
Visual Studio Performance Testing Quick Reference Guide Page 1

MICROSOFT

Visual Studio Performance
Testing Quick Reference

Guide
A quick reference for users of the Team Testing

performance features of Visual Studio

Visual Studio Performance Testing Quick Reference Guide

4/1/2010

VSTS Rangers

This content was created by Geoff Gray with help from the Visual Studio Rangers team. “Our

mission is to accelerate the adoption of Visual Studio by delivering out of band solutions for

missing features or guidance. We work closely with members of Microsoft Services to make sure

that our solutions address real world blockers.” -- Bijan Javidi, VSTS Rangers Lead

Visual Studio Performance Testing Quick Reference Guide Page 2

Summary
This document is a collection of items from public blog sites, Microsoft® internal discussion aliases

(sanitized) and experiences from various Test Consultants in the Microsoft Services Labs. The idea is to

provide quick reference points around various aspects of Microsoft Visual Studio® performance testing

features that may not be covered in core documentation, or may not be easily understood. The different

types of information cover:

 How does this feature work under the covers?

 How can I implement a workaround for this missing feature?

 This is a known bug and here is a fix or workaround.

 How do I troubleshoot issues I am having?

The document contains two Tables of Contents (high level overview, and list of every topic covered) as

well as an index. The current plan is to update the document on a regular basis as new information is

found.

The information contained in this document represents the current view of Microsoft Corporation

on the issues discussed as of the date of publication. Because Microsoft must respond to changing

market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and

Microsoft cannot guarantee the accuracy of any information presented after the date of

publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Microsoft grants you a license to this document under the terms of the Creative Commons

Attribution 3.0 License. All other rights are reserved.

 2010 Microsoft Corporation.

Microsoft, Active Directory, Excel, Internet Explorer, SQL Server, Visual Studio, and Windows are

trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

Visual Studio Performance Testing Quick Reference Guide Page 3

Revision History
 Version 2.0

o Released 2/16/09

o Available externally on CodePlex

o Major reformat of document

o Added comprehensive index

 Version 3.0

o Release Candidate published 3/23/2010

o Added many VS 2010 performance testing articles

o Added and updated articles about VS 2010 how-to’s, issues, etc.

o Added or updated articles for features “changed in 2010”

o Updated many articles on issues with VS 2008

o Added some deep dive articles about how VS performance testing works (both 2008 and

2010)

 Version 3.0a

o Final release version for 3.0. This is the official release that should be used.

o Published on 4/1/2010

NOTE
All items that are not marked with a version note should be considered to apply to both VS 2008 and VS 2010

Visual Studio Performance Testing Quick Reference Guide Page 4

List of Topics

NOTE FROM THE AUTHOR 8

HOW IT WORKS 9

How Web Tests Handle HTTP Headers 9

General Info (including order of execution) of load and web test plugins and rules 9

Client Code does not execute because Web Tests Work at the HTTP Layer 12

File Downloads, Download Size and Storage of files during Web Tests 12

When is the “Run unit tests in application domain” needed? 12

How the “Test Iterations” Setting impacts the total number of tests executed 12

Test timeout setting for load test configuration does not affect web tests 13

How user pacing and “Think Time Between Test Iterations” work 13

Load test warmup and cool down behaviors 13

What is the difference between Unique, Sequential and Random Data Sources 14

Comparing new users to return users 14

Goal based user behavior after the test finishes the warmup period 17

Threading models in Unit tests under load 18

Simulation of Browser Caching during load tests 19

The difference between Load Test Errors and Error Details 20

How parameterization of HIDDEN Fields works in a webtest 21

Testing execution order in Unit Tests 23

How machines in the test rig communicate 25

Changing the Default Port for Agent-Controller Communication 26

How to Add Agents To A Test Rig 26

ITEMS NEW TO VS 2010 27

“Find” feature now available in Webtest playback UI 27

“Go To Web Test” feature now available in Webtest playback UI 28

Recorder Log Available 29

Add extraction rule directly from the playback UI 30

New “Reporting Name” property for web requests 31

LoadTestResultsTables now differentiate between GET and POST requests 32

Virtual user visualization now available 33

New Excel reporting features built into load test results 39

New Load Test and Load Test Rig Licensing and configurations 40

New test mix: “Sequential Test Mix” 44

Query String and FORM POST URLs get parameterized 46

New options on Load Test Scenarios 47

Loops and Conditionals 48

CONFIGURATIONS AND SETTINGS 50

How to Change the Location Where Agents Store Run Files 50

How to set a proxy server for web tests 50

How to configure Web Tests so Fiddler can capture playback info 50

Visual Studio Performance Testing Quick Reference Guide Page 5

Controlling the amount of memory that the SQL Server Results machine consumes 51

How to configure the timeouts for deployment of load tests to agents 51

How to set the number of Load Test Errors and Error Details saved 52

Multi-proc boxes used as agents should have .NET garbage collection set to server mode 53

Location of list of all agents available to a controller 53

NETWORKS, IP SWITCHING, TEST STARTUPS 54

IP Address Switching anatomy (how it works) 54

Gotcha: IP Address Switching is ONLY for WEB TESTS 54

Gotcha: IP Addresses used for switching are not permanent 54

How to Setup IP Switching 55

Troubleshooting invalid view state and failed event validation 58

Startup: Slowness Restarting a Test Rig with Agents Marked as “Offline” 58

Startup: Multiple Network Cards can cause tests in a rig to not start 59

Startup: Slow startup can be caused by _NT_SYMBOL_PATH environment variable 59

Startup: tests on a Rig with Agents on a Slow Link 60

“Not Bound” Exception when using IP Switching is not really an error 60

How to configure the timeout for deployment of load tests to agents 61

PERFORMANCE COUNTERS AND DATA 62

Customizing the Available Microsoft System Monitor counter sets 62

Performance Counter Considerations on Rigs with slow links 64

Increase the performance counter sampling interval for longer tests 65

Changing the default counters shown in the graphs during testing 65

Possible method for fixing “missing perfmon counters” issues 65

How and where Performance data gets collected 66

DATA AND RESULTS 67

Custom Data Binding in UNIT Tests 67

Verifying saved results when a test hangs in the “In Progress” state after the test has finished 67

The metrics during and after a test differ from the results seen. 68

How new users and return users affect caching numbers 69

data sources for data driven tests get read only once 70

Consider including Timing Details to collect percentile data 71

Consider enabling SQL Tracing through the Load Test instead of separately 72

How to collect SQL counters from a non-default SQL instance 72

How 90% and 95% response times are calculated 72

Transaction Avg. Response Time vs. Request Avg. Response Time 73

Considerations for the location of the Load Test Results Store 73

Set the recovery model for the database to simple 73

How to clean up results data from runs that did not complete 74

InstanceName field in results database are appended with (002), (003), etc. 74

Layout for VSTS Load Test Results Store 74

How to view Test Results from the GUI 75

SQL Server Reporting Services Reports available for download 75

How to move results data to another system 75

Load Test Results without SQL NOT stored 76

Visual Studio Performance Testing Quick Reference Guide Page 6

Unable to EXPORT from Load Test Repository 76

Web Test TRX file and the NAN (Not a Number) Page Time entry 77

Proper understanding of TRX files and Test Results directory 78

Understanding the Response Size reported in web test runs 79

ERRORS AND KNOWN ISSUES 80

CSV files created in VSTS or saved as Unicode will not work as data sources 80

Incorrect SQL field type can cause errors in web tests 80

Leading zeroes dropped from datasource values bound to a CSV file 80

Recorded Think Times and paused web test recordings 80

After opening a webtest with the VS XML Editor, it will not open in declarative mode. 81

Calls to HTTPS://Urs.Microsoft.Com show up in your script 81

Possible DESKTOP HEAP errors when driving command line unit tests 81

Goal based load tests in VSTS 2008 do not work after applying SP1 82

Using Named Transactions in a Goal-Based Load Profile can cause errors 82

Debugging Errors in Load Tests 83

Debugging OutOfMemory Exceptions in Load Tests 83

Memory leak on load test when using HTTPS 83

“Not Trusted” error when starting a load test 84

Detail Logging may cause “Out of disk space” error 85

Error details and stack traces no longer available in VSTS 2010 85

VSTS does not appear to be using more than one processor 85

Changes made to Web Test Plugins may not show up properly 85

Socket errors or “Service Unavailable” errors when running a load test 86

Error “Failed to load results from the load test results store” 87

Hidden Field extraction rules do not handle some fields 87

Test results iteration count may be higher than the max test iterations set 87

In flight test iterations may not get reported 88

Completion of Unit Test causes spawned CMD processes to terminate 88

Bug with LoadProfile.Copy() method when used in custom goal based load tests 89

Errors in dependent requests in a Load Test do not show up in the details test log 90

WCF service load test gets time-outs after 10 requests 92

Loadtestitemresults.dat size runs into GBs 92

TROUBLESHOOTING 93

How to enable logging for test recording 93

Diagnosing and fixing Web Test recorder bar issues 93

User Account requirements and how to troubleshoot authentication 94

How to enable Verbose Logging on an agent for troubleshooting 95

Error that Browser Extensions are disabled when recording a web test 95

Troubleshooting invalid view state and failed event validation 96

Troubleshooting the VSTS Load Testing IP Switching Feature 97

Troubleshooting Guide for Visual Studio Test Controller and Agent 99

HOW TO, GOTCHAS AND BEST PRACTICES 111

How to call one coded web test from another 111

How to use methods other than GET and POST in a web test 111

Visual Studio Performance Testing Quick Reference Guide Page 7

How to filter out certain dependent requests 111

How to handle ASP.NET Cookie-less Sessions 112

How to use Client-side certificates in web tests 112

How to remove the “If-Modified-Since” header from dependent requests 113

How to handle custom data binding in web tests 113

How to add a datasource value to a context parameter 113

How to test Web Services with Unit Tests 114

How to add random users to web tests 114

How to add think time to a Unit Test 114

How to add details of a validation rule to your web test 115

How to mask a 404 error on a dependent request 116

How to parameterize Web Service calls within Web Tests 117

How to pass Load Test Context Parameters to Unit Tests 117

How to create Global Variables in a Unit Test 117

How to use Unit Tests to Drive Load with Command Line Apps 118

How to add Console Output to the results store when running Unit tests under load 118

How to add parameters to Load Tests 119

How to Change the Standard Deviation for a NormalDistribution ThinkTime 119

How to programmatically access the number of users in Load Tests 120

How to create a webtest plugin that will only execute on a predefined interval 120

How to support Context Parameters in a plug-in property 121

How to stop a web test in the middle of execution 122

How To: Modify the ServicePointManager to force SSLv3 instead of TLS (Default) 122

How To: Stop a Test in the PreRequest event 123

How to make a validation rule force a redirection to a new page 123

How to add a Web Service reference in a test project 127

How to remotely count connections to a process 129

How to hook into LoadTest database upon completion of a load test 129

How to deploy DLLs with MSTEST.EXE 130

How to authenticate with proxy before the test iteration begins 131

How to enumerate WebTextContext and Unit TestContext objects 132

How to manually move the data cursor 132

How to programmatically create a declarative web test 133

How to modify the string body programmatically in a declarative web test 134

Gotcha: Check Your Validation Level in the Load Test Run Settings 134

Gotcha: Do not adjust goals too quickly in your code 134

Gotcha: Response body capture limit is set to 1.5 MB by default 134

Gotcha: Caching of dependent requests is disabled when playing back Web Tests 135

Best Practice: Blog on various considerations for web tests running under load 135

Best Practice: Coded web tests and web test plug-ins should not block threads 135

Best Practice: considerations when creating a dynamic goal based load test plugin: 136

Best Practice: Add an Analysis Comment 136

Best Practice – Using comments in declarative webtests 136

EXTENSIBILITY 138

New Inner-text and Select-tag rules published on Codeplex 138

Visual Studio Performance Testing Quick Reference Guide Page 8

How to Add Custom Tabs to the Playback UI 139

ITEMS NOT SPECIFIC TO THE VSTS TESTING PLATFORM 146

Using the VSTS Application Profiler 146

VSTS 2008 Application Profiler New Features 146

Using System.NET Tracing to debug Network issues 146

Logparser tips and tricks 147

Logparser WEB Queries 147

LogParser Non-Web Queries 148

OLDER ARTICLES 149

Content-Length header not available in Web Request Object 149

SharePoint file upload test may post the file twice 149

Some Hidden Fields are not parameterized within AJAX calls 149

(FIX) Unit Test threading models and changing them 149

Bug in VSTS 2008 SP1 causes think time for redirected requests to be ignored in a load test 150

New Load Test Plugin Enhancements in VSTS 2008 SP1 150

Four New Methods added to the WebTestPlugin Class for 2008 SP1 150

INDEX 151

Note from the author
This new version of the Quick Reference Guide has been rearranged to attempt to make things easier to

find. Many of the sub-topics have been removed and all of the main topics have been changed to reflect

actions or needs instead of the components of the tool.

There is a full section near the beginning just on new features in Visual Studio 2010. This list is not even

close to complete WRT all of the new Performance Testing features, let alone the tons of other testing

features in general. You will also find information about changes to 2010 and issues with 2010

throughout the rest of the document. All of these should have a balloon stating that it is new or

different.

Also please note that the Microsoft Visual Studio team has renamed the suite. Now the full suite (which

contains the load testing features) is called “Visual Studio Ultimate”. Therefore you will see me referring

to much of the 2010 stuff with “VS 2010” as opposed to the older style “VSTS 2008”.

Thanks to all of the people who have contributed articles and information. I look forward to hearing

feedback as well as suggestions moving forward.

Sincerely,

Geoff Gray, Senior Test Consultant – Microsoft Testing Services Labs

Visual Studio Performance Testing Quick Reference Guide Page 9

How It Works

How Web Tests Handle HTTP Headers

There are three different types of HTTP headers handled by Web tests:
1) Recorded Headers and headers explicitly added to the request. By default, the Web test

recorder only records these headers:

 “SOAPAction”

 “Pragma”

 “x-microsoftajax”

 ”Content-Type”

2) You can change the list of headers that the Visual Studio 2008 and 2010 web test recorder

records in the registry by using regedit to open:

 HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\9.0\EnterpriseTools\QualityTools\Web

LoadTest

 Add a string value under this key with the name "RequestHeadersToRecord” and

value="SOAPAction;Pragma;x-microsoftajax;Content-Type; Referrer"

If you do this and re-record your Web test, the Referrer header should be included in the request like

this:

Referrer header in a declarative web test

3) Headers handled automatically by the engine. Two examples: 1) headers sent and received as

part of authentication. These headers are handled in the Web test engine and can’t be

controlled by the test. 2) cookies, which can be controlled through the API.

General Info (including order of execution) of load and web test plugins and rules

WebTestPlugins get tied to a webtest at the main level of the test. The order of precedence is:
class WebTestPluginMethods : WebTestPlugin

 {

 public override void PreWebTest(object sender, PreWebTestEventArgs e) { }

 public override void PreTransaction(object sender, PreTransactionEventArgs e) {}

 public override void PrePage(object sender, PrePageEventArgs e) {}

Visual Studio Performance Testing Quick Reference Guide Page 10

 public override void PreRequestDataBinding(object sender,

PreRequestDataBindingEventArgs e) {}

 public override void PreRequest(object sender, PreRequestEventArgs e) {}

 public override void PostRequest(object sender, PostRequestEventArgs e) {}

 public override void PostPage(object sender, PostPageEventArgs e) {}

 public override void PostTransaction(object sender, PostTransactionEventArgs e) { }

 public override void PostWebTest(object sender, PostWebTestEventArgs e) { }

 }

 PreWebTest fires before the first request is sent.

 PreTransaction is fired before all user defined transaction in the test.

 PrePage fires before any explicit request in the webtest. It also fires before any

PreRequest method.

 PreRequestDataBinding fires before data from the context has been bound into

the request. Gives an opportunity to change the data binding.

 PreRequest fires before ALL requests made, including redirects and dependant

requests. If you want it to act on only redirects, or skip redirects. use the

e.Request.IsRedirectFollow property to handle code flow.

 All Post<method> follow the exact opposite order as the Pre<method>

WebTestRequestPlugins get set at an individual request level and only operate on the request(s) they

are explicitly tied to, and all redirects/dependant requests of that request.

class WebTestRequestPluginMethods : WebTestRequestPlugin

 {

 public override void PreRequestDataBinding(object sender,

PreRequestDataBindingEventArgs e) {}

 public override void PreRequest(object sender, PreRequestEventArgs e) { }

 public override void PostRequest(object sender, PostRequestEventArgs e) { }

 }

ValidationRules can be assigned at the request level and at the webtest level. If the rule is assigned at

the webtest level, it will fire after every request in the webtest. Otherwise it will fire after the request it

is assigned to.

public class ValidationRule1 : ValidationRule

 {

 public override void Validate(object sender, ValidationEventArgs e) { }

 }

ExtractionRules can be assigned at the request level. It will fire after the request it is assigned to.

public class ExtractionRule1 : ExtractionRule

 {

 public override void Extract(object sender, ExtractionEventArgs e) { }

 }

NOTE: If you have multiple items attached to a request, then the order of

precedence is:

1) PostRequest (request plugins fire before WebTestRequest plugins)

2) Extract

3) Validate

Visual Studio Performance Testing Quick Reference Guide Page 11

LoadTestPlugins get tied to the load tests directly. With VS 2005 and VS 2008, there can be only 1

plugin per loadtest, while VS 2010 adds >1 per test as well as LoadTestPlugin properties such that they

are consistent with WebTestPlugins. The methods available are divided into three categories as shown

below:

class LoadTestPlugins : ILoadTestPlugin

 {

 void LoadTest_LoadTestStarting(object sender, EventArgs e) { }

 void LoadTest_LoadTestFinished(object sender, EventArgs e) { }

 void LoadTest_LoadTestAborted(object sender, LoadTestAbortedEventArgs e) { }

 void LoadTest_LoadTestWarmupComplete(object sender, EventArgs e) { }

 void LoadTest_TestFinished(object sender, TestFinishedEventArgs e) { }

 void LoadTest_TestSelected(object sender, TestSelectedEventArgs e) { }

 void LoadTest_TestStarting(object sender, TestStartingEventArgs e) { }

 void LoadTest_ThresholdExceeded(object sender, ThresholdExceededEventArgs e) { }

 void LoadTest_Heartbeat(object sender, HeartbeatEventArgs e) { }

 }

1) These fire based on the load test (meaning each one will fire only once during a full test run)

2) These fire once per test iteration, per vUser.

3) Heartbeat fires once every second, on every agent.

4) ThresholdExceeded fires each time a given counter threshold is exceeded.

NOTE: Each method in section 1 will fire once PER physical agent machine, however since the agent

machines are independent of each other, you do not need to worry about locking items to avoid

contention.

NOTE: If you create or populate a context parameter inside the LoadTest_TestStarting method, it will

not carry across to the next iteration.

 In VSTS 2010, you can have more than one LoadTest plugin, although there is no guarantee about

the order in which they will execute.

 You can now control whether a validation rule fires BEFORE or AFTER dependent requests.

 at the end of recording a Web test, we now automatically add a Response Time Goal Validation rule

at the Web test level, but this doesn’t help much unless you click on the Toolbar button that lets you

edit the response time goal as well as Think Time and Reporting Name for the Page for all recorded

requests in a single grid

1

2

3

Changed in 2010

Visual Studio Performance Testing Quick Reference Guide Page 12

Client Code does not execute because Web Tests Work at the HTTP Layer

The following blog outlines where and how web tests work. This is important to understand if you are

wondering why client side code is not tested.

http://blogs.msdn.com/slumley/pages/web-tests-work-at-the-http-layer.aspx

File Downloads, Download Size and Storage of files during Web Tests

The web test engine does not write responses to disk, so you don’t need to specify a location for the file.

It does read the entire response back to the client, but only stores the first 1.5M of the response in

memory

You can override that using the WebTestRequest.ResponseBodyCaptureLimit property in the

request’s section of a coded web test.

When is the “Run unit tests in application domain” needed?

When a unit test is run by itself, a separate application domain is created in the test process for each

unit test assembly. There is some overhead associated with marshalling tests and test results across the

application domain boundary. An app domain is created by default when running unit tests in a load

test. You can turn off the app domain using the load test run by using the Load Test editor’s Run

Setting’s “Run unit tests in application domain”. This provides some performance boost in terms of the

number of tests per second that the test process can execute before running out of CPU. The app

domain is required for unit tests that use an app.config file.

How the “Test Iterations” Setting impacts the total number of tests executed

In the properties for the Run Settings of a load test, there is a property called “Test Iterations” that tells

VSTS how many tests iterations to run during a load test. This is a global setting, so if you choose to run

5 iterations and you have 10 vusers, you will get FIVE total passes, not fifty. NOTE: you must enable this

setting by changing the property “Use Test Iterations” from FALSE (default) to TRUE.

http://blogs.msdn.com/slumley/pages/web-tests-work-at-the-http-layer.aspx

Visual Studio Performance Testing Quick Reference Guide Page 13

Test timeout setting for load test configuration does not affect web tests

The “Test Timeout” setting in the Test Run Configuration file (in the “Test -> Edit Test Run Configuration”

menu) does not have an effect in all cases.

 Uses the setting

o Running a single unit test, web test, ordered test, or generic test by itself

o Running any of the above types of tests in a test run started from Test View, the Test

List editor, or mstest.

o Tests running in a load test (except Web tests)

 Does not use the setting

o Running a Web test in a load test

o The load test itself

This particular test timeout is enforced by the agent test execution code, but load test and Web test

execution are tightly coupled for performance reasons and when a load test executes a Web test, the

agent test execution code that enforces the test timeout setting is bypassed.

How user pacing and “Think Time Between Test Iterations” work

The setting “Think Time Between Test Iterations” is available in the properties for a load test scenario.

This value is applied when a user completes one test, then the think time delay is applied before the

user starts the next iteration. The setting applies to each iteration of each test in the scenario mix.

If you create a load test that has a test mix model “Based on user pace”, then the pacing calculated by

the test engine will override any settings you declare for “Think Time Between Test Iterations”.

Load test warmup and cool down behaviors

For information about how warmup and cooldown affect the results, see the next section.

Warmup:

When you set a warmup time for a load test, VSTS will start running test iterations with a single

user, and will ramp up to the proper initial user count over the duration of the warmup. The number

of users ramped up are as follows:

o Constant User Load – the total number of users listed

o Step Load Pattern – the initial user count. The test will ramp from this number to the

maximum number of users during the actual test run.

Cool down:

In 2008

The Load test Terminate method does not fire unless you use a cool down period.

In 2010

The Load test Terminate method always fires.

Changed in 2010

Visual Studio Performance Testing Quick Reference Guide Page 14

What is the difference between Unique, Sequential and Random Data Sources

Single Machine running tests

Sequential – This is the default and tells the web test to start with the first row then fetch rows in order

from the data source. When it reaches the end of the data source, loop back to the beginning and start

again. Continue until the load test completes. In a load test, the current row is kept for each data source

in each web test, not for each user. When any user starts an iteration with a given Web test, they are

given the next row of data and then the cursor is advanced.

Random – This indicates to choose rows at random. Continue until the load test completes.

Unique – This indicates to start with the first row and fetch rows in order. Once every row is used, stop

the web test. If this is the only web test in the load test, then the load test will stop.

Multiple machines running as a rig

Sequential – This works that same as if you are on one machine. Each agent receives a full copy of the

data and each starts with row 1 in the data source. Then each agent will run through each row in the

data source and continue looping until the load test completes.

Random – This also works the same as if you run the test on one machine. Each agent will receive a full

copy of the data source and randomly select rows.

Unique – This one works a little differently. Each row in the data source will be used once. So if you

have 3 agents, the data will be spread across the 3 agents and no row will be used more than once. As

with one machine, once every row is used, the web test will stop executing.

Comparing new users to return users

There is a property in the Load Test Scenario settings for “Percentage of new users”. This setting has

impact on a few different aspects of the load test execution. The percentage is a measure of how many

of the simulated users are pretending to be “brand new” to the site, and how many are pretending to be

“users who have been to the site before”.

A better term to describe a new user is “One Time User”. This is because a new user goes away at

the end of its iteration. It does not “replace” a different user in the pool. Therefore, the term “New

User” should be considered to be a “One Time” user.

Visual Studio Performance Testing Quick Reference Guide Page 15

The “Percentage of New Users” affects the following whether the tests contained within the load test

are Web tests or unit tests:

 The value of the LoadTestUserId in the LoadTestUserContext object. This only matters for unit

tests and coded Web tests that use this property in their code. On the other hand if you set

the number of test iterations equal to the user load, then you should get a different

LoadTestUserId regardless of the setting of “Percentage of New Users”.

 If you are using the load test feature that allows you to define an “Initial Test” and/or a

“Terminate Test” for a virtual user, then it affects when the InitializeTest and TerminateTest are

run: for “new users” (a more accurate name might be “one time users”, the InitializeTest is run

for the virtual user, the “Body Test” is run just once, and then the “Terminate Test” is run. For

users who are NOT “new users”, the InitializeTest is run once, the Body Test is run many times

(until the load test completes), and then the TerminateTest runs (which might be during the

cool-down period).

The “Percentage of New Users” affects the following Web test features that are not applicable for unit

tests:

 The simulation of browser caching. The option affects how the VUser virtual browser cache is

maintained between iterations of Tests. “New users” have an empty cache (not the responses

are not actually cached, only the urls are tracked), “return users” have a cache. So if this value is

100% all Vusers starting a Test will be starting with an empty browser cache. If this value is 0%

all VUsers will maintain the state of the browser cache between iterations of Web Tests. This

setting affects the amount of content that is downloaded. If an object sits in a Vuser cache and if

the object has not been modified since the last time the Vuser downloaded it, the object will not

be downloaded. Therefore, new users will download more content versus returning users with

items it their browser cache.

 The handling of cookie for a Web test virtual user: new users always start running a Web test

with all cookies cleared. When a user who is not a “new user” runs an Web test after the first

one run, the cookies set during previous Web tests for that virtual user are present.

Visual Studio Performance Testing Quick Reference Guide Page 16

The below graphs (taken from test runs in VSTS 2010) demonstrate the difference between a new user

and a return user. The graphs are based on a 10 user / 50 iteration run, but with different percentages

for “new users” on each run. NOTE: The graphs below are new to VSTS 2010, but the way in which users

are simulated is the same as in VSTS 2008. For a better understanding of these graphs, go to the section

called “Virtual user visualization now available”.

Zero percent new users shows a graph where each of the 10 vusers is constantly reused.

Fifty percent new users shows a graph where each of the 10 vusers is constantly reused by half of the

iterations, but the other half are split out among new vusers which never get reused.

One hundred percent new users shows a graph where none of the vusers is ever reused.

Visual Studio Performance Testing Quick Reference Guide Page 17

Goal based user behavior after the test finishes the warmup period

1. The user load starts at the value specified by the Initial User Count property of the Goal Based

Load Pattern.

2. At each sampling interval (which defaults to 5 seconds, but can be modified by the “Sample

Rate” property in the load test run settings), the performance counter defined in the goal based

load pattern is sampled. (If it can’t be sampled for some reason, an error is logged and the user

load remains the same.)

3. The value sampled is compared with the “Low End” and “High End” properties of the “Target

Range for Performance Counter”.

4. If the value is within the boundaries of the “Low End” and “High End”, the user load remains the

same.

5. If the value is not within the boundaries of the “Low End” and “High End”, the user load is

adjusted as follows:

 The midpoint of the target range for the goal is divided by the sample valued for the goal

performance counter to calculate an “adjustment factor”.

 For example, if the goal is defined as “% Processor Time” between 50 and 70, the midpoint

is 60. If the sampled value for % Processor Time is 40, then AdjustmentFactor = 60/40 =

1.5, or if the sampled value is 80, the AdjustmentFactor = 60/80 = 0.75.

 The AdjustmentFactor is multiplied by the current user load to get the new user load.

 However, if the difference between the new user load and the current user load is greater

than the “Maximum User Count Increase/Decrease” property (whichever applies), then the

user load is only adjusted by as much as max increase/decrease property. My experience

has been that keeping these values fairly small is a good idea; otherwise the algorithm tends

to cause too much fluctuation (the perf counter keeps going above and below the target

range).

 The new user load can also not be larger than the value specified by the goal based pattern’s

MaximumUserCount property or less than the Minimum User Count property.

 Two more considerations based on special properties of the goal based load pattern:

o If the property “Lower Values Imply Higher Resource Use” is True (which you might

use for example for a performance count such as Memory\Available Mbytes), then

the user load is adjusted in the opposite direction: the user load is decreased when

the sampled counter value is less than the Low End of the target range and

increased when the user load is greater than the High End of the target range.

o If the property “Stop Adjusting User Count When Goal Achieved” is True, then once

the sampled goal performance counter is within the target range for 3 consecutive

sampling intervals, then the user load is no longer adjusted and remains constant

for the remainder of the load test.

 Lastly, as is true for all of the user load patterns, in a test rig with multiple agents, the new

user load is distributed among the agents equally by default, or according to the “Agent

Weightings” if these are specified in the agent properties.

Visual Studio Performance Testing Quick Reference Guide Page 18

Threading models in Unit tests under load

When running unit tests in a load test, there is one thread for each virtual user that is currently running

a unit test. The load test engine doesn’t know what’s going on inside the unit test and needs to run each

on a separate thread to ensure that a thread will be available to start the next unit test without delay.

However, if you specify the Test Mix Based on User Pace feature (or specify a non-zero value for “Think

Time Between Test Iterations” (a property on each Scenario in the load test)), then the number of

concurrent virtual users is less than the total number of virtual users, and there is only one thread

needed in the thread pool for each concurrent virtual user.

There is an extra thread for each unit test execution thread that is used to monitor the execution of the

unit test, implement timing out of the test, etc. However, the stack size for this thread is smaller than

the default size so it should take up less memory.

More information can be found at: http://blogs.msdn.com/billbar/pages/features-and-behavior-of-load-

tests-containing-unit-tests-in-vsts-2008.aspx

http://blogs.msdn.com/billbar/pages/features-and-behavior-of-load-tests-containing-unit-tests-in-vsts-2008.aspx
http://blogs.msdn.com/billbar/pages/features-and-behavior-of-load-tests-containing-unit-tests-in-vsts-2008.aspx

Visual Studio Performance Testing Quick Reference Guide Page 19

Simulation of Browser Caching during load tests

In a VSTS load test that contains Web tests, the load test attempts to simulate the caching behavior of

the browser. Here are some notes on how that is done:

 There is a property named on each request in a Web test named “Cache Control” in the Web

test editor (and named “Cache” on the WebTestRequest object in the API used by coded Web

tests).

 When the Cache Control property on a request in the Web test is false, the request is always

issued.

 When the Cache Control property is true, the VSTS load test runtime code attempts to emulate

the Internet Explorer caching behavior (with the “Automatically” setting).This includes reading

and following the HTTP cache control directives.

 The Cache Control property is automatically set to true for all dependent requests (typically for

images, style sheets, etc embedded on the page).

 In a load test, the browser caching behavior is simulated separately for each user running in the

load test.

 When a virtual user in a load test completes a Web test and a new Web test session is started to

keep the user load at the same level, sometimes the load test starts simulates a “new user” with

a clean cache, and sometimes the load test simulates a return user that has items cached from a

previous session. This is determined by the “Percentage of New Users” property on the

Scenario in the load test. The default for “Percentage of New Users” is 0.

Important Note: When running a Web test by itself (outside of the load test), the Cache Control

property is automatically set to false for all dependent requests so they are always fetched; this is so

that they can be displayed in the browser pane of the Web test results viewer without broken images.

Visual Studio Performance Testing Quick Reference Guide Page 20

The difference between Load Test Errors and Error Details

There's a distinction between "Errors" and "Error Details" within Load Test results.

1. “Load Test Errors” refers to any type of error that occurs in the load test. The info saved is the

user/requestURI/error text information. By default the load test results will save only 1000

errors of a particular type. This value is configured through a config file.

2. "Load Test Error Details" refers to the additional detail we capture for errors on Web test

requests: mostly the request and response body. The default value is 100. This value is

configured in the Load Test GUI.

 This is the display of the Errors table in the test results viewer.

Each of these is a separate type of
error and gets its own quantity of
“errors” (#1) and “error details” (#2)

The number of “errors” is shown in
the Count column. Clicking on one
of the numbers will bring up the
Load Test Errors dialog below. There
is no count displayed for “error
details”.

Each line here is one of the
“errors” entries (#1).

Any “errors” entry (#1) that has an associated “error details” will
have a link in one or both of the last columns. Click on these to
get the details about that specific error instance.

Visual Studio Performance Testing Quick Reference Guide Page 21

How parameterization of HIDDEN Fields works in a webtest

For each extract hidden fields (using the built in “Extract Hidden”) rule in a webtest, any context items

with the same name will be removed prior to extracting the new values. So if request 1 extracts 4

hidden values into a context “Hidden1”, then request 2 extracts only 2 hidden values, also into a context

called “Hidden 1”, then the resultant collection for “Hidden1” will contain ONLY the two values

extracted for request 2.

“Hidden Field Buckets”

In the example above, Hidden1 and Hidden2 represent hidden field buckets. We call the number at the

end as the bucket number, e.g. $HIDDEN0 is bucket 0.

The easiest example to explain is a frames page with two frames. Each frame will have an independent

bucket, and requests can be interleaved across the frames. Other examples that require multiple

buckets are popup windows and certain AJAX calls (since web tests support correlation of viewstate in

ASP.NET AJAX responses).

Hidden field matching

The algorithm to determine that a given request matches a particular bucket uses the heuristic that the

hidden fields parsed out of the response will match form post fields on a subsequent request.

E.g. if the recorder parses out of a response

 <INPUT type=hidden ID=Field1 value=v1>

 <INPUT type=hidden ID=Field2 value=v2>

Then on a subsequent post we see Field1 and Field2 posted, then this request and response match and a

hidden field bucket will be created for them. The first available bucket number is assigned to the hidden

field bucket.

Once a bucket is “consumed” by a subsequent request via binding, that bucket is made available again.

So if the test has a single frame, it will always reuse bucket 0:

 Page 1

o Extract bucket 0

 Page 2

o Bind bucket 0 params

 Page 3

o Extract bucket 0

 Page 4

o Bind bucket 0 params

If a test has 2 frames that interleave requests, it will use two buckets:

Visual Studio Performance Testing Quick Reference Guide Page 22

 Frame 1, Page 1

o Extract bucket 0

 Frame 2, Page 1

o Extract bucket 1

 Frame 2, Page 2

o Bind bucket 1 params

 Frame 1, Page 2

o Bind bucket 0 params

Or if a test uses a popup window, or Viewstate, you would see a similar pattern as the frames page

where multiple buckets are used to keep the window state.

Why are some fields unbound?

Some hidden fields values are modified in java script, such as EVENT_ARGUMENT. In that case, it won’t

work to simply extract the value from the hidden field in the response and play it back. If the recorder

detects this is the case, it put the actual value that was posted back as the form post parameter value

rather than binding it to the hidden field.

A single page will have have just one hidden field extraction rule applied. If there are multiple forms on a

given page, there is still just one down-stream post of form fields, resulting in one application of the

hidden field extraction rule.

Visual Studio Performance Testing Quick Reference Guide Page 23

Testing execution order in Unit Tests

I think that most confusion comes from some user’s expectation of MSTest to execute like the Nunit

framework. They execute differently since Nunit instantiates a test class only once when executing all

the tests contained in it, whereas MSTest instantiates each test method’s class separately during the

execution process, with each instantiation occurring on a separate thread. This design affects 3 specific

things which often confuse users of MSTest:

1. ClassInitialize and ClassCleanup: Since ClassInitialize and ClassCleanUp are static, they are only

executed once even though several instances of a test class can be created by MSTest.

ClassInitialize executes in the instance of the test class corresponding to the first test method in

the test class. Similarly, MSTest executes ClassCleanUp in the instance of the test class

corresponding to the last test method in the test class.

2. Execution Interleaving: Since each instance of the test class is instantiated separately on a

different thread, there are no guarantees regarding the order of execution of unit tests in a

single class, or across classes. The execution of tests may be interleaved across classes, and

potentially even assemblies, depending on how you chose to execute your tests. The key thing

here is – all tests could be executed in any order, it is totally undefined.

3. TextContext Instances: TestContexts are different for each test method, with no sharing

between test methods.

For example, if we have a Test Class:

[TestClass]

 public class VSTSClass1

 {

 private TestContext testContextInstance;

 public TestContext TestContext

 {

 get

 {

 return testContextInstance;

 }

 set

 {

 testContextInstance = value;

 }

 }

 [ClassInitialize]

 public static void ClassSetup(TestContext a)

 {

 Console.WriteLine("Class Setup");

 }

 [TestInitialize]

 public void TestInit()

 {

 Console.WriteLine("Test Init");

 }

http://blogs.msdn.com/vstsqualitytools/comments/511030.aspx

Visual Studio Performance Testing Quick Reference Guide Page 24

[TestMethod]

 public void Test1()

 {

 Console.WriteLine("Test1");

 }

 [TestMethod]

 public void Test2()

 {

 Console.WriteLine("Test2");

 }

 [TestMethod]

 public void Test3()

 {

 Console.WriteLine("Test3");

 }

 [TestCleanup]

 public void TestCleanUp()

 {

 Console.WriteLine("TestCleanUp");

 }

 [ClassCleanup]

 public static void ClassCleanUp ()

 {

 Console.WriteLine("ClassCleanUp");

 }

 }

(This consists of 3 Test Methods, ClassInitialize, ClassCleanup, TestInitialize, TestCleanUp and an explicit

declaration of TestContext)

The execution order would be as follows:

Test1 [Thread 1]: new TestContext -> ClassInitialize -> TestInitialize -> TestMethod1 ->
TestCleanUp
Test2 [Thread 2]: new TestContext -> TestInitialize -> TestMethod2 -> TestCleanUp
Test3 [Thread 3]: new TestContext -> TestInitialize -> TestMethod2 -> TestCleanUp ->
ClassCleanUp

The output after running all the tests in the class would be:

Class Setup

Test Init

Test1

TestCleanUp

Test Init

Test2

TestCleanUp

Test Init

Test3

TestCleanUp

ClassCleanUp

Visual Studio Performance Testing Quick Reference Guide Page 25

How machines in the test rig communicate

The below Visio diagrams that shows which ports are used during setup and when the agent and

controller run tests.

 Controller-Agent Communications

And here are the connections used during agent setup:

Visual Studio Performance Testing Quick Reference Guide Page 26

 Controller-Agent Communications

Changing the Default Port for Agent-Controller Communication

The default port for communication is 6910. To change this, see the following post:

http://blogs.msdn.com/billbar/archive/2007/07/31/configuring-a-non-default-port-number-for-the-vs-

team-test-controller.aspx

How to Add Agents To A Test Rig

When you uninstall the controller software and reinstall it, the local user group that contains the agent

accounts used to connect is reset. You must repopulate the group with the appropriate users. From

Start -> Run, type in “lusrmgr.msc” and then expand the Groups items and open the

“TeamTestAgentService” group. Add the user account(s) used when setting up your agents.

Next, open VSTS and open up the Test Rig Management dialog (Test -> Administer Test Controllers) and

add each agent back to the list.

Or if you have VS 2010, you can go to each agent and re-run the config tool, which will automatically add

the agent back to the controller.

http://blogs.msdn.com/billbar/archive/2007/07/31/configuring-a-non-default-port-number-for-the-vs-team-test-controller.aspx
http://blogs.msdn.com/billbar/archive/2007/07/31/configuring-a-non-default-port-number-for-the-vs-team-test-controller.aspx

Visual Studio Performance Testing Quick Reference Guide Page 27

Items new to VS 2010

 “Find” feature now available in Webtest playback UI

In VS 2010, you can now directly search for values in the playback window of the UI. With the playback

window active, press Ctrl-F to open the “find” dialog box. You then type in the phrase to search for. You

can also choose whether to look in the request, the response, the headers, all text, etc. You can further

refine the search by limiting to the currently highlighted request.

You can also right-click on a form post or query string parameter in the request tab to start a search.

Visual Studio Performance Testing Quick Reference Guide Page 28

“Go To Web Test” feature now available in Webtest playback UI

In VS 2010, you can now highlight a specific value shown in the playback window, right-click, and choose

“Go to web test”. This will open the web test window itself and highlight the item whose value you

chose. The feature works on the specific request currently highlighted, so if you have several requests

with the same parameter name, you will be directed to the request that directly corresponds to the

request you were looking at in the playback window.

Visual Studio Performance Testing Quick Reference Guide Page 29

Recorder Log Available

In VS 2010, as you record a new Web test the recorded requests are saved to a Web test log file. Any

time you are in a new playback screen for this Web test, you can click on the Recorded Result menu bar

command to open the recorded requests and responses. (NOTE: if you upgrade a project from 2008 or

if you manually delete the original playback file, the button will be grayed out).

The recording will have the same name appended with “*Recorded+.” This gives you the ability to see

the requests the browser made and the responses during recording, and compare them to what the

web test is sending and receiving. You can also search the recording for specific values that were

recorded.

Visual Studio Performance Testing Quick Reference Guide Page 30

Add extraction rule directly from the playback UI

In the playback window, you can highlight any static value from a response that you wish to extract for

use in future requests. Simply highlight the value, right click, and choose Add Extraction Rule. It will

automatically name the rule, name the parameter and add the rule to the right request in the test. You

will still have to go to the subsequent request(s) where you want to use the parameter and add the

parameter to the request. If the value is found in the Web test, you will also be prompted to do a search

and replace of the value with the context parameter binding.

Tip: if this is value changes each time the test is run, the value from the result viewer will not be in the

editor. So rather than adding the extraction rule from the test result, add it from the recorder log

instead (since this will have the recorded value, which will also be in the Web test).

http://blogs.msdn.com/photos/slumley/picture9648520.aspx

Visual Studio Performance Testing Quick Reference Guide Page 31

New “Reporting Name” property for web requests

Web requests now have a new property exposed called “Reporting Name.” This property allows you to

define any string to use in test results instead of the actual request URL. This is very handy for requests

with very long URLS or tests where there are several requests to the exact same URL. In the following

Web test, most requests are to the same URL, but the results are changed to show the “Reporting

Name” values set.

A request without any
reporting name defined.

Visual Studio Performance Testing Quick Reference Guide Page 32

LoadTestResultsTables now differentiate between GET and POST requests

If the webtest in the previous section (“Reporting Name Property”) is executed in a load test, there are

two features you can see in the results.

1) Any Reporting Names you used will show up in the results table.

2) Any requests with the same name but with different methods will be reported separately.

The call from above
with a reporting name

The calls from above
without a reporting
name. Even though they
are the same requests,
some have a GET
method and some have
a POST method.

Visual Studio Performance Testing Quick Reference Guide Page 33

Virtual user visualization now available

NOTE: This feature is only available on tests where the “Timing Details Storage” property for the Run

Settings is set to “All Individual Details”

How to view activity visualization

In VSTS 2010, you can view a map of the virtual users activity AFTER a test run completes by clicking on

the “Details” button in the results window.

Visual Studio Performance Testing Quick Reference Guide Page 34

What is shown in the visualization window

3 choices:
1) Test
2) Transaction
3) Page

View shows users in relation to each other
(Y-axis) and durations of a single instance
of each user’s measured activity (X-axis).
For complete details on this, see the entry
“New users versus One Time users”

Use the “Zoom to time” slider to
control how much of the test details
you wish to see.

Hover the mouse pointer over an
instance to get a popup of the info
about that instance.

Visual Studio Performance Testing Quick Reference Guide Page 35

More Information

Here are the table definitions from the LoadTest2010 Results Store:

For the LoadTestTestDetail table, the big differences are that you get the outcome of the tests, which

virtual user executed it, and the end time of the test.

 [LoadTestRunId] [int] NOT NULL ,

 [TestDetailId] [int] NOT NULL ,

 [TimeStamp] [datetime] NOT NULL ,

 [TestCaseId] [int] NOT NULL ,

 [ElapsedTime] [float] NOT NULL,

[AgentId] [int] NOT NULL,

 [BrowserId] [int],

 [NetworkId] [int],

 [Outcome] [tinyint],

 [TestLogId] [int] NULL,

 [UserId] [int] NULL,

 [EndTime] [datetime] NULL,

 [InMeasurementInterval] [bit] NULL

For the LoadTestPageDetail table, you now get the end time of the page as well as the outcome of the

page.

[LoadTestRunId] [int] NOT NULL ,

 [PageDetailId] [int] NOT NULL ,

 [TestDetailId] [int] NOT NULL ,

 [TimeStamp] [datetime] NOT NULL ,

 [PageId] [int] NOT NULL ,

 [ResponseTime] [float] NOT NULL,

 [ResponseTimeGoal] [float] NOT NULL,

 [GoalExceeded] [bit] NOT NULL,

 [EndTime] [datetime] NULL,

 [Outcome] [tinyint] NULL,

 [InMeasurementInterval] [bit] NULL

New to 2010

New to 2010

Visual Studio Performance Testing Quick Reference Guide Page 36

For the LoadTestTransactionDetail table the big changes are you get the response time of the

transaction and the end time. Statistics for transactions such as Min, Max, Avg, Mean, StdDev, 90%,

95% and 99% are being calculated. These statistics are based on the ResponseTime column, not the

ElapsedTime. The difference between the 2 is that elapsed time includes think time whereas the

response time does not.

 [LoadTestRunId] [int] NOT NULL ,

 [TransactionDetailId] [int] NOT NULL ,

[TestDetailId] [int] NOT NULL ,

 [TimeStamp] [datetime] NOT NULL ,

 [TransactionId] [int] NOT NULL ,

 [ElapsedTime] [float] NOT NULL,

 [EndTime] [datetime] NULL,

 [InMeasurementInterval] [bit] NULL,

[ResponseTime] [float] NULL

Another change in VS 2010 is that the default for whether or not to collect details has changed. In VS
2005 and VS 2008 the default was to not collect this detail data. In VS 2010, the default is to collect the
detail data. This is controlled by the Timing Details Storage property on the Run Settings node in a load
test.

So you can still run your own analysis on this data, but there is also a new view in VS that you can use to
get a look at the data. The view is the Virtual User Activity Chart. When a load test completes, there will
be a new button enabled on the load test execution toolbar. It is the detail button below:

When you click on this button you will brought to the Virtual User Activity Chart. It looks like the
following:

New to 2010

Visual Studio Performance Testing Quick Reference Guide Page 37

Here is what you are looking at. Each horizontal row represents a virtual user. Each line in a horizontal

row represents a test, page or transaction. If you look at top left of this view, you will see a combo box

that shows which type of detail you are looking at. So in my case this is showing pages. Each color

represents a different page in the test. The length of the line represents the duration of the page. So

you can quickly tell which pages are running long.

If you look at the bottom of the chart, you will see a zoom bar. The zoom bar allows you to change the

range that you are looking at. The zoom bar overlays one of the graphs from the graph view. So

whichever graph is selected in the graph view, you will see that on the zoom bar. This makes it very

easy to correlate spikes in a graph with what tests/pages/transactions are occurring during that spike.

The legend on the left also has some filtering and highlight options. If you uncheck a page, then all

instances of that page are removed from the chart. If you click to Highlight Errors, then all pages that

failed will have their color changed to red. If you look at bottom part of the legend, you will see all the

errors that occurred during the test. You can choose to remove pages with certain errors or remove all

successful pages so you only see errors.

There is one other very useful feature of this view. You can hover over any line to get more information

about the detail and possibly drill into the tests that the detail belongs to. For example this is what it

looks like when you hover a detail:

Visual Studio Performance Testing Quick Reference Guide Page 38

You see information about user, scenario, test, url , outcome, etc. For this detail, there is also a test log

link. If you click this, you will see the actual test that the page was a part of. For example, when I click

test log, I see the following:

You see the full set of details collected for the test in the usual web test playback view that you are use

to. If it was a unit test, you would have seen the unit test viewer instead.

Visual Studio Performance Testing Quick Reference Guide Page 39

New Excel reporting features built into load test results

There are two new features for reporting through Excel built into the load test results window

1) Load Testing Run Comparison Report

http://blogs.msdn.com/slumley/archive/2009/11/07/vsts-2010-feature-load-testing-run-comparison-

report-in-excel.aspx

2) Load Test Trend Report

http://blogs.msdn.com/slumley/archive/2009/05/22/dev10-feature-load-test-excel-report-

integration.aspx

http://blogs.msdn.com/slumley/archive/2009/11/07/vsts-2010-feature-load-testing-run-comparison-report-in-excel.aspx
http://blogs.msdn.com/slumley/archive/2009/11/07/vsts-2010-feature-load-testing-run-comparison-report-in-excel.aspx
http://blogs.msdn.com/slumley/archive/2009/05/22/dev10-feature-load-test-excel-report-integration.aspx
http://blogs.msdn.com/slumley/archive/2009/05/22/dev10-feature-load-test-excel-report-integration.aspx

Visual Studio Performance Testing Quick Reference Guide Page 40

New Load Test and Load Test Rig Licensing and configurations

This information was taken straight from a blog post by Ed Glas

(http://blogs.msdn.com/edglas/archive/2010/02/07/configuration-options-for-load-testing-with-visual-

studio-2010.aspx)

Using Visual Studio Ultimate enables you to generate 250 virtual users of load. To go higher than 250

users, you need to purchase a Virtual User Pack, which gives you 1000 users. You can use the 1000 users

on any number of agents. Note that if you install the Virtual User Pack on the same machine as Visual

Studio Ultimate, you do not get 1250 users on the controller. The 250 virtual users you get with Ultimate

can only be used on “local” runs, not on a Test Controller. If you need to generate more 1000 users, you

purchase additional Virtual User Packs, which aggregate or accumulate on the Test Controller. In other

words, installing 2 Virtual User Packs on one controller gives you 2000 Virtual Users, which can be run

on any number of agents.

Configuration 1: “Local” Load Generation

This is what you get when you install Visual Studio Ultimate, which is the ability to generate

load “locally” using the test host process on the same machine that VS is running on. In addition

to limiting load to 250 users, it is also limited to one core on the client CPU.

Note that purchasing Ultimate also gives you the ability to collect ASP.NET profiler traces by

using a Test Agent as a data collector on the Web server.

http://blogs.msdn.com/edglas/archive/2010/02/07/configuration-options-for-load-testing-with-visual-studio-2010.aspx
http://blogs.msdn.com/edglas/archive/2010/02/07/configuration-options-for-load-testing-with-visual-studio-2010.aspx
http://blogs.msdn.com/blogfiles/edglas/WindowsLiveWriter/ConfigurationOptionsforLoadTestingwithVi_F170/image_4.png

Visual Studio Performance Testing Quick Reference Guide Page 41

Configuration 2: Distributed Test Controller and Test Agents

This is a common configuration if you are scaling out your load agents. With this configuration,

the Test Controller and each Test Agent is on a separate machine.

The advantage of this configuration is the controller is easily shared by team members, and

overhead from the controller does not interfere with load generation or operation of the client.

Note the Test Controller must have one or more Virtual User Packs installed to enable load

testing. Load agents in this configuration always use all cores on the machine.

http://blogs.msdn.com/blogfiles/edglas/WindowsLiveWriter/VS2010SKULineupandPricingFinalized_12165/image_4.png
http://blogs.msdn.com/blogfiles/edglas/WindowsLiveWriter/ConfigurationOptionsforLoadTestingwithVi_F170/image_6.png

Visual Studio Performance Testing Quick Reference Guide Page 42

Configuration 3 A and B: Stacked Configuration

With configuration A, you install the Test Controller and Test Agent on the same machine as VS,

then configure the Test Controller with Virtual User Packs. This enables you to generate >250

virtual users from the client machine, and unlocks all cores in the processor. Configuration B

shows an alternative configuration, enabled if you configure the machine with Virtual User

Packs using the VSTestConfig command line.

Note that a Virtual User Pack can only be used on one machine at a time, and configuring it on a

machine ties it to that machine for 90 days. So you can’t have the same Virtual User Pack

installed on both the VS client and a separate machine running the Test Controller. See the

Virtual User Pack license for details.

http://blogs.msdn.com/blogfiles/edglas/WindowsLiveWriter/ConfigurationOptionsforLoadTestingwithVi_F170/image_8.png

Visual Studio Performance Testing Quick Reference Guide Page 43

Configuration 4: Stacked Controller, Distributed Agents

In this configuration, the controller is running on the same machine as the Test client, with

distributed agents running as load generators. This configuration is recommended if you have a

solo performance tester. If your test controller and test agents will be shared by a team, we

recommend running the controller on a separate box. Note that test agents are tied to a single test

controller. You can’t have two test controllers controlling the same agent.

If you are using Visual Studio 2008, these options should look familiar to you as the VS 2008

load agents and controller offered the same configuration options. The new twist with VS 2010 is

the Virtual User Packs, which offer you more flexibility in how you configure your load agents.

The Test Controller and Test Agent are “free” when you purchase Ultimate.

http://blogs.msdn.com/blogfiles/edglas/WindowsLiveWriter/ConfigurationOptionsforLoadTestingwithVi_F170/image_10.png

Visual Studio Performance Testing Quick Reference Guide Page 44

New test mix: “Sequential Test Mix”

It is not recommended to use ordered tests in a load test. In the load test results, you do not get the

pass/fail results, test timings or transaction timings for any of the inner tests. You just get a Pass/Fail

result and duration for the overall ordered test.

To address this issue, there is a new test mix type in VS2010 called Sequential Test Mix. Here is what it
looks like in the load test wizard:

For this mix type, you set the order of tests that each virtual user will run through. You can mix web and

unit tests in the mix and you will get the individual test, page and transaction results. When a virtual

user completes the last test in the mix, it will cycle back to the first test in the mix and start over.

Visual Studio Performance Testing Quick Reference Guide Page 45

If you just want to control the order of web tests, you could also use a main web test that calls all of the

tests in order as “nested tests”. This is called “Web Test Composition.” For example, suppose I have

WebTest1 and WebTest2 and I want 1 to run before 2. I would create a third web test that has no

requests, but references tests 1 and 2. To create this kind of test, first record web tests 1 and 2. Then

add a third web test and just hit stop in the web test recorder. When you are back in the web test

editor, right click on the root node and select “Add Call to Web Test...”

This will launch a dialog and then select WebTest1. Then do same steps and add WebTest2. Now just

run WebTest3 and you will execute both tests. WebTest composition has been available since VS2008

Visual Studio Performance Testing Quick Reference Guide Page 46

Query String and FORM POST URLs get parameterized

When you choose to parameterize the web servers in a web test, you may see more webservers listed

than your test actually calls. This is expected behavior.

that the parameter parser is finding websites that reside inside query strings. Notice this in the .webtest

file:

<QueryStringParameter Name="Source"

Value="http%3A%2F%2Flocalhost%3A17012%2Fdefault%2Easpx"

RecordedValue="http%3A%2F%2Flocalhost%3A17012%2Fdefault%2Easpx" CorrelationBinding=""

UrlEncode="False" UseToGroupResults="False" />

 Any Query String that has a URL gets added to the server list

 Any Form Post parameter that has a URL gets added to the server list

 NO added header value makes it into the list

 If the form post or query parameter NAME is a URL (not the value, but the name of the

parameter), it does NOT get added.

This button will cause VSTS to detect URLs
and create parameters for them.

This web test has only ONE request, but
VSTS detects four web servers.

 Any Query String that has a URL
gets added to the server list

 Any Form Post parameter that has
a URL gets added to the server list

 If the form post or query
parameter NAME is a URL (not the
value, but the name of the
parameter), it does NOT get
added.

 NO added header value makes it
into the list

Visual Studio Performance Testing Quick Reference Guide Page 47

New options on Load Test Scenarios

There are some new properties exposed for load test scenarios that make it easier to control how your

tests run.

Agents to Use

The agent names that are entered should be the names of agents that are connected to the controller to which the

load test will be submitted. They should be the simple computer names of the agents (as seen in the “Computer

Name” field in the Control Panel). Unfortunately, at this time, if you switch to submitting the load test to a

different controller, you will need to change the value for “Agents to Use” as there is no way to parameterize

this list to vary depending on the controller used. This list of agents designates a subset of those the agents that

are connected to the controller, and are in the Ready state when the load tests starts (they may be running a

different load test or other test run when the load test is queued as long as they become Ready when the load test

is taken out of the Pending state and starts running), and that meet any agent selection criteria to allow the test

run to be run on the agent. The Scenario will run on all agents in the list that meet these criteria, and the user

load for the Scenario will be distributed among these agents either evenly (by default) or according to any agent

weightings specified in the Agent properties for the agents (from the “Administer Test Controllers” dialog in Visual

Studio).

Delay Start Time

Amount of time to wait after the load test starts before starting any tests in this scenario.

Disable During Warmup

If true, the delay time does not begin until after warmup completes.

Visual Studio Performance Testing Quick Reference Guide Page 48

Loops and Conditionals

In Visual Studio 2008, if you wanted to conditionally execute some requests or you wanted to

loop through a series of requests for a given number of times, you had to convert a declarative

web test to a coded web test. In VS2010, these options are exposed directly in declarative

webtests.

The ability to add these are exposed by right-clicking on a request and selecting the option you

want from the context menu:

The context menu showing the loop and condition insert options

Sample dialog box for setting the properties of a loop

Visual Studio Performance Testing Quick Reference Guide Page 49

What the entries look like in the declarative test

Loop results when the test is played back

What results look like if a conditional call fails

What the results look like if a conditional call succeeds.

Visual Studio Performance Testing Quick Reference Guide Page 50

Configurations and Settings

How to Change the Location Where Agents Store Run Files

If you need to move the location that an agent uses to store the files downloaded to it for executing

tests, the following steps will take care of this. On each agent machine,

 Open QTAgentService.exe.config
 Add "<add key="WorkingDirectory" value="<location to use>"/>" under the <appSettings> node.
 Create the <location to use> folder.

How to set a proxy server for web tests

By default, there is no proxy set on a web test, so it doesn’t matter what the Internet Explorer® (“IE”)

proxy settings are. If your test sets a specific proxy server within the web test then the IE setting is still

not used. In coded web tests or web test plug-ins, you can set the proxy name using the WebProxy

property of the WebTest class. NOTE that this method is broken in Visual Studio Team Test (“VSTT”)

2008 RTM, but is fixed in SP1 for VSTT 2008.

If you wish to use the machine’s IE proxy settings then you can set the Proxy property to “default”

(without the quotes). In this case you should turn off Automatic Proxy Detection on each agent.

Automatic Proxy detection is very slow and can greatly impact the amount of load you can drive on an

agent.

How to configure Web Tests so Fiddler can capture playback info

In 2008

By default, web test playback ignores proxy servers set for localhost, so enabling a proxy for 127.0.0.1

(which is where Fiddler captures) will not result in any captured data. To make this work, either add a

plugin with the following code, or put the following code in the Class constructor for a coded web test:

this.Proxy = "http://localhost:8888";

WebProxy webProxy = (WebProxy)this.WebProxy;

webProxy.BypassProxyOnLocal = false;

In 2010

To get fiddler to work in VS 2010, simply open Fiddler, then start playing the web test. There is no need

to code for anything.

Changed in 2010

Visual Studio Performance Testing Quick Reference Guide Page 51

Controlling the amount of memory that the SQL Server Results machine consumes

The default behavior for SQL Server is to consume as much memory as it thinks it can, the workload on

the machine may not be allowing SQL Server to correctly identify memory pressure and hence give back

some memory. You can configure SQL Server to a max memory limit, which if all you are doing is

inserting results should be fine.

The below is how you can set memory to 512mb. The size of the memory you use will vary based on the

machine, testing and how much memory you have.

sp_configure 'show advanced options', 1

RECONFIGURE

GO

sp_configure 'max server memory', 512

RECONFIGURE

GO

How to configure the timeouts for deployment of load tests to agents

The file to change is “Microsoft Visual Studio 9.0\Xml\Schemas\vstst.xsd”. look for the run config

schema. Then search for “timeout”:

 <xs:element name="Timeouts" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="runTimeout" type="xs:int" use="optional"

default="0"/>

 <xs:attribute name="testTimeout" type="xs:int"

use="optional" default="1800000"/>

 <xs:attribute name="agentNotRespondingTimeout" type="xs:int"

use="optional" default="300000"/>

 <xs:attribute name="deploymentTimeout" type="xs:int"

use="optional" default="300000"/>

 <xs:attribute name="scriptTimeout" type="xs:int"

use="optional" default="300000"/>

 </xs:complexType>

 </xs:element>

Change the values as needed and note that the time is in milliseconds.

Visual Studio Performance Testing Quick Reference Guide Page 52

How to set the number of Load Test Errors and Error Details saved

Load Test Errors:

You can change the total number of errors stored for a run in the appropriate configuration file

(depending on whether this is for local runs or for test rig runs):

Version Run Type File Name Location

2008 Local VSTestHost.exe.config <Program Files>\Microsoft Visual Studio

9\Common7\IDE\
2008 Remote QTController.exe.config <Program Files>\Microsoft Visual Studio 9.0

Team Test Load Agent\LoadTest\
2010 Local DevEnv.exe.config <Program Files>\Microsoft Visual Studio

9\Common7\IDE\

2010 Remote QTController.exe.config <Program Files>\Microsoft Visual Studio

9\Common7\IDE\

Add a key to the "appSettings" section of the file (add the "appSettings" section if needed) with the

name "LoadTestMaxErrorsPerType" and the desired value.

 <appSettings>

 <add key="LoadTestMaxErrorsPerType" value="5000"/>

 </appSettings>

Load Test Error Details:

Visual Studio Performance Testing Quick Reference Guide Page 53

Multi-proc boxes used as agents should have .NET garbage collection set to server

mode

In 2008

To enable your application to use Server GC, you need to modify either the VSTestHost.exe.config or
the QTAgent.exe.config. If you are not using a Controller and Agent setup, then you need to modify the
VSTesthost.exe.config. If you are using a controller and agent, then modify the QTAgent.exe.config for
each agent machine. Open the correct file. The locations are

VSTestHost.exe.config - C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE

QTAgent.exe.config - C:\Program Files\Microsoft Visual Studio 9.0 Team Test Load

Agent\LoadTest

To enable gcserver you need to add the following highlighted line in the runtime section:

<?xml version ="1.0"?>

<configuration>

 <runtime>

 <gcServer enabled="true" />

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <probing

privatePath="PrivateAssemblies;PublicAssemblies"/>

 </assemblyBinding>

 </runtime>

</configuration>

In 2010

The agent service in VS 2010 is now set to Server GC by default. No need to take any action here.

Location of list of all agents available to a controller

To retrieve a list of agents assigned to a controller without using the VSTS IDE, look in:

In 2008

<install point>\Microsoft Visual Studio 9.0 Team Test Load

Agent\LoadTest\QTControllerConfig.xml

In 2010

<install point>\Microsoft Visual Studio

10.0\Common7\IDE\QTControllerConfig.xml

Changed in 2010

Changed in 2010

Visual Studio Performance Testing Quick Reference Guide Page 54

Networks, IP Switching, Test Startups

IP Address Switching anatomy (how it works)

Each agent is assigned a range of up to 256 IP addresses to use. At the start of a test run, the agent

service configures the IP addresses on the network card. When the test starts running, new connections

are round-robined through the pool of IP addresses.

The most common use for IP Switching is when load testing against a load balancer. Load balancer

typically use the IP address to route requests to a particular Web server in the farm. So if you have 2

agents driving load to 3 Web servers, since all traffic is coming from two IPs (one on each agent), only

two of the web servers would get all the traffic. IP Switching provides a way to have traffic come from

multiple IPs on the same agent, enabling the load balancer to balance load across the farm.

VSTT currently limits the number of unique IP addresses to 256 per agent. In most testing situations, this

will be plenty of addresses. The main place where this limitation might impact you is if you are running a

large test where every single user must have a separate IP Address for some sort of session state. This is

pretty unusual.

In VS 2008, there is no way to have a given virtual user use the same IP. That is, with IP switching turned

on, a given user will multiple IPs out of the IP pool, and may use different IPs on subsequent iterations.

In VS 2010, the Web test engine tries to ensure that the same user will always use the same IP address,

but there is no guarantee that it will be the case.

The biggest problem with assigning unique IP Addresses to every user is that currently the IP switching

configuration limits you to a range of 256 IP addresses per agent, which would mean you would also be

limited to 256 virtual users per agent. One solution is to use VMs to get multiple load test agents on a

single physical machine.

Gotcha: IP Address Switching is ONLY for WEB TESTS

The IP Switching feature will NOT work with Unit Tests

Gotcha: IP Addresses used for switching are not permanent

When you choose to use multiple IP addresses from each agent machine during load testing (known as

IP address switching or spoofing), most testing tools require you to add those IP addresses to the NIC of

the machine, and they are always available and always show up on the machines. VSTS allows you to

set a range of IP addresses directly in the test project. Then VSTS dynamically adds the addresses to the

agent(s) when the test run starts, and removes them when the test run stops. . If you need to perform

IP switching, a controller/agent setup is required.

Visual Studio Performance Testing Quick Reference Guide Page 55

How to Setup IP Switching

There are 2 parts to setting up IP Switching. First, you must configure the Test Rig Agents to use IP

Switching. Then you must tell the Load Test itself that it should take advantage of that. Here are the

steps and the pitfalls involved:

Setting up the agents

1. Open up the Test Rig Administration dialog (Test -> Administer Test Controller)

2. Highlight each of the agents and bring up the Properties for the agent

3. Fill out all of the appropriate information (as outlined in the picture below)

 Where to configure Agent Properties

Visual Studio Performance Testing Quick Reference Guide Page 56

Make sure you pick the correct
adapter here. Use the Network
Connections properties built into
Windows along with the IPCONFIG
command to see which NIC is
assigned to what subnet (see below).

The base address is 3 octets and
should be representative of the
subnet you are on. If you are using a
class B subnet, you still need a third
octet for the base.

The output from the IPCONFIG
command in a CMD window.

C:\Documents and Settings>ipconfig

Windows IP Configuration

Ethernet adapter Secondary:

 Connection-specific DNS Suffix . :

 IP Address. : 10.69.200.3

 Subnet Mask : 255.255.0.0

 Default Gateway : 10.69.0.1

Ethernet adapter Primary:

 Connection-specific DNS Suffix . :

 IP Address. : 10.99.3.3

 Subnet Mask : 255.255.0.0

 Default Gateway : 10.99.0.1

 Getting the proper IP Address info for spoofing

The information as shown in the
Network Connections dialog box in
Windows. You may need to hover the
mouse over the NIC to see the entire
name of the NIC.

Visual Studio Performance Testing Quick Reference Guide Page 57

Setting up The Load Test

Once the test rig is setup, you can configure which Load Test will actually use IP Switching by setting the

correct property for the Load Test:

 Where to enable IP Switching for the Load Test Itself (after configuring the agents to use it)

Visual Studio Performance Testing Quick Reference Guide Page 58

Troubleshooting invalid view state and failed event validation

ASP.NET uses __VIEWSTATE and __EVENTVALIDATION hidden fields to round-trip information across

HTTP requests. The values for these fields are generated on the server and should be posted unchanged

on a post back request. By default, these values are signed with a so-called validationKey to prevent

tampering with the values on the client.

If you just record the values in a web test and post the recorded values, you can run into ASP.NET error

messages about invalid view state or failed event validation. The Visual Studio web test recorder will

normally automatically detect the __VIEWSTATE and __EVENTVALIDATION hidden fields as dynamic

parameters. This means the dynamically extracted values will be posted back instead of the recorded

values.

However, if the web server is load balanced and part of a web farm you may still run into invalid view

state and failed event validation errors. This occurs when not all servers in the web farm use the same

validationKey and the post back request is routed to a different server in the farm than the one on

which the page was rendered.

To troubleshoot, ViewState MAC checking can be disabled by setting enableViewStateMac to false.

However, this is not suitable for use on a production environment because it disables an important

security feature and has performance implications. The recommended fix is to define the same value for

the validationKey on all machines.

Instructions for manually creating a validationKey are detailed at http://msdn.microsoft.com/en-

us/library/ms998288.aspx. For IIS 7 a machine key can easily be created through IIS Manager, see

http://technet.microsoft.com/en-us/library/cc772287(WS.10).aspx.

For more background information on ViewState and EventValidation go to

http://msdn.microsoft.com/en-us/magazine/cc163512.aspx.

Startup: Slowness Restarting a Test Rig with Agents Marked as “Offline”

If you have agent machines that are either disabled (powered off, service stopped, etc) or that no longer

exist, but you only mark them as “Offline” in the “Administer Test Controllers” dialog, restarting the rig

will take a long time. The controller will attempt to contact all agents listed in the dialog regardless of

their status, and it will take approximately one minute or more for each missing machine.

Visual Studio Performance Testing Quick Reference Guide Page 59

Startup: Multiple Network Cards can cause tests in a rig to not start

Problem: When running tests against a controller and test agents the tests start with pending state but

then nothing else happens.

Visual Studio Client Resolution: The problem is that you have two network adapters on the client

machine. The following entries in the controller log confirm that this is the problem:

[I, 2972, 11, 2008/06/26 13:02:59.780] QTController.exe: ControllerExecution: Calling

back to client for deployment settings.

[E, 2972, 11, 2008/06/26 13:06:51.155] QTController.exe: StateMachine(RunState):

Exception while handling state Deploying: System.Net.Sockets.SocketException: A

connection attempt failed because the connected party did not properly respond after a

period of time, or established connection failed because connected host has failed to

respond 65.52.230.25:15533

This is exactly the type of error message we see when the controller communication with Visual Studio

fails because the client has network cards: To configure your Visual Studio installation to communicate

with the controller, try this:

In regedit:

 Find the key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\9.0\EnterpriseTools\QualityTools

 Add a new key under the above key named “ListenPortRange”

 In the key “ListenPortRange”, add a new string value with the name “BindTo” and the IPv4

address for the client (65.52.230.25 in your case) as the BindTo value.

Test Rig Resolution:

Read the following support article for the steps to resolve this issue on a test rig:

http://support.microsoft.com/kb/944496

Startup: Slow startup can be caused by _NT_SYMBOL_PATH environment variable

If you have the environment variable _NT_SYMBOL_PATH defined on your systems, your tests may stay

in the “pending” state for a long time. This happens whenever the symbol path defines a symbol server

that is external to your environment and you do not have a local cache of symbols available. To work

around this, do the following:

1. Remove the _NT_SYMBOL_PATH in the environment where you start devenv.exe from.

2. Change _NT_SYMBOL_PATH, by putting a cache location in front of the symbol store location.

For more information about symbol paths and symbol servers, go to:

http://msdn.microsoft.com/en-us/library/ms681416(VS.85).aspx

http://support.microsoft.com/kb/944496
http://msdn.microsoft.com/en-us/library/ms681416(VS.85).aspx

Visual Studio Performance Testing Quick Reference Guide Page 60

Startup: tests on a Rig with Agents on a Slow Link

The load test does not actually start on any agents until deployment of all files has occurred to all agents

(by the way, this means that the slow up start of a load test on a rig with many agents could have been

caused by slow deployment to one or more agents).

A common root cause is the _NT_SYMBOLS_PATH variable defined in the environment that points to

somewhat slow symbol server (like \\symbols\symbols).

Try one these workarounds:

- Undefine _NT_SYMBOLS_PATH in the environment where you start devenv.exe from.
- Change _NT_SYMBOLS_PATH, by putting a cache in front, such as cache*c:\symcache. This is

will make 1st run same slow but all subsequent runs fast.

“Not Bound” Exception when using IP Switching is not really an error

The below error may appear several times when running a load test where you are using IP Switching. In

most cases, this can be ignored.

00:51:35 AGENT02 <none> <none> <none> Exception

LoadTestException 151 Web test requests were not bound to either the correct IP

address for IP switching, or the correct port number for network emulation, or both.

The one situation where the presence of this error may indicate a real issue with the test is when the

application is relying on a given iteration to always come through on the same IP address for purposes of

maintaining a session (such as a load balancer like Microsoft ISA Server with the IP Sticky setting turned

on).

New to 2010

file://symbols/symbols

Visual Studio Performance Testing Quick Reference Guide Page 61

How to configure the timeout for deployment of load tests to agents

You might encounter timeouts when deploying load tests to agents when the deployment contains

many or large files. In that case you can increase the timeout for deployment. The default value is 300

seconds.

In 2010

You have to change the .testsettings file that corresponds to your active test settings in Visual Studio,

because the deployment timeout setting is not exposed via the Visual Studio UI. Check via the menu

Test | Select Active Test Settings (Visual Studio 2010) which file is active. You can find the file in the

Solution Items folder of your solution. Open it in the XML editor, by right clicking it, choosing “Open

With…” and selecting “XML (Text) Editor”.

The TestSettings element will have an Execution element. Add a child element called Timeouts, if not

already present, to the Execution element. Give it a deploymentTimeout attribute with the desired

timeout value in milliseconds. For example:

<?xml version="1.0" encoding="UTF-8"?>
<TestSettings name="Controller" id="330da597-4a41-4ae7-8b95-60c32ab793fb"
xmlns="http://microsoft.com/schemas/VisualStudio/TeamTest/2010">
 (…)
 <Execution location="Remote">
 <Timeouts deploymentTimeout="600000" />

IntelliSense should help you out when adding/editing this.

In 2008

In 2008 you have to change the .testrunconfig file that corresponds to your active test run configuration,

Add a child element Timeouts under the TestRunConfiguration element if no such element is already

present. Check via the menu Test | Select Active Test Run Configuration which file is active. You can find

the file in the Solution Items folder of your solution. Give it a deploymentTimeout attribute with the

desired timeout value in milliseconds. For example:

<?xml version="1.0" encoding="UTF-8"?>
<TestRunConfiguration name="Controller" id="af5824b3-56fa-4534-a3f8-6e763a56869a"
xmlns="http://microsoft.com/schemas/VisualStudio/TeamTest/2006">
 <Timeouts deploymentTimeout="600000"/>

IntelliSense should help you out when adding/editing this.

Changed in 2010

Visual Studio Performance Testing Quick Reference Guide Page 62

Performance Counters and Data

Customizing the Available Microsoft System Monitor counter sets

The counter set templates for VSTS are located in the following directory (assuming a typical install):

In 2008

C:\Program Files\Microsoft Visual Studio

9.0\Common7\IDE\Templates\LoadTest\CounterSets

In 2010

C:\Program Files\Microsoft Visual Studio

10.0\Common7\IDE\Templates\LoadTest\CounterSets

These files are standard XML files and can be modified to allow for quick and easy re-use of custom sets.

It is recommended that you copy the counter set you wish to enhance and add the name CUSTOM to it

so you will always remember that it is a custom counter set. Or you can create your own totally

independent counter set. The following shows the layout of the file:

Visual Studio Performance Testing Quick Reference Guide Page 63

<?xml version="1.0" encoding="utf-8"?>

<CounterSet Name="Custom" CounterSetType="Custom Set">

 <CounterCategories>

 <CounterCategory Name="Memory">

 <Counters>

 <Counter Name="% Committed Bytes In Use" />

 <Counter Name="Available Mbytes" />

 </Counters>

 </CounterCategory>

 <CounterCategory Name="Processor">

 <Counters>

 <Counter Name="% Processor Time">

 <ThresholdRules>

 <ThresholdRule

Classname="Microsoft.VisualStudio.TestTools.WebStress.Rules.Thresh

oldRuleCompareConstant,

Microsoft.VisualStudio.QualityTools.LoadTest">

 <RuleParameters>

 <RuleParameter Name="AlertIfOver" Value="True" />

 <RuleParameter Name="WarningThreshold" Value="80" />

 <RuleParameter Name="CriticalThreshold" Value="95" />

 </RuleParameters>

 </ThresholdRule>

 </ThresholdRules>

 </Counter>

 </Counters>

 <Instances>

 <Instance Name="*" />

 </Instances>

 </CounterCategory>

 <CounterCategory Name="PhysicalDisk">

 <Counters>

 <Counter Name="% Disk Read Time" Range="100" />

 <Counter Name="% Idle Time" Range="100" HigherIsBetter="true">

 <ThresholdRules>

 <ThresholdRule

Classname="Microsoft.VisualStudio.TestTools.WebStress.Rules.Thresh

oldRuleCompareConstant,

Microsoft.VisualStudio.QualityTools.LoadTest">

 <RuleParameters>

 <RuleParameter Name="AlertIfOver" Value="False" />

 <RuleParameter Name="WarningThreshold" Value="40" />

 <RuleParameter Name="CriticalThreshold" Value="20" />

 </RuleParameters>

 </ThresholdRule>

 </ThresholdRules>

 </Counter>

 <Counter Name="Avg. Disk Bytes/Read" RangeGroup="DiskBytesRate" />

 <Counter Name="Avg. Disk Bytes/Transfer" RangeGroup="DiskBytesRate" />

 <Counter Name="Avg. Disk Bytes/Write" RangeGroup="DiskBytesRate" />

 <Counter Name="Avg. Disk Queue Length" RangeGroup="Disk Queue Length" />

 <Counter Name="Split IO/Sec" RangeGroup="Disk Transfers sec" />

 </Counters>

 <Instances>

 <Instance Name="*" />

 </Instances>

 </CounterCategory>

 </CounterCategories>

</CounterSet>

This all needs to be on one line. Make

sure you format it properly when

putting it in the final file.

New To 2010

HigherIsBetter is used for highlighting better

or worse results in the Excel reports.

New To 2010

Range specifies the

graph range.

New To 2010

RangeGroup uses a common range for all counters in that range group.

Visual Studio Performance Testing Quick Reference Guide Page 64

Performance Counter Considerations on Rigs with slow links

Having a slow WAN between the controller and agents may definitely cause some timeouts or delays in

performance counter collection. Each performance counter category is read in a separate operation:

that’s one method call at the level of the .NET classes that we call, and I don’t know if each call results in

just one or more than one network read.

There are some timeout settings for performance counter collection that you can change by editing the

QTController.exe.config file (or VSTestHost.exe.config file when running locally on VSTS 2008, or in

devenv.config.exe for 2010) and adding these lines:

 <appSettings>

 <add key="LoadTestCounterCategoryReadTimeout" value="9000"/>

 <add key="LoadTestCounterCategoryExistsTimeout" value="30000"/>

 </appSettings>

The values are in ms, so 9000 is 9 seconds. If you make this change, also change the load test sample

rate to be larger than this: at least 10 or preferably 15 seconds, and yes with many agents located far

from the controller, it is recommended to delete most of the categories in the Agent counter set

(perhaps just leave Processor and Memory).

The .NET API that used to read the performance counters is

PerformanceCounterCategory.ReadCategory(), so the entire category is read even if the counter set

definition only includes one counter and one instance. This is a limitation at the OS level in the way

performance counters are read.

The defaults in VSTS are:

 LoadTestCounterCategoryReadTimeout: 2000 ms (2 seconds)

 LoadTestCounterCategoryExistsTimeout: 10000 ms

Visual Studio Performance Testing Quick Reference Guide Page 65

Increase the performance counter sampling interval for longer tests

Choose an appropriate value for the “Sample Rate” property in the Load Test Run Settings based on the

length of your load test. A smaller sample rate, such as the default value of five seconds, requires more

space in the load test results database. For longer load tests, increasing the sample rate reduces the

amount of data collected.

Here are some guidelines for sample rates:
Load Test Duration Recommended Sample Rate
 < 1 Hour 5 seconds
 1 - 8 Hours 15 seconds
 8 - 24 Hours 30 seconds
 > 24 Hours 60 seconds

Changing the default counters shown in the graphs during testing

If you want to change the default set of counters that show up in the graphs when you start a test, you

can go into each of the .counterset XML files (same directory as above) and set or add to the

DefaultCounter entries in the following section (at the bottom of the files):

 <DefaultCountersForAutomaticGraphs>

 <DefaultCounter CategoryName="Memory" CounterName="Available MBytes"/>

 </DefaultCountersForAutomaticGraphs>

Possible method for fixing “missing perfmon counters” issues

On the controller machine for your rig, map a drive to each of the machines you will be collecting perf

counters for within the load test. Then, before you kick off a test, open each drive you mapped and

verify that you have connectivity. Leave the window open during the test.

Visual Studio Performance Testing Quick Reference Guide Page 66

How and where Performance data gets collected

There are two types of data collected by VSTS during a test run: Real perfmon counters and pseudo

perfmon counters. All real perfmon counters are collected directly by the VSTS Controller machine.

 In the Load Test editor, all of the performance counter categories that start with “LoadTest:” (see the

LoadTest counter set in the load test editor) is data that is collected on the agents by the load test

runtime engine. These are not real Perfmon counters in the sense that if you try to look at them with

Perfmon you won’t see them, though we make them look like Perfmon counters for consistency in the

load test results database and display. The agents send this some of this data (see below) in messages to

the controller every 5 seconds which rolls up the agent (e.g. Requests / sec across the entire rig rather

than per agent). The controller returns the rolled up results to Visual Studio for display during the run

and also stores them in the load test results database.

 [Requests Per Second Counters] The VS RPS does not count cached requests, even though VSTS is

sending an http GET with if-modified-since headers.

What data is sent every 5 seconds? we do everything possible to limit how much data is sent back in

that message. What we do send back is the average, min, max values for all of the pseudo

performance counters in the categories that start with “LoadTest:” that you see under the “Overall”,

“Scenarios” and “Errors” nodes in the load test analyzer tree (nothing under the “Machines” node).

Note that the biggest factor in the size of these result messages is the number of performance counter

instances, which for Web tests is mostly determined by the number of unique URLs reported on during

the load test. We also send back errors in these 5 seconds messages, but details about the failed

requests are not sent until the end of the test, so tests with lots of errors will have bigger messages.

Lastly, we only send back metadata such as the category names and counter names once and use

numeric identifiers in subsequent messages, so the messages at the start of the load test may be slightly

larger than later messages.

One thing you could do to reduce the size of the messages is to reduce the level of reporting on

dependent requests. You could do this by setting the “RecordResult” property of the

WebTestRequest object to false. This eliminate the page and request level reporting for that request,

but you could add a transaction around that request single request and that would really match the

page time for that request

Visual Studio Performance Testing Quick Reference Guide Page 67

Data and Results

Custom Data Binding in UNIT Tests

The first thing to do is create a custom class that does the data initialization (as described in the first

part of this post: http://blogs.msdn.com/slumley/pages/custom-data-binding-in-web-tests.aspx). Next,

instantiate the class inside your unit test as follows:

[TestClass]

 public class VSTSClass1

 {

 private TestContext testContextInstance;

 public TestContext TestContext

 {

 get { return testContextInstance; }

 set { testContextInstance = value; }

 }

 [ClassInitialize]

 public static void ClassSetup(TestContext a)

 {

 string m_ConnectionString = @"Provider=SQLOLEDB.1;Data

Source=dbserver;Integrated Security=SSPI;Initial Catalog=Northwind";

 CustomDs.Instance.Initialize(m_ConnectionString);

 }

 [TestMethod]

 public void Test1()

 {

 Dictionary<string, string> dictionary = customDs.Instance.GetNextRow();

 //......Add the rest of your code here.

 }

Verifying saved results when a test hangs in the “In Progress” state after the test has

finished

If you run a test and either the test duration or the number of iterations needed for completion of the

test have been reached, but the test stays in the “In Progress” state for a long time, you can check if all

of the results have been written to the load test results repository by running this SQL query against the

LoadTest database:

select LoadTestName, LoadTestRunId, StartTime, EndTime from

LoadTestRun where LoadTestRunId=(select max(LoadTestRunId) from

LoadTestRun);

If the EndTime has a non-NULL value then the controller is done writing results to the load test results

database and it should be safe to restart the rig (killing anything if needed).

This doesn’t necessarily mean that all results from all agents (if the agents got hung) were successfully

written to the load test database, but it does mean that there’s no point in waiting before killing the

agents/tests.

http://blogs.msdn.com/slumley/pages/custom-data-binding-in-web-tests.aspx

Visual Studio Performance Testing Quick Reference Guide Page 68

The metrics during and after a test differ from the results seen.

Scenario 1:

When you run load tests and look at the numbers you get while the tests are running, the values you see

may not be the same values that you get when you load the completed test results at a later point. This

behavior is not unexpected, based on warmup and cooldown settings.

Comparison of a test with and without warmup. Notice the total number of tests run is different, but the recorded times are

close enough to be valid for reporting.

Scenario 2:

When you compare the summary page results to the detailed results values, there can be a difference in

what is reported. This is due to the implementation of collecting the timing details, which are currently

flushed when a test iteration ends. For iterations that are in progress with in-flight requests, we give the

iteration 10 seconds (configurable via cooldown) to complete any in-flight requests. If they do not

complete, the transactions in those iterations are not counted in the details, but are counted in the

summary page.

Visual Studio Performance Testing Quick Reference Guide Page 69

Fr
o

m

II
S

Lo
gs

Fr
o

m

II
S

Lo
gs

Fr
o

m

II
S

Lo
gs

Fr
o

m

II
S

Lo
gs

How new users and return users affect caching numbers

Comparing VSTS Results to IIS Results for 100% new vs. 100% return

This section shows how VSTS handles caching and how to interpret the numbers shown for total

requests and cached requests.

TOR 09 - Caching - ReturnUsers
HTM 268

HTML 263

GIF 83

BMP 32719

200 OK - 3871

304 Not Modified - 29462

VSTS Requests: 33,333

VSTS Requests Cached: 84,507

TOR 10 - Caching - NewUsers
HTM 276

HTML 271

GIF 276

BMP 90243

200 OK - 46639

304 Not Modified - 44427

VSTS Requests: 89,384

VSTS Requests Cached: 43,758

Comparing the same tests using HTML’s Content Expiration setting

TOR 12 - Caching - ReturnUsers - Content Expiration
HTM 270

HTML 264

GIF 85

BMP 3330

200 OK - 3874

304 Not Modified - 75

VSTS Requests: 3,949

VSTS Requests Cached: 84,842

TOR 11 - Caching - NewUsers - Content Expiration
HTM 268

HTML 262

GIF 268

BMP 44622

200 OK - 45286

304 Not Modified - 134

VSTS Requests: 44,742

VSTS Requests Cached: 42,090

Comparing New Users to Return Users (WRT caching):

New users are simulated by “clearing” the cache at the start of
each new iteration, whereas the cache is carried from iteration
to iteration for return users.

This results in many more requests being cached with return
users.

NOTE: The total # of requests made by VSTS is a sum of the two
VSTS values. In other words, “Total Requests” in the IDE does
not include cached requests.

Looking at the impact of “content expiration” on the
overall network and web server activity (For more
information, see the section “Add an Expires or a
Cache-Control Header” from
http://developer.yahoo.com/performance/rules.html).

Notice that VSTS honors the content expiration (this is
actually handled by the underlying System.NET
component). However, VSTS still reports the cached
file request, even though no call went out the wire.
This is expected behavior since the request was a part
of the site. In order to see how many requests went on
the wire, you need to use IIS logs or network traces.

http://developer.yahoo.com/performance/rules.html

Visual Studio Performance Testing Quick Reference Guide Page 70

Notes:

 All 4 tests above were run for the same duration with the same number of users executing the same

test.

 Although the numbers do not match exactly, they are close enough to show the behavior of the

tests. The discrepancy is due to a few things, including cool down of the test and the possible mis-

alignment of the query I used to gather data from the IIS logs.

 The IIS Log items for “200 –OK” and “304-Not Modified” were gathered using LogParser and the

following query:

SELECT

 sc-status, COUNT(*) AS Total

FROM *.log

WHERE

 to_timestamp(date, time) between

 timestamp('2010-02-12 02:13:22', 'yyyy-MM-dd hh:mm:ss')

 and

 timestamp('2010-02-12 02:18:22', 'yyyy-MM-dd hh:mm:ss')

GROUP BY

 sc-status

data sources for data driven tests get read only once

When initializing data driven tests the data is read ahead of time, and only retrieved once. Therefore

there is no need to optimize the connection to the data source.

Visual Studio Performance Testing Quick Reference Guide Page 71

Consider including Timing Details to collect percentile data

There is a property on the Run Settings in the Load Test Editor named "Timing Details Storage". If

Timing Details Storage is enabled, then the time to execute each individual test, transaction, and page

during the load test will be stored in the load test results repository. This allows 90th and 95th

percentile data to be shown in the load test analyzer in the Tests, Transactions, and Pages tables. VS

2010 adds 99th percentile and standard deviation stats. Also, in VS 2010 this setting is on by default.

Consider turning it off for very large load tests, as with a many-agent test it can take up to half the time

of the load test to process all the timing details. In other words, if you have a 12 hour load test running

on 30 agents it could take 6 hours to collect and crunch all the data. In VS 2010, the details data is also

used to populate the virtual user activity chart.

The amount of space required in the load test results repository to store the Timing Details data may be

very large, especially for longer running load tests. Also, the time to store this data in the load test

results repository at the end of the load test is longer because this data is stored on the load test agents

until the load test has finished executing at which time the data is stored into the repository. For these

reasons, Timing Details is disabled by default. However if sufficient disk space is available in the load

test results repository, you may wish to enable Timing Details to get the percentile data. Note that

there are two choices for enabling Timing Details in the Run Settings properties named "StatisticsOnly"

and "AllIndividualDetails". With either option, all of the individual tests, pages, and transactions are

timed, and percentile data is calculated from the individual timing data. The difference is that with the

StatisticsOnly option, once the percentile data has been calculated, the individual timing data is deleted

from the repository. This reduces the amount of space required in the repository when using Timing

Details. However, advanced users may want to process the timing detail data in other way using SQL

tools, in which case the AllIndividualDetails option should be used so that the timing detail data is

available for that processing.

Visual Studio Performance Testing Quick Reference Guide Page 72

Consider enabling SQL Tracing through the Load Test instead of separately

There is a set of properties on the Run Settings in the Load Test Editor that allow the SQL tracing feature

of Microsoft SQL Server to be enabled for the duration of the load test. If enabled, this allows SQL trace

data to be displayed in the load test analyzer on the "SQL Trace" table available in the Tables dropdown.

This is a fairly easy-to-use alternative to starting a separate SQL Profiler session while the load test is

running to diagnose SQL performance problems. To enable this feature, the user running the load test

(or the controller user in the case of a load test run on a rig) must have the SQL privileges needed to

perform SQL tracing, and a directory (usually a share) where the trace file will be written must be

specified. At the completion of the load test, the trace file data is imported into the load test repository

and associated with the load test that was run so that it can be viewed at any later time using the load

test analyzer.

How to collect SQL counters from a non-default SQL instance

If you want to collect performance counters from a SQL Server instance while running a load test, you

can do this easily by checking the SQL counter set in the "Manager Counter Sets" dialog in the VSTS load

test editor. Doing this includes the default counter set for SQL Server in your load test. The

performance counter category names that are specified in this counter set begin with "SQLServer:": for

example "SQLServer:Locks".

However, if you are trying to monitor another SQL Server instance that is not the default SQL server

instance, the names of the performance counter categories for that instance will have different category

names. For example, if your SQL server instance is named "INST_A", then this performance counter

category will be named "MSSQL$INST_A:Locks". To change the load test to collect these performance

counters, the easiest thing to do is open the .loadtest file with the XML editor or a text editor and

replace all instances of "SQLServer:" by "MSSQL$INST_A:Locks" (correcting the replacement string for

your instance name).

How 90% and 95% response times are calculated

Within the load test results summary page, the percentile values mean that:

 90% of the total transactions were completed in less than <time> seconds

 95% of the total transactions were completed in less than <time> seconds

The calculation of the percentile data for transactions is based not on the sampled data that is shown in

the graph, but on the individual timing details data that is stored in the table

LoadTestTransactionDetail. The calculation is done using a SQL stored procedure that orders the data

by the slowest transaction times, uses the SQL “top 10 percent” clause to find the 10% of the slowest

transactions then uses the min() function on that set of rows to get the value for the 90th percentile

time. The stored procedure in the LoadTest database that does this is

“Prc_UpdateTransactionPercentiles”.

Visual Studio Performance Testing Quick Reference Guide Page 73

Transaction Avg. Response Time vs. Request Avg. Response Time

For each HTTP request (including each dependent request) there is a request response time, and these

are all averaged to get the “Avg. Response Time” that appears on the default graph and on the Requests

table in the load test analyzer. There is also the “Avg. Page Time” (seen on the Pages table and can be

graphed, but is not be default) that is the average time to download the request that is in the web test

plus the time to download all dependents (dependents may be downloaded in parallel). Then for

transactions, there are two counters: “Avg. Response Time” and “Avg. Transaction Time”. The former is

the average of the sum of all of the page times (without the think times), and the latter is the same but

includes the think times.

For more descriptions see this online doc page: http://msdn.microsoft.com/en-

us/library/ms404656.aspx.

Considerations for the location of the Load Test Results Store

When the Visual Studio Team Test Controller is installed, the Load Test Results Store is set up to use an

instance of SQL Express that is installed on the controller computer. SQL Express is limited to using a

maximum of 4 GB of disk space. If you are going to run many load tests and want to keep the results for

a while, you should consider configuring the Load Test Results Store to use an instance of the full SQL

Server product if available. See the Visual Studio Team Test documentation for instructions on setting

up the database to be used as the Load Test Results Store.

Set the recovery model for the database to simple

VSTS 2008 – By default the recovery model in SQL server for the Load Test Results Store is set to “full”.

You should change this to simple.

VSTS 2010 – There was a change in the way the recovery model was configured in the

loadtestresultsrepository.sql command that ships with VSTS 2010, but the change does not take effect

due to a different command further down in the script. This issue is known and will be resolved in a

future version.

To change either version - Open SQL Management Studio and connect to the server that has the

LoadTest/LoadTest2010 database. Right click on the LoadTest/LoadTest2010 database in “Object

Explorer” and choose “Properties”. Go to the “Options” page and change the drop down for “Recovery

Model” to Simple.

http://msdn.microsoft.com/en-us/library/ms404656.aspx
http://msdn.microsoft.com/en-us/library/ms404656.aspx

Visual Studio Performance Testing Quick Reference Guide Page 74

How to clean up results data from runs that did not complete

If you have a Load Test Run that abnormally aborts and does not show data in a consistent manner (or

does not show up in the list of runs as either completed or aborted), you can use the following query on

the SQL repository server to clean up the database:

update LoadTestRun set Outcome=’Aborted’ where Outcome=’InProgress’

The Outcome field is left blank until the test either completes or is manually aborted. Any test results in

the DB cannot be accessed through the GUI until the Outcome field has one of the two values

‘Completed’ or ‘Aborted’

InstanceName field in results database are appended with (002), (003), etc.

Question:In the LoadTest databases, the Instance Names are sometimes appended with “(002)”,

etc. For example, I have a transaction called “Filter Render Request” and in the load test database I

have two transactions. Also, I have a URL pointing to RenderWebPartContent and I have several

entries. Can someone give me a quick explanation?

Answer: To make a long story short it is a unique identifier that is used mostly internally to distinguish

between cases where you have the same test name in two different scenarios in the load test or the

same page name (simple file name) in different folders in two different requests.

Layout for VSTS Load Test Results Store

For VSTS 2008:

http://blogs.msdn.com/billbar/articles/529874.aspx

For VSTS 2010:

http://blogs.msdn.com/slumley/archive/2010/02/12/description-of-tables-and-columns-in-vs-

2010-load-test-database.aspx

Changed in 2010

http://blogs.msdn.com/billbar/articles/529874.aspx
http://blogs.msdn.com/slumley/archive/2010/02/12/description-of-tables-and-columns-in-vs-2010-load-test-database.aspx
http://blogs.msdn.com/slumley/archive/2010/02/12/description-of-tables-and-columns-in-vs-2010-load-test-database.aspx

Visual Studio Performance Testing Quick Reference Guide Page 75

How to view Test Results from the GUI

http://blogs.msdn.com/slumley/pages/managing-load-test-results.aspx

SQL Server Reporting Services Reports available for download

http://blogs.msdn.com/slumley/pages/load-test-reports.aspx

How to move results data to another system

VSTS 2008 introduces a GUI results manager. The manager works on the Load Test Results Store that is

currently specified in the “Administer Test Controller” dialog box, or on the local repository. To open the

results manager, you must have a load test opened and set as the active window. Then click on the icon

shown below:

 How to launch the “Manage Load Test Results” dialog box

Once in the manager, you choose a controller name from the drop down list (or <local> if you want the

results from the local database) and the manager will populate with the tests it finds. You can select

whatever test results you wish to move, and then choose “export” to move them into a file (compressed

with an extension of .ltrar). That file can be moved to another machine and then imported into a new

results store.

http://blogs.msdn.com/slumley/pages/managing-load-test-results.aspx
http://blogs.msdn.com/slumley/pages/load-test-reports.aspx

Visual Studio Performance Testing Quick Reference Guide Page 76

Load Test Results without SQL NOT stored

It is possible to configure a load test to run without a SQL load test repository. This is configured by

changing the Storage Type property on the Run Settings node in the load test editor. There are 2

options for this property: Database and None. I strongly recommend that you always use database. If

you run a load test with the storage property set to none, the results are only kept in memory. So as

soon as you close the Load Test Execution UI, the results are gone.

You might wonder why there is still an entry in the Test Results window and what effect

importing/exporting the test result would have.

For most result types all of the data needed to display the result can be exported into a TRX file. This is

not true for load tests. The only thing that a TRX file stores for a load test is the connection string to the

database with the results and the run id of the run to load. So if you do not run the load test with

storage type set to database, then exporting the TRX file is useless. It will contain no useable data that

you can use for later analysis. So ALWAYS use a database when running load tests.

Unable to EXPORT from Load Test Repository

If you create a custom LoadTest results repository (using a name other than “LoadTest”), the

import/export functionality in VSTT 2008 will not work. This is a known issue and is fixed in VS2010.

The error will look like:

 [V, 3160, 6, 2009/11/30 16:06:15.808] devenv.exe: StateMachine(AgentState): calling

state handler for Online

[V, 3160, 7, 2009/11/30 16:06:15.813] devenv.exe: ControllerObject: RunQueueThread

waiting for runs...

[I, 3160, 4, 2009/11/30 16:06:15.889] devenv.exe: WebLoadTestAdapter: Opened

connection to results repository

[I, 3160, 4, 2009/11/30 16:06:16.426] devenv.exe: WebLoadTestAdapter: Closed

connection to results repository

[V, 3160, 4, 2009/11/30 16:06:36.201] devenv.exe: WebLoadTestAdapter:

LoadTestExporterImporter running: bcp "select * from LoadTest.dbo.LoadTestRun where

LoadTestRunId in (278)" queryout

"C:\Users\sellak\AppData\Local\Temp\3\LoadTestResults.7408358f-3580-4a38-9781-

409d90c52a22\LoadTestRun.dat" -S AXPERFORMANCE -T -N

[V, 3160, 4, 2009/11/30 16:06:36.367] devenv.exe: WebLoadTestAdapter: bcp output:

SQLState = 42S02, NativeError = 208

Error = [Microsoft][SQL Native Client][SQL Server]Invalid object name

'LoadTest.dbo.LoadTestRun'.

Notice the call to LoadTest.dbo.LoadTestRun is hardcoded, which is what causes the feature to break.

In general, we recommend you use the LoadTest database name (or in the case of 2010, the database is

named LoadTest2010).

Visual Studio Performance Testing Quick Reference Guide Page 77

Web Test TRX file and the NAN (Not a Number) Page Time entry

In VSTS 2008, if a Web Test trx file is opened in an XML editor, you may notice the NAN page time for

some of the responses.

<Response url="http://teamtestweb1/storecsvs/"

 contentType="text/html; charset=utf-8"

 statusLine="HTTP/1.1 200 OK"

 pageTime="NaN"

 time="0.006"

 statusCodeString="200 OK"

 contentLength="12609">

When/why does this happen?

This only happens to non top-level requests, i.e. redirects and dependents.

At the end of Web test execution, all results (objects and their members) are serialized to a trx file,

including the pageTime. NAN is the result of doing a .ToString() on a float or double value that has not

been initialized. This means that the pageTime is not known at the time this entry was written to the trx.

The following is the screenshot of the Web test result file opened in the Playback window. It shows how

this property is set in the code.

The high-lighted one is the top-level page. It is redirected and the redirected to page has some

dependent requests. The ‘Total Time’ for the top-level page, i.e. the page time, refers to the time to

send all requests and receive all responses (including the redirects and dependents) from the Web

server. It is only calculated and populated for the primary request, but not for ‘redirected to’ and the

dependents. This is why that you are seeing Nan page time in the XML file.

Visual Studio Performance Testing Quick Reference Guide Page 78

Proper understanding of TRX files and Test Results directory

TRX files are the result files created when you run a unit or web test in Visual Studio. There are two

pieces here. The first describes how TRX files are constructed in VSTS 2008, and the second part shows

how things have changed for VS 2010

In 2008

In VS 2008, if you run a Web test outside a load test, the entire Web test result is serialized to the trx

file. So each request and response in the test is serialized. If the test runs multiple iterations, the trx file

can get very large.

We added optimizations to control the amount data that is stored in the TRX for request/response

bodies by only storing one copy of a unique response bodies (in multi-iteration runs you may end up

with multiple identical responses). Also, the request and response bodies are compressed to

dramatically reduce the amount of space they require in the TRX.

There is a test context snapshot stored before every request (including dependent requests).

Sometimes, you’ll find really large VIEWSTATE in a test context that can make them really large.

The request/response headers and the test context snapshots are not compressed and duplicates are

not eliminated, so they have the potential to become bloated.

In 2010

In VSTS2010, there is one major change on how the WebTestResultDetails class is persisted upon test

completion. Instead of writing the WebTestResultDetails class to a trx file, VSTS serializes the object to a

*.webtestResult file. The relative path of this file is added as an element to the trx file. By saying

‘relative’, it means relative to the path of the corresponding trx file.

 The file only exists on the machine that you run the Web test from, i.e. the VSTS / mstest machine.

 For a local run, the file goes to \TestResults\prefix_Timestamp\In\TestExecuId.

 For a remote run, the file goes to \TestResults\prefix_Timestamp\In \Agent\TestExecuId.

 When you open a Web test trx file from the Test Results window, VSTS reads the value of

WebTestResultFilePath from the trx file, and then loads the .webtestResult from

TrxDirecory\WebTestResultFilePath into Web Test Result window.

Note about Data Collectors and TRX files

If you have data collector(s) turned on for a unit/Web test, the collector data, e.g. event log, go to
\TestResults\prefix_Timestamp\In\TestExecuId\Agent. For a Load test, collector data go to
\TestResults\prefix_Timestamp\In\Agent.

Changed in 2010

Visual Studio Performance Testing Quick Reference Guide Page 79

Understanding the Response Size reported in web test runs

If you look at the size of a response shown for a single pass of a web test (within the test results

window), it may differ from the size reported from tools such as Fiddler or Netmon. This is due to the

fact that VSTS is measuring the size of the response after it has been uncompressed, while Fiddler and

Netmon will look at the size of the response on the wire.

This behavior has been changed in SP1, HOWEVER, there are a couple of gotchas to be aware of:

 The compressed size will only be reported in VSTS if the response in NOT using “chunked

encoding”

 The test results window will not indicate whether the reported size is the compressed or the

uncompressed size.

 VSTS has a receive buffer that defaults to 1,500,000 bytes and it throws away anything over

that. The number reported is what is saved in the buffer, not the number of bytes received.

You can increase the size of this buffer by altering the ResponseBodyCaptureLimit at the start of

your test. This needs to be done in code and cannot be modified in a declarative test.

Visual Studio Performance Testing Quick Reference Guide Page 80

Errors and Known Issues

CSV files created in VSTS or saved as Unicode will not work as data sources

If you create a CSV file in VSTS, it saves the file with a 2 byte prefix indicating encoding type, which is

hidden. When you select the file as a data source, the first column will be prefixed with two unusual

characters. The problem is the two bytes on the front that cannot be seen unless the file is viewed in

hex format. The solution is to open the file in notepad and save as ANSI.

Also, if a data file is created in Windows® Notepad or Microsoft® Excel® and saved as Unicode, it looks

good in Notepad or VSTS, but cannot be read in web tests. The solution is to open the file in notepad

and save as ANSI.

Incorrect SQL field type can cause errors in web tests

If you create a SQL table to hold test parameters and you use the default SQL column type nchar(50),

you will get failed requests and the context parameters in the “request” tab of the test results will not

show the bad parameters. The nchar field pads all entries to the specified length with hidden characters

but the “request” view in the test results does not show them. In order to see the extra characters, click

on the “View Raw Data” checkbox and look through the data until you see the hidden characters. This

will indicate that the wrong SQL field type is being used.

Leading zeroes dropped from datasource values bound to a CSV file

If you have a datasource which contains values that start with the number 0, and you have this

datasource in a CSV file, VSTT will strip the leading zero(es) from the values when using them. The same

behavior does NOT occur to data values in a SQL datasource.

Recorded Think Times and paused web test recordings

When you are recording a web test, VSTS uses the time between steps as you record to generate the

ThinkTime values after each request. When you add a comment, the recorder switches from RECORD

mode to PAUSE mode, however, the timer to calculate think times does not pause, so you end up with

think times that include the time you spent typing in the comment. This is also true if you manually

pause the recording for any other reason. To fix this, do the following:

In 2008

Go through the test after recording is complete and adjust the think times manually.

In 2010

VS 2010 offers a new dialog to make this easy. See the section New “Reporting Name” property for web

requests

Changed in 2010

Visual Studio Performance Testing Quick Reference Guide Page 81

After opening a webtest with the VS XML Editor, it will not open in declarative mode.

In the VS IDE, you can right click on a webtest file and choose to “Open in XML Editor”. Once you do that

and then close the window, the next time you double click on the webtest to open it, the file should

open in the default declarative view. However, in VSTS 2010 there is a known issue that causes the

webtest to always be opened in XML mode.

To work around this issue:

1) open the test project file (e.g. .csproj),

2) look for the web test that is opened as XML,

3) delete the line ‘<SubType>Designer</SubType>’

4) save the test project.

Example of the section needing to be changed:

<None Include="WebTest1.webtest">

 <CopyToOutputDirectory>Always</CopyToOutputDirectory>

 <SubType>Designer</SubType>

</None>

Calls to HTTPS://Urs.Microsoft.Com show up in your script

If you record a script using IE7 and you have phishing enabled, you can get extra calls to

Urs.Microsoft.Com. These calls are being made by IE as part of the phishing filter in IE (for more

information, please go to: http://download.microsoft.com/download/2/8/e/28e60dcc-123c-4b27-b397-

1f6b2b6cb420/Part1_MM.pdf). You may either remove these calls, or disable phishing in IE before you

make the calls. To disable phishing, go to TOOLS -> PHISHING FILTER -> TURN OFF AUTOMATIC WEBSITE

CHECKING.

Possible DESKTOP HEAP errors when driving command line unit tests

When you run a large number of unit tests that call command line apps, and they are run on a test rig

(this does not happen when running tests locally), you could have several of the tests fail due to running

out of desktop heap. You need to increase the amount of heap that is allocated to a service and

decrease the amount allocated to the interactive user. See the following post for in depth information,

and consider changing the registry as listed below:

http://blogs.msdn.com/ntdebugging/archive/2007/01/04/desktop-heap-overview.aspx

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\SubSystems

OLD SETTING: “Windows SharedSection=1024,3072,512”

NEW SETTING: “Windows SharedSection=1024,1024,2460”

Applies only to 2010

https://urs.microsoft.com/
http://download.microsoft.com/download/2/8/e/28e60dcc-123c-4b27-b397-1f6b2b6cb420/Part1_MM.pdf
http://download.microsoft.com/download/2/8/e/28e60dcc-123c-4b27-b397-1f6b2b6cb420/Part1_MM.pdf
http://blogs.msdn.com/ntdebugging/archive/2007/01/04/desktop-heap-overview.aspx

Visual Studio Performance Testing Quick Reference Guide Page 82

Goal based load tests in VSTS 2008 do not work after applying SP1

There is a QFE available that fixes the following bugs with Goal Based Load Patterns that were

introduced in VSTS 2008 SP1:

 If you defined a goal based load pattern using a performance counter from any of the

“LoadTest:*” categories, an error would occur and the user load would not be not adjusted

according to the goal.

 If you defined a goal based load pattern using a “single instance” performance counter (for

example Memory\Available Mbytes), an error would occur and the user load not be not

adjusted according to the goal.

 If the Machine Name property entered for the goal based performance counter did not exactly

match the casing for the computer name, an error would occur and the user load would not be

adjusted according to the goal.

The hotfix can be obtained from:

http://support.microsoft.com/kb/957451

This is no longer an issue in VS 2010

Using Named Transactions in a Goal-Based Load Profile can cause errors

When keeping track of transactions in a test, VSTS postpends the transaction name with a number in

parentheses. This is to differentiate transactions that use the same name in different tests and keep the

collected metrics separate. Because of this, using a specific transaction name in a goal based load profile

will most likely give you the error: “A LoadTestPlugin attempted to set the 'MinTargetValue' property of

the load profile for Scenario Scenario1 of Load Test LoadTest1; this not allowed after the

LoadTestLoadProfile has been assigned to the LoadProfile property of the LoadTestScenario.” This is due

to the naming convention used by VSTS described above. There is no way to use wildcards in the fields

so you would have to know the exact postpended value.

Also, Even if you know the value, you may see the error near the beginning, since the transaction may

not have run yet, so the instance to check may not yet exist.

Changed in 2010

http://support.microsoft.com/kb/957451

Visual Studio Performance Testing Quick Reference Guide Page 83

Debugging Errors in Load Tests

http://blogs.msdn.com/slumley/pages/debugging-errors-in-load-test.aspx

Debugging OutOfMemory Exceptions in Load Tests

http://blogs.msdn.com/billbar/pages/diagnosing-outofmemoryexceptions-that-occur-when-running-

load-tests.aspx

Memory leak on load test when using HTTPS

Problem: There is a memory leak in VS 2008 when running load tests that contain both HTTP and HTTPS

requests.

Resolution: We've analyzed this memory leak and determined that this is a bug in the

System.Net.HttpWebRequest class (used to issue Web test requests) that occurs when the Web test

target https Web sites. A workaround is to set the Load Test to use the "Connection Pool" connection

model. This problem is fixed in VS 2010.

http://blogs.msdn.com/slumley/pages/debugging-errors-in-load-test.aspx
http://blogs.msdn.com/billbar/pages/diagnosing-outofmemoryexceptions-that-occur-when-running-load-tests.aspx
http://blogs.msdn.com/billbar/pages/diagnosing-outofmemoryexceptions-that-occur-when-running-load-tests.aspx

Visual Studio Performance Testing Quick Reference Guide Page 84

“Not Trusted” error when starting a load test

When you start a load test, you may get the following error:

“The location of the file or directory xxx is not trusted”

This can occur if you have signed code in your test harness and you make changes to some of the code

without resigning it. You can try either one of the below options to attempt to resolve it:

OPTION 1:

1. In the .NET Framework 2.0 Configuration, Go to Runtime Security Policy | Machine | All_Code

2. Right click All_Code, select "New...", and select any name for your new group. Click Next

3. Select URL as your condition

4. Type \\machine_name\shared_folder\assembly.dll or \\machine_name\shared_folder* and

click Next

5. Make sure permission is set to FullTrust

6. Click Next, and Finish

7. Close all your Visual Studio IDEs, restart, and try again

OPTION 2:

caspol -machine -addgroup 1 -url file:<location XXX>/* FullTrust -name

FileW

This issue can also occur if you have a downloaded zip file (or other) that is flagged in the properties as

“Blocked” You need to unblock it to use. Right click on the file and go to the properties:

Visual Studio Performance Testing Quick Reference Guide Page 85

Detail Logging may cause “Out of disk space” error

When you use the new feature in VS 2010 “Save Log on Test Failure”, you may get an “Out of disk

space” error. Depending on the number of “Maximum Test Logs” and the size of data for each iteration,

the logs being saved can be very large(for instance, a webtest that uploads and/or downloads large

files).

Error details and stack traces no longer available in VSTS 2010

When a particular request encountered an error in VSTS 2008 while running a load test (with “Timing

Details Storage” set to “All Individual Details”), you could go to the details of the error and see the

information specific to that request. This option is no longer in VS 2010. It has been replaced by the new

detailed logging feature that logs the entire Web test or unit test result for a failed virtual user iteration.

VSTS does not appear to be using more than one processor

If you are running a load test on a multi processor machine but notice that only one processor is being

used, this is due to the fact that you are running the test as “<Local – no controller>”. VSTS will only use

multiple processors on an Agent/Controller setup. This is by design due to licensing considerations. In

order to take advantage of multi-proc systems, please use an agent and controller setup. It is possible to

setup the controller and agent on the same machine as VSTS.

While the limitation in the product still exists in 2010, however, you can unlock all processors by

installing a vUser license on the local machine. See “New Load Test and Load Test Rig Licensing and

configurations” for more information.

Changes made to Web Test Plugins may not show up properly

If you have a plugin that is part of the same project as a declarative web test, and you make changes in

the plugin, you may not always see those changes reflected in the test run. For instance, if you have a

plugin that writes a certain string out to an event log, and you change the string in the plugin, you still

see the old string value in the event log. This is a known issue and may be fixed in VSTT 2008 SP1 (it is

not in the beta release of SP1). In order for the bug to appear, the following conditions must be met:

 You must be running on a controller/Agent test rig

 Your web test must be declarative (bug does not occur with coded web tests)

 You must have a “Test Results” folder in the root of your solution folder

If you are experiencing the bug, you can work around it by:

 Generating a coded web test

 Renaming or deleting the “Test Results” folder

 Changing the test project’s location for the “Test Results” folder

New to 2010

New to 2010

Visual Studio Performance Testing Quick Reference Guide Page 86

Socket errors or “Service Unavailable” errors when running a load test

When running a load test, you might receive several errors similar to:

 Exception SocketException Only one usage of

each socket address (protocol/network address/port) is normally

permitted

 HttpError 503 - ServiceUnavailable 503 -

ServiceUnavailable

These are often due to exhaustion of available connection ports either on the VSTS machine(s) or on the

machines under test. To see if this could be happening, open a CMD window on your VSTS machine(s)

and on the machine(s) under test, and run the following command:

“netstat –anp tcp”

If you see this, then you are suffering from port exhaustion. The following explains what is happening

and talks about some ways to deal with it.

TCP establishes connections based on the following items:

 Client port + Client IP = Client Socket

 Server Port + Server IP = Server Socket

 Client Socket + Server Socket = connection

The TIME_WAIT state is a throwback from the old days (well more accurately the default of 4 minutes is

the throwback). The idea is that if the client closes a connection, the server puts the socket into a

TIME_WAIT state. That way, if the client decides to reconnect, the TCP negotiation does not need to

occur again and can save a little bit of time and overhead. The concept was created because creating a

TCP connection was a costly operation years ago when networks were very slow).

To get around this issue, you need to make more connections available and/or decrease the amount of

time that a connection is kept in TIME_WAIT. In the machine’s registry, open the following key and

either add or modify the values for the two keys shown:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

]

"TcpTimedWaitDelay"=dword:0000001e (30 seconds)

"MaxUserPort"=dword:0000fffe (65,535 ports)

If you are experiencing the issue on one of the VSTT load machines, you may also need to change the

load test connection model to “Connection Pooling” and increase the pool size considerably.

Visual Studio Performance Testing Quick Reference Guide Page 87

Error “Failed to load results from the load test results store”

“Unable to cast object of type ‘System.DBNull’ to type ‘System.Byte*+’” error when trying to retrieve

load test results from the DB inside VSTS.

This error will occur if you get a NULL value in the LoadTest column of the LoadTestRun table. To fix it,

go to the table and delete the row that has the NULL value. The occurrence of this issue should be

extremely rare.

Hidden Field extraction rules do not handle some fields

Some responses may contain hidden fields whose formats have an extra character that causes the build

in “Extract Hidden Fields” rule to not find the value. Consider the following entry in a response:

<input type="hidden" name="_ListSchemaVersion_{9fcdfcc2-6d4f-4a22-a379-

8224954c1d9a}" id="_ListSchemaVersion_{9fcdfcc2-6d4f-4a22-a379-8224954c1d9a}"

value="1" />

A default Hidden extraction rule was added to the request. When the rule fired, the result was:

$HIDDEN2._ListSchemaVersion_{9fcdfcc2-6d4f-4a22-a379-8224954c1d9a

It should have been

$HIDDEN2._ListSchemaVersion_{9fcdfcc2-6d4f-4a22-a379-8224954c1d9a}

This is not a bug, but just a side effect of how VS process context parameters.

Test results iteration count may be higher than the max test iterations set

When a test run that defines a specific number of test iterations is complete, you may see more tests

run than the iterations set in the run properties. This is rare and is caused by the load test process

crashes and restarts. This issue exists in VSTS 2008 and VS 2010. The reason for this is that the Restart

file we use to handle restarting a load test after QTAgent dies was never updated to include info about

the tests completed, so it will always run the initial number of test iterations after restart.

Resolution:

Find out what is causing QTAgent to crash and fix that issue.

Visual Studio Performance Testing Quick Reference Guide Page 88

In flight test iterations may not get reported

When a load test is stops, there will be “in-flight” tests and requests. The load test engine gives all in-

flight requests 10 seconds to stop. If the request doesn’t finish after some time, we kill the request and

don’t record that request detail or test detail.

A way to control this is to specify a Cool-Down period of 10 minutes in the Load Test’s run

settings. Assuming that the requests in your Web test have the default request timeout of 5 minutes,

all in-flight requests at the time load test completion at one hour should either finish or be timed out in

5 minutes and then the in-flight tests should be displayed in the User Details Test chart.

Completion of Unit Test causes spawned CMD processes to terminate

If you spawn a process from within a web test, and then that process spawns a separate CMD window

(using the “START” command), the second CMD window should be totally independent of the test. If this

method is used for Unit tests or for Windows applications, it will work as expected. However, web tests

will kill the spawned process. Here is an excerpt from an email thread with the product team:

Here’s what I’ve discovered. There is an option in VSTT that allows you to keep VSTestHost alive after a

test run completes: go to “Tools”, “Options”, “Test Tools”, “Test Execution” and see the check box “Keep

test execution engine running between test runs”. This is on by default, and I’m guessing it is on for

you. When you run just a unit test in a test run, this option works and VSTestHost does not get killed

when the test run completes, so neither does its child processes. However, when you run a Web test, this

option seems to be ignored and VSTestHost is killed by a call to Process.Kill() which I believe does kill the

child processes of VSTestHost as well (if you uncheck this option, you’ll see that running the unit test has

the same behavior). I’m not sure why VSTestHost goes away even when this option is set when a Web

test is run – this may have been intentional. Here’s a workaround that seems to work instead:

 create a unit test that sleeps for 10 seconds (or whatever time is needed)

 create an ordered test that includes your coded Web test first then the unit test that sleeps

 run the ordered test rather than the coded Web test

NOTE: an example of this scenario is firing off a batch file that starts a NETCAP.EXE window to gather

trace data during the test run. This NETCAP process must run asynchronously so it will not block the web

test. It must also complete by itself or the resultant trace file will not get written.

Web tests should not be starting other processes, or performing any blocking operations as they will

cause problems with the load test engine. For the netcap example, a better solution is to write this as a

VS2010 data collector.

Visual Studio Performance Testing Quick Reference Guide Page 89

Bug with LoadProfile.Copy() method when used in custom goal based load tests

If you create a custom goal based load test plugin and use the LoadProfile method Copy(), you will get

an error saying: “A LoadTestPlugin attempted to set the 'MinTargetValue' property of the load profile for

Scenario Scenario1 of Load Test LoadTest1; this not allowed after the LoadTestLoadProfile has been

assigned to the LoadProfile property of the LoadTestScenario.” This is due to a regression in hotfix

957451. There is currently no fix for this, however there is a workaround. You need to create your own

copy method and use it to populate the custom LoadProfile. Make sure that you do NOT set the

“ScenarioName” value since this is where the bug lies. Here is some sample code:

The Copy() Method usage that will fail:
LoadTestGoalBasedLoadProfile newGoalProfile = _scenario.LoadProfile.Copy() as

LoadTestGoalBasedLoadProfile;

The custom method to replace the Copy() method:
private LoadTestGoalBasedLoadProfile ProfileCopy(LoadTestGoalBasedLoadProfile

_profile)

{

 LoadTestGoalBasedLoadProfile _goalLoadProfile = new

LoadTestGoalBasedLoadProfile();

 _goalLoadProfile.CategoryName = _profile.CategoryName;

 _goalLoadProfile.CounterName = _profile.CounterName;

 _goalLoadProfile.InstanceName = _profile.InstanceName;

 _goalLoadProfile.InitialUserCount = _profile.InitialUserCount;

 _goalLoadProfile.MinUserCount = _profile.MinUserCount;

 _goalLoadProfile.MaxUserCount = _profile.MaxUserCount;

 _goalLoadProfile.MaxUserCountIncrease = _profile.MaxUserCountIncrease;

 _goalLoadProfile.MaxUserCountDecrease = _profile.MaxUserCountDecrease;

 _goalLoadProfile.MinTargetValue = _profile.MinTargetValue;

 _goalLoadProfile.MaxTargetValue = _profile.MaxTargetValue;

 return _goalLoadProfile;

}

Using the method in your HeartBeat event handler:
void _loadTest_Heartbeat(object sender, HeartbeatEventArgs e)

{

 // Make a private instance of the profile to edit

 LoadTestGoalBasedLoadProfile _goalLoadProfile =

ProfileCopy((LoadTestGoalBasedLoadProfile)_scenario.LoadProfile);

 // Do your modifications to the private copy of the profile here

 // [some code]

 // Assign your private profile back to the test profile

 _scenario.LoadProfile = _goalLoadProfile;

 }

}

Visual Studio Performance Testing Quick Reference Guide Page 90

Errors in dependent requests in a Load Test do not show up in the details test log

The new Detailed Test Logging feature will not allow you to see the details of errors that

occur inside dependent requests during a load test (like AJAX or JSON requests)

The problem is that if a dependent request has an error, even though the test will be flagged

as failed, and the log for that iteration will be stored, the log does not contain any details for

any dependent requests. Therefore you do not get any details about why the failure

occurred.

To work around this issue, you need to make sure any dependent requests that are having

problems get moved back up to main requests, at least during a test debugging phase.

Web Test execution shows the failure

Load Test execution shows that there is a failure

Visual Studio Performance Testing Quick Reference Guide Page 91

The errors table in the results shows the exception count and allows you to drill into the details. The picture below shows
you how to display the full details log for this failed iteration

Here you see the details log. It

shows that there is a failure, but

the request details do not show

where the error occurred, nor can

you get any details about the error.

Visual Studio Performance Testing Quick Reference Guide Page 92

WCF service load test gets time-outs after 10 requests

If you encounter time-outs when running a load test against a WCF service that uses message-level

security, this could be caused by the WCF service running out of security sessions. The maximum

number of simultaneous security sessions is a WCF configuration setting with a default value of 10. Any

additional requests to the service that would lead to more security sessions will be queued.

If you want the service support more than 10 simultaneous clients, you will need to change it in the WCF

configuration setting. Another reason you might run out of security sessions is when the client isn’t

properly closing those sessions after it is done with the service.

A WCF security session is established by a security handshake between client and service in which

asymmetric encryption is used to establish a symmetric encryption key for additional requests in the

same session. The initial asymmetric encryption is more computationally expensive than the symmetric

encryption that is used for subsequent requests. A client must explicitly close the security session to

release server resources or they will only be released by the server after a time-out in the order of

minutes.

If the client only needs to call the web service once, the message exchange with the symmetric key is

unnecessary and you can save a roundtrip by disabling security sessions. Set the

‘establishSecurityContext’ to false in the app.config of the client. This can also serve as a workaround for

clients that do not properly close the session, but do keep in mind that this will skew your performance

results. So only use this workaround while you fix the client.

For more details on secure sessions and the ‘establishSecurityContext’ property see

http://msdn.microsoft.com/en-us/library/ms731107.aspx

Loadtestitemresults.dat size runs into GBs

During a load test the load agents will write to a file called loadtestitemsresults.dat. If you are planning

to execute a long running load test, you need to be sure that the loadtestitemsresults.dat file will be on

a drive with enough disk space because it can grow into many GBs.

The loadtestitemsresults.dat file is created by the QTAgent or QTAgent32 process. You should add the

key WorkingDirectory to QTAgent.exe.config and/or QTAgent32.exe.config to point to the right drive.

For example, add <add key="WorkingDirectory" value="D:\Logs"/> to the appSettings section.

For Visual Studio 2010, see http://blogs.msdn.com/lkruger/archive/2009/06/08/visual-studio-team-test-

load-agent-goes-64-bit.aspx for more information about when QTAgent.exe or QTAgent32.exe is used.

http://msdn.microsoft.com/en-us/library/ms731107.aspx
http://blogs.msdn.com/lkruger/archive/2009/06/08/visual-studio-team-test-load-agent-goes-64-bit.aspx
http://blogs.msdn.com/lkruger/archive/2009/06/08/visual-studio-team-test-load-agent-goes-64-bit.aspx

Visual Studio Performance Testing Quick Reference Guide Page 93

Troubleshooting

How to enable logging for test recording

In 2008

You can create a log file of each recording which will show headers and post body as well as returned

headers and response. The way to enable this is to add the following 2 keys:

[HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\9.0\EnterpriseTools

\QualityTools\WebLoadTest]

"CreateLog"=dword:00000001 [NOTE: 1=create; 0=do not create]

"RecorderLogFolder"="C:\\recordlogs"

In 2010

The Web test recorder automatically logs the requests and responses. See the section Recorder Log

Available

Diagnosing and fixing Web Test recorder bar issues

When you start recording a web test and the recorder bar is disabled or doesn’t show up it can be hard

to diagnose and fix the issue.

Michael Taute's blog provides a list with common reasons for this to happen and potential fixes for each.

Most of the times the reasons are security related. One of the most common reasons for this problem is:

Issue: recorder bar comes up, but the controls are disabled.

Fix: the web test recorder bar does not work with Internet Explorer Enhanced Security Configuration (IE

ESC) enabled. IE ESC can be removed from within the Control panel -> Add Remove Programs / Windows

Components and uncheck ESC (Windows Server 2003, Vista).

Windows Server 2008 requires a different process to disable this security feature. Start the Server

Manager, browse to the Security Information section and click Configure IE ESC. In the next window

decide for whom you want to enable or disable this feature. For more details and screenshots:

http://blogs.techrepublic.com.com/datacenter/?p=255

Changed in 2010

http://blogs.msdn.com/mtaute/default.aspx
http://blogs.techrepublic.com.com/datacenter/?p=255

Visual Studio Performance Testing Quick Reference Guide Page 94

User Account requirements and how to troubleshoot authentication

The following information comes from a blog entry by Durgaprasad Gorti. The link at the end of this

section will take you to the full article which includes a walkthrough on troubleshooting authentication

issues on a test rig.

Workgroup authentication

In a Microsoft® Windows® domain environment, there is a central authority to validate credentials. In a

workgroup environment, there is no such central authority. Still, we should be able to have computers in

a workgroup talk to each other and authenticate users. To enable this, local accounts have a special

characteristic that allows the local security authority on the computer to authenticate a "principal" in a

special way.

If you have two computers and a principal "UserXYZ" on both machines the security identifiers are

different for MACHINE1\UserXYZ and MACHINE2\UserXYZ and for all practical purposes they are two

completely different "Principals". However if the passwords are the same for them on each of these

computers, the local security authority treats them as the same principal.

So when MACHINE1\UserXYZ tries to authenticate to MACHINE2\UserXYZ, and if the passwords are the

same, then on MACHINE2, the UserXYZ is authenticated successfully and

is treated as MACHINE2\UserXYZ. Note the last sentence. The user MACHINE1\UserXYZ

is authenticated as MACHINE2\UserXYZ if the passwords are the same.

http://blogs.msdn.com/dgorti/archive/2007/10/02/vstt-controller-and-agent-setup.aspx

http://blogs.msdn.com/dgorti/archive/2007/10/02/vstt-controller-and-agent-setup.aspx

Visual Studio Performance Testing Quick Reference Guide Page 95

How to enable Verbose Logging on an agent for troubleshooting

If you need to have verbose logging to debug or isolate issues with the agents including IP switching, you

can turn on verbose logging in the config files.

1. Go to c:\Program files\Microsoft Visual Studio 2008 Team Test Load Agent\LoadTest on the agent
machine.

2. Edit the QTAgentServiceUI.exe.config file
a. change the EqtTraceLevel to 4

 <switches>

 <add name="EqtTraceLevel" value="4" />

b. Change the CreateTraceListener value to yes
<appSettings>

 <add key="CreateTraceListener" value="yes"/>

The above settings also apply to the QTAgent.exe.config, QTController.exe.config and the
QTControllerService.exe.config files.

Note: These files have moved in VS 2010 to C:\Program Files\Microsoft Visual Studio
10.0\Common7\IDE.

Error that Browser Extensions are disabled when recording a web test

You might see the following error when trying to record a web test:

To fix this, go to “Tools” -> “Internet Options and set the following:

Visual Studio Performance Testing Quick Reference Guide Page 96

Troubleshooting invalid view state and failed event validation

ASP.NET uses __VIEWSTATE and __EVENTVALIDATION hidden fields to round-trip information across

HTTP requests. The values for these fields are generated on the server and should be posted unchanged

on a post back request. By default, these values are signed with a so-called validationKey to prevent

tampering with the values on the client.

If you just record the values in a web test and post the recorded values, you can run into ASP.NET error

messages about invalid view state or failed event validation. The Visual Studio web test recorder will

normally automatically detect the __VIEWSTATE and __EVENTVALIDATION hidden fields as dynamic

parameters. This means the dynamically extracted values will be posted back instead of the recorded

values.

However, if the web server is load balanced and part of a web farm you may still run into invalid view

state and failed event validation errors. This occurs when not all servers in the web farm use the same

validationKey and the post back request is routed to a different server in the farm than the one on

which the page was rendered.

To troubleshoot, ViewState MAC checking can be disabled by setting enableViewStateMac to false.

However, this is not suitable for use on a production environment because it disables an important

security feature and has performance implications. The recommended fix is to define the same value for

the validationKey on all machines.

Instructions for manually creating a validationKey are detailed at http://msdn.microsoft.com/en-

us/library/ms998288.aspx. For IIS 7 a machine key can easily be created through IIS Manager, see

http://technet.microsoft.com/en-us/library/cc772287(WS.10).aspx.

For more background information on ViewState and EventValidation go to

http://msdn.microsoft.com/en-us/magazine/cc163512.aspx.

http://msdn.microsoft.com/en-us/library/ms998288.aspx
http://msdn.microsoft.com/en-us/library/ms998288.aspx
http://technet.microsoft.com/en-us/library/cc772287(WS.10).aspx
http://msdn.microsoft.com/en-us/magazine/cc163512.aspx

Visual Studio Performance Testing Quick Reference Guide Page 97

Troubleshooting the VSTS Load Testing IP Switching Feature

1) Make sure that the Agent Service is running as a user than is an admin on the agent machine; this is

required because the agent service attempts to configure the IP addresses specified in the agent

properties on the chosen NIC, and admin permission is required to do this.

2) Make sure that none of the IP addresses in the range specified for a particular agent are already

configured on the chosen NIC.

3) Enable verbose logging for the Agent Service:

* Edit the file QTAgentService.exe.config: (located at: <Program Files>\Microsoft Visual Studio

9.0 Team Test Load Agent\LoadTest\QTAgentService.exe.config)

* Change:
<add key="CreateTraceListener" value="no"/> to "yes"

* Change:
<add name="EqtTraceLevel" value="3" /> to “4”

* Restart the Load Test Agent service

* The file "VSTTAgent.log" will be created in the same directory as QTAgentService.exe.config.

* Re-run the load test with verbose logging configured, and look for lines in the log file that contain the

text: "Attempting to configure IP address:" and "Configured IP address:" This will tell you whether or not

you the agent service is attempting to configure the IP address you've specified. If you see the

"Configured IP address:" line, it has succeeded in configuring this IP address. If not, there should be

some error logged.

If you have verified the items in step 1 & 2 above, and the log indicates that the configuration of the IP

address is failing but you cannot determine the cause of the failure from the error message in the log (or

if there is no error message in the log), post a new thread to the Web and Load testing forum, or open a

Microsoft Support incident for further assistance, and provide details on the setup including the relevant

portions of the log file.

4) Make sure that the load test you are running is set to use IP Switching: Click on each of the "Scenario"

nodes in the load test editor, go to the property sheet, and verify that the "IP Switching" property is set

to True (normally it should be since this is the default, but it's worth checking).

5) Enable verbose logging for the Agent process.

If the log file created in step 3 shows that the IP addresses are being successfully configured, the next

step is to check the agent process log file to verify that the load test is actually sending requests using

those IP addresses.

Visual Studio Performance Testing Quick Reference Guide Page 98

To enable verbose logging for the agent process:
* Edit the file QTAgent.exe.config: (located at <Program Files>\Microsoft Visual Studio 9.0 Team
Test Load Agent\LoadTest\QTAgent.exe.config)

* Change:

<add key="CreateTraceListener" value="no"/> to “yes”
* Change:

<add name="EqtTraceLevel" value="3" /> to “4”

* The file "VSTTAgentProcess.log" will be created in the same directory as QTAgent.exe.config.
* Re-run the load test, and look for lines in the log file that look something like: "Bound request on

connection group M to IP address NNN.NNN.NNN.NNN" If verbose logging is enabled and these lines are

present in the log file, IP Switching should be working.

6) If the number of unique IP addresses being used as shown by the log entries in step 5 is less than the

number in the range that was configured, it could be because your load test is configured to use a

connection pool with a smaller number of connections than the number of IP addresses specified. If

this is the case, you can increase the size of the connection pool, or switch to "Connection per User"

mode in the load test's run settings properties.

Visual Studio Performance Testing Quick Reference Guide Page 99

Troubleshooting Guide for Visual Studio Test Controller and Agent

From: http://social.msdn.microsoft.com/Forums/en-US/vststest/thread/df043823-ffcf-46a4-9e47-

1c4b8854ca13

This guide is to help troubleshoot connection issues between Visual Studio Test Controller and Agent as

well as remote test execution issues. It gives an overview of main connection points used by Test

Controller and Agent and walks through general troubleshooting steps. In the end it provides a list of

common errors we have seen and ways to fix them, and a description of tools that can be useful for

troubleshooting as well as how to obtain diagnostics information for test execution components.

We would like to use this guide as running document, please reply to this post to add your comments.

2. Remote Test Execution: connection points

The following diagram illustrates main connection points between Test Controller, Agent and Client. It

outlines which ports are used for incoming and outgoing connections as well as security restrictions

used on these ports.

The technology used to connect remote test execution components is .Net Remoting over Tcp ports. For

incoming connections, by default, Test Controller uses Tcp port 6901 and Test Agent uses port 6910. The

Client also needs to accept incoming connection in order to get test results from Controller, and, by

default, it is using random port for that. For information on how to configure incoming ports, refer to

the Tools section in Appendix. For outgoing connections random Tcp ports are used. For all incoming

connections Test Controller authenticates calling party and checks that it belongs to specific security

group.

All connectivity issues can be divided into 2 main groups: network issues and security/permission issues.

http://social.msdn.microsoft.com/Forums/en-US/vststest/thread/df043823-ffcf-46a4-9e47-1c4b8854ca13
http://social.msdn.microsoft.com/Forums/en-US/vststest/thread/df043823-ffcf-46a4-9e47-1c4b8854ca13

Visual Studio Performance Testing Quick Reference Guide Page 100

2.1. Network/Firewall issues (mainly implied by .Net Remoting technology):

 Controller :

 Listens on TCP port 6901 (can be configurable to use different port).

 Needs to be able to make outgoing connection to Agents and to the Client.

 Needs incoming “File and Printer sharing” connection open.

 Agent:

 Listens on TCP port 6910 (can be configurable to use different port).

 Needs to be able to make outgoing connection to Controller.

 Client:

 Needs to be able to accept incoming calls. Usually you would get Firewall notification

when Controller tries to connect to Client 1st time. On Windows 2008

Server the notifications are disabled by default and you would need to manually add

Firewall exception for Client program (devenv.exe, mstest.exe, mlm.exe) so that it can

accept incoming connections.

 By default, random TCM port is used for incoming connections. If needed, the incoming

port can be configured (see the Tools section in Appendix).

 Needs to be able to make outgoing connection to Controller.

2.2. Permissions

There are two scenarios which are different by how Test Controller is operating, and the permissions

used by Controller differ depending on the scenario:

 Test Controller runs as standalone: physical environments (VS2008 or VS2010).

 Test Controller is connected to TFS server: virtual environments (VS2010 only).

2.2.1. Permissions: Test Controller not connected to TFS server:

 To run tests remotely, Client user must belong to either TeamTestControllerUsers, or

TeamTestControllerAdmins, or Administrators local group on Controller machine.

 To manage Controller/Agent, Client user must belong to TeamTestControllerAdmins or

Administrators local group on Controller machine.

 Agent service account must belong to either TeamTestAgentService or Administrators local

group on Controller machine.

 Controller service account must belong to either TeamTestControllerUsers or Administrators

local group on Controller machine.

 Service accounts with empty/no passwords are not supported.

2.3. Connection Points: Summary

Review of the connections gives high level picture of what can fail in Test Controller/Agent connectivity.

At this point you can already have a clear idea which requirement is not met for your specific scenario.

Next section provides step-by-step troubleshooting.

Visual Studio Performance Testing Quick Reference Guide Page 101

3. Step-by-step troubleshooting

Let’s walk through general troubleshooting procedure for Test Controller/Agent connection issues. For

simplicity we’ll do that in step-by-step manner.

Before following these steps you may take a look at Known Issues section in the Appendix to see if your

issue is one of known common issues. The troubleshooting is based on the key connection points and in

essence involves making sure that:

 The services are up and running.

 Permissions are set up correctly.

 Network connectivity/Firewall issues.

There are two scenarios which are different by how Test Controller is operating, and troubleshooting

steps differ depending on the scenario; hence we will consider each scenario separately:

 Test Controller runs as standalone: physical environments (VS2008 or VS2010).

 Test Controller is connected to TFS server: virtual environments (VS2010 only).

3.1. Step-by-step troubleshooting: VS2008 or VS2010 physical environments

Pre-requisites. Make sure you have necessary permissions.

 Depending on what you need to troubleshoot, you may need Administrator permissions on

Agent and/or Controller machines.

Step 1. Make sure that the Controller is up and running and Client can connect to Controller.

 Use Visual Studio or Microsoft Test Manager (see Tools section above) to view Controller status.

 If you can’t connect to Controller, make sure that Controller service is running:

 On Controller machine (you can also do that remotely) re/start controller service (see

Tools section in Appendix).

 (if you still can’t connect) On Controller machine make sure that it can accept incoming

connections through Firewall

 Open port 6901 (or create exception for the service program/executable).

 Add Firewall Exception for File and Printer Sharing.

 (if you still can’t connect) make sure that the user you run the Client under has permissions to

connect to Controller:

 On Controller machine, add Client user to the TeamTestControllerAdmins local group.

 (if you still can’t connect) On Client machine make sure that Firewall is not blocking incoming

and outgoing connections:

 Make sure that there is Firewall exception for Client program (devenv.exe, mstest.exe,

mlm.exe) so that it can accept incoming connections.

 Make sure that Firewall is not blocking outgoing connections.

 (if you still can’t connect)

Visual Studio Performance Testing Quick Reference Guide Page 102

 VS2010 only: the simplest at this time is to re-configure the Controller:

 On Controller machine log on as local Administrator, run the Test Controller

Configuration Tool (see Tools section above) and re-configure the Controller.

 All steps should be successful.

 (if you still can’t connect) Restart Controller service (see the Service Management commands

section in Tools section above)

Step 2. Make sure that there is at least one Agent registered on Controller.

 Use Visual Studio (Manage Test Controllers dialog) or Microsoft Test Manager (see Tools section

in the Appendix) to view connected Agents.

 If there are no Agents on the Controller, connect the Agent(s).

 VS2010 only:

 On Agent machine log in as user that belongs to TeamTestAgentServiceAdmins.

 On Agent machine open command line and run the Test Agent Configuration

Tool (see Tools section in the Appendix).

 Check ‘Register with Test Controller’, type controller machine name and click on

‘Apply Settings’.

 VS2008 only:

 In Visual Studio (Manage Test Controllers dialog) click on Add Agent.

 You may need to restart the Agent service.

Step 3. Make sure that Agent is running and Ready (for each Agent)

Agent status can be one of: Ready/Offline (temporary excluded from Test Rig)/Not Responding/Running

Tests.

 Use Visual Studio or Microsoft Test Manager (see Tools section in the Appendix) to check Agent

status.

 If one of the Agents is not shown as Ready, make sure that Agent service is running:

 On Agent machine (you can also do that remotely) re/start Agent service (see Tools

section in the Appendix).

 (if Agent is still not Ready)

 VS2010 only: the simplest at this time is to re-configure the Agent:

 On Agent machine log on as local Administrator and run the Test Agent

Configuration Tool (see Tools section in the Appendix) and re-configure the

Agent.

 All steps should be successful.

 (if Agent is still not Ready)

 If Agent is shown as Offline, select it and click on the Online button.

Visual Studio Performance Testing Quick Reference Guide Page 103

 On Agent machine make sure that agent service can accept incoming connections on

port 6901 (if Firewall in on, there must be Firewall exception either for the port or for

the service program/executable).

 Make sure that Agent service account belongs to the TeamTestAgentService on the

Controller.

 On Controller machine use Computer Management->Local Groups to add Agent

user to the TeamTestAgentService group.

 Restart services: Stop Agent service/Stop Controller service/Start Controller

service/Start Agent service.

 Make sure that Agent machine can reach Controller machine (use ping).

 Restart Agent service (see the Service Management commands section in Tools section

above).

Step 4. If all above did not help, it is time now to analyze diagnostics information.

 (VS2010 only) Agent/Controller services by default log errors into Application Event Log (see

Tools section in the Appendix).

 Check for suspicious log entries there.

 Enable tracing – see Diagnostics section above.

 Get trace for the components involved in your scenario, some/all of:

 Controller

 Agent

 Client

 Test Agent/Controller Configuration Tool

 Make sure that Controller/Agent service accounts have write access to trace files.

 Check for entries starting with “*E”.

Step 5. Take a look at Known Issues section in the Appendix to see if your issue is similar to one of those.

Step 6. Collect appropriate diagnostics information and send to Microsoft (create Team Test Forum post

or Microsoft Connect bug).

http://connect.microsoft.com/visualstudio
http://connect.microsoft.com/visualstudio

Visual Studio Performance Testing Quick Reference Guide Page 104

4. References

The following is a list of useful information sources related to Test Agent/Controller

troubleshooting.

 Troubleshooting Test Execution in MSDN.

 Troubleshooting Controllers, Agents and Rigs (VS2008) in MSDN.

 Installing and Configuring Visual Studio Agents (VS2010) in MSDN.

 Understanding Visual Studio Load Agent Controller (Load Test team blog).

 Troubleshooting errors in lab management (Team Lab blog).

 Visual Studio Team System – Test Forum.

 Microsoft Connect – report bugs/suggestions.

Appendix 1. Tools

The following tools can be useful for remote execution/Agent/Controller troubleshooting:

 Visual Studio: Premium (VS2010 only), Team Test Edition (VS2008 only).

 Manage Test Controllers dialog (Main menu->Test->Manage Test Controllers): see status

of Controller and all connected Agents, add/remove Agents to Controller, restart

Agents/the whole test rig, bring Agents online/offline, configure Agent properties.

 Note: on VS2008 this dialog is called Administer Test Controllers.

 Run tests remotely:

 VS2008: update Test Run Configuration to enable remote execution (Main Menu->Test-

>Edit Test Run Configurations->(select run config)->Controller and Agent->Remote-

>provide Test Controller name), then run a test.

 VS2010: update Test Settings to use remote execution role (Main Menu->Test->Edit Test

Settings -> (select test settings)->Roles->Remote Execution), then run a test.

 Microsoft Test Manager (VS2010 only)

 Lab Center->Controllers: see status of Controller and all connected Agents, add/remove

Agents to Controller, restart Agents/the whole test rig, bring Agents online/offline,

configure Agent properties. Note that Lab Center only shows controllers that are

associated with this instance of TFS.

 Test Controller Configuration Tool (TestControllerConfigUI.exe, VS2010 only):

 It is run as last step of Test Controller setup.

 You can use it any time after setup to re-configure Controller. The tool has embedded

diagnostics which makes it easier to detect issues.

 Test Agent Configuration Tool (TestAgentConfigUI.exe, VS2010 only):

 It is run as last step of Test Controller setup.

http://msdn.microsoft.com/en-us/library/ms182478(VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms404660.aspx
http://msdn.microsoft.com/en-us/library/dd648127(VS.100).aspx
http://blogs.msdn.com/vstsloadtestblog/articles/527597.aspx
http://blogs.msdn.com/lab_management/pages/troubleshooting.aspx
http://social.msdn.microsoft.com/Forums/en-US/vststest/threads
http://connect.microsoft.com/visualstudio

Visual Studio Performance Testing Quick Reference Guide Page 105

 You can use it any time after setup to re-configure Agent. The tool has embedded

diagnostics which makes it easier to detect issues.

 Diagnostics information

 Both Agent and Controller can be configured to trace diagnostics information (from

errors to verbose) to Application Event Log or trace file. Clients can also be configured to

trace (from errors to verbose) to trace file.

 Tracing can be enabled via .config file or registry (VS2010 only), registry wins. Choose

the method that is more convenient for your scenario.

 Enable tracing via .config file(s):

 One of the advantages of using config files is that you can enable tracing for

each component separately and using trace settings specific only to this

component.

 For Controller Service/Agent Service/Agent Process, you need the following

sections in the corresponding .config file (qtcontroller.exe.config,

qtagentservice.exe.config, qtagent.exe.config, qtagent32.exe.config which by

default are located in C:\Program Files (x86)\Microsoft Visual Studio

10.0\Common7\IDE):

 Inside the <appSettings> section:

<add key="CreateTraceListener" value="yes"/>

 Inside the <configuration> section (note: “Verbose” is equivalent

to “4”):
<system.diagnostics>

 <switches>

 <add name="EqtTraceLevel" value="Verbose" />

 </switches>

</system.diagnostics>

 Trace files:

 Controller: vsttcontroller.log

 Agent Service: vsttagent.log

 Agent Process: VSTTAgentProcess.log

 For Client, add the following section to appropriate .config file

(devenv.exe.config, mstest.exe.config, mlm.exe.config):

 Inside the <configuration> section (note: “Verbose” is equivalent

to “4”):

<system.diagnostics>

 <trace autoflush="true" indentsize="4">

 <listeners>

Visual Studio Performance Testing Quick Reference Guide Page 106

 <add name="EqtListener"

type="System.Diagnostics.TextWriterTraceListener"

initializeData="C:\EqtTrace.log" />

 </listeners>

 </trace>

 <switches>

 <add name="EqtTraceLevel" value="Verbose" />

 </switches>

</system.diagnostics>

 Trace file: trace will go to the file specified by the initializeData

attribute.

 Important: please make sure that the location is writable by

controller/agent service/process.

 Enable tracing via registry (VS2010 only):

 One of the advantages of using registry is that you can enable tracing for all

components using just one setting, you don't have to modify multiple

configuration files.

 Create a file with the following content, rename it so that it has .reg extension

and double click on it in Windows Explorer:

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\10.0\EnterpriseTools

\QualityTools\Diagnostics]

"EnableTracing"=dword:00000001

"TraceLevel"=dword:00000004

"LogsDirectory"="C:\"

 Notes:

 In case of Test Controller/Agent services the HKEY_CURRENT_USER is

the registry of the user the services are running under.

 TraceLevel: 0/1/2/3/4 = Off/Error/Warning/Info/Verbose.

 LogsDirectory is optional. If that is not specified, %TEMP% will be used.

 Trace file name is <Process name>.EqtTrace.log, e.g.

devenv.EqtTrace.log.

 Tracing from Test Controller Configuration Tool and Test Agent Configuration Tool:

 To get trace file, click on Apply, then in the “Configuration Summary” window

on the view log hyperlink in the bottom.

 SysInternals’ DebugView can also be used to catch diagnostics information.

 Application configuration files

 Controller, Agent and Client use settings from application configuration files:

Visual Studio Performance Testing Quick Reference Guide Page 107

 Controller service: qtcontroller.exe.config

 Agent service: qtagentservice.exe.config

 Agent process: qtagent.exe.config (neutral/64bit agent), qtagent32.exe.config

(32bit agent).

 VS: Devenv.exe.config.

 Command line test runner: mstest.exe.config.

 By default these files are located in C:\Program Files (x86)\Microsoft Visual

Studio 10.0\Common7\IDE.

 How to configure listening ports:

 This may be useful in the following scenarios:

 Default ports used by Controller/Agent/Client can be used by some

other software.

 There is firewall between controller and client. In this case you would

need to know which port to enable in the firewall so that Controller can

send results to the Client.

 Controller Service: qtcontroller.exe.config:

<appSettings><add key="ControllerServicePort"

value="6901"/></appSettings>

 Agent Service:

<appSettings><add key="AgentServicePort"

value="6910"/></appSettings>

 Client: add the following registry values (DWORD). The Client will use one of the

ports from this range for receiving data from Controller:

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\VisualStudio\10.0\EnterpriseTools\Qu

alityTools\ListenPortRange\PortRangeStart

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\VisualStudio\10.0\EnterpriseTools\Qu

alityTools\ListenPortRange\PortRangeEnd

 Service Management commands

 UI: Start->Computer->Right-click->Manage-> Services and Applications->Services

 § Visual Studio Test Controller

 Visual Studio Test Agent

 Command line: net start/net stop: use to start/stop Agent/Controller

 net start vsttcontroller

 net start vsttagent

 Windows Firewall

Visual Studio Performance Testing Quick Reference Guide Page 108

 Start->Control Panel->Windows Firewall.

 IP Security Policy

 Start->Run->rsop.msc (on both Agent and Controller machines)

 Go to Computer configuration->windows settings->security settings->ip security policies

 Check if there are any policies that may prevent connections. By default there are no

policies at all.

 Computer Management

 Local Groups

 Start->Computer->Manage->Local Users and Groups->Groups.

 Event Log (Application)

 Start->Computer->Manage->Event Viewer->Windows Logs->Application.

 Ping

 You can use ping to make sure that general TCP/IP network connectivity works.

 Telnet

 You can use telnet to check that you can connect to Agent/Controller, i.e. Firewall is not

blocking, etc.

 telnet <ControllerMachineName> 6901

 telnet <AgentMachineName> 6910

 Visual Studio Team System – Test Forum.

 Microsoft Connect – report bugs/suggestions.

Appendix 2. Known issues

The following is a list of known issues and suggested resolutions for them.

2.1. The message or signature supplied for verification has been altered (KB968389)

Symptom: Agent cannot connect to Controller.

Affected scenarios: Windows XP/Windows 7 connecting to Windows 2003 Server.

Additional information:

 EventL Log (Agent): The message or signature supplied for verification has been altered.

 Trace file (Agent) contains:

I, <process id>, <thread id>, <date>, <time>, <machine name>\QTAgentService.exe,

AgentService: The message or signature supplied for verification has been altered.

I, <process id>, <thread id>, <date>, <time>, <machine name>\QTAgentService.exe,

AgentService: Failed to connect to controller.

Microsoft.VisualStudio.TestTools.Exceptions.EqtException: The agent can connect to the

controller but the controller cannot connect to the agent because of following reason:

An error occurred while processing the request on the server: System.IO.IOException:

The write operation failed, see inner exception. --->

System.ComponentModel.Win32Exception: The message or signature supplied for

verification has been altered

at System.Net.NTAuthentication.DecryptNtlm(Byte[] payload, Int32 offset, Int32 count,

Int32& newOffset, UInt32 expectedSeqNumber)

at System.Net.NTAuthentication.Decrypt(Byte[] payload, Int32 offset, Int32 count,

http://social.msdn.microsoft.com/Forums/en-US/vststest/threads
http://connect.microsoft.com/visualstudio

Visual Studio Performance Testing Quick Reference Guide Page 109

Int32& newOffset, UInt32 expectedSeqNumber)

at System.Net.Security.NegoState.DecryptData(Byte[] buffer, Int32 offset, Int32 count,

Int32& newOffset)

at System.Net.Security.NegotiateStream.ProcessFrameBody(Int32 readBytes, Byte[]

buffer, Int32 offset, Int32 count, AsyncProtocolRequest asyncRequest)

at System.Net.Security.NegotiateStream.ReadCallback(AsyncProtocolRequest asyncRequest)

--- End of inner exception stack trace ---

at System.Net.Security.NegotiateStream.EndRead(IAsyncResult asyncResult)

at

System.Runtime.Remoting.Channels.SocketHandler.BeginReadMessageCallback(IAsyncResult

ar)

Server stack trace:

at

Microsoft.VisualStudio.TestTools.Controller.AgentMachine.VerifyAgentConnection(Int32

timeout)

Root cause: You installed KB968389 either via Windows Update or manually.

Resolution: uninstall KB968389 from Start->Control Panel->Programs and Features->View Installed

Updates.

2.2. Controller/Agent in untrusted Windows domains or one is in a workgroup and another one

is in domain.

Symptom: Agent cannot connect to Controller.

Affected scenarios: Test Controller and Agent are not in the same Windows domain. They are either in

untrusted domains or one of them is in a domain and another one is in a workgroup.

Additional information:

 Trace file (Agent) contains:

W, <process is>, <thread id>, <date>, <time>, <mMachine name>\QTController.exe,

Exception pinging agent <agent name>:

System.Security.Authentication.AuthenticationException: Authentication failed on the

remote side (the stream might still be available for additional authentication

attempts). ---> System.ComponentModel.Win32Exception: No authority could be contacted

for authentication

Server stack trace:

at System.Net.Security.NegoState.ProcessReceivedBlob(Byte[] message, LazyAsyncResult

lazyResult)

at System.Net.Security.NegotiateStream.AuthenticateAsClient(NetworkCredential

credential, ChannelBinding binding, String targetName, ProtectionLevel

requiredProtectionLevel, TokenImpersonationLevel allowedImpersonationLevel)

at System.Net.Security.NegotiateStream.AuthenticateAsClient(NetworkCredential

credential, String targetName, ProtectionLevel requiredProtectionLevel,

TokenImpersonationLevel allowedImpersonationLevel)

at

System.Runtime.Remoting.Channels.Tcp.TcpClientTransportSink.CreateAuthenticatedStream(

Stream netStream, String machinePortAndSid)

at

System.Runtime.Remoting.Channels.BinaryClientFormatterSink.SyncProcessMessage(IMessage

msg)

Root cause: Due to Windows security, Agent cannot authenticate to Controller, or vice versa.

Resolution:

Visual Studio Performance Testing Quick Reference Guide Page 110

 The simplest is to use Workgroup authentication mode:

 Mirror user account on Controller and Agent: create a user account with same user

name and password on both Controller and Agent machine.

 Use mirrored user account to run Controller and Agent services under this account.

 If you are using VS2010 RC+ version (i.e. RC or RTM but not Beta2), add the following

line to the qtcontroller.exe.config file under the <appSettings> node:

<add key="AgentImpersonationEnabled" value="no"/>

 Restart Controller/Agent services (see Tools section in the Appendix).

 Make sure there is no IP Security Policy that prevents the connection (see IP Security Policy

under Tools section in the Appendix).

 By default for domain machines Windows uses domain (Kerberos) authentication, but if

it fails it will fall back to workgroup (NTLM) authentication. This behavior can be and

often is altered by IP Security policies, for instance, there could be a policy to block

connections from machines which do not belong to the domain.

 Restart or re-configure Controller and Agent.

Visual Studio Performance Testing Quick Reference Guide Page 111

How To, Gotchas and Best Practices

How to call one coded web test from another

If you want to have two coded web tests and have one called from within the other, you need to follow

a certain order to make it work:

1. Record the web tests

2. Generate code for the child

3. Include a call to the coded child in the declarative

4. Generate code for the parent

If you try to connect the two web tests before generating any code, your test will fail with the following

error:

There is no declarative Web test with the name 'DrillDown_Coded' included in this Web

test; the string argument to IncludeWebTest must match the name specified in an

IncludeDeclarativeWebTest attribute.

How to use methods other than GET and POST in a web test

Summary

FormPostHttpBody and StringHttpBody are the two built-in classes for generating HTTP request bodies.

If you need to generate requests containing something other than form parameters and strings then you

can implement an IHttpBody class.

More information

http://blogs.msdn.com/joshch/archive/2005/08/24/455726.aspx

How to filter out certain dependent requests

Summary

One of the new Web Test features in Visual Studio 2008 is the ability to filter dependent requests. If you

have a request in your web test that fetches a lot of content such as images, JavaScript files or CSS files,

it’s possible to programmatically determine which requests are allowed to execute during the course of

the web test, and which aren't.

More information

http://blogs.msdn.com/densto/pages/new-in-orcas-filtering-dependent-requests.aspx

http://blogs.msdn.com/joshch/archive/2005/08/24/455726.aspx
http://blogs.msdn.com/densto/pages/new-in-orcas-filtering-dependent-requests.aspx

Visual Studio Performance Testing Quick Reference Guide Page 112

How to handle ASP.NET Cookie-less Sessions

ASP.NET allows session IDs to be passed as part of the URL requests, which can cause problems with

VSTS playback. To deal with this issue, use the following steps:

1. Record the web test as normal

2. When the recording is done, you should see the very first request has no session ID in it, but all

of the rest do. This first request also has a REDIRECT to the same URL, but with the session ID

included.

3. For this request, turn off “Follow Redirects” and then add an extraction rule to get the value of

the session (see example below).

4. Since you turned off redirects on the first request, you need to add a second request manually

to the redirected page to capture any HIDDEN parameters.

5. Use “Quick Replace” to change all other hard-coded session IDs to the context you extracted in

step 3

 How to use extracted values inside Web Request URLs

How to use Client-side certificates in web tests

Client-side certificates are also supported in web tests, but additional code is required. The certificates

need to be added to the WebTestRequest.ClientCertificates collection. This can be done in a coded web

test, or by using a request plug-in in a declarative web test.

The following link describes how to use X509 certificate collections to make a SOAP request in .NET;

code for using them in a web test will be similar.

More information

http://msdn.microsoft.com/en-us/library/ms819963.aspx

Turn off Redirects here

Use “Extract Text” and use STARTS
WITH ‘/FMS/’ and ENDS WITH
‘/login/’

Context ID added to URL here
and in all subsequent requests

This is a copy of first request with
EXTRACT HIDDEN FIELDS added

http://msdn.microsoft.com/en-us/library/ms819963.aspx

Visual Studio Performance Testing Quick Reference Guide Page 113

How to remove the “If-Modified-Since” header from dependent requests

The reason that If-Modified-Since headers are sent by default with dependent requests is that the web

test engine attempts to emulate the behavior of Internet Explorer in its default caching mode. In many

cases IE will send If-Modified-Since headers.

However, with VSTS 2008 if you want to completely disable caching of all dependent requests and

always fetch them, you can so with the following WebTestPlugin:

 public class WebTestPlugin_DisableDependentCaching : WebTestPlugin

 {

 public override void PostRequest(object sender, PostRequestEventArgs e)

 {

 foreach (WebTestRequest dependentRequest in e.Request.DependentRequests)

 {

 dependentRequest.Cache = false;

 }

 }

 }

How to handle custom data binding in web tests

In 2008

Summary

It is possible to create a custom data binding to bind to something other than a table, such as a select

statement. This blog post describes one possible method – creating one class which will manage the

data and creating a web test plug-in to add the data into the web test context.

More information

http://blogs.msdn.com/slumley/pages/custom-data-binding-in-web-tests.aspx

In 2010

http://blogs.msdn.com/slumley/archive/2010/01/04/vsts-2010-feature-data-source-
enhancements.aspx

How to add a datasource value to a context parameter

If you try to assign a datasource value to a context parameter in a web test, it will not work properly.

This is because VSTT does not replace datasource values in the context parameters. To work around this,

you can add code directly into a coded web test or in a web test plugin. Use the following syntax for

adding the binding:

this.Context.Add(“ContextNameToUse”,this.Datasource1[“ColumnToUse”]);

Changed in 2010

http://blogs.msdn.com/slumley/pages/custom-data-binding-in-web-tests.aspx
http://blogs.msdn.com/slumley/archive/2010/01/04/vsts-2010-feature-data-source-enhancements.aspx
http://blogs.msdn.com/slumley/archive/2010/01/04/vsts-2010-feature-data-source-enhancements.aspx

Visual Studio Performance Testing Quick Reference Guide Page 114

How to test Web Services with Unit Tests

If you need some help or a starting point for building Web Service tests using Unit tests, the below blog

gives a great walkthrough.

http://blogs.msdn.com/slumley/pages/load-testing-web-services-with-unit-tests.aspx

How to add random users to web tests

The following code can be used to generate random users for loading up sample sites with user

accounts. The key to this is to randomize against a time stamp and to add another unique number (in

this case, the vuser ID) so that two different instances of the load test won’t accidently try to insert the

same user. Issues can occur where multiple agent machines randomly generate the same user when

under heavy load. The code below does not guarantee you’ll never hit identical accounts, but it

significantly increases the chance of never hitting it.

public string sRndName = "User";

public string sRndExt = @"@contoso.lab";

public int x,y;

public string sUserName;

// Generate our random user

Random randObj = new Random();

x = randObj.Next();

y = this.Context.WebTestUserId;

sUserName = sRndName + Convert.ToString(x) + Convert.ToString(y) +

sRndExt;

Or, in a declarative test this can be achieved by setting the username value to:

UserName{{$Random(0,10000)}}{{$WebTestUserId}}UserNameExt

How to add think time to a Unit Test

When you use a web test, the VSTS environment provides a property for each request called ThinkTime.

This is the preferred method to use. However, there is no such property for Unit Tests. In order to

simulate think time within Unit Tests, use the Windows API “Sleep” and pass in the appropriate value

(the parameter for sleep is in milliseconds, so use 1000 to simulate 1 second of sleep time). The Sleep

API will work well here because it is a non-CPU intensive API. The reason it is NOT recommended for

web tests is because it is a blocking API and more than one web test can share a thread, therefore it can

adversely affect more than one vuser. Unit tests do not share threads, therefore they are not affected

by this.

http://blogs.msdn.com/slumley/pages/load-testing-web-services-with-unit-tests.aspx

Visual Studio Performance Testing Quick Reference Guide Page 115

How to add details of a validation rule to your web test

There are no properties on the WebTestResponse object or WebTestRequest object that indicate the

outcome of a specific validation rule. The best approach is to have the validation rule place the result

text in the WebTestContext, and then access the WebTestContext object from the WebTest object’s

Context property in the PostRequest or PostWebTest event handler. The following approach should

work. If you have multiple validation rules, you may want to use different names for the key on the call

to this.Context.Add.

 public class WebTest13Coded : WebTest

 {

 public WebTest13Coded()

 {

 this.PreAuthenticate = true;

 }

 public override IEnumerator<WebTestRequest> GetRequestEnumerator()

 {

 WebTestRequest request1 = new WebTestRequest("http://vsncts01/StoreCSVS");

 request1.ExpectedResponseUrl = "http://vsncts01/StoreCSVS/";

 if ((this.Context.ValidationLevel >=

Microsoft.VisualStudio.TestTools.WebTesting.ValidationLevel.High))

 {

 // request1.ValidateResponse += new

EventHandler<ValidationEventArgs>(validationRule2.Validate);

 // Specify a wrapper validation event handler …

 request1.ValidateResponse += new

EventHandler<ValidationEventArgs>(request1_ValidateResponse);

 }

 yield return request1;

 request1 = null;

 // Check the validation rule result of the previous request

 if ((bool)(this.Context["validationRule_Passed"]))

 {

 WebTestRequest request2 = new

WebTestRequest("http://vsncts01/testwebsite");

 yield return request2;

 }

 }

 private void request1_ValidateResponse(object source, ValidationEventArgs

validationEventArgs)

 {

 ValidationRuleRequiredAttributeValue validationRule = new

ValidationRuleRequiredAttributeValue();

 validationRule.TagName = "DIV";

 validationRule.AttributeName = "id";

 validationRule.MatchAttributeName = "id";

 validationRule.MatchAttributeValue = "LeftContent";

 validationRule.ExpectedValue = "LeftContent";

 validationRule.IgnoreCase = false;

 validationRule.Index = -1;

 validationRule.Validate(source, validationEventArgs);

 // Add the validation rule result to the WebTestContext

 this.Context.Add("validationRule_Passed", validationEventArgs.IsValid);

 this.Context.Add("validationRule_Message", validationEventArgs.Message);

 }

 }

http://vsncts01/StoreCSVS
http://vsncts01/StoreCSVS/
http://vsncts01/testwebsite

Visual Studio Performance Testing Quick Reference Guide Page 116

How to mask a 404 error on a dependent request

When running web tests, you may find that certain dependent requests always fail with a 404 error.

Normally you would resolve this issue by fixing the broken link, or removing the reference. However,

sometimes (for the sake of moving forward with your testing) you might want to have VSTT ignore the

error. Ed Glas has a blog outlining one way to do this quickly

(http://blogs.msdn.com/edglas/archive/2008/08/06/masking-a-404-error-in-a-dependent-request.aspx)

but that may not work in all cases. For example if an ASPX page has some code that returns a link to a

local file that is not present, then the blog post above will not work. In this case, you should consider

using a plugin similar to the following (thanks to Ed Glas for the sample):

//**

// WebTestDependentFilter.cs

// Owner: Ed Glas

//

// This web test plugin filters dependents from a particular site.

// For example, if the site you are testing has ads served by another company

// you probably don't want to hit that site as part of a load test.

// This plugin enables you to filter all dependents from a particular site.

//

// Copyright(c) Microsoft Corporation, 2008

//**

using Microsoft.VisualStudio.TestTools.WebTesting;

namespace SampleWebTestRules

{

 public class WebTestDependentFilter : WebTestPlugin

 {

 string m_startsWith;

 public string FilterDependentRequestsThatStartWith

 {

 get { return m_startsWith; }

 set { m_startsWith = value; }

 }

 public override void PostRequest(object sender, PostRequestEventArgs e)

 {

 WebTestRequestCollection depsToRemove = new WebTestRequestCollection();

 // Note, you can't modify the collection inside a foreach, hence the

second collection

 // requests to remove.

 foreach (WebTestRequest r in e.Request.DependentRequests)

 {

 if (!string.IsNullOrEmpty(FilterDependentRequestsThatStartWith) &&

 r.Url.StartsWith(FilterDependentRequestsThatStartWith))

 {

 depsToRemove.Add(r);

 }

 }

 foreach (WebTestRequest r in depsToRemove)

 {

 e.Request.DependentRequests.Remove(r);

 }

 }

 }

}

http://blogs.msdn.com/edglas/archive/2008/08/06/masking-a-404-error-in-a-dependent-request.aspx

Visual Studio Performance Testing Quick Reference Guide Page 117

How to parameterize Web Service calls within Web Tests

By default, VSTS does not expose an automated way of parameterizing the data passed in the body of a

Web Service call. However, it does still honor the syntax used to define parameters in the string. To

manually add a parameter definition in the body, edit the string and add the parameters where you

need them. The syntax is:

{{Datasource.Table.Column}}

Here is a sample:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <OrderItem xmlns="http://tempuri.org/">
 <userName>jb@ibuyspy.com</userName>
 <password>IBS_007</password>
 <productID>{{DataSource1.Products.ProductID}}</productID>
 <quantity>1</quantity>
 </OrderItem>
 </soap:Body>
</soap:Envelope>

How to pass Load Test Context Parameters to Unit Tests

http://blogs.msdn.com/slumley/archive/2006/05/15/passing-load-test-context

How to create Global Variables in a Unit Test

If you need to have a global variable shared among iterations of a unit test, use the following:

Define a static member variable of the unit test class, or if you have multiple unit test classes that need

to share the data, create a singleton object that is accessed by all of the unit tests. The only case in

which this would not work is if you have multiple unit test assemblies being used in the same load test

that all need to share the global data and you also need to set the “Run Unit Tests in Application

Domain” load test setting to true. In that case each unit test assembly has its own app domain and its

own copy of the static or singleton object.

CAVEAT: This will not work in a multi-agent test rig. If you have a multi-agent rig and you want truly

global data, you’d either need to create a common Web service or use a database that all of the agents

access.

http://blogs.msdn.com/slumley/archive/2006/05/15/passing-load-test-context-parameters-to-unit-tests.aspx

Visual Studio Performance Testing Quick Reference Guide Page 118

How to use Unit Tests to Drive Load with Command Line Apps

The following code can be used in a Unit Test to drive a command line tool (such as a testing tool). The

Unit test can then be driven by a load test to emulate multiple copies of the app.

using System.Threading;

using System.Diagnostics;

using System.IO;

.......

[TestMethod]

 public void TestMethod1()

 {

 int x=0;

 int iDuration = 10000;

 try

 {

 Process myProcess = new Process();

 myProcess = Process.Start("c:\\temp\\conapp2.exe", “arg1”, “arg2”);

 myProcess.WaitForExit(iDuration); //Max iDuration milliseconds to return

 if (!myProcess.HasExited) //If the app has not exited, kill it manually

 {

 myProcess.Kill();

 Console.WriteLine("Application hung and was killed manually.");

 }

 else

 {

 x = myProcess.ExitCode;

 Console.WriteLine("Completed. Exit Code was {0}", x);

 }

 }

 catch (Exception e)

 {

 Console.WriteLine("The following exception was raised: " + e.Message);

 }

 finally

 {

 }

 }

How to add Console Output to the results store when running Unit tests under load

The following link points to a write-up on how to allow unit tests to write custom output messages to

the Load Test Results Store database from Unit tests while they are running in a load test:

http://blogs.msdn.com/billbar/pages/adding-console-output-to-load-tests-running-unit-tests.aspx

http://blogs.msdn.com/billbar/pages/adding-console-output-to-load-tests-running-unit-tests.aspx

Visual Studio Performance Testing Quick Reference Guide Page 119

How to add parameters to Load Tests

To add a parameter to a Load Test, open the load test and right-click on the “Run Settings1” line (or

wherever you want to add the parameter) and then choose to add a context parameter. Make sure it

uses the same name as the parameter you wish to override in the web tests if that is your intent.

 Adding parameters to load tests

How to Change the Standard Deviation for a NormalDistribution ThinkTime

Find the <test_name>.loadtest file in the VSTT project directory and edit it directly. You will find a

section like the one below for each scenario in the loadtest. Change the ThinkProfile Value to whatever

standard deviation you wish to use. The default value in VSTT is 20% (0.2)

<Scenario Name="Scenario1" DelayBetweenIterations="2"

PercentNewUsers="0" IPSwitching="true"

TestMixType="PercentageOfTestsStarted">

 <ThinkProfile Value="0.2" Pattern="NormalDistribution" />

Any ThinkTime that has a value of zero will remain zero regardless of the distribution settings.

Visual Studio Performance Testing Quick Reference Guide Page 120

How to programmatically access the number of users in Load Tests

In a load test plug-in, you can get the current user load. For an example of this, see Ed Glas’s blog post

at: http://blogs.msdn.com/edglas/archive/2006/02/06/525614.aspx (listed as “Custom Load Patterns

for VSTS” in the offline pages collection). This blog post actually does much more than that, but the line

where it updates the current load is:

 ((LoadTestScenario)m_loadTest.Scenarios[0]).CurrentLoad = newLoad;

In VS 2008 SP1 and later, you can access the load profile using the LoadTestScenario.LoadProfile

property, and casting this to the appropriate LoadProfile class (such as LoadTestConstantLoadProfile).

How to create a webtest plugin that will only execute on a predefined interval

If you want to write a webtest plugin that will only fire on certain intervals (maybe for polling or

reporting), then use the following as a starting point.

 public class WebTestPluginActingInfrequently : WebTestPlugin

 {

 public override void PostWebTest(object sender, PostWebTestEventArgs e)

 {

 if (e.WebTest.Context.WebTestIteration % 100 == 1)

 {

 // Do something

 }

 }

 }

 The WebTestIteration property is guaranteed to be unique, so no need to worry about locking. If you

run this web test by itself it will “do something” because the WebTestIteration will be 1 (unless you run

the web test by itself with multiple iterations or data binding).

Rather than hard coding the frequency as 1 in 100, you could make the frequency a property of the

plugin that you set in the Web test editor, or a Web test context parameter or a load test context

parameter: the LoadTestPlugin would need to pass that down to the WebTestPlugin either by setting it

in the WebTestContext or just make the frequency a property on the plugin.

Note that the WebTestIteration property is incrememented separately for each Scenario (on each agent)

in the load test, but if you want the frequency to be across all Web iterations on an agent then you

could define a static int in the WebTestPlugin (and use Interlocked.Increment to atomically increment

it).

http://blogs.msdn.com/edglas/archive/2006/02/06/525614.aspx

Visual Studio Performance Testing Quick Reference Guide Page 121

How to support Context Parameters in a plug-in property

If you develop a plug-in or an extraction rule and you want to allow the properties you expose to be

Context Parameters that the user specifies you need to add some code to your plugin to check for the

existence of a Context Paramter using the curly brace ‘,,xyz--’ syntax.

For example suppose the user had a Context Parameter {{ComparisonEventTarget}} that they want to

provide as the property value for the EventTarget property in your plugin, (see the screen shot), then

use the following code snippet to have your extraction/plugin checks the value supplied to determine if

it contains the syntax “{{“.

Here is a partial code snippet:

public class DynamicFormFields : WebTestRequestPlugin

 {

// this is our property that is exposed in the Visual Studio UI

//we want to allow either supplying a string literal, or a context

paramerter name

public string EventTarget {get;set;}

public override void PreRequest(object sender, PreRequestEventArgs e)

 {

 //we will check to see if our EventTarget is a string or do

they want us to get it from a context param

 if (this.EventTarget.Contains("{{"))

 {

 string contextParamKey = this.EventTarget.Replace("{{",

string.Empty).Replace("}}", string.Empty);

 this.EventTarget =

e.WebTest.Context[contextParamKey].ToString();

 }

 //. code to do your work starts here…

Visual Studio Performance Testing Quick Reference Guide Page 122

How to stop a web test in the middle of execution

If you want to stop a web test in the middle of execution based on a certain condition, you can hook into

a couple of methods (GetRequestEnumerator or PostRequestEvent) and use the following code to stop

the execution:

Coded Web Test

 if (<condition>)

 {

 this.Stop();

 yield break;

 }

WebTest Plugin (Note the caveat for this from the entry: “How to stop a test in the PreRequest Event)

 {

 e.WebTest.Stop();

 }

How To: Modify the ServicePointManager to force SSLv3 instead of TLS (Default)

If you need to modify the type of SSL connection to force SSLv3 instead of TLS (Default) then you must

modify the ServicePointManager.SecurityProtocol property to force this behavior. This can happen if

you are working with a legacy server that requires an older SSLv3 protocol and cannot negotiate for the

higher TLS security protocol. In addition, you may need to write code in your test to handle the

ServerCertificateValidationCallback to determine if the server certificate provided is valid. A code

snippet is provided below.

 [TestMethod]

 public void TestMethod1()

 {

 // We're using SSL3 here and not TLS. Without this line, nothing works.

 ServicePointManager.SecurityProtocol = SecurityProtocolType.Ssl3;

 //we wire up the callback so we can override the behavior, force it to

accept the cert from the server.

 ServicePointManager.ServerCertificateValidationCallback =

RemoteCertificateValidationCB;

--------- <XX SNIPPED XX> ---------

 public static bool RemoteCertificateValidationCB(Object sender, X509Certificate

certificate, X509Chain chain, SslPolicyErrors sslPolicyErrors)

 {

 //If it is really important, validate the certificate issuer here.

 //string resultsTrue = certificate.Issuer.ToString(true);

 //For now, accept any certificate

 return true;

 }

Visual Studio Performance Testing Quick Reference Guide Page 123

How To: Stop a Test in the PreRequest event

Stopping a test using the WebTest.Stop() method in the PreRequest event will not stop the current

request from executing. If you wish to stop the current request from firing then you need to set the

current request Instruction property to WebTestExecutionInstruction.Skip and then issue the

WebTest.Stop().

 void MSDNsiteCoded_PreRequest(object sender, PreRequestEventArgs e)

 {

 e.Instruction = WebTestExecutionInstruction.Skip;

 e.WebTest.Stop();

 }

How to make a validation rule force a redirection to a new page

Suppose you have a scenario in which you have a custom validation rule which detects an error

condition. When you hit that error condition, you want to redirect to a new error page. Here are three

ways to accomplish this.

coded test.

In a coded test, you can easily add new requests that get returned in the body of the test. You would

just create a new WebTestRequest object and “yield return” it. For example if the rule adds a context

parameter called ErrorUrl, you would have following in code:

if(this.Context.ContainsKey("ErrorUrl"))

 {

 WebTestRequest request4 = new

WebTestRequest(this.Context["ErrorUrl"].ToString());

 request4.Encoding = System.Text.Encoding.GetEncoding("utf-8");

 yield return request4;

 request4 = null;

 }

Validation rule.

First you will need to add a dummy request after the page you want to check. The URL is not important

because you are going to change it based on outcome of the validation rule. In your validation rule set a

context parameter that contains the URL you want to redirect to. Here is a very simple rule that does

this. If return code is great than 400, it adds the URL to the context. In this case, it is just redirecting to

home page of the site.

 public class ErrorCheckValidationRule : ValidationRule

 {

 public override void Validate(object sender, ValidationEventArgs e)

 {

 if (((int) e.Response.StatusCode) >= 400)

 {

e.WebTest.Context.Add("ErrorUrl",
e.WebTest.Context["WebServer1"].ToString()+"/storecsvs/");

 }

 }

 }

Visual Studio Performance Testing Quick Reference Guide Page 124

WebTestRequestPlugin

First you will need to add a dummy request after the page you want to check. The URL is not important

because you are going to change it in the plugin. Add a WebTestRequestPlugin to the dummy request.

The plug-in will look for the parameter and if it exists, it will change URL of request. If the parameter

does not exist, it will set the skip instruction for the request. Here is a simple plug-in which does this:

 public class ErrorCheckPlugin : WebTestRequestPlugin

 {

 public override void PreRequest(object sender, PreRequestEventArgs e)

 {

 object errorUrl;

 if (e.WebTest.Context.TryGetValue("ErrorUrl", out errorUrl))

 {

 e.Request.Url = errorUrl.ToString();

 }

 else

 {

 //if it does not exist then skip the request

 e.Instruction = WebTestExecutionInstruction.Skip;

 }

 }

 }

Here is what the web test looks like: The dummy request is http://localhost.

Visual Studio Performance Testing Quick Reference Guide Page 125

Here is what the result looks likes when it is skipped. You can see the status of Not Executed:

a. Here is what it looks when it does the redirect:

A solution for VS 2010 using the new conditional rule logic that works for declarative editor. In VS 2010

you can now do branching and looping in declarative editor. So instead of a web test request plug-in,

we can do the redirect with a conditional rule. So you would do the following:

1. Add the validation rule to a request.

2. Still add the dummy request below the one that the validation rule is on

3. Set the URL for this dummy request to {{ErrorUrl}}

4. Right click on this request and choose “Insert Condition…”

5. Choose the Context Parameter Exists rule

6. Set the context parameter Name to ErrorUrl. This rule will execute if the ErrorUrl parameter is

in the context.

7. Click Ok

Visual Studio Performance Testing Quick Reference Guide Page 126

Here is what editor looks like with the conditional rule:

Here is what it looks like when the condition is met.

Here is what it looks like when condition is not met:

Visual Studio Performance Testing Quick Reference Guide Page 127

How to add a Web Service reference in a test project

If you follow along Sean Lumley’s blog (http://blogs.msdn.com/slumley/pages/load-testing-web-services-

with-unit-tests.aspx), as referenced in the cheat sheet, you’ll see that step 2 is to create a New Web

Reference. Unfortunately, right-clicking on either the project or references does not give you the option

for Add Web Reference. To add the reference, add a service reference:

In 2008

http://blogs.msdn.com/slumley/pages/load-testing-web-services-with-unit-tests.aspx

In 2010

In the dialog, click on the “Advanced” button:

http://blogs.msdn.com/slumley/pages/load-testing-web-services-with-unit-tests.aspx
http://blogs.msdn.com/slumley/pages/load-testing-web-services-with-unit-tests.aspx
http://blogs.msdn.com/slumley/pages/load-testing-web-services-with-unit-tests.aspx

Visual Studio Performance Testing Quick Reference Guide Page 128

In the “Advanced” dialog, click the “Add Web Reference…” button

You will get the following dialog and can add the reference there:

Visual Studio Performance Testing Quick Reference Guide Page 129

How to remotely count connections to a process

If you are troubleshooting connectivity issues, you may need to count connections to a particular

process over a particular port. You can easily do this using TCPVCON.EXE and a filter:

D:\TcpView>Tcpvcon.exe -c smsvchost.exe | find "808" /c

 TCPVCON is a sysinternals tool that is part of “TCPView” and can be downloaded from:

http://technet.microsoft.com/en-us/sysinternals/bb795532.aspx

If you need to run this command (or others) remotely, you can also look at the tool “PsTools” at the

same web page.

How to hook into LoadTest database upon completion of a load test

You might want to run automatic custom actions after the completion of a load test, for example doing

some automated reporting. To do this, you must change the LoadTest database used by Visual Studio.

For Visual Studio 2010 the default name of the database is LoadTest2010.

The stored procedure

 Prc_UpdateSummaryData [In 2008]

 Prc_UpdateSummaryData2 [In 2010]

is the last one that is called when the load test finishes, assuming the Timing Details Storage is set to

something other than None in the Run Settings for your load test.

 You can change this stored procedure by appending a call to your own stored procedure that

implements or starts your custom action. That stored procedure could be implemented as .NET code by

employing a CLR SQL Stored Procedure (see http://msdn.microsoft.com/en-us/library/5czye81z.aspx).

NOTE: changing the LoadTest database is an unsupported action that might interfere with automatic

upgrades to new versions of the database schema.

http://technet.microsoft.com/en-us/sysinternals/bb795532.aspx
http://msdn.microsoft.com/en-us/library/5czye81z.aspx

Visual Studio Performance Testing Quick Reference Guide Page 130

How to deploy DLLs with MSTEST.EXE

You can use MSTEST.EXE to start your load test outside Visual Studio. In that case you might run into

errors with missing DLLs for plugins that you do not encounter when running your load test inside Visual

Studio. Visual Studio looks at references to figure out what to deploy, while MSTEST.EXE does not. To fix

this you have to manually add the DLLs as deployment items in the test settings (VS2010) or test run

configuration file (VS2008).

Select the test settings file that you want to use with MSTEST.EXE. This will be one of the files in the

Solution Items folder of your solution with the

 .testsettings extension [In 2010]

 .testrunconfig extension [In 2008]

Open it in the Test Settings Editor. Go to the Deployment page. Select “Add File…” and select the DLLs

you want to deploy.

Specify the test settings file you have edited on the command line for MSTEST.EXE with the

 /testsettings switch [In 2010]

 /testrunconfig switch [In 2008]

Changed in 2010

Visual Studio Performance Testing Quick Reference Guide Page 131

How to authenticate with proxy before the test iteration begins

If you encounter HTTP 407 Proxy authentication required errors while playing back your web test, you

might have to explicitly authenticate to a proxy server first to be able to run your web test. First you

have to consider if you really need to go through this proxy server to be able to reach the web server

under test. If you cannot get around the proxy server, you can authenticate through code in a

WebTestPlugin. You have to use a plugin for this since you cannot set the credentials through the Visual

Studio UI.

using System;
using Microsoft.VisualStudio.TestTools.WebTesting;
using System.Net;

namespace WebTestPluginNamespace
{
 public class MyWebTestPlugin : WebTestPlugin
 {
 public override void PreWebTest(object sender, PreWebTestEventArgs e)
 {
 // Create credentials to authenticate to your proxy
 NetworkCredential proxyCredentials = new NetworkCredential();
 proxyCredentials.Domain = "yourDomain";
 proxyCredentials.UserName = "yourUserName";
 proxyCredentials.Password = "yourPassword";

 // Create a WebProxy object for your proxy
 WebProxy webProxy = new WebProxy("<http://yourproxy>");
 webProxy.Credentials = proxyCredentials;

 //Set the WebProxy so that even local addresses use the proxy
 // webProxy.BypassProxyOnLocal = false;

 // Use this WebProxy for the Web test
 e.WebTest.WebProxy = webProxy;

 e.WebTest.PreAuthenticate = true;
 }
 }
}

Visual Studio Performance Testing Quick Reference Guide Page 132

How to enumerate WebTextContext and Unit TestContext objects

Web and Unit TestContext objects contain similar information, but are actually collections of different

types of objects. The Microsoft.VisualStudio.TestTools.WebTesting.WebTestContext class is a collection

of KeyValuePair<string,object> objects, but the

Microsoft.VisualStudio.TestTools.UnitTesting.TestContext class has a property called Properties that is a

collection of DictionaryEntry objects. Thus, the collections need to be enumerated in a slightly different

way.

 // Web Test

 // using System.Collections.Generic;

 // using Microsoft.VisualStudio.TestTools.WebTesting;

 public static void DumpArgs(WebTestContext context)

 {

 foreach (KeyValuePair<string, object> kvp in context)

 {

 Debug.WriteLine(kvp.Key + " = " + kvp.Value);

 }

 }

 // Unit Test

 // using System.Collections;

 // using Microsoft.VisualStudio.TestTools.UnitTesting;

 public static void DumpArgs(TestContext context)

 {

 foreach (DictionaryEntry kvp in context.Properties)

 {

 Debug.WriteLine(kvp.Key + " = " + kvp.Value);

 }

 }

How to manually move the data cursor

Add the following line of code to force the parameter database to advance by one row. This is useful if

you need to loop through sections of code in a single iteration and want to use different data.

this.MoveDataTableCursor(”DataSource1”, ”Products”);

VS 2010 also allows you to set the cursor to a specific row:

this.MoveDataTableCursor(”DataSource1”, ”Products”,32);

New to 2010

Visual Studio Performance Testing Quick Reference Guide Page 133

How to programmatically create a declarative web test

Declarative web tests are non-coded web tests that can be displayed and modified in the web test UI. In

Visual Studio 2008 the APIs needed to programmatically create declarative web tests have been

exposed. If you want to programmatically generate web tests you can now do this using the

DeclarativeWebTest and DeclarativeWebTestSerializer classes.

DeclarativeWebTestSerializer loads the contents of a .webtest file into an instance of the

DeclarativeWebTest class and can also save an instance of the DeclarativeWebTest class back out to a

.webtest file.

DeclarativeWebTest exposes all of the properties, requests, and rules of the loaded web test so they can

be manipulated in whatever way necessary and then resaved.

For example, if something in your web application has changed that affects a large group of your existing

Web Tests, rather than modify the tests by hand you could write some code to do this for you. Here's an

example of modifying an existing declarative web test in a C# console application:

static void Main(string[] args)

{

 DeclarativeWebTest decWebTest

 DeclarativeWebTestSerializer.Open(@"c:\test.webtest");

 //Add a Request to this WebTest

 WebTestRequest newRequest = new

 WebTestRequest("http://newRequest/default.aspx");

 decWebTest.Items.Add(newRequest);

 //Set ExpectedHttpStatus to 404 on the 1st Request

 WebTestRequest reqToModify = null;

 foreach (WebTestItem item in decWebTest.Items)

 {

 if (item is WebTestRequest)

 {

 reqToModify = item as WebTestRequest;

 break;

 }

 }

 if (reqToModify != null)

 {

 reqToModify.ExpectedHttpStatusCode = 404;

 }

 //Save Test

 DeclarativeWebTestSerializer.Save(decWebTest, @"c:\test.webtest");

}

Visual Studio Performance Testing Quick Reference Guide Page 134

How to modify the string body programmatically in a declarative web test

The string body of a web test may be modified programmatically by setting e.Request.Body.BodyString

in the request.

public class EditBodyString : WebTestRequestPlugin
{
 public override void PreRequest(object sender, PreRequestEventArgs e)
 {
 StringHttpBody body = e.Request.Body as StringHttpBody;
 if (body != null)
 {
 body.BodyString = "blah";
 }
 e.Request.Body = body;
 }
}

Gotcha: Check Your Validation Level in the Load Test Run Settings

By default, all validation rules added to a web test are marked HIGH. By default, all load tests have a

validation level of LOW. This means that NONE of the validation rules will run in a load test by default.

You either need to lower the level in the web test, or raise the level in the load test.

Gotcha: Do not adjust goals too quickly in your code

When you are changing the goals used for the test, or if you are using multiple goals and switching

between them, be careful not to change the goal too often. One thing that may not be obvious is that

as the user load decreases because of the goal, the number of tests running does not decrease until

some tests complete. If your tests take more time than the time used to change the goals you use, it’s

quite possible the effective user load will never go down when the goal changes and will only go up.

Gotcha: Response body capture limit is set to 1.5 MB by default

The ResponseBodyCaptureLimit property on a web test defaults to 1,500,000 bytes. If you are trying to

parse or extract data beyond this size, your test will fail. In order to work around this use a coded web

test or a plugin with a declarative web test and set the RequestBodyCaptureLimit property. Here is a

sample of a web test plug-in that sets this property in the PreWebTest event.

 public class MyWebTestPlugin : WebTestPlugin

 {

 public override void PreWebTest(object sender, PreWebTestEventArgs e)

 {

 e.WebTest.RequestBodyCaptureLimit = 10 * 1024 * 1024; // 10 MB

 }

 }

Visual Studio Performance Testing Quick Reference Guide Page 135

Gotcha: Caching of dependent requests is disabled when playing back Web Tests

Caching for all dependent requests is disabled when you are playing back a web test in Visual Studio.

You will notice that if, for example, the same image file is used in multiple web pages in your web test,

the image will be fetched multiple times from the web server.

Best Practice: Blog on various considerations for web tests running under load

The following blog entry describes a number of different features and settings to consider when running

web tests under a load test in VSTT (a link to the blog entry is at the bottom of this topic). The following

topics are covered:

 General Load Test Considerations

o Verify web tests and unit tests

o Choose an appropriate load profile

 Using a Step Load Profile

 Using a Goal-Based Load Profile

o Choosing the location of the Load Test Results Store

o Consider including Timing Details to collect percentile data

o Consider enabling SQL Tracing

o Don’t Overload the Agent(s)

o Add an Analysis Comment

 Consideration for Load Tests that contain Web Tests

o Choose the Appropriate Connection Pool Model

 ConnectionPerUser

 ConnectionPool

o Consider setting response time goals for web test requests

o Consider setting timeouts for web test requests

o Choose a value for the “Percentage of New Users” property

o Consider setting the “ParseDependentRequests” property of your web test requests to false

http://blogs.msdn.com/billbar/articles/517081.aspx

Best Practice: Coded web tests and web test plug-ins should not block threads

http://blogs.msdn.com/billbar/archive/2007/06/13/coded-web-tests-and-web-test-plug-ins-should-not-

block-the-thread.aspx

http://blogs.msdn.com/billbar/articles/517081.aspx
http://blogs.msdn.com/billbar/archive/2007/06/13/coded-web-tests-and-web-test-plug-ins-should-not-block-the-thread.aspx
http://blogs.msdn.com/billbar/archive/2007/06/13/coded-web-tests-and-web-test-plug-ins-should-not-block-the-thread.aspx

Visual Studio Performance Testing Quick Reference Guide Page 136

Best Practice: considerations when creating a dynamic goal based load test plugin:

If there is a chance that the load test will be run on a test rig, be sure to limit the code to running on

only one agent machine. Running the code on multiple agents will cause contention in the behavior and

will yield unexpected results. You will not receive an error. The following code from a load test plugin

Initialize method will force the code to run on only one agent and will work for rigs AND for locally run

tests:

public void Initialize(LoadTest loadTest)

{

 // ONLY run this on one agent to avoid contention.

 if (loadTest.Context.AgentId == 1)

 {

 LoadTestGoalBasedLoadProfile goalLoadProfile = new LoadTestGoalBasedLoadProfile();

 // Since the heartbeat handler is inside the conditional, The event will be setup

 // only on one machine All LoadProfile changes are sent to the controller and

 // propogated across the rig automatically

 loadTest.Heartbeat += new EventHandler<HeartbeatEventArgs>(_loadTest_Heartbeat);

 }

}

Best Practice: Add an Analysis Comment

After the load test is complete and you have spent some time analyzing the results, you can add a short

one line description and an arbitrarily long analysis comment to be stored permanently with the load

test result. To do this, in the load test result viewer, right click and choose the “Analysis” option. This

brings up a dialog that allows you to enter your analysis text which is stored in the load test results

database when you click OK to close the dialog. NOTE: This can be done while the test is running. You do

not need to wait for the test to finish.

Any comments and descriptions added will show up in the “Manage Load Test Results” dialog and will

make it much easier to determine which result set maps to the test run you wish to look at.

Best Practice – Using comments in declarative webtests

The graphic on the next page shows a sample declarative web test with a bunch of comments that are

used to make the web test more readable and to make it easier to correlate results. The comments in

the test do NOT affect the performance at all.

Visual Studio Performance Testing Quick Reference Guide Page 137

Use comments with dashes to
break up info. Include a header
section with general test info.

Add comments that mention
settings etc. that are important.

Use a blank comment between request sets.

Wrap every request set (even if the set is
one request) in a transaction and name
the transaction based on the user action
it represents. Make the first part of the
transaction name an abbreviation of
which use case so that things like “login”
can still be correlated back to the proper
webtest.

 Use comments inside the transaction

 Note items that are not completed

 Note items that can be confusing, like
here there are two calls to the same
plugin, but the comment explains why
and identified which is which.

These are still part of the above

transaction, but I separated

them since they are AJAX calls

and the previous call is where I

need to do all of my initial work.

Show end of test and separate

the overall items from the

requests.

Visual Studio Performance Testing Quick Reference Guide Page 138

Extensibility

New Inner-text and Select-tag rules published on Codeplex

In 2008

All of the rules in this release on CodePlex relate to the inner text of a tag. For example, for a select tag

(list box and combo box), the option text is stored in inner text rather than an attribute:

<select name="myselect1">
 <option>Milk </option>
 <option>Coffee</option>
 <option selected="selected">Tea</option>
</select>

In order to extract the value of the list box, we need to parse out the inner text of the selected option.

TextArea is another tag that does this, but there are also a lot of other examples in HTML where you

might want to extract or validate inner text. The new project has these new rules as well as a parser for

inner text and select tag:

1. ExtractionRuleInnerText

2. ExtractionRuleSelectTag

3. ValidationRuleInnerText

4. ValidationRuleSelectTag

Download location

http://codeplex.com

In 2010

Many of the features above are now built into VS 2010. Here is a list of these:

http://msdn.microsoft.com/en-us/library/bb385904(VS.100).aspx

Changed in 2010

http://codeplex.com/teamtestplugins
http://msdn.microsoft.com/en-us/library/bb385904(VS.100).aspx

Visual Studio Performance Testing Quick Reference Guide Page 139

How to Add Custom Tabs to the Playback UI

Another new feature of the 2010 Web Test Playback UI is the ability to add new tabs to the

WebTestResultViewer. Here is a tab that demonstrates how to get VIEWSTATE data from webtest

responses and add that data to a table in a custom results tab:

Visual Studio Performance Testing Quick Reference Guide Page 140

Steps to implement your own custom tab

1) Create the new project

 Create a Visual Studio Add-In: Create a new Visual Studio Add-In project (see picture below).

This starts the Add-In Wizard. Complete the wizard

 You should now have a project that looks like:

Visual Studio Performance Testing Quick Reference Guide Page 141

 Reference the following assemblies directly in the project:

o Microsoft.VisualStudio.QualityTools.LoadTestFramework

o Microsoft.VisualStudio.QualityTools.WebTestFramework

o Any other assemblies or code you will need to do the functional work of your addin.

 Add a user control to the project (right click -> Add new -> user control). This will house the

items to be displayed on the tab.

 Add the necessary controls to the main user control. For my example, I needed a checkbox,

textbox and a listbox.

 Set the listbox Dock property to Fill: Note that when you do this, it will cause the listbox to

cover the other controls. We will fix this next.

 Set the margins for the main control. This will correct the size of the listbox from the previous

step. Make sure the value for TOP is big enough to uncover the other controls.

Make sure just the listbox is

highlighted

Make sure the main control is

highlighted

Visual Studio Performance Testing Quick Reference Guide Page 142

2) Modify and add the tab control code

You will need to do a fair amount of work inside the “connect.cs” file to make the plugin work. However,

you should have your functional code (or at least the shell of it) in place before doing the connect.cs

work so the methods you reference will already exist. For my example, the only extra code I need is the

backing code for the user control. Double-Click on the listview and add the following methods:

public void AddAValueToTheListView(string sReqName, string sSize, int iTotalSize)
{
 tbTotalSize.Text = iTotalSize.ToString();
 tbTotalSize.Update();
 ListViewItem item = new ListViewItem(new string[] { sReqName, sSize });
 listViewTagCounts.Items.Add(item);
}

private void cbShowNonViewState_CheckedChanged(object sender, EventArgs e)
{
 // Add code to handle hiding non viewstate pages
}

 sReqName is the URL of the current request.

 sSize is the calculated size of the ViewState.

 iTotalSize is the cumulative value.

All of these properties are calculated and set in the connect.cs code. The

code here is solely for modifying the values displayed in the tab.

Visual Studio Performance Testing Quick Reference Guide Page 143

3) Modify and add the Addin handler code

Now we can jump into the connect.cs code. Here are the main items of interest for us:

public class Connect : IDTExtensibility2
{
 Dictionary<Guid, Dictionary<Guid, UserControl>> m_controls = new Dictionary<Guid,
Dictionary<Guid, UserControl>>();
 LoadTestPackageExt wpe;
 int iViewStateTotalSize = 0;

public void OnConnection(object application, ext_ConnectMode connectMode, object
addInInst, ref Array custom)
{
 _applicationObject = (DTE2)application;
 _addInInstance = (AddIn)addInInst;

 wpe =
_applicationObject.GetObject("Microsoft.VisualStudio.TestTools.LoadTesting.LoadTestPackag
eExt") as LoadTestPackageExt;

 //process open windows
 foreach (WebTestResultViewer p in wpe.WebTestResultViewerExt.ResultWindows)
 {
 WindowCreated(p);
 }
 wpe.WebTestResultViewerExt.WindowCreated += new
EventHandler<WebTestResultViewerExt.WindowCreatedEventArgs>(wpe_WebtestPlaybackWindowCrea
ted);
 wpe.WebTestResultViewerExt.WindowClosed += new
EventHandler<WebTestResultViewerExt.WindowClosedEventArgs>(WebTestResultViewerExt_WindowC
losed);
 wpe.WebTestResultViewerExt.SelectionChanged += new
EventHandler<WebTestResultViewerExt.SelectionChangedEventArgs>(WebTestResultViewerExt_Sel
ectionChanged);
 wpe.WebTestResultViewerExt.TestCompleted += new
EventHandler<WebTestResultViewerExt.TestCompletedEventArgs>(WebTestResultViewerExt_TestCo
mpleted);
 iViewStateTotalSize = 0;
}

The iViewStateTotalSize is specific to my

particular addin. The highlighted lines need

to be added to all web test addins.

This method already exists. Delete

everything in the method and add this code.

This line of code is specific to my addin. You should add any

initialization code you might need right here.

The highlighted method names correspond to the matching method definitions below.

Visual Studio Performance Testing Quick Reference Guide Page 144

private void WindowCreated(WebTestResultViewer viewer)
{

 UserControl1 c = new UserControl1();
 c.Dock = DockStyle.Fill;

 //add the dictionary of open playback windows
 System.Diagnostics.Debug.Assert(!m_controls.ContainsKey(viewer.TestResultId));
 Dictionary<Guid, UserControl> userControls = new Dictionary<Guid, UserControl>();

 //add the summary
 Guid summaryGuid = Guid.NewGuid();
 Guid responseGuid = Guid.NewGuid();
 userControls.Add(responseGuid, c);
 m_controls.Add(viewer.TestResultId, userControls);

 //add tabs to playback control
 viewer.AddResultPage(responseGuid, "ViewState Info", c);
}

void WebTestResultViewerExt_TestCompleted(object sender,
WebTestResultViewerExt.TestCompletedEventArgs e)
{
 foreach (UserControl userControl in m_controls[e.TestResultId].Values)
 {
 }

}

void WebTestResultViewerExt_WindowClosed(object sender,
WebTestResultViewerExt.WindowClosedEventArgs e)
{
 if (m_controls.ContainsKey(e.WebTestResultViewer.TestResultId))
 {
 //process open windows
 foreach (Guid g in m_controls.Keys)
 {
 e.WebTestResultViewer.RemoveResultPage(g);
 }

 m_controls.Remove(e.WebTestResultViewer.TestResultId);
 }
}

void wpe_WebtestPlaybackWindowCreated(object sender,
WebTestResultViewerExt.WindowCreatedEventArgs e)
{
 WindowCreated(e.WebTestResultViewer);
}

This is stock code. Copy all of it and simply change

the user control name to whatever name you gave

your control in the previous section.

The text here is the name that

appears on the added tab

This is stock code. No

modification is needed.

This is stock code. No

modification is needed.

This is stock code. No

modification is needed.

Visual Studio Performance Testing Quick Reference Guide Page 145

And here is the workhorse method:

void WebTestResultViewerExt_SelectionChanged(object sender,
WebTestResultViewerExt.SelectionChangedEventArgs e)
{
 if (e.WebTestRequestResult != null)
 {
 foreach (UserControl userControl in m_controls[e.TestResultId].Values)
 {
 UserControl1 userControl1 = userControl as UserControl1;
 if (userControl1 != null)
 {
 WebTestResponse response = e.WebTestRequestResult.Response;

 // Count the number of occurrences of each tag in the response
 Dictionary<string, int> tagCounts = new Dictionary<string,
int>(StringComparer.OrdinalIgnoreCase);
 if (response != null && response.BodyBytes != null)
 {
 string str1 = response.ResponseUri.ToString();
 string str2 = "No VIEWSTATE Detected";
 if (response.BodyString.Contains("__VIEWSTATE"))
 {
 //<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="/wEPQUe...z+aZmiNA==" />
 int x = response.BodyString.IndexOf("id=\"__VIEWSTATE\"
value=\"");
 int y = response.BodyString.IndexOf("\" />", x);
 if ((y - x - 24) > 0)
 {
 str2 = Convert.ToString(y - x - 24);
 iViewStateTotalSize = iViewStateTotalSize + (y - x - 24);
 }
 }
 userControl1.AddAValueToTheListView(str1, str2, iViewStateTotalSize);
 }
 }
 }
 }
}

Th
is

 is
 s

to
ck

 c
o

d
e.

 This is the user control

you created.

Th
is

 is
 c

o
d

e
th

at
 d

o
es

 t
h

e
w

o
rk

 f
o

r
th

e
 a

d
d

in
. H

er
e

I g
et

 a
ll

o
f

th
e

d
at

a
an

d
 t

h
en

 c
al

l m
y

co
n

tr
o

l t
o

 p
o

p
u

la
te

 t
h

e
ta

b
.

The call to my user control to populate the tab.

Visual Studio Performance Testing Quick Reference Guide Page 146

Items not specific to the VSTS testing platform

Using the VSTS Application Profiler

Various articles to consider:

http://blogs.msdn.com/profiler/archive/2008/10/15/walkthroughs-using-vsts-test-and-profilers-to-find-

performance-issues.aspx

http://msdn.microsoft.com/en-us/magazine/cc337887.aspx?pr=blog

http://www.codeguru.com/cpp/v-s/devstudio_macros/visualstudionet/article.php/c14823__1/

VSTS 2008 Application Profiler New Features

The VSTS perf team has added some blog posts outlining new features of the VSTS profiler and how to

use them. These features include a quick tool to find “hotspots” in your app, and the ability to use

performance counters to enhance your profiler diagnosis. See the following links to get this info:

http://blogs.msdn.com/profiler/archive/2007/10/19/articles-on-new-visual-studio-team-system-2008-

profiler-features.aspx

Using System.NET Tracing to debug Network issues

http://blogs.msdn.com/dgorti/archive/2005/09/18/471003.aspx

http://blogs.msdn.com/profiler/archive/2008/10/15/walkthroughs-using-vsts-test-and-profilers-to-find-performance-issues.aspx
http://blogs.msdn.com/profiler/archive/2008/10/15/walkthroughs-using-vsts-test-and-profilers-to-find-performance-issues.aspx
http://msdn.microsoft.com/en-us/magazine/cc337887.aspx?pr=blog
http://www.codeguru.com/cpp/v-s/devstudio_macros/visualstudionet/article.php/c14823__1/
http://blogs.msdn.com/profiler/archive/2007/10/19/articles-on-new-visual-studio-team-system-2008-profiler-features.aspx
http://blogs.msdn.com/profiler/archive/2007/10/19/articles-on-new-visual-studio-team-system-2008-profiler-features.aspx
http://blogs.msdn.com/dgorti/archive/2005/09/18/471003.aspx

Visual Studio Performance Testing Quick Reference Guide Page 147

Logparser tips and tricks

1. Use square brackets around an alias name to allow spaces in the names. Example: [User Data]

2. If you need to get a substring but also need to delete characters at the end of the substring, you

can use an abbreviated syntax:

 Substr(mystring, 1, sub(strlen(mystring),19)) can be written as Substr(mystring,1,-19)

Logparser WEB Queries

Count (and percentage) of status codes from Web Logs
-i:IISW3C -recurse:-1 -Q:on "SELECT sc-status, COUNT(*), MUL(PROPCOUNT(*),100.0) AS

Percentage INTO StatusCount.txt FROM ex*.log GROUP BY sc-status ORDER BY sc-status”

Breakdown of web status codes by pagetype from Web Logs
-i:IISW3C -recurse:-1 -Q:on "SELECT EXTRACT_EXTENSION(TO_UPPERCASE(cs-uri-stem)) AS

PageType, sc-status, COUNT(*) AS Amount INTO StatusCodes.txt FROM ex*.log GROUP BY sc-

status, PageType ORDER BY sc-status ASC" -o:TSV

Number of hits by pagetype
-i:IISW3C -recurse:-1 -Q:on "SELECT EXTRACT_EXTENSION(TO_UPPERCASE(cs-uri-stem)) AS

PageType, COUNT(*) AS Amount INTO pagetype.txt FROM ex*.log GROUP BY PageType ORDER BY

Amount DESC" -o:TSV

List of requests asking for non existant pages
-i:IISW3C -recurse:-1 -Q:on "SELECT DISTINCT cs-uri-stem AS Url USING sc-status AS

statuscode INTO not-found.txt FROM ex*.log WHERE statuscode = 404" -o:TSV

Top 10 slowest page responses
-i:IISW3C -recurse:-1 -Q:on "SELECT TOP 10 MAX(time-taken) AS Processing-Time,

AVG(time-taken) AS Average, MIN(time-taken) AS Minimum, cs-uri-stem AS Url, COUNT(cs-

uri-stem) AS PageCount INTO longrunning.txt FROM ex*.log GROUP BY cs-uri-stem ORDER BY

Average DESC" -o:TSV

Average Max and Min time taken for each page type
-i:IISW3C -recurse:-1 -Q:on "SELECT EXTRACT_EXTENSION(cs-uri-stem) as Type, AVG(time-

taken) AS Average, MAX(time-taken) AS Maximum, MIN(time-taken) AS Minimum INTO

PageTimes.txt FROM ex*.log WHERE time-taken &amp;gt; 0 GROUP BY Type ORDER BY

Average DESC"

Requests and Total Bytes per hour
-i:IISW3C -recurse:-1 -Q:on "SELECT QUANTIZE(TO_TIMESTAMP(date, time), 3600) AS Hour,

COUNT(*) AS Total, SUM(sc-bytes) AS TotBytesSent INTO HitsByHour.txt FROM ex*.log

GROUP BY Hour ORDER BY Hour" -o:TSV

List and count of pages returning a status code of 500
-i:IISW3C -recurse:-1 -Q:on "SELECT cs-uri-stem, sc-status, COUNT(*) FROM ex*.log

WHERE sc-status=500 GROUP BY cs-uri-stem, sc-status ORDER BY cs-uri-stem" -o:TSV

Visual Studio Performance Testing Quick Reference Guide Page 148

LogParser Non-Web Queries

Parsing Event Viewer files on Vista with LogParser

You need to convert the files to Vista format. The following command line will do this:
wevtutil epl app.evtx app.evt /lf:true

Query For Text Strings in a file
-i:TEXTLINE "SELECT LTRIM(extract_token(text, 1,'Text to find')) as string FROM *.txt

WHERE string is not null"

Pulling data from inside the body string of event viewer logs
logparser -i:evt "SELECT extract_prefix(extract_suffix(Strings,0,'left text'),0,'right

text') as String INTO optimizer.txt FROM *.EVT WHERE Strings LIKE '%Optimizer

Results%'" -q:ON

(variation) Pulling data from inside the body string of event viewer logs constrained by timeframe
logparser -i:evt -q:ON "SELECT Count(*) AS Qty, SUBSTR(extract_suffix(Message, 0,

'Message :'), 0, 75) as String FROM Error! Hyperlink reference not

valid.name>\Application WHERE SourceName LIKE '%Enterprise%' AND Message LIKE

'%Timestamp: %' AND TimeGenerated > TIMESTAMP ('2008-06-06 07:23:15', 'yyyy-MM-dd

hh:mm:ss') GROUP BY String ORDER BY Qty DESC"

List of exceptions from saved event logs searching for keywords in the text output
-I:evt "SELECT QUANTIZE(TimeGenerated, 3600) AS Hour, COUNT(*) As Total, ComputerName

FROM *.evt WHERE EventID = 100 AND strings like '%overflow%' GROUP BY ComputerName,

hour"

Logparser command for querying netstat
netstat.exe -anp TCP | LogParser “SELECT [Local Address] AS Server,[Foreign Address]

AS Client,State FROM STDIN WHERE Server LIKE '%:443' OR Server LIKE '%:80'” -i:TSV -

iSeparator:space -nSep:2 -fixedSep:OFF -nSkipLines:3 -o:TSV -headers:ON

Command to query Active Directory®
Logparser -i:ADS "SELECT * FROM 'LDAP://Redmond/CN=Microsoft.com FTE,OU=Distribution

Lists,DC=redmond,DC=corp,DC=microsoft,DC=com'" -objClass:user

Command to query IIS and get site configuration information
Logparser “select * from IIS://localhost”

Command to query Netmon file and list out data on each TCP conversation
LogParser -fMode:TCPConn -rtp:-1 "SELECT DateTime, TO_INT(TimeTaken) AS Time,

DstPayloadBytes, SUBSTR(DstPayload, 0, 128) AS Start_Of_Payload INTO IE-Take2.txt FROM

IE-Take2.cap WHERE DstPort=80 ORDER BY DateTime ASC" -headers:ON

Command to query Netmon and find frame numbers based on specific text in payload
LogParser -fMode:TCPIP -rtp:-1 "SELECT Frame, Payload INTO 3dvia.txt FROM 3dvia.cap

WHERE DstPort=80 AND Payload LIKE '%ppContent%' " -headers:ON

Command to get logged start time of an entry in custom log files
LogParser –i:TEXTLINE " SELECT TOP 1 TO_TIME(TO_TIMESTAMP(EXTRACT_PREFIX(Text,2,' '),

'M/dd/yyyy h:mm:ss tt')) AS [Start Time], 'FirstStartTime' FROM *.log WHERE Text LIKE

'%text tag to search for%' ORDER BY [Start Time] ASC

Visual Studio Performance Testing Quick Reference Guide Page 149

Older articles

Content-Length header not available in Web Request Object

Currently the web request header “Content-Length” in not in the WebTestRequest object. This is

expected to be changed in SP1

SharePoint file upload test may post the file twice

If you have a web test that posts a file to a SharePoint site, the test may try to post the file twice.

SharePoint will only process one copy, but the request time and upload size will be incorrect due to the

double attempt. This occurs if you are using integrated authentication. The client requests a POST

expecting a 100-continue response. It gets a 404 instead (this is expected behavior). However, instead of

VSTS restarting the request with credentials, it continues posting the initial request (which SharePoint

ignores). When the initial request is done, VSTS will re-post with credentials, and this post will succeed.

A fix is available in SP1.

Some Hidden Fields are not parameterized within AJAX calls

When recording web tests with AJAX panel updates, you may find some FORM POST parameters where

HIDDEN values (such as VIEWSTATE) are not parameterized. From an email thread:

The problem is that in the Microsoft-Ajax partial rendering (update panel) responses, hidden fields can

appear in two places: a field that is marked by the type “|hiddenField|” (where we were looking), but

also in a regular hidden field input tag in the HTML within an “|updatePanel|” field in the Ajax response

(which we were not looking at).

A fix is being worked on and may appear in SP1. In the meantime, to work around the issue, simply

remove the hard-coded value and replace it with a parameterized value: {{$HIDDEN0.__VIEWSTATE}}

(where the bucket (0,1,2, etc matches the bucket of the other HIDDEN parameters in the request)

(FIX) Unit Test threading models and changing them

The default threading model for unit tests is STA. The fix in SP1 was to have load tests honor this setting

(unit test in a load test would not honor the ApartmentState property). See the following blog for more

info:

http://blogs.msdn.com/irenak/archive/2008/02/22/sysk-365-how-to-get-your-unit-tests-test-project-in-

visual-studio-2008-a-k-a-mstest

http://blogs.msdn.com/irenak/archive/2008/02/22/sysk-365-how-to-get-your-unit-tests-test-project-in-visual-studio-2008-a-k-a-mstest-run-multithreaded.aspx
http://blogs.msdn.com/irenak/archive/2008/02/22/sysk-365-how-to-get-your-unit-tests-test-project-in-visual-studio-2008-a-k-a-mstest-run-multithreaded.aspx

Visual Studio Performance Testing Quick Reference Guide Page 150

Bug in VSTS 2008 SP1 causes think time for redirected requests to be ignored in a

load test

When a web test is run in a load test, any test requests that result in redirects suffer from a timing bug.

Any think time that is specified on the request is ignored. This is fixed in a POST-SP1 hotfix:

KB 956397 (http://support.microsoft.com/kb/956397/en-us)

http://blogs.msdn.com/billbar/archive/2008/08/04/bug-in-vsts-2008-sp1-causes-think-time-for-

redirected-requests-to-be-ignored-in-a-load-test.aspx

New Load Test Plugin Enhancements in VSTS 2008 SP1

http://blogs.msdn.com/billbar/pages/load-test-api-enhancements-in-vsts-2008-sp1-beta.aspx

Four New Methods added to the WebTestPlugin Class for 2008 SP1

http://blogs.msdn.com/billbar/pages/web-test-api-enhancements-available-in-vsts-2008-sp1-beta.aspx

http://support.microsoft.com/kb/956397/en-us
http://blogs.msdn.com/billbar/archive/2008/08/04/bug-in-vsts-2008-sp1-causes-think-time-for-redirected-requests-to-be-ignored-in-a-load-test.aspx
http://blogs.msdn.com/billbar/archive/2008/08/04/bug-in-vsts-2008-sp1-causes-think-time-for-redirected-requests-to-be-ignored-in-a-load-test.aspx
http://blogs.msdn.com/billbar/pages/load-test-api-enhancements-in-vsts-2008-sp1-beta.aspx
http://blogs.msdn.com/billbar/pages/web-test-api-enhancements-available-in-vsts-2008-sp1-beta.aspx

Visual Studio Performance Testing Quick Reference Guide Page 151

Index

.

.NET Garbage Collection, 5, 53

A

AJAX, 8, 21, 90, 149

ANSI, 80

Application Domain, 12, 117

authentication, 6, 9, 94, 109, 110, 131, 149

C

Caching, 4, 5, 7, 15, 19, 59, 60, 69, 113, 135

caspol, 84

CodePlex, 3, 138

context, 7, 10, 11, 21, 30, 48, 78, 80, 87, 112, 113, 114,

115, 117, 119, 120, 121, 123, 124, 125, 132, 136

correlation, 21

CSV Files, 6, 80

D

Data Collectors, 78

data source, 4, 5, 6, 7, 14, 67, 70, 80, 113

declarative web test, 6, 7, 9, 48, 49, 79, 81, 85, 111, 112,

114, 125, 133, 134, 136

dependent requests, 6, 7, 11, 19, 66, 77, 78, 90, 111, 113,

116, 135

Deployment, 5, 51, 59, 60, 61, 130

E

Execution Interleaving, 23

extract, 4, 6, 10, 21, 22, 30, 87, 112, 121, 134, 138, 148

F

Fiddler, 4, 50, 79

H

HIDDEN parameters, 8, 87, 112, 149

HTTP Headers, 4, 9, 27, 66, 78, 93, 113, 148

Content-Type, 9

If-Modified-Since, 7, 113

Pragma, 9

Referrer, 9

SOAPAction, 9

x-microsoftajax, 9

I

Internet Explorer, 19, 50, 93, 113

IP Address, 5, 54

L

Licensing, 4, 40, 85

Load Test Options

Agents to Use, 47

Delay Start Time, 47

Disable During Warmup, 47

Logging, 6, 85, 90, 93, 95

lusrmgr.msc, 26

M

MSTest, 13, 23, 78, 100, 101, 105, 107, 149

N

Network

Firewall, 100, 101, 103, 107, 108

Netmon, 79, 148

Netstat, 86, 148

TCP Parameters, 86

TCPView, 129

Tracing, 5, 8, 72, 103, 105, 106, 135, 146

NUnit, 23

P

Parameter Data

Data Source, 4, 5, 6, 14, 67, 70, 80

Random, 4, 7, 14, 99, 100, 114

Sequential, 4, 14, 44

Unique, 4, 14, 54, 66, 74, 78, 98, 114, 120

Parameters, 7, 11, 22, 28, 30, 46, 58, 80, 86, 87, 96, 111,

113, 114, 117, 119, 120, 121, 123, 124, 125, 132, 149

performance counters, 5, 17, 62, 64, 65, 66, 72, 82, 146

Performance Monitor, 5, 65, 66

Permissions, 100, 101

phishing, 81

processor, 6, 17, 42, 63, 64, 85

proxy server, 4, 7, 50, 131

Visual Studio Performance Testing Quick Reference Guide Page 152

R

random, 4, 7, 14, 99, 100, 114

redirection, 7, 123

regedit, 9, 59

REGISTRY Settings

HKEY_CURRENT_USER, 9, 93, 106

HKEY_LOCAL_MACHINE, 59, 81, 86, 107

Reporting Name, 4, 11, 31, 32, 80

RequestHeadersToRecord, 9

Results

WebTestResult, 6, 76, 77, 78

S

SOAP, 112

SSL

Certificates, 7, 112, 122

HTTPS, 6, 81, 83

ServicePointManager, 7, 122

SecurityProtocol, 122

SecurityProtocolType, 122

ServicePointManager.

ServerCertificateValidationCallback, 122

SSLv3, 7, 122

TLS, 7, 122

X509Certificate, 112, 122

Symbols, 59, 60

Sysinternals

PsTools, 129

Sysinternals, 106

T

TeamTestAgentService, 26, 100, 103

test rig, 4, 5, 17, 25, 26, 40, 52, 55, 57, 58, 59, 81, 85, 94,

102, 104, 117, 136

TIME_WAIT, 86

timeouts, 4, 5, 13, 51, 61, 64, 88, 109, 135

Transactions, 6, 36, 37, 68, 71, 72, 73, 74, 82

U

Unicode, 6, 80

URL, 31, 46, 74, 84, 112, 123, 124, 125

V

validate, 5, 6, 7, 10, 11, 58, 94, 96, 115, 122, 123, 125, 134,

138

verbose logging, 95, 97, 98

VIEWSTATE, 21, 58, 78, 96, 139, 142, 144, 145, 149

Virtual User Pack, 40, 41, 42, 43

VSTT 2010

branching, 125

conditional rule, 125, 126

looping, 14, 125

VSTT Classes

FormPostHttpBody, 111

IHttpBody, 111

StringHttpBody, 111, 134

WebTest, 45, 50, 115, 120, 121, 122, 123, 124, 131,

133, 134

WebProxy, 50, 131

WebTestContext, 115, 120, 132

WebTestPlugin, 8, 9, 113, 116, 120, 131, 134, 150

WebTestRequest, 12, 19, 66, 112, 113, 115, 116, 123,

133, 149

ClientCertificates, 112

WebTestResponse, 115, 145

VSTT Configuration Files

Counterset files

DefaultCounter, 65

DefaultCountersForAutomaticGraphs, 65

HigherIsBetter, 63

LoadTestCounterCategoryExistsTimeout, 64

LoadTestCounterCategoryReadTimeout, 64

Range, 63

RangeGroup, 63

QTAgent.exe.config, 53, 92, 95, 98

QTAgentService.exe.config, 50, 97

QTAgentServiceUI.exe.config, 95

QTController.exe.config, 52, 64, 95

Test Run Configuration files, 61

Test Setting files, 61

VSTestHost.exe.config, 52, 53, 64

vstst.xsd, 51

VSTT Extraction Rules

ExtractionRuleInnerText, 138

ExtractionRuleSelectTag, 138

VSTT Methods

Add Call to Web Test, 45

adding a context parameter, 113, 115

ClassCleanUp, 23, 24

ClassInitialize, 23, 24, 67

GetRequestEnumerator, 115, 122

PostRequest, 10, 113, 115, 116

PostRequestEvent, 122

StringHttpBody, 111, 134

System.Net.HttpWebRequest, 83

TestCleanUp, 24

TestInitialize, 23, 24

WebTestExecutionInstruction, 123, 124

Visual Studio Performance Testing Quick Reference Guide Page 153

VSTT Plugins

LoadTestAborted, 11

LoadTestFinished, 11

LoadTestStarting, 11

LoadTestWarmupComplete, 11

PostPage, 10

PostRequest, 10, 113, 115, 116

PostTransaction, 10

PostWebTest, 10, 115, 120

PrePage, 9, 10

PreRequest, 7, 10, 121, 122, 123, 124, 134

PreTransaction, 9, 10

PreWebTest, 9, 10, 131, 134

TestFinished, 11

TestSelected, 11

TestStarting, 11

ThresholdExceeded, 11

VSTT Properties

All Individual Details, 33, 71, 85

Cache Control, 19

EventTarget, 121

Follow Redirects, 112

Goal Based Load Pattern, 17, 82

Initial User Count, 17

LoadTestMaxErrorsPerType, 52

Lower Values Imply Higher Resource Use, 17

MaximumUserCount, 17

Percentage of New Users, 15, 19, 135

ResponseBodyCaptureLimit, 12, 79, 134

Run unit tests in application domain, 4, 12

Sample Rate, 17, 65

Statistics Only, 71

Stop Adjusting User Count When Goal Achieved, 17

Target Range for Performance Counter, 17

Test Iterations, 4, 6, 12, 13, 15, 18, 87, 88

Think Time, 4, 6, 7, 8, 11, 13, 18, 36, 73, 80, 114, 119,

150

TimingDetailsStorage, 5, 33, 36, 71, 85, 129, 135

Use Test Iterations, 12

WebTestIteration, 120

VSTT Runtime

QTAgent, 53, 87, 92, 95, 98

QTController, 52, 59, 64, 95, 109

VSTestHost, 52, 53, 64, 88

VSTT Settings

Administer Test Controllers, 26, 47, 58, 104

Analysis Comment, 7, 135, 136

Follow Redirects, 112

VSTT Test Types

Sequential Test Mix, 4, 44

Web Test Composition, 45

VSTT Validation Rules

ValidationRuleInnerText, 138

ValidationRuleSelectTag, 138

