
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Objective Systems, Inc. version 5.3 February 2002 

ASN.1 Compiler 
Version 5.3 
 C/C++ User�s Manual 

ASN1C 



 



The software described in this document is furnished under a license agreement and may be used only in accordance 
with the terms of this agreement. 
 
Copyright Notice 
 
Copyright © 1997-2002 Objective Systems, Inc. 
 
All Rights Reserved 
 
This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety and 
that the copyright and this notice are included. 
 
 
Author�s Contact Information: 
 
Comments, suggestions, and inquiries regarding ASN1C may be submitted via electronic mail to info@obj-sys.com. 
 
 
 



 



 

CHANGE HISTORY 
 
 

Date Author Version Description 
11/06/2001 ED 5.3 Initial version 

 
05/01/2002 ED 5.32 Updated sections on calling C BER/DER encode/decode 

functions to specify use of rtInitContext. 
 

 
 
 



 



ASN1C V5.3 i 

TABLE OF CONTENTS 
 

OVERVIEW OF ASN1C ................................................................................................................................................1 

USING THE COMPILER ..............................................................................................................................................3 
Running the Compiler....................................................................................................................................................3 
Compiling and Linking Generated Code .......................................................................................................................6 
Porting Run-time Code to Other Platforms....................................................................................................................7 
Compiler Configuration File..........................................................................................................................................9 
Compiler Error Reporting ............................................................................................................................................13 

GENERATED C/C++ SOURCE CODE......................................................................................................................15 
Header (.h) File ............................................................................................................................................................15 

BOOLEAN ..............................................................................................................................................................17 
INTEGER ................................................................................................................................................................17 
BIT STRING............................................................................................................................................................18 
Named Bits ..............................................................................................................................................................19 
ASN1CBitStr Control Class.....................................................................................................................................20 
OCTET STRING .....................................................................................................................................................21 
ENUMERATED......................................................................................................................................................22 
NULL.......................................................................................................................................................................23 
OBJECT IDENTIFIER............................................................................................................................................23 
REAL.......................................................................................................................................................................24 
SEQUENCE.............................................................................................................................................................24 
DEFAULT keyword ................................................................................................................................................28 
Extension Elements..................................................................................................................................................28 
SET ..........................................................................................................................................................................29 
SEQUENCE OF.......................................................................................................................................................29 
Static (sized) SEQUENCE OF Type........................................................................................................................30 
List-based SEQUENCE OF Type............................................................................................................................30 
Generation of Temporary Types for SEQUENCE OF Elements.............................................................................30 
SET OF ....................................................................................................................................................................32 
CHOICE...................................................................................................................................................................32 
Open Type................................................................................................................................................................34 
Character String Types.............................................................................................................................................35 
Time String Types....................................................................................................................................................36 
External Type...........................................................................................................................................................36 
Parameterized Types................................................................................................................................................37 
Information Objects .................................................................................................................................................38 
Value Specifications ................................................................................................................................................39 
INTEGER Value Specification................................................................................................................................39 
BOOLEAN Value Specification..............................................................................................................................40 
Binary and Hexadecimal String Value Specification...............................................................................................40 
Character String Value Specification.......................................................................................................................40 
Object Identifier Value Specification.......................................................................................................................40 
Encode/Decode Function Prototypes .......................................................................................................................41 
Generated Class Definition ......................................................................................................................................42 
Generated Methods ..................................................................................................................................................43 

Generated BER Encode Functions...............................................................................................................................44 
Generated C Function Format and Calling Parameters............................................................................................44 
Generated C++ Encode Method Format and Calling Parameters ............................................................................44 
Populating Generated Structure Variables for Encoding .........................................................................................45 
Procedure for Calling C Encode Functions..............................................................................................................46 
Procedure for Using the C++ Control Class Encode Method ..................................................................................48 
Encoding a Series of Messages Using the C++ Control Class Interface..................................................................50 

Generated BER Decode Functions ..............................................................................................................................52 
Generated C Function Format and Calling Parameters............................................................................................52 



ASN1C V5.3  ii 

Generated C++ Decode Method Format and Calling Parameters ............................................................................52 
Procedure for Calling C Decode Functions..............................................................................................................53 
Procedure for Using the C++ Control Class Decode Method ..................................................................................54 
Decoding a Series of Messages Using the C++ Control Class Interface .................................................................55 
Performance Considerations: Dynamic Memory Management ...............................................................................57 

Generated PER Encode Functions ...............................................................................................................................58 
Generated C Function Format and Calling Parameters............................................................................................58 
Generated C++ Encode Method Format and Calling Parameters ............................................................................58 
Populating Generated Structure Variables for Encoding .........................................................................................59 
Procedure for Calling C Encode Functions..............................................................................................................59 
Procedure for Using the C++ Control Class Encode Method ..................................................................................60 
Encoding a Series of PER Messages using the C++ Interface .................................................................................63 

Generated PER Decode Functions...............................................................................................................................64 
Generated C Function Format and Calling Parameters............................................................................................64 
Generated C++ Decode Method Format and Calling Parameters ............................................................................64 
Procedure for Calling C Decode Functions..............................................................................................................65 
Procedure for Using the C++ Control Class Encode Method ..................................................................................66 
Decoding a Series of Messages Using the C++ Control Class Interface .................................................................67 
Performance Considerations: Dynamic Memory Management ...............................................................................68 

Generated Print Functions............................................................................................................................................69 
Event Handler Interface ...............................................................................................................................................70 

How it Works...........................................................................................................................................................70 
How to Use It ...........................................................................................................................................................71 

IMPORT/EXPORT of Types.......................................................................................................................................75 
ASN1C90.....................................................................................................................................................................76 

ROSE OPERATION and ERROR...........................................................................................................................76 
SNMP OBJECT-TYPE............................................................................................................................................78 

ASN.1 C++ RUN-TIME CLASSES..............................................................................................................................81 
ASN1Context...............................................................................................................................................................81 

ASN1Context::ASN1Context ..................................................................................................................................81 
ASN1Context::~ASN1Context ................................................................................................................................81 
ASN1Context::GetPtr ..............................................................................................................................................81 
ASN1Context::PrintErrorInfo..................................................................................................................................82 

ASN1MessageBuffer ...................................................................................................................................................83 
ASN1MessageBuffer::addEventHandler .................................................................................................................83 
ASN1MessageBuffer::CStringToBMPString ..........................................................................................................83 
ASN1MessageBuffer::getByteIndex........................................................................................................................84 
ASN1MessageBuffer::getContext............................................................................................................................84 
ASN1MessageBuffer::GetMsgCopy........................................................................................................................85 
ASN1MessageBuffer::GetMsgPtr............................................................................................................................85 
ASN1MessageBuffer::Init .......................................................................................................................................86 
ASN1MessageBuffer::isA .......................................................................................................................................86 
ASN1MessageBuffer::PrintErrorInfo ......................................................................................................................87 
ASN1MessageBuffer::setErrorHandler ...................................................................................................................87 

ASN1BERMessageBuffer ...........................................................................................................................................89 
ASN1BERMessageBuffer::CalcIndefLen ...............................................................................................................89 
ASN1BERMessageBuffer::BinDump......................................................................................................................89 
ASN1BERMessageBuffer::HexDump.....................................................................................................................90 

ASN1BEREncodeBuffer .............................................................................................................................................91 
ASN1BEREncodeBuffer::ASN1BEREncodeBuffer ...............................................................................................91 
ASN1BEREncodeBuffer::GetMsgCopy..................................................................................................................91 
ASN1BEREncodeBuffer::GetMsgPtr......................................................................................................................92 
ASN1BEREncodeBuffer::Init..................................................................................................................................92 

ASN1BERDecodeBuffer .............................................................................................................................................93 
ASN1BERDecodeBuffer::ASN1BERDecodeBuffer...............................................................................................93 
ASN1BERDecodeBuffer::FindElement ..................................................................................................................93 
ASN1BERDecodeBuffer::ParseTagLen ..................................................................................................................94 



ASN1C V5.3  iii 

ASN1PERMessageBuffer............................................................................................................................................95 
ASN1PERMessageBuffer::BinDump ......................................................................................................................95 
ASN1PERMessageBuffer::HexDump .....................................................................................................................95 
ASN1PERMessageBuffer::GetMsgLen...................................................................................................................95 
ASN1PERMessageBuffer::SetTrace........................................................................................................................96 

ASN1PEREncodeBuffer..............................................................................................................................................97 
ASN1PEREncodeBuffer::ASN1PEREncodeBuffer ................................................................................................97 
ASN1PEREncodeBuffer::GetMsgBitCnt ................................................................................................................97 
ASN1PEREncodeBuffer::GetMsgCopy ..................................................................................................................98 
ASN1PEREncodeBuffer::GetMsgPtr ......................................................................................................................98 
ASN1PEREncodeBuffer::Init ..................................................................................................................................98 

ASN1PERDecodeBuffer............................................................................................................................................100 
ASN1PERDecodeBuffer::ASN1PERDecodeBuffer..............................................................................................100 

ASN1CType...............................................................................................................................................................101 
ASN1CType::ASN1CType....................................................................................................................................101 
ASN1CType::Encode ............................................................................................................................................101 
ASN1CType::Decode ............................................................................................................................................101 
ASN1CType::memAlloc........................................................................................................................................102 
ASN1CType::memFreeAll ....................................................................................................................................102 

ASN1CBitStr .............................................................................................................................................................104 
ASN1CBitStr::ASN1CBitStr .................................................................................................................................104 
ASN1CBitStr::change............................................................................................................................................105 
ASN1CBitStr::clear ...............................................................................................................................................106 
ASN1CBitStr::set...................................................................................................................................................107 
ASN1CBitStr::invert..............................................................................................................................................108 
ASN1CBitStr::get ..................................................................................................................................................109 
ASN1CBitStr::isSet ...............................................................................................................................................110 
ASN1CBitStr::isEmpty..........................................................................................................................................110 
ASN1CBitStr::size.................................................................................................................................................111 
ASN1CBitStr::length .............................................................................................................................................111 
ASN1CBitStr::cardinality ......................................................................................................................................111 
ASN1CBitStr::getBytes .........................................................................................................................................112 
ASN1CBitStr::doAnd ............................................................................................................................................112 
ASN1CBitStr::doOr...............................................................................................................................................114 
ASN1CBitStr::doXor.............................................................................................................................................115 
ASN1CBitStr::doAndNot ......................................................................................................................................116 
ASN1CBitStr::shiftLeft .........................................................................................................................................118 
ASN1CBitStr::shiftRight .......................................................................................................................................118 
ASN1CBitStr::unusedBitsInLastUnit ....................................................................................................................119 
ASN1CBitStr::operator ASN1TDynBitStr ............................................................................................................119 

ASN1CSeqOfList ......................................................................................................................................................121 
ASN1CSeqOfList:: ASN1CSeqOfList ..................................................................................................................121 
ASN1CSeqOfList::append.....................................................................................................................................122 
ASN1CSeqOfList::insert .......................................................................................................................................122 
ASN1CSeqOfList::remove ....................................................................................................................................122 
ASN1CSeqOfList::removeFirst .............................................................................................................................123 
ASN1CSeqOfList::removeLast .............................................................................................................................123 
ASN1CSeqOfList::indexOf ...................................................................................................................................124 
ASN1CSeqOfList::contains ...................................................................................................................................124 
ASN1CSeqOfList::getFirst ....................................................................................................................................125 
ASN1CSeqOfList::getLast.....................................................................................................................................125 
ASN1CSeqOfList::get ...........................................................................................................................................125 
ASN1CSeqOfList::operator[] ................................................................................................................................126 
ASN1CSeqOfList::set............................................................................................................................................126 
ASN1CSeqOfList::clear ........................................................................................................................................126 
ASN1CSeqOfList::isEmpty ...................................................................................................................................127 
ASN1CSeqOfList::size ..........................................................................................................................................127 
ASN1CSeqOfList::iterator.....................................................................................................................................127 
ASN1CSeqOfList::iteratorFromLast .....................................................................................................................128 



ASN1C V5.3  iv 

ASN1CSeqOfList::iteratorFrom ............................................................................................................................128 
ASN1CSeqOfListIterator...........................................................................................................................................130 

ASN1CSeqOfListIterator::hasNext........................................................................................................................130 
ASN1CSeqOfListIterator::hasPrev ........................................................................................................................130 
ASN1CSeqOfListIterator::next..............................................................................................................................131 
ASN1CSeqOfListIterator::prev .............................................................................................................................131 
ASN1CSeqOfListIterator::remove.........................................................................................................................131 
ASN1CSeqOfListIterator::set ................................................................................................................................132 
ASN1CSeqOfListIterator::insert............................................................................................................................132 

ASN1CTime ..............................................................................................................................................................134 
ASN1CTime::ASN1CTime ...................................................................................................................................134 
ASN1CTime::getYear............................................................................................................................................135 
ASN1CTime::getMonth.........................................................................................................................................135 
ASN1CTime::getDay.............................................................................................................................................135 
ASN1CTime::getHour ...........................................................................................................................................136 
ASN1CTime::getMinute........................................................................................................................................136 
ASN1CTime::getSecond........................................................................................................................................137 
ASN1CTime::getFraction ......................................................................................................................................137 
ASN1CTime::getDiffHour.....................................................................................................................................138 
ASN1CTime::getDiffMinute .................................................................................................................................138 
ASN1CTime::getDiff.............................................................................................................................................138 
ASN1CTime::getUTC ...........................................................................................................................................139 
ASN1CTime::getTime...........................................................................................................................................139 
ASN1CTime::setYear ............................................................................................................................................140 
ASN1CTime::setMonth .........................................................................................................................................140 
ASN1CTime::setDay .............................................................................................................................................141 
ASN1CTime::setHour............................................................................................................................................141 
ASN1CTime::setMinute ........................................................................................................................................142 
ASN1CTime::setSecond ........................................................................................................................................142 
ASN1CTime::setFraction.......................................................................................................................................142 
ASN1CTime::setDiffHour .....................................................................................................................................143 
ASN1CTime::setDiff .............................................................................................................................................143 
ASN1CTime::setDiff .............................................................................................................................................144 
ASN1CTime::setUTC............................................................................................................................................144 
ASN1CTime::setTime ...........................................................................................................................................145 
ASN1CTime::parseString ......................................................................................................................................145 
ASN1CTime::clear ................................................................................................................................................146 
ASN1CTime::operator =........................................................................................................................................146 
ASN1CTime::operator == .....................................................................................................................................147 
ASN1CTime::operator >........................................................................................................................................147 
ASN1CTime::operator <........................................................................................................................................147 
ASN1CTime::operator >= .....................................................................................................................................147 
ASN1CTime::operator <= .....................................................................................................................................147 

ASN1CGeneralizedTime ...........................................................................................................................................148 
ASN1CGeneralizedTime::ASN1CGeneralizedTime.............................................................................................148 
ASN1CGeneralizedTime::getCentury ...................................................................................................................149 
ASN1CGeneralizedTime::setCentury....................................................................................................................149 

ASN1CUTCTime ......................................................................................................................................................150 
ASN1CUTCTime::ASN1CUTCTime ...................................................................................................................150 
ASN1CUTCTime::setYear ....................................................................................................................................151 

Asn1NamedEventHandler .........................................................................................................................................152 
Asn1NamedEventHandler::startElement ...............................................................................................................152 
Asn1NamedEventHandler::endElement ................................................................................................................152 
Asn1NamedEventHandler::boolValue...................................................................................................................153 
Asn1NamedEventHandler::intValue......................................................................................................................153 
Asn1NamedEventHandler::uIntValue ...................................................................................................................154 
Asn1NamedEventHandler::bitStrValue.................................................................................................................154 
Asn1NamedEventHandler::octStrValue ................................................................................................................155 
Asn1NamedEventHandler::charStrValue ..............................................................................................................155 



ASN1C V5.3  v 

Asn1NamedEventHandler::charStrValue (16-bit version).....................................................................................156 
Asn1NamedEventHandler::nullValue....................................................................................................................156 
Asn1NamedEventHandler::oidValue.....................................................................................................................156 
Asn1NamedEventHandler::realValue....................................................................................................................157 
Asn1NamedEventHandler::enumValue .................................................................................................................157 
Asn1NamedEventHandler::octStrValue ................................................................................................................158 
Asn1NamedEventHandler::openTypeValue..........................................................................................................158 

Asn1ErrorHandler......................................................................................................................................................160 
Asn1ErrorHandler::error........................................................................................................................................160 

BER RUN-TIME LIBRARY FUNCTIONS..............................................................................................................161 
asn1type.h Include File ..............................................................................................................................................161 

Error Constants ......................................................................................................................................................161 
Tagging Value and Mask Constants ......................................................................................................................161 
Sizing Constants.....................................................................................................................................................162 
ASN.1 Primitive Type Definitions.........................................................................................................................162 

BER/DER C Encode Functions .................................................................................................................................163 
xe_setp - Set Encode Buffer Pointer ......................................................................................................................163 
xe_getp - Get Encode Buffer Pointer .....................................................................................................................164 
xe_tag_len - Encode Tag and Length.....................................................................................................................164 
xe_boolean - Encode BOOLEAN..........................................................................................................................165 
xe_integer - Encode INTEGER .............................................................................................................................165 
xe_unsigned - Encode Unsigned INTEGER..........................................................................................................166 
xe_bigint � Encode Big Integer..............................................................................................................................167 
xe_bitstr - Encode BIT STRING ...........................................................................................................................167 
xe_octstr - Encode OCTET STRING ....................................................................................................................168 
xe_charstr � Encode Character String....................................................................................................................169 
xe_16BitCharStr � Encode 16-bit Character String ...............................................................................................169 
xe_32BitCharStr � Encode 32-bit Character String ...............................................................................................170 
xe_enum - Encode ENUMERATED .....................................................................................................................171 
xe_null - Encode NULL.........................................................................................................................................171 
xe_objid - Encode OBJECT IDENTIFIER............................................................................................................172 
xe_real � Encode Real............................................................................................................................................172 
xe_OpenType - Encode Open Type.......................................................................................................................173 
xe_free � Free Encoder Dynamic Memory ............................................................................................................174 
xe_expandBuffer � Expand Dynamic Encode Buffer............................................................................................174 
xe_memcpy � Copy Bytes to Encode Buffer .........................................................................................................175 
xe_len � Encode a Length Value ...........................................................................................................................175 
xe_derCanonicalSort � DER Canonical Sort .........................................................................................................176 
xe_TagAndIndefLen � Encode Tag and Indefinite Length....................................................................................177 

BER/DER C Decode Functions .................................................................................................................................178 
xd_setp - Set Decode Buffer Pointer......................................................................................................................178 
xd_tag_len - Decode Tag and Length ....................................................................................................................179 
xd_match - Match Tag ...........................................................................................................................................180 
xd_boolean - Decode BOOLEAN .........................................................................................................................181 
xd_integer - Decode INTEGER.............................................................................................................................181 
xd_unsigned - Decode Unsigned INTEGER .........................................................................................................182 
xd_bigint � Decode Big Integer .............................................................................................................................183 
xd_bitstr - Decode BIT STRING ...........................................................................................................................184 
xd_bitstr_s - Decode BIT STRING (static)............................................................................................................184 
xd_octstr - Decode OCTET STRING....................................................................................................................185 
xd_octstr_s - Decode OCTET STRING (static) ....................................................................................................186 
xd_charstr � Decode Character String ...................................................................................................................187 
xd_16BitCharStr � Decode 16-bit Character String...............................................................................................188 
xd_32BitCharStr � Decode 32-bit Character String...............................................................................................188 
xd_enum - Decode ENUMERATED.....................................................................................................................189 
xd_null - Decode NULL ........................................................................................................................................190 
xd_objid - Decode OBJECT IDENTIFIER ...........................................................................................................190 



ASN1C V5.3  vi 

xd_real - Decode REAL.........................................................................................................................................191 
xd_OpenType - Decode Open Type ......................................................................................................................192 
xd_OpenTypeExt � Decode Open Type Extension ...............................................................................................193 
xd_chkend - Check for End of Context..................................................................................................................193 
xd_count - Count Message Components................................................................................................................194 
xd_memcpy - Copy Decoded Contents..................................................................................................................194 
xd_NextElement � Move to Next Element ............................................................................................................195 
xd_indeflen � Calculate Indefinite Length.............................................................................................................196 

BER/DER C File Functions .......................................................................................................................................197 
xdf_tag � Decode Tag from File ............................................................................................................................197 
xdf_len � Decode Length from File .......................................................................................................................197 
xdf_TagAndLen � Decode Tag and Length from File...........................................................................................198 
xdf_ReadPastEOC � Read Past End-of-Context (EOC) Marker ...........................................................................199 
xdf_ReadContents � Read Contents from File.......................................................................................................199 

BER/DER C Utility Functions...................................................................................................................................201 
Memory Management Functions (xu_malloc and xu_freeall) ...............................................................................201 
Output Formatting Functions .................................................................................................................................203 
Run-Time Error Reporting Functions ....................................................................................................................205 

PER RUN-TIME LIBRARY.......................................................................................................................................209 
PER C Encode Functions...........................................................................................................................................209 

pe_GetMsgLen � Get Length of Encoded Message...............................................................................................209 
pe_GetMsgBitCnt � Get Count of Bits in Encoded Message ................................................................................210 
pe_GetMsgPtr � Get Encoded Message Pointer ....................................................................................................210 
pe_bit - Encode a Single Bit Value ........................................................................................................................211 
pe_bits - Encode Bit Values...................................................................................................................................211 
pe_octets - Encode Octets ......................................................................................................................................212 
pe_byte_align � Align Encode Buffer on a Byte Boundary...................................................................................212 
pe_NonNegBinInt � Encode a Non-negative Binary Integer.................................................................................213 
pe_2sCompBinInt � Encode a Two�s Complement Binary Integer .......................................................................213 
pe_ConsWholeNumber � Encode a Constrained Whole Number .........................................................................214 
pe_SmallNonNegWholeNumber � Encode a Small Non-negative Whole Number ..............................................214 
pe_Length � Encode a Length Determinant...........................................................................................................215 
pe_ConsInteger � Encode a Constrained Integer ...................................................................................................215 
pe_UnconsInteger � Encode an Unconstrained Integer .........................................................................................216 
pe_ConsUnsigned � Encode a Constrained Unsigned Integer ...............................................................................217 
pe_UnconsUnsigned � Encode an Unconstrained Unsigned Integer .....................................................................217 
pe_BigInteger � Encode Big Integer......................................................................................................................218 
pe_BitString � Encode a Bit String........................................................................................................................218 
pe_OctetString � Encode an Octet String ..............................................................................................................219 
pe_Real � Encode Real ..........................................................................................................................................219 
pe_ObjectIdentifier � Encode Object Identifier .....................................................................................................220 
pe_ConstrainedString � Encode 8-bit Character String .........................................................................................220 
ASN.1 8-bit Character String Encode Functions ...................................................................................................221 
pe_16BitConstrainedString � Encode 16-bit Character String ..............................................................................222 
pe_BMPString � Encode BMP Character String ...................................................................................................223 
pe_32BitConstrainedString � Encode 32-bit Character String ..............................................................................223 
pe_UniversalString � Encode 32-bit Character String ...........................................................................................224 
pe_OpenType � Encode Open Type ......................................................................................................................225 
pe_OpenTypeExt � Encode Open Type Extension................................................................................................225 
pe_CheckBuffer � Check Encode Buffer Size.......................................................................................................226 
pe_ExpandBuffer � Expand Encode Buffer...........................................................................................................226 

PER C Decode Functions...........................................................................................................................................228 
pd_bit - Decode a Single Bit Value........................................................................................................................228 
pd_bits - Decode Bit Values ..................................................................................................................................229 
pd_byte_align � Align Buffer on a Byte Boundary ...............................................................................................229 
pd_ConsWholeNumber � Decode a Constrained Whole Number .........................................................................230 
pd_SmallNonNegWholeNumber � Decode a Small Non-negative Whole Number..............................................230 



ASN1C V5.3  vii 

pd_Length � Decode a Length Determinant ..........................................................................................................231 
pd_ConsInteger � Decode a Constrained Integer...................................................................................................231 
pd_UnconsInteger � Decode an Unconstrained Integer.........................................................................................232 
pd_ConsUnsigned � Decode a Constrained Unsigned Integer...............................................................................232 
pd_UnconsUnsigned � Decode an Unconstrained Unsigned Integer.....................................................................233 
pd_BigInteger � Decode a Big Integer...................................................................................................................233 
pd_BitString � Decode a Bit String .......................................................................................................................234 
pd_DynBitString - Decode a Dynamic Bit String..................................................................................................235 
pd_OctetString � Decode an Octet String ..............................................................................................................235 
pd_DynOctString - Decode a Dynamic Octet String .............................................................................................236 
pd_Real � Decode Real..........................................................................................................................................237 
pd_ObjectIdentifier � Decode Object Identifier.....................................................................................................237 
pd_ConstrainedString � Decode 8-bit Character String.........................................................................................238 
ASN.1 8-bit Character String Decode Functions ...................................................................................................238 
pd_16BitConstrainedString � Decode 16-bit Character String ..............................................................................239 
pd_BMPString � Decode BMP Character String...................................................................................................240 
pd_32BitConstrainedString � Decode 32-bit Character String ..............................................................................241 
pd_UniversalString � Decode 32-bit Character String...........................................................................................241 
pd_OpenType � Decode Open Type......................................................................................................................242 
pd_OpenTypeExt � Decode Open Type Extension ...............................................................................................242 

PER C Utility Functions ............................................................................................................................................244 
Encode/Decode Context Initialization ...................................................................................................................244 
Constraint Specification Functions ........................................................................................................................246 
Diagnostic Printing Functions................................................................................................................................249 

RUN-TIME COMMON LIBRARY ...........................................................................................................................251 
Context Initialization Functions.................................................................................................................................251 

rtInitContext � Initialize Context Block.................................................................................................................251 
rtNewContext � Allocate New Context Block.......................................................................................................251 
rtFreeContext � Free Context Block ......................................................................................................................252 

Memory Management Functions ...............................................................................................................................252 
rtMemAlloc � Allocate Dynamic Memory ............................................................................................................253 
rtMemFree � Release Dynamic Memory ...............................................................................................................253 

Diagnostic Trace Functions .......................................................................................................................................254 
rtdiag � Output Trace Messagesy...........................................................................................................................254 
rtSetDiag � Set Diagnostic Tracing........................................................................................................................254 

Error Formatting and Print Functions ........................................................................................................................255 
rtErrPrint � Print Error Information .......................................................................................................................255 
rtErrLogUsingCB � Log Using Callback Function................................................................................................255 
rtErrSetData � Set Error Information.....................................................................................................................256 
rtErrAdd<type>Param � Add Typed Error Parameter to Error Information..........................................................257 
rtErrFreeParams � Free Error Parameter Memory.................................................................................................257 

Formatted Printing Functions.....................................................................................................................................259 
rtBoolToString � Convert ASN.1 Boolean Value to String...................................................................................259 
rtIntToString � Convert ASN.1 Integer Value to String ........................................................................................259 
rtUIntToString � Convert ASN.1 Unsigned Integer Value to String .....................................................................260 
rtBitStrToString � Convert ASN.1 Bit String Value to String...............................................................................260 
rtOctStrToString � Convert ASN.1 Octet String Value to String ..........................................................................261 
rtOIDToString � Convert ASN.1 Object Identifier Value to String ......................................................................261 
rtTagToString � Convert ASN.1 Tag to String ......................................................................................................262 
rtPrint<type> � Print ASN.1 Values to Standard Output .......................................................................................263 

Object Identifier Helper Functions ............................................................................................................................264 
rtSetOID � Populate Object Identifier Structure ....................................................................................................264 
rtPrintOID � Print Object Identifier Structure........................................................................................................264 

Linked List and Stack Utility Functions ....................................................................................................................265 
rtDListInit � Initialize a Doubly Linked List Structure..........................................................................................265 
rtDListAppend � Append an Item to a Doubly Linked List...................................................................................265 
rtDListInsert � Insert an Item to a Doubly Linked List..........................................................................................266 



ASN1C V5.3  viii 

rtDListInsertBefore � Insert an Item to a Doubly Linked List before specified node............................................266 
rtDListInsertAfter � Insert an Item to a Doubly Linked List after specified node .................................................267 
rtDListFindByIndex �Find a node in the Doubly Linked List by index ................................................................268 
rtDListFindByData �Find a node in the Doubly Linked List by index..................................................................268 
rtDListFindIndexByData �Find an index of node in the Doubly Linked List by data...........................................268 
rtDListRemove � Remove a node from a Doubly Linked List ..............................................................................269 
rtSListInit � Initialize a Singly Linked List Structure............................................................................................269 
rtSListCreate � Create a Singly Linked List Structure...........................................................................................270 
rtSListAppend � Append an Item to a Singly Linked List.....................................................................................270 
rtStackInit � Initialize a Stack Structure ................................................................................................................271 
rtStackCreate � Create a Stack Structure ...............................................................................................................271 
rtStackPush � Push an Element onto the Stack ......................................................................................................272 
rtStackPop � Pop an Element from the Stack ........................................................................................................272 

Character String Conversion Functions .....................................................................................................................273 
rtCToBMPString....................................................................................................................................................273 
rtBMPToCString....................................................................................................................................................273 
rtBMPToNewCString ............................................................................................................................................274 
rtCToUCSString ....................................................................................................................................................274 
rtUCSToCString ....................................................................................................................................................275 
rtUCSToNewCString.............................................................................................................................................276 
rtUCSToWCSString ..............................................................................................................................................276 
rtWCSToUCSString ..............................................................................................................................................277 
rtWCSToUTF8 ......................................................................................................................................................277 
rtUTF8ToWCS ......................................................................................................................................................278 
rtValidateUTF8......................................................................................................................................................278 

Big integer helper functions.......................................................................................................................................280 
rtBigIntInit � Initialize a big integer Structure.......................................................................................................280 
rtSetStrToBigInt � Convert string to a big integer .................................................................................................280 
rtSetInt64ToBigInt � Convert ASN1INT64 value to big integer...........................................................................281 
rtSetBytesToBigInt � Convert sequence of octets to big integer ...........................................................................281 
rtGetBigIntLen� Get big integer length .................................................................................................................282 
rtGetBigInt � Copy big integer value into an octet array .......................................................................................282 
rtBigIntDigitsNum � Return the approximated number of digits of the big integer ..............................................283 
rtBigIntToString � Convert a big integer to a string ..............................................................................................284 
rtPrintBigInt � Print big integer value  to Standard Output ...................................................................................284 
rtCompareBigInt � Compare two big integer values..............................................................................................285 
rtBigIntCopy � Copy one big integer structure into another..................................................................................285 
rtBigIntFastCopy � Fast copy of one big integer structure into another ................................................................286 

APPENDIX A................................................................................................................................................................287 

APPENDIX B................................................................................................................................................................289 

INDEX ..........................................................................................................................................................................290 
 



ASN1C V5.3  1 

Overview of ASN1C  
 
The ASN1C code generation tool translates an Abstract Syntax Notation 1 (ASN.1) source file into 
computer language source files that allow ASN.1 data to be encoded/decoded.  This release of the compiler 
includes options to generate code in three different languages: C, C++, or Java.  This manual discusses the 
C and C++ code generation capabilities.  The ASN1C Java User�s Manual discusses the Java code 
generation capability. 
 
Each ASN.1 module that is encountered in an ASN.1 source file results in the generation of the following 
two types of C/C++ language files: 
 
1. An include (.h) file containing C/C++ typedefs and classes that represent each of the ASN.1 

productions listed in the ASN.1 source file, and 
 
2. A C/C++ source (.c or .cpp) file containing C/C++ encode and decode functions.  One encode and 

decode function is generated for each ASN.1 production. 
 
These files, when compiled and linked with the ASN.1 low-level encode/decode function library, provide a 
complete package for working with ASN.1 encoded data. 
 
ASN1C works with the version of ASN.1 specified in the ITU standard X.680.  It generates code for 
encoding/decoding data as specified in the Basic Encoding Rules (BER) published in the ITU X.690 
standard and the Packed Encoding Rules (PER) published in the ITU X.691 standard.  The compiler is 
capable of parsing all ASN.1 syntax as defined in the standards.  Its mission is to get to the base types that 
are the basis for encoding and decoding the messages that the specification defines.  It will skip over all 
other definitions and related �fluff�. 
  
This release of the compiler contains a special executable (asn1c90.exe) that backward compatible with 
deprecated features from the older X.208 and X.209 standards.  These include the ANY data type and 
unnamed fields in SEQUENCE, SET, and CHOICE types.  This version can also parse type syntax from 
common macro definitions such as ROSE. 
 
 



ASN1C V5.3  2 

 
 
 
 
 
 
 

< this page intentionally left blank >



ASN1C V5.3  3 

Using the Compiler 
 
Running the Compiler 
 
To test if the compiler was successfully installed, enter asn1c with no parameters as follows (note: if you 
have not updated your PATH variable, you will need to enter the full pathname): 
 
    asn1c 
 
You should observe the following display (or something similar): 
 
ASN1C Compiler, Version 5.3x 
Copyright (c) 1997-2002 Objective Systems, Inc. All Rights Reserved. 
 
Usage: asn1c <filename> options 
 
    <filename>         ASN.1 source file name 
 
  options: 
    -hfile <filename>  C or C++ header (.h) filename 
                         (default is <ASN.1 Module Name>.h) 
    -cfile <filename>  C or C++ source (.c or .cpp) filename 
                         (default is <ASN.1 Module Name>.c) 
    -print <filename>  Generate print routines and write  
                         to filename 
    -ber               generate BER encode/decode functions 
    -der               generate DER encode/decode functions 
    -per               generate PER encode/decode functions 
    -trace             add trace diag msgs to generated code 
    -c                 generate C code 
    -c++               generate C++ code 
    -java              generate Java code 
    -events            generate code to invoke event handlers 
    -config <file>     specify configuration file 
    -nodecode          do not generate decode functions 
    -noencode          do not generate encode functions 
    -noIndefLen        do not generate indefinite length tests 
    -compact           generate compact code 
    -warnings          Output compiler warning messages 
    -o <directory>     Output file directory 
    -I <directory>     Import file directory 
    -pkgpfx <text>     Java package prefix 
    -pkgname <text>    Java package name 
    -list              generate listing 
    -compat <version>  generate code compatible with previous 
                       compiler version. <version> format is  
                       x.x (for example, 5.2) 
 
This indicates that to use the compiler, at a minimum, an ASN.1 source file must be provided.  The source 
file specification can be a full pathname or only what is necessary to qualify the file.  If directory 
information is not provided, the user's current default directory is assumed.  If a file extension is not 
provided, the default extension ".asn" is appended to the name. 
 
The source file must contain ASN.1 productions that define ASN.1 types and/or value specifications. This 
file must strictly adhere to the syntax specified in ASN.1 standard ITU X.680..  The asn1c90 executable 
should be used to parse files based on the 1990 ASN.1 standard (x.208) or that contain references to ROSE 
macro specifications.. 



ASN1C V5.3  4 

 
The following table lists all of the command line options and what they are used for: 



ASN1C V5.3  5 

 
Option Argument Description 
-hfile <filename> This option allows the specification of a header (.h) file to which all of 

the generated typedefs and function prototypes will be written.  If not 
specified, the default is <modulename>.h where <modulename> is the 
name of the module from the ASN.1 source file. 
 

-cfile <filename> This option allows the specification of a C or C++ source (.c or .cpp) file  
to which all of the generated encode/decode functions will be written.  If 
not specified, the default is <modulename>.c where <modulename> is 
the name of the module from the ASN.1 source file. 
 

-print <filename> This option allows the specification of a C or C++ source (.c or .cpp) file 
to which generated print functions will be written.  Print functions are 
debug functions that allow the contents of generated type variables to be 
written to stdout.  They are optional: if �print is not specified, no print 
functions will be generated.  The <filename> argument to this option is 
also optional.  If not specified, the print functions will be written to 
<modulename>Print.c where <modulename> is the name of the module 
from the ASN.1 source file. 
 

-ber None This option instructs the compiler to generate functions that implement 
the Basic Encoding Rules (BER) Rulesas specified in the ASN.1 
standards. 
 

-der None This option instructs the compiler to generate functions that implement 
the Distinguished Encoding Rules (DER) as specified in the ASN.1 
standards. 
 

-per None This option instructs the compiler to generate functions that implement 
the Packed Encoding Rules (PER) as specified in the ASN.1 standards. 
 

-trace None This option is used to tell the compiler to add trace diagnostic messages  
to the generated code.  These messages cause printf statements to be 
added to the generated code to print entry and exit information into the 
generated functions.  This is a debugging option that allows 
encode/decode problems to be isolated to a given production processing 
function.  Once the code is debugged, this option should not be used as it 
adversely affects performance. 
 

-java None Generate Java source code. 
 

-c None Generate C source code. 
 

-c++ None Generate C++ source code. 
 

-events None Generate extra code to invoke user defined event and error handler 
callback methods (see the Event Handlers section). 
 

-config <filename> This option is used to specify the name of a file containing configuration 
information for the source file being parsed.  A full discussion of the 
contents of a configuration file is provided in a later section. 
 

-noencode None This option suppresses the generation of encode functions. .  
 

-nodecode None This option suppresses the generation of decode functions. 
 

-noIndefLen None This option instructs the compiler to omit indefinite length tests in 



ASN1C V5.3  6 

generated decode functions.  These tests result in the generation of a 
large amount of code.  If you know that your application only uses 
definite length encoding, this option can result in a much smaller code 
base size. 
 

-compact None This option instructs the compiler to generate more compact code at the 
expense of some constraint and error checking.  This is an optimization 
option that should be used after an application is thoroughly tested. 
 

-warnings None Output information on compiler generated warnings. .  
 

-o <directory> This option is used to specify the name of a directory to which all of the 
generated files will be written. 
 

-I <directory> This option is used to specify a directory that the compiler will search for 
ASN.1 source files for IMPORT items.  Multiple �I qualifiers can be 
used to specify multiple directories to search. 
 

-pkgpfx <prefixName> This is a Java option for adding a prefix in front of the assigned Java 
package name.  By default, the Java package name is set to the module 
name.  If the package is embedded within a hierarchy, this option can be 
used to set the other directory names that must be added to allow Java to 
find the .class files. 
 

-pkgname <packageName> This is a Java option that allows the entire Java package name to be 
changed.  Instead of the module name, the full name specified using this 
option will be used.  This option cannot be used in conjunction with �
pkgpfx option. 
 

-list None Generate listing.  This will dump the source code to the standard output 
device as it is parsed.  This can be useful for finding parse errors. 
 

-compat <versionNumber> Generate code compatible with an older version of the compiler.  The 
compiler will attempt to generate code more closely aligned with the 
given previous release of the compiler. 
<versionNumber> is specified as x.x (for example, -compat 5.2) 
 

 
Several options from the 5.0x release have been decommissioned and replaced with entries in the 
configuration file.  These options include �dynamic, -pdu, and �enum_prefix.  See the section on the 
configuration file to find the equivalent configuration settings for these options. 
 
 
Compiling and Linking Generated Code 
 
C/C++ source code generated by the compiler can be compiled using any ANSI standard C or C++ 
compiler.  The only additional option that must be set is the inclusion of the ASN.1 C/C++ header file 
include directory with the �I option. 
 
When linking a program with compiler generated code, it is necessary to include the ASN.1 run-time 
library.  On Windows systems, the name of this file is either asn1ber.lib or asn1per.lib depending on 
whether BER or PER source-code generation was specified; on UNIX, the library names are libasn1ber.a 
and libasn1per.a respectively.  The library file can be found in the lib subdirectory.  For UNIX, the �L 
switch should be used to point to the subdirectory path and �lasn1ber or �lasn1per used to link with the 
library.  For Windows, the �LIBPATH switch should be used to specify the library path. 
 



ASN1C V5.3  7 

Windows systems also include dynamic-link library (dll) versions of the library.  These are located in the 
dll subdirectory.  To use them, link with the version of the asn1ber.lib or asn1per.lib file that is contained in 
the dll subdirectory. 
 
See the makefile in any of the sample subdirectories of the distribution for an example of what must be 
included to build a program using generated source code. 
 
 
Porting Run-time Code to Other Platforms 
 
The standard version of the compiler includes ANSI-standard source code for the base run-time libraries.  
This code can be used to build binary versions of the run-time libraries for other operating environments.  
Included with the source code is a portable makefile that can be used to build the libraries on the target 
platform with minimal changes.  All platform-specific items are isolated in the platform.mk file in the root 
directory of the installation. 
 
The procedure to port the run-time code to a different platform is as follows (note: this assumes common 
UNIX or GNU compilation utilities are in place on the target platform). 



ASN1C V5.3  8 

 
1. Create a directory tree containing a root directory (the name does not matter) and lib, src, rtsrc, and 

rtbuild subdirectories.  The tree should be as follows: 
 
 
 
 
 
 
 
 
 
 
 
 

2. Copy the files ending in extension �.mk� from the root directory of the installation to the root directory 
of the target platform (note: if going from DOS to UNIX or vice-versa, FTP the files in ASCII mode to 
ensure lines are terminated properly). 
 

3. Copy all files from the src and rtsrc subdirectories from the installation to the src and rtsrc directories 
on the target platform (note: if going from DOS to UNIX or vice-versa, FTP the files in ASCII mode to 
ensure lines are terminated properly). 
 

4. Copy the makefile from the rtbuild subdirectory of the installation to the rtbuild subdirectory on the 
target platform (note: if going from DOS to UNIX or vice-versa, FTP the files in ASCII mode to 
ensure lines are terminated properly). 
 

5. Edit the platform.mk file in the root subdirectory and modify the compilation parameters to fit those 
of the compiler of the target system.  In general, the following parameters will need to be adjusted: 
 
CC  C compiler executable name 
CCC C++ compiler executable name 
CFLAGS_ Flags that should be specified on the C or C++ command line 
 
The platform.w32 and platform.gnu files in the root directory of the installation are sample files for 
Windows 32 (Visual C++) and GNU compilers respectively.  Either of these can be renamed to 
platform.mk for building in either of these environments. 
 

6. Invoke the makefile in the rtbuild subdirectory. 
 
If all parameters were set up correctly, the result should be binary library files created in the lib 
subdirectory.  

root 

lib rtsrc src rtbuild 



ASN1C V5.3  9 

 
Compiler Configuration File 
 
In addition to command line options, a configuration file can be used to specify compiler options.  These 
options can be applied not only globally but also to specific modules and productions. 
 
A simple form of the Extended Markup Language (XML) is used to format items in the file.  This language 
was chosen because it is fairly well known and provides a natural interface for representing hierarchical 
data such as the structure of ASN.1 modules and productions.   The use of an external configuration file 
was chosen over embedding directives within the ASN.1 source itself due to the fact that ASN.1 source 
versions tend to change frequently.  An external configuration file can be reused with a new version of an 
ASN.1 module, but internal directives would have to be reapplied to the new version of the ASN.1 code. 
 
At the outer level of the markup is the <asn1config> </asn1config> tag pair.  Within this tag pair, the 
specification of global items and modules can be made.  Global items are applied to all items in all 
modules.  An example would be the <storage> qualifier.  A storage class such as dynamic can be specified 
and applied to all productions in all modules.  This will cause dynamic storage (pointers) to be used to any 
embedded structures within all of the generated code to reduce memory consumption demands. 
 
The specification of a module is done using the <module></module> tag pair.  This tag pair can only be 
nested within the top-level <asn1config> section.  The module is identified by using the required 
<name></name> tag pair.  Other attributes specified within the <module> section apply only to that 
module and not to other modules specified within the specification.  A complete list of all module attributes 
is provided in the table at the end of this section. 
 
The specification of an individual production is done using the <production></production> tag pair.  This 
tag pair can only be nested within a <module> section.  The production is identified by using the required 
<name></name> tag pair.  Other attributes within the production section apply only to the referenced 
production and nothing else.  A complete list of attributes that can be applied to individual productions is 
provided in the table at the end of this section. 
 
When an attribute is specified in more than one section, the most specific application is always used.  For 
example, assume a <typePrefix> qualifier is used within a module specification to specify a prefix for all 
generated types in the module and another one is used to a specify a prefix for a single production.   The 
production with the type prefix will be generated with the type prefix assigned to it and all other generated 
types will contain the type prefix assigned at the module level. 
 
Values in the different sections can be specified in one of the following ways: 
 

1. Using the <name>value</name> form.  This assigns the given value to the given name.  For 
example, the following would be used to specify the name of the �H323-MESSAGES� module in 
a module section: 
 
<name>H323-MESSAGES</name> 
 

2. Flag variables that turn some attribute on or off would be specified using a single <name/> entry.  
For example, to specify a given production is a PDU, the following would be specified in a 
production section: 
 
<isPDU/> 
 

3. An attribute list can be associated with some items.  This is normally used as a shorthand form for 
specifying lists of names.  For example, to specify a list of type names to be included in the 
generated code for a particular module, the following would be used: 
 
<include types=�TypeName1,TypeName2,TypeName3�/> 
 

 
The following are some examples of configuration specifications: 



ASN1C V5.3  10 

 
<asn1config><storage>dynamic</storage></asn1config> 
 
This specification indicates dynamic storage should be used in all places where its use would result in 
significant memory usage savings within all modules in the specified source file. 
 
<asn1config> 
  <module> 
    <name>H323-MESSAGES</name> 
    <sourceFile>h225.asn</sourceFile> 
    <typePrefix>H225</typePrefix> 
  </module> 
  � 
</asn1config> 
 
This specification applies to module �H323-MESSAGES� in the source file being processed.  For IMPORT 
statements involving this module, it indicates that the source file �h225.asn� should be searched for 
specifications.  It also indicates that when C or C++ types are generated, they should be prefixed with the 
�H225�.  This can help prevent name clashes if one or more modules are involved and they contain 
productions with common names. 
 
The following tables specify the list of attributes that can be applied at all of the different levels: global, 
module, and individual production: 
 
Global Level 
 
These attributes can be applied at the global level by including them within the <asn1config> section: 
 
Name Values Description 
<storage></storage> dynamic, static, or list 

keyword. 
 

If dynamic, it indicates that dynamic storage (i.e., pointers) should 
be used everywhere within the generated types where use could 
result in lower memory consumption.  These places include the 
array element for sized SEQUENCE OF/SET OF types and 
optional elements within SEQUENCE or SET constructs. 
 
If static (the default), it indicates static type should be used in 
these places.  In general, static types are easier to work with. 
 
If list, a linked-list type will be used for SEQUENCE OF/SET OF 
constructs instead of an array type. 
 
 

 
Module Level 
 
These attributes can be applied at the module level by including them within a <module> section: 
 
Name Values Description 
<name> 
</name> 

module name This attribute identifies the module to which this section applies.  
It is required. 
 

<include 
types=�names� 
values=�names�/> 
 

ASN.1 type or values 
names are specified as 
an attribute list 

This item allows a list of ASN.1 types and/or values to be 
included in the generated code.  By default, the compiler 
generates code for all types and values within a specification.  
This allows the user to reduce the size of the generated code base 
by selecting only a subset of the types/values in a specification for 
compilation. 
 



ASN1C V5.3  11 

Note that if a type or value is included that has dependent types or 
values (for example, the element types in a SEQUENCE, SET, or 
CHOICE), all of the dependent types will be automatically 
included as well. 
 

<include 
importsFrom=�name� 
/> 
 

ASN.1 module name(s) 
specified as an attribute 
list. 

This form of the include directive tells the compiler to only 
include types and/or values in the generated code that are 
imported by the given module(s). 

<exclude 
types=�names� 
values=�names�/> 
 

ASN.1 type or values 
names are specified as 
an attribute list 

This item allows a list of ASN.1 types and/or values to be 
excluded in the generated code.  By default, the compiler 
generates code for all types and values within a specification.  
This is generally not as useful as in include directive because most 
types in a specification are referenced by other types.  If an 
attempt is made to exclude a type or value referenced by another 
item, the directive will be ignored. 
 

<storage> 
</storage> 

dynamic, static, or list 
keyword. 
 

The definition is the same as for the global case except that the 
specified storage type will only be applied to generated C and 
C++ types from the given module. 
 

<sourceFile> 
</sourceFile> 

source file name Indicates the given module is contained within the given ASN.1 
source file.  This is used on IMPORTs to instruct the compiler 
where to look for imported definitions.  This replaces the 
module.txt file used in previous versions of the compiler to 
accomplish this function. 
 

<typePrefix> 
</typePrefix> 

prefix text This is used to specify a prefix that will be applied to all generated 
C and C++ typedef names (note: for C++, the prefix is applied 
after the standard �ASN1T_� prefix).  This can be used to prevent 
name clashes if multiple modules are involved in a compilation 
and they all contain common names. 
 

<enumPrefix> 
</enumPrefix> 
 

prefix text This is used to specify a prefix that will be applied to all generated 
enumerated identifiers within a module.  This can be used to 
prevent name clashes if multiple modules are involved in a 
compilation.  (note: this attribute is normally not needed for C++ 
enumerated identifiers because they are already wrapped in a 
structure to allows the type name to be used as an additional 
identifier). 
 

<valuePrefix> 
</valuePrefix> 
 

prefix text This is used to specify a prefix that will be applied to all generated 
value constants within a module.  This can be used to prevent 
name clashes if multiple modules are involved that use a common 
name for two or more different value declarations. 
 

<noPDU/> n/a Indicates that this module contains no PDU definitions.  This is 
normally true in modules that are imported to get common type 
definitions (for example, InformationFramework).  This will 
prevent the C++ version of the compiler from generating any 
control class definitions for the types in the module. 
 

 
 
Production Level 
 
These attributes can be applied at the production level by including them within a <production> section: 
 



ASN1C V5.3  12 

Name Values Description 
<name> 
</name> 

module name This attribute identifies the module to which this section applies.  
It is required. 
 

<storage> 
</storage> 

dynamic, static, or list 
keyword. 
 

The definition is the same as for the global case except that the 
specified storage type will only be applied to the generated C or 
C++ type for the given production. 
 

<typePrefix> 
</typePrefix> 

prefix text This is used to specify a prefix that will be applied to all generated 
C and C++ typedef names (note: for C++, the prefix is applied 
after the standard �ASN1T_� prefix).  This can be used to prevent 
name clashes if multiple modules are involved in a compilation 
and they all contain common names. 
 

<enumPrefix> 
</enumPrefix> 
 

prefix text This is used to specify a prefix that will be applied to all generated 
enumerated identifiers within a module.  This can be used to 
prevent name clashes if multiple modules are involved in a 
compilation.  (note: this attribute is normally not needed for C++ 
enumerated identifiers because they are already wrapped in a 
structure to allows the type name to be used as an additional 
identifier). 
 

<isBigInteger/> n/a This is a flag variable (an �empty element� in XML terminology) 
that specifies that this production will be used to store an integer 
larger than the C or C++ int type on the given system (normally 
32 bits).  A C string type (char*) will be used to hold a textual 
representation of the value. 
 
This qualifier can be applied to either an integer or constructed 
type.  If constructed, all integer elements within the constructed 
type are flagged as big integers. 
 

<isPDU/> n/a This is a flag variable that specifies that this production represents 
a Protocol Data Unit (PDU).  This is defined as a production that 
will be encoded or decoded from within the application code.  
This attribute only makes a difference in the generation of C++ 
classes.  Control classes that are only used in the application code 
are only generated for types with this attribute set. 
 

 
 



ASN1C V5.3  13 

 
Compiler Error Reporting 
 
Errors that can occur when generating source code from an ASN.1 source specification take two forms: 
syntax errors and semantics errors. 
 
Syntax errors  are errors in the ASN.1 source specification itself.  These occur when the rules specified in 
the ASN.1 grammar are not followed.  ASN1CPP will flag these types of errors with the error message 
�Syntax Error� and abort compilation on the source file.  The offending line number will be provided.  The 
user can re-run the compilation with the �-l� flag specified to see the lines listed as they are parsed.  This 
can be quite helpful in tracking down a syntax error. 
 
The most common types of syntax errors are as follows: 
 
• Invalid case on identifiers: module name must begin with an uppercase letter, productions (types) must 

begin with an uppercase letter, and element names within constructors (SEQUENCE, SET, CHOICE) 
must begin with lowercase letters. 
 

• Elements within constructors not properly delimited with commas: either a comma is omitted at the 
end of an element declaration, or an extra comma is added at the end of an element declaration before 
the closing brace. 
 

• Invalid special characters: only letters, numbers, and the hyphen (-) character are allowed.  C 
programmers tend to like to use the underscore character (_) in identifiers.  This is not allowed in 
ASN.1.  Conversely, C does not allow hyphens in identifiers.  To get around this problem, ASN1CPP 
converts all hyphens in an ASN.1 specification to underscore characters in the generated code. 

 
Semantics errors occur on the compiler back-end as the code is being generated.  In this case, parsing was 
successful, but the compiler does not know how to generate the code.  These errors are flagged by 
embedding error messages directly in the generated code.  The error messages always begin with an 
identifier with the prefix �%ASN-�, so a search can be done for this string in order to find the locations of 
the errors.  A single error message is output to stderr after compilation on the unit is complete to indicate 
error conditions exist. 
 
 





ASN1C V5.3  15 

Generated C/C++ Source Code 
 
Header (.h) File 
 
The generated C or C++ include file contains a section for each ASN.1 production defined in the ASN.1 
source file.  Different items will be generated depending on whether the selected output code is C or C++.  
In general, C++ will add some additional items (such as a control class definition) onto what is generated 
for C.   
 
The following items are generated for each ASN.1 production:   
 
• Tag value constant 
• Choice tag constants (CHOICE type only) 
• Named bit index and mask constants (BIT STRING type only) 
• Enumerated type option values (ENUMERATED or INTEGER type only) 
• C type definition 
• Encode function prototype 
• Decode function prototype 
• C++ class definition which �wraps� an instance of the production type variable and associated 

encode/decode functions.  In some cases, the compiler may generate additional methods specific to a 
particular production type. (C++ only) 

 
A sample section from a C header file is as follows: 
 
/**************************************************************/ 
/*                                                            */ 
/*  EmployeeNumber                                            */ 
/*                                                            */ 
/**************************************************************/ 
 
#define TV_EmployeeNumber TM_APPL|TM_PRIM|2 
 
typedef ASN1INT  EmployeeNumber; 
 
int asn1E_EmployeeNumber (ASN1CTXT* ctxt_p, 
   ASN1T_EmployeeNumber *object_p, ASN1TagType tagging); 
 
int asn1D_EmployeeNumber (ASN1CTXT* ctxt_p, 
   ASN1T_EmployeeNumber *object_p, ASN1TagType tagging, int length); 
 
 
This corresponds to the following ASN.1 production specification: 
 
EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER 
 
 
In this definition, TV_EmployeeNumber is the tag constant.  Doing a logical OR on the class, form, and 
identifier fields forms this constant.  This constant can be used in a comparison operation with a tag parsed 
from a message.  
 
The �typdef ASN1INT EmployeeNumber� declares EmployeeNumber to be of an integer type (note: 
ASN1INT and other primitive type definitions can be found in the asn1type.h header file). 
  
asn1E_EmployeeNumber and asn1D_EmployeeNumber are function prototypes for the encode and decode 
functions respectively. These are BER function prototypes.  If the �per switch is used, PER function 
prototypes are generated.  The PER prototypes begin with the prefix �asn1PE_� and �asn1PD_� for encoder 
and decoder respectively. 
 



ASN1C V5.3  16 

A sample section from a C++ header file for the same production is as follows: 
 
 
/**************************************************************/ 
/*                                                            */ 
/*  EmployeeNumber                                            */ 
/*                                                            */ 
/**************************************************************/ 
 
#define TV_EmployeeNumber TM_APPL|TM_PRIM|2 
 
typedef ASN1INT  ASN1T_EmployeeNumber; 
 
class ASN1C_EmployeeNumber : public ASN1CType { 
public: 
   ASN1T_EmployeeNumber& msgData; 
   ASN1C_EmployeeNumber (ASN1MessageBuffer& msgBuf,  
                         ASN1T_EmployeeNumber& data); 
   int Encode (); 
   int Decode (); 
} ; 
 
int asn1E_EmployeeNumber (ASN1CTXT* ctxt_p, 
   ASN1T_EmployeeNumber *object_p, ASN1TagType tagging); 
 
int asn1D_EmployeeNumber (ASN1CTXT* ctxt_p, 
   ASN1T_EmployeeNumber *object_p, ASN1TagType tagging, int length); 
 
 
Note the two main differences between this and the C version: 
 
1. The use of the �ASN1T_� prefix on the type definition.  The C++ version uses the �ASN1T_� prefix for 

the typedef and the �ASN1C_� prefix for the control class definition. 
 

2. The inclusion of the �ASN1C_EmployeeNumber� control class. 
 
ASN1C_EmployeeNumber is the control class declaration.  The purpose of the control class is to provide a 
linkage between the message buffer object and the ASN.1 typed object containing the message data.  The 
class provides methods such as Encocde and Decode for encoding and decoding the contents to the linked 
objects.  It also provides other utility methods to make populating the typed variable object easier.   
 
ASN1C always adds an ASN1C_ prefix to the production name to form the class name.  Most generated 
classes are derived from the standard ASN1CType base class defined in asn1Message.h.  The following 
ASN.1 types cause code to be generated from different base classes: 
 
• BIT STRING � The generated control class is derived from the ASN1CBitStr class 

 
• SEQUENCE OF or SET OF with linked list storage � The generated control class is derived from the 

ASN1CSeqOfList base class. 
 
These intermediate classes are also derived from the ASN1CType base class.  Their purpose is the addition 
of functionality specific to the given ASN.1 type.  For example, the ASN1CBitStr control class provides 
methods for setting, clearing and testing bits in the referenced bit string variable. 
 
In the generated control class, a public msgData variable reference of the generated type is declared.  The 
constructor takes two arguments � an Asn1MessageBuffer object reference and a reference to a variable of 
the data type to be encoded or decoded.  The message buffer object is a work buffer object for encoding or 
decoding.  The data type reference is a reference to the �ASN1T_� variable that was generated for the data 
type.   
 



ASN1C V5.3  17 

Encode and Decode methods are declared that wrap the respective compiler generated C encode and 
decode functions.  If the �print function command line argument was used, a Print method is also generated 
to wrap the corresponding C print function. 
 
The equivalent C and C++ type definitions for each of the various ASN.1 types follow. 
 
BOOLEAN 
 
The ASN.1 BOOLEAN type is converted into a C type named "ASN1BOOL". In the global include file 
"asn1type.h", ASN1BOOL is defined to be an "unsigned character". 
 
    ASN.1 production:  <name> ::= BOOLEAN 
 
    Generated C code:  typedef ASN1BOOL <name>; 
 
          Generated C++ code: typedef ASN1BOOL ASN1T_<name>; 
 
For example, if �B ::= [PRIVATE 10] BOOLEAN� was defined as an ASN.1 production, the 
generated C type definition would be �typedef ASN1BOOL B�.  Note that the tag information is not 
represented in the type definition, this is handled within the generated encode/decode functions. 
 
Note that the only difference between the C and C++ mapping is the addition of the �ASN1T_� prefix on 
the C++ type. 
 
 
INTEGER 
 
The ASN.1 INTEGER type is converted into a C type named either "ASN1INT" or �ASN1UINT�. In the 
global include file "asn1type.h", ASN1INT is defined to be an "int�, ASN1UINT is defined to be an 
�unsigned int�.  
 
    ASN.1 production:  <name> ::= INTEGER 
 
    Generated C code:  typedef ASN1INT <name>; 
 
          Generated C++ code: typedef ASN1INT ASN1T_<name>; 
 
 
The ASN1INT type represents a signed integer number, ASN1UINT represents an unsigned integer 
number.  ASN1UINT is used if a value range constraint on a production specification exceeds the 
maximum value that can be stored in a signed integer.  An example of this would be the Counter 
production in the SNMP SMI specification: 
 

Counter ::= [APPLICATION 1] IMPLICIT INTEGER (0..4294967295) 
 

This would cause the following typedef to be generated: 
 
 typedef ASN1UINT Counter; 
 
 
Large Integer Support 
 
In C and C++, the maximum size for an integer type is normally 32 bits (or 64 bits on some newer, 64-bit 
machines).  ASN.1 has no such limitation on integer sizes and some applications (security key values for 
example) demand larger sizes.  In order to accommodate these types of applications, the ASN1C compiler 
allows an integer to be declared a �big integer� via a configuration file variable (the <isBigInteger/> setting 
is used to do this � see the section describing the configuration file for full details).  When the compiler 
detects this setting, it will declare the integer to be a character string variable instead of a C int or unsigned 



ASN1C V5.3  18 

int type.  The character string would then be populated with a character string representation of the value to 
be encoded.  Only hexadecimal string representations of the integer value are supported in this release. 
 
For example, the following INTEGER type might be declared in the ASN.1 source file: 
 
 SecurityKeyType ::= [APPLICATION 2] INTEGER 
 
Then, in a configuration file used with the ASN.1 definition above, the following declaration can be made: 
 
 <production> 
    <name>SecurityKeyType</name> 
    <isBigInteger/> 
 </production> 
 
This will cause the compiler to generate the following type declaration: 
 
 typedef ASN1ConstCharPtr SecurityKeyType 
 
The ASN1ConstCharPtr type is declared to be a �char*� type for C and a �const char*� type for C++ in the 
asn1type.h header file.  The SecurityKeyType variable can now be populated with a hexadecimal string for 
encoding such as the following: 
 
 SecurityKeyType secKey = �0xfd09874da875cc90240087cd12fd�; 
 
Note that in this definition the �0x� prefix is required to identify the string as containing hexadecimal 
characters. 
 
On the decode side, the decoder will populate the variable with the same type of character string after 
decoding. 
 
 
BIT STRING 
 
The ASN.1 BIT STRING type is converted into a C or C++ structured type containing an integer to hold 
the number of bits and an array of unsigned characters ("OCTETs") to hold the bit string contents.  The 
number of bits integer specifies the actual number of bits used in the bit string and takes into account any 
unused bits in the last byte. 
 
The type definition of the contents field depends on how the bit string is specified in the ASN.1 definition.  
If a size constraint is used, a static array is generated; otherwise, a pointer variable is generated to hold a 
dynamically allocated string.  The decoder will automatically allocate memory to hold a parsed string based 
on the received length of the string. 
               
In the static case, the length of the character array is determined by adjusting the given size value (which 
represents the number of bits) into the number of bytes required to hold the bits. 
 
Dynamic BIT STRING 
 
    ASN.1 production:  <name> ::= BIT STRING 
 
          Generated C code:  typedef ASN1DynBitStr <name>; 
 
          Generated C++ code: typedef ASN1TDynBitStr ASN1T_<name>; 
 
In this case, different base types are used for C and C++.  The difference between the two is the C++ 
version includes constructors that make setting the value a bit easier. 
 
The ASN1DynBitStr type (i.e., the type used in the C mapping) is defined in the asn1type.h header file as 
follows: 



ASN1C V5.3  19 

 
typedef struct ASN1DynBitStr { 
   ASN1UINT numbits; 
   ASN1OCTET* data; 
} ASN1TDynBitStr; 

 
 
The ASN1TDynBitStr type is defined in the asn1CppTypes.h header file as follows: 
 

typedef struct ASN1TDynBitStr { 
   ASN1UINT numbits; 
   ASN1OCTET* data; 
   // ctors 
   ASN1TDynBitStr () : numbits(0) {} 
   ASN1TDynBitStr (ASN1UINT _numbits, ASN1OCTET* _data); 
} ASN1TDynBitStr; 

 
 
Static (sized) BIT STRING 
 
    ASN.1 production:  <name> ::= BIT STRING (SIZE (<len>)) 
 
    Generated C code:  typedef struct { 

   int        numbits; 
   ASN1OCTET  data[<adjusted_len>*]; 
} <name>; 

 
          Generated C++ code: typedef struct { 

   int        numbits; 
   ASN1OCTET  data[<adjusted_len>*]; 
   // ctors 
   ASN1T_<name> (); 
   ASN1T_<name> (ASN1UINT _numbits,  
                 ASN1OCTET* _data); 
} ASN1T_<name>; 

 
      * <adjusted_len> = ((<len> - 1)/8) + 1 
 
For example, the following ASN.1 production: 
 
 BS ::= [PRIVATE 220] BIT STRING (SIZE (18)) 
 
Would translate to the following C typedef: 
 

typedef struct ASN1T_BS { 
   ASN1UINT numbits; 
   ASN1OCTET data[3]; 
} ASN1T_BS; 

 
In this case, three octets would be required to hold the 18 bits: eight in the first two bytes, and two in the 
third. 
 
Note that for C++,  the compiler generates special constructors and assignment operators to make 
populating a structure easier.  In this case, two constructors were generated: a default constructor and one 
that takes numbits and data as arguments. 
 
Named Bits 
 
In the ASN.1 standard, it is possible to define an enumerated bit string that specifies named constants for 
different bit positions.  ASN1C provides support for this type of construct by generating symbolic constants 



ASN1C V5.3  20 

that can be used to set, clear, or test these named bits.  These symbolic constants are in the form of a byte 
index and a bit mask.  In addition, generated C++ code contains an enumerated constant added to the 
control class with an entry for each of the bit numbers.  These entries can be used in calls to the methods of 
the ASN1CBitStr class to set, clear, and test bits. 
 
Bits are defined in order from left to right in a bit string.  The starting bit number is zero.  Therefore, a bit 
string containing one set bit would result in a single octet value of 0x80 (left most bit set).  If this bit were 
named, the compiler would generate a byte index constant of 0, and a bit mask constant of 0x80.  The byte 
index would be used to access the specific octet in the octet array.  The bit mask would then be used to 
access the bit using a logical bit operator. 
 
For example, the following ASN.1 production: 
 
 NamedBS ::= BIT STRING { bitOne(1), bitTen(10) } 
 
Would translate to: 
 

/* Named bit constants */ 
  

#define BitMbitOne      0x40 
#define BytXbitOne      0 
#define BitMbitTen      0x20 
#define BytXbitTen      1 

  
/* Type definitions */ 

  
typedef struct ASN1T_NamedBS { 
   ASN1UINT numbits; 
   ASN1OCTET data[2]; 
} NamedBS; 
 

The named bit constants would be used to access the data array within the ASN1T_NamedBS type.  The 
named bit �bitOne� could be set with the following code: 
 
 NamedBS bs; 
 memset (&bs, 0, sizeof(bs)); 
 bs.data[BytXbitOne] |= BitMbitOne; 
 
The statement to clear the bit would be as follows: 
 
 bs.data[BytXbitOne] &= ~BitMbitOne; 
 
Finally, the bit could be tested using the following statement: 
 
 bs.data[BytXbitOne] & BitMbitOne 
 
Note that the compiler generated a fixed length data array for this specification.  It did this because the 
maximum size of the string is known due to the named bits � it must only be large enough to hold the 
maximum valued named bit constant. 
 
ASN1CBitStr Control Class 
 
When C++ code generation is specified, a control class is generated for operating on the target bit string.  
This class is derived from the ASN1CBitStr class.  This class contains methods for operating on bits within 
the string. 
 
Objects of this class can also be declared inline to make operating on bits within other ASN.1 constructs 
easier.  For example, in a SEQUENCE containing a bit string element the generated type will contain a 
public member variable containing the �ASN1T� type that holds the message data.  If one wanted to operate 
on the bit string contained within that element, they could do so by using the ASN1CBitStr class inline as 
follows: 



ASN1C V5.3  21 

 
 ASN1CBitStr bs (<seqVar>.<element>); 
 bs.set (0); 
 
In this example, <seqVar> would represent a generated SEQUENCE variable type and <element> would 
represent a bit string element within this type. 
 
See the ASN1CBitStr in the C++ Run-Time Classes section for details on all of the methods available in 
this class. 
 
 
OCTET STRING 
 
The ASN.1 OCTET STRING type is converted into a C structured type containing an integer to hold the 
number of octets and an array of unsigned characters ("OCTETs") to hold the octet string contents.  The 
number of octets integer specifies the actual number of octets in the contents field. 
 
The allocation for the contents field depends on how the octet string is specified in the ASN.1 definition.  If 
a size constraint is used, a static array of that size is generated; otherwise, a pointer variable is generated to 
hold a dynamically allocated string.  The decoder will automatically allocate memory to hold a parsed 
string based on the received length of the string. 
 
For C++, constructors and assignment operators are generated to make assigning variables to the structures 
easier.  In addition to the default constructor, a constructor is provided for string or binary data.  An 
assignment operator is generated for direct assignment of a null-terminated string to the structure (note: this 
assignment operator copies the null terminator at the end of the string to the data).  
 
Dynamic OCTET STRING 
 
    ASN.1 production:  <name> ::= OCTET STRING 
 
          Generated C code:  typedef ASN1DynOctStr <name>; 
 
    Generated C++ code: typedef ASN1TDynOctStr ASN1T_<name>; 
 
In this case, different base types are used for C and C++.  The difference between the two is the C++ 
version includes constructors and assignment operators that make setting the value a bit easier. 
 
The ASN1DynOctStr type (i.e., the type used in the C mapping) is defined in the asn1type.h header file as 
follows: 
 

typedef struct ASN1DynOctStr { 
   ASN1UINT numbits; 
   ASN1OCTET* data; 
} ASN1TDynBitStr; 

 
 
The ASN1TDynOctStr type is defined in the asn1CppTypes.h header file and has the following definition: 
 

typedef struct ASN1TDynOctStr { 
   ASN1UINT numocts; 
   ASN1OCTET* data; 
   // ctors 
   ASN1TDynOctStr (); 
   ASN1TDynOctStr (ASN1UINT _numocts, ASN1OCTET* _data); 
   ASN1TDynOctStr (char* cstring); 
   // assignment operators 
   ASN1TDynOctStr& operator= (char* cstring)  
} ASN1TDynOctStr; 



ASN1C V5.3  22 

 
Static (sized) OCTET STRING 
 
    ASN.1 production:  <name> ::= OCTET STRING (SIZE (<len>)) 
 
          Generated C code:  typedef struct { 

   ASN1UINT   numocts; 
   ASN1OCTET  data[<len>]; 
} <name>; 

 
    Generated C++ code: typedef struct { 

   ASN1UINT   numocts; 
   ASN1OCTET  data[<len>]; 
 
   // ctors 
   ASN1T_<name> (); 
   ASN1T_<name> (ASN1UINT _numocts,  
                 ASN1OCTET* _data); 
   ASN1T_<name> (char* cstring); 
 
   // assignment operators 
   ASN1T_<name>& operator= (char* cstring);  
 
} ASN1T_<name>; 

 
     
ENUMERATED 
 
The ASN.1 ENUMERATED type is converted into different types depending on whether C or C++ code is 
being generated.  The C mapping is either a C enum or integer type depending on whether or not the ASN.1 
type is extensible or not.  The C++ mapping adds a struct wrapper around this type to provide a namespace 
to aid in making the enumerated values unique across all modules. 
 
C Mapping 
 
          ASN.1 production:  <name> ::= ENUMERATED (<id1>(<val1>),  

     <id2>(<val2>), ...) 
 
    Generated code:  typedef enum { 

   id1 = val1, 
   id2 = val2, 
   ... 
} <name> 

 
The compiler will automatically generate a new identifier value if it detects a duplicate within the source 
specification.  The format of this generated identifier is �id_n� where id is the original identifier and n is a 
sequential number.  The compiler will output an informational message when this is done. 
 
A configuration setting is also available to further disambiguate duplicate enumerated item names.  This is 
the �enum prefix� setting that is available at both the module and production levels.  For example, the 
following would cause the prefix �h225� to be added to all enumerated identifiers within the H225 module: 
 
 <module> 
    <name>H225</name> 
    <enumPrefix>h225</enumPrefix> 
 </module> 
  
C++ Mapping 
 



ASN1C V5.3  23 

    ASN.1 production:  <name> ::= ENUMERATED (<id1>(<val1>),  
     <id2>(<val2>), ...) 

 
    Generated code:  struct <name> { 

   enum Root { 
      id1 = val1, 
      id2 = val2, 
      ... 
   } 
   [ enum Ext { 
      extid1 = extval1, 
      � 
   } ] 
} ; 
 
typedef <name>::Root ASN1T_<name> 

 
The struct type provides a namespace for the enumerated elements.   This allows the same enumerated 
constant names to be used in different productions within the ASN.1 specification.   An enumerated item is 
specified in the code using the <name>::<id> form. 
 
Every generated definition contains a �Root� enumerated specification and, optionally, an �Ext� 
specification.  The �Root� specification contains the root elements of the type (or all of the elements if it is 
not an extended type), and the �Ext� specification contains the extension enumerated items. 
 
The form of the typedef following the struct specification depends on whether or not the enumerated type 
contains an extension marker or not.  If a marker is present, it means the type can contain values outside the 
root enumeration.  In this case, an ASN1UINT is used in the typedef; otherwise, the Root section of the 
enumeration is used to define the type. 
 
 
NULL 
 
The ASN.1 NULL type does not generate an associated C or C++ type definition. 
 
 
OBJECT IDENTIFIER 
 
The ASN.1 OBJECT IDENTIFIER type is converted into a C or C++ structured type to hold the 
subidentifier values that make up the object identifier. 
 
    ASN.1 production:  <name> ::= OBJECT IDENTIFIER 
 
    Generated C code:  typedef ASN1OBJID <name>; 
 
          Generated C++ code: typedef ASN1TObjId ASN1T_<name>; 
 
In this case, different base types are used for C and C++.  The difference between the two is the C++ 
version includes constructors and assignment operators that make setting the value a bit easier. 
 
The ASN1OBJID type (i.e., the type used in the C mapping) is defined in asn1type.h to be the following: 
 

typedef struct { 
   ASN1UINT numids;    /* number of subidentifiers */ 
   ASN1UINT subid[ASN_K_MAXSUBIDS]; /* subidentifier values */ 
} ASN1OBJID; 

 



ASN1C V5.3  24 

The constant "ASN_K_MAXSUBIDS" specifies the maximum number of sub-identifiers that can be 
assigned to a value of the type.  This constant is set to 128 as per the ASN.1 standard.  The value of this 
constant can be changed to a lower number for applications with restricted memory requirements. 
 
The ASN1TObjId type used in the C++ mapping is defined in Asn1CppTypes.h as follows: 
 
struct EXTERN ASN1TObjId { 
   ASN1UINT numids; 
   ASN1UINT subid[ASN_K_MAXSUBIDS]; 
 
   ASN1TObjId () : numids(0) {} 
   ASN1TObjId (ASN1OCTET _numids, const ASN1USINT* _subids); 
   ASN1TObjId (const ASN1OBJID& oid); 
   ASN1TObjId (const ASN1TObjId& oid); 
   void operator= (const ASN1OBJID& rhs); 
   void operator= (const ASN1TObjId& rhs); 
} ; 
 
The definition is the same as the C type with the addition of the constructors and assignment operators.  
Note that a constructor and assignment operator are overloaded to use the C ASN1OBJID type.  That is 
because value assignments are generated using the ASN1OBJID type so these methods allow direct 
assignment of these generated values to an object of this type. 
 
 
REAL 
 
The ASN.1 REAL type is mapped to the C type "ASN1REAL".  In the global include file "asn1type.h", 
ASN1REAL is defined to be a "double�.  
 
    ASN.1 production:  <name> ::= REAL 
 
    Generated C code:  typedef ASN1REAL <name>; 
 
          Generated C++ code: typedef ASN1REAL ASN1T_<name>; 
 
      
SEQUENCE 
 
The mapping for the ASN.1 SEQUENCE type for C and C++ is identical with the exception of: 
 
1. The C++ type having the �ASN1T_� prefix, and 

 
2. The C++ type may have a constructor to initialize an optional bit mask (see the subsection on optional 

elements). 
 
This section shows the C mapping.  The C++ mapping is the same with the addition of the �ASN1T_� 
prefix on each of the type names. 
 
An ASN.1 SEQUENCE is a constructed type consisting of a series of element definitions.  These elements 
can be of any ASN.1 type including other constructed types.  For example, it is possible to nest a 
SEQUENCE definition within another SEQUENCE definition as follows: 
 
 A ::= SEQUENCE { 
     x SEQUENCE { 
        a1 INTEGER, 
        a2 BOOLEAN 
     }, 
     y OCTET STRING SIZE (10) 
  } 
 



ASN1C V5.3  25 

 
In this example, the production has two elements � x and y.  The nested SEQUENCE x has two additional 
elements � a1 and a2. 
 
The ASN1C compiler first recursively pulls all of the embedded constructed elements out of the 
SEQUENCE and forms new temporary types.  The name of the temporary types are of the form 
<name>_<element-name1>_<element-name2>_ � <element-nameN>.  For example, in the definition 
above, two temporary types would be generated: A_x and A_y (A_y is generated because a static OCTET 
STRING maps to a C++ struct type). 
 
The general form is as follows: 
 
    ASN.1 production:  <name> ::= SEQUENCE { 

   <element1-name> <element1-type>, 
   <element2-name> <element2-type>, 
   ... 
}  

 
    Generated C code:  typedef struct { 

   <type1> <element1-name>; 
   <type2> <element2-name>; 
   ... 
} <name>; 

 
  - or - 
 

typedef struct { 
   ... 
} <tempName1> 
 
typedef struct { 
   ... 
} <tempName2> 
 
typedef struct { 
   <tempName1> <element1-name>; 
   <tempName2> <element2-name>; 
   ... 
} <name>; 

 
 
The <type1> and <type2> placeholders represent the equivalent C types for the ASN.1 types <element1-
type> and <element2-type> respectively.  This form of the structure will be generated if the internal types 
are primitive.  <tempName1> and <tempName2> are formed using the algorithm described above for 
pulling structured types out of the definition.  This form is used for constructed elements and elements that 
map to structured C types. 
 
The example above would result in the following generated C typedefs: 
 

typedef struct _A_x { 
   ASN1INT   a1; 
   ASN1BOOL  a2; 
} A_x; 

 
typedef struct A_y { 
   ASN1UINT numocts; 
   ASN1OCTET data[10]; 
} A_y; 

 



ASN1C V5.3  26 

typedef struct _A { 
   A_x  x; 
   A_y  y; 
} A; 

 
In this case, elements x and y map to structured C types, so temporary typedefs are generated. 
 
In the case of nesting levels greater than two, all of the intermediate element names are used to form the 
final name.  For example, consider the following type definition that contains three nesting levels: 
 
 X ::= SEQUENCE { 
    a  SEQUENCE { 
       aa  SEQUENCE { x INTEGER, y BOOLEAN }, 
       bb  INTEGER 
         } 
      } 
 
In this case, the generation of temporary types results in the following equivalent type definitions: 
 
 X-a-aa ::= SEQUENCE { x INTEGER, y BOOLEAN } 
 
 X-a ::= SEQUENCE { aa X-a-aa, bb INTEGER } 
 
 X ::= SEQUENCE { X-a a } 
 
Note that the name for the aa element type is X-a-aa.  It contains both the name for a (at level 1) and aa (at 
level 2).  This is a change from v5.1x and lower where only that production name and last element name 
would be used (i.e., X-aa).  The change was made to ensure uniqueness of the generated names when 
multiple nesting levels are used. 
 
Note that although the compiler can handle embedded constructed types within productions, it is generally 
not considered good style to define productions this way.  It is much better to manually define the 
constructed types for use in the final production definition.  For example, the production defined at the start 
of this section can be rewritten as the following set of productions: 
 
 X ::= SEQUENCE { 
    a1 INTEGER, 
    a2 BOOLEAN 
 } 
 
 Y ::= OCTET STRING 
  

A ::= SEQUENCE { 
    X x, 
    Y y 
 }  
 
This makes the generated code easier to understand for the end user. 
 
 
Unnamed Elements 
 
Note: as of X.680, unnamed elements are not allowed � elements must be named.  ASN1C still provides 
backward compatibility support for this syntax however.   
 
In an ASN.1 SEQUENCE definition, the <element-name> tokens at the beginning of element declarations 
are optional.  It is possible to include only a type name without a field identifier to define an element.  This 
is normally done with defined type elements, but can be done with built-in types as well.  An example of a 
SEQUENCE with unnamed elements would be as follows: 
 
 AnInt ::= [PRIVATE 1] INTEGER 



ASN1C V5.3  27 

 
 Aseq ::= [PRIVATE 2] SEQUENCE { 
    x  INTEGER, 
   AnInt 
 } 
 
In this case, the first element (x) is named and the second element is unnamed. 
 
ASN1C handles this by generating an element name using the type name with the first character set to 
lower case.  For built-in types, a constant element name is used for each type (for example, aInt is used for 
INTEGER).  There is one caveat, however.  ASN1C cannot handle multiple unnamed elements in a 
SEQUENCE or SET with the same type names.  Element names must be used in this case to distinguish the 
elements. 
 
So, for the example above, the generated code would be as follows: 
 
 typedef ASN1INT AnInt; 
 
 typedef struct Aseq { 
    ASN1INT  x; 
    AnInt  anInt; 
 } Aseq; 
 
 
OPTIONAL keyword 
 
 
Elements within a sequence can be declared to be optional using the OPTIONAL keyword.  This indicates 
that the element is not required in the encoded message.  An additional construct is added to the generated 
code to indicate whether an optional element is present in the message or not.  This construct is a bit 
structure placed at the beginning of the generated sequence structure.  This structure always has variable 
name �m� and contains single-bit elements of the form �<element-name>Present� as follows: 
 
 struct { 
    unsigned <element-name1>Present : 1, 
    unsigned <element-name2>Present : 1, 
    ... 
 } m; 
 
In this case, the elements included in this construct correspond to only those elements marked as 
OPTIONAL within the production.  If a production contains no optional elements, the entire construct is 
omitted. 
 
For example, we will change the production in the previous example to make both elements optional: 
 
 Aseq ::= [PRIVATE 2] SEQUENCE { 
    x  INTEGER OPTIONAL, 
   AnInt OPTIONAL 
 } 
 
In this case, the following C typedef is generated: 
 
 typedef struct Aseq { 
    struct { 
       unsigned xPresent : 1, 
       unsigned anIntPresent : 1 
    } m; 
    ASN1INT  x; 
    AnInt  anInt; 



ASN1C V5.3  28 

 } Aseq; 
 
When this structure is populated for encoding, the developer must set the xPresent and anIntPresent flags 
accordingly to indicate whether the elements are to be included in the encoded message or not.  Conversely, 
when a message is decoded into this structure, the developer must test the flags to determine if the element 
was provided in the message or not. 
 
The C++ version of the compiler will generate a constructor for the structured type for a SEQUENCE if 
OPTIONAL elements are present.  This constructor will set all optional bits to zero when a variable of the 
structured type is declared.  The programmer therefore does not have to be worried about clearing bits for 
elements that are not used; only with setting bits for the elements that are to be encoded. 
 
DEFAULT keyword 
 
The DEFAULT keyword allows a default value to be specified for elements within the SEQUENCE.  
ASN1C will parse this specification and treat it as it does an optional element.  Note that the value 
specification is only parsed in simple cases for primitive values, so it up to the programmer to provide the 
value in complex cases.  For BER encoding, a value must be specified be it the default or other value. 
 
For DER or PER, it is a requirement that no value be present in the encoding for the default value.  For 
integer and boolean default values, the compiler automatically generates code to handle this requirement 
based on the value in the structure.  For other values, an optional present flag bit is generated.  The 
programmer must set this bit to false on the encode side to specify default value selected.  If this is done, a 
value is not encoded into the message.  On the decode side, the developer must test for present bit not set.  
If this is the case, the default value specified in the ASN.1 specification must be used and the value in the 
structure ignored. 
 
Extension Elements 
 
If the SEQUENCE type contains an open extension field (i.e., a � at the end of the specification or a �, 
� in the middle), a special element will be inserted to capture encoded extension elements for inclusion in 
the final encoded message.  This element will be of type ASN1OpenType and have the name extElem1.  
This field will contain the complete encoding of any extension elements that may have been present in a 
message when it is decoded.  On subsequent encode of the type, the extension fields will be copied into the 
new message. 
 
If the SEQUENCE type contains an extension marker and extension elements, then the open extension type 
field will not be added.  Instead, the actual extension elements will be present.  These elements will be 
treated as optional elements whether they were declared that way or not.  The reason is because a version 1 
message could be received that does not contain the elements. 
 
Additional bits will be generated in the bit mask if version brackets are present.  These are groupings of 
extended elements that typically correspond to a particular version of a protocol.  An example would be as 
follows: 
 

TestSequence ::= SEQUENCE { 
   item-code    INTEGER (0..254), 
   item-name    IA5String (SIZE (3..10)) OPTIONAL,  
   ... ! 1, 
   urgency      ENUMERATED { normal, high } DEFAULT normal,  
   [[ alternate-item-code       INTEGER (0..254),  

alternate-item-name       IA5String (SIZE (3..10)) OPTIONAL  
   ]] 
}  

 
In this case, a special bit flag will be added to the mask structure to indicate the presence or absence of the 
entire element block.  This will be of the form �_v#ExtPresent� where # would be replaced by the 
sequential version number.  In the example above, this number would be three (two would be the version 
extension number of the urgency field).  Therefore, the generated bit mask would be as follows: 



ASN1C V5.3  29 

 
struct { 
      unsigned item_namePresent : 1; 
      unsigned urgencyPresent : 1; 
      unsigned _v3ExtPresent : 1; 
      unsigned alternate_item_namePresent : 1; 
   } m; 

 
In this case, the setting of the _v3ExtPresent flag would indicate the presence or absence of the entire 
version block.  Note that it is also possible to have optional items within the block (alternate-item-name). 
 
 
SET 
 
The ASN.1 SET type is converted into a C or C++ structured type that is identical to that for SEQUENCE 
as described in the previous section.  The only difference between SEQUENCE and SET is that elements 
may be transmitted in any order in a SET whereas they must be in the defined order in a SEQUENCE.  The 
only impact this has on ASN1C is in the generated decoder for a SET type.   
 
The decoder must take into account the possibility of out-of-order elements.  This is handled by using a 
loop to parse each element in the message.  Each time an item is parsed, an internal mask bit within the 
decoder is set to indicate the element was received.  The complete set of received elements is then checked 
after the loop is completed to verify all required elements were received. 
 
 
SEQUENCE OF 
 
The ASN.1 SEQUENCE OF type is converted into a C or C++ structured type containing an integer to hold 
the number of occurrences of the referenced data element and an array or pointer to the referenced type to 
hold the actual data values.  An option is also available to use a doubly-linked structure as the generated 
type. 
 
 
The allocation for the contents field depends on how the SEQUENCE OF is specified in the ASN.1 
definition.  If a size constraint is used, a static array of that size is generated; otherwise, a pointer variable is 
generated to hold a dynamically allocated array of values.  The decoder will automatically allocate memory 
to hold parsed SEQUENCE OF data values. 
 
The default behavior of allocating a static array for a sized SEQUENCE OF construct can be modified by 
the use of a configuration item.  The <storage> qualifier with the �dynamic� keyword can be used at the 
global, module, or production level to specify that dynamic memory (i.e., a pointer) is used for the array.  
The syntax of this qualifier is as follows: 
 
 <storage>dynamic</storage> 
 
The �list� keyword can also be used in a similar fashion to specify the use of a doubly-linked structure to 
hold the elements: 
 
 <storage>list</storage> 
 
See the section entitled Compiler Configuration File for further details on setting up a configuration file. 
 
Dynamic SEQUENCE OF Type 
 
    ASN.1 production:  <name> ::= SEQUENCE OF <type> 
 
          Generated C code:  typedef struct { 

   int        n; 
   <type>*    elem; 



ASN1C V5.3  30 

} <name>; 
 
    Generated C++ code: typedef struct { 

   int        n; 
   <type>*    elem; 
} ASN1T_<name>; 

 
Note that parsed values can be accessed from the dynamic data variable just as they would be from a static 
array variable; i.e., an array subscript can be used (ex: elem[0], elem[1]...). 
 
Static (sized) SEQUENCE OF Type 
 
    ASN.1 production:  <name> ::= SEQUENCE SIZE <len> OF <type> 
 
    Generated C code:  typedef struct { 

   int        n; 
   <type>     elem[<len>]; 
} <name>; 

 
          Generated C++ code: typedef struct { 

   int        n; 
   <type>     elem[<len>]; 
} ASN1T_<name>; 

 
 
List-based SEQUENCE OF Type 
 
A doubly-linked list header type (Asn1RTDList) is used for the typedef if the list storage configuration 
setting is used (see above).  This can be used for either a sized or unsized SEQUENCE OF construct.  The 
generated C or C++ code is as follows: 
 
          Generated C code:  typedef Asn1RTDList <name>; 
 
          Generated C++ code: typedef Asn1RTDList ASN1T_<name>; 
 
The type definition of the Asn1RTDList structure can be found in the asn1type.h header file.  The common 
run-time utility functions rtDListInit and rtDListAppend are available for initializing and adding elements 
to the list.  See the Common Run-time Functions section for a full description of these functions. 
 
In addition to the Asn1RTDList C structure and C functions, a C++ class if provided for linked list support.  
This is the ASN1CSeqOfList class.  This class provides methods for adding and deleting elements to and 
from lists and an iterator interface for traversing lists.  See the ASN1CSeqOfList section in the C++ Run-
Time Classes area for details on all of the methods available in this class. 
 
 
Generation of Temporary Types for SEQUENCE OF Elements 
 
As with other constructed types, the <type> variable can reference any ASN.1 type, including other ASN.1 
constructed types.  Therefore, it is possible to have a SEQUENCE OF SEQUENCE, SEQUENCE OF 
CHOICE, etc.   
 
When a constructed type or type that maps to a C structured type is referenced, a temporary type is 
generated for use in the final production.  The format of this temporary type name is as follows: 
 
 <prodName>_element 
 
In this definition, <prodName> refers to the name of the production containing the SEQUENCE OF type.   
 



ASN1C V5.3  31 

For example, a simple (and very common) single level nested SEQUENCE OF construct might be as 
follows: 
 
 A ::= SEQUENCE OF SEQUENCE { INTEGER a, BOOLEAN b } 
 
In this case, a temporary type is generated for the element of the SEQUENCE OF construct.  This results in 
the following two equivalent ASN.1 types: 
 
 A-element ::= SEQUENCE { INTEGER a, BOOLEAN b } 
 
 A ::= SEQUENCE OF A-element 
 
These types are then converted into the equivalent C or C++ typedefs using the standard mapping that was 
previously described. 
 
SEQUENCE OF Type Elements in Other Constructed Types 
 
Frequently, a SEQUENCE OF construct is used to define an array of some common type in an element in 
some other constructed type (for example, a SEQUENCE).  An example of this is as follows: 
 
 SomePDU ::= SEQUENCE { 
    addresses SEQUENCE OF AliasAddress,  
    ... 
 } 
 
Normally, this would result in the addresses element being pulled out and used to create a temporary type 
with a name equal to �SomePDU-addresses� as follows: 
 
 SomePDU-addresses ::= SEQUENCE OF AliasAddress 
 
 SomePDU ::= SEQUENCE { 
    addresses SomePDU-addresses, 
    ... 
 } 
 
However, when the SEQUENCE OF element references a simple defined type as above with no additional 
tagging or constraint information, an optimization is done to cut down on the size of the generated code.  
This optimization is to generate a common name for the new temporary type that can be used for other 
similar references.  The form of this common name is as follows: 
 
 _SeqOf<elementProdName> 
 
So instead of this: 
 
 SomePDU-addresses ::= SEQUENCE OF AliasAddress 
 
The following equivalent type would be generated: 
 
 _SeqOfAliasAddress ::= SEQUENCE OF AliasAddress 
 
The advantage is that the new type can now be easily reused if �SEQUENCE OF AliasAddress� is used in 
any other element declarations.  Note the (illegal) use of an underscore in the first position.  This is to 
ensure that no name collisions occur with other ASN.1 productions defined within the specification. 
 
An example of the savings of this optimization can be found in H.225.  The above element reference is 
repeated 25 different times in different places.  The result is the generation of one new temporary type that 
is referenced in 25 different places.  Without this optimization, 25 unique types with the same definition 
would have been generated. 
 
 



ASN1C V5.3  32 

SET OF 
 
The ASN.1 SET OF type is converted into a C or C++ structured type that is identical to that for 
SEQUENCE OF as described in the previous section. 
 
 
CHOICE 
 
The ASN.1 CHOICE type is converted into a C or C++ structured type containing an integer for the choice 
tag value (t) followed by a union (u) of all of the equivalent types that make up the CHOICE elements. 
 
The tag value is simply a sequential number starting at one for each alternative in the CHOICE.  A #define 
constant is generated for each of these values.  The format of this constant is "T_<name>_<element-
name>" where <name> is the name of the ASN.1 production and <element-name> is the name of the 
CHOICE alternative.  If a CHOICE alternative is not given an explicit name, then <element-name> is 
automatically generated by taking the type name and making the first letter lowercase (this is the same as 
was done for the ASN.1 SEQUENCE type with unnamed elements).  If the generated name is not unique, a 
sequential number is appended to make it unique.  
 
The union of choice alternatives is made of the equivalent C or C++ type definition followed by the 
element name for each of the elements.  The rules for element generation are essentially the same as was 
described for SEQUENCE above.  Constructed types or elements that map to C structured types are pulled 
out and temporary types are created.  Unnamed elements names are automatically generated from the type 
name by making the first character of the name lowercase.   
 
One difference between temporary types used in a SEQUENCE and in a CHOICE is that a pointer variable 
will generated for use within the CHOICE union construct.   
 
    ASN.1 production:  <name> ::= CHOICE { 

   <element1-name> <element1-type>, 
   <element2-name> <element2-type>, 
   ... 
} 

 
    Generated C code:  #define T_<name>_<element1-name> 1 

#define T_<name>_<element2-name> 2 
... 

 
typedef struct { 
   int       t; 
   union { 
      <type1> <element1-name>; 
      <type2> <element2-name>; 
      ... 
   } u; 
} <name>; 

 
  - or - 
 
    typedef struct { 
       ... 
    } <tempName1>; 
 
    typedef struct { 
       ... 
    } <tempName2>; 
 

typedef struct { 
   int       t; 
   union { 



ASN1C V5.3  33 

      <tempName1>* <element1-name>; 
      <tempName2>* <element2-name>; 
      ... 
   } u; 
} <name>; 

 
The C++ mapping is the same with the exception that the �ASN1T_� prefix is added to the generated type 
name.  
 
<type1> and <type2> are the equivalent C types representing the ASN.1 types <element1-type> and 
<element2-type> respectively.  <tempName1> and <tempName2> represent the names of temporary types 
that may have been generated as the result of using constructed types within the definition.  
 
Choice alternatives may be unnamed, in which case <element-name> is derived from <element-type> by 
making the first letter lowercase.  One needs to be careful when nesting CHOICE structures at different 
levels within other nested ASN.1 structures (SEQUENCEs, SETs, or other CHOICEs).  A problem arises 
when CHOICE element names at different levels are not unique (this is likely when elements are 
unnamed).  The problem is that generated tag constants are not guaranteed to be unique since only the 
production and end element names are used.  
 
The compiler gets around this problem by checking for duplicates.  If the generated name is not unique, a 
sequential number is appended to make it unique.  The compiler outputs an informational message when it 
does this. 
  
An example of this can be found in the following production: 
 
 C ::= CHOICE { 
    [0] INTEGER, 
    [1] CHOICE { 
       [0] INTEGER, 
  [1] BOOLEAN 
    } 
 } 
 
This will produce the following C code: 
 
 #define T_C_aInt  1 
 #define T_C_aChoice 2 
 #define T_C_aInt_1 1 
 #define T_C_aBool  2 
 
 typedef struct { 
    int t; 
    union { 
       ASN1INT aInt; 
       struct { 
          int t; 
     union { 
        ASN1INT aInt; 
   ASN1BOOL aBool; 
     } u; 
  } aChoice; 
    } C; 
 
Note that an �_1� was appended to the second instance of �T_C_aInt�.  Developers must take care to ensure 
they are using the correct tag constant value when this happens.   
 
Populating Generated Choice Structures 
 



ASN1C V5.3  34 

Populating generated CHOICE structures is more complex then for other generated types due to the use of 
pointers within the union construct.  The recommended way to do it is to declare variables of the embedded 
type to be used on the stack prior to populating the CHOICE structure.  The embedded variable would then 
be populated with the data to be encoded and then the address of this variable would be plugged into the 
CHOICE union pointer field. 
 
Consider the following definitions: 
 
AsciiString  ::= [PRIVATE 28] OCTET STRING 
EBCDICString ::= [PRIVATE 29] OCTET STRING 
String ::= CHOICE { AsciiString, EBCDICString } 
 
This would result in the following type definitions: 
 
typedef ASN1DynOctStr AsciiString; 
typedef ASN1DynOctStr EBCDICString; 
 
typedef struct String { 
   int t; 
   union { 
      /* t = 1 */ 
      AsciiString *asciiString; 
      /* t = 2 */ 
      EBCDICString *eBCDICString; 
   } u; 
} String; 
 
To set the AsciiString choice value, one would first declare an AsciiString variable, populate it, and then 
plug the address into a variable of the String structure as follows: 
 
AsciiString asciiString; 
String      string; 
 
asciiString = �Hello!�; 
string.t = T_String_AsciiString; 
string.u.asciiString = &asciiString; 
 
It is also possible to allocate dynamic memory for the CHOICE union option variable; but one must be 
careful to release this memory when done with the structure. 
 
 
Open Type 
 
Note: The X.680 Open Type replaces the X.208 ANY or ANY DEFINED BY constructs.  An ANY or 
ANY DEFINED BY encountered within an ASN.1 module will result in the generation of code 
corresponding to the Open Type described below. 
 
The ASN.1 Open Type is converted into a C or C++ structure used to model a dynamic OCTET STRING 
type.  This structure contains a pointer and length field.  The pointer is assumed to point at a string of 
previously encoded ASN.1 data.  When a message containing an open type is decoded, the address of the 
open type contents field is stored in the pointer field and the length of the component is stored in the length 
field. 
   
    ASN.1 production:  <name> ::= ANY 
 
    Generated C code:  typedef ASN1OpenType <name>; 
 
          Generated C++ code: typedef ASN1TOpenType <name>; 
 



ASN1C V5.3  35 

The difference between the two types is the C++ version contains constructors to initialize the value to zero 
or to a given open type value. 
 
The ASN.1 "ANY DEFINED BY Type" construct is treated the same as an ANY.  No attempt is made to 
verify the identified Type.  
 
 
Character String Types 
 
As of version 5.0 and above, character string types are now built into the compiler.  Previous versions used 
compiled definitions based on the OCTET STRING base type to model these types.  All 8-bit character 
character-string types now are derived from the C character pointer (char*) base type.  This pointer is used 
to hold a null-terminated C string for encoding/decoding.  For encoding, the string can either be static (i.e., 
a string literal or address of a static buffer) or dynamic.  The decoder allocates dynamic memory from 
within its context to hold the memory for the string.  This memory is released when the rtMemFree 
function is called. 
 
The useful character string types in ASN.1 are as follows: 
 
UTF8String      ::= [UNIVERSAL 12] IMPLICIT OCTET STRING 
NumericString   ::= [UNIVERSAL 18] IMPLICIT IA5String 
PrintableString ::= [UNIVERSAL 19] IMPLICIT IA5String 
T61String       ::= [UNIVERSAL 20] IMPLICIT OCTET STRING 
VideotexString  ::= [UNIVERSAL 21] IMPLICIT OCTET STRING 
IA5String       ::= [UNIVERSAL 22] IMPLICIT OCTET STRING 
UTCTime         ::= [UNIVERSAL 23] IMPLICIT GeneralizedTime 
GeneralizedTime ::= [UNIVERSAL 24] IMPLICIT IA5String 
GraphicString   ::= [UNIVERSAL 25] IMPLICIT OCTET STRING 
VisibleString   ::= [UNIVERSAL 26] IMPLICIT OCTET STRING 
GeneralString   ::= [UNIVERSAL 27] IMPLICIT OCTET STRING 
UniversalString ::= [UNIVERSAL 28] IMPLICIT OCTET STRING 
BMPString       ::= [UNIVERSAL 30] IMPLICIT OCTET STRING 
 
ObjectDescriptor ::= [UNIVERSAL 7] IMPLICIT GraphicString 
 
Of these, all are represented by char* pointers except for the BMPString and UniversalString types.  The 
BMPString is a 16-bit character string for which the following structure is used: 
 

typedef struct { 
   ASN1UINT       nchars; 
   ASN116BITCHAR* data; 
} Asn116BitCharString; 

 
The ASN116BITCHAR type used in this definition is defined to be an �unsigned short�.  
 
See the rtBMPToCString, rtBMPToNewCString, and the rtCToBMPString run-time function descriptions 
for information on utilities that can convert standard C strings to and from BMP string format. 
 
The UniversalString is a 32-bit character string for which the following structure is used: 
 

typedef struct { 
   ASN1UINT       nchars; 
   ASN132BITCHAR* data; 
} Asn132BitCharString; 

 
The ASN132BITCHAR type used in this definition is defined to be an �unsigned int�.  
 
See the rtUCSToCString, rtUCSToNewCString, and the rtCToUCSString run-time function descriptions for 
information on utilities that can convert standard C strings to and from Universal Character Set (UCS-4) 



ASN1C V5.3  36 

string format. See also the rtUCSToWCSString and rtWCSToUCSString for information on utilities that can 
convert standard wide character string to and from UniversalString type. 
 
Utilities are also provided for working with UTF-8 string dataThe contents for this string type are assumed 
to contain the UTF-8 encoding of a character string.  The UTF-8 encoding for a standard ASCII string is 
simply the string itself.  For Unicode strings represented in C/C++ using the wide character type (wchar_t), 
the run-time functions rtUTF8ToWCS and rtWCSToUTF8 can be used for converting to and from Unicode.  
The function rtValidateUTF8 can be used to ensure that a given UTF-8 encoding is valid.  See the Run-
Time Common Library section for a complete description of these functions. 
 
 
Time String Types 
 
The ASN.1 GeneralizedTime and UTCTime types are mapped to standard C/C++ null-terminated character 
string types.   
 
The C++ version of the product contains additional control classes for parsing and formatting time string 
values.  When C++ code generation is specified, a control class is generated for operating on the target time 
string.  This class is derived from the ASN1CGeneralizedTime or ASN1CUTCTime class for 
GeneralizedTime or UTCTime respectively.  These classes contain methods for formatting or parsing time 
components such as month, day, year etc. from the strings. 
 
Objects of these classes can be declared inline to make the task of formatting or parsing time strings easier. 
For example, in a SEQUENCE containing a time string element the generated type will contain a public 
member variable containing the �ASN1T� type that holds the message data.  If one wanted to operate on the 
time string contained within that element, they could do so by using one of the time string classes inline as 
follows: 
 
 ASN1CGeneralizedTime gtime (msgbuf, <seqVar>.<element>); 
 gtime.setMonth (ASN1CTime::November); 
 
In this example, <seqVar> would represent a generated SEQUENCE variable type and <element> would 
represent a time string element within this type. 
 
See the ASN1CTime, ASN1CGeneralizedTime and ASN1CUTCTIME subsections in the C++ Run-Time 
Classes section for details on all of the methods available in these classes. 
 
 
External Type 
 
The ASN.1 EXTERNAL type is a useful type used to include non-ASN.1 or other data within an ASN.1 
encoded message.  The type is described using the following ASN.1 SEQUENCE: 
 
EXTERNAL  ::=  [UNIVERSAL 8] IMPLICIT SEQUENCE { 
   direct-reference  OBJECT IDENTIFIER OPTIONAL, 
   indirect-reference  INTEGER OPTIONAL, 
   data-value-descriptor  ObjectDescriptor  OPTIONAL, 
   encoding  CHOICE { 
      single-ASN1-type  [0] ANY, 
      octet-aligned     [1] IMPLICIT OCTET STRING, 
      arbitrary         [2] IMPLICIT BIT STRING 
   } 
} 
 
The ASN.1 compiler is used to create a meta-definition for this structure.  The definition is stored in the file 
asn1External.h.  The resulting C structure is populated just like any other compiler-generated structure for 
working with ASN.1 data.  
 
 



ASN1C V5.3  37 

Parameterized Types 
 
The compiler can parse parameterized type definitions and references as specified in the X.683 standard.  
These types allow dummy parameters to be declared that will be replaced with actual parameters when the 
type is referenced.  This is similar to templates in C++.  
 
A simple and common example of the use of parameterized types is for the declaration of an upper bound 
on a sized type as follows: 
 
 SizedOctetString{INTEGER:ub} ::= OCTET STRING (SIZE (1..ub)) 
 
In this definition, �ub� would be replaced with an actual value when the type is referenced.  For example, a 
sized octet string with an upper bound of 32 would be declared as follows: 
 
 OctetString32 ::= SizedOctetString{32} 
 
The compiler would handle this in the same way as if the original type was declared to be an octet string of 
size 1 to 32.  That is, it will generate a C structure containing a static byte array of size 32 as follows: 
 
 typedef struct OctetString32 { 
    ASN1UINT  numocts; 
    ASN1OCTET data[32]; 
 } OctetString32; 
 
Another common example of parameterization is the substitution of a given type inside a common 
container type.  For example, security specifications frequently contain a �signed� parameterized type that 
allows a digital signature to be applied to other types.  An example of this would be as follows: 
 

SIGNED { ToBeSigned } ::= SEQUENCE { 
         toBeSigned    ToBeSigned, 
         algorithmOID  OBJECT IDENTIFIER,  
         paramS        Params, 
         signature     BIT STRING 

}  
 

An example of a reference to this definition would be as follows: 
 
 SignedName ::= SIGNED { Name } 
 
where �Name� would be another type defined elsewhere within the module.  
 
The compiler performs the substitution to create the proper C typedef for SignedName: 
 

typedef struct SignedName { 
   Name  toBeSigned; 
   ASN1OBJID  algorithmOID; 
   Params  paramS; 
   ASN1DynBitStr  signature; 
} SignedName; 
 

When processing parameterized type definitions, the compiler will first look to see if the parameters are 
actually used in the final generated code.  If not, they will simply be discarded and the parameterized type 
converted to a normal type reference.  For example, when used with information objects, parameterized 
types are frequently used to pass information object set definitions to impose table constraints on the final 
type.  Since table constraints do not affect the code that is generated by the compiler, the parameterized 
type definition is reduced to a normal type definition and references to it are handled in the same way as 
defined type references.  This can lead to a significant reduction in generated code in cases where a 
parameterized type is referenced over and over again. 
 



ASN1C V5.3  38 

For example, consider the following often-repeated pattern from the UMTS 3GPP specs: 
 

ProtocolIE-Field {RANAP-PROTOCOL-IES : IEsSetParam} ::= SEQUENCE { 
   id   RANAP-PROTOCOL-IES.&id          ({IEsSetParam}), 
   criticality RANAP-PROTOCOL-IES.&criticality ({IEsSetParam}{@id}), 
   value  RANAP-PROTOCOL-IES.&Value       ({IEsSetParam}{@id}) 
} 
 

In this case, IEsSetParam refers to an information object set specification that constrains the values that are 
allowed to be passed for any given instance of a type referencing a ProtocolIE-Field.  The compiler does 
not add any extra code to check for these values, so the parameter can be discarded.  After processing the 
Information Object Class references within the construct (refer to the section on �Information Objects� for 
information on how this is done), the reduced definition for ProtocolIE-Field becomes the following: 
 
 ProtocolIE-Field ::= SEQUENCE { 
    id   ProtocolIE-ID, 
    criticality Criticality, 
    value  ASN.1 OPEN TYPE 
 } 
 
References to the field are simply replaced with a reference to the ProtocolID-Field typedef. 
 
 
Information Objects 
 
Information Objects and Classes are used to define multi-layer protocols in which �holes� are defined 
within ASN.1 types for passing message components to different layers for processing.  These items are 
also used to define the contents of various messages that are allowed in a particular exchange of messages.  
The ASN1C compiler extracts the types involved in these message exchanges and generates 
encoders/decoders for them.   The �holes� in the types are accounted for by adding open type holders to the 
generated structures.  These open type holders consist of a byte count and pointer for storing information 
on an encoded message fragment for processing at the next level. 
 
ASN1C compiler support for these types of specifications is limited to the correct application of reference 
types in places where Information Object Class references are embedded in standard ASN.1 types.  Other 
applications of these constructs are parsed but do not result in the generation of any application code. 
 
To better understand the support in this area, the individual components of Information Object 
specifications are examined.  We begin with the �CLASS� specification that provides a schema for 
Information Object definitions.  A sample class specification is as follows: 
 
 OPERATION ::= CLASS { 
    &operationCode  CHOICE { local  INTEGER,  

                                 global OBJECT IDENTIFIER } 
   &ArgumentType, 
   &ResultType, 
   &Errors   ERROR  OPTIONAL 
} 

 
Users familiar with ASN.1 will recognize this as a simplified definition of the ROSE OPERATION 
MACRO using the Information Object format.  When a class specification such as this is parsed, 
information on its fields is maintained in memory for later reference.  The class definition itself does not 
result in the generation of any corresponding C or C++ code.  It is only an abstract template that will be 
used to define new items later on in the specification. 
 
Fields from within the class can be referenced in standard ASN.1 types.  It is these types of references that 
the compiler is mainly concerned with.  These are typically �header� types that are used to add a common 
header to a variety of other message body types.  An example would be the following ASN.1 type 
definition for a ROSE invoke message header: 



ASN1C V5.3  39 

 
 Invoke ::= SEQUENCE { 
    invokeID  INTEGER, 
    opcode  OPERATION.&operationCode, 
    argument  OPERATION.&ArgumentType 
 } 
 
This is a very simple case which purposely omits a lot of additional information such as Information Object 
Set constraints that are typically a part of definitions such as this.  The reason this information is not 
present is because we are just interested in showing the items that the compiler is concerned with. 
 
The opcode field within this definition is an example of a fixed type field reference.  It is known as this 
because if you go back to the original class specification, you will see that operationCode is defined to be 
of a specific type (namely a choice between a local and global value).  The generated typedef for this field 
will contain a reference to the type from the class definition. 
 
The argument field is an example of a variable type field..  In this case, if you refer back to the class 
definition, you will see that no type is provided.  This means that this field can contain an instance of any 
encoded type (note: in practice, table constraints can be used with Information Object Sets to limit the 
message types that can be placed in this field).  The generated typedef for this field contains an �open type� 
(ASN1OpenType) reference to hold a previously encoded component to be specified in the final message. 
 
The following would be the procedure to add the Invoke header type to an ASN.1 message body: 
 
1. Encode the body type 
2. Get the message pointer and length of the encoded body 
3. Plug the pointer and length into the �numocts� and �data� items of the argument open type field in the 

Invoke type variable. 
4. Populate the remaining Invoke type fields. 
5. Encode the Invoke type to produce the final message. 
 
Other constructs can be built using class definitions such as Information Object instances and Information 
Object Sets.  This document will not get into the definition and uses for these items other than to say that 
the ASN1C compiler will parse and silently ignore them.  They provide additional information on how to 
put messages together, but are not part of the actual types themselves.  For this reason, the compiler does 
not generate any additional code for their use. 
 
 
Value Specifications 
 
The compiler can parse any type of ASN.1 value specification, but will only generate code for certain 
types.  In this release of the compiler, the following types of value specifications will result in generated 
code: 
 
• BOOLEAN 
• INTEGER 
• ENUMERATED 
• Binary String 
• Hexadecimal String 
• Character String 
• OBJECT IDENTIFER 
 
All value types except INTEGER cause an �extern� statement to be generated in the header file and a 
global value assignment to be added to the C or C++ source file.  INTEGER value specifications cause 
#define statements to be generated. 
 
INTEGER Value Specification 
 



ASN1C V5.3  40 

The INTEGER type causes a #define statement to be generated in the header file of the form 
�ASN1V_<valueName>� where <valueName> would be replaced with the name in the ASN.1 source file.  
The reason for doing this is the common use of INTEGER values for size and value range constraints in the 
ASN.1 specifications.  By generating #define statements, the symbolic names can be included in the source 
code making it easier to adjust the boundary values on the fly. 
 
For example, the following declaration: 
 
ivalue INTEGER ::= 5 
 
will cause the following statement to be added to the generated header file: 
 
#define ASN1V_ivalue 5 
 
The reason the ASN1V_ prefix is added is to prevent collisions with INTEGER value declarations and 
other declarations such as enumeration items with the same name. 
 
BOOLEAN Value Specification 
 
A BOOLEAN value causes an �extern� statement to be generated in the header file and a global declaration 
of type ASN1BOOL to be generated in the C or C++ source file.  The mapping of ASN.1 declaration to 
global C or C++ value declaration is as follows: 
 
          ASN.1 production:  <name> BOOLEAN ::= <value> 
 
    Generated code:  ASN1BOOL <name> = <value>; 
 
Binary and Hexadecimal String Value Specification 
 
These value specifications cause two global C variables to be generated: a �numocts� variable describing 
the length of the string and a �data� variable describing the string contents.  The mapping for a binary string 
is as follows (note: BIT STRING can also be used as the type in this type of declaration): 
 
          ASN.1 production:  <name> OCTET STRING ::= �<bstring>�B 
 
    Generated code:  ASN1UINT  <name>_numocts = <length>; 
                        ASN1OCTET <name>_data[]  = <data>;  
 
Hexadecimal string would be the same except the ASN.1 constant would end in a �H�. 
 
Character String Value Specification 
 
A character string declaration would cause a C or C++ char* declaration to be generated: 
 
          ASN.1 production:  <name> <string-type> ::= <value> 
 
    Generated code:  ASN1ConstCharPtr <name> = <value>; 
 
In this definition, <string-type> could be any of the standard 8-bit characters string types such as IA5String, 
PrintableString, etc. (note: this version of the compiler does not contain support for value declarations of 
larger character string type such as BMPString).  The ASN1ConstCharPtr type used in the generated code 
is a type defined in asn1type.h designed to be a char* type for C or const char* type for C++. 
 
Object Identifier Value Specification 
 
Object identifier values are somewhat different in that they result in a structure being populated in the C or 
C++ source file.  
 
          ASN.1 production:  <name> OBJECT IDENTIFIER ::= <value> 



ASN1C V5.3  41 

 
    Generated code:  ASN1OBJID <name> = <value>; 
 
 
For example, consider the following declaration: 
 
oid OBJECT IDENTIFIER ::= { ccitt b(5) 10 } 
  
This would result in the following definition in the C or C++ source file: 
 
ASN1OBJID oid = { 
   3, 
   { 0, 5, 10 } 
} ; 
 
To populate a variable in a generated structure with this value, the rtSetOID utility function can be used 
(see the section in the run-time API guide for a full description of this function).  In addition, the C++ base 
type for this construct (ASN1TObjId) contains constructors and assignment operators that allow direct 
assignment of values in this from to the target variable. 
 
 
Encode/Decode Function Prototypes 
 
If BER or DER encoding is specified, a BER encode and decode function prototype is generated for each 
production (DER uses the same form � there are only minor differences between the two types of generated 
functions).  These prototypes are of the following general form: 
 
int asn1E_<ProdName> (ASN1CTXT* ctxt_p,  
   <ProdName>* data_p, ASN1TagType tagging); 
 
int asn1D_<ProdName> (ASN1CTXT* ctxt_p,  
   <ProdName>* data_p, ASN1TagType tagging, int length); 
 
The prototype with the �asn1E_� prefix is for encoding and the one with �asn1D_� is for decoding.  The first 
parameter is a context variable used for reentrancy.  This allows the encoder/decoder to keep track of what 
it is doing between function invocations. 
 
The second parameter is for passing the actual data variable to be encoded or decoded.  This is a pointer to 
a variable of the generated type. 
 
The third parameter specifies whether implicit or explicit tagging should be used.  In practically all cases, 
users of the generated function should set this parameter to ASN1EXPL (explicit).  This tells the encoder to 
include an explicit tag around the encoded result.  The only time this would not be used is when the 
encoder or decoder is making internal calls to handle implicit tagging of elements. 
 
The final parameter (decode case only), is length.  This is ignored when tagging is set to ASN1EXPL 
(explicit), so users can ignore it for the most part and set it to zero.  In the implicit case, this specifies the 
number of octets to be extracted from the byte stream.  This is necessary because implicit indicates no 
tag/length pair precedes the data; therefore it is up to the user to indicate how many bytes of data are 
present. 
  
If PER encoding is specified, the format of the generated prototypes is different.  The PER prototypes are 
of the following general form: 
 
int asn1PE_<ProdName> (ASN1CTXT* ctxt_p, <ProdName>[*] value); 
 
int asn1PD_<ProdName> (ASN1CTXT* ctxt_p, <ProdName>* pvalue); 
 



ASN1C V5.3  42 

In these prototypes, the prefixes are different (a �P� character is added to indicate they are PER 
encoders/decoders), and the tagging argument variables are omitted.  In the encode case, the value of the 
production to be encoded may be passed by value if it is a simple type (for example, BOOLEAN or 
INTEGER).  Structured values will still be passed using a pointer argument. 
 
 
Generated Class Definition 
 
A class definition is generated for each defined production in the ASN.1 source file.  This class is derived 
from the ASN1CType base class.  This class provides a set of common attributes and methods for 
encoding/decoding ASN.1 messages.  It hides most of the complexity of calling the encode/decode 
functions directly. 
 
The general form of the class definition is as follows: 
 
class ASN1C_<name> : public ASN1CType { 
public: 
   ASN1T_<name>& msgData; 
   ASN1C_<name> (ASN1MessageBuffer& msgBuf, ASN1T_<name>& data); 
   int Encode (); 
   int Decode (); 
} ; 
 
The name of the generated class is �ASN1C_<name>� where �<name>� is the name of the production.  The 
only defined attribute is a public variable reference named �msgData� of the generated type.   
 
The constructor arguments are a reference to an �ASN1MessageBuffer� type and a reference to an 
�ASN1T_<name>� type.  The message buffer argument is a class defined in either the Asn1BerCppTypes.h 
or Asn1PerCppTypes.h.  There are special subclasses for encoding (ASN1BEREncodeBuffer or 
ASN1PEREncodeBuffer) and decoding (ASN1BERDecodeBuffer and ASN1PERDecodeBuffer).  
Variables of either of these subclasses can be passed to the constructor depending on whether encoding or 
decoding is to be performed.  The purpose of the buffer objects is to wrap all of the internal values required 
to manage encode or decode buffers.  Examples of using this object can be found in the section on 
Encoding and Decoding messages. 
 
The �ASN1T_<name>� argument is used to specify the data variable containing data to be encoded or to 
receive data on a decode call.  The procedure for encoding is to declare a variable of this type, populate it 
with data, and then instantiate the ASN1C_<name> object to associate a message buffer object with the 
data to be encoded.  The Encode method can then be called to encode the data.  On the decode side, a 
variable must be declared and passed to the constructor to receive the decoded data. 
 
Note that the ASN1C_ class declarations are only required in the application code as an entry point for 
encoding or decoding a top-level message (or Protocol Data Unit � PDU).  Identifying these PDUs and 
declaring them in a configuration file using the <isPDU/> empty element can attain large savings in the 
amount of code generated for a particular application.  For example, in some H.323 applications, the main 
PDU structure used is H323-UserInformation.  The following configuration file entry could be used to only 
generate the ASN1C_ control class for this PDU: 
 
<asn1config> 
  <module> 
    <name>H323-MESSAGES</name> 
    <production> 
      <name>H323-UserInformation</name> 
      <isPDU/> 
    </production> 
  </module> 
</asn1config> 
 



ASN1C V5.3  43 

This will cause only a single ASN1C_ class definition to be added to the generated code � that for the 
H323-UserInformation production.  If this information was not included an ASN1C_ class would be 
generated for all productions and the vast majority of them would never be used. 
 
If the module contains no PDUs (i.e,. contains support types only), the <noPDU/> empty element can be 
specified at the module level to indicate that no control classes should be generated for the module. 
 
 
Generated Methods 
 
For each production, an Encode and Decode method is generated within the generated class structure.  
These are standard methods that initialize context information and then call the generated C-like encode or 
decode function.  If the generation of print functions was specified (by including �print on the compiler 
command line), a Print method is also generated that calls the C print function. 
 



ASN1C V5.3  44 

Generated BER Encode Functions 
 
For each ASN.1 production defined in the ASN.1 source file, a C encode function is generated. This 
function will convert a filled-in C variable of the given type into an encoded ASN.1 message. 
 
If C++ code generation is specified, a control class is generated that contains an Encode method that wraps 
this function.  This function is invoked through the class interface to convert a populated msgData attribute 
variable into an encoded ASN.1 message. 
 
 
Generated C Function Format and Calling Parameters 
 
The format of the name of each generated encode function is as follows: 
 
    asn1E_[<prefix>]<prodName> 
 
where <prodName> is the name of the ASN.1 production for which the function is being generated and 
<prefix> is an optional prefix that can be set via a configuration file setting.  The configuration setting 
used to set the prefix is the <typePrefix> element which specifies a prefix that will be applied to all 
generated typedef names and function names for the production. 
 
The calling sequence for each encode function is as follows: 
 
    len = asn1E_<name> (ASN1CTXT* ctxt_p,  

<name>* object,  
ASN1TagType tagging); 

 
In this definition, <name> denotes the prefixed production name defined above. 
 
The ctxt_p argument is used to hold a context pointer to keep track of encode parameters.  This is a basic 
"handle" variable that is used to make the function reentrant so it can be used in an asynchronous or 
threaded application.  The user is required to supply a pointer to a variable of this type declared somewhere 
in his or her program.  The variable should be initialized using either the rtInitContext or rtNewContext 
run-time library functions (see the Run-Time Library API section for a description of these functions). 
 
The object argument holds a pointer to the data to be encoded and is of the type generated from the 
ASN.1 production.  
 
The tagging argument is for internal use when calls to encode functions are nested to accomplish 
encoding of complex variables.  It indicates whether the tag associated with the production should be 
applied or not (implicit versus explicit tagging).  At the top level, the tag should always be applied so this 
parameter should always be set to the constant ASN1EXPL (for EXPLICIT). 
 
The function result variable len returns the length of the data actually encoded or an error status code if 
encoding fails.  Error status codes are negative to tell them apart from length values.  Return status values 
are defined in the "asn1type.h" include file.   
 
 
Generated C++ Encode Method Format and Calling Parameters 
 
The C++ version of the compiler generates an Encode method that wraps the C function call.  This method 
provides a more simplified calling interface because it hides things such as the context structure and the tag 
type parameters. 
 
The calling sequence for the generated C++ class method is as follows: 
 
    len = class_var.Encode ();  
 



ASN1C V5.3  45 

In this definition, class_var is a variable of the control class (i.e., ASN1C_<prodName>) generated for the 
given production.  The function result variable len returns the length of the data actually encoded or an 
error status code if encoding fails.  Error status codes are negative to tell them apart from length values.  
Return status values are defined in the "asn1type.h" include file.  
 
 
Populating Generated Structure Variables for Encoding 
 
Prior to calling a compiler generated encode function, a variable of the type generated by the compiler must 
be populated.  This is normally a straightforward procedure � just plug in the values to be encoded into the 
defined fields.  However, things get more complicated when more complex, constructed structures are 
involved.  These structures frequently contain pointer types which means memory management issues must 
be dealt with. 
 
There are three techniques for managing memory for these types: 
 
1. Allocate the variables on the stack and plug the address of the variables into the pointer fields,  
2. Use the standard malloc and free C functions to allocate memory to hold the data, and  
3. Use the rtMemAlloc and rtMemFree run-time library functions 
 
Allocating the variables on the stack is an easy way to get temporary memory and have it released when it 
is no longer being used.  But one has to be careful when using additional functions to populate these types 
of variables.  A common mistake is the storage of the addresses of automatic variables in the pointer fields 
of a passed-in structure.  An example of this error is as follows (assume A, B, and C are other structured 
types): 
 
    typedef struct { 
       A* a; 
       B* b; 
       C* c; 
    } Parent; 
 
    void fillParent (Parent* parent) 
    { 
       A aa; 
       B bb; 
       C cc; 
 
       /* logic to populate aa, bb, and cc */ 
       ... 
 
       parent->a = &aa; 
       parent->b = &bb; 
       parent->c = &cc; 
    } 
 
    main () 
    { 
       Parent parent; 
 
       fillParent (&parent); 
 
       encodeParent (&parent);   /* error: pointers in parent  

reference memory that is  
out of scope */ 

       � 
    } 
  



ASN1C V5.3  46 

In this example, the automatic variables aa, bb, and cc go out of scope when the fillParent function exits.  
Yet the parent structure is still holding pointers to the now out of scope variables (this type of error is 
commonly known as �dangling pointers�).  
 
Using the second technique (i.e., using C malloc and free) can solve this problem.  In this case, the memory 
for each of the elements can be safely freed after the encode function is called.  But the downside is that a 
free call must be made for each corresponding malloc call.  For complex structures, remembering to do this 
can be difficult thus leading to problems with memory leaks. 
 
The third technique uses the compiler run-time library memory management functions to allocate and free 
the memory.  The main advantage of this technique as opposed to using C malloc and free is that all 
allocated memory can be freed with a single rtMemFree call.  The ASN1MALLOC macro can be used to 
allocate memory in much the same way as the C malloc function with the only difference being that a 
pointer to an ASN1CTXT structure is passed in addition to the number of bytes to allocate.  All allocated 
memory is tracked within the context structure so that when the rtMemFree is called, all memory can be 
released at once. 
 
 
Procedure for Calling C Encode Functions 
 
This section describes the step-by-step procedure for calling a C BER or DER encode function.  This 
method must be used if C code generation was done.  This method can also be used as an alternative to 
using the control class interface if C++ code generation was done. 
 
Before any encode function can be called; the user must first initialize an encoding context.  This is a 
variable of type ASN1CTXT.  This variable holds all of the working data used during the encoding of a 
message.  The context variable can be initialized in one of two ways: 
 

1. Allocating a context dynamically using the rtNewContext function or,  
 

2.  Initializing a static variable using the rtInitContext function.  
 

An example of initializing a static variable is as follows:  
 
 ASN1CTXT ctxt;  // context variable  
 rtInitContext (&ctxt); // INITIALIZE BEFORE USE! 
 
 
The next step is to specify an encode buffer into which the message will be encoded.  This is done by 
calling xe_setp run-time function.  An encode buffer must be specified when initializing the context.  The 
user can either pass the address of a buffer and size allocated in his or her program (referred to as a static 
buffer), or set these parameter to zero and let the encode function manage the buffer memory allocation 
(referred to as a dynamic buffer).  Better performance can be attained by using a static buffer because this 
eliminates the high-overhead operation of allocating and reallocating memory. 
 
After initializing the context and populating a variable of the structure to be encoded, an encode function 
can be called to encode the message.  If the return status indicates success (positive length value), the run-
time library function "xe_getp" can be called to obtain the start address of the encoded message. Note that 
the returned address is not the start address of the target buffer.  BER encoded messages are constructed 
from back to front (i.e., starting at the end of the buffer and working backwards) so the start point will fall 
somewhere in the middle of the buffer after encoding is complete.  This illustrated in the following 
diagram: 



ASN1C V5.3  47 

 
 
 
 
 
 
 
 
 
 
 
In this example, a 1K encode buffer is declared which happens to start at address 0x100.  When the context 
is initialized with a pointer to this buffer and size equal to 1K, it positions the internal encode pointer to the 
end of the buffer (address 0x500).  Encoding then proceeds from back-to-front until encoding of the 
message is complete.  In this case, the encoded message turned out to be 0x300 (768) bytes in length and 
the start address fell at 0x200.  This is the value that would be returned by xe_getp. 
 
A program fragment that could be used to encode an employee record is as follows: 
 
    #include employee.h         /* include file generated by ASN1C */ 
 
    main () 
    { 
        ASN1OCTET msgbuf[1024], *msgptr; 
        int       msglen; 
        ASN1CTXT  ctxt; 
        Employee  employee; /* typedef generated by ASN1C */ 
 
        /* Step 1: Initialize the context and set the buffer pointer */ 
 
        rtInitContext (&ctxt); 
        xe_setp (&ctxt, msgbuf, sizeof(msgbuf)); 
 
        /* Step 2: Populate the structure to be encoded */ 
 
        employee.name.numocts = 5; 
        employee.name.data = "SMITH"; 
        ... 
 
        /* Step 3: Call the generated encode function */ 
 
        msglen = asn1E_Employee (&ctxt, &employee, ASN1EXPL); 
 
        /* Step 4: Check the return status (note: the test is  */ 
        /* > 0 because the returned value is the length of the  */ 
        /* encoded message component)..     */ 
 
        if (msglen > 0) { 
 
          /* Step 5: If encoding is successful, call xe_getp to  */ 
          /* fetch a pointer to the start of the encoded message. */ 
 
          msgptr = xe_getp (&ctxt); 
          ... 
        } 
        else 
          error processing... 
    } 
 

Encode buffer (size 1K): 

Buffer start 
address 
(0x100) 

Start of 
Message 
(0x200) 

End of Buffer 
(0x500) 

Encode this way 



ASN1C V5.3  48 

 
In general, static buffers) should be used for encoding messages where possible as they offer a substantial 
performance benefit over dynamic buffer allocation.  The problem with static buffers, however, is that you 
are required to estimate in advance the approximate size of the messages you will be encoding.  There is no 
built-in formula to do this, the size of an ASN.1 message can vary widely based on data types and the 
number of tags required. 
 
If performance is not a significant an issue, then dynamic buffer allocation is a good alternative.  Setting 
the buffer pointer argument to NULL in the call to xe_setp specifies dynamic allocation.  This tells the 
encoding functions to allocate a buffer dynamically.  The address of the start of the message is obtained as 
before by calling xe_getp.  Note that this is not the start of the allocated memory; that is maintained within 
the context structure.  To free the memory, the xe_free run-time library function must be called. 
 
The following code fragment illustrates encoding using a dynamic buffer: 
 
    #include employee.h         /* include file generated by ASN1C */ 
 
    main () 
    { 
        ASN1OCTET *msgptr; 
        int       msglen; 
        ASN1CTXT  ctxt; 
        Employee  employee; /* typedef generated by ASN1C */ 
 
        rtInitContext (&ctxt); 
        xe_setp (&ctxt, NULL, 0); 
 
        employee.name.numocts = 5; 
        employee.name.data = "SMITH"; 
        ... 
 
        msglen = asn1E_Employee (&ctxt, &employee, ASN1EXPL); 
 
        if (msglen > 0) { 
          msgptr = xe_getp (&ctxt); 
          ... 
 
          xe_free (&ctxt);   /* don�t call free (msgptr); !!! */ 
        } 
        else 
          error processing... 
    } 
 
 
Procedure for Using the C++ Control Class Encode Method 
 
The procedure to encode a message using the C++ class interface is as follows: 
 
1. Create a variable of the �ASN1T_<name>� type and populate it with the data to be encoded. 
2. Create an Asn1BerEncodeMessageBuffer object. 
3. Create a variable of the generated �ASN1C_<name>� class specifying the items created in 1 and 2 as 

arguments to the constructor. 
4. Invoke the �Encode� method. 
 
The constructor of the �ASN1C_<type>� class takes a message buffer object argument.  This makes it 
possible to specify a static encode message buffer when the class variable is declared.  A static buffer can 
improve encoding performance greatly as it relieves the internal software from having to repeatedly resize 
the buffer to hold the encoded message.  If you know the general size of the messages you will be sending, 



ASN1C V5.3  49 

or have a fixed size maximum message length, then a static buffer should be used.  The message buffer 
argument can also be used to specify the start address and length of a received message to be decoded. 
 
After the data to be encoded is set, the Encode method is called.  This method returns the length of the 
encoded message or a negative value indicating that an error occurred.  The error codes can be found in the 
asn1type.h run-time header file or in Appendix A of this document.  
 
If encoding is successful, a pointer to the encoded message can be obtained by using the GetMsgPtr or 
GetMsgCopy methods available in the ASN1BEREncodeBuffer class.  The GetMsgPtr method is faster as 
it simply returns a pointer to the actual start-of-message that is maintained within the message buffer 
object.  The GetMsgCopy method will return a copy of the message.  Memory for this copy will be 
allocated using the standard new operator, so it up to the user to free this memory using delete when 
finished with the copy. 
 
A program fragment that could be used to encode an employee record is as follows.  This example uses a 
static encode buffer: 
 
    #include employee.h         // include file generated by ASN1C 
 
    main () 
    { 
        const ASN1OCTET* msgptr; 
        ASN1OCTET msgbuf[1024]; 
        int       msglen; 
 
        // step 1: construct ASN1C C++ generated class.  
        // this specifies a static encode message buffer 
 
        ASN1BEREncodeBuffer encodeBuffer (msgbuf, sizeof(msgbuf)); 
        ASN1T_PersonnelRecord msgData; 
        ASN1C_PersonnelRecord employee (encodeBuffer, msgData); 
 
        // step 2: populate msgData structure with data to be encoded 
   // (note: this uses the generated assignment operator to assign  
   // a string).. 
 
        employee.msgData.name = �SMITH�; 

  ... 
 
        // step 3: invoke Encode method  
 
        if ((msglen = employee.Encode ()) > 0) { 
           // encoding successful, get pointer to start of message 
           msgptr = encodeBuffer.GetMsgPtr(); 
        } 
        else 
          error processing... 
    } 
 
 
 
The following code fragment illustrates encoding using a dynamic buffer.  This also illustrates using the 
GetMsgCopy method to fetch a copy of the encoded message: 
 
 
    #include employee.h         // include file generated by ASN1CPP 
 
    main () 
    { 



ASN1C V5.3  50 

        ASN1OCTET* msgptr; 
        int        msglen; 
 
        // construct encodeBuffer class with no arguments 
 

  ASN1BEREncodeBuffer encodeBuffer; 
        ASN1T_PersonnelRecord msgData; 
        ASN1C_PersonnelRecord employee (encodeBuffer, msgData); 
 
        // populate msgData structure 
 
        employee.msgData.name = "SMITH"; 
        ... 
 
        // call Encode method 
 
        if ((msglen = employee.Encode ()) > 0) { 
          // encoding successful, get copy of message 
          msgptr = encodeBuffer.GetMsgCopy(); 
          ... 
 
          delete [] msgptr;  // free the dynamic memory! 
        } 
        else 
          error processing... 
    } 
 
 
Encoding a Series of Messages Using the C++ Control Class Interface 
 
A common application of BER encoding is the repetitive encoding of a series of the same type of message 
over and over again.  For example, a TAP3 batch application might read billing data out of a database table 
and encode each of the records for a batch transmission. 
 
If a user was to repeatedly instantiate and destroy the C++ objects involved in the encoding of a message, 
performance would suffer.  This is not necessary however, because the C++ objects can be reused to allow 
multiple messages to be encoded.  As example showing how to do this is as follows: 
 
    #include employee.h         // include file generated by ASN1C 
 
    main () 
    { 
        const ASN1OCTET* msgptr; 
        ASN1OCTET msgbuf[1024]; 
        int       msglen; 
 
        ASN1BEREncodeBuffer encodeBuffer (msgbuf, sizeof(msgbuf)); 
        ASN1T_PersonnelRecord msgData; 
        ASN1C_PersonnelRecord employee (encodeBuffer, msgData); 
 
        // Encode loop start here, this will repeatedly use the objects  
        // declared above to encode the messages 
 
        for (;;) { 
 
            // logic here to read record from some source (database,  
            // flat file, socket, etc.).. 
 
            // populate structure with data to be encoded 



ASN1C V5.3  51 

 
            employee.msgData.name = �SMITH�; 

      ... 
 
            // invoke Encode method  
 
            if ((msglen = employee.Encode ()) > 0) { 
 
                // encoding successful, get pointer to start of message 
 
                msgptr = encodeBuffer.GetMsgPtr(); 
 
                // do something with the encoded message 
 
                ... 
            } 
            else 
               error processing... 
 
            // Call the init method on the encodeBuffer object to  
            // prepare the buffer for encoding another message.. 
 
            encodeBuffer.Init(); 
        } 
    } 
 



ASN1C V5.3  52 

Generated BER Decode Functions 
 
For each ASN.1 production defined in the ASN.1 source file, a C decode function is generated.  This 
function will decode an ASN.1 message into a C variable of the given type.  
 
If C++ code generation is specified, a control class is generated that contains a Decode method that wraps 
this function.  This function is invoked through the class interface to decode an ASN.1 message into the 
variable referenced in the msgData component of the class. 
 
 
Generated C Function Format and Calling Parameters 
 
The format of the name of each decode function generated is as follows: 
 
    asn1D_[<prefix>]<prodName> 
 
where <prodName> is the name of the ASN.1 production for which the function is being generated and 
<prefix> is an optional prefix that can be set via a configuration file setting.  The configuration setting 
used to set the prefix is the <typePrefix> element that specifies a prefix that will be applied to all generated 
typedef names and function names for the production. 
 
The calling sequence for each decode function is as follows: 
 
    status = asn1D_<name> (ASN1CTXT* ctxt_p,  
                           <name> *object,  
                           ASN1TagType tagging,  
                           int length); 
 
In this definition, <name> denotes the prefixed production name defined above. 
 
The ctxt_p argument is used to hold a context pointer to keep track of decode parameters.  This is a 
basic "handle" variable that is used to make the function reentrant so it can be used in an asynchronous or 
threaded application.  The user is required to supply a pointer to a variable of this type declared somewhere 
in his or her program.  The variable must be initialized using the xd_setp run-time function before use. 
 
The object argument is a pointer to a variable of the generated type that will receive the decoded data.  
 
The tagging and length arguments are for internal use when calls to decode functions are nested to 
accomplish decoding of complex variables.   At the top level, these parameters should always be set to the 
constants ASN1EXPL and 0 respectively. 
 
The function result variable status returns the status of the decode operation.  The return status will be 
zero (ASN_OK) if decoding is successful or negative if an error occurs.  Return status values are defined in 
the "asn1type.h" include file.   
 
 
Generated C++ Decode Method Format and Calling Parameters 
 
Generated decode functions are invoked through the class interface by calling the base class �Decode� 
method.  The calling sequence for this method is as follows: 
 
    status = class_var.Decode ();  
 
In this definition, class_var is a variable of the class generated for the given production.   
 
An ASN1BERDecodeBuffer object must be passed to the class_var constructor prior to decoding.  This is 
where the start address of the message to be decoded and message length are specified. 
 



ASN1C V5.3  53 

The message length argument is used to specify the size of the message, if it is known.  In ASN.1 
messages, the overall length of the message is embedded in the first few bytes of the message, so this 
variable is really not needed.  It is used as test mechanism to determine if a corrupt or partial message was 
received.  If the parsed message length is greater than this value, an error is returned.  If the value is 
specified to be zero (the default), then this test is bypassed.  As was the case for message pointer above, this 
parameter can be specified in the constructor if only a single message is being decoded using the class. 
 
The function result variable status returns the status of the decode operation.  The return status will be 
zero (ASN_OK) if decoding is successful or a negative value if an error occurs.  Return status values are 
defined in Appendix A of this document and online in the "asn1type.h" include file.   
 
 
Procedure for Calling C Decode Functions 
 
This section describes the step-by-step procedure for calling a C BER or DER decode function.  This 
method must be used if C code generation was done.  This method can also be used as an alternative to 
using the control class interface if C++ code generation was done. 
 
Before any decode function can be called; the user must first initialize a context variable.  This is a variable 
of type ASN1CTXT.  This variable holds all of the working data used during the encoding of a message.  
The context variable can be initialized in one of two ways: 
 

3. Allocating a context dynamically using the rtNewContext function or,  
 

4.  Initializing a static variable using the rtInitContext function.  
 

An example of initializing a static variable is as follows:  
 
 ASN1CTXT ctxt;  // context variable  
 rtInitContext (&ctxt); // INITIALIZE BEFORE USE! 
 
 
The next step is the specification of  a buffer containing a message to be decoded.  This is done by calling 
the xd_setp run-time library function.  This function takes as an argument the start address of the message 
to be decoded.  The function returns the starting tag value and overall length of the message to be decoded.  
This makes it possible to identify the type of message received and apply the appropriate decode function 
to decode it. 
 
A decode function can then be called to decode the message.  If the return status indicates success, the C 
variable that was passed as an argument will contain the decoded message contents.  Note that the decoder 
may have allocated dynamic memory and stored pointers to objects in the C structure.  After processing on 
the C structure is complete, the run-time library function "xu_freeall" should be called to free the allocated 
memory. 
                                                                    
A program fragment that could be used to decode an employee record is as follows: 
 
    #include employee.h         /* include file generated by ASN1C */ 
 
    main () 
    { 
        ASN1OCTET msgbuf[1024]; 
        ASN1TAG   msgtag; 
        int       msglen; 
        ASN1CTXT  ctxt; 
    PersonnelRecord employee; 
 
        .. logic to read message into msgbuf .. 
 
        /* Step 1: Initialize a context variable for decoding */ 



ASN1C V5.3  54 

 
        rtInitContext (&ctxt); 
 
        status = xd_setp (&ctxt, msgbuf, 0, &msgtag, &msglen); 
 
        if (status != ASN_OK) { 
           error processing.. 
        } 
 
        /* Step 2: Test message tag for type of message received  */ 
        /* (note: this is optional, the decode function can be  */ 
        /* called directly if the type of message is known).. */ 
 
        if (msgtag == TV_PersonnelRecord) 
        { 
            /* Step 3: Call decode function (note: last two args */ 
            /* should always be ASN1EXPL and 0)..   */ 
 
            status = asn1D_PersonnelRecord (&ctxt,  
                                            &employee,  
                                            ASN1EXPL, 0); 
 
            /* Step 4: Check return status */ 
 
            if (status == ASN_OK) 
            { 
                process received data in �employee� variable.. 
 
                /* Remember to release dynamic memory when done! */ 
 
                xu_freeall (&ctxt); 
            } 
            else 
                error processing... 
        } 
        else 
           check for other known message types.. 
    } 
 
 
Procedure for Using the C++ Control Class Decode Method 
 
Normally when a message is received and read into a buffer, it can be one of several different message 
types.  So the first job a programmer has before calling a decode function is determining which function to 
call.  The Asn1Message class has a standard method for parsing the initial tag/length from a message to 
determine the type of message received.  This call is used in conjunction with a switch statement on 
generated tag constants for the known message set in order to pick a decoder to call. 
 
Once it is known which type of message has been received, an instance of a generated message class can be 
instantiated and the decode function called.  The start of message pointer and message length (if known) 
must be specified either in the constructor call or in the call to the decode function itself. 
 
A program fragment that could be used to decode an employee record is as follows: 
 
    #include employee.h         // include file generated by ASN1C 
 
    main () 
    { 
        ASN1OCTET msgbuf[1024]; 



ASN1C V5.3  55 

        ASN1TAG   msgtag; 
        int       msglen, status; 
        .. logic to read message into msgbuf .. 
 
        // Use the ASN1BERDecodeBuffer class to parse the initial  
        // tag/length from the message.. 
 

  ASN1BERDecodeBuffer decodeBuffer (msgbuf, len); 
 
        status = decodeBuffer.ParseTagLen (msgtag, msglen); 
 
        if (status != ASN_OK) { 
           // handle error 
           ... 
        } 
 
        // Now switch on initial tag value to determine what type of  
        // message was received.. 
 
        switch (msgtag) 
        { 
           case TV_PersonnelRecord:  // compiler generated constant 
           { 

        ASN1T_PersonnelRecord msgData; 
        ASN1C_PersonnelRecord employee (decodeBuffer, msgData); 

 
              if ((status = employee.Decode ()) == ASN_OK) 
              { 
                 // decoding successful, data in employee.msgData 
 
                 process received data.. 
              } 
              else 
                 error processing... 
           } 
 
           case TV_ ...  // handle other known messages 
 
 
 
Note that the call to �xu_freeall� is not required to release dynamic memory when using the C++ interface.  
This is because the control class hides all of the details of managing the context and releasing dynamic 
memory.  The memory is automatically released when both the message buffer object 
(ASN1BERMessageBuffer) and the control class object (ASN1C_<ProdName>) are deleted or go out of 
scope.  Reference counting of a context variable shared by both interfaces is used to accomplish this. 
 
 
Decoding a Series of Messages Using the C++ Control Class Interface 
 
The above example is fine as a sample for decoding a single message, but what happens in the more typical 
scenario of having a long-running loop that continuously decodes messages?  The logic shown above 
would not be optimal from a performance standpoint because of the constant creation and destruction of the 
message processing objects.  It would be much better to create all of the required objects outside of the loop 
and then reuse them to decode and process each message.   
 
A code fragment showing a way to do this is as follows: 
 
    #include employee.h         // include file generated by ASN1C 
 



ASN1C V5.3  56 

    main () 
    { 
        ASN1OCTET msgbuf[1024]; 
        ASN1TAG   msgtag; 
        int       msglen, status; 
 
        // Create message buffer, ASN1T, and ASN1C objects 
 

  ASN1BERDecodeBuffer decodeBuffer (msgbuf, len); 
  ASN1T_PersonnelRecord employeeData; 
  ASN1C_PersonnelRecord employee (decodeBuffer, employeeData); 

 
        for (;;) { 
 
          .. logic to read message into msgbuf .. 
 
          status = decodeBuffer.ParseTagLen (msgtag, msglen); 
 
          if (status != ASN_OK) { 
            // handle error 
            ... 
         } 
 
         // Now switch on initial tag value to determine what type of  
         // message was received.. 
 
         switch (msgtag) 
         { 
           case TV_PersonnelRecord:  // compiler generated constant 
           { 
              if ((status = employee.Decode ()) == ASN_OK) 
              { 
                 // decoding successful, data in employeeData 
 
                 process received data.. 
              } 
              else 
                 error processing... 
           } 
           break; 
 
           default: 
              // handle unknown message type here 
 
          }  // switch 
 
          // Need to reinitialize objects for next iteration 
 
          employee.memFreeAll (); 
 
        }  // end of loop 
 
 
This is quite similar to the first example.  Note that we have pulled the ASN1T_Employee and 
ASN1C_Employee object creation logic out of the switch statement and moved it above the loop.  These 
objects can now be reused to process each received message. 
 
The only other change was the call to employee.memFreeAll that was added at the bottom of the loop.  
Since we can�t count on the objects being deleted to automatically release allocated memory, we need to do 



ASN1C V5.3  57 

it manually.  This call will free all memory held within the decoding context.  This will allow the loop to 
start again with no outstanding memory allocations for the next pass. 
 
 
Performance Considerations: Dynamic Memory Management 
 
By far, the biggest performance bottleneck when decoding ASN.1 messages is the allocation of memory 
from the heap.  Each call to new or malloc is very expensive. 
 
The decoding functions must allocate memory because the sizes of a lot of the variables that make up a 
message are not known at compile time.  For example, an OCTET STRING that does not contain a size 
constraint can be an indeterminate number of bytes in length. 
 
ASN1C does two things by default to relieve the burden of allocating dynamic memory: 
 
1. Uses static variables wherever it can.  Any BIT STRING, OCTET STRING, character string, or 

SEQUENCE OF or SET OF construct that contains a size constraint will result in the generation of a 
static array of elements sized to the max constraint bound. 
 

2. Uses a special nibble-allocation algorithm for allocating dynamic memory.  This algorithm allocates 
memory in large blocks and them splits up these blocks on subsequent memory allocation requests.  
This results in fewer calls to the kernel to get memory.  The downside is that one request for a few 
bytes of memory can result in a large block being allocated. 

 
The user has some control over the memory allocation process provided that they have purchased the 
standard version of the product that contains run-time source code.  First, the default size of a memory 
block as allocated by the nibble-allocation algorithm can be changed.  By default, this is set to 4K bytes by 
the following constant in the asn1type.h header file: 
 
#define XM_K_MEMBLKSIZ ((4*1024) - (sizeof(long) + sizeof(void*))) 
 
The number (4*1024) can be modified to change this size (the rest of the expression is an adjustment for 
the size of a header that is automatically added).  After modification, the run-time source code must be 
recompiled for this change to take effect. 
 
The other thing that can be done is changing the algorithm all together.  All memory allocation and free 
requests are routed through two functions: rtMemAlloc and rtMemFree.  The bodies of these functions can 
be changed to implement whatever type of memory allocation scheme is desired.  For example, embedded 
applications may use an operating system that does not contain malloc and free calls.  So whatever is 
available can be included here.  Another example is an extremely high-performance decoder.  In this case, 
the nibble-allocation algorithm can be replaced with a fixed-size static block algorithm.  The allocate 
function will split up the block, the free function will simply reset all pointers and/or indexes to make the 
entire block available again. 



ASN1C V5.3  58 

Generated PER Encode Functions 
 
PER encode/decode functions are generated when the �-per� switch is specified on the command line. For 
each ASN.1 production defined in the ASN.1 source file, a C PER encode function is generated.  This 
function will convert a filled-in C variable of the given type into a PER encoded ASN.1 message. 
 
If C++ code generation is specified, a control class is generated that contains an Encode method that wraps 
this function.  This function is invoked through the class interface to encode an ASN.1 message into the 
variable referenced in the msgData component of the class. 
 
 
Generated C Function Format and Calling Parameters 
 
The format of the name of each generated PER encode function is as follows: 
 
    asn1PE_[<prefix>]<prodName> 
 
where <prodName> is the name of the ASN.1 production for which the function is being generated and 
<prefix> is an optional prefix that can be set via a configuration file setting.  The configuration setting 
used to set the prefix is the <typePrefix> element which specifies a prefix that will be applied to all 
generated typedef names and function names for the production. 
 
The calling sequence for each encode function is as follows: 
 
    status = asn1PE_<name> (ASN1CTXT* ctxt_p, <name>[*] value);  
 
In this definition, <name> denotes the prefixed production name defined above. 
 
The ctxt_p argument is used to hold a context pointer to keep track of encode parameters.  This is a basic 
"handle" variable that is used to make the function reentrant so it can be used in an asynchronous or 
threaded application.  The user is required to supply a pointer to a variable of this type declared somewhere 
in his or her or her program.  
 
The object argument contains the value to be encoded or holds a pointer to the value to be encoded.  
This variable is of the type generated from the ASN.1 production.  The object is passed by value if it is a 
primitive ASN.1 data type such as BOOLEAN, INTEGER, ENUMERATED, etc..  It is passed using a 
pointer reference if it is a structured ASN.1 type value.  Check the generated function prototype in the 
header file to determine how the object argument is to be passed for a given function. 
 
The function result variable stat returns the status of the encode operation.  Status code 0 (ASN_OK) 
indicates the functions was successful.  A negative value indicates encoding failed.  Return status values 
are defined in the "asn1type.h" include file.  The reason text and a stack trace can be displayed using the 
rtErrPrint function described later in this document. 
 
 
Generated C++ Encode Method Format and Calling Parameters 
 
Generated encode functions are invoked through the class interface by calling the base class �Encode� 
method.  The calling sequence for this method is as follows: 
 
    stat = class_var.Encode ();  
 
In this definition, class_var is a variable of the class generated for the given production.  The function result 
variable stat returns the status value from the PER encode function.  This status value will be ASN_OK 
(0) if encoding was successful or a negative error status value if encoding fails. Return status values are 
defined in the "asn1type.h" include file.  
 



ASN1C V5.3  59 

The user must call the encode buffer class methods GetMsgPtr and GetMsgLen to obtain the starting 
address and length of the encoded message component. 
 
 
Populating Generated Structure Variables for Encoding 
 
See the section �Populating Generated Structure Variables for Encoding� in �Generated BER Encode 
Functions� for a discussion on how to populate variables for encoding.  There is no difference in how it is 
done for BER versus how it is done for PER. 
 
 
Procedure for Calling C Encode Functions 
 
This section describes the step-by-step procedure for calling a C PER encode function.  This method must 
be used if C code generation was done.  This method can also be used as an alternative to using the control 
class interface if C++ code generation was done. 
 
Before a PER encode function can be called, the user must first initialize an encoding context block 
structure.  The context block is initialized by either calling the pu_newContext function (to allocate a 
dynamic context block), or by calling pu_initContext to initialize a static block.  Both of these routines 
allow a message buffer to be specified to receive the encoded message.  Specification of a message buffer 
is optional; if not specified, the encoder will allocate memory automatically for the encoded message.  
These routines also allow for the specification of aligned or unaligned encoding.  
 
An encode function can then be called to encode the message.  If the return status indicates success 
(ASN_OK), then the message will have been encoded in the given buffer.  Unlike BER, PER encoding 
starts from the beginning of the buffer and proceeds from left to right.  Therefore, the buffer start address is 
where the encoded PER message begins.  The length of the encoded message can be obtained by calling the 
pe_GetMsgLen run-time function.  If dynamic encoding was specified (i.e., a buffer start address and length 
were not given), the run-time routine pe_GetMsgPtr can be used to obtain the start address of the message.  
This routine will also return the length of the encoded message. 
 
A program fragment that could be used to encode an employee record is as follows: 
 
    #include employee.h         /* include file generated by ASN1C */ 
 
    main () 
    { 
        ASN1OCTET msgbuf[1024]; 
        int       msglen, stat; 
        ASN1CTXT* pCtxt; 
        ASN1BOOL  aligned = TRUE; 
        Employee  employee; /* typedef generated by ASN1C */ 
 
        /* Populate employee C structure */ 
 
        employee.name.givenName = "SMITH"; 
        ... 
 
        /* Allocate and initialize a new context pointer */ 
 
        pCtxt = pu_newContext (msgbuf, sizeof(msgbuf), aligned); 
 
        if ((stat = asn1PE_Employee (pCtxt, &employee)) == ASN_OK) { 
          msglen = pe_GetMsgLen (pCtxt); 
          ... 
        } 
        else 
          error processing... 



ASN1C V5.3  60 

    } 
 
    free (pCtxt);  /* release the context pointer */ 
 
 
In general, static buffers should be used for encoding messages where possible as they offer a substantial 
performance benefit over dynamic buffer allocation.  The problem with static buffers, however, is that you 
are required to estimate in advance the approximate size of the messages you will be encoding.  There is no 
built-in formula to do this, the size of an ASN.1 message can vary widely based on data types and other 
factors. 
 
If performance is not a significant issue, then dynamic buffer allocation is a good alternative.  Setting the 
buffer pointer argument to NULL in the call to pu_newContext or pu_initContext specifies dynamic 
allocation.  This tells the encoding functions to allocate a buffer dynamically.  The address of the start of 
the message is obtained after encoding by calling the run-time function pe_GetMsgPtr. 
 
The following code fragment illustrates PER encoding using a dynamic buffer: 
 
    #include employee.h         /* include file generated by ASN1C */ 
 
    main () 
    { 
        ASN1OCTET *msgptr; 
        int       msglen, stat; 
        ASN1CTXT* pCtxt; 
        ASN1BOOL  aligned = TRUE; 
        Employee  employee; /* typedef generated by ASN1C */ 
 
        employee.name.givenName = "SMITH"; 
        ... 
 
        pCtxt = pu_newContext (0, 0, aligned); 
 
        if ((stat = asn1PE_Employee (pCtxt, &employee)) == ASN_OK) { 
          msgptr = pe_GetMsgPtr (pCtxt, &msglen); 
          ... 
 
        } 
        else 
          error processing... 
    } 
 
 
Procedure for Using the C++ Control Class Encode Method 
 
The procedure to encode a message using the C++ class interface is as follows: 
 
1. Instantiate an ASN.1 PER encode buffer object (ASN1PEREncodeBuffer) to describe the buffer into 

which the message will be encoded.  Two overloaded constructors are available.  The first form takes 
as arguments a static encode buffer and size and a Boolean value indicating whether aligned encoding 
is to be done.  The second form only takes the Boolean aligned argument.  This form is used to specify 
dynamic encoding. 

 
2. Instantiate an ASN1T_<ProdName> object and populate it with data to be encoded. 
 
3. Instantiate an ASN1C_<ProdName> object to associate the message buffer with the data to be 

encoded. 
 

4. Invoke the ASN1C_<ProdName> object Encode method. 



ASN1C V5.3  61 

 
5. Check the return status.  The return value is a status value indicating whether encoding was successful 

or not.  Zero (ASN_OK) indicates success.  If encoding failed, the status value will be a negative 
number.  The encode buffer method  'PrintErrorInfo' can be invoked to get a textual explanation and 
stack trace of where the error occurred. 
 

6. If encoding was successful, get the start-of-message pointer and message length.  The start-of-message 
pointer is obtained by calling the GetMsgPtr method of the encode buffer object.  If static encoding 
was specified (i.e., a message buffer address and size were specified to the PER Encode Buffer class 
constructor), the start-of-message pointer is the buffer start address.  The message length is obtained by 
calling the GetMsgLen method of the encode buffer object. 

 
 
A program fragment that could be used to encode an employee record is as follows: 
 
    #include employee.h         // include file generated by ASN1CPP 
 
    main () 
    { 
        const ASN1OCTET* msgptr; 
        ASN1OCTET msgbuf[1024]; 
        int       msglen, stat; 
        ASN1BOOL  aligned = TRUE; 
 
        // step 1: instantiate an instance of the PER encode  
        // buffer class.  This example specifies a static  
        // message buffer.. 
 
        ASN1PEREncodeBuffer encodeBuffer (msgbuf,  
                                          sizeof(msgbuf),  
                                          aligned); 
 
        // step 2: populate msgData with data to be encoded 
 
        ASN1T_PersonnelRecord msgData; 
        msgData.name.givenName = "SMITH"; 
        ... 
 
        // step 3: instantiate an instance of the ASN1C_<ProdName>  
        // class to associate the encode buffer and message data.. 
 
        ASN1C_PersonnelRecord employee (encodeBuffer, msgData); 
 
        // steps 4 and 5: encode and check return status 
 
        if ((stat = employee.Encode ()) == ASN_OK) 
        { 
           printf ("Encoding was successful\n"); 
           printf ("Hex dump of encoded record:\n"); 
           encodeBuffer.HexDump (); 
           printf ("Binary dump:\n"); 
           encodeBuffer.BinDump ("employee"); 
 
           // step 6: get start-of-message pointer and message length. 
           // start-of-message pointer is start of msgbuf  
           // call GetMsgLen to get message length.. 
 
           msgptr = encodeBuffer.GetMsgPtr ();  // will return &msgbuf 
           len = encodeBuffer.GetMsgLen (); 



ASN1C V5.3  62 

        } 
        else 
        { 
           printf ("Encoding failed\n"); 
           encodeBuffer.PrintErrorInfo (); 
           exit (0); 
        } 
 
        // msgptr and len now describe fully encoded message 
 
        ... 
 
 
In general, static buffers should be used for encoding messages where possible as they offer a substantial 
performance benefit over dynamic buffer allocation.  The problem with static buffers, however, is that you 
are required to estimate in advance the approximate size of the messages you will be encoding.  There is no 
built-in formula to do this, the size of an ASN.1 message can vary widely based on data types and other 
factors. 
 
If performance is not a significant issue, then dynamic buffer allocation is a good alternative.  Dynamic 
buffer allocation is specified by using the form of the ASN1PEREncodeBuffer constructor that does not 
take a buffer address and size as an argument.  This constructor only requires the aligned Boolean value to 
specify whether aligned or unaligned encoding should be performed (aligned is true). 
 
The following code fragment illustrates PER encoding using a dynamic buffer:  
 
    #include employee.h         // include file generated by ASN1C 
 
    main () 
    { 
        ASN1OCTET *msgptr; 
        int       msglen, stat; 
        ASN1BOOL  aligned = TRUE; 
 
        // Create an instance of the compiler generated class.   
        // This example does dynamic encoding (no message buffer  
        // is specified).. 
 
        ASN1PEREncodeBuffer encodeBuffer (aligned); 
        ASN1T_PersonnelRecord msgData; 
        ASN1C_PersonnelRecord employee (encodeBuffer, msgData); 
 
        // Populate msgData within the class variable 
 
        employee.msgData.name.givenName = "SMITH"; 
        ... 
 
        // Encode 
 
        if ((stat = employee.Encode ()) == ASN_OK) 
        { 
           printf ("Encoding was successful\n"); 
           printf ("Hex dump of encoded record:\n"); 
           encodeBuffer.HexDump (); 
           printf ("Binary dump:\n"); 
           encodeBuffer.BinDump ("employee"); 
 
           // Get start-of-message pointer and length 
 



ASN1C V5.3  63 

           msgptr = encodeBuffer.GetMsgPtr (); 
           len = encodeBuffer.GetMsgLen (); 
        } 
        else 
        { 
           printf ("Encoding failed\n"); 
           encodeBuffer.PrintErrorInfo (); 
           exit (0); 
        } 
 
        return 0; 
    } 
 
 
Encoding a Series of PER Messages using the C++ Interface 
 
When encoding a series of PER messages using the C++ interface, performance can be improved by 
reusing the message processing objects to encode each message rather than creating and destroying the 
objects each time.  A detailed example of how to do this was given in the section on BER message 
encoding.  The PER case would be similar with the PER function calls substituted for the BER calls.  As 
was the case for BER, the encode message buffer object Init method can be used to reinitialize the encode 
buffer between invocations of the encode functions. 



ASN1C V5.3  64 

Generated PER Decode Functions 
 
PER encode/decode functions are generated when the �-per� switch is specified on the command line. For 
each ASN.1 production defined in the ASN.1 source file, a C PER decode function is generated.  This 
function will parse the data contents from a PER-encoded ASN.1 message and populate a variable of the 
corresponding type with the data. 
 
If C++ code generation is specified, a control class is generated that contains a Decode method that wraps 
this function.  This function is invoked through the class interface to encode an ASN.1 message into the 
variable referenced in the msgData component of the class. 
 
 
Generated C Function Format and Calling Parameters 
 
The format of the name of each generated PER decode function is as follows: 
 
    asn1PD_[<prefix>]<prodName> 
 
where <prodName> is the name of the ASN.1 production for which the function is being generated and 
<prefix> is an optional prefix that can be set via a configuration file setting.  The configuration setting 
used to set the prefix is the <typePrefix> element.  This element specifies a prefix that will be applied to all 
generated typedef names and function names for the production. 
 
The calling sequence for each decode function is as follows: 
 
    status = asn1PD_<name> (ASN1CTXT* ctxt_p, <name>* pvalue);  
 
In this definition, <name> denotes the prefixed production name defined above. 
 
The ctxt_p argument is used to hold a context pointer to keep track of decode parameters.  This is a basic 
"handle" variable that is used to make the function reentrant so it can be used in an asynchronous or 
threaded application.  The user is required to supply a pointer to a variable of this type declared somewhere 
in his or her program.  
 
The pvalue argument is a pointer to a variable to hold the decoded result.  This variable is of the type 
generated from the ASN.1 production.  The decode function will automatically allocate dynamic memory 
for variable length fields within the structure.  This memory is tracked within the context structure and is 
released when the context structure is freed. 
 
The function result variable stat returns the status of the decode operation.  Status code 0 (ASN_OK) 
indicates the function was successful.  A negative value indicates decoding failed.  Return status values are 
defined in the "asn1type.h" include file.  The reason text and a stack trace can be displayed using the 
rtErrPrint function described later in this document. 
 
 
Generated C++ Decode Method Format and Calling Parameters 
 
Generated decode functions are invoked through the class interface by calling the base class �Decode� 
method.  The calling sequence for this method is as follows: 
 
    status = class_var.Decode ();  
 
In this definition, class_var is a variable of the class generated for the given production.   
 
An ASN1PERDecodeBuffer object must be passed to the class_var constructor prior to decoding.  This is 
where the start address of the message to be decoded and message length are specified.  A Boolean 
argument is also passed indicating whether the message to be decoded was encoded using aligned or 
unaligned PER 



ASN1C V5.3  65 

 
The function result variable status returns the status of the decode operation.  The return status will be 
zero (ASN_OK) if decoding is successful or a negative value if an error occurs.  Return status values are 
defined in Appendix A of this document and online in the "asn1type.h" include file.   
 
 
Procedure for Calling C Decode Functions 
 
This section describes the step-by-step procedure for calling a C PER decode function.  This method must 
be used if C code generation was done.  This method can also be used as an alternative to using the control 
class interface if C++ code generation was done. 
 
Unlike BER, the user must know the ASN.1 type of a PER message before it can be decoded.  This is 
because the type cannot be determined at run-time.  There are no embedded tag values to reference to 
determine the type of message received.   
 
There are three steps to calling a compiler-generated decode function: 
 
1. Prepare a context variable for decoding 
2. Call the appropriate compiler-generated decode function to decode the message 
3. Free the context after use of the decoded data is complete to free allocated memory structures 
 
Before a PER decode function can be called, the user must first initialize a context block structure.  The 
context block is initialized by either calling the pu_newContext function (to allocate a dynamic context 
block), or by calling pu_initContext to initialize a static block.  Both of these routines allow a message 
buffer that contains a PER-encoded message to be specified.  These routines also allow for the specification 
of aligned or unaligned decoding.  
 
A decode function can then be called to decode the message.  If the return status indicates success 
(ASN_OK), then the message will have been decoded into the given ASN.1 type variable.   The decode 
function may automatically allocate dynamic memory to hold variable length variables during the course of 
decoding.  This memory will be tracked in the context structure, so the programmer does not need to worry 
about freeing it.  It will be released when the context is freed. 
 
The final step of the procedure is to free the context block.  This must be done regardless of whether the 
block is static (declared on the stack and initialized using pu_initContext), or dynamic (created using 
pu_newContext).  The function to free the context is pu_freeContext.   
                                    
A program fragment that could be used to decode an employee record is as follows: 
 
    #include employee.h         /* include file generated by ASN1C */ 
 
    main () 
    { 
        ASN1OCTET msgbuf[1024]; 
        ASN1TAG   msgtag; 
        int       msglen, stat; 
        ASN1CTXT  ctxt; 
        ASN1BOOL  aligned = TRUE; 
    PersonnelRecord employee; 
 
        .. logic to read message into msgbuf .. 
 
        /* This example uses a static context block */ 
 
        /* step 1: prepare the context block */ 
 
        pu_initContext (&ctxt, msgbuf, msglen, aligned); 
 



ASN1C V5.3  66 

        /* step 2: decode the record */ 
 
        stat = asn1PD_PersonnelRecord (&ctxt, &employee); 
 
        if (stat == ASN_OK) 
        { 
            process received data.. 
        } 
        else { 
            /* error processing... */ 
            rtErrPrint (&ctxt); 
        } 
 
        /* step 3: free the context */ 
 
        pu_freeContext (&ctxt); 
    } 
 
 
Procedure for Using the C++ Control Class Encode Method 
 
The following are the steps are involved in decoding a PER message using the generated C++ class: 
 
1. Instantiate an ASN.1 PER decode buffer object (ASN1PERDecodeBuffer) to describe the message to 

be decoded.  The constructor takes as arguments a pointer to the message to be decoded, the length of 
the message, and a flag indicating whether aligned encoding was used or not. 
 

2. Instantiate an ASN1T_<ProdName> object to hold the decoded message data. 
 
3. Instantiate an ASN1C_<ProdName> object to decode the message.  This class associates the message 

buffer object with the object that is to receive the decoded data.  The results of the decode operation 
will be placed in the variable declared in step 2. 

 
4. Invoke the ASN1C_<ProdName> object Decode method. 
 
5. Check the return status.  The return value is a status value indicating whether decoding was successful 

or not.  Zero (ASN_OK) indicates success.  If decoding failed, the status value will be a negative 
number.  The decode buffer method  'PrintErrorInfo' can be invoked to get a textual explanation and 
stack trace of where the error occurred. 

 
6. Release dynamic memory that was allocated by the decoder.  All memory associated with the decode 

context is released when both the ASN1PERDecodeBuffer and ASN1C_<ProdName> objects go out 
of scope. 

 
A program fragment that could be used to decode an employee record is as follows: 
 
    #include employee.h         // include file generated by ASN1CPP 
 
    main () 
    { 
        ASN1OCTET msgbuf[1024]; 
        int       msglen, stat; 
        ASN1BOOL  aligned = TRUE; 
 
        .. logic to read message into msgbuf .. 
 
        // step 1: instantiate a PER decode buffer object 
 
        ASN1PERDecodeBuffer decodeBuffer (msgbuf, msglen, aligned); 



ASN1C V5.3  67 

 
        // step 2: instantiate an ASN1T_<ProdName> object 
 
        ASN1T_PersonnelRecord msgData; 
 
        // step 3: instantiate an ASN1C_<ProdName> object 
 
        ASN1C_PersonnelRecord employee (decodeBuffer, msgData); 
 
        // step 4: decode the record 
 
        stat = employee.Decode (); 
 
        // step 5: check the return status 
 
        if (stat == ASN_OK) 
        { 
            process received data.. 
        } 
        else { 
            // error processing.. 
            decodeBuffer.PrintErrorInfo (); 
        } 
 
        // step 6: free dynamic memory (will be done automatically  
        // when both the decodeBuffer and employee objects go out  
        // of scope).. 
 
    } 
 
 
Decoding a Series of Messages Using the C++ Control Class Interface 
 
The above example is fine as a sample for decoding a single message, but what happens in the more typical 
scenario of having a long-running loop that continuously decodes messages?  The logic shown above 
would not be optimal from a performance standpoint because of the constant creation and destruction of the 
message processing objects.  It would be much better to create all of the required objects outside of the loop 
and then reuse them to decode and process each message.   
 
A code fragment showing a way to do this is as follows: 
 
    #include employee.h         // include file generated by ASN1C 
 
    main () 
    { 
        ASN1OCTET msgbuf[1024]; 
        int       msglen, stat; 
        ASN1BOOL  aligned = TRUE; 
 
        // step 1: instantiate a PER decode buffer object 
 
        ASN1PERDecodeBuffer decodeBuffer (msgbuf, msglen, aligned); 
 
        // step 2: instantiate an ASN1T_<ProdName> object 
 
        ASN1T_PersonnelRecord msgData; 
 
        // step 3: instantiate an ASN1C_<ProdName> object 
 



ASN1C V5.3  68 

        ASN1C_PersonnelRecord employee (decodeBuffer, msgData); 
 
        // loop to continuously decode records 
 
        for (;;) { 
 
            .. logic to read message into msgbuf .. 
 
            stat = employee.Decode (); 
 
            // step 5: check the return status 
 
            if (stat == ASN_OK) 
            { 
                process received data.. 
            } 
            else { 
                // error processing.. 
                decodeBuffer.PrintErrorInfo (); 
            } 
 
            // step 6: free dynamic memory  
 
            employee.memFreeAll (); 
        } 
 
    } 
 
The only difference between this and the previous example is the addition of the decoding loop and the 
modification of step 6 in the procedure.  The decoding loop is an infinite loop to continuously read and 
decode messages from some interface such as a network socket.  The decode calls are the same, but before 
in step 6, we were counting on the message buffer and control objects to go out of scope to cause the 
memory to be released.  Since the objects are now being reused, this will not happen.  So the call to the 
memFreeAll method that is defined in the ASN1C_Type base class will force all memory held at that point 
to be released. 
 
 
Performance Considerations: Dynamic Memory Management 
 
Please refer to the section of the same name in the BER Decode Functions section for a discussion of 
memory management performance issues.  All of those issues that apply to BER and DER also apply to 
PER as well. 



ASN1C V5.3  69 

Generated Print Functions 
 
The �print option causes print functions to be generated.  These functions can be used to print the contents 
of variables of generated types.  
 
If no output file is specified with the �print qualifier, the functions are written to separate .c files for each 
module in the source file.  The format of the name of each file is <module>Print.c.  If an output filename is 
specified after the �print qualifier, all functions are written to this file. 
 
The format of the name of each generated print function is as follows: 
 
    asn1Print_[<prefix>]<prodName> 
 
where <prodName> is the name of the ASN.1 production for which the function is being generated and 
<prefix> is an optional prefix that can be set via a configuration file setting.  The configuration setting 
used to set the prefix is the <typePrefix> element.  This element specifies a prefix that will be applied to all 
generated typedef names and function names for the production. 
 
The calling sequence for each generated function is as follows: 
 
    asn1Print_<name> (ASN1ConstCharPtr name, <name>* pvalue) 
 
In this definition, <name> denotes the prefixed production name defined above. 
 
The name argument is used to hold the top-level name of the variable being printed.  It is typically set to 
the same name as the pvalue argument in quotes (for example, to print an employee record, a call to 
�asn1Print_Employee (�employee�, &employee) might be used). 
 
The pvalue argument is used to pass a pointer to a variable of the item to be printed. 
 
If C++ code generation is specified, a Print method is added to the ASN1C control class for the type.  This 
method takes only a name argument; the pvalue argument is obtained from the msgData reference 
contained within the class. 
 
 



ASN1C V5.3  70 

Event Handler Interface 
 
The �events command line switch causes hooks for user-defined event handlers to be inserted into the 
generated decoded functions.  This feature is only available when C++ code generation is being done.   
What these event handlers do is up to the user.  They fire when key message-processing events or errors 
occur during the course of parsing an ASN.1 message.  They are similar in functionality to the Simple API 
for XML (SAX) that was introduced to provide a simple interface for parsing XML messages. 
 
 
How it Works 
 
Users of XML parsers are probably already quite familiar with the concepts of SAX.  Significant events are 
defined that occur during the parsing of a message.  As a parser works through a message, these events are 
�fired� as they occur by invoking user defined callback functions.  These callback functions are also known 
as event handler functions.  A diagram illustrating this parsing process is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The events are defined to be significant actions that occur during the parsing process.  We will define the 
following events that will be passed to the user when an ASN.1 message is parsed: 
 
1. startElement � This event occurs when the parser moves into a new element.  For example, if we have 

a SEQUENCE { a, b, c } construct (type names omitted), this event will fire when we begin parsing a, 
b, and c.  The name of the element is passed to the event handling callback function. 
 

2. endElement � This event occurs when the parser leaves a given element space.  Using the example 
above, these would occur after the parsing of a, b, and c are complete.  The name of the element is 
once again passed to the event handling callback function. 
 

3. contents methods � A series of virtual methods are defined to pass all of the different types of 
primitive values that might be encountered when parsing a message (see the event handler class 
definition below for a complete list).  
 

4. error � This event will be fired when a parsing error occurs.  It will provide fault-tolerance to the 
parsing process as it will give the user the opportunity to fix or ignore errors on the fly to allow the 
parsing process to continue. 

 
These events are defined as unimplemented virtual methods in two base classes: Asn1NamedEventHandler 
(the first 3 events) and Asn1ErrorHandler (the error event).  These classes are defined in the 
asn1CppEvtHndlr.h header file. 
 
The start and end element methods are invoked when an element is parsed within a constructed type.  The 
start method is invoked as soon as the tag/length is parsed in a BER message or the preamble/length is 
parsed in a PER message.  The end method is invoked after the contents of the field are processed.  The 
signature of these methods is as follows: 
 
 
    virtual void startElement (const char* name, int index) = 0; 
    virtual void endElement (const char* name, int index) = 0; 

ASN.1 MESSAGE 

Event Event Event Event 

Parser (ASN.1  
decode function) 



ASN1C V5.3  71 

 
The name argument is used pass the element name.  The index argument is used for SEQUENCE OF/SET 
OF constructs only.  It is used to pass the index of the item in the array.  This argument is set to �1 for all 
other constructs. 
 
There is one contents method for passing each of the ASN.1 data types.  Some methods are used to handle 
several different types.  For example, the charValue method is used for values of all of the different 
character string types (IA5String, NumericString, PrintableString, etc.) as well as for big integer values.  
Note that this method is overloaded.  The second implementation is for 16-bit character strings.  These 
strings are represented as an array of unsigned short integers in ASN1C.  All of the other contents methods 
correspond to a single equivalent ASN.1 primitive type. 
 
The error handler base class has a single virtual method that must be implemented.  This is the error 
method and this has the following signature: 
 
    virtual int error (ASN1CTXT* pCtxt, ASN1CCB* pCCB, int stat) = 0; 
 
In this definition, pCtxt is a pointer to the standard ASN.1 context block that should already be familiar.  
The pCCB structure is known as a �Context Control Block�.  This can be thought of as a sub-context used 
to control the parsing of nested constructed types within a message.  It is included as a parameter to the 
error method mainly to allow access to the �seqx� field.  This is the sequence element index used when 
parsing a SEQUENCE construct.  If parsing a particular element is to be retried, this item must be 
decremented within the error handler. 
 
 
How to Use It 
 
To define event handlers, two things must be done: 
 
1. One or more new classes must be derived from the Asn1NamedEventHandler and/or the 

Asn1ErrorHandler base classes.  All pure virtual methods must be implemented. 
 

2. Objects of these classes must be created and registered prior to calling the generated decode method or 
function. 

 
The best way to illustrate this procedure is through examples.  We will first show a simple event handler 
application to provide a customized formatted printout of the fields in a PER message.  Then we will show 
a simple error handler that will ignore unrecognized fields in a BER message. 
 
Example 1: A Formatted Print Handler 
 
The ASN1C evaluation and distribution kits include a sample program for doing a formatted print of parsed 
data.  This code can be found in the cpp/sample_per/eventHandler directory.  Parts of the code will be 
reproduced here for reference, but refer to this directory to see the full implementation. 
 
The format for the printout will be simple.  Each element name will be printed followed by an equal sign 
(=) and an open brace ({) and newline.  The value will then be printed followed by another newline.  
Finally, a closing brace (}) followed by another newline will terminate the printing of the element.  An 
indentation count will be maintained to allow for a properly indented printout. 
 
A header file must first be created to hold our print handler class definition (or the definition could be 
added to an existing header file).  This file will contain a class derived from the Asn1NamedEventHandler 
base class as follows: 
 
class PrintHandler : public Asn1NamedEventHandler { 
 protected: 
   const char* mVarName; 
   int mIndentSpaces; 
 public: 



ASN1C V5.3  72 

   PrintHandler (const char* varName); 
   ~PrintHandler (); 
   void indent (); 
   virtual void startElement (const char* name, int index = -1); 
   virtual void endElement (const char* name, int index = -1); 
   virtual void boolValue (ASN1BOOL value); 
 
   ... other virtual contents method declarations 
 
} 
 
In this definition, we chose to add the mVarName and mIndentSpaces member variables to keep track of 
these items.  The user is free to add any type of member variables he or she wants.  The only firm 
requirement in defining this derived class is the implementation of the virtual methods. 
 
We implement these virtual methods as follows: 
 
In startElement, we print the name, equal sign, and opening brace: 
 
void PrintHandler::startElement (const char* name, int index) 
{ 
   indent(); 
   printf (�%s = {\n�, name); 
   mIndentLevel++; 
} 
 
In this simplified implementation, we simply indent (this is another private method within the class) and 
print out the name, equal sign, and opening brace.  We then increment the indent level.  Note that this is a 
highly simplified form.  We don�t even bother to check if the index argument is greater than or equal to 
zero.  This would determine if a �[x]� should be appended to the element name.  In the sample program that 
is included with the compiler distribution, the implementation is complete. 
 
In endElement, we simply terminate our brace block as follows: 
 
void PrintHandler::endElement (const char* name, int index) 
{ 
   mIndentLevel--; 
   indent(); 
   printf (�}\n�); 
} 
 
All that each of the various value methods have to do is print a stringified representation of the value out to 
stdout.  For example, the intValue callback would just print an integer value: 
 
void PrintHandler::intValue (int value) 
{ 
   indent(); 
   printf (�%d\n�, value); 
} 
 
Next, we need to create an object of our derived class and register it prior to invoking the decode method.  
In the reader.cpp program, the following lines do this: 
 
   // Create and register an event handler object 
 
   PrintHandler* pHandler = new PrintHandler ("employee"); 
   decodeBuffer.addEventHandler (pHandler); 
 



ASN1C V5.3  73 

The addEventHandler method defined in the Asn1MessageBuffer base class is the mechanism used to do 
this. Note that event handler objects can be stacked.  Several can be registered before invoking the decode 
function.  When this is done, the entire list of event handler objects is iterated through and the appropriate 
event handling callback function invoked whenever a defined event is encountered. 
The implementation is now complete.  The program can now be compiled and run.  When this is done, the 
resulting output is as follows: 
 
employee = { 
   name = { 
      givenName = { 
         "John" 
      } 
      initial = { 
         "P" 
      } 
      familyName = { 
         "Smith" 
      } 
   } 
   ... 
 
This can certainly be improved.  For one thing it can be changed to print primitive values out in a �name = 
value� format (i.e., without the braces).  But this should provide the general idea of how it is done. 
 
Example 2: An Error Handler 
 
Despite the addition of things like extensibility and version brackets, ASN.1 implementations get out-of-
sync.  For situations such as this, the user needs some way to intervene in the parsing process to set things 
straight.  This is fault-tolerance � the ability to recover from certain types of errors. 
 
The error handler interface is provided for this purpose.  The concept is simple.  Instead of throwing an 
exception and immediately terminating the parsing process, a user defined callback function is first invoked 
to allow the user to check the error.  If the user can fix the error, all he or she needs to do is apply the 
appropriate patch and return a status of ASN_OK.  The parser will be none the wiser.  It will continue on 
thinking everything is fine. 
 
This interface is probably best suited for recovering from errors in BER or DER instead of PER.  The 
reason is the TLV format of BER makes it relatively easy to skip an element and continue on.  It is much 
more difficult to find these boundaries in PER. 
 
Our example can be found in the cpp/sample_ber/errorHandler subdirectory.  In this example, we have 
purposely added a bogus element to one of the constructs within an encoded employee record.  The error 
handler will be invoked when this element is encountered.  Our recovery action will simply be to print out a 
warning message, skip the element, and continue. 
 
As before, the first step is to create a class derived from the Asn1ErrorHandler base class.  This class is as 
follows: 
 
class MyErrorHandler : public Asn1ErrorHandler { 
 public: 
 
   // The error handler callback method.  This is the method  
   // that the user must override to provide customized  
   // error handling.. 
 
   virtual int error (ASN1CTXT* pCtxt, ASN1CCB* pCCB, int stat); 
 
} ; 
 
 



ASN1C V5.3  74 

Simple enough.  All we are doing is providing an implementation of the error method. 
 
Implementing the error method requires some knowledge of the run-time internals.  In most cases, it will be 
necessary to somehow alter the decoding buffer pointer so that the same field isn�t looked at again.  If this 
isn�t done, an infinite loop can occur as the parser encounter the same error condition over and over again.  
The run-time functions xd_NextElement or xd_OpenType might be useful in the endeavor as they provide a 
way to skip the current element and move on to the next item. 
 
Our sample handler corrects the error in which an unknown element is encountered within a SET construct.  
This will cause the error status ASN_E_NOTINSET to be generated.  When the error handler sees this 
status, it prints information on the error that was encountered to the console, skips to the next element, and 
then returns an ASN_OK status that allows the decoder to continue.  If some other error occurred (i.e., 
status was not equal to ASN_E_NOTINSET), then the original status is passed out which forces the 
termination of the decoding process. 
 
The full text of the handler is as follows: 
 
int MyErrorHandler::error (ASN1CTXT* pCtxt, ASN1CCB* pCCB, int stat) 
{ 
   // This handler is set up to look explicitly for ASN_E_NOTINSET  
   // errors because we know the SET might contain some bogus elements.. 
 
   if (stat == ASN_E_NOTINSET) { 
 
      // Print information on the error that was encountered 
 
      printf ("decode error detected:\n"); 
      xu_perror (pCtxt); 
      printf ("\n"); 
 
      // Skip element 
 
      xd_NextElement (pCtxt); 
 
      // Return an OK status to indicate parsing can continue 
 
      return ASN_OK; 
   } 
 
   else return stat;  // pass existing status back out 
 
} 
 
 
Now we need to register the handler.  Unlike event handlers, only a single error handler can be registered.  
The method to do this in the message buffer class is setErrorHandler.  The following two lines of code in 
the reader program register the handler: 
 
   MyErrorHandler errorHandler; 
 
   decodeBuffer.setErrorHandler (&errorHandler); 
 
 
The error handlers can be as complicated as you need them to be.  You can use them in conjunction with 
event handlers in order to figure out where you are within a message in order to look for a specific error at 
a specific place.  Or you can be very generic and try to continue no matter what. 
 



ASN1C V5.3  75 

IMPORT/EXPORT of Types 
 
ASN1C allows productions to be shared between different modules through the ASN.1 IMPORT/EXPORT 
mechanism.  The compiler parses but ignores the EXPORTS declaration within a module.  As far as it is 
concerned, any type defined within a module is available for import by another module. 
 
When ASN1C sees an IMPORT statement, it first checks its list of loaded modules to see if the module has 
already been loaded into memory.  If not, it will attempt to find and parse another source file containing the 
module.  The logic for locating the source file is as follows: 
 
1. The configuration file (if specified) is checked for a <sourceFile> element containing the name of the 

source file for the module. 
 

2. If this element is not present, the compiler looks for a file with the name <ModuleName>.asn where 
module name is the name of the module specified in the IMPORT statement.   

 
In both cases, the �I command line option can be used to tell the compiler where to look for the files. 
 
The other way of specifying multiple modules is to include them all within a single ASN.1 source file.  It is 
possible to have an ASN.1 source file containing multiple module definitions in which modules IMPORT 
definitions from other modules.  An example of this would be the following: 
 
 ModuleA DEFINITIONS ::= BEGIN 
    IMPORTS B From ModuleB; 
 
    A ::= B 
 
 END 
 
 ModuleB DEFINITIONS ::= BEGIN 
 
    B ::= INTEGER 
 
 END 
 
This entire fragment of code would be present in a single ASN.1 source file. 
 



ASN1C V5.3  76 

ASN1C90 
 
The ASN1C90 version of the compiler is a separate executable that contains extensions to handle the older 
1990 version of ASN.1.  Although this version is no longer supported by the ITU-T, it is still in use today.   
This version of the compiler also contains logic to parse some common MACRO definitions that are still in 
widespread use despite the fact that MACRO syntax was retired with this version of the standard.  The 
types of MACRO definitions that are supported are ROSE OPERATION and ERROR and SNMP 
OBJECT-TYPE. 
 
ROSE OPERATION and ERROR 
 
ROSE stands for �Remote Operations Service Element� and defines a request/response transaction protocol 
in which requests to a conforming entity must be answered with the result or errors defined in operation 
definitions.  Variations of this are used in a number of protocols in use today including CSTA and TCAP. 
 
The definition of the ROSE OPERATION MACRO that is built into the ASN1C90 version of the compiler 
is as follows: 
 
OPERATION MACRO ::=              
BEGIN 
  TYPE NOTATION           ::= Parameter Result Errors LinkedOperations 
  VALUE NOTATION          ::= value (VALUE INTEGER) 
  Parameter               ::= ArgKeyword NamedType | empty 
  ArgKeyword              ::= "ARGUMENT" | "PARAMETER" 
  Result                  ::= "RESULT" ResultType | empty 
  Errors                  ::= "ERRORS" "{"ErrorNames"}" | empty 
  LinkedOperations        ::= "LINKED" "{"LinkedOperationNames"}" | empty 
  ResultType              ::= NamedType | empty 
  ErrorNames              ::= ErrorList | empty 
  ErrorList               ::= Error | ErrorList "," Error 
  Error                   ::= value(ERROR)        -- shall reference an error value 
                              | type              -- shall reference an error type 
                                                  -- if no error value is specified 
  LinkedOperationNames    ::= OperationList | empty 
  OperationList           ::= Operation | OperationList "," Operation 
  Operation               ::= value(OPERATION)    -- shall reference an operation value 
                              | type              -- shall reference an operation type 
                                                  -- if no operation value is specified 
  NamedType               ::= identifier type | type 
 
END 
 
This MACRO does not need to be defined in the ASN.1 specification to be parsed.  In fact, any attempt to 
redefine this MACRO will be ignored.  Its definition is hard-coded into the compiler. 
 
What the compiler does with this definition is uses it to parse types and values out of OPERATION 
definitions.  An example of an OPERATION definition is as follows: 
 
login OPERATION  
ARGUMENT SEQUENCE { username IA5String, password IA5String } 
RESULT   SEQUENCE { ticket OCTET STRING, welcomeMessage IA5String } 
ERRORS { authenticationFailure, insufficientResources } 
::= 1 
 
In this case, there are two embedded types (an ARGUMENT type and a RESULT type) and an integer 
value (1) that identifies the OPERATION.  There are also error definitions. 
 
The ASN1C90 compiler generates two types of items for the OPERATION: 
 
1. It extracts the type definitions from within the OPERATION definitions and generates equivalent 

C/C++ structures and encoders/decoders, and 
 



ASN1C V5.3  77 

2. It generates value constants for the value associated with the OPERATION (i.e., the value to the right 
of the �::=� in the definition). 
 

The compiler does not generate any structures or code related to the OPERATION itself (for example, code 
to encode the body and header in a single step).  The reason is because of the multi-layered nature of the 
protocol.  It is assumed that the user of such a protocol would be most interested in doing the processing in 
multiple stages, hence no single function or structure is generated. 
 
Therefore, to encode the login example the user would do the following: 
 
1. At the application layer, the Login_ARGUMENT structure would be populated with the username and 

password to be encoded. 
 

2. The encode function for Login_ARGUMENT would be called and the resulting message pointer and 
length would be passed down to the next layer (the ROSE layer). 
 

3. At the ROSE layer, the Invoke structure would be populated with the OPERATION value, invoke 
identifier, and other header parameters.  The parameter.numocts value would be populated with the 
length of the message passed in from step 2.  The parameter.data field would be populated with the 
message pointer passed in from step 2. 
 

4. The encode function for Invoke would be called resulting in a fully encoded ROSE Invoke message 
ready for transfer across the communications link. 

 
The following is a picture showing this process: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On the decode side, the process would be reversed with the message flowing up the stack: 
 
1. At the ROSE layer, the header would be decoded producing information on the OPERATION type 

(based on the MACRO definition) and message type (Invoke, Result, etc..).  The invoke identifier 
would also be available for use in session management.  In our example, we would know at this point 
that we got a login invoke request. 
 

2. Based on the information from step 1, the ROSE layer would know that the Open Type field contains a 
pointer and length to an encoded Login_ARGUMENT component.  It would then route this 
information to the appropriate processor within the Application Layer for handling this type of 
message. 
 

3. The Application Layer would call the specific decoder associated with the Login_ARGUMENT.  It 
would then have available to it the username/password the user is logging in with.  It could then do 
whatever application-specific processing is required with this information (database lookup, etc.). 
 

4. Finally, the Application Layer would begin the encoding process again in order to send back a Result 
or Error message to the Login Request. 
 

A picture showing this is as follows: 

Application Layer 

ROSE Layer 

Populate specific message structure (Login_ARGUMENT) and encode. 

Encoded message pointer and length 

Populate ROSE header message structure (Invoke) and encode. 
Open type structure contains message pointer and length from previous step. 

Final encoded message  



ASN1C V5.3  78 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The login OPERATION also contains references to ERROR definitions.  These are defined using a 
separate MACRO that is built into the compiler.  The definition of this MACRO is as follows: 
 
ERROR MACRO ::= 
BEGIN 
  TYPE NOTATION     ::= Parameter 
 
  VALUE NOTATION    ::= value (VALUE INTEGER) 
 
  Parameter         ::= "PARAMETER" NamedType | empty 
 
  NamedType         ::= identifier type | type 
 
END  
 
 
In this definition, an error is assigned an identifying number as well as on optional parameter type to hold 
parameters associated with the error.  An example of a reference to this MACRO for the 
authenticationFailure error in the login operation defined earlier would be as follows: 
 
applicationError ERROR 
PARAMETER SEQUENCE { 
  errorText IA5String 
} } 
::= 1 
 
The ASN1C90 compiler will generate a type definition for the error parameter and a value constant for the 
error value.  The format of the name of the type generated will be �<name>_PARAMETER� where 
<name> is the ERROR name (applicationError in this case) with the first letter set to uppercase.  The name 
of the value will simply be the ERROR name. 
 
 
SNMP OBJECT-TYPE 
 
The SNMP OBJECT-TYPE MACRO is one of several MACROs used in Management Information Base 
(MIB) definitions.  It is the only MACRO of interest to ASN1C because it is the one that specifies the 
object identifiers and data that are contained in the MIB. 
 
The version of the MACRO currently supported by this version of ASN1C can be found in the SMI 
Version 2 RFC (RFC 2578).   The compiler generates code for two of the items specified in this MACRO 
definition: 
 
1. The ASN.1 type that is specified using the SYNTAX command, and 

 
2. The assigned OBJECT IDENTIFIER value 
 

Application Layer 

ROSE Layer 

Call specific function to decode Login_ARGUMENT and process data. 

Encoded message pointer and length 

Decode ROSE header message structure (Invoke). 
Open type structure contains message pointer and length of encoded 
Login_ARGUMENT. 

Encoded ROSE message  



ASN1C V5.3  79 

For an example of the generated code, we can look at the following definition from the UDP MIB: 
 
udpInDatagrams OBJECT-TYPE 
    SYNTAX      Counter32 
    MAX-ACCESS  read-only 
    STATUS      current 
    DESCRIPTION 
            "The total number of UDP datagrams delivered to UDP users." 
    ::= { udp 1 } 
 
In this case, a type definition is generated for the SYNTAX element and an Object Identifier value is 
generated for the entire item.  The name used for the type definition is �<name>_SYNTAX� where 
<name> would be replaced with the OBJECT-TYPE name (i.e., udpInDatagrams).  The name used for the 
Object Identifier value constant is the OBJECT-TYPE name.  So for the above definitions, the following 
two C items would be generated: 
 
typedef Counter32 udpInDatagrams_SYNTAX; 
 
ASN1OBJID udpInDatagrams = { 
   8, 
   { 1, 3, 6, 1, 2, 1, 7, 1 } 
} ; 
 





ASN1C V5.3  81 

ASN.1 C++ Run-time Classes 
 
The ASN.1 C++ run-time classes are wrapper classes that provide an object-oriented interface to the ASN.1 
C run-time library functions.  The following base classes form the foundation on which a set of derived 
classes are built: 
 
• The �ASN1Context� class wraps the C ASN1CTXT structure that encapsulates all global data used in 

the encode/decode process. 
 

• The �ASN1MessageBuffer� class is the base class for encapsulating message buffers.  From this, 
BER/DER and PER encode and decode message buffer classes are derived. 
 

• The �ASN1CType� class is the base class from which all compiler-generated ASN.1 production classes 
are derived. 
 

• The �Asn1NamedEventHandler� class is the base class from which custom event handler classes are 
derived. 
 

• The �Asn1ErrorHandler� class is the base class from which custom error handler class are derived. 
 
 
ASN1Context 
 
This class wraps an ASN.1 context variable. It is implemented to be a reference counted class to allow the 
ASN1MessageBuffer and ASN1CType classes to share a single ASN1Context instance.  Its purpose is to 
maintain context information on an encode/decode operation across different function invocations. 
 
In general, a user will have no need for direct use of this class.  Objects are constructed from it and used 
internally inside the message buffer and type base classes. 
 
ASN1Context::ASN1Context 
 
The constructor initializes the encapsulated ASN1CTXT member variable. 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1Context::~ASN1Context 
 
 
The destructor frees all dynamic memory associated with the given context. 
 
 
ASN1Context::GetPtr 
 
 
This method returns a pointer to the encapsulated ASN1CTXT member variable.  It can be used if direct 
access to the encapsulated context variable is required (for example, to make a direct call to a C run-time 
library function). 
 
Calling Sequence: 



ASN1C V5.3  82 

 
 ptr = context.GetPtr (); 
 
where �context� is an ASN1Context object. 
 
Return Value: 
 
Name Type Description 
ptr ASN1CTXT* Pointer to encapsulated context structure. 

 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1Context::PrintErrorInfo 
 
This method prints information from the error structure within the encapsulated context to the standard 
output (stdout). 
 
Calling Sequence: 
 
 context.PrintErrorInfo (); 
 
where �context� is an ASN1Context object. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 



ASN1C V5.3  83 

 
ASN1MessageBuffer 
 
This in an abstract base class from which the ASN1BEREncodeBuffer, ASN1BERDecodeBuffer, 
ASN1PEREncodeBuffer, and ASN1PERDecodeBuffer classes are derived.  This class allows for the 
management of buffer pointers and lengths used in the encoding/decoding of ASN.1 messages. A user must 
declare a variable of one of these derived classes prior to using a compiler generated encode/decode class.  
This is because a reference to an ASN1MessageBuffer object is a required argument to the constructor of 
the ASN1C_<ProdName> generated class. 
 
This base class defines the following public methods: 
 
 
ASN1MessageBuffer::addEventHandler 
 
This method is used to register an event handler object.  This is an object derived from the 
Asn1NamedEventHandler base class that contains custom event handler callback methods.  See the section 
on Event Handlers for further details.  Each time this method is invoked, the specified event handler object 
is added to the list of registered handlers. 
 
Calling Sequence: 
 
 messageBuffer.addEventHandler (pEventHandler); 
 
where messageBuffer is one of the ASN1Message buffer derived class objects. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pEvent 
Handler 

Asn1Named 
EventHandler* 
 

Pointer to an object of a class derived from the Asn1NamedEventHandler base class. 
 

 
Output Parameters: 
 
None 
 
 
ASN1MessageBuffer::CStringToBMPString 
 
This method converts a standard 8-bit null-terminated C string into a 16-bit character string. 
 
Calling Sequence: 
 

bmpString = messageBuffer.CStringToBMPString (cstring,  
                                              pBMPString,  
                                              pCharSet); 
 

where messageBuffer is one of the ASN1Message buffer derived class objects. 
 
Return Value: 
 
Name Type Description 
bmpString ASN1BMP 

String* 
Pointer to the structure containing the converted string value.  This pointer is equal 
to the pBMPString output parameter.  This parameter specifies the buffer into which 



ASN1C V5.3  84 

 the converted string is to be stored. 
 

 
Input Parameters: 
 
Name Type Description 
cstring ASN1Const 

CharPtr 
 

Pointer to C string to be converted.  The ASN1ConstCharPtr type maps to a char* 
for C or a const char* for C++. 
 

 
Output Parameters: 
 
Name Type Description 
pBMP 
String 

ASN1BMP 
String* 
 

Pointer to BMP string structure to receive converted string.  
 

pCharSet Asn116Bit 
CharSet* 
 

An optional character set to filter the conversion through.  Any characters not in the 
defined set will be discarded.  By default, this argument is set to NULL (i.e., no 
filtering will be done). 
 

 
 
 
ASN1MessageBuffer::getByteIndex 
 
This method returns the current byte index into the encode or decode buffer. 
 
Calling Sequence: 
 
 index = messageBuffer.getByteIndex (); 
 
where messageBuffer is one of the ASN1Message buffer derived class objects. 
 
Return Value: 
 
Name Type Description 
index int 

 
Index to current position in the encode or decode buffer. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1MessageBuffer::getContext 
 
This method returns a pointer to the underlying ASN1Context object.   
 
Calling Sequence: 
 
 ptr = messageBuffer.getContext (); 
 
where messageBuffer is one of the ASN1Message buffer derived class objects. 
 



ASN1C V5.3  85 

Note that the pointer returned is to an ASN1Context object as defined above � not the ASN1CTXT 
structure used in calls to BER or PER C run-time library routines.  The complete calling sequence to get the 
underlying ASN1CTXT structure is as follows: 
 
 ptr = messageBuffer.getContext()->GetPtr(); 
 
 
Return Value: 
 
Name Type Description 
ptr OSRefCntPtr 

<ASN1Context> 
 

A reference-counted pointer to an ASN1Context object.  The ASN1Context object 
will not be released until all referenced-counted pointer variables go out of scope.  
This allows safe sharing of the context between the ASN1MessageBuffer and 
ASN1Ctype classes. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1MessageBuffer::GetMsgCopy 
 
This is a virtual method that can be overridden by derived classes to return a deep-copy of the encoded 
message encapsulated within the message buffer object.  The base class variant returns a null pointer. 
 
Calling Sequence: 
 
 ptr = messageBuffer.GetMsgCopy (); 
 
where messageBuffer is one of the ASN1Message buffer derived class objects. 
 
Return Value: 
 
Name Type Description 
ptr ASN1OCTET* 

 
A pointer to a copy of the message encapsulated within the message buffer object.  
The base class version of this method returns a null pointer. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1MessageBuffer::GetMsgPtr 
 
This is a virtual method that can be overridden by derived classes to return a pointer to the encoded 
message encapsulated within the message buffer object.  The base class variant returns a null pointer. 
 
Calling Sequence: 



ASN1C V5.3  86 

 
 ptr = messageBuffer.GetMsgPtr (); 
 
where messageBuffer is one of the ASN1Message buffer derived class objects. 
 
Return Value: 
 
Name Type Description 
ptr const 

ASN1OCTET* 
 

A pointer to the message encapsulated within the message buffer object.  The base 
class version of this method returns a null pointer. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1MessageBuffer::Init 
 
This is a virtual method that can be overridden by derived classes to reinitialize the underlying encode or 
decode buffer.  The base class variant does nothing.  This method is normally overridden by derived encode 
buffer classes to allow multiple messages to be encoded using the same message buffer object. 
 
Calling Sequence: 
 
 messageBuffer.Init (); 
 
where messageBuffer is one of the ASN1Message buffer derived class objects. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1MessageBuffer::isA 
 
This is a virtual method that must be overridden by derived classes to allow identification of the class.  The 
base class variant is abstract.  This method matches an enumerated identifier defined in the base class.  One 
identifier is declared for each of the derived classes. 
 
Calling Sequence: 
 
 bool = messageBuffer.isA (ident); 
 
where messageBuffer is one of the ASN1Message buffer derived class objects. 
 
Return Value: 



ASN1C V5.3  87 

 
Name Type Description 
bool boolean 

 
Boolean result of the match operation.  True if this is the class corresponding to the 
passed in identifier. 
 

 
Input Parameters: 
 
Name Type Description 
ident enum 

 
Enumerated identifier specifying a derived class.  This type is defined as a public 
access type in the ASN1MessageBuffer base class.  Possible values include 
BEREncode, BERDecode, PEREncode, and PERDecode. 
 

 
Output Parameters: 
 
None 
 
 
ASN1MessageBuffer::PrintErrorInfo 
 
This method is used to print information on the last encode or decode error associated with the message 
buffer object to standard output (stdout). 
 
Calling Sequence: 
 
 messageBuffer.PrintErrorInfo (); 
 
where messageBuffer is one of the ASN1Message buffer derived class objects. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1MessageBuffer::setErrorHandler 
 
This method is used to register an error handler object.  This is an object derived from the 
Asn1ErrorHandler base class that contains custom error handler callback methods.  See the section on 
Event Handlers for further details.  This method sets the single allowed error handler for a given decoder.  
If this method is invoked multiple times, only the last error handling object specified will be registered. 
 
Calling Sequence: 
 
 messageBuffer.setErrorHandler (pErrorHandler); 
 
where messageBuffer is one of the ASN1Message buffer derived class objects. 
 
Return Value: 
 



ASN1C V5.3  88 

None 
 
Input Parameters: 
 
Name Type Description 
pError 
Handler 

Asn1 
ErrorHandler* 
 

Pointer to an object of a class derived from the Asn1ErrorHandler base class. 
 

 
Output Parameters: 
 
None 
 



ASN1C V5.3  89 

ASN1BERMessageBuffer 
 
 ASN1MessageBuffer 
   | 
   +- ASN1BERMessageBuffer 
 
The ASN1BERMessageBuffer class is derived from the ASN1MessageBuffer base class. It is the base class 
for the ASN1BEREncodeBuffer and ASN1BERDecodeBuffer derived classes.  It contains variables and 
methods specific to encoding or decoding ASN.1 messages using the Basic Encoding Rules (BER).  It is 
used to manage the buffer into which an ASN.1 message is to be encoded or decoded. 
 
ASN1BERMessageBuffer::CalcIndefLen 
 
 
This method calculates the actual length of an indefinite length message component. 
 
Calling Sequence: 
 
 len = messageBuffer.CalcIndefLen (buf_p) 
 
where messageBuffer is an ASN1BERMessageBuffer derived class object. 
 
Return Value: 
 
Name Type Description 
len int 

 
Length (in octets) of message component. 
 

 
Input Parameters: 
 
Name Type Description 
buf_p ASN1OCTET* 

 
A pointer to a message component encoded using indefinite length encoding. 
 

 
Output Parameters: 
 
None 
 
 
ASN1BERMessageBuffer::BinDump 
 
This method outputs a formatted binary dump of the current buffer contents to stdout. 
 
Calling Sequence: 
 
 messageBuffer.BinDump (); 
 
where messageBuffer is an ASN1BERMessageBuffer derived class object. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
 
Output Parameters: 



ASN1C V5.3  90 

 
None 
 
 
ASN1BERMessageBuffer::HexDump 
 
This method outputs a hexadecimal dump of the current buffer contents to stdout. 
 
Calling Sequence: 
 
 messageBuffer.HexDump (); 
 
where messageBuffer is an ASN1BERMessageBuffer derived class object. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 



ASN1C V5.3  91 

ASN1BEREncodeBuffer 
 
 ASN1MessageBuffer 
   | 
   +- ASN1BERMessageBuffer 
        | 
        +- ASN1BEREncodeBuffer 
 
The ASN1BEREncodeBuffer class is derived from the ASN1BERMessageBuffer base class. It contains 
variables and methods specific to encoding ASN.1 messages using the Basic Encoding Rules (BER).  It is 
used to manage the buffer into which an ASN.1 message is to be encoded.  
 
ASN1BEREncodeBuffer::ASN1BEREncodeBuffer 
 
The ASN1BEREncodeBuffer class has two overloaded constructors: 
 
1. A version that takes no arguments (dynamic encoding version), and 
2. A version that takes a message buffer and size argument (static encoding version) 
 
Input Parameters: 
 
Name Type Description 
pMsgBuf ASN1OCTET* 

 
A pointer to a fixed-size message buffer to receive the encoded message. 
 

msgBufLen int Size of the fixed-size message buffer. 
 

 
Output Parameters: 
 
None 
 
 
ASN1BEREncodeBuffer::GetMsgCopy 
 
This method returns a copy of the current encoded message.  Memory is allocated for the message using the 
�new� operation.  It is the user�s responsibility to free the memory using �delete�. 
 
Calling Sequence: 
 
 ptr = encodeBuffer.GetMsgCopy (); 
 
where encodeBuffer is an ASN1BEREncodeBuffer object. 
 
Return Value: 
 
Name Type Description 
ptr ASN1OCTET* 

 
Pointer to copy of encoded message.  It is the user�s responsibility to release the 
memory using the �delete� operator (i.e., delete [] ptr;) 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 



ASN1C V5.3  92 

 
ASN1BEREncodeBuffer::GetMsgPtr 
 
This method returns the internal pointer to the current encoded message. 
  
Calling Sequence: 
 
 ptr = encodeBuffer.GetMsgPtr (); 
 
where encodeBuffer is an ASN1BEREncodeBuffer object. 
 
Return Value: 
 
Name Type Description 
ptr const 

ASN1OCTET* 
 

Pointer to encoded message. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1BEREncodeBuffer::Init 
 
This method reinitializes the encode buffer pointer to allow a new message to be encoded.  This makes it 
possible to reuse one message buffer object in a loop to encode multiple messages.  After this method is 
called, any previously encoded message in the buffer will be overwritten on the next encode call. 
  
Calling Sequence: 
 
 encodeBuffer.Init (); 
 
where encodeBuffer is an ASN1BEREncodeBuffer object. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 



ASN1C V5.3  93 

ASN1BERDecodeBuffer 
 
 ASN1MessageBuffer 
   | 
   +- ASN1BERMessageBuffer 
        | 
        +- ASN1BERDecodeBuffer 
 
ASN1BERDecodeBuffer derived class. This class is derived from the ASN1BERMessageBuffer base class. 
It contains variables and methods specific to decoding ASN.1 messages. It is used to manage the input 
buffer containing the ASN.1 message to be decoded.  
 
ASN1BERDecodeBuffer::ASN1BERDecodeBuffer 
 
The ASN1BERDecodeBuffer constructor constructs a buffer describing an encoded ASN.1 message.  
Parameters describing the message to be decoded are passed as arguments. 
 
Input Parameters: 
 
Name Type Description 
pMsgBuf ASN1OCTET* 

 
A pointer to buffer containing an encoded ASN.1 message. 
 

msgBufLen int Size of the message buffer.  This does not have to be equal to the length of the 
message.  The message length can be determined from the outer tag-length-value in 
the message.  This parameter is used to determine if the length of the message is 
valid; therefore it must be greater than or equal to the actual length.  Typically, the 
size of the buffer the message was read into is passed. 
 

 
Output Parameters: 
 
None 
 
 
ASN1BERDecodeBuffer::FindElement 
 
This method finds a tagged element within a message.  
 
Calling Sequence: 
 
 ptr = decodeBuffer.FindElement (tag, elemLen, firstFlag); 
 
where decodeBuffer is an ASN1BERDecodeBuffer object. 
 
Return Value: 
 
Name Type Description 
ptr ASN1OCTET* 

 
Pointer to tagged component in message or NULL if component not found. 
 

 
Input Parameters: 
 
Name Type Description 
tag ASN1TAG 

 
ASN.1 tag value to search for. 
 

firstFlag int Flag indicating if this the first time this search is being done.  If true, internal 
pointers will be set to start the search from the beginning of the message.  If false, 
the search will be resumed from the point at which the last matching tag was found.  



ASN1C V5.3  94 

This makes it possible to find all instances of a particular tagged element within a 
message. 
 

 
Output Parameters: 
 
Name Type Description 
len int& 

 
Reference to an integer value to receive the length of the found element. 
 

 
 
ASN1BERDecodeBuffer::ParseTagLen 
 
This method will parse the initial tag-length pair from the message. 
 
Calling Sequence: 
 
 stat = decodeBuffer.ParseTagLen (tag, msglen); 
 
where decodeBuffer is an ASN1BERDecodeBuffer object. 
 
Return Value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
Name Type Description 
tag ASN1TAG& Reference to a tag structure to receive the outer level tag value parsed from the 

message. 
 

msglen int& 
 

Length of the message.  This is the total length of the message obtained by adding 
the number of bytes in initial tag-length to the parsed length value. 
 

 



ASN1C V5.3  95 

ASN1PERMessageBuffer 
 
 ASN1MessageBuffer 
   | 
   +- ASN1PERMessageBuffer 
 
The ASN1PERMessageBuffer class is derived from the ASN1MessageBuffer base class. It is the base class 
for the ASN1PEREncodeBuffer and ASN1PERDecodeBuffer derived classes.  It contains variables and 
methods specific to encoding or decoding ASN.1 messages using the Packed Encoding Rules (PER).  It is 
used to manage the buffer into which an ASN.1 message is to be encoded or decoded. 
 
ASN1PERMessageBuffer::BinDump 
 
This method outputs a binary dump of the current buffer contents to stdout. 
 
Calling Sequence: 
 
 messageBuffer.BinDump (); 
 
where messageBuffer is an ASN1PERMessageBuffer derived class object. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1PERMessageBuffer::HexDump 
 
This method outputs a hexadecimal dump of the current buffer contents to stdout. 
 
Calling Sequence: 
 
 messageBuffer.HexDump (); 
 
where messageBuffer is an ASN1PERMessageBuffer derived class object. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1PERMessageBuffer::GetMsgLen 
 



ASN1C V5.3  96 

This method returns the length of a previously encoded PER message. 
 
Calling Sequence: 
 
 len = messageBuffer.GetMsgLen (); 
 
where messageBuffer is an ASN1PERMessageBuffer derived class object. 
 
Return Value: 
 
Name Type Description 
len int Length of the PER message encapsulated within this buffer object. 

 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1PERMessageBuffer::SetTrace 
 
This method turns PER diagnostic tracing on or off.  This enables the collection of the bit statistics inside 
the PER library functions that can be displayed using the BinDump method. 
 
Calling Sequence: 
 
 len = messageBuffer.SetTrace (enabled); 
 
where messageBuffer is an ASN1PERMessageBuffer derived class object. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
enabled ASN1BOOL Boolean value indicating whether tracing should be turned on (true) or off (false). 

 
 
Output Parameters: 
 
None 
 



ASN1C V5.3  97 

ASN1PEREncodeBuffer 
 
 ASN1MessageBuffer 
   | 
   +- ASN1PERMessageBuffer 
        | 
        +- ASN1PEREncodeBuffer 
 
The ASN1PEREncodeBuffer class is derived from the ASN1PERMessageBuffer base class. It contains 
variables and methods specific to encoding ASN.1 messages.  It is used to manage the buffer into which an 
ASN.1 PER message is to be encoded.  
 
ASN1PEREncodeBuffer::ASN1PEREncodeBuffer 
 
The ASN1PEREncodeBuffer class has two overloaded constructors: 
 
1. A version that takes one argument, aligned flag (dynamic encoding version), and 
2. A version that takes a message buffer and size argument and an aligned flag argument (static encoding 

version) 
 
Input Parameters: 
 
Name Type Description 
pMsgBuf ASN1OCTET* 

 
A pointer to a fixed-size message buffer to receive the encoded message. 
 

msgBufLen int Size of the fixed-size message buffer. 
 

aligned ASN1BOOL Flag indicating if aligned (TRUE) or unaligned (FALSE) encoding should be done. 
 

 
Output Parameters: 
 
None 
 
 
ASN1PEREncodeBuffer::GetMsgBitCnt 
 
This method returns the length (in bits) of the encoded message. 
 
Calling Sequence: 
 
 len = encodeBuffer.GetMsgBitCnt (); 
 
where encodeBuffer is an ASN1PEREncodeBuffer object. 
 
Return Value: 
 
Name Type Description 
len int 

 
Length (in bits) of encoded message. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 



ASN1C V5.3  98 

 
 
ASN1PEREncodeBuffer::GetMsgCopy 
 
This method returns a copy of the current encoded message.  Memory is allocated for the message using the 
�new� operation.  It is the user�s responsibility to free the memory using �delete�. 
 
Calling Sequence: 
 
 ptr = encodeBuffer.GetMsgCopy (); 
 
where encodeBuffer is an ASN1PEREncodeBuffer object. 
 
Return Value: 
 
Name Type Description 
ptr ASN1OCTET* 

 
Pointer to copy of encoded message.  It is the user�s responsibility to release the 
memory using the �delete� operator (i.e., delete [] ptr;) 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1PEREncodeBuffer::GetMsgPtr 
 
This method returns the internal pointer to the current encoded message. 
  
Calling Sequence: 
 
 ptr = encodeBuffer.GetMsgPtr (); 
 
where encodeBuffer is an ASN1PEREncodeBuffer object. 
 
Return Value: 
 
Name Type Description 
ptr ASN1OCTET* 

 
Pointer to encoded message. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1PEREncodeBuffer::Init 
 



ASN1C V5.3  99 

This method reinitializes the encode buffer pointer to allow a new message to be encoded.  This makes it 
possible to reuse one message buffer object in a loop to encode multiple messages.  After this method is 
called, any previously encoded message in the buffer will be overwritten on the next encode call. 
  
Calling Sequence: 
 
 encodeBuffer.Init (); 
 
where encodeBuffer is an ASN1PEREncodeBuffer object. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 



ASN1C V5.3  100 

ASN1PERDecodeBuffer 
 
 ASN1MessageBuffer 
   | 
   +- ASN1PERMessageBuffer 
        | 
        +- ASN1PERDecodeBuffer 
 
The ASN1PERDecodeBuffer class is derived from the ASN1PERMessageBuffer base class. It contains 
variables and methods specific to decoding ASN.1 messages. It is used to manage the input buffer 
containing the ASN.1 message to be decoded.  
 
The only method associated with this class is the following constructor: 
 
ASN1PERDecodeBuffer::ASN1PERDecodeBuffer 
 
This constructor is used to describe the message to be decoded. 
 
Input Parameters: 
 
Name Type Description 
pMsgBuf ASN1OCTET* 

 
Pointer to the message to be decoded. 
 

msgBufLen int Length of the message buffer. 
 

aligned ASN1BOOL Flag indicating if message was encoded using aligned (TRUE) or unaligned 
(FALSE) encoding. 
 

 
Output Parameters: 
 
None 
 



ASN1C V5.3  101 

ASN1CType  
 
The ASN1CType base class. This is the class from which all class definitions generated by the ASN.1 
compiler are (eventually) derived.  In some cases, the generated type may be derived from an intermediate 
class which in turn is derived from the ASN1CType class.  This class contains a single constructor that 
allows a message buffer object to be specified.  It also contains abstract virtual prototypes for Encode and 
Decode methods.  These functions are implemented in the derived classes generated by the compiler. 
 
 
ASN1CType::ASN1CType 
 
This constructor is used to set up a message buffer object to either receive the data of a message being 
encoded or to specify a message to be decoded. 
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for example, an 
ASN1BEREncodeBuffer). 
 

  
Output Parameters: 
 
None 
 
 
ASN1CType::Encode 
 
This virtual method encodes a message of the given type. 
  
Calling Sequence: 
 
 stat = asn1TypeVar.Encode (); 
 
where asn1TypeVar is an object of a compiler-generated class ASN.1 production class. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the encode operation.  For BER, a positive value indicates success (it is 
also the length of the encoded message).  For PER, ASN_OK is returned if encoding 
is successful.  In either case, if encoding fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CType::Decode 
 
This virtual method decodes a message of the given type. 
  



ASN1C V5.3  102 

Calling Sequence: 
 
 stat = asn1TypeVar.Decode (); 
 
where asn1TypeVar is an object of a compiler-generated class ASN.1 production class. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the decode operation. ASN_OK is returned if the operation is successful.  
If the operation fails, one of the negative status codes defined in Appendix A is 
returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CType::memAlloc 
 
This method allocates memory using the underlying rtMemAlloc function.  This function uses the 
compiler�s nibble memory allocation scheme to improve performance. 
 
The allocated memory is owned by the enveloping context object.  This object is shared between the 
message buffer and type objects using reference counting.  This means the allocated memory will 
automatically be released when both the message buffer and type objects are destroyed or go out of scope. 
  
Calling Sequence: 
 
 ptr = asn1TypeVar.memAlloc (numocts); 
 
where asn1TypeVar is an object of a compiler-generated class ASN.1 production class. 
 
Return Value: 
 
Name Type Description 
ptr void* 

 
Pointer to allocated memory block 
 

 
Input Parameters: 
 
Name Type Description 
numocts int 

 
Number of octets (bytes) to allocate. 
 

 
Output Parameters: 
 
None 
 
 
ASN1CType::memFreeAll 
 



ASN1C V5.3  103 

This method frees all memory allocated within the encapsulated context.  This includes all memory 
allocated by the decoder as well as memory allocated by the user using the xu_malloc, rtMemAlloc, or 
ASN1CType::memAlloc functions. 
 
Normally, this memory is released automatically when the message buffer and ASN1C control objects are 
deleted or go out of scope.  However, there are times when memory must be manually released.  An 
example is when decoder objects are reused in a decoding loop.  After decoding and processing on a given 
message is complete, this method should be called to free all memory that was used. 
 
Calling Sequence: 
 
 asn1TypeVar.memFreeAll (); 
 
where asn1TypeVar is an object of a compiler-generated class ASN.1 production class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 



ASN1C V5.3  104 

ASN1CBitStr 
 
 ASN1Type 
   | 
   +- ASN1CBitStr 
 
The ASN1CBitStr class is derived from the ASN1CType base class.  It is used as the base class for 
generated control classes for the ASN.1 BIT STRING type.  This class provides utility methods for 
operating on the bit string referenced by the generated class.  This class can also be used inline to operate 
on the bits within generated BIT STRING elements in a SEQUENCE, SET, or CHOICE construct. 
 
 
ASN1CBitStr::ASN1CBitStr 
 
There are a number of different constructors available for this object.  The different types are as follows: 
 
 
ASN1CBitStr (ASN1MessageBuffer& msgBuf, ASN1UINT nbits); 
 
This constructor creates an empty bit string. If number of bits equals zero then the bit string is dynamic; 
otherwise the capacity will be fixed to the given number of bits. 
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for example, an 
ASN1BEREncodeBuffer). 
 

nbits ASN1UINT Bit string capacity.  If zero, string is dynamic as opposed to fixed-size. 
 

  
Output Parameters: 
 
None 
 
 
ASN1CBitStr (ASN1MessageBuffer& msgBuf, ASN1OCTET* bitStr,  
             ASN1UINT& numbits, ASN1UINT maxNumbits); 
 
This constructor creates a bit string from an array of bits.  It does not deep-copy bytes, it just assigns the 
passed array to an internal reference variable.  This from of the constructor is normally used with static bit 
strings (i.e. those containing fixed-size arrays as a result of a size constraint being placed on the string). 
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for example, an 
ASN1BEREncodeBuffer). 
 

bitStr ASN1OCTET* Pointer to static byte array. 
 

numbits ASN1UINT Reference to length of bit string (in bits). 
 

maxNumbits ASN1UINT Maximum length of string in bits. 
 

  
Output Parameters: 
 



ASN1C V5.3  105 

None 
 
 
ASN1CBitStr (ASN1MessageBuffer& msgBuf, ASN1TDynBitStr& bitStr);  
 
This constructor creates a bit string using the ASN1TDynBitStr argument. The constructor does not deep-
copy the variable, it assigned a reference to it to an internal variable.  The object will then directly operate 
on the given data variable.  This for of the constructor is used with a compiler-generated dynamic bit string 
variable (i.e. one that is not sized). 
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for 
example, an ASN1BEREncodeBuffer). 
 

bitStr ASN1TDynBitStr& Reference to a dynamic bit string structure. 
 

 
Output Parameters: 
 
None 
 
 
ASN1CBitStr (const ASN1CBitStr& bitStr); 
 
This is the copy constructor.  This will create a deep-copy of the given variable. 
 
 
ASN1CBitStr (const ASN1CBitStr& bitStr, ASN1BOOL extendable); 
 
A second form of the copy constructor.  This form can be used to mark the copied string as �extendable� 
meaning it can grow dynamically if additional bits are added. 
 
 
ASN1CBitStr::change 
 
inline int change (ASN1UINT bitIndex, ASN1BOOL value); 
 
This method changes the value of the bit at the given index to the given value. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
bitIndex ASN1UINT 

 
Relative index of bit to set in string.  Bit index 0 refers to the MS bit 
(bit 8) in the first octet.  The index values then progress from left to 
right (MS to LS bits). 
 

value ASN1BOOL Boolean value to which the bit is to be set. 
 



ASN1C V5.3  106 

 
Output Parameters: 
 
None 
 
 
ASN1CBitStr::clear 
 
There are a number of different overloaded versions of the bit string clear method for clearing bits in the 
target bit string variable.  They are as follows: 
 
int clear (ASN1UINT bitIndex); 
 
This version of the clear method sets the given bit in the target string to zero. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
bitIndex ASN1UINT 

 
Relative index of bit in string.  Bit index 0 refers to the MS bit (bit 8) 
in the first octet.  The index values then progress from left to right (MS 
to LS bits). 
 

 
Output Parameters: 
 
None 
 
 
int clear (ASN1UINT fromIndex, ASN1UINT toIndex); 
 
This version of the clear method sets the bits from the specified fromIndex (inclusive) to the specified 
toIndex (exclusive) to zero. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
fromIndex ASN1UINT 

 
Relative start index (inclusive) of bits in string.  Bit index 0 refers to 
the MS bit (bit 8) in the first octet.  The index values then progress 
from left to right (MS to LS bits). 
 

toIndex ASN1UINT 
 

Relative end index (exclusive) of bits in string.  Bit index 0 refers to 
the MS bit (bit 8) in the first octet.  The index values then progress 



ASN1C V5.3  107 

from left to right (MS to LS bits). 
 

 
Output Parameters: 
 
None 
 
 
int clear (); 
 
This version of the clear method sets all bits in the bit string to zero. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CBitStr::set 
 
There are a number of different overloaded versions of the bit string set method for setting bits in the target 
bit string variable.  They are as follows: 
 
int set (ASN1UINT bitIndex); 
 
This version of the set method sets the given bit in the target string. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
bitIndex ASN1UINT 

 
Relative index of bit to set in string.  Bit index 0 refers to the MS bit 
(bit 8) in the first octet.  The index values then progress from left to 
right (MS to LS bits). 
 

 
Output Parameters: 
 
None 
 



ASN1C V5.3  108 

 
int set (ASN1UINT fromIndex, ASN1UINT toIndex); 
 
This version of the set method sets the bits from the specified fromIndex (inclusive) to the specified 
toIndex (exclusive) to one. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
fromIndex ASN1UINT 

 
Relative start index (inclusive) of bits in string.  Bit index 0 refers to 
the MS bit (bit 8) in the first octet.  The index values then progress 
from left to right (MS to LS bits). 
 

toIndex ASN1UINT 
 

Relative end index (exclusive) of bits in string.  Bit index 0 refers to 
the MS bit (bit 8) in the first octet.  The index values then progress 
from left to right (MS to LS bits). 
 

 
Output Parameters: 
 
None 
 
 
ASN1CBitStr::invert 
 
There are a number of different overloaded versions of the bit string invert method for inverting bits in the 
target bit string variable. All zero bits in the bit string will be set to �1�, all �1� bits will be set to �0�. The 
overloaded methods are as follows: 
 
int invert (ASN1UINT bitIndex); 
 
This version of the invert method inverts the given bit in the target string. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
bitIndex ASN1UINT 

 
Relative index of bit to set in string.  Bit index 0 refers to the MS bit 
(bit 8) in the first octet.  The index values then progress from left to 
right (MS to LS bits). 
 

 
Output Parameters: 



ASN1C V5.3  109 

 
None 
 
 
int invert (ASN1UINT fromIndex, ASN1UINT toIndex); 
 
This version inverts the bits from the specified fromIndex (inclusive) to the specified toIndex (exclusive) to 
one. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
fromIndex ASN1UINT 

 
Relative start index (inclusive) of bits in string.  Bit index 0 refers to 
the MS bit (bit 8) in the first octet.  The index values then progress 
from left to right (MS to LS bits). 
 

toIndex ASN1UINT 
 

Relative end index (exclusive) of bits in string.  Bit index 0 refers to 
the MS bit (bit 8) in the first octet.  The index values then progress 
from left to right (MS to LS bits). 
 

 
Output Parameters: 
 
None 
 
 
ASN1CBitStr::get 
 
There are a number of different overloaded versions of the bit string get method for getting bits from the 
target bit string variable. They are as follows: 
 
ASN1BOOL get (ASN1UINT bitIndex); 
 
This method returns the value of the bit with the specified index. 
 
Return Value: 
 
Name Type Description 
bit ASN1BOOL 

 
TRUE, if bit at specified index is set to �1�, FALSE else. 
 

 
Input Parameters: 
 
Name Type Description 
bitIndex ASN1UINT 

 
Relative index of bit to set in string.  Bit index 0 refers to the MS bit 
(bit 8) in the first octet.  The index values then progress from left to 
right (MS to LS bits). 
 

 
Output Parameters: 



ASN1C V5.3  110 

 
None 
 
 
int get (ASN1UINT fromIndex, ASN1UINT toIndex,  
         ASN1OCTET* pBuf, int bufSz); 
 
This version of the get method copies the bit string composed of bits from this bit string  from the specified 
fromIndex (inclusive) to the specified toIndex (exclusive) into given buffer. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
fromIndex ASN1UINT 

 
Relative start index (inclusive) of bits in string.  Bit index 0 refers to 
the MS bit (bit 8) in the first octet.  The index values then progress 
from left to right (MS to LS bits). 
 

toIndex ASN1UINT 
 

Relative end index (exclusive) of bits in string.  Bit index 0 refers to 
the MS bit (bit 8) in the first octet.  The index values then progress 
from left to right (MS to LS bits). 
 

bufSz int Size of given destination buffer. If size of buffer is not enough to 
receive whole bit string negative status will be returned. 
 

 
Output Parameters: 
 
Name Type Description 
pBuf 
 

ASN1OCTET* 
 

Pointer to destination buffer, where bytes will be copied. 

 
 
ASN1CBitStr::isSet 
 
inline ASN1BOOL isSet (ASN1UINT bitIndex); 
 
This method is the same as ASN1CBitStr::get. 
 
 
ASN1CBitStr::isEmpty 
 
ASN1BOOL isEmpty (); 
 
This method returns TRUE if this bit string contains no bits that are set to �1�. 
 
Return Value: 
 
Name Type Description 
empty ASN1BOOL 

 
TRUE, if this bit string contains no bits that are set to �1�. 
 



ASN1C V5.3  111 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CBitStr::size 
 
int size () const; 
 
This method returns the number of bytes of space actually in use by this bit string to represent bit values. 
 
Return Value: 
 
Name Type Description 
size int 

 
Number of bytes of space actually in use by this bit string to represent 
bit values. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CBitStr::length 
 
ASN1UINT length () const; 
 
This method calculates the "logical size" of this bit string: the index of the highest set bit in the bit string 
plus one. Returns zero if the bit string contains no set bits. Highest bit in the bit string is the LS bit in the 
last octet set to �1�. 
 
Return Value: 
 
Name Type Description 
len ASN1UINT 

 
Returns the "logical size" of this bit string. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CBitStr::cardinality 
 
int cardinality () const; 



ASN1C V5.3  112 

 
This method calculates the cardinality of target bit string. Cardinality of the bit string is the number of bits 
set to �1�. 
 
Return Value: 
 
Name Type Description 
num Int 

 
Number of bytes of space actually in use by this bit string to represent 
bit values. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CBitStr::getBytes 
 
int getBytes (ASN1OCTET* pBuf, int bufSz); 
 
This method copies the bit string to the given buffer. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
bufSz int Size of given destination buffer. If size of buffer is not enough to 

receive whole bit string negative status will be returned. 
 

 
Output Parameters: 
 
Name Type Description 
pBuf 
 

ASN1OCTET* 
 

Pointer to destination buffer, where bytes will be copied. 

 
 
ASN1CBitStr::doAnd 
 
There are a number of different overloaded versions of the bit string doAnd method for performing a 
logical AND of this target bit string with the argument bit string. They are as follows: 
 
int doAnd (const ASN1OCTET* pOctstr, ASN1UINT octsNumbits); 
 
This method performs a logical AND of the target bit string with the argument bit string.  
 
Return Value: 



ASN1C V5.3  113 

 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
pOctstr ASN1OCTET* A pointer to octets of another bit string for performing logical 

operation. 
 

octsNumbits ASN1UINT A number of bits in argument bit string. 
 

 
Output Parameters: 
 
None 
 
inline int doAnd (const ASN1TDynBitStr& bitStr); 
 
This method performs a logical AND of the target bit string with the argument bit string.  
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
bitStr ASN1TDynBitStr& A reference to another bit string represented by ASN1TDynBitStr 

type for performing logical operation. 
 

 
Output Parameters: 
 
None 
  
inline int doAnd (const ASN1CBitStr& bitStr); 
 
This method performs a logical AND of the target bit string with the argument bit string.  
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 



ASN1C V5.3  114 

bitStr ASN1CBitStr& A reference to another bit string represented by ASN1CBitStr for 
performing logical operation. 
 

 
Output Parameters: 
 
None 
  
 
ASN1CBitStr::doOr 
 
There are a number of different overloaded versions of the bit string doOr method for performing a logical 
OR of this target bit string with the argument bit string. They are as follows: 
 
int doOr (const ASN1OCTET* pOctstr, ASN1UINT octsNumbits); 
 
This method performs a logical OR of the target bit string with the argument bit string.  
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
pOctstr ASN1OCTET* A pointer to octets of another bit string for performing logical 

operation. 
 

octsNumbits ASN1UINT A number of bits in argument bit string. 
 

 
Output Parameters: 
 
None 
 
inline int doOr (const ASN1TDynBitStr& bitStr); 
 
This method performs a logical OR of the target bit string with the argument bit string.  
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
bitStr ASN1TDynBitStr& A reference to another bit string represented by ASN1TDynBitStr 

type for performing logical operation. 
 

 



ASN1C V5.3  115 

Output Parameters: 
 
None 
  
inline int doOr (const ASN1CBitStr& bitStr); 
 
This method performs a logical OR of the target bit string with the argument bit string.  
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
bitStr ASN1CBitStr& A reference to another bit string represented by ASN1CBitStr for 

performing logical operation. 
 

 
Output Parameters: 
 
None 
  
 
ASN1CBitStr::doXor 
 
There are a number of different overloaded versions of the bit string doXor method for performing a logical 
XOR of this target bit string with the argument bit string. They are as follows: 
 
int doXor (const ASN1OCTET* pOctstr, ASN1UINT octsNumbits); 
 
This method performs a logical XOR of the target bit string with the argument bit string.  
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
pOctstr ASN1OCTET* A pointer to octets of another bit string for performing logical 

operation. 
 

octsNumbits ASN1UINT A number of bits in argument bit string. 
 

 
Output Parameters: 
 
None 
 



ASN1C V5.3  116 

inline int doXor (const ASN1TDynBitStr& bitStr); 
 
This method performs a logical XOR of the target bit string with the argument bit string.  
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
bitStr ASN1TdynBitStr& A reference to another bit string represented by ASN1TDynBitStr 

type for performing logical operation. 
 

 
Output Parameters: 
 
None 
  
inline int doXor (const ASN1CBitStr& bitStr); 
 
This method performs a logical XOR of the target bit string with the argument bit string.  
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
bitStr ASN1CBitStr& A reference to another bit string represented by ASN1CBitStr for 

performing logical operation. 
 

 
Output Parameters: 
 
None 
  
 
ASN1CBitStr::doAndNot 
 
There are a number of different overloaded versions of the bit string doAndNot method for performing a 
logical ANDNOT of this target bit string with the argument bit string. Logical ANDNOT clears all of the 
bits in this bit string whose corresponding bit is set in the specified bit string. These methods are as follows: 
 
int doAndNot (const ASN1OCTET* pOctstr, ASN1UINT octsNumbits); 
 
This method performs a logical ANDNOT of the target bit string with the argument bit string.  
 
Return Value: 



ASN1C V5.3  117 

 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
pOctstr ASN1OCTET* A pointer to octets of another bit string for performing logical 

operation. 
 

octsNumbits ASN1UINT A number of bits in argument bit string. 
 

 
Output Parameters: 
 
None 
 
inline int doAndNot (const ASN1TDynBitStr& bitStr); 
 
This method performs a logical ANDNOT of the target bit string with the argument bit string.  
 
Return Value: 
 
Name Type Description 
stat Int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
bitStr ASN1TDynBitStr& A reference to another bit string represented by ASN1TDynBitStr 

type for performing logical operation. 
 

 
Output Parameters: 
 
None 
  
inline int doAndNot (const ASN1CBitStr& bitStr); 
 
This method performs a logical ANDNOT of the target bit string with the argument bit string.  
 
Return Value: 
 
Name Type Description 
stat Int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 



ASN1C V5.3  118 

bitStr ASN1CBitStr& A reference to another bit string represented by ASN1CBitStr for 
performing logical operation. 
 

 
Output Parameters: 
 
None 
 
 
ASN1CBitStr::shiftLeft 
 
int shiftLeft (ASN1UINT shift); 
 
This method shifts all bits to the left by the number of bits specified in the 'shift' operand. If bit string can 
dynamically grow, then the length of bit string will be decreased by �shift� bits. Otherwise, shifted in bits 
are filled by zeros from the right. Most left bits are lost.  
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
shift int Number of bits to be shifted. 

 
 
Output Parameters: 
 
None 
  
 
ASN1CBitStr::shiftRight 
 
int shiftRight (ASN1UINT shift); 
 
This method shifts all bits to the right by the number of bits specified in the 'shift' operand. If the bit string 
can dynamically grow, then the length of the bit string will be increased by �shift� bits. Otherwise, shifted 
in bits are lost.  The leftmost bits are filled by zeros.  
 
Return Value: 
 
Name Type Description 
stat int 

 
Status of the operation. ASN_OK is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
Name Type Description 
shift int Number of bits to be shifted. 

 
 



ASN1C V5.3  119 

Output Parameters: 
 
None 
  
 
ASN1CBitStr::unusedBitsInLastUnit 
 
int unusedBitsInLastUnit (); 
 
This method returns the number of unused bits in the last octet.  
 
Return Value: 
 
Name Type Description 
num int 

 
Number of bits in the last octet. It equals to length() % 8. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
  
 
ASN1CBitStr::operator ASN1TDynBitStr 
 
There are a number of different overloaded versions of the cast operator for performing a casting of the 
target bit string to an ASN1TDynBitStr variable. These operators are as follows: 
 
operator ASN1TDynBitStr(); 
 
This method returns a filled ASN1TDynBitStr. Memory is not allocated, only a pointer is assigned. Thus, 
the ASN1TDynBitStr variable is only valid while this ASN1CBitStr is in scope. 
 
Return Value: 
 
Name Type Description 
bitstr ASN1TDynBitStr 

 
Filled ASN1TdynBitStr. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
  
 
operator ASN1TdynBitStr*(); 
 
This method returns a pointer to the filled ASN1TDynBitStr. Memory for the ASN1TDynBitStr variable is 
allocated using memAlloc and bits are copied into it. 
 
Return Value: 
 



ASN1C V5.3  120 

Name Type Description 
bitstr ASN1TdynBitStr* 

 
Pointer to filled ASN1TdynBitStr. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
  
 
  



ASN1C V5.3  121 

ASN1CSeqOfList 
 
 ASN1Type 
   | 
   +- ASN1CSeqOfList 
 
The ASN1CSeqOfList class is derived from the ASN1CType base class.  It is used as the base class for 
generated control classes for the ASN.1 SEQUENCE OF or SET OF type.  This class provides utility 
methods for operating on the linked list referenced by the generated class.  This class can also be used 
inline to operate on the linked lists within generated SEQUENCE OF or SET OF elements in a 
SEQUENCE, SET, or CHOICE construct. 
 
 
ASN1CSeqOfList:: ASN1CSeqOfList 
 
There are a number of different constructors available for this object.  The different types are as follows: 
 
ASN1CSeqOfList (ASN1MessageBuffer& msgBuf,  
                Asn1RTDList& lst,  
                ASN1BOOL initBeforeUse = TRUE); 
 
This constructor creates a linked list using the Asn1RTDList argument . The constructor does not deep-
copy the variable, it assigned a reference to it to an internal variable.  The object will then directly operate 
on the given list variable.  This constructor is used with a compiler-generated linked list variable. 
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for example, 
an ASN1BEREncodeBuffer). 
 

lst Asn1RTDList Reference to a linked list structure. 
 

initBeforeUsed ASN1BOOL Set to TRUE if the passed linked list needs to be initialized 
(rtDListInit to be called). 
 

  
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList (ASN1MessageBuffer& msgBuf); 
 
This constructor creates an empty linked list. 
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for example, an 
ASN1BEREncodeBuffer). 
 

  
Output Parameters: 
 
None 
 
 



ASN1C V5.3  122 

ASN1CSeqOfList::append 
 
void append (void* data); 
 
This method appends an item to the linked list.  The item is represented by a void pointer that can point to 
an object of any type.  The rtMemAlloc function is used to allocate memory for the list node structure, 
therefore all internal list memory will be released whenever rtMemFree is called. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pData void* Pointer to data item to be appended to the list. 

 
  
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::insert 
 
void insert (int index, void* pData); 
 
This method inserts an item into the linked list structure.  The item is represented by a void pointer that can 
point to an object of any type.  The rtMemAlloc function is used to allocate memory for the list node 
structure.  All internal list memory will be released when the rtMemFree function is called. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
index int Index at which the specified item is to be inserted. 

 
pData void* Pointer to data item to be appended to the list. 

 
  
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::remove 
 
There are a number of different overloaded versions of the linked list remove method for removing nodes 
from the target linked list variable. They are as follows: 
 
void remove (int index); 
 
This method removes a node at specified index from the linked list structure.  The rtMemAlloc function 
was used to allocate the memory for the list node structure, therefore, all internal list memory will be 
released whenever rtMemFree is called. 



ASN1C V5.3  123 

 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
index int Index of item to be removed. 

 
  
Output Parameters: 
 
None 
 
 
void remove (void* pData); 
 
This method removes the first occurrence of the node with specified data from the linked list structure.  The 
rtMemAlloc function was used to allocate the memory for the list node structure, therefore, all internal list 
memory will be released whenever rtMemFree is called. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pData void* Pointer to data item to be removed from the list. 

 
  
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::removeFirst 
 
inline void removeFirst (); 
 
This method removes the first node (head) from the linked list structure.   
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
  
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::removeLast 
 



ASN1C V5.3  124 

inline void removeLast (); 
 
This method removes the last node (tail) from the linked list structure.   
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
  
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::indexOf 
 
int indexOf (void* pData); 
 
This method returns the index in this list of the first occurrence of the specified item, or -1 if the list does 
not contain the item. 
 
Return Value: 
 
Name Type Description 
index int 

 
The index in this list of the first occurrence of the specified item,  
or -1 if the list does not contain the item. 
 

 
Input Parameters: 
 
Name Type Description 
pData void* Pointer to data item to search for. 

 
  
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::contains 
 
ASN1BOOL contains (void* pData); 
 
This method returns TRUE if this list contains the specified item. 
 
Return Value: 
 
Name Type Description 
val ASN1BOOL 

 
TRUE if this list contains the specified item. 
 

 
Input Parameters: 
 
Name Type Description 
pData void* Pointer to data item whose presence in this list is to be tested. 



ASN1C V5.3  125 

 
  
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::getFirst 
 
void* getFirst (); 
 
This method returns the first item from the list or null if there are no elements in the list. 
 
Return Value: 
 
Name Type Description 
pData void* 

 
The first item in this list. 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::getLast 
 
void* getLast (); 
 
This method returns the last item from the list or null if there are no elements in the list. 
 
Return Value: 
 
Name Type Description 
pData void* 

 
The last item in this list. 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::get 
 
void* get (int index); 
 
This method returns the item at the specified position in the list. 
 
Return Value: 
 
Name Type Description 



ASN1C V5.3  126 

pData void* 
 

The item at the specified index in the list. 

 
 
Input Parameters: 
 
Name Type Description 
index int Index of item to be returned. 

 
  
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::operator[] 
 
inline void* operator[] (int index) const; 
 
This method is the overloaded operator [ ].  It returns the item at the specified position in this list. See the 
section on the get method for further details. 
 
 
ASN1CSeqOfList::set 
 
void* set (int index, void* pData); 
 
This method replaces the item at the specified index in this list with the specified item. 
 
Return Value: 
 
Name Type Description 
pOldData void* 

 
The item previously at the specified position. 

 
 
Input Parameters: 
 
Name Type Description 
index int Index of item to replace. 

 
pData void* 

 
The item to be stored at the specified index. 

  
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::clear 
 
void clear (); 
 
This method removes all items from the list. 
 
Return Value: 
 
None 



ASN1C V5.3  127 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::isEmpty 
 
ASN1BOOL isEmpty () const; 
 
This method returns TRUE if the list is empty. 
 
Return Value: 
 
Name Type Description 
val ASN1BOOL 

 
TRUE if this list is empty. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::size 
 
int size () const; 
 
This method returns the number of nodes in the list. 
 
Return Value: 
 
Name Type Description 
size int 

 
The number of items in this list. 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::iterator 
 
ASN1CSeqOfListIterator* iterator (); 
 
This method returns an iterator over the elements in this linked list in the sequence from the first to the last.  
See ASN1CSeqOfListIterator for more details. 



ASN1C V5.3  128 

 
Return Value: 
 
Name Type Description 
iterator ASN1CSeqOf

ListIterator 
 

The iterator over this linked list. 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::iteratorFromLast 
 
ASN1CSeqOfListIterator* iteratorFromLast (); 
 
This method returns a reverse iterator over the elements in this linked list in the sequence from the last to 
the first.  See ASN1CSeqOfListIterator for more details. 
 
Return Value: 
 
Name Type Description 
iterator ASN1CSeqOf

ListIterator 
 

The reverse iterator over this linked list. 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfList::iteratorFrom 
 
ASN1CSeqOfListIterator* iteratorFrom (void* pData); 
 
This method returns an iterator over the elements in this linked list starting from the specified item in the 
list.  See ASN1CSeqOfListIterator for more details. 
 
Return Value: 
 
Name Type Description 
iterator ASN1CSeqOf

ListIterator 
 

The iterator over this linked list. 

 
Input Parameters: 
 
Name Type Description 
pData void* The item of the list to be iterated first. 



ASN1C V5.3  129 

 
 
Output Parameters: 
 
None 
 
 



ASN1C V5.3  130 

ASN1CSeqOfListIterator 
 
The ASN1CSeqOfListIterator class is an iterator for linked lists (represented by ASN1CSeqOfList) that 
allows the programmer to traverse the list in either direction and modify the list during iteration. The 
iterator is fail-fast.  This means if the list is structurally modified at any time after the 
ASN1CSeqOfListIterator class is created, in any way except through the iterator's own remove or insert 
methods, the iterator�s methods next and prev will return NULL.  The remove, set and insert methods will 
return the ASN_E_CONCMODF error code. 
 
 
ASN1CSeqOfListIterator::hasNext 
 
inline ASN1BOOL hasNext (); 
 
This method returns TRUE, if this iterator has more elements when traversing the list in the forward 
direction. (In other words, returns TRUE, if next would return an element rather than returning a null 
value). 
 
Return Value: 
 
Name Type Description 
stat ASN1BOOL 

 
TRUE, if next would return an element rather than returning a null 
value. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfListIterator::hasPrev 
 
inline ASN1BOOL hasPrev (); 
 
This method returns TRUE, if this iterator has more elements when traversing the list in the reverse 
direction. (In other words, returns TRUE, if prev would return an element rather than returning a null 
value). 
 
Return Value: 
 
Name Type Description 
stat ASN1BOOL 

 
TRUE, if prev would return an element rather than returning a null 
value. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 



ASN1C V5.3  131 

ASN1CSeqOfListIterator::next 
 
void* next (); 
 
This method returns the next element in the list. This method may be called repeatedly to iterate through 
the list, or intermixed with calls to prev to go back and forth. 
 
Return Value: 
 
Name Type Description 
item void* 

 
The next element in the list. A null value will be returned if iteration 
is not successful.  
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfListIterator::prev 
 
void* prev (); 
 
This method returns the previous element in the list. This method may be called repeatedly to iterate 
through the list, or intermixed with calls to next to go back and forth. 
 
Return Value: 
 
Name Type Description 
item void* 

 
The previous element in the list. A null value will be returned if 
iteration is not successful.  
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfListIterator::remove 
 
int remove (); 
 
This method removes from the list the last element that was returned by next or prev methods.  This call 
can only be made once per call to next or prev methods. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Returns ASN_OK if operation is successful, a negative status value 
will be returned if not.  



ASN1C V5.3  132 

 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfListIterator::set 
 
int set (void* pData); 
 
This method replaces the last element returned by next or prev methods with the specified element. This 
call can be made only if neither remove nor insert methods have been called after the last call to next or 
prev methods. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Returns ASN_OK if operation is successful, a negative status value 
will be returned if not.  
 

 
Input Parameters: 
 
Name Type Description 
pData void* 

 
The element with which to replace the last element returned by next 
or prev methods.  
 

 
Output Parameters: 
 
None 
 
 
ASN1CSeqOfListIterator::insert 
 
int insert (void* pData); 
 
This method inserts the specified element into the list.  The element is inserted immediately before the next 
element that would be returned by next method, if any, and after the next element that would be returned by 
prev method, if any.  (If the list contains no elements, the new element becomes the sole element on the 
list). The new element is inserted before the implicit cursor: a subsequent call to next would be unaffected, 
and a subsequent call to prev would return the new element. 
 
Return Value: 
 
Name Type Description 
stat int 

 
Returns ASN_OK if operation is successful, a negative status value 
will be returned if not.  
 

 
Input Parameters: 
 
Name Type Description 



ASN1C V5.3  133 

pData void* 
 

The element to be inserted.  
 

 
Output Parameters: 
 
None 
 



ASN1C V5.3  134 

ASN1CTime 
 
 ASN1Type 
   | 
   +- ASN1CTime 
 
The ASN1CTime class is derived from the ASN1CType base class.  It is used as the abstract base class for 
generated control classes for the ASN.1 Generalized Time ([UNIVERSAL 24] IMPLICIT VisibleString) 
and Universal Time ([UNIVERSAL 23] IMPLICIT VisibleString) types. This class provides utility 
methods for operating on the time information referenced by the generated class.  This class can also be 
used inline to operate on the times within generated time string elements in a SEQUENCE, SET, or 
CHOICE construct. The time strings are generally formatted according to ISO 8601 format with some 
exceptions (see X.680). 
 
 
ASN1CTime::ASN1CTime 
 
There are a number of different constructors available for this object.  The different types are as follows: 
 
 
ASN1CTime (ASN1MessageBuffer& msgBuf, char*& buf, int bufSize); 
 
This constructor creates a time string from buffer. It does not deep-copy the data; it just assigns the passed 
array to an internal reference variable. The object will then directly operate on the given data variable.  
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for example, an 
ASN1BEREncodeBuffer). 
 

buf char* Reference to pointer to time string buffer. 
 

bufSize int Size of passed buffer, in bytes. 
 

  
Output Parameters: 
 
None 
 
 
ASN1CTime (ASN1MessageBuffer& msgBuf, ASN1VisibleString& buf);  
 
This constructor creates a time string using the ASN1VisibileString argument. The constructor does not 
deep-copy the variable, it assigned a reference to it to an internal variable.  The object will then directly 
operate on the given data variable.  This form of the constructor is used with a compiler-generated time 
string variable. 
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for 
example, an ASN1BEREncodeBuffer). 
 

buf ASN1VisibleString& Reference to a visible string structure. 
 

 
Output Parameters: 



ASN1C V5.3  135 

 
None 
 
 
ASN1CTime::getYear 
 
int getYear (); 
 
This method returns the year component of the time value. Note that the return value may differ for 
different inherited ASN1Ctime classes. 
 
Return Value: 
 
Name Type Description 
year int 

 
Year component (full 4 digits) is returned if the operation is successful.  
If the operation fails, one of the negative status codes defined in 
Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::getMonth 
 
int getMonth (); 
 
This method returns the month number component of the time value. The number of January is 1, February  
2, � up to December 12. You may use enumerated values for decoded months: ASN1CTime::January, 
ASN1CTime::February, etc. Also short aliases for months can be used: ASN1CTime::Jan, 
ASN1CTime::Feb, etc. Note that the return value may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
month int 

 
Month component (1 � 12) is returned if the operation is successful.  If 
the operation fails, one of the negative status codes defined in 
Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::getDay 
 
int getDay (); 
 



ASN1C V5.3  136 

This method returns the day of month number component of the time value. The number of the first day in 
month is 1, the number of the last day may be in interval from 28 to 31. Note that the return value may 
differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
day int 

 
Day of month component (1 � 31) is returned if the operation is 
successful.  If the operation fails, one of the negative status codes 
defined in Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::getHour 
 
int getHour (); 
 
This method returns the hour component of the time value. As the ISO 8601 is based on the 24-hour 
timekeeping system, hours are represented by two-digit values from 00 to 23. Note that the return value 
may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
hour int 

 
Hour component (0 � 23) is returned if the operation is successful.  If 
the operation fails, one of the negative status codes defined in 
Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::getMinute 
 
int getMinute (); 
 
This method returns the minute component of the time value. Minutes are represented by two digits from 
00 to 59. Note that the return value may be different for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
minute int 

 
Minute component (0 � 59) is returned if the operation is successful.  If 
the operation fails, one of the negative status codes defined in 



ASN1C V5.3  137 

Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::getSecond 
 
int getSecond (); 
 
This method returns the second component of the time value. Seconds are represented by two digits from 
00 to 59. Note that the return value may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
second int 

 
Second component (0 � 59) is returned if the operation is successful.  If 
the operation fails, one of the negative status codes defined in 
Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::getFraction 
 
int getFraction (); 
 
This method returns the second�s decimal fraction component of the time value. Second�s decimal fraction 
is represented by one digit from 0 to 9. Note that the return value may differ for different inherited 
ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
fraction int 

 
Second�s decimal fraction component (0 � 9) is returned if the 
operation is successful.  If the operation fails, one of the negative status 
codes defined in Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 



ASN1C V5.3  138 

None 
 
 
ASN1CTime::getDiffHour 
 
int getDiffHour (); 
 
This method returns the hour component of the difference between the time zone of the object and 
Coordinated Universal Time (UTC). The UTC time is the sum of the local time and positive or negative 
time difference. Note that the return value may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
dhour int 

 
The negative or positive hour component of the difference between the 
time zone of the object and UTC time  (-12 � +12) is returned if the 
operation is successful.  If the operation fails, one of the negative status 
codes defined in Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::getDiffMinute 
 
int getDiffMinute (); 
 
This method returns the minute component of the difference between the time zone of the object and 
Coordinated Universal Time (UTC). The UTC time is the sum of the local time and positive or negative 
time difference. Note that the return value may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
dmin int 

 
The negative or positive minute component of the difference between 
the time zone of the object and UTC time  (-59 � +59) is returned if the 
operation is successful.  If the operation fails, one of the negative status 
codes defined in Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::getDiff 
 
int getDiff (); 



ASN1C V5.3  139 

 
This method returns the difference between the time zone of the object and Coordinated Universal Time 
(UTC), in minutes. The UTC time is the sum of the local time and positive or negative time difference. 
Note that the return value may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
diff int 

 
The negative or positive difference, in minutes, between the time zone 
of the object and UTC time  (-12*60 � +12*60) is returned if the 
operation is successful.  If the operation fails, one of the negative status 
codes defined in Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::getUTC 
 
ASN1BOOL getUTC (); 
 
This method returns the UTC flag state. If the UTC flag is TRUE, then the time is a UTC time and symbol 
�Z� is added at the end of time string. Otherwise, it is a local time. 
 
Return Value: 
 
Name Type Description 
utc ASN1BOOL 

 
UTC flag state is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::getTime 
 
time_t getTime (); 
 
This method converts the time string to a value of the built-in C type time_t.  The value is the number of 
seconds from January 1, 1970. If the time is represented as UTC time plus or minus a time difference, then 
the resulting value will be recalculated as local time. For example, if the time string is 
�19991208120000+0930�, then this string will be converted to �19991208213000� and then converted to a 
time_t value. Note that the return value may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 



ASN1C V5.3  140 

time time_t 
 

The time value, expressed as number of seconds from January 1, 1970. 
If the operation fails, one of the negative status codes defined in 
Appendix A is returned 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::setYear 
 
int setYear (int year); 
 
This method sets the year component of the time value. Note that the action of this method may differ for 
different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
year int 

 
Year component (full 4 digits)  
 

 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::setMonth 
 
int setMonth (int month); 
 
This method sets the month number component of the time value. The number of January is 1, February 2, 
�, through December  (12). You may use enumerated values for months encoding: ASN1CTime::January, 
ASN1CTime::February, etc. Also you can use short aliases for months: ASN1CTime::Jan, 
ASN1CTime::Feb, etc.  Note that the action of this method may differ for different inherited ASN1CTime 
classes. 
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 



ASN1C V5.3  141 

 
Name Type Description 
month int 

 
Month component (1 � 12). 
 

 
Output Parameters: 
 
None 
 
 
ASN1CTime::setDay 
 
int setDay (int day); 
 
This method sets the day of month number component of the time value. The number of the first day in 
month is 1; the number of the last day may be in interval from 28 to 31. Note that the action of this method 
may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
day int 

 
Day of month component (1 � 31). 
 

 
Output Parameters: 
 
None 
 
 
ASN1CTime::setHour 
 
int setHour (int hour); 
 
This method sets the hour component of the time value. As the ISO 8601 is based on the 24-hour 
timekeeping system, hours are represented by two digits from 00 to 23. Note that the action of this method 
may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
hour int 

 
Hour component (0 � 23). 
 

 
Output Parameters: 



ASN1C V5.3  142 

 
None 
 
 
ASN1CTime::setMinute 
 
int setMinute (int minute); 
 
This method sets the minute component of the time value. Minutes are represented by two digits from 00 to 
59. Note that the action of this method may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
minute int 

 
Minute component (0 � 59). 
 

 
Output Parameters: 
 
None 
 
 
ASN1CTime::setSecond 
 
int setSecond (int second); 
 
This method sets the second component of the time value. Seconds are represented by two digits from 00 to 
59. Note that the action of this method may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
second int 

 
Second component (0 � 59). 
 

 
Output Parameters: 
 
None 
 
 
ASN1CTime::setFraction 
 
int setFraction (int fraction); 
 



ASN1C V5.3  143 

This method sets the second�s decimal fraction component of the time value. Second�s decimal fraction is 
represented by one digit from 0 to 9. Note that the action of this method may differ for different inherited 
ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
fraction int 

 
Second�s decimal fraction component (0 � 9). 
 

 
Output Parameters: 
 
None 
 
 
ASN1CTime::setDiffHour 
 
int setDiffHour (int dhour); 
 
This method sets the hour component of the difference between the time zone of the object and 
Coordinated Universal Time (UTC). The UTC time is the sum of the local time and positive or negative 
time difference. Note that the action of this method may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
dhour int 

 
The negative or positive hour component of the difference between the 
time zone of the object and UTC time  (-12 � +12) is returned if the 
operation is successful.  If the operation fails, one of the negative status 
codes defined in Appendix A is returned. 
 

 
Output Parameters: 
 
None 
 
 
ASN1CTime::setDiff 
 
int setDiff (int dhour, int dminute); 
 
This method sets the hour and minute components of the difference between the time zone of the object and 
Coordinated Universal Time (UTC). The UTC time is the sum of the local time and positive or negative 
time difference. Note that the action of this method may differ for different inherited ASN1CTime classes. 



ASN1C V5.3  144 

 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
dhour int 

 
The negative or positive hour component of the difference between the 
time zone of the object and UTC time  (-12 � +12). 
 

dminute int 
 

The negative or positive minute component of the difference between 
the time zone of the object and UTC time  (-59 � +59). 
 

 
Output Parameters: 
 
None 
 
 
ASN1CTime::setDiff 
 
int setDiff (int inMinutes); 
 
This method sets the difference between the time zone of the object and Coordinated Universal Time 
(UTC), in minutes. The UTC time is the sum of the local time and positive or negative time difference. 
Note that the action of this method may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
inMinutes int 

 
The negative or positive difference, in minutes, between the time zone 
of the object and UTC time  (-12*60 � +12*60) is returned if the 
operation is successful.  If the operation fails, one of the negative status 
codes defined in Appendix A is returned. 
 

 
Output Parameters: 
 
None 
 
 
ASN1CTime::setUTC 
 
int setUTC (ASN1BOOL utc); 
 
This method sets the UTC flag state. If the UTC flag is TRUE, then the time is a UTC time and symbol �Z� 
is added at the end of time string. Otherwise, it is a local time. 



ASN1C V5.3  145 

 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
utc ASN1BOOL 

 
UTC flag state. 
 

 
Output Parameters: 
 
None 
 
 
ASN1CTime::setTime 
 
int setTime (time_t time, ASN1BOOL diffTime); 
 
This method converts the value of the C built-in type time_t to a time string.  The value is the number of 
seconds from January 1, 1970. Note that the action of this method may differ for different inherited 
ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
time time_t 

 
The time value, expressed as number of seconds from January 1, 1970.  
 

diffTime ASN1BOOL 
 

 TRUE means the difference between local time and UTC time will be 
calculated; in other case only local time will be stored. 
 

 
Output Parameters: 
 
None 
 
 
ASN1CTime::parseString 
 
int parseString (ASN1ConstCharPtr string); 
 
This method parses the given time string.  The string is expected to be in the ASN.1 value notation format 
for the given ASN.1 time string type.  Note that the action of this method may differ for different inherited 
ASN1CTime classes. 
 
Return Value: 
 



ASN1C V5.3  146 

Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
string ASN1ConstChar

Ptr 
 

The time string value to be parsed.  
 

 
Output Parameters: 
 
None 
 
 
ASN1CTime::clear 
 
void clear (); 
 
This method clears the time string.  Note that the action of this method may differ for different inherited 
ASN1CTime classes. 
 
Return Value: 
 
None 
  
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CTime::operator = 
 
ASN1CTime& operator = (const ASN1CTime& other); 
 
This overloaded assignment operator copies one ASN1CTime class instance to another. Note that the action 
of this method may differ for different inherited ASN1CTime classes. 
 
Return Value: 
 
Name Type Description 
this ASN1CTime& Returns reference to this instance. 

 
 
Input Parameters: 
 
Name Type Description 
other ASN1CTime& 

 
Reference to the time value to be copied.  
 

 
Output Parameters: 
 



ASN1C V5.3  147 

None 
 
 
ASN1CTime::operator == 
ASN1CTime::operator > 
ASN1CTime::operator < 
ASN1CTime::operator >= 
ASN1CTime::operator <= 
 
ASN1BOOL operator == (ASN1CTime& other); 
ASN1BOOL operator != (ASN1CTime& other); 
ASN1BOOL operator > (ASN1CTime& other); 
ASN1BOOL operator < (ASN1CTime& other); 
ASN1BOOL operator >= (ASN1CTime& other); 
ASN1BOOL operator <= (ASN1CTime& other); 
 
These are overloaded comparison operators that can be used with the time classes.  They can be used to 
compare two time strings for the various conditions. 
 
Return Value: 
 
Name Type Description 
result ASN1BOOL Returns result of the comparison of two time class instances. 

 
 
Input Parameters: 
 
Name Type Description 
other ASN1CTime& 

 
Reference to the time value to be compared.  
 

 
Output Parameters: 
 
None 
 



ASN1C V5.3  148 

ASN1CGeneralizedTime 
 
 ASN1Type 
   | 
   +- ASN1CTime 
  | 
  +- ASN1CGeneralizedTime 
 
The ASN1CGeneralizedTime class is derived from the ASN1CTime base class.  It is used as the base class 
for generated control classes for the ASN.1 Generalized Time ([UNIVERSAL 24] IMPLICIT 
VisibleString) type. This class provides utility methods for operating on the time information referenced by 
the generated class.  This class can also be used inline to operate on the times within generated time string 
elements in a SEQUENCE, SET, or CHOICE construct. Time string generally is encoding according to 
ISO 8601 format with some exceptions (see X.680). 
 
 
ASN1CGeneralizedTime::ASN1CGeneralizedTime 
 
There are a number of different constructors available for this object.  The different types are as follows: 
 
ASN1CGeneralizedTime (ASN1MessageBuffer& msgBuf,  
                      char*& buf, int bufSize); 
 
This constructor creates a time string from a buffer. It does not deep-copy the data, it just assigns the passed 
array to an internal reference variable. The object will then directly operate on the given data variable.  
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for example, an 
ASN1BEREncodeBuffer). 
 

buf char* Reference to the pointer to time string buffer. 
 

bufSize int Size of passed buffer, in bytes. 
 

  
Output Parameters: 
 
None 
 
 
ASN1CGeneralizedTime (ASN1MessageBuffer& msgBuf,  
                      ASN1GeneralizedTime& buf);  
 
This constructor creates a time string using the ASN1GeneralizedTime argument. The constructor does not 
deep-copy the variable, it assigns a reference to it to an internal variable.  The object will then directly 
operate on the given data variable.  This form of the constructor is used with a compiler-generated time 
string variable. 
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for 
example, an ASN1BEREncodeBuffer). 
 

buf ASN1VisibleString& Reference to a visible string structure. 
 



ASN1C V5.3  149 

 
Output Parameters: 
 
None 
 
 
ASN1CGeneralizedTime::getCentury 
 
int getCentury (); 
 
This method returns the century part (first two digits) of the year component of the time value.  
 
Return Value: 
 
Name Type Description 
century int 

 
Century part (first two digits) of the year component is returned if the 
operation is successful.  If the operation fails, one of the negative status 
codes defined in Appendix A is returned. 
 

 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
ASN1CGeneralizedTime::setCentury 
 
int setCentury (int century); 
 
This method sets the century part (first two digits) of the year component of the time value.  
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
century int 

 
Century part (first two digits) of the year component 
 

 
Output Parameters: 
 
None 
 
 



ASN1C V5.3  150 

ASN1CUTCTime 
 
 ASN1Type 
   | 
   +- ASN1CTime 
  | 
  +- ASN1CUTCTime 
 
The ASN1CUTCTime class is derived from the ASN1CTime base class.  It is used as the base class for 
generated control classes for the ASN.1 Universal Time ([UNIVERSAL 23] IMPLICIT VisibleString) 
type. This class provides utility methods for operating on the time information referenced by the generated 
class.  This class can also be used inline to operate on the times within generated time string elements in a 
SEQUENCE, SET, or CHOICE construct. Time string generally is encoding according to ISO 8601 format 
with some exceptions (see X.680). 
 
 
ASN1CUTCTime::ASN1CUTCTime 
 
There are a number of different constructors available for this object.  The different types are as follows: 
 
ASN1CUTCTime (ASN1MessageBuffer& msgBuf, char*& buf, int bufSize); 
 
This constructor creates a time string from a buffer. It does not deep-copy the data, it just assigns the passed 
array to an internal reference variable. The object will then directly operate on the given data variable.  
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for example, an 
ASN1BEREncodeBuffer). 
 

buf char* Reference to a pointer to a time string buffer. 
 

bufSize int Size of passed buffer, in bytes. 
 

  
Output Parameters: 
 
None 
 
 
ASN1CUTCTime (ASN1MessageBuffer& msgBuf, ASN1UTCTime& buf);  
 
This constructor creates a time string using the ASN1UTCTime argument. The constructor does not deep-
copy the variable, it assigns a reference to it to an internal variable.  The object will then directly operate on 
the given data variable.  This form of the constructor is used with a compiler-generated time string variable. 
 
Input Parameters: 
 
Name Type Description 
msgBuf ASN1Message 

Buffer& 
 

Reference to an ASN1Message buffer derived object (for 
example, an ASN1BEREncodeBuffer). 
 

buf ASN1UTCTime& Reference to a time string structure. 
 

 
Output Parameters: 
 



ASN1C V5.3  151 

None 
 
 
ASN1CUTCTime::setYear 
 
int setYear (int year); 
 
This method sets the year component of the time value.  The �year� parameter can be passed as either the 
two last digits of the year (00 � 99) or as the full 4 digits (0 � 9999). Note: the �getYear� method returns the 
year in the full 4 digits format, independent of the format of the �year� parameter used in this method. 
 
Return Value: 
 
Name Type Description 
stat int Returns ASN_OK if operation is successful, a negative status value 

will be returned if not. 
 

 
Input Parameters: 
 
Name Type Description 
year int 

 
Year component (full 4 digits or only two last digits).  
 

 
 
Output Parameters: 
 
None 
 
 
 
 
 
 



ASN1C V5.3  152 

 
Asn1NamedEventHandler  
 
The Asn1NamedEventHandler class is an abstract base class from which user-defined event handlers are 
derived.  This class contains pure virtual function definitions for all of the methods that must be 
implemented to create a customized event handler class.  See the section above on Event Handlers for a 
discussion on how event handlers work. 
 
 
Asn1NamedEventHandler::startElement 
 
This method is invoked from within a decode function when an element of a SEQUENCE, SET, 
SEQUENCE OF, SET OF, or CHOICE construct is parsed. 
 
Calling Sequence: 
 
 eventHandler.startElement (name, index); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
name const char* 

 
For SEQUENCE, SET, or CHOICE, this is the name of the element as defined in 
the ASN.1 definition.  For SEQUENCE OF or SET OF, this is set to the name 
�element�. 
 

index int For SEQUENCE, SET, or CHOICE, this is not used and is set to the value �1.  For 
SEQUENCE OF or SET OF, this contains the zero-based index of the element in the 
conceptual array associated with the construct. 
 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::endElement 
 
This method is invoked from within a decode function when parsing is complete on an element of a 
SEQUENCE, SET, SEQUENCE OF, SET OF, or CHOICE construct. 
 
Calling Sequence: 
 
 eventHandler.endElement (name, index); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 



ASN1C V5.3  153 

Name Type Description 
name const char* 

 
For SEQUENCE, SET, or CHOICE, this is the name of the element as defined in 
the ASN.1 definition.  For SEQUENCE OF or SET OF, this is set to the name 
�element�. 
 

index int For SEQUENCE, SET, or CHOICE, this is not used and is set to the value �1.  For 
SEQUENCE OF or SET OF, this contains the zero-based index of the element in the 
conceptual array associated with the construct. 
 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::boolValue 
 
This method is invoked from within a decode function when a value of the BOOLEAN ASN.1 type is 
parsed. 
 
Calling Sequence: 
 
 eventHandler.boolValue (value); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
value ASN1BOOL 

 
Parsed value. 
 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::intValue 
 
This method is invoked from within a decode function when a value of the INTEGER ASN.1 type is 
parsed. 
 
Calling Sequence: 
 
 eventHandler.intValue (value); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 



ASN1C V5.3  154 

Name Type Description 
value ASN1INT 

 
Parsed value. 
 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::uIntValue 
 
This method is invoked from within a decode function when a value of the INTEGER ASN.1 type is 
parsed.  In this case, constraints on the integer value forced the use of an unsigned integer C type to 
represent the value. 
 
Calling Sequence: 
 
 eventHandler.uIntValue (value); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
value ASN1UINT 

 
Parsed value. 
 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::bitStrValue 
 
This method is invoked from within a decode function when a value of the BIT STRING ASN.1 type is 
parsed.  
 
Calling Sequence: 
 
 eventHandler.bitStrValue (numbits, data); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
numbits ASN1UINT 

 
Number of bits in the parsed value. 
 

data const 
ASN1OCTET* 
 

Pointer to byte array containing the bit string data. 
 



ASN1C V5.3  155 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::octStrValue 
 
This method is invoked from within a decode function when a value of the OCTET STRING ASN.1 type is 
parsed.  
 
Calling Sequence: 
 
 eventHandler.octStrValue (numocts, data); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
numocts ASN1UINT 

 
Number of octets in the parsed value. 
 

data const 
ASN1OCTET* 
 

Pointer to byte array containing the octet string data. 
 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::charStrValue 
 
This method is invoked from within a decode function when a value of one of the 8-bit ASN.1 character 
string types is parsed.  
 
Calling Sequence: 
 
 eventHandler.charStrValue (value); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
value ASN1Const 

CharPtr 
 

Null-terminated character string value. 
 

 
Output Parameters: 



ASN1C V5.3  156 

 
None 
 
 
Asn1NamedEventHandler::charStrValue (16-bit version) 
 
This method is invoked from within a decode function when a value of one of the 16-bit ASN.1 character 
string types is parsed.  
 
Calling Sequence: 
 
 eventHandler.charStrValue (nchars, data); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
nchars ASN1UINT 

 
Number of characters in the parsed value. 
 

data ASN116 
BITCHAR* 
 

Pointer to array containing 16-bit character values.  These are represented using 
unsigned short integer values. 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::nullValue 
 
This method is invoked from within a decode function when a value of the NULL ASN.1 type is parsed.  
 
Calling Sequence: 
 
 eventHandler.nullValue (); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::oidValue 
 



ASN1C V5.3  157 

This method is invoked from within a decode function when a value the OBJECT IDENTIFIER ASN.1 
type is parsed.  
 
Calling Sequence: 
 
 eventHandler.oidValue (numSubIds, pSubIds); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
numSubIds ASN1UINT 

 
Number of subidentifiers in the object identifier. 
 

pSubIds ASN1UINT* Pointer to array containing the subidentifier values.   
 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::realValue 
 
This method is invoked from within a decode function when a value the REAL ASN.1 type is parsed.  
 
Calling Sequence: 
 
 eventHandler.realValue (value); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
value double 

 
Parsed value. 
 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::enumValue 
 
This method is invoked from within a decode function when a value of the ENUMERATED ASN.1 type is 
parsed. 
 
Calling Sequence: 
 



ASN1C V5.3  158 

 eventHandler.enumValue (value); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
value ASN1UINT 

 
Parsed value. 
 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::octStrValue 
 
This method is invoked from within a decode function when a value of the OCTET STRING ASN.1 type is 
parsed.  
 
Calling Sequence: 
 
 eventHandler.octStrValue (numocts, data); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
numocts ASN1UINT 

 
Number of octets in the parsed value. 
 

data const 
ASN1OCTET* 
 

Pointer to byte array containing the octet string data. 
 

 
Output Parameters: 
 
None 
 
 
Asn1NamedEventHandler::openTypeValue 
 
This method is invoked from within a decode function when an ASN.1 open type value is parsed.  
 
Calling Sequence: 
 
 eventHandler.openTypeValue (numocts, data); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 



ASN1C V5.3  159 

Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
numocts ASN1UINT 

 
Number of octets in the parsed value. 
 

data const 
ASN1OCTET* 
 

Pointer to byte array containing the encoded ASN.1 value. 
 

 
Output Parameters: 
 
None 
 



ASN1C V5.3  160 

Asn1ErrorHandler  
 
The Asn1ErrorHandler class is an abstract base class from which user-defined error handlers are derived.  
These user-defined handlers allow for intervention in the decoding process to allow for fault-tolerant 
behavior.  This class contains pure virtual function definitions for the methods that must be implemented to 
create a customized error handler class.  See the section above on Event Handlers for a discussion on how 
error handlers work. 
 
 
Asn1ErrorHandler::error 
 
This method is invoked from within a decode function when certain types of recoverable errors occur. 
 
Calling Sequence: 
 
 ret = errorHandler.error (pCtxt, pCCB, stat); 
 
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class. 
 
Return Value: 
 
Name Type Description 
ret int 

 
Updated status value.  This will normally be set to ASN_OK if the parsing process 
is to continue or the original status value (stat) if decoding is to be aborted. 
 

 
Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT* 

 
Pointer to the context structure associated with the decoder.  This can be used in call 
to C run-time functions to manipulate the current decode buffer position. 
 

pCCB ASN1CCB* Pointer to a �context control block� structure.  This is basically a loop control 
mechanism to keep the variable associated with parsing a nested constructed 
element straight.  It is passed into the error handler to allow the loop control 
variables to be manipulated to force certain retry behavior. 
 
The item within this structure that is of greatest interest is the �seqx� element.  This 
is the sequence index of the current item being pared within a SEQUENCE 
construct.  If the user would like to retry parsing of an element, this item should be 
decremented; if the element is to be skipped altogether, this element should be left 
alone. 
 

stat int The original error status value. 
 

 
Output Parameters: 
 
None 
 



ASN1C V5.3  161 

BER Run-time Library Functions 
 
The ASN.1 Basic Encoding Rules (BER) run-time library contains all of the low-level constants, types, and 
functions that are assembled by the compiler to encode/decode more complex structures. 
 
This library consists of two items: 
 
1. A global include file ("asn1type.h") that is compiled into all generated source files 

 
2. An object library of functions that are linked in with the C functions after compilation with a C 

compiler.   
 
In general, programmers will not need to be too concerned with the details of these functions.  The ASN.1 
compiler generates calls to them in the C or C++ source files that it creates.  However, the functions in the 
library may also be called on their own in applications requiring their specific functionality. 
 
asn1type.h Include File 
 
Every C source file produced by the ASN1C compiler includes the asn1type.h include file either directly or 
at a nested level.  This file contains function error code constants, tagging value and mask constants, sizing 
constants for internal arrays and buffers, and ASN.1 primitive type definitions. 
 
                
Error Constants 
 
All error code constants begin with the prefix "ASN_E_" and run from zero, which is success, into negative 
numbers that describe all of the various error conditions.  A complete list of error codes and a description 
of what causes them can be found in Appendix A. 
 
There are several error message utility functions defined within the run-time libraries that provide detailed 
information on error conditions.  See the descriptions of the functions beginning with the prefix rtErr in the 
Common Functions section. 
 
    
Tagging Value and Mask Constants 
 
Tagging constants provide a means for setting up class and form fields within ASN.1 tag variables.  To 
understand how these work, one must first understand the internal representation of ASN.1 tags within the 
run-time library. 
 
In the ASN.1 standard, tags are represented as a class, form, and ID code. Class and form are relatively 
straightforward.  Class is a two bit code which can take on one of four possible values (UNIVERSAL, 
APPLICATION, CONTEXT, or PRIVATE) and form is a single bit which can take on one of two values 
(PRIMITIVE or CONSTRUCTED).  Together, these occupy the upper three bits of a tag value.  The 
remaining bits are for the ID code.  An ID code having a value of 30 or less can be accommodated in the 
remaining bits of the first byte.  If the value is larger, additional bytes are added. 
 
This is where the internal representation differs from the standard.  The internal representation assumes an 
unsigned, 13-bit number (i.e up to 2 to the 13th power, or 8191 ID codes) can represent all possible ID 
codes defined in a particular environment.  Using this assumption, a tag can always be represented as an 
unsigned, 16-bit integer value as follows: 



ASN1C V5.3  162 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bits 14 and 15 hold the 2-bit class value, bit 13 holds the form, and bits 0 through 12 hold the integer value 
of the ID code.  Run-time library functions handle conversions to and from this format and the ASN.1 
standard format in messages. 
 
The tagging constants that allow construction of internal tag values come in two forms: values and masks.  
Values are simply the values of the classes and forms shown above.  These start with the prefix 'TV_' (for 
'Tag Value').  Examples are TV_UNIV for UNIVERSAL (0) and TV_APPL for APPLICATION (1).  In 
addition, values are defined for the ID codes of the universal ASN.1 types such as BOOLEAN and 
INTEGER - these are preceded by the prefix 'ASN_ID_'.  Masks are hexadecimal values which can be 
logically OR'd together with integer values to form full internal tag specifications.  These start with the 
prefix 'TM_' (for 'Tag Mask').  For example, to form an internal representation of a private, constructed tag 
with ID code 21, the following could be used: 
 
    TM_PRIV|TM_CONS|21. 
 
 
Sizing Constants 
 
Sizing constants are provided to define the maximum sizes of internal buffers and arrays used by the run-
time library functions.  These can be modified if the given values are not sufficient for a given application.  
The constants and default values can be found in asn1type.h. 
 
    
ASN.1 Primitive Type Definitions 
 
C typedef statements are used to represent several of the ASN.1 primitive types (i.e., universal, non-
constructed types).  These include ASN1INT, ASN1OCTET, ASN1BOOL, ASN1OBJID, and the special 
type ASN1TAG used to represent the internal tag discussed above.  In addition, ASN1OctStr and 
ASN1DynOctStr provide generic representations of static and dynamic octet strings that can be used in 
type cast operations. 

Bit#: 15  �                                                                               0 

ID Code 

Form: 
0 = Primitive 
1 = Constructed 

Class: 
0 (00) = Universal 
1 (01) = Application 
2 (10) = Context Specific 
3 (11) = Private 



ASN1C V5.3  163 

BER/DER C Encode Functions 
 
BER/DER C encode functions handle the BER encoding of the primitive ASN.1 data types and ASN.1 
length and tag fields within a message.  Calls to these functions are assembled in the C source code 
generated by the ASN1C compiler to accomplish the encoding of complex ASN.1 structures.  These 
functions are also directly callable from within a user's application program if the need to accomplish a low 
level encoding function exists.   
 
The procedure to call the encode function that encodes a primitive type is the same as the procedure to call 
a compiler generated encode function described above.  The xe_setp function must first be called to set a 
pointer to the buffer into which the variable is to be encoded.  A static encode buffer is specified by 
specifying a pointer to a buffer and buffer size.  Setting the buffer address to NULL and buffer size to 0 
specifies a dynamic buffer.  The primitive encode function is then invoked.  Finally, xe_getp is called to 
retrieve a pointer to the encoded message component. 
 
For example, the following code fragment could be used to encode a single, boolean value: 
 
 ASN1OCTET buf[10], *msg_p; 
 ASN1BOOL  boolValue = 1;  /* true */ 
 ASN1CTXT  ctxt; 
 int msglen; 
 
 xe_setp (&ctxt, buf, sizeof(buf)); 
 msglen = xe_boolean (&ctxt, &boolValue, ASN1EXPL); 
 msg_p  = xe_getp (&ctxt); 
 
 
The msg_p variable now contains a pointer to the encoded boolean value and msglen contains the length. 
 
 
xe_setp - Set Encode Buffer Pointer 
 
The xe_setp function is used to set the internal encode buffer within the Run-time library encode module.  
It must be called prior to calling any other compiler generated or run-time library encode function. 
 
Calling sequence: 
 
    xe_setp (ctxt_p, bufptr, buflen); 
 
Return value: 
 
None 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

bufptr ASN1OCTET* Pointer to a memory buffer to use to encode a message.  The buffer should be 
declared as an array of unsigned characters (ASN1OCTETs).  This parameter can be 
set to NULL to specify dynamic encoding (i.e., the encode functions will 
dynamically allocate a buffer for the encoded message). 
 

buflen int Length of the memory buffer in bytes. 
 

 
 



ASN1C V5.3  164 

Output parameters: 
 
None 
 
 
xe_getp - Get Encode Buffer Pointer 
 
The xe_getp function is used to obtain a pointer to the start of an encoded message after calls to the encode 
function(s) are complete.  ASN.1 messages are encoded from the end of a given buffer toward the 
beginning, therefore, in practically all cases, the start of the message will not be at the beginning of the 
buffer. 
 
Calling sequence: 
 
    msgptr = xe_getp (ctxt_p); 
 
Return value: 
 
Name Type Description 
msgptr ASN1OCTET* Pointer to beginning of encoded message. 

 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
 
Output Parameters: 
 
None 
 
 
xe_tag_len - Encode Tag and Length 
 
The xe_tag_len function is used to encode the ASN.1 tag and length fields that preface each block of 
message data.  The ASN1C compiler generates calls to this function to handle the encoding of user defined 
tags within an ASN.1 specification.  This function is also called from within the RUN-TIME LIBRARY 
functions to handle the addition of the universal tags defined for each of the ASN.1 primitive data types. 
 
Calling sequence: 
 
    msglen = xe_tag_len (ctxt_p, asntag, length); 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component equal to the given length plus the 

additional bytes that are added for the tag and length fields.  A negative status value 
will be returned if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 



ASN1C V5.3  165 

all working variables that must be maintained between function calls. 
 

asntag ASN1TAG The ASN.1 tag to be encoded in the message.  This parameter is passed using the 
internal representation discussed in Section 4.1.2.  It is passed as an unsigned 16 bit 
integer. 
 

length int The length of the contents field previously encoded.  This parameter can be used to 
specify the actual length, or the special constant 'ASN_K_INDEFLEN' can be used 
to specify that an indefinite length specification should be encoded. 
 

 
 
Output Parameters: 
 
None 
 
 
xe_boolean - Encode BOOLEAN 
 
The xe_boolean function will encode a variable of the ASN.1 BOOLEAN type. 
 
Calling sequence: 
 
    msglen = xe_boolean (ctxt_p, object, tagging); 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object ASN1BOOL* A pointer to the BOOLEAN value to be encoded (note that a pointer to the 
BOOLEAN is passed, not the BOOLEAN value itself.  This may seem awkward, 
but to keep the calling sequence of all encode functions the same, pointers were used 
in all cases).  A BOOLEAN is defined as a single OCTET whose value is 0 for 
FALSE and any other value for TRUE. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

 
Output Parameters: 
 
None 
 
 
xe_integer - Encode INTEGER 
 
The xe_integer function will encode a variable of the ASN.1 INTEGER type. 
 



ASN1C V5.3  166 

Calling sequence: 
 
    msglen = xe_integer (ctxt_p, object, tagging); 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object ASN1INT* A pointer to the INTEGER value to be encoded (note that a pointer to the INTEGER 
is passed, not the INTEGER value itself.  This may seem awkward, but to keep the 
calling sequence of all encode functions the same, pointers were used in all cases).   
The ASN1INT type is set to the C type �int� in the asn1type.h file.  This is assumed 
to represent a 32 bit integer value.   
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

 
Output Parameters: 
 
None 
 
 
xe_unsigned - Encode Unsigned INTEGER 
 
The xe_unsigned function will encode an unsigned variable of the ASN.1 INTEGER type. 
 
Calling sequence: 
 
    msglen = xe_unsigned (ctxt_p, object, tagging); 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object ASN1UINT* A pointer to the unsigned INTEGER value to be encoded (note that a pointer to the 
value is passed, not the value itself.  This may seem awkward, but to keep the 
calling sequence of all encode functions the same, pointers were used in all cases).   
The ASN1UINT type is set to the C type �unsigned int� in the asn1type.h file.  This 



ASN1C V5.3  167 

is assumed to represent a 32-bit integer value. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

 
Output Parameters: 
 
None 
 
 
xe_bigint � Encode Big Integer 
 
The xe_bigint function will encode a variable of the ASN.1 INTEGER type.  In this case, the integer is 
assumed to be of a larger size than can fit in a C or C++ long type (normally 32 or 64 bits).  For example, 
parameters used to calculate security values are typically larger than these sizes. 
 
Items of this type are stored in character string constant variables.  They can be represented as decimal 
strings (with no prefixes), as hexadecimal strings starting with a �0x� prefix, as octal strings starting with a 
�0o� prefix or as binary strings starting with a �0b� prefix. Other radixes are currently not supported. 
 
Calling sequence: 
 
    msglen = xe_bigint (ctxt_p, object_p, tagging); 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object char* A pointer to a character string containing the value to be encoded. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

 
Output Parameters: 
 
None 
 
 
xe_bitstr - Encode BIT STRING 
 
The xe_bitstr function will encode a variable of the ASN.1 BIT STRING type. 
 
Calling sequence: 
 
    msglen = xe_bitstr (ctxt_p, object, numbits, tagging); 



ASN1C V5.3  168 

 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object ASN1OCTET* A pointer to an OCTET string containing the bit data to be encoded.  This string 
contains bytes having the actual bit settings as they are to be encoded in the 
message. 
 

numbits int The number of bits within the bit string to be encoded. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

 
Output Parameters: 
 
None 
 
 
xe_octstr - Encode OCTET STRING 
 
The xe_octstr function will encode a variable of the ASN.1 OCTET STRING type. 
 
Calling sequence: 
 
    msglen = xe_octstr (ctxt_p, object, numocts, tagging); 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object ASN1OCTET* A pointer to an OCTET STRING containing the octet data to be encoded. 
 

numocts int The number of octets (bytes) within the bit string to be encoded. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 



ASN1C V5.3  169 

 
 
Output Parameters: 
 
None 
 
 
xe_charstr � Encode Character String 
 
 
The xe_charstr function will encode a variable one of the ASN.1 character string types that are based on 8-
bit character sets.  This includes IA5String, VisibleString, PrintableString, and NumericString. 
 
Calling sequence: 
 
    msglen = xe_charstr (ctxt_p, object_p, tagging, tag); 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object char* A pointer to a null-terminated C character string to be encoded. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

tag ASN1TAG The Universal ASN.1 tag to be encoded in the message.  This parameter is passed 
using the internal representation discussed in Section 4.1.2.  It is passed as an 
unsigned 16-bit integer.  The tag value must be represent one of the 8-bit character 
string type documented in the X.680 standard. 
 

 
Output Parameters: 
 
None 
 
 
xe_16BitCharStr � Encode 16-bit Character String 
 
The xe_16BitCharStr function will encode a variable one of the ASN.1 character string types that are based 
on a 16-bit character sets.  This includes the BMPString type. 
 
Calling sequence: 
 
    msglen = xe_16BitCharStr (ctxt_p, object_p, tagging, tag); 
 
Return value: 
 



ASN1C V5.3  170 

Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object Asn116Bit 
CharString* 
 

A pointer to a structure representing a 16-bit character string to be encoded.  This 
structure contains a character count element and a pointer to an array of 16-bit 
character elements represented as 16-bit short integers. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

tag ASN1TAG The Universal ASN.1 tag to be encoded in the message.  This parameter is passed 
using the internal representation discussed in Section 4.1.2.  It is passed as an 
unsigned 16-bit integer.  The tag value must be represent one of the 16-bit character 
string type documented in the X.680 standard. 
 

 
 
xe_32BitCharStr � Encode 32-bit Character String 
 
The xe_32BitCharStr function will encode a variable one of the ASN.1 character string types that are based 
on a 32-bit character sets.  This includes the UniversalString type. 
 
Calling sequence: 
 
    msglen = xe_32BitCharStr (ctxt_p, object_p, tagging, tag); 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object Asn132Bit 
CharString* 
 

A pointer to a structure representing a 32-bit character string to be encoded.  This 
structure contains a character count element and a pointer to an array of 32-bit 
character elements represented as 32-bit unsigned integers. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

tag ASN1TAG The Universal ASN.1 tag to be encoded in the message.  This parameter is passed 
using the internal representation discussed in Section 4.1.2.  It is passed as an 



ASN1C V5.3  171 

unsigned 16-bit integer.  The tag value must be represent one of the 16-bit character 
string type documented in the X.680 standard. 
 

 
 
xe_enum - Encode ENUMERATED 
 
The xe_enum function will encode a variable of the ASN.1 ENUMERATED type. 
 
Calling sequence: 
     
    msglen = xe_enum (ctxt_p, object, tagging); 
 
The enumerated encoding is identical to that of an integer.  The compiler adds additional checks to the 
generated code to ensure the value is within the given set. 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object ASN1ENUM* A pointer to an integer containing the enumerated value to be encoded (note that a 
pointer to the value is passed, not the value itself.  This may seem awkward, but to 
keep the calling sequence of all encode functions the same, pointers were used in all 
cases). 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

 
Output Parameters: 
 
None 
 
 
xe_null - Encode NULL 
 
The xe_null function will encode an ASN.1 NULL placeholder. 
 
    msglen = xe_null (ctxt_p, tagging); 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 



ASN1C V5.3  172 

 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

 
Output Parameters: 
 
None 
 
 
xe_objid - Encode OBJECT IDENTIFIER 
 
The xe_objid function will encode a variable of the ASN.1 OBJECT IDENTIFIER type. 
 
Calling sequence: 
 
    msglen = xe_objid (ctxt_p, object, tagging); 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object ASN1OBJID* A pointer to an object identifier structure.  This structure contains an integer to hold 
the number of subidentifers in the object and an array to hold the subidentifier 
values. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

 
Output Parameters: 
 
None 
 
 
xe_real � Encode Real 
 
xe_real will encode a variable of the REAL data type.  This function provides support for the plus-infinity 
and minus- infinity special real values. 
 
Calling sequence: 
 
    msglen = xe_real (ctxt_p, object, tagging); 



ASN1C V5.3  173 

 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object ASN1REAL* A pointer to a variable of the ASN1REAL data type.  This is defined to be the C 
double type.  Special real values plus and minus infinity are encoded by using the 
xu_GetPlusInfinity and xu_GetMinusInfinity functions to set the real value to be 
encoded. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is added or not.  Users will generally always set this value to 'ASN1EXPL'. 
 

 
Output Parameters: 
 
None 
 
 
xe_OpenType - Encode Open Type 
 
The xe_OpenType function will encode a variable of the old (pre-1994) ASN.1 ANY type or other 
elements defined in the later standards to be Open Types (for example, a variable type declaration in a 
CLASS construct as defined in X.681).  A variable of this is considered to be a previously encoded ASN.1 
message component. 
 
Calling sequence: 
 
    msglen = xe_OpenType (ctxt_p, object); 
 
Note that the tagging argument present on other encode functions is not present here.  This is because these 
variables must always be encoded explicitly. 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object ASN1OpenType A pointer to a buffer containing an encoded ASN.1 message component. 
 



ASN1C V5.3  174 

 
Output Parameters: 
 
None 
 
 
xe_free � Free Encoder Dynamic Memory 
 
The xe_free function will free a dynamic encode buffer. This is the buffer that is allocated if dynamic 
encoding of a message is enabled (passing NULL as the buffer pointer argument to xe_setp enables 
dynamic encoding). 
 
Note that this is different than the xu_freeall function associated with freeing decoder memory.  This 
function only releases the memory associated with a dynamic encoded buffer.  The xu_freeall function will 
not release this memory. 
 
Calling sequence: 
 
    xe_free (ctxt_p); 
 
Return value: 
 
None 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls.  The dynamic 
encode buffer pointer is contained within this structure. 
 

 
Output Parameters: 
 
None 
 
 
xe_expandBuffer � Expand Dynamic Encode Buffer 
 
The xe_expandBuffer function will expand a dynamic encode buffer. This is the buffer that is allocated if 
dynamic encoding of a message is enabled (passing NULL as the buffer pointer argument to xe_setp 
enables dynamic encoding). 
 
The size of the new buffer is determined by the length argument.  If the length is less than a configurable 
buffer expansion increment size (the constant ASN_K_ENCBUFSIZ), the buffer is expanded by the 
increment size; otherwise it is expanded by the actual length value. 
 
Calling sequence: 
 
    status = xe_expandBuffer (ctxt_p, length); 
 
Return value: 
 
Name Type Description 
status int Status of the operation.  Possible values are ASN_OK if decoding is successful or 

one of the negative status codes defined in Appendix A if failure. 
 

 



ASN1C V5.3  175 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls.  The dynamic 
encode buffer pointer is contained within this structure. 
 

length int The number of bytes required.  This may not be size the buffer is actually expanded 
by.  The buffer will be expanded by a fixed-size increment defined by 
ASN_K_ENCBUFSIZ for small requests to limit the required number of 
expansions. 
 

 
Output Parameters: 
 
None 
 
 
xe_memcpy � Copy Bytes to Encode Buffer 
 
The xe_memcpy function is used to copy bytes into the encode buffer.  BER and DER messages are 
encoded from back-to-front and this function will take this into account when copying bytes.  It will also 
check to ensure that enough space is available in the buffer for the bytes to be copied.  If not and the encode 
buffer is specified to be a dynamic buffer, it will automatically be expanded.  If the buffer is static and 
enough space is not available, an error status (ASN_E_BUFOVFLW) will be returned. 
 
Calling sequence: 
 
    msglen = xe_memcpy (ctxt_p, object_p, length); 
 
Return value: 
 
Name Type Description 
msglen int Length of the copied message component (this is the length that was passed in if the 

copy was successful).  A negative status value will be returned if encoding is not 
successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

object_p ASN1OCTET* A pointer to a buffer containing the bytes to be copied. 
 

length ASN1UINT Number of bytes to copy. 
 

 
Output Parameters: 
 
None 
 
 
xe_len � Encode a Length Value 
 
The xe_len function is used to encode a BER or DER length determinant value.  



ASN1C V5.3  176 

 
Calling sequence: 
 
    msglen = xe_len (ctxt_p, length); 
 
Return value: 
 
Name Type Description 
msglen int Length of the encoded message component.  A negative status value will be returned 

if encoding is not successful. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 
 

length int The length variable to encode.  A negative value is interpreted that an indefinite 
length identifier should be encoded. 
 

 
Output Parameters: 
 
None 
 
 
 
xe_derCanonicalSort � DER Canonical Sort 
 
The xe_derCanonicalSort function is added to the generated code for SEQUENCE OF/SET OF constructs 
to ensure the elements are in the required canonical order for DER.  If the elements are not in the right 
order, they are sorted to be in the correct order prior to encoding. 
 
Calling sequence: 
 
    status = xe_derCanonicalSort (ctxt_p, pList); 
 
Return value: 
 
Name Type Description 
status int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative status codes defined in Appendix A if failure. 
 

 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pList Asn1RTSList Linked list of message components to be sorted.  The elements of this list are offsets 
to encoded components within the encode buffer. 
 

 
Output Parameters: 



ASN1C V5.3  177 

 
None 
 
 
xe_TagAndIndefLen � Encode Tag and Indefinite Length 
 
The xe_TagAndIndefLen function is used to encode a tag value and an indefinite length.  This can be used 
to manually create an indefinite length wrapper around long records. 
 
Calling sequence: 
 
    status = xe_TagAndIndefLen (ctxt_p, tag, length); 
 
Return value: 
 
Name Type Description 
status int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative status codes defined in Appendix A if failure. 
 

 
Input Parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tag ASN1TAG ASN.1 tag value to be encoded. 
 

length int Actual length of existing message components. 
 

 
Output Parameters: 
 
None 
 



ASN1C V5.3  178 

BER/DER C Decode Functions 
 
BER/DER C decode functions handle the decoding of the primitive ASN.1 data types and ASN.1 length 
and tag fields within a message.  Calls to these functions are assembled in the C source code generated by 
the ASN1C compiler to decode complex ASN.1 structures.  These functions are also directly callable from 
within a user's application program if the need to decode a primitive data item exists. 
 
The procedure to decode a primitive data item is as follows: 
 
1. Call the xd_setp low-level decode function to specify the address of the buffer containing the encoded 

ASN.1 data to be decode, and 
 

2. Call the specific decode function to decode the value.  The tag value obtained in step 1 can be used to 
determine the decode function to call to decode the variable. 
 

For example, to decode a message containing a single object identifier with no special tagging, the 
following code fragment could be used: 
 
 ASN1OBJID objId;  /* variable to receive decoded result */ 
 ASN1CTXT  ctxt; 

ASN1TAG   tag; 
int       len, stat; 

 
 memset (&ctxt, 0, sizeof(ctxt)); 
 

/* assume �buf� contains message fragment to be decoded.. */ 
 
 xd_setp (&ctxt, buf, sizeof(buf), &tag, &len); 
 
 if (tag == TM_UNIV|TM_PRIM|ASN_ID_OBJID) {  /* OID tag */ 
    stat = xd_objid (&ctxt, &objId, ASN1EXPL, 0); 
    if (stat != ASN_OK) { 
       xu_perror (&ctxt); 
    } 
 } 
 
The objId variable now contains the decoded object identifier value. 
 
 
xd_setp - Set Decode Buffer Pointer 
 
The xd_setp function is used to set the internal decode buffer pointer within the run-time library decode 
module.  It must be called prior to calling any other compiler generated or run-time library decode function. 
 
Calling sequence: 
 
    xd_setp (ctxt_p, bufptr, msglen, asntag, length); 
 
Return value: 
 
None 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

bufptr ASN1OCTET* Pointer to a memory buffer containing the ASN.1 message.  The pointer must point 



ASN1C V5.3  179 

at the first byte in the message. 
 

msglen int Length of the message that was read.  This is used to set an internal message length 
to check for field length errors.  If this length is not known, a zero value can be 
passed to cause these checks to be bypassed. 
 

 
 
Output parameters: 
 
Name Type Description 
asntag ASN1TAG* Pointer to a variable to receive the ASN.1 tag value corresponding to the outer level 

tag on the message.  This value can be tested to determine the appropriate function 
to call to decode the message.  This is an optional parameter, if not needed, a null 
pointer can be passed. 
 

length int* Pointer to a variable to receive the overall length of the message.  Note that this is 
not the length contained in the length field of the outer level tag, but the overall 
message length taking into account the extra bytes added by the outer level tag.  
This is an optional parameter, if not needed, a null pointer can be passed. 
 

 
 
xd_tag_len - Decode Tag and Length 
 
The xd_tag_len function decodes the tag and length at the current decode pointer location and returns the 
results. 
 
Calling sequence: 
 
    status = xd_tag_len (ctxt_p, asntag, length, flags); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A is decoding 
fails. 
 

 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

flags u_short Bit flags used to control function operation.  The following flags can be set: 
 
XM_ADVANCE Advance decode pointer to the contents field. 
XM_SKIP Skip to next field. 
 
Flags are set by or'ing the above mask values together. 
 

msglen int Length of the message that was read.  This is used to set an internal message length 
to check for field length errors.  If this length is not known, a zero value can be 
passed to cause these checks to be bypassed. 
 



ASN1C V5.3  180 

 
 
Output parameters: 
 
Name Type Description 
asntag ASN1TAG* Pointer to a variable to receive the decoded ASN.1 tag value  This value is returned 

as an unsigned short integer in the internal format described in Section 4.1.2. 
 

length int* Pointer to a variable to receive the decoded length of the tagged component.  The 
returned value will either be the actual length or the special constant 
'ASN_K_INDEFLEN' which indicates indefinite length. 
 

 
 
xd_match - Match Tag 
 
The xd_match function does a comparison between the given tag and the tag at the current decode pointer 
position to determine if they match.  It then returns the result of the match operation.  Alternately, the 
function will scan through tags in a message and compare each tag with the given tag and stop when either 
the tag is found or all tags in the message have been exhausted. 
 
Calling sequence: 
 
    status = xd_match (ctxt_p, asntag, length, flags); 
 
Return value: 
 
Name Type Description 
status int Status of the match operation.  Possible values are ASN_OK if match operation was 

successful, ASN_E_TAGNOTFOU if matching tag not found, or one of the other 
negative status codes defined in Appendix A if a different error occurs. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

flags u_short Bit flags used to control function operation.  The following flags can be set: 
 
XM_ADVANCE Advance decode pointer to the contents field. 
XM_SKIP Skip to next field. 
XM_SEEK  Scan tags until match found or EOM (end-of-message). 
 
Flags are set by or'ing the above mask values together. 
 

 
Output parameters: 
 
Name Type Description 
asntag ASN1TAG* Pointer to a variable to receive the decoded ASN.1 tag value.  This value is returned 

as an unsigned short integer in the internal format described in Section 4.1.2. 
 

length int* Pointer to a variable to receive the decoded length of the tagged component.  The 
returned value will either be the actual length or the special constant 
'ASN_K_INDEFLEN' which indicates indefinite length. 
 



ASN1C V5.3  181 

 
 
 
xd_boolean - Decode BOOLEAN 
 
The xd_boolean function will decode a variable of the ASN.1 BOOLEAN type. 
 
Calling sequence: 
 
    status = xd_boolean (ctxt_p, object_p, tagging, length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in OCTETs, of the contents field to be decoded.  This parameter only 
has meaning if the tagging parameter specifies implicit decoding.  If explicit, the 
length is obtained from the decoded length field. 
 

 
 
Output parameters: 
 
Name Type Description 
object_p ASN1BOOL* Pointer to a variable to receive the decoded boolean value. 

 
 
 
xd_integer - Decode INTEGER 
 
The xd_integer function will decode a variable of the ASN.1 INTEGER type. 
 
Calling sequence: 
 
    status = xd_integer (ctxt_p, object_p, tagging, length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 



ASN1C V5.3  182 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in OCTETs, of the contents field to be decoded.  This parameter only 
has meaning if the tagging parameter specifies implicit decoding.  If explicit, the 
length is obtained from the decoded length field. 
 

 
 
Output parameters: 
 
Name Type Description 
object_p ASN1INT* Pointer to a variable to receive the decoded integer value. 

 
 
 
xd_unsigned - Decode Unsigned INTEGER 
 
The xd_unsigned function will decode a variable of the unsigned variant of ASN.1 INTEGER type. 
 
Calling sequence: 
 
    status = xd_unsigned (ctxt_p, object_p, tagging, length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in OCTETs, of the contents field to be decoded.  This parameter only 
has meaning if the tagging parameter specifies implicit decoding.  If explicit, the 
length is obtained from the decoded length field. 
 

 
 



ASN1C V5.3  183 

Output parameters: 
 
Name Type Description 
object_p ASN1UINT* Pointer to a variable to receive the decoded unsigned integer value. 

 
 
 
 
xd_bigint � Decode Big Integer 
 
The xd_bigint function will decode a variable of the ASN.1 INTEGER type.  In this case, the integer is 
assumed to be of a larger size than can fit in a C or C++ long type (normally 32 or 64 bits).  For example, 
parameters used to calculate security values are typically larger than these sizes. 
 
These variables are stored in character string constant variables.  They are represented as decimal strings 
starting with no prefix. If it is necessary to convert a decimal string to another radix then use 
rtSetStrToBigInt / rtBigIntToString functions. 
 
Calling sequence: 
 
    status = xd_bigint (ctxt_p, object_p, tagging, length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in OCTETs, of the contents field to be decoded.  This parameter only 
has meaning if the tagging parameter specifies implicit decoding.  If explicit, the 
length is obtained from the decoded length field. 
 

 
 
Output parameters: 
 
Name Type Description 
object_p char** Pointer to a character pointer variable to receive the decoded unsigned value.  

Dynamic memory is allocated for the variable using the rtMemAlloc function.  The 
decoded variable is represented as a decimal string starting with no prefix. 
 

 
 
 



ASN1C V5.3  184 

xd_bitstr - Decode BIT STRING 
 
The xd_bitstr function will decode a variable of the ASN.1 BIT STRING type.  This function will allocate 
dynamic memory to store the decoded result. 
 
Calling sequence: 
 
    status = xd_bitstr (ctxt_p, object_p2, numbits_p, tagging, length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in OCTETs, of the contents field to be decoded.  This parameter only 
has meaning if the tagging parameter specifies implicit decoding.  If explicit, the 
length is obtained from the decoded length field. 
 

 
 
Output parameters: 
 
Name Type Description 
object_p2 ASN1OCTET** Pointer to a pointer variable to receive the decoded bit string.  Dynamic memory is 

allocated to hold the string. 
 

numbits_p int* Pointer to an integer value to receive the decoded number of bits. 
 

 
 
xd_bitstr_s - Decode BIT STRING (static) 
 
The xd_bitstr_s function will decode a variable of the ASN.1 BIT STRING type into a static memory 
structure.  This function call is generated by ASN1C to decode a sized bit string production. 
 
Calling sequence: 
 
    status = xd_bitstr_s (ctxt_p, object_p, numbits_p, tagging, 
length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 



ASN1C V5.3  185 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

numbits_p int* Pointer to an integer variable containing the size (in bits) of the sized ASN.1 bit 
string.  An error will occur if the number of bits in the decoded string is larger than 
this value.  Note that this is also used as an output variable � the actual number of 
decoded bits will be returned in this variable. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in OCTETs, of the contents field to be decoded.  This parameter only 
has meaning if the tagging parameter specifies implicit decoding.  If explicit, the 
length is obtained from the decoded length field. 
 

 
 
Output parameters: 
 
Name Type Description 
object_p ASN1OCTET* Pointer to a variable to receive the decoded bit string.  This is assumed to be a static 

array large enough to hold the number of bits specified in the *numbits_p input 
parameter. 
 

numbits_p int* Pointer to an integer value to receive the decoded number of bits. 
 

 
 
 
xd_octstr - Decode OCTET STRING 
 
The xd_octstr will decode a variable of the ASN.1 OCTET STRING type.  This function will allocate 
dynamic memory to store the decoded result. 
 
Calling sequence: 
 
    status = xd_octstr (ctxt_p, object_p2, numocts_p, tagging, length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 



ASN1C V5.3  186 

ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 
all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in octets, of the contents field to be decoded.  This parameter only has 
meaning if the tagging parameter specifies implicit decoding.  If explicit, the length 
is obtained from the decoded length field. 
 

 
Output parameters: 
 
Name Type Description 
object_p2 ASN1OCTET** Pointer to a pointer variable to receive the decoded octet string.  Dynamic memory 

is allocated to hold the string. 
 

numocts_p int* Pointer to an integer value to receive the decoded number of octets. 
 

 
 
xd_octstr_s - Decode OCTET STRING (static) 
 
The xd_octstr_s function will decode a variable of the ASN.1 OCTET STRING type into a static memory 
structure.  This function call is generated by ASN1C to decode a sized octet string production. 
 
Calling sequence: 
 
    status = xd_octstr_s (ctxt_p, object_p, numocts_p, tagging, 
length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

numocts_p int* Pointer to an integer variable containing the size (in octets) of the sized ASN.1 octet 
string.  An error will occur if the number of octets in the decoded string is larger 
than this value.  Note that this is also used as an output variable � the actual number 
of decoded octets will be returned in this variable. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in octets, of the contents field to be decoded.  This parameter only has 



ASN1C V5.3  187 

meaning if the tagging parameter specifies implicit decoding.  If explicit, the length 
is obtained from the decoded length field. 
 

 
Output parameters: 
 
Name Type Description 
object_p ASN1OCTET* Pointer to a variable to receive the decoded octet string.  This is assumed to be a 

static array large enough to hold the number of octets specified in the *numocts_p 
input parameter. 
 

numocts_p int* Pointer to an integer value to receive the decoded number of octets. 
 

 
 
 
xd_charstr � Decode Character String 
 
The xd_charstr function will decode a variable of one of the ASN.1 8-bit character string types.  These 
types include IA5String, VisibleString, PrintableString, and NumericString.  
 
Calling sequence: 
 
    status = xd_charstr (ctxt_p, object_p, tagging, length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in octets, of the contents field to be decoded.  This parameter only has 
meaning if the tagging parameter specifies implicit decoding.  If explicit, the length 
is obtained from the decoded length field. 
 

 
Output parameters: 
 
Name Type Description 
object_p char** Pointer to a character string pointer variable to receive the decoded string.  The 

string as stored as a standard null-terminated C string.  Memory is allocated for the 
string by the rtMemAlloc function. 
 

 
 



ASN1C V5.3  188 

 
xd_16BitCharStr � Decode 16-bit Character String 
 
The xd_16BitCharStr function will decode a variable an ASN.1 16-bit character string type.  This includes 
the BMPString type.  
 
Calling sequence: 
 
    status = xd_16BitCharStr (ctxt_p, object_p, tagging, length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in octets, of the contents field to be decoded.  This parameter only has 
meaning if the tagging parameter specifies implicit decoding.  If explicit, the length 
is obtained from the decoded length field. 
 

 
Output parameters: 
 
Name Type Description 
object_p Asn116Bit 

CharString* 
Pointer to a structure variable to receive the decoded string.  The string as stored as 
an array of short integer characters.  Memory is allocated for the string by the 
rtMemAlloc function. 
 

 
 
 
xd_32BitCharStr � Decode 32-bit Character String 
 
The xd_32BitCharStr function will decode a variable an ASN.1 32-bit character string type.  This includes 
the UniversalString type.  
 
Calling sequence: 
 
    status = xd_32BitCharStr (ctxt_p, object_p, tagging, length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 



ASN1C V5.3  189 

fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in octets, of the contents field to be decoded.  This parameter only has 
meaning if the tagging parameter specifies implicit decoding.  If explicit, the length 
is obtained from the decoded length field. 
 

 
Output parameters: 
 
Name Type Description 
object_p Asn132Bit 

CharString* 
Pointer to a structure variable to receive the decoded string.  The string as stored as 
an array of unsigned integer characters.  Memory is allocated for the string by the 
rtMemAlloc function. 
 

 
 
 
xd_enum - Decode ENUMERATED 
 
The xd_enum function will decode a variable of the ASN.1 ENUMERATED type. 
 
Calling sequence: 
     
    status = xd_enum (ctxt_p, object_p, tagging, length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in octets, of the contents field to be decoded.  This parameter only has 
meaning if the tagging parameter specifies implicit decoding.  If explicit, the length 



ASN1C V5.3  190 

is obtained from the decoded length field. 
 

 
 
Output parameters: 
 
Name Type Description 
object_p ASN1ENUM* Pointer to a variable to receive the decoded enumerated value. 

 
 
 
 
xd_null - Decode NULL 
 
The xd_null function will decode an ASN.1 NULL placeholder. 
 
    status = xd_null (ctxt_p, tagging); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

 
Output parameters: 
 
None 
 
 
xd_objid - Decode OBJECT IDENTIFIER 
 
The xd_objid function will decode a variable of the ASN.1 OBJECT IDENTIFIER type. 
 
Calling sequence: 
 
    status = xd_objid (ctxt_p, object_p, tagging, length); 
 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 



ASN1C V5.3  191 

 
 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in octets, of the contents field to be decoded.  This parameter only has 
meaning if the tagging parameter specifies implicit decoding.  If explicit, the length 
is obtained from the decoded length field. 
 

 
 
Output parameters: 
 
Name Type Description 
object_p ASN1OBJID* Pointer to a variable to receive the decoded object identifier value. This structure 

contains an integer to hold the number of subidentifers in the object and an array to 
hold the subidentifier values. 
 

 
 
xd_real - Decode REAL 
 
The xd_real function will decode a variable of the ASN.1 REAL type. 
 
Calling sequence: 
 
    status = xd_real (ctxt_p, object_p, tagging, length); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging) 
or 'ASN1IMPL' (for implicit).  Controls whether the universal tag value for this type 
is decoded prior to decoding the field contents.  Users will generally always set this 
value to 'ASN1EXPL'. 
 

length int The length, in octets, of the contents field to be decoded.  This parameter only has 
meaning if the tagging parameter specifies implicit decoding.  If explicit, the length 



ASN1C V5.3  192 

is obtained from the decoded length field. 
 

 
 
Output parameters: 
 
Name Type Description 
object_p ASN1REAL* Pointer to a variable to receive the decoded real value.  

 
 
 
 
xd_OpenType - Decode Open Type 
 
The xd_OpenType function will decode a variable of an ASN.1open type.  This includes the now 
deprecated ANY and ANY DEFINED BY types from the 1990 standard as well as other types defined to 
be open in the new standards (for example, a variable type declaration in an X.681 Information Object 
Class definition).   
 
Decoding is accomplished by returning a pointer to the encoded message component at the current decode 
pointer location and skipping to the next field.  The caller must then call additional decode functions to 
further decode the component. 
 
The default behavior of returning a pointer to the location of the message component within the decode 
message buffer can be changed by setting the ASN1COPYVALUES flag within the context structure.  This 
is done by calling the rtSetCopyValues run-time function.  If this flag is set, memory is allocated for the 
message component using xu_malloc and the component is copied into the allocated memory. 
      
Calling sequence: 
 
    status = xd_OpenType (ctxt_p, object_p); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
 
Output parameters: 
 
Name Type Description 
object_p ASN1ANY* A pointer to a pointer (**) to hold the address of a byte buffer.  This buffer will 

contain the encoded message component located at the current decode pointer 
location or a copy of that value if the ASN1COPYVALUES flag is set within the 
context. 
 

 
 



ASN1C V5.3  193 

 
xd_OpenTypeExt � Decode Open Type Extension 
 
The xd_OpenTypeExt function is similar to the xd_OpenType function except that it is used in places 
where open type extensions are specified.  An open type extension is defined as an extensibility marker on 
a constructed type without any extension elements defined (for example, SEQUENCE { a INTEGER, � 
}).  The difference is that this is an implicit field that can span one or more elements whereas the standard 
Open Type is assumed to be a single tagged field. 
 
Calling sequence: 
 
    status = xd_OpenTypeExt (ctxt_p, object_p); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
 
Output parameters: 
 
Name Type Description 
object_p ASN1ANY* A pointer to a pointer (**) to hold the address of a byte buffer.  This buffer will 

contain the encoded message component located at the current decode pointer 
location. 
 

 
 
 
xd_chkend - Check for End of Context 
 
The xd_chkend function determines if the decoder has reached the end of a message context block.  The 
compiler generates calls to this function when decoding a SET or SEQUENCE OF/SET OF construct. 
 
Calling sequence: 
 
    eoc = xd_chkend (ctxt_p); 
 
Return value: 
 
Name Type Description 
eoc int Boolean value indicating whether or not the end-of-context has been reached. 

 
 
 
Input parameters: 
 
Name Type Description 



ASN1C V5.3  194 

ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 
all working variables that must be maintained between function calls. 
 

 
 
Output parameters: 
 
None 
 
 
 
xd_count - Count Message Components 
 
The xd_count function looks ahead in the decode buffer and counts the number of message components 
that make up a SEQUENCE OF or SET OF construct.  Calls to this function are generated by the compiler 
when decoding a SEQUENCE OF or SET OF construct. 
 
Calling sequence: 
 
    status = xd_count (ctxt_p, length, count_p); 
 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

length int The length, in octets, of the SEQUENCE OF or SET OF constructor field. 
 

 
 
Output parameters: 
 
Name Type Description 
count_p int* Pointer to a variable to receive the count of elements in the SEQUENCE OF or SET 

OF construct. 
 

 
 
xd_memcpy - Copy Decoded Contents 
 
The xd_memcpy function copies data from the contents field of a message component into the target 
object. 
 
Calling sequence: 
 
    status = xd_memcpy (ctxt_p, object_p, length); 
 



ASN1C V5.3  195 

 
Return value: 
 
Name Type Description 
status int Status of the copy operation.  Possible values are ASN_OK if decoding is successful 

or one of the negative status codes defined in Appendix A if decoding fails. 
 

 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

length int The number of bytes to copy from the contents field. 
 

 
 
Output parameters: 
 
Name Type Description 
object_p void* A pointer to a memory structure to receive the copied data. 

 
 
 
xd_NextElement � Move to Next Element 
 
The xd_NextElement function moves the decode pointer to the next tagged element in the decode buffer.  It 
is useful for use in an error handling callback function because it allows an unknown or bogus element to 
be skipped. 
 
Calling sequence: 
 
    status = xd_NextElement (ctxt_p); 
 
 
Return value: 
 
Name Type Description 
status int Status of the copy operation.  Possible values are ASN_OK if decoding is successful 

or one of the negative status codes defined in Appendix A if decoding fails. 
 

 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
 
Output Parameter: 
 
None 
 
 



ASN1C V5.3  196 

xd_indeflen � Calculate Indefinite Length 
 
The xd_indeflen function calculates the actual length of a message block that was encoded using indefinite 
length encoding. 
 
Calling sequence: 
 
    status = xd_indeflen (msg_p); 
 
 
Return value: 
 
Name Type Description 
status int Status of the operation.  Possible values are ASN_OK if decoding is successful or 

one of the negative status codes defined in Appendix A if decoding fails. 
 

 
 
Input parameters: 
 
Name Type Description 
msg_p ASN1Const 

OctetPtr 
 

Pointer a message component that was encoded using indefinite length encoding. 
 

 
 
Output Parameters: 
 
None 



ASN1C V5.3  197 

 
BER/DER C File Functions 
 
The BER/DER file decode functions allow decode operations to be performed directly on encoded entities 
within a binary file as opposed to in memory.  This makes it possible to parse tag and length variables to 
determine when pieces of a message can be read into memory.  The �tap3batch� sample program provides 
a good illustration of how these functions are used.  They can be applied to a TAP3 batch file to get at the 
call-detail records for sequential processing without having to read the entire file into memory. 
 
These functions all begin with the prefix �xdf_� to distinguish them from the other decode functions.  The 
following is a description of the various functions that make up this package: 
 
xdf_tag � Decode Tag from File 
 
 
The xdf_tag function decodes an ASN.1 tag from a file stream into a standard 16-bit ASN.1 tag structure. 
 
Calling sequence: 
 
    status = xdf_tag (fp, ptag, buffer, pbufidx); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
fp FILE* File pointer of binary file to be decoded.  It is expected that the current file position 

is at the first byte of the tag to be decoded. 
 

pbufidx int* Pointer to current buffer index containing offset to location where decoded bytes 
should be copied in the output buffer. 
 

 
Output parameters: 
 
Name Type Description 
ptag ASN1TAG* A pointer to an ASN.1 tag structure to receive decoded tag. 

 
buffer ASN1OCTET* Buffer to receive parsed data. 

 
pbufidx int* Updated buffer index set to point at first free byte in buffer after tag is parsed and 

copied to buffer. 
 

 
 
xdf_len � Decode Length from File 
 
The xdf_len function decodes an ASN.1 length from a file stream. 
 
Calling sequence: 
 
    status = xdf_len (fp, plen, buffer, pbufidx); 



ASN1C V5.3  198 

 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
fp FILE* File pointer of binary file to be decoded.  It is expected that the current file position 

is at the first byte of the item to be decoded. 
 

pbufidx int* Pointer to current buffer index containing offset to location where decoded bytes 
should be copied in the output buffer. 
 

 
Output parameters: 
 
Name Type Description 
plen int* A pointer to an integer to receive the decoded length value. 

 
buffer ASN1OCTET* Buffer to receive parsed data. 

 
pbufidx int* Updated buffer index set to point at first free byte in buffer after tag is parsed and 

copied to buffer. 
 

 
 
xdf_TagAndLen � Decode Tag and Length from File 
 
The xdf_TagAndLen function decodes an ASN.1 tag and length pair from a file stream. 
 
Calling sequence: 
 
    status = xdf_TagAndLen (fp, ptag, plen, buffer, pbufidx); 
 
Return value: 
 
Name Type Description 
status int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
fp FILE* File pointer of binary file to be decoded.  It is expected that the current file position 

is at the first byte of the tag to be decoded. 
 

pbufidx int* Pointer to current buffer index containing offset to location where decoded bytes 
should be copied in the output buffer. 
 

 
Output parameters: 



ASN1C V5.3  199 

 
Name Type Description 
ptag ASN1TAG* A pointer to an ASN1TAG variable to receive parsed tag value. 

 
plen int* A pointer to an integer to receive the decoded length value. 

 
buffer ASN1OCTET* Buffer to receive parsed data. 

 
pbufidx int* Updated buffer index set to point at first free byte in buffer after tag and length are 

parsed and copied to buffer. 
 

 
 
xdf_ReadPastEOC � Read Past End-of-Context (EOC) Marker 
 
The xdf_ReadPastEOC function consumes bytes from the file stream until a matching end-of-context 
(EOC) marker is found. The bytes read from the file are stored in the given buffer for later processing.  An 
indefinite length marker is assumed to have been parsed prior to calling this function. 
 
Calling sequence: 
 
    status = xdf_ReadPastEOC (fp, buffer, bufsiz, pbufidx); 
 
Return value: 
 
Name Type Description 
status int Status of the read operation.  Possible values are ASN_OK if decoding is successful 

or one of the negative status codes defined in Appendix A if decoding fails. 
 

 
Input parameters: 
 
Name Type Description 
fp FILE* File pointer of binary file to be decoded.  It is expected that the current file position 

is the first byte following an indefinite length marker (0x80 byte). 
 

bufsiz int Size of buffer to receive parsed data. 
 

pbufidx int* Pointer to current buffer index containing offset to location where decoded bytes 
should be copied in the output buffer. 
 

 
Output parameters: 
 
Name Type Description 
buffer ASN1OCTET* Buffer to receive parsed data. 

 
pbufidx int* Updated buffer index set to point at first free byte in buffer after parsed data is 

copied to buffer. 
 

 
 
 
xdf_ReadContents � Read Contents from File 
  
This routine reads the contents of a BER tag-length-value (TLV) into the given buffer.  The TLV can be of 
indefinite length. 
 



ASN1C V5.3  200 

Calling Sequence: 
 

status = xdf_ReadContents (fp, len, buffer, bufsiz, pbufidx); 
 
Return value: 
 
Name Type Description 
status int Status of the read operation.  Possible values are ASN_OK if decoding is successful 

or one of the negative status codes defined in Appendix A if decoding fails. 
 

 
Input parameters: 
 
Name Type Description 
fp FILE* File pointer of binary file to be decoded.  It is expected that the current file position 

is the first byte following an indefinite length marker (0x80 byte). 
 

len int Length of data to be read from file.  This can be an indefinite length constant 
(ASN_K_INDEFLEN) indicating all data up to the corresponding end-of-context 
(EOC) marker should be read. 
 

bufsiz int Size of buffer to receive parsed data. 
 

pbufidx int* Pointer to current buffer index containing offset to location where decoded bytes 
should be copied in the output buffer. 
 

 
Output parameters: 
 
Name Type Description 
buffer ASN1OCTET* Buffer to receive parsed data. 

 
pbufidx int* Updated buffer index set to point at first free byte in buffer after parsed data is 

copied to buffer. 
 

 



ASN1C V5.3  201 

BER/DER C Utility Functions 
 
BER/DER C utility functions are provided for memory management, formatting output of ASN.1 
messages, and error reporting.  In many cases, these functions are closely coupled with the rt (run-time) 
series of common functions that are documented later.  The common functions provide common 
functionality shared between the BER/DER and PER run-time libraries.  In many cases, these function 
simply provide direct passthroughs to the rt functions to maintain compatibility with existing versions of 
the ASN1C compiler. 
 
 
Memory Management Functions (xu_malloc and xu_freeall) 
 
Memory management functions override the standard C malloc and free functions to improve decoding 
performance.  The standard malloc and free functions are expensive in terms of performance.  ASN.1 
messages frequently contain a large number of small, unsized OCTET STRINGS, BIT STRINGS, and 
SEQUENCE OF/SET OF constructs.  Each of these requires the decoder to allocate dynamic memory for 
the results.  This can lead to poor performance.  The ASN1C compiler overcomes this by allocating 
memory in larger chunks and then breaking it up in subsequent allocation requests.  The BER/DER C  
functions xu_malloc and xu_freeall are used for this purpose.  They provide passthroughs to the 
rtMemAlloc and rtMemFreeFree that provide memory management services for both the BER/DER and 
PER run-time libraries. 
 
xu_malloc - Allocate Dynamic Memory 
 
The xu_malloc function provides a front-end to the C malloc function to allocate dynamic memory for 
decoded message components.  The following ASN.1 constructs may require the allocation of dynamic 
memory within the generated C structure: 
 
• BIT STRING 
• OCTET STRING 
• SEQUENCE OF 
• SET OF 
• ANY 
 
This function uses a nibble memory management scheme to make memory allocations more efficient.  On 
an initial allocation request, malloc will be called to obtain a large block of memory.  This memory will 
then be subdivided as subsequent calls to this function are made.  When the block is expired, another call to 
malloc will be made to allocate another large block and the subdivision process repeated. All large memory 
block allocated from within the context are freed when xu_freeall function is called. 
 
Note that the main logic for the xu_malloc function is now in the rtMemAlloc function in the common run-
time library.  This function is still maintained for compatibility purposes, but it acts as a pass-through to the 
rtMemAlloc function. 
 
Calling sequence: 
 
    ptr = xu_malloc (ctxt_p, memsiz); 
 
Return value: 
 
Name Type Description 
ptr void* Pointer to the allocated dynamic memory block.  Will be null if a free block of the 

requested size does not exist. 
 

 
Input parameters: 
 
Name Type Description 



ASN1C V5.3  202 

ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 
all working variables that must be maintained between function calls. 
 

memsiz int The number of bytes to allocate. 
 

 
Output parameters: 
 
None 
 
 
xu_alloc_array � Allocate Elements for an Array 
 
The xu_alloc_array function will allocate space for a given count of fixed size elements. 
 
Calling Sequence: 
 
 xu_alloc_array (ctxt_p, seqOf_p, recSize, recCount); 
 
Return value: 
 
None 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

recSize int The number of bytes in one record in the array. 
 

recCount int Number of records to allocate. 
 

 
Output parameters: 
 
Name Type Description 
seqOf_p ASN1SeqOf* Pointer to a generic sequence of structure variable to receive the returned memory.  

This structure contains a record count and data pointer element.  The record count is 
populated with the recCount passed into the function.  The data pointer is set to the 
value that is returned from the memory allocation function. 
 

 
 
xu_freeall - Free Dynamic Memory 
 
 
The xu_freeall function frees up any dynamic memory allocated by the decode functions in the course of 
decoding a message.  A call to this function releases all memory previously allocated using xu_malloc 
within the given context.   
 
Note that the main logic for the xu_freeall function call is now in the rtMemFree function in the common 
run-time library.  This function is still maintained for compatibility purposes, but it acts as a pass-through 
to the rtMemFree function. 
 
Calling sequence: 
 
    xu_freeall (ctxt_p); 



ASN1C V5.3  203 

 
Return value: 
 
None 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
None 
 
 
Output Formatting Functions 
 
The output formatting functions allow BER/DER ASN.1 messages to be displayed in a human-readable 
format.  They display information on the tag, length, and contents of each field in a message.  The primary 
function within this class is the xu_dump function.  A callback function mechanism is provided to allow the 
user to redirect formatted output to somewhere other then stdout (for example, to a syslog type logging 
daemon process). 
 
xu_dump - Dump Encoded ASN.1 Message 
 
The xu_dump function dumps an encoded ASN.1 message to the standard output device or to another 
interface in a formatted display.  The display includes, for each message component, message tag (class, 
form, and ID code), length, and data (in hexadecimal and ascii formats). 
 
Output to another interface is accomplished through the callback function parameter.  The prototype for 
this function is as follows: 
 
 int callback_function (char* text_p, void* cbArg_p); 
 
This function is invoked for each line of text formatted from the given message.  The formatted line is 
passed on the text_p argument.  The cbArg_p argument allows a user defined callback argument to be 
passed to the callback function.  This argument is specified in the call to xu_dump. 
 
Use of the callback function is optional.  If dump to standard output (stdout) is desired, the argument 
should be specified as NULL (note: the macro XU_DUMP in asn1type.h can be used for this purpose). 
 
Calling sequence: 
 
    status = xu_dump (msgptr, cbFunc, cbArg_p) 
 
Return value: 
 
Name Type Description 
status int Status of the dump operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 



ASN1C V5.3  204 

msgptr ASN1OCTET* Pointer to an encoded ASN.1 message. 
 

cbFunc CB Function Callback function that gets invoked for each line of formatted output.  For dump to 
standard output (stdout), this parameter can be specified as NULL. 
 

cbArg_p void* Callback function argument, will be passed to the callback function. 
 

 
Output parameters: 
 
None 
 
 
xu_fdump - Dump Encoded ASN.1 Message to a Text File 
 
The xu_fdump function dumps an encoded ASN.1 message to a text file.  The display includes, for each 
message component, message tag (class, form, and ID code), length, and data (in hexadecimal and ascii 
formats). 
 
Calling sequence: 
 
    status = xu_fdump (file_p, msgptr) 
 
Return value: 
 
Name Type Description 
status int Status of the dump operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
file_p FILE* Text file pointer. 

 
msgptr ASN1OCTET* Pointer to an encoded ASN.1 message. 

 
 
Output parameters: 
 
None 
 
 
xu_hex_dump - Dump Binary Data 
 
The xu_hex_dump function dumps binary data in raw hexadecimal and ascii formats.  It can be used to 
examine data going in to or out of the run-time library encode/decode functions.  This function outputs data 
only to the standard output device. 
 
Calling sequence: 
 
    xu_hex_dump (data, numocts, hdrflg) 
 
Return value: 
 
None 
 



ASN1C V5.3  205 

Input parameters: 
 
Name Type Description 
data ASN1OCTET* Pointer to the start of the block of memory to be dumped. 

 
numocts int Number of octets (bytes) to be dumped. 

 
hdrflg ASN1OCTET Boolean variable indicating whether or not a header line should be dumped as the 

first line of the display. 
 

 
Output parameters: 
 
None 
 
 
Run-Time Error Reporting Functions 
 
Error reporting functions allow the ASN1C generated functions to report specific information on internal 
errors.  These functions allow for parameter substitution with error strings.  These are embedded within the 
code generated by the ASN1C compiler. 
 
This class of functions provides a compatible passthrough to the rtErr common functions.  These functions 
provide common error management services for both the BER/DER and PER run-time libraries. 
 
xu_perror � Print Error Information 
 
The xu_perror function prints information about the last recorded error within the given ASN.1 context 
structure.  The display includes information on the module that generated the error, the source code line 
number, the status, and a parameterized error message. 
 
Calling sequence: 
 
    xu_perror (ctxt_p) 
 
Return value: 
 
None 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls.  This structure 
holds information on the last error that occurred during encoding or decoding. 
 

 
Output parameters: 
 
None 
 
 
xu_log_error � Log Error Information 
 
This function is identical to xu_perror except it allows the error output to be redirected to another interface 
(for example, to a syslog-type logging daemon).  This is accomplished through the callback function 
parameter.  The prototype for this function is as follows: 
 



ASN1C V5.3  206 

 int callback_function (char* text_p, void* cbArg_p); 
 
The text_p parameter contains the formatted error message. The cbArg_p argument allows a user defined 
callback argument to be passed to the callback function.  This argument is specified in the call to 
xu_log_error. 
 
The callback function is invoked twice on a call to xu_log_error.  The first call contains error message text 
indicating the module, line number, and status of the error.  The second call contains the parameterized 
error message text. 
 
Calling sequence: 
 
    xu_log_error (ctxt_p, cbFunc, cbArg_p); 
 
Return value: 
 
None 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls.  This structure 
holds information on the last error that occurred during encoding or decoding. 
 

cbFunc CB Function Callback function that gets invoked for each line of formatted error text. 
 

cbArg_p void* Callback function argument. 
 

 
Output parameters: 
 
None 
 
 
xu_fmtErrMsg � Format Error Message 
 
The xu_fmtErrMsg function provides the user with the parameterized error text corresponding to the last 
error recorded in the given ASN.1 context structure. 
 
Calling sequence: 
 
    text_p = xu_fmtErrMsg (ctxt_p, bufp); 
 
Return value: 
 
Name Type Description 
text_p char* Pointer to the formatted error message.  This is the address of the buffer passed as 

the second input argument. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls.  This structure 
holds information on the last error that occurred during encoding or decoding. 
 



ASN1C V5.3  207 

bufp char* Pointer to a text buffer in which the parameterized error message is to be formatted.  
The caller is responsible for allocating space for this message.  A 128 byte buffer 
should be sufficient for all messages. 
 

 
Output parameters: 
 
None 



ASN1C V5.3  208 

 
 
 
 
 
 

< this page intentionally left blank > 
 



ASN1C V5.3  209 

PER Run-Time Library 
 
The packed encoding rules low-level C encode/decode functions are another part of the ASN1C run-time 
library.  These functions are identified by their prefixes: pe_ for PER encode, pd_ for PER decode, and pu_ 
for PER utility functions.  The following sections describe these functions. 
 
PER C Encode Functions 
 
The PER low-level encode functions handle the PER encoding of the primitive ASN.1 data types.  Calls to 
these functions are assembled in the C source code generated by the ASN1C compiler to accomplish the 
encoding of complex ASN.1 structures.  These functions are also directly callable from within a user's 
application program if the need to accomplish a low level encoding function exists.   
 
The procedure to call a low-level encode function is the same as the procedure to call a compiler generated 
encode function described above.  The pu_initContext or pu_newContext function must first be called to set 
a pointer to the buffer into which the variable is to be encoded.  A static encode buffer is specified by 
specifying a pointer to a buffer and buffer size.  Setting the buffer address to NULL and buffer size to 0 
specifies a dynamic buffer.  The encode function is then invoked.  The result of the encoding will start at 
the beginning of the specified buffer, or, if a dynamic buffer was used, can be obtained by calling 
pe_GetMsgPtr.  The length of the encoded component is obtained by calling pe_GetMsgLen. 
 
For example, the following code fragment could be used to encode a single, boolean value (i.e., a single 
bit). 
 
 ASN1OCTET buf[10], *msg_p; 
 ASN1BOOL  boolValue = 1;  /* true */ 
 ASN1CTXT  ctxt; 
      ASN1BOOL  aligned = 1; 
 int msglen, stat; 
 
 pu_initContext (&ctxt, buf, sizeof(buf), aligned); 
 
 stat = pe_bit (&ctxt, &boolValue, ASN1EXPL); 
      if (stat != ASN_OK) { 

   rtErrPrint (&ctxt.errInfo); 
   exit (-1); 
} 

 msglen = pe_GetMsgLen (&ctxt); 
 
 
The msglen variable now contains the length (in octets) of the encoded boolean value and the encoded data 
starts at the beginning of buf. 
 
 
pe_GetMsgLen � Get Length of Encoded Message 
The pe_GetMsgLen function will return the length of an encoded message.  This function is called after a 
compiler generated encode function is called to get the length of the encoded component 
 
Calling sequence: 
 
    len = pe_GetMsgLen (ctxt_p); 
 
Return value: 
 
Name Type Description 
len int Length (in octets) of encoded message component. 

 



ASN1C V5.3  210 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
None 
 
 
pe_GetMsgBitCnt � Get Count of Bits in Encoded Message 
 
The pe_GetMsgBitCnt function will return the number of bits in an encoded message.  This function is 
called after a compiler generated encode function is called to get the bit count of the encoded component 
 
Calling sequence: 
 
    len = pe_GetMsgBitCnt (ctxt_p); 
 
Return value: 
 
Name Type Description 
len int Length (in bits) of encoded message component. 

 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
None 
 
 
pe_GetMsgPtr � Get Encoded Message Pointer 
 
The pe_GetMsgPtr function will return the message pointer and length of an encoded message.  This 
function is called after a compiler generated encode function to get the pointer and length of the message.  
It is normally used when dynamic encoding is specified because the message pointer is not known until 
encoding is complete.  If static encoding is used, the message starts at the beginning of the specified buffer 
and the pe_GetMsgLen function can be used to obtain the length of the message. 
 
Calling sequence: 
 
    ptr = pe_GetMsgPtr (ctxt_p, pLength); 
 
Return value: 
 
Name Type Description 
ptr ASN1OCTET* Pointer to start of encoded message. 

 
 



ASN1C V5.3  211 

Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
Name Type Description 
pLength int* Pointer to variable to receive length of encoded message. 

 
 
 
pe_bit - Encode a Single Bit Value 
 
The pe_bit function will encode a variable of the ASN.1 BOOLEAN type in a single bit. 
 
Calling sequence: 
 
    stat = pe_bit (ctxt_p, object); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value ASN1BOOL The BOOLEAN value to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_bits - Encode Bit Values 
 
The pe_bits function will encode multiple bits. 
 
Calling sequence: 
 
    stat = pe_bits (ctxt_p, value, nbits); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 



ASN1C V5.3  212 

Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value ASN1UINT Unsigned integer containing the bits to be encoded. 
 

nbits ASN1UINT Number of bits in value to encode. 
 

 
Output Parameters: 
 
None 
 
 
pe_octets - Encode Octets 
 
The pe_octets function will encode an array of octets.  The octets will be encoded unaligned starting at the 
current bit offset within the encode buffer. 
 
Calling sequence: 
 
    stat = pe_octets (ctxt_p, pvalue, nocts); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pvalue ASN1OCTET* Pointer to array of octets to encode. 
 

nocts ASN1UINT Number of octets to encode. 
 

 
Output Parameters: 
 
None 
 
 
pe_byte_align � Align Encode Buffer on a Byte Boundary 
 
The pe_byte_align function will position the encode bit cursor on the next byte boundary. 
 
Calling sequence: 
 
    stat = pe_byte_align (ctxt_p); 
 
Return value: 
 



ASN1C V5.3  213 

Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
None 
 
 
pe_NonNegBinInt � Encode a Non-negative Binary Integer 
 
The pe_NonNegBinInt function will encode a non-negative binary integer as specified in Section 10.3 of 
the X.691 standard. 
 
Calling sequence: 
 
    stat = pe_NonNegBinInt (ctxt_p, value); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value ASN1UINT Unsigned integer value to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_2sCompBinInt � Encode a Two�s Complement Binary Integer 
 
The pe_2sCompBinInt function will encode a two�s complement binary integer as specified in Section 10.4 
of the X.691 standard. 
 
Calling sequence: 
 
    stat = pe_2sCompBinInt (ctxt_p, value); 
 
Return value: 
 



ASN1C V5.3  214 

Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value ASN1INT Signed integer value to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_ConsWholeNumber � Encode a Constrained Whole Number 
 
The pe_ConsWholeNumber function will encode a constrained whole number as specified in Section 10.5 
of the X.691 standard. 
 
Calling sequence: 
 
    stat = pe_ConsWholeNumber (ctxt_p, adjusted_value, range_value); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

adjusted_ 
value 

ASN1UINT Unsigned adjusted integer value to be encoded.  The adjustment is done by 
subtracting the lower value of the range from the value to be encoded. 
 

range_ 
value 

ASN1UINT Unsigned integer value specifying the total size of the range.  This is obtained by 
subtracting the lower range value from the upper range value. 
 

 
Output Parameters: 
 
None 
 
 
pe_SmallNonNegWholeNumber � Encode a Small Non-negative Whole Number 
 
The pe_SmallNonNegWholeNumber function will encode a small non-negative whole number as specified 
in Section 10.6 of the X.691 standard.  This is a number that is expected to be small, but whose size is 
potentially unlimited due to the presence of an extension marker. 



ASN1C V5.3  215 

 
Calling sequence: 
 
    stat = pe_SmallNonNegWholeNumber (ctxt_p, value); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value ASN1UINT Unsigned integer value to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_Length � Encode a Length Determinant 
 
The pe_Length function will encode a length determinant value. 
 
Calling sequence: 
 
    stat = pe_Length (ctxt_p, value) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value ASN1UINT Length value to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_ConsInteger � Encode a Constrained Integer 
 
The pe_ConsInteger function will encode an integer constrained either by a value or value range constraint. 



ASN1C V5.3  216 

 
Calling sequence: 
 
    stat = pe_ConsInteger (ctxt_p, value, lower, upper) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value ASN1INT Value to be encoded. 
 

lower ASN1INT Lower range value. 
 

upper ASN1INT Upper range value. 
 

 
Output Parameters: 
 
None 
 
 
pe_UnconsInteger � Encode an Unconstrained Integer 
 
The pe_UnconsInteger function will encode an unconstrained integer. 
 
Calling sequence: 
 
    stat = pe_UnconsInteger (ctxt_p, value) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value ASN1INT Value to be encoded. 
 

 
Output Parameters: 
 
None 
 



ASN1C V5.3  217 

 
pe_ConsUnsigned � Encode a Constrained Unsigned Integer 
 
The pe_ConsUnsigned function will encode an unsigned integer constrained either by a value or value 
range constraint.  The constrained unsigned integer option is used if: 
 
1. The lower value of the range is >= 0, and 
2. The upper value of the range is >= MAXINT 
 
Calling sequence: 
 
    stat = pe_ConsUnsigned (ctxt_p, value, lower, upper) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value ASN1UINT Value to be encoded. 
 

lower ASN1UINT Lower range value. 
 

upper ASN1UINT Upper range value. 
 

 
Output Parameters: 
 
None 
 
 
pe_UnconsUnsigned � Encode an Unconstrained Unsigned Integer 
 
The pe_UnconsUnsigned function will encode an unconstrained unsigned integer. 
 
Calling sequence: 
 
    stat = pe_UnconsUnsigned (ctxt_p, value) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 



ASN1C V5.3  218 

 
value ASN1UINT Value to be encoded. 

 
 
Output Parameters: 
 
None 
 
 
pe_BigInteger � Encode Big Integer 
 
The pe_BigInteger function will encode a variable of the ASN.1 INTEGER type.  In this case, the integer is 
assumed to be of a larger size than can fit in a C or C++ long type (normally 32 or 64 bits).  For example, 
parameters used to calculate security values are typically larger than these sizes. 
 
Items of this type are stored in character string constant variables.  They can be represented as decimal 
strings (with no prefixes), as hexadecimal strings starting with a �0x� prefix, as octal strings starting with a 
�0o� prefix or as binary strings starting with a �0b� prefix. Other radixes are currently not supported. 
 
Calling sequence: 
 
    stat = pe_BigInteger (ctxt_p, pvalue); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pvalue char* A pointer to a character string containing the value to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_BitString � Encode a Bit String 
 
The pe_BitString function will encode a value of the ASN.1 bit string type. 
 
Calling sequence: 
 
    stat = pe_BitString (ctxt_p, numbits, data) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 



ASN1C V5.3  219 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

numbits ASN1UINT Number of bits in the string to be encoded. 
 

data ASN1OCTET* Pointer to bit string data to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_OctetString � Encode an Octet String 
 
The pe_OctetString function will encode a value of the ASN.1 octet string type. 
 
Calling sequence: 
 
    stat = pe_OctetString (ctxt_p, numocts, data) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

numocts ASN1UINT Number of octets in the string to be encoded. 
 

data ASN1OCTET* Pointer to octet string data to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_Real � Encode Real 
 
The pe_Real function will encode a value of the ASN.1 real type. 
 
Calling sequence: 
 
    stat = pe_Real (ctxt_p, value) 
  
Return value: 
 



ASN1C V5.3  220 

Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value ASN1REAL Value to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_ObjectIdentifier � Encode Object Identifier 
 
The pe_ObjectIdentifier function will encode a value of the ASN.1 object identifier type. 
 
Calling sequence: 
 
    stat = pe_ObjectIdentifier (ctxt_p, pvalue) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value ASN1OBJID* Pointer to value to be encoded.  The ASN1OBJID structure contains a numids fields 
to hold the number of subidentifiers and an array to hold the subidentifier values. 
 

 
Output Parameters: 
 
None 
 
 
pe_ConstrainedString � Encode 8-bit Character String 
 
The pe_ConstrainedString function will encode a constrained ASN.1 character string.  This function is 
normally not called directly but rather is called from the Useful Type Character String encode functions 
discussed in the next section. 
 
 
Calling sequence: 
 



ASN1C V5.3  221 

    stat = pe_ConstrainedString (ctxt_p, string, pCharSet) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

string char* Pointer to character string value to be encoded.  This is a pointer to a standard null-
terminated C string value. 
 

pCharSet Asn1CharSet* Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters. 
 

 
Output Parameters: 
 
None 
 
 
ASN.1 8-bit Character String Encode Functions 
 
The ASN.1 8-bit character string encode functions are used to the standard 8-bit character string types 
included in the standard.  The following functions are included: 
 
• pe_NumericString 
• pe_PrintableString 
• pe_VisibleString 
• pe_IA5String 
• pe_GeneralString 
 
In addition, the following macros are provided that call to the above functions to encode other types: 
 
• pe_GeneralizedTime 
• pe_UTCTime 
• pe_GraphicString 
• pe_ObjectDescriptor 
 
The calling sequence is the same for each of these routines.  They take as arguments a context pointer, a 
pointer to null-terminated string to encode, and an optional pointer to a character set to further restrict the 
contents of the encoded string. 
 
Calling sequence: 
 
    stat = pe_<string> (ctxt_p, string, pCharSet) 
  
where <string> would be replaced with the character string name (for example, NumericString). 
 
Return value: 



ASN1C V5.3  222 

 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

string char* Pointer to character string value to be encoded.  This is a pointer to a standard null-
terminated C string value. 
 

pCharSet Asn1CharSet* Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters.  This is an optional parameter, it can be set to NULL to 
specify no additional constraints. 
 

 
Output Parameters: 
 
None 
 
 
pe_16BitConstrainedString � Encode 16-bit Character String 
 
The pe_16BitConstrainedString function will encode a constrained ASN.1 character string.  This function 
is normally not called directly but rather is called from Useful Type Character String encode functions that 
deal with 16-bit strings.  The only function that does that in this release is the pe_BMPString function 
described in the next section. 
 
Calling sequence: 
 
    stat = pe_16BitConstrainedString (ctxt_p, value, pCharSet) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value Asn116Bit 
CharString 

Character string to be encoded.  The structure includes a count field containing the 
number of characters to encode and an array of unsigned short integers to hold the 
16-bit characters to be encoded. 
 

pCharSet Asn116Bit 
CharSet* 

Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters. 
 



ASN1C V5.3  223 

 
Output Parameters: 
 
None 
 
 
pe_BMPString � Encode BMP Character String 
 
The pe_BMPString function will encode a variable of the ASN.1 BMP character string.  This differs from 
the encode routines for the character strings previously described in that the BMP string type is based on 
16-bit characters.  A 16-bit character string is modeled using an array of unsigned short integers. 
 
Calling sequence: 
 
    stat = pe_BMPString (ctxt_p, string, pCharSet) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

string Asn116Bit 
CharString 

Character string to be encoded.  The structure includes a count field containing the 
number of characters to encode and an array of unsigned short integers to hold the 
16-bit characters to be encoded. 
 

pCharSet Asn116Bit 
CharSet* 

Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters. 
 

 
Output Parameters: 
 
None 
 
 
pe_32BitConstrainedString � Encode 32-bit Character String 
 
The pe_32BitConstrainedString function will encode a constrained ASN.1 character string.  This function 
is normally not called directly but rather is called from Useful Type Character String encode functions that 
deal with 32-bit strings.  The only function that does that in this release is the pe_UniversalString function 
described in the next section. 
 
Calling sequence: 
 
    stat = pe_32BitConstrainedString (ctxt_p, value, pCharSet) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 



ASN1C V5.3  224 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

value Asn132Bit 
CharString 

Character string to be encoded.  The structure includes a count field containing the 
number of characters to encode and an array of unsigned integers to hold the 32-bit 
characters to be encoded. 
 

pCharSet Asn132Bit 
CharSet* 

Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters. 
 

 
Output Parameters: 
 
None 
 
 
pe_UniversalString � Encode 32-bit Character String 
 
The pe_UniversalString function will encode a variable of the ASN.1 Universal character string.  This 
differs from the encode routines for the character strings previously described in that the Universal string 
type is based on 32-bit characters.  A 32-bit character string is modeled using an array of unsigned  
integers. 
 
Calling sequence: 
 
    stat = pe_UniversalString (ctxt_p, string, pCharSet) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

string Asn132Bit 
CharString 

Character string to be encoded.  The structure includes a count field containing the 
number of characters to encode and an array of unsigned integers to hold the 32-bit 
characters to be encoded. 
 

pCharSet Asn132Bit 
CharSet* 

Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters. 
 

 
Output Parameters: 
 



ASN1C V5.3  225 

None 
 
 
pe_OpenType � Encode Open Type 
 
The pe_OpenType function will encode an ASN.1 open type.  This used to be the ASN.1 ANY type, but 
now is used in a variety of applications requiring an encoding that can be interpreted by a decoder without 
an prior knowledge of the type of the variable. 
 
Calling sequence: 
 
    stat = pe_OpenType (ctxt_p, pOpenType) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pOpenType ASN1OpenType
* 

Pointer to open type to be encoded.  The open type structure contains a count of 
octets to be encoded and an array of the octets to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_OpenTypeExt � Encode Open Type Extension 
 
The pe_OpenTypeExt function will encode an ASN.1 open type extension.  An open type extension field is 
the data that potentially resides after the � marker in a version-1 message.  The open type structure 
contains a complete encoded bit set including optional element bits or choice index, length, and data.  
Typically, this data is populated when a version-1 system decodes a version-2 message.  The extension 
fields are retained and can then be re-encoded if a new message is to be sent out (for example, in a store 
and forward system). 
 
Calling sequence: 
 
    stat = pe_OpenTypeExt (ctxt_p, pOpenType) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 



ASN1C V5.3  226 

ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 
all working variables that must be maintained between function calls. 
 

pOpenType ASN1OpenType
* 

Pointer to open type to be encoded.  The open type structure contains a count of 
octets to be encoded and an array of the octets to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_CheckBuffer � Check Encode Buffer Size 
 
The pe_CheckBuffer function will determine if the given number of bytes will fit in the encode buffer.  If 
not, either the buffer is expanded (if it is a dynamic buffer) or an error is signaled. 
 
Calling sequence: 
 
    stat = pe_CheckBuffer (ctxt_p, nbytes) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

nbytes int Number of bytes of space required to hold the variable to be encoded. 
 

 
Output Parameters: 
 
None 
 
 
pe_ExpandBuffer � Expand Encode Buffer 
 
The pe_ExpandBuffer function will expand the encode buffer to hold the given number of bytes. 
 
Calling sequence: 
 
    stat = pe_ExpandBuffer (ctxt_p, nbytes) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 



ASN1C V5.3  227 

 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

nbytes int Number of bytes the buffer is to be expanded by.  Note that the buffer will be 
expanded by ASN_K_ENCBUFSIZ or nbytes (whichever is larger). 
 

 
Output Parameters: 
 
None 



ASN1C V5.3  228 

PER C Decode Functions 
 
PER run-time library decode functions handle the decoding of the primitive ASN.1 data types and length 
variables. Calls to these functions are assembled in the C source code generated by the ASN1C compiler to 
decode complex ASN.1 structures.  These functions are also directly callable from within a user's 
application program if the need to decode a primitive data item exists. 
 
The procedure to decode a primitive data item is as follows: 
 
1. Call the pu_newContext or pu_initContext function to specify the address of the buffer containing the 

encoded ASN.1 data to be decode and whether the data is aligned or unaligned, and 
 

2. Call the specific decode function to decode the value.  
 
For example, to decode a message containing a single object identifier, the following code fragment could 
be used: 
 
 ASN1OBJID objId;  /* variable to receive decoded result */ 
 ASN1CTXT  ctxt; 
      ASN1BOOL  aligned = TRUE; 

int       stat; 
 

/* assume �buf� contains message fragment to be decoded.. */ 
 
 pu_initContext (&ctxt, buf, sizeof(buf), aligned); 
 
 stat = pd_ObjectIdentifier (&ctxt, &objId); 
 if (stat != ASN_OK) { 
    rtErrPrint (&ctxt.errInfo); 
 } 
 
The objId variable now contains the decoded object identifier value. 
 
 
pd_bit - Decode a Single Bit Value 
 
The pd_bit function will decode a single bit and place the result in an ASN.1 BOOLEAN type variable. 
 
Calling sequence: 
 
    stat = pd_bit (ctxt_p, pvalue); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 



ASN1C V5.3  229 

Name Type Description 
pvalue ASN1BOOL* Pointer to BOOLEAN value to receive decoded result. 

 
 
 
pd_bits - Decode Bit Values 
 
The pd_bits function will decode a series of multiple bits and place the results in an unsigned integer 
variable. 
 
Calling sequence: 
 
    stat = pd_bits (ctxt_p, pvalue, nbits); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

nbits ASN1UINT Number of bits to decode. 
 

 
Output Parameters: 
 
Name Type Description 
pvalue ASN1UINT* Pointer to unsigned integer variable to receive decoded result. 

 
 
 
pd_byte_align � Align Buffer on a Byte Boundary 
 
The pe_byte_align function will position the decode bit cursor on the next byte boundary. 
 
Calling sequence: 
 
    stat = pd_byte_align (ctxt_p); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 



ASN1C V5.3  230 

 
Output Parameters: 
 
None 
 
 
pd_ConsWholeNumber � Decode a Constrained Whole Number 
 
The pd_ConsWholeNumber function will decode a constrained whole number as specified in Section 10.5 
of the X.691 standard. 
 
Calling sequence: 
 
    stat = pd_ConsWholeNumber (ctxt_p, padjusted_value, range_value); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

range_ 
value 

ASN1UINT Unsigned integer value specifying the total size of the range.  This is obtained by 
subtracting the lower range value from the upper range value. 
 

 
Output Parameters: 
 
Name Type Description 
padjusted_ 
value 

ASN1UINT* Pointer to unsigned adjusted integer value to receive decoded result.  To get the final 
value, this value is added to the lower boundary of the range. 
 

 
 
pd_SmallNonNegWholeNumber � Decode a Small Non-negative Whole Number 
 
The pd_SmallNonNegWholeNumber function will decode a small non-negative whole number as specified 
in Section 10.6 of the X.691 standard.  This is a number that is expected to be small, but whose size is 
potentially unlimited due to the presence of an extension marker. 
 
Calling sequence: 
 
    stat = pd_SmallNonNegWholeNumber (ctxt_p, pvalue); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 



ASN1C V5.3  231 

 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
Name Type Description 
pvalue ASN1UINT* Pointer to unsigned integer value to receive decoded result. 

 
 
 
pd_Length � Decode a Length Determinant 
 
The pd_Length function will decode a length determinant value. 
 
Calling sequence: 
 
    stat = pd_Length (ctxt_p, pvalue) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
Name Type Description 
pvalue ASN1UINT* Pointer to unsigned integer variable to receive decoded length value. 

 
 
 
pd_ConsInteger � Decode a Constrained Integer 
 
The pd_ConsInteger function will decode an integer constrained either by a value or value range constraint. 
 
Calling sequence: 
 
    stat = pd_ConsInteger (ctxt_p, pvalue, lower, upper) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 



ASN1C V5.3  232 

 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

lower ASN1INT Lower range value. 
 

upper ASN1INT Upper range value. 
 

 
Output Parameters: 
 
Name Type Description 
pvalue ASN1INT* Pointer to integer variable to receive decoded value. 

 
 
 
pd_UnconsInteger � Decode an Unconstrained Integer 
 
The pd_UnconsInteger function will decode an unconstrained integer. 
 
Calling sequence: 
 
    stat = pd_UnconsInteger (ctxt_p, pvalue) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
Name Type Description 
pvalue ASN1INT* Pointer to integer variable to receive decoded result. 

 
 
 
pd_ConsUnsigned � Decode a Constrained Unsigned Integer 
 
The pd_ConsUnsigned function will decode an unsigned integer constrained either by a value or value 
range constraint.   
 
Calling sequence: 
 
    stat = pd_ConsUnsigned (ctxt_p, pvalue, lower, upper) 
  
Return value: 
 
Name Type Description 



ASN1C V5.3  233 

stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 
negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

lower ASN1UINT Lower range value. 
 

upper ASN1UINT Upper range value. 
 

 
Output Parameters: 
 
Name Type Description 
pvalue ASN1UINT* Pointer to unsigned integer variable to receive decoded result. 

 
 
 
pd_UnconsUnsigned � Decode an Unconstrained Unsigned Integer 
 
The pd_UnconsUnsigned function will decode an unconstrained unsigned integer. 
 
Calling sequence: 
 
    stat = pd_UnconsUnsigned (ctxt_p, pvalue) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
Name Type Description 
pvalue ASN1UINT* Pointer to unsigned integer variable to receive decoded result. 

 
 
 
pd_BigInteger � Decode a Big Integer 
 
The pd_BigInteger function will decode a variable of the ASN.1 INTEGER type.  In this case, the integer is 
assumed to be of a larger size than can fit in a C or C++ long type (normally 32 or 64 bits).  For example, 
parameters used to calculate security values are typically larger than these sizes. 
 



ASN1C V5.3  234 

These variables are stored in character string constant variables.  They are represented as decimal strings 
starting with no prefix. If it is necessary to convert a decimal string to another radix then use 
rtSetStrToBigInt / rtBigIntToString functions. 
 
Calling sequence: 
 
    stat = pd_BigInteger (ctxt_p, ppvalue); 
 
Return value: 
 
Name Type Description 
stat int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
 
Output parameters: 
 
Name Type Description 
ppvalue char** Pointer to a character pointer variable to receive the decoded unsigned value.  

Dynamic memory is allocated for the variable using the rtMemAlloc function.  The 
decoded variable is represented as a decimal string starting with no prefix. 
 

 
 
pd_BitString � Decode a Bit String 
 
The pd_BitString function will decode a value of the ASN.1 bit string type whose maximum size is known 
in advance.  The ASN1C compiler generates a call to this function to decode bit string productions or 
elements that contain a size constraint. 
 
Calling sequence: 
 
    stat = pd_BitString (ctxt_p, numbits_p, buffer, bufsiz) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

bufsiz ASN1UINT Length (in octets) of buffer to receive decoded bit string. 
 



ASN1C V5.3  235 

 
Output Parameters: 
 
Name Type Description 
numbits_p ASN1UINT* Pointer to unsigned integer variable to receive decoded number of bits. 

 
buffer ASN1OCTET* Pointer to fixed-size or pre-allocated array of bufsiz octets to receive decoded bit 

string. 
 

 
 
pd_DynBitString - Decode a Dynamic Bit String 
 
The pd_DynBitString function will decode a variable of the ASN.1 BIT STRING type.  This function will 
allocate dynamic memory to store the decoded result.  The ASN1C compiler generates a call to this 
function to decode an unconstrained bit string production or element. 
 
Calling sequence: 
 

stat = pd_DynBitString (ctxt_p, pBitStr) 
 
Return value: 
 
Name Type Description 
stat int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
 
Output parameters: 
 
Name Type Description 
pBitStr ASN1DynBitStr

* 
Pointer to a dynamic bit string structure to receive the decoded result.  This structure 
contains a field to hold the number of decoded bits and a pointer to an octet string to 
hold the decoded data.  Memory is allocated by the decoder using the rtMemAlloc 
function.  This memory is tracked within the context and released when the 
pu_freeContext function is invoked. 
 

 
 
pd_OctetString � Decode an Octet String 
 
The pd_OctetString function will decode a value of the ASN.1 octet string type whose maximum size is 
known in advance.  The ASN1C compiler generates a call to this function to decode octet string 
productions or elements that contain a size constraint. 
 
Calling sequence: 
 
    stat = pd_OctetString (ctxt_p, numocts_p, buffer, bufsiz) 
  



ASN1C V5.3  236 

Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

bufsiz ASN1UINT Size of buffer to receive decoded result. 
 

 
Output Parameters: 
 
Name Type Description 
numocts_p ASN1UINT* Pointer to unsigned integer to receive number of decoded octets. 

 
data ASN1OCTET* Pointer to pre-allocated buffer of bufsiz octets to receive decoded data. 

 
 
 
pd_DynOctString - Decode a Dynamic Octet String 
 
The pd_DynOctString function will decode a variable of the ASN.1 OCTET STRING type.  This function 
will allocate dynamic memory to store the decoded result.  The ASN1C compiler generates a call to this 
function to decode an unconstrained octet string production or element. 
 
Calling sequence: 
 

stat = pd_DynOctString (ctxt_p, pOctStr) 
 
Return value: 
 
Name Type Description 
stat int Status of the decode operation.  Possible values are ASN_OK if decoding is 

successful or one of the negative status codes defined in Appendix A if decoding 
fails. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
 
Output parameters: 
 
Name Type Description 
pOctStr ASN1DynOctStr

* 
Pointer to a dynamic octet string structure to receive the decoded result.  This 
structure contains a field to hold the number of decoded octets and a pointer to an 
octet string to hold the decoded data.  Memory is allocated by the decoder using the 
rtMemAlloc function.  This memory is tracked within the context and released when 



ASN1C V5.3  237 

the pu_freeContext function is invoked. 
 

 
 
pd_Real � Decode Real 
 
The pd_Real function will decode a value of the ASN.1 real type. 
 
Calling sequence: 
 
    stat = pd_Real (ctxt_p, pvalue) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
Name Type Description 
pvalue ASN1REAL* Pointer to real variable to receive decoded result. 

 
 
 
pd_ObjectIdentifier � Decode Object Identifier 
 
The pd_ObjectIdentifier function will decode a value of the ASN.1 object identifier type. 
 
Calling sequence: 
 
    stat = pd_ObjectIdentifier (ctxt_p, pvalue) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
Name Type Description 



ASN1C V5.3  238 

pvalue ASN1OBJID* Pointer to value to receive decoded result.  The ASN1OBJID structure contains a 
numids fields to hold the number of subidentifiers and an array to hold the 
subidentifier values. 
 

 
 
pd_ConstrainedString � Decode 8-bit Character String 
 
The pd_ConstrainedString function will decode a constrained ASN.1 character string.  This function is 
normally not called directly but rather is called from the Useful Type Character String decode functions 
discussed in the next section. 
 
 
Calling sequence: 
 
    stat = pd_ConstrainedString (ctxt_p, string, pCharSet) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pCharSet Asn1CharSet* Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters. 
 

 
Output Parameters: 
 
Name Type Description 
string char** Pointer to character string pointer to receive decoded result.  The string is returned 

as a standard null-terminated C string value. Memory is allocated by the decoder 
using the rtMemAlloc function.  This memory is tracked within the context and 
released when the pu_freeContext function is invoked. 
 

 
 
ASN.1 8-bit Character String Decode Functions 
 
The ASN.1 8-bit character string decode functions are used to decode the standard 8-bit character string 
types included in the standard.  The following functions are included: 
 
• pd_NumericString 
• pd_PrintableString 
• pd_VisibleString 
• pd_IA5String 
• pd_GeneralString 
 
In addition, the following macros are provided that call to the above functions to encode other types: 
 



ASN1C V5.3  239 

• pd_GeneralizedTime 
• pd_UTCTime 
• pd_GraphicString 
• pd_ObjectDescriptor 
 
The calling sequence is the same for each of these routines.  They take as arguments a context pointer, the 
address of a character string pointer variable (i.e a char**) to receive the decoded result, and an optional 
pointer to a character set to further restrict the contents of the encoded string. 
 
Calling sequence: 
 
    stat = pd_<string> (ctxt_p, string, pCharSet) 
  
where <string> would be replaced with the character string name (for example, NumericString). 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pCharSet Asn1CharSet* Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters.  This is an optional parameter, it can be set to NULL to 
specify no additional constraints. 
 

 
Output Parameters: 
 
Name Type Description 
string char** Pointer to character string pointer to receive decoded result.  The string is returned 

as a standard null-terminated C string value. Memory is allocated by the decoder 
using the rtMemAlloc function.  This memory is tracked within the context and 
released when the pu_freeContext function is invoked. 
 

 
 
pd_16BitConstrainedString � Decode 16-bit Character String 
 
The pd_16BitConstrainedString function will decode a constrained ASN.1 16-bit character string.  This 
function is normally not called directly but rather is called from Useful Type Character String decode 
functions that deal with 16-bit strings.  The only function that does that in this release is the pd_BMPString 
function described in the next section. 
 
Calling sequence: 
 
    stat = pd_16BitConstrainedString (ctxt_p, string, pCharSet) 
  
Return value: 
 
Name Type Description 



ASN1C V5.3  240 

stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 
negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pCharSet Asn116Bit 
CharSet* 

Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters. 
 

 
Output Parameters: 
 
Name Type Description 
string Asn116Bit 

CharString* 
Pointer to a structure variable to receive the decoded string.  The string as stored as 
an array of short integer characters. Memory is allocated for the string by the 
rtMemAlloc function. This memory is tracked within the context and released when 
the pu_freeContext function is invoked. 
 

 
 
pd_BMPString � Decode BMP Character String 
 
The pd_BMPString function will decode a variable of the ASN.1 BMP character string.  This differs from 
the decode routines for the character strings previously described in that the BMP string type is based on 
16-bit characters.  A 16-bit character string is modeled using an array of unsigned short integers. 
 
Calling sequence: 
 
    stat = pd_BMPString (ctxt_p, string, pCharSet) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pCharSet Asn116Bit 
CharSet* 

Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters. 
 

 
Output Parameters: 
 
Name Type Description 
string Asn116Bit 

CharString* 
Pointer to character string structure to receive decoded result.  The structure includes 
a count field containing the number of characters and an array of unsigned short 



ASN1C V5.3  241 

integers to hold the 16-bit character values. 
 

 
 
pd_32BitConstrainedString � Decode 32-bit Character String 
 
The pd_32BitConstrainedString function will decode a constrained ASN.1 32-bit character string.  This 
function is normally not called directly but rather is called from Useful Type Character String decode 
functions that deal with 32-bit strings.  The only function that does that in this release is the 
pd_UniversalString function described in the next section. 
 
Calling sequence: 
 
    stat = pd_32BitConstrainedString (ctxt_p, string, pCharSet) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pCharSet Asn132Bit 
CharSet* 

Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters. 
 

 
Output Parameters: 
 
Name Type Description 
string Asn132Bit 

CharString* 
Pointer to a structure variable to receive the decoded string.  The string as stored as 
an array of unsigned integer characters. Memory is allocated for the string by the 
rtMemAlloc function. This memory is tracked within the context and released when 
the pu_freeContext function is invoked. 
 

 
 
pd_UniversalString � Decode 32-bit Character String 
 
The pd_UniversalString function will decode a variable of the ASN.1 32-bit character string.  This differs 
from the decode routines for the character strings previously described in that the universal string type is 
based on 32-bit characters.  A 32-bit character string is modeled using an array of unsigned integers. 
 
Calling sequence: 
 
    stat = pd_UniversalString (ctxt_p, string, pCharSet) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 



ASN1C V5.3  242 

 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pCharSet Asn132Bit 
CharSet* 

Pointer to the constraining character set.  This contains an array containing all valid 
characters in the set as well as the aligned and unaligned bit counts required to 
encode the characters. 
 

 
Output Parameters: 
 
Name Type Description 
string Asn132Bit 

CharString* 
Pointer to character string structure to receive decoded result.  The structure includes 
a count field containing the number of characters and an array of unsigned integers 
to hold the 32-bit character values. 
 

 
 
pd_OpenType � Decode Open Type 
 
The pd_OpenType function will decode an ASN.1 open type.  This used to be the ASN.1 ANY type, but 
now is used in a variety of applications requiring an encoding that can be interpreted by a decoder without 
an prior knowledge of the type of the variable. 
 
Calling sequence: 
 
    stat = pd_OpenType (ctxt_p, pOpenType) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
Name Type Description 
pOpenType ASN1OpenType

* 
Pointer to open type variable to receive decoded data.  The open type structure 
contains a count of octets and an octet data array to hold the encoded data. 
 

 
 
 
pd_OpenTypeExt � Decode Open Type Extension 
 



ASN1C V5.3  243 

The pd_OpenTypeExt function will decode an ASN.1 open type extension.  These are the extra fields in a 
version-2 message that may be present after the � extension marker.  An open type structure (extElem1) is 
added to a message structure that contains an extension marker but no extension elements.  The 
pd_OpenTypeExt function will populate this structure with the complete extension information (optional 
bits or choice index, length and data).  A subsequent call to pe_OpenTypeExt will cause the saved 
extension fields to be included in a newly encoded message of the given type. 
 
Calling sequence: 
 
    stat = pd_OpenTypeExt (ctxt_p, pOpenType) 
  
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output Parameters: 
 
Name Type Description 
pOpenType ASN1OpenType

* 
Pointer to open type variable to receive decoded data.  The open type structure 
contains a count of octets and an octet data array to hold the encoded data. 
 

 



ASN1C V5.3  244 

PER C Utility Functions 
 
The PER utility functions are common routines used by both the PER encode and decode functions.  
Among the services provided are: 
 
• Encode/decode context initialization 
• Setting constraint information within the context structure 
• Diagnostics printing to examine an encoding 
• Character string conversion 
 
 
Encode/Decode Context Initialization 
 
Before any PER encode or decode function can be invoked, a context structure must be initialized.  The 
following PER utility functions are used for this purpose: 
 
pu_initContext 
 
The pu_initContext function is used to initialize a pre-allocated ASN1CTXT structure.  This can be an 
ASN1CTXT variable declared on the stack or a pointer to an ASN1CTXT structure that was previously 
allocated.  This function sets all internal variables within the structure to their initial values. 
 
Calling sequence: 
 
    stat = pu_initContext (ctxt_p, bufaddr, bufsiz, aligned); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

bufaddr ASN1OCTET* For encoding, this is the address of a buffer to receive the encoded PER message 
(note: this is optional, if specified as NULL a dynamic buffer will be allocated).  For 
decoding, this is that address of the buffer that contains the PER message to be 
decoded. 
 

bufsiz ASN1UINT For encoding, this is the size of the encoded buffer (note: this is optional, if the 
bufaddr argument is specified as NULL, then dynamic encoding is in effect and the 
buffer size is indefinite).  For decoding, this is the length (in octets) of the PER 
message to be decoded. 
 

aligned ASN1BOOL Boolean value specifying whether aligned or unaligned encoding should be 
performed. 
 

 
Output parameters: 
 
None 
 
 



ASN1C V5.3  245 

pu_initContextBuffer 
 
The pu_initContextBuffer function is used to initialize the buffer portion of an ASN1CTXT structure with 
buffer data from a second context structure.  This function copies the buffer information from the source 
context buffer structure to the destination structure.  The non-buffer related fields in the context remain 
untouched. 
 
Calling sequence: 
 
    stat = pu_initContextBuffer (pTarget, pSource); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
pTarget ASN1CTXT* Pointer to target context structure.  Buffer information within this structure is 

updated with data from the source context. 
 

pSource ASN1CTXT* Pointer to source context structure.  Buffer information from the source context 
structure is copied to the target structure. 
 

 
Output parameters: 
 
None 
 
 
pu_newContext 
 
The pu_newContext function is similar to the pu_initContext function in that it initializes a context 
variable.  The difference is that this function allocates a new structure and then initializes it.  It is equivalent 
to calling malloc to allocate a context structure and then calling pu_initContext to initialize it. 
 
Calling sequence: 
 
    ctxt_p = pu_newContext (bufaddr, bufsiz, aligned); 
 
Return value: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to ASN1CTXT structure to receive the allocated structure.  NULL is 

returned if an error occurs in allocating or initializing the context. 
 

 
Input parameters: 
 
Name Type Description 
bufaddr ASN1OCTET* For encoding, this is the address of a buffer to receive the encoded PER message 

(note: this is optional, if specified as NULL a dynamic buffer will be allocated).  For 
decoding, this is that address of the buffer that contains the PER message to be 
decoded. 
 



ASN1C V5.3  246 

bufsiz ASN1UINT For encoding, this is the size of the encoded buffer (note: this is optional, if the 
bufaddr argument is specified as NULL, then dynamic encoding is in effect and the 
buffer size is indefinite).  For decoding, this is the length (in octets) of the PER 
message to be decoded. 
 

aligned ASN1BOOL Boolean value specifying whether aligned or unaligned encoding should be 
performed. 
 

 
Output parameters: 
 
None 
 
 
pu_freeContext 
 
The pu_freeContext function releases all dynamic memory associated with a context.  This function should 
be called even if the referenced context variable is not dynamic.  The reason is because it frees memory 
allocated within the context as well as the context structure itself (it will only try to free the context 
structure if it detects that it was previously allocated using the pu_newContext function). 
 
Calling sequence: 
 
    pu_freeContext (ctxt_p); 
 
Return value: 
 
None 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

 
Output parameters: 
 
None 
 
 
Constraint Specification Functions 
 
Unlike BER, PER encode/decode behavior can be affected by the presence of constraint specifications.  
The following PER utility functions allow constraint specifications to be added to the context prior to 
calling an encode or decode function.  The ASN1C compiler adds these calls to the generated code when 
constraints are encountered in the ASN.1 specifications that are being compiled. 
 
pu_addSizeConstraint 
 
The pu_addSizeConstraint is used to add a size constraint to a context variable.  A size constraint is 
specified using an Asn1SizeCnst structure.  The definition of an Asn1SizeCnst is as follows: 
 
struct Asn1SizeCnst { 
   ASN1BOOL    extensible; 
   ASN1INT     lower; 
   ASN1INT     upper; 
   struct Asn1SizeCnst* link; 



ASN1C V5.3  247 

} ; 
 
The extensible boolean specifies whether or not it is an extensible constraint.  The lower and upper fields 
are used to represent the actual size constraint bounds.  The link field is used to chain multiple size 
constraint records together.  This makes it possible to specify composite size constraints that are specified 
in multiple parts using ASN.1 union or extensibility syntax (for example, SIZE (1|3..5,�,7..10)). 
 
Calling Sequence: 
 
    stat = pu_addSizeConstraint (ctxt_p, pSize); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
Input parameters: 
 
Name Type Description 
pSize Asn1SizeCnst* Pointer to size constraint to add to the context variable. 

 
 
Output parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.  The referenced size constraint is added to this 

structure for use by a subsequent encode or decode function. 
 

 
 
pu_setCharSet 
 
The pu_setCharSet function sets a permitted alphabet character set.  This is the resulting set of characters 
when the character associated with a standard character string type is merged with a permitted alphabet 
constraint. 
 
Calling Sequence: 
 
 pu_setCharSet (pCharSet, permSet) 
 
Return Value: 
 
None 
 
Input parameters: 
 
Name Type Description 
pCharSet Asn1CharSet* Pointer to character set structure describing the character set currently associated 

with the character string type. 
 

permSet char* Null-terminated string of permitted characters. 
 

 
Output parameters: 
 
Name Type Description 



ASN1C V5.3  248 

pCharSet Asn1CharSet* Resulting character set structure after being merged with the permSet parameter. 
 

 
 
pu_set16BitCharSet 
 
The pu_set16BitCharSet function sets a permitted alphabet character set for 16-bit character string.  This is 
the resulting set of characters when the character associated with a 16-bit character string type is merged 
with a permitted alphabet constraint. 
 
Calling Sequence: 
 
 pu_set16BitCharSet (pCharSet, pAlphabet) 
 
Return Value: 
 
None 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.   

 
pCharSet Asn116Bit 

CharSet* 
Pointer to character set structure describing the character set currently associated 
with the character string type. 
 

pAlphabet Asn116Bit 
CharSet* 

Pointer to structure describing 16-bit permitted alphabet. 
 

 
Output parameters: 
 
Name Type Description 
pCharSet Asn116Bit 

CharSet* 
 

Resulting character set structure after being merged with the permSet parameter. 
 

 
 
pu_set32BitCharSet 
 
The pu_set32BitCharSet function sets a permitted alphabet character set for 32-bit character string.  This is 
the resulting set of characters when the character associated with a 32-bit character string type is merged 
with a permitted alphabet constraint. 
 
Calling Sequence: 
 
 pu_set32BitCharSet (pCharSet, pAlphabet) 
 
Return Value: 
 
None 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.   

 
pCharSet Asn132Bit 

CharSet* 
Pointer to character set structure describing the character set currently associated 
with the character string type. 



ASN1C V5.3  249 

 
pAlphabet Asn132Bit 

CharSet* 
Pointer to structure describing 32-bit permitted alphabet. 
 

 
Output parameters: 
 
Name Type Description 
pCharSet Asn132Bit 

CharSet* 
 

Resulting character set structure after being merged with the permSet parameter. 
 

 
 
Diagnostic Printing Functions 
 
PER utility functions can be used to track the bit encoding or decoding of individual fields and get a 
detailed binary dump of the encoding.  Several of these function calls are built directly into PER 
encode/decode functions. 
 
pu_hexdump 
 
The pu_hexdump function provides a standard hexadecimal dump of the contents of the buffer currently 
specified in the given context. 
 
Calling Sequence: 
 
 pu_hexdump (ctxt_p) 
 
Return Value: 
 
None 
 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.  The contents of the encode or decode buffer that was 

specified in the call to pu_initContext or pu_newContext is dumped. 
 

 
Output parameters: 
 
None 
 
 
pu_bindump 
 
The pu_bindump function provides a detailed binary dump of the contents of the buffer currently specified 
in the given context.  The list of fields dumped by this function was previously built up within the context 
using calls pu_newField, pu_pushName, and pu_popName.  These calls are built into both compiler- 
generated and low-level PER encode/decode functions to trace the actual bit encoding of a given construct. 
 
Calling Sequence: 
 
 pu_bindump (ctxt_p, varname) 
 
Return Value: 
 
None 
 



ASN1C V5.3  250 

Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.  The contents of the encode or decode buffer that was 

specified in the call to pu_initContext or pu_newContext is dumped. 
 

varname char* Name of the top-level variable name of the structure being dumped. 
 

 
Output parameters: 
 
None 
 



ASN1C V5.3  251 

 

Run-Time Common Library 
 
The run-time common library is another set of common functions used by both the BER and PER low-level 
encode/decode functions.  These functions are identified by their �rt� prefixes.  The following general 
categories of functions are provided: 
 
• Context initialization functions 
• Memory management functions 
• Diagnostic trace functions 
• Error formatting and print functions 
• Formatted printing functions 
• Object identifier helper functions 
• Linked list and stack utility functions 
• Character string conversion utility functions 
 
The following sections describe these functions. 
 
Context Initialization Functions 
 
Context initialization functions handle the allocation, initialization, and destruction of ASN.1 context 
variables (variables of type ASN1CTXT).  These variables hold all of the working data used during the 
process of encoding or decoding a message.  They provide thread safe operation by isolating what would be 
otherwise be global variables within this structure that is passed from function to function.  
 
In general, the BER and PER run-time libraries provide specific higher-level functions that invoke these 
functions (for example, the BER xe_setp function and the PER pu_initContext functions calls 
rtInitContext).  Therefore, the average user would have little reason to call them directly.  They are 
documented here for completeness. 
 
 
rtInitContext � Initialize Context Block 
 
The rtInitContext function initializes an ASN1CTXT block by setting all key working parameters to their 
correct initial state values. 
 
Calling Sequence: 
 
 int rtInitContext (ctxt_p); 
 
Return value: 
 
Name Type Description 
stat int Status of the operation.  Possible values are ASN_OK if successful or one of the 

negative error status codes defined in Appendix A. 
 

 
 
 
rtNewContext � Allocate New Context Block 
 
The rtNewContext function allocates a new ASN1CTXT block and initializes it.  Although the block is 
allocated from the standard heap, it should not be freed using free.  The rtFreeContext function should be 
used because this frees items allocated within the block before freeing the block itself. 
 
This is the preferred way of setting up a new encode or decode context because it ensures the block is 
properly initialized before it is used.  If a context variable is declared on the stack, the user must first 



ASN1C V5.3  252 

remember to initialize it using rtInitContext.  This function can be called directly when setting up a BER 
context or it will be invoked from within the pu_newContext call for PER. 
 
Calling Sequence: 
 
 ctxt_p = rtNewContext (); 
 
Return value: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to newly allocated and initialized context structure. 

 
 
Input Parameters: 
 
None. 
 
Output Parameters: 
 
None. 
 
 
rtFreeContext � Free Context Block 
 
The rtFreeContext functions frees all dynamic memory associated with a context.  This includes all 
memory inside the block (in particular, the list of memory blocks used by the rtMem functions described 
later) as well as the block itself if allocated with the rtNewContext function. 
 
Calling Sequence: 
 
 rtFreeContext (ctxt_p); 
 
Return value: 
 
None. 
 
Input Parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to newly allocated and initialized context structure. 

 
 
Output Parameters: 
 
None. 
 
 
 
Memory Management Functions 
 
Memory management functions handle the allocation and deallocation of dynamic memory used by the 
encode/decode functions.  Specialized routines are used for performance reasons and to allow the allocated 
memory blocks to be tracked within the context for subsequent release. 
 
These functions are designed to improve the performance of memory allocations within an application.  
Users with the standard version of the compiler can attain higher performance still by replacing these 
functions with their own specialized functions.  For example, if it is known that only a certain peak 



ASN1C V5.3  253 

memory usage requirement will be necessary for a certain application, then the nibble allocation algorithm 
can be replaced with an algorithm that works on a sized static block. 
 
rtMemAlloc � Allocate Dynamic Memory 
 
The rtMemAlloc function allocates dynamic memory.  This improves on the standard malloc function by 
allocating memory in larger chunks and then splitting up these chunks on subsequent calls.  The pointers to 
the large memory blocks are maintained on a list within the context structure so that a free context call can 
release all memory at once. 
 
Calling Sequence: 
 
 ptr = rtMemAlloc (ppMemBlk, nbytes) 
 
Return value: 
 
Name Type Description 
ptr void* Pointer to allocated memory (note: the user should not call �free� on this pointer as it 

points at memory within one of the larger allocated blocks.  The rtMemFree 
function should be called to release all memory allocated using these functions). 
 

 
Input Parameters: 
 
Name Type Description 
nbytes int Number of bytes of dynamic memory to allocate. 

 
 
Output Parameters: 
 
Name Type Description 
ppMemBlk ASN1MemBlk** Pointer to pointer to a memory block structure that contains the list of dynamic 

memory block maintained by these functions.  Typically, the address of the 
memory block list within the ASN1CTXT structure is passed as this parameter 
(i.e., &ctxt_p->pMemBlk). 
 

 
 
rtMemFree � Release Dynamic Memory 
 
The rtMemFree function frees dynamic memory.  Unlike the standard C �free� function, this function 
releases a set of dynamic memory pointers at once instead of a single pointer.  It works this way because it 
is used by the decoder to keep track of all dynamic memory allocated within an ASN.1 C structure.  This 
function is invoked from within the context free functions (xu_freeall for BER or pu_freeContext for PER). 
 
Calling Sequence: 
 
 rtMemFree (pMemBlk) 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pMemBlk ASN1MemBlk* Pointer to a memory block structure that contains the list of dynamic memory 

blocks maintained by these functions.  Typically, the pointer to the memory block 



ASN1C V5.3  254 

list within the ASN1CTXT structure is passed as this parameter (i.e.,  
ctxt_p->pMemBlk). 
 

 
Output Parameters: 
 
None 
 
 
Diagnostic Trace Functions 
 
Diagnostic trace functions allow the output of trace messages to stdout that trace the execution of compiler 
generated functions.  The primary function is rtdiag, a printf-like function that checks a global trace flag 
before writing to the standard output. 
 
rtdiag � Output Trace Messagesy 
 
The rtdiag function conditionally outputs diagnostic trace messages to stdout.  The ASN1C compiler 
embeds calls to this function into the generated source code when the �trace option is specified on the 
command line.  
 
Calling Sequence: 
 
 rtdiag (fmtspec, ...) 
 
Return value: 
 
None 
 
Input parameters: 
 
Name Type Description 
fmtspec char* printf-like format specification string describing the message to be printed (for 

example, �string %s, ivalue %d\n�) 
 

� any Variable list of arguments  
 

 
Output parameters: 
 
None 
 
 
rtSetDiag � Set Diagnostic Tracing 
 
The rtSetDiag function turns diagnostic tracing on or off. 
 
Calling Sequence: 
 
 rtSetDiag (value) 
 
Return value: 
 
None 
 
Input parameters: 
 
Name Type Description 



ASN1C V5.3  255 

value int Boolean value indicating whether to enable or disable tracing.  Zero disables tracing, 
any other value enables it. 
 

 
Output parameters: 
 
None 
 
 
Error Formatting and Print Functions 
 
Error formatting and print functions allow information about encode/decode errors to be added to a context 
block structure and then printed out when the error is propagated to the top level. 
 
rtErrPrint � Print Error Information 
 
The rtErrPrint function prints error information to the standard output device.  The error information is 
stored in an ASN1ErrInfo structure which is part of the ASN1CTXT structure. 
 
Calling Sequence: 
 
 rtErrPrint (pErrInfo) 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pErrInfo ASN1ErrInfo* Pointer to structure containing information on the error to be printed.  Typically, the 

error info structure referred to is the one inside the ASN1CTXT structure (i.e., 
&ctxt_p->errInfo). 
 

 
Output Parameters: 
 
None 
 
 
rtErrLogUsingCB � Log Using Callback Function 
 
The rtErrLogUsingCB function logs error information using a callback function provided by the user.  In 
many situations, it is not sufficient to write error information to stdout to debug problems.  Examples are 
back-end server applications that run in the background and write diagnostic information to system log files 
and front-end applications that log error information to window displays.  This function allows different 
error output methods to be accommodated. 
 
The type definition of the callback function is as follows: 
 

typedef int (*ASN1DumpCbFunc) (char* text_p, void* cbArg_p) 
 
The given function is invoked with a line of text from the formatted error output provided in the text_p 
argument.  The cbArg_p argument is used to pass in a user-defined parameter (specified in the cbArg 
argument to this function).  The integer return status is not used at this time. 
 
The callback function is invoked once for each formatted line of information in the error holding structure. 
 



ASN1C V5.3  256 

Calling Sequence: 
 
 rtLogUsingCB (pErrInfo, cb, cbArg) 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pErrInfo ASN1ErrInfo* Pointer to structure containing information on the error to be printed.  Typically, the 

error info structure referred to is the one inside the ASN1CTXT structure (i.e., 
&ctxt_p->errInfo). 
 

cb ASN1Dump 
CBFunc 

Callback function as defined above to be invoked for each line of formatted error 
output in the error information structure. 
 

cbArg void* User defined callback argument to be passed as a parameter to the callback function. 
 

 
Output Parameters: 
 
None 
 
 
rtErrSetData � Set Error Information 
 
The rtErrSetData function sets error information in an error information structure.  The information set 
includes status code, module name, and line number.  Location information (i.e., module name and line 
number) is pushed onto a stack within the error information structure to provide a complete stack trace 
when the information is printed out. 
 
Calling Sequence: 
 
 stat = rtErrSetData (pErrInfo, status, module, lno) 
 
 
Return Value: 
 
Name Type Description 
stat int Status value passed to the operation in the third argument.  This makes it possible to 

set the error information and return the status value in one line of code. 
 

 
Input Parameters: 
 
Name Type Description 
status int Error status code.  This is one of the negative error status codes described in 

Appendix A. 
 

module char* Name of the module (C or C++ source file) in which the module occurred.  This is 
typically obtained by using the __FILE__ macro. 
 

lineno int Line number at which the error occurred.  This is typically obtained by using the 
__LINE__ macro. 
 

 



ASN1C V5.3  257 

Output Parameters: 
 
Name Type Description 
pErrInfo ASN1ErrInfo* Pointer to an error information structure to receive the details on the error.  This is 

typically the error structure variable within the context (i.e., &ctxt_p->errInfo). 
 

 
 
rtErrAdd<type>Param � Add Typed Error Parameter to Error Information 
 
The rtErrAdd<type>Param functions add typed parameters to an error information structure.  This section 
describes a series of functions whose name is formed by substituting a type identifier name for <type> in 
the above definition (for example, rtErrAddIntParam adds an integer parameter to an error structure). 
 
Parameter substitution is done in much the same way as it is done in C printf statements.  The base error 
message specification that goes along with a particular status code may have variable fields built in using 
�%� modifiers.  These would be replaced with actual parameter data.  The parameters they are replaced with 
are added using the functions described in this section. 
 
Calling Sequence: 
 
 stat = rtErrAdd<type>Param (pErrInfo, errParm) 
 
Return Value: 
 
Name Type Description 
stat int Status value of the operation.  This is one of the status values described in Appendix 

A. 
 

 
Input Parameters: 
 
Name Type Description 
errParm <type> Typed error parameter. 

 
 
Output Parameters: 
 
Name Type Description 
pErrInfo ASN1ErrInfo* Pointer to an error information structure to receive the details on the error.  This is 

typically the error structure variable within the context (i.e., &ctxt_p->errInfo). 
 

 
 
rtErrFreeParams � Free Error Parameter Memory 
 
The rtErrFreeParams function frees memory associated with the storage of parameters associated with an 
error message.  These parameters are maintained on an internal linked list maintained within the error 
information structure.  The list memory must be freed when error processing is complete.  This function is 
called from within rtErrPrint after the error has been printed out.  It is also called in the pu_freeContext 
function. 
 
Calling Sequence: 
 
 rtErrFreeParms (pErrInfo) 
 
Return Value: 
 



ASN1C V5.3  258 

None 
 
Input Parameters: 
 
Name Type Description 
pErrInfo ASN1ErrInfo* Pointer to an error information structure to receive the details on the error.  This is 

typically the error structure variable within the context (i.e., &ctxt_p->errInfo). 
 

 
Output Parameters: 
 
None 



ASN1C V5.3  259 

 
Formatted Printing Functions 
 
This group of functions allows raw ASN.1 data fields to be formatted and printed to stdout and other output 
devices. 
 
rtBoolToString � Convert ASN.1 Boolean Value to String 
 
The rtBoolToString function converts an ASN.1 boolean value to a string.  The string value returned is one 
of the keywords �TRUE� or �FALSE�. 
 
Calling Sequence: 
 
 string = rtBoolToString (value) 
 
Return Value: 
 
Name Type Description 
string char* Converted value.  This will be a string literal set to either �TRUE� or �FALSE�. 

 
 
Input Parameters: 
 
Name Type Description 
value ASN1BOOL Value to convert. 

 
 
Output Parameters: 
 
None 
 
 
rtIntToString � Convert ASN.1 Integer Value to String 
 
The rtIntToString function converts an ASN.1 integer value to a string. 
 
Calling Sequence: 
 
 string = rtIntToString (value, buffer, bufsiz) 
 
Return Value: 
 
Name Type Description 
string char* Converted integer value.  This pointer will be equal to the buffer argument that was 

passed in. 
 

 
Input Parameters: 
 
Name Type Description 
value ASN1INT Value to convert. 

 
bufsiz int Size of buffer to receive stringified value. 

 
 
Output Parameters: 
 
Name Type Description 



ASN1C V5.3  260 

buffer char* Pointer to a buffer to receive stringified value. 
 

 
 
rtUIntToString � Convert ASN.1 Unsigned Integer Value to String 
 
 
The rtUIntToString function converts an ASN.1 integer value to a string.  In this case, the ASN.1 value was 
represented in the C/C++ code as an unsigned integer based on a constraint. 
 
Calling Sequence: 
 
 string = rtUIntToString (value, buffer, bufsiz) 
 
Return Value: 
 
Name Type Description 
string char* Converted integer value.  This pointer will be equal to the buffer argument that was 

passed in. 
 

 
Input Parameters: 
 
Name Type Description 
value ASN1UINT Value to convert. 

 
bufsiz int Size of buffer to receive stringified value. 

 
 
Output Parameters: 
 
Name Type Description 
buffer char* Pointer to a buffer to receive stringified value. 

 
 
 
rtBitStrToString � Convert ASN.1 Bit String Value to String 
 
The rtBitStrToString function converts an ASN.1 bit string value to a string.  The output format is ASN.1 
value notation for a binary string (for example, �10010�B). 
 
Calling Sequence: 
 
 string = rtBitStrToString (numbits, data, buffer, bufsiz) 
 
Return Value: 
 
Name Type Description 
string char* Converted value.  This pointer will be equal to the buffer argument that was passed 

in. 
 

 
Input Parameters: 
 
Name Type Description 
numbits ASN1UINT Number of bits in the data argument to format. 

 
data ASN1OCTET* Buffer containing the bit string to be formatted (note: in the case of BER/DER, this 



ASN1C V5.3  261 

refers to the actual point in the string where the data starts, not where the contents 
field starts.  The contents field contains an extra byte at the beginning that specifies 
the number of unused bits in the last byte). 
 

bufsiz int Size of buffer to receive stringified value. 
 

 
Output Parameters: 
 
Name Type Description 
buffer char* Pointer to a buffer to receive stringified value. 

 
 
 
rtOctStrToString � Convert ASN.1 Octet String Value to String 
 
The rtOctStrToString function converts an ASN.1 octet string value to a string.  The output format is 
ASN.1 value notation for a hexadecimal string (for example, �1F8A�H). 
 
Calling Sequence: 
 
 string = rtOctStrToString (numocts, data, buffer, bufsiz) 
 
Return Value: 
 
Name Type Description 
string char* Converted value.  This pointer will be equal to the buffer argument that was passed 

in. 
 

 
Input Parameters: 
 
Name Type Description 
numocts ASN1UINT Number of octets (bytes) in the data argument to format. 

 
data ASN1OCTET* Buffer containing the octet string to be formatted. 

 
bufsiz int Size of buffer to receive stringified value. 

 
 
Output Parameters: 
 
Name Type Description 
buffer char* Pointer to a buffer to receive stringified value. 

 
 
 
rtOIDToString � Convert ASN.1 Object Identifier Value to String 
 
The rtOIDToString function converts an ASN.1 object value to a string.  The output format is ASN.1 value 
notation for an object identifier (ex. { 0 1 222 333 }).  All subidentifiers are shown as integer numbers � no 
attempt is made to map the identifiers to symbolic names. 
 
Calling Sequence: 
 
 string = rtOIDToString (numids, data, buffer, bufsiz) 
 
Return Value: 



ASN1C V5.3  262 

 
Name Type Description 
string char* Converted value.  This pointer will be equal to the buffer argument that was passed 

in. 
 

 
Input Parameters: 
 
Name Type Description 
numids ASN1UINT Number of subidentifiers in the OID value. 

 
data ASN1UINT* Buffer containing the OID subidentifiers to be formatted. 

 
bufsiz int Size of buffer to receive stringified value. 

 
 
Output Parameters: 
 
Name Type Description 
buffer char* Pointer to a buffer to receive stringified value. 

 
 
 
rtTagToString � Convert ASN.1 Tag to String 
 
The rtTagToString function converts an ASN.1 tag to a string.  The tag is represented using the compilers 
internal ASN1TAG structure.  The output format is standard ASN.1 notation for a tag (for example, [0] = 
context 0 tag). 
 
Calling Sequence: 
 
 string = rtTagToString (tag, buffer, bufsiz) 
 
Return Value: 
 
Name Type Description 
string char* Converted value.  This pointer will be equal to the buffer argument that was passed 

in. 
 

 
Input Parameters: 
 
Name Type Description 
tag ASN1TAG Tag value to be converted. 

 
data ASN1OCTET* Buffer containing the octet string to be formatted. 

 
bufsiz int Size of buffer to receive stringified value. 

 
 
Output Parameters: 
 
Name Type Description 
buffer char* Pointer to a buffer to receive stringified value. 

 
 
 



ASN1C V5.3  263 

rtPrint<type> � Print ASN.1 Values to Standard Output 
 
The rtPrint<type> group of functions print ASN.1 values of various types to standard output (stdout). This 
section describes a series of functions whose name is formed by substituting a type identifier name for 
<type> in the above definition (for example, rtPrintBoolean prints a boolean value). 
 
In general, these functions are very similar to the �ToString� functions described above.  They simply print 
the output value to standard output in a �name = value� format.  The value format is obtained by calling 
one of the �ToString� functions with the give value. 
 
The following are the low-level print functions that are provided: 
 
• rtPrintBoolean 
• rtPrintInteger 
• rtPrintUnsigned 
• rtPrintBitStr 
• rtPrintOctStr 
• rtPrintCharStr 
• rtPrint16BitCharStr 
• rtPrint32BitCharStr 
• rtPrintReal 
• rtPrintOID 
• rtPrintOpenType 
 
These functions are assembled by the compiler print routine generator (-print command line option) to form 
the compiler-generated print functions. 
 
The general calling sequence and parameters are as follows: 
 
Calling Sequence: 
 
 rtPrint<type> (name, value); 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
name char* Name of the variable to print 

 
value <various> ASN.1 value to print (note: multiple arguments may be used to represent the value � 

for example a bit string would be represented by a numbits and data argument.  See 
the function prototype for the exact calling sequence). 
 

 



ASN1C V5.3  264 

 
Object Identifier Helper Functions 
 
Object identifier helper functions provide assistance in working with the object identifier ASN.1 type.  Two 
functions are provided: one to populate an Object Identifier structure and one to print the contents. 
 
rtSetOID � Populate Object Identifier Structure 
 
The rtSetOID function populates an object identifier variable with data.  It copies data from a source 
variable to a target variable.  Typically, the source variable is a compiler-generated object identifier 
constant that resulted from an object identifier value specification within an ASN.1 specification. 
 
Calling Sequence: 
 
 rtSetOID (ptarget, psource) 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
psource ASN1OBJID* Pointer to source object identifier variable to copy to the target.  Typically, this is a 

compiler-generated variable corresponding to an ASN.1 value specification in the 
ASN.1 source file. 
 

 
 
Output Parameters: 
 
Name Type Description 
ptarget ASN1OBJID* Pointer to target object identifier variable to receive object identifier data.  

Typically, this is a variable within a compiler-generated C structure. 
 

 
 
rtPrintOID � Print Object Identifier Structure 
 
The rtPrintOID function formats and prints an object identifier value to stdout. 
 
Calling Sequence: 
 
 rtPrintOID (pOID) 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pOID ASN1OBJID* Pointer to object identifier variable to be printed. 

 
 
Output Parameters: 
 
None 



ASN1C V5.3  265 

 
Linked List and Stack Utility Functions 
 
Linked list and stack utility functions are used to maintain linked lists and stacks used within the ASN.1 
run-time library functions. 
 
rtDListInit � Initialize a Doubly Linked List Structure 
 
The rtDListInit function initializes a doubly linked list structure.  It sets the number of elements to zero and 
sets all internal pointer values to NULL. 
 
Calling Sequence: 
 
 rtDListInit (pList) 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pList Asn1RTDList* Pointer to linked list structure to be initialized. 

 
 
Output Parameters: 
 
None 
 
 
rtDListAppend � Append an Item to a Doubly Linked List 
 
The rtDListAppend function appends an item to linked list structure.  The item is represented by a void 
pointer that can point to an object of any type.  The rtMemAlloc function is used to allocate the memory for 
the list node structure, therefore, all internal list memory will be released whenever rtMemFree is called. 
 
Calling Sequence: 
 
 pNode = rtDListAppend (pCtxt, pList, pData) 
 
Return Value: 
 
Name Type Description 
pNode Asn1RTDList 

Node* 
Pointer to allocated node structure used to link the given data value into the list. 
 

 
Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pList Asn1RTDList* Pointer to linked list structure onto which the data item is to be appended. 
 

pData void* Pointer to data item to be appended to the list. 
 

 
Output Parameters: 



ASN1C V5.3  266 

 
Name Type Description 
pList Asn1RTDList* Pointer to updated linked list structure. 

 
 
 
rtDListInsert � Insert an Item to a Doubly Linked List 
 
The rtDListInsert function inserts an item to linked list structure.  The item is represented by a void pointer 
that can point to an object of any type.  The rtMemAlloc function is used to allocate the memory for the list 
node structure, therefore, all internal list memory will be released whenever rtMemFree is called. 
 
Calling Sequence: 
 
 pNode = rtDListInsert (pCtxt, pList, index, pData) 
 
Return Value: 
 
Name Type Description 
pNode Asn1RTDList 

Node* 
Pointer to allocated node structure used to link the given data value into the list. 
 

 
Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pList Asn1RTDList* Pointer to linked list structure onto which the data item is to be inserted. 
 

index int Index at which the specified item is to be inserted. 
 

pData void* Pointer to data item to be inserted to the list. 
 

 
Output Parameters: 
 
Name Type Description 
pList Asn1RTDList* Pointer to updated linked list structure. 

 
 
 
rtDListInsertBefore � Insert an Item to a Doubly Linked List before specified node 
 
The rtDListInsertBefore function inserts an item to linked list structure before specified node.  The item is 
represented by a void pointer that can point to an object of any type.  The rtMemAlloc function is used to 
allocate the memory for the list node structure, therefore, all internal list memory will be released whenever 
rtMemFree is called. 
 
Calling Sequence: 
 
 pNode = rtDListInsertBefore (pCtxt, pList, pBefore, pData) 
 
Return Value: 
 
Name Type Description 
pNode Asn1RTDList 

Node* 
Pointer to allocated node structure used to link the given data value into the list. 
 



ASN1C V5.3  267 

 
Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pList Asn1RTDList* Pointer to linked list structure onto which the data item is to be inserted. 
 

pBefore Asn1RTDList 
Node* 

Pointer to node before which the specified item is to be inserted. It should be 
already in the linked list structure. 
 

pData void* Pointer to data item to be inserted to the list. 
 

 
Output Parameters: 
 
Name Type Description 
pList Asn1RTDList* Pointer to updated linked list structure. 

 
 
 
rtDListInsertAfter � Insert an Item to a Doubly Linked List after specified node 
 
The rtDListInsertBefore function inserts an item to linked list structure after specified node.  The item is 
represented by a void pointer that can point to an object of any type.  The rtMemAlloc function is used to 
allocate the memory for the list node structure, therefore, all internal list memory will be released whenever 
rtMemFree is called. 
 
Calling Sequence: 
 
 pNode = rtDListInsertAfter (pCtxt, pList, pAfter, pData) 
 
Return Value: 
 
Name Type Description 
pNode Asn1RTDList 

Node* 
Pointer to allocated node structure used to link the given data value into the list. 
 

 
Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to store 

all working variables that must be maintained between function calls. 
 

pList Asn1RTDList* Pointer to linked list structure onto which the data item is to be inserted. 
 

pAfter Asn1RTDList 
Node* 

Pointer to node after which the specified item is to be inserted. It should be already 
in the linked list structure. 
 

pData void* Pointer to data item to be inserted to the list. 
 

 
Output Parameters: 
 
Name Type Description 
pList Asn1RTDList* Pointer to updated linked list structure. 

 



ASN1C V5.3  268 

 
 
rtDListFindByIndex �Find a node in the Doubly Linked List by index 
 
The rtDListFindByIndex function gets a node from linked list structure, which has a specified index. 
 
Calling Sequence: 
 
 pNode = rtDListFindByIndex (pList, index) 
 
Return Value: 
 
Name Type Description 
pNode Asn1RTDList 

Node* 
Pointer to found node structure. NULL, if node is not found. 

 
Input Parameters: 
 
Name Type Description 
pList Asn1RTDList* Pointer to linked list structure in which the node is to be found. 

 
index int Index of the node to be returned. 

 
 
Output Parameters: 
 
None  
 
 
rtDListFindByData �Find a node in the Doubly Linked List by index 
 
The rtDListFindByData function gets a node from linked list structure, which contains a specified data. 
 
Calling Sequence: 
 
 pNode = rtDListFindByData (pList, pData) 
 
Return Value: 
 
Name Type Description 
pNode Asn1RTDList 

Node* 
Pointer to found node structure. NULL, if node is not found. 
 

 
Input Parameters: 
 
Name Type Description 
pList Asn1RTDList* Pointer to linked list structure in which the node is to be found. 

 
pData void* Pointer to data item to be found in the list. 

 
 
Output Parameters: 
 
None  
 
 
rtDListFindIndexByData �Find an index of node in the Doubly Linked List by data 
 



ASN1C V5.3  269 

The rtDListFindIndexByData function gets a node�s index from linked list structure, which contains a 
specified data. 
 
Calling Sequence: 
 
 index = rtDListFindIndexByData (pList, pData) 
 
Return Value: 
 
Name Type Description 
index int Index of found node that contains specified data. 

 
 
Input Parameters: 
 
Name Type Description 
pList Asn1RTDList* Pointer to linked list structure in which the node is to be found. 

 
pData void* Pointer to data item to be found in the list. 

 
 
Output Parameters: 
 
None  
 
 
rtDListRemove � Remove a node from a Doubly Linked List 
 
The rtDListRemove function removes a node from linked list structure.  The rtMemAlloc function was used 
to allocate the memory for the list node structure, therefore, all internal list memory will be released 
whenever rtMemFree is called. 
 
Calling Sequence: 
 
 rtDListRemove (pList, pNode) 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pList Asn1RTDList* Pointer to linked list structure from which the node is to be removed. 

 
pNode Asn1RTDList 

Node* 
Pointer to node is to be removed. It should be already in the linked list structure. 
 

 
Output Parameters: 
 
Name Type Description 
pList Asn1RTDList* Pointer to updated linked list structure. 

 
 
 
rtSListInit � Initialize a Singly Linked List Structure 
 



ASN1C V5.3  270 

The rtSlistInit function initializes a singly linked list structure.  It sets the number of elements to zero and 
sets all internal pointer values to NULL. 
 
Calling Sequence: 
 
 rtSListInit (pList) 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pList Asn1RTSList* Pointer to linked list structure to be initialized. 

 
 
Output Parameters: 
 
None 
 
 
rtSListCreate � Create a Singly Linked List Structure 
 
The rtSListCreate function creates a new linked list structure.  It allocates memory for the structure and 
calls rtSListInit on it to initialize the structure. 
 
Calling Sequence: 
 
 pList = rtSListCreate () 
 
Return Value: 
 
Name Type Description 
pList Asn1RTSList* Pointer to allocated linked list structure. 

 
 
Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
rtSListAppend � Append an Item to a Singly Linked List 
 
The rtSListAppend function appends an item to linked list structure.  The item is represented by a void 
pointer that can point to an object of any type. 
 
Calling Sequence: 
 
 pNode = rtSListAppend (pList, pData) 
 
Return Value: 
 
Name Type Description 



ASN1C V5.3  271 

pNode Asn1RTSList 
Node* 

Pointer to allocated allocated node structure used to link the given data value into 
the list. 
 

 
Input Parameters: 
 
Name Type Description 
pList Asn1RTSList* Pointer to linked list structure onto which the data item is to be appended. 

 
pData void* Pointer to data item to be appended to the list. 

 
 
Output Parameters: 
 
Name Type Description 
pList Asn1RTSList* Pointer to updated linked list structure. 

 
 
 
rtStackInit � Initialize a Stack Structure 
 
The rtStackInit function initializes a stack structure.  It sets the number of elements to zero and sets all 
internal pointer values to NULL. 
 
Calling Sequence: 
 
 rtStackInit (pStack) 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pStack Asn1RTStack* Pointer to stack structure to be initialized. 

 
 
Output Parameters: 
 
None 
 
 
rtStackCreate � Create a Stack Structure 
 
The rtSListCreate function creates a new stack structure.  It allocates memory for the structure and calls 
rtStackInit on it to initialize the structure. 
 
Calling Sequence: 
 
 pStack = rtStackCreate () 
 
Return Value: 
 
Name Type Description 
pStack Asn1RTSList* Pointer to allocated stack structure. 

 
 



ASN1C V5.3  272 

Input Parameters: 
 
None 
 
Output Parameters: 
 
None 
 
 
rtStackPush � Push an Element onto the Stack 
 
The rtStackPush function pushes an item onto the stack. 
 
Calling Sequence: 
 
 stat = rtStackPush (pStack, pData) 
 
Return Value: 
 
Name Type Description 
stat int Status value of the operation.  This is one of the status values described in 

Appendix A. 
 

 
Input Parameters: 
 
Name Type Description 
pStack Asn1RTStack* Pointer to stack structure onto which the data item is to be pushed. 

 
pData void* Pointer to data item to be pushed onto the stack. 

 
 
Output Parameters: 
 
Name Type Description 
pStack Asn1RTStack* Pointer to updated stack structure. 

 
 
 
rtStackPop � Pop an Element from the Stack 
 
The rtStackPop function pops an element from the stack. 
 
Calling Sequence: 
 
 ptr = rtStackPop (pStack) 
 
Return Value: 
 
Name Type Description 
ptr void* Pointer to item popped from the stack. 

 
 
Input Parameters: 
 
Name Type Description 
pStack Asn1RTStack* Pointer to stack structure from which the value is to be popped. 

 



ASN1C V5.3  273 

 
Output Parameters: 
 
Name Type Description 
pStack Asn1RTStack* Pointer to updated stack structure. 

 
 
 
Character String Conversion Functions 
 
Common utility functions are provided to convert between standard null-terminated C strings and different 
ASN.1 string types. 
 
rtCToBMPString 
 
The rtCToBMPString function converts a null-terminated C string into a 16-bit BMP string structure. 
 
Calling Sequence: 
 
 pString = rtCToBMPString (ctxt_p, cstring, pBMPString, pCharSet); 
 
Return value: 
 
Name Type Description 
pString ASN1BMP 

String* 
Pointer to BMP string structure.  This is the pBMPString argument parameter value. 
 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.   

 
cstring char* Pointer to null-terminated C string to be converted into a BMP string. 

 
pCharSet Asn116Bit 

CharSet* 
Pointer to character set structure describing the character set currently associated 
with the BMP character string type. 
 

 
Output parameters: 
 
Name Type Description 
pBMPString ASN1BMP 

String* 
Pointer to BMP string structure to receive converted string. 
 
 

 
 
rtBMPToCString 
 
The rtBMPToCString function converts a BMP string into a null-terminated C string.  Any characters that 
are not 8-bit characters are discarded. 
 
Calling sequence: 
 
 pString = rtBMPToCString (pBMPString, cstring, cstrsize); 
 
Return value: 
 



ASN1C V5.3  274 

Name Type Description 
pString char* Pointer to returned string structure.  This is the cstring argument parameter value. 

 
 
Input parameters: 
 
Name Type Description 
pBMPString ASN1BMP 

String* 
Pointer to BMP string structure to be converted. 
 
 

cstrsize int Size of the buffer to receive the converted string. 
 

 
Output parameters: 
 
Name Type Description 
cstring char* Pointer to buffer to receive converted string. 

 
 
 
rtBMPToNewCString 
 
The rtBMPToNewCString function converts a BMP string into a null-terminated C string.  Any characters 
that are not 8-bit characters are discarded.  This function allocates dynamic memory to hold the converted 
string.  The user is responsible for freeing this memory. 
 
Calling sequence: 
 
 pString = rtBMPToCString (pBMPString) 
 
Return value: 
 
Name Type Description 
pString char* Pointer to allocated null-terminated string.  The user is responsible for freeing this 

memory. 
 

 
Input parameters: 
 
Name Type Description 
pBMPString ASN1BMP 

String* 
Pointer to BMP string structure to be converted. 
 
 

 
Output parameters: 
 
None 
 
 
rtCToUCSString 
 
The rtCToUCSString function converts a null-terminated C string into a 32-bit UCS-4 (Universal Character 
Set, 4 bytes) string structure. 
 
Calling Sequence: 
 
 pString = rtCToUCSString (ctxt_p, cstring, pUCSString, pCharSet); 
 



ASN1C V5.3  275 

Return value: 
 
Name Type Description 
pString ASN1Universal 

String* 
Pointer to Universal string structure.  This is the pUCSString argument parameter 
value. 
 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.   

 
cstring char* Pointer to null-terminated C string to be converted into a Universal string. 

 
pCharSet Asn132Bit 

CharSet* 
Pointer to character set structure describing the character set currently associated 
with the Universal character string type. 
 

 
Output parameters: 
 
Name Type Description 
pUCSString ASN1Universal 

String* 
Pointer to Universal string structure to receive converted string. 
 
 

 
 
rtUCSToCString 
 
The rtUCSToCString function converts a Universal 32-bit string into a null-terminated C string.  Any 
characters that are not 8-bit characters are discarded. 
 
Calling sequence: 
 
 pString = rtUCSToCString (pUCSString, cstring, cstrsize); 
 
Return value: 
 
Name Type Description 
pString char* Pointer to returned string structure.  This is the cstring argument parameter value. 

 
 
Input parameters: 
 
Name Type Description 
pUCSString ASN1Universal 

String* 
Pointer to Universal string structure to be converted. 
 
 

cstrsize int Size of the buffer to receive the converted string. 
 

 
Output parameters: 
 
Name Type Description 
cstring char* Pointer to buffer to receive converted string. 

 
 
 



ASN1C V5.3  276 

rtUCSToNewCString 
 
The rtUCSToNewCString function converts a Universal 32-bit string into a null-terminated C string.  Any 
characters that are not 8-bit characters are discarded.  This function allocates dynamic memory to hold the 
converted string.  The user is responsible for freeing this memory. 
 
Calling sequence: 
 
 pString = rtUCSToCString (pUCSString) 
 
Return value: 
 
Name Type Description 
pString char* Pointer to allocated null-terminated string.  The user is responsible for freeing this 

memory. 
 

 
Input parameters: 
 
Name Type Description 
pUCSString ASN1Universal 

String* 
Pointer to Universal 32-bit string structure to be converted. 
 
 

 
Output parameters: 
 
None 
 
 
rtUCSToWCSString 
 
The rtUCSToWCSString function converts a 32-bits encoded string to a wide-character string. 
 
Calling Sequence: 
 
 len = rtUCSToWCSString (inbuf, outbuf, outbufsiz); 
 
Return value: 
 
Name Type Description 
len int Character count or error status.  Will be negative if conversion fails.  If positive, 

indicates number of character s written to outbuf. 
 

 
Input parameters: 
 
Name Type Description 
inbuf ASN1Universal 

String* 
Pointer to Universal string structure. 
 

outbufsiz int Number of wide characters (wchar_t) the output buffer can hold. 
 

 
Output parameters: 
 
Name Type Description 
outbuf wchar_t* Pointer to buffer to receive converted string. 

 
 



ASN1C V5.3  277 

 
 
rtWCSToUCSString 
 
The rtWCSToUCSString function converts a wide-character string to a Universal 32-bits encoded string. 
 
Calling Sequence: 
 
 len = rtWCSToUCSString (ctxt_p, inbuf, outbuf, pCharSet); 
 
Return value: 
 
Name Type Description 
len int If conversion of WCS to UTF-8 is successful, the number of bytes in the converted 

string is returned.  If the encoding fails, a negative status value is returned. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.   

 
inbuf wchar_t* Pointer to wide-character (Unicode) string to convert. 

 
pCharSet Asn132Bit 

CharSet* 
Pointer to character set structure describing the character set currently associated 
with the Universal character string type. 
 

 
Output parameters: 
 
Name Type Description 
outbuf ASN1Universal 

String* 
Pointer to Universal String structure to receive converted string. 
 
 

 
 
rtWCSToUTF8 
 
The rtWCSToUTF8 function converts a wide-character string to a UTF-8 encoded string. 
 
Calling Sequence: 
 
 len = rtWCSToUTF8 (ctxt_p, inbuf, inlen, outbuf, outbufsiz); 
 
Return value: 
 
Name Type Description 
len int If conversion of WCS to UTF-8 is successful, the number of bytes in the converted 

string is returned.  If the encoding fails, a negative status value is returned. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.   

 
inbuf wchar_t* Pointer to wide-character (Unicode) string to convert. 

 



ASN1C V5.3  278 

inlen int Number of characters in the Unicode string. 
 

outbufsiz int Size (in bytes) or the output buffer to receive the encoded string 
 

 
Output parameters: 
 
Name Type Description 
outbuf ASN1OCTET* Pointer to buffer to receive converted string. 

 
 

 
 
rtUTF8ToWCS 
 
The rtUTF8ToWCS function converts a UTF-8 encoded string to a wide-character string. 
 
Calling Sequence: 
 
 len = rtUTF8ToWCS (ctxt_p, inbuf, outbuf, outbufsiz); 
 
Return value: 
 
Name Type Description 
len int Character count or error status.  Will be negative if conversion fails.  If positive, 

indicates number of character s written to outbuf. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.   

 
inbuf char* Pointer to null-terminated UTF-8 encoded string. 

 
outbufsiz int Number of wide characters (wchar_t) the output buffer can hold. 

 
 
Output parameters: 
 
Name Type Description 
outbuf wchar_t* Pointer to buffer to receive converted string. 

 
 

 
 
rtValidateUTF8 
 
The rtValidateUTF8 function will validate a UTF-8 encoded string to ensure that it us encoded correctly. 
 
Calling Sequence: 
 
 stat = rtUTF8ToWCS (ctxt_p, inbuf); 
 
Return value: 
 
Name Type Description 
stat int Status of validation.  Will be ASN_OK (zero) if validation successful or a negative 



ASN1C V5.3  279 

status value if an error is detected. 
 

 
Input parameters: 
 
Name Type Description 
ctxt_p ASN1CTXT* Pointer to a context structure.   

 
inbuf char* Pointer to null-terminated UTF-8 encoded string. 

 
 
Output parameters: 
 
None 
 



ASN1C V5.3  280 

Big integer helper functions 
 
Arbitrary-precision integers� manipulating functions are used to maintain big integers used within the 
ASN.1 run-time library functions. 
 
rtBigIntInit � Initialize a big integer Structure 
 
The rtBigIntInit function initializes a big integer structure.  This function should be called before the first 
use of the big integer. 
 
Calling Sequence: 
 
 rtBigIntInit (pBigInt) 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
pBigInt ASN1BigInt* Pointer to big integer structure to be initialized. 

 
 
Output Parameters: 
 
None 
 
 
rtSetStrToBigInt � Convert string to a big integer 
 
The rtSetStrToBigInt function converts the character string to a big integer structure. 
 
Calling Sequence: 
 
 stat = rtSetStrToBigInt (pCtxt, pInt, pString, radix) 
 
Return Value: 
 
Name Type Description 
stat int Status value of the operation.  This is one of the status values described in 

Appendix A. 
 

 
Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to 

store all working variables that must be maintained between function calls. 
 

pInt ASN1BigInt* Pointer to big integer structure onto which the value is to be stored. 
 

pString ASN1ConstCharPtr Pointer to character string to be converted. 
 

radix int Base of value in pString. Must be 2, 8, 10 or 16. 
 

 
Output Parameters: 



ASN1C V5.3  281 

 
Name Type Description 
pInt ASN1BigInt * Pointer to updated big integer structure. 

 
 
 
rtSetInt64ToBigInt � Convert ASN1INT64 value to big integer 
 
The rtSetInt64ToBigInt function converts the ASN1INT64 value to big integer structure. An ASN1INT64 
type is a 64-bit integer type, if platform supports 64-bit integers. In other case it will be a simple 32-bit 
integer. 
 
Calling Sequence: 
 
 stat = rtSetStrToBigInt (pCtxt, pInt, i64value) 
 
Return Value: 
 
Name Type Description 
stat int Status value of the operation.  This is one of the status values described in 

Appendix A. 
 

 
Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to 

store all working variables that must be maintained between function calls. 
 

pInt ASN1BigInt* Pointer to big integer structure onto which the value is to be stored. 
 

i64value ASN1INT64 The 64-bit integer value to be converted. 
 

 
Output Parameters: 
 
Name Type Description 
pInt ASN1BigInt * Pointer to updated big integer structure. 

 
 
 
rtSetBytesToBigInt � Convert sequence of octets to big integer 
 
The rtSetBytesToBigInt function translates an octet array containing the two's-complement binary 
representation of an arbitrary-precision integer into a big integer structure. The input array is assumed to be 
in big-endian octet-order: the most significant octet is in the zeroth element. 
 
Calling Sequence: 
 
 stat = rtSetBytesToBigInt (pCtxt, pInt, pOctets, len) 
 
Return Value: 
 
Name Type Description 
stat int Status value of the operation.  This is one of the status values described in 

Appendix A. 
 

 



ASN1C V5.3  282 

Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to 

store all working variables that must be maintained between function calls. 
 

pInt ASN1BigInt* Pointer to big integer structure onto which the value is to be stored. 
 

pOctets ASN1OCTET* Pointer to an octet array with two's-complement binary representation of an 
arbitrary-precision integer. 
 

len int Length of an octet array. 
 

 
Output Parameters: 
 
Name Type Description 
pInt ASN1BigInt * Pointer to updated big integer structure. 

 
 
 
rtGetBigIntLen� Get big integer length 
 
The rtGetBigIntLen function returns the number of octets necessary for the storing a big integer value in 
the octet array. This function may be used for the calculating the necessary buffer size for the rtGetBigInt 
function. 
 
Calling Sequence: 
 
 len = rtGetBigIntLen (pInt) 
 
Return Value: 
 
Name Type Description 
len int Number of octets, necessary for the storing a big integer value in the octet string. 

 
 
Input Parameters: 
 
Name Type Description 
pInt ASN1BigInt* Pointer to big integer structure onto which the value is to be stored. 

 
 
Output Parameters: 
 
None 
 
 
rtGetBigInt � Copy big integer value into an octet array 
 
The rtGetBigInt function copies the two's-complement binary representation of a big integer into an octet 
string. The output array will be in big-endian octet-order: the most significant octet will be in the zeroth 
element. 
 
Calling Sequence: 
 
 stat = rtGetBigInt (pCtxt, pInt, pOctets, bufsize) 
 



ASN1C V5.3  283 

Return Value: 
 
Name Type Description 
stat int Status value of the operation.  This is one of the status values described in 

Appendix A. 
 

 
Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to 

store all working variables that must be maintained between function calls. 
 

pInt ASN1BigInt* Pointer to big integer structure. 
 

bufsize int Length of an octet array. 
 

 
Output Parameters: 
 
Name Type Description 
pOctets ASN1OCTET* Pointer to octet array to receive two's-complement binary representation of a 

arbitrary-precision integer. 
 

 
 
rtBigIntDigitsNum � Return the approximated number of digits of the big integer 
 
The rtBigIntDigitsNum function returns the approximated number of digits of the big integer value 
according to the specified radix. This function may be used to calculate size of buffer for the 
rtBigIntToString function. The number of digits might be slightly greater than really necessary, but never 
less. 
 
Calling Sequence: 
 
 dnum = rtBigIntDigitsNum (pInt, radix) 
 
Return Value: 
 
Name Type Description 
dnum int The approximated number of digits of the big integer. 

 
 
Input Parameters: 
 
Name Type Description 
pInt ASN1BigInt* Pointer to a big integer structure. 

 
radix int Base of value. Must be 2, 8, 10 or 16. 

 
 
Output Parameters: 
 
None 
 
 



ASN1C V5.3  284 

rtBigIntToString � Convert a big integer to a string 
 
The rtBigIntToString function converts a big integer to a string according to the specified radix.  
 
Calling Sequence: 
 
 stat = rtBigIntToString (pCtxt, pInt, radix, pBuf, bufsize) 
 
Return Value: 
 
Name Type Description 
stat int Status value of the operation.  This is one of the status values described in 

Appendix A. 
 

 
Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to 

store all working variables that must be maintained between function calls. 
 

pInt ASN1BigInt* Pointer to big integer structure to be converted into a string. 
 

radix int Base of value for conversion. Must be 2, 8, 10 or 16. 
 

bufsize int The size of buffer pBuf. 
 

 
Output Parameters: 
 
Name Type Description 
pBuf char* Pointer to buffer to receive the converted character string. 

 
 
 
rtPrintBigInt � Print big integer value  to Standard Output 
 
The rtPrintBigInt function prints big integer value to standard output (stdout), according to specified radix.  
 
In general, this function is very similar to the �rtBigIntToString� function described above.  It simply prints 
the output value to standard output in a �name = value� format. 
 
Calling Sequence: 
 
 rtPrintBigInt (name, value, radix); 
 
Return Value: 
 
None 
 
Input Parameters: 
 
Name Type Description 
name char* Name of the variable to print 

 
value ASN1BigInt* Big integer value to print. 

 
radix int Base of value for conversion to print. Must be 2, 8, 10 or 16. 



ASN1C V5.3  285 

 
 
 
rtCompareBigInt � Compare two big integer values 
 
The rtCompareBigInt function compares two big integer values. The result of comparison can be �1 (first 
value less than second one), 0 (both are equal) and 1 (first value greater than second one).  
 
Calling Sequence: 
 
 res = rtPrintBigInt (pInt1, pInt2); 
 
Return Value: 
 
Name Type Description 
res int The result of comparison (-1, 0 or 1). 

 
 
 
Input Parameters: 
 
Name Type Description 
pInt1 ASN1BigInt* The first big integer value to compare. 

 
pInt1 ASN1BigInt* The second big integer value to compare. 

 
 
 
rtBigIntCopy � Copy one big integer structure into another 
 
The rtBigIntCopy function copies one big integer structure into another one. The destination big integer 
structure should not be initialized yet.  
 
Calling Sequence: 
 
 stat = rtBigIntCopy (pCtxt, pSrc, pDst); 
 
Return Value: 
 
Name Type Description 
stat int Status value of the operation.  This is one of the status values described in 

Appendix A. 
 

 
 
Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to 

store all working variables that must be maintained between function calls. 
 

pSrc ASN1BigInt* The source big integer value to copy. 
 

pDst ASN1BigInt* The destination big integer value to receive copied value. Should not be 
initialized. 
 

 
 



ASN1C V5.3  286 

rtBigIntFastCopy � Fast copy of one big integer structure into another 
 
The rtBigIntFastCopy function copies one big integer structure into another one. The destination big integer 
structure should be initialized before use of this function. This function might be faster than rtBigIntCopy 
because if the destination big integer already has enough allocated memory then memory will be reused 
without allocation. 
 
Calling Sequence: 
 
 stat = rtBigIntFastCopy (pCtxt, pSrc, pDst); 
 
Return Value: 
 
Name Type Description 
stat int Status value of the operation.  This is one of the status values described in 

Appendix A. 
 

 
 
Input Parameters: 
 
Name Type Description 
pCtxt ASN1CTXT Pointer to a context structure.  This provides a storage area for the function to 

store all working variables that must be maintained between function calls. 
 

pSrc ASN1BigInt* The source big integer value to copy. 
 

pDst ASN1BigInt* The destination big integer value to receive copied value. Should be initialized. 
 

 



ASN1C V5.3  287 

APPENDIX A 
 
The following error status codes can be returned by the run-time library functions or by generated ASN1C 
code: 
 
Error Constant Value Description 
ASN_OK 0 Decode successful (successful encode returns a positive value equal to the 

number of bytes encoded). 
 

ASN_OK_FRAG 2 OK fragment.  This is a success status returned by some PER functions to 
indicate encode or decode was successful, but that a message fragment was 
encountered.  The results are not yet complete. 
 

ASN_E_BUFOVFLW -1 Encode buffer overflow.  Occurs when the size of a static encode buffer is 
exceeded. 
 

ASN_E_ENDOFBUF -2 Unexpected end-of-buffer on decode.  Occurs when a decode function 
encounters the end of the buffer when expecting to find more data. 
 

ASN_E_IDNOTFOU -3 Identifier not found on decode.  Occurs when an unexpected tag is 
encountered during message decoding. 
 

ASN_E_INVOBJID -4 Invalid object identifier code.  Occurs when the ASN.1 rules for specifying an 
object identifier value are violated. 
 

ASN_E_INVLEN -5 Invalid length component on decode.  The actual length of data in a given 
field did not match the encoded length. 
 

ASN_E_INVENUM -6 Enumerated value parsed from a field was not in the defined set for that field. 
 

ASN_E_SETDUPL -7 A duplicate occurrence of a tagged element within a SET was encountered 
during decoding. 
 

ASN_E_SETMISRQ -8 Decoding of a SET construct was completed and one or more required (i.e., 
not OPTIONAL) SET elements were missing. 
 

ASN_E_NOTINSET -9 A tagged element was encountered during the decoding of a SET that was not 
a member of the defined SET. 
 

ASN_E_SEQOVFLW -10 More elements were encountered in a sized SEQUENCE OF or SET OF 
construct then were specified in the SIZE specification. 
 

ASN_E_INVOPT -11 An element was encountered during decoding of a CHOICE construct that 
was not defined to be an option for the CHOICE. 
 

ASN_E_NOMEM -12 No dynamic memory available. 
 

ASN_E_INVHEXS -14 Invalid ASN.1 hexadecimal string value.  This error occurs if a string is 
passed to a run-time function that is expecting an ASN.1 hex string value in 
ASN.1 value notation format and the string is not properly formatted (i.e., in 
the form �xxxx�H). 
 

ASN_E_INVBINS -15 Invalid ASN.1 binary string value.  This error occurs if a string is passed to a 
run-time function that is expecting an ASN.1 binary string value in ASN.1 
value notation format and the string is not properly formatted (i.e., in the form 
�xxxx�B). 



ASN1C V5.3  288 

 
ASN_E_INVREAL -16 Invalid real value.  This is returned by the ASN.1 REAL type decode 

functions if an encoded real value violates any of the ASN.1 encoding rules 
for a REAL value. 
 

ASN_E_STROVFLW -17 More OCTETs or BITS were encountered in a sized OCTET or BIT STRING 
field then were specified in the SIZE specification. 
 

ASN_E_BADVALUE -18 Invalid value specification. 
 

ASN_E_UNDEFVAL -19 Definition not found for referenced defined value. 
 

ASN_E_UNDEFTYPE -20 Definition not found for referenced defined type. 
 

ASN_E_BADTAG -21 An ID number in a tag value was encountered in decoding which was greater 
then the maximum value supported by the ASN1C compiler (8191). 
 

ASN_E_TOODEEP -22 Message contains nested constructs greater then the maximum defined depth. 
 

ASN_E_CONSVIO -23 Value constraint violation (for example, integer value not within the given 
range). 
 

ASN_E_RANGERR -24 Invalid range specification (lower value greater than upper value or endpoints 
are of different types). 
 

ASN_E_ENDOFFILE -25 This is returned from the decode from file functions (xdf) if an unexpected 
end-of-file condition is encountered.  An example would be an indefinite 
length encoding in which the EOC marker was not found before end-of-file 
occurred. 
 

ASN_E_INVUTF8 -26 Invalid UTF-8 encoded string. 
 

ASN_E_CONCMODF -27 Concurrent list modification. This is returned by ASN1CSeqOfListIterator�s 
methods if the list was modified during the usage of the iterator. 
 

ASN_E_ ILLSTATE -28 Illegal state error. This is returned by ASN1CSeqOfListIterator�s methods if 
the iterator is in illegal state for some operations (for example, call of 
remove() or set() method before the first call of next() or prev()). 
 

ASN_E_ OUTOFBND -29 Out of bounds. This is returned if some indices are out of bounds (of array, 
for example). 
 

ASN_E_ INVPARAM -30 Invalid parameter. 
 

ASN_E_INVFORMAT -31 Invalid time string format. 
 

ASN_E_NOTINIT -32 Not initialized. This is returned if some data is not initialized before use (for 
example, if ASN1CTXT is not initialized by rtInitContext function before use 
of this context). 
 

ASN_E_NOTSUPP -99 Non-supported ASN.1 construct encountered. 
 

 



ASN1C V5.3  289 

 

APPENDIX B 
 
This version of the ASN1C compiler can parse all syntax as set forth in the 1997 ITU-T recommendations 
X.680 through X.683.  However, all syntax does not result in the generation of corresponding C or C++ 
code.  In general, the approach is to extract what is needed to form accurate C/C++ types and 
encode/decode functions for encoding the base types in a specification.  It is up to the user to accurately put 
them together in places where layered messages are necessary to form a complete PDU. 
 
The following ASN.1 constructs result in the generation of limited or no C/C++ code in this version of the 
ASN1C compiler: 
 
• Constructed ASN.1 value specifications (including DEFAULT on a SEQUENCE).  
 
• General constraints and table constraints. 
 
• Value set specifications. 
 
• EMBEDDED PDV type 
 
• Selection Type 
 
• Macros from the X.208 specification (note: a special version of the compiler is included that can parse 

ROSE OPERATION and ERROR macros). 
 



ASN1C V5.3  290 

 
 
 
 
 
 

Index 

 
%ASN prefix, 13 
16-bit character string, 36 

alphabet character set, 248 
converting from 8-bit null terminated C string, 

83 
converting from null-terminated C string, 273 
decode functions, 188, 239 
encode functions, 169, 222 

32-bit character string, 36 
alphabet character set, 248 
converting from null-terminated C string, 274 
decode functions, 188, 241 
encode functions, 170, 223 

32-bits encoded string 
converting to WCS, 276 

8-bit character string 
decode functions, 238 
derivation, 35 
encode functions, 220, 221 

8-bit null-terminated C string, conversion, 83 
Add Size Constraint (pu_addSizeConstraint ), 

246 
Add Typed Error Parameters to Error 

Information (rtErrAdd<type>Param), 257 
addEventHandler run-time method, 83 
Align Buffer on a Byte Boundary 

(pd_byte_align), 229 
Align Encode Buffer on a Byte Boundary 

(pe_byte_align), 212 
Allocate Dynamic Memory (rtMemAlloc), 253 
Allocate Dynamic Memory (xu_malloc), 201 
Allocate Elements for an Array (xu_alloc_array), 

202 
ANSI-standard source code, for base run-time 

libraries, 7 
ANY or ANY DEFINED BY constructs, 35 
Append an Item to a Doubly Linked List 

(rtDListAppend), 265, 266, 267, 268, 269 
Append an Item to a Singly Linked List 

(rtSListAppend), 270 
append run-time method, 122 
argument, message buffer, 42 
ASN.1 8-bit Character String Decode Function, 

238 
ASN.1 8-bit Character String Encode Function, 

221 
ASN.1 C++ run-time class reference, 75�160 

ASN.1 constructs that generate limited or no 
C/C++ code, 289 

ASN.1 primitive type definitions, asn1type.h 
include file, 162 

ASN.1 run-time library, 6 
ASN1BERDecodeBuffer 

ASN1BERDecodeBuffer, 93 
FindElement, 93 
ParseTagLen, 94 

ASN1BERDecodeBuffer run-time class 
constructor, 93 

ASN1BEREncodeBuffer 
ASN1BEREncodeBuffer, 91 
GetMsgCopy, 91 
GetMsgPtr, 92 
Init, 92 

ASN1BEREncodeBuffer run-time class 
constructor, 91 

ASN1BERMessageBuffer 
CalcIndefLen, 89 
BinDump, 89 
HexDump, 90 

ASN1C90, 76 
ROSE OPERATION and ERROR, 76 
SNMP OBJECT TYPE, 78 

ASN1CBitStr 
ASN1CBitStr, 104 
change, 105 
clear, 106 
set, 107 
invert, 108 
get, 109 
isSet, 110 
isEmpty, 110 
size, 111 
length, 111 
cardinality, 111 
getBytes, 112 
doAnd, 112 
doOr, 114 
doXor, 115 
doAndNot, 116 
shiftLeft, 118 
shiftRight, 118 
unusedBitsInLastUnit, 119 
operator ASN1TDynBitStr, 119 

ASN1CBitStr class constructor, 104 



ASN1C V5.3  291 

ASN1CGeneralizedTime 
ASN1CGeneralizedTime, 148 
getCentury, 149 
setCentury, 149 

ASN1CGeneralizedTime class constructor, 148 
ASN1Context 

ASN1Context, 81 
~ASN1Context, 81 
PrintErrorInfo, 82 

ASN1Context classes 
GetPtr, 81 

ASN1Context run-time class constructor, 81 
ASN1Context run-time class destructor, 81 
ASN1CSeqOfList 

ASN1CSeqOfList, 121 
append, 122 
insert, 122 
remove, 122 
removeFirst, 123 
removeLast, 123 
indexOf, 124 
contains, 124 
getFirst, 125 
getLast, 125 
get, 125 
operator[], 126 
set, 126 
clear, 126 
isEmpty, 127 
size, 127 
iterator, 127 
iteratorFromLast, 128 
iteratorFrom, 128 

ASN1CSeqOfList run-time class constructor, 
121 

ASN1CSeqOfListIterator 
hasNext, 130 
hasPrev, 130 
next, 131 
prev, 131 
remove, 131 
set, 132 
insert, 132 

ASN1CTime 
ASN1CTime, 134 
getYear, 135 
getMonth, 135 
getDay, 135 
getHour, 136 
getMinute, 136 
getSecond, 137 
getFraction, 137 
getDiffHour, 138 
getDiffMinute, 138 
getDiff, 138 
getUTC, 139 
getTime, 139 
setYear, 140 
setMonth, 140 

setDay, 141 
setHour, 141 
setMinute, 142 
setSecond, 142 
setFraction, 142 
setDiffHour, 143 
setDiff, 143 
setDiff, 144 
setUTC, 144 
setTime, 145 
parseString, 145 
clear, 146 
operator=, 146 
operator==, 147 
operator>, 147 
operator<, 147 
operator>=, 147 
operator<=, 147 

ASN1Ctime class constructor, 134 
ASN1CType 

ASN1CType, 101 
Encode, 101 
Decode, 101 
memAlloc, 102 
memFreeAll, 102 

ASN1CType run-time class constructor, 101 
ASN1CUTCTime 

ASN1CUTCTime, 150 
setYear, 151 

ASN1CUTCTime class constructor, 150 
ASN1ErrorHandler classes, 160 
ASN1MessageBuffer 

addEventHandler, 83 
CStringToBMPString, 83 
getByteIndex, 84 
getContext, 84 
getMsgCopy, 85 
getMsgPtr, 85 
Init, 86 
isA, 86 
PrintErrorInfo, 87 
setErrorHandler, 87 

ASN1NamedEventHandler 
startElement, 152 
endElement, 152 
bootValue, 153 
intValue, 153 
uIntValue, 154 
bitStrValue, 154 
octStrValue, 155 
charStrValue, 155 
charStrValue, 156 
nullValue, 156 
oidValue, 156 
realValue, 157 
enumValue, 157 
octStrValue, 158 
openTypeValue, 158 

ASN1PERDecodeBuffer classes, 100 



ASN1C V5.3  292 

ASN1PERDecodeBuffer run-time class 
constructor, 100 

ASN1PEREncodeBuffer 
ASN1PEREncodeBuffer, 97 
GetMsgBitCnt, 97 
GetMsgCopy, 98 
GetMsgPtr, 98 
Init, 98 

ASN1PEREncodeBuffer run-time class 
constructor, 97 

ASN1PERMessageBuffer 
BinDump, 95 
HexDump, 95 
GetMsgLen, 95 
SetTrace, 96 

asn1type.h include file 
ASN.1 primitive type definitions, 162 
error constants, 161 
sizing constants, 162 
tagging value and mask constants, 161 

attribute 
global level, 10 
module level, 10 
production level, 11 
specified in more than one section, 9 

Basic Encoding Rules, 1, 5, 89, 91, 161 
ber command line option, 5 
BER decode function. See also BER/DER C 

decode functions 
decoding a series of messages using C++ 

control class interface, 55 
generated C function format and calling 

parameters, 52 
generated C++ decode method format and 

calling parameters, 52 
performance consideration of dynamic 

memory management, 57 
procedure for calling C decode functions, 53 
procedure for calling in C, 53 
procedure for using C++ control class decode 

method, 54 
BER encode function. See also BER/DER C 

encode functions 
encoding a series of messages using C++ 

control class interface, 50 
generated C function format and calling 

parameters, 44 
generated C++ encode method format and 

calling parameters, 44 
populating generated structure variables for 

encoding, 45 
procedure for calling C encode functions, 46 
procedure for calling in C, 46 
procedure for using C++ control class encode 

method, 48 
BER encoded message, diagram, 46 
BER run-time library functions 

asn1type.h Include File, 161 
BER/DER C decode functions, 178�96 

BER/DER C encode functions, 163�77 
BER/DER C file functions, 197�200 
BER/DER C utility functions, 201�8 

BER/DER C decode functions 
xd_16BitCharStr - Decode 16-Bit Character 

String, 188 
xd_32BitCharStr - Decode 32-Bit Character 

String, 188 
xd_bigint - Decode Big Integer, 183 
xd_bitstr - Decode BIT STRING, 184 
xd_bitstr_s - Decode BIT STRING (static), 

184 
xd_boolean - Decode BOOLEAN, 181 
xd_charstr - Decode Character String, 187 
xd_chkend - Check for End of Context, 193 
xd_count - Count Message Components, 194 
xd_enum - Decode ENUMERATED, 189 
xd_indeflen - Calculate Indefinite Length, 196 
xd_integer - Decode INTEGER, 181 
xd_match - Match Tag, 180 
xd_memcpy - Copy Decoded Contents, 194 
xd_NextElement - Move to Next Element, 195 
xd_null - Decode NULL, 190 
xd_objid - Decode OBJECT IDENTIFIER, 

190 
xd_octstr - Decode OCTET STRING, 185 
xd_octstr_s - Decode OCTET STRING 

(static), 186 
xd_OpenType - Decode Open Type, 192 
xd_OpenTypeExt - Decode Open Type 

Extension, 193 
xd_real - Decode REAL, 191 
xd_setp - Set Decode Buffer Pointer, 178 
xd_tag_len - Decode Tag and Length, 179 
xd_unsigned - Decode Unsigned INTEGER, 

182 
BER/DER C encode functions 

xe_16BitCharStr - Encode 16-Bit Character 
String, 169 

xe_32BitCharStr - Encode 32-Bit Character 
String, 170 

xe_bigint - Encode Big Integer, 167 
xe_bitstr - Encode BIT STRING, 167 
xe_boolean - Encode BOOLEAN, 165 
xe_charstr - Encode Character String, 169 
xe_derCanonicalSort - DER Canonical Sort, 

176 
xe_enum - Encode ENUMERATED, 171 
xe_expandBuffer - Expand Dynamic Encode 

Buffer, 174 
xe_free - Free Encoder Dynamic Memory, 174 
xe_getp - Get Encode Buffer Pointer, 164 
xe_integer - Encode INTEGER, 165 
xe_len - Encode a Length Value, 175 
xe_memcpy - Copy Bytes to Encode Buffer, 

175 
xe_null - Encode NULL, 171 
xe_objid - Encode OBJECT IDENTIFIER, 

172 



ASN1C V5.3  293 

xe_octstr - Encode OCTET STRING, 168 
xe_OpenType - Encode Open Type, 173 
xe_real - Encode Real, 172 
xe_set - Set Encode Buffer Pointer, 163 
xe_tag_len - Encode Tag and Length, 164 
xe_TagAndIndefLen - Encode Tag and 

Indefinite Length, 177 
xe_unsigned - Encode Unsigned INTEGER, 

166 
BER/DER C file functions 

xdf_len - Decode Length from File, 197 
xdf_ReadContents - Read Contents from File, 

199 
xdf_ReadPastEOC - Read Past End-of-

Context, 199 
xdf_tag - Decode Tag from File, 197 
xdf_TagAndLen - Decode Tag and Length 

from File, 198 
BER/DER C utility functions 

xu_alloc_array - Allocate Elements for an 
Array, 202 

xu_dump - Dump Encoded ASN.1 Message, 
203 

xu_fdump - Dump Encoded ASN.1 Message 
to a Text File, 204 

xu_fmtErrMsg - Format Error Message, 206 
xu_freeall - Free Dynamic Memory, 202 
xu_hexdump - Dump Binary Data, 204 
xu_log_error - Log Error Information, 205 
xu_malloc - Allocate Dynamic Memory, 201 
xu_perror - Print Error Information, 205 

Big integer helper functions 
rtBigIntCopy, 285 
rtBigIntDigitsNum, 283 
rtBigIntFastCopy, 286 
rtBigIntInit, 280 
rtBigIntToString, 284 
rtCompareBigInt, 285 
rtGetBigInt, 282 
rtGetBigIntLen, 282 
rtPrintBigInt, 284 
rtSetBytesToBigInt, 281 
rtSetInt64ToBigInt, 281 
rtSetStrToBigInt, 280 

big integers, 18, 280 
binary string value specification, 40 
BinDump run-time method, 89, 95 
bit string 

definition of bits, 20 
for specifying named constants for bit 

positions, 20 
bit string type definition 

Dynamic, 18 
Named Bits, 20 
Static (sized), 19 

bitStrValue run-time method, 154 
boolean type definition, 17 
BOOLEAN value specification, 40 
bootValue run-time method, 153 

buffer argument. message, 42 
buffer object, encode message, 46 
c command line option, 5 
C Mapping Enumerated type definition, 22 
c++ command line option, 5 
C++ control class decode method, procedure for 

using, 54 
C++ control class encode method 

procedure for using in generated BER encode 
functions, 48 

procedure for using in generated PER encode 
functions, 60, 66 

C++ control class interface 
decoding a series of message, 55 
decoding a series of PER messages, 67 
encoding a series of BER messages, 50 
encoding a series of PER messages, 63 

C++ Mapping Enumerated type definition, 23 
CalcIndefLen run-time method, 89 
Calculate Indefinite Length (xd_indeflen), 196 
calling C BER or DER decode functions, 53 
calling C BER or DER encode functions, 46 
calling C PER decode functions, 65 
calling C PER encode functions, 59 
calling parameters 

generated C for BER decode function, 52 
generated C for BER encode function, 44 
generated C for PER decode function, 64 
generated C for PER encode function, 58 
generated C++ for BER decode function, 52 
generated C++ for BER encode function, 44 
generated C++ for PER decode function, 64 
generated C++ for PER encode function, 58 

cardinality run-time method, 111 
case, importance in syntax errors, 13 
change run-time method, 105 
character string conversion functions, run-time 

common library 
rtBMPToCString - Convert BMP to C String, 

273 
rtBMPToNewCString - Convert BMP to New 

C String, 274 
rtCToBMPString - Convert C to 16-Bit BMP 

String, 273 
rtCToUCSString - Convert C to 32-Bit String, 

274 
rtUCSToCString - Convert 32-bit String to C 

String, 275 
rtUCSToNewCString - Convert 32-bit String 

to New C String, 276 
rtUCSToWCSString - Convert a 32-bits 

Encoded String to a Wide Character String, 
276 

rtUTF8ToWCS - Convert a UTF-8 Encoded 
String to a Wide Character String, 278 

rtValidateUTF8 - Validate UTF-8 Encoded 
String, 278 



ASN1C V5.3  294 

rtWCSToUCSString - Convert Wide 
Character String to 32-bits Encoded String, 
277 

rtWCSToUTF8 - Convert Wide Character 
String to UTF-8 Encoded String, 277 

Character String types type definition, 35 
character string value specification, 41 
charStrValue run-time method, 155, 156 
Check Encode Buffer Size (pe_CheckBuffer), 

226 
Check for End of Context (xd_chkend), 193 
choice structures, populating for CHOICE type 

definition, 34 
CHOICE type definition 

basic mapping, 32 
populating generated choice structures, 34 

class definition, generated, 42 
clear run-time method, 146 
clear run-time method, 106, 126 
codes, error status, 287 
command line options, 4�6 
commas, when to use, 13 
compact command line option, 6 
compacting code, 6 
compiler 

error reporting, 13 
running, 3�6 

compiling generated code, 6 
config command line option, 5 
configuration specifications. See also attribute 

examples, 9 
configuration table, compiler, 9�12 
constants, for named bits, 20 
constraint specification functions 

pu_addSizeConstraint - Add Size Constraint, 
246 

pu_set16BitCharSet - Set 16-bit Character Set, 
248 

pu_set32BitCharSet - Set 32-bit Character Set, 
248 

pu_setCharSet - Set Character Set, 247 
contains run-time method, 124 
contents method, 70 
Convert 32-bit String to C String 

(rtUCSToCString), 275 
Convert 32-bit String to New C String 

(rtUCSToNewCString), 276 
Convert a 32-bits Encoded String to a Wide 

Character String (rtUCSToWCSString), 276 
Convert a UTF-8 Encoded String to a Wide 

Character String (rtUTF8ToWCS), 278 
Convert ASN.1 Bit String Value to String 

(rtBitStrToString), 260 
Convert ASN.1 Boolean Value to String 

(rtBoolToString), 259 
Convert ASN.1 Integer Value to String 

(rtIntToString), 259 
Convert ASN.1 Object Identifier Value to String 

(rtOIDStrToString), 261 

Convert ASN.1 Octet String Value to String 
(rtOctStrToString), 261 

Convert ASN.1 Tag to String 
(rtTagStrToString), 262 

Convert ASN.1 Unsigned Integer Value to String 
(rtUIntToString), 260 

Convert BMP to C String (rtBMPToCString), 
273 

Convert BMP to New C String 
(rtBMPToNewCString), 274 

Convert C to 16-Bit BMP String 
(rtCToBMPString), 273 

Convert C to 32-Bit String (rtCToUCSString), 
274 

Convert Wide Character String to 32-bits 
Encoded String (rtWCSToUCSString), 277 

Convert Wide Character String to UTF-8 
Encoded String (rtWCSToUTF8), 277 

Copy Bytes to Encode Buffer (xe_memcpy), 175 
Copy Decoded Contents (xd_memcpy), 194 
Count Message Components (xd_count), 194 
Create a Singly Linked List Structure 

(rtSListCreate), 270 
Create a Stack Structure (rtStackCreate), 271 
CStringToBMPString run-time method, 83 
Decode 16-bit Character String 

(pd_16BitConstrainedString), 239 
Decode 16-Bit Character String 

(xd_16BitCharStr), 188 
Decode 32-bit Character String 

(pd_32BitConstrainedString), 241 
Decode 32-bit Character String 

(pd_UniversalString), 241 
Decode 32-Bit Character String 

(xd_32BitCharStr), 188 
Decode 8-bit Character String 

(pd_ConstrainedString), 238 
Decode a Bit String (pd_BitString), 234 
Decode a Constrained Integer (pd_ConsInteger), 

231 
Decode a Constrained Unsigned Integer 

(pd_ConsUnsigned), 232 
Decode a Constrained Whole Number 

(pd_ConsWholeNumber), 230 
Decode a Dynamic Bit String 

(pd_DynBitString), 235 
Decode a Dynamic Octet String 

(pd_DynOctetString), 236 
Decode a Length Determinant (pd_Length), 231 
Decode a Single Bit Value (pd_bit), 228 
Decode a Small Non-negative Whole Number 

(pd_SmallNonNegWholeNumber), 230 
Decode an Octet String (pd_OctetString), 235 
Decode an Unconstrained Integer 

(pd_UnconsInteger), 232 
Decode an Unconstrained Unsigned Integer 

(pd_UnconsUnsigned), 233 
Decode Big Integer (pd_BigInteger), 233 
Decode Big Integer (xd_bigint), 183 



ASN1C V5.3  295 

Decode BIT STRING (static) (xd_bitstr_s), 184 
Decode BIT STRING (xd_bitstr), 184 
Decode Bit Values (pd_bits), 229 
Decode BMP Character String (pd_BMPString), 

240 
Decode BOOLEAN (xd_boolean), 181 
Decode Character String (xd_charstr), 187 
Decode ENUMERATED (xd_enum), 189 
decode function 

ASN.1 8-bit Character String for PER C, 238 
prototype, 41 

Decode INTEGER (xd_integer), 181 
Decode Length from File (xdf_len), 197 
decode method 

C++ control class, 54 
in generated C/C++ source code, 43 

Decode NULL (xd_null), 190 
Decode Object Identifier (pd_ObjectIdentifier), 

237 
Decode OBJECT IDENTIFIER (xd_objid), 190 
Decode OCTET STRING (static) (xd_octstr_s), 

186 
Decode OCTET STRING (xd_octstr), 185 
Decode Open Type (pd_OpenType), 242 
Decode Open Type (xd_OpenType), 192 
Decode Open Type Extension 

(pd_OpenTypeExt), 242 
Decode Open Type Extension 

(xd_OpenTypeExt), 193 
Decode Real (pd_Real), 237 
Decode REAL (xd_real), 191 
Decode run-time method, 101 
Decode Tag and Length (xd_tag_len), 179 
Decode Tag and Length from File 

(xdf_TagAndLen), 198 
Decode Tag from File (xdf_tag), 197 
Decode Unsigned INTEGER (xd_unsigned), 182 
decommissioned options, 6 
DEFAULT keyword in SEQUENCE type 

definition, 28 
DER Canonical Sort (xe_derCanonicalSort), 176 
der command line option, 5 
DER decode function. See also  BER/DER C 

decode functions 
procedure for calling in C, 53 

DER encode function. See also  BER/DER C 
encode functions 
procedure for calling in C, 46 

diagnostic messages, adding to generated code, 5 
diagnostic printing functions 

pu_bindump - Dump Binary Data, 249 
pu_hexdump - Dump Hexadecimal Data, 249 

diagnostic trace functions, run-time common 
library 
rtdiag - Output Trace Messages, 254 
rtSetDiag - Set Diagnostic Tracing, 254 

directory 
generated files, 6 
searching for IMPORT items, 6 

directory tree, for porting run-time code, 8 
Distinguished Encoding Rules, 5 
doAnd run-time method, 112 
doAndMot  run-time method, 116 
doOr run-time method, 114 
doXor run-time method, 115 
Dump Binary Data (pu_bindump ), 249 
Dump Binary Data (xu_hexdump), 204 
Dump Encoded ASN.1 Message (xu_dump), 203 
Dump Encoded ASN.1 Message to a Text File 

(xu_fdump), 204 
Dump Hexadecimal Data (pu_hexdump ), 249 
Dynamic BIT STRING type definition, 18 
dynamic encode buffer, 46, 48 

for BER encoding, 49 
for PER encoding, 60, 62 

dynamic memory management 
performance considerations in generated BER 

decode functions, 57 
performance considerations in generated PER 

decode functions, 68 
Dynamic OCTET STRING type definition, 21 
Dynamic SEQUENCE OF type definition, 30 
dynamic-link library, 7 
Encode 16-bit Character String 

(pe_16BitConstrainedString), 222 
Encode 16-Bit Character String 

(xe_16BitCharStr), 169 
Encode 32-bit Character String 

(pe_32BitConstrainedString), 223 
Encode 32-bit Character String 

(pe_UniversalString), 224 
Encode 32-Bit Character String 

(xe_32BitCharStr), 170 
Encode 8-bit Character String 

(pe_ConstrainedString), 220 
Encode a Bit String (pe_BitString), 218 
Encode a Constrained Integer (pe_ConsInteger), 

215 
Encode a Constrained Unsigned Integer 

(pe_ConsUnsigned), 217 
Encode a Constrained Whole Number 

(pe_ConsWholeNumber), 214 
Encode a Length Determinant (pe_Length), 215 
Encode a Length Value (xe_len), 175 
Encode a Non-negative Binary Integer 

(pe_NonNegBinInt), 213 
Encode a Single Bit Value (pe_bit), 211 
Encode a Small Non-negative Whole Number 

(pe_SmallNonNegWholeNumber), 214 
Encode a Two's Complement Binary Integer 

(pe_2sCompBinInt), 213 
Encode an Octet String (pe_OctetString), 219 
Encode an Unconstrained Integer 

(pe_UnconsInteger), 216 
Encode an Unconstrained Unsigned Integer 

(pe_UnconsUnsigned), 217 
Encode Big Integer (pe_BigInteger), 218 
Encode Big Integer (xe_bigint), 167 



ASN1C V5.3  296 

Encode BIT STRING (xe_bitstr), 167 
Encode Bit Values (pe_bits), 211 
Encode BMP Character String (pe_BMPString), 

223 
Encode BOOLEAN (xe_boolean), 165 
encode buffer, dynamic 

for BER encoding, 49 
for PER encoding, 60, 62 

encode buffer, static 
for BER encoding, 46, 48, 49 
for PER encoding, 62 

Encode Character String (xe_charstr), 169 
Encode ENUMERATED (xe_enum), 171 
encode function 

ASN.1 8-bit Character String for PER C, 221 
BER, 44�51 
prototype, 41 

Encode INTEGER (xe_integer), 165 
encode message buffer object, 46 
encode method, C++ control class 

using in generated BER encode functions, 48 
using in generated PER encode functions, 60, 

66 
encode method, using in generated C/C++ source 

code, 43 
Encode NULL (xe_null), 171 
Encode Object Identifier (pe_ObjectIdentifier), 

220 
Encode OBJECT IDENTIFIER (xe_objid), 172 
Encode OCTET STRING (xe_octstr), 168 
Encode Octets (pe_octets), 212 
Encode Open Type (pe_OpenType), 225 
Encode Open Type (xe_OpenType), 173 
Encode Open Type Extension 

(pe_OpenTypeExt), 225 
Encode Real (pe_Real), 219 
Encode Real (xe_real), 172 
Encode run-time method, 101 
Encode Tag and Indefinite Length 

(xe_TagAndIndefLen), 177 
Encode Tag and Length (xe_tag_len), 164 
Encode Unsigned INTEGER (xe_unsigned), 166 
encode/decode context initialization 

pu_freeContext - Release All Dynamic 
Memory, 246 

pu_initContext - Initialize Context Structure, 
244 

pu_initContextBuffer - Initialize Context 
Buffer, 245 

pu_newContext - Initialize Context Buffer 
with New Structure, 245 

encode/decode functions 
source file for, 5 
suppressing, 5 

endElement event, 70 
endElement run-time method, 152 
ENUMERATED type definition 

C Mapping, 22 
C++ Mapping, 23 

enumPrefix attribute, 11, 12 
enumValue run-time method, 157 
error 

semantic, 13 
syntax, 13 

error constants, asn1type.h include file, 161 
error event, 70 
error formatting functions, run-time common 

library 
rtErrAdd<type>Param - Add Typed Error 

Parameters to Error Information, 257 
rtErrFreeParams - Free Error Parameter 

Memory, 257 
rtErrLogUsingCB - Log Using Callback 

Function, 255 
rtErrPrint - Print Error Information, 255 
rtErrSetData - Set Error Information, 256 

error macro, ROSE, 78 
error reporting functions, run time, 205 
error reporting, compiler, 13 
error run-time method, 160 
error status codes, 287 
event 

endElement, 70 
error, 70 
startElement, 70 

event handler interface 
example-formatted print handler, 71 
example-XML converter class, 73 
how it works, 70 
how to use it, 71 

events command line option, 5 
Expand Dynamic Encode Buffer 

(xe_expandBuffer), 174 
Expand Encode Buffer (pe_ExpandBuffer), 226 
export of types, 75 
Extended Markup Language, 9 
extension elements in SEQUENCE type 

definition, 28 
External Type type definition, 37 
field 

fixed type, 39 
variable type, 39 

file, platform.mk, 8 
FindElement run-time method, 93 
fixed type field, 39 
Format Error Message (xu_fmtErrMsg), 206 
formatted printing functions, run-time common 

library 
rtBitStrToString - Convert ASN.1 Bit String 

Value to String, 260 
rtBoolToString - Convert ASN.1 Boolean 

Value to String, 259 
rtIntToString - Convert ASN.1 Integer Value 

to String, 259 
rtOctStrToString - Convert ASN.1 Octet 

String Value to String, 261 
rtOIDStrToString - Convert ASN.1 Object 

Identifier Value to String, 261 



ASN1C V5.3  297 

rtPrint<type> - Print ASN.1 Values to 
Standard Output, 263 

rtTagStrToString - Convert ASN.1 Tag to 
String, 262 

rtUIntToString - Convert ASN.1 Unsigned 
Integer Value to String, 260 

Free Dynamic Memory (xu_freeall), 202 
Free Encoder Dynamic Memory (xe_free), 174 
Free Error Parameter Memory 

(rtErrFreeParams), 257 
function, encode/decode prototypes, 41, 42 
generated BER decode function 

decoding a series of messages using C++ 
control class interface, 55 

generated C function format and calling 
parameters, 52 

generated C++ decode method format and 
calling parameters, 52 

performance consideration of dynamic 
memory management, 57 

procedure for calling C decode functions, 53 
procedure for using C++ control class decode 

method, 54 
generated BER encode function 

encoding a series of messages using C++ 
control class interface, 50 

generated C function format and calling 
parameters, 44 

generated C++ encode method format and 
calling parameters, 44 

populating generated structure variables for 
encoding, 45 

procedure for calling C encode functions, 46 
procedure for using C++ control class encode 

method, 48 
generated C function format 

BER decode method, 52 
BER encode method, 44 
PER decode method, 64 
PER encode method, 58 

generated C/C++ source code 
ASN1C90, 76 
event handler interface, 70�74 
generated BER decode functions, 52�57 
generated BER encode functions, 44�51 
generated PER decode functions, 64�68 
generated PER encode functions, 58�63 
generated print methods, 69 
header file, 15�43 
IMPORT/EXPORT of types, 75 
ROSE OPERATION and ERROR, 76�78 
SNMP OBJECT TYPE, 78�79 

generated C++ decode method format 
BER decode method, 52 
PER decode method, 64 

generated C++ encode method format 
BER encode method, 44 
PER encode method, 58 

generated class definition, 42 

generated methods, 43 
generated PER decode function 

generated C function format and calling 
parameters, 64 

generated C++ decode method format and 
calling parameters, 64 

performance consideration of dynamic 
memory management, 68 

procedure for calling C decode functions, 65 
generated PER encode function 

decoding a series of messages using C++ 
control class interface, 67 

encoding a series of messages using C++ 
control class interface, 63 

generated C function format and calling 
parameters, 58 

generated C++ encode method format and 
calling parameters, 58 

populating generated structure variables for 
encoding, 59 

procedure for calling C encode functions, 59 
procedure for using C++ control class encode 

method, 60, 66 
generated print functions, 69 
generated structure variables 

populating for BER encoding, 45 
populating for PER encoding, 59 

Get Count of Bits in Encoded Message 
(pe_GetMsgBitCnt), 210 

Get Encode Buffer Pointer (xe_get), 164 
Get Encoded Message Pointer (pe_GetMsgPtr), 

210 
Get Length of Encoded Message 

(pe_GetMsgLen), 209 
get run-time method, 109, 125 
getByteIndex run-time method, 84 
getBytes run-time method, 112 
getCentury run-time method, 149 
getContext run-time method, 84 
getDay run-time method, 135 
getDiff run-time method, 138 
getDiffHour run-time method, 138 
getDiffMinute run-time method, 138 
getFirst run-time method, 125 
getFraction run-time method, 137 
getHour run-time method, 136 
getLast run-time method, 125 
getMinute run-time method, 136 
getMonth run-time method, 135 
GetMsgBitCnt run-time method, 97 
GetMsgCopy method, 49 
getMsgCopy run-time method, 85 
GetMsgCopy run-time method, 91, 98 
GetMsgLen run-time method, 95 
GetMsgPtr method, 49 
getMsgPtr run-time method, 85 
GetMsgPtr run-time method, 92, 98 
GetPtr run-time method, 81 
getSecond run-time method, 137 



ASN1C V5.3  298 

getTime run-time method, 139 
getUTC run-time method, 139 
getYear run-time method, 135 
global level attributes, 10 
h command line option, 5 
hasNext run-time method, 130 
hasPrev run-time method, 130 
header file, 5 

differences between C and C++ versions, 16 
sample from a C header file, 15 
sample from a C++ header file, 16 

hexadecimal string value specification, 40 
HexDump run-time method, 90, 95 
hyphens. See special characters, invalid 
I command line option, 6 
import of types, 75 
indexOf run-time method, 124 
information objects type definition, 38 
Init run-time method, 86, 92, 98 
Initialize a Doubly Linked List Structure 

(rtDListInit), 265 
Initialize a Singly Linked List Structure 

(rtSListInit), 269 
Initialize a Stack Structure (rtStackInit), 271 
Initialize Context Buffer (pu_initContextBuffer), 

245 
Initialize Context Buffer with New Structure 

(pu_newContext), 245 
Initialize Context Structure (pu_initContext), 

244 
insert run-time method, 132 
insert run-time method, 122 
integer 

for holding bit number, 18 
size, big integer, 18 

INTEGER type definition, 17 
INTEGER type definition, large integer support, 

17 
INTEGER value specification, 40 
intValue run-time method, 153 
invert run-time method, 108 
isA run-time method, 86 
isBigInteger attribute, 12 
isEmpty run-time method, 110, 127 
isPDU attribute, 12 
isSet run-time method, 110 
iterator run-time method, 127 
iteratorFrom run-time method, 128 
iteratorFromLast run-time method, 128 
ITU X.680 ASN.1 sstandard, 3 
java command line option, 5 
Java package name 

adding a prefix to, 6 
changing, 6 

large integer support type definition, 17 
length run-time method, 111 
library 

BER run-time library, 160�208 
dynamic link, 7 

run time, 6 
run-time common library, 251�74 

linked list functions, run-time common library 
rtDListAppend - Append an Item to a Doubly 

Linked List, 265, 266, 267, 268, 269 
rtDListInit - Initialize a Doubly Linked List 

Structure, 265 
rtSListAppend - Append an Item to a Singly 

Linked List, 270 
rtSListCreate - Create a Singly Linked List 

Structure, 270 
rtSListInit - Initialize a Singly Linked List 

Structure, 269 
rtStackCreate - Create a Stack Structure, 271 
rtStackInit - Initialize a Stack Structure, 271 
rtStackPop - Pop an Element from the Stack, 

272 
rtStackPush - Push an Element onto the Stack, 

272 
linking generated code, 6 
list command line option, 6 
list-based SEQUENCE OF type, generating, 30 
Log Error Information (xu_log_error), 205 
Log Using Callback Function 

(rtErrLogUsingCB), 255 
lowercase letters, when to use, 13 
macro 

ROSE OPERATION, 3, 39 
ROSE OPERATION and ERROR, 76 
SNMP OBJECT TYPE), 78 

Match Tag (xd_match), 180 
memAlloc run-time method, 102 
memFreeAll run-time method, 102 
memory management 

allocating variables on the stack, 45 
use run-time library functions, 46 
using C malloc and free C functions, 46 

memory management functions 
xu_alloc_array - Allocate Elements for an 

Array, 202 
xu_freeall - Free Dynamic Memory, 202 
xu_malloc - Allocate Dynamic Memory, 201 

memory management functions, run-time 
common library 
rtMemAlloc - Allocate Dynamic Memory, 253 
rtMemFree - Release Dynamic Memory, 253 

memory management, dynamic 
performance considerations in generated BER 

decode functions, 57 
performance considerations in generated PER 

decode functions, 68 
message buffer argument, 42 
messages 

BER encoded, diagram, 46 
repetitive BER encoding, 50 
repetitive PER encoding, 63 

method 
contents, 70 
generated, 43 



ASN1C V5.3  299 

GetMsgCopy, 49 
getMsgPtr, 49 

module level attributes, 10 
module, specification, 9 
Move to Next Element (xd_NextElement), 195 
name attribute, 10, 12 
named bit constants, 20 
Named Bits BIT STRING type definition, 20 
next run-time method, 131 
nodecode command line option, 5 
noencode command line option, 5 
noIndefLen command line option, 5 
noPDU attribute, 11 
NULL type definition, 23 
nullValue run-time method, 156 
o command line option, 6 
object identifier helper functions, run-time 

common library 
rtPrintOID - Print Object Identifier Structure, 

264 
rtSetOID - Populate Object Identifier 

Structure, 264 
OBJECT IDENTIFIER type definition, 23 
object identifier value specification, 41 
OCTET STRING type definition 

Dynamic, 21 
Static (sized), 22 

octet, for holding bit string contents, 18 
octStrValue run-time method, 155, 158 
oidValue run-time method, 156 
Open Type type definition, 35 
openTypeValue run-time method, 158 
operator ASN1TDynBitStr run-time method, 119 
operator[] run-time method, 126 
operator< run-time method, 147 
operator<= run-time method, 147 
operator= run-time method, 146 
operator== run-time method, 147 
operator> run-time method, 147 
operator>= run-time method, 147 
OPTIONAL keyword in SEQUENCE type 

definition, 27 
options, decommissioned, 6 
output formatting functions 

xu_dump - Dump Encoded ASN.1 Message, 
203 

xu_fdump - Dump Encoded ASN.1 Message 
to a Text File, 204 

xu_hexdump - Dump Binary Data, 204 
Output Trace Messages (rtdiag), 254 
Packed Encoding Rules, 1, 5, 95, 209 
parameterized type definition, 37 
parse errors, finding by generating a listing, 6 
parseString run-time method, 145 
ParseTagLen run-time method, 94 
parsing process 

diagram of significant events, 70 
events passed to user, 70 

pd_16BitConstrainedString - Decode 16-bit 
Character String, 239 

pd_32BitConstrainedString - Decode 32-bit 
Character String, 241 

pd_BigInteger - Decode a Big Integer, 233 
pd_bit - Decode a Single Bit Value, 228 
pd_bits - Decode Bit Values, 229 
pd_BitString - Decode a Bit String, 234 
pd_BMPString - Decode BMP Character String, 

240 
pd_byte_align - Align Buffer on a Byte 

Boundary, 229 
pd_ConsInteger - Decode a Constrained Integer, 

231 
pd_ConstrainedString - Decode 8-bit Character 

String, 238 
pd_ConsUnsigned - Decode a Constrained 

Unsigned Integer, 232 
pd_ConsWholeNumber - Decode a Constrained 

Whole Number, 230 
pd_DynBitString - Decode a Dynamic Bit 

String, 235 
pd_DynOctetString - Decode a Dynamic Octet 

String, 236 
pd_Length - Decode a Length Determinant, 231 
pd_ObjectIdentifier - Decode Object Identifier, 

237 
pd_OctetString - Decode an Octet String, 235 
pd_OpenType - Decode Open Type, 242 
pd_OpenTypeExt - Decode Open Type 

Extension, 242 
pd_Real - Decode Real, 237 
pd_SmallNonNegWholeNumber - Decode a 

Small Non-negative Whole Number, 230 
pd_UnconsInteger - Decode an Unconstrained 

Integer, 232 
pd_UnconsUnsigned - Decode an Unconstrained 

Unsigned Integer, 233 
pd_UniversalString - Decode 32-bit Character 

String, 241 
pe_16BitConstrainedString - Encode 16-bit 

Character String, 222 
pe_2sCompBinInt - Encode a Two's 

Complement Binary Integer, 213 
pe_32BitConstrainedString - Encode 32-bit 

Character String, 223 
pe_BigInteger - Encode Big Integer, 218 
pe_bit - Encode a Single Bit Value, 211 
pe_bits - Encode Bit Values, 211 
pe_BitString - Encode a Bit String, 218 
pe_BMPString - Encode BMP Character String, 

223 
pe_byte_align - Align Encode Buffer on a Byte 

Boundary, 212 
pe_CheckBuffer - Check Encode Buffer Size, 

226 
pe_ConsInteger - Encode a Constrained Integer, 

215 



ASN1C V5.3  300 

pe_ConstrainedString - Encode 8-bit Character 
String, 220 

pe_ConsUnsigned - Encode a Constrained 
Unsigned Integer, 217 

pe_ConsWholeNumber - Encode a Constrained 
Whole Number, 214 

pe_ExpandBuffer - Expand Encode Buffer, 226 
pe_GetMsgBitCnt - Get Count of Bits in 

Encoded Message, 210 
pe_GetMsgLen - Get Length of Encoded 

Message, 209 
pe_GetMsgPtr - Get Encoded Message Pointer, 

210 
pe_Length - Encode a Length Determinant, 215 
pe_NonNegBinInt - Encode a Non-negative 

Binary Integer, 213 
pe_ObjectIdentifier - Encode Object Identifier, 

220 
pe_octets - Encode Octets, 212 
pe_OctetString - Encode an Octet String, 219 
pe_OpenType - Encode Open Type, 225 
pe_OpenTypeExt - Encode Open Type 

Extension, 225 
pe_Real - Encode Real, 219 
pe_SmallNonNegWholeNumber - Encode a 

Small Non-negative Whole Number, 214 
pe_UnconsInteger - Encode an Unconstrained 

Integer, 216 
pe_UnconsUnsigned - Encode an Unconstrained 

Unsigned Integer, 217 
pe_UniversalString - Encode 32-bit Character 

String, 224 
PER C decode functions 

ASN.1 8-bit Character String Decode 
Function, 238 

pd_16BitConstrainedString - Decode 16-bit 
Character String, 239 

pd_32BitConstrainedString - Decode 32-bit 
Character String, 241 

pd_BigInteger - Decode a Big Integer, 233 
pd_bit - Decode a Single Bit Value, 228 
pd_bits - Decode Bit Values, 229 
pd_BitString - Decode a Bit String, 234 
pd_BMPString - Decode BMP Character 

String, 240 
pd_byte_align - Align Buffer on a Byte 

Boundary, 229 
pd_ConsInteger - Decode a Constrained 

Integer, 231 
pd_ConstrainedString - Decode 8-bit 

Character String, 238 
pd_ConsUnsigned - Decode a Constrained 

Unsigned Integer, 232 
pd_ConsWholeNumber - Decode a 

Constrained Whole Number, 230 
pd_DynBitString - Decode a Dynamic Bit 

String, 235 
pd_DynOctetString - Decode a Dynamic Octet 

String, 236 

pd_Length - Decode a Length Determinant, 
231 

pd_ObjectIdentifier - Decode Object 
Identifier, 237 

pd_OctetString - Decode an Octet String, 235 
pd_OpenType - Decode Open Type, 242 
pd_OpenTypeExt - Decode Open Type 

Extension, 242 
pd_Real - Decode Real, 237 
pd_SmallNonNegWholeNumber - Decode a 

Small Non-negative Whole Number, 230 
pd_UnconsInteger - Decode an Unconstrained 

Integer, 232 
pd_UnconsUnsigned - Decode an 

Unconstrained Unsigned Integer, 233 
pd_UniversalString - Decode 32-bit Character 

String, 241 
PER C encode functions 

ASN.1 8-bit Character String Encode 
Function, 221 

pe_16BitConstrainedString - Encode 16-bit 
Character String, 222 

pe_2sCompBinInt - Encode a Two's 
Complement Binary Integer, 213 

pe_32BitConstrainedString - Encode 32-bit 
Character String, 223 

pe_BigInteger - Encode Big Integer, 218 
pe_bit - Encode a Single Bit Value, 211 
pe_bits - Encode Bit Values, 211 
pe_BitString - Encode a Bit String, 218 
pe_BMPString - Encode BMP Character 

String, 223 
pe_byte_align - Align Encode Buffer on a 

Byte Boundary, 212 
pe_CheckBuffer - Check Encode Buffer Size, 

226 
pe_ConsInteger - Encode a Constrained 

Integer, 215 
pe_ConstrainedString - Encode 8-bit 

Character String, 220 
pe_ConsUnsigned - Encode a Constrained 

Unsigned Integer, 217 
pe_ConsWholeNumber - Encode a 

Constrained Whole Number, 214 
pe_ExpandBuffer - Expand Encode Buffer, 

226 
pe_GetMsgBitCnt - Get Count of Bits in 

Encoded Message, 210 
pe_GetMsgLen - Get Length of Encoded 

Message, 209 
pe_GetMsgPtr - Get Encoded Message 

Pointer, 210 
pe_Length - Encode a Length Determinant, 

215 
pe_NonNegBinInt - Encode a Non-negative 

Binary Integer, 213 
pe_ObjectIdentifier - Encode Object Identifier, 

220 
pe_octets - Encode Octets, 212 



ASN1C V5.3  301 

pe_OctetString - Encode an Octet String, 219 
pe_OpenType - Encode Open Type, 225 
pe_OpenTypeExt - Encode Open Type 

Extension, 225 
pe_Real - Encode Real, 219 
pe_SmallNonNegWholeNumber - Encode a 

Small Non-negative Whole Number, 214 
pe_UnconsInteger - Encode an Unconstrained 

Integer, 216 
pe_UnconsUnsigned - Encode an 

Unconstrained Unsigned Integer, 217 
pe_UniversalString - Encode 32-bit Character 

String, 224 
PER C utility functions 

pu_addSizeConstraint - Add Size Constraint, 
246 

pu_bindump - Dump Binary Data, 249 
pu_freeContext - Release All Dynamic 

Memory, 246 
pu_hexdump - Dump Hexadecimal Data, 249 
pu_initContext - Initialize Context Structure, 

244 
pu_initContextBuffer - Initialize Context 

Buffer, 245 
pu_newContext - Initialize Context Buffer 

with New Structure, 245 
pu_set16BitCharSet - Set 16-bit Character Set, 

248 
pu_set32BitCharSet - Set 32-bit Character Set, 

248 
pu_setCharSet - Set Character Set, 247 

per command line option, 5 
PER encode function 

format of generated prototype, 42 
procedure for calling in C, 59 

PER run-time library, 208�51 
PER run-time library functions 

PER C decode functions, 228�43 
PER C encode functions, 209�27 
PER C utility functions, 244�51 

pkgname command line option, 6 
pkgpfx command line option, 6 
platform.mk, editing, 8 
Pop an Element from the Stack (rtStackPop), 272 
Populate Object Identifier Structure (rtSetOID), 

264 
populating generated structure variables 

for BER encoding, 45 
for PER encoding, 59 

Porting Run-time Code to Other Platforms, 7�8 
prefix 

%ASN, 13 
adding to a Java package name, 6 
ASN1C_, 16 
ASN1D_, 42 
ASN1E_, 42 
ASN1T_, 17, 33 
ASN1V_, 40 
enumPrefix, 11, 12, 23 

for BER/DER decode functions, 197 
for big integers, 167, 183, 218, 234 
for error code constants, 161 
for generated BER decode function, 52 
for generated BER encode function, 44 
for generated C/C++ source code, 69 
for generated PER decode function, 64 
for generated PER encode function, 58 
for PER encode, decode, and utility functions, 

209 
for PER generated prototypes, 42 
for PER prototypes, 16 
for run-time common library functions, 251 
for Tag Mask, 162 
for Tag Value, 162 
for universal ASN.1 IDs, 162 
type (for attirubtes specified in more than one 

section, 9 
typePrefix, 11, 12 
valuePrefix, 11 

prev run-time method, 131 
Print ASN.1 Values to Standard Output 

rtPrint16BitCharStr, 263 
rtPrint32BitCharStr, 263 
rtPrintBitStr, 263 
rtPrintBoolean, 263 
rtPrintCharStr, 263 
rtPrintInteger, 263 
rtPrintOctStr, 263 
rtPrintOID, 263 
rtPrintOpenType, 263 
rtPrintReal, 263 
rtPrintUnsigned, 263 

Print ASN.1 Values to Standard Output 
(rtPrint<type>), 263 

print command line option, 5 
Print Error Information (rtErrPrint), 255 
Print Error Information (xu_perror), 205 
print functions 

generated, 69 
source file for, 5 

print functions, diagnostic 
pu_bindump - Dump Binary Data, 249 
pu_hexdump - Dump Hexadecimal Data, 249 

print functions, run-time common library 
rtBitStrToString - Convert ASN.1 Bit String 

Value to String, 260 
rtBoolToString - Convert ASN.1 Boolean 

Value to String, 259 
rtErrAdd<type>Param - Add Typed Error 

Parameters to Error Information, 257 
rtErrFreeParams - Free Error Parameter 

Memory, 257 
rtErrLogUsingCB - Log Using Callback 

Function, 255 
rtErrPrint - Print Error Information, 255 
rtErrSetData - Set Error Information, 256 
rtIntToString - Convert ASN.1 Integer Value 

to String, 259 



ASN1C V5.3  302 

rtOctStrToString - Convert ASN.1 Octet 
String Value to String, 261 

rtOIDStrToString - Convert ASN.1 Object 
Identifier Value to String, 261 

rtPrint<type> - Print ASN.1 Values to 
Standard Output, 263 

rtTagStrToString - Convert ASN.1 Tag to 
String, 262 

rtUIntToString - Convert ASN.1 Unsigned 
Integer Value to String, 260 

Print Object Identifier Structure (rtPrintOID), 
264 

PrintErrorInfo run-time method, 82, 87 
production level attributes, 11 
production, specification, 9 
pu_addSizeConstraint - Add Size Constraint, 246 
pu_bindump - Dump Binary Data, 249 
pu_freeContext - Release All Dynamic Memory, 

246 
pu_hexdump - Dump Hexadecimal Data, 249 
pu_initContext - Initialize Context Structure, 244 
pu_initContextBuffer - Initialize Context Buffer, 

245 
pu_newContext - Initialize Context Buffer with 

New Structure, 245 
pu_set16BitCharSet - Set 16-bit Character Set, 

248 
pu_set32BitCharSet - Set 32-bit Character Set, 

248 
pu_setCharSet - Set Character Set, 247 
Push an Element onto the Stack (rtStackPush), 

272 
Read Contents from File (xdf_ReadContents), 

199 
Read Past End-of-Context (xdf_ReadPastEOC), 

199 
REAL type definition, 24 
realValue run-time method, 157 
Release All Dynamic Memory (pu_freeContext 

), 246 
Release Dynamic Memory (rtMemFree), 253 
Remote Operations Service Element (ROSE), 76 
remove run-time method, 131 
remove run-time method, 122 
removeFirst run-time method, 123 
removeLast run-time method, 123 
ROSE 

decode process, 77 
encode process, 77 
ERROR MACRO, 78 

ROSE OPERATION and ERROR, 76 
ROSE OPERATION macro, 3, 39 
rtBigIntCopy, 285 
rtBigIntDigitsNum, 283 
rtBigIntFastCopy, 286 
rtBigIntInit, 280 
rtBigIntToString, 284 
rtBitStrToString - Convert ASN.1 Bit String 

Value to String, 260 

rtBMPToCString - Convert BMP to C String, 
273 

rtBMPToNewCString - Convert BMP to New C 
String, 274 

rtBoolToString - Convert ASN.1 Boolean Value 
to String, 259 

rtCompareBigInt, 285 
rtCToBMPString - Convert C to 16-Bit BMP 

String, 273 
rtCToUCSString - Convert C to 32-Bit String, 

274 
rtdiag - Output Trace Messages, 254 
rtDListAppend - Append an Item to a Doubly 

Linked List, 265, 266, 267, 268, 269 
rtDListInit - Initialize a Doubly Linked List 

Structure, 265 
rtErrAdd<type>Param - Add Typed Error 

Parameters to Error Information, 257 
rtErrFreeParams - Free Error Parameter 

Memory, 257 
rtErrLogUsingCB - Log Using Callback 

Function, 255 
rtErrPrint - Print Error Information, 255 
rtErrSetData - Set Error Information, 256 
rtGetBigInt, 282 
rtGetBigIntLen, 282 
rtIntToString - Convert ASN.1 Integer Value to 

String, 259 
rtMemAlloc - Allocate Dynamic Memory, 253 
rtMemFree - Release Dynamic Memory, 253 
rtOctStrToString - Convert ASN.1 Octet String 

Value to String, 261 
rtOIDStrToString - Convert ASN.1 Object 

Identifier Value to String, 261 
rtPrint<type> - Print ASN.1 Values to Standard 

Output, 263 
rtPrint16BitCharStr, 263 
rtPrint32BitCharStr, 263 
rtPrintBigInt, 284 
rtPrintBitStr, 263 
rtPrintBoolean, 263 
rtPrintCharStr, 263 
rtPrintInteger, 263 
rtPrintOctStr, 263 
rtPrintOID, 263 
rtPrintOID - Print Object Identifier Structure, 

264 
rtPrintOpenType, 263 
rtPrintReal, 263 
rtPrintUnsigned, 263 
rtSetBytesToBigInt, 281 
rtSetDiag - Set Diagnostic Tracing, 254 
rtSetInt64ToBigInt, 281 
rtSetOID - Populate Object Identifier Structure, 

264 
rtSetStrToBigInt, 280 
rtSListAppend - Append an Item to a Singly 

Linked List, 270 



ASN1C V5.3  303 

rtSListCreate - Create a Singly Linked List 
Structure, 270 

rtSListInit - Initialize a Singly Linked List 
Structure, 269 

rtStackCreate - Create a Stack Structure, 271 
rtStackInit - Initialize a Stack Structure, 271 
rtStackPop - Pop an Element from the Stack, 272 
rtStackPush - Push an Element onto the Stack, 

272 
rtTagStrToString - Convert ASN.1 Tag to String, 

262 
rtUCSToCString - Convert 32-bit String to C 

String, 275 
rtUCSToNewCString - Convert 32-bit String to 

New C String, 276 
rtUCSToWCSString - Convert a 32-bits 

Encoded String to a Wide Character String, 
276 

rtUIntToString - Convert ASN.1 Unsigned 
Integer Value to String, 260 

rtUTF8ToWCS - Convert a UTF-8 Encoded 
String to a Wide Character String, 278 

rtValidateUTF8 - Validate UTF-8 Encoded 
String, 278 

rtWCSToUCSString - Convert Wide Character 
String to 32-bits Encoded String, 277 

rtWCSToUTF8 - Convert Wide Character String 
to UTF-8 Encoded String, 277 

rules 
Basic Encoding Rules, 1, 5, 89, 91, 161 
Distinguished Encoding Rules, 5 
Packed Encoding Rules, 5, 95, 209 

run-time class reference, ASN.1 C++, 75�160 
run-time classes 

ASN1BERDecodeBuffer class, 93 
ASN1BEREncodeBuffer class, 91 
ASN1BERMessageBuffer class, 89 
ASN1CBitStr class, 104 
ASN1CGeneralizedTime class, 148 
ASN1Context class, 81 
ASN1CSeqOfList class, 121 
ASN1CSeqOfListIterator class, 130 
ASN1CTime class, 134 
ASN1CType class, 101 
ASN1CUTCTime class, 150 
ASN1ErrorHandler class, 160 
ASN1MessageBuffer class, 83 
ASN1NamedEventHandler class, 152 
ASN1PERDecodeBuffer class, 100 
ASN1PEREncodeBuffer class, 97 
ASN1PERMessageBuffer class, 95 

run-time code, porting to other platforms, 7�8 
run-time common library functions 

character string conversion functions, 273�74 
diagnostic trace functions, 254�55 
error formatting and print functions, 255�

58 
formatted printing functions, 102 
linked list and stack utility functions, 265�73 

memory management functions, 251�54, 
251�54 

object identifier helper  functions, 264 
run-time error reporting functions 

xu_fmtErrMsg - Format Error Message, 206 
xu_log_error - Log Error Information, 205 
xu_perror - Print Error Information, 205 

run-time library functions, BER, 160�208 
run-time library, ASN.1, 6 
SAX, 70 
semantic errors, 13 
SEQUENCE OF type definition 

basic mapping, 29 
dynamic, 30 
generating temporary types, 31 
list-based SEQUENCE OF type, 30 
other constructed types, 31 
static (sized), 30 

SEQUENCE type definition 
basic mapping, 24 
DEFAULT keyword, 28 
extension elements, 28 
OPTIONAL keyword, 27 
unnamed elements, 27 

Set 16-bit Character Set (pu_set16BitCharSet ), 
248 

Set 32-bit Character Set (pu_set32BitCharSet ), 
248 

Set Character Set (pu_setCharSet), 247 
Set Decode Buffer Pointer (xd_setp), 178 
Set Diagnostic Tracing (rtSetDiag), 254 
Set Encode Buffer Pointer (xe_set), 163 
Set Error Information (rtErrSetData), 256 
SET OF type definition, 32 
set run-time method, 132 
set run-time method, 107, 126 
SET type definition, 29 
setCentury run-time method, 149 
setDay run-time method, 141 
setDiff run-time method, 143, 144 
setDiffHour run-time method, 143 
setErrorHandler run-time method, 87 
setFraction run-time method, 142 
setHour run-time method, 141 
setMinute run-time method, 142 
setMonth run-time method, 140 
setSecond run-time method, 142 
setTime run-time method, 145 
SetTrace run-time method, 96 
setUTC run-time method, 144 
setYear run-time method, 140, 151 
shiftLeft run-time method, 118 
shiftRight run-time method, 118 
size run-time method, 111, 127 
sizing constants, asn1type.h include file, 162 
SNMP OBJECT TYPE macro, 78 
source code, ANSI standard, 7 
source file 

for encode/decode functions, 5 



ASN1C V5.3  304 

for generated print functions, 5 
sourceFile attribute, 11 
special characters, invalid, 13 
specification 

attribute in more thanone section, 9 
module, 9 
production, 9 

stack utility functions, run-time common library 
rtDListAppend - Append an Item to a Doubly 

Linked List, 265, 266, 267, 268, 269 
rtDListInit - Initialize a Doubly Linked List 

Structure, 265 
rtSLisAppend - Append an Item to a Singly 

Linked List, 270 
rtSListCreate - Create a Singly Linked List 

Structure, 270 
rtSListInit - Initialize a Singly Linked List 

Structure, 269 
rtStackCreate - Create a Stack Structure, 271 
rtStackInit - Initialize a Stack Structure, 271 
rtStackPop - Pop an Element from the Stack, 

272 
rtStackPush - Push an Element onto the Stack, 

272 
standard, ITU X 680, 3 
startElement event, 70 
startElement run-time method, 152 
Static (sized) BIT STRING type definition, 19 
Static (sized) OCTET STRING type definition, 

22 
static (sized) SEQUENCE OF type definition, 30 
static encode buffer 

for BER encoding, 46, 48, 49 
for PER encoding, 62 

storage attribute, 10, 12 
syntax errors, 13 
syntax, resulting in limited or no C/C++ code, 

289 
tagging value and mask constants, asn1type.h 

include file, 161 
temporary types, generating for SEQUENCE OF 

type definition, 31 
Time String types type definition, 36 
trace command line option, 5 
tree, directory, 8 
type definition 

bit string, 18 
boolean, 17 
C Mapping, 22 
C++ Mapping, 23 
Character String types, 35 
CHOICE, 32 
DEFAULT keyword in SEQUENCE, 28 
Dynamic BIT STRING, 18 
Dynamic OCTET STRING, 21 
Dynamic SEQUENCE OF, 30 
ENUMERATED, 22 
extension elements in SEQUENCE, 28 
External Type, 37 

generating list-based SEQUENCE OF type, 30 
generating temporary types for SEQUENCE 

OF, 31 
information objects, 38 
INTEGER, 17 
Named Bits, 20 
NULL, 23 
OBJECT IDENTIFIER, 23 
octet string, 21 
Open Type, 35 
OPTIONAL keyword in SEQUENCE, 27 
parameterized types, 37 
populating generated choice structure, 34 
REAL, 24 
SEQUENCE, 24�29 
SEQUENCE OF, 29�32 
SEQUENCE OF type elements in other 

constructed types, 31 
SET, 29 
SET OF, 32 
Static (sized) BIT STRING, 19 
Static (sized) OCTET STRING, 22 
Static (sized) SEQUENCE OF, 30 
Time String types, 36 
unnamed elements in SEQUENCE, 27 
value specifications, 40�41 

typePrefix attribute, 11, 12 
types, import and export, 75 
uIntValue run-time method, 154 
unnamed elements in SEQUENCE type 

definition, 27 
unusedBitsInLastUnit  run-time method, 119 
uppercase letters, when to use, 13 
UTF-8 encoded string 

converting to WCS, 278 
validating, 278 

UTF-8 string data, 36 
utility functions, BER/DER C 

memory management functions, 201 
output formatting functions, 203 
run-time error reporting functions, 205 

utility functions, PER C 
constraint specification functions, 246 
diagnostic printing functions, 249 
encode/decode context initialization, 244 

v51 command line option, 6 
Validate UTF-8 Encoded String 

(rtValidateUTF8), 278 
value specification 

binary string, 40 
BOOLEAN, 40 
character string, 41 
hexadecimal string, 40 
INTEGER, 40 
object identifier, 41 
type definition, 40�41 

valuePrefix attribute, 11 
variable type field, 39 
version 5.1 compatible code, generating, 6 



ASN1C V5.3  305 

warnings command line option, 6 
warnings, output information, 6 
wide character string, converting to 32-bits 

Encoded String, 277 
wide character string, converting to UTF-8, 277 
xd_16BitCharStr - Decode 16-Bit Character 

String, 188 
xd_32BitCharStr - Decode 32-Bit Character 

String, 188 
xd_bigint - Decode Big Integer, 183 
xd_bitstr - Decode BIT STRING, 184 
xd_bitstr_s - Decode BIT STRING (static), 184 
xd_boolean - Decode BOOLEAN, 181 
xd_charstr - Decode Character String, 187 
xd_chkend - Check for End of Context, 193 
xd_count - Count Message Components, 194 
xd_enum - Decode ENUMERATED, 189 
xd_indeflen - Calculate Indefinite Length, 196 
xd_integer - Decode INTEGER, 181 
xd_match - Match Tag, 180 
xd_memcpy - Copy Decoded Contents, 194 
xd_NextElement - Move to Next Element, 195 
xd_null - Decode NULL, 190 
xd_objid - Decode OBJECT IDENTIFIER, 190 
xd_octstr - Decode OCTET STRING, 185 
xd_octstr_s - Decode OCTET STRING (static), 

186 
xd_OpenType - Decode Open Type, 192 
xd_OpenTypeExt - Decode Open Type 

Extension, 193 
xd_real - Decode REAL, 191 
xd_setp - Set Decode Buffer Pointer, 178 
xd_tag_len - Decode Tag and Length, 179 
xd_unsigned - Decode Unsigned INTEGER, 182 
xdf_len - Decode Length from File, 197 
xdf_ReadContents - Read Contents from File, 

199 
xdf_ReadPastEOC - Read Past End-of-Context, 

199 
xdf_tag - Decode Tag from File, 197 

xdf_TagAndLen - Decode Tag and Length from 
File, 198 

xe_16BitCharStr - Encode 16-Bit Character 
String, 169 

xe_32BitCharStr - Encode 32-Bit Character 
String, 170 

xe_bigint - Encode Big Integer, 167 
xe_bitstr - Encode BIT STRING, 167 
xe_boolean - Encode BOOLEAN, 165 
xe_charstr - Encode Character String, 169 
xe_derCanonicalSort - DER Canonical Sort, 176 
xe_enum - Encode ENUMERATED, 171 
xe_expandBuffer - Expand Dynamic Encode 

Buffer, 174 
xe_free - Free Encoder Dynamic Memory, 174 
xe_get - Get Encode Buffer Pointer, 164 
xe_integer - Encode INTEGER, 165 
xe_len - Copy Bytes to Encode Buffer, 175 
xe_memcpy - Copy Bytes to Encode Buffer, 175 
xe_null - Encode NULL, 171 
xe_objid - Encode OBJECT IDENTIFIER, 172 
xe_octstr - Encode OCTET STRING, 168 
xe_OpenType - Encode Open Type, 173 
xe_real - Encode Real, 172 
xe_set - Set Encode Buffer Pointer, 163 
xe_tag_len - Encode Tag and Length, 164 
xe_TagAndIndefLen - Encode Tag and 

Indefinite Length, 177 
xe_unsigned - Encode Unsigned INTEGER, 166 
xu_alloc_array - Allocate Elements for an Array, 

202 
xu_dump - Dump Encoded ASN.1 Message, 203 
xu_fdump - Dump Encoded ASN.1 Message to a 

Text File, 204 
xu_fmtErrMsg - Format Error Message, 206 
xu_freeall - Free Dynamic Memory, 202 
xu_hexdump - Dump Binary Data, 204 
xu_log_error - Log Error Information, 205 
xu_malloc - Allocate Dynamic Memory, 201 
xu_perror - Print Error Information, 205 

 


