as part of the build and easy integration with
continuous integration systems.

Different configurations to be used with TestNG task
TestNG allows different configuration options to be used along with the testng task when
using it inside the build XML file of the Ant. The following are a few configurations that can
be used along with the testng task:

 � groups: The list of the groups to run separated by comma or spaces

 � excludedgroups: The list of groups to be excluded from the test execution

 � listeners: A list of comma separated by class names that implements the
TestNG ITestListener or IReporter and needs to be added as listener

 � outputdir: The output directory for generation of the report

 � parallel: The parallel mode to use either methods, classes, or tests

 � threadCount: The number of threads that can be used for the said run

 � testname: Sets the default testname for the test

 � timeOut: The maximum time in milliseconds within which individual tests
should get executed

The above configurations can be used as attributes to the said Ant task. Following is a simple
example code which will use the groups and parallel option with the testng task while
executing the TestNG tests in Ant:

<testng outputdir="${testng-report-dir}" groups="test-group"
parallel="methods" classpathref="test.classpath"
 useDefaultListeners="true" />

Have a go hero
Having gone through the chapter, feel free to attempt the following:

 � Write an Ant file that generates the report in a different directory other than the
default test output

 � Write an Ant file to build and run tests that belong to a particular group without
using the TestNG XML configuration file

Using Build Tools

[162]

Maven
Maven is another build tool that is commonly used by the industry as a build automation
tool. Maven also uses XML for build configuration and for defining build steps. The
advantages of using maven is that it itself maintains the dependent libraries of our project
once configured. The user can configure the dependent libraries on which the respective
project code depends upon and maven will download those JARs/libs and their dependent
JARs (if any) during the build process.

Also Maven predefines some basic directory structure for project source code and test code.
These directories will by default be considered during the build process if not
explicitly configured.

Installing Maven
Installing Maven is similar to Ant. The following are the steps to install Maven:

1. Download Maven from the Apache site, http://maven.apache.org/download.
cgi.

2. Download Java JDK and set JAVA_HOME as an environment variable pointing to your
JDK installation directory.

3. Also add MAVEN_HOME pointing to the downloaded maven directory as an
environment variable.

4. Add the path to the bin directory which exists under the maven directory to your
system path (Path variable).

5. Open a terminal window and type the command mvn and press Enter. You will see a
message as shown in the following screenshot:

Chapter 8

[163]

Using Maven
Before we go ahead with using Maven we should get familiar with some of the basic features
and terminologies that we will be using in our tests:

 � Project: As in the case with Ant, in Maven this is also defined as the start of the
configuration and contains the respective dependency and configuration related
to a project.

 � Plugins: They are utilities provided as part of Maven, for achieving the different
kinds of steps involved in the build process.

 � Dependencies: They are used to configure the project dependency. The user
can configure the API, JARS, and version on which the respective project is
dependent upon.

Any detailed discussions about Maven are out of scope of this book , however, you can
find more info about it on its website http://maven.apache.org/.

Now that we have installed Maven onto the system, let's now go ahead and use Maven
to run our TestNG tests.

Time for action – using Maven to run TestNG tests
1. Create a new file named pom.xml under the project and add the following code

to it:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.test.maven</groupId>
 <artifactId>sample-maven-build</artifactId>
 <version>1</version>
 <name>sample-maven-build</name>
 <build>
 <!-- Source directory configuration -->
 <sourceDirectory>src</sourceDirectory>
 <plugins>
 <!-- Following plugin executes the testng tests -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.14.1</version>
 <configuration>

Using Build Tools

[164]

 <!-- Suite testng xml file to consider for test execution -->
 <suiteXmlFiles>
 <suiteXmlFile>testng.xml</suiteXmlFile>
 </suiteXmlFiles>
 </configuration>
 </plugin>
 <!-- Compiler plugin configures the java version to be used
 for compiling the code -->
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <!-- Dependency libraries to include for compilation -->
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>6.3.1</version>
 </dependency>
 </dependencies>
</project>

The preceding XML defines a Maven pom.xml file. The file defines different
configurations for maven to build the project. The functionality of each
section is already mentioned as inline comments in the code.

2. Open the command prompt and go to the respective Java project path
in the system.

3. Under the respective Java project folder type the command mvn test
and press Enter.

Chapter 8

[165]

4. Maven downloads the respective dependencies and will compile and execute
your TestNG tests. You will see the following output in the command prompt:

What just happened?
We have successfully created a Maven script for compiling and running the TestNG tests
through Maven. Maven has a predefined step of compiling the code before executing
the tests when we try to run our tests. The previous screenshot shows the different steps
involved in compiling and running the tests by Maven build. Maven can be used with any
of the continuous integration systems. The plugin maven-surefire-plugin is used to
configure and execute the tests. Here the said plugin is used to configure the testng.xml
for the TestNG test and generate test reports. The plugin maven-compiler-plugini used
to help in compiling the code and using the particular JDK version for compilation.

Using Build Tools

[166]

Different configurations to be used with Maven
Maven also has similar configurations to Ant that can be used. Following are few of the
configurations that can be used with the Surefire plugin when using Maven as a build tool:

 � groups: The list of the groups to run separated by commas or spaces

 � excludedgroups: The list of groups to be excluded from the test execution

 � listeners: A list of comma separated by class names that implements the TestNG
ITestListener or IReporter and needs to be added as listener

 � outputdir: The output directory for generation of the report

 � parallel: The parallel mode to use either methods, classes, or tests

 � threadCount: Number of threads that can be used for the run

 � testname: Sets the default test name for the test

 � timeOut: The maximum time in milliseconds within which the individual tests
should get executed

The above configurations can be used as XML tags for configuration while using the Surefire
plugin to the said Ant task. Following is a simple example code to use the threadCount and
parallel option with the testng task:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.14.1</version>
 <configuration>
<!-- Suite testng xml file to consider for test execution -->
 <suiteXmlFiles>
 <suiteXmlFile>testng.xml</suiteXmlFile>
 </suiteXmlFiles>
 <parallel>tests</parallel>
 <threadCount>5</threadCount>
 </configuration>
</plugin>

Have a go hero
Having gone through the chapter, feel free to attempt the following:

 � Write a Maven file that generates the report in a different directory other than the
default test output

 � Write an Maven file to build and run tests that belong to particular group without
using the TestNG XML configuration file

Chapter 8

[167]

Pop quiz – build tools
Q1. Ant has an inbuilt task to run TestNG tests. Is this statement correct?

1. Yes

2. No

Q2. Which of the following configuration options can be used with the Ant testng
task groups?

1. excludedgroups

2. outputdir

3. All of the above

4. None of the Above

Q3. Which of the following plugins are used to configure and execute TestNG tests in Maven?

1. maven-surefire-plugin

2. maven-testng-plugin

3. maven-compiler-plugin

Summary
In this chapter we learned about the build automation tools and advantages of using them.
We also learned about the Ant and Maven build tools which are the major build automation
tools used in the industry. We covered how to install and use Ant and Maven as build
automation tools for running TestNG tests.

As covered in this chapter, build automation tools have a lot of advantages and its always
good if we integrate our TestNG tools with any of the build Automation tools. This gives a
lot of flexibility to our testing framework. This also allows the tests to be easily integrated
with the development code and helps in executing our tests as part of the application build
process, and identifies any failure in the build stage itself.

In the next chapter we will cover the logging and reporting feature provided by TestNG
which helps users to add custom loggers or reporters to TestNG.

9
Logging and Reports

In the previous chapter we covered the uses of build tools which help our
TestNG tests in a lot of different ways. In this chapter we will learn about
writing extensions in TestNG for logging and generating custom reports from
them. We will also learn about different report formats available and how to
generate some nice open source reports.

In this chapter we'll cover the following topics:

 � Logging and reporting

 � Writing your own logger

 � Writing your own reporter

 � TestNG HTML and XML reports

 � Generating a JUnit HTML report

 � Generating a ReportNG report

 � Generating a Reporty-ng (former TestNG-xslt) report

Logging and reporting
Reporting is the most important part of any test execution, reason being it helps the user
to understand the result of the test execution, point of failure, and reasons for the failure.
Logging, on the other hand, is important to keep an eye on the execution flow or for
debugging in case of any failures.

Logging and Reports

[170]

TestNG by default generates a different type of report for its test execution. This includes an
HTML and an XML report output. TestNG also allows its users to write their own reporter and
use it with TestNG. There is also an option to write your own loggers, which are notified at
runtime by TestNG.

There are two main ways to generate a report with TestNG:

 � Listeners: For implementing a listener class, the class has to implement the org.
testng.ITestListener interface. These classes are notified at runtime by
TestNG when the test starts, finishes, fails, skips, or passes.

 � Reporters: For implementing a reporting class, the class has to implement an org.
testng.IReporter interface. These classes are called when the whole suite run
ends. The object containing the information of the whole test run is passed to this
class when called.

Each of them should be used depending upon the condition of how and when the reports
have to be generated. For example, if you want to generate a custom HTML report at the end
of execution then you should implement IReporter interface while writing extension. But
in case you want to update a file at runtime and have to print a message as and when the
tests are getting executed, then we should use the ITestListener interface.

Writing your own logger
We had earlier read about the different options that TestNG provides for logging and
reporting. Now let's learn how to start using them. To start with, we will write a sample
program in which we will use the ITestListener interface for logging purposes.

Time for action – writing a custom logger
1. Open Eclipse and create a Java project with the name CustomListener and with

the following structure. Please make sure that the TestNG library is added to the
build path of the project as mentioned in Chapter 1, Getting Started.

Chapter 9

[171]

2. Create a new class named SampleTest under the test.sample package and
replace the following code in it:
package test.sample;

import org.testng.Assert;
import org.testng.annotations.Test;

public class SampleTest {
 @Test
 public void testMethodOne(){
 Assert.assertTrue(true);
 }

 @Test
 public void testMethodTwo(){
 Assert.assertTrue(false);
 }

 @Test(dependsOnMethods={"testMethodTwo"})
 public void testMethodThree(){
 Assert.assertTrue(true);
 }
}

The preceding test class contains three test methods out of which testMethodOne
and testMethodThree will pass when executed, whereas testMethodTwo is
made to fail by passing a false Boolean value to the Assert.assertTrue method
which is used for truth conditions in the tests.

In the preceding class test method testMethodThree depends on
testMethodTwo.

3. Create another new class named CustomLogging under the test.logger
package and replace its code with the following code:
package test.logger;

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;

import org.testng.ITestContext;
import org.testng.ITestListener;
import org.testng.ITestResult;

Logging and Reports

[172]

public class CustomLogging implements ITestListener{

 //Called when the test-method execution starts
 @Override
 public void onTestStart(ITestResult result) {
 System.out.println("Test method started: "+ result.getName()+
" and time is: "+getCurrentTime());
 }

 //Called when the test-method execution is a success
 @Override
 public void onTestSuccess(ITestResult result) {
 System.out.println("Test method success: "+ result.getName()+
" and time is: "+getCurrentTime());

 }

 //Called when the test-method execution fails
 @Override
 public void onTestFailure(ITestResult result) {
 System.out.println("Test method failed: "+ result.getName()+ "
and time is: "+getCurrentTime());

 }

 //Called when the test-method is skipped
 @Override
 public void onTestSkipped(ITestResult result) {
 System.out.println("Test method skipped: "+ result.getName()+
" and time is: "+getCurrentTime());
 }

 //Called when the test-method fails within success percentage
 @Override
 public void onTestFailedButWithinSuccessPercentage(ITestResult
result) {
 // Leaving blank

 }

 //Called when the test in xml suite starts
 @Override
 public void onStart(ITestContext context) {
 System.out.println("Test in a suite started: "+ context.
getName()+ " and time is: "+getCurrentTime());

 }

Chapter 9

[173]

 //Called when the test in xml suite finishes
 @Override
 public void onFinish(ITestContext context) {
 System.out.println("Test in a suite finished: "+ context.
getName()+ " and time is: "+getCurrentTime());

 }

 //Returns the current time when the method is called
 public String getCurrentTime(){
 DateFormat dateFormat =
 new SimpleDateFormat("HH:mm:ss:SSS");
 Date dt = new Date();
 return dateFormat.format(dt);
 }
}

The above test class extends the ITestListener interface and defines the
overriding methods of the interface. Details of each of the methods are provided
as comments inside the previous code. Each method when executed prints the
respective test method name or the suite name and the time when it was called.
The getCurrentTime method returns the current time in HH:mm:ss:SSS format
using the Date and DateFormat class.

4. Create a new testing XML file under the project with name simple-logger-
testng.xml and copy the following contents onto it:
<suite name="Simple Logger Suite">
 <listeners>
 <listener class-name="test.logger.CustomLogging" />
 </listeners>

 <test name="Simple Logger test">
 <classes>
 <class name="test.sample.SampleTest" />
 </classes>
 </test>
</suite>

The preceding XML defines a simple test which considers the class test.sample.
SampleTest for test execution. The CustomLogging class which implements
the ITestListener is added as a listener to the test suite using the listeners
tag as shown in the preceding XML.

Logging and Reports

[174]

5. Select the previous testing XML file in Eclipse and run it as TestNG suite.
You will see the following test result in the Console window of Eclipse:

The following screenshot shows the test methods that were executed, failed,
and skipped in the test run:

What just happened?
We created a custom logger class which implements the ITestListener interface and
attached itself to the TestNG test suite as a listener. Methods of this listener class are invoked
by TestNG as and when certain conditions are met in the execution, for example, test started,
test failure, test success, and so on. Multiple listeners can be implemented and added to the
test suite execution, TestNG will invoke all the listeners that are attached to the test suite.

Logging listeners are mainly used when we need to see the continuous status of the test
execution when the tests are getting executed.

Chapter 9

[175]

Writing your own reporter
In the earlier section we had seen an example of writing your custom logger and attaching
it to TestNG. In this section we will cover, with an example, the method of writing your
custom reporter and attaching it to TestNG. To write a custom reporter class, our extension
class should implement the IReporter interface. Let's go ahead and create an example
with the custom reporter.

Time for action – writing a custom reporter
1. Open the previously created project named CustomListener and create a

package named reporter under the test package.

2. Create a new class named CustomReporter under the test.reporter package
and add the following code to it:
package test.reporter;

import java.util.List;
import java.util.Map;
import org.testng.IReporter;
import org.testng.ISuite;
import org.testng.ISuiteResult;
import org.testng.ITestContext;
import org.testng.xml.XmlSuite;

public class CustomReporter implements IReporter {

 @Override
 public void generateReport(List<XmlSuite> xmlSuites,
List<ISuite> suites,
 String outputDirectory) {
 //Iterating over each suite included in the test
 for (ISuite suite : suites) {
 //Following code gets the suite name
 String suiteName = suite.getName();
 //Getting the results for the said suite
 Map<String, ISuiteResult> suiteResults = suite.getResults();
 for (ISuiteResult sr : suiteResults.values()) {
 ITestContext tc = sr.getTestContext();
 System.out.println("Passed tests for suite '" + suiteName
+ "' is:" + tc.getPassedTests().getAllResults().size());
 System.out.println("Failed tests for suite '" + suiteName
+ "' is:" + tc.getFailedTests().getAllResults().size());
 System.out.println("Skipped tests for suite '" + suiteName
+ "' is:" + tc.getSkippedTests().getAllResults().size());
 }
 }
 }
}

Logging and Reports

[176]

The preceding class implements the org.testng.IReporter interface. It
implements the definition for the method generateReport of the IReporter
interface. The method takes three arguments , the first being xmlSuite, which is
the list suites mentioned in the testng XML being executed. The second one being
suites which contains the suite information after the test execution; this object
contains all the information about the packages, classes, test methods, and their
test execution results. The third being the outputDirectory, which contains the
information of the output folder path where the reports will be generated.

The custom report prints the total number of tests passed, failed, and skipped for each
suite included in the particular test execution when added to TestNG as a listener.

3. Create a new file named simple-reporter-testng.xml to the project and add
the following code to it:
<suite name="Simple Reporter Suite">
 <listeners>
 <listener class-name="test.reporter.CustomReporter" />
 </listeners>

 <test name="Simple Reporter test">
 <classes>
 <class name="test.sample.SampleTest" />
 </classes>
 </test>
</suite>

The preceding XML is a testng XML configuration file. It contains a single test
with the class test.sample.SampleTest to be considered for test execution.
The CustomReporter class is added as a listener to the test suite using the
listeners and listener tag as defined in the previous file.

4. Select the preceding XML file and run it as TestNG test suite in Eclipse. You will see
the following test results under the Console window of Eclipse:

Chapter 9

[177]

What just happened?
We successfully created an example of writing custom reporter and attaching it to TestNG
as a listener. The preceding example shows a simple custom reporter which prints the
number of failed, passed, and skipped tests on the console for each suite included the
said test execution. Reporter is mainly used to generate the final report for the test
execution. The extension can be used to generate XML, HTML, XLS, CSV, or text format
files depending upon the report requirement.

TestNG HTML and XML report
TestNG comes with certain predefined listeners as part of the library. These listeners are by
default added to any test execution and generate different HTML and XML reports for any
test execution. The report is generated by default under the folder named testoutput and
can be changed to any other folder by configuring it. These reports consist of certain HTML
and XML reports that are TestNG specific.

Let's create a sample project to see how the TestNG report is generated.

Time for action – generating TestNG HTML and XML reports
1. Open Eclipse and create a Java project with the name SampleReport having the

following structure. Please make sure that the TestNG library is added to the build
path of the project as mentioned in the Chapter 1, Getting Started.

2. Create a new class named SampleTest under the test package and replace the
following code in it:
package test;

import org.testng.Assert;
import org.testng.annotations.Test;

public class SampleTest {

 @Test
 public void testMethodOne(){
 Assert.assertTrue(true);
 }

Logging and Reports

[178]

 @Test
 public void testMethodTwo(){
 Assert.assertTrue(false);
 }

 @Test(dependsOnMethods={"testMethodTwo"})
 public void testMethodThree(){
 Assert.assertTrue(true);
 }
}

The preceding test class contains three test methods out of which testMethodOne
and testMethodThree will pass when executed, whereas testMethodTwo is made
to fail by passing a false Boolean value to Assert.assertTrue method.

In the preceding class test method testMethodThree depends on testMethodTwo.

3. Select the previously created test class and run it as a TestNG test through Eclipse.

4. Now refresh the Java project in Eclipse by selecting the project and pressing the
F5 button or right-clicking and selecting Refresh, and this will refresh the project.
You will see a new folder named test-output under the project.

5. Expand the folder in Eclipse and you will see the following files as shown in
the screenshot:

Chapter 9

[179]

6. Open index.html as shown in the preceding screenshot on your default
web browser. You will see the following HTML report:

7. Now open the file testing-results.xml in the default XML editor on
your system, and you will see the following results in the XML file:

Logging and Reports

[180]

What just happened?
We successfully created a test project and generated a TestNG HTML and XML report for the
test project. TestNG by default generates multiple reports as part of its test execution. These
reports mainly include TestNG HTML report, TestNG emailable report, TestNG report XML,
and JUnit report XML files. These files can be found under the output report folder (in this
case test-output). These default report generation can be disabled while running the tests
by setting the value of the property useDefaultListeners to false. This property can be
set while using the build tools like Ant or Maven as explained in the previous chapter.

Generating a JUnit HTML report
JUnit is one of those unit frameworks which were initially used by many Java applications as
a Unit test framework. By default, JUnit tests generate a simple report XML files for its test
execution. These XML files can then be used to generate any custom reports as per the testing
requirement. We can also generate HTML reports using the XML files. Ant has such a utility
task which takes these JUnit XML files as input and generates an HTML report from it. We had
earlier learnt that TestNG by default generates the JUnit XML reports for any test execution.
We can use these XML report files as input for generation of a JUnit HTML report. Assuming
we already have JUnit XML reports available from the earlier execution let's create a simple
Ant build configuration XML file to generate an HTML report for the test execution.

Time for action – generating a JUnit report
1. Go to the previously created Java project in Eclipse.

2. Create a new file named junit-report-build.xml by selecting the project.

3. Add the following code to the newly created file and save it:
<project name="Sample Report" default="junit-report" basedir=".">
 <!-- Sets the property variables to point to respective
directories -->
 <property name="junit-xml-dir" value="${basedir}/test-output/
junitreports" />
 <property name="report-dir" value="${basedir}/html-report" />

 <!-- Ant target to generate html report -->
 <target name="junit-report">
 <!-- Delete and recreate the html report directories -->
 <delete dir="${report-dir}" failonerror="false"/>
 <mkdir dir="${report-dir}" />
 <mkdir dir="${report-dir}/Junit" />
 <!-- Ant task to generate the html report.

Chapter 9

[181]

 todir - Directory to generate the output reports
 fileset - Directory to look for the junit xml reports.
 report - defines the type of format to be generated.
 Here we are using "noframes" which generates a single html
report.
 -->
 <junitreport todir="${report-dir}/Junit">
 <fileset dir="${junit-xml-dir}">
 <include name="**/*.xml" />
 </fileset>
 <report format="noframes" todir="${report-dir}/Junit" />
 </junitreport>
 </target>
</project>

The preceding XML defines a simple Ant build.xml file having a specific Ant
target named junit-report that generates a JUnit report when executed.
The target looks for the JUnit report XML files under the directory test-output/
junitreports. For the Ant configuration file the default target to execute is
configured as junit-report.

4. Open the terminal window and go to the Java project directory in the terminal.

5. Run the command ant –buildfile junit-report-build.xml and press Enter.

6. Once executed a JUnit HTML report will be generated in the configured directory /
html-report/Junit.

Logging and Reports

[182]

7. Open the file named junit-noframes.html on your default web browser.
You will see the following HTML report:

What just happened?
In this section we have seen how to use the JUnit XML report generated by TestNG and
generate HTML report using Ant. There are two kinds of reports that can be generated
using this method: frames and no-frames. If the report generation is configured with
frames there will multiple files generated for each class and the main report will connect
to them through links. A no-frames report consists of a single file with all the results of
the test execution. This can be configured by providing the respective value to the format
attribute of the report task in Ant.

Generating a ReportNG report
We had earlier seen that TestNG provides options to add custom listeners for logging and
reporting. These listeners can easily be added to the TestNG execution and will be called
during the execution or at the end of the execution depending upon the type of listener.
ReportNG is a reporter add-on for TestNG that implements the report listener of TestNG.
ReportNG reports are better looking reports compared to the original HTML reports. To
generate a ReportNG report we have to add the reporting class to the list of listeners of
TestNG while executing the tests. Let's see how to add ReportNG listener to TestNG and
generate a ReportNG HTML report. In the following example we will use the same Ant
build XML file used in Chapter 8, Using Build Tools, to run our tests.

Chapter 9

[183]

Time for action – generating a ReportNG report
1. Go to the earlier created Java project SampleProject in Eclipse.

2. Download ReportNG from http://reportng.uncommons.org/ download site.

3. Unzip and copy the reportng-<version>.jar and velocity-dep-
<version>.jar from the unzipped folder to the lib folder under the project.

4. Download guice from guice site https://code.google.com/p/google-
guice/downloads/list.

5. Unzip the downloaded guice zip file and copy the guice-<version>.jar to
the lib folder under the project.

6. Create a new file named testng.xml under the folder and add the following
content to it:
<suite name="Sample Suite">
 <test name="Sample test">
 <classes>
 <class name="test.SampleTest" />
 </classes>
 </test>
</suite>

7. Create a new file named reportng-build.xml by selecting the project.

8. Add the following code to the newly created file and save it:
<project name="Testng Ant build" basedir=".">
 <!-- Sets the property varaibles to point to respective
directories -->
 <property name="report-dir" value="${basedir}/html-report" />
 <property name="testng-report-dir" value="${report-dir}/TestNG-
report" />
 <property name="lib-dir" value="${basedir}/lib" />
 <property name="bin-dir" value="${basedir}/bin-dir" />
 <property name="src-dir" value="${basedir}/src" />

 <!-- Sets the classpath including the bin directory and all the
 jars under the lib folder -->
 <path id="test.classpath">
 <pathelement location="${bin-dir}" />
 <fileset dir="${lib-dir}">
 <include name="*.jar" />
 </fileset>
 </path>

Logging and Reports

[184]

 <!-- Deletes and recreate the bin and report directory -->
 <target name="init">
 <delete dir="${bin-dir}" />
 <mkdir dir="${bin-dir}" />
 <delete dir="${report-dir}" />
 <mkdir dir="${report-dir}" />
 </target>

 <!-- Compiles the source code present under the "srcdir" and
place class files under bin-dir -->
 <target name="compile" depends="init">
 <javac srcdir="${src-dir}" classpathref="test.classpath"
 includeAntRuntime="No" destdir="${bin-dir}" />
 </target>

 <!-- Defines a TestNG task with name "testng" -->
 <taskdef name="testng" classname="org.testng.TestNGAntTask"
 classpathref="test.classpath" />

 <!--Executes the testng tests configured in the testng.xml file
 -->
 <target name="testng-execution" depends="compile">
 <mkdir dir="${testng-report-dir}" />
 <testng outputdir="${testng-report-dir}" classpathref="test.
 classpath" useDefaultListeners="false" listeners="org.
 uncommons.reportng.HTMLReporter">
 <!-- Configures the testng xml file to use as test-suite -->
 <xmlfileset dir="${basedir}" includes="testng.xml" />
 <sysproperty key="org.uncommons.reportng.title"
value="ReportNG Report" />
 </testng>
 </target>
</project>

The preceding XML defines a simple Ant build XML file that generates a ReportNG
report when executed. The above XML is based on the build.xml file that
we covered in Chapter 8, Using Build Tools, under the Using Ant section. The
said XML compiles and runs the TestNG tests. ReportNG is added as a listener
and the default listener of TestNG is disabled by setting a false value to the
useDefaultListeners attribute while using the testng Ant task.

9. Open the terminal window and go to the Java project directory in the terminal.

Chapter 9

[185]

10. Run the command ant -buildfile reportng-build.xml testing execution
and then press Enter.

11. Once executed a ReportNG HTML report will be generated in the configured
directory \html-report\TestNG-report\html under the said project
directory.

12. Go to the said directory and open the index.html file on your default web
browser. You will see the following HTML report:

13. By clicking on the Sample test link, you will see details of the test report as shown
in the following screenshot:

Logging and Reports

[186]

What just happened?
In the previous section we learned how to generate a ReportNG HTML report for our
test execution. We disabled the default TestNG reports in the previous Ant XML file but,
if required, we can generate both the default as well as ReportNG reports by enabling the
default report listeners. In the previous example the title of the report is configured by setting
the property org.uncommons.reportng.title. There are other configuration options
that we can use while generating the report, and we will cover these in the next section.

ReportNG configuration options
ReportNG provides different configuration options based on which the respective HTML
report is generated. Following is a list of configurations that are supported:

 � org.uncommons.reportng.coverage-report: This is configured as the link to
the test coverage report.

 � org.uncommons.reportng.escape-output: This property is used to turn off
the log output in reports. By default it's turned off and is not recommended to
be switched on as enabling this may require certain hacks to be implemented for
proper report generation.

 � org.uncommons.reportng.frames: This property is used to generate an HTML
report with frameset and without frameset. The default value is set to true
and hence it generates HTML reports with frameset by default.

 � org.uncommons.reportng.locale: Used to override the localized messages in
the generated HTML report.

 � org.uncommons.reportng.stylesheet: This property can be used to customize
the CSS property of the generated HTML report.

 � org.uncommons.reportng.title: Used to define a report title for the generated
HTML report.

Have a go hero
Write an Ant file to configure ReportNG to generate an HTML report without any frames
for the TestNG execution.

Chapter 9

[187]

Generating a Reporty-ng (former TestNG-xslt) report
While looking at the test report, senior managers might like to see the report in a graphical
representation to know the status of the execution with just a glance. Reporty-ng (formerly
called TestNG-xslt) is one such add-on report that generates a pie chart for your test execution
with all the passed, failed, and skipped tests. This plugin uses the XSL file to convert the TestNG
XML report into the custom HTML report with a pie chart. To use this plugin we will write an
Ant target which will use the TestNG results XML file to generate the report.

Let's go ahead and write an Ant target to generate the report.

Time for action – generating a Reporty-ng report
1. Open the previously created SampleReport in Eclipse.

2. Download the Reporty-ng from the URL: https://github.com/cosminaru/
reporty-ng

At the time of writing this book the latest version available was Reporty-ng
1.2. You can download a newer version if available. Changes in the installation
process should be minor if there are any at all.

3. Unzip the downloaded zip and copy a file named testng-results.xsl from src\
main\resources onto the resources folder under the said project.

4. Copy the JARs saxon-8.7.jar and SaxonLiason.jar from the unzipped
Reporty-ng lib folder to the project lib folder.

5. Create a new Ant XML configuration file named reporty-ng-report.xml
and paste the following code onto it:
<project name="Reporty-ng Report" default="reporty-ng-report"
basedir=".">
<!-- Sets the property variables to point to respective
directories -->
<property name="xslt-report-dir" value="${basedir}/reporty-ng/" />
 <property name="report-dir" value="${basedir}/html-report" />
 <property name="lib-dir" value="${basedir}/lib" />

 <path id="test.classpath">
 <fileset dir="${lib-dir}">
 <include name="**/*.jar" />
 </fileset>
 </path>

Logging and Reports

[188]

 <target name="reporty-ng-report">
 <delete dir="${xslt-report-dir}" />
 <mkdir dir="${xslt-report-dir}" />
 <xslt in="${basedir}/test-output/testng-results.xml"
style="${basedir}/resources/testng-results.xsl" out="${xslt-
report-dir}/index.html">
 <param name="testNgXslt.outputDir" expression="${xslt-report-
 dir}" />
 <param name="testNgXslt.sortTestCaseLinks" expression="true" />
 <param name="testNgXslt.testDetailsFilter" expression="FAIL,
 SKIP,PASS,CONF,BY_CLASS" />
 <param name="testNgXslt.showRuntimeTotals" expression="true" />
 <classpath refid="test.classpath" />
 </xslt>
 </target>
</project>

The preceding XML defines Ant build XML configuration, it contains an Ant target
which generates the Reporty-ng report. The input path for testng results XML is
configured through the in attribute of the xslt task in Ant. The transformation
from XML to HTML is done using the testng-results.xsl of Reporty-ng, the
location of which is configured by using the style attribute of the xslt task.
The output HTML name is configured using the out attribute.

Different configuration parameters for Reporty-ng are configured using the param
task of Ant as shown in the preceding code.

6. Now go to the said project folder through the command terminal and type the
command ant –buildfile reporty-ng-build.xml and press Enter.

7. You will see the following console output on the terminal:

8. Now go to the configured report output folder reporty-ng (in this case) and open
the file index.html in your default browser. You will see the following test report:

Chapter 9

[189]

9. On clicking the Default suite link on the left-hand side, a detailed report of the
executed test cases will be displayed as shown in the following screenshot:

What just happened?
In the previous example we learned how to generate a Reporty-ng report using Ant.
The report is very good from a report point of view as it gives a clear picture of the
test execution through the pie chart. The output report can be configured using
different configurations, which we will cover in the next section.

Logging and Reports

[190]

Configuration options for Reporty-ng report
As said earlier there are different configuration options that the Reporty-ng report supports
while generating the report. Following is the list of supported configuration options and how
they affect the report generation:

 � testNgXslt.outputDir: Sets the target output directory for the HTML content.
This is mandatory and must be an absolute path. If you are using the Maven plugin,
this is set automatically so you don't have to provide it.

 � testNgXslt.cssFile: Specifies an alternative style sheet file overriding the
default settings. This parameter is not required.

 � testNgXslt.showRuntimeTotals: Boolean flag indicating if the report should
display the aggregated information about the method durations. The information
is displayed for each test case and aggregated for the whole suite. Non-mandatory
parameter, defaults to false.

 � testNgXslt.reportTitle: Use this setting to specify a title for your HTML
reports. This is not a mandatory parameter and defaults to TestNG Results.

 � testNgXslt.sortTestCaseLinks: Indicates whether the test case links
(buttons) in the left frame should be sorted alphabetically. By default they are
rendered in the order they are generated by TestNG so you should set this to
true to change this behavior.

 � testNgXslt.chartScaleFactor: A scale factor for the SVG pie chart in
case you want it larger or smaller. Defaults to 1.

 � testNgXslt.testDetailsFilter: Specifies the default settings for the
checkbox filters at the top of the test details page. Can be any combination
(comma-separated) of: FAIL,PASS,SKIP,CONF,BY_CLASS.

Have a go hero
Write an Ant target in Ant to generate a Reporty-ng report with only Fail and Pass filter options.

Chapter 9

[191]

Pop quiz – logging and reports
Q1. Which interface should the custom class implement for tracking the execution status as
and when the test is executed?

1. org.testng.ITestListener

2. org.testng.IReporter

Q2. Can we disable the default reports generated by the TestNG?

1. Yes

2. No

Summary
In this chapter we have covered different sections related to logging and reporting with
TestNG. We have learned about different logging and reporting options provided by TestNG,
writing our custom loggers and reporters and methods to generate different reports for
our TestNG execution. Each of the reports have certain characteristics and any or all of the
reports can be generated and used for test execution depending upon the requirement.

Till now we have been using the XML configuration methodology of defining and writing our
TestNG test suites. In the next chapter we will learn how to define/configure the TestNG test
suite through code. This is helpful for defining the test suite at runtime.

10
Creating a Test Suite through Code

In the previous chapter we covered the logging and reporting provided by
TestNG and different ways to extend the feature to write custom reporter
and loggers. In this chapter we will cover how to configure and run test suite
through code. This feature helps in configuring and running tests at runtime.

In this chapter we'll cover the following topics:

 � How to run TestNG programmatically

 � Creating a TestNG suite and running it

 � Parameterization of tests

 � Including and excluding tests

 � Defining a dependency

Running TestNG programmatically
In the earlier chapters we used the testng XML configuration files to configure and define
TestNG test suites. The problem with the use of XML is that they are static files and may not
be changed at runtime. Sometimes we may need to create a test suite at runtime, which
is based on an Excel sheet or database data. For such problems TestNG provides a feature
to define and run TestNG tests at runtime through code by using certain APIs provided by
TestNG. All the configurations that are allowed through XML can be achieved by using the
API provided by TestNG. Let's learn more about the API by creating a simple TestNG suite
and running it programmatically.

Creating a Test Suite through Code

[194]

Time for action – running TestNG programmatically
Perform the following steps to run TestNG programmatically:

1. Create a new Java project named TestngCodeProject with the following
structure as shown in the following screenshot:

2. Create a new class named SampleTest under the test.sample package and add
the following code to it:
package test.sample;

import org.testng.annotations.Test;

public class SampleTest {
 @Test
 public void testMethodOne(){
 System.out.println("Test method One");
 }

 @Test
 public void testMethodTwo(){
 System.out.println("Test method two");
 }

}

The previous code contains a simple test class with two test methods.
These test methods print a message onto the console when executed.

3. Create another new class named SimpleTestngCode under the test.code
package and add the following code to it:
package test.code;

import java.util.ArrayList;
import java.util.List;

Chapter 10

[195]

import org.testng.TestNG;
import org.testng.xml.XmlClass;
import org.testng.xml.XmlSuite;
import org.testng.xml.XmlTest;

public class SimpleTestngCode {

 public void simpleTestNGTest(){
 //List of xml suites to be considered for test execution
 List<XmlSuite> suites = new ArrayList<XmlSuite>();
 //List of classes to be considered for test execution
 List<XmlClass> classes = new ArrayList<XmlClass>();

 //Defines a simple xml suite with a name
 XmlSuite suite = new XmlSuite();
 suite.setName("Simple Config suite");

 //Defines a xml test for a suite and with a said name
 XmlTest test = new XmlTest(suite);
 test.setName("Simple config test");

 //A single xml class to be considered for execution
 XmlClass clz = new XmlClass("test.sample.SampleTest");
 classes.add(clz);
 //Sets the list of classes to be considered for execution
 for a test
 test.setXmlClasses(classes);

 //Adds a single suite to the list suites
 suites.add(suite);

 //Defining a testng instance
 TestNG tng = new TestNG();
 //Sets the List of xml suites to be considered for execution
 tng.setXmlSuites(suites);
 //Runs the configured testng tests.
 tng.run();
 }

 public static void main(String[] args){
 SimpleTestngCode smpCd= new SimpleTestngCode();
 smpCd.simpleTestNGTest();
 }
}

Creating a Test Suite through Code

[196]

The preceding class contains a method simpleTestNGTest, which contains
the code to define a TestNG test using the API provided by TestNG. A test suite
is configured using different classes such as XmlSuite, XmlTest, and XmlClass
to define respective suites, tests, and classes to be included for test execution.

Once the entire configuration has been defined, an instance of TestNG class is
created and the list of suites to be run is set to the said instance. Once the list of
suites is set, tests are run using the run method provided by the TestNG class.

A static void main method is used to create the instance of the said class and to
invoke the configuration method.

4. Now select the class and run it as a Java application. You will see the following
results in your Console window of Eclipse:

What just happened?
We have successfully created a simple test example where we have defined a simple test
configuration to run a specific test class. An instance of XmlSuite is defined to configure
a suite of the testng XML. An instance of XmlTest is created to define a test inside a
suite. The class to be included for test execution is defined by creating an instance of
XmlClass and setting the class name to the instance. Once the entire configuration has
been defined and configured, an instance of TestNG class is created and is then used to run
the configuration. The entire configuration that is allowed through XML can also be achieved
through code by using the APIs provided by TestNG. Following is a list of classes that TestNG
provides for defining an XML configuration through code.

The list of API classes and their uses are shown in the following table:

Class name Uses
XmlSuite Defines a simple XML suite tag of the testng XML
XmlTest Describes a test tag of the testng XML
XmlPackage Describes a package tag in the testng XML
XmlClass Describes a class tag in the testng XML

Chapter 10

[197]

Class name Uses
XmlGroups Describes the groups tag of the testng XML
XmlInclude Describes an include tag of the testng XML
XmlDefine Describes a define tag of the testng XML, which is used

for defining a group of groups
XmlDependencies Describes a dependencies tag of the testng XML, which

is used for defining group dependencies

Have a go hero
Create a sample test configuration, which contains multiple test suites in it.

Parameterization of tests
Earlier we saw a simple test configuration to run a simple test class. In this section
we will learn about the Parameterization feature of TestNG. We have already covered
Parameterization in our earlier chapters where tests are parameterized and the values to
the parameters are passed through the testng XML configuration file. In this section we
will see similar tests but we will learn about how to pass these parameter values to the tests
through code. Let's write a sample program, which shows how to pass the parameter values
to test through code.

Time for action – passing parameter values
Perform the following steps to pass parameter values:

1. Open the previously created Java project.

2. Create a new class named ParametrizedTest under the test.sample package
and add the following code to it:
package test.sample;

import org.testng.annotations.Parameters;
import org.testng.annotations.Test;

public class ParametrizedTest {
 @Parameters({"suite-param-one","test-param-one"})
 @Test
 public void paramTestOne(String suiteParam,String testParam){
 System.out.println("Test One.");
 System.out.println("Suite param is: "+suiteParam);

Creating a Test Suite through Code

[198]

 System.out.println("Test param is: "+testParam);
 }

 @Parameters({"suite-param-two","test-param-two"})
 @Test
 public void paramTestTwo(String suiteParam,String testParam){
 System.out.println("Test Two.");
 System.out.println("Suite param is: "+suiteParam);
 System.out.println("Test param is: "+testParam);
 }

}

The preceding code contains a simple test class with two test methods. These
test methods print a message onto the console when executed. Both the tests
accept two arguments and the values of these arguments are passed as parameters
through TestNG. Out of the two parameters that are passed, one is defined at the
suite level and the other at test level.

3. Create another new class named ParameterizedCode under the test.code
package and add the following code to it:
package test.code;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.testng.TestNG;
import org.testng.xml.XmlClass;
import org.testng.xml.XmlSuite;
import org.testng.xml.XmlTest;

public class ParameterizedCode {

 public void parameterizedTest(){
 List<XmlSuite> suites = new ArrayList<XmlSuite>();
 List<XmlClass> classes = new ArrayList<XmlClass>();
 Map<String,String> suiteParams = new HashMap<String,String>();
 Map<String,String> testParams = new HashMap<String,String>();

 XmlSuite suite = new XmlSuite();
 suite.setName("Parameterized suite");

Chapter 10

[199]

 //Defining suite level params and their values
 suiteParams.put("suite-param-one", "Suite Param One");
 suiteParams.put("suite-param-two", "Suite Param Two");
 //Setting the params to the suite
 suite.setParameters(suiteParams);

 XmlTest test = new XmlTest(suite);
 test.setName("Parameterized test");

 //Defining test level params and their values
 testParams.put("test-param-one", "Test Param One");
 testParams.put("test-param-two", "Test Param Two");
 //Setting the test level params
 test.setParameters(testParams);

 XmlClass clz = new XmlClass("test.sample.ParametrizedTest");
 classes.add(clz);
 test.setXmlClasses(classes);

 suites.add(suite);

 TestNG tng = new TestNG();
 tng.setXmlSuites(suites);
 tng.run();
 }

 public static void main(String[] args){
 ParameterizedCode paramTst= new ParameterizedCode();
 paramTst.parameterizedTest();
 }
}

The preceding class contains a method parameterizedTest, which contains the
code to define a TestNG test using API provided by TestNG. The parameters and their
respective values are added to a Map instance of the key-value pair of type string
and then added to the instance of the XmlSuite and XmlTest class as shown
in the previous code. Once all the configuration has been defined, an instance of
TestNG class is created and the list of suites to be run is set to the instance. Once the
list of suites is set, tests are run using the run method provided by the TestNG class.

A static void main method is used to create the instance of the class and to invoke
the configuration method.

Creating a Test Suite through Code

[200]

4. Now select the class and run it as a Java application. You will see the following
results in your Console window of Eclipse:

What just happened?
We have successfully created an example for passing parameters through the XML
configuration defined through code. The preceding example shows parameters defined
both at suite as well as test level. Similar to XML configuration, here also the scope of the
test parameter will be limited to a specific test and not outside it, whereas suite parameter
can be accessed across multiple tests of that specific suite. Any number of parameters can
be used in a suite or test by adding them to the respective Map instance and there is no limit
to the number of parameters that can be passed.

Include and exclude
Include and exclude is one of the most important features of TestNG, which allows tests
to be configured to include or exclude certain classes, packages, methods, and groups.
We covered this topic in earlier chapters when we were talking about the testng XML
configuration. In this section we will cover few similar things, but this time instead of
 using a testng XML configuration file, we will define the configuration through code.
We will cover a few examples to include and exclude methods and groups in a test.

Include/exclude methods
Include/exclude methods allow certain methods from a class to be included or excluded
from a test run. Let's write a sample program to learn how to configure a test through
code to include certain test methods from a class and exclude others.

Chapter 10

[201]

Time for action – including test methods
Perform the following steps to include test methods:

1. Open the previously created Java project.

2. Create a new class named IncludeExcludeMethodTest under the test.sample
package and add the following code to it:
package test.sample;

import org.testng.annotations.Test;

public class IncludeExcludeMethodTest {

 @Test
 public void testMethodOne(){
 System.out.println("Test method one.");
 }

 @Test
 public void testMethodTwo(){
 System.out.println("Test method two");
 }

 @Test
 public void testMethodThree(){
 System.out.println("Test method three");
 }

}

The preceding code contains a simple test class with three test methods.
These test methods print a message onto the console when executed.

3. Create another new class named IncludeExcludeMethodCode under the test.
code package and add the following code to it:
package test.code;

import java.util.ArrayList;
import java.util.List;

Creating a Test Suite through Code

[202]

import org.testng.TestNG;
import org.testng.xml.XmlClass;
import org.testng.xml.XmlInclude;
import org.testng.xml.XmlSuite;
import org.testng.xml.XmlTest;

public class IncludeExcludeMethodCode {

 public void includeExcludeTest(){
 List<XmlSuite> suites = new ArrayList<XmlSuite>();
 List<XmlClass> classes = new ArrayList<XmlClass>();

 XmlSuite suite = new XmlSuite();
 suite.setName("Include Exclude Method suite");

 XmlTest test = new XmlTest(suite);
 test.setName("Include Exclude Method test");
 //Test class to be included for test execution
 XmlClass clz = new XmlClass("test.sample.
IncludeExcludeMethodTest");

 //Test methods to be included
 XmlInclude methodOne= new XmlInclude("testMethodOne");
 XmlInclude methodTwo= new XmlInclude("testMethodTwo");

 //Creating a list of included methods and adding the methods
instances to it
 List<XmlInclude> includes = new ArrayList<XmlInclude>();
 includes.add(methodOne);
 includes.add(methodTwo);

 //Setting the included methods for the class
 clz.setIncludedMethods(includes);

 classes.add(clz);
 test.setXmlClasses(classes);

 suites.add(suite);

 TestNG tng = new TestNG();
 tng.setXmlSuites(suites);
 tng.run();

Chapter 10

[203]

 }

 public static void main(String[] args){
 IncludeExcludeMethodCode testConfig= new
IncludeExcludeMethodCode();
 testConfig.includeExcludeTest();
 }
}

The preceding class contains a method includeExcludeTest, which contains
the code to define a TestNG test. An instance of XmlSuite is created to define a
testng test suite. The included class for test execution is configured by creating an
instance of XmlClass and setting the class name to be included to it. An instance
of XmlInclude is created with the name of the methods to be included for test
execution. These test methods are then added to a list and the list is then added
to the class for configuring the included methods.

A static void main method is used to create the instance of the class and to invoke
the configuration method.

4. Now select the class and run it as a Java application. You will see the following
results in your Console window of Eclipse:

What just happened?
We have successfully created a testng configuration for including certain test methods to
test execution through code. As you can see, the previous code only has configuration for
including methods and not for excluding methods. For excluding methods, TestNG does not
provide an explicit API class such as XmlInclude. For excluding methods, the respective
method names have to be added to a list and then added to the set of excluded methods
of the respective class using the method setExcludedMethods.

Creating a Test Suite through Code

[204]

Have a go hero
Having gone through this section, feel free to attempt the following:

 � Create a sample test configuration, which excludes certain methods from the test
class in a test execution

 � Create a sample test configuration to include and exclude test methods using
regular expressions

Include/exclude groups
In the previous section we wrote a sample program to include methods to test execution.
In this section we will see how to include and exclude groups in test execution. We will write
a program to define a TestNG configuration for test execution for including and excluding
certain groups from the test execution.

Time for action – including/excluding groups
Perform the following steps to include/exclude groups:

1. Open the previously created Java Project.

2. Create a new class named IncludeExcludeGroupTest under the test.sample
package and add the following code to it:
package test.sample;

import org.testng.annotations.Test;

public class IncludeExcludeGroupTest {
 @Test(groups={"group-one"})
 public void testMethodOne(){
 System.out.println("Test method one of group-one");
 }

 @Test(groups={"group-one","group-two"})
 public void testMethodTwo(){
 System.out.println("Test method two of group-one and group-
two");
 }

 @Test(groups={"group-one"})
 public void testMethodThree(){

Chapter 10

[205]

 System.out.println("Test method three of group-one");
 }

}

The preceding code contains a simple test class with three test methods. These
test methods print a message onto the console when executed. All three of the
test methods belong to the group group-one and one method testMethodTwo
belongs to group-two too.

3. Create another new class named IncludeExcludeGroupCode under the test.
code package and add the following code to it:
package test.code;

import java.util.ArrayList;
import java.util.List;

import org.testng.TestNG;
import org.testng.xml.XmlClass;
import org.testng.xml.XmlSuite;
import org.testng.xml.XmlTest;

public class IncludeExcludeGroupCode {

 public void includeExcludeTest(){
 List<XmlSuite> suites = new ArrayList<XmlSuite>();
 List<XmlClass> classes = new ArrayList<XmlClass>();

 XmlSuite suite = new XmlSuite();
 suite.setName("Include Exclude Group suite");

 XmlTest test = new XmlTest(suite);
 test.setName("Include Exclude Group test");
 XmlClass clz = new XmlClass("test.sample.
IncludeExcludeGroupTest");
 classes.add(clz);
 test.setXmlClasses(classes);

 //Including and excluding groups
 test.addIncludedGroup("group-one");
 test.addExcludedGroup("group-two");

 suites.add(suite);

Creating a Test Suite through Code

[206]

 TestNG tng = new TestNG();
 tng.setXmlSuites(suites);
 tng.run();
 }

 public static void main(String[] args){
 IncludeExcludeGroupCode testConfig= new
IncludeExcludeGroupCode();
 testConfig.includeExcludeTest();
 }
}

The preceding class contains a method, includeExcludeTest, which contains
the code to define a TestNG test. An instance of XmlSuite is created to define a
testng test suite. The included class for test execution is configured by creating
an instance of XmlClass and setting the class name to be included to it. The test
groups are included and excluded from a test using the addIncludedGroups and
addExcludedGroups methods of the XmlTest class as shown in the previous code.

A static void main method is used to create the instance of the configuration class
and to invoke the configuration method.

4. Now select the class and run it as a Java application. You will see the following
results in your Console window of Eclipse:

What just happened?
We have successfully created a testng configuration for including and excluding certain
groups from test execution through code. The previous code shows how to configure the test
to include and exclude groups at runtime. The name of every group to be included or excluded
for test execution has to be added using the addIncludedGroups and addExcludedGroups
methods provided by the instance of the XmlTest class. When tests are run, TestNG
automatically includes and excludes configured groups from the test execution.

Chapter 10

[207]

Have a go hero
Now it's time for you to test your understanding of what you have learned by creating a
sample test configuration, which includes a package to the test.

Dependency test
Dependency test is another feature of TestNG where group dependency can be defined using
the testng XML configuration. You can also achieve the same configuration using the API
provided by TestNG. In this section we will write a sample program, which contains multiple
test methods that belong to different groups. Through code we will define dependency of a
group onto another group and will run the tests using this configuration.

Time for action – configuring a dependency test
Perform the following steps to configure a dependency test:

1. Open the previously created Java project.

2. Create a new class named DependencyTest under the test.sample package and
add the following code to it:
package test.sample;

import org.testng.annotations.Test;

public class DependencyTest {
 @Test(groups={"group-one"})
 public void testMethodOne(){
 System.out.println("Test method one of group-one");
 }

 @Test(groups={"group-one"})
 public void testMethodTwo(){
 System.out.println("Test method two of group-one");
 }

 @Test(groups={"group-one"})
 public void testMethodThree(){
 System.out.println("Test method three of group-one");
 }

 @Test(groups={"group-two"})
 public void testMethodFour(){

Creating a Test Suite through Code

[208]

 System.out.println("Test method Four of group-two");
 }

 @Test(groups={"group-two"})
 public void testMethodFive(){
 System.out.println("Test method Five of group-two");
 }

}

The preceding code contains a simple test class with five test methods. These test
methods print a message onto the console when executed. Out of the five test
methods three belong to group-one and the other two belong to group-two.

3. Create another new class named DependencyCode under the test.code
package and add the following code to it:
package test.code;

import java.util.ArrayList;
import java.util.List;

import org.testng.TestNG;
import org.testng.xml.XmlClass;
import org.testng.xml.XmlSuite;
import org.testng.xml.XmlTest;

public class DependencyCode {

 public void dependencyTest(){
 List<XmlSuite> suites = new ArrayList<XmlSuite>();
 List<XmlClass> classes = new ArrayList<XmlClass>();

 XmlSuite suite = new XmlSuite();
 suite.setName("Dependency suite");

 XmlTest test = new XmlTest(suite);
 test.setName("Dependency test");
 XmlClass clz = new XmlClass("test.sample.DependencyTest");
 classes.add(clz);
 test.setXmlClasses(classes);

 //Defining an xml dependency where "group-one" depends on
"group-two"

Chapter 10

[209]

 test.addXmlDependencyGroup("group-one", "group-two");

 suites.add(suite);

 TestNG tng = new TestNG();
 tng.setXmlSuites(suites);
 tng.run();
 }

 public static void main(String[] args){
 DependencyCode testConfig= new DependencyCode();
 testConfig.dependencyTest();
 }
}

The preceding class contains a method dependencyTest, which contains the
code to define a TestNG. An instance of XmlSuite is defined to define a testng
test suite. The included class for test execution is configured by creating an
instance of XmlClass and setting the class name to be included to it. An XML
dependency of group-one depending upon group-two is defined by calling the
addXmlDependencyGroup method on the instance of XmlTest.

A static void main method is used to create the instance of the configuration class
and to invoke the configuration method.

4. Now select the class and run it as a Java application. You will see the following
results in your Console window of Eclipse:

Creating a Test Suite through Code

[210]

What just happened?
We have successfully created a testng configuration for defining an XML dependency
through code. A dependency of group-one on group-two is defined. This can be verified
by looking at the console output. The previous example shows a configuration of a single
group dependency only, but in case we have to define a multigroup dependency, we can
do so by passing the dependent group names in a string separated by a space, for example,
group-two group-three group-four.

Pop quiz – creating a test suite through code
Q1. Which of the following classes is not provided as part of the TestNG API?

1. XmlSuites

2. XmlTest

3. XmlClass

Q2. Can we define multiple test suites for a specific test run through code?

1. Yes

2. No

Q3. Which of the following classes can be used to include and exclude a package?

1. XmlPackage

2. XmlPackages

3. XmlClasses

4. XmlClass

Summary
In this chapter we have covered the feature of configuring or defining tests and test
suites in TestNG. We have covered different options of including classes and methods
groups. Also we have written a sample program to pass different parameters to the test
at suite or test level. We have also seen how to define a group dependency through code
and run it. This feature is very useful when the tests have to be configured or defined at
runtime based on some external data.

In the next chapter we will cover how to run your existing JUnit tests through TestNG
and how to migrate your existing JUnit tests to TestNG.

11
Migrating from JUnit

In the previous chapter we learned how to configure and execute TestNG tests
through code. We had learned about different ways to configure and run the
TestNG tests at runtime. In this chapter we will cover how to run the existing
JUnit tests through TestNG and how to migrate your existing JUnit
tests to TestNG.

In this chapter we'll cover the following topics:

 � Running your JUnit Tests through TestNG

 � Running JUnit tests along with TestNG through Ant

 � Migrating from JUnit to TestNG

Running your JUnit tests through TestNG
Many of the old test frameworks use JUnit as the testing and execution framework but,
with the advantages that TestNG provides over JUnit forces the teams to think about
moving to TestNG. This can be a tedious task and may take a huge effort depending upon
the number of existing JUnit test cases. In case you want to move to using TestNG and are
still thinking how to run your existing JUnit tests, you can very well achieve it thorough
TestNG. TestNG provides an in-built utility to run your existing JUnit-3 or JUnit-4 tests.

Let's first write a sample JUnit test and run it. After this we will see how to run the said
test through TestNG.

Migrating from JUnit

[212]

Time for action – writing a JUnit test
1. Create a Java project named JunitProject with the following structure:

2. Download the latest JUnit JAR from the following URL:
http://sourceforge.net/projects/junit/.

3. Paste the following JAR to the lib folder as shown in the structure in
the preceding image.

4. Select the said JAR in Eclipse and do right-click and navigate to Build Path | Add to
Build Path.

5. Now create a new class file named JunitSampleTest under the package test.
sample.junit and add the following code to it:
package test.sample.junit;

import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;

public class JunitSampleTest {
 @BeforeClass
 public static void beforeClassMethod(){
 System.out.println("Junit before class method");
 }

 @Before
 public void beforeMethod(){
 System.out.println("Junit before method");
 }

Chapter 11

[213]

 @Test
 public void testMethod(){
 System.out.println("Junit test method");
 }

 @After
 public void afterMethod(){
 System.out.println("Junit after method");
 }

 @AfterClass
 public static void afterClassMethod(){
 System.out.println("Junit after class method");
 }

}

The preceding class contains five methods out of which two are BeforeClass and
AfterClass annotated methods, two are Before and After annotated method,
and one is a test method. The preceding class is a simple JUnit test class and each
of the methods present in it outputs a console message when executed.

6. Select the said class file and do a right-click, and navigate to Run As | JUnit Test.
This will run the said class file as a simple JUnit Test. You can see the following
result on the Eclipse console:

What just happened?
In the preceding example we have created a sample JUnit test class which contains a single
test method in it. The said JUnit test class is executed through Eclipse to see how it executes
the methods which are contained in it. This test class will act as a sample test for us in the
coming sections and we will migrate the said test class to a TestNG test class going forward.

Migrating from JUnit

[214]

Running your JUnit Tests through TestNG using the testng XML
TestNG can be configured to run JUnit tests using the testng XML configuration file.
The said configuration can be done at both suite and test tag level in a testng XML
configuration file. Let's write a simple testng XML configuration for running the JUnit
class written previously through TestNG.

Time for action – running JUnit tests through TestNG
1. Open the previously created Java project in Eclipse.

2. Create a new file named simple-junit-test.xml and paste the following code
to it:
<suite name="Simple JUnit Suite">
 <test junit="true" name="Simple JUnit test">
 <classes>
 <class name="test.sample.junit.JunitSampleTest" />
 </classes>
 </test>
</suite>

The prreceding suite contains a simple test in it. The test includes the
JunitSampleTest class for the test execution. TestNG is configured to execute
the JUnit tests in the said class by setting the value of the attribute junit to true.

3. Select the previously created XML configuration file and run it as a TestNG test suite.
You will see the following test result on the Eclipse Console window:

Chapter 11

[215]

What just happened
We created a sample testng XML configuration file to run JUnit tests through TestNG.
Attribute junit is used along with the test tag to configure TestNG. This attribute
can also be used along with the suite tag. We can run both JUnit-3 and JUnit-4 tests
using the said configuration. JUnit-based classes can only be run using the preceding
configuration, if we have any TestNG test classes they won't get executed. In the next
section we will cover an example of how to run both JUnit and TestNG tests together
through the testng XML configuration.

Running JUnit and TestNG tests together with TestNG XML
In the previous example we have seen how to configure and run JUnit tests using the
testng XML configuration file.

In this section we will write a testng XML configuration file which will run both JUnit
as well as TestNG tests in a single test suite.

Time for action – running JUnit and TestNG tests together
1. Open the previously created Java project in Eclipse.

2. Create a new class named TestngSampleTest under the package test.sample.
testng and add the following code to it:
package test.sample.testng;

import org.testng.annotations.AfterMethod;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

public class TestngSampleTest {
 @BeforeMethod
 public void beforeMethod(){
 System.out.println("Testng before method");
 }

 @Test
 public void testMethod(){
 System.out.println("Testng test method");
 }

 @AfterMethod

Migrating from JUnit

[216]

 public void afterMethod(){
 System.out.println("Testng after method");
 }

}

3. Create a new file named junit-testng-test.xml and paste the following
code to it:
<suite name="Junit Testng Suite">
 <test junit="true" name="Junit test">
 <classes>
 <class name="test.sample.junit.JunitSampleTest" />
 </classes>
 </test>
 <test name="Testng test">
 <classes>
 <class name="test.sample.testng.TestngSampleTest" />
 </classes>
 </test>
</suite>

The preceding suite contains two tests in it. One of the tests includes the
JunitSampleTest class for the said test execution and another test includes
the TestngSampleTest. TestNG is configured to execute the JUnit tests for XML
test that include junit test class by setting the value of the attribute junit to true,
whereas the other XML test is a simple test.

4. Select the said XML configuration file and run it as a TestNG test suite.
You will see the following test result on the Eclipse Console window:

Chapter 11

[217]

What just happened?
We have created a sample testng XML configuration file to run JUnit and TestNG tests
together through TestNG. Attribute junit is used along with the test tag for the test
containing the JUnit test class to configure TestNG to run the said junit tests. The other
test is a simple TestNG test that contains a testng test class for the test execution. There is
another way for executing your JUnit and TestNG tests together through build tool; in the
next section we will cover the same.

Have a go hero
Create a testng XML configuration for both JUnit and TestNG tests by including packages
and methods in the test execution.

Running JUnit tests along with TestNG through Ant
In the earlier section we have seen how to run JUnit through TestNG using testng XML
configuration. We have also seen how to run both JUnit and TestNG tests together. But that
was a simple test that we covered in the example. Consider a scenario where a project has
hundreds of existing JUnit tests and the team has decided to move to TestNG for its better
features. It will take a lot of time to migrate existing JUnit tests to TestNG and by that time
the team has to run existing tests along with the new TestNG tests. This can be achieved by
configuring TestNG to run both kinds of tests while using a build tool like Ant or Maven.

Almost all of the test frameworks use some or the other build tools to build and run their
unit tests. Let's run both TestNG and JUnit tests together through the Ant build tool.

Time for action – running JUnit and TestNG tests through Ant
1. Open the previously created Java project in Eclipse.

2. Add the testng library JAR downloaded earlier to the lib folder.

3. Create a new file named build.xml under the said project and add the following
code to it:
<project name="Testng Ant build" basedir=".">
 <!-- Sets the property varaibles to point to respective
directories -->
 <property name="report-dir" value="${basedir}/html-report" />
 <property name="testng-report-dir" value="${report-dir}/TestNG-
report" />
 <property name="lib-dir" value="${basedir}/lib" />
 <property name="bin-dir" value="${basedir}/bin-dir" />

Migrating from JUnit

[218]

 <property name="src-dir" value="${basedir}/src" />

 <!-- Sets the classpath including the bin directory and all the
jars under
 the lib folder -->
 <path id="test.classpath">
 <pathelement location="${bin-dir}" />
 <fileset dir="${lib-dir}">
 <include name="*.jar" />
 </fileset>
 </path>

 <!-- Deletes and recreate the bin and report directory -->
 <target name="init">
 <delete dir="${bin-dir}" />
 <mkdir dir="${bin-dir}" />
 <delete dir="${report-dir}" />
 <mkdir dir="${report-dir}" />
 </target>

 <!-- Compiles the source code present under the "srcdir" and
 place class files under bin-dir -->
 <target name="compile" depends="init">
 <javac srcdir="${src-dir}" classpathref="test.classpath"
 includeAntRuntime="No" destdir="${bin-dir}" />
 </target>

 <!-- Defines a TestNG task with name "testng" -->
 <taskdef name="testng" classname="org.testng.TestNGAntTask"
 classpathref="test.classpath" />

 <!-- Include class files containg the text "Test" in their
names. -->
 <fileset id="mixed-test" dir="${src-dir}">
 <include name="**/*Test.*" />
 </fileset>

 <!-- Executes the testng tests configured in the xtestng.xml
file -->
 <target name="testng-execution" depends="compile">
 <mkdir dir="${testng-report-dir}" />

Chapter 11

[219]

 <testng mode="mixed" classfilesetref="mixed-test"
outputdir="${testng-report-dir}" classpathref="test.classpath"
 useDefaultListeners="true">
 </testng>
 </target>
</project>

The preceding is an Ant build.xml file which is taken from Chapter 8, Using Build
Tools. The preceding build.xml file will compile and run both JUnit and TestNG
tests together. Test class files are included by using a name based regular search
using the fileset task of Ant. This fileset id is then added to TestNG execution
by using the attribute classfilesetref. TestNG has been configured to execute
both JUnit and TestNG tests by setting the attribute value of mode to mixed.

4. Open the command prompt and go to the respective Java project path in the system.

5. Under the respective Java project folder, type the command ant testing-
execution and press Enter.

6. Ant will compile and execute your TestNG tests. You will see the following screen:

Migrating from JUnit

[220]

What just happened?
We have successfully created an Ant build XML configuration file for running JUnit and
TestNG tests. TestNG is configured to run both kinds of tests using the mode attribute while
using the testng Ant task. If the value of the said attribute is set to mixed it will run both
JUnit and TestNG tests as part of the same project. The classes can exist together under the
same package. This configuration will help to convert your existing JUnit tests to TestNG tests
incrementally without giving up on the test execution. Currently Maven doesn't have an
in-built utility to run such a configuration, but in case you want to run the said configuration
in Maven, you can do so by writing the said Ant task in Maven and calling it for execution.

Migrating from JUnit to TestNG
In case you are migrating from JUnit to TestNG there are certain things that need to be taken
care of in your existing test classes and test methods. The following table will help you with
making such changes:

Use-case JUnit-4 JUnit-3 TestNG Comment

A Test
method

@Test Test-method
name starting
with "test"

@Test In case you are
migrating from
JUnit-4, you just
need to change
the import. If you
are migrating
from JUnit-3
annotation all the
test methods with
@Test

Run before
each test
method

@Before Method with
name "setup"

@BeforeMethod Change name and
import

Run after
each test
method

@After Method with
name "cleanup"

@AfterMethod Change Name and
import

Run before
each test
class

@
BeforeClass

N/A @BeforeClass Change the
import. Also JUnit
needs the said
method to be a
static method,
whereas in Testng
it can be static or
non-static method

Chapter 11

[221]

Use-case JUnit-4 JUnit-3 TestNG Comment

Run after
each test-
class

@AfterClass N/A @AfterClass Change the
import. Also JUnit
needs the said
method to be a
static method,
whereas in
TestNG it can
be static or
non-static method

Disabling a
test

@Ignore N/A @Test(enable=
"false")

Need to change
the annotation

Other than the things that are mentioned in the preceding table, we also need to take
care of the Assert statements of JUnit. There is a difference between the occurrence of the
argument between JUnit and TestNG. In JUnit the assertion expected value is followed by the
actual value, whereas in TestNG it's reversed. To solve this, TestNG provides a class named
AssertJunit where the assertion methods match the order of JUnit assertion methods.

Let's convert the earlier mentioned JUnit example to a TestNG test using the previous table.

Time for action – converting a JUnit test to a TestNG test
1. Select the previously created Java project.

2. Now create a new class file named JunitToTestngTest under the package test.
sample.testng and add the following code to it:
package test.sample.testng;

import org.testng.annotations.AfterClass;
import org.testng.annotations.AfterMethod;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

public class JunitToTestngTest {
 @BeforeClass
 public static void beforeClassMethod(){
 System.out.println("Junit before class method");
 }

 @BeforeMethod
 public void beforeMethod(){
 System.out.println("Junit before method");

Migrating from JUnit

[222]

 }

 @Test
 public void testMethod(){
 System.out.println("Junit test method");
 }

 @AfterMethod
 public void afterMethod(){
 System.out.println("Junit after method");
 }

 @AfterClass
 public static void afterClassMethod(){
 System.out.println("Junit after class method");
 }

}

The preceding class is the same sample JUnit test class that is converted to TestNG
test class. As shown in the previous table the import of the annotations are changed
to testng based annotations. The Before and After annotated JUnit methods are
changed to the BeforeMethod and AfterMethod annotation of testng. Whereas
for the Test annotated test method we have just changed the import statement.

3. Now run the said class as a TestNG test. You will see the following output in the
Eclipse Console window:

Chapter 11

[223]

What just happened?
We have successfully converted an existing JUnit test into a TestNG test and have run it
successfully. The import for the Test annotation is changed to use TestNG package. Before
and After annotations were changed to BeforeMethod and AfterMethod annotations
of TestNG, whereas for the BeforeClass and AfterClass annotations, the import
statements were changed to use the TestNG packages. As you can see from the previous
test results, the output is same as the output of the test when it was executed as JUnit test.

Pop quiz – migrating from JUnit
Q1. Which of the following attributes have to be used when configuring TestNG to run
JUnit tests while using testing XML configuration?

1. mode

2. junit

3. mixed

Q2. What should be the value of the attribute mode while configuring TestNG to run
both JUnit and TestNG tests together?

1. junit-testng

2. junit

3. mixed

Q3. Which class of TestNG should we use while migrating our existing JUnit tests
having Assert statements to TestNG?

1. Assert

2. JunitAssert

3. AssertJunit

Migrating from JUnit

[224]

Summary
In the current chapter we have covered different methods of running JUnit tests through
TestNG. We had even learned ways to run both TestNG and JUnit tests together through
TestNG XML configuration or by using build tools. TestNG supports the running of both
JUnit-3 and JUnit-4 tests in it. This helps different teams who are migrating from their
existing JUnit tests to TestNG without actually running both the tests separately.

In the coming chapter we will cover unit and functional testing using TestNG. Under
Unit testing we will cover mocking and different mocking techniques using TestNG. Under
functional testing we will cover basics of selenium and how to use selenium with TestNG.

12
Unit and Functional Testing

In the previous chapter we learned about how to run existing tests of JUnit
through TestNG and how to migrate from JUnit to TestNG. We also covered
different points considered for migration and the changes that are required to
be done as a part of the migration. In this chapter we will cover topics related
to unit and functional testing using TestNG.

In this chapter we'll cover the following topics:

 � Unit testing with TestNG

 � Mocking and different mocking techniques

 � Mocking with TestNG

 � Functional testing

 � TestNG with Selenium

Unit testing with TestNG
Before we go ahead with unit testing with TestNG, let’s get a brief idea of what unit testing
is. Unit testing refers to the practice/process of testing units, parts, and sections of a code.
Unit testing helps to verify whether our functions work as they are expected to work. With
unit testing we can verify whether our function supports some expected inputs and returns
some expected outputs. Writing or developing unit tests also helps in identifying future bugs
at the earlier stages of development itself. Unit testing also helps in improving the quality of
the code that is developed.

Unit and Functional Testing

[226]

TestNG as you have being reading in past chapters can be used for unit testing and helps
in writing or developing unit test cases. Let’s create a sample test project with a test class
containing unit tests for the ArrayList class.

Time for action – unit testing with TestNG
1. Create a new Java Project named SimpleUnitTestProject in Eclipse with the

folder structure shown in the following screenshot:

2. Open the file ListUnitTest.java and add the following snippet to it:
package org.test.sampletests;

import java.util.ArrayList;

import org.testng.Assert;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;

public class ListUnitTest {
 ArrayList<String> listObj = new ArrayList<String>();
 @BeforeClass
 public void beforeClass(){
 listObj.add("Sample-0");
 listObj.add("Sample-1");
 listObj.add("Sample-2");
 }

 @Test
 public void verifyDataBasedOnIndex(){
 String data = listObj.get(0);
 Assert.assertEquals(data, "Sample-0","Data dont match");
 }

 @Test(expectedExceptions=IndexOutOfBoundsException.class)
 public void verifyForWrongIndex(){
 listObj.get(4);
 }

Chapter 12

[227]

 @Test
 public void verifySize(){
 Assert.assertTrue(listObj.size()==3,"Size dont match");
 }
}

The preceding code contains a few sample unit tests to verify the ArrayList
implementation. It contains three test-methods, which verify the get and size
method of the list. The BeforeClass annotated method add a data set to the
list whereas the different test-methods verify the different scenarios, such as
verifying whether the correct data is returned when passing a correct index,
exception is thrown when fetching a value at the wrong index, and verification
of the size based on data stored.

3. Select the said class file and run it as a TestNG test. You will see the following
screenshot as output in the Console window:

What just happened?
We have successfully created a sample test class, which contains some unit test-methods
to test an ArrayList class implementation. The tests verify few of the conditions of the
ArrayList class. If you noticed that there are different methods from the Assert class
being used in the program. The assert helps in identifying the success and failure conditions
of a test. In case of failure these assert statements fail in the test and mark them as failed in
the test-report. We will be talking about assertion in our next section.

Have a go hero
Write unit tests for clear, contains, and remove methods of the ArrayList class.

Unit and Functional Testing

[228]

Assertion with TestNG
Assertion plays an important part while performing unit testing. Assertion helps you to check
or verify the success of conditions in your test. If the conditions don’t satisfy, it will stop the
test execution of the said test and mark it as failing.

Assertions are basically code blocks that can be placed in test cases to verify certain
conditions. Most of the unit test frameworks provide implementations for using assertions
in the tests. TestNG supports assertion of a test using the Assert class which is part of the
library. The following table describes few of the methods and their usage that are available
with the Assert class in testng:

Method Usage
assertEquals(boolean actual,
boolean expected)

Takes two Boolean arguments and checks
whether both are equal else fails the test.

assertEquals(boolean actual,
boolean expected, java.lang.
String message)

Takes two Boolean arguments and checks
whether both are equal else fails the test
with the given message.

assertEquals(java.lang.String
actual, java.lang.String
expected, java.lang.String
message)

Takes two string arguments and verifies that
both are equal. In case they are not equal this
method fails the test with the given message.

assertEquals(java.util.
Collection actual, java.util.
Collection expected, java.
lang.String message)

Takes two collection objects and verifies both
of the collections contain the same elements
and in the same order. Else this fails the test
with the given message.

assertTrue(boolean condition,
java.lang.String message)

Verifies that the passed condition variable is
true else fails the test with the given message.

assertFalse(boolean condition,
java.lang.String message)

Verifies that the passed condition variable is
false else fails the test with the given message.

fail(java.lang.String message) Directly fails a test with the given message.
This method is mainly used while handling
exception conditions and when we have
failed the test forcefully.

Mocking
Mocking is mainly used while performing unit testing. While writing unit tests, the code
under test may depend on another class object or class method in the code. This dependent
code may or may not be available for testing. To isolate the behavior of the code under test
from that of the dependent code we use the mocking technique.

Chapter 12

[229]

Mocking allows users to create mock objects and behaviors that the code under test is
dependent upon. Mock objects basically simulate the behavior of the dependent code
so that the unit testing of the code under test can be completed.

Different mocking strategies
There are a lot of mocking utilities available online for mocking while writing unit tests
developed in Java. Each has some advantages and disadvantages when compared to
other. Few of the mocking utilities are named as follows:

 � Jmock

 � Mockito

 � EasyMock

 � PowerMock

 � Jmockit

Each of the preceding mentioned mocking libraries provide abilities to mock objects,
methods, and behaviors. Each of them has their own advantages and disadvantages
depending upon what we are using them for. In this chapter we will cover two of the
most commonly used mocking libraries Jmock and Mockito. We will write down
examples for each of them and will use them along with TestNG.

Mocking with TestNG
TestNG don’t have an inbuilt mocking implementation in it, but we can use any third-party
implementations that are based on Java; and which don’t rely on a particular kind of unit
test execution framework to be used along with it. You had already read about mocking
and different mocking techniques that are available in the market. In this section we will
take two of the most commonly used mocking frameworks Jmock and Mockito, and write
sample programs using them in TestNG.

Jmock
Jmock was one of the initial mocking frameworks that were developed to support unit
testing and TDD based development approach. It provides all the basic features required
for mocking, such as mocking objects, methods, return values and so on. It was developed
initially for JUnit but with recent modifications it can be used with any unit test framework.

In the following example we will cover a basic example of writing a unit test methods for a
sample code, and mocking certain unavailable methods through Jmock. We will use TestNG for
writing unit tests and maven for building and running the tests. We are using maven, because
maven will automatically download the dependent libraries required for compilation.

Unit and Functional Testing

[230]

Time for action – using JMock with TestNG
1. Create a new Java Project named JmockTesProject in eclipse with the folder

and file structure shown in the following screenshot:

2. Open the file AreaFinder.java and add the following code to it:
package main.java.org.test.mocking;

public class AreaFinder {

 private final Calculator calculator;

 public AreaFinder(Calculator calculator) {
 this.calculator = calculator;
 }

 public double getAreaOfCircle(double radius) {
 if(radius > 0)
 return calculator.multiply(Math.PI, calculator.
square(radius));
 else if(radius <0)
 throw new IllegalArgumentException();
 else
 return 0;
 }

}

The preceding class file is a sample file which calculates the area of a circle
when we call the method getAreaOfCircle of the said class. The calculation
is done by internally invoking the Calculator class methods.

Chapter 12

[231]

3. Open the file Calculator.java and add the following code to it:
package main.java.org.test.mocking;

public interface Calculator {

 double multiply(double a, double b);

 double square(double a);

}

This is an interface which declares multiple and square methods. In this example
none of the classes will be implementing this interface and we will be mocking
the said interface implementation for testing the AreaFinder class file.

4. Open the file AreaFinderJmockTest.java and add the following snippet to it:
package test.java.org.test.mocking;

import main.java.org.test.mocking.AreaFinder;
import main.java.org.test.mocking.Calculator;

import org.jmock.Expectations;
import org.jmock.Mockery;
import org.jmock.Sequence;
import org.testng.Assert;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

public class AreaFinderJmockTest{
 //Creating a context object for macking purpose
 private final Mockery context = new Mockery();

 private AreaFinder areaFinder;

 /*
 * Creating a mock object using mocking context earlier created
 * for the Calculator interface as there is no implementation for
 * it existing.
 */
 private Calculator calculator = context.mock(Calculator.class);

 @BeforeMethod
 public void setUp() {
 areaFinder = new AreaFinder(calculator);
 }
 @Test(expectedExceptions = IllegalArgumentException.class)
 public void
getAreaOfCircleShouldThrowIllegalArgumentException
ForNegativeRadius() {

Unit and Functional Testing

[232]

 areaFinder.getAreaOfCircle(-1.2);
 }

 @Test
 public void getAreaOfSquareShouldReturnExpectedValue() {
 final double radius = 4.1;
 final double radiusSquare = 5.3;
 final double expectedArea = 10.9;
 /*
 * Mocking the return values for the calculator methods
 * using the context object
 */
 context.checking(new Expectations() {
 final Sequence sequence = context.sequence("circle-area-
sequence");
 {//Mocking the square method in calculator and returning a
particular value
 oneOf(calculator).square(radius);
 will(returnValue(radiusSquare));
 inSequence(sequence);
 }
 {
 oneOf(calculator).multiply(Math.PI, radiusSquare);
 will(returnValue(expectedArea));
 inSequence(sequence);
 }
 });
 Assert.assertEquals(areaFinder.getAreaOfCircle(radius),
expectedArea, 0);
 }
}

The AreaFinderJmockTest class contains the unit test methods for the
AreaFinder class. There are two test methods present in this class, one that
verifies that an IllegalArgumentException is thrown when a negative radius
is passed to calculate the area, and the other one verifies the positive condition
of getting the expected area value for a particular radius. As there are internal calls
to the Calculator interface methods square and multiple these methods are
mocked to return specified values using Jmock.

5. Open the pom.xml file and add the following code snippet to it:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">

Chapter 12

[233]

 <modelVersion>4.0.0</modelVersion>
 <groupId>org.test</groupId>
 <artifactId>jmock</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <build>
 <!-- Source directory configuration -->
 <sourceDirectory>src</sourceDirectory>
 <plugins>
 <!-- Following plugin executes the testng tests -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.14.1</version>
 </plugin>
 <!-- Compiler plugin configures the java version to be used
 for compiling the code -->
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 </dependency>
 <dependency>
 <groupId>org.jmock</groupId>
 <artifactId>jmock</artifactId>
 <version>2.6.0</version>
 </dependency>
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>6.3.1</version>
 </dependency>
 </dependencies>
</project>

Unit and Functional Testing

[234]

This a maven configuration file for compiling and running the TestNG tests. Most of
this is taken from the sample maven project created under the Using maven section
in the Chapter 8, Using Build Tools. Few extra dependencies, such as jmock and
junit are added to the said configuration. Jmock still has some dependency on
JUnit, hence the said library is added as dependency in the configuration.

6. Open the terminal/command window and go to the root folder of the preceding
Java project.

7. Type and run the command mvn test, you will see the following screenshot as
output in the console:

What just happened?
We have successfully created an example of Jmock using TestNG. As you can see from the
preceding example, Jmock is used to mock the calls to the methods of the Circle interface
and return particular values based on certain value arguments. These methods are internally
called inside the AreaFinder class, such as the getAreaOfCircle method. When a call is
made to these mocked methods Jmock returns the configured values to the calling function,
in this case it’s the getAreaOfCircle method. In case you want to know more about
Jmock and how to use it, you can go to its official website http://www.jmock.org/.

Chapter 12

[235]

Have a go hero
Add a new method to the AreaFinder class mentioned earlier to get the area of the circle
and write units tests for it.

Mockito
Mockito is another mocking framework, which provides similar capabilities to Jmock and is
written in much a similar way to Jmock. The tests using Mockito as a mocking framework
are much more clean and readable. Let’s write a simple maven based java project, which
contains the same code that needs to be unit tested. We will write similar unit tests but this
time we will use Mockito as a mocking framework. This will give us a clear idea about how
Mockito is different from Jmock.

Time for action – using Mockito
1. Create a new Java Project named MockitoTestProject in eclipse with the folder

and file structure as shown in the following screenshot:

2. Copy the code for the Calculator.java file from the previously created
project on to the file Calculator.java in the current project. You can also replace
the existing file with the one from the previously created project as they
are both the same.

3. Copy the code for the AreaFinder.java file from the earlier section in to the file
AreaFinder.java in the current project. You can also replace the existing file with
the one from the previously created project as they are both the same.

4. Open the file AreaFinderMockitoTest and add the following code to it:
package test.java.org.test.mocking;

import main.java.org.test.mocking.AreaFinder;
import main.java.org.test.mocking.Calculator;

Unit and Functional Testing

[236]

import org.mockito.InjectMocks;
import org.mockito.Mock;
import static org.mockito.Mockito.*;
import org.mockito.MockitoAnnotations;
import org.testng.Assert;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

public class AreaFinderMockitoTest{

 @InjectMocks private AreaFinder areaFinder;

 @Mock private Calculator calculator ;

 @BeforeMethod
 public void setUp() {
 MockitoAnnotations.initMocks(this);
 areaFinder = new AreaFinder(calculator);
 }

 @Test(expectedExceptions = IllegalArgumentException.class)
 public void

getAreaOfCircleShouldThrowIllegalArgumentException
ForNegativeRadius() {
 areaFinder.getAreaOfCircle(-1.2);
 }

 @Test
 public void getAreaOfSquareShouldReturnExpectedValue() {
 final double radius = 4.1;
 final double radiusSquare = 5.3;
 final double expectedArea = 10.9;

 //Mocking the Calculator methods and returning particular values.
 when(calculator.square(radius)).thenReturn(radiusSquare);
 when(calculator.multiply(Math.PI, radiusSquare)).
thenReturn(expectedArea);

 Assert.assertEquals(areaFinder.getAreaOfCircle(radius),
expectedArea, 0);
 }
}

The preceding class contains the unit test methods for the AreaFinder class.
There are two test-methods present in this class, one that verifies that an
IllegalArgumentException is thrown when a negative radius is passed to
calculate the area, and the other one verifies the positive condition of getting
the expected area value for a particular radius. As there are internal calls to the
Calculator interface methods, such as square and multiple, these methods
are mocked to return specified values using Mockito.

Chapter 12

[237]

5. Open the pom.xml file and add the following code snippet into it:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.test</groupId>
 <artifactId>mockito</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <build>
 <!-- Source directory configuration -->
 <sourceDirectory>src</sourceDirectory>
 <plugins>
 <!-- Following plugin excutes the testng tests -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.14.1</version>
 </plugin>
 <!-- Compiler plugin configures the java version to be used
 for compiling the code -->
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-all</artifactId>
 <version>1.9.5</version>
 </dependency>
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>6.3.1</version>
 </dependency>
 </dependencies>
</project>

Unit and Functional Testing

[238]

This a maven configuration file for compiling and running TestNG tests in our project.
Most of this is taken from the sample maven project created under the Using Maven
section in Chapter 8, Using Build Tools. A few extra dependencies such as mockito
are added to the configuration.

6. Open the terminal/command window and go to the root folder of the preceding
Java project.

7. Type and run the command mvn test and you will see the following output in
the console:

What just happened?
We have successfully created a sample test class, which uses Mockito for mocking and ran
it through TestNG. As you can see from the preceding example, the said unit tests are the
same tests that we had performed for Jmock. You can clearly see the difference in the way
the tests were written using Jmock and using Mockito. As you can see with Mockito tests
are simpler to read and write. Test methods are mocked using the when and thenReturn
methods provided by Mockito. More detailed information on Mockito can be obtained by
going to its official site at https://code.google.com/p/mockito/.

Chapter 12

[239]

Functional testing
Functional testing is a process of testing software or a hardware based on its design or
specification. It involves testing different features and functionalities provided by software
or hardware based on its requirement. It mainly consists of integration scenarios to verify
that the feature works well with other features and does not fail in any condition.

In the software industry functional testing plays a key role in the life cycle of testing as it
confirms the product requirement and design specifications, and helps in identifying bugs
in the software. Functional testing is performed manually as well as through automation
tools. Automation may involve writing unit test methods for the application code as well as
the use of some functional automation tools. Functional test methods are different from that
of unit test methods. They are different in a way that unit test methods are meant to test an
independent part of the code, whereas functional tests are written to check the functionality
and may involve interaction between different sections of code. When it comes to functional
automation tools there is a huge list of such tools in the market. These tools help in
automating the functional tests and hence reduces the manual and periodic testing effort.
The following is a list of functional testing automation tools that are available in the market:

 � Selenium/Webdriver

 � Rational functional tester

 � Sikuli

 � Quick Test Professional

 � SilkTest

In the next section we will give an example of Selenium/webdriver, which is one of
the most famous functional testing tools being used along with TestNG framework
to functionally automate a Google search.

TestNG with Selenium
Nowadays Selenium is one of the most famous functional testing tools used for web based
application testing. Selenium has a lot of features inbuilt in it, which helps web application
testing teams to automate their functional test cases. The following is a list of a few such
features of Selenium:

 � Provides record and playback capabilities

 � Supports multiple browsers and browser versions. For example, Firefox, Chrome,
IE, Opera, and so on

Unit and Functional Testing

[240]

 � Inbuilt support for Android and iOS testing

 � Inbuilt grid setup for setting up a Selenium server grid for simultaneous or
parallel execution of tests

 � Easy API for easy use and enhancement

These are just few advantages of using Selenium, it has a vast use and has been used by
numerous teams worldwide for automating their functional tests. Majority of people use
Selenium along with TestNG due to the numerous features provided by TestNG. One of
the important features being the multithreaded execution of tests, this feature helps the
functional tests to execute simultaneously on multiple browsers or even multiple parallel
executions on the same type of browser. In the following example we will cover a sample
Selenium test which will execute the same test in parallel using TestNG.

Before proceeding with the following example, please make sure that the Firefox browser
is installed onto your system. You can download the latest version of Firefox from the URL
http://www.mozilla.org/en-US/firefox/new/.

Time for action – using Selenium with TestNG
1. Create a new Java project in Eclipse with name SeleniumSampleTest and

with project structure shown in the following screenshot:

2. Open the SampleSeleniumTest file and add the following code snippet to it:
package test.java.org.sample.selenium;

import java.util.List;

import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;

Chapter 12

[241]

import org.testng.Assert;
import org.testng.annotations.AfterMethod;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

public class SampleSeleniumTest {
 WebDriver driver;
 @BeforeMethod
 public void beforeMethod(){
 //Initializing the selenium webdriver object
 driver = new FirefoxDriver();
 }

 @Test
 public void googleTest(){
 //Opening the google page
 driver.navigate().to("http://www.google.com");
 //Finding the search field and entering text to it.
 driver.findElement(By.cssSelector("input[name=’q’]"))
 .sendKeys("TestNG");
 WebDriverWait wait = new WebDriverWait(driver, 30);
 //Waiting for the search list to be populated.
 List<WebElement> results=wait.until(ExpectedConditions.presenc
eOfAllElementsLocatedBy(By.cssSelector("h3.r")));
 //Getting the text of the first search result.
 String searchResult=results.get(0).getText();
 //Verifying the text of first search test result with the
expected text
 Assert.assertEquals(searchResult,"TestNG - Welcome");
 }

 @AfterMethod
 public void afterMethod(){
 //Quitting the browser.
 driver.quit();
 }

}

The preceding test class contains a sample test for testing a search in Google.
The preceding test enters text TestNG in the Google search box and waits for
the search list to be populated with search results. Once the search list is populated
it gets the text of the first search result and verifies whether it matches it with title
of testng site TestNG—Welcome.

Unit and Functional Testing

[242]

3. Add a file named testng.xml to the current project and add the following code
snippet to it:
<suite name="Selenium Suite" parallel="tests" thread-count="2">
 <test name="Selenium test - 1">
 <classes>
 <class name="test.java.org.sample.selenium.
SampleSeleniumTest" />
 </classes>
 </test>
 <test name="Selenium test - 2">
 <classes>
 <class name="test.java.org.sample.selenium.
SampleSeleniumTest" />
 </classes>
 </test>
</suite>

The preceding file is a testng configuration file, which contains two tests in it.
Both the tests include the same test class SampleSeleniumTest for the tests.
The suite is configured to execute in a multithreaded mode by using the attribute
thread-count at suite level. The configuration for thread execution is configured
so that each test in the suite is run in a separate thread.

4. Open the file pom.xml and add the following code snippet to it:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.test</groupId>
 <artifactId>jmock</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <build>
 <!-- Source directory configuration -->
 <sourceDirectory>src</sourceDirectory>
 <plugins>
 <!-- Following plugin excutes the testng tests -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.14.1</version>
 <configuration>

Chapter 12

[243]

 <!-- Suite testng xml file to consider for test
execution -->
 <suiteXmlFiles>
 <suiteXmlFile>testng.xml</suiteXmlFile>
 </suiteXmlFiles>
 </configuration>
 </plugin>
 <!-- Compiler plugin configures the java version to be used
 for compiling the code -->
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <version>2.33.0</version>
 </dependency>
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>6.3.1</version>
 </dependency>
 </dependencies>
</project>

The preceding code is the maven configuration to compile and run our tests.
The configuration is the same configuration covered under the Using maven section
in Chapter 9, Using Build Tools. There is a dependency of Selenium-java-2.33.0,
which is been added to the configuration file.

5. Now go to the command prompt/terminal and navigate to the preceding Java
project folder.

Unit and Functional Testing

[244]

6. Type the command mvn test and run it. Maven will download all the required
jars and will compile and run our test. You will see two browsers opening
simultaneously, which opens the Google page, searches for the text TestNG,
and then closes the window. You will also see the following output in the
command prompt for your test execution:

What just happened?
We have successfully created a sample functional test for a Google search and verified the
test result using Selenium. The said test is implemented as a testng test and TestNG is
used for executing the said Selenium test. In this example we have used Selenium to execute
the functional test on two instances of the Firefox browser simultaneously. This is just an
example of how we can use Selenium with TestNG featuring one of the advantages of using
TestNG. This feature can also be used for executing same set of tests in multiple browsers
simultaneously. Also the test suite configuration and report extension are few of the features
of TestNG that provide a lot of advantages when used with Selenium.

Chapter 12

[245]

Pop quiz – unit and functional testing
Q1. Which of the following is the correct representation of an assert method in TestNG?

1. Assert.assertEquals(String actual, String expected)

2. Assert.assertEquals(String expected, String actual)

Q2. "Unit testing is the process of testing integrated modules and code".
Is the statement correct?

1. Yes

2. No

Q3. "Using mocking we can mock (fake) unimplemented method calls and return
custom values". Is the statement correct?

1. Yes

2. No

Summary
In this chapter we have covered different topics related to unit testing and functional testing
through TestNG. We have learned about unit testing, mocking, and the different mocking
strategies available in the market. We have also seen some practical examples of using
mocking frameworks, such as Jmock and Mockito along with TestNG.

At the end of this chapter we have learned about functional testing and different
automation tools available in the market to automate functional testing. We also
wrote a sample program in TestNG using Selenium, which is one of the most famous
web automation tools in the market.

Unit and functional testing play a key role in the lifecycle of software development as
they together help in reducing the time taken to identify the bug, and hence improving
the development life cycle.

TestNG is a great test automation framework that can be used for multiple kinds of testing
whether it be unit, integration, or even functional. Over the chapters we have covered
almost all the basic features provided by TestNG with examples, and by the end of this
chapter you may have got hands on with TestNG and its features.

Pop Quiz Answers

Chapter 1, Getting Started
Pop quiz – about TestNG

Q1 1

Q2 1

Chapter 2, Understanding testng.xml
Pop quiz – TestNG XML

Q1 1

Q2 2

Q3 2

Pop Quiz Answers

[248]

Chapter 3, Annotations
Pop quiz – annotations

Q1 3

Q2 3

Q3 2

Q4 2

Q5 3

Q6 3

Chapter 4, Groups
Pop quiz – groups

Q1 1

Q2 1

Q3 2

Q4 3

Chapter 5, Dependencies
Pop quiz – dependencies

Q1 1

Q2 2

Chapter 6, The Factory Annotation
Pop quiz – the Factory annotation

Q1 1
Q2 2

Pop Quiz Answers

[249]

Chapter 7, Parallelism
Pop quiz – parallelism

Q1 3
Q2 3

Chapter 8, Using Build Tools
Pop quiz – build tools

Q1 2

Q2 3

Q3 1

Chapter 9, Logging and Reports
Pop quiz – logging and reports

Q1 1

Q2 1

Chapter 10, Creating a Test Suite through Code
Pop quiz – creating a test suite through code

Q1 1

Q2 1

Q3 1

Pop Quiz Answers

[250]

Chapter 11, Migrating from JUnit
Pop quiz – migrating from JUnit

Q1 2

Q2 3

Q3 3

Chapter 12, Unit and Functional Testing
Pop quiz – unit and functional testing

Q1 1

Q2 2

Q3 1

Index
Symbols
@AfterClass 52
@AfterGroups 52
@AfterMethod 52
@AfterSuite 52
@AfterTest 52
@BeforeClass 52
@BeforeGroups 52
@BeforeMethod 52
@BeforeSuite 52
@BeforeTest 52
@DataProvider 52
@Factory 53
@Factory annotation

about 125, 139
used, for executing dependency test 135, 136
using 125
using, with DataProvider 129, 130

@Parameters 53
@Test 53

A
afterClass method 148, 153
alwaysRun attribute 62
annotations. See TestNG annotations
Ant

about 156
advantages 161
installing 156, 157
JUnit tests, running with TestNG 217-220

terminologies 157
URL 157
used, for running TestNG tests 157-161
using 157

Ant, build process
compile 160
init 160

Ant, terminologies
project 157
target 157
tasks 157

ant testng-execution command 160
ArrayList class 226
Assert.assertTrue method 171, 178
Assert class

methods 228
assertion

about 228
with TestNG 228

attributes, Test annotation
about 62
alwaysRun 62
dataProvider 62
dataProviderClass 62
dependsOnGroups 62
dependsOnMethods 62
description 62
enabled 62
expectedExceptions 62
groups 62
timeOut 62

[252]

B
Before and After annotation options

about 53
extending 59-61
running 54-58

beforeClass method 148, 153
beforeTest method 149, 150
bin directory 157, 162
build automation

about 155
advantages 156

build tools
Ant 156
Gradle 156
Maven 156

build.xml file 156

C
classes-test-testng.xml file 147
command prompt

used, for executing testng.xml 26-28
compile option 160
configuration options, ReportNG report

about 186
org.uncommons.reportng.escape-output 186
org.uncommons.reportng.frames 186
org.uncommons.reportng.locale 186
org.uncommons.reportng.stylesheet 186
org.uncommons.reportng.title 186

configuration options, Reporty-ng report
testNgXslt.chartScaleFactor 190
testNgXslt.cssFile 190
testNgXslt.outputDir 190
testNgXslt.reportTitle 190
testNgXslt.showRuntimeTotals 190
testNgXslt.sortTestCaseLinks 190
testNgXslt.testDetailsFilter 190

Console window 141, 144, 147, 150, 152
custom logger

writing 170-174
custom reporter

writing 175-177

D
data-driven tests 7
DataProvider

about 78
in different class 81, 82
Test annotation, using on class 79, 80
using, with @Factory annotation 129, 130

dataProvider attribute 62
dataProviderClass attribute 62
DataProvider test

about 131
creating 132, 133

default group
about 98
assigning, to set of tests 98-100
working 98

Dependencies, Maven 163
dependency test

about 105, 207
configuring 207-209
depending on multiple tests, creating 108, 109
depending on single test, creating 106, 107
executing, with @Factory annotation 135, 136
inherited dependency test 109
regular expressions, using 115, 117
running sequentially 137

dependent groups 112
dependsOnGroups attribute 62
dependsOnMethods attribute 62
description attribute 62

E
Eclipse

configuring, for testng.xml 29, 30
TestNG, installing 8
URL 8
used, for executing testng.xml 28
used, for running TestNG group 88

enabled attribute 62
exception test

about 66
verifying message, writing 68, 69
working 66
writing 66, 67

[253]

excludedgroups option, Ant 161
excludedgroups option, Maven 166
expectedExceptions attribute 62

F
factory 125
factory methods

parameters, passing to test classes 127-129
factory test

about 131
creating 126, 127, 133, 134

features, Selenium 239, 240
features, TestNG

about 7
After annotation option 7
better reporting 8
data-driven testing 7
dependent groups 7
dependent methods 7
groups 7
Multiple Before option 7
multithreaded execution 7
Open API 8
parameterization, of test methods 7
test suite definition 7
XML based test configuration 7

functional testing
about 239
automation tools 239

G
getCurrentTime method 173
groups

excluding 204-206
including 204-206

groups attribute 62
groups option, Ant 161
groups option, Maven 166

I
Id value 144, 147
include/exclude methods

about 200
using 45

include/exclude packages
about 42
using 42

including/excluding groups
performing, testng XML used 93, 95

IndependentTestThreading class 151, 152
inherited dependency test

creating 110, 111
init option 160
Installations

Ant 156, 157
Maven 162

invocationCount attribute 151, 152

J
Java project

about 13
creating 13, 14

Jmock
about 229
URL 234
using, with TestNG 230-234

JUnit 6
JUnit and TestNG tests

running, simultaneously 215-217
JUnit HTML report

about 180, 182
generating 180-182

JUnit migration
to TestNG 220, 221

JUnit tests
converting, to TestNG test 221-223
running, through TestNG 211
running, with TestNG 217-220
writing 212, 213

L
Listeners 170
listeners option, Ant 161
listeners option, Maven 166
logging

about 169
custom logger 170

[254]

M
main method 209
Maven

about 162
configurations 166
installing 162
URL 162, 163
used, for running TestNG tests 163-166
using 163

Maven, configurations
excludedgroups option 166
groups option 166
listeners option 166
outputdir option 166
parallel option 166
testname option 166
threadCount option 166
timeOut option 166

Maven, features
Dependencies 163
Plugins 163
project 163

maven-surefire-plugin 165
MetaGroups 100
mocking

about 228
strategies 229
with TestNG 229

mocking utilities
EasyMock 229
Jmock 229
Jmockit 229
Mockito 235
PowerMock 229

Mockito
about 235
URL 238
using 235-238

multigroup dependency
about 119
test, creating 108
using, in XML 119-121

multithreaded execution
advantages 153

multithreaded mode 140
multithreaded program

parallel test, writing 140-142
writing 140

mvn command 162
mvn test command 164

N
NUnit 6

O
outputdir option, Ant 161
outputdir option, Maven 166

P
parallel

test classes, running 144-148
test methods, running 142-144
tests, running inside suite 148-151

parallel attribute 148, 150
Parallelism

about 140
advantages 153

parallel option, Ant 161
parallel option, Maven 166
parallel test

writing 140-142
parameterization

about 73
optional values, providing 76-78
through testng.xml 73-76

Plugins, Maven 163
pom.xml file 163, 164
project, Ant 157
project, Maven 163

R
regular expressions

about 46
using 46-49
using, for dependency 121, 122
using, in dependency test 115-117
using, in testng XML 96, 97

[255]

Reporters 170
ReportNG report

about 182
configuration options 186
generating 183-186

Reporty-ng report
about 187
configuration options 190
generating 187-189

S
SampleBuildTest class 158
sample project, test suite

creating 34
test, creating with classes 34-36
test, creating with methods 38
test, creating with package, class, and test

method 40, 41
test, creating with packages 36-38

SampleTestClassOne class 145, 147
SampleTestClassTwo class 146, 147
Sample Test link 185
SampleTestMethod class 142, 143
SampleTestSuite class 148, 150
Selenium

about 239
features 239, 240
using, with TestNG 240-244

setExcludedMethod 203
SimpleClass class 140
simple group dependency

about 117
using, in XML 117-119

single test method dependency
creating 106, 107

software development life cycle (SDLC) 6

T
target, Ant 157
tasks, Ant 157
test

disabling 64
Test annotation

about 62, 151
attributes 62
using, on class 63, 64

test automation 6
test classes

running, in parallel 144-148
test, dependent on group

creating 112, 113
test, dependent on methods from different class

creating 113-115
testing 5
testing.xml file 160
test methods

disabling 65
including 201-203
running, in parallel 142-144

testname option, Ant 161
testname option, Maven 166
TestNG

about 6, 170, 226
assertions 228
DataProvider 78
default group 98
dependency test 105, 135
downloading 8
exception test 66
features 7
HTML 177
include/exclude methods 45
include/exclude packages 42
including/excluding groups 93
installing, onto Eclipse 9-12
JMock, using with 230-234
JUnit, migrating to 220, 221
JUnit tests, running through 211
JUnit tests, running with 217-220
Listeners 170
mocking implementation 229
multiple tests, creating 31
parameterization 73
prerequisite 8
regular expressions 95
Reporters 170
report, generating, ways 170
running programmatically 194-197
Selenium, using with 240-244
time test 69
used, for unit testing 226, 227
XML-based dependency configuration 117
XML report 177

[256]

TestNG annotations
@AfterClass 52
@AfterGroups 52
@AfterMethod 52
@AfterSuite 52
@AfterTest 52
@BeforeClass 52
@BeforeGroups 52
@BeforeMethod 52
@BeforeSuite 52
@BeforeTest 52
@DataProvider 52
@Factory 53
@Factory annotation 125
@Listeners 53
@Parameters 53
@Test 53
about 52
Before and After annotation, running 54-58
Test annotation 62

TestNG class
creating 16, 17

testng-execution option 160
TestNG group

about 100
running 87
running, Eclipse used 88, 89
running, testng.xml used 101, 102
running, testng XML used 89, 90

TestNG HTML
generating 177-180

TestNG plugin options
class 19
group 19
method 19
package 19
suite 19

TestNG task
configurations 161

TestNG task, configurations
excludedgroups option 161
groups option 161
listeners option 161
outputdir option 161
parallel option 161
testname option 161

threadCount option 161
timeOut option 161

TestNG test
Java project, creating 13-16
JUnit test, converting to 221-223
running 18
running, through Eclipse 18, 19
TestNG class, creating 16, 17
writing 13

TestNG tests
running, Ant used 157-161

testng.xml
about 23
creating, with multiple tests 31-33
regular expressions, using 96, 97
running, Eclipse used 28
running, through command prompt 26, 27
used, for creating test suite 24
used, for running TestNG group 89

TestNG XML
JUnit and TestNG tests, running

simultaneously 215-217
JUnit Tests, running through TestNG 214, 215

testng.xml file 158
TestNG XML report

generating 177-180
TestNG-xslt. See Reporty-ng
testNgXslt.chartScaleFactor 190
testNgXslt.cssFile 190
testNgXslt.outputDir 190
testNgXslt.reportTitle 190
testNgXslt.showRuntimeTotals 190
testNgXslt.sortTestCaseLinks 190
testNgXslt.testDetailsFilter 190
test package 158
test.parallelism package 140, 145-148, 151
tests

grouping 85
running, independent in threads 151, 152
running, inside suite in parallel 148-151

tests, belonging to group
creating 86, 87

tests, having multiple groups
creating 91, 93

tests parameteriaztion
parameter values, passing 197-200

[257]

test suite
creating, by excluding test method 45, 46
creating, by excluding test package 43, 44
creating, by including test package 42, 43
creating, testng.xml used 24, 25
creating, with regular expression 46, 47
running 26

thread-count attribute 141, 144, 150
threadCount option, Ant 161
threadCount option, Maven 166
Thread.currentThread.getId() method 141-46
threadPoolSize attribute 151
threads

independent tests, running 151, 152
timeOut attribute 62, 151
timeOut option, Ant 161
timeOut option, Maven 166
time test

about 69
writing, at suite level 70, 71
writing, at test-method level 71-73

U
unit testing

about 225
with TestNG 226, 227

X
XML-based dependency configuration

about 117
multigroup dependency 119
regular expression, using 121, 122
simple group dependency 117

XmlClass class 196
XmlDefine class 197
XmlDependencies class 197
XmlGroups class 197
XmlInclude class 197
XmlPackage class 196
XmlSuite class 196
XmlTest class 196

Thank you for buying

TestNg Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Swing Extreme Testing
ISBN: 978-1-84719-482-4 Paperback: 328 pages

The Extreme Approach to Complete Java
Application Testing

1. Learn Swing user interface testing strategy

2. Automate testing of components usually
thought too hard to test automatically

3. Practical guide with ready-to-use examples
and source code

4. Based on the authorsâ€™ experience developing
and testing commercial software

JavaScript Unit Testing
ISBN: 978-1-78216-062-5 Paperback: 190 pages

Your comprehensive and practical guide to efficiently
performing and automating JavaScript unit testing

1. Learn and understand, using practical
examples, synchronous and asynchronous
JavaScript unit testing

2. Cover the most popular JavaScript Unit Testing
Frameworks including Jasmine, YUITest, QUnit,
and JsTestDriver

3. Automate and integrate your JavaScript Unit
Testing for ease and efficiency

Please check www.PacktPub.com for information on our titles

Selenium Testing Tools Cookbook
ISBN: 978-1-84951-574-0 Paperback: 326 pages

Over 90 recipes to build, maintain, and improve test
automation with Selenium WebDriver

1. Learn to leverage the power of Selenium WebDriver
with simple examples that illustrate real world
problems and their workarounds

2. Each sample demonstrates key concepts allowing
you to advance your knowledge of Selenium
WebDriver in a practical and incremental way

3. Explains testing of mobile web applications
with Selenium Drivers for platforms such as
iOS and Android

Web Services Testing with soapUI
ISBN: 978-1-84951-566-5 Paperback: 440 pages

Build high quality service-oriented solutions by
learning easy and effi cient web services testing
with this practical, hands-on guide

1. Become more proficient in testing web services
included in your service-oriented solutions

2. Find, analyze, reproduce bugs effectively by
adhering to best web service testing approaches

3. Learn with clear step-by-step instructions and
hands-on examples on various topics related
to web services testing using soapUI

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Testing and test automation
	TestNG
	Features of TestNG
	Downloading TestNG
	Prerequisites

	Installing TestNG onto Eclipse
	Time for action – installing TestNG onto Eclipse
	Writing your first TestNG test
	The Java project

	Time for action – creating a Java project
	Time for action – creating your first TestNG class
	Running your first test program
	Time for action – running tests through Eclipse
	Summary

	Chapter 2: Understanding testng.xml
	About testng.xml
	Creating a test suite
	Time for action – creating a test suite
	Running testng.xml
	Using command prompt

	Time for action – running testng.xml through the command prompt
	Using Eclipse

	Time for action – executing testng.xml using Eclipse
	Time for action – configuring Eclipse to run a particular TestNG XML file
	Creating multiple tests
	Time for action – testng XML with multiple tests
	Adding classes, packages, and methods to test
	Sample project
	Creating a test with classes

	Time for action – creating a test with classes
	Creating a test using packages

	Time for action – creating a test with packages
	Creating a test with methods

	Time for action – creating a test with methods
	Creating a test with packages, classes, and methods

	Time for action – creating a test suite with package, class, and test method
	Including and excluding
	Include/exclude packages

	Time for action – test suite to include a particular package
	Time for action – test suite to exclude a particular package
	Include/exclude methods

	Time for action – test suite to exclude a particular method
	Using regular expressions to include/exclude
	Prerequisite – creating a sample project

	Time for action – using regular expressions for test
	Summary

	Chapter 3: Annotations
	Annotations in TestNG
	Before and After annotations
	Time for action – running the Before and After annotations
	Time for action – Before and After annotation when extended
	Test annotation
	Time for action – using test annotation on class
	Disabling a test
	Time for action – disabling a test method
	Exception test
	Time for action – writing an exception test
	Time for action – writing a exception test verifying message
	Time test
	Time for action – time test at suite level
	Time for action – time test at test method level
	Parameterization of test
	Parameterization through testng.xml

	Time for action – parameterization through testng.xml
	Time for action – providing optional values
	DataProvider
	Time for action – using Test annotation on Class
	Time for action – DataProvider in different class
	Summary

	Chapter 4: Groups
	Grouping tests
	Time for action – creating test that belong to a group
	Running a TestNG group
	Using Eclipse

	Time for action – running a TestNG group through Eclipse
	Using the testng XML

	Time for action – running a TestNG group using the testng XML
	Test that belong to multiple groups
	Time for action – creating a test having multiple groups
	Including and excluding groups
	Time for action – including/excluding groups using the
testng XML
	Using regular expressions
	Time for action – using regular expressions in the testng XML
	Default group
	Time for action – assigning a default group to a set of tests
	Group of groups
	Time for action – running a TestNG group using the testng XML
	Summary

	Chapter 5: Dependencies
	Dependency test
	Test with single test method dependency

	Time for action – creating a test that depends on another test
	Test that depends on multiple tests

	Time for action – creating a test that depends on multiple tests
	Inherited dependency test

	Time for action – creating a test that depends on inherited tests
	Dependent groups
	Time for action – creating a test that depends on a group
	Depending on methods from different classes

	Time for action – depending on a method from a different class
	Using regular expressions
	Time for action – using regular expressions
	XML-based dependency configuration
	Simple group dependency

	Time for action – using simple dependency in XML
	Multigroup dependency

	Time for action – defining multigroup dependency in XML
	Using regular expressions for defining dependency

	Time for action – using regular expressions for dependency
	Summary

	Chapter 6: The Factory Annotation
	What is factory?
	First factory program

	Time for action – first factory test
	Passing parameters to test classes
	Time for action – passing parameters to test classes
	Using DataProvider along with the @Factory annotation
	Time for action – using DataProvider with Factory
	DataProvider or Factory
	Time for action – the DataProvider test
	Time for action – the Factory test
	Dependency with the @Factory annotation
	Time for action – dependency with the @Factory annotation
	Time for action – running a dependency test sequentially
	Summary

	Chapter 7: Parallelism
	Parallelism
	A simple multithreaded test

	Time for action – writing first parallel test
	Running test methods in parallel
	Time for action – running test methods in parallel
	Running test classes in parallel
	Time for action – running test classes in parallel
	Running tests inside a suite in parallel
	Time for action – running tests inside a suite in parallel
	Configuring an independent test method to run in
multiple threads
	Time for action – running independent test in threads
	Advantages and uses
	Summary

	Chapter 8: Using Build Tools
	Build automation
	Advantages of build automation

	Different build tools available
	Ant
	Installing Ant
	Using Ant

	Time for action – using Ant to run TestNG tests
	Different configurations to be used with TestNG task
	Maven
	Installing Maven
	Using Maven

	Time for action – using Maven to run TestNG tests
	Different configurations to be used with Maven

	Summary

	Chapter 9: Logging and Reports
	Logging and reporting
	Writing your own logger
	Time for action – writing a custom logger
	Writing your own reporter
	Time for action – writing a custom reporter
	TestNG HTML and XML report
	Time for action – generating TestNG HTML and XML reports
	Generating a JUnit HTML report
	Time for action – generating a JUnit report
	Generating a ReportNG report
	Time for action – generating a ReportNG report
	ReportNG configuration options

	Generating a Reporty-ng (former TestNG-xslt) report
	Time for action – generating a Reporty-ng report
	Configuration options for Reporty-ng report

	Summary

	Chapter 10: Creating a Test Suite through Code
	Running TestNG programmatically
	Time for action – running TestNG programmatically
	Parameterization of tests
	Time for action – passing parameter values
	Include and exclude
	Include/exclude methods

	Time for action – including test methods
	Include/exclude groups

	Time for action – including/excluding groups
	Dependency test
	Time for action – configuring a dependency test
	Summary

	Chapter 11: Migrating from JUnit
	Running your JUnit tests through TestNG
	Time for action – writing a JUnit test
	Running your JUnit Tests through TestNG using the testng XML

	Time for action – running JUnit tests through TestNG
	Running JUnit and TestNG tests together with TestNG XML

	Time for action – running JUnit and TestNG tests together
	Running JUnit tests along with TestNG through Ant
	Time for action – running JUnit and TestNG tests through Ant
	Migrating from JUnit to TestNG
	Time for action – converting a JUnit test to a TestNG test
	Summary

	Chapter 12: Unit and Functional Testing
	Unit testing with TestNG
	Time for action – unit testing with TestNG
	Assertion with TestNG
	Mocking
	Different mocking strategies

	Mocking with TestNG
	Jmock

	Time for action – using JMock with TestNG
	Mockito

	Time for action – using Mockito
	Functional testing
	TestNG with Selenium
	Time for action – using Selenium with TestNG
	Summary

	Pop Quiz Answers
	Index

