ASNIC

ASN.1 Compiler
Version 5.3
C/C++ User’s Manual

Objective Systems, Inc. version 5.3 February 2002

The software described in this document is furnished under a license agreement and may be used only in accordance
with the terms of this agreement.

Copyright Notice

Copyright © 1997-2002 Objective Systems, Inc.

All Rights Reserved

This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety and
that the copyright and this notice are included.

Author’s Contact Information:

Comments, suggestions, and inquiries regarding ASN1C may be submitted via electronic mail to info@obj-sys.com.

CHANGE HISTORY

Date Author Version Description
11/06/2001 ED 53 Initial version
05/01/2002 ED 5.32 Updated sections on calling C BER/DER encode/decode

functions to specify use of rtInitContext.

TABLE OF CONTENTS

OVERVIEW OF ASN1C 1
USING THE COMPILER 3
RUNNING the COMPILET ...ttt ettt sttt et s et e e et e e bt eteebees e eaeene et easeeseebeeseeseeneansenseaeeabeeseeneeneansenes 3
Compiling and Linking Generated COdecoouiiiiiiiiiiiieiiee ettt ettt ettt ettt eatesbeesbeenaeas 6
Porting Run-time Code to Other PLatfOrms...........coiiiiiiiiiiiicit ettt st beesbeesseesaessaenees 7
Compiler ConfiguIation File..........cciiiiiiieiieiieie ettt ettt et e s e e s te e be e beessessbesseesseesseenseessenssenssenseenses 9
ComPiler ErTOr REPOTTINGccvieiieeieiiieitieieeie ettt et ettt et et e et e e saeseaesseesseessesssesssesseesseesseasseassesssesseesesnsesnsenses 13
GENERATED C/C++ SOURCE CODE 15
HEAACT (1) FILE ..ttt ettt et ettt et e et e e tb e et e et e e beessesssessaesseesseesseenseesseessesssesseesseensennsensns 15
BOOLEAN ...ttt et h et ettt et s bbbt bt bt e st et e et bt e bt bt e bt e bbb et et et et beebe bt et e nee 17
INTEGER ..ottt ettt h e s bbbt e a et e e e bt sb e bt e bt eb b et et e besb e e bt ebeebe et enaenee 17
BIT STRING.ccteittetieteetiettetete sttt ettt ettt et et et e teeteeseesteseeseass e sa s e seese et e eseansensansansesseeseeneensensanseseessaseeneensensansenns 18
DA TS B3 SRS PRS 19
ASNICBItSEr CONLIOI CIASS.eeuieitieitiestteit ettt ettt et e sttt et eate e st et e e st enteeneeeseesseenseenseeneesneesseenseeneeans 20
OCTET STRING ...ttt ettt et e et ekt s bt et e eaees e eaeen e et e eseebeeaeebeemeenten s et en s e s eseabeeaeeneeneeneenseneas 21
ENUMERATED ...ttt ettt ettt a ettt e et ekt s aeeb e e st en e em e e e e beeb e et e ebees s e s enbeebeeeeeneeneeneensaneenes 22
2101 5 OO 23
OBJECT IDENTIFIER ...ttt ettt ettt s h bt h et e e bbbt sbeebe e st enneneenten 23
REAL ettt h bt e a ettt b ekt h e e bt h e st et e bkt e bt bt e b e bt eh b et et et et bt eae bt et et enee 24
SEQUENC E ...ttt ettt h e bbbt b et e b et e s bt e bt e bt eh e e st en b en b e nb e e bt e aees b et enbenbesbeebeeneenseneentes 24
DEFAULT KEYWOTAieuiieiiieieiieciieeieesit ettt e ettesttet e eteeetesstessaesseesseessesssesssesseanseenseenseassesssesseensesnsesnsesnsesseenseensenns 28
EXtenSion ELIBIMENTS.cc.oiiiiiiiiiiiiirieict ettt ettt sb e bbbt ettt bbbttt 28
SE T ettt ettt b bbbt e et bbbt bt e h e st e bbbt bt he bt et et bbbt e bt et et enten 29
SEQUENCE OF ..ottt ettt ettt et ettt te s et et e e st ess e s e et e et e eseeseeseansensesseeseeseaseensansassensansessesseeseensensensansan 29
Static (sized) SEQUENCE OF TYPE....cuetiiiiieiieiieieetiesteeste et et ete st ste et e e eete et e saeesse e teenseeneesseeaseenseeseeneeeneennes 30
List-based SEQUENCE OF TYPC.....uieiieiiitieiieieeieeieetie sttt ettt steestt e st e et eneeeseesseeseensesnsesseesseesaesneesneesseanseanseans 30
Generation of Temporary Types for SEQUENCE OF EIements........ccccoceiieiienieniiiiiiieieieeesesieeeee e 30
SET OF ettt ettt ettt et e e et ekt e bt et e eh e e st em s e s ek e eheeh e es e ea e e n s et et e Rt et eheenten s et et e bt eheebeeneeneeneentan 32
CHOICE... ettt ettt h e et et e st e s et et e e beee e eb e es e es e eaeen e e b e es e bt eeeeneemeanse s eebe bt eaeeneeneensensentas 32
L0015 1 T Y o TSP S RPN 34
CRArACtEr StIINE TYPES..eeuuieiiiiietieetiertieteeteetesteesteestestesstesseeseesseesseassesseesseasseassesssesssesseesseensesssesssenssessaessesssesssennes 35
TIME SHANE TYPES. . ttetieiieteeteeii et et et et e st e stte st esesteeseesseesseesseassessseseenseansesnsesnsesseenseenseenseanseassenssenseeseenseensennns 36
EXEEINAL TP eutieniieiieieeite ettt ettt e st e bt et et e e st e et e e st enseesseessesaeesseesseenseanseesse s e enseenseassesseeseenseenseensesnsesseaseanseans 36
ParameEteriZEA TYPES .oeveeiieiieieeiecieeiee ettt e et et et et et e e teeste e st esbesssesseessee st anseanseesaeaseensaeseenseenseenseennesneeseenseans 37
INFOTMAtION ODJECLSeneeeieiieiiteie ettt ettt et e et et e eesaee et e e et e et eneees e e s e e seemseseeseenseenaeemeeeneesneanseanseans 38
VAlUE SPECITICATIONSveetietieieeie ettt ettt ettt e et et et e e te st tesa e e bt e et eaeeeatees e e st anseemeeemeeaseeseenseenseemeesneesneenseanseans 39
INTEGER ValUue SPECITICATIONveuiiiieitieiieit ettt ettt sttt e st et et e et e st e st e st e e eneesseesseeaseenaeeneesneesseenseeeeans 39
BOOLEAN Value SPECITICAtIONc..iiiiieiiitietictieieetecteesteeteeteete st e steesbeeseetaeeteeseesseessesssesssesseesseessesssesseesseeseans 40
Binary and Hexadecimal String Value SpecifiCation...........cooiiriiriiiiinieiieieeiestieiceieee sttt 40
Character String Value SPeCTfICAtIONccuiiiiuieieiieieee ettt ettt sttt s st et e et e ste bt eaeeneeneeneensaneas 40
Object Identifier Value SPeCifiCation.........cc.eiiiriieiieiiciestieieet ettt sttt et e eraeereeste e teesseesaessaesseesseesseensennns 40
Encode/Decode FUNCHON PrOtOTYPESccviiiieiieiieiesiieiieteeteste sttt eve st e seeesteebeesseesaessaessaeseessasssesssesssesseesseensenns 41
Generated Class DETINITIONeo.eiuiiuieieiitee ettt ettt b e s bt bbbt st et e s e s et e b sbeebe e st esaensennes 42
GENETALEd METROMAS ...ttt ettt ettt bbbt et et e et et besae bt e bt eaneneennen 43
Generated BER ENcode FUNCHIONS.........ooiiiiiiiiieieieien ettt sttt sttt na s 44
Generated C Function Format and Calling Parameters............ccuevieririierieiienieieeeseee st seete e see e seesseeseeneees 44
Generated C++ Encode Method Format and Calling Parametersccocoeevieiieiiiieiieneeeee e 44
Populating Generated Structure Variables for ENCOAINGc.ooouiiiiiiiiiieiieieeeee et 45
Procedure for Calling C ENcode FUNCIONS.........cueeiiiiiiiieiiee ettt ettt st e e e e ens 46
Procedure for Using the C++ Control Class Encode Methodccocoeiiiiiiiiiniiiie e 48
Encoding a Series of Messages Using the C++ Control Class Interface...........cocoeoeveiirieieieniinere e 50
Generated BER Decode FUNCHIONSc..oouiitiiiiiiiieieiesteen ettt ettt b ettt e e be bt ebe et e e e enees 52
Generated C Function Format and Calling Parameters............ccecveriieeiirieiienienieeie e eeesieesre e esseseaesseesseessessnesnns 52

ASNIC V5.3 i

Generated C++ Decode Method Format and Calling Parametersccceouerereiinieieieieieeese e 52

Procedure for Calling C Decode FUNCHIONS.cciiuieuiiieieieiese ettt ettt se e bt e e e e 53
Procedure for Using the C++ Control Class Decode Methodcccoecvieiiiiiniinieiieiececieeee e 54
Decoding a Series of Messages Using the C++ Control Class INterfaceccoevvevveviieciercieiienieneeie e 55
Performance Considerations: Dynamic Memory Managementccvecveeveriereerieesueseeseeseesseessessesseessesssenns 57
Generated PER ENcCOde FUNCHIONScc.eouiiiiiiiiiiieiiesieeee ettt sttt ettt et 58
Generated C Function Format and Calling Parameters............ccuevveriieierienienienie e see st saeseaesiee e eseene e 58
Generated C++ Encode Method Format and Calling Parameterscceccveeieriieriirienienieieeie e 58
Populating Generated Structure Variables for ENCOAINGooouiiiiiiiiiieiieieeeeeee et 59
Procedure for Calling C ENcode FUNCIONS.........cuieiiitiiiiieiieie ettt sttt seee e saeeeeens 59
Procedure for Using the C++ Control Class Encode Methodcccoooiiiiiiiiiiiiieeeeeeee e 60
Encoding a Series of PER Messages using the C++ INterfacecccceveeiiiiiiniinienieieenieeeeee e 63
Generated PER DeCode FUNCHIONScouiiiiieieiite ittt ettt ettt sttt s et e e e e e besbeebeeneeneenseeeneas 64
Generated C Function Format and Calling Parameters............ccevieriieiierieiienieieeie e eeesieesreesvesssesssesseesseessessnesnns 64
Generated C++ Decode Method Format and Calling Parameters...........cc.eoververiieniiiiesienieenieeieeeeeeeesieesse e 64
Procedure for Calling C Decode FUNCHIONS.........c.cccuiiiiiieiieiecie ettt te e esaessaesteesseessesssessaesseenseensenns 65
Procedure for Using the C++ Control Class Encode Methodcccooouieiiiiiiiinieiieieeeceeee e 66
Decoding a Series of Messages Using the C++ Control Class INterfaceccoecvevveriiecieniieiienieeee e 67
Performance Considerations: Dynamic Memory Managementcccveeueerueeeerieenieeseeseeseesseesseeseeseesseesseensenns 68
Generated Print FUNCHIONS.ooiiiiiieee ettt ettt e e bttt e et et e et e sse e et emteenteeneeeseesseenseenneeneeenes 69
Event Handler INEITACEoui ettt ettt ettt e st e st e s ae e et et e en e eneesseesneenseenneeneeenes 70
HOW 6 WOTKS ...ttt ettt ettt e st e e h e st e e et e ae e e at e e st e st emteem e e eseeeseeseenseenseeneesneesneenseanseans 70
HOW 10 USE LE ...ttt b e b ettt e a e e a e e e bt e bt em bt e st e eb e e e bt e b e et e emaesaeesbeesbeeteeneeans 71
IMPORT/EXPORT Of TYPS ..t etteuteuieieiteeteet et ettt ettt st ettt et e et et e s ettt ese e st et et e beeseeseeseeneensensanseaseseeeneeneeneensensan 75
AASSINTICO0. ..ttt ettt e e et e st ekt e et et e e st es e a e e e e s e e H e eb e e et eh e e a e e n s et e At eheeheeh £ entent e teete bt eeeeneeneensetennan 76
ROSE OPERATION and ERRORcc.coiiiiiiieteeee ettt sttt sttt 76
SNMP OBIECT-TYPE......oeoeee ettt b ettt ettt b e bt bt e e et et st ebe st e e eneentes 78
ASN.1 C++ RUN-TIME CLASSES 81
ASINTCONIEXL .ttt ettt ettt ettt sttt ettt et e bt e bt e bt et e eat e sbee s bt e sbeemb e e st e eateebbesbaenb e e bt e bt emaesbeesbeenbeenseenneean 81
ASNITCONEXEIASNTCONIEXE c..enteiiiiiiieriteteet ettt ettt st ettt ettt et e bt e st setesbee s bt e bt esaeemeesbeesbeenseenneens 81
ASNICONEXE I~ ASNTCONEEXE ..c.nveiutiiiiiiietietieteet ettt ettt ettt ettt et e eane s e e sbeesbeesnesanesaeesbeenseenneeas 81
ASNITCONIEXEIGEIPI ...ttt ettt st b ettt e s sae e s b e bt e bt esnesanesaeesaeenseenneeas 81
ASNIContext::PrintEIrOrInfOoc.o ittt ettt e ae et e et sne e e e e ens 82
ASNIMESSAZEBUTTET ...ttt ettt et ettt e et e e bt e et eneeesee et e e eseeaneeseenseeneeeneeeneanseanseans 83
ASNI1MessageBuffer::addEventHANdIErc.oooiiiiiiiie et 83
ASNIMessageBuffer:: CStringTOBMPSIIINGooiiiiiiiiieiieiie ettt st st sbee e e e ens 83
ASNIMessageBuffer::@etByteINA@X.coouiiiiiiiieeeeee ettt ettt s sbee e e ea 84
ASNIMesSageBUTET i ZELCONTEXT.eetietiiiieiie ettt ettt ettt et ettt ee e s bt e sbeesbeesaesaeesaeesbeenteenneens 84
ASNIMesSaZeBUTEr: iGEtMSZCOPYeiciieeieiietieieetesteste et etestestee st esseeseeseesseesseesseassesssesseeseessesssesssesseesseensenns 85
ASNIMeSSaZeBUTEI iGEIMSZPLL.cuiiiiiiiciiecieicete ettt ettt et e et e et e etaesse e beesseessessseessesssesssenseensenns 85
ASNIMESSAZEBUTTETIIINIEeeiiiiiciecieccce ettt sttt et e et e et e e te e teesseesseesbessaesseesseesseessesssesseesseensenns 86
ASNIMESSAZEBUTTEIIIISAooeieiieiieieee ettt s e et e bt et e st e sate st enseenseesseasaessaenseenseensesnsesneesseenseanseans 86
ASNI1MessageBuffer::PrintErrorInfoc.ccvoiieiiriiiieieece ettt s ens 87
ASNI1MessageBuffer::SetEIrOrHANAICToouiiiiieiiiie ettt s ens 87
ASNIBERMESSAZEBUITETeiiiiiitiiitieie ettt ettt et ettt e st e et et et e esee e s tesaeebeenaeeneeeneesneanseeneeens 89
ASNIBERMessageBuffer::CalcINdefLencooiiiiiiieieeieciecee ettt e e e ens 89
ASNIBERMessageBuffer::BinDUMP.cc.cociiiiiiiieiieie ettt ettt eae e seeeseeesaeeeesneesneeneeeeeens 89
ASNIBERMessageBuffer::HEXDUMP........cccuoiiiiiiiiiiiiieieeee ettt st sttt et st e e e eas 90
ASNIBERENCOAEBUTTET ..ottt sttt ettt et b e bt e be e bt et st e satesaeenbeenteens 91
ASN1BEREncodeBuffer:: ASN1IBERENCOAEBUTTETcc.oiiiiiiiiieiieeeee e 91
ASNIBERENCOAEBUTTEr: i GEtMSZCOPYevverieiieiiieiieiierieesieeteetesteesteeseesseessesseessaesseessesssesssesseesseessesssesseesseensenns 91
ASNIBERENCOAEBUTTEI:IGEIMSEPLIeicviiiieiieiiiciie sttt sttt ettt te et e e esaessaesteesseesseessesseessaesseensenns 92
ASNIBERENCOAEBUTTET: I INI. c..c.eitiiiiiiiiiceiese ettt sttt ettt st 92
ASNIBERDECOAEBUITET ...ttt ettt b bttt be bttt e e e nen 93
ASN1BERDecodeBuffer:: ASNIBERDECOAEBUTTETc..coiriiniiririiiiiicieiciencecsceeeceeese e 93
ASNIBERDecodeBuffer:: FINAELSMENLcc.ooiuiiiieiiiie ettt ettt st st e e e nneeeeens 93
ASNIBERDecodeBuffer::ParseTaglenccc.ieiuieiieiiiieieee ettt ettt ettt e sneesneeneeeeeens 94

ASNIC V5.3 ii

ASNIPERMESSAZEBULTETcutiiiiiiiieitete ettt b ettt et e a e b et e bt e bt estesatesaeesbeenteenteans 95

ASNIPERMessageBuffer::BInDUIMPcoouiiiiiiiiieieieiece ettt ettt sttt st s esbeenee e ens 95
ASNIPERMessageBuffer::HEXDUMPccocciiiieiieiieiieieeie ettt et este et s teesteesbeesseessessaessaessaesseensessaesseesseensenns 95
ASNIPERMessageBuffer::GetIMSZLEN.ccuiiiieiieiieiieieeie ettt ettt ste et eebeesaessaessaessaesseensesseesseesseensenns 95
ASNIPERMeESSageBUTTEr:iSEtTIACE.ccvieitieiieiieiieeitesie ettt sttt ettt et te et e e e esaessaessaesseesseessesssesseesseensenns 96
ASNIPERENCOAEBULTET ...ttt ettt st ettt et b st sae et ebse e ennen 97
ASNI1PEREncodeBuffer:: ASNIPERENCOAEBUTTETcc.evuiiiiiiiiiiiiiiiicicccceeee e 97
ASNIPERENCOdeBuffer::GEtMSEBItCNLc.eecvieiieiieiieieeie ettt et ettt teesaessaesseesseeseensesseesseeseanseens 97
ASNIPERENCOAeBUTEr::GEtIMSZCOPY ...eevieutieiieiieeiieeiiesieeie et eteette st et et et e et e bt e e emeesseesseesseeaeeneesneesneenseeneeans 98
ASNIPERENCOAEBUTEr::GEtIMSEPIL ...ttt ettt e ettt et e e ae et e eneeseeeneeeeeens 98
ASNIPERENCOAEBUTTEI: :TNIE ...ttt ettt ettt e b e eeeae et e emeesneenseeneeans 98
ASNIPERDECOACBUITETeotiiiiiiiiiiie ettt ettt ettt ettt et sa e s bt e bt e b e e beemteemeeeaee 100
ASNIPERDecodeBuffer:: ASNTIPERDECOAEBUTTETccueiiiiiiiiiiiieiieieec e e 100
ALSIN TCTYPC. ettt ettt ettt b e bbbt ee et e e s b e e bt e bt e bt ee e e st ea b et et e ebe e bt e bt e bt ea e nten b et e st e abeebeebeeneentennen 101
A SN LCTYPE: IASN LT Y P eteeeiteeiiteeiit ettt ettt ettt ettt ettt ettt e tt e ettt e bteenteeensaesaseesnsaeenseesnseesnseesnsaesnseesnseesnseean 101
ASNICTYPEIENCOUE ..ttt ettt ettt ettt et et e e sbessaesatesseesseesseesseesseessesssessaessesssessaensaensesnsesnsenens 101
F A O 1 o THd B T Lo SRR 101
ASNICTYPEMEMALLOC.etieiieiieie ettt ettt ettt et e te s aestee st e st eseenseenseeseesseanseenseessesssesseenseenseensennsennns 102
ASNICTYPEMEMETEEALLccviiieieieiieeiee ettt ee s ee st e st et e ens e sseeesee st eenseenseenseesaesseeseenseenseensennns 102
ASSINTCBIESE Lttt et et e et e te et e et e et e et e essessessesseeseeseeseeaeeneensensanseeseeseeseeseensensanseseeseeseeneeneensansesens 104
ASNITCBItSHIIIASN TCBIESII ...ttt ettt ettt e st e st et e se st e eseest et e eneessensensessesseeneeneensensenses 104
ASNICBIESIIIICRANGE ..ottt ettt ettt ettt st e s et e s ae et e et e eae e e st e ese et e et e eneeeneeaseeaseeneenseeneeenes 105
ASNTCBIESIIIICIEAT ...ttt ettt ettt ettt e et e et e e bt s bt eb e e st eae e e e e e besee et e eseemse s e seabeeaeeneeneenseneeneas 106
ASIN TCBIESIIIISEE ..ttt ettt ettt et e b e b et et e s et e sb e e s bt e bt e bt ea et eaeeeb e e nbe et e en b e ebeeebeenb e e be e bt eneeeneeeaee 107
ASNICBIESTIIVETT ..ottt ettt ettt b e bt et s e sh e e s bt e s bt e bt em et eatees e e ebeesbeenteebeeebeenb e e beenbeennesneesae 108
ASINICBIESIIIIZE .vieuvieiiietieeiiesteete et ete et e st e bt et e etteeseesteesseessesssessaesssesseesseasseassesssasssenseessaessaessesssesssenseensennsesnsenses 109
ASNTCBIESIIIIISSEL ..ottt ettt ettt b e s h e e b e bt ea et e b e b e s bt eb e e bt eh e estenees s et e be bt sbeebe e st enseneennen 110
ASNIICBItSH IS EIMPLY ..eitiiieciieiiee ettt ettt ettt e e b e s teesaeeste e beesseesseessesssesaessaessasssesseesseenseessesnsensns 110
ASNTCBIESIIIISIZE ..ttt sttt sttt ettt et ettt be bbbt ea et et et e s bt eb e bt eh e ebtebeea b et et e bt she e bt e st ensentennen 111
F A 023 T3 0 17 41 o PRSP 111
ASNICBItSICATAINALILY ...evveiieeieieeie ettt ettt esee st et et e esseenseeseesseenseenseesseassesseenseenseensennsennns 111
ASNICBItSIIIZEBYLESeeuieiieeiieet ettt ettt ettt et st e b et e bt e tesaeesatess e e et e teenteeneeeseease e seenseenseeneeenee 112
ASNICBItSIIIIAOANG ...ttt ettt ettt et e s bt e be e bt et e e ae e saeess e e et e et enseeneeeseesseeseeneenseeneeenes 112
ASN TCBIESIIAOOT ...ttt ettt ettt ettt et e ke e et et e e bt ea e eseea e e e e s et e ebeeaeebeeneensensenseabesaeeneeneensensennes 114
ASN T OB AOXOT ¢ttt ettt ettt et b st e st et e te e et et e e bt eseeseemeens e s et e bt eeeebeeneenseneenteabesaeeneeneensensennas 115
ASNITCBItSIIIAOANANOL ...ttt ettt sttt b e et bt et et e e et e e besbe et e eseeseene e beabesaeeneeneensensennas 116
ASNITCBItSIISRITLETE ..ottt bbbt e bbb bt e e naeees 118
ASNICBItStrShIftRIGRE L..eeiiiiiieiicec ettt te e et et e e b e esbeesaessaesseenseenseensesnns 118
ASNICBItStr::unusedBitsINLaStUNILc..couiiiiiiieieieee ettt st s st e e 119
ASNICBItStr::operator ASNITTDYNBIESIIc.vieieiieiieieeieceeee ettt e e e eseeneeses 119
ASNTCSEAOTLISE .ttt ettt ettt ettt b e bt b e e bt e h e e st et et e st e e bt s bt eh e e st et e be st e sbesbeeueentennenaens 121
ASNICSeqOfList:: ASNTICSEQOTLASE ...cuvieuiieiiieiieiieiteeiieeteste et e st et etestesteeseeseessesseesseeseesseessesssesseesesnsesnsesnns 121
F A (O T [@3 5 1 o131 1 SRR 122
ASNICSEQOTLISEIIINSEIT «..eueeeeeeieetieteete et eteeeesteesteeteenteenteeseesseeseese e seansesmeesaeesseenseanseenseeneeaseeaseenseenseensesneesnes 122
ASNICSEQOTLISEIITEIMOVE ...eeuteeuteeiieeiieetiesteerteeteeiteesee st eeteenteantesseeaseeaseeseanseameesmeesseeaseanseenseeneeaseeaseenseeseenseenseenes 122
ASNTCSEQOTLISE: i TEIMOVEFITSE ..eeutieiiiieiiieeiieeieeeie e sttt e ste e st e st e estteessbeessbeessbeesaeessseesseessseenseesnsaesssessnseesnseen 123
ASNITCSEQOTLISE iTEIMOVELLASE ..eeeuvieiiiiieiieeiieeieeeit e et et e ste e st esteeseteessbeessbeessbeessseessseesseesssesseesnsaesnsesanseesnseen 123
ASNICSeqOTLIStINACKOL ...ttt ettt ste e te et e e aeesabeereesreebeesbeessesssessseseesseesseenseenns 124
ASNICSEQOTLISEIICOMTAINS ...evveeeveiereiiiertierteeteeteetesseesteesseesseessesaesssesseesseesseasseassesssesssessessseessesssessenssesssessesssesses 124
ASNICSEQOTLISE I ZEEFIIST 1.tiiviiiieetiestieetiete ettt ste et et et e et e steesteesbeesseessesssesseesseesseesseessaessesssesseesseensenssesssensns 125
A SN ICSEQOTLISE: i ZEELAST....vieuvieeteeeieiieiteeite ettt et e et et ebeebeeebessaestaesseeseesseessesssesssesseesseessaessesssesseensaensesssesssenses 125
A SN ICSEQOTLISEIIZOE c.veutieuiieieeieeiieseestt et et st e stesseesteesteesseassessaessaessteseanseansesssesssenseanseenseesseassesseeseensesnsesnsesnes 125
ASNICSEQOTLISEI0PEIALOT] 1uveeuverureriierriertierieeteeteseesteeteeteasesseesseesseessessesssesseesseesseanseessessaesssesseesseessesssesnsennes 126
F A LT [@3 5] 1< SRR 126
F A (O T [@3 5] o] (=T SRR 126
F A (Ot [@ 5 0 151 25 10101 72 SRR 127
ASN T CSEQOTLISEIISIZE . vveeuvreeiieeieeecteeeiteeteeetteetteeteeeteeetaeesseessseeesseessseeasseesssaeanseesnsaeanseesnseessseesnsasensessnsesenseens 127
F I LGN Tt [0§ 5 AR 115 110 OSSPSR 127
ASNITCSeqOfList::iteratOrFTOMIASEcccviiiiieiiieeiieeie ettt ettt e eee e teeebeeebaeebeessseessseesnsaeenseesnseesnseean 128

ASNIC V5.3

ASNITCSeqOTLISt: i ItETALOTFTOMtiiiiiieeiieeiie ettt et et e et e e taeestee e taeenseeesseessseesnsaeenseesnseeenseean 128

F S N O T Te [0 i 5 10 1753 21 e) USSP 130
ASNICSeqOfLIStIterator: :NASNEXL.....ccuierviiiieiieiestieie ettt ste et et este e bt e b e essessaesseesseessesssesseesseesseesseansenses 130
ASNICSeqOfLIStIterator: :NASPIEVcc.ieiiieiiciiciieteet ettt et s et e b e e sbeesaessaesseeseenseenseenns 130
ASNICSEQOTLISIEEIALOT INEX L. e.vveveeiieerieiteettesteesteeteeteetaesteesseeseessesstesseesseesseesseessesseesseesseessesssesssesseesseesseensenses 131
ASNICSEQOTLISIEEIALOLI IPIEV ...vveeieiieiieiieteetiesteesteesteetestesseesseesseasseaseesseasseanseassesssesseensaessesssesseesseessesnsesnsennes 131
ASNICSEQOTLIStItErAtOr: :T@IMOVE.eeuvieevieereetiestieieeteetesttesteesseessessesstesseesseensesssesseesseeseensesssesssesseesseessesssesnsesnes 131
ASNICSEQOTLISIEEIATOTI ISCEeeeetieieeieeteeitesttete et eteetesete st eseesesstesseesseesseenseessesseaseenseensesssesseeseenseensesnsennns 132
ASNICSEQOTLIStIEEIAtOr: -INSEIT.e.teetteeeeeeiietieetiete et ettt et e et et eee et e saee st e et eneeeneeeseesseenteenseeseesseenseeseeseenseenes 132

ASNTCTIIME ..itveetie ettt ettt et et e ettt estteestseestte e teeeseeessseassaeessseassaeessseensseensseassseansseeasseesseesssaesssessssasasseeansesnnses 134
ASNITCTIMEIASNICTIIMIE «.veeuvvieiieetie et eeiteestteeeiteestteeteeestteeteeeseaeseeeseaasseeassaaasseesssaaasseessseeasseessassssesenseeesenn 134
A SN ICTIME: IZEEY CAT ...ttt ettt ettt ettt et ee e s bt e sb e s bt e bt et e e at e saeeeb e e sb e e bt enbeebaeebeenbeenbeenbeeneesaeesae 135
ASNTCTIME: I ZEIMONTN ...ttt ettt ea et e et e st e s bt et ea e et et e s et e ebeeseebeemeenseneeseabeseeeseeneenseneanean 135
ASNICTIME: IZEDAY ... vieeieieieitieieeie ettt ettt et e et e bt e beesbeesbessaesstesseesseesseasseassesssessaessaassaassesssesseenseessesnsensns 135
ASNICTIME: I ZEHOULc.viiiieiieiece ettt ettt et et e st et e e beesbessbesseesseesseesseesseessesssesssesseesseenseensennsensns 136
ASNICTIME: IZEIMINULEcvveitietieteeie e etteste et eteeteetaesteesteesseessesssesseesseesseesseasseessesssesseessanssesssesssesseessesnsesnsenses 136
F A O I 1 0 e T) o T PSP 137
ASNICTIME: 1 EFTACTION ...cvieitieeiieie ettt et s e st ee s et e st esseenseeseeeseenseenseenseessessaesseenseenseensennsennns 137
ASNICTIME: 1 ZEDITTHOUL.evieiieie ettt ettt e st et e et e e e e s st e st e enseenseensessaesseenseenseensesnsennns 138
ASNICTIME: 1 GEDITIIMINULEeeeeieieiiieieieiet ettt ettt ettt et te e te st esatesae e et enteeneeeseeeseesseenseeseenseenseenes 138
ASNICTIME: 1GEEDITT. ...ttt ettt et e st e s et e s et et e et e et e e st e es e e st enseesaeeseeaseenseenseeneeeneesnes 138
F A O I T 0 TS <1 1 U1 SRR 139
ASNICTIME: IZEETIME ...ttt ettt ettt s b e b e bt e bt et sa e e she e s bt e bt emteesteebeesbeenb e e beenbeenaesneeeae 139
A SN LT IME i SE Y CAT ..euvvieeveeiieeeiie ettt eette ettt ertteeteeestaeesteeetaeesseeasseeanseeasseeanseeansaeassaesnsaeasseesnseessseesnsasensessnsesenseen 140
ASNICTIME: ISEEMONTN ...ttt a e et e s te e teesbeeaseereeeseesbeesbeesbeessesssesssesseesseenseensesnns 140
ASNICTIME:ISCEDAYvvevietieiieteeieste sttt eteete et e st esteesbeesbeesbesseesseesseessesssesseesssesseesseasseesseassasssesssesseensesnsesnsenses 141
ASNIICTIME: ISCEHOUL.......veitieiieeieciiesiesieeste ettt et e e est e et e et e steesteebeesseessesseesseesseesseesseesseessasssesssesseenseensesnsensns 141
ASNICTIME: ISCEMINULEvevvevieiieieeieeeteeteesteesteeseesbeessesseesseeseessesssesseesseesseesseassesssesssesseessaessesssesssesseesesseensesses 142
ASNICTIME: 1SCESECOMNMvetieiieiieie ettt ettt ettt et e teeaeseeesseesseesseenseessesseesseenseenseansesssesseeseensesnsennsennns 142
F A O I 1 o ST o1 o) DRSPS 142
ASNICTIME: I SCDIITHOUL ...ttt ettt e st s et e b e et e s st e e st e st enseenseesaessaessaeseenseensennsennns 143
ASNICTIMEISEEDIT ...ttt e et e e te e et e e sbeeeabeessteessseesssaassseeassaeasseeansaaenseeensaennsenan 143
ASNICTIMEISEEDIT ...ttt et e et e e be e e bt e eabeeesbeessbeessseesssaesssaessseeassesensaaensesansaeensenan 144
ASNITCTIMEISEEUTC ...ttt ettt ettt e et e et e s teeesbeesateeesseesabeeesseesssaesssaesssaansseesssaeanseesnsaeensessnseeenseenn 144
ASNTCTIMEISEITIME ...vvieneveeiiieiieeciie e ettt erte ettt et e ettt e tbe e tteessbeeseeesseenseeessseensseesseensseaseeasseesnsaesnseesnseeenseenn 145
ASN ICTIME: IPATSESIIINE ..ottt ettt ettt et et ee e ette st e e sb e e bt e bt satesaeesheesbe e bt emteesbeebeeebeesbe e beenbeenseeneesaes 145
ASNICTIME:ICICAL ...ttt ettt ettt e e te et e et e e b e esbessaesteeseesseessasssesaeesseesseesseasseessasssesssesseenseenseansensns 146
A SN ICTIME I0PCTALOT =.....ccuveiuierieteeteerestesseesseeseeseassesseesseeseessesssesssesseesseesseasseessesssesseessesssssssesssesseessesssesnsenses 146
A SN ICTIME: I0PETALOT ==eetieieeieiieieesteesteeteeteestesseesseesseassesssesssesseesseassesssesssesssesseesseesseassesssesssesseessesssesnsenses 147
A SN ICTIME I0PCTALOT >eeiieiieiieieeieeetesttesstesteesteeseesssesseenseassesnsesssesseesseenseanseanseessesseenseensenssssssesseesseensesnsesnsesnes 147
A SN ICTIME: I0PETALOT ...vevieeieieeteeieeetesttesseesseeseessessaesseesseesessesssesssesseasseanseasseessesseenseensesssssssesseesseensesssesnsesnes 147
A SN ICTIME: I0PETALOT =eetieieeiesiiestiesteeteeteeteestesseesseasseassessaessaesseensesnsesssesssasssenseanseassesssesssesseenseensesnsesnsesnes 147
F A O I 0 s o) 1S 1 o SRR 147

ASNTCGENETAIZEATIMEeveeeiiiiiieeiie ettt ettt ettt et e e s e e etteestbeesaaeestbeessseesseessseesseessseensseessseessseessseessseessseensses 148
ASN1CGeneralizedTime:: ASNTICGeNeralizedTimec.ceecuiieiiiieiiieeiieeeeeee ettt ve e e seaeeeaeeseaeenree s 148
ASNICGeneralized Time: :ZECENIULYcoiiiiieeieeieieiete ettt ettt ettt e stesae bt ebeeseeseeneesse st e tesbeseeeseeneenseseneas 149
ASNICGeNeralized Time: :SEECENMEUTYcueiueiuieeietieeieiet ettt ettt ettt e et et este ettt eseeneeneeeebeseeebesaesaeeseeneenseseneas 149

ASNTCUTECTIIME -ttt ettt et et et e et e ekt e bt et e eseea e e sees e et e ebeeseaseemeemse s e seaaeebeeseameeneeneensenseateabeeseeneeneansensans 150
ASNICUTCTIME::ASNTCUTECTIMEeoevvierierieiieteetiesteesieeteeteseeesteesseeseessesssesseesseesseessesssesssesssesseessesssesssenses 150
ASN ICUT CTIME: I SEEY @A ..vevvieeveeeieitieiteeteeteetesteesseesseesseesseassesseessaessesssesssesssesssesseesseesseessessessssesssesseessesssesnsenses 151

ASNINAMEAEVENTHANAIETc.viiiiiiiiciieciicec ettt e et e et e s te e b e esteesbe et besssessaesseenseensesssenens 152
AsnlNamedEventHandler::StartEICmeEntccooieiiiriiiiiiiieeee ettt 152
AsnlNamedEventHandler::endEICMENLtccoeviriiieiiiiiiieeee et 152
AsnlNamedEventHandler::D0OIVAlUC.c.ooociiiiiiieiiecieceeeee ettt eb e v e e eb e e sraeesbeeessaeenree s 153
AsnINamedEventHandler: :iNtValUe...........occviiiiiiiiiecieccieecee ettt e et e e taeebeeebeeeabeeebaeesseeensaeenseeas 153
AsnlNamedEventHandler: :UINTVAIUEc.oooiiiiiiiiiicece ettt ve et e e et e e svae e b e esaaeenree s 154
AsnINamedEventHandler: :bitStrValUecc.ooiiiiiiiiieiiciiecieeece ettt ettt st te e beesne v e 154
AsnINamedEventHandler::0CtSIIVAIUEcoooviiiieiieicceeteee ettt et e sts e e beesae e e 155
AsnlNamedEventHandler::CharStrValUec.ooviiiiiiiiiiiciieecece ettt ees 155

ASNIC V5.3

AsnlNamedEventHandler::charStrValue (16-Dit VEISION)........ccecvueiiiiieriieiieee ettt st esee e e 156

AsnlNamedEventHandler::nUIIVAlUE.cooiiiiiiiie et sttt 156
AsnlNamedEventHandler::01dValUe.........c..ooiiiiiiiiiiiiee et 156
AsnlNamedEventHandler::realValUe...........coooiiiiiiiiiiieeeeeeeee ettt 157
AsnlNamedEventHandler::enUMValUEc..coiiiiiiiiiiieee ettt 157
AsnlNamedEventHandler::0CtSIrVAIUEc..coeviriiiiiiiiinieneeeeet ettt 158
AsnlNamedEventHandler::o0penTypeValUe.........cccveiiieiiiiiriieiee ettt 158
ASNTEITOTHANAIETcoeiiiiieiiee ettt ettt st b e s bt ea et et e st st sbe bt eae et ennenaens 160
ASN L EITOTHANAIET: 18ITOT ...ttt ettt sttt ettt et e e st e et e bt et e e s e eseesseenseeseenneeneeenes 160
BER RUN-TIME LIBRARY FUNCTIONS 161
ASNIEYPE.N INCIUAE FILE ...ttt b ettt et e sttt eeaeesae et e enteeneeeneesneenneas 161
D25 (o) GO0 4 1] £ RRRR 161
Tagging Value and Mask CONSTANEScceiiiirieieieiesteet ettt ettt et te et sae bt eseeseesseneebessesteebeeseeneeneensenaens 161
SIZING CONSTANTS. ...ttt ettt ettt eb e bt et e e et s etesheesbe e bt eateeaeeeue e bt embeenbeeeseabe e beenbeemeeemtesaeenbeenseenteans 162
ASN.1 Primitive Type DefINItions.ccoiiiiiiriiiiiiiieiee ettt ettt st 162
BER/DER C ENCOAE FUNCHIONScoutiiiiiiiitiitietteitete ettt sttt st eb ettt et ettt be bt ebeeseesne e ense e 163
xe_setp - Set ENcode BUffer POINTETccviiiiiiiiiciicieeeeeeee ettt ba e be s e enne e 163
xe_getp - Get ENcode BUfer POINETccviiiiiieiiciecieeeeee ettt ettt se e e enneenseens 164
xe_tag len - Encode Tag and Length...........ccoocioiieiiiiieieieeeeee ettt st 164
xe_boolean - ENcode BOOLEANccciiiiiiiieit ettt steste sttt ete st e satesseesseenseenseesaeeseenseeseenseensesnsennns 165
xe_integer - ENcode INTEGERc.oooiiiiiii ettt ettt et st ense e seenseenseenns 165
xe_unsigned - Encode Unsigned INTEGERcccooiiiiiiii et s 166
xe_bigint — ENCOAE Big INtEEETccueiiiieieitieit ettt sttt ettt et e st s s e sb e ne e e eneeeneeenes 167
xe_bitstr - Encode BIT STRINGooiiiiiiiiieeeee ettt ettt et e et eeseesseesseesse e seeneeeneeenes 167
xe_octstr - Encode OCTET STRINGcoiiiiiiiiieeeet ettt sttt ettt ettt sb e be e s 168
x€_charstr — ENCOde Character StrINEcciiiiiiieieieieeste sttt sttt et et et e beseeetesbesaeese et eneeneenees 169
xe_16BitCharStr — Encode 16-bit Character SIINEcccoiiriiiiieieieieeie ettt 169
xe_32BitCharStr — Encode 32-bit Character StriNg........c.cccueruieriierieiieiiereeie ettt e stee e ebeesseseaesseesseeseessesssesens 170
xe_enum - Encode ENUMERATEDc.cooiiiiiiiiiiiiciceeteete ettt ettt ettt e e ssaessaesnaesseessesnsesnns 171
X€ NUIL = ENCOAE NULL.....octiiiiiiiciieciieieeit ettt ettt eete st e st e e beesbeesbesseesssesseeseesseessaessesssesseessaessannsennsesens 171
xe_objid - Encode OBJECT IDENTIFIERc..cociiiiiiiiiiiinieiceeeect ettt 172
XE 1Al — ENCOAE REAL.......oiiieiieiece ettt ettt et e et et e e st e esaeesae s e e se e neenseenneenes 172
xXe_OpenType - ENCOAE OPEN TYPC...cuuiiuieieieieieiieie ettt ettt sttt ettt se e st e bt et e eneeeseesbeeseeseeneeeneeenes 173
xe_free — Free Encoder DYNamic IMEIMOTYcoouieiieieriieiieieeie ettt ettt ettt ettt sne et e eneenee e enes 174
xe_expandBuffer — Expand Dynamic Encode Buffer...........occooiiiiiiiiiiiii e 174
xe_memcpy — Copy Bytes to Encode BUffer............oooiiiiiiiiiiie e 175
xe_len —Encode a Length ValUeocooiiiiiiiiiee e e 175
xe_derCanonicalSort — DER Canonical SOTTccciiiiiieiiiiieii ettt sttt st nee e 176
xe_TagAndIndefLen — Encode Tag and Indefinite Length............cccocueiiiriiiiiiiiiiiicieceeeecee e 177
BER/DER C DeCOde FUNCLIONS ...c..cviitiiiiiiieieieriestesie sttt sttt ettt st eb et ettt st be et esee e e ee 178
Xd_setp - Set Decode BUTEr POINET..........ccviiiiiiieiicieeiieieeieete ettt ettt te et e sb e et essaessaesse e seesseenseenns 178
xd_tag len - Decode Tag and Length..........cccocieiieiiiiieieieeese ettt se s e eneeenes 179
XA MALCH = MALCH TAZ . ..iiieiieiieiece ettt st et e st e e b e st e s st e st e et e enseenseesaeesaesseeseenseenseenseenns 180
xd_boolean - Decode BOOLEANoooiiiiiiieieeiesteee ettt ettt et et e este e st e esaessaesseesseensesseeseensesnsesnsennns 181
xd_integer - Decode INTEGERcoci ittt ettt ettt sb e b e s e eeeee s 181
xd_unsigned - Decode Unsigned INTEGERcccooiiiiiiiiieee et 182
Xd_bigint — Decode Big INTEEETcc.eeiuiiiiiiieieeeiee ettt ettt ettt ettt s n e b e ee e beeeeeneeenes 183
xd_bitstr - Decode BIT STRING ..ottt ettt sttt ee e st et e e se et e sbesae e st et enseneeneas 184
xd bitstr_s - Decode BIT STRING (SEALIC).....ceueeeeieiertintertieteeteettetieeete e steste sttt et estesteeeseseestesbeseeeseeneenseneenees 184
xd_octstr - Decode OCTET STRINGc.oiiiiiiiieiee ettt ettt ettt a ettt sa e teebesaeebe e st enseneeneas 185
xd_octstr_s - Decode OCTET STRING (StAtIC) ..veevveeevreierieriierieesieeieiteseesteeseesesssesseesseessaessesssesseessesssesssesssensns 186
xd_charstr — Decode CharacCter STINEc.ccvverieriieciieieeiertesteeie e ste st esteeseeseesseeseesseeseesseessesseesseesseessesssenses 187
xd_16BitCharStr — Decode 16-bit Character StrNg..........ccvervieiiereieiie ettt e e e seeseeneeeens 188
xd_32BitCharStr — Decode 32-bit Character StrNE..........ccveriierieriierie ettt ste e e eseeseenneeens 188
xd_enum - Decode ENUMERATEDccioiiiiiiiieieteeee ettt ettt st e e esesnne st enseenseenneenes 189
XA NUIL - DECOAE NULL ...ttt ettt ettt ettt ettt bt et e et e e et e es e e see e teenseesaeeseesseenseeseenneeneeenes 190
xd_objid - Decode OBJECT IDENTIFIERccciiiiiiiiiiieieii ettt st ene et nseseneas 190

ASNIC V5.3 v

XA T€Al - DECOE REAL.......ooiiiieeiii ettt ettt e e et e s et e e s eaa e e e s eateeeseaaaeeesenaaeessrsaeeesnnteeessnaees 191

XA OpenType - DECOAE OPEN TYPE ...eeueeieiiieieiieieieee ettt ettt ettt sttt e et ebe st es b et e eebeseesbeebesaeeseeneensensennes 192
xd_OpenTypeExt — Decode Open Type EXLENSIONcccvecieriieriieiiiieiieseerieere e eeeeteesteesbeesseesaessnesseesseessesnsesns 193
xd_chkend - Check for ENd 0f CONLEXL........c.ccvieriiiiieiieiiiieieeie ettt ste et teesteeteessaessessaessaesseesseensesnsennns 193
xd_count - Count MesSage COMPONENLS.........c.eecvieieeeerrierteeteerestesreseesseesseesessesssesssessesssesssesssesssesseessesssesssesses 194
xd_memcepy - Copy Decoded CONLENLS.cevieriieiieiieieeiieiteteete sttt ete et e seesseesteesteessessaessaesseeseenseensesnsennns 194
xd_NextElement — Move to NeXt EICIMENtc.oocuiiiiirieiieiieieeie ettt se e 195
xd_indeflen — Calculate Indefinite Length..........c.cccoeiiriiiiiiieece e 196
BER/DER € File FUNCHOMNS ...ttt ettt ettt ettt ettt et e e sb e s be e beemeeemeeemeeeneesseenseenseenseeneesneenneas 197
xdf tag — Decode Tag from Filecooi ittt ettt ettt re e b e e 197
xdf len — Decode Length from Fileoooiiiiiiiii ettt e 197
xdf TagAndLen — Decode Tag and Length from File..........coccoiiiiiiiiiiiieeeee e 198
xdf ReadPastEOC — Read Past End-of-Context (EOC) Markercccoeoieieieniniieiieieeeee e 199
xdf ReadContents — Read Contents from File..........ccciveiiiiiiiiiiiiicecicceeeeeeee et 199
BER/DER C ULHItY FUNCHOMNScutiiieiiiiiestesieeeet ettt ettt ettt st b e st eb et et et be st e bt beesn et enee e 201
Memory Management Functions (xu_malloc and xu_freeall)ccooeiirinininiiniiice e 201
Output FOrmatting FUNCHONSc..cotiiiiiiiiiiiieceeet ettt sttt sttt st sbe et et ennenaens 203
Run-Time Error Reporting FUNCHIONScc.coiiiiiiiiiricteieeesestese ettt sttt st 205
PER RUN-TIME LIBRARY 209
PER C ENCOAE FUNCLIOMNSc.uetiiiiiiiiieicieiestest ettt bbbt ettt ettt ettt be bt e e e e 209
pe_GetMsglLen — Get Length of ENcoded MESSAZE.......cccvviieriierieiieiieieeiieiieie ettt ae e see e sseesseenseens 209
pe_GetMsgBitCnt — Get Count of Bits in Encoded MeSSageccveveruieriieriieiieieeie et 210
pe_GetMsgPtr — Get Encoded Message POINETcc.eioiiiiiiiieiieie ettt 210
pe_bit - Encode a Single Bit VAIUEcoouiiiiiiiieieeeeee ettt ettt ens 211
PE_DitS - ENCOAE Bt VAIUEScuitiitiiiieiieiee ettt s e et se st e b et et see e st e st eneeneeneas 211
PE_OCLELS = ENCOAE OCTEES ...ttt ettt ettt b ettt et b et e bt e st e eseesbeesb e e bt enbeeneesmeesaes 212
pe_byte align — Align Encode Buffer on a Byte Boundary............cccooiiiiiiiiiiiiiiieceeeeeee e 212
pe_NonNegBinlnt — Encode a Non-negative Binary INtEZer..........c.occuvviiriiriieriieiieieciesieesie e eee e see e esreens 213
pe_2sCompBinint — Encode a Two’s Complement Binary INteZer...........ccevieviieriieiiiiieiieieeie e 213
pe_ConsWholeNumber — Encode a Constrained Whole NUMDETc.occueviiriinieiiiiiecie e 214
pe_SmallNonNegWholeNumber — Encode a Small Non-negative Whole Numberccccccevverievieeciinieniens 214
pe_Length — Encode a Length Determinant.............cveeueieierierieniieiieieeeeeeeesiieseeieeseesteseesseesaeesseesesseesseenseensenns 215
pe_Conslnteger — Encode a Constrained INTEZETcc.eeiuiiiiiiiiiiiieeeeee ettt 215
pe_UnconsInteger — Encode an Unconstrained INTEZErcc.eeiuieiiiiiirieriieiieieee ettt 216
pe_ConsUnsigned — Encode a Constrained Unsigned INteEer..........occveiuiriiiiiiieiieieee et 217
pe_UnconsUnsigned — Encode an Unconstrained Unsigned INtegercooveviiiiniinieniieiiiiieiienieceeeee e 217
pe_Biglnteger — ENcode Big INtEEETcc.oiuiiiieiieieieiee ettt et se et e e 218
pe_BitString — Encode @ Bit SNooiiiiiiiiiiieeee ettt 218
pe_OctetString — Encode an OCtet StrNGccvecvieiiiiieiieiieieeie et eeesteesteeteeseeeseseessaesseessessaesseessnesseesseesseessenns 219
Pe Real — ENCOAE REAL.......ooceiiiiiiieeecee ettt ettt et e st e s teesbeesbeesaeesnesssessaeseenseens 219
pe_Objectldentifier — Encode Object IAentifier..........ccvieviiiiiieiieiiciicieeeeeteeee ettt s seeesseenseens 220
pe_ConstrainedString — Encode 8-bit Character Stringcceoieviirierieriieiieie et steste e eae e see e seeeseeeneeens 220
ASN.1 8-bit Character String ENncode FUNCLIONSc.cooiriiiiiiiierieit ettt 221
pe_16BitConstrainedString — Encode 16-bit Character Stringcccecverieriierieeiieniesieneene e e sre e see e eneeens 222
pe_BMPString — Encode BMP Character StriNgccoecieierierienieie ettt ettt ee et see e eneeens 223
pe_32BitConstrainedString — Encode 32-bit Character Stringccoeverieriieiieieeieeieseee e 223
pe_UniversalString — Encode 32-bit Character Stringcooierieiiiieeieeieieieeie et 224
pe_OpenType — ENCOAE OPEN TYPE ...c.ueemiiieieieietieiietieeee ettt ettt ettt et skt be st es et eeesbestesbesaeebeeneenseneeneas 225
pe_OpenTypeExt — Encode Open Type EXIENSIONccuiitiiiiiiiiiiiiie ittt 225
pe_CheckBuffer — Check Encode BUffer Size.........ccoouiiiiiiiiiiieieee e 226
pe_ExpandBuffer — Expand Encode BUffer..........cooiiiiiiiiiiiicccceeee ettt 226
PER € DECOAE FUNCHOMNS. ...ttt sttt eb ettt be bbbt e bt e st et e st et et e s besbeebeeseenneneenseee 228
pd_bit - Decode a Single Bit VALUC.........cccveviiiiiieiiciecieceecee ettt ettt teeae e s nnesseesneenseenseens 228
PA_Dbits - DEcode Bit VAIUCScoouieiieiieiiieieeeee ettt ettt et e eabeeaeenaeennesneenseeneenteens 229
pd_byte align — Align Buffer on a Byte BOUNAATYcooiiiiiiiieiieieceeeee et 229
pd_ConsWholeNumber — Decode a Constrained Whole NUMDETcocciiiiiiiiiiiieieieeeeee e 230
pd_SmallNonNegWholeNumber — Decode a Small Non-negative Whole Number.............cccoocvevieiiiininien. 230

ASNIC V5.3 vi

pd Length — Decode a Length Determinantccooviiiiieieieieeese ettt sttt see s 231

pd_Conslnteger — Decode a Constrained INTEEET.........cc.eiieieiiiiiiieiete ettt s 231
pd_UnconsInteger — Decode an Unconstrained INtEZET.........cc.vevuieiiiiirieriieiieieeie et sie e eae e ene e sseesseesseens 232
pd_ConsUnsigned — Decode a Constrained Unsigned INtEEET...........cceevieiiiieiienieieeie e ere e seeesreesseens 232
pd_UnconsUnsigned — Decode an Unconstrained Unsigned INtEEET............cccvevvieiieiieiienienieiecie e 233
pd_Biglnteger — Decode @ Big INtEEET........ccueiuieiieiieie ettt ettt seeseeaesnnesneesseeseenseens 233
pd_BitString — Decode @ Bit StINEcc.eeiieiieiieieeieee ettt ettt et e e aesaesntesneeeneenneenseens 234
pd_DynBitString - Decode a Dynamic Bit String............ccoooierieriieniieiicieeieeie et ens 235
pd_OctetString — Decode an OCtet SNcecuieiiriieiieiiereee ettt ettt e teete e stesseeseeenneeneeens 235
pd_DynOctString - Decode @ Dynamic OCtet StINEc.veruierieriieiieieeieeiiete ettt ee et s eseeeseeeneeens 236
PA_Real = Decode REal........ccoioiiiiieieeeeee ettt ettt ettt ettt et esae e aeenteen 237
pd_Objectldentifier — Decode Object IAENtIIEr.........ccueiiiriiiiiie et 237
pd_ConstrainedString — Decode 8-bit Character StriNE...........ooeiieirieieieeie ettt 238
ASN.1 8-bit Character String Decode FUNCHONSc.cccuiiiirieriieiiiie ettt st re e beesae e e 238
pd_16BitConstrainedString — Decode 16-bit Character String...........c.eccvereeriieciieiieeiiesieseeseesie e seeseesreesseesseens 239
pd_BMPString — Decode BMP Character StriNg.........ccveeieriieiieieeiierieeieeteeieseeseesteeseseesseesseesseessesssesseessesssenns 240
pd_32BitConstrainedString — Decode 32-bit Character String...........ccoecverieriierireieeierieneeseese e sre e seeeeeeneeens 241
pd_UniversalString — Decode 32-bit Character StIINE..........ceevveruierieeieeieriiesieieeieetesteseesseesseesaeesesseesseesseenseens 241
Pd_OpenType — DecOde QPN TYPE....cc.eecuieieriieriietieieeiteetesttert et eteeetesseesseeseeseesesssesseesseesseenseennesseesseesseensenns 242
pd_OpenTypeExt — Decode Open Type EXENSIONc.eeouiiiiiiiiieiieiieeeiesie et 242
PER C UtEY FUNCHONS ...ttt ettt ettt ettt ettt et e e st e et e et e e teemseemeeemeesaeeeneesseenseenteenseensesneennean 244
Encode/Decode Context INItIAlIZAtIONcc.eiruieiiieiieieet ettt ettt ettt eeee et e s e aeeeeeneeenes 244
Constraint Specification FUNCLIONSc.c.oiiiiiiiiiiiii ettt ettt et eete s saees 246
Diagnostic Printing FUNCHOMNSc..eiiuiiiiiieiiet ettt ettt sttt ettt be e s b e sb e b e e b eeesaeeeae 249
RUN-TIME COMMON LIBRARY 251
Context Initialization FUNCHIOMSc..eiitiiiiiie ettt ettt st sttt et e st e st et et e et eeseesbeenbees 251
rtInitContext — Initialize ConteXt BIOCK.........coiiiiiiiiiieeee et 251
rtNewContext — Allocate New ConteXt BIOCKccooiiriiiiiriiiiiiiiiieeeeee e 251
rtFreeContext — Free ConteXt BLOCKcuoiiiiiiiiiiiiiieeeee ettt st 252
Memory Management FUNCHONSc.cccueiierieieiie ettt et et e et et esteesseesbessaessaesseesseesseessesssesseesseessesssenssesssessees 252
rtMemAlloc — Allocate DYNAamic IMEIMOTYccueruieriierieeieeiesierteesieeteeeesseesseeseessesssesseeseesesnsesssesseesessesnsennns 253
rtMemFree — Release DyNamic MEMOTYc..ecuieierieriieiieieetestesieesieesteeaeseeseeesseesseesseensessaessaesseenseensesnsesnsennns 253
Diagnostic TraCe FUNCHIONSeouieiieiieetietiete ettt ettt ettt et et et e e bt e s bt e be e eeemeeeaeeeneesseenseenteenseeneesneenneas 254
1tdiag — OULPUL TTACE IMESSAZESY ... ceuveeuvrenireuireiiestietteteeteeteesteesteeteeeeeaeesaeessee et enseeneeeseenseenseensesseesseenseeseenseenseenes 254
rtSetDiag — Set DIiagnosStiC TIACINE.eeiuieitieii ettt ettt sttt ettt e st e ae e et et e e st e eseeeseesseesseenseeneeeneeenes 254
Error Formatting and Print FUNCHIONSc..ooiiiiiiiiiiiee ettt e s 255
rtErrPrint — Print Error INfOrmationcooioiiiiiiieeee et 255
rtErrLogUsingCB — Log Using Callback FUNCHON.cciiiiiiiiieieeeee e 255
rtErrSetData — Set Error INfOrmMationooiiiiiiiiieceesee ettt st 256
rtErrAdd<type>Param — Add Typed Error Parameter to Error Information.............ccecevvverienieninceiienieseeee 257
rtErrFreeParams — Free Error Parameter MEMOTYcoooiiiiiiiiiiiiiiiiieiee ettt e 257
Formatted Printing FUNCHIONS.ccuiiiiiiieiieiieie ettt ettt ettt et et e s este e e enseenaesstesseesseesseenseenseensesssessnensens 259
rtBoolToString — Convert ASN.1 Boolean Value to String..........ccceveverierierieiieieeieseee et 259
rtIntToString — Convert ASN.1 Integer Value tO StIINGccvevverrieriieiierieie ettt seese e e 259
rtUIntToString — Convert ASN.1 Unsigned Integer Value to Stringcocceevieiieienienieniieieeeseeeee e 260
rtBitStrToString — Convert ASN.1 Bit String Value to String........coccoiieiieiieii e 260
rtOctStrToString — Convert ASN.1 Octet String Value to Stringccovieiieiieiieeeeee e 261
rtOIDToString — Convert ASN.1 Object Identifier Value to Stringcccooeiiviiiniiieeeeeee e 261
rtTagToString — Convert ASN.T Tag t0 SNoeuiiiiiieiieeee e 262
rtPrint<type> — Print ASN.1 Values to Standard OULPULcccoririiiiieieee e 263
Object Identifier HElPer FUNCLIONSccueiiiiiiiiieiecie ettt ettt ettt seae e e sae e e esaesseesseesseesseenseessesssessnensens 264
rtSetOID — Populate Object Identifier StrUCIUIEccvieiieiiiiecieeie ettt st re e ese e ees 264
rtPrintOID — Print Object Identifier StrUCIUE.c.eeciieieeiieiieieee et se e 264
Linked List and Stack Utility FUNCHONScecvieiiiiiieiieiierii ettt ettt ese e ssae e e sseesseenseenseensesssessnensens 265
rtDListInit — Initialize a Doubly Linked List StrUCIUIE.........ccueviiiiieiieiieieeie et 265
rtDListAppend — Append an Item to @ Doubly Linked List.........cccceioiiiiiiirieieieeeeeee e 265
rtDListInsert — Insert an Item to a Doubly Linked List.........cccoeiieiiiiiiieiiee e 266

ASNIC V5.3 vii

rtDListInsertBefore — Insert an Item to a Doubly Linked List before specified node..........cccccoceeevieienenienennne. 266
rtDListInsertAfter — Insert an Item to a Doubly Linked List after specified node...........cccoeveiiiinciinicnceienee. 267
rtDListFindByIndex —Find a node in the Doubly Linked List by indeXc.ccccevveriieciiriienienieecie e 268
rtDListFindByData —Find a node in the Doubly Linked List by indeX..........cccccvevieiiirienienienieeiecee e 268
rtDListFindIndexByData —Find an index of node in the Doubly Linked List by data...........ccccoeevvvevervenienieennnne. 268
rtDListRemove — Remove a node from a Doubly Linked LiSt..........ccoocuirierienieiieieeieeeieee e 269
rtSListInit — Initialize a Singly Linked LiSt StrUCIUIE.......cc.eecvirierieriieieeie ettt 269
rtSListCreate — Create a Singly Linked LiSt StrUCTUIE.........c.eoieiierieiieiceieeet e e 270
rtSListAppend — Append an Item to a Singly Linked LiSt.........cccovoieiieiioiiiiiieeeeee e 270
rtStacklnit — Initialize @ Stack SIUCTULEooouiiiiiiiee ettt e 271
rtStackCreate — Create a StaCk STIUCIUIEoocui ittt ettt e b b e s e ee e e e 271
rtStackPush — Push an Element onto the Stacki...........coooiiiiiiiiiieeee e 272
rtStackPop — Pop an Element from the StaCKc.cccviiiiiiiiiiieiicie ettt 272
Character String Conversion FUNCLIONSc.coiiiiiiiiiiieiiesie ettt eteeresae e e sbeessessaesseesseesseesseesseessesssesssessns 273
TECTOBMPSIIING. ... ecuvieitieiieciiecitecie ettt ettt et e et e et e e te e te e beesbeesbesssesstesseassaasseesseessenssessaesseassesssesssensaenseessesnsenses 273
TEBIMPTOCSIIING.eeuvieitieiieciiesiteete ettt et et e bt et e et e e st e te e beesseessesssesaeesseessaesseasseessenssassaessaessesssesssesseenseensesnsensns 273
TEBIMPTONCWO SIIINGevieiieieeieeie ettt ettt et et et et e eetessae st eesseenseensesasesseenseanseanseenseessesssesseenseenseensennsennns 274
TECTOUCSSIIING ...nvtentieiieeiie ettt ettt et e st e et e bt eseeesaeesee s e esseassesssesseesseanseanseanseassesssanseenseasseassenseeseenseensennsennns 274
TEUCSTOCSIINGveeiveeiieetietieteei ettt e st ettt et e e st et e esseessesasessaessae st enseansesnsesseenseenseenseanseassesssenseeseenseensesnsennns 275
TEUCSTONEWO SIIINE ...ttt ettt ettt ettt et et et e s s e e sb e e bt emseemeeemeesaeeese e st emteenseeneeeseesseenseenseenseenseenes 276
TEUCSTOW CSSIIING ..c.vtenieneieeie ettt ettt te ettt e st este e e seteeseeseeseantensensansesseaseeseesteseeneansensensensesseeseeneensensenses 276
TEW CSTOUCSSIIING ...ttt ettt et ettt ettt et e e e aeess e e sbe e bt e et e aeesaeeeseesseemteenteeneeeseeaseenseenseenseenseenes 277
TEWCSTOUTES ...ttt ettt sttt ettt et e et e et e e bt eaeeb e e st emeen s e s e besbeebeeseem s e s ese bt ebeeneeneensensennas 277
TEUTESTOWICS .ttt ettt ettt e s e et et e ke e et et e e bt ea e ea e e e et e e be ekt ebeeeeeseemeensene e be bt saeeneeneeneensannan 278
TEVALIAAEUTES ...ttt ettt ettt s bt eb e e st e st ea e et e teeb e et e emeenbe s e beabeseeeneeneenseeennas 278
Big inte@er NEIPer fUNCHIONSccuieiiiiiieiecie ettt ettt et e et e e e esaesteesaeesseessesseesseesseenseesseessenssessnensens 280
rtBiglntInit — Initialize a Dig INTEZEr STIUCIULE........ccviievieieetieciieieeie ettt et sreeste b esbeseaesteesse e seesseenseenns 280
rtSetStrToBiglnt — Convert String t0 @ Dig INEEEETeeveriieriieieeieiie et ete e eee et esteebeebeesaeseaesseesseesseesseensennns 280
rtSetInt64ToBiglnt — Convert ASNIINT64 value to Dig iNtEZETceevieriieiieiieieeierieeie et 281
rtSetBytesToBiglnt — Convert sequence of OCtets t0 Dig Itccvvevieierieeiieiieieeie et 281
rtGetBigIntLen— Get big inte@er IeNGthccoooiiiiiiiiieeeee e 282
rtGetBiglnt — Copy big integer value into an 0CtEt AITAYc.cevueeruerierierieie et eece st 282
rtBigIntDigitsNum — Return the approximated number of digits of the big integercocceeeereirieiiinceiiee 283
rtBigIntToString — Convert a big INtEZET t0 @ SIIINEce.eeuieierieieitietieie ettt ettt ettt ese et e sbe e e e e eneeneeneas 284
rtPrintBigInt — Print big integer value to Standard OULPULc..oeiiiiieiieriii e 284
rtCompareBigInt — Compare two big INtEGEr VAIUES.cc.eiuiiiririeiieiieiee ettt 285
rtBigIntCopy — Copy one big integer Structure into another..........c.cccuevierieriieciieieeieeeee et 285
rtBigIntFastCopy — Fast copy of one big integer structure into another...........c..cceeverierieriieciieieseeee e 286
APPENDIX A 287
APPENDIX B 289
INDEX 290

ASNIC V5.3

viii

Overview of ASN1C

The ASN1C code generation tool translates an Abstract Syntax Notation 1 (ASN.1) source file into
computer language source files that allow ASN.1 data to be encoded/decoded. This release of the compiler
includes options to generate code in three different languages: C, C++, or Java. This manual discusses the
C and C++ code generation capabilities. The ASNIC Java User’s Manual discusses the Java code
generation capability.

Each ASN.1 module that is encountered in an ASN.1 source file results in the generation of the following
two types of C/C++ language files:

1. Aninclude (.h) file containing C/C++ typedefs and classes that represent each of the ASN.1
productions listed in the ASN.1 source file, and

2. A C/C++ source (.c or .cpp) file containing C/C++ encode and decode functions. One encode and
decode function is generated for each ASN.1 production.

These files, when compiled and linked with the ASN.1 low-level encode/decode function library, provide a
complete package for working with ASN.1 encoded data.

ASNI1C works with the version of ASN.1 specified in the ITU standard X.680. It generates code for
encoding/decoding data as specified in the Basic Encoding Rules (BER) published in the ITU X.690
standard and the Packed Encoding Rules (PER) published in the ITU X.691 standard. The compiler is
capable of parsing all ASN.1 syntax as defined in the standards. Its mission is to get to the base types that
are the basis for encoding and decoding the messages that the specification defines. It will skip over all
other definitions and related ‘fluff’.

This release of the compiler contains a special executable (asnl1c90.exe) that backward compatible with
deprecated features from the older X.208 and X.209 standards. These include the ANY data type and
unnamed fields in SEQUENCE, SET, and CHOICE types. This version can also parse type syntax from
common macro definitions such as ROSE.

ASNIC V5.3 1

< this page intentionally left blank >

ASNIC V5.3

Using the Compiler

Running the Compiler

To test if the compiler was successfully installed, enter asnlc with no parameters as follows (note: if you
have not updated your PATH variable, you will need to enter the full pathname):

asnlc
You should observe the following display (or something similar):

ASN1C Compiler, Version 5.3x
Copyright (c) 1997-2002 Objective Systems, Inc. All Rights Reserved.

Usage: asnlc <filename> options
<filename> ASN.1 source file name

options:
-hfile <filename> C or C++ header (.h) filename
(default is <ASN.1l Module Name>.h)
-cfile <filename> C or C++ source (.c or .cpp) filename
(default is <ASN.1l Module Name>.c)
-print <filename> Generate print routines and write
to filename

-ber generate BER encode/decode functions
-der generate DER encode/decode functions
-per generate PER encode/decode functions
-trace add trace diag msgs to generated code
-C generate C code

-Cc++ generate C++ code

-java generate Java code

-events generate code to invoke event handlers
-config <file> specify configuration file

-nodecode do not generate decode functions
-noencode do not generate encode functions
-noIndeflLen do not generate indefinite length tests
—compact generate compact code

-warnings Output compiler warning messages

-0 <directory> Output file directory

-1 <directory> Import file directory

-pkgpfx <text> Java package prefix

-pkgname <text> Java package name

-list generate listing

-compat <version> generate code compatible with previous
compiler version. <version> format is
x.x (for example, 5.2)

This indicates that to use the compiler, at a minimum, an ASN.1 source file must be provided. The source
file specification can be a full pathname or only what is necessary to qualify the file. If directory
information is not provided, the user's current default directory is assumed. If a file extension is not
provided, the default extension ".asn" is appended to the name.

The source file must contain ASN.1 productions that define ASN.1 types and/or value specifications. This
file must strictly adhere to the syntax specified in ASN.1 standard ITU X.680.. The asnlc90 executable
should be used to parse files based on the 1990 ASN.1 standard (x.208) or that contain references to ROSE
macro specifications..

ASNIC V5.3 3

The following table lists all of the command line options and what they are used for:

ASNIC V5.3

Option

Argument

Description

-hfile

<filename>

This option allows the specification of a header (.h) file to which all of
the generated typedefs and function prototypes will be written. If not
specified, the default is <modulename>.h where <modulename> is the
name of the module from the ASN.1 source file.

-cfile

<filename>

This option allows the specification of a C or C++ source (.c or .cpp) file
to which all of the generated encode/decode functions will be written. If
not specified, the default is <modulename>.c where <modulename> is
the name of the module from the ASN.1 source file.

-print

<filename>

This option allows the specification of a C or C++ source (.c or .cpp) file
to which generated print functions will be written. Print functions are
debug functions that allow the contents of generated type variables to be
written to stdout. They are optional: if —print is not specified, no print
functions will be generated. The <filename> argument to this option is
also optional. If not specified, the print functions will be written to
<modulename>Print.c where <modulename> is the name of the module
from the ASN.1 source file.

-ber

None

This option instructs the compiler to generate functions that implement
the Basic Encoding Rules (BER) Rulesas specified in the ASN.1
standards.

-der

None

This option instructs the compiler to generate functions that implement
the Distinguished Encoding Rules (DER) as specified in the ASN.1
standards.

-per

None

This option instructs the compiler to generate functions that implement
the Packed Encoding Rules (PER) as specified in the ASN.1 standards.

-trace

None

This option is used to tell the compiler to add trace diagnostic messages
to the generated code. These messages cause printf statements to be
added to the generated code to print entry and exit information into the
generated functions. This is a debugging option that allows
encode/decode problems to be isolated to a given production processing
function. Once the code is debugged, this option should not be used as it
adversely affects performance.

-java

None

Generate Java source code.

-C

None

Generate C source code.

e+t

None

Generate C++ source code.

-events

None

Generate extra code to invoke user defined event and error handler
callback methods (see the Event Handlers section).

-config

<filename>

This option is used to specify the name of a file containing configuration
information for the source file being parsed. A full discussion of the
contents of a configuration file is provided in a later section.

-noencode

None

This option suppresses the generation of encode functions. .

-nodecode

None

This option suppresses the generation of decode functions.

-nolndefLen

None

This option instructs the compiler to omit indefinite length tests in

ASNIC V5.3

5

generated decode functions. These tests result in the generation of a
large amount of code. If you know that your application only uses
definite length encoding, this option can result in a much smaller code
base size.

-compact None This option instructs the compiler to generate more compact code at the
expense of some constraint and error checking. This is an optimization
option that should be used after an application is thoroughly tested.

-warnings None Output information on compiler generated warnings. .

-0 <directory> This option is used to specify the name of a directory to which all of the
generated files will be written.

-1 <directory> This option is used to specify a directory that the compiler will search for
ASN.1 source files for IMPORT items. Multiple —I qualifiers can be
used to specify multiple directories to search.

-pkgpfx <prefixName> This is a Java option for adding a prefix in front of the assigned Java
package name. By default, the Java package name is set to the module
name. If the package is embedded within a hierarchy, this option can be
used to set the other directory names that must be added to allow Java to
find the .class files.

-pkgname <packageName> This is a Java option that allows the entire Java package name to be
changed. Instead of the module name, the full name specified using this
option will be used. This option cannot be used in conjunction with —
pkgpfx option.

-list None Generate listing. This will dump the source code to the standard output
device as it is parsed. This can be useful for finding parse errors.

-compat <versionNumber> Generate code compatible with an older version of the compiler. The
compiler will attempt to generate code more closely aligned with the
given previous release of the compiler.

<versionNumber> is specified as x.x (for example, -compat 5.2)

Several options from the 5.0x release have been decommissioned and replaced with entries in the
configuration file. These options include —dynamic, -pdu, and —enum_prefix. See the section on the
configuration file to find the equivalent configuration settings for these options.

Compiling and Linking Generated Code

C/C++ source code generated by the compiler can be compiled using any ANSI standard C or C++
compiler. The only additional option that must be set is the inclusion of the ASN.1 C/C++ header file
include directory with the —I option.

When linking a program with compiler generated code, it is necessary to include the ASN.1 run-time
library. On Windows systems, the name of this file is either asnlber.lib or asnlper.lib depending on
whether BER or PER source-code generation was specified; on UNIX, the library names are libasnlber.a
and libasnlper.a respectively. The library file can be found in the lib subdirectory. For UNIX, the —L
switch should be used to point to the subdirectory path and —lasnlber or —lasnlper used to link with the
library. For Windows, the —-LIBPATH switch should be used to specify the library path.

ASNIC V5.3 6

Windows systems also include dynamic-link library (dll) versions of the library. These are located in the
dll subdirectory. To use them, link with the version of the asnlber.lib or asnlper.lib file that is contained in
the dll subdirectory.

See the makefile in any of the sample subdirectories of the distribution for an example of what must be
included to build a program using generated source code.

Porting Run-time Code to Other Platforms

The standard version of the compiler includes ANSI-standard source code for the base run-time libraries.
This code can be used to build binary versions of the run-time libraries for other operating environments.
Included with the source code is a portable makefile that can be used to build the libraries on the target
platform with minimal changes. All platform-specific items are isolated in the platform.mk file in the root
directory of the installation.

The procedure to port the run-time code to a different platform is as follows (note: this assumes common
UNIX or GNU compilation utilities are in place on the target platform).

ASNIC V5.3 7

1. Create a directory tree containing a root directory (the name does not matter) and lib, src, rtsrc, and
rtbuild subdirectories. The tree should be as follows:

root

lib rtsrc src rtbuild

2. Copy the files ending in extension “.mk” from the root directory of the installation to the root directory
of the target platform (note: if going from DOS to UNIX or vice-versa, FTP the files in ASCII mode to
ensure lines are terminated properly).

3. Copy all files from the src and rtsrc subdirectories from the installation to the src and rtsrc directories
on the target platform (note: if going from DOS to UNIX or vice-versa, FTP the files in ASCII mode to
ensure lines are terminated properly).

4. Copy the makefile from the rtbuild subdirectory of the installation to the rtbuild subdirectory on the
target platform (note: if going from DOS to UNIX or vice-versa, FTP the files in ASCII mode to
ensure lines are terminated properly).

5. Edit the platform.mk file in the root subdirectory and modify the compilation parameters to fit those
of the compiler of the target system. In general, the following parameters will need to be adjusted:

CC C compiler executable name
CCC C++ compiler executable name
CFLAGS_ Flags that should be specified on the C or C++ command line

The platform.w32 and platform.gnu files in the root directory of the installation are sample files for
Windows 32 (Visual C++) and GNU compilers respectively. Either of these can be renamed to
platform.mk for building in either of these environments.

6. Invoke the makefile in the rtbuild subdirectory.

If all parameters were set up correctly, the result should be binary library files created in the lib
subdirectory.

ASNIC V5.3 8

Compiler Configuration File

In addition to command line options, a configuration file can be used to specify compiler options. These
options can be applied not only globally but also to specific modules and productions.

A simple form of the Extended Markup Language (XML) is used to format items in the file. This language
was chosen because it is fairly well known and provides a natural interface for representing hierarchical
data such as the structure of ASN.1 modules and productions. The use of an external configuration file
was chosen over embedding directives within the ASN.1 source itself due to the fact that ASN.1 source
versions tend to change frequently. An external configuration file can be reused with a new version of an
ASN.1 module, but internal directives would have to be reapplied to the new version of the ASN.1 code.

At the outer level of the markup is the <asnlconfig> </asnlconfig> tag pair. Within this tag pair, the
specification of global items and modules can be made. Global items are applied to all items in all
modules. An example would be the <storage> qualifier. A storage class such as dynamic can be specified
and applied to all productions in all modules. This will cause dynamic storage (pointers) to be used to any
embedded structures within all of the generated code to reduce memory consumption demands.

The specification of a module is done using the <module></module> tag pair. This tag pair can only be
nested within the top-level <asnlconfig> section. The module is identified by using the required
<name></name> tag pair. Other attributes specified within the <module> section apply only to that
module and not to other modules specified within the specification. A complete list of all module attributes
is provided in the table at the end of this section.

The specification of an individual production is done using the <production></production> tag pair. This
tag pair can only be nested within a <module> section. The production is identified by using the required
<name></name> tag pair. Other attributes within the production section apply only to the referenced
production and nothing else. A complete list of attributes that can be applied to individual productions is
provided in the table at the end of this section.

When an attribute is specified in more than one section, the most specific application is always used. For
example, assume a <typePrefix> qualifier is used within a module specification to specify a prefix for all
generated types in the module and another one is used to a specify a prefix for a single production. The
production with the type prefix will be generated with the type prefix assigned to it and all other generated
types will contain the type prefix assigned at the module level.

Values in the different sections can be specified in one of the following ways:

1. Using the <name>value</name> form. This assigns the given value to the given name. For
example, the following would be used to specify the name of the “H323-MESSAGES” module in
a module section:
<name>H323-MESSAGES</name>

2. Flag variables that turn some attribute on or off would be specified using a single <name/> entry.
For example, to specify a given production is a PDU, the following would be specified in a
production section:
<isPDU/>

3. An attribute list can be associated with some items. This is normally used as a shorthand form for
specifying lists of names. For example, to specify a list of type names to be included in the

generated code for a particular module, the following would be used:

<include types="TypeNamel,TypeName2,TypeName3”/>

The following are some examples of configuration specifications:

ASNIC V5.3 9

<asnlconfig><storage>dynamic</storage></asnlconfig>

This specification indicates dynamic storage should be used in all places where its use would result in
significant memory usage savings within all modules in the specified source file.

<asnlconfig>
<module>

<name>H323-MESSAGES</name>
<sourceFile>h225.asn</sourceFile>

<typePrefix>H225</typePrefix>

</module>

</asnlconfig>

This specification applies to module ‘H323-MESSAGES’ in the source file being processed. For IMPORT
statements involving this module, it indicates that the source file “h225.asn’ should be searched for
specifications. It also indicates that when C or C++ types are generated, they should be prefixed with the
‘H225’. This can help prevent name clashes if one or more modules are involved and they contain
productions with common names.

The following tables specify the list of attributes that can be applied at all of the different levels: global,
module, and individual production:

Global Level

These attributes can be applied at the global level by including them within the <asnlconfig> section:

Name

Values

Description

<storage></storage>

dynamic, static, or list
keyword.

If dynamic, it indicates that dynamic storage (i.e., pointers) should
be used everywhere within the generated types where use could
result in lower memory consumption. These places include the
array element for sized SEQUENCE OF/SET OF types and
optional elements within SEQUENCE or SET constructs.

If static (the default), it indicates static type should be used in
these places. In general, static types are easier to work with.

If list, a linked-list type will be used for SEQUENCE OF/SET OF
constructs instead of an array type.

Module Level

These attributes can be applied at the module level by including them within a <module> section:

Name Values Description

<name> module name This attribute identifies the module to which this section applies.
</name> It is required.

<include ASN.1 type or values This item allows a list of ASN.1 types and/or values to be

types="names”’
values="names”/>

names are specified as
an attribute list

included in the generated code. By default, the compiler
generates code for all types and values within a specification.
This allows the user to reduce the size of the generated code base
by selecting only a subset of the types/values in a specification for
compilation.

ASNIC V5.3

10

Note that if a type or value is included that has dependent types or
values (for example, the element types in a SEQUENCE, SET, or
CHOICE), all of the dependent types will be automatically
included as well.

<include
importsFrom="name”
/>

ASN.1 module name(s)
specified as an attribute
list.

This form of the include directive tells the compiler to only
include types and/or values in the generated code that are
imported by the given module(s).

<exclude
types="names”
values="names”/>

ASN.1 type or values
names are specified as
an attribute list

This item allows a list of ASN.1 types and/or values to be
excluded in the generated code. By default, the compiler
generates code for all types and values within a specification.

This is generally not as useful as in include directive because most
types in a specification are referenced by other types. If an
attempt is made to exclude a type or value referenced by another
item, the directive will be ignored.

<storage>
</storage>

dynamic, static, or list
keyword.

The definition is the same as for the global case except that the
specified storage type will only be applied to generated C and
C++ types from the given module.

<sourceFile>
</sourceFile>

source file name

Indicates the given module is contained within the given ASN.1
source file. This is used on IMPORTS to instruct the compiler
where to look for imported definitions. This replaces the
module.txt file used in previous versions of the compiler to
accomplish this function.

<typePrefix>
</typePrefix>

prefix text

This is used to specify a prefix that will be applied to all generated
C and C++ typedef names (note: for C++, the prefix is applied
after the standard ‘ASNI1T ’ prefix). This can be used to prevent
name clashes if multiple modules are involved in a compilation
and they all contain common names.

<enumPrefix>
</enumPrefix>

prefix text

This is used to specify a prefix that will be applied to all generated
enumerated identifiers within a module. This can be used to
prevent name clashes if multiple modules are involved in a
compilation. (note: this attribute is normally not needed for C++
enumerated identifiers because they are already wrapped in a
structure to allows the type name to be used as an additional
identifier).

<valuePrefix>
</valuePrefix>

prefix text

This is used to specify a prefix that will be applied to all generated
value constants within a module. This can be used to prevent
name clashes if multiple modules are involved that use a common
name for two or more different value declarations.

<noPDU/>

n/a

Indicates that this module contains no PDU definitions. This is
normally true in modules that are imported to get common type
definitions (for example, InformationFramework). This will
prevent the C++ version of the compiler from generating any
control class definitions for the types in the module.

Production Level

These attributes can be applied at the production level by including them within a <production> section:

ASNIC V5.3

11

Name

Values

Description

<name>
</name>

module name

This attribute identifies the module to which this section applies.
It is required.

<storage>
</storage>

dynamic, static, or list
keyword.

The definition is the same as for the global case except that the
specified storage type will only be applied to the generated C or
C++ type for the given production.

<typePrefix>
</typePrefix>

prefix text

This is used to specify a prefix that will be applied to all generated
C and C++ typedef names (note: for C++, the prefix is applied
after the standard ‘ASNI1T ’ prefix). This can be used to prevent
name clashes if multiple modules are involved in a compilation
and they all contain common names.

<enumPrefix>
</enumPrefix>

prefix text

This is used to specify a prefix that will be applied to all generated
enumerated identifiers within a module. This can be used to
prevent name clashes if multiple modules are involved in a
compilation. (note: this attribute is normally not needed for C++
enumerated identifiers because they are already wrapped in a
structure to allows the type name to be used as an additional
identifier).

<isBiglnteger/>

n/a

This is a flag variable (an ‘empty element’ in XML terminology)
that specifies that this production will be used to store an integer
larger than the C or C++ int type on the given system (normally
32 bits). A C string type (char*) will be used to hold a textual
representation of the value.

This qualifier can be applied to either an integer or constructed
type. If constructed, all integer elements within the constructed
type are flagged as big integers.

<isPDU/>

n/a

This is a flag variable that specifies that this production represents
a Protocol Data Unit (PDU). This is defined as a production that
will be encoded or decoded from within the application code.
This attribute only makes a difference in the generation of C++
classes. Control classes that are only used in the application code
are only generated for types with this attribute set.

ASNIC V5.3

12

Compiler Error Reporting

Errors that can occur when generating source code from an ASN.1 source specification take two forms:
syntax errors and semantics errors.

Syntax errors are errors in the ASN.1 source specification itself. These occur when the rules specified in
the ASN.1 grammar are not followed. ASN1CPP will flag these types of errors with the error message
‘Syntax Error’ and abort compilation on the source file. The offending line number will be provided. The
user can re-run the compilation with the ‘-1” flag specified to see the lines listed as they are parsed. This
can be quite helpful in tracking down a syntax error.

The most common types of syntax errors are as follows:

o Invalid case on identifiers: module name must begin with an uppercase letter, productions (types) must
begin with an uppercase letter, and element names within constructors (SEQUENCE, SET, CHOICE)
must begin with lowercase letters.

e Elements within constructors not properly delimited with commas: either a comma is omitted at the
end of an element declaration, or an extra comma is added at the end of an element declaration before
the closing brace.

e Invalid special characters: only letters, numbers, and the hyphen (-) character are allowed. C
programmers tend to like to use the underscore character (_) in identifiers. This is not allowed in
ASN.1. Conversely, C does not allow hyphens in identifiers. To get around this problem, ASN1CPP
converts all hyphens in an ASN.1 specification to underscore characters in the generated code.

Semantics errors occur on the compiler back-end as the code is being generated. In this case, parsing was
successful, but the compiler does not know how to generate the code. These errors are flagged by
embedding error messages directly in the generated code. The error messages always begin with an
identifier with the prefix ‘%ASN-*, so a search can be done for this string in order to find the locations of
the errors. A single error message is output to stderr after compilation on the unit is complete to indicate
error conditions exist.

ASNIC V5.3 13

Generated C/C++ Source Code

Header (.h) File

The generated C or C++ include file contains a section for each ASN.1 production defined in the ASN.1
source file. Different items will be generated depending on whether the selected output code is C or C++.
In general, C++ will add some additional items (such as a control class definition) onto what is generated
for C.

The following items are generated for each ASN.1 production:

Tag value constant

Choice tag constants (CHOICE type only)

Named bit index and mask constants (BIT STRING type only)

Enumerated type option values (ENUMERATED or INTEGER type only)

C type definition

Encode function prototype

Decode function prototype

C++ class definition which ‘wraps’ an instance of the production type variable and associated
encode/decode functions. In some cases, the compiler may generate additional methods specific to a
particular production type. (C++ only)

A sample section from a C header file is as follows:

/**/

[* */
/* Enpl oyeeNumnber */
[* */

/**/

#def i ne TV_Enpl oyeeNunber TM APPL| TM PRI M 2
t ypedef ASNL1I NT Enpl oyeeNunber;

i nt asnlE Enpl oyeeNunber (ASNLCTXT* ctxt _p,
ASNLT_Enpl oyeeNunber *object_p, ASNLTagType taggi ng);

i nt asnlD Enpl oyeeNunber (ASNLCTXT* ctxt _p,
ASNLT_Enpl oyeeNunber *object_p, ASNlTagType taggi ng, int |ength);

This corresponds to the following ASN.1 production specification:

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER

In this definition, TV_EmployeeNumber is the tag constant. Doing a logical OR on the class, form, and
identifier fields forms this constant. This constant can be used in a comparison operation with a tag parsed
from a message.

The ‘typdef ASNIINT EmployeeNumber’ declares EmployeeNumber to be of an integer type (note:
ASNIINT and other primitive type definitions can be found in the asnltype.h header file).

asnlE_EmployeeNumber and asn1D_EmployeeNumber are function prototypes for the encode and decode
functions respectively. These are BER function prototypes. If the —per switch is used, PER function
prototypes are generated. The PER prototypes begin with the prefix ‘asn1PE_’ and ‘asn1PD_’ for encoder
and decoder respectively.

ASNIC V5.3 15

A sample section from a C++ header file for the same production is as follows:

/**/
[* */
/* Enpl oyeeNumnber */
[* */
/*

***/

#def i ne TV_Enpl oyeeNunber TM APPL| TM PRI M 2
t ypedef ASNLI NT ASNLT_Enpl oyeeNunber ;

cl ass ASNLC Enpl oyeeNunber : public ASNLCType {
publi c:
ASNLT_Enpl oyeeNunber & nsgDat a;
ASNLC Enpl oyeeNunber (ASN1MessageBuffer & nmsgBuf,
ASNLT_Enpl oyeeNunber & dat a) ;
i nt Encode ();
i nt Decode ();

b

i nt asnlE Enpl oyeeNunber (ASNLCTXT* ctxt _p,
ASNLT_Enpl oyeeNunber *object_p, ASNLTagType taggi ng);

i nt asnlD Enpl oyeeNunber (ASNLCTXT* ctxt _p,
ASNLT_Enpl oyeeNunber *object_p, ASNlTagType taggi ng, int |ength);

Note the two main differences between this and the C version:

1. The use of the ‘ASNIT ’ prefix on the type definition. The C++ version uses the ‘ASNIT _’ prefix for
the typedef and the “ASN1C _’ prefix for the control class definition.

2. The inclusion of the ‘ASN1C_EmployeeNumber’ control class.

ASNI1C_EmployeeNumber is the control class declaration. The purpose of the control class is to provide a
linkage between the message buffer object and the ASN.1 typed object containing the message data. The
class provides methods such as Encocde and Decode for encoding and decoding the contents to the linked
objects. It also provides other utility methods to make populating the typed variable object easier.

ASNIC always adds an ASN1C _ prefix to the production name to form the class name. Most generated
classes are derived from the standard ASN1CType base class defined in asnl Message.h. The following
ASN.1 types cause code to be generated from different base classes:

e BIT STRING — The generated control class is derived from the ASNICBitStr class

e SEQUENCE OF or SET OF with linked list storage — The generated control class is derived from the
ASNICSeqOfList base class.

These intermediate classes are also derived from the ASNICType base class. Their purpose is the addition
of functionality specific to the given ASN.1 type. For example, the ASN1CBitStr control class provides
methods for setting, clearing and testing bits in the referenced bit string variable.

In the generated control class, a public msgData variable reference of the generated type is declared. The
constructor takes two arguments — an AsnlMessageBuffer object reference and a reference to a variable of
the data type to be encoded or decoded. The message buffer object is a work buffer object for encoding or
decoding. The data type reference is a reference to the ‘ASN1T _’ variable that was generated for the data

type.

ASNIC V5.3 16

Encode and Decode methods are declared that wrap the respective compiler generated C encode and
decode functions. If the —print function command line argument was used, a Print method is also generated
to wrap the corresponding C print function.

The equivalent C and C++ type definitions for each of the various ASN.1 types follow.

BOOLEAN

The ASN.1 BOOLEAN type is converted into a C type named "ASNIBOOL". In the global include file
"asnltype.h", ASNIBOOL is defined to be an "unsigned character".

ASN.1 production : <name> ::= BOOLEAN
Generated C code: typedef ASN1BOOL <name>;
Generated C++ code: typedef ASNIBOOL ASN1T <name>;
For example, if “B : : = [PRI VATE 10] BOOLEAN” was defined as an ASN.1 production, the

generated C type definition would be “t ypedef ASNLBOCOL B”. Note that the tag information is not
represented in the type definition, this is handled within the generated encode/decode functions.

Note that the only difference between the C and C++ mapping is the addition of the ‘“ASN1T _’ prefix on
the C++ type.

INTEGER

The ASN.1 INTEGER type is converted into a C type named either "ASNTINT" or “ASN1UINT”. In the

global include file "asnltype.h", ASN1INT is defined to be an "int”, ASN1UINT is defined to be an
“unsigned int”.

ASN.1 production : <name> ::= INTEGER
Generated C code : typedef ASN1INT <name>;
Generated C++ code: typedef ASN1INT ASNIT <name>;

The ASNI1INT type represents a signed integer number, ASN1UINT represents an unsigned integer
number. ASNIUINT is used if a value range constraint on a production specification exceeds the
maximum value that can be stored in a signed integer. An example of this would be the Counter
production in the SNMP SMI specification:

Counter ::= [APPLICATION 1] IMPLICIT INTEGER (0..4294967295)
This would cause the following typedef to be generated:

typedef ASNIUINT Counter;

Large Integer Support

In C and C++, the maximum size for an integer type is normally 32 bits (or 64 bits on some newer, 64-bit
machines). ASN.1 has no such limitation on integer sizes and some applications (security key values for
example) demand larger sizes. In order to accommodate these types of applications, the ASN1C compiler
allows an integer to be declared a “big integer” via a configuration file variable (the <isBiglnteger/> setting
is used to do this — see the section describing the configuration file for full details). When the compiler
detects this setting, it will declare the integer to be a character string variable instead of a C int or unsigned

ASNIC V5.3 17

int type. The character string would then be populated with a character string representation of the value to
be encoded. Only hexadecimal string representations of the integer value are supported in this release.

For example, the following INTEGER type might be declared in the ASN.1 source file:
SecurityKeyType ::= [APPLICATION 2] INTEGER
Then, in a configuration file used with the ASN.1 definition above, the following declaration can be made:
<production>
<name>SecurityKeyType</name>

<isBigInteger/>
</production>

This will cause the compiler to generate the following type declaration:
typedef ASNlConstCharPtr SecurityKeyType

The ASN1ConstCharPtr type is declared to be a ‘char*’ type for C and a ‘const char*’ type for C++ in the
asnltype.h header file. The SecurityKeyType variable can now be populated with a hexadecimal string for
encoding such as the following:

SecurityKeyType secKey = “0xfd09874da875cc90240087cdl2fd”;

Note that in this definition the ‘0x’ prefix is required to identify the string as containing hexadecimal
characters.

On the decode side, the decoder will populate the variable with the same type of character string after
decoding.

BIT STRING

The ASN.1 BIT STRING type is converted into a C or C++ structured type containing an integer to hold
the number of bits and an array of unsigned characters ("OCTETs") to hold the bit string contents. The
number of bits integer specifies the actual number of bits used in the bit string and takes into account any
unused bits in the last byte.

The type definition of the contents field depends on how the bit string is specified in the ASN.1 definition.
If a size constraint is used, a static array is generated; otherwise, a pointer variable is generated to hold a
dynamically allocated string. The decoder will automatically allocate memory to hold a parsed string based
on the received length of the string.

In the static case, the length of the character array is determined by adjusting the given size value (which
represents the number of bits) into the number of bytes required to hold the bits.

Dynamic BIT STRING

ASN.1 production : <name> ::= BIT STRING
Generated C code : typedef ASN1DynBitStr <name>;
Generated C++ code: typedef ASNITDynBitStr ASNIT <name>;

In this case, different base types are used for C and C++. The difference between the two is the C++
version includes constructors that make setting the value a bit easier.

The ASN1DynBitStr type (i.e., the type used in the C mapping) is defined in the asnltype.h header file as
follows:

ASNIC V5.3 18

typedef struct ASN1DynBitStr ({
ASN1UINT numbits;
ASN1OCTET* data;

} ASN1TDynBitStr;

The ASN1TDynBitStr type is defined in the asn1CppTypes.h header file as follows:

typedef struct ASNITDynBitStr ({

ASN1UINT numbits;

ASN1OCTET* data;

// ctors

ASN1TDynBitStr () : numbits(0) {}

ASN1TDynBitStr (ASNI1UINT _numbits, ASNIOCTET* data);
} ASN1TDynBitStr;

Static (sized) BIT STRING

ASN.1 production : <name> ::= BIT STRING (SIZE (<len>))
Generated C code : typedef struct {
int numbits;

ASNIOCTET data[<adjusted len>*];
} <name>;

Generated C++ code: typedef struct {
int numbits;
ASNIOCTET data[<adjusted len>*];
// ctors

ASNIT <name> ();
ASN1IT <name> (ASN1UINT numbits,
ASNIOCTET* data);
} ASNIT <name>;

* <adjusted len> = ((<len> - 1)/8) + 1
For example, the following ASN.1 production:

BS ::= [PRI VATE 220] BIT STRING (SIZE (18))
Would translate to the following C typedef:

typedef struct ASNIT _BS {
ASN1UI NT nunbi ts;
ASN1COCTET dat a[3] ;

} ASNLT_BS;

In this case, three octets would be required to hold the 18 bits: eight in the first two bytes, and two in the
third.

Note that for C++, the compiler generates special constructors and assignment operators to make
populating a structure easier. In this case, two constructors were generated: a default constructor and one
that takes numbits and data as arguments.

Named Bits

In the ASN.1 standard, it is possible to define an enumerated bit string that specifies named constants for
different bit positions. ASNI1C provides support for this type of construct by generating symbolic constants

ASNIC V5.3 19

that can be used to set, clear, or test these named bits. These symbolic constants are in the form of a byte
index and a bit mask. In addition, generated C++ code contains an enumerated constant added to the
control class with an entry for each of the bit numbers. These entries can be used in calls to the methods of
the ASNICBitStr class to set, clear, and test bits.

Bits are defined in order from left to right in a bit string. The starting bit number is zero. Therefore, a bit
string containing one set bit would result in a single octet value of 0x80 (left most bit set). If this bit were
named, the compiler would generate a byte index constant of 0, and a bit mask constant of 0x80. The byte
index would be used to access the specific octet in the octet array. The bit mask would then be used to
access the bit using a logical bit operator.

For example, the following ASN.1 production:
NanedBS ::= BIT STRING { bitOne(1), bitTen(10) }
Would translate to:

/* Named bit constants */

#define BitMitOne 0x40
#def i ne Byt Xbit One 0
#define BitMitTen 0x20
#def i ne Byt Xbit Ten 1

/* Type definitions */

t ypedef struct ASNLT NanmedBS {
ASNLUI NT nunbi ts;
ASNLOCTET dat a[2] ;

} NanmedBS;

The named bit constants would be used to access the data array within the ASN1T_NamedBS type. The
named bit ‘bitOne’ could be set with the following code:

NamedBS bs;
memset (&bs, 0, sizeof (bs));
bs.data[BytXbitOne] |= BitMbitOne;

The statement to clear the bit would be as follows:
bs.data[BytXbitOne] &= ~BitMbitOne;

Finally, the bit could be tested using the following statement:
bs.data[BytXbitOne] & BitMbitOne

Note that the compiler generated a fixed length data array for this specification. It did this because the
maximum size of the string is known due to the named bits — it must only be large enough to hold the
maximum valued named bit constant.

ASNI1CBitStr Control Class

When C++ code generation is specified, a control class is generated for operating on the target bit string.
This class is derived from the ASNICBitStr class. This class contains methods for operating on bits within
the string.

Objects of this class can also be declared inline to make operating on bits within other ASN.1 constructs
easier. For example, in a SEQUENCE containing a bit string element the generated type will contain a
public member variable containing the ‘ASNI1T’ type that holds the message data. If one wanted to operate
on the bit string contained within that element, they could do so by using the ASNICBitStr class inline as
follows:

ASNIC V5.3 20

ASN1CBitStr bs (<segVar>.<element>);
bs.set (0);

In this example, <seqVar> would represent a generated SEQUENCE variable type and <element> would
represent a bit string element within this type.

See the ASN1CBitStr in the C++ Run-Time Classes section for details on all of the methods available in
this class.

OCTET STRING

The ASN.1 OCTET STRING type is converted into a C structured type containing an integer to hold the
number of octets and an array of unsigned characters ("OCTETs") to hold the octet string contents. The
number of octets integer specifies the actual number of octets in the contents field.

The allocation for the contents field depends on how the octet string is specified in the ASN.1 definition. If
a size constraint is used, a static array of that size is generated; otherwise, a pointer variable is generated to
hold a dynamically allocated string. The decoder will automatically allocate memory to hold a parsed
string based on the received length of the string.

For C++, constructors and assignment operators are generated to make assigning variables to the structures
easier. In addition to the default constructor, a constructor is provided for string or binary data. An
assignment operator is generated for direct assignment of a null-terminated string to the structure (note: this
assignment operator copies the null terminator at the end of the string to the data).

Dynamic OCTET STRING
ASN.1 production : <name> ::= OCTET STRING
Generated C code: typedef ASN1DynOctStr <name>;
Generated C++ code : typedef ASNITDynOctStr ASNIT <name>;

In this case, different base types are used for C and C++. The difference between the two is the C++
version includes constructors and assignment operators that make setting the value a bit easier.

The ASN1DynOctStr type (i.e., the type used in the C mapping) is defined in the asnltype.h header file as
follows:

typedef struct ASN1DynOctStr {
ASNI1UINT numbits;
ASN1OCTET* data;

} ASN1TDynBitStr;

The ASN1TDynOctStr type is defined in the asn1CppTypes.h header file and has the following definition:

typedef struct ASN1TDynOctStr ({
ASN1UINT numocts;
ASN1OCTET* data;
// ctors
ASN1TDynOctStr ();
ASN1TDynOctStr (ASNI1UINT numocts, ASNIOCTET* data);
ASN1TDynOctStr (char* cstring);
// assignment operators
ASN1TDynOctStr& operator= (char* cstring)
} ASN1TDynOctStr;

ASNIC V5.3 21

Static (sized) OCTET STRING
ASN.1 production : <name> ::= OCTET STRING (SIZE (<len>))

Generated C code: typedef struct {
ASN1UINT numocts;
ASN1OCTET datal[<len>];
} <name>;

Generated C++ code : typedef struct {
ASNI1UINT numocts;
ASNIOCTET datal[<len>];

// ctors

ASNIT <name> ();

ASN1IT <name> (ASN1UINT numocts,
ASN1OCTET* data);

ASN1T <name> (char* cstring);

// assignment operators
ASNIT <name>§& operator= (char* cstring);

} ASNIT <name>;

ENUMERATED

The ASN.1 ENUMERATED type is converted into different types depending on whether C or C++ code is
being generated. The C mapping is either a C enum or integer type depending on whether or not the ASN.1
type is extensible or not. The C++ mapping adds a struct wrapper around this type to provide a namespace
to aid in making the enumerated values unique across all modules.

C Mapping
ASN.1 production : <name> ::= ENUMERATED (<idl>(<vall>),
<id2>(<val2>), ...)
Generated code : typedef enum {

idl = wvall,
id2 = valz,

} <name>
The compiler will automatically generate a new identifier value if it detects a duplicate within the source

specification. The format of this generated identifier is ‘id n’ where id is the original identifier and n is a
sequential number. The compiler will output an informational message when this is done.

A configuration setting is also available to further disambiguate duplicate enumerated item names. This is
the “enum prefix” setting that is available at both the module and production levels. For example, the
following would cause the prefix “h225” to be added to all enumerated identifiers within the H225 module:

<module>
<name>H225</name>
<enumPrefix>h225</enumPrefix>
</module>

C++ Mapping

ASNIC V5.3 22

ASN.1 production : <name> ::= ENUMERATED (<idl>(<vall>),
<id2>(<val2>), ...)

Generated code : struct <name> {
enum Root {

idl = vall,

id2 = val2,

[enum Ext {
extidl = extvall,

b

typedef <name>::Root ASN1IT <name>
The struct type provides a namespace for the enumerated elements. This allows the same enumerated
constant names to be used in different productions within the ASN.1 specification. An enumerated item is
specified in the code using the <name>::<id> form.
Every generated definition contains a ‘Root’ enumerated specification and, optionally, an ‘Ext’
specification. The ‘Root’ specification contains the root elements of the type (or all of the elements if it is
not an extended type), and the ‘Ext’ specification contains the extension enumerated items.
The form of the typedef following the struct specification depends on whether or not the enumerated type
contains an extension marker or not. If a marker is present, it means the type can contain values outside the
root enumeration. In this case, an ASN1UINT is used in the typedef; otherwise, the Root section of the
enumeration is used to define the type.

NULL

The ASN.1 NULL type does not generate an associated C or C++ type definition.

OBJECT IDENTIFIER

The ASN.1 OBJECT IDENTIFIER type is converted into a C or C++ structured type to hold the
subidentifier values that make up the object identifier.

ASN.1 production : <name> ::= OBJECT IDENTIFIER
Generated C code : typedef ASN1OBJID <name>;
Generated C++ code: typedef ASN1TObjId ASNIT <name>;

In this case, different base types are used for C and C++. The difference between the two is the C++
version includes constructors and assignment operators that make setting the value a bit easier.

The ASN1OBIJID type (i.e., the type used in the C mapping) is defined in asnltype.h to be the following:

typedef struct {
ASN1UINT numids; /* number of subidentifiers */
ASN1UINT subid[ASN K MAXSUBIDS]; /* subidentifier values */
} ASN1OBJID;

ASNIC V5.3 23

The constant "ASN_K MAXSUBIDS" specifies the maximum number of sub-identifiers that can be
assigned to a value of the type. This constant is set to 128 as per the ASN.1 standard. The value of this
constant can be changed to a lower number for applications with restricted memory requirements.

The ASN1TODbjld type used in the C++ mapping is defined in Asn1CppTypes.h as follows:

struct EXTERN ASN1TObjId ({
ASN1UINT numids;
ASN1UINT subid[ASNiKiMAXSUBIDS};

ASN1TOb3jId () : numids(0) {}
ASN1TObjId (ASN1OCTET numids, const ASNI1USINT* subids);
ASN1TObjId (const ASN1OBJID& oid);
ASN1TObjId (const ASN1TObjId& oid);
void operator= (const ASN1OBJID& rhs);
void operator= (const ASN1TObjIdé& rhs);
o

The definition is the same as the C type with the addition of the constructors and assignment operators.
Note that a constructor and assignment operator are overloaded to use the C ASN10OBJID type. That is
because value assignments are generated using the ASN1OBJID type so these methods allow direct
assignment of these generated values to an object of this type.

REAL

The ASN.1 REAL type is mapped to the C type "ASNIREAL". In the global include file "asnltype.h",
ASNIREAL is defined to be a "double”.

ASN.1 production : <name> ::= REAL

Generated C code : typedef ASNIREAL <name>;

Generated C++ code: typedef ASNIREAL ASNIT <name>;
SEQUENCE

The mapping for the ASN.1 SEQUENCE type for C and C++ is identical with the exception of:

1. The C++ type having the ‘ASNIT ’ prefix, and

2. The C++ type may have a constructor to initialize an optional bit mask (see the subsection on optional

elements).

This section shows the C mapping. The C++ mapping is the same with the addition of the ‘ASNIT ’
prefix on each of the type names.

An ASN.1 SEQUENCE is a constructed type consisting of a series of element definitions. These elements

can be of any ASN.1 type including other constructed types. For example, it is possible to nest a
SEQUENCE definition within another SEQUENCE definition as follows:

A ::= SEQUENCE {
X SEQUENCE {
al | NTEGER,
a2 BOOLEAN

}]
y OCTET STRING Sl ZE (10)
}

ASNIC V5.3

24

In this example, the production has two elements — x and y. The nested SEQUENCE x has two additional
elements — al and a2.

The ASN1C compiler first recursively pulls all of the embedded constructed elements out of the
SEQUENCE and forms new temporary types. The name of the temporary types are of the form

<name> <element-namel> <element-name2> ... <element-nameN>. For example, in the definition
above, two temporary types would be generated: A x and A_y (A _y is generated because a static OCTET
STRING maps to a C++ struct type).

The general form is as follows:

ASN.1 production: <name> ::= SEQUENCE ({
<elementl-name> <elementl-type>,
<element2-name> <element2-type>,

Generated C code: typedef struct {
<typel> <elementl-name>;
<type2> <elementZ2-name>;

} <name>;
- Or -
typedef struct {
} <tempNamel>
typedef struct {
} <tempName2>
typedef struct {
<tempNamel> <elementl-name>;
<tempName2> <element2-name>;
} <name>;
The <typel> and <type2> placeholders represent the equivalent C types for the ASN.1 types <elementl-
type> and <element2-type> respectively. This form of the structure will be generated if the internal types
are primitive. <tempNamel> and <tempName2> are formed using the algorithm described above for
pulling structured types out of the definition. This form is used for constructed elements and elements that
map to structured C types.
The example above would result in the following generated C typedefs:
typedef struct A x {
ASNI1INT al;
ASN1BOOL aZ2;
}A x;
typedef struct A y {
ASNIUINT numocts;

ASN1OCTET data[10];
Ay

ASNIC V5.3 25

typedef struct A {

A x x;
Ay yi
}A;

In this case, elements x and y map to structured C types, so temporary typedefs are generated.

In the case of nesting levels greater than two, all of the intermediate element names are used to form the
final name. For example, consider the following type definition that contains three nesting levels:

X ::= SEQUENCE {
a SEQUENCE {
aa SEQUENCE { x | NTEGER y BOOLEAN },
bb | NTEGER

}
}

In this case, the generation of temporary types results in the following equivalent type definitions:
X-a-aa ::= SEQUENCE { x | NTEGER, y BOCLEAN }
X-a ::= SEQUENCE { aa X-a-aa, bb I NTEGER }
X ::= SEQUENCE { X-a a }

Note that the name for the aa element type is X-a-aa. It contains both the name for a (at level 1) and aa (at
level 2). This is a change from v5.1x and lower where only that production name and last element name
would be used (i.e., X-aa). The change was made to ensure uniqueness of the generated names when
multiple nesting levels are used.

Note that although the compiler can handle embedded constructed types within productions, it is generally
not considered good style to define productions this way. It is much better to manually define the
constructed types for use in the final production definition. For example, the production defined at the start
of this section can be rewritten as the following set of productions:

X 1= SEQUENCE ({
al | NTEGER,
a2 BOOLEAN
}
Y ::= OCTET STRI NG
A ::= SEQUENCE {
X X,
Yy
}

This makes the generated code easier to understand for the end user.

Unnamed Elements

Note: as of X.680, unnamed elements are not allowed — elements must be named. ASNI1C still provides
backward compatibility support for this syntax however.

In an ASN.1 SEQUENCE definition, the <element-name> tokens at the beginning of element declarations
are optional. It is possible to include only a type name without a field identifier to define an element. This
is normally done with defined type elements, but can be done with built-in types as well. An example of a
SEQUENCE with unnamed elements would be as follows:

AnInt ::= [PRIVATE 1] INTEGER

ASNIC V5.3 26

Aseq ::= [PRIVATE 2] SEQUENCE ({
X INTEGER,
AnInt
}

In this case, the first element (x) is named and the second element is unnamed.

ASNI1C handles this by generating an element name using the type name with the first character set to
lower case. For built-in types, a constant element name is used for each type (for example, alnt is used for
INTEGER). There is one caveat, however. ASN1C cannot handle multiple unnamed elements in a
SEQUENCE or SET with the same type names. Element names must be used in this case to distinguish the
elements.

So, for the example above, the generated code would be as follows:

typedef ASNIINT AnInt;

typedef struct Aseq {

ASNIINT X;
AnInt anInt;
} Aseq;
OPTIONAL keyword

Elements within a sequence can be declared to be optional using the OPTIONAL keyword. This indicates
that the element is not required in the encoded message. An additional construct is added to the generated
code to indicate whether an optional element is present in the message or not. This construct is a bit
structure placed at the beginning of the generated sequence structure. This structure always has variable
name ‘m’ and contains single-bit elements of the form ‘<element-name>Present’ as follows:

struct {
unsigned <element-namel>Present : 1,
unsigned <element-name2>Present : 1,
}om;

In this case, the elements included in this construct correspond to only those elements marked as
OPTIONAL within the production. If a production contains no optional elements, the entire construct is
omitted.

For example, we will change the production in the previous example to make both elements optional:
Aseq ::= [PRIVATE 2] SEQUENCE ({
X INTEGER OPTIONAL,
AnInt OPTIONAL
}
In this case, the following C typedef is generated:

typedef struct Aseqg {

struct {
unsigned xPresent : 1,
unsigned anIntPresent : 1
}om;
ASN1INT X;
AnInt anInt;

ASNIC V5.3 27

} Aseq;

When this structure is populated for encoding, the developer must set the xPresent and anIntPresent flags
accordingly to indicate whether the elements are to be included in the encoded message or not. Conversely,
when a message is decoded into this structure, the developer must test the flags to determine if the element
was provided in the message or not.

The C++ version of the compiler will generate a constructor for the structured type for a SEQUENCE if
OPTIONAL elements are present. This constructor will set all optional bits to zero when a variable of the
structured type is declared. The programmer therefore does not have to be worried about clearing bits for
elements that are not used; only with setting bits for the elements that are to be encoded.

DEFAULT keyword

The DEFAULT keyword allows a default value to be specified for elements within the SEQUENCE.
ASNIC will parse this specification and treat it as it does an optional element. Note that the value
specification is only parsed in simple cases for primitive values, so it up to the programmer to provide the
value in complex cases. For BER encoding, a value must be specified be it the default or other value.

For DER or PER, it is a requirement that no value be present in the encoding for the default value. For
integer and boolean default values, the compiler automatically generates code to handle this requirement
based on the value in the structure. For other values, an optional present flag bit is generated. The
programmer must set this bit to false on the encode side to specify default value selected. If this is done, a
value is not encoded into the message. On the decode side, the developer must test for present bit not set.
If this is the case, the default value specified in the ASN.1 specification must be used and the value in the
structure ignored.

Extension Elements

If the SEQUENCE type contains an open extension field (i.e., a ... at the end of the specificationora ...,
... in the middle), a special element will be inserted to capture encoded extension elements for inclusion in
the final encoded message. This element will be of type ASN10penType and have the name extElem1.
This field will contain the complete encoding of any extension elements that may have been present in a
message when it is decoded. On subsequent encode of the type, the extension fields will be copied into the
new message.

If the SEQUENCE type contains an extension marker and extension elements, then the open extension type
field will not be added. Instead, the actual extension elements will be present. These elements will be
treated as optional elements whether they were declared that way or not. The reason is because a version 1
message could be received that does not contain the elements.

Additional bits will be generated in the bit mask if version brackets are present. These are groupings of
extended elements that typically correspond to a particular version of a protocol. An example would be as
follows:

TestSequence ::= SEQUENCE {
item-code INTEGER (0..254),
item—-name IAS5String (SIZE (3..10)) OPTIONAL,
11,
urgency ENUMERATED { normal, high } DEFAULT normal,
[[alternate-item-code INTEGER (0..254),
alternate-item-name IA5String (SIZE (3..10)) OPTIONAL

1]
}

In this case, a special bit flag will be added to the mask structure to indicate the presence or absence of the
entire element block. This will be of the form “ v#ExtPresent” where # would be replaced by the
sequential version number. In the example above, this number would be three (two would be the version
extension number of the urgency field). Therefore, the generated bit mask would be as follows:

ASNIC V5.3 28

struct {
unsigned item namePresent : 1;
unsigned urgencyPresent : 1;
unsigned v3ExtPresent : 1;
unsigned alternate item namePresent : 1;
}om;

In this case, the setting of the v3ExtPresent flag would indicate the presence or absence of the entire
version block. Note that it is also possible to have optional items within the block (alternate-item-name).

SET

The ASN.1 SET type is converted into a C or C++ structured type that is identical to that for SEQUENCE
as described in the previous section. The only difference between SEQUENCE and SET is that elements
may be transmitted in any order in a SET whereas they must be in the defined order in a SEQUENCE. The
only impact this has on ASNIC is in the generated decoder for a SET type.

The decoder must take into account the possibility of out-of-order elements. This is handled by using a
loop to parse each element in the message. Each time an item is parsed, an internal mask bit within the
decoder is set to indicate the element was received. The complete set of received elements is then checked
after the loop is completed to verify all required elements were received.

SEQUENCE OF

The ASN.1 SEQUENCE OF type is converted into a C or C++ structured type containing an integer to hold
the number of occurrences of the referenced data element and an array or pointer to the referenced type to
hold the actual data values. An option is also available to use a doubly-linked structure as the generated

type.

The allocation for the contents field depends on how the SEQUENCE OF is specified in the ASN.1
definition. If a size constraint is used, a static array of that size is generated; otherwise, a pointer variable is
generated to hold a dynamically allocated array of values. The decoder will automatically allocate memory
to hold parsed SEQUENCE OF data values.

The default behavior of allocating a static array for a sized SEQUENCE OF construct can be modified by
the use of a configuration item. The <storage> qualifier with the ‘dynamic’ keyword can be used at the
global, module, or production level to specify that dynamic memory (i.e., a pointer) is used for the array.
The syntax of this qualifier is as follows:

<storage>dynamic</storage>

The ‘list’ keyword can also be used in a similar fashion to specify the use of a doubly-linked structure to
hold the elements:

<storage>list</storage>
See the section entitled Compiler Configuration File for further details on setting up a configuration file.

Dynamic SEQUENCE OF Type

ASN.1 production : <name> ::= SEQUENCE OF <type>
Generated C code : typedef struct {

int n;

<type>* elem;

ASNIC V5.3 29

} <name>;

Generated C++ code : typedef struct {
int n;
<type>* elem;

} ASNIT <name>;

Note that parsed values can be accessed from the dynamic data variable just as they would be from a static
array variable; i.e., an array subscript can be used (ex: elem[0], elem[1]...).

Static (sized) SEQUENCE OF Type

ASN.1 production : <name> ::= SEQUENCE SIZE <len> OF <type>
Generated C code : typedef struct {

int n;

<type> elem([<len>];

} <name>;

Generated C++ code: typedef struct {
int n;
<type> elem[<len>];

} ASNIT <name>;

List-based SEQUENCE OF Type

A doubly-linked list header type (Asn1RTDList) is used for the typedef if the list storage configuration
setting is used (see above). This can be used for either a sized or unsized SEQUENCE OF construct. The
generated C or C++ code is as follows:

Generated C code: typedef AsnlRTDList <name>;
Generated C++ code: typedef AsnlRTDList ASNIT <name>;

The type definition of the Asn1RTDList structure can be found in the asnltype.h header file. The common
run-time utility functions r¢DListInit and rtDListAppend are available for initializing and adding elements
to the list. See the Common Run-time Functions section for a full description of these functions.

In addition to the Asn/RTDList C structure and C functions, a C++ class if provided for linked list support.
This is the ASNICSeqOfList class. This class provides methods for adding and deleting elements to and
from lists and an iterator interface for traversing lists. See the ASNICSeqOfList section in the C++ Run-
Time Classes area for details on all of the methods available in this class.

Generation of Temporary Types for SEQUENCE OF Elements

As with other constructed types, the <type> variable can reference any ASN.1 type, including other ASN.1
constructed types. Therefore, it is possible to have a SEQUENCE OF SEQUENCE, SEQUENCE OF
CHOICE, etc.

When a constructed type or type that maps to a C structured type is referenced, a temporary type is
generated for use in the final production. The format of this temporary type name is as follows:

<pr odNane>_el enent

In this definition, <prodName> refers to the name of the production containing the SEQUENCE OF type.

ASNIC V5.3 30

For example, a simple (and very common) single level nested SEQUENCE OF construct might be as
follows:

A ::= SEQUENCE OF SEQUENCE { | NTEGER a, BOOLEAN b }

In this case, a temporary type is generated for the element of the SEQUENCE OF construct. This results in
the following two equivalent ASN.1 types:

A-el enent ::= SEQUENCE { | NTEGER a, BOOLEAN b }
A ::= SEQUENCE COF A-el enment

These types are then converted into the equivalent C or C++ typedefs using the standard mapping that was
previously described.

SEQUENCE OF Type Elements in Other Constructed Types

Frequently, a SEQUENCE OF construct is used to define an array of some common type in an element in
some other constructed type (for example, a SEQUENCE). An example of this is as follows:

SomePDU : : = SEQUENCE {
addr esses SEQUENCE OF Al i asAddress,

}

Normally, this would result in the addresses element being pulled out and used to create a temporary type
with a name equal to “SomePDU-addresses” as follows:

SonePDU- addr esses ::= SEQUENCE OF Al i asAddress

SonmePDU :: = SEQUENCE {
addr esses SomePDU- addr esses,

}

However, when the SEQUENCE OF element references a simple defined type as above with no additional
tagging or constraint information, an optimization is done to cut down on the size of the generated code.
This optimization is to generate a common name for the new temporary type that can be used for other
similar references. The form of this common name is as follows:

_SeqOf <el enent Pr odNane>
So instead of this:

SormePDU- addr esses ::= SEQUENCE OF Al i asAddress
The following equivalent type would be generated:

_SeqOF Al i asAddress ::= SEQUENCE OF Al i asAddress

The advantage is that the new type can now be easily reused if “SEQUENCE OF AliasAddress” is used in
any other element declarations. Note the (illegal) use of an underscore in the first position. This is to
ensure that no name collisions occur with other ASN.1 productions defined within the specification.

An example of the savings of this optimization can be found in H.225. The above element reference is
repeated 25 different times in different places. The result is the generation of one new temporary type that
is referenced in 25 different places. Without this optimization, 25 unique types with the same definition
would have been generated.

ASNIC V5.3 31

SET OF

The ASN.1 SET OF type is converted into a C or C++ structured type that is identical to that for
SEQUENCE OF as described in the previous section.

CHOICE

The ASN.1 CHOICE type is converted into a C or C++ structured type containing an integer for the choice
tag value (t) followed by a union (u) of all of the equivalent types that make up the CHOICE elements.

The tag value is simply a sequential number starting at one for each alternative in the CHOICE. A #define
constant is generated for each of these values. The format of this constant is "T <name> <element-
name>" where <name> is the name of the ASN.1 production and <element-name> is the name of the
CHOICE alternative. If a CHOICE alternative is not given an explicit name, then <element-name> is
automatically generated by taking the type name and making the first letter lowercase (this is the same as
was done for the ASN.1 SEQUENCE type with unnamed elements). If the generated name is not unique, a
sequential number is appended to make it unique.

The union of choice alternatives is made of the equivalent C or C++ type definition followed by the
element name for each of the elements. The rules for element generation are essentially the same as was
described for SEQUENCE above. Constructed types or elements that map to C structured types are pulled
out and temporary types are created. Unnamed elements names are automatically generated from the type
name by making the first character of the name lowercase.

One difference between temporary types used in a SEQUENCE and in a CHOICE is that a pointer variable
will generated for use within the CHOICE union construct.

ASN.1 production : <name> ::= CHOICE {
<elementl-name> <elementl-type>,
<element2-name> <element2-type>,

}

Generated C code: #define T <name> <elementl-name> 1
#define T <name> <element2-name> 2

typedef struct {
int t;
union {
<typel> <elementl-name>;
<type2> <element2-name>;

}ou;
} <name>;

-or-
t ypedef struct {
} <iéﬁpNamel>;
typedef struct {
} <iéﬁpNarre2>;
typedef struct {

int t;
union {

ASNIC V5.3 32

<tempNamel>* <elementl-name>;
<tempName2>* <element2-name>;

}ous
} <name>;

The C++ mapping is the same with the exception that the ‘ASNIT ’ prefix is added to the generated type
name.

<typel> and <type2> are the equivalent C types representing the ASN.1 types <element]-type> and
<element2-type> respectively. <tempNamel> and <tempName2> represent the names of temporary types
that may have been generated as the result of using constructed types within the definition.

Choice alternatives may be unnamed, in which case <element-name> is derived from <element-type> by
making the first letter lowercase. One needs to be careful when nesting CHOICE structures at different
levels within other nested ASN.1 structures (SEQUENCESs, SETs, or other CHOICEs). A problem arises
when CHOICE element names at different levels are not unique (this is likely when elements are
unnamed). The problem is that generated tag constants are not guaranteed to be unique since only the
production and end element names are used.

The compiler gets around this problem by checking for duplicates. If the generated name is not unique, a
sequential number is appended to make it unique. The compiler outputs an informational message when it
does this.

An example of this can be found in the following production:

C ::= CHOICE {

[0] INTEGER,

[1] CHOICE {
[0] INTEGER,

[1] BOOLEAN

}

This will produce the following C code:

#define T C alnt 1
#define T C aChoice 2
#define T C aInt 1 1
#define T C aBool 2

typedef struct {
int t;
union {
ASN1INT alnt;
struct {
int t;
union {
ASN1INT alInt;
ASN1BOOL aBool;
}ou;
} aChoice;
}C;

b}

Note that an * 1’ was appended to the second instance of ‘T_C_alnt’. Developers must take care to ensure

they are using the correct tag constant value when this happens.

Populating Generated Choice Structures

ASNIC V5.3 33

Populating generated CHOICE structures is more complex then for other generated types due to the use of
pointers within the union construct. The recommended way to do it is to declare variables of the embedded
type to be used on the stack prior to populating the CHOICE structure. The embedded variable would then
be populated with the data to be encoded and then the address of this variable would be plugged into the
CHOICE union pointer field.

Consider the following definitions:

AsciiString ::= [PRIVATE 28] OCTET STRING
EBCDICString ::= [PRIVATE 29] OCTET STRING
String ::= CHOICE { AsciiString, EBCDICString }

This would result in the following type definitions:

typedef ASN1DynOctStr AsciiString;
typedef ASN1DynOctStr EBCDICString;

typedef struct String {

int t;
union {
/* =1 %/
AsciiString *asciiString;
/* L =2 %/
EBCDICString *eBCDICString;
}oug
} String;

To set the AsciiString choice value, one would first declare an AsciiString variable, populate it, and then
plug the address into a variable of the String structure as follows:

AsciiString asciiString;
String string;

asciiString = “Hello!”;
string.t = T String AsciiString;
string.u.asciiString = &asciiString;

It is also possible to allocate dynamic memory for the CHOICE union option variable; but one must be
careful to release this memory when done with the structure.

Open Type

Note: The X.680 Open Type replaces the X.208 ANY or ANY DEFINED BY constructs. An ANY or
ANY DEFINED BY encountered within an ASN.1 module will result in the generation of code
corresponding to the Open Type described below.

The ASN.1 Open Type is converted into a C or C++ structure used to model a dynamic OCTET STRING
type. This structure contains a pointer and length field. The pointer is assumed to point at a string of
previously encoded ASN.1 data. When a message containing an open type is decoded, the address of the

open type contents field is stored in the pointer field and the length of the component is stored in the length
field.

ASN.1 production : <name> ::= ANY
Generated C code: typedef ASN1OpenType <name>;
Generated C++ code: typedef ASN1TOpenType <name>;

ASNIC V5.3 34

The difference between the two types is the C++ version contains constructors to initialize the value to zero
or to a given open type value.

The ASN.1 "ANY DEFINED BY Type" construct is treated the same as an ANY. No attempt is made to
verify the identified Type.

Character String Types

As of version 5.0 and above, character string types are now built into the compiler. Previous versions used
compiled definitions based on the OCTET STRING base type to model these types. All 8-bit character
character-string types now are derived from the C character pointer (char*) base type. This pointer is used
to hold a null-terminated C string for encoding/decoding. For encoding, the string can either be static (i.e.,
a string literal or address of a static buffer) or dynamic. The decoder allocates dynamic memory from
within its context to hold the memory for the string. This memory is released when the rtMemFree
function is called.

The useful character string types in ASN.1 are as follows:

UNIVERSAL 30

UTF8String [UNIVERSAL 12] IMPLICIT OCTET STRING
NumericString ::= [UNIVERSAL 18] IMPLICIT IA5String
PrintableString ::= [UNIVERSAL 19] IMPLICIT IA5String
T61String ::= [UNIVERSAL 20] IMPLICIT OCTET STRING
VideotexString ::= [UNIVERSAL 21] IMPLICIT OCTET STRING
IA5String ::= [UNIVERSAL 22] IMPLICIT OCTET STRING
UTCTime ::= [UNIVERSAL 23] IMPLICIT GeneralizedTime
GeneralizedTime ::= [UNIVERSAL 24] IMPLICIT IA5String
GraphicString ::= [UNIVERSAL 25] IMPLICIT OCTET STRING
VisibleString ::= [UNIVERSAL 26] IMPLICIT OCTET STRING
GeneralString ::= [UNIVERSAL 27] IMPLICIT OCTET STRING
UniversalString ::= [UNIVERSAL 28] IMPLICIT OCTET STRING
[]

BMPString HEES IMPLICIT OCTET STRING

ObjectDescriptor ::= [UNIVERSAL 7] IMPLICIT GraphicString

Of these, all are represented by char* pointers except for the BMPString and UniversalString types. The
BMPString is a 16-bit character string for which the following structure is used:

typedef struct {
ASN1UI NT nchars;
ASN116BI TCHAR* dat a;

} Asnll6Bit Char String;

The ASN116BITCHAR type used in this definition is defined to be an “unsigned short”.

See the rtBMPToCString, rtBMPToNewCString, and the r1CToBMPString run-time function descriptions
for information on utilities that can convert standard C strings to and from BMP string format.

The UniversalString is a 32-bit character string for which the following structure is used:

typedef struct {
ASNL1UI NT nchars;
ASN132BI TCHAR* dat a;

} Asnl32Bit Char String;

The ASN132BITCHAR type used in this definition is defined to be an “unsigned int”.

See the rtUCSToCString, rtUCSToNewCString, and the rtCToUCSString run-time function descriptions for
information on utilities that can convert standard C strings to and from Universal Character Set (UCS-4)

ASNIC V5.3 35

string format. See also the rtUCSToWCSString and rtWCSToUCSString for information on utilities that can
convert standard wide character string to and from UniversalString type.

Utilities are also provided for working with UTF-8 string dataThe contents for this string type are assumed
to contain the UTF-8 encoding of a character string. The UTF-8 encoding for a standard ASCII string is
simply the string itself. For Unicode strings represented in C/C++ using the wide character type (wchar t),
the run-time functions rtUTF8ToWCS and rtWCSToUTF$ can be used for converting to and from Unicode.
The function rtValidateUTF$§ can be used to ensure that a given UTF-8 encoding is valid. See the Run-
Time Common Library section for a complete description of these functions.

Time String Types

The ASN.1 GeneralizedTime and UTCTime types are mapped to standard C/C++ null-terminated character
string types.

The C++ version of the product contains additional control classes for parsing and formatting time string
values. When C++ code generation is specified, a control class is generated for operating on the target time
string. This class is derived from the ASNICGeneralizedTime or ASN1CUTCTime class for
GeneralizedTime or UTCTime respectively. These classes contain methods for formatting or parsing time
components such as month, day, year etc. from the strings.

Objects of these classes can be declared inline to make the task of formatting or parsing time strings easier.
For example, in a SEQUENCE containing a time string element the generated type will contain a public
member variable containing the ‘ASN1T’ type that holds the message data. If one wanted to operate on the
time string contained within that element, they could do so by using one of the time string classes inline as
follows:

ASN1CGeneralizedTime gtime (msgbuf, <segVar>.<element>);
gtime.setMonth (ASN1CTime: :November) ;

In this example, <seqVar> would represent a generated SEQUENCE variable type and <element> would
represent a time string element within this type.

See the ASNICTime, ASNI1CGeneralizedTime and ASNICUTCTIME subsections in the C++ Run-Time
Classes section for details on all of the methods available in these classes.

External Type

The ASN.1 EXTERNAL type is a useful type used to include non-ASN.1 or other data within an ASN.1
encoded message. The type is described using the following ASN.1 SEQUENCE:

EXTERNAL 1= [UNIVERSAL 8] IMPLICIT SEQUENCE ({
direct-reference OBJECT IDENTIFIER OPTIONAL,
indirect-reference INTEGER OPTIONAL,
data-value-descriptor ObjectDescriptor OPTIONAL,
encoding CHOICE ({

single-ASNl-type [0] ANY,
octet-aligned [1] IMPLICIT OCTET STRING,
arbitrary [2] IMPLICIT BIT STRING

}

The ASN.1 compiler is used to create a meta-definition for this structure. The definition is stored in the file
asnlExternal.h. The resulting C structure is populated just like any other compiler-generated structure for
working with ASN.1 data.

ASNIC V5.3 36

Parameterized Types

The compiler can parse parameterized type definitions and references as specified in the X.683 standard.
These types allow dummy parameters to be declared that will be replaced with actual parameters when the
type is referenced. This is similar to templates in C++.

A simple and common example of the use of parameterized types is for the declaration of an upper bound
on a sized type as follows:

SizedOctetString{INTEGER:ub} ::= OCTET STRING (SIZE (1..ub))

In this definition, ‘ub’ would be replaced with an actual value when the type is referenced. For example, a
sized octet string with an upper bound of 32 would be declared as follows:

OctetString32 ::= SizedOctetString{32}

The compiler would handle this in the same way as if the original type was declared to be an octet string of
size 1 to 32. That is, it will generate a C structure containing a static byte array of size 32 as follows:

typedef struct OctetString32 {
ASN1UINT numocts;
ASN1OCTET data[32];

} OctetString32;

Another common example of parameterization is the substitution of a given type inside a common
container type. For example, security specifications frequently contain a ‘signed’ parameterized type that
allows a digital signature to be applied to other types. An example of this would be as follows:

SIGNED { ToBeSigned } ::= SEQUENCE ({
toBeSigned ToBeSigned,
algorithmOID OBJECT IDENTIFIER,
paramsS Params,
signature BIT STRING

}
An example of a reference to this definition would be as follows:
SignedName ::= SIGNED { Name }
where ‘Name’ would be another type defined elsewhere within the module.
The compiler performs the substitution to create the proper C typedef for SignedName:

typedef struct SignedName {
Name toBeSigned;
ASN10OBJID algorithmOID;
Params paramsS;
ASN1DynBitStr signature;
} SignedName;

When processing parameterized type definitions, the compiler will first look to see if the parameters are
actually used in the final generated code. If not, they will simply be discarded and the parameterized type
converted to a normal type reference. For example, when used with information objects, parameterized
types are frequently used to pass information object set definitions to impose table constraints on the final
type. Since table constraints do not affect the code that is generated by the compiler, the parameterized
type definition is reduced to a normal type definition and references to it are handled in the same way as
defined type references. This can lead to a significant reduction in generated code in cases where a
parameterized type is referenced over and over again.

ASNIC V5.3 37

For example, consider the following often-repeated pattern from the UMTS 3GPP specs:

ProtocolIE-Field {RANAP-PROTOCOL-IES : IEsSetParam} ::= SEQUENCE {
id RANAP-PROTOCOL-IES. &id ({IEsSetParam}),
criticality RANAP-PROTOCOL-IES.&criticality ({IEsSetParam}{@id}),
value RANAP-PROTOCOL-IES. &Value ({IEsSetParam} {@id})

}

In this case, [EsSetParam refers to an information object set specification that constrains the values that are
allowed to be passed for any given instance of a type referencing a ProtocollE-Field. The compiler does
not add any extra code to check for these values, so the parameter can be discarded. After processing the
Information Object Class references within the construct (refer to the section on “Information Objects” for
information on how this is done), the reduced definition for ProtocollE-Field becomes the following:

ProtocolIE-Field ::= SEQUENCE ({
id ProtocolIE-ID,
criticality Criticality,
value ASN.1 OPEN TYPE

}

References to the field are simply replaced with a reference to the ProtocolID-Field typedef.

Information Objects

Information Objects and Classes are used to define multi-layer protocols in which “holes” are defined
within ASN.1 types for passing message components to different layers for processing. These items are
also used to define the contents of various messages that are allowed in a particular exchange of messages.
The ASN1C compiler extracts the types involved in these message exchanges and generates
encoders/decoders for them. The “holes” in the types are accounted for by adding open type holders to the
generated structures. These open type holders consist of a byte count and pointer for storing information
on an encoded message fragment for processing at the next level.

ASNI1C compiler support for these types of specifications is limited to the correct application of reference
types in places where Information Object Class references are embedded in standard ASN.1 types. Other
applications of these constructs are parsed but do not result in the generation of any application code.

To better understand the support in this area, the individual components of Information Object
specifications are examined. We begin with the “CLASS” specification that provides a schema for
Information Object definitions. A sample class specification is as follows:

OPERATION ::= CLASS {
&operationCode CHOICE { local INTEGER,
global OBJECT IDENTIFIER }
&ArgumentType,
&ResultType,
&Errors ERROR OPTIONAL

}

Users familiar with ASN.1 will recognize this as a simplified definition of the ROSE OPERATION
MACRO using the Information Object format. When a class specification such as this is parsed,
information on its fields is maintained in memory for later reference. The class definition itself does not
result in the generation of any corresponding C or C++ code. It is only an abstract template that will be
used to define new items later on in the specification.

Fields from within the class can be referenced in standard ASN.1 types. It is these types of references that
the compiler is mainly concerned with. These are typically “header” types that are used to add a common
header to a variety of other message body types. An example would be the following ASN.1 type
definition for a ROSE invoke message header:

ASNIC V5.3 38

Invoke ::= SEQUENCE {

invokelID INTEGER,
opcode OPERATION. &operationCode,
argument OPERATION. &ArgumentType

}

This is a very simple case which purposely omits a lot of additional information such as Information Object
Set constraints that are typically a part of definitions such as this. The reason this information is not
present is because we are just interested in showing the items that the compiler is concerned with.

The opcode field within this definition is an example of a fixed type field reference. It is known as this
because if you go back to the original class specification, you will see that operationCode is defined to be
of a specific type (namely a choice between a local and global value). The generated typedef for this field
will contain a reference to the type from the class definition.

The argument field is an example of a variable type field.. In this case, if you refer back to the class
definition, you will see that no type is provided. This means that this field can contain an instance of any
encoded type (note: in practice, table constraints can be used with Information Object Sets to limit the
message types that can be placed in this field). The generated typedef for this field contains an “open type”
(ASN1OpenType) reference to hold a previously encoded component to be specified in the final message.

The following would be the procedure to add the Invoke header type to an ASN.1 message body:

1. Encode the body type
. Get the message pointer and length of the encoded body
3. Plug the pointer and length into the “numocts” and “data” items of the argument open type field in the
Invoke type variable.
4. Populate the remaining Invoke type fields.
5. Encode the Invoke type to produce the final message.

Other constructs can be built using class definitions such as Information Object instances and Information
Object Sets. This document will not get into the definition and uses for these items other than to say that
the ASN1C compiler will parse and silently ignore them. They provide additional information on how to
put messages together, but are not part of the actual types themselves. For this reason, the compiler does
not generate any additional code for their use.

Value Specifications

The compiler can parse any type of ASN.1 value specification, but will only generate code for certain
types. In this release of the compiler, the following types of value specifications will result in generated
code:

BOOLEAN
INTEGER
ENUMERATED
Binary String
Hexadecimal String
Character String
OBJECT IDENTIFER

All value types except INTEGER cause an “extern” statement to be generated in the header file and a
global value assignment to be added to the C or C++ source file. INTEGER value specifications cause
#define statements to be generated.

INTEGER Value Specification

ASNIC V5.3 39

The INTEGER type causes a #define statement to be generated in the header file of the form
‘ASN1V_<valueName>’ where <valueName> would be replaced with the name in the ASN.1 source file.
The reason for doing this is the common use of INTEGER values for size and value range constraints in the
ASN.1 specifications. By generating #define statements, the symbolic names can be included in the source
code making it easier to adjust the boundary values on the fly.

For example, the following declaration:

ivalue INTECER ::= 5

will cause the following statement to be added to the generated header file:
#define ASNLV ivalue 5

The reason the ASN1V_ prefix is added is to prevent collisions with INTEGER value declarations and
other declarations such as enumeration items with the same name.

BOOLEAN Value Specification
A BOOLEAN value causes an “extern” statement to be generated in the header file and a global declaration
of type ASNI1BOOL to be generated in the C or C++ source file. The mapping of ASN.1 declaration to
global C or C++ value declaration is as follows:

ASN.1 production: <name> BOOLEAN ::= <value>

Generated code: ASN1BOOL <name> = <value>;
Binary and Hexadecimal String Value Specification
These value specifications cause two global C variables to be generated: a ‘numocts’ variable describing

the length of the string and a ‘data’ variable describing the string contents. The mapping for a binary string
is as follows (note: BIT STRING can also be used as the type in this type of declaration):

ASN.1 production : <name> OCTET STRING ::= ‘<bstring>’B
Generated code: ASNIUINT <name> numocts = <length>;
ASNIOCTET <name> data[] = <data>;

Hexadecimal string would be the same except the ASN.1 constant would end in a ‘H’.
Character String Value Specification
A character string declaration would cause a C or C++ char* declaration to be generated:

ASN.1 production : <name> <string-type> ::= <value>

Generated code : ASN1ConstCharPtr <name> = <value>;
In this definition, <string-type> could be any of the standard 8-bit characters string types such as IA5String,
PrintableString, etc. (note: this version of the compiler does not contain support for value declarations of
larger character string type such as BMPString). The ASN1ConstCharPtr type used in the generated code
is a type defined in asnltype.h designed to be a char* type for C or const char* type for C++.

Object Identifier Value Specification

Object identifier values are somewhat different in that they result in a structure being populated in the C or
C++ source file.

ASN.1 production : <name> OBJECT IDENTIFIER ::= <value>

ASNIC V5.3 40

Generated code : ASN1OBJID <name> = <value>;

For example, consider the following declaration:
oi d OBJECT IDENTIFIER ::= { ccitt b(5) 10 }
This would result in the following definition in the C or C++ source file:

ASNLIOBJID oi d = {
31

{0 5 10}
P

To populate a variable in a generated structure with this value, the 7tSefOID utility function can be used
(see the section in the run-time API guide for a full description of this function). In addition, the C++ base
type for this construct (ASN1TODbjId) contains constructors and assignment operators that allow direct
assignment of values in this from to the target variable.

Encode/Decode Function Prototypes

If BER or DER encoding is specified, a BER encode and decode function prototype is generated for each
production (DER uses the same form — there are only minor differences between the two types of generated
functions). These prototypes are of the following general form:

int asnlE <ProdName> (ASNICTXT* ctxt p,
<ProdName>* data p, ASN1TagType tagging);

int asnlD <ProdName> (ASNICTXT* ctxt p,
<ProdName>* data p, ASNITagType tagging, int length);

The prototype with the ‘asnlE_’ prefix is for encoding and the one with ‘asn1D _’ is for decoding. The first
parameter is a context variable used for reentrancy. This allows the encoder/decoder to keep track of what
it is doing between function invocations.

The second parameter is for passing the actual data variable to be encoded or decoded. This is a pointer to
a variable of the generated type.

The third parameter specifies whether implicit or explicit tagging should be used. In practically all cases,
users of the generated function should set this parameter to ASNIEXPL (explicit). This tells the encoder to
include an explicit tag around the encoded result. The only time this would not be used is when the
encoder or decoder is making internal calls to handle implicit tagging of elements.

The final parameter (decode case only), is length. This is ignored when tagging is set to ASN1EXPL
(explicit), so users can ignore it for the most part and set it to zero. In the implicit case, this specifies the
number of octets to be extracted from the byte stream. This is necessary because implicit indicates no
tag/length pair precedes the data; therefore it is up to the user to indicate how many bytes of data are
present.

If PER encoding is specified, the format of the generated prototypes is different. The PER prototypes are
of the following general form:

int asnlPE <ProdName> (ASNICTXT* ctxt p, <ProdName>[*] value);

int asnlPD <ProdName> (ASNICTXT* ctxt p, <ProdName>* pvalue);

ASNIC V5.3 41

In these prototypes, the prefixes are different (a ‘P’ character is added to indicate they are PER
encoders/decoders), and the tagging argument variables are omitted. In the encode case, the value of the
production to be encoded may be passed by value if it is a simple type (for example, BOOLEAN or
INTEGER). Structured values will still be passed using a pointer argument.

Generated Class Definition

A class definition is generated for each defined production in the ASN.1 source file. This class is derived
from the ASN1CType base class. This class provides a set of common attributes and methods for
encoding/decoding ASN.1 messages. It hides most of the complexity of calling the encode/decode
functions directly.

The general form of the class definition is as follows:

class ASNIC <name> : public ASNICType {
public:
ASNIT <name>& msgData;
ASN1C <name> (ASN1lMessageBuffer& msgBuf, ASNIT <name>& data);
int Encode ();
int Decode ()

bz

The name of the generated class is ‘“ASN1C_<name>’ where ‘<name>’ is the name of the production. The
only defined attribute is a public variable reference named ‘msgData’ of the generated type.

The constructor arguments are a reference to an ‘ASN1MessageBuffer’ type and a reference to an

‘ASNIT <name>’ type. The message buffer argument is a class defined in either the Asn1BerCppTypes.h
or AsnlPerCppTypes.h. There are special subclasses for encoding (ASN1BEREncodeBuffer or
ASNI1PEREncodeBuffer) and decoding (ASN1BERDecodeBuffer and ASN1PERDecodeBuffer).
Variables of either of these subclasses can be passed to the constructor depending on whether encoding or
decoding is to be performed. The purpose of the buffer objects is to wrap all of the internal values required
to manage encode or decode buffers. Examples of using this object can be found in the section on
Encoding and Decoding messages.

The ‘ASN1T_<name>’ argument is used to specify the data variable containing data to be encoded or to
receive data on a decode call. The procedure for encoding is to declare a variable of this type, populate it
with data, and then instantiate the ASN1C_<name> object to associate a message buffer object with the
data to be encoded. The Encode method can then be called to encode the data. On the decode side, a
variable must be declared and passed to the constructor to receive the decoded data.

Note that the ASN1C class declarations are only required in the application code as an entry point for
encoding or decoding a top-level message (or Protocol Data Unit — PDU). Identifying these PDUs and
declaring them in a configuration file using the <isPDU/> empty element can attain large savings in the
amount of code generated for a particular application. For example, in some H.323 applications, the main
PDU structure used is H323-UserInformation. The following configuration file entry could be used to only
generate the ASN1C _ control class for this PDU:

<asnlconfi g>
<modul e>
<nane>H323- MESSAGES</ nanme>
<pr oducti on>
<nanme>H323- User | nf or mat i on</ nane>
<i sPDU >
</ producti on>
</ modul e>
</ asnlconfig>

ASNIC V5.3 42

This will cause only a single ASN1C _ class definition to be added to the generated code — that for the
H323-UserInformation production. If this information was not included an ASN1C _ class would be
generated for all productions and the vast majority of them would never be used.

If the module contains no PDUs (i.e,. contains support types only), the <noPDU/> empty element can be
specified at the module level to indicate that no control classes should be generated for the module.

Generated Methods

For each production, an Encode and Decode method is generated within the generated class structure.
These are standard methods that initialize context information and then call the generated C-like encode or
decode function. If the generation of print functions was specified (by including —print on the compiler
command line), a Print method is also generated that calls the C print function.

ASNIC V5.3 43

Generated BER Encode Functions

For each ASN.1 production defined in the ASN.1 source file, a C encode function is generated. This
function will convert a filled-in C variable of the given type into an encoded ASN.1 message.

If C++ code generation is specified, a control class is generated that contains an Encode method that wraps
this function. This function is invoked through the class interface to convert a populated msgData attribute
variable into an encoded ASN.1 message.

Generated C Function Format and Calling Parameters
The format of the name of each generated encode function is as follows:
asnlE [<prefix>]<prodName>

where <prodName> is the name of the ASN.1 production for which the function is being generated and
<pr ef i x> is an optional prefix that can be set via a configuration file setting. The configuration setting
used to set the prefix is the <typePrefix> element which specifies a prefix that will be applied to all
generated typedef names and function names for the production.

The calling sequence for each encode function is as follows:

len = asnlE <name> (ASNICTXT* ctxt p,
<name>* object,
ASN1TagType tagging);

In this definition, <name> denotes the prefixed production name defined above.

The ctxt p argument is used to hold a context pointer to keep track of encode parameters. This is a basic
"handle" variable that is used to make the function reentrant so it can be used in an asynchronous or
threaded application. The user is required to supply a pointer to a variable of this type declared somewhere
in his or her program. The variable should be initialized using either the rt/nitContext or rtNewContext
run-time library functions (see the Run-Time Library API section for a description of these functions).

The object argument holds a pointer to the data to be encoded and is of the type generated from the
ASN.1 production.

The tagging argument is for internal use when calls to encode functions are nested to accomplish
encoding of complex variables. It indicates whether the tag associated with the production should be
applied or not (implicit versus explicit tagging). At the top level, the tag should always be applied so this
parameter should always be set to the constant ASN1EXPL (for EXPLICIT).

The function result variable 1en returns the length of the data actually encoded or an error status code if
encoding fails. Error status codes are negative to tell them apart from length values. Return status values
are defined in the "asnltype.h" include file.

Generated C++ Encode Method Format and Calling Parameters

The C++ version of the compiler generates an Encode method that wraps the C function call. This method
provides a more simplified calling interface because it hides things such as the context structure and the tag
type parameters.

The calling sequence for the generated C++ class method is as follows:

len = class var.Encode ();

ASNIC V5.3 44

In this definition, class_var is a variable of the control class (i.e., ASN1C_<prodName>) generated for the
given production. The function result variable 1en returns the length of the data actually encoded or an
error status code if encoding fails. Error status codes are negative to tell them apart from length values.
Return status values are defined in the "asnltype.h" include file.

Populating Generated Structure Variables for Encoding

Prior to calling a compiler generated encode function, a variable of the type generated by the compiler must
be populated. This is normally a straightforward procedure — just plug in the values to be encoded into the
defined fields. However, things get more complicated when more complex, constructed structures are
involved. These structures frequently contain pointer types which means memory management issues must
be dealt with.

There are three techniques for managing memory for these types:

1. Allocate the variables on the stack and plug the address of the variables into the pointer fields,
2. Use the standard malloc and free C functions to allocate memory to hold the data, and
3. Use the rtMemAlloc and rtMemFree run-time library functions

Allocating the variables on the stack is an easy way to get temporary memory and have it released when it
is no longer being used. But one has to be careful when using additional functions to populate these types
of variables. A common mistake is the storage of the addresses of automatic variables in the pointer fields
of a passed-in structure. An example of this error is as follows (assume A, B, and C are other structured

types):

typedef struct {
A* a;
B* b;
C* c;

} Parent;

void fillParent (Parent* parent)

{

A aa;
B bb;
C cc;

/* logic to populate aa, bb, and cc */

parent->a = &aa;
parent->b = &bb;
parent->c = &cc;
}
main ()

{

Parent parent;
fillParent (&parent);
encodeParent (&parent); /* error: pointers in parent

reference memory that is
out of scope */

ASNIC V5.3 45

In this example, the automatic variables aa, bb, and cc go out of scope when the fillParent function exits.
Yet the parent structure is still holding pointers to the now out of scope variables (this type of error is
commonly known as “dangling pointers”).

Using the second technique (i.e., using C malloc and free) can solve this problem. In this case, the memory
for each of the elements can be safely freed after the encode function is called. But the downside is that a
free call must be made for each corresponding malloc call. For complex structures, remembering to do this
can be difficult thus leading to problems with memory leaks.

The third technique uses the compiler run-time library memory management functions to allocate and free
the memory. The main advantage of this technique as opposed to using C malloc and free is that all
allocated memory can be freed with a single rtMemFree call. The ASN1IMALLOC macro can be used to
allocate memory in much the same way as the C malloc function with the only difference being that a
pointer to an ASN1CTXT structure is passed in addition to the number of bytes to allocate. All allocated
memory is tracked within the context structure so that when the rtMemPFree is called, all memory can be
released at once.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C BER or DER encode function. This
method must be used if C code generation was done. This method can also be used as an alternative to
using the control class interface if C++ code generation was done.

Before any encode function can be called; the user must first initialize an encoding context. This is a
variable of type ASN1CTXT. This variable holds all of the working data used during the encoding of a
message. The context variable can be initialized in one of two ways:

1. Allocating a context dynamically using the rtNewContext function or,
2. Initializing a static variable using the r¢/nitContext function.

An example of initializing a static variable is as follows:

ASNLICTXT ct xt ; /1 context variable
rtinitContext (&txt); // |INTIALI ZE BEFORE USE!

The next step is to specify an encode buffer into which the message will be encoded. This is done by
calling xe_setp run-time function. An encode buffer must be specified when initializing the context. The
user can either pass the address of a buffer and size allocated in his or her program (referred to as a static
buffer), or set these parameter to zero and let the encode function manage the buffer memory allocation
(referred to as a dynamic buffer). Better performance can be attained by using a static buffer because this
eliminates the high-overhead operation of allocating and reallocating memory.

After initializing the context and populating a variable of the structure to be encoded, an encode function
can be called to encode the message. If the return status indicates success (positive length value), the run-
time library function "xe_getp" can be called to obtain the start address of the encoded message. Note that
the returned address is not the start address of the target buffer. BER encoded messages are constructed
from back to front (i.c., starting at the end of the buffer and working backwards) so the start point will fall
somewhere in the middle of the buffer after encoding is complete. This illustrated in the following
diagram:

ASNIC V5.3 46

Encode buffer (size 1K):

* * 4_ Encode this way *

Buffer start Start of End of Buffer
address Message (0x500)
(0x100) (0x200)

In this example, a 1K encode buffer is declared which happens to start at address 0x100. When the context
is initialized with a pointer to this buffer and size equal to 1K, it positions the internal encode pointer to the
end of the buffer (address 0x500). Encoding then proceeds from back-to-front until encoding of the
message is complete. In this case, the encoded message turned out to be 0x300 (768) bytes in length and
the start address fell at 0x200. This is the value that would be returned by xe_getp.

A program fragment that could be used to encode an employee record is as follows:
#include employee.h /* include file generated by ASNIC */
main ()
{
ASN1OCTET msgbuf[1024], *msgptr;
int msglen;
ASNICTXT ctxt;
Employee employee; /* typedef generated by ASNIC */
/* Step 1: Initialize the context and set the buffer pointer */

rtInitContext (&ctxt);
xe setp (&ctxt, msgbuf, sizeof (msgbuf));

/* Step 2: Populate the structure to be encoded */
employee.name.numocts = 5;

employee.name.data = "SMITH";

/* Step 3: Call the generated encode function */

msglen = asnlE Employee (&ctxt, &employee, ASN1EXPL);

/* Step 4: Check the return status (note: the test is x/
/* > 0 because the returned value is the length of the */
/* encoded message component) .. */

if (msglen > 0) {

/* Step 5: If encoding is successful, call xe getp to */
/* fetch a pointer to the start of the encoded message. */

msgptr = xe getp (&ctxt);
}

else
error processing...

ASNIC V5.3 47

In general, static buffers) should be used for encoding messages where possible as they offer a substantial
performance benefit over dynamic buffer allocation. The problem with static buffers, however, is that you
are required to estimate in advance the approximate size of the messages you will be encoding. There is no
built-in formula to do this, the size of an ASN.1 message can vary widely based on data types and the
number of tags required.

If performance is not a significant an issue, then dynamic buffer allocation is a good alternative. Setting
the buffer pointer argument to NULL in the call to xe_setp specifies dynamic allocation. This tells the
encoding functions to allocate a buffer dynamically. The address of the start of the message is obtained as
before by calling xe_getp. Note that this is not the start of the allocated memory; that is maintained within
the context structure. To free the memory, the xe_fiee run-time library function must be called.

The following code fragment illustrates encoding using a dynamic buffer:
#include employee.h /* include file generated by ASNIC */

main ()
{
ASN1OCTET *msgptr;
int msglen;
ASNICTXT ctxt;
Employee employee; /* typedef generated by ASN1C */

rtInitContext (&ctxt);
xe setp (&ctxt, NULL, 0);

employee.name.numocts = 5;
employee.name.data = "SMITH";

msglen = asnlE Employee (&ctxt, &employee, ASNIEXPL);

if (msglen > 0) {
msgptr = xe getp (&ctxt);

xe free (&ctxt); /* don’t call free (msgptr); !!! */
}
else

error processing...

Procedure for Using the C++ Control Class Encode Method
The procedure to encode a message using the C++ class interface is as follows:

1. Create a variable of the ‘ASN1T_<name>’ type and populate it with the data to be encoded.
Create an AsnlBerEncodeMessageBuffer object.

3. Create a variable of the generated ‘ASN1C_<name>’ class specifying the items created in 1 and 2 as
arguments to the constructor.

4. Invoke the ‘Encode’ method.

The constructor of the ‘ASNI1C_<type>’ class takes a message buffer object argument. This makes it
possible to specify a static encode message buffer when the class variable is declared. A static buffer can
improve encoding performance greatly as it relieves the internal software from having to repeatedly resize
the buffer to hold the encoded message. If you know the general size of the messages you will be sending,

ASNIC V5.3 48

or have a fixed size maximum message length, then a static buffer should be used. The message buffer
argument can also be used to specify the start address and length of a received message to be decoded.

After the data to be encoded is set, the Encode method is called. This method returns the length of the
encoded message or a negative value indicating that an error occurred. The error codes can be found in the
asnltype.h run-time header file or in Appendix A of this document.

If encoding is successful, a pointer to the encoded message can be obtained by using the GetMsgPtr or
GetMsgCopy methods available in the ASN1BEREncodeBuffer class. The GetMsgPtr method is faster as
it simply returns a pointer to the actual start-of-message that is maintained within the message buffer
object. The GetMsgCopy method will return a copy of the message. Memory for this copy will be
allocated using the standard new operator, so it up to the user to free this memory using delete when
finished with the copy.

A program fragment that could be used to encode an employee record is as follows. This example uses a
static encode buffer:

#include employee.h // include file generated by ASNI1C

main ()

{
const ASNIOCTET* msgptr;
ASN1OCTET msgbuf[1024];
int msglen;

// step 1: construct ASNIC C++ generated class.
// this specifies a static encode message buffer

ASN1BEREncodeBuffer encodeBuffer (msgbuf, sizeof (msgbuf));
ASNIT PersonnelRecord msgData;
ASN1C PersonnelRecord employee (encodeBuffer, msgData);

// step 2: populate msgData structure with data to be encoded
// (note: this uses the generated assignment operator to assign
// a string)..

employee.msgData.name = “SMITH”;

// step 3: invoke Encode method

if ((msglen = employee.Encode ()) > 0) {
// encoding successful, get pointer to start of message
msgptr = encodeBuffer.GetMsgPtr () ;

}

else
error processing...

The following code fragment illustrates encoding using a dynamic buffer. This also illustrates using the
GetMsgCopy method to fetch a copy of the encoded message:
#include employee.h // include file generated by ASNICPP

main ()

{

ASNIC V5.3 49

ASN1OCTET* msgptr;
int msglen;

// construct encodeBuffer class with no arguments

ASN1BEREncodeBuffer encodeBuffer;
ASNIT PersonnelRecord msgData;
ASN1C PersonnelRecord employee (encodeBuffer, msgData);

// populate msgData structure

employee.msgData.name = "SMITH";

// call Encode method

if ((msglen = employee.Encode ()) > 0) {
// encoding successful, get copy of message
msgptr = encodeBuffer.GetMsgCopy () ;

delete [] msgptr; // free the dynamic memory!
}

else
error processing...

Encoding a Series of Messages Using the C++ Control Class Interface

A common application of BER encoding is the repetitive encoding of a series of the same type of message
over and over again. For example, a TAP3 batch application might read billing data out of a database table
and encode each of the records for a batch transmission.

If a user was to repeatedly instantiate and destroy the C++ objects involved in the encoding of a message,
performance would suffer. This is not necessary however, because the C++ objects can be reused to allow
multiple messages to be encoded. As example showing how to do this is as follows:

#include employee.h // include file generated by ASNLC

main ()

{
const ASN1OCTET* msgptr;
ASN1OCTET msgbuf[1024];
int msglen;

ASN1BEREncodeBuffer encodeBuffer (msgbuf, sizeof (msgbuf));
ASNIT PersonnelRecord msgData;

ASN1C PersonnelRecord employee (encodeBuffer, msgData);

// Encode loop start here, this will repeatedly use the objects
// declared above to encode the messages

for (;;) {

// logic here to read record from some source (database,
// flat file, socket, etc.)..

// populate structure with data to be encoded

ASNIC V5.3 50

employee.msgData.name = “SMITH”;

// invoke Encode method

if ((msglen = employee.Encode ()) > 0) {
// encoding successful, get pointer to start of message
msgptr = encodeBuffer.GetMsgPtr ()

// do something with the encoded message

}
else
error processing...

// Call the init method on the encodeBuffer object to
// prepare the buffer for encoding another message..

encodeBuffer.Init () ;

ASNIC V5.3

51

Generated BER Decode Functions

For each ASN.1 production defined in the ASN.1 source file, a C decode function is generated. This
function will decode an ASN.1 message into a C variable of the given type.

If C++ code generation is specified, a control class is generated that contains a Decode method that wraps

this function. This function is invoked through the class interface to decode an ASN.1 message into the
variable referenced in the msgData component of the class.

Generated C Function Format and Calling Parameters
The format of the name of each decode function generated is as follows:
asnlD_ [<prefix>]<prodName>
where <prodName> is the name of the ASN.1 production for which the function is being generated and
<pr ef i x> is an optional prefix that can be set via a configuration file setting. The configuration setting
used to set the prefix is the <typePrefix> element that specifies a prefix that will be applied to all generated
typedef names and function names for the production.
The calling sequence for each decode function is as follows:
status = asnlD <name> (ASNICTXT* ctxt p,

<name> *object,

ASN1TagType tagging,

int length);
In this definition, <name> denotes the prefixed production name defined above.
The ctxt p argument is used to hold a context pointer to keep track of decode parameters. This is a
basic "handle" variable that is used to make the function reentrant so it can be used in an asynchronous or
threaded application. The user is required to supply a pointer to a variable of this type declared somewhere
in his or her program. The variable must be initialized using the xd_setp run-time function before use.
The object argument is a pointer to a variable of the generated type that will receive the decoded data.
The tagging and length arguments are for internal use when calls to decode functions are nested to
accomplish decoding of complex variables. At the top level, these parameters should always be set to the
constants ASN1EXPL and 0 respectively.
The function result variable status returns the status of the decode operation. The return status will be

zero (ASN_OK) if decoding is successful or negative if an error occurs. Return status values are defined in
the "asnltype.h" include file.

Generated C++ Decode Method Format and Calling Parameters

Generated decode functions are invoked through the class interface by calling the base class ‘Decode’
method. The calling sequence for this method is as follows:

status = class var.Decode ();
In this definition, class_var is a variable of the class generated for the given production.

An ASN1BERDecodeBuffer object must be passed to the class_var constructor prior to decoding. This is
where the start address of the message to be decoded and message length are specified.

ASNIC V5.3 52

The message length argument is used to specify the size of the message, if it is known. In ASN.1
messages, the overall length of the message is embedded in the first few bytes of the message, so this
variable is really not needed. It is used as test mechanism to determine if a corrupt or partial message was
received. If the parsed message length is greater than this value, an error is returned. If the value is
specified to be zero (the default), then this test is bypassed. As was the case for message pointer above, this
parameter can be specified in the constructor if only a single message is being decoded using the class.

The function result variable status returns the status of the decode operation. The return status will be
zero (ASN_OK) if decoding is successful or a negative value if an error occurs. Return status values are
defined in Appendix A of this document and online in the "asnltype.h" include file.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C BER or DER decode function. This
method must be used if C code generation was done. This method can also be used as an alternative to
using the control class interface if C++ code generation was done.

Before any decode function can be called; the user must first initialize a context variable. This is a variable
of type ASNICTXT. This variable holds all of the working data used during the encoding of a message.
The context variable can be initialized in one of two ways:

3. Allocating a context dynamically using the rtNewContext function or,
4. Initializing a static variable using the r¢/nitContext function.

An example of initializing a static variable is as follows:

ASNLICTXT ct xt ; /1 context variable
rtinitContext (&txt); // |INTIALI ZE BEFORE USE!

The next step is the specification of a buffer containing a message to be decoded. This is done by calling
the xd_setp run-time library function. This function takes as an argument the start address of the message
to be decoded. The function returns the starting tag value and overall length of the message to be decoded.
This makes it possible to identify the type of message received and apply the appropriate decode function
to decode it.

A decode function can then be called to decode the message. If the return status indicates success, the C
variable that was passed as an argument will contain the decoded message contents. Note that the decoder
may have allocated dynamic memory and stored pointers to objects in the C structure. After processing on
the C structure is complete, the run-time library function "xu_freeall" should be called to free the allocated
memory.

A program fragment that could be used to decode an employee record is as follows:
#include employee.h /* include file generated by ASNIC */

main ()

{
ASN1OCTET msgbuf[1024];
ASNITAG msgtag;
int msglen;
ASNICTXT ctxt;
PersonnelRecord employee;

logic to read message into msgbuf

/* Step 1: Initialize a context variable for decoding */

ASNIC V5.3 53

rtInitContext (&ctxt);
status = xd setp (&ctxt, msgbuf, 0, &msgtag, &msglen);
if (status != ASN OK) {

error processing..

/* Step 2: Test message tag for type of message received */

/* (note: this is optional, the decode function can be */
/* called directly if the type of message is known).. */
if (msgtag == TV _PersonnelRecord)

/* Step 3: Call decode function (note: last two args */

/* should always be ASNIEXPL and 0).. */
status = asnlD PersonnelRecord (&ctxt,
&employee,

ASN1EXPL, 0);
/* Step 4: Check return status */

if (status == ASN OK)
{

process received data in ‘employee’ variable..
/* Remember to release dynamic memory when done! */

xu_ freeall (&ctxt);
}
else
error processing...
}
else
check for other known message types..

Procedure for Using the C++ Control Class Decode Method

Normally when a message is received and read into a buffer, it can be one of several different message
types. So the first job a programmer has before calling a decode function is determining which function to
call. The AsnlMessage class has a standard method for parsing the initial tag/length from a message to
determine the type of message received. This call is used in conjunction with a switch statement on
generated tag constants for the known message set in order to pick a decoder to call.

Once it is known which type of message has been received, an instance of a generated message class can be
instantiated and the decode function called. The start of message pointer and message length (if known)
must be specified either in the constructor call or in the call to the decode function itself.
A program fragment that could be used to decode an employee record is as follows:

#include employee.h // include file generated by ASNIC

main ()

{
ASN1OCTET msgbuf[1024];

ASNIC V5.3 54

ASN1ITAG msgtag;
int msglen, status;
logic to read message into msgbuf

// Use the ASNIBERDecodeBuffer class to parse the initial
// tag/length from the message..

ASN1BERDecodeBuffer decodeBuffer (msgbuf, len);

status = decodeBuffer.ParseTaglLen (msgtag, msglen);

if (status != ASN OK) {
// handle error

}

// Now switch on initial tag value to determine what type of
// message was received..

switch (msgtag)
{
case TV PersonnelRecord: // compiler generated constant
{
ASNIT PersonnelRecord msgData;

ASN1C PersonnelRecord employee (decodeBuffer, msgData);

if ((status = employee.Decode ()) == ASN OK)
{

// decoding successful, data in employee.msgData

process received data..
}
else

error processing...

case TV ... // handle other known messages

Note that the call to ‘xu_freeall’ is not required to release dynamic memory when using the C++ interface.
This is because the control class hides all of the details of managing the context and releasing dynamic
memory. The memory is automatically released when both the message buffer object
(ASN1BERMessageBuffer) and the control class object (ASN1C_<ProdName>) are deleted or go out of
scope. Reference counting of a context variable shared by both interfaces is used to accomplish this.

Decoding a Series of Messages Using the C++ Control Class Interface

The above example is fine as a sample for decoding a single message, but what happens in the more typical
scenario of having a long-running loop that continuously decodes messages? The logic shown above
would not be optimal from a performance standpoint because of the constant creation and destruction of the
message processing objects. It would be much better to create all of the required objects outside of the loop
and then reuse them to decode and process each message.

A code fragment showing a way to do this is as follows:

#include employee.h // include file generated by ASNLC

ASNIC V5.3 55

main ()
ASNI1OCTET msgbuf[1024];
ASN1ITAG msgtag;
int msglen, status;

// Create message buffer, ASN1IT, and ASNIC objects

ASN1BERDecodeBuffer decodeBuffer (msgbuf, len);
ASNIT PersonnelRecord employeeData;

ASNIC PersonnelRecord employee (decodeBuffer, employeeData);

for (77) |
logic to read message into msgbuf
status = decodeBuffer.ParseTaglen (msgtag, msglen);

if (status != ASN OK) {
// handle error

}

// Now switch on initial tag value to determine what type of

// message was received..

switch (msgtag)
{

case TV PersonnelRecord: // compiler generated constant

{
if ((status = employee.Decode ()) == ASN _OK)

{

// decoding successful, data in employeeData

process received data..

}
else
error processing...
}

break;

default:
// handle unknown message type here

} // switch
// Need to reinitialize objects for next iteration
employee.memFreeAll ();

} // end of loop

This is quite similar to the first example. Note that we have pulled the ASNIT Employee and

ASNIC_Employee object creation logic out of the switch statement and moved it above the loop. These

objects can now be reused to process each received message.

The only other change was the call to employee.memFreeAll that was added at the bottom of the loop.

Since we can’t count on the objects being deleted to automatically release allocated memory, we need to do

ASNIC V5.3

56

it manually. This call will free all memory held within the decoding context. This will allow the loop to
start again with no outstanding memory allocations for the next pass.

Performance Considerations: Dynamic Memory Management

By far, the biggest performance bottleneck when decoding ASN.1 messages is the allocation of memory
from the heap. Each call to new or malloc is very expensive.

The decoding functions must allocate memory because the sizes of a lot of the variables that make up a
message are not known at compile time. For example, an OCTET STRING that does not contain a size
constraint can be an indeterminate number of bytes in length.

ASNI1C does two things by default to relieve the burden of allocating dynamic memory:

1. Uses static variables wherever it can. Any BIT STRING, OCTET STRING, character string, or
SEQUENCE OF or SET OF construct that contains a size constraint will result in the generation of a
static array of elements sized to the max constraint bound.

2. Uses a special nibble-allocation algorithm for allocating dynamic memory. This algorithm allocates
memory in large blocks and them splits up these blocks on subsequent memory allocation requests.
This results in fewer calls to the kernel to get memory. The downside is that one request for a few
bytes of memory can result in a large block being allocated.

The user has some control over the memory allocation process provided that they have purchased the
standard version of the product that contains run-time source code. First, the default size of a memory
block as allocated by the nibble-allocation algorithm can be changed. By default, this is set to 4K bytes by
the following constant in the asnltype.h header file:

#defi ne XM K MEMBLKSI Z ((4*1024) - (sizeof(long) + sizeof(void*)))

The number (4*1024) can be modified to change this size (the rest of the expression is an adjustment for
the size of a header that is automatically added). After modification, the run-time source code must be
recompiled for this change to take effect.

The other thing that can be done is changing the algorithm all together. All memory allocation and free
requests are routed through two functions: rtMemAlloc and rtMemFree. The bodies of these functions can
be changed to implement whatever type of memory allocation scheme is desired. For example, embedded
applications may use an operating system that does not contain malloc and free calls. So whatever is
available can be included here. Another example is an extremely high-performance decoder. In this case,
the nibble-allocation algorithm can be replaced with a fixed-size static block algorithm. The allocate
function will split up the block, the free function will simply reset all pointers and/or indexes to make the
entire block available again.

ASNIC V5.3 57

Generated PER Encode Functions

PER encode/decode functions are generated when the ‘-per’ switch is specified on the command line. For
each ASN.1 production defined in the ASN.1 source file, a C PER encode function is generated. This
function will convert a filled-in C variable of the given type into a PER encoded ASN.1 message.

If C++ code generation is specified, a control class is generated that contains an Encode method that wraps
this function. This function is invoked through the class interface to encode an ASN.1 message into the
variable referenced in the msgData component of the class.

Generated C Function Format and Calling Parameters
The format of the name of each generated PER encode function is as follows:
asnlPE [<prefix>]<prodName>

where <prodName> is the name of the ASN.1 production for which the function is being generated and
<pr ef i x> is an optional prefix that can be set via a configuration file setting. The configuration setting
used to set the prefix is the <typePrefix> element which specifies a prefix that will be applied to all
generated typedef names and function names for the production.

The calling sequence for each encode function is as follows:
status = asnlPE <name> (ASNICTXT* ctxt p, <name>[*] value);
In this definition, <name> denotes the prefixed production name defined above.

The ctxt p argument is used to hold a context pointer to keep track of encode parameters. This is a basic
"handle" variable that is used to make the function reentrant so it can be used in an asynchronous or
threaded application. The user is required to supply a pointer to a variable of this type declared somewhere
in his or her or her program.

The object argument contains the value to be encoded or holds a pointer to the value to be encoded.
This variable is of the type generated from the ASN.1 production. The object is passed by value if it is a
primitive ASN.1 data type such as BOOLEAN, INTEGER, ENUMERATED, etc.. It is passed using a
pointer reference if it is a structured ASN.1 type value. Check the generated function prototype in the
header file to determine how the object argument is to be passed for a given function.

The function result variable stat returns the status of the encode operation. Status code 0 (ASN_OK)
indicates the functions was successful. A negative value indicates encoding failed. Return status values
are defined in the "asnltype.h" include file. The reason text and a stack trace can be displayed using the
rtErrPrint function described later in this document.

Generated C++ Encode Method Format and Calling Parameters

Generated encode functions are invoked through the class interface by calling the base class ‘Encode’
method. The calling sequence for this method is as follows:

stat = class var.Encode ();

In this definition, class_var is a variable of the class generated for the given production. The function result
variable stat returns the status value from the PER encode function. This status value will be ASN_OK
(0) if encoding was successful or a negative error status value if encoding fails. Return status values are
defined in the "asnltype.h" include file.

ASNIC V5.3 58

The user must call the encode buffer class methods GetMsgPtr and GetMsgLen to obtain the starting
address and length of the encoded message component.

Populating Generated Structure Variables for Encoding

See the section ‘Populating Generated Structure Variables for Encoding’ in ‘Generated BER Encode
Functions’ for a discussion on how to populate variables for encoding. There is no difference in how it is
done for BER versus how it is done for PER.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C PER encode function. This method must
be used if C code generation was done. This method can also be used as an alternative to using the control
class interface if C++ code generation was done.

Before a PER encode function can be called, the user must first initialize an encoding context block
structure. The context block is initialized by either calling the pu_newContext function (to allocate a
dynamic context block), or by calling pu_initContext to initialize a static block. Both of these routines
allow a message buffer to be specified to receive the encoded message. Specification of a message buffer
is optional; if not specified, the encoder will allocate memory automatically for the encoded message.
These routines also allow for the specification of aligned or unaligned encoding.

An encode function can then be called to encode the message. If the return status indicates success
(ASN_OK), then the message will have been encoded in the given buffer. Unlike BER, PER encoding
starts from the beginning of the buffer and proceeds from left to right. Therefore, the buffer start address is
where the encoded PER message begins. The length of the encoded message can be obtained by calling the
pe_GetMsgLen run-time function. If dynamic encoding was specified (i.e., a buffer start address and length
were not given), the run-time routine pe_GetMsgPtr can be used to obtain the start address of the message.
This routine will also return the length of the encoded message.

A program fragment that could be used to encode an employee record is as follows:
#include employee.h /* include file generated by ASNIC */
main ()
{
ASN1OCTET msgbuf[1024];
int msglen, stat;
ASNICTXT* pCtxt;

ASN1BOOL aligned = TRUE;
Employee employee; /* typedef generated by ASNIC */

/* Populate employee C structure */

employee.name.givenName = "SMITH";

/* Allocate and initialize a new context pointer */
pCtxt = pu newContext (msgbuf, sizeof (msgbuf), aligned);

if ((stat = asnlPE Employee (pCtxt, &employee)) == ASN OK) {
msglen = pe GetMsgLen (pCtxt);

}
else
error processing...

ASNIC V5.3 59

}

free (pCtxt); /* release the context pointer */

In general, static buffers should be used for encoding messages where possible as they offer a substantial
performance benefit over dynamic buffer allocation. The problem with static buffers, however, is that you
are required to estimate in advance the approximate size of the messages you will be encoding. There is no
built-in formula to do this, the size of an ASN.1 message can vary widely based on data types and other
factors.

If performance is not a significant issue, then dynamic buffer allocation is a good alternative. Setting the
buffer pointer argument to NULL in the call to pu_newContext or pu_initContext specifies dynamic
allocation. This tells the encoding functions to allocate a buffer dynamically. The address of the start of
the message is obtained after encoding by calling the run-time function pe_GetMsgPtr.

The following code fragment illustrates PER encoding using a dynamic buffer:
#include employee.h /* include file generated by ASNIC */

main ()
{
ASN1OCTET *msgptr;
int msglen, stat;
ASNICTXT* pCtxt;
ASN1BOOL aligned = TRUE;
Employee employee; /* typedef generated by ASNIC */

employee.name.givenName = "SMITH";

pCtxt = pu newContext (0, 0, aligned);

if ((stat = asnlPE Employee (pCtxt, &employee)) == ASN OK) {
msgptr = pe GetMsgPtr (pCtxt, &msglen);

}

else
error processing...

Procedure for Using the C++ Control Class Encode Method
The procedure to encode a message using the C++ class interface is as follows:

1. Instantiate an ASN.1 PER encode buffer object (ASN1PEREncodeBuffer) to describe the buffer into
which the message will be encoded. Two overloaded constructors are available. The first form takes
as arguments a static encode buffer and size and a Boolean value indicating whether aligned encoding
is to be done. The second form only takes the Boolean aligned argument. This form is used to specify
dynamic encoding.

2. Instantiate an ASN1T <ProdName> object and populate it with data to be encoded.

3. Instantiate an ASN1C_<ProdName> object to associate the message buffer with the data to be
encoded.

4. Invoke the ASN1C_<ProdName> object Encode method.

ASNIC V5.3 60

5. Check the return status. The return value is a status value indicating whether encoding was successful
or not. Zero (ASN_OK) indicates success. If encoding failed, the status value will be a negative
number. The encode buffer method 'PrintErrorInfo’ can be invoked to get a textual explanation and
stack trace of where the error occurred.

6. If encoding was successful, get the start-of-message pointer and message length. The start-of-message
pointer is obtained by calling the GetMsgPtr method of the encode buffer object. If static encoding
was specified (i.e., a message buffer address and size were specified to the PER Encode Buffer class
constructor), the start-of-message pointer is the buffer start address. The message length is obtained by
calling the GetMsgLen method of the encode buffer object.

A program fragment that could be used to encode an employee record is as follows:
#include employee.h // include file generated by ASNICPP

main ()

{
const ASNIOCTET* msgptr;
ASN1OCTET msgbuf[1024];
int msglen, stat;
ASN1BOOL aligned = TRUE;

// step 1: instantiate an instance of the PER encode
// buffer class. This example specifies a static
// message buffer..

ASN1PEREncodeBuffer encodeBuffer (msgbuf,
sizeof (msgbuf),
aligned) ;

// step 2: populate msgData with data to be encoded

ASNIT PersonnelRecord msgData;
msgData.name.givenName = "SMITH";

// step 3: instantiate an instance of the ASNIC <ProdName>
// class to associate the encode buffer and message data..

ASN1C PersonnelRecord employee (encodeBuffer, msgData);
// steps 4 and 5: encode and check return status

if ((stat = employee.Encode ()) == ASN OK)

{
printf ("Encoding was successfull\n");
printf ("Hex dump of encoded record:\n");
encodeBuffer.HexDump ();
printf ("Binary dump:\n");
encodeBuffer.BinDump ("employee");

// step 6: get start-of-message pointer and message length.
// start-of-message pointer is start of msgbuf
// call GetMsgLen to get message length..

msgptr = encodeBuffer.GetMsgPtr (); // will return &msgbuf
len = encodeBuffer.GetMsglen ()

ASNIC V5.3 61

}

else

{
printf ("Encoding failed\n");
encodeBuffer.PrintErrorInfo ();
exit (0);

}

// msgptr and len now describe fully encoded message

In general, static buffers should be used for encoding messages where possible as they offer a substantial
performance benefit over dynamic buffer allocation. The problem with static buffers, however, is that you
are required to estimate in advance the approximate size of the messages you will be encoding. There is no
built-in formula to do this, the size of an ASN.1 message can vary widely based on data types and other
factors.

If performance is not a significant issue, then dynamic buffer allocation is a good alternative. Dynamic
buffer allocation is specified by using the form of the ASN1PEREncodeBuffer constructor that does not
take a buffer address and size as an argument. This constructor only requires the aligned Boolean value to
specify whether aligned or unaligned encoding should be performed (aligned is true).

The following code fragment illustrates PER encoding using a dynamic buffer:
#include employee.h // include file generated by ASNIC

main ()

{
ASNIOCTET *msgptr;
int msglen, stat;
ASN1BOOL aligned = TRUE;

// Create an instance of the compiler generated class.
// This example does dynamic encoding (no message buffer
// 1s specified)..

ASN1PEREncodeBuffer encodeBuffer (aligned);
ASNIT PersonnelRecord msgData;

ASN1C PersonnelRecord employee (encodeBuffer, msgData);

// Populate msgData within the class variable

employee.msgData.name.givenName = "SMITH";
// Encode
if ((stat = employee.Encode ()) == ASN OK)

{
printf ("Encoding was successful\n");
printf ("Hex dump of encoded record:\n");
encodeBuffer.HexDump ()
printf ("Binary dump:\n");
encodeBuffer.BinDump ("employee");

// Get start-of-message pointer and length

ASNIC V5.3 62

msgptr = encodeBuffer.GetMsgPtr ();
len = encodeBuffer.GetMsglen ();

}

else

{
printf ("Encoding failed\n");
encodeBuffer.PrintErrorInfo ();
exit (0);

}

return 0;

Encoding a Series of PER Messages using the C++ Interface

When encoding a series of PER messages using the C++ interface, performance can be improved by
reusing the message processing objects to encode each message rather than creating and destroying the
objects each time. A detailed example of how to do this was given in the section on BER message
encoding. The PER case would be similar with the PER function calls substituted for the BER calls. As
was the case for BER, the encode message buffer object /nif method can be used to reinitialize the encode
buffer between invocations of the encode functions.

ASNIC V5.3 63

Generated PER Decode Functions

PER encode/decode functions are generated when the ‘-per’ switch is specified on the command line. For
each ASN.1 production defined in the ASN.1 source file, a C PER decode function is generated. This
function will parse the data contents from a PER-encoded ASN.1 message and populate a variable of the
corresponding type with the data.

If C++ code generation is specified, a control class is generated that contains a Decode method that wraps
this function. This function is invoked through the class interface to encode an ASN.1 message into the
variable referenced in the msgData component of the class.

Generated C Function Format and Calling Parameters
The format of the name of each generated PER decode function is as follows:
asnlPD [<prefix>]<prodName>

where <prodName> is the name of the ASN.1 production for which the function is being generated and
<pr ef i x> is an optional prefix that can be set via a configuration file setting. The configuration setting
used to set the prefix is the <typePrefix> element. This element specifies a prefix that will be applied to all
generated typedef names and function names for the production.

The calling sequence for each decode function is as follows:
status = asnlPD <name> (ASNICTXT* ctxt p, <name>* pvalue);
In this definition, <name> denotes the prefixed production name defined above.

The ctxt p argument is used to hold a context pointer to keep track of decode parameters. This is a basic
"handle" variable that is used to make the function reentrant so it can be used in an asynchronous or
threaded application. The user is required to supply a pointer to a variable of this type declared somewhere
in his or her program.

The pvalue argument is a pointer to a variable to hold the decoded result. This variable is of the type
generated from the ASN.1 production. The decode function will automatically allocate dynamic memory
for variable length fields within the structure. This memory is tracked within the context structure and is
released when the context structure is freed.

The function result variable stat returns the status of the decode operation. Status code 0 (ASN_OK)
indicates the function was successful. A negative value indicates decoding failed. Return status values are
defined in the "asnltype.h" include file. The reason text and a stack trace can be displayed using the
rtErrPrint function described later in this document.

Generated C++ Decode Method Format and Calling Parameters

Generated decode functions are invoked through the class interface by calling the base class ‘Decode’
method. The calling sequence for this method is as follows:

status = class var.Decode ();
In this definition, class_var is a variable of the class generated for the given production.
An ASN1PERDecodeBuffer object must be passed to the class_var constructor prior to decoding. This is
where the start address of the message to be decoded and message length are specified. A Boolean

argument is also passed indicating whether the message to be decoded was encoded using aligned or
unaligned PER

ASNIC V5.3 64

The function result variable status returns the status of the decode operation. The return status will be
zero (ASN_OK) if decoding is successful or a negative value if an error occurs. Return status values are
defined in Appendix A of this document and online in the "asnltype.h" include file.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C PER decode function. This method must
be used if C code generation was done. This method can also be used as an alternative to using the control
class interface if C++ code generation was done.

Unlike BER, the user must know the ASN.1 type of a PER message before it can be decoded. This is
because the type cannot be determined at run-time. There are no embedded tag values to reference to
determine the type of message received.

There are three steps to calling a compiler-generated decode function:

1. Prepare a context variable for decoding
2. Call the appropriate compiler-generated decode function to decode the message
3. Free the context after use of the decoded data is complete to free allocated memory structures

Before a PER decode function can be called, the user must first initialize a context block structure. The
context block is initialized by either calling the pu_newContext function (to allocate a dynamic context
block), or by calling pu_initContext to initialize a static block. Both of these routines allow a message
buffer that contains a PER-encoded message to be specified. These routines also allow for the specification
of aligned or unaligned decoding.

A decode function can then be called to decode the message. If the return status indicates success
(ASN_OK), then the message will have been decoded into the given ASN.1 type variable. The decode
function may automatically allocate dynamic memory to hold variable length variables during the course of
decoding. This memory will be tracked in the context structure, so the programmer does not need to worry
about freeing it. It will be released when the context is freed.

The final step of the procedure is to free the context block. This must be done regardless of whether the
block is static (declared on the stack and initialized using pu_initContext), or dynamic (created using
pu_newContext). The function to free the context is pu_freeContext.

A program fragment that could be used to decode an employee record is as follows:
#include employee.h /* include file generated by ASNIC */
main ()

{
ASN1OCTET msgbuf[1024];
ASNITAG msgtag;
int msglen, stat;
ASNICTXT ctxt;
ASN1BOOL aligned = TRUE;
PersonnelRecord employee;
logic to read message into msgbuf
/* This example uses a static context block */

/* step 1: prepare the context block */

pu_initContext (&ctxt, msgbuf, msglen, aligned);

ASNIC V5.3 65

/* step 2: decode the record */

stat = asnlPD PersonnelRecord (&ctxt, &employee);
if (stat == ASN_OK)
{
process received data..
}
else {
/* error processing... */

rtErrPrint (&ctxt);
}

/* step 3: free the context */

pu_ freeContext (&ctxt);

Procedure for Using the C++ Control Class Encode Method

The following are the steps are involved in decoding a PER message using the generated C++ class:

1.

Instantiate an ASN.1 PER decode buffer object (ASN1PERDecodeBuffer) to describe the message to
be decoded. The constructor takes as arguments a pointer to the message to be decoded, the length of
the message, and a flag indicating whether aligned encoding was used or not.

Instantiate an ASN1T <ProdName> object to hold the decoded message data.

Instantiate an ASN1C_<ProdName> object to decode the message. This class associates the message
buffer object with the object that is to receive the decoded data. The results of the decode operation
will be placed in the variable declared in step 2.

Invoke the ASN1C_<ProdName> object Decode method.

Check the return status. The return value is a status value indicating whether decoding was successful
or not. Zero (ASN_OK) indicates success. If decoding failed, the status value will be a negative
number. The decode buffer method 'PrintErrorInfo' can be invoked to get a textual explanation and
stack trace of where the error occurred.

Release dynamic memory that was allocated by the decoder. All memory associated with the decode
context is released when both the ASN1PERDecodeBuffer and ASN1C_<ProdName> objects go out
of scope.

A program fragment that could be used to decode an employee record is as follows:

#include employee.h // include file generated by ASN1CPP
main ()
{
ASN1OCTET msgbuf[1024];
int msglen, stat;
ASN1BOOL aligned = TRUE;
logic to read message into msgbuf

// step 1: instantiate a PER decode buffer object

ASN1PERDecodeBuffer decodeBuffer (msgbuf, msglen, aligned);

ASNIC V5.3 66

// step 2: instantiate an ASNIT <ProdName> object
ASNIT PersonnelRecord msgData;

// step 3: instantiate an ASN1C <ProdName> object
ASN1C PersonnelRecord employee (decodeBuffer, msgData);
// step 4: decode the record

stat = employee.Decode ();

// step 5: check the return status

if (stat == ASN OK)

{

process received data..

}

else {
// error processing..
decodeBuffer.PrintErrorInfo ():;

}
// step 6: free dynamic memory (will be done automatically

// when both the decodeBuffer and employee objects go out
// of scope)..

Decoding a Series of Messages Using the C++ Control Class Interface
The above example is fine as a sample for decoding a single message, but what happens in the more typical
scenario of having a long-running loop that continuously decodes messages? The logic shown above
would not be optimal from a performance standpoint because of the constant creation and destruction of the
message processing objects. It would be much better to create all of the required objects outside of the loop
and then reuse them to decode and process each message.
A code fragment showing a way to do this is as follows:
#include employee.h // include file generated by ASNLC
main ()
{
ASN1OCTET msgbuf[1024];
int msglen, stat;
ASN1BOOL aligned = TRUE;
// step 1: instantiate a PER decode buffer object
ASN1PERDecodeBuffer decodeBuffer (msgbuf, msglen, aligned);
// step 2: instantiate an ASNIT <ProdName> object

ASNIT PersonnelRecord msgData;

// step 3: instantiate an ASN1C <ProdName> object

ASNIC V5.3 67

ASN1C PersonnelRecord employee (decodeBuffer, msgData);
// loop to continuously decode records
for (;7) |
logic to read message into msgbuf
stat = employee.Decode ()
// step 5: check the return status

if (stat == ASN OK)

{
process received data..

}

else {
// error processing..
decodeBuffer.PrintErrorInfo ();

}
// step 6: free dynamic memory

employee.memFreeAll ();

}

The only difference between this and the previous example is the addition of the decoding loop and the
modification of step 6 in the procedure. The decoding loop is an infinite loop to continuously read and
decode messages from some interface such as a network socket. The decode calls are the same, but before
in step 6, we were counting on the message buffer and control objects to go out of scope to cause the
memory to be released. Since the objects are now being reused, this will not happen. So the call to the
memFreeAll method that is defined in the ASN1C_Type base class will force all memory held at that point
to be released.

Performance Considerations: Dynamic Memory Management
Please refer to the section of the same name in the BER Decode Functions section for a discussion of

memory management performance issues. All of those issues that apply to BER and DER also apply to
PER as well.

ASNIC V5.3 68

Generated Print Functions

The —print option causes print functions to be generated. These functions can be used to print the contents
of variables of generated types.

If no output file is specified with the —print qualifier, the functions are written to separate .c files for each

module in the source file. The format of the name of each file is <module>Print.c. If an output filename is
specified after the —print qualifier, all functions are written to this file.

The format of the name of each generated print function is as follows :

asnlPrint [<prefix>]<prodName>
where <prodName> is the name of the ASN.1 production for which the function is being generated and
<pr ef i x> is an optional prefix that can be set via a configuration file setting. The configuration setting
used to set the prefix is the <typePrefix> element. This element specifies a prefix that will be applied to all
generated typedef names and function names for the production.
The calling sequence for each generated function is as follows:

asnlPrint_<name> (ASN1Const Char Ptr nane, <nanme>* pval ue)
In this definition, <name> denotes the prefixed production name defined above.
The name argument is used to hold the top-level name of the variable being printed. It is typically set to
the same name as the pvalue argument in quotes (for example, to print an employee record, a call to
‘asnlPrint Employee (“employee”, &employee) might be used).
The pvalue argument is used to pass a pointer to a variable of the item to be printed.
If C++ code generation is specified, a Print method is added to the ASN1C control class for the type. This

method takes only a name argument; the pvalue argument is obtained from the msgData reference
contained within the class.

ASNIC V5.3 69

Event Handler Interface

The —events command line switch causes hooks for user-defined event handlers to be inserted into the
generated decoded functions. This feature is only available when C++ code generation is being done.
What these event handlers do is up to the user. They fire when key message-processing events or errors
occur during the course of parsing an ASN.1 message. They are similar in functionality to the Simple API
for XML (SAX) that was introduced to provide a simple interface for parsing XML messages.

How it Works
Users of XML parsers are probably already quite familiar with the concepts of SAX. Significant events are
defined that occur during the parsing of a message. As a parser works through a message, these events are

“fired’ as they occur by invoking user defined callback functions. These callback functions are also known
as event handler functions. A diagram illustrating this parsing process is as follows:

A A A A

ASN.1 MESSAGE

Parser (ASN.1
decode function)

The events are defined to be significant actions that occur during the parsing process. We will define the
following events that will be passed to the user when an ASN.1 message is parsed:

1. startElement — This event occurs when the parser moves into a new element. For example, if we have
a SEQUENCE { a, b, ¢ } construct (type names omitted), this event will fire when we begin parsing a,
b, and c. The name of the element is passed to the event handling callback function.

2. endElement — This event occurs when the parser leaves a given element space. Using the example
above, these would occur after the parsing of a, b, and ¢ are complete. The name of the element is
once again passed to the event handling callback function.

3. contents methods — A series of virtual methods are defined to pass all of the different types of
primitive values that might be encountered when parsing a message (see the event handler class
definition below for a complete list).

4. error — This event will be fired when a parsing error occurs. It will provide fault-tolerance to the
parsing process as it will give the user the opportunity to fix or ignore errors on the fly to allow the
parsing process to continue.

These events are defined as unimplemented virtual methods in two base classes: AsnlNamedEventHandler
(the first 3 events) and AsnlErrorHandler (the error event). These classes are defined in the
asnlCppEvtHndlr.h header file.

The start and end element methods are invoked when an element is parsed within a constructed type. The
start method is invoked as soon as the tag/length is parsed in a BER message or the preamble/length is
parsed in a PER message. The end method is invoked after the contents of the field are processed. The
signature of these methods is as follows:

virtual void startElement (const char* name, int index) 0;

virtual void endElement (const char* name, int index) = 0;

ASNIC V5.3 70

The name argument is used pass the element name. The index argument is used for SEQUENCE OF/SET
OF constructs only. It is used to pass the index of the item in the array. This argument is set to —1 for all
other constructs.

There is one contents method for passing each of the ASN.1 data types. Some methods are used to handle
several different types. For example, the charValue method is used for values of all of the different
character string types (IAS5String, NumericString, PrintableString, etc.) as well as for big integer values.
Note that this method is overloaded. The second implementation is for 16-bit character strings. These
strings are represented as an array of unsigned short integers in ASN1C. All of the other contents methods
correspond to a single equivalent ASN.1 primitive type.

The error handler base class has a single virtual method that must be implemented. This is the error
method and this has the following signature:

virtual int error (ASNICTXT* pCtxt, ASNICCB* pCCB, int stat) = 0;

In this definition, pCtxt is a pointer to the standard ASN.1 context block that should already be familiar.
The pCCB structure is known as a “Context Control Block™. This can be thought of as a sub-context used
to control the parsing of nested constructed types within a message. It is included as a parameter to the
error method mainly to allow access to the “seqx” field. This is the sequence element index used when
parsing a SEQUENCE construct. If parsing a particular element is to be retried, this item must be
decremented within the error handler.

How to Use It
To define event handlers, two things must be done:

1. One or more new classes must be derived from the AsnlNamedEventHandler and/or the
AsnlErrorHandler base classes. All pure virtual methods must be implemented.

2. Objects of these classes must be created and registered prior to calling the generated decode method or
function.

The best way to illustrate this procedure is through examples. We will first show a simple event handler
application to provide a customized formatted printout of the fields in a PER message. Then we will show
a simple error handler that will ignore unrecognized fields in a BER message.

Example 1: A Formatted Print Handler

The ASN1C evaluation and distribution kits include a sample program for doing a formatted print of parsed
data. This code can be found in the cpp/sample_per/eventHandler directory. Parts of the code will be
reproduced here for reference, but refer to this directory to see the full implementation.

The format for the printout will be simple. Each element name will be printed followed by an equal sign
(=) and an open brace ({) and newline. The value will then be printed followed by another newline.
Finally, a closing brace (}) followed by another newline will terminate the printing of the element. An
indentation count will be maintained to allow for a properly indented printout.

A header file must first be created to hold our print handler class definition (or the definition could be
added to an existing header file). This file will contain a class derived from the AsniNamedEventHandler
base class as follows:

class PrintHandler : public AsnlNamedEventHandler {
protected:

const char* mVarName;

int mIndentSpaces;
public:

ASNIC V5.3 71

PrintHandler (const char* varName) ;

~PrintHandler ():

void indent ();

virtual void startElement (const char* name, int index = -1);
virtual void endElement (const char* name, int index = -1);

virtual void boolValue (ASN1BOOL value) ;

other virtual contents method declarations

}

In this definition, we chose to add the mVarName and mIndentSpaces member variables to keep track of
these items. The user is free to add any type of member variables he or she wants. The only firm
requirement in defining this derived class is the implementation of the virtual methods.

We implement these virtual methods as follows:
In startElement, we print the name, equal sign, and opening brace:

volid PrintHandler::startElement (const char* name, int index)
{

indent () ;

printf (“%s = {\n”, name);

mIndentLevel++;

}

In this simplified implementation, we simply indent (this is another private method within the class) and
print out the name, equal sign, and opening brace. We then increment the indent level. Note that this is a
highly simplified form. We don’t even bother to check if the index argument is greater than or equal to
zero. This would determine if a ‘[x]” should be appended to the element name. In the sample program that
is included with the compiler distribution, the implementation is complete.

In endElement, we simply terminate our brace block as follows:

void PrintHandler::endElement (const char* name, int index)

{
mIndentLevel--;
indent () ;
printf (“}\n”);
}

All that each of the various value methods have to do is print a stringified representation of the value out to
stdout. For example, the intValue callback would just print an integer value:

volid PrintHandler::intValue (int value)

{
indent () ;
printf (“%d\n”, value);

}

Next, we need to create an object of our derived class and register it prior to invoking the decode method.
In the reader.cpp program, the following lines do this:

// Create and register an event handler object

PrintHandler* pHandler = new PrintHandler ("employee");
decodeBuffer.addEventHandler (pHandler);

ASNIC V5.3 72

The addEventHandler method defined in the AsnlMessageBuffer base class is the mechanism used to do
this. Note that event handler objects can be stacked. Several can be registered before invoking the decode
function. When this is done, the entire list of event handler objects is iterated through and the appropriate
event handling callback function invoked whenever a defined event is encountered.

The implementation is now complete. The program can now be compiled and run. When this is done, the
resulting output is as follows:

employee = {
name = {

givenName = {
"John"

}

initial = {
"P"

}

familyName = {
"Smith"

}

This can certainly be improved. For one thing it can be changed to print primitive values out in a “name =
value” format (i.e., without the braces). But this should provide the general idea of how it is done.

Example 2: An Error Handler

Despite the addition of things like extensibility and version brackets, ASN.1 implementations get out-of-
sync. For situations such as this, the user needs some way to intervene in the parsing process to set things
straight. This is fault-tolerance — the ability to recover from certain types of errors.

The error handler interface is provided for this purpose. The concept is simple. Instead of throwing an
exception and immediately terminating the parsing process, a user defined callback function is first invoked
to allow the user to check the error. If the user can fix the error, all he or she needs to do is apply the
appropriate patch and return a status of ASN_OK. The parser will be none the wiser. It will continue on
thinking everything is fine.

This interface is probably best suited for recovering from errors in BER or DER instead of PER. The
reason is the TLV format of BER makes it relatively easy to skip an element and continue on. It is much
more difficult to find these boundaries in PER.

Our example can be found in the cpp/sample_ber/errorHandler subdirectory. In this example, we have
purposely added a bogus element to one of the constructs within an encoded employee record. The error
handler will be invoked when this element is encountered. Our recovery action will simply be to print out a
warning message, skip the element, and continue.

As before, the first step is to create a class derived from the AsnlErrorHandler base class. This class is as
follows:

class MyErrorHandl er : public AsnlErrorHandl er {
publi c:

/1 The error handler callback nmethod. This is the method
/1 that the user mnmust override to provide custom zed
/1 error handling..

virtual int error (ASNLCTXT* pCtxt, ASNLCCB* pCCB, int stat);

ASNIC V5.3 73

Simple enough. All we are doing is providing an implementation of the error method.

Implementing the error method requires some knowledge of the run-time internals. In most cases, it will be
necessary to somehow alter the decoding buffer pointer so that the same field isn’t looked at again. If this
isn’t done, an infinite loop can occur as the parser encounter the same error condition over and over again.
The run-time functions xd_NextElement or xd_OpenType might be useful in the endeavor as they provide a
way to skip the current element and move on to the next item.

Our sample handler corrects the error in which an unknown element is encountered within a SET construct.
This will cause the error status ASN_E NOTINSET to be generated. When the error handler sees this
status, it prints information on the error that was encountered to the console, skips to the next element, and
then returns an ASN_OK status that allows the decoder to continue. If some other error occurred (i.e.,
status was not equal to ASN_E NOTINSET), then the original status is passed out which forces the
termination of the decoding process.

The full text of the handler is as follows:
int MyErrorHandler::error (ASNICTXT* pCtxt, ASNICCB* pCCB, int stat)
{
// This handler is set up to look explicitly for ASN E NOTINSET
// errors because we know the SET might contain some bogus elements..
if (stat == ASN _E NOTINSET) {
// Print information on the error that was encountered
printf ("decode error detected:\n");
xu perror (pCtxt);
printf ("\n");
// Skip element
xd NextElement (pCtxt):;

// Return an OK status to indicate parsing can continue

return ASN OK;
}

else return stat; // pass existing status back out

Now we need to register the handler. Unlike event handlers, only a single error handler can be registered.
The method to do this in the message buffer class is setErrorHandler. The following two lines of code in
the reader program register the handler:

MyErrorHandler errorHandler;
decodeBuffer.setErrorHandler (&errorHandler);
The error handlers can be as complicated as you need them to be. You can use them in conjunction with

event handlers in order to figure out where you are within a message in order to look for a specific error at
a specific place. Or you can be very generic and try to continue no matter what.

ASNIC V5.3 74

IMPORT/EXPORT of Types

ASNI1C allows productions to be shared between different modules through the ASN.1 IMPORT/EXPORT
mechanism. The compiler parses but ignores the EXPORTS declaration within a module. As far as it is
concerned, any type defined within a module is available for import by another module.

When ASNIC sees an IMPORT statement, it first checks its list of loaded modules to see if the module has
already been loaded into memory. If not, it will attempt to find and parse another source file containing the
module. The logic for locating the source file is as follows:

1. The configuration file (if specified) is checked for a <sourceFile> element containing the name of the
source file for the module.

2. If this element is not present, the compiler looks for a file with the name <ModuleName>.asn where
module name is the name of the module specified in the IMPORT statement.

In both cases, the —I command line option can be used to tell the compiler where to look for the files.
The other way of specifying multiple modules is to include them all within a single ASN.1 source file. Itis

possible to have an ASN.1 source file containing multiple module definitions in which modules IMPORT
definitions from other modules. An example of this would be the following:

Modul eA DEFINI TIONS ::= BEG N
| MPORTS B From Modul eB;
A::=B

END

Modul eB DEFI NI TIONS ::= BEG N
B ::= I NTECER

END

This entire fragment of code would be present in a single ASN.1 source file.

ASNIC V5.3 75

ASN1C90

The ASN1C90 version of the compiler is a separate executable that contains extensions to handle the older
1990 version of ASN.1. Although this version is no longer supported by the ITU-T, it is still in use today.
This version of the compiler also contains logic to parse some common MACRO definitions that are still in
widespread use despite the fact that MACRO syntax was retired with this version of the standard. The
types of MACRO definitions that are supported are ROSE OPERATION and ERROR and SNMP
OBJECT-TYPE.

ROSE OPERATION and ERROR

ROSE stands for “Remote Operations Service Element” and defines a request/response transaction protocol
in which requests to a conforming entity must be answered with the result or errors defined in operation
definitions. Variations of this are used in a number of protocols in use today including CSTA and TCAP.

The definition of the ROSE OPERATION MACRO that is built into the ASN1C90 version of the compiler
is as follows:

OPERATION MACRO ::=
BEGIN
TYPE NOTATION
VALUE NOTATION

Parameter Result Errors LinkedOperations
value (VALUE INTEGER)

Parameter = ArgKeyword NamedType | empty
ArgKeyword = "ARGUMENT" | "PARAMETER"
Result = "RESULT" ResultType | empty
Errors = "ERRORS" "{"ErrorNames"}" | empty
LinkedOperations = "LINKED" "{"LinkedOperationNames"}" | empty
ResultType = NamedType | empty
ErrorNames = ErrorList | empty
ErrorList = Error | ErrorList "," Error
Error = value (ERROR) -- shall reference an error value
| type -- shall reference an error type
-- if no error value is specified
LinkedOperationNames ::= OperationList | empty
OperationList ::= Operation | OperationList "," Operation
Operation ::= value (OPERATION) -- shall reference an operation value
| type -- shall reference an operation type
-- if no operation value is specified
NamedType ::= identifier type | type
END

This MACRO does not need to be defined in the ASN.1 specification to be parsed. In fact, any attempt to
redefine this MACRO will be ignored. Its definition is hard-coded into the compiler.

What the compiler does with this definition is uses it to parse types and values out of OPERATION
definitions. An example of an OPERATION definition is as follows:

login OPERATION

ARGUMENT SEQUENCE { username IA5String, password IA5String }

RESULT SEQUENCE { ticket OCTET STRING, welcomeMessage IA5String }
ERRORS { authenticationFailure, insufficientResources }

ci= 1

In this case, there are two embedded types (an ARGUMENT type and a RESULT type) and an integer
value (1) that identifies the OPERATION. There are also error definitions.

The ASN1C90 compiler generates two types of items for the OPERATION:

1. It extracts the type definitions from within the OPERATION definitions and generates equivalent
C/C++ structures and encoders/decoders, and

ASNIC V5.3 76

2. It generates value constants for the value associated with the OPERATION (i.e., the value to the right
of the ‘::= in the definition).

The compiler does not generate any structures or code related to the OPERATION itself (for example, code
to encode the body and header in a single step). The reason is because of the multi-layered nature of the
protocol. It is assumed that the user of such a protocol would be most interested in doing the processing in
multiple stages, hence no single function or structure is generated.

Therefore, to encode the login example the user would do the following:

1. At the application layer, the Login ARGUMENT structure would be populated with the username and
password to be encoded.

2. The encode function for Login ARGUMENT would be called and the resulting message pointer and
length would be passed down to the next layer (the ROSE layer).

3. At the ROSE layer, the Invoke structure would be populated with the OPERATION value, invoke
identifier, and other header parameters. The parameter.numocts value would be populated with the
length of the message passed in from step 2. The parameter.data field would be populated with the
message pointer passed in from step 2.

4. The encode function for Invoke would be called resulting in a fully encoded ROSE Invoke message
ready for transfer across the communications link.

The following is a picture showing this process:

Application Layer Populate specific message structure (Login. ARGUMENT) and encode.

v Encoded message pointer and length

ROSE Layer Populate ROSE header message structure (Invoke) and encode.
Open type structure contains message pointer and length from previous step.
V Final encoded message

On the decode side, the process would be reversed with the message flowing up the stack:

1. At the ROSE layer, the header would be decoded producing information on the OPERATION type
(based on the MACRO definition) and message type (Invoke, Result, etc..). The invoke identifier
would also be available for use in session management. In our example, we would know at this point
that we got a login invoke request.

2. Based on the information from step 1, the ROSE layer would know that the Open Type field contains a
pointer and length to an encoded Login ARGUMENT component. It would then route this
information to the appropriate processor within the Application Layer for handling this type of
message.

3. The Application Layer would call the specific decoder associated with the Login ARGUMENT. It
would then have available to it the username/password the user is logging in with. It could then do

whatever application-specific processing is required with this information (database lookup, etc.).

4. Finally, the Application Layer would begin the encoding process again in order to send back a Result
or Error message to the Login Request.

A picture showing this is as follows:

ASNIC V5.3 71

Application Layer Call specific function to decode Login ARGUMENT and process data.

4 Encoded message pointer and length

ROSE Layer Decode ROSE header message structure (Invoke).
Open type structure contains message pointer and length of encoded
4 Encoded ROSE message

Login ARGUMENT.
The login OPERATION also contains references to ERROR definitions. These are defined using a
separate MACRO that is built into the compiler. The definition of this MACRO is as follows:

ERROR MACRO ::=

BEGIN
TYPE NOTATION ::= Parameter
VALUE NOTATION ::= value (VALUE INTEGER)
Parameter ::= "PARAMETER" NamedType | empty
NamedType ::= identifier type | type

END

In this definition, an error is assigned an identifying number as well as on optional parameter type to hold
parameters associated with the error. An example of a reference to this MACRO for the
authenticationFailure error in the login operation defined earlier would be as follows:

applicationError ERROR
PARAMETER SEQUENCE ({
errorText IA5String
} }
=1
The ASN1C90 compiler will generate a type definition for the error parameter and a value constant for the
error value. The format of the name of the type generated will be “<name> PARAMETER” where

<name> is the ERROR name (applicationError in this case) with the first letter set to uppercase. The name
of the value will simply be the ERROR name.

SNMP OBJECT-TYPE

The SNMP OBJECT-TYPE MACRO is one of several MACROs used in Management Information Base
(MIB) definitions. It is the only MACRO of interest to ASN1C because it is the one that specifies the
object identifiers and data that are contained in the MIB.

The version of the MACRO currently supported by this version of ASN1C can be found in the SMI
Version 2 RFC (RFC 2578). The compiler generates code for two of the items specified in this MACRO
definition:

1. The ASN.I type that is specified using the SYNTAX command, and

2. The assigned OBJECT IDENTIFIER value

ASNIC V5.3 78

For an example of the generated code, we can look at the following definition from the UDP MIB:

udpInDatagrams OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of UDP datagrams delivered to UDP users."
t:= { udp 1 }

In this case, a type definition is generated for the SYNTAX element and an Object Identifier value is
generated for the entire item. The name used for the type definition is “<name> SYNTAX” where
<name> would be replaced with the OBJECT-TYPE name (i.e., udpInDatagrams). The name used for the
Object Identifier value constant is the OBJECT-TYPE name. So for the above definitions, the following
two C items would be generated:

typedef Counter32 udpInDatagrams SYNTAX;

ASN1OBJID udpInDatagrams = {
8,

{1, 3, 6, 1, 2, 1, 7, 1}
b

ASNIC V5.3 79

ASN.1 C++ Run-time Classes

The ASN.1 C++ run-time classes are wrapper classes that provide an object-oriented interface to the ASN.1
C run-time library functions. The following base classes form the foundation on which a set of derived
classes are built:

e The ‘ASNI1Context’ class wraps the C ASNICTXT structure that encapsulates all global data used in
the encode/decode process.

e The ‘ASN1MessageBuffer’ class is the base class for encapsulating message buffers. From this,
BER/DER and PER encode and decode message buffer classes are derived.

e The ‘ASNICType’ class is the base class from which all compiler-generated ASN.1 production classes
are derived.

e The ‘Asnl1NamedEventHandler’ class is the base class from which custom event handler classes are
derived.

e The ‘AsnlErrorHandler’ class is the base class from which custom error handler class are derived.

ASN1Context
This class wraps an ASN.1 context variable. It is implemented to be a reference counted class to allow the
ASNI1MessageBuffer and ASN1CType classes to share a single ASN1Context instance. Its purpose is to

maintain context information on an encode/decode operation across different function invocations.

In general, a user will have no need for direct use of this class. Objects are constructed from it and used
internally inside the message buffer and type base classes.

ASNI1 Context::ASN1Context

The constructor initializes the encapsulated ASN1CTXT member variable.
Input Parameters:

None

Output Parameters:

None

ASNI1Context::~ASNI1Context

The destructor frees all dynamic memory associated with the given context.

ASNIContext::GetPtr

This method returns a pointer to the encapsulated ASN1CTXT member variable. It can be used if direct
access to the encapsulated context variable is required (for example, to make a direct call to a C run-time
library function).

Calling Sequence:

ASNIC V5.3 81

ptr = context.GetPtr ();
where ‘context’ is an ASN1Context object.

Return Value:

Name Type Description

ptr ASNICTXT* Pointer to encapsulated context structure.

Input Parameters:
None
Output Parameters:

None

ASNI1 Context::PrintErrorInfo

This method prints information from the error structure within the encapsulated context to the standard
output (stdout).

Calling Sequence:
context.PrintErrorInfo ();

where ‘context’ is an ASN1Context object.

Return Value:

None

Input Parameters:

None

Output Parameters:

None

ASNIC V5.3

82

ASN1MessageBuffer

This in an abstract base class from which the ASN1BEREncodeBuffer, ASN1BERDecodeBuffer,
ASNI1PEREncodeBuffer, and ASN1PERDecodeBuffer classes are derived. This class allows for the
management of buffer pointers and lengths used in the encoding/decoding of ASN.1 messages. A user must
declare a variable of one of these derived classes prior to using a compiler generated encode/decode class.
This is because a reference to an ASN1MessageBuffer object is a required argument to the constructor of
the ASN1C_<ProdName> generated class.

This base class defines the following public methods:

ASNIMessageBuffer::addEventHandler

This method is used to register an event handler object. This is an object derived from the
AsnlNamedEventHandler base class that contains custom event handler callback methods. See the section
on Event Handlers for further details. Each time this method is invoked, the specified event handler object
is added to the list of registered handlers.

Calling Sequence:

messageBuffer.addEventHandler (pEventHandler);

where messageBuffer is one of the ASN1Message buffer derived class objects.

Return Value:

None

Input Parameters:

Name Type Description
pEvent Asn1Named Pointer to an object of a class derived from the Asn1NamedEventHandler base class.
Handler EventHandler*

Output Parameters:

None

ASNI1MessageBuffer::CStringToBMPString

This method converts a standard 8-bit null-terminated C string into a 16-bit character string.

Calling Sequence:

bmpString = messageBuffer.CStringToBMPString (cstring,

pBMPString,
pCharsSet) ;

where messageBuffer is one of the ASN1Message buffer derived class objects.

Return Value:

Name Type Description

bmpString | ASNIBMP Pointer to the structure containing the converted string value. This pointer is equal
String* to the pBMPString output parameter. This parameter specifies the buffer into which

ASNIC V5.3 83

the converted string is to be stored.

Input Parameters:

Name Type Description
cstring ASNI1Const Pointer to C string to be converted. The ASN1ConstCharPtr type maps to a char*
CharPtr for C or a const char* for C++.

Output Parameters:

Name Type Description

pBMP ASN1BMP Pointer to BMP string structure to receive converted string.

String String*

pCharSet Asnl16Bit An optional character set to filter the conversion through. Any characters not in the
CharSet* defined set will be discarded. By default, this argument is set to NULL (i.e., no

filtering will be done).

ASNI1MessageBuffer::getByteIndex

This method returns the current byte index into the encode or decode buffer.

Calling Sequence:

index = messageBuffer.getByteIndex ();

where messageBuffer is one of the ASN1Message buffer derived class objects.

Return Value:

Name

Type

Description

index

int

Index to current position in the encode or decode buffer.

Input Parameters:

None

Output Parameters:

None

ASNIMessageBuffer::getContext

This method returns a pointer to the underlying ASN1Context object.

Calling Sequence:

ptr

= messageBuffer.getContext ();

where messageBuffer is one of the ASN1Message buffer derived class objects.

ASNIC V5.3

84

Note that the pointer returned is to an ASN1Context object as defined above — not the ASN1CTXT
structure used in calls to BER or PER C run-time library routines. The complete calling sequence to get the
underlying ASN1CTXT structure is as follows:

ptr = messageBuffer.getContext ()->GetPtr ()

Return Value:

Name Type Description

ptr OSRefCntPtr A reference-counted pointer to an ASN1Context object. The ASN1Context object
<ASNI1Context> | will not be released until all referenced-counted pointer variables go out of scope.
This allows safe sharing of the context between the ASN1MessageBuffer and
ASNI1Ctype classes.

Input Parameters:
None
Output Parameters:

None

ASNIMessageBuffer::GetMsgCopy

This is a virtual method that can be overridden by derived classes to return a deep-copy of the encoded
message encapsulated within the message buffer object. The base class variant returns a null pointer.

Calling Sequence:
ptr = messageBuffer.GetMsgCopy ()
where messageBuffer is one of the ASN1Message buffer derived class objects.

Return Value:

Name Type Description

ptr ASN1OCTET* A pointer to a copy of the message encapsulated within the message buffer object.
The base class version of this method returns a null pointer.

Input Parameters:
None
Output Parameters:

None

ASNI1MessageBuffer::GetMsgPtr

This is a virtual method that can be overridden by derived classes to return a pointer to the encoded
message encapsulated within the message buffer object. The base class variant returns a null pointer.

Calling Sequence:

ASNIC V5.3 85

ptr = messageBuffer.GetMsgPtr ();
where messageBuffer is one of the ASN1Message buffer derived class objects.

Return Value:

Name Type Description

ptr const A pointer to the message encapsulated within the message buffer object. The base
ASN1OCTET* class version of this method returns a null pointer.

Input Parameters:
None
Output Parameters:

None

ASNIMessageBuffer::Init
This is a virtual method that can be overridden by derived classes to reinitialize the underlying encode or
decode buffer. The base class variant does nothing. This method is normally overridden by derived encode
buffer classes to allow multiple messages to be encoded using the same message buffer object.
Calling Sequence:
messageBuffer.Init ();
where messageBuffer is one of the ASN1Message buffer derived class objects.
Return Value:
None
Input Parameters:
None

Output Parameters:

None

ASNI1MessageBuffer::isA

This is a virtual method that must be overridden by derived classes to allow identification of the class. The
base class variant is abstract. This method matches an enumerated identifier defined in the base class. One
identifier is declared for each of the derived classes.
Calling Sequence:

bool = messageBuffer.isA (ident);

where messageBuffer is one of the ASN1Message buffer derived class objects.

Return Value:

ASNIC V5.3 86

Name Type Description

bool boolean Boolean result of the match operation. True if this is the class corresponding to the
passed in identifier.

Input Parameters:

Name Type Description

ident enum Enumerated identifier specifying a derived class. This type is defined as a public
access type in the ASN1MessageBuffer base class. Possible values include
BEREncode, BERDecode, PEREncode, and PERDecode.

Output Parameters:

None

ASNIMessageBuffer::PrintErrorInfo

This method is used to print information on the last encode or decode error associated with the message
buffer object to standard output (stdout).

Calling Sequence:
messageBuffer.PrintErrorInfo ();
where messageBuffer is one of the ASN1Message buffer derived class objects.
Return Value:
None
Input Parameters:
None
Output Parameters:

None

ASNI1MessageBuffer::setErrorHandler
This method is used to register an error handler object. This is an object derived from the
AsnlErrorHandler base class that contains custom error handler callback methods. See the section on
Event Handlers for further details. This method sets the single allowed error handler for a given decoder.
If this method is invoked multiple times, only the last error handling object specified will be registered.
Calling Sequence:

messageBuffer.setErrorHandler (pErrorHandler);

where messageBuffer is one of the ASN1Message buffer derived class objects.

Return Value:

ASNIC V5.3 87

None

Input Parameters:

Name Type Description
pError Asnl Pointer to an object of a class derived from the AsnlErrorHandler base class.
Handler ErrorHandler*

Output Parameters:

None

ASNIC V5.3 88

ASN1BERMessageBuffer
ASN1MessageBuffer

\

+- ASNI1BERMessageBuffer
The ASN1BERMessageBuffer class is derived from the ASN1MessageBuffer base class. It is the base class
for the ASN1BEREncodeBuffer and ASN1BERDecodeBuffer derived classes. It contains variables and
methods specific to encoding or decoding ASN.1 messages using the Basic Encoding Rules (BER). Itis
used to manage the buffer into which an ASN.1 message is to be encoded or decoded.

ASNIBERMessageBuffer::CalcIndefLen

This method calculates the actual length of an indefinite length message component.
Calling Sequence:

len = messageBuffer.CalcIndefLen (buf p)
where messageBuffer is an ASN1BERMessageBuffer derived class object.

Return Value:

Name Type Description
len int Length (in octets) of message component.

Input Parameters:

Name Type Description

buf p ASN1OCTET* A pointer to a message component encoded using indefinite length encoding.

Output Parameters:

None

ASNI1BERMessageBuffer::BinDump
This method outputs a formatted binary dump of the current buffer contents to stdout.
Calling Sequence:
messageBuffer.BinDump () ;
where messageBuffer is an ASN1BERMessageBuffer derived class object.
Return Value:
None
Input Parameters:
None

Output Parameters:

ASNIC V5.3 89

None

ASNI1BERMessageBuffer::HexDump
This method outputs a hexadecimal dump of the current buffer contents to stdout.
Calling Sequence:
messageBuffer.HexDump ();
where messageBuffer is an ASN1BERMessageBuffer derived class object.
Return Value:
None
Input Parameters:
None
Output Parameters:

None

ASNIC V5.3

90

ASN1BEREncodeBuffer

ASN1MessageBuffer

\
+- ASNI1BERMessageBuffer

\

+- ASNIBEREncodeBuffer
The ASN1BEREncodeBuffer class is derived from the ASN1BERMessageBuffer base class. It contains
variables and methods specific to encoding ASN.1 messages using the Basic Encoding Rules (BER). It is
used to manage the buffer into which an ASN.1 message is to be encoded.
ASNI1BEREncodeBuffer::ASN1BEREncodeBuffer
The ASN1BEREncodeBuffer class has two overloaded constructors:

1. A version that takes no arguments (dynamic encoding version), and
2. A version that takes a message buffer and size argument (static encoding version)

Input Parameters:

Name Type Description

pMsgBuf ASNI1OCTET* A pointer to a fixed-size message buffer to receive the encoded message.

msgBufLen | int Size of the fixed-size message buffer.

Output Parameters:

None

ASNIBEREncodeBuffer::GetMsgCopy

This method returns a copy of the current encoded message. Memory is allocated for the message using the
‘new’ operation. It is the user’s responsibility to free the memory using ‘delete’.

Calling Sequence:
ptr = encodeBuffer.GetMsgCopy ()
where encodeBuffer is an ASN1BEREncodeBuffer object.

Return Value:

Name Type Description

ptr ASN1OCTET* Pointer to copy of encoded message. It is the user’s responsibility to release the
memory using the ‘delete’ operator (i.e., delete [] ptr;)

Input Parameters:
None
Output Parameters:

None

ASNIC V5.3 91

ASNI1BERFEncodeBuffer::GetMsgPtr

This method returns the internal pointer to the current encoded message.

Calling Sequence:
ptr = encodeBuffer.GetMsgPtr ()
where encodeBuffer is an ASN1BEREncodeBuffer object.

Return Value:

Name Type Description
ptr const Pointer to encoded message.
ASNIOCTET*

Input Parameters:
None
Output Parameters:

None

ASNIBEREncodeBuffer::Init

This method reinitializes the encode buffer pointer to allow a new message to be encoded. This makes it
possible to reuse one message buffer object in a loop to encode multiple messages. After this method is
called, any previously encoded message in the buffer will be overwritten on the next encode call.

Calling Sequence:
encodeBuffer.Init ();
where encodeBuffer is an ASN1BEREncodeBuffer object.
Return Value:
None
Input Parameters:
None
Output Parameters:

None

ASNIC V5.3

92

ASN1BERDecodeBuffer

ASN1MessageBuffer

\
+- ASNI1BERMessageBuffer

\
+- ASN1BERDecodeBuffer

ASNIBERDecodeBuffer derived class. This class is derived from the ASN1BERMessageBuffer base class.
It contains variables and methods specific to decoding ASN.1 messages. It is used to manage the input
buffer containing the ASN.1 message to be decoded.

ASNI1BERDecodeBuffer::ASN1BERDecodeBuffer

The ASN1BERDecodeBuffer constructor constructs a buffer describing an encoded ASN.1 message.
Parameters describing the message to be decoded are passed as arguments.

Input Parameters:

Name Type Description

pMsgBuf ASN1OCTET* A pointer to buffer containing an encoded ASN.1 message.

msgBuflLen | int Size of the message buffer. This does not have to be equal to the length of the
message. The message length can be determined from the outer tag-length-value in
the message. This parameter is used to determine if the length of the message is
valid; therefore it must be greater than or equal to the actual length. Typically, the
size of the buffer the message was read into is passed.

Output Parameters:

None

ASNIBERDecodeBuffer::FindElement
This method finds a tagged element within a message.
Calling Sequence:
ptr = decodeBuffer.FindElement (tag, elemlLen, firstFlag);
where decodeBuffer is an ASN1BERDecodeBuffer object.

Return Value:

Name Type Description

ptr ASNIOCTET* Pointer to tagged component in message or NULL if component not found.

Input Parameters:

Name Type Description

tag ASNITAG ASN.1 tag value to search for.

firstFlag int Flag indicating if this the first time this search is being done. If true, internal
pointers will be set to start the search from the beginning of the message. If false,
the search will be resumed from the point at which the last matching tag was found.

ASNIC V5.3 93

This makes it possible to find all instances of a particular tagged element within a
message.

Output Parameters:

Name

Type

Description

len

int&

Reference to an integer value to receive the length of the found element.

ASNI1BERDecodeBuffer::ParseTagLen

This method will parse the initial tag-length pair from the message.

Calling Sequence:

stat

= decodeBuffer.ParseTaglen

(tag, msglen);

where decodeBuffer is an ASN1BERDecodeBuffer object.

Return Value:

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input Parameters:

None

Output Parameters:

Name Type Description

tag ASNITAG& Reference to a tag structure to receive the outer level tag value parsed from the
message.

msglen int& Length of the message. This is the total length of the message obtained by adding
the number of bytes in initial tag-length to the parsed length value.

ASNIC V5.3

94

ASN1PERMessageBuffer

ASN1MessageBuffer

L— ASN1PERMessageBuffer

The ASN1PERMessageBuffer class is derived from the ASN1MessageBuffer base class. It is the base class
for the ASN1PEREncodeBuffer and ASN1PERDecodeBuffer derived classes. It contains variables and
methods specific to encoding or decoding ASN.1 messages using the Packed Encoding Rules (PER). It is
used to manage the buffer into which an ASN.1 message is to be encoded or decoded.
ASNIPERMessageBuffer::BinDump
This method outputs a binary dump of the current buffer contents to stdout.
Calling Sequence:

messageBuffer.BinDump ()
where messageBuffer is an ASN1PERMessageBuffer derived class object.
Return Value:
None
Input Parameters:
None

Output Parameters:

None

ASNI1PERMessageBuffer::HexDump

This method outputs a hexadecimal dump of the current buffer contents to stdout.
Calling Sequence:
messageBuffer.HexDump ();
where messageBuffer is an ASN1PERMessageBuffer derived class object.
Return Value:
None
Input Parameters:
None
Output Parameters:

None

ASNIPERMessageBuffer::GetMsgLen

ASNIC V5.3 95

This method returns the length of a previously encoded PER message.

Calling Sequence:

len

= messageBuffer.GetMsglLen ();

where messageBuffer is an ASN1PERMessageBuffer derived class object.

Return Value:

Name

Type

Description

len

int

Length of the PER message encapsulated within this buffer object.

Input Parameters:

None

Output Parameters:

None

ASNI1PERMessageBuffer::SetTrace

This method turns PER diagnostic tracing on or off. This enables the collection of the bit statistics inside
the PER library functions that can be displayed using the BinDump method.

Calling Sequence:

len

= messageBuffer.SetTrace (enabled);

where messageBuffer is an ASN1PERMessageBuffer derived class object.

Return Value:

None

Input Parameters:

Name

Type

Description

enabled

ASN1IBOOL

Boolean value indicating whether tracing should be turned on (true) or off (false).

Output Parameters:

None

ASNIC V5.3

96

ASN1PEREncodeBuffer

ASN1MessageBuffer

\
+- ASN1PERMessageBuffer

\
+- ASNIPEREncodeBuffer
The ASN1PEREncodeBuffer class is derived from the ASN1PERMessageBuffer base class. It contains
variables and methods specific to encoding ASN.1 messages. It is used to manage the buffer into which an
ASN.1 PER message is to be encoded.
ASNI1PEREncodeBuffer::ASN1PEREncodeBuffer
The ASN1PEREncodeBuffer class has two overloaded constructors:
1. A version that takes one argument, aligned flag (dynamic encoding version), and
2. A version that takes a message buffer and size argument and an aligned flag argument (static encoding

version)

Input Parameters:

Name Type Description

pMsgBuf ASNI1OCTET* A pointer to a fixed-size message buffer to receive the encoded message.

msgBuflLen | int Size of the fixed-size message buffer.

aligned ASNI1BOOL Flag indicating if aligned (TRUE) or unaligned (FALSE) encoding should be done.

Output Parameters:

None

ASNI1PEREncodeBuffer::GetMsgBitCnt
This method returns the length (in bits) of the encoded message.
Calling Sequence:

len = encodeBuffer.GetMsgBitCnt ();
where encodeBuffer is an ASN1PEREncodeBuffer object.

Return Value:

Name Type Description

len int Length (in bits) of encoded message.

Input Parameters:
None
Output Parameters:

None

ASNIC V5.3 97

ASNI1PEREncodeBuffer::GetMsgCopy

This method returns a copy of the current encoded message. Memory is allocated for the message using the
‘new’ operation. It is the user’s responsibility to free the memory using ‘delete’.

Calling Sequence:

ptr

= encodeBuffer.GetMsgCopy ()

where encodeBuffer is an ASN1PEREncodeBuffer object.

Return Value:

Name

Type

Description

ptr

ASNIOCTET*

Pointer to copy of encoded message. It is the user’s responsibility to release the
memory using the ‘delete’ operator (i.e., delete [] ptr;)

Input Parameters:

None

Output Parameters:

None

ASNIPEREncodeBuffer::GetMsgPtr

This method returns the internal pointer to the current encoded message.

Calling Sequence:

ptr

= encodeBuffer.GetMsgPtr ();

where encodeBuffer is an ASN1PEREncodeBuffer object.

Return Value:

Name

Type

Description

ptr

ASN1OCTET*

Pointer to encoded message.

Input Parameters:

None

Output Parameters:

None

ASNIPEREncodeBuffer::Init

ASNIC V5.3

98

This method reinitializes the encode buffer pointer to allow a new message to be encoded. This makes it
possible to reuse one message buffer object in a loop to encode multiple messages. After this method is
called, any previously encoded message in the buffer will be overwritten on the next encode call.
Calling Sequence:

encodeBuffer.Init ();
where encodeBuffer is an ASN1PEREncodeBuffer object.
Return Value:
None
Input Parameters:
None

Output Parameters:

None

ASNIC V5.3

99

ASN1PERDecodeBuffer

ASN1MessageBuffer

+- ASN1PERMessageBuffer

+- ASN1PERDecodeBuffer

The ASN1PERDecodeBuffer class is derived from the ASN1PERMessageBuffer base class. It contains
variables and methods specific to decoding ASN.1 messages. It is used to manage the input buffer
containing the ASN.1 message to be decoded.

The only method associated with this class is the following constructor:

ASNI1PERDecodeBuffer::ASN1PERDecodeBuffer

This constructor is used to describe the message to be decoded.

Input Parameters:

Name Type Description

pMsgBuf ASNI1OCTET* Pointer to the message to be decoded.

msgBufLen | int Length of the message buffer.

aligned ASN1BOOL Flag indicating if message was encoded using aligned (TRUE) or unaligned

(FALSE) encoding.

Output Parameters:

None

ASNIC V5.3

100

ASNI1CType

The ASN1CType base class. This is the class from which all class definitions generated by the ASN.1
compiler are (eventually) derived. In some cases, the generated type may be derived from an intermediate
class which in turn is derived from the ASNICType class. This class contains a single constructor that
allows a message buffer object to be specified. It also contains abstract virtual prototypes for Encode and
Decode methods. These functions are implemented in the derived classes generated by the compiler.

ASNICType::ASN1CType

This constructor is used to set up a message buffer object to either receive the data of a message being
encoded or to specify a message to be decoded.

Input Parameters:

Name Type Description
msgBuf ASNI1Message Reference to an ASN1Message buffer derived object (for example, an
Buffer& ASNI1BEREncodeBuffer).

Output Parameters:

None

ASNICType::Encode
This virtual method encodes a message of the given type.
Calling Sequence:
stat = asnlTypeVar.Encode ()
where asnl1TypeVar is an object of a compiler-generated class ASN.1 production class.

Return Value:

Name Type Description

stat int Status of the encode operation. For BER, a positive value indicates success (it is
also the length of the encoded message). For PER, ASN_OK is returned if encoding
is successful. In either case, if encoding fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:
None
Output Parameters:

None

ASNI1CType::Decode

This virtual method decodes a message of the given type.

ASNIC V5.3 101

Calling Sequence:
stat = asnlTypeVar.Decode ()
where asn1TypeVar is an object of a compiler-generated class ASN.1 production class.

Return Value:

Name Type Description

stat int Status of the decode operation. ASN_OK is returned if the operation is successful.
If the operation fails, one of the negative status codes defined in Appendix A is
returned.

Input Parameters:
None
Output Parameters:

None

ASNICType::memAlloc

This method allocates memory using the underlying rtMemAlloc function. This function uses the
compiler’s nibble memory allocation scheme to improve performance.

The allocated memory is owned by the enveloping context object. This object is shared between the
message buffer and type objects using reference counting. This means the allocated memory will
automatically be released when both the message buffer and type objects are destroyed or go out of scope.
Calling Sequence:

ptr = asnlTypeVar.memAlloc (numocts);

where asnlTypeVar is an object of a compiler-generated class ASN.1 production class.

Return Value:

Name Type Description

ptr void* Pointer to allocated memory block

Input Parameters:

Name Type Description

numocts int Number of octets (bytes) to allocate.

Output Parameters:

None

ASNICType::memFreeAll

ASNIC V5.3 102

This method frees all memory allocated within the encapsulated context. This includes all memory
allocated by the decoder as well as memory allocated by the user using the xu_malloc, rtMemAlloc, or
ASNI1CType::memAlloc functions.
Normally, this memory is released automatically when the message buffer and ASN1C control objects are
deleted or go out of scope. However, there are times when memory must be manually released. An
example is when decoder objects are reused in a decoding loop. After decoding and processing on a given
message is complete, this method should be called to free all memory that was used.
Calling Sequence:

asnlTypeVar.memFreeAll ();
where asnl1TypeVar is an object of a compiler-generated class ASN.1 production class.
Return Value:
None
Input Parameters:
None

Output Parameters:

None

ASNIC V5.3 103

ASNICBitStr
ASN1Type

\

+- ASNICBitStr
The ASN1CBitStr class is derived from the ASN1CType base class. It is used as the base class for
generated control classes for the ASN.1 BIT STRING type. This class provides utility methods for
operating on the bit string referenced by the generated class. This class can also be used inline to operate
on the bits within generated BIT STRING elements in a SEQUENCE, SET, or CHOICE construct.
ASNI1CBitStr::ASN1CBitStr

There are a number of different constructors available for this object. The different types are as follows:

ASN1CBitStr (ASN1lMessageBuffer& msgBuf, ASNIUINT nbits);

This constructor creates an empty bit string. If number of bits equals zero then the bit string is dynamic;
otherwise the capacity will be fixed to the given number of bits.

Input Parameters:

Name Type Description

msgBuf ASNI1Message Reference to an ASN1Message buffer derived object (for example, an
Buffer& ASNI1BEREncodeBuffer).

nbits ASNIUINT Bit string capacity. If zero, string is dynamic as opposed to fixed-size.

Output Parameters:
None
ASN1CBitStr (ASN1MessageBuffer& msgBuf, ASNIOCTET* bitStr,
ASNI1UINT& numbits, ASNIUINT maxNumbits) ;
This constructor creates a bit string from an array of bits. It does not deep-copy bytes, it just assigns the
passed array to an internal reference variable. This from of the constructor is normally used with static bit

strings (i.e. those containing fixed-size arrays as a result of a size constraint being placed on the string).

Input Parameters:

Name Type Description

msgBuf ASNI1Message | Reference to an ASN1Message buffer derived object (for example, an
Buffer& ASNI1BEREncodeBuffer).

bitStr ASNIOCTET* | Pointer to static byte array.

numbits ASNIUINT Reference to length of bit string (in bits).

maxNumbits | ASNIUINT Maximum length of string in bits.

Output Parameters:

ASNIC V5.3 104

None

ASN1CBitStr (ASN1lMessageBuffer& msgBuf, ASNITDynBitStr& bitStr);

This constructor creates a bit string using the ASNI TDynBitStr argument. The constructor does not deep-

copy the variable, it assigned a reference to it to an internal variable. The object will then directly operate
on the given data variable. This for of the constructor is used with a compiler-generated dynamic bit string
variable (i.e. one that is not sized).

Input Parameters:

Name Type Description

msgBuf ASN1Message Reference to an ASN1Message buffer derived object (for
Buffer& example, an ASN1BEREncodeBuffer).

bitStr ASNITDynBitStr& Reference to a dynamic bit string structure.

Output Parameters:

None

ASN1CBitStr (const ASNICBitStré& bitStr);

This is the copy constructor. This will create a deep-copy of the given variable.

ASN1CBitStr (const ASNICBitStr& bitStr, ASN1IBOOL extendable);

A second form of the copy constructor. This form can be used to mark the copied string as ‘extendable’
meaning it can grow dynamically if additional bits are added.

ASNICBitStr::change
inline int change (ASNI1UINT bitIndex, ASN1BOOL value);
This method changes the value of the bit at the given index to the given value.

Return Value:

Name Type Description

stat int Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

bitlndex ASNIUINT Relative index of bit to set in string. Bit index O refers to the MS bit
(bit 8) in the first octet. The index values then progress from left to
right (MS to LS bits).

value ASN1BOOL Boolean value to which the bit is to be set.

ASNIC V5.3 105

Output Parameters:

None

ASNICBitStr:

:clear

There are a number of different overloaded versions of the bit string clear method for clearing bits in the
target bit string variable. They are as follows:

int clear

(ASN1UINT bitIndex);

This version of the clear method sets the given bit in the target string to zero.

Return Value:

Name

Type

Description

stat

int

Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name

Type

Description

bitIndex

ASNIUINT

Relative index of bit in string. Bit index 0 refers to the MS bit (bit 8)
in the first octet. The index values then progress from left to right (MS
to LS bits).

Output Parameters:

None

int clear

(ASN1UINT fromIndex,

ASNIUINT toIndex);

This version of the clear method sets the bits from the specified fromIndex (inclusive) to the specified
tolndex (exclusive) to zero.

Return Value:
Name Type Description
stat int Status of the operation. ASN_OK is returned if the operation is

successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

fromIndex ASNIUINT Relative start index (inclusive) of bits in string. Bit index 0 refers to
the MS bit (bit 8) in the first octet. The index values then progress
from left to right (MS to LS bits).

tolndex ASNIUINT Relative end index (exclusive) of bits in string. Bit index 0 refers to

the MS bit (bit 8) in the first octet. The index values then progress

ASNIC V5.3

106

from left to right (MS to LS bits).

Output Parameters:

None

int clear ();
This version of the clear method sets all bits in the bit string to zero.

Return Value:

Name Type Description

stat int Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:
None
Output Parameters:

None

ASNICBitStr::set

There are a number of different overloaded versions of the bit string set method for setting bits in the target
bit string variable. They are as follows:

int set (ASN1UINT bitIndex);
This version of the set method sets the given bit in the target string.

Return Value:

Name Type Description

stat int Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

bitIndex ASNIUINT Relative index of bit to set in string. Bit index 0 refers to the MS bit
(bit 8) in the first octet. The index values then progress from left to
right (MS to LS bits).

Output Parameters:

None

ASNIC V5.3 107

int set

(ASN1UINT fromIndex,

ASN1UINT tolIndex);

This version of the set method sets the bits from the specified fromIndex (inclusive) to the specified
tolndex (exclusive) to one.

Return Value:

Name

Type

Description

stat

int

Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

fromIndex ASNIUINT Relative start index (inclusive) of bits in string. Bit index 0 refers to
the MS bit (bit 8) in the first octet. The index values then progress
from left to right (MS to LS bits).

tolndex ASNIUINT Relative end index (exclusive) of bits in string. Bit index 0 refers to

the MS bit (bit 8) in the first octet. The index values then progress
from left to right (MS to LS bits).

Output Parameters:

None

ASNICBitStr:

:invert

There are a number of different overloaded versions of the bit string invert method for inverting bits in the
target bit string variable. All zero bits in the bit string will be set to ‘1°, all 1’ bits will be set to ‘0’. The
overloaded methods are as follows:

int invert

(ASN1UINT bitIndex);

This version of the invert method inverts the given bit in the target string.

Return Value:

Name

Type

Description

stat

int

Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name

Type

Description

bitIndex

ASNIUINT

Relative index of bit to set in string. Bit index 0 refers to the MS bit
(bit 8) in the first octet. The index values then progress from left to
right (MS to LS bits).

Output Parameters:

ASNIC V5.3

108

None

int invert

(ASN1UINT fromIndex,

ASNIUINT tolIndex);

This version inverts the bits from the specified fromIndex (inclusive) to the specified tolndex (exclusive) to

one.

Return Value:

Name

Type

Description

stat

int

Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

fromIndex ASNIUINT Relative start index (inclusive) of bits in string. Bit index 0 refers to
the MS bit (bit 8) in the first octet. The index values then progress
from left to right (MS to LS bits).

tolndex ASNIUINT Relative end index (exclusive) of bits in string. Bit index 0 refers to

the MS bit (bit 8) in the first octet. The index values then progress
from left to right (MS to LS bits).

Output Parameters:

None

ASNICBitStr:

:get

There are a number of different overloaded versions of the bit string get method for getting bits from the
target bit string variable. They are as follows:

ASN1BOOL get

(ASN1UINT bitIndex);

This method returns the value of the bit with the specified index.

Return Value:

Name

Type

Description

bit

ASNIBOOL

TRUE, if bit at specified index is set to ‘1’, FALSE else.

Input Parameters:

Name

Type

Description

bitIndex

ASNIUINT

Relative index of bit to set in string. Bit index 0 refers to the MS bit
(bit 8) in the first octet. The index values then progress from left to
right (MS to LS bits).

Output Parameters:

ASNIC V5.3

109

None

int get

(ASN1UINT fromIndex,
ASN1OCTET* pBuf,

ASN1UINT tolIndex,
int bufSz);

This version of the get method copies the bit string composed of bits from this bit string from the specified
fromIndex (inclusive) to the specified tolndex (exclusive) into given buffer.

Return Value:

Name

Type

Description

stat

int

Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

fromIndex ASNIUINT Relative start index (inclusive) of bits in string. Bit index 0 refers to
the MS bit (bit 8) in the first octet. The index values then progress
from left to right (MS to LS bits).

tolndex ASNIUINT Relative end index (exclusive) of bits in string. Bit index 0 refers to
the MS bit (bit 8) in the first octet. The index values then progress
from left to right (MS to LS bits).

bufSz int Size of given destination buffer. If size of buffer is not enough to

receive whole bit string negative status will be returned.

Output Parameters:

Name Type Description
pBuf ASNIOCTET* | Pointer to destination buffer, where bytes will be copied.
ASNI1CBitStr::isSet

inline ASN1BOOL isSet

(ASN1UINT bitIndex) ;

This method is the same as ASN1CBitStr::get.

ASNICBitStr:

ASN1BOOL isEmpty

sisEmpty

()7

This method returns TRUE if this bit string contains no bits that are set to ‘1°.

Return Value:

Name Type Description
empty ASN1BOOL TRUE, if this bit string contains no bits that are set to ‘1°.
ASNIC V5.3 110

Input Parameters:
None
Output Parameters:

None

ASNICBitStr::size

int size () const;

This method returns the number of bytes of space actually in use by this bit string to represent bit values.

Return Value:

Name Type Description
size int Number of bytes of space actually in use by this bit string to represent
bit values.

Input Parameters:
None
Output Parameters:

None

ASNICBitStr::length

ASN1UINT length () const;

This method calculates the "logical size" of this bit string: the index of the highest set bit in the bit string
plus one. Returns zero if the bit string contains no set bits. Highest bit in the bit string is the LS bit in the

last octet set to ‘1°.

Return Value:

Name Type Description

len ASNIUINT Returns the "logical size" of this bit string.

Input Parameters:
None
Output Parameters:

None

ASNICBitStr::cardinality

int cardinality () const;

ASNIC V5.3

111

This method calculates the cardinality of target bit string. Cardinality of the bit string is the number of bits

setto ‘1°.

Return Value:

Name Type Description
num Int Number of bytes of space actually in use by this bit string to represent
bit values.

Input Parameters:
None
Output Parameters:

None

ASNI1CBitStr::getBytes
int getBytes (ASN1OCTET* pBuf, int bufSz);
This method copies the bit string to the given buffer.

Return Value:

Name Type Description

stat int Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

bufSz int Size of given destination buffer. If size of buffer is not enough to
receive whole bit string negative status will be returned.

Output Parameters:

Name Type Description
pBuf ASN1OCTET* | Pointer to destination buffer, where bytes will be copied.
ASNI1CBitStr::doAnd

There are a number of different overloaded versions of the bit string doAnd method for performing a
logical AND of this target bit string with the argument bit string. They are as follows:

int doAnd (const ASNIOCTET* pOctstr, ASN1UINT octsNumbits);
This method performs a logical AND of the target bit string with the argument bit string.

Return Value:

ASNIC V5.3

112

Name

Type

Description

stat

int

Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

pOctstr ASNI1OCTET* | A pointer to octets of another bit string for performing logical
operation.

octsNumbits | ASNIUINT A number of bits in argument bit string.

Output Parameters:

None

inline int doAnd

(const ASN1TDynBitStr& bitStr);

This method performs a logical AND of the target bit string with the argument bit string.

Return Value:
Name Type Description
stat int Status of the operation. ASN_OK is returned if the operation is

successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name

Type

Description

bitStr

ASNITDynBitStr&

A reference to another bit string represented by ASN1TDynBitStr
type for performing logical operation.

Output Parameters:

None

inline int doAnd

(const ASNICBitStré& bitStr);

This method performs a logical AND of the target bit string with the argument bit string.

Return Value:

Name

Type

Description

stat

int

Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

| Name

| Type

| Description

ASNIC V5.3

113

bitStr

ASNICBItStr&

A reference to another bit string represented by ASN1CBitStr for
performing logical operation.

Output Parameters:

None

ASNICBitStr:

:doOr

There are a number of different overloaded versions of the bit string doOr method for performing a logical
OR of this target bit string with the argument bit string. They are as follows:

int doOr

(const ASNIOCTET* pOctstr,

ASN1UINT octsNumbits);

This method performs a logical OR of the target bit string with the argument bit string.

Return Value:
Name Type Description
stat int Status of the operation. ASN_OK is returned if the operation is

successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

pOctstr ASNI1OCTET* | A pointer to octets of another bit string for performing logical
operation.

octsNumbits | ASNIUINT A number of bits in argument bit string.

Output Parameters:

None

inline int doOr

(const ASN1TDynBitStr& bitStr);

This method performs a logical OR of the target bit string with the argument bit string.

Return Value:

Name

Type

Description

stat

int

Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name

Type

Description

bitStr

ASNITDynBitStr&

A reference to another bit string represented by ASN1TDynBitStr
type for performing logical operation.

ASNIC V5.3

114

Output Parameters:

None

inline int doOr (const ASNICBitStré& bitStr);

This method performs a logical OR of the target bit string with the argument bit string.

Return Value:

Name Type Description

stat int Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

bitStr ASNICBItStr& | A reference to another bit string represented by ASN1CBitStr for
performing logical operation.

Output Parameters:

None

ASNICBitStr::doXor

There are a number of different overloaded versions of the bit string doXor method for performing a logical
XOR of this target bit string with the argument bit string. They are as follows:

int doXor (const ASN1OCTET* pOctstr, ASNIUINT octsNumbits);
This method performs a logical XOR of the target bit string with the argument bit string.

Return Value:

Name Type Description

stat int Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

pOctstr ASNI1OCTET* | A pointer to octets of another bit string for performing logical
operation.

octsNumbits | ASNIUINT A number of bits in argument bit string.

Output Parameters:

None

ASNIC V5.3 115

inline int doXor (const ASN1TDynBitStr& bitStr);
This method performs a logical XOR of the target bit string with the argument bit string.

Return Value:

Name Type Description

stat int Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

bitStr ASN1TdynBitStr& A reference to another bit string represented by ASN1TDynBitStr
type for performing logical operation.

Output Parameters:

None

inline int doXor (const ASN1ICBitStré& bitStr);

This method performs a logical XOR of the target bit string with the argument bit string.

Return Value:

Name Type Description

stat int Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

bitStr ASNICBItStr& | A reference to another bit string represented by ASN1CBitStr for
performing logical operation.

Output Parameters:

None

ASNICBitStr::doAndNot

There are a number of different overloaded versions of the bit string doAndNot method for performing a
logical ANDNOT of this target bit string with the argument bit string. Logical ANDNOT clears all of the
bits in this bit string whose corresponding bit is set in the specified bit string. These methods are as follows:
int doAndNot (const ASN1OCTET* pOctstr, ASNIUINT octsNumbits);

This method performs a logical ANDNOT of the target bit string with the argument bit string.

Return Value:

ASNIC V5.3 116

Name

Type

Description

stat

int

Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

pOctstr ASNI1OCTET* | A pointer to octets of another bit string for performing logical
operation.

octsNumbits | ASNIUINT A number of bits in argument bit string.

Output Parameters:

None

inline int doAndNot

(const ASN1TDynBitStr& bitStr);

This method performs a logical ANDNOT of the target bit string with the argument bit string.

Return Value:
Name Type Description
stat Int Status of the operation. ASN_OK is returned if the operation is

successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name

Type

Description

bitStr

ASNITDynBitStr&

A reference to another bit string represented by ASN1TDynBitStr
type for performing logical operation.

Output Parameters:

None

inline int doAndNot

(const ASNICBitStré& bitStr);

This method performs a logical ANDNOT of the target bit string with the argument bit string.

Return Value:

Name

Type

Description

stat

Int

Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

| Name

| Type

| Description

ASNIC V5.3

117

bitStr ASNICBItStr& | A reference to another bit string represented by ASN1CBitStr for
performing logical operation.

Output Parameters:

None

ASNICBitStr::shiftLeft

int shiftLeft (ASN1UINT shift);

This method shifts all bits to the left by the number of bits specified in the 'shift' operand. If bit string can
dynamically grow, then the length of bit string will be decreased by shift’ bits. Otherwise, shifted in bits
are filled by zeros from the right. Most left bits are lost.

Return Value:

Name Type Description

stat int Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

shift int Number of bits to be shifted.

Output Parameters:

None

ASNICBitStr::shiftRight

int shiftRight (ASN1UINT shift);

This method shifts all bits to the right by the number of bits specified in the 'shift' operand. If the bit string
can dynamically grow, then the length of the bit string will be increased by ‘shift’ bits. Otherwise, shifted

in bits are lost. The leftmost bits are filled by zeros.

Return Value:

Name Type Description

stat int Status of the operation. ASN_OK is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:

Name Type Description

shift int Number of bits to be shifted.

ASNIC V5.3 118

Output Parameters:

None

ASNICBitStr: :unusedBitsInLastUnit
int unusedBitsInLastUnit () ;
This method returns the number of unused bits in the last octet.

Return Value:

Name Type Description

num int Number of bits in the last octet. It equals to length() % 8.

Input Parameters:
None
Output Parameters:

None

ASNI1CBitStr::operator ASN1TDynBitStr

There are a number of different overloaded versions of the cast operator for performing a casting of the
target bit string to an ASN1TDynBitStr variable. These operators are as follows:

operator ASNITDynBitStr();

This method returns a filled ASN1TDynBitStr. Memory is not allocated, only a pointer is assigned. Thus,
the ASN1TDynBitStr variable is only valid while this ASN1CBitStr is in scope.

Return Value:

Name Type Description

bitstr ASN1TDynBitStr Filled ASN1TdynBitStr.

Input Parameters:
None
Output Parameters:

None

operator ASN1TdynBitStr*();

This method returns a pointer to the filled ASN1TDynBitStr. Memory for the ASN1TDynBitStr variable is
allocated using memAlloc and bits are copied into it.

Return Value:

ASNIC V5.3 119

Name

Type

Description

bitstr

ASNITdynBitStr*

Pointer to filled ASN1TdynBitStr.

Input Parameters:

None

Output Parameters:

None

ASNIC V5.3

120

ASN1CSeqOfList

ASN1Type

\
+- ASN1CSeqgOfList

The ASN1CSeqOfList class is derived from the ASN1CType base class. It is used as the base class for
generated control classes for the ASN.1 SEQUENCE OF or SET OF type. This class provides utility
methods for operating on the linked list referenced by the generated class. This class can also be used
inline to operate on the linked lists within generated SEQUENCE OF or SET OF elements in a
SEQUENCE, SET, or CHOICE construct.

ASNICSeqOfList:: ASN1CSeqOfList
There are a number of different constructors available for this object. The different types are as follows:
ASN1CSeqOfList (ASN1lMessageBuffer& msgBuf,

AsnlRTDListé& 1lst,

ASN1BOOL initBeforeUse = TRUE) ;
This constructor creates a linked list using the Asn1RTDList argument . The constructor does not deep-
copy the variable, it assigned a reference to it to an internal variable. The object will then directly operate

on the given list variable. This constructor is used with a compiler-generated linked list variable.

Input Parameters:

Name Type Description

msgBuf ASN1Message | Reference to an ASN1Message buffer derived object (for example,
Buffer& an ASN1BEREncodeBuffer).

Ist AsnlRTDList | Reference to a linked list structure.

initBeforeUsed | ASN1IBOOL Set to TRUE if the passed linked list needs to be initialized
(rtDListlInit to be called).

Output Parameters:

None

ASN1CSeqOfList (ASNl1lMessageBuffer& msgBuf) ;
This constructor creates an empty linked list.

Input Parameters:

Name Type Description
msgBuf ASNI1Message | Reference to an ASN1Message buffer derived object (for example, an
Buffer& ASNI1BEREncodeBuffer).

Output Parameters:

None

ASNIC V5.3 121

ASNI1CSeqOfList::append

void append (void* data);

This method appends an item to the linked list. The item is represented by a void pointer that can point to
an object of any type. The rtMemAlloc function is used to allocate memory for the list node structure,
therefore all internal list memory will be released whenever rtMemFree is called.

Return Value:

None

Input Parameters:

Name Type Description

pData void* Pointer to data item to be appended to the list.

Output Parameters:

None

ASNI1CSeqOfList::insert

void insert (int index, void* pData);

This method inserts an item into the linked list structure. The item is represented by a void pointer that can
point to an object of any type. The rtMemAlloc function is used to allocate memory for the list node
structure. All internal list memory will be released when the rtMemFree function is called.

Return Value:

None

Input Parameters:

Name Type Description
index int Index at which the specified item is to be inserted.
pData void* Pointer to data item to be appended to the list.

Output Parameters:

None

ASNICSeqOfList::remove

There are a number of different overloaded versions of the linked list remove method for removing nodes
from the target linked list variable. They are as follows:

void remove (int index);
This method removes a node at specified index from the linked list structure. The rtMemAlloc function

was used to allocate the memory for the list node structure, therefore, all internal list memory will be
released whenever rtMemFree is called.

ASNIC V5.3 122

Return Value:
None

Input Parameters:

Name

Type

Description

index

int

Index of item to be removed.

Output Parameters:

None

void remove

(void* pData);

This method removes the first occurrence of the node with specified data from the linked list structure. The
rtMemAlloc function was used to allocate the memory for the list node structure, therefore, all internal list
memory will be released whenever rtMemFree is called.

Return Value:
None

Input Parameters:

Name

Type

Description

pData

void*

Pointer to data item to be removed from the list.

Output Parameters:

None

ASNI1CSeqOfList::removeFirst

inline void removeFirst

()7

This method removes the first node (head) from the linked list structure.

Return Value:
None
Input Parameters:

None

Output Parameters:

None

ASNI1CSeqOfList::removeLast

ASNIC V5.3

123

inline void removelast ();

This method removes the last node (tail) from the linked list structure.
Return Value:

None

Input Parameters:

None

Output Parameters:

None

ASNI1CSeqOfList::indexOf
int indexOf (void* pData);

This method returns the index in this list of the first occurrence of the specified item, or -1 if the list does
not contain the item.

Return Value:

Name Type Description

index int The index in this list of the first occurrence of the specified item,
or -1 if the list does not contain the item.

Input Parameters:

Name Type Description

pData void* Pointer to data item to search for.

Output Parameters:

None

ASNI1CSeqOfList::contains
ASN1BOOL contains (void* pData);
This method returns TRUE if this list contains the specified item.

Return Value:

Name Type Description

val ASN1BOOL TRUE if this list contains the specified item.

Input Parameters:

Name Type Description

pData void* Pointer to data item whose presence in this list is to be tested.

ASNIC V5.3 124

Output Parameters:

None

ASNI1CSeqOfList::getFirst
void* getFirst ();
This method returns the first item from the list or null if there are no elements in the list.

Return Value:

Name Type Description
pData void* The first item in this list.

Input Parameters:
None
Output Parameters:

None

ASNI1CSeqOfList::getLast
void* getLast ();

This method returns the last item from the list or null if there are no elements in the list.

Return Value:
Name Type Description
pData void* The last item in this list.

Input Parameters:
None
Output Parameters:

None

ASNICSeqOfList::get
void* get (int index);
This method returns the item at the specified position in the list.

Return Value:

| Name | Type | Description

ASNIC V5.3 125

pData void* The item at the specified index in the list.

Input Parameters:

Name Type Description

index int Index of item to be returned.

Output Parameters:

None

ASNI1CSeqOfList::operatorf]

inline void* operator[] (int index) const;

This method is the overloaded operator []. It returns the item at the specified position in this list. See the

section on the get method for further details.

ASNI1CSeqOfList::set
void* set (int index, wvoid* pData);
This method replaces the item at the specified index in this list with the specified item.

Return Value:

Name Type Description

pOldData void* The item previously at the specified position.

Input Parameters:

Name Type Description
index int Index of item to replace.
pData void* The item to be stored at the specified index.

Output Parameters:

None

ASNI1CSeqOfList::clear

void clear ();

This method removes all items from the list.
Return Value:

None

ASNIC V5.3

126

Input Parameters:
None
Output Parameters:

None

ASNI1CSeqOfList::isEmpty
ASN1BOOL isEmpty () const;
This method returns TRUE if the list is empty.

Return Value:

Name Type Description

val ASN1BOOL TRUE if this list is empty.

Input Parameters:
None
Output Parameters:

None

ASNI1CSeqOfList::size
int size () const;
This method returns the number of nodes in the list.

Return Value:

Name Type Description

size int The number of items in this list.

Input Parameters:
None
Output Parameters:

None

ASNI1CSeqOfList::iterator
ASN1CSeqgOfListIterator* iterator ();

This method returns an iterator over the elements in this linked list in the sequence from the first to the last.
See ASN1CSeqOfListlterator for more details.

ASNIC V5.3 127

Return Value:

Name Type Description
iterator ASNI1CSeqOf | The iterator over this linked list.
ListIterator

Input Parameters:
None
Output Parameters:

None

ASNI1CSeqOfList::iterator FromLast
ASN1CSeqgOfListIterator* iteratorFromLast ();

This method returns a reverse iterator over the elements in this linked list in the sequence from the last to
the first. See ASN1CSeqOfListlterator for more details.

Return Value:

Name Type Description
iterator ASN1CSeqOf | The reverse iterator over this linked list.
ListIterator

Input Parameters:
None
Output Parameters:

None

ASNI1CSeqOfList::iteratorFrom
ASN1CSeqgOfListIterator* iteratorFrom (void* pData) ;

This method returns an iterator over the elements in this linked list starting from the specified item in the
list. See ASN1CSeqOfListlterator for more details.

Return Value:

Name Type Description
iterator ASNI1CSeqOf | The iterator over this linked list.
Listlterator

Input Parameters:

Name Type Description

pData void* The item of the list to be iterated first.

ASNIC V5.3 128

Output Parameters:

None

ASNIC V5.3 129

ASN1CSeqOfListIterator

The ASN1CSeqOfListlterator class is an iterator for linked lists (represented by ASN1CSeqOfList) that
allows the programmer to traverse the list in either direction and modify the list during iteration. The
iterator is fail-fast. This means if the list is structurally modified at any time after the
ASN1CSeqOfListlterator class is created, in any way except through the iterator's own remove or insert
methods, the iterator’s methods next and prev will return NULL. The remove, set and insert methods will
return the ASN_E_CONCMODF error code.

ASNI1CSeqOfListlterator::hasNext

inline ASN1BOOL hasNext ();

This method returns TRUE, if this iterator has more elements when traversing the list in the forward
direction. (In other words, returns TRUE, if next would return an element rather than returning a null

value).

Return Value:

Name Type Description
stat ASN1BOOL TRUE, if next would return an element rather than returning a null
value.

Input Parameters:
None
Output Parameters:

None

ASNI1CSeqOfListlterator::hasPrev

inline ASN1BOOL hasPrev ();

This method returns TRUE, if this iterator has more elements when traversing the list in the reverse
direction. (In other words, returns TRUE, if prev would return an element rather than returning a null

value).

Return Value:

Name Type Description
stat ASNIBOOL TRUE, if prev would return an element rather than returning a null
value.

Input Parameters:
None
Output Parameters:

None

ASNIC V5.3 130

ASNI1CSeqOfListlterator::next
void* next ();

This method returns the next element in the list. This method may be called repeatedly to iterate through
the list, or intermixed with calls to prev to go back and forth.

Return Value:

Name Type Description

item void* The next element in the list. A null value will be returned if iteration
is not successful.

Input Parameters:
None
Output Parameters:

None

ASNI1CSeqOfListlterator::prev
void* prev ();

This method returns the previous element in the list. This method may be called repeatedly to iterate
through the list, or intermixed with calls to next to go back and forth.

Return Value:

Name Type Description

item void* The previous element in the list. A null value will be returned if
iteration is not successful.

Input Parameters:
None
Output Parameters:

None

ASNI1CSeqOfListlterator::remove

int remove ();

This method removes from the list the last element that was returned by next or prev methods. This call
can only be made once per call to next or prev methods.

Return Value:

Name Type Description

stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

ASNIC V5.3 131

Input Parameters:
None
Output Parameters:

None

ASNI1CSeqOfListlterator::set

int set (void* pData);

This method replaces the last element returned by next or prev methods with the specified element. This
call can be made only if neither remove nor insert methods have been called after the last call to next or

prev methods.

Return Value:

Name Type Description
stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description
pData void* The element with which to replace the last element returned by next
or prev methods.

Output Parameters:

None

ASNI1CSeqOfListlterator::insert
int insert (void* pData);

This method inserts the specified element into the list. The element is inserted immediately before the next
element that would be returned by next method, if any, and after the next element that would be returned by
prev method, if any. (If the list contains no elements, the new element becomes the sole element on the
list). The new element is inserted before the implicit cursor: a subsequent call to next would be unaffected,
and a subsequent call to prev would return the new element.

Return Value:

Name Type Description
stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

| Name | Type | Description |

ASNIC V5.3 132

pData

void*

The element to be inserted.

Output Parameters:

None

ASNIC V5.3

133

ASN1CTime

ASN1Type

|
+- ASNI1CTime

The ASN1CTime class is derived from the ASN1CType base class. It is used as the abstract base class for
generated control classes for the ASN.1 Generalized Time ([UNIVERSAL 24] IMPLICIT VisibleString)
and Universal Time ([JUNIVERSAL 23] IMPLICIT VisibleString) types. This class provides utility
methods for operating on the time information referenced by the generated class. This class can also be
used inline to operate on the times within generated time string elements in a SEQUENCE, SET, or
CHOICE construct. The time strings are generally formatted according to ISO 8601 format with some
exceptions (see X.680).

ASNICTime::ASN1CTime

There are a number of different constructors available for this object. The different types are as follows:

ASN1CTime (ASN1lMessageBuffer& msgBuf, char*& buf, int bufSize);

This constructor creates a time string from buffer. It does not deep-copy the data; it just assigns the passed
array to an internal reference variable. The object will then directly operate on the given data variable.

Input Parameters:

Name Type Description

msgBuf ASNI1Message Reference to an ASN1Message buffer derived object (for example, an
Buffer& ASN1BEREncodeBuffer).

buf char* Reference to pointer to time string buffer.

bufSize int Size of passed buffer, in bytes.

Output Parameters:

None

ASN1CTime (ASN1lMessageBuffer& msgBuf, ASN1VisibleString& buf);

This constructor creates a time string using the ASN1 VisibileString argument. The constructor does not
deep-copy the variable, it assigned a reference to it to an internal variable. The object will then directly
operate on the given data variable. This form of the constructor is used with a compiler-generated time
string variable.

Input Parameters:

Name Type Description

msgBuf ASN1Message Reference to an ASN1Message buffer derived object (for
Buffer& example, an ASN1BEREncodeBuffer).

buf ASNI1VisibleString& | Reference to a visible string structure.

Output Parameters:

ASNIC V5.3 134

None

ASNICTime::getYear
int getYear ();

This method returns the year component of the time value. Note that the return value may differ for
different inherited ASN1Ctime classes.

Return Value:

Name Type Description

year int Year component (full 4 digits) is returned if the operation is successful.
If the operation fails, one of the negative status codes defined in
Appendix A is returned.

Input Parameters:
None
Output Parameters:

None

ASNICTime::getMonth

int getMonth ();

This method returns the month number component of the time value. The number of January is 1, February
2, ... up to December 12. You may use enumerated values for decoded months: ASN1CTime::January,
ASNI1CTime::February, etc. Also short aliases for months can be used: ASN1CTime::Jan,
ASNI1CTime::Feb, etc. Note that the return value may differ for different inherited ASN1CTime classes.

Return Value:

Name Type Description

month int Month component (1 — 12) is returned if the operation is successful. If
the operation fails, one of the negative status codes defined in
Appendix A is returned.

Input Parameters:
None
Output Parameters:

None

ASNICTime::getDay

int getDay ()

ASNIC V5.3 135

This method returns the day of month number component of the time value. The number of the first day in
month is 1, the number of the last day may be in interval from 28 to 31. Note that the return value may
differ for different inherited ASN1CTime classes.

Return Value:

Name Type Description

day int Day of month component (1 — 31) is returned if the operation is
successful. If the operation fails, one of the negative status codes
defined in Appendix A is returned.

Input Parameters:
None
Output Parameters:

None

ASNICTime::getHour

int getHour ();

This method returns the hour component of the time value. As the ISO 8601 is based on the 24-hour
timekeeping system, hours are represented by two-digit values from 00 to 23. Note that the return value

may differ for different inherited ASN1CTime classes.

Return Value:

Name Type Description

hour int Hour component (0 — 23) is returned if the operation is successful. If
the operation fails, one of the negative status codes defined in
Appendix A is returned.

Input Parameters:
None
Output Parameters:

None

ASNICTime::getMinute
int getMinute ();

This method returns the minute component of the time value. Minutes are represented by two digits from
00 to 59. Note that the return value may be different for different inherited ASN1CTime classes.

Return Value:

Name Type Description

minute int Minute component (0 — 59) is returned if the operation is successful. If
the operation fails, one of the negative status codes defined in

ASNIC V5.3 136

Appendix A is returned.

Input Parameters:
None
Output Parameters:

None

ASNICTime::getSecond
int getSecond ();

This method returns the second component of the time value. Seconds are represented by two digits from
00 to 59. Note that the return value may differ for different inherited ASN1CTime classes.

Return Value:

Name Type Description

second int Second component (0 — 59) is returned if the operation is successful. If
the operation fails, one of the negative status codes defined in
Appendix A is returned.

Input Parameters:
None
Output Parameters:

None

ASNICTime::getFraction

int getFraction ();

This method returns the second’s decimal fraction component of the time value. Second’s decimal fraction
is represented by one digit from 0 to 9. Note that the return value may differ for different inherited

ASN1CTime classes.

Return Value:

Name Type Description

fraction int Second’s decimal fraction component (0 — 9) is returned if the
operation is successful. If the operation fails, one of the negative status
codes defined in Appendix A is returned.

Input Parameters:
None

Output Parameters:

ASNIC V5.3 137

None

ASNICTime::getDiffHour

int getDiffHour ();

This method returns the hour component of the difference between the time zone of the object and
Coordinated Universal Time (UTC). The UTC time is the sum of the local time and positive or negative
time difference. Note that the return value may differ for different inherited ASN1CTime classes.

Return Value:

Name Type

Description

dhour int

The negative or positive hour component of the difference between the
time zone of the object and UTC time (-12 —+12) is returned if the
operation is successful. If the operation fails, one of the negative status
codes defined in Appendix A is returned.

Input Parameters:
None
Output Parameters:

None

ASNICTime::getDiffMinute

int getDiffMinute ();

This method returns the minute component of the difference between the time zone of the object and
Coordinated Universal Time (UTC). The UTC time is the sum of the local time and positive or negative
time difference. Note that the return value may differ for different inherited ASN1CTime classes.

Return Value:

Name Type

Description

dmin int

The negative or positive minute component of the difference between
the time zone of the object and UTC time (-59 — +59) is returned if the
operation is successful. If the operation fails, one of the negative status
codes defined in Appendix A is returned.

Input Parameters:
None
Output Parameters:

None

ASNICTime::getDiff

int getDiff ();

ASNIC V5.3

138

This method returns the difference between the time zone of the object and Coordinated Universal Time
(UTC), in minutes. The UTC time is the sum of the local time and positive or negative time difference.
Note that the return value may differ for different inherited ASN1CTime classes.

Return Value:

Name Type Description

diff int The negative or positive difference, in minutes, between the time zone
of the object and UTC time (-12*60 —+12*60) is returned if the
operation is successful. If the operation fails, one of the negative status
codes defined in Appendix A is returned.

Input Parameters:
None
Output Parameters:

None

ASNICTime::getUTC
ASN1BOOL getUTC ()

This method returns the UTC flag state. If the UTC flag is TRUE, then the time is a UTC time and symbol
‘Z’ is added at the end of time string. Otherwise, it is a local time.

Return Value:

Name Type Description
utc ASN1BOOL UTC flag state is returned.

Input Parameters:
None
Output Parameters:

None

ASNICTime::getTime
time t getTime ();

This method converts the time string to a value of the built-in C type time_t. The value is the number of
seconds from January 1, 1970. If the time is represented as UTC time plus or minus a time difference, then
the resulting value will be recalculated as local time. For example, if the time string is
“19991208120000+0930”, then this string will be converted to “19991208213000 and then converted to a
time_t value. Note that the return value may differ for different inherited ASN1CTime classes.

Return Value:

| Name | Type | Description

ASNIC V5.3 139

time time t The time value, expressed as number of seconds from January 1, 1970.
If the operation fails, one of the negative status codes defined in
Appendix A is returned

Input Parameters:
None
Output Parameters:

None

ASNICTime::setYear
int setYear (int year);

This method sets the year component of the time value. Note that the action of this method may differ for
different inherited ASN1CTime classes.

Return Value:

Name Type Description

stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description

year int Year component (full 4 digits)

Output Parameters:

None

ASNICTime::setMonth
int setMonth (int month);

This method sets the month number component of the time value. The number of January is 1, February 2,
..., through December (12). You may use enumerated values for months encoding: ASN1CTime::January,
ASNI1CTime::February, etc. Also you can use short aliases for months: ASN1CTime::Jan,
ASNI1CTime::Feb, etc. Note that the action of this method may differ for different inherited ASN1CTime
classes.

Return Value:
Name Type Description
stat int Returns ASN_OK if operation is successful, a negative status value

will be returned if not.

Input Parameters:

ASNIC V5.3 140

Name

Type

Description

month

int

Month component (1 — 12).

Output Parameters:

None

ASNICTime::setDay

int setDay

(int day);

This method sets the day of month number component of the time value. The number of the first day in
month is 1; the number of the last day may be in interval from 28 to 31. Note that the action of this method
may differ for different inherited ASN1CTime classes.

Return Value:

Name

Type

Description

stat

nt

Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name

Type

Description

day

int

Day of month component (1 —31).

Output Parameters:

None

ASNICTime::setHour

int setHour

(int hour) ;

This method sets the hour component of the time value. As the ISO 8601 is based on the 24-hour
timekeeping system, hours are represented by two digits from 00 to 23. Note that the action of this method
may differ for different inherited ASN1CTime classes.

Return Value:

Name

Type

Description

stat

int

Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name

Type

Description

hour

int

Hour component (0 — 23).

Output Parameters:

ASNIC V5.3

141

None

ASNICTime::setMinute
int setMinute (int minute);

This method sets the minute component of the time value. Minutes are represented by two digits from 00 to
59. Note that the action of this method may differ for different inherited ASN1CTime classes.

Return Value:

Name Type Description

stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description

minute int Minute component (0 — 59).

Output Parameters:

None

ASNICTime::setSecond
int setSecond (int second);

This method sets the second component of the time value. Seconds are represented by two digits from 00 to
59. Note that the action of this method may differ for different inherited ASN1CTime classes.

Return Value:

Name Type Description

stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description

second int Second component (0 — 59).

Output Parameters:

None

ASNICTime::setFraction

int setFraction (int fraction):;

ASNIC V5.3 142

This method sets the second’s decimal fraction component of the time value. Second’s decimal fraction is
represented by one digit from 0 to 9. Note that the action of this method may differ for different inherited
ASN1CTime classes.

Return Value:

Name Type Description

stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description

fraction int Second’s decimal fraction component (0 — 9).

Output Parameters:

None

ASNICTime::setDiffHour

int setDiffHour (int dhour);

This method sets the hour component of the difference between the time zone of the object and
Coordinated Universal Time (UTC). The UTC time is the sum of the local time and positive or negative

time difference. Note that the action of this method may differ for different inherited ASN1CTime classes.

Return Value:

Name Type Description

stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description

dhour int The negative or positive hour component of the difference between the
time zone of the object and UTC time (-12 —+12) is returned if the
operation is successful. If the operation fails, one of the negative status
codes defined in Appendix A is returned.

Output Parameters:

None

ASNICTime::setDiff
int setDiff (int dhour, int dminute);
This method sets the hour and minute components of the difference between the time zone of the object and

Coordinated Universal Time (UTC). The UTC time is the sum of the local time and positive or negative
time difference. Note that the action of this method may differ for different inherited ASN1CTime classes.

ASNIC V5.3 143

Return Value:

Name Type Description

stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description

dhour int The negative or positive hour component of the difference between the
time zone of the object and UTC time (-12 —+12).

dminute int The negative or positive minute component of the difference between
the time zone of the object and UTC time (-59 — +59).

Output Parameters:

None

ASNI1CTime::setDiff

int setDiff (int inMinutes);

This method sets the difference between the time zone of the object and Coordinated Universal Time
(UTC), in minutes. The UTC time is the sum of the local time and positive or negative time difference.

Note that the action of this method may differ for different inherited ASN1CTime classes.

Return Value:

Name Type Description

stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description

inMinutes int The negative or positive difference, in minutes, between the time zone
of the object and UTC time (-12*60 —+12*60) is returned if the
operation is successful. If the operation fails, one of the negative status
codes defined in Appendix A is returned.

Output Parameters:

None

ASNICTime::setUTC
int setUTC (ASN1BOOL utc);

This method sets the UTC flag state. If the UTC flag is TRUE, then the time is a UTC time and symbol ‘Z’
is added at the end of time string. Otherwise, it is a local time.

ASNIC V5.3 144

Return Value:

Name Type Description

stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description

utc ASN1BOOL UTC flag state.

Output Parameters:

None

ASNICTime::setTime

int setTime (time t time, ASNIBOOL diffTime);

This method converts the value of the C built-in type time_t to a time string. The value is the number of
seconds from January 1, 1970. Note that the action of this method may differ for different inherited
ASN1CTime classes.

Return Value:

Name Type Description

stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description
time time t The time value, expressed as number of seconds from January 1, 1970.
diffTime ASN1BOOL TRUE means the difference between local time and UTC time will be

calculated; in other case only local time will be stored.

Output Parameters:

None

ASNICTime::parseString

int parseString (ASNlConstCharPtr string);

This method parses the given time string. The string is expected to be in the ASN.1 value notation format
for the given ASN.1 time string type. Note that the action of this method may differ for different inherited
ASNI1CTime classes.

Return Value:

ASNIC V5.3 145

Name Type Description
stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description
string ASN1ConstChar | The time string value to be parsed.
Ptr

Output Parameters:

None

ASNICTime::clear
void clear ():;

This method clears the time string. Note that the action of this method may differ for different inherited
ASNI1CTime classes.

Return Value:
None

Input Parameters:
None

Output Parameters:

None

ASNICTime::operator =
ASN1CTime& operator = (const ASN1ICTimeé& other);

This overloaded assignment operator copies one ASN1CTime class instance to another. Note that the action
of this method may differ for different inherited ASN1CTime classes.

Return Value:

Name Type Description

this ASNI1CTime& Returns reference to this instance.

Input Parameters:

Name Type Description

other ASNICTime& Reference to the time value to be copied.

Output Parameters:

ASNIC V5.3 146

None

ASNICTime::
ASNICTime::
ASNICTime:
ASNICTime:
ASNICTime:

ASN1BOOL
ASN1BOOL
ASN1BOOL
ASN1BOOL
ASN1BOOL
ASN1BOOL

These are overloaded comparison operators that can be used with the time classes. They can be used to

operator ==
operator >
Joperator <
soperator >=
soperator <=

operator ==
operator !=
operator >
operator <
operator >=
operator <=

’

(ASN1CTimeé& other);
(ASN1CTime& other)
(ASN1CTimeé& other);
(ASN1CTimeé& other);
(ASN1CTimeé& other);
(ASN1CTime& other)

’

compare two time strings for the various conditions.

Return Value:

Name

Type

Description

result

ASN1BOOL

Returns result of the comparison of two time class instances.

Input Parameters:

Name

Type

Description

other

ASN1CTime&

Reference to the time value to be compared.

Output Parameters:

None

ASNIC V5.3

147

ASN1CGeneralizedTime

ASN1Type

|
+- ASNI1CTime

\
+- ASN1CGeneralizedTime

The ASN1CGeneralizedTime class is derived from the ASN1CTime base class. It is used as the base class
for generated control classes for the ASN.1 Generalized Time ((UNIVERSAL 24] IMPLICIT
VisibleString) type. This class provides utility methods for operating on the time information referenced by
the generated class. This class can also be used inline to operate on the times within generated time string
elements in a SEQUENCE, SET, or CHOICE construct. Time string generally is encoding according to
ISO 8601 format with some exceptions (see X.680).

ASNICGeneralizedTime::ASN1CGeneralizedTime

There are a number of different constructors available for this object. The different types are as follows:

ASN1CGeneralizedTime (ASN1lMessageBuffer& msgBuf,
char*& buf, int bufSize);

This constructor creates a time string from a buffer. It does not deep-copy the data, it just assigns the passed
array to an internal reference variable. The object will then directly operate on the given data variable.

Input Parameters:

Name Type Description

msgBuf ASNI1Message Reference to an ASN1Message buffer derived object (for example, an
Buffer& ASN1BEREncodeBuffer).

buf char* Reference to the pointer to time string buffer.

bufSize int Size of passed buffer, in bytes.

Output Parameters:
None
ASN1CGeneralizedTime (ASN1lMessageBuffer& msgBuf,

ASNlGeneralizedTimeé& buf);
This constructor creates a time string using the ASNIGeneralizedTime argument. The constructor does not
deep-copy the variable, it assigns a reference to it to an internal variable. The object will then directly
operate on the given data variable. This form of the constructor is used with a compiler-generated time

string variable.

Input Parameters:

Name Type Description

msgBuf ASN1Message Reference to an ASN1Message buffer derived object (for
Buffer& example, an ASN1BEREncodeBuffer).

buf ASN1VisibleString& | Reference to a visible string structure.

ASNIC V5.3 148

Output Parameters:

None

ASNI1CGeneralizedTime::getCentury

int getCentury

This method returns the century part (first two digits) of the year component of the time value.

Return Value:

Name

Type

Description

century

int

Century part (first two digits) of the year component is returned if the
operation is successful. If the operation fails, one of the negative status
codes defined in Appendix A is returned.

Input Parameters:

None

Output Parameters:

None

ASNI1CGeneralizedTime::setCentury

int setCentury

(int century);

This method sets the century part (first two digits) of the year component of the time value.

Return Value:

Name Type Description

stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description

century int Century part (first two digits) of the year component

Output Parameters:

None

ASNIC V5.3

149

ASN1CUTCTime

ASN1Type

|
+- ASNI1CTime

\
+- ASN1CUTCTime

The ASN1CUTCTime class is derived from the ASN1CTime base class. It is used as the base class for
generated control classes for the ASN.1 Universal Time ((UNIVERSAL 23] IMPLICIT VisibleString)
type. This class provides utility methods for operating on the time information referenced by the generated
class. This class can also be used inline to operate on the times within generated time string elements in a
SEQUENCE, SET, or CHOICE construct. Time string generally is encoding according to ISO 8601 format
with some exceptions (see X.680).

ASNICUTCTime::ASN1CUTCTime
There are a number of different constructors available for this object. The different types are as follows:

ASN1CUTCTime (ASN1lMessageBuffer& msgBuf, char*& buf, int bufSize);

This constructor creates a time string from a buffer. It does not deep-copy the data, it just assigns the passed
array to an internal reference variable. The object will then directly operate on the given data variable.

Input Parameters:

Name Type Description

msgBuf ASNI1Message Reference to an ASN1Message buffer derived object (for example, an
Buffer& ASNI1BEREncodeBuffer).

buf char* Reference to a pointer to a time string buffer.

bufSize int Size of passed buffer, in bytes.

Output Parameters:

None

ASN1CUTCTime (ASN1lMessageBuffer& msgBuf, ASN1UTCTimeé& buf);
This constructor creates a time string using the ASN/UTCTime argument. The constructor does not deep-
copy the variable, it assigns a reference to it to an internal variable. The object will then directly operate on

the given data variable. This form of the constructor is used with a compiler-generated time string variable.

Input Parameters:

Name Type Description

msgBuf ASNI1Message Reference to an ASN1Message buffer derived object (for
Buffer& example, an ASN1BEREncodeBuffer).

buf ASNIUTCTime& Reference to a time string structure.

Output Parameters:

ASNIC V5.3 150

None

ASNICUTCTime::setYear

int setYear (int year);

This method sets the year component of the time value. The ‘year’ parameter can be passed as either the
two last digits of the year (00 — 99) or as the full 4 digits (0 — 9999). Note: the ‘getYear’ method returns the

year in the full 4 digits format, independent of the format of the ‘year’ parameter used in this method.

Return Value:

Name Type Description
stat int Returns ASN_OK if operation is successful, a negative status value
will be returned if not.

Input Parameters:

Name Type Description

year int Year component (full 4 digits or only two last digits).

Output Parameters:

None

ASNIC V5.3 151

AsnlNamedEventHandler

The Asn1NamedEventHandler class is an abstract base class from which user-defined event handlers are
derived. This class contains pure virtual function definitions for all of the methods that must be
implemented to create a customized event handler class. See the section above on Event Handlers for a
discussion on how event handlers work.

AsnlNamedEventHandler::startElement

This method is invoked from within a decode function when an element of a SEQUENCE, SET,
SEQUENCE OF, SET OF, or CHOICE construct is parsed.

Calling Sequence:

eventHandler.startElement (name, index);

where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.

Return Value:

None

Input Parameters:

Name

Type

Description

name

const char*

For SEQUENCE, SET, or CHOICE, this is the name of the element as defined in
the ASN.1 definition. For SEQUENCE OF or SET OF, this is set to the name
“element”.

index

int

For SEQUENCE, SET, or CHOICE, this is not used and is set to the value —1. For
SEQUENCE OF or SET OF, this contains the zero-based index of the element in the
conceptual array associated with the construct.

Output Parameters:

None

AsnlNamedEventHandler::endElement

This method is invoked from within a decode function when parsing is complete on an element of a
SEQUENCE, SET, SEQUENCE OF, SET OF, or CHOICE construct.

Calling Sequence:

eventHandler.endElement (name, index);

where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.

Return Value:

None

Input Parameters:

ASNIC V5.3

152

Name

Type

Description

name const char* For SEQUENCE, SET, or CHOICE, this is the name of the element as defined in
the ASN.1 definition. For SEQUENCE OF or SET OF, this is set to the name
“element”.

index int For SEQUENCE, SET, or CHOICE, this is not used and is set to the value —1. For

SEQUENCE OF or SET OF, this contains the zero-based index of the element in the
conceptual array associated with the construct.

Output Parameters:

None

AsnlNamedEventHandler::boolValue

This method is invoked from within a decode function when a value of the BOOLEAN ASN.1 type is

parsed.

Calling Sequence:

eventHandler.boolValue (value);

where eventHandler is an object of a class derived from the AsnlNamedEventHandler base class.

Return Value:

None

Input Parameters:

Name

Type

Description

value

ASN1BOOL

Parsed value.

Output Parameters:

None

AsnlNamedEventHandler::intValue

This method is invoked from within a decode function when a value of the INTEGER ASN.1 type is

parsed.

Calling Sequence:

eventHandler.intValue (value);

where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.

Return Value:

None

Input Parameters:

ASNIC V5.3

153

Name Type

Description

value ASNIINT

Parsed value.

Output Parameters:

None

AsnlNamedEventHandler::ulntValue

This method is invoked from within a decode function when a value of the INTEGER ASN.1 type is
parsed. In this case, constraints on the integer value forced the use of an unsigned integer C type to

represent the value.

Calling Sequence:

eventHandler.uIntValue (value);

where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.

Return Value:
None

Input Parameters:

Name Type

Description

value ASNIUINT

Parsed value.

Output Parameters:

None

AsnlNamedEventHandler::bitStrValue

This method is invoked from within a decode function when a value of the BIT STRING ASN.1 type is

parsed.

Calling Sequence:

eventHandler.bitStrValue (numbits, data);

where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.

Return Value:
None

Input Parameters:

Name Type Description
numbits ASNIUINT Number of bits in the parsed value.
data const Pointer to byte array containing the bit string data.
ASNIOCTET*
ASNIC V5.3 154

Output Parameters:

None

AsnlNamedEventHandler::octStrValue

This method is invoked from within a decode function when a value of the OCTET STRING ASN.1 type is
parsed.

Calling Sequence:
eventHandler.octStrValue (numocts, data);
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.
Return Value:
None

Input Parameters:

Name Type Description

numocts ASNIUINT Number of octets in the parsed value.

data const Pointer to byte array containing the octet string data.
ASNIOCTET*

Output Parameters:

None

AsnlNamedEventHandler::charStrValue

This method is invoked from within a decode function when a value of one of the 8-bit ASN.1 character
string types is parsed.

Calling Sequence:
eventHandler.charStrValue (value);
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.
Return Value:
None

Input Parameters:

Name Type Description
value ASNI1Const Null-terminated character string value.
CharPtr

Output Parameters:

ASNIC V5.3 155

None

AsnlNamedEventHandler::charStrValue (16-bit version)

This method is invoked from within a decode function when a value of one of the 16-bit ASN.1 character
string types is parsed.

Calling Sequence:
eventHandler.charStrValue (nchars, data);
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.
Return Value:
None

Input Parameters:

Name Type Description

nchars ASNIUINT Number of characters in the parsed value.

data ASN116 Pointer to array containing 16-bit character values. These are represented using
BITCHAR* unsigned short integer values.

Output Parameters:

None

AsnlNamedEventHandler::nullValue
This method is invoked from within a decode function when a value of the NULL ASN.1 type is parsed.
Calling Sequence:
eventHandler.nullValue ();
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.
Return Value:
None
Input Parameters:
None
Output Parameters:

None

AsnlNamedEventHandler::oidValue

ASNIC V5.3 156

This method is invoked from within a decode function when a value the OBJECT IDENTIFIER ASN.1
type is parsed.

Calling Sequence:
eventHandler.oidValue (numSubIds, pSubIds);
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.
Return Value:
None

Input Parameters:

Name Type Description
numSublds | ASNIUINT Number of subidentifiers in the object identifier.
pSublds ASNITUINT* Pointer to array containing the subidentifier values.

Output Parameters:

None

AsnlNamedEventHandler::realValue
This method is invoked from within a decode function when a value the REAL ASN.1 type is parsed.
Calling Sequence:

eventHandler.realValue (value);
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.
Return Value:
None

Input Parameters:

Name Type Description

value double Parsed value.

Output Parameters:

None

AsnlNamedEventHandler::enumValue

This method is invoked from within a decode function when a value of the ENUMERATED ASN.1 type is
parsed.

Calling Sequence:

ASNIC V5.3 157

eventHandler.enumValue (value);
where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.
Return Value:
None

Input Parameters:

Name Type Description

value ASNIUINT Parsed value.

Output Parameters:

None

AsnlNamedEventHandler::octStrValue

This method is invoked from within a decode function when a value of the OCTET STRING ASN.1 type is
parsed.

Calling Sequence:
eventHandler.octStrValue (numocts, data);
where eventHandler is an object of a class derived from the AsnlNamedEventHandler base class.
Return Value:
None

Input Parameters:

Name Type Description

numocts ASNIUINT Number of octets in the parsed value.

data const Pointer to byte array containing the octet string data.
ASNIOCTET*

Output Parameters:

None

AsnlNamedEventHandler::openTypeValue
This method is invoked from within a decode function when an ASN.1 open type value is parsed.
Calling Sequence:

eventHandler.openTypeValue (numocts, data);

where eventHandler is an object of a class derived from the AsnlNamedEventHandler base class.

ASNIC V5.3 158

Return Value:

None

Input Parameters:

Name Type Description

numocts ASNIUINT Number of octets in the parsed value.

data const Pointer to byte array containing the encoded ASN.1 value.
ASN1OCTET*

Output Parameters:

None

ASNIC V5.3

159

AsnlErrorHandler

The AsnlErrorHandler class is an abstract base class from which user-defined error handlers are derived.
These user-defined handlers allow for intervention in the decoding process to allow for fault-tolerant
behavior. This class contains pure virtual function definitions for the methods that must be implemented to
create a customized error handler class. See the section above on Event Handlers for a discussion on how

error handlers

work.

AsnlErrorHandler::error

This method is invoked from within a decode function when certain types of recoverable errors occur.

Calling Sequence:

ret

= errorHandler.error

(pCtxt, pCCB, stat);

where eventHandler is an object of a class derived from the Asn1NamedEventHandler base class.

Return Value:

Name

Type

Description

ret

nt

Updated status value. This will normally be set to ASN_OK if the parsing process
is to continue or the original status value (stat) if decoding is to be aborted.

Input Parameters:

Name

Type

Description

pCtxt

ASNICTXT*

Pointer to the context structure associated with the decoder. This can be used in call
to C run-time functions to manipulate the current decode buffer position.

pCCB

ASN1CCB*

Pointer to a ‘context control block’ structure. This is basically a loop control
mechanism to keep the variable associated with parsing a nested constructed
element straight. It is passed into the error handler to allow the loop control

variables to be manipulated to force certain retry behavior.

The item within this structure that is of greatest interest is the ‘seqx’ element. This
is the sequence index of the current item being pared within a SEQUENCE
construct. If the user would like to retry parsing of an element, this item should be
decremented; if the element is to be skipped altogether, this element should be left
alone.

stat

int

The original error status value.

Output Parameters:

None

ASNIC V5.3

160

BER Run-time Library Functions

The ASN.1 Basic Encoding Rules (BER) run-time library contains all of the low-level constants, types, and
functions that are assembled by the compiler to encode/decode more complex structures.

This library consists of two items:
1. A global include file ("asnltype.h") that is compiled into all generated source files

2. An object library of functions that are linked in with the C functions after compilation with a C
compiler.

In general, programmers will not need to be too concerned with the details of these functions. The ASN.1
compiler generates calls to them in the C or C++ source files that it creates. However, the functions in the
library may also be called on their own in applications requiring their specific functionality.

asnltype.h Include File

Every C source file produced by the ASN1C compiler includes the asnltype.h include file either directly or
at a nested level. This file contains function error code constants, tagging value and mask constants, sizing
constants for internal arrays and buffers, and ASN.1 primitive type definitions.

Error Constants

All error code constants begin with the prefix "ASN_E " and run from zero, which is success, into negative
numbers that describe all of the various error conditions. A complete list of error codes and a description
of what causes them can be found in Appendix A.

There are several error message utility functions defined within the run-time libraries that provide detailed
information on error conditions. See the descriptions of the functions beginning with the prefix r¢Err in the
Common Functions section.

Tagging Value and Mask Constants

Tagging constants provide a means for setting up class and form fields within ASN.1 tag variables. To
understand how these work, one must first understand the internal representation of ASN.1 tags within the
run-time library.

In the ASN.1 standard, tags are represented as a class, form, and ID code. Class and form are relatively
straightforward. Class is a two bit code which can take on one of four possible values (UNIVERSAL,
APPLICATION, CONTEXT, or PRIVATE) and form is a single bit which can take on one of two values
(PRIMITIVE or CONSTRUCTED). Together, these occupy the upper three bits of a tag value. The
remaining bits are for the ID code. An ID code having a value of 30 or less can be accommodated in the
remaining bits of the first byte. If the value is larger, additional bytes are added.

This is where the internal representation differs from the standard. The internal representation assumes an
unsigned, 13-bit number (i.e up to 2 to the 13th power, or 8191 ID codes) can represent all possible ID
codes defined in a particular environment. Using this assumption, a tag can always be represented as an
unsigned, 16-bit integer value as follows:

ASNIC V5.3 161

Bit#: 15 ... 0

4“—PY<4¢— D(Code >

Form:
0 = Primitive
1 = Constructed

Class:

0 (00) = Universal

1 (01) = Application

2 (10) = Context Specific
3 (11) = Private

Bits 14 and 15 hold the 2-bit class value, bit 13 holds the form, and bits 0 through 12 hold the integer value
of the ID code. Run-time library functions handle conversions to and from this format and the ASN.1
standard format in messages.

The tagging constants that allow construction of internal tag values come in two forms: values and masks.
Values are simply the values of the classes and forms shown above. These start with the prefix 'TV ' (for
'Tag Value'). Examples are TV_UNIV for UNIVERSAL (0) and TV_APPL for APPLICATION (1). In
addition, values are defined for the ID codes of the universal ASN.1 types such as BOOLEAN and
INTEGER - these are preceded by the prefix '"ASN_ID '. Masks are hexadecimal values which can be
logically OR'd together with integer values to form full internal tag specifications. These start with the
prefix 'TM_' (for 'Tag Mask'). For example, to form an internal representation of a private, constructed tag
with ID code 21, the following could be used:

TM PRIV|TM CONS|21.

Sizing Constants

Sizing constants are provided to define the maximum sizes of internal buffers and arrays used by the run-
time library functions. These can be modified if the given values are not sufficient for a given application.
The constants and default values can be found in asnltype.h.

ASN.1 Primitive Type Definitions

C typedef statements are used to represent several of the ASN.1 primitive types (i.e., universal, non-
constructed types). These include ASN1INT, ASN1OCTET, ASN1BOOL, ASN10OBIJID, and the special
type ASN1TAG used to represent the internal tag discussed above. In addition, ASN10OctStr and
ASN1DynOctStr provide generic representations of static and dynamic octet strings that can be used in
type cast operations.

ASNIC V5.3 162

BER/DER C Encode Functions

BER/DER C encode functions handle the BER encoding of the primitive ASN.1 data types and ASN.1
length and tag fields within a message. Calls to these functions are assembled in the C source code
generated by the ASN1C compiler to accomplish the encoding of complex ASN.1 structures. These

functions are also directly callable from within a user's application program if the need to accomplish a low

level encoding function exists.

The procedure to call the encode function that encodes a primitive type is the same as the procedure to call
a compiler generated encode function described above. The xe_setp function must first be called to set a

pointer to the buffer into which the variable is to be encoded. A static encode buffer is specified by
specifying a pointer to a buffer and buffer size. Setting the buffer address to NULL and buffer size to 0
specifies a dynamic buffer. The primitive encode function is then invoked. Finally, xe getp is called to
retrieve a pointer to the encoded message component.

For example, the following code fragment could be used to encode a single, boolean value:

ASNIOCTET buf[10], *msg p;

ASN1BOOL boolValue = 1; /* true */
ASNICTXT ctxt;

int msglen;

xe setp (&ctxt, buf, sizeof (buf));
msglen = xe boolean (&ctxt, &boolValue, ASN1EXPL);
msg_p = xe getp (&ctxt);

The msg_p variable now contains a pointer to the encoded boolean value and msglen contains the length.

xe_setp - Set Encode Buffer Pointer

The xe_setp function is used to set the internal encode buffer within the Run-time library encode module.
It must be called prior to calling any other compiler generated or run-time library encode function.

Calling sequence :

xe setp (ctxt p, bufptr, buflen);

Return value:

None

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

bufptr ASNIOCTET* Pointer to a memory buffer to use to encode a message. The buffer should be
declared as an array of unsigned characters (ASN1OCTETs). This parameter can be
set to NULL to specify dynamic encoding (i.e., the encode functions will
dynamically allocate a buffer for the encoded message).

buflen int Length of the memory buffer in bytes.

ASNIC V5.3 163

Output parameters :

None

xe_getp - Get Encode Buffer Pointer

The xe_getp function is used to obtain a pointer to the start of an encoded message after calls to the encode
function(s) are complete. ASN.1 messages are encoded from the end of a given buffer toward the
beginning, therefore, in practically all cases, the start of the message will not be at the beginning of the
buffer.

Calling sequence :

msgptr = xe getp (ctxt p);

Return value:

Name Type Description

msgptr ASNIOCTET* Pointer to beginning of encoded message.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

None

xe_tag len - Encode Tag and Length

The xe tag len function is used to encode the ASN.1 tag and length fields that preface each block of
message data. The ASN1C compiler generates calls to this function to handle the encoding of user defined
tags within an ASN.1 specification. This function is also called from within the RUN-TIME LIBRARY
functions to handle the addition of the universal tags defined for each of the ASN.1 primitive data types.
Calling sequence :

msglen = xe tag len (ctxt p, asntag, length);

Return value:

Name Type Description

msglen int Length of the encoded message component equal to the given length plus the
additional bytes that are added for the tag and length fields. A negative status value
will be returned if encoding is not successful.

Input parameters :
Name Type Description
ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store

ASNIC V5.3 164

all working variables that must be maintained between function calls.

asntag ASNITAG The ASN.1 tag to be encoded in the message. This parameter is passed using the
internal representation discussed in Section 4.1.2. It is passed as an unsigned 16 bit
integer.

length int The length of the contents field previously encoded. This parameter can be used to

specify the actual length, or the special constant 'ASN_K INDEFLEN' can be used
to specify that an indefinite length specification should be encoded.

Output Parameters:

None

xe_boolean - Encode BOOLEAN

The xe_boolean function will encode a variable of the ASN.1 BOOLEAN type.

Calling sequence::

msglen = xe boolean (ctxt p, object, tagging);
Return value:
Name Type Description
msglen int Length of the encoded message component. A negative status value will be returned

if encoding is not successful.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object

ASN1BOOL*

A pointer to the BOOLEAN value to be encoded (note that a pointer to the
BOOLEAN is passed, not the BOOLEAN value itself. This may seem awkward,
but to keep the calling sequence of all encode functions the same, pointers were used
in all cases). A BOOLEAN is defined as a single OCTET whose value is 0 for
FALSE and any other value for TRUE.

tagging

ASNITagType

An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASN1EXPL".

Output Parameters:

None

xe_integer - Encode INTEGER

The xe_integer function will encode a variable of the ASN.1 INTEGER type.

ASNIC V5.3

165

Calling sequence :

msglen = xe integer (ctxt p, object, tagging);
Return value:
Name Type Description
msglen int Length of the encoded message component. A negative status value will be returned

if encoding is not successful.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object

ASNIINT*

A pointer to the INTEGER value to be encoded (note that a pointer to the INTEGER
is passed, not the INTEGER value itself. This may seem awkward, but to keep the
calling sequence of all encode functions the same, pointers were used in all cases).
The ASNTINT type is set to the C type ‘int’ in the asnltype.h file. This is assumed
to represent a 32 bit integer value.

tagging

ASNITagType

An enumerated type whose value is set to either '"ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASN1EXPL".

Output Parameters:

None

xe_unsigned - Encode Unsigned INTEGER

The xe_unsigned function will encode an unsigned variable of the ASN.1 INTEGER type.

Calling sequence :

msglen =

Return value:

xe unsigned (ctxt p,

object, tagging);

Name

Type

Description

msglen

int

Length of the encoded message component. A negative status value will be returned
if encoding is not successful.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object ASNIUINT* A pointer to the unsigned INTEGER value to be encoded (note that a pointer to the

value is passed, not the value itself. This may seem awkward, but to keep the
calling sequence of all encode functions the same, pointers were used in all cases).
The ASN1TUINT type is set to the C type ‘unsigned int’ in the asnltype.h file. This

ASNIC V5.3

166

is assumed to represent a 32-bit integer value.

tagging

ASNITagType

An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or '"ASNITIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASN1EXPL'.

Output Parameters:

None

xe_bigint — Encode Big Integer

The xe_bigint function will encode a variable of the ASN.1 INTEGER type. In this case, the integer is
assumed to be of a larger size than can fit in a C or C++ long type (normally 32 or 64 bits). For example,
parameters used to calculate security values are typically larger than these sizes.

Items of this type are stored in character string constant variables. They can be represented as decimal
strings (with no prefixes), as hexadecimal strings starting with a “0x” prefix, as octal strings starting with a
“00” prefix or as binary strings starting with a “0b” prefix. Other radixes are currently not supported.

Calling sequence :

msglen = xe bigint (ctxt p, object p, tagging);
Return value:
Name Type Description
msglen int Length of the encoded message component. A negative status value will be returned

if encoding is not successful.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object char* A pointer to a character string containing the value to be encoded.

tagging ASNITagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)

or '"ASNITIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASN1EXPL'.

Output Parameters:

None

xe_bitstr - Encode BIT STRING

The xe_bitstr function will encode a variable of the ASN.1 BIT STRING type.

Calling sequence :

msglen =

xe bitstr

(ctxt p, object, numbits, tagging);

ASNIC V5.3

167

Return value:

Name

Type

Description

msglen

int

Length of the encoded message component. A negative status value will be returned
if encoding is not successful.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object ASN1OCTET* A pointer to an OCTET string containing the bit data to be encoded. This string
contains bytes having the actual bit settings as they are to be encoded in the
message.

numbits int The number of bits within the bit string to be encoded.

tagging ASNITagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)

or '"ASN1TIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASN1EXPL'.

Output Parameters:

None

xe_octstr - Encode OCTET STRING

The xe_octstr function will encode a variable of the ASN.1 OCTET STRING type.

Calling sequence :

msglen = xe octstr (ctxt p, object, numocts, tagging);
Return value:
Name Type Description
msglen int Length of the encoded message component. A negative status value will be returned

if encoding is not successful.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object ASN1OCTET* A pointer to an OCTET STRING containing the octet data to be encoded.

numocts int The number of octets (bytes) within the bit string to be encoded.

tagging ASNI1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)

or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASNIEXPL'.

ASNIC V5.3

168

Output Parameters:

None

xe_charstr — Encode Character String

The xe_charstr function will encode a variable one of the ASN.1 character string types that are based on 8-
bit character sets. This includes [A5String, VisibleString, PrintableString, and NumericString.

Calling sequence::

msglen = xe charstr (ctxt p, object p, tagging, tag);
Return value:
Name Type Description
msglen int Length of the encoded message component. A negative status value will be returned

if encoding is not successful.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object char* A pointer to a null-terminated C character string to be encoded.

tagging ASNITagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or '"ASN1TIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASN1EXPL'.

tag ASNITAG The Universal ASN.1 tag to be encoded in the message. This parameter is passed

using the internal representation discussed in Section 4.1.2. It is passed as an
unsigned 16-bit integer. The tag value must be represent one of the 8-bit character
string type documented in the X.680 standard.

Output Parameters:

None

xe_16BitCharStr — Encode 16-bit Character String

The xe_16BitCharStr function will encode a variable one of the ASN.1 character string types that are based
on a 16-bit character sets. This includes the BMPString type.

Calling sequence::

msglen =

Return value:

xe 16BitCharStr

(ctxt p, object p, tagging, tag);

ASNIC V5.3

169

Name

Description

msglen

Type
int

Length of the encoded message component. A negative status value will be returned
if encoding is not successful.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object Asnl16Bit A pointer to a structure representing a 16-bit character string to be encoded. This

CharString* structure contains a character count element and a pointer to an array of 16-bit

character elements represented as 16-bit short integers.

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or '"ASNITIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASN1EXPL'.

tag ASNITAG The Universal ASN.1 tag to be encoded in the message. This parameter is passed

using the internal representation discussed in Section 4.1.2. It is passed as an
unsigned 16-bit integer. The tag value must be represent one of the 16-bit character
string type documented in the X.680 standard.

xe_32BitCharStr — Encode 32-bit Character String

The xe 32BitCharStr function will encode a variable one of the ASN.1 character string types that are based
on a 32-bit character sets. This includes the UniversalString type.

Calling sequence :

msglen = xe 32BitCharStr (ctxt p, object p, tagging, tag);
Return value:
Name Type Description
msglen int Length of the encoded message component. A negative status value will be returned

if encoding is not successful.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object Asnl32Bit A pointer to a structure representing a 32-bit character string to be encoded. This

CharString* structure contains a character count element and a pointer to an array of 32-bit

character elements represented as 32-bit unsigned integers.

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASN1EXPL'.

tag ASNITAG The Universal ASN.1 tag to be encoded in the message. This parameter is passed

using the internal representation discussed in Section 4.1.2. It is passed as an

ASNIC V5.3

170

unsigned 16-bit integer. The tag value must be represent one of the 16-bit character
string type documented in the X.680 standard.

xe_enum - Encode ENUMERATED

The xe_enum function will encode a variable of the ASN.1 ENUMERATED type.

Calling sequence :

msglen =

xe enum (ctxt p,

object, tagging);

The enumerated encoding is identical to that of an integer. The compiler adds additional checks to the
generated code to ensure the value is within the given set.

Return value:

Name

Type

Description

msglen

int

Length of the encoded message component. A negative status value will be returned
if encoding is not successful.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object ASNIENUM* A pointer to an integer containing the enumerated value to be encoded (note that a
pointer to the value is passed, not the value itself. This may seem awkward, but to
keep the calling sequence of all encode functions the same, pointers were used in all
cases).

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)

or '"ASNITIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASN1EXPL".

Output Parameters:

None

xe_null - Encode NULL

The xe_null function will encode an ASN.1 NULL placeholder.

msglen = xe null (ctxt p, tagging);
Return value:
Name Type Description
msglen int Length of the encoded message component. A negative status value will be returned

if encoding is not successful.

Input parameters :

ASNIC V5.3

171

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASN1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)

or '"ASNTIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASN1EXPL'.

Output Parameters:

None

xe_objid - Encode OBJECT IDENTIFIER

The xe_objid function will encode a variable of the ASN.1 OBJECT IDENTIFIER type.

Calling sequence :

msglen = xe objid (ctxt p, object, tagging);
Return value:
Name Type Description
msglen int Length of the encoded message component. A negative status value will be returned

if encoding is not successful.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object ASNI1OBJID* A pointer to an object identifier structure. This structure contains an integer to hold
the number of subidentifers in the object and an array to hold the subidentifier
values.

tagging ASNITagType An enumerated type whose value is set to either '"ASN1EXPL' (for explicit tagging)

or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to 'ASN1EXPL'.

Output Parameters:

None

xe_real — Encode Real

xe_real will encode a variable of the REAL data type. This function provides support for the plus-infinity
and minus- infinity special real values.

Calling sequence::

msglen =

xe real

(ctxt p,

object, tagging);

ASNIC V5.3

172

Return value:

Name

Type

Description

msglen

int

Length of the encoded message component. A negative status value will be returned
if encoding is not successful.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object ASNIREAL* A pointer to a variable of the ASNIREAL data type. This is defined to be the C
double type. Special real values plus and minus infinity are encoded by using the
xu_GetPlusInfinity and xu_GetMinusInfinity functions to set the real value to be
encoded.

tagging ASNITagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)

or '"ASNITIMPL' (for implicit). Controls whether the universal tag value for this type
is added or not. Users will generally always set this value to '"ASN1EXPL'.

Output Parameters:

None

xe_OpenType - Encode Open Type

The xe_OpenType function will encode a variable of the old (pre-1994) ASN.1 ANY type or other
elements defined in the later standards to be Open Types (for example, a variable type declaration in a
CLASS construct as defined in X.681). A variable of this is considered to be a previously encoded ASN.1
message component.

Calling sequence :

msglen =

xe OpenType

(ctxt p, object);

Note that the tagging argument present on other encode functions is not present here. This is because these
variables must always be encoded explicitly.

Return value:

Name

Type

Description

msglen

int

Length of the encoded message component. A negative status value will be returned
if encoding is not successful.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object ASNI1OpenType | A pointer to a buffer containing an encoded ASN.1 message component.

ASNIC V5.3

173

Output Parameters:

None

xe_free — Free Encoder Dynamic Memory
The xe_free function will free a dynamic encode buffer. This is the buffer that is allocated if dynamic
encoding of a message is enabled (passing NULL as the buffer pointer argument to xe_setp enables
dynamic encoding).
Note that this is different than the xu_freeall function associated with freeing decoder memory. This
function only releases the memory associated with a dynamic encoded buffer. The xu_freeall function will
not release this memory.
Calling sequence::

xe free (ctxt p);
Return value:

None

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls. The dynamic
encode buffer pointer is contained within this structure.

Output Parameters:

None

xe_expandBuffer — Expand Dynamic Encode Buffer

The xe_expandBuffer function will expand a dynamic encode buffer. This is the buffer that is allocated if
dynamic encoding of a message is enabled (passing NULL as the buffer pointer argument to xe setp
enables dynamic encoding).

The size of the new buffer is determined by the length argument. If the length is less than a configurable
buffer expansion increment size (the constant ASN_K ENCBUFSIZ), the buffer is expanded by the
increment size; otherwise it is expanded by the actual length value.

Calling sequence::

status = xe expandBuffer (ctxt p, length);

Return value:

Name Type Description

status int Status of the operation. Possible values are ASN_OK if decoding is successful or
one of the negative status codes defined in Appendix A if failure.

ASNIC V5.3 174

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls. The dynamic
encode buffer pointer is contained within this structure.

length int The number of bytes required. This may not be size the buffer is actually expanded

by. The buffer will be expanded by a fixed-size increment defined by
ASN_K ENCBUFSIZ for small requests to limit the required number of
expansions.

Output Parameters:

None

xe_memcpy — Copy Bytes to Encode Buffer

The xe_memcpy function is used to copy bytes into the encode buffer. BER and DER messages are
encoded from back-to-front and this function will take this into account when copying bytes. It will also
check to ensure that enough space is available in the buffer for the bytes to be copied. If not and the encode
buffer is specified to be a dynamic buffer, it will automatically be expanded. If the buffer is static and
enough space is not available, an error status (ASN_E _BUFOVFLW) will be returned.

Calling sequence :

msglen = xe memcpy (ctxt p, object p, length);
Return value:
Name Type Description
msglen int Length of the copied message component (this is the length that was passed in if the

copy was successful). A negative status value will be returned if encoding is not
successful.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

object p ASNIOCTET* A pointer to a buffer containing the bytes to be copied.

length ASNIUINT Number of bytes to copy.

Output Parameters:

None

xe_len — Encode a Length Value

The xe_len function is used to encode a BER or DER length determinant value.

ASNIC V5.3

175

Calling sequence :

msglen = xe len (ctxt p, length);
Return value:
Name Type Description
msglen int Length of the encoded message component. A negative status value will be returned

if encoding is not successful.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

length int The length variable to encode. A negative value is interpreted that an indefinite

length identifier should be encoded.

Output Parameters:

None

xe_derCanonicalSort — DER Canonical Sort

The xe_derCanonicalSort function is added to the generated code for SEQUENCE OF/SET OF constructs
to ensure the elements are in the required canonical order for DER. If the elements are not in the right
order, they are sorted to be in the correct order prior to encoding.

Calling sequence :

status

Return value:

= xe derCanonicalSort

(ctxt p, pList);

Name

Type

Description

status

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative status codes defined in Appendix A if failure.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

pList AsnlRTSList Linked list of message components to be sorted. The elements of this list are offsets

to encoded components within the encode buffer.

Output Parameters:

ASNIC V5.3

176

None

xe_TagAndIndefLen — Encode Tag and Indefinite Length

The xe TagAndIndefLen function is used to encode a tag value and an indefinite length. This can be used
to manually create an indefinite length wrapper around long records.

Calling sequence::

status = xe TagAndIndeflen (ctxt p, tag, length);
Return value:
Name Type Description
status int Status of the operation. Possible values are ASN_OK if successful or one of the

negative status codes defined in Appendix A if failure.

Input Parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tag ASNITAG ASN.1 tag value to be encoded.

length int Actual length of existing message components.

Output Parameters:

None

ASNIC V5.3

177

BER/DER C Decode Functions

BER/DER C decode functions handle the decoding of the primitive ASN.1 data types and ASN.1 length
and tag fields within a message. Calls to these functions are assembled in the C source code generated by
the ASN1C compiler to decode complex ASN.1 structures. These functions are also directly callable from
within a user's application program if the need to decode a primitive data item exists.

The procedure to decode a primitive data item is as follows:

1. Call the xd_setp low-level decode function to specify the address of the buffer containing the encoded
ASN.1 data to be decode, and

2. Call the specific decode function to decode the value. The tag value obtained in step 1 can be used to
determine the decode function to call to decode the variable.

For example, to decode a message containing a single object identifier with no special tagging, the
following code fragment could be used:

ASN1OBJID objId; /* variable to receive decoded result */
ASNICTXT ctxt;

ASNITAG tag;

int len, stat;

memset (&ctxt, 0, sizeof (ctxt));

/* assume ‘buf’ contains message fragment to be decoded.. */

xd setp (&ctxt, buf, sizeof (buf), &tag, &len);

if (tag == TM UNIV|TM PRIM|ASN ID OBJID) { /* OID tag */
stat = xd objid (&ctxt, &objId, ASNIEXPL, 0);
if (stat != ASN OK) {

Xu perror (&ctxt);
}

The objld variable now contains the decoded object identifier value.

xd_setp - Set Decode Buffer Pointer

The xd_setp function is used to set the internal decode buffer pointer within the run-time library decode
module. It must be called prior to calling any other compiler generated or run-time library decode function.

Calling sequence :

xd setp (ctxt p, bufptr, msglen, asntag, length);
Return value:
None

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

bufptr ASNIOCTET* Pointer to a memory buffer containing the ASN.1 message. The pointer must point

ASNIC V5.3 178

at the first byte in the message.

msglen

int

Length of the message that was read. This is used to set an internal message length
to check for field length errors. If this length is not known, a zero value can be
passed to cause these checks to be bypassed.

Output parameters :

Name Type Description

asntag ASNITAG* Pointer to a variable to receive the ASN.1 tag value corresponding to the outer level
tag on the message. This value can be tested to determine the appropriate function
to call to decode the message. This is an optional parameter, if not needed, a null
pointer can be passed.

length int* Pointer to a variable to receive the overall length of the message. Note that this is

not the length contained in the length field of the outer level tag, but the overall
message length taking into account the extra bytes added by the outer level tag.
This is an optional parameter, if not needed, a null pointer can be passed.

xd_tag len - Decode Tag and Length

The xd tag_len function decodes the tag and length at the current decode pointer location and returns the

results.

Calling sequence::

status = xd tag len (ctxt p, asntag, length, flags);
Return value:
Name Type Description
status int Status of the decode operation. Possible values are ASN_OK if decoding is

successful or one of the negative status codes defined in Appendix A is decoding
fails.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

flags u_short Bit flags used to control function operation. The following flags can be set:
XM_ADVANCE Advance decode pointer to the contents field.
XM_SKIP Skip to next field.
Flags are set by or'ing the above mask values together.

msglen int Length of the message that was read. This is used to set an internal message length

to check for field length errors. If this length is not known, a zero value can be
passed to cause these checks to be bypassed.

ASNIC V5.3

179

Output parameters :

Name Type Description

asntag ASNITAG* Pointer to a variable to receive the decoded ASN.1 tag value This value is returned
as an unsigned short integer in the internal format described in Section 4.1.2.

length int* Pointer to a variable to receive the decoded length of the tagged component. The

returned value will either be the actual length or the special constant
'ASN_K INDEFLEN' which indicates indefinite length.

xd_match - Match Tag

The xd_match function does a comparison between the given tag and the tag at the current decode pointer
position to determine if they match. It then returns the result of the match operation. Alternately, the
function will scan through tags in a message and compare each tag with the given tag and stop when either
the tag is found or all tags in the message have been exhausted.

Calling sequence :

status = xd match (ctxt p, asntag, length, flags);
Return value:
Name Type Description
status int Status of the match operation. Possible values are ASN_OK if match operation was

successful, ASN_E TAGNOTFOU if matching tag not found, or one of the other
negative status codes defined in Appendix A if a different error occurs.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

flags u_short Bit flags used to control function operation. The following flags can be set:

XM_ADVANCE Advance decode pointer to the contents field.
XM_SKIP Skip to next field.
XM_SEEK Scan tags until match found or EOM (end-of-message).

Flags are set by or'ing the above mask values together.

Output parameters :

Name Type Description

asntag ASNITAG* Pointer to a variable to receive the decoded ASN.1 tag value. This value is returned
as an unsigned short integer in the internal format described in Section 4.1.2.

length int* Pointer to a variable to receive the decoded length of the tagged component. The
returned value will either be the actual length or the special constant
'ASN_K INDEFLEN' which indicates indefinite length.

ASNIC V5.3 180

xd_boolean - Decode BOOLEAN

The xd_boolean function will decode a variable of the ASN.1 BOOLEAN type.

Calling sequence :

status = xd boolean (ctxt p, object p, tagging, length);

Return value:

Name Type Description

status int Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASNI1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

length int The length, in OCTETs, of the contents field to be decoded. This parameter only

has meaning if the tagging parameter specifies implicit decoding. If explicit, the
length is obtained from the decoded length field.

Output parameters :

Name

Type Description

object p

ASN1BOOL* Pointer to a variable to receive the decoded boolean value.

xd_integer - Decode INTEGER

The xd_integer function will decode a variable of the ASN.1 INTEGER type.

Calling sequence :

status

Return value:

= xd integer (ctxt p, object p, tagging, length);

Name Type Description

status int Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

ASNIC V5.3 181

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASNITagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or 'ASN1IMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

length int The length, in OCTETS, of the contents field to be decoded. This parameter only

has meaning if the tagging parameter specifies implicit decoding. If explicit, the
length is obtained from the decoded length field.

Output parameters :

Name

Type

Description

object p

ASNITINT*

Pointer to a variable to receive the decoded integer value.

xd_unsigned - Decode Unsigned INTEGER

The xd_unsigned function will decode a variable of the unsigned variant of ASN.1 INTEGER type .

Calling sequence :

status

Return value:

= xd unsigned (ctxt p,

length) ;

object p, tagging,

Name

Type

Description

status

int

Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASNITagType An enumerated type whose value is set to either '"ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to '"ASN1EXPL".

length int The length, in OCTETs, of the contents field to be decoded. This parameter only

has meaning if the tagging parameter specifies implicit decoding. If explicit, the
length is obtained from the decoded length field.

ASNIC V5.3

182

Output parameters :

Name Type Description

object p ASNIUINT* Pointer to a variable to receive the decoded unsigned integer value.

xd_bigint — Decode Big Integer
The xd_bigint function will decode a variable of the ASN.1 INTEGER type. In this case, the integer is
assumed to be of a larger size than can fit in a C or C++ long type (normally 32 or 64 bits). For example,

parameters used to calculate security values are typically larger than these sizes.

These variables are stored in character string constant variables. They are represented as decimal strings

starting with no prefix. If it is necessary to convert a decimal string to another radix then use
rtSetStrToBiglnt / rtBigIntToString functions.

Calling sequence :

status = xd bigint

Return value:

(ctxt p, object p, tagging, length);

Name Type

Description

status int

Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type

Description

ctxt p ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASNITagType

An enumerated type whose value is set to either '"ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

length int

The length, in OCTETsS, of the contents field to be decoded. This parameter only
has meaning if the tagging parameter specifies implicit decoding. If explicit, the
length is obtained from the decoded length field.

Output parameters :

Name Type

Description

object_p char**

Pointer to a character pointer variable to receive the decoded unsigned value.
Dynamic memory is allocated for the variable using the rtMemAlloc function. The
decoded variable is represented as a decimal string starting with no prefix.

ASNIC V5.3

183

xd_bitstr - Decode BIT STRING

The xd_bitstr function will decode a variable of the ASN.1 BIT STRING type. This function will allocate
dynamic memory to store the decoded result.

Calling sequence:
status = xd bitstr (ctxt p, object p2, numbits p, tagging, length);

Return value:

Name Type Description

status int Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASNI1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to '"ASN1EXPL".

length int The length, in OCTETsS, of the contents field to be decoded. This parameter only
has meaning if the tagging parameter specifies implicit decoding. If explicit, the
length is obtained from the decoded length field.

Output parameters :

Name Type Description

object_p2 ASN1OCTET** | Pointer to a pointer variable to receive the decoded bit string. Dynamic memory is
allocated to hold the string.

numbits p | int* Pointer to an integer value to receive the decoded number of bits.

xd_bitstr_s - Decode BIT STRING (static)

The xd_bitstr s function will decode a variable of the ASN.1 BIT STRING type into a static memory
structure. This function call is generated by ASN1C to decode a sized bit string production.

Calling sequence:

status = xd bitstr s (ctxt p, object p, numbits p, tagging,
length) ;

Return value:

Name Type Description

status int Status of the decode operation. Possible values are ASN OK if decoding is

ASNIC V5.3 184

successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

numbits_p

int*

Pointer to an integer variable containing the size (in bits) of the sized ASN.1 bit
string. An error will occur if the number of bits in the decoded string is larger than
this value. Note that this is also used as an output variable — the actual number of
decoded bits will be returned in this variable.

tagging

ASNITagType

An enumerated type whose value is set to either '"ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to '"ASN1EXPL".

length

int

The length, in OCTETs, of the contents field to be decoded. This parameter only
has meaning if the tagging parameter specifies implicit decoding. If explicit, the
length is obtained from the decoded length field.

Output parameters :

Name Type Description

object p ASNIOCTET* Pointer to a variable to receive the decoded bit string. This is assumed to be a static
array large enough to hold the number of bits specified in the *numbits_p input
parameter.

numbits p | int* Pointer to an integer value to receive the decoded number of bits.

xd_octstr - Decode OCTET STRING

The xd_octstr will decode a variable of the ASN.1 OCTET STRING type. This function will allocate
dynamic memory to store the decoded result.

Calling sequence :

status

Return value:

= xd octstr

(ctxt p, object p2, numocts p, tagging, length);

Name

Type

Description

status

int

Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name

| Type

| Description

ASNIC V5.3

185

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging

ASN1TagType

An enumerated type whose value is set to either '"ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

length

int

The length, in octets, of the contents field to be decoded. This parameter only has
meaning if the tagging parameter specifies implicit decoding. If explicit, the length
is obtained from the decoded length field.

Output parameters :

Name Type Description

object_p2 ASN1OCTET** | Pointer to a pointer variable to receive the decoded octet string. Dynamic memory
is allocated to hold the string.

numocts p | int* Pointer to an integer value to receive the decoded number of octets.

xd_octstr_s - Decode OCTET STRING (static)

The xd_octstr_s function will decode a variable of the ASN.1 OCTET STRING type into a static memory
structure. This function call is generated by ASN1C to decode a sized octet string production.

Calling sequence:

status = xd octstr s (ctxt p, object p, numocts p, tagging,
length) ;
Return value:
Name Type Description
status int Status of the decode operation. Possible values are ASN_OK if decoding is

successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

numocts_p

int*

Pointer to an integer variable containing the size (in octets) of the sized ASN.1 octet
string. An error will occur if the number of octets in the decoded string is larger
than this value. Note that this is also used as an output variable — the actual number
of decoded octets will be returned in this variable.

tagging

ASN1TagType

An enumerated type whose value is set to either '"ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

length

int

The length, in octets, of the contents field to be decoded. This parameter only has

ASNIC V5.3

186

meaning if the tagging parameter specifies implicit decoding. If explicit, the length
is obtained from the decoded length field.

Output parameters :

Name Type Description

object p ASNIOCTET* Pointer to a variable to receive the decoded octet string. This is assumed to be a
static array large enough to hold the number of octets specified in the *numocts p
input parameter.

numocts p | int* Pointer to an integer value to receive the decoded number of octets.

xd_charstr — Decode Character String

The xd_charstr function will decode a variable of one of the ASN.1 8-bit character string types. These
types include IA5String, VisibleString, PrintableString, and NumericString.

Calling sequence:

status = xd charstr (ctxt p, object p, tagging, length);
Return value:
Name Type Description
status int Status of the decode operation. Possible values are ASN_OK if decoding is

successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASNITagType An enumerated type whose value is set to either '"ASN1EXPL' (for explicit tagging)
or 'ASN1IMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

length int The length, in octets, of the contents field to be decoded. This parameter only has

meaning if the tagging parameter specifies implicit decoding. If explicit, the length
is obtained from the decoded length field.

Output parameters :

Name Type Description

object p char** Pointer to a character string pointer variable to receive the decoded string. The
string as stored as a standard null-terminated C string. Memory is allocated for the
string by the rtMemAlloc function.

ASNIC V5.3 187

xd_16BitCharStr — Decode 16-bit Character String

The xd_16BitCharStr function will decode a variable an ASN.1 16-bit character string type. This includes
the BMPString type.

Calling sequence:

status = xd 16BitCharStr (ctxt p, object p, tagging, length);
Return value:
Name Type Description
status int Status of the decode operation. Possible values are ASN_OK if decoding is

successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASNITagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or 'ASN1IMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

length int The length, in octets, of the contents field to be decoded. This parameter only has

meaning if the tagging parameter specifies implicit decoding. If explicit, the length
is obtained from the decoded length field.

Output parameters :

Name Type Description
object p Asnl16Bit Pointer to a structure variable to receive the decoded string. The string as stored as
CharString* an array of short integer characters. Memory is allocated for the string by the

rtMemAlloc function.

xd_32BitCharStr — Decode 32-bit Character String

The xd_32BitCharStr function will decode a variable an ASN.1 32-bit character string type. This includes
the UniversalString type.

Calling sequence:

status = xd 32BitCharStr (ctxt p, object p, tagging, length);
Return value:
Name Type Description
status int Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
ASNIC V5.3 188

fails.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASNITagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or 'ASN1IMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

length int The length, in octets, of the contents field to be decoded. This parameter only has

meaning if the tagging parameter specifies implicit decoding. If explicit, the length
is obtained from the decoded length field.

Output parameters :

Name Type Description
object p Asnl32Bit Pointer to a structure variable to receive the decoded string. The string as stored as
CharString* an array of unsigned integer characters. Memory is allocated for the string by the

rtMemAlloc function.

xd_enum - Decode ENUMERATED

The xd_enum function will decode a variable of the ASN.1 ENUMERATED type.

Calling sequence :

status = xd enum (ctxt p, object p, tagging, length);
Return value:
Name Type Description
status int Status of the decode operation. Possible values are ASN_OK if decoding is

successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASNI1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

length int The length, in octets, of the contents field to be decoded. This parameter only has

meaning if the tagging parameter specifies implicit decoding. If explicit, the length

ASNIC V5.3

189

is obtained from the decoded length field.

Output parameters :

Name Type Description

object_p ASN1ENUM* Pointer to a variable to receive the decoded enumerated value.

xd_null - Decode NULL
The xd_null function will decode an ASN.1 NULL placeholder.
status = xd null (ctxt p, tagging);

Return value:

Name Type Description

status int Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASNITagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or '"ASN1TIMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

Output parameters :

None

xd_objid - Decode OBJECT IDENTIFIER
The xd_objid function will decode a variable of the ASN.1 OBJECT IDENTIFIER type.
Calling sequence:

status = xd objid (ctxt p, object p, tagging, length);

Return value:

Name Type Description

status int Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

ASNIC V5.3 190

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging

ASNITagType

An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or 'ASN1IMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

length

int

The length, in octets, of the contents field to be decoded. This parameter only has
meaning if the tagging parameter specifies implicit decoding. If explicit, the length
is obtained from the decoded length field.

Output parameters :

Name

Type

Description

object p

ASN10OBJID*

Pointer to a variable to receive the decoded object identifier value. This structure
contains an integer to hold the number of subidentifers in the object and an array to
hold the subidentifier values.

xd_real - Decode REAL

The xd_real function will decode a variable of the ASN.1 REAL type.

Calling sequence:

status = xd real (ctxt p, object p, tagging, length);

Return value:

Name Type Description

status int Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

tagging ASNI1TagType An enumerated type whose value is set to either 'ASN1EXPL' (for explicit tagging)
or '"ASNIIMPL' (for implicit). Controls whether the universal tag value for this type
is decoded prior to decoding the field contents. Users will generally always set this
value to 'ASN1EXPL".

length int The length, in octets, of the contents field to be decoded. This parameter only has
meaning if the tagging parameter specifies implicit decoding. If explicit, the length

ASNIC V5.3

191

is obtained from the decoded length field.

Output parameters :

Name

Type

Description

object_p

ASNIREAL*

Pointer to a variable to receive the decoded real value.

xd_OpenType - Decode Open Type

The xd_OpenType function will decode a variable of an ASN.1lopen type. This includes the now
deprecated ANY and ANY DEFINED BY types from the 1990 standard as well as other types defined to
be open in the new standards (for example, a variable type declaration in an X.681 Information Object
Class definition).

Decoding is accomplished by returning a pointer to the encoded message component at the current decode
pointer location and skipping to the next field. The caller must then call additional decode functions to

further decode the component.

The default behavior of returning a pointer to the location of the message component within the decode
message buffer can be changed by setting the ASN1COPYVALUES flag within the context structure. This
is done by calling the rtSetCopyValues run-time function. If this flag is set, memory is allocated for the
message component using xu_malloc and the component is copied into the allocated memory.

Calling sequence:

status = xd OpenType (ctxt p, object p);
Return value:
Name Type Description
status int Status of the decode operation. Possible values are ASN_OK if decoding is

successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output parameters :

Name

Type

Description

object_p

ASNIANY*

A pointer to a pointer (**) to hold the address of a byte buffer. This buffer will
contain the encoded message component located at the current decode pointer
location or a copy of that value if the ASN1COPYVALUES flag is set within the
context.

ASNIC V5.3

192

xd_OpenTypeExt — Decode Open Type Extension

The xd_OpenTypeExt function is similar to the xd OpenType function except that it is used in places
where open type extensions are specified. An open type extension is defined as an extensibility marker on
a constructed type without any extension elements defined (for example, SEQUENCE { a INTEGER, ...
1. The difference is that this is an implicit field that can span one or more elements whereas the standard
Open Type is assumed to be a single tagged field.

Calling sequence:

status = xd OpenTypeExt (ctxt p, object p);
Return value:
Name Type Description
status int Status of the decode operation. Possible values are ASN_OK if decoding is

successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output parameters :

Name

Type

Description

object_p

ASNIANY*

A pointer to a pointer (**) to hold the address of a byte buffer. This buffer will
contain the encoded message component located at the current decode pointer
location.

xd_chkend - Check for End of Context

The xd_chkend function determines if the decoder has reached the end of a message context block. The
compiler generates calls to this function when decoding a SET or SEQUENCE OF/SET OF construct.

Calling sequence:

eoc = xd chkend (ctxt p);
Return value:
Name Type Description
eoc int Boolean value indicating whether or not the end-of-context has been reached.

Input parameters :

| Name

| Type

| Description

ASNIC V5.3

193

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output parameters:

None

xd_count - Count Message Components

The xd_count function looks ahead in the decode buffer and counts the number of message components
that make up a SEQUENCE OF or SET OF construct. Calls to this function are generated by the compiler
when decoding a SEQUENCE OF or SET OF construct.

Calling sequence:

status = xd count (ctxt p, length, count p);
Return value:
Name Type Description
status int Status of the decode operation. Possible values are ASN_OK if decoding is

successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

length int The length, in octets, of the SEQUENCE OF or SET OF constructor field.

Output parameters :

Name Type Description

count p int* Pointer to a variable to receive the count of elements in the SEQUENCE OF or SET

OF construct.

xd_memcpy - Copy Decoded Contents

The xd_memcpy function copies data from the contents field of a message component into the target

object.

Calling sequence:

status

= xd memcpy

(ctxt p, object p, length);

ASNIC V5.3

194

Return value:

Name

Type

Description

status

int

Status of the copy operation. Possible values are ASN_OK if decoding is successful
or one of the negative status codes defined in Appendix A if decoding fails.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

length int The number of bytes to copy from the contents field.

Output parameters :

Name

Type

Description

object p

void*

A pointer to a memory structure to receive the copied data.

xd_NextElement — Move to Next Element

The xd NextElement function moves the decode pointer to the next tagged element in the decode buffer. It
is useful for use in an error handling callback function because it allows an unknown or bogus element to

be skipped.

Calling sequence:

status = xd NextElement (ctxt p);
Return value:
Name Type Description
status int Status of the copy operation. Possible values are ASN OK if decoding is successful

or one of the negative status codes defined in Appendix A if decoding fails.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameter:

None

ASNIC V5.3

195

xd_indeflen — Calculate Indefinite Length

The xd_indeflen function calculates the actual length of a message block that was encoded using indefinite
length encoding.

Calling sequence:

status = xd indeflen (msg p);

Return value:

Name

Type

Description

status

int

Status of the operation. Possible values are ASN_OK if decoding is successful or
one of the negative status codes defined in Appendix A if decoding fails.

Input parameters :

Name Type Description
msg_p ASN1Const Pointer a message component that was encoded using indefinite length encoding.
OctetPtr

Output Parameters:

None

ASNIC V5.3

196

BER/DER C File Functions

The BER/DER file decode functions allow decode operations to be performed directly on encoded entities
within a binary file as opposed to in memory. This makes it possible to parse tag and length variables to
determine when pieces of a message can be read into memory. The “tap3batch” sample program provides
a good illustration of how these functions are used. They can be applied to a TAP3 batch file to get at the
call-detail records for sequential processing without having to read the entire file into memory.

These functions all begin with the prefix “xdf ” to distinguish them from the other decode functions. The
following is a description of the various functions that make up this package:

xdf tag — Decode Tag from File

The xdf tag function decodes an ASN.1 tag from a file stream into a standard 16-bit ASN.1 tag structure.
Calling sequence:
status = xdf tag (fp, ptag, buffer, pbufidx);

Return value:

Name Type Description

status int Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

fp FILE* File pointer of binary file to be decoded. It is expected that the current file position
is at the first byte of the tag to be decoded.

pbufidx int* Pointer to current buffer index containing offset to location where decoded bytes
should be copied in the output buffer.

Output parameters :

Name Type Description

ptag ASNITAG* A pointer to an ASN.1 tag structure to receive decoded tag.

buffer ASNIOCTET* Buffer to receive parsed data.

pbufidx int* Updated buffer index set to point at first free byte in buffer after tag is parsed and
copied to buffer.

xdf len — Decode Length from File
The xdf len function decodes an ASN.1 length from a file stream.

Calling sequence:

status = xdf len (fp, plen, buffer, pbufidx);

ASNIC V5.3 197

Return value:

Name

Type

Description

status

int

Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

fp FILE* File pointer of binary file to be decoded. It is expected that the current file position
is at the first byte of the item to be decoded.

pbufidx int* Pointer to current buffer index containing offset to location where decoded bytes

should be copied in the output buffer.

Output parameters :

Name Type Description

plen int* A pointer to an integer to receive the decoded length value.

buffer ASNIOCTET* Buffer to receive parsed data.

pbufidx int* Updated buffer index set to point at first free byte in buffer after tag is parsed and

copied to buffer.

xdf TagAndLen — Decode Tag and Length from File

The xdf TagAndLen function decodes an ASN.1 tag and length pair from a file stream.

Calling sequence:

status = xdf TagAndLen (fp, ptag, plen, buffer, pbufidx);
Return value:
Name Type Description
status int Status of the decode operation. Possible values are ASN_OK if decoding is

successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

fp FILE* File pointer of binary file to be decoded. It is expected that the current file position
is at the first byte of the tag to be decoded.

pbufidx int* Pointer to current buffer index containing offset to location where decoded bytes

should be copied in the output buffer.

Output parameters :

ASNIC V5.3

198

Name Type Description

ptag ASNITAG* A pointer to an ASN1TAG variable to receive parsed tag value.

plen int* A pointer to an integer to receive the decoded length value.

buffer ASNIOCTET* Buffer to receive parsed data.

pbufidx int* Updated buffer index set to point at first free byte in buffer after tag and length are
parsed and copied to buffer.

xdf ReadPastEOC — Read Past End-of-Context (EOC) Marker

The xdf ReadPastEOC function consumes bytes from the file stream until a matching end-of-context
(EOC) marker is found. The bytes read from the file are stored in the given buffer for later processing. An
indefinite length marker is assumed to have been parsed prior to calling this function.

Calling sequence:

status = xdf ReadPastEOC (fp, buffer, bufsiz, pbufidx);

Return value:

Name Type Description

status int Status of the read operation. Possible values are ASN_OK if decoding is successful
or one of the negative status codes defined in Appendix A if decoding fails.

Input parameters :

Name Type Description

fp FILE* File pointer of binary file to be decoded. It is expected that the current file position
is the first byte following an indefinite length marker (0x80 byte).

bufsiz int Size of buffer to receive parsed data.

pbufidx int* Pointer to current buffer index containing offset to location where decoded bytes
should be copied in the output buffer.

Output parameters :

Name Type Description

buffer ASNIOCTET* Buffer to receive parsed data.

pbufidx int* Updated buffer index set to point at first free byte in buffer after parsed data is
copied to buffer.

xdf ReadContents — Read Contents from File

This routine reads the contents of a BER tag-length-value (TLV) into the given buffer. The TLV can be of
indefinite length.

ASNIC V5.3 199

Calling Sequence:

status = xdf ReadContents (fp, len, buffer, bufsiz, pbufidx);

Return value:

Name

Type

Description

status

int

Status of the read operation. Possible values are ASN_OK if decoding is successful
or one of the negative status codes defined in Appendix A if decoding fails.

Input parameters :

Name Type Description

fp FILE* File pointer of binary file to be decoded. It is expected that the current file position
is the first byte following an indefinite length marker (0x80 byte).

len int Length of data to be read from file. This can be an indefinite length constant
(ASN_K INDEFLEN) indicating all data up to the corresponding end-of-context
(EOC) marker should be read.

bufsiz int Size of buffer to receive parsed data.

pbufidx int* Pointer to current buffer index containing offset to location where decoded bytes

should be copied in the output buffer.

Output parameters :

Name Type Description
buffer ASNIOCTET* Buffer to receive parsed data.
pbufidx int* Updated buffer index set to point at first free byte in buffer after parsed data is

copied to buffer.

ASNIC V5.3

200

BER/DER C Utility Functions

BER/DER C utility functions are provided for memory management, formatting output of ASN.1
messages, and error reporting. In many cases, these functions are closely coupled with the 7 (run-time)
series of common functions that are documented later. The common functions provide common
functionality shared between the BER/DER and PER run-time libraries. In many cases, these function
simply provide direct passthroughs to the r¢ functions to maintain compatibility with existing versions of
the ASN1C compiler.

Memory Management Functions (xu_malloc and xu_fireeall)

Memory management functions override the standard C malloc and free functions to improve decoding
performance. The standard malloc and free functions are expensive in terms of performance. ASN.1
messages frequently contain a large number of small, unsized OCTET STRINGS, BIT STRINGS, and
SEQUENCE OF/SET OF constructs. Each of these requires the decoder to allocate dynamic memory for
the results. This can lead to poor performance. The ASN1C compiler overcomes this by allocating
memory in larger chunks and then breaking it up in subsequent allocation requests. The BER/DER C
functions xu_malloc and xu_freeall are used for this purpose. They provide passthroughs to the
rtMemAlloc and rtMemFreeFree that provide memory management services for both the BER/DER and
PER run-time libraries.

xu_malloc - Allocate Dynamic Memory

The xu_malloc function provides a front-end to the C malloc function to allocate dynamic memory for
decoded message components. The following ASN.1 constructs may require the allocation of dynamic
memory within the generated C structure:

BIT STRING
OCTET STRING
SEQUENCE OF
SET OF

ANY

This function uses a nibble memory management scheme to make memory allocations more efficient. On
an initial allocation request, malloc will be called to obtain a large block of memory. This memory will
then be subdivided as subsequent calls to this function are made. When the block is expired, another call to
malloc will be made to allocate another large block and the subdivision process repeated. All large memory
block allocated from within the context are freed when xu_freeall function is called.

Note that the main logic for the xu_malloc function is now in the rtMemAlloc function in the common run-
time library. This function is still maintained for compatibility purposes, but it acts as a pass-through to the
rtMemAlloc function.

Calling sequence:

ptr = xu malloc (ctxt p, memsiz);

Return value:

Name Type Description

requested size does not exist.

ptr void* Pointer to the allocated dynamic memory block. Will be null if a free block of the

Input parameters :

| Name | Type | Description

ASNIC V5.3 201

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.
memsiz int The number of bytes to allocate.

Output parameters:

None

xu_alloc_array — Allocate Elements for an Array

The xu_alloc_array function will allocate space for a given count of fixed size elements.

Calling Sequence:

xu _alloc array

Return value:

None

Input parameters :

(ctxt p, seqOf p, recSize, recCount);

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

recSize int The number of bytes in one record in the array.

recCount int Number of records to allocate.

Output parameters:

Name

Type

Description

seqOf p

ASN1SeqOf*

Pointer to a generic sequence of structure variable to receive the returned memory.
This structure contains a record count and data pointer element. The record count is
populated with the recCount passed into the function. The data pointer is set to the
value that is returned from the memory allocation function.

xu_freeall - Free Dynamic Memory

The xu_freeall function frees up any dynamic memory allocated by the decode functions in the course of
decoding a message. A call to this function releases all memory previously allocated using xu_malloc
within the given context.

Note that the main logic for the xu_freeall function call is now in the rtMemFree function in the common
run-time library. This function is still maintained for compatibility purposes, but it acts as a pass-through
to the rtMemFree function.

Calling sequence:

xu freeall

(ctxt p);

ASNIC V5.3

202

Return value:
None

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

None

Output Formatting Functions

The output formatting functions allow BER/DER ASN.1 messages to be displayed in a human-readable
format. They display information on the tag, length, and contents of each field in a message. The primary
function within this class is the xu_dump function. A callback function mechanism is provided to allow the
user to redirect formatted output to somewhere other then stdout (for example, to a syslog type logging
daemon process).

xu_dump - Dump Encoded ASN.1 Message

The xu_dump function dumps an encoded ASN.1 message to the standard output device or to another
interface in a formatted display. The display includes, for each message component, message tag (class,

form, and ID code), length, and data (in hexadecimal and ascii formats).

Output to another interface is accomplished through the callback function parameter. The prototype for
this function is as follows:

int callback function (char* text p, void* cbArg p);
This function is invoked for each line of text formatted from the given message. The formatted line is
passed on the text p argument. The cbArg p argument allows a user defined callback argument to be

passed to the callback function. This argument is specified in the call to xu_dump.

Use of the callback function is optional. If dump to standard output (stdout) is desired, the argument
should be specified as NULL (note: the macro XU _DUMP in asnltype.h can be used for this purpose).

Calling sequence:
status = xu dump (msgptr, cbFunc, cbArg p)

Return value:

Name Type Description

status int Status of the dump operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

| Name | Type | Description

ASNIC V5.3 203

msgptr ASNIOCTET* Pointer to an encoded ASN.1 message.

cbFunc CB Function Callback function that gets invoked for each line of formatted output. For dump to
standard output (stdout), this parameter can be specified as NULL.

cbArg p void* Callback function argument, will be passed to the callback function.

Output parameters:

None

xu_fdump - Dump Encoded ASN.1 Message to a Text File

The xu_fdump function dumps an encoded ASN.1 message to a text file. The display includes, for each
message component, message tag (class, form, and ID code), length, and data (in hexadecimal and ascii
formats).

Calling sequence:

status = xu fdump (file p, msgptr)

Return value:

Name Type Description

status int Status of the dump operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description
file p FILE* Text file pointer.
msgptr ASN1OCTET* Pointer to an encoded ASN.1 message.

Output parameters:

None

xu_hex_dump - Dump Binary Data
The xu_hex dump function dumps binary data in raw hexadecimal and ascii formats. It can be used to
examine data going in to or out of the run-time library encode/decode functions. This function outputs data
only to the standard output device.
Calling sequence:

xu _hex dump (data, numocts, hdrflg)

Return value:

None

ASNIC V5.3 204

Input parameters :

Name Type Description

data ASN1OCTET* Pointer to the start of the block of memory to be dumped.

numocts int Number of octets (bytes) to be dumped.

hdrflg ASN1OCTET Boolean variable indicating whether or not a header line should be dumped as the

first line of the display.

Output parameters:

None

Run-Time Error Reporting Functions

Error reporting functions allow the ASN1C generated functions to report specific information on internal
errors. These functions allow for parameter substitution with error strings. These are embedded within the
code generated by the ASN1C compiler.

This class of functions provides a compatible passthrough to the 7¢Err common functions. These functions
provide common error management services for both the BER/DER and PER run-time libraries.

xu_perror — Print Error Information

The xu_perror function prints information about the last recorded error within the given ASN.1 context
structure. The display includes information on the module that generated the error, the source code line
number, the status, and a parameterized error message.

Calling sequence:

Xu perror (ctxt p)
Return value:
None
Input parameters :
Name Type Description
ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store

all working variables that must be maintained between function calls. This structure
holds information on the last error that occurred during encoding or decoding.

Output parameters:

None

xu_log_error — Log Error Information

This function is identical to xu_perror except it allows the error output to be redirected to another interface
(for example, to a syslog-type logging daemon). This is accomplished through the callback function
parameter. The prototype for this function is as follows:

ASNIC V5.3

205

int callback function

(char* text p, void* cbArg p);

The text_p parameter contains the formatted error message. The cbArg p argument allows a user defined
callback argument to be passed to the callback function. This argument is specified in the call to

xu_log_error.

The callback function is invoked twice on a call to xu_log_error. The first call contains error message text
indicating the module, line number, and status of the error. The second call contains the parameterized
error message text.

Calling sequence:

xu log error (ctxt p, cbFunc, cbArg p);

Return value:

None

Input parameters:

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls. This structure
holds information on the last error that occurred during encoding or decoding.

cbFunc CB Function Callback function that gets invoked for each line of formatted error text.

cbArg p void* Callback function argument.

Output parameters:

None

xu_fmtErrMsg — Format Error Message

The xu_fmtErrMsg function provides the user with the parameterized error text corresponding to the last
error recorded in the given ASN.1 context structure.

Calling sequence:

text p = xu fmtErrMsg

Return value:

(ctxt p, bufp);

Name

Type

Description

text p

char*

Pointer to the formatted error message. This is the address of the buffer passed as
the second input argument.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls. This structure
holds information on the last error that occurred during encoding or decoding.

ASNIC V5.3

206

bufp

char*

Pointer to a text buffer in which the parameterized error message is to be formatted.
The caller is responsible for allocating space for this message. A 128 byte buffer
should be sufficient for all messages.

Output parameters:

None

ASNIC V5.3

207

< this page intentionally left blank >

ASNIC V5.3 208

PER Run-Time Library

The packed encoding rules low-level C encode/decode functions are another part of the ASN1C run-time
library. These functions are identified by their prefixes: pe_ for PER encode, pd_ for PER decode, and pu_
for PER utility functions. The following sections describe these functions.

PER C Encode Functions

The PER low-level encode functions handle the PER encoding of the primitive ASN.1 data types. Calls to
these functions are assembled in the C source code generated by the ASN1C compiler to accomplish the
encoding of complex ASN.1 structures. These functions are also directly callable from within a user's
application program if the need to accomplish a low level encoding function exists.

The procedure to call a low-level encode function is the same as the procedure to call a compiler generated
encode function described above. The pu_initContext or pu_newContext function must first be called to set
a pointer to the buffer into which the variable is to be encoded. A static encode buffer is specified by
specifying a pointer to a buffer and buffer size. Setting the buffer address to NULL and buffer size to 0
specifies a dynamic buffer. The encode function is then invoked. The result of the encoding will start at
the beginning of the specified buffer, or, if a dynamic buffer was used, can be obtained by calling
pe_GetMsgPtr. The length of the encoded component is obtained by calling pe_GetMsgLen.

For example, the following code fragment could be used to encode a single, boolean value (i.e., a single
bit).

ASN1OCTET buf[10], *msg p;

ASN1BOOL boolValue = 1; /* true */
ASNICTXT ctxt;

ASN1BOOL aligned = 1;

int msglen, stat;

pu_initContext (&ctxt, buf, sizeof(buf), aligned);

stat = pe bit (&ctxt, &boolValue, ASNIEXPL);
if (stat != ASN OK) {
rtErrPrint (&ctxt.errInfo);
exit (-1);
}
msglen = pe GetMsgLen (&ctxt);

The msglen variable now contains the length (in octets) of the encoded boolean value and the encoded data
starts at the beginning of buf.

pe_GetMsgLen — Get Length of Encoded Message

The pe_GetMsgLen function will return the length of an encoded message. This function is called after a
compiler generated encode function is called to get the length of the encoded component

Calling sequence::

len = pe GetMsgLen (ctxt p);

Return value:

Name Type Description
len int Length (in octets) of encoded message component.

ASNIC V5.3 209

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

None

pe_GetMsgBitCnt — Get Count of Bits in Encoded Message

The pe_GetMsgBitCnt function will return the number of bits in an encoded message. This function is
called after a compiler generated encode function is called to get the bit count of the encoded component

Calling sequence::
len = pe GetMsgBitCnt (ctxt p);

Return value:

Name Type Description

len int Length (in bits) of encoded message component.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

None

pe_GetMsgPtr — Get Encoded Message Pointer

The pe_GetMsgPtr function will return the message pointer and length of an encoded message. This
function is called after a compiler generated encode function to get the pointer and length of the message.
It is normally used when dynamic encoding is specified because the message pointer is not known until
encoding is complete. If static encoding is used, the message starts at the beginning of the specified buffer
and the pe_GetMsgLen function can be used to obtain the length of the message.

Calling sequence :

ptr = pe GetMsgPtr (ctxt p, pLength);

Return value:

Name Type Description

ptr ASNIOCTET* Pointer to start of encoded message.

ASNIC V5.3 210

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

Name Type Description

pLength int* Pointer to variable to receive length of encoded message.

pe_bit - Encode a Single Bit Value
The pe_bit function will encode a variable of the ASN.1 BOOLEAN type in a single bit.
Calling sequence :

stat = pe bit (ctxt p, object);

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value ASN1BOOL The BOOLEAN value to be encoded.

Output Parameters:

None

pe_bits - Encode Bit Values
The pe_bits function will encode multiple bits.
Calling sequence::
stat = pe bits (ctxt p, value, nbits);

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

ASNIC V5.3 211

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value ASNIUINT Unsigned integer containing the bits to be encoded.

nbits ASNIUINT Number of bits in value to encode.

Output Parameters:

None

pe_octets - Encode Octets

The pe_octets function will encode an array of octets. The octets will be encoded unaligned starting at the
current bit offset within the encode buffer.

Calling sequence :

stat = pe octets

Return value:

(ctxt p, pvalue,

nocts) ;

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

pvalue ASNIOCTET* Pointer to array of octets to encode.

nocts ASNIUINT Number of octets to encode.

Output Parameters:

None

pe_byte_align — Align Encode Buffer on a Byte Boundary

The pe_byte align function will position the encode bit cursor on the next byte boundary.

Calling sequence :

stat =

Return value:

pe byte align

(ctxt p);

ASNIC V5.3

212

Name

Description

stat

Type
int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

None

pe_NonNegBinInt — Encode a Non-negative Binary Integer

The pe_NonNegBinInt function will encode a non-negative binary integer as specified in Section 10.3 of
the X.691 standard.

Calling sequence :

stat =

Return value:

pe NonNegBinInt

(ctxt p, value);

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value ASNIUINT Unsigned integer value to be encoded.

Output Parameters:

None

pe_2sCompBinInt — Encode a Two’s Complement Binary Integer

The pe_2sCompBinlnt function will encode a two’s complement binary integer as specified in Section 10.4
of the X.691 standard.

Calling sequence :

stat =

Return value:

pe 2sCompBinInt

(ctxt p, value);

ASNIC V5.3

213

Name

Description

stat

Type
int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value ASNIINT Signed integer value to be encoded.

Output Parameters:

None

pe_ConsWholeNumber — Encode a Constrained Whole Number

The pe_ConsWholeNumber function will encode a constrained whole number as specified in Section 10.5
of the X.691 standard.

Calling sequence :

stat =

Return value:

pe_ConsWholeNumber

(ctxt p, adjusted value, range value);

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

adjusted ASNIUINT Unsigned adjusted integer value to be encoded. The adjustment is done by

value subtracting the lower value of the range from the value to be encoded.

range ASNIUINT Unsigned integer value specifying the total size of the range. This is obtained by

value subtracting the lower range value from the upper range value.

Output Parameters:

None

pe_SmallNonNegWholeNumber — Encode a Small Non-negative Whole Number

The pe_SmallNonNegWholeNumber function will encode a small non-negative whole number as specified
in Section 10.6 of the X.691 standard. This is a number that is expected to be small, but whose size is
potentially unlimited due to the presence of an extension marker.

ASNIC V5.3

214

Calling sequence::

stat =

Return value:

pe_SmallNonNegWholeNumber

(ctxt p, value);

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value ASNIUINT Unsigned integer value to be encoded.

Output Parameters:

None

pe_Length — Encode a Length Determinant

The pe_Length function will encode a length determinant value.

Calling sequence::

stat =

Return value:

pe Length

(ctxt p, value)

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value ASNIUINT Length value to be encoded.

Output Parameters:

None

pe_Conslnteger — Encode a Constrained Integer

The pe_Conslnteger function will encode an integer constrained either by a value or value range constraint.

ASNIC V5.3

215

Calling sequence::

stat =

Return value:

pe_ConsInteger

(ctxt p, value, lower, upper)

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value ASNIINT Value to be encoded.

lower ASNIINT Lower range value.

upper ASNIINT Upper range value.

Output Parameters:

None

pe_UnconsiInteger — Encode an Unconstrained Integer

The pe_UnconsInteger function will encode an unconstrained integer.

Calling sequence::

stat = pe UnconslInteger

Return value:

(ctxt p, value)

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value ASNIINT Value to be encoded.

Output Parameters:

None

ASNIC V5.3

216

pe_ConsUnsigned — Encode a Constrained Unsigned Integer

The pe_ConsUnsigned function will encode an unsigned integer constrained either by a value or value
range constraint. The constrained unsigned integer option is used if:

1. The lower value of the range is >= 0, and
2. The upper value of the range is >= MAXINT

Calling sequence :

stat =

Return value:

pe ConsUnsigned (ctxt p, value,

lower, upper)

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value ASNIUINT Value to be encoded.

lower ASNIUINT Lower range value.

upper ASNIUINT Upper range value.

Output Parameters:

None

pe_UnconsUnsigned — Encode an Unconstrained Unsigned Integer

The pe_UnconsUnsigned function will encode an unconstrained unsigned integer.

Calling sequence :

stat =

Return value:

pe UnconsUnsigned (ctxt p, value)

Name

Description

stat

Type
int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

ASNIC V5.3

217

value ASNI1UINT Value to be encoded.

Output Parameters:

None

pe_Biglnteger — Encode Big Integer

The pe Biglnteger function will encode a variable of the ASN.1 INTEGER type. In this case, the integer is
assumed to be of a larger size than can fit in a C or C++ long type (normally 32 or 64 bits). For example,
parameters used to calculate security values are typically larger than these sizes.

Items of this type are stored in character string constant variables. They can be represented as decimal
strings (with no prefixes), as hexadecimal strings starting with a “0x” prefix, as octal strings starting with a
“00” prefix or as binary strings starting with a “Ob” prefix. Other radixes are currently not supported.
Calling sequence::

stat = pe BiglInteger (ctxt p, pvalue);

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

pvalue char* A pointer to a character string containing the value to be encoded.

Output Parameters:

None

pe_BitString — Encode a Bit String
The pe_BitString function will encode a value of the ASN.1 bit string type.
Calling sequence :

stat = pe BitString (ctxt p, numbits, data)

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

ASNIC V5.3 218

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

numbits ASNIUINT Number of bits in the string to be encoded.

data ASNIOCTET* Pointer to bit string data to be encoded.

Output Parameters:

None

pe_OctetString — Encode an Octet String
The pe_OctetString function will encode a value of the ASN.1 octet string type.
Calling sequence :

stat = pe OctetString (ctxt p, numocts, data)

Return value:

Name Type Description
stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

numocts ASNIUINT Number of octets in the string to be encoded.

data ASNIOCTET* Pointer to octet string data to be encoded.

Output Parameters:

None

pe_Real — Encode Real
The pe Real function will encode a value of the ASN.1 real type.
Calling sequence :

stat = pe Real (ctxt p, value)

Return value:

ASNIC V5.3 219

Name

Description

stat

Type
int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value ASNIREAL Value to be encoded.

Output Parameters:

None

pe_Objectldentifier — Encode Object Identifier

The pe_Objectldentifier function will encode a value of the ASN.1 object identifier type.

Calling sequence :

stat =

Return value:

pe ObjectIdentifier

(ctxt p, pvalue)

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value ASN10BJID* Pointer to value to be encoded. The ASN10OBJID structure contains a numids fields
to hold the number of subidentifiers and an array to hold the subidentifier values.

Output Parameters:

None

pe_ConstrainedString — Encode 8-bit Character String

The pe_ConstrainedString function will encode a constrained ASN.1 character string. This function is
normally not called directly but rather is called from the Useful Type Character String encode functions
discussed in the next section.

Calling sequence::

ASNIC V5.3

220

stat = pe ConstrainedString (ctxt p, string, pCharSet)

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

string char* Pointer to character string value to be encoded. This is a pointer to a standard null-
terminated C string value.

pCharSet AsnlCharSet* Pointer to the constraining character set. This contains an array containing all valid
characters in the set as well as the aligned and unaligned bit counts required to
encode the characters.

Output Parameters:

None

ASN.1 8-bit Character String Encode Functions

The ASN.1 8-bit character string encode functions are used to the standard 8-bit character string types
included in the standard. The following functions are included:

pe_NumericString
pe_PrintableString
pe_VisibleString
pe IAS5String
pe_GeneralString

In addition, the following macros are provided that call to the above functions to encode other types:

pe_GeneralizedTime
pe_UTCTime
pe_GraphicString
pe_ObjectDescriptor

The calling sequence is the same for each of these routines. They take as arguments a context pointer, a
pointer to null-terminated string to encode, and an optional pointer to a character set to further restrict the
contents of the encoded string.
Calling sequence::

stat = pe <string> (ctxt p, string, pCharSet)

where <string> would be replaced with the character string name (for example, NumericString).

Return value:

ASNIC V5.3 221

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

string

char*

Pointer to character string value to be encoded. This is a pointer to a standard null-
terminated C string value.

pCharSet

Asnl1CharSet*

Pointer to the constraining character set. This contains an array containing all valid
characters in the set as well as the aligned and unaligned bit counts required to
encode the characters. This is an optional parameter, it can be set to NULL to
specify no additional constraints.

Output Parameters:

None

pe_16BitConstrainedString — Encode 16-bit Character String

The pe_16BitConstrainedString function will encode a constrained ASN.1 character string. This function
is normally not called directly but rather is called from Useful Type Character String encode functions that
deal with 16-bit strings. The only function that does that in this release is the pe BMPString function
described in the next section.

Calling sequence:

stat =

Return value:

pe 16BitConstrainedString

(ctxt p, value, pCharSet)

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description
ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.
value Asnl16Bit Character string to be encoded. The structure includes a count field containing the
CharString number of characters to encode and an array of unsigned short integers to hold the
16-bit characters to be encoded.
pCharSet Asnl16Bit Pointer to the constraining character set. This contains an array containing all valid
CharSet* characters in the set as well as the aligned and unaligned bit counts required to
encode the characters.

ASNIC V5.3

222

Output Parameters:

None

pe_BMPString — Encode BMP Character String

The pe BMPString function will encode a variable of the ASN.1 BMP character string. This differs from
the encode routines for the character strings previously described in that the BMP string type is based on
16-bit characters. A 16-bit character string is modeled using an array of unsigned short integers.

Calling sequence :

stat = pe BMPString (ctxt p, string, pCharSet)
Return value:
Name Type Description
stat int Status of the operation. Possible values are ASN_OK if successful or one of the

negative error status codes defined in Appendix A.

Input parameters :

Name Type Description
ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.
string Asnl16Bit Character string to be encoded. The structure includes a count field containing the
CharString number of characters to encode and an array of unsigned short integers to hold the
16-bit characters to be encoded.
pCharSet Asnl16Bit Pointer to the constraining character set. This contains an array containing all valid
CharSet* characters in the set as well as the aligned and unaligned bit counts required to
encode the characters.

Output Parameters:

None

pe_32BitConstrainedString — Encode 32-bit Character String
The pe_32BitConstrainedString function will encode a constrained ASN.1 character string. This function
is normally not called directly but rather is called from Useful Type Character String encode functions that
deal with 32-bit strings. The only function that does that in this release is the pe_UniversalString function
described in the next section.
Calling sequence :

stat = pe 32BitConstrainedString (ctxt p, value, pCharSet)

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN OK if successful or one of the

ASNIC V5.3 223

negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

value Asnl32Bit Character string to be encoded. The structure includes a count field containing the
CharString number of characters to encode and an array of unsigned integers to hold the 32-bit
characters to be encoded.

pCharSet Asnl32Bit Pointer to the constraining character set. This contains an array containing all valid
CharSet* characters in the set as well as the aligned and unaligned bit counts required to
encode the characters.

Output Parameters:

None

pe_UniversalString — Encode 32-bit Character String

The pe_UniversalString function will encode a variable of the ASN.1 Universal character string. This
differs from the encode routines for the character strings previously described in that the Universal string
type is based on 32-bit characters. A 32-bit character string is modeled using an array of unsigned
integers.

Calling sequence :

stat = pe UniversalString (ctxt p, string, pCharSet)

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

string Asnl132Bit Character string to be encoded. The structure includes a count field containing the
CharString number of characters to encode and an array of unsigned integers to hold the 32-bit
characters to be encoded.

pCharSet Asnl32Bit Pointer to the constraining character set. This contains an array containing all valid
CharSet* characters in the set as well as the aligned and unaligned bit counts required to
encode the characters.

Output Parameters:

ASNIC V5.3 224

None

pe_OpenType — Encode Open Type

The pe_OpenType function will encode an ASN.1 open type. This used to be the ASN.1 ANY type, but
now is used in a variety of applications requiring an encoding that can be interpreted by a decoder without
an prior knowledge of the type of the variable.

Calling sequence :

stat = pe OpenType (ctxt p, pOpenType)

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

pOpenType | ASN1OpenType | Pointer to open type to be encoded. The open type structure contains a count of
* octets to be encoded and an array of the octets to be encoded.

Output Parameters:

None

pe_OpenTypeExt — Encode Open Type Extension

The pe_OpenTypeExt function will encode an ASN.1 open type extension. An open type extension field is
the data that potentially resides after the ... marker in a version-1 message. The open type structure
contains a complete encoded bit set including optional element bits or choice index, length, and data.
Typically, this data is populated when a version-1 system decodes a version-2 message. The extension
fields are retained and can then be re-encoded if a new message is to be sent out (for example, in a store
and forward system).

Calling sequence :
stat = pe OpenTypeExt (ctxt p, pOpenType)

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

| Name | Type | Description

ASNIC V5.3 225

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.
pOpenType | ASN1OpenType | Pointer to open type to be encoded. The open type structure contains a count of
* octets to be encoded and an array of the octets to be encoded.

Output Parameters:

None

pe_CheckBuffer — Check Encode Buffer Size

The pe_CheckBuffer function will determine if the given number of bytes will fit in the encode buffer. If
not, either the buffer is expanded (if it is a dynamic buffer) or an error is signaled.

Calling sequence :

stat = pe CheckBuffer (ctxt p, nbytes)
Return value:
Name Type Description
stat int Status of the operation. Possible values are ASN_OK if successful or one of the

negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

nbytes int Number of bytes of space required to hold the variable to be encoded.

Output Parameters:

None

pe_ExpandBuffer — Expand Encode Buffer

The pe_ExpandBuffer function will expand the encode buffer to hold the given number of bytes.

Calling sequence :

stat = pe ExpandBuffer (ctxt p, nbytes)
Return value:
Name Type Description
stat int Status of the operation. Possible values are ASN_OK if successful or one of the

negative error status codes defined in Appendix A.

Input parameters :

ASNIC V5.3

226

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

nbytes int Number of bytes the buffer is to be expanded by. Note that the buffer will be

expanded by ASN_K ENCBUFSIZ or nbytes (whichever is larger).

Output Parameters:

None

ASNIC V5.3

227

PER C Decode Functions

PER run-time library decode functions handle the decoding of the primitive ASN.1 data types and length
variables. Calls to these functions are assembled in the C source code generated by the ASN1C compiler to
decode complex ASN.1 structures. These functions are also directly callable from within a user's
application program if the need to decode a primitive data item exists.

The procedure to decode a primitive data item is as follows:

1. Call the pu_newContext or pu_initContext function to specify the address of the buffer containing the
encoded ASN.1 data to be decode and whether the data is aligned or unaligned, and

2. Call the specific decode function to decode the value.

For example, to decode a message containing a single object identifier, the following code fragment could
be used:

ASN1OBJID objId; /* variable to receive decoded result */
ASNICTXT ctxt;
ASN1BOOL aligned = TRUE;
int stat;
/* assume ‘buf’ contains message fragment to be decoded.. */
pu initContext (&ctxt, buf, sizeof(buf), aligned);
stat = pd ObjectIdentifier (&ctxt, &objId);
if (stat != ASN OK) {
rtErrPrint (&ctxt.errInfo);

}

The objld variable now contains the decoded object identifier value.

pd_bit - Decode a Single Bit Value
The pd_bit function will decode a single bit and place the result in an ASN.1 BOOLEAN type variable.
Calling sequence :

stat = pd bit (ctxt p, pvalue);

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the

negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store

all working variables that must be maintained between function calls.

Output Parameters:

ASNIC V5.3 228

Name

Type

Description

pvalue

ASN1BOOL*

Pointer to BOOLEAN value to receive decoded result.

pd_bits - Decode Bit Values

The pd_bits function will decode a series of multiple bits and place the results in an unsigned integer

variable.

Calling sequence::

stat = pd bits

Return value:

(ctxt p, pvalue,

nbits);

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

nbits ASNIUINT Number of bits to decode.

Output Parameters:

Name

Type

Description

pvalue

ASNIUINT*

Pointer to unsigned integer variable to receive decoded result.

pd_byte_align — Align Buffer on a Byte Boundary

The pe_byte align function will position the decode bit cursor on the next byte boundary.

Calling sequence :

stat = pd byte align (ctxt p);
Return value:
Name Type Description
stat int Status of the operation. Possible values are ASN_OK if successful or one of the

negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

ASNIC V5.3 229

Output Parameters:

None

pd_ConsWholeNumber — Decode a Constrained Whole Number

The pd_ConsWholeNumber function will decode a constrained whole number as specified in Section 10.5
of the X.691 standard.

Calling sequence::

stat =

Return value:

pd_ConsWholeNumber

(ctxt p, padjusted value, range value);

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

range ASNIUINT Unsigned integer value specifying the total size of the range. This is obtained by

value subtracting the lower range value from the upper range value.

Output Parameters:

Name Type Description
padjusted | ASNIUINT* Pointer to unsigned adjusted integer value to receive decoded result. To get the final
value value, this value is added to the lower boundary of the range.

pd_SmallNonNegWholeNumber — Decode a Small Non-negative Whole Number

The pd_SmallNonNegWholeNumber function will decode a small non-negative whole number as specified
in Section 10.6 of the X.691 standard. This is a number that is expected to be small, but whose size is
potentially unlimited due to the presence of an extension marker.

Calling sequence:

stat =

Return value:

pd SmallNonNegWholeNumber

(ctxt p, pvalue);

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

ASNIC V5.3

230

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

Name

Type

Description

pvalue

ASNIUINT*

Pointer to unsigned integer value to receive decoded result.

pd_Length — Decode a Length Determinant

The pd_Length function will decode a length determinant value.

Calling sequence::

stat =

Return value:

pd_Length

(ctxt p, pvalue)

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

Name

Type

Description

pvalue

ASNIUINT*

Pointer to unsigned integer variable to receive decoded length value.

pd_Conslnteger — Decode a Constrained Integer

The pd_Conslnteger function will decode an integer constrained either by a value or value range constraint.

Calling sequence :

stat =

Return value:

pd ConsInteger

(ctxt p, pvalue, lower,

upper)

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

ASNIC V5.3

231

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

lower ASNIINT Lower range value.

upper ASNI1INT Upper range value.

Output Parameters:

Name Type Description

pvalue ASNITINT* Pointer to integer variable to receive decoded value.

pd_UnconslInteger — Decode an Unconstrained Integer
The pd_Unconslnteger function will decode an unconstrained integer.
Calling sequence :

stat = pd UnconsInteger (ctxt p, pvalue)

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

Name Type Description

pvalue ASNIINT* Pointer to integer variable to receive decoded result.

pd_ConsUnsigned — Decode a Constrained Unsigned Integer

The pd_ConsUnsigned function will decode an unsigned integer constrained either by a value or value
range constraint.

Calling sequence::
stat = pd ConsUnsigned (ctxt p, pvalue, lower, upper)

Return value:

Name | Type | Description

ASNIC V5.3 232

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

lower ASN1UINT Lower range value.

upper ASNIUINT Upper range value.

Output Parameters:

Name

Type

Description

pvalue

ASNIUINT*

Pointer to unsigned integer variable to receive decoded result.

pd_UnconsUnsigned — Decode an Unconstrained Unsigned Integer

The pd_UnconsUnsigned function will decode an unconstrained unsigned integer.

Calling sequence :

stat =

Return value:

pd UnconsUnsigned (ctxt p, pvalue)

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

Name

Type

Description

pvalue

ASNIUINT*

Pointer to unsigned integer variable to receive decoded result.

pd_Biglnteger — Decode a Big Integer

The pd_Biglnteger function will decode a variable of the ASN.1 INTEGER type. In this case, the integer is
assumed to be of a larger size than can fit in a C or C++ long type (normally 32 or 64 bits). For example,
parameters used to calculate security values are typically larger than these sizes.

ASNIC V5.3

233

These variables are stored in character string constant variables. They are represented as decimal strings
starting with no prefix. If it is necessary to convert a decimal string to another radix then use
rtSetStrToBigInt / rtBigIntToString functions.

Calling sequence :

stat =

Return value:

pd BigInteger

(ctxt p, ppvalue);

Name

Type

Description

stat

int

Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output parameters :

Name

Type

Description

ppvalue

char**

Pointer to a character pointer variable to receive the decoded unsigned value.
Dynamic memory is allocated for the variable using the rtMemAlloc function. The
decoded variable is represented as a decimal string starting with no prefix.

pd_BitString — Decode a Bit String

The pd_BitString function will decode a value of the ASN.1 bit string type whose maximum size is known
in advance. The ASN1C compiler generates a call to this function to decode bit string productions or
elements that contain a size constraint.

Calling sequence :

stat =

Return value:

pd BitString

(ctxt p, numbits p, buffer, bufsiz)

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

bufsiz ASNIUINT Length (in octets) of buffer to receive decoded bit string.

ASNIC V5.3 234

Output Parameters:

Name Type Description

numbits p | ASNTUINT* Pointer to unsigned integer variable to receive decoded number of bits.

buffer ASN1OCTET* Pointer to fixed-size or pre-allocated array of bufsiz octets to receive decoded bit
string.

pd_DynBitString - Decode a Dynamic Bit String

The pd_DynBitString function will decode a variable of the ASN.1 BIT STRING type. This function will
allocate dynamic memory to store the decoded result. The ASN1C compiler generates a call to this
function to decode an unconstrained bit string production or element.

Calling sequence:

stat = pd DynBitString (ctxt p, pBitStr)

Return value:

Name Type Description

stat int Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output parameters :

Name Type Description

pBitStr ASNI1DynBitStr | Pointer to a dynamic bit string structure to receive the decoded result. This structure

* contains a field to hold the number of decoded bits and a pointer to an octet string to
hold the decoded data. Memory is allocated by the decoder using the rtMemAlloc
function. This memory is tracked within the context and released when the
pu_freeContext function is invoked.

pd_OctetString — Decode an Octet String

The pd_OctetString function will decode a value of the ASN.1 octet string type whose maximum size is
known in advance. The ASN1C compiler generates a call to this function to decode octet string
productions or elements that contain a size constraint.

Calling sequence :

stat = pd OctetString (ctxt p, numocts p, buffer, bufsiz)

ASNIC V5.3 235

Return value:

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

bufsiz ASNIUINT Size of buffer to receive decoded result.

Output Parameters:

Name Type Description
numocts p | ASNIUINT* Pointer to unsigned integer to receive number of decoded octets.
data ASNIOCTET* Pointer to pre-allocated buffer of bufsiz octets to receive decoded data.

pd_DynOctString - Decode a Dynamic Octet String

The pd_DynOctString function will decode a variable of the ASN.1 OCTET STRING type. This function
will allocate dynamic memory to store the decoded result. The ASN1C compiler generates a call to this
function to decode an unconstrained octet string production or element.

Calling sequence:

stat =

Return value:

pd DynOctString

(ctxt p, pOctsStr)

Name

Type

Description

stat

int

Status of the decode operation. Possible values are ASN_OK if decoding is
successful or one of the negative status codes defined in Appendix A if decoding
fails.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output parameters :

Name Type Description
pOctStr ASNI1DynOctStr | Pointer to a dynamic octet string structure to receive the decoded result. This
* structure contains a field to hold the number of decoded octets and a pointer to an
octet string to hold the decoded data. Memory is allocated by the decoder using the
rtMemAlloc function. This memory is tracked within the context and released when
ASNIC V5.3 236

the pu_freeContext function is invoked.

pd_Real — Decode Real

The pd_Real function will decode a value of the ASN.1 real type.

Calling sequence :

stat = pd Real (ctxt p, pvalue)
Return value:
Name Type Description
stat int Status of the operation. Possible values are ASN_OK if successful or one of the

negative error status codes defined in Appendix A.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

Name

Type

Description

pvalue

ASNIREAL*

Pointer to real variable to receive decoded result.

pd_Objectldentifier — Decode Object Identifier

The pd_Objectldentifier function will decode a value of the ASN.1 object identifier type.

Calling sequence :

stat =

Return value:

pd ObjectIdentifier

(ctxt p, pvalue)

Name

Description

stat

Type
int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

Name |

Type

Description

ASNIC V5.3

237

pvalue

ASN10OBJID*

Pointer to value to receive decoded result. The ASN10OBJID structure contains a
numids fields to hold the number of subidentifiers and an array to hold the
subidentifier values.

pd_ConstrainedString — Decode 8-bit Character String

The pd_ConstrainedString function will decode a constrained ASN.1 character string. This function is
normally not called directly but rather is called from the Useful Type Character String decode functions
discussed in the next section.

Calling sequence :

stat = pd ConstrainedString (ctxt p, string, pCharSet)
Return value:
Name Type Description
stat int Status of the operation. Possible values are ASN_OK if successful or one of the

negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

pCharSet AsnlCharSet* Pointer to the constraining character set. This contains an array containing all valid

characters in the set as well as the aligned and unaligned bit counts required to
encode the characters.

Output Parameters:

Name

Type

Description

string

char**

Pointer to character string pointer to receive decoded result. The string is returned
as a standard null-terminated C string value. Memory is allocated by the decoder
using the rtMemAlloc function. This memory is tracked within the context and
released when the pu_freeContext function is invoked.

ASN.1 8-bit Character String Decode Functions

The ASN.1 8-bit character string decode functions are used to decode the standard 8-bit character string
types included in the standard. The following functions are included:

pd_NumericString
pd_PrintableString
pd_VisibleString
pd_IA5String
pd_GeneralString

In addition, the following macros are provided that call to the above functions to encode other types:

ASNIC V5.3 238

pd_GeneralizedTime
pd_UTCTime
pd_GraphicString
pd_ObjectDescriptor

The calling sequence is the same for each of these routines. They take as arguments a context pointer, the
address of a character string pointer variable (i.e a char**) to receive the decoded result, and an optional
pointer to a character set to further restrict the contents of the encoded string.

Calling sequence::

stat =

pd <string>

(ctxt p, string, pCharSet)

where <string> would be replaced with the character string name (for example, NumericString).

Return value:

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

pCharSet AsnlCharSet* Pointer to the constraining character set. This contains an array containing all valid

characters in the set as well as the aligned and unaligned bit counts required to
encode the characters. This is an optional parameter, it can be set to NULL to
specify no additional constraints.

Output Parameters:

Name

Type

Description

string

char**

Pointer to character string pointer to receive decoded result. The string is returned
as a standard null-terminated C string value. Memory is allocated by the decoder
using the rtMemAlloc function. This memory is tracked within the context and
released when the pu_freeContext function is invoked.

pd_16BitConstrainedString — Decode 16-bit Character String

The pd_16BitConstrainedString function will decode a constrained ASN.1 16-bit character string. This
function is normally not called directly but rather is called from Useful Type Character String decode
functions that deal with 16-bit strings. The only function that does that in this release is the pd BMPString
function described in the next section.

Calling sequence :

stat =

Return value:

pd 16BitConstrainedString (ctxt p, string, pCharsSet)

| Name |

Type

| Description

ASNIC V5.3

239

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description
ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.
pCharSet Asnl16Bit Pointer to the constraining character set. This contains an array containing all valid
CharSet* characters in the set as well as the aligned and unaligned bit counts required to

encode the characters.

Output Parameters:

Name Type Description
string Asnl16Bit Pointer to a structure variable to receive the decoded string. The string as stored as
CharString* an array of short integer characters. Memory is allocated for the string by the

rtMemAlloc function. This memory is tracked within the context and released when
the pu_freeContext function is invoked.

pd_BMPString — Decode BMP Character String

The pd BMPString function will decode a variable of the ASN.1 BMP character string. This differs from
the decode routines for the character strings previously described in that the BMP string type is based on
16-bit characters. A 16-bit character string is modeled using an array of unsigned short integers.

Calling sequence :

stat = pd BMPString (ctxt p, string, pCharSet)
Return value:
Name Type Description
stat int Status of the operation. Possible values are ASN_OK if successful or one of the

negative error status codes defined in Appendix A.

Input parameters :

Name Type Description
ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.
pCharSet Asnl16Bit Pointer to the constraining character set. This contains an array containing all valid
CharSet* characters in the set as well as the aligned and unaligned bit counts required to

encode the characters.

Output Parameters:

Name Type Description

string Asnl16Bit Pointer to character string structure to receive decoded result. The structure includes
CharString* a count field containing the number of characters and an array of unsigned short

ASNIC V5.3 240

integers to hold the 16-bit character values.

pd_32BitConstrainedString — Decode 32-bit Character String

The pd_32BitConstrainedString function will decode a constrained ASN.1 32-bit character string. This
function is normally not called directly but rather is called from Useful Type Character String decode
functions that deal with 32-bit strings. The only function that does that in this release is the
pd_UniversalString function described in the next section.

Calling sequence :

stat =

Return value:

pd 32BitConstrainedString

(ctxt p, string, pCharSet)

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description
ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.
pCharSet Asnl132Bit Pointer to the constraining character set. This contains an array containing all valid
CharSet* characters in the set as well as the aligned and unaligned bit counts required to

encode the characters.

Output Parameters:

Name Type Description
string Asnl132Bit Pointer to a structure variable to receive the decoded string. The string as stored as
CharString* an array of unsigned integer characters. Memory is allocated for the string by the

rtMemAlloc function. This memory is tracked within the context and released when
the pu_freeContext function is invoked.

pd_UniversalString — Decode 32-bit Character String

The pd_UniversalString function will decode a variable of the ASN.1 32-bit character string. This differs
from the decode routines for the character strings previously described in that the universal string type is
based on 32-bit characters. A 32-bit character string is modeled using an array of unsigned integers.

Calling sequence :

stat = pd UniversalString (ctxt p, string, pCharSet)
Return value:
Name Type Description
stat int Status of the operation. Possible values are ASN_OK if successful or one of the

negative error status codes defined in Appendix A.

ASNIC V5.3

241

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

pCharSet Asnl32Bit Pointer to the constraining character set. This contains an array containing all valid
CharSet* characters in the set as well as the aligned and unaligned bit counts required to
encode the characters.

Output Parameters:

Name Type Description
string Asnl32Bit Pointer to character string structure to receive decoded result. The structure includes
CharString* a count field containing the number of characters and an array of unsigned integers

to hold the 32-bit character values.

pd_OpenType — Decode Open Type

The pd_OpenType function will decode an ASN.1 open type. This used to be the ASN.1 ANY type, but
now is used in a variety of applications requiring an encoding that can be interpreted by a decoder without
an prior knowledge of the type of the variable.

Calling sequence::

stat = pd OpenType (ctxt p, pOpenType)

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

Name Type Description

pOpenType | ASN1OpenType | Pointer to open type variable to receive decoded data. The open type structure
* contains a count of octets and an octet data array to hold the encoded data.

pd_OpenTypeExt — Decode Open Type Extension

ASNIC V5.3 242

The pd_OpenTypeExt function will decode an ASN.1 open type extension. These are the extra fields in a
version-2 message that may be present after the ... extension marker. An open type structure (extElem1) is
added to a message structure that contains an extension marker but no extension elements. The
pd_OpenTypeExt function will populate this structure with the complete extension information (optional
bits or choice index, length and data). A subsequent call to pe_OpenTypeExt will cause the saved
extension fields to be included in a newly encoded message of the given type.

Calling sequence :
stat = pd OpenTypeExt (ctxt p, pOpenType)

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

ctxt_p ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output Parameters:

Name Type Description

pOpenType | ASN1OpenType | Pointer to open type variable to receive decoded data. The open type structure
* contains a count of octets and an octet data array to hold the encoded data.

ASNIC V5.3 243

PER C Utility Functions

The PER utility functions are common routines used by both the PER encode and decode functions.

Among the services provided are:

Encode/decode context initialization

Setting constraint information within the context structure
Diagnostics printing to examine an encoding

Character string conversion

Encode/Decode Context Initialization

Before any PER encode or decode function can be invoked, a context structure must be initialized. The
following PER utility functions are used for this purpose:

pu_initContext

The pu_initContext function is used to initialize a pre-allocated ASN1CTXT structure. This can be an
ASNICTXT variable declared on the stack or a pointer to an ASN1CTXT structure that was previously
allocated. This function sets all internal variables within the structure to their initial values.

Calling sequence:

stat

Return value:

pu_initContext

(ctxt p, bufaddr, bufsiz, aligned);

Name

Type

Description

stat

int

Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name

Type

Description

ctxt p

ASNICTXT*

Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

bufaddr

ASN1OCTET*

For encoding, this is the address of a buffer to receive the encoded PER message
(note: this is optional, if specified as NULL a dynamic buffer will be allocated). For
decoding, this is that address of the buffer that contains the PER message to be
decoded.

bufsiz

ASNIUINT

For encoding, this is the size of the encoded buffer (note: this is optional, if the
bufaddr argument is specified as NULL, then dynamic encoding is in effect and the
buffer size is indefinite). For decoding, this is the length (in octets) of the PER
message to be decoded.

aligned

ASN1BOOL

Boolean value specifying whether aligned or unaligned encoding should be
performed.

Output parameters:

None

ASNIC V5.3

244

pu_initContextBuffer

The pu_initContextBuffer function is used to initialize the buffer portion of an ASN1CTXT structure with
buffer data from a second context structure. This function copies the buffer information from the source
context buffer structure to the destination structure. The non-buffer related fields in the context remain
untouched.

Calling sequence:

stat = pu initContextBuffer (pTarget, pSource);

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

pTarget ASNICTXT* Pointer to target context structure. Buffer information within this structure is
updated with data from the source context.

pSource ASNICTXT* Pointer to source context structure. Buffer information from the source context
structure is copied to the target structure.

Output parameters:

None

pu_newContext

The pu_newContext function is similar to the pu_initContext function in that it initializes a context
variable. The difference is that this function allocates a new structure and then initializes it. It is equivalent
to calling malloc to allocate a context structure and then calling pu_initContext to initialize it.

Calling sequence:

ctxt p = pu newContext (bufaddr, bufsiz, aligned);

Return value:

Name Type Description

ctxt p ASNICTXT* Pointer to ASNICTXT structure to receive the allocated structure. NULL is
returned if an error occurs in allocating or initializing the context.

Input parameters :

Name Type Description

bufaddr ASN1OCTET* For encoding, this is the address of a buffer to receive the encoded PER message

decoding, this is that address of the buffer that contains the PER message to be
decoded.

(note: this is optional, if specified as NULL a dynamic buffer will be allocated). For

ASNIC V5.3 245

bufsiz ASNIUINT For encoding, this is the size of the encoded buffer (note: this is optional, if the
bufaddr argument is specified as NULL, then dynamic encoding is in effect and the
buffer size is indefinite). For decoding, this is the length (in octets) of the PER
message to be decoded.

aligned ASNI1BOOL Boolean value specifying whether aligned or unaligned encoding should be
performed.

Output parameters:

None

pu_freeContext
The pu_freeContext function releases all dynamic memory associated with a context. This function should
be called even if the referenced context variable is not dynamic. The reason is because it frees memory
allocated within the context as well as the context structure itself (it will only try to free the context
structure if it detects that it was previously allocated using the pu_newContext function).
Calling sequence:

pu_ freeContext (ctxt p);
Return value:

None

Input parameters :

Name Type Description

ctxt_p ASNICTXT* Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.

Output parameters:

None

Constraint Specification Functions

Unlike BER, PER encode/decode behavior can be affected by the presence of constraint specifications.
The following PER utility functions allow constraint specifications to be added to the context prior to
calling an encode or decode function. The ASN1C compiler adds these calls to the generated code when
constraints are encountered in the ASN.1 specifications that are being compiled.

pu_addSizeConstraint

The pu_addSizeConstraint is used to add a size constraint to a context variable. A size constraint is
specified using an AsnlSizeCnst structure. The definition of an AsnlSizeCnst is as follows:

struct AsnlSizeCnst {

ASN1BOOL extensible;
ASNIINT lower;
ASNIINT upper;

struct AsnlSizeCnst* link;

ASNIC V5.3 246

b

The extensible boolean specifies whether or not it is an extensible constraint. The lower and upper fields
are used to represent the actual size constraint bounds. The link field is used to chain multiple size
constraint records together. This makes it possible to specify composite size constraints that are specified
in multiple parts using ASN.1 union or extensibility syntax (for example, SIZE (1]3..5,...,7..10)).

Calling Sequence:

stat = pu addSizeConstraint (ctxt p, pSize);

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

Input parameters :

Name Type Description

pSize AsnlSizeCnst* Pointer to size constraint to add to the context variable.

Output parameters:

Name Type Description

ctxt p ASNICTXT* Pointer to a context structure. The referenced size constraint is added to this
structure for use by a subsequent encode or decode function.

pu_setCharSet
The pu_setCharSet function sets a permitted alphabet character set. This is the resulting set of characters
when the character associated with a standard character string type is merged with a permitted alphabet
constraint.
Calling Sequence:

pu_setCharSet (pCharSet, permSet)
Return Value:

None

Input parameters :

Name Type Description

pCharSet AsnlCharSet* Pointer to character set structure describing the character set currently associated
with the character string type.

permSet char* Null-terminated string of permitted characters.

Output parameters:

| Name | Type | Description

ASNIC V5.3 247

pCharSet

AsnlCharSet*

Resulting character set structure after being merged with the permSet parameter.

pu_set16BitCharSet

The pu_set16BitCharSet function sets a permitted alphabet character set for 16-bit character string. This is
the resulting set of characters when the character associated with a 16-bit character string type is merged
with a permitted alphabet constraint.

Calling Sequence:

pu_setl6BitCharSet (pCharSet, pAlphabet)
Return Value:
None
Input parameters :
Name Type Description
ctxt p ASNICTXT* Pointer to a context structure.
pCharSet Asnl16Bit Pointer to character set structure describing the character set currently associated
CharSet* with the character string type.
pAlphabet | Asnl16Bit Pointer to structure describing 16-bit permitted alphabet.
CharSet*

Output parameters:

Name Type Description
pCharSet Asnl16Bit Resulting character set structure after being merged with the permSet parameter.
CharSet*

pu_set32BitCharSet

The pu_set32BitCharSet function sets a permitted alphabet character set for 32-bit character string. This is
the resulting set of characters when the character associated with a 32-bit character string type is merged
with a permitted alphabet constraint.

Calling Sequence:

pu_set32BitCharSet (pCharSet, pAlphabet)
Return Value:
None
Input parameters :
Name Type Description
ctxt_p ASNICTXT* Pointer to a context structure.
pCharSet Asnl32Bit Pointer to character set structure describing the character set currently associated
CharSet* with the character string type.

ASNIC V5.3

248

pAlphabet | Asnl32Bit Pointer to structure describing 32-bit permitted alphabet.
CharSet*

Output parameters:

Name Type Description
pCharSet Asnl132Bit Resulting character set structure after being merged with the permSet parameter.
CharSet*

Diagnostic Printing Functions

PER utility functions can be used to track the bit encoding or decoding of individual fields and get a
detailed binary dump of the encoding. Several of these function calls are built directly into PER
encode/decode functions.

pu_hexdump

The pu_hexdump function provides a standard hexadecimal dump of the contents of the buffer currently
specified in the given context.

Calling Sequence:

pu_hexdump (ctxt p)
Return Value:
None

Input parameters :

Name Type Description

ctxt p ASNICTXT* Pointer to a context structure. The contents of the encode or decode buffer that was
specified in the call to pu_initContext or pu_newContext is dumped.

Output parameters:

None

pu_bindump
The pu_bindump function provides a detailed binary dump of the contents of the buffer currently specified
in the given context. The list of fields dumped by this function was previously built up within the context
using calls pu_newField, pu_pushName, and pu_popName. These calls are built into both compiler-
generated and low-level PER encode/decode functions to trace the actual bit encoding of a given construct.
Calling Sequence:

pu bindump (ctxt p, varname)

Return Value:

None

ASNIC V5.3 249

Input parameters :

Name Type Description

ctxt p ASNICTXT* Pointer to a context structure. The contents of the encode or decode buffer that was
specified in the call to pu_initContext or pu_newContext is dumped.

varname char* Name of the top-level variable name of the structure being dumped.

Output parameters:

None

ASNIC V5.3

250

Run-Time Common Library

The run-time common library is another set of common functions used by both the BER and PER low-level
encode/decode functions. These functions are identified by their ‘rt’ prefixes. The following general
categories of functions are provided:

Context initialization functions

Memory management functions

Diagnostic trace functions

Error formatting and print functions
Formatted printing functions

Object identifier helper functions

Linked list and stack utility functions
Character string conversion utility functions

The following sections describe these functions.

Context Initialization Functions

Context initialization functions handle the allocation, initialization, and destruction of ASN.1 context
variables (variables of type ASNICTXT). These variables hold all of the working data used during the
process of encoding or decoding a message. They provide thread safe operation by isolating what would be
otherwise be global variables within this structure that is passed from function to function.

In general, the BER and PER run-time libraries provide specific higher-level functions that invoke these
functions (for example, the BER xe_setp function and the PER pu_initContext functions calls

rtInitContext). Therefore, the average user would have little reason to call them directly. They are
documented here for completeness.

rtInitContext — Initialize Context Block

The rtInitContext function initializes an ASN1CTXT block by setting all key working parameters to their
correct initial state values.

Calling Sequence:
int rtInitContext (ctxt p);

Return value:

Name Type Description

stat int Status of the operation. Possible values are ASN_OK if successful or one of the
negative error status codes defined in Appendix A.

rtNewContext — Allocate New Context Block

The rtNewContext function allocates a new ASN1CTXT block and initializes it. Although the block is
allocated from the standard heap, it should not be freed using free. The rtFreeContext function should be
used because this frees items allocated within the block before freeing the block itself.

This is the preferred way of setting up a new encode or decode context because it ensures the block is
properly initialized before it is used. If a context variable is declared on the stack, the user must first

ASNIC V5.3 251

remember to initialize it using rt/nitContext. This function can be called directly when setting up a BER
context or it will be invoked from within the pu_newContext call for PER.

Calling Sequence:
ctxt p = rtNewContext ();

Return value:

Name Type Description

ctxt p ASNICTXT* Pointer to newly allocated and initialized context structure.

Input Parameters:
None.
Output Parameters:

None.

rtFreeContext — Free Context Block

The rtFreeContext functions frees all dynamic memory associated with a context. This includes all
memory inside the block (in particular, the list of memory blocks used by the rtMem functions described
later) as well as the block itself if allocated with the r#tNewContext function.
Calling Sequence:

rtFreeContext (ctxt p);
Return value:

None.

Input Parameters:

Name Type Description

ctxt p ASNICTXT* Pointer to newly allocated and initialized context structure.

Output Parameters:

None.

Memory Management Functions

Memory management functions handle the allocation and deallocation of dynamic memory used by the
encode/decode functions. Specialized routines are used for performance reasons and to allow the allocated
memory blocks to be tracked within the context for subsequent release.

These functions are designed to improve the performance of memory allocations within an application.
Users with the standard version of the compiler can attain higher performance still by replacing these
functions with their own specialized functions. For example, if it is known that only a certain peak

ASNIC V5.3 252

memory usage requirement will be necessary for a certain application, then the nibble allocation algorithm
can be replaced with an algorithm that works on a sized static block.

rtMemAlloc — Allocate Dynamic Memory

The rtMemAlloc function allocates dynamic memory. This improves on the standard malloc function by
allocating memory in larger chunks and then splitting up these chunks on subsequent calls. The pointers to
the large memory blocks are maintained on a list within the context structure so that a free context call can
release all memory at once.

Calling Sequence:
ptr = rtMemAlloc (ppMemBlk, nbytes)

Return value:

Name Type Description

ptr void* Pointer to allocated memory (note: the user should not call ‘free’ on this pointer as it
points at memory within one of the larger allocated blocks. The rtMemFree
function should be called to release all memory allocated using these functions).

Input Parameters:

Name Type Description

nbytes int Number of bytes of dynamic memory to allocate.

Output Parameters:

Name Type Description

ppMemBIlk | ASNIMemBIk** | Pointer to pointer to a memory block structure that contains the list of dynamic
memory block maintained by these functions. Typically, the address of the
memory block list within the ASN1CTXT structure is passed as this parameter
(i.e., &ctxt_p->pMemBIlk).

rtMemFree — Release Dynamic Memory
The rtMemFree function frees dynamic memory. Unlike the standard C ‘free’ function, this function
releases a set of dynamic memory pointers at once instead of a single pointer. It works this way because it
is used by the decoder to keep track of all dynamic memory allocated within an ASN.1 C structure. This
function is invoked from within the context free functions (xu_freeall for BER or pu_freeContext for PER).
Calling Sequence:

rtMemFree (pMemBlk)
Return Value:

None

Input Parameters:

Name Type Description

pMemBIlk ASN1MemBIlk* Pointer to a memory block structure that contains the list of dynamic memory
blocks maintained by these functions. Typically, the pointer to the memory block

ASNIC V5.3 253

list within the ASN1CTXT structure is passed as this parameter (i.e.,
ctxt p->pMemBIk).

Output Parameters:

None

Diagnostic Trace Functions
Diagnostic trace functions allow the output of trace messages to stdout that trace the execution of compiler
generated functions. The primary function is rtdiag, a printf-like function that checks a global trace flag
before writing to the standard output.
rtdiag — Output Trace Messagesy
The rtdiag function conditionally outputs diagnostic trace messages to stdout. The ASN1C compiler
embeds calls to this function into the generated source code when the —trace option is specified on the
command line.
Calling Sequence:

rtdiag (fmtspec, ...)
Return value:

None

Input parameters :

Name Type Description

fmtspec char* printf-like format specification string describing the message to be printed (for
example, “string %s, ivalue %d\n”)

any Variable list of arguments

Output parameters:

None

rtSetDiag — Set Diagnostic Tracing
The rtSetDiag function turns diagnostic tracing on or off.
Calling Sequence:
rtSetDiag (value)
Return value:
None

Input parameters :

| Name | Type | Description

ASNIC V5.3 254

value

int

Boolean value indicating whether to enable or disable tracing. Zero disables tracing,
any other value enables it.

Output parameters:

None

Error Formatting and Print Functions

Error formatting and print functions allow information about encode/decode errors to be added to a context
block structure and then printed out when the error is propagated to the top level.

rtErrPrint — Print Error Information

The rtErrPrint function prints error information to the standard output device. The error information is
stored in an ASN1ErrInfo structure which is part of the ASN1CTXT structure.

Calling Sequence:

rtErrPrint

Return Value:

None

Input Parameters:

(pErrInfo)

Name

Type

Description

pErrInfo

ASNI1ErrInfo*

Pointer to structure containing information on the error to be printed. Typically, the
error info structure referred to is the one inside the ASN1CTXT structure (i.e.,
&ctxt_p->errInfo).

Output Parameters:

None

rtErrLogUsingCB — Log Using Callback Function

The rtErrLogUsingCB function logs error information using a callback function provided by the user. In
many situations, it is not sufficient to write error information to stdout to debug problems. Examples are
back-end server applications that run in the background and write diagnostic information to system log files
and front-end applications that log error information to window displays. This function allows different
error output methods to be accommodated.

The type definition of the callback function is as follows:

typedef int

(*ASN1DumpCbFunc) (char* text p, void* cbArg p)

The given function is invoked with a line of text from the formatted error output provided in the text p
argument. The cbArg_p argument is used to pass in a user-defined parameter (specified in the cbArg
argument to this function). The integer return status is not used at this time.

The callback function is invoked once for each formatted line of information in the error holding structure.

ASNIC V5.3

255

Calling Sequence:

rtLogUsingCB (pErrInfo, cb, cbArqg)

Return Value:

None

Input Parameters:

Name Type Description

pErrInfo ASNI1ErrInfo* Pointer to structure containing information on the error to be printed. Typically, the
error info structure referred to is the one inside the ASN1CTXT structure (i.e.,
&ctxt_p->errinfo).

cb ASNI1Dump Callback function as defined above to be invoked for each line of formatted error

CBFunc output in the error information structure.
cbArg void* User defined callback argument to be passed as a parameter to the callback function.

Output Parameters:

None

rtErrSetData — Set Error Information

The rtErrSetData function sets error information in an error information structure. The information set
includes status code, module name, and line number. Location information (i.e., module name and line
number) is pushed onto a stack within the error information structure to provide a complete stack trace

when the information is printed out.

Calling Sequence:

stat = rtErrSetData (pErrInfo, status, module, 1no)
Return Value:
Name Type Description
stat int Status value passed to the operation in the third argument. This makes it possible to

set the error information and return the status value in one line of code.

Input Parameters:

Name Type Description

status int Error status code. This is one of the negative error status codes described in
Appendix A.

module char* Name of the module (C or C++ source file) in which the module occurred. This is
typically obtained by using the FILE macro.

lineno int Line number at which the error occurred. This is typically obtained by using the
_ LINE macro.

ASNIC V5.3 256

Output Parameters:

Name Type Description

pErrInfo ASN1ErrInfo* Pointer to an error information structure to receive the details on the error. This is
typically the error structure variable within the context (i.e., &ctxt_p->errInfo).

rtErrAdd<type>Param — Add Typed Error Parameter to Error Information

The rtErrAdd<type>Param functions add typed parameters to an error information structure. This section
describes a series of functions whose name is formed by substituting a type identifier name for <type> in
the above definition (for example, rtErrAddIntParam adds an integer parameter to an error structure).
Parameter substitution is done in much the same way as it is done in C printf statements. The base error
message specification that goes along with a particular status code may have variable fields built in using
‘%’ modifiers. These would be replaced with actual parameter data. The parameters they are replaced with
are added using the functions described in this section.

Calling Sequence:

stat = rtErrAdd<type>Param (pErrInfo, errParm)

Return Value:

Name Type Description
stat int Status value of the operation. This is one of the status values described in Appendix
A.

Input Parameters:

Name Type Description

errParm <type> Typed error parameter.

Output Parameters:

Name Type Description

pErrInfo ASN1ErrInfo* Pointer to an error information structure to receive the details on the error. This is
typically the error structure variable within the context (i.e., &ctxt_p->errInfo).

rtErrFreeParams — Free Error Parameter Memory

The rtErrFreeParams function frees memory associated with the storage of parameters associated with an
error message. These parameters are maintained on an internal linked list maintained within the error
information structure. The list memory must be freed when error processing is complete. This function is
called from within rtErrPrint after the error has been printed out. It is also called in the pu_freeContext
function.

Calling Sequence:

rtErrFreeParms (pErrInfo)

Return Value:

ASNIC V5.3 257

None

Input Parameters:

Name

Type

Description

pErrInfo

ASNI1ErrInfo*

Pointer to an error information structure to receive the details on the error. This is
typically the error structure variable within the context (i.e., &ctxt_p->errInfo).

Output Parameters:

None

ASNIC V5.3

258

Formatted Printing Functions

This group of functions allows raw ASN.1 data fields to be formatted and printed to stdout and other output
devices.

rtBoolToString — Convert ASN.1 Boolean Value to String

The rtBoolToString function converts an ASN.1 boolean value to a string. The string value returned is one
of the keywords “TRUE” or “FALSE”.

Calling Sequence:
string = rtBoolToString (value)

Return Value:

Name Type Description

string char* Converted value. This will be a string literal set to either “TRUE” or “FALSE”.

Input Parameters:

Name Type Description

value ASN1BOOL Value to convert.

Output Parameters:

None

rtIntToString — Convert ASN.1 Integer Value to String
The rtIntToString function converts an ASN.1 integer value to a string.
Calling Sequence:

string = rtIntToString (value, buffer, bufsiz)

Return Value:

Name Type Description
string char* Converted integer value. This pointer will be equal to the buffer argument that was
passed in.

Input Parameters:

Name Type Description
value ASNIINT Value to convert.
bufsiz int Size of buffer to receive stringified value.

Output Parameters:

| Name | Type | Description

ASNIC V5.3 259

buffer

char*

Pointer to a buffer to receive stringified value.

rtUIntToString — Convert ASN.1 Unsigned Integer Value to String

The rtUIntToString function converts an ASN.1 integer value to a string. In this case, the ASN.1 value was
represented in the C/C++ code as an unsigned integer based on a constraint.

Calling Sequence:

string = rtUIntToString (value, buffer, bufsiz)
Return Value:
Name Type Description
string char* Converted integer value. This pointer will be equal to the buffer argument that was

passed in.

Input Parameters:

Name Type Description
value ASNIUINT Value to convert.
bufsiz int Size of buffer to receive stringified value.

Output Parameters:

Name

Type

Description

buffer

char*

Pointer to a buffer to receive stringified value.

rtBitStrToString — Convert ASN.1 Bit String Value to String

The rtBitStrToString function converts an ASN.1 bit string value to a string. The output format is ASN.1
value notation for a binary string (for example, ‘10010°B).

Calling Sequence:

string =

Return Value:

rtBitStrToString

(numbits, data, buffer, bufsiz)

Name

Type

Description

string

char*

Converted value. This pointer will be equal to the buffer argument that was passed
in.

Input Parameters:

Name Type Description

numbits ASNIUINT Number of bits in the data argument to format.

data ASNIOCTET* Buffer containing the bit string to be formatted (note: in the case of BER/DER, this
ASNIC V5.3 260

refers to the actual point in the string where the data starts, not where the contents
field starts. The contents field contains an extra byte at the beginning that specifies
the number of unused bits in the last byte).

bufsiz int Size of buffer to receive stringified value.

Output Parameters:

Name Type Description

buffer char* Pointer to a buffer to receive stringified value.

rtOctStrToString — Convert ASN.1 Octet String Value to String

The rtOctStrToString function converts an ASN.1 octet string value to a string. The output format is
ASN.1 value notation for a hexadecimal string (for example, ‘1F8A’H).

Calling Sequence:
string = rtOctStrToString (numocts, data, buffer, bufsiz)

Return Value:

Name Type Description
string char* Converted value. This pointer will be equal to the buffer argument that was passed
in.

Input Parameters:

Name Type Description

numocts ASNIUINT Number of octets (bytes) in the data argument to format.
data ASNIOCTET* Buffer containing the octet string to be formatted.
bufsiz int Size of buffer to receive stringified value.

Output Parameters:

Name Type Description

buffer char* Pointer to a buffer to receive stringified value.

rtOIDToString — Convert ASN.1 Object Identifier Value to String

The rtOIDToString function converts an ASN.1 object value to a string. The output format is ASN.1 value
notation for an object identifier (ex. { 0 1 222 333 }). All subidentifiers are shown as integer numbers — no
attempt is made to map the identifiers to symbolic names.

Calling Sequence:

string = rtOIDToString (numids, data, buffer, bufsiz)

Return Value:

ASNIC V5.3 261

Name Type Description

string char* Converted value. This pointer will be equal to the buffer argument that was passed
in.

Input Parameters:

Name Type Description

numids ASNI1UINT Number of subidentifiers in the OID value.

data ASNIUINT* Buffer containing the OID subidentifiers to be formatted.

bufsiz int Size of buffer to receive stringified value.

Output Parameters:

Name

Type

Description

buffer

char*

Pointer to a buffer to receive stringified value.

rtTagToString — Convert ASN.1 Tag to String

The rtTagToString function converts an ASN.1 tag to a string. The tag is represented using the compilers
internal ASN1TAG structure. The output format is standard ASN.1 notation for a tag (for example, [0] =

context 0 tag).

Calling Sequence:

string = rtTagToString (tag, buffer, bufsiz)

Return Value:

Name Type Description

string char* Converted value. This pointer will be equal to the buffer argument that was passed
in.

Input Parameters:

Name Type Description

tag ASNITAG Tag value to be converted.

data ASNIOCTET* Buffer containing the octet string to be formatted.

bufsiz int Size of buffer to receive stringified value.

Output Parameters:

Name

Type

Description

buffer

char*

Pointer to a buffer to receive stringified value.

ASNIC V5.3

262

rtPrint<type> — Print ASN.1 Values to Standard Output

The rtPrint<type> group of functions print ASN.1 values of various types to standard output (stdout). This
section describes a series of functions whose name is formed by substituting a type identifier name for
<type> in the above definition (for example, rtPrintBoolean prints a boolean value).

In general, these functions are very similar to the “ToString” functions described above. They simply print
the output value to standard output in a “name = value” format. The value format is obtained by calling
one of the “ToString” functions with the give value.

The following are the low-level print functions that are provided:

rtPrintBoolean
rtPrintInteger
rtPrintUnsigned
rtPrintBitStr
rtPrintOctStr
rtPrintCharStr
rtPrint16BitCharStr
rtPrint32BitCharStr
rtPrintReal

o rtPrintOID

e r1tPrintOpenType

These functions are assembled by the compiler print routine generator (-print command line option) to form
the compiler-generated print functions.

The general calling sequence and parameters are as follows:
Calling Sequence:
rtPrint<type> (name, value);
Return Value:
None

Input Parameters:

Name Type Description
name char* Name of the variable to print
value <various> ASN.1 value to print (note: multiple arguments may be used to represent the value —

for example a bit string would be represented by a numbits and data argument. See
the function prototype for the exact calling sequence).

ASNIC V5.3 263

Object Identifier Helper Functions

Object identifier helper functions provide assistance in working with the object identifier ASN.1 type. Two
functions are provided: one to populate an Object Identifier structure and one to print the contents.

rtSetOID — Populate Object ldentifier Structure
The rtSetOID function populates an object identifier variable with data. It copies data from a source
variable to a target variable. Typically, the source variable is a compiler-generated object identifier
constant that resulted from an object identifier value specification within an ASN.1 specification.
Calling Sequence:

rtSetOID (ptarget, psource)
Return Value:

None

Input Parameters:

Name Type Description

psource ASNI1OBJID* Pointer to source object identifier variable to copy to the target. Typically, this is a
compiler-generated variable corresponding to an ASN.1 value specification in the
ASN.1 source file.

Output Parameters:

Name Type Description

ptarget ASNI1OBJID* Pointer to target object identifier variable to receive object identifier data.
Typically, this is a variable within a compiler-generated C structure.

rtPrintOID — Print Object ldentifier Structure
The rtPrintOID function formats and prints an object identifier value to stdout.
Calling Sequence:
rtPrintOID (pOID)
Return Value:
None

Input Parameters:

Name Type Description

pOID ASN10OBJID* Pointer to object identifier variable to be printed.

Output Parameters:

None

ASNIC V5.3 264

Linked List and Stack Utility Functions

Linked list and stack utility functions are used to maintain linked lists and stacks used within the ASN.1
run-time library functions.

rtDListInit — Initialize a Doubly Linked List Structure

The rtDListInit function initializes a doubly linked list structure. It sets the number of elements to zero and
sets all internal pointer values to NULL.

Calling Sequence:

rtDListInit (pList)
Return Value:
None

Input Parameters:

Name Type Description

pList AsnlRTDList* Pointer to linked list structure to be initialized.

Output Parameters:

None

rtDListAppend — Append an Item to a Doubly Linked List

The rtDListAppend function appends an item to linked list structure. The item is represented by a void
pointer that can point to an object of any type. The rtMemAlloc function is used to allocate the memory for
the list node structure, therefore, all internal list memory will be released whenever rtMemFree is called.
Calling Sequence:

pNode = rtDListAppend (pCtxt, pList, pData)

Return Value:

Name Type Description
pNode AsnlRTDList Pointer to allocated node structure used to link the given data value into the list.
Node*

Input Parameters:

Name Type Description

pCtxt ASNICTXT Pointer to a context structure. This provides a storage area for the function to store

all working variables that must be maintained between function calls.

pList AsnlRTDList* Pointer to linked list structure onto which the data item is to be appended.

pData void* Pointer to data item to be appended to the list.

Output Parameters:

ASNIC V5.3 265

Name Type Description

pList AsnlRTDList* Pointer to updated linked list structure.

rtDListInsert — Insert an Item to a Doubly Linked List

The rtDListInsert function inserts an item to linked list structure. The item is represented by a void pointer
that can point to an object of any type. The rtMemAlloc function is used to allocate the memory for the list
node structure, therefore, all internal list memory will be released whenever rtMemFree is called.

Calling Sequence:

pNode = rtDListInsert (pCtxt, pList, index, pData)

Return Value:

Name Type Description
pNode Asn1RTDList Pointer to allocated node structure used to link the given data value into the list.
Node*

Input Parameters:

Name Type Description

pCtxt ASNICTXT Pointer to a context structure. This provides a storage area for the function to store

all working variables that must be maintained between function calls.

pList AsnlRTDList* Pointer to linked list structure onto which the data item is to be inserted.
index int Index at which the specified item is to be inserted.
pData void* Pointer to data item to be inserted to the list.

Output Parameters:

Name Type Description

pList AsnlRTDList* Pointer to updated linked list structure.

rtDListInsertBefore — Insert an Item to a Doubly Linked List before specified node

The rtDListInsertBefore function inserts an item to linked list structure before specified node. The item is
represented by a void pointer that can point to an object of any type. The rtMemAlloc function is used to
allocate the memory for the list node structure, therefore, all internal list memory will be released whenever
rtMemFree is called.

Calling Sequence:

pNode = rtDListInsertBefore (pCtxt, plist, pBefore, pData)

Return Value:

Name Type Description
pNode Asn1RTDList Pointer to allocated node structure used to link the given data value into the list.
Node*

ASNIC V5.3 266

Input Parameters:

Name Type Description
pCtxt ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.
pList Asn1RTDList* Pointer to linked list structure onto which the data item is to be inserted.
pBefore AsnlRTDList Pointer to node before which the specified item is to be inserted. It should be
Node* already in the linked list structure.
pData void* Pointer to data item to be inserted to the list.

Output Parameters:

Name

Type

Description

pList

Asnl1RTDList*

Pointer to updated linked list structure.

rtDListInsertAfter — Insert an Item to a Doubly Linked List after specified node

The rtDListInsertBefore function inserts an item to linked list structure after specified node. The item is
represented by a void pointer that can point to an object of any type. The rtMemAlloc function is used to
allocate the memory for the list node structure, therefore, all internal list memory will be released whenever
rtMemFree is called.

Calling Sequence:

pNode = rtDListInsertAfter (pCtxt, plist, pAfter, pData)
Return Value:
Name Type Description
pNode Asn1RTDList Pointer to allocated node structure used to link the given data value into the list.
Node*

Input Parameters:

Name Type Description
pCtxt ASNICTXT Pointer to a context structure. This provides a storage area for the function to store
all working variables that must be maintained between function calls.
pList Asn1RTDList* Pointer to linked list structure onto which the data item is to be inserted.
pAfter AsnlRTDList Pointer to node after which the specified item is to be inserted. It should be already
Node* in the linked list structure.
pData void* Pointer to data item to be inserted to the list.

Output Parameters:

Name

Type

Description

pList

Asn1RTDList*

Pointer to updated linked list structure.

ASNIC V5.3

267

rtDListFindByIndex —Find a node in the Doubly Linked List by index

The rtDListFindByIndex function gets a node from linked list structure, which has a specified index.

Calling Sequence:
pNode = rtDListFindByIndex (pList, index)

Return Value:

Name Type Description
pNode AsnlRTDList Pointer to found node structure. NULL, if node is not found.
Node*

Input Parameters:

Name Type Description
pList AsnlRTDList* Pointer to linked list structure in which the node is to be found.
index int Index of the node to be returned.

Output Parameters:

None

rtDListFindByData —Find a node in the Doubly Linked List by index

The rtDListFindByData function gets a node from linked list structure, which contains a specified data.

Calling Sequence:
pNode = rtDListFindByData (pList, pData)

Return Value:

Name Type Description
pNode AsnlRTDList Pointer to found node structure. NULL, if node is not found.
Node*

Input Parameters:

Name Type Description
pList AsnlRTDList* Pointer to linked list structure in which the node is to be found.
pData void* Pointer to data item to be found in the list.

Output Parameters:

None

rtDListFindIndexByData —Find an index of node in the Doubly Linked List by data

ASNIC V5.3

268

The rtDListFindIndexByData function gets a node’s index from linked list structure, which contains a
specified data.

Calling Sequence:
index = rtDListFindIndexByData (pList, pData)

Return Value:

Name Type Description

index int Index of found node that contains specified data.

Input Parameters:

Name Type Description
pList AsnlRTDList* Pointer to linked list structure in which the node is to be found.
pData void* Pointer to data item to be found in the list.

Output Parameters:

None

rtDListRemove — Remove a node from a Doubly Linked List
The rtDListRemove function removes a node from linked list structure. The rtMemAlloc function was used
to allocate the memory for the list node structure, therefore, all internal list memory will be released
whenever rtMemFree is called.
Calling Sequence:

rtDListRemove (pList, pNode)
Return Value:

None

Input Parameters:

Name Type Description

pList AsnlRTDList* Pointer to linked list structure from which the node is to be removed.

pNode AsnlRTDList Pointer to node is to be removed. It should be already in the linked list structure.
Node*

Output Parameters:

Name Type Description

pList AsnlRTDList* Pointer to updated linked list structure.

rtSListInit — Initialize a Singly Linked List Structure

ASNIC V5.3 269

The rtSlistInit function initializes a singly linked list structure. It sets the number of elements to zero and
sets all internal pointer values to NULL.

Calling Sequence:

rtSListInit (pList)
Return Value:
None

Input Parameters:

Name Type Description

pList AsnlRTSList* Pointer to linked list structure to be initialized.

Output Parameters:

None

rtSListCreate — Create a Singly Linked List Structure

The rtSListCreate function creates a new linked list structure. It allocates memory for the structure and
calls rtSListInit on it to initialize the structure.

Calling Sequence:

plist = rtSListCreate ()

Return Value:
Name Type Description
pList AsnlRTSList* Pointer to allocated linked list structure.

Input Parameters:
None
Output Parameters:

None

rtSListAppend — Append an Item to a Singly Linked List

The rtSListAppend function appends an item to linked list structure. The item is represented by a void
pointer that can point to an object of any type.

Calling Sequence:
pNode = rtSListAppend (pList, pData)

Return Value:

| Name | Type | Description

ASNIC V5.3 270

pNode

Asnl1RTSList
Node*

Pointer to allocated allocated node structure used to link the given data value into
the list.

Input Parameters:

Name Type Description
pList AsnlRTSList* Pointer to linked list structure onto which the data item is to be appended.
pData void* Pointer to data item to be appended to the list.

Output Parameters:

Name

Type

Description

pList

Asnl1RTSList*

Pointer to updated linked list structure.

rtStacklInit — Initialize a Stack Structure

The rtStackInit function initializes a stack structure. It sets the number of elements to zero and sets all

internal pointer values to NULL.

Calling Sequence:

rtStackInit (pStack)
Return Value:
None
Input Parameters:
Name Type Description
pStack AsnlRTStack* Pointer to stack structure to be initialized.

Output Parameters:

None

rtStackCreate — Create a Stack Structure

The rtSListCreate function creates a new stack structure. It allocates memory for the structure and calls
rtStacklInit on it to initialize the structure.

Calling Sequence:

pStack = rtStackCreate ()
Return Value:
Name Type Description
pStack AsnlRTSList* Pointer to allocated stack structure.
ASNIC V5.3 271

Input Parameters:

None

Output Parameters:

None

rtStackPush — Push an Element onto the Stack

The rtStackPush function pushes an item onto the stack.

Calling Sequence:

sta

Return Value

t =

rtStackPush

(pStack, pDhata)

Name

Description

stat

Type
int

Status value of the operation. This is one of the status values described in
Appendix A.

Input Parameters:

Name Type Description

pStack AsnlRTStack* Pointer to stack structure onto which the data item is to be pushed.
pData void* Pointer to data item to be pushed onto the stack.

Output Parameters:

Name

Type

Description

pStack

AsnlRTStack*

Pointer to updated stack structure.

rtStackPop — Pop an Element from the Stack

The rtStackPop function pops an element from the stack.

Calling Sequence:

ptr = rtStackPop (pStack)
Return Value:
Name Type Description
ptr void* Pointer to item popped from the stack.
Input Parameters:
Name Type Description
pStack AsnlRTStack* Pointer to stack structure from which the value is to be popped.

ASNIC V5.3

272

Output Parameters:

Name Type Description

pStack AsnlRTStack* Pointer to updated stack structure.

Character String Conversion Functions

Common utility functions are provided to convert between standard null-terminated C strings and different
ASN.1 string types.

rtCToBMPString
The rtCToBMPString function converts a null-terminated C string into a 16-bit BMP string structure.
Calling Sequence:

pString = rtCToBMPString (ctxt p, cstring, pBMPString, pCharSet);

Return value:

Name Type Description
pString ASNIBMP Pointer to BMP string structure. This is the pPBMPString argument parameter value.
String*

Input parameters :

Name Type Description

ctxt_p ASNICTXT* Pointer to a context structure.

cstring char* Pointer to null-terminated C string to be converted into a BMP string.

pCharSet Asnl16Bit Pointer to character set structure describing the character set currently associated
CharSet* with the BMP character string type.

Output parameters:

Name Type Description

pBMPString | ASN1BMP Pointer to BMP string structure to receive converted string.
String*

rtBMPToCString

The rtBMPToCString function converts a BMP string into a null-terminated C string. Any characters that
are not 8-bit characters are discarded.

Calling sequence:
pString = rtBMPToCString (pBMPString, cstring, cstrsize);

Return value:

ASNIC V5.3 273

Name

Type

Description

pString

char*

Pointer to returned string structure. This is the cstring argument parameter value.

Input parameters :

Name Type Description

pBMPString | ASN1BMP Pointer to BMP string structure to be converted.
String*

cstrsize int Size of the buffer to receive the converted string.

Output parameters:

Name Type Description
cstring char* Pointer to buffer to receive converted string.
rtBMPToNewCString

The rtBMPToNewCString function converts a BMP string into a null-terminated C string. Any characters
that are not 8-bit characters are discarded. This function allocates dynamic memory to hold the converted
string. The user is responsible for freeing this memory.

Calling sequence:

pString = rtBMPToCString (pBMPString)
Return value:
Name Type Description
pString char* Pointer to allocated null-terminated string. The user is responsible for freeing this

memory.

Input parameters :

Name Type Description
pBMPString | ASN1BMP Pointer to BMP string structure to be converted.
String*

Output parameters:

None

rtCToUCSString

The rtCToUCSString function converts a null-terminated C string into a 32-bit UCS-4 (Universal Character

Set, 4 bytes) string structure.

Calling Sequence:

pString = rtCToUCSString

(ctxt p, cstring, pUCSString, pCharSet);

ASNIC V5.3

274

Return value:

Name Type Description
pString ASNI1Universal | Pointer to Universal string structure. This is the pUCSString argument parameter
String* value.

Input parameters :

Name Type Description

ctxt_p ASNICTXT* Pointer to a context structure.

cstring char* Pointer to null-terminated C string to be converted into a Universal string.

pCharSet Asnl132Bit Pointer to character set structure describing the character set currently associated
CharSet* with the Universal character string type.

Output parameters:

Name Type Description

pUCSString | ASN1Universal | Pointer to Universal string structure to receive converted string.
String*

rtUCSToCString

The rtUCSToCString function converts a Universal 32-bit string into a null-terminated C string. Any
characters that are not 8-bit characters are discarded.

Calling sequence:

pString = rtUCSToCString (pUCSString, cstring, cstrsize);
Return value:
Name Type Description
pString char* Pointer to returned string structure. This is the cstring argument parameter value.

Input parameters :

Name Type Description

pUCSString | ASN1Universal | Pointer to Universal string structure to be converted.
String*

cstrsize int Size of the buffer to receive the converted string.

Output parameters:

Name

Type

Description

cstring

char*

Pointer to buffer to receive converted string.

ASNIC V5.3

275

rtUCSToNewCString

The rtUCSToNewCString function converts a Universal 32-bit string into a null-terminated C string. Any
characters that are not 8-bit characters are discarded. This function allocates dynamic memory to hold the
converted string. The user is responsible for freeing this memory.

Calling sequence:

pString = rtUCSToCString (pUCSString)
Return value:
Name Type Description
pString char* Pointer to allocated null-terminated string. The user is responsible for freeing this

memory.

Input parameters :

Name Type Description
pUCSString | ASN1Universal | Pointer to Universal 32-bit string structure to be converted.
String*

Output parameters:

None

rtUCSToWCSString

The rtUCSToWCSString function converts a 32-bits encoded string to a wide-character string.

Calling Sequence:

len = rtUCSToWCSString (inbuf, outbuf, outbufsiz);
Return value:
Name Type Description
len int Character count or error status. Will be negative if conversion fails. If positive,

indicates number of character s written to outbuf.

Input parameters :

Name Type Description
inbuf ASNI1Universal | Pointer to Universal string structure.
String*
outbufsiz int Number of wide characters (wchar_t) the output buffer can hold.

Output parameters:

Name

Type

Description

outbuf

wchar_t*

Pointer to buffer to receive converted string.

ASNIC V5.3

276

rtWCSToUCSString

The rtWCSToUCSString function converts a wide-character string to a Universal 32-bits encoded string.

Calling Sequence:

len = rtWCSToUCSString (ctxt p, inbuf, outbuf, pCharSet);
Return value:
Name Type Description
len int If conversion of WCS to UTF-8 is successful, the number of bytes in the converted

string is returned. If the encoding fails, a negative status value is returned.

Input parameters :

Name Type Description

ctxt p ASNICTXT* Pointer to a context structure.

inbuf wchar_t* Pointer to wide-character (Unicode) string to convert.

pCharSet Asnl32Bit Pointer to character set structure describing the character set currently associated
CharSet* with the Universal character string type.

Output parameters:

Name Type Description

outbuf ASN1Universal | Pointer to Universal String structure to receive converted string.
String*

rtWCSToUTFS8

The rtWCSToUTFS8 function converts a wide-character string to a UTF-8 encoded string.

Calling Sequence:

len = rtWCSToUTF8 (ctxt p, inbuf, inlen, outbuf, outbufsiz);
Return value:
Name Type Description
len int If conversion of WCS to UTF-8 is successful, the number of bytes in the converted

string is returned. If the encoding fails, a negative status value is returned.

Input parameters :

Name Type Description
ctxt p ASNICTXT* Pointer to a context structure.
inbuf wchar_t* Pointer to wide-character (Unicode) string to convert.

ASNIC V5.3

277

inlen

int

Number of characters in the Unicode string.

outbufsiz

int

Size (in bytes) or the output buffer to receive the encoded string

Output parameters:

Name Type Description
outbuf ASNI1OCTET* | Pointer to buffer to receive converted string.
rtUTF8ToWCS

The rtUTF8ToWCS function converts a UTF-8 encoded string to a wide-character string.

Calling Sequence:

len = rtUTF8ToWCS (ctxt p, inbuf, outbuf, outbufsiz);
Return value:
Name Type Description
len int Character count or error status. Will be negative if conversion fails. If positive,

indicates number of character s written to outbuf.

Input parameters :

Name Type Description

ctxt_p ASNICTXT* Pointer to a context structure.

inbuf char* Pointer to null-terminated UTF-8 encoded string.

outbufsiz int Number of wide characters (wchar _t) the output buffer can hold.

Output parameters:

Name Type Description
outbuf wchar t* Pointer to buffer to receive converted string.
rtValidateUTF$8

The rtValidateUTFS function will validate a UTF-8 encoded string to ensure that it us encoded correctly.

Calling Sequence:

stat = rtUTF8ToWCS (ctxt p, inbuf);
Return value:
Name Type Description
stat int Status of validation. Will be ASN OK (zero) if validation successful or a negative

ASNIC V5.3

278

status value if an error is detected.

Input parameters :

Name Type Description
ctxt p ASNICTXT* Pointer to a context structure.
inbuf char* Pointer to null-terminated UTF-8 encoded string.

Output parameters:

None

ASNIC V5.3

279

Big integer helper functions

Arbitrary-precision integers’ manipulating functions are used to maintain big integers used within the
ASN.1 run-time library functions.

rtBiglIntInit — Initialize a big integer Structure

The rtBiglIntInit function initializes a big integer structure. This function should be called before the first
use of the big integer.

Calling Sequence:

rtBigIntInit (pBigInt)
Return Value:
None

Input Parameters:

Name Type Description

pBiglnt ASN1BigInt* Pointer to big integer structure to be initialized.

Output Parameters:

None

rtSetStrToBigInt — Convert string to a big integer
The rtSetStrToBigInt function converts the character string to a big integer structure.
Calling Sequence:

stat = rtSetStrToBigInt (pCtxt, pInt, pString, radix)

Return Value:

Name Type Description
stat int Status value of the operation. This is one of the status values described in
Appendix A.

Input Parameters:

Name Type Description

pCtxt ASNICTXT Pointer to a context structure. This provides a storage area for the function to
store all working variables that must be maintained between function calls.

plnt ASN1BigInt* Pointer to big integer structure onto which the value is to be stored.
pString ASN1ConstCharPtr | Pointer to character string to be converted.
radix int Base of value in pString. Must be 2, 8, 10 or 16.

Output Parameters:

ASNIC V5.3 280

Name Type Description

plnt ASN1BigInt * Pointer to updated big integer structure.

rtSetInt64ToBigInt — Convert ASNIINTG64 value to big integer

The rtSetInt64ToBiglnt function converts the ASN1INT64 value to big integer structure. An ASN1INT64
type is a 64-bit integer type, if platform supports 64-bit integers. In other case it will be a simple 32-bit
integer.

Calling Sequence:

stat = rtSetStrToBigInt (pCtxt, pInt, i64value)

Return Value:

Name Type Description
stat int Status value of the operation. This is one of the status values described in
Appendix A.

Input Parameters:

Name Type Description

pCtxt ASNICTXT Pointer to a context structure. This provides a storage area for the function to
store all working variables that must be maintained between function calls.

plnt ASNI1BigInt* Pointer to big integer structure onto which the value is to be stored.

i64value ASNI1INT64 The 64-bit integer value to be converted.

Output Parameters:

Name Type Description

plnt ASN1BigInt * Pointer to updated big integer structure.

rtSetBytesToBigInt — Convert sequence of octets to big integer

The rtSetBytesToBigInt function translates an octet array containing the two's-complement binary
representation of an arbitrary-precision integer into a big integer structure. The input array is assumed to be
in big-endian octet-order: the most significant octet is in the zeroth element.

Calling Sequence:

stat = rtSetBytesToBigInt (pCtxt, pInt, pOctets, len)

Return Value:

Name Type Description
stat int Status value of the operation. This is one of the status values described in
Appendix A.

ASNIC V5.3 281

Input Parameters:

Name Type Description

pCtxt ASNICTXT Pointer to a context structure. This provides a storage area for the function to
store all working variables that must be maintained between function calls.

plnt ASN1Biglnt* Pointer to big integer structure onto which the value is to be stored.

pOctets ASNIOCTET* Pointer to an octet array with two's-complement binary representation of an
arbitrary-precision integer.

len int Length of an octet array.

Output Parameters:

Name

Type

Description

pInt

ASNI1BigInt *

Pointer to updated big integer structure.

rtGetBigIntLen— Get big integer length

The rtGetBigIntLen function returns the number of octets necessary for the storing a big integer value in
the octet array. This function may be used for the calculating the necessary buffer size for the rtGetBiglnt

function.

Calling Sequence:

len = rtGetBigIntLen (pInt)
Return Value:
Name Type Description
len int Number of octets, necessary for the storing a big integer value in the octet string.

Input Parameters:

Name

Type

Description

pInt

ASN1BigInt*

Pointer to big integer structure onto which the value is to be stored.

Output Parameters:

None

rtGetBigInt — Copy big integer value into an octet array

The rtGetBiglnt function copies the two's-complement binary representation of a big integer into an octet
string. The output array will be in big-endian octet-order: the most significant octet will be in the zeroth

element.

Calling Sequence:

stat = rtGetBigInt

(pCtxt, pInt, pOctets, bufsize)

ASNIC V5.3

282

Return Value:

Name Type Description
stat int Status value of the operation. This is one of the status values described in
Appendix A.

Input Parameters:

Name Type Description

pCitxt ASNICTXT Pointer to a context structure. This provides a storage area for the function to
store all working variables that must be maintained between function calls.

plnt ASNI1BigInt* Pointer to big integer structure.

bufsize int Length of an octet array.

Output Parameters:

Name Type Description

pOctets ASN1OCTET* Pointer to octet array to receive two's-complement binary representation of a
arbitrary-precision integer.

rtBigIntDigitsNum — Return the approximated number of digits of the big integer

The rtBigIntDigitsNum function returns the approximated number of digits of the big integer value
according to the specified radix. This function may be used to calculate size of buffer for the
rtBigIntToString function. The number of digits might be slightly greater than really necessary, but never
less.

Calling Sequence:

dnum = rtBigIntDigitsNum (pInt, radix)

Return Value:

Name Type Description

dnum int The approximated number of digits of the big integer.

Input Parameters:

Name Type Description
plnt ASNI1Biglnt* Pointer to a big integer structure.
radix int Base of value. Must be 2, 8, 10 or 16.

Output Parameters:

None

ASNIC V5.3 283

rtBigIntToString — Convert a big integer to a string

The rtBigIntToString function converts a big integer to a string according to the specified radix.

Calling Sequence:

stat = rtBigIntToString (pCtxt, pInt, radix, pBuf, bufsize)
Return Value:
Name Type Description
stat int Status value of the operation. This is one of the status values described in

Appendix A.

Input Parameters:

Name Type Description

pCtxt ASNICTXT Pointer to a context structure. This provides a storage area for the function to
store all working variables that must be maintained between function calls.

plnt ASNI1BigInt* Pointer to big integer structure to be converted into a string.

radix int Base of value for conversion. Must be 2, 8, 10 or 16.

bufsize int The size of buffer pBuf.

Output Parameters:

Name Type Description

pBuf char* Pointer to buffer to receive the converted character string.

rtPrintBigInt — Print big integer value to Standard Output

The rtPrintBigInt function prints big integer value to standard output (stdout), according to specified radix.

In general, this function is very similar to the “rtBigIntToString” function described above. It simply prints
the output value to standard output in a “name = value” format.

Calling Sequence:

rtPrintBigInt (name, value, radix);
Return Value:
None
Input Parameters:
Name Type Description
name char* Name of the variable to print
value ASNI1BigInt* Big integer value to print.
radix int Base of value for conversion to print. Must be 2, 8, 10 or 16.

ASNIC V5.3

284

rtCompareBigInt — Compare two big integer values

The rtCompareBiglnt function compares two big integer values. The result of comparison can be —1 (first
value less than second one), 0 (both are equal) and 1 (first value greater than second one).

Calling Sequence:
res = rtPrintBigInt (pIntl, pInt2);

Return Value:

Name Type Description

res int The result of comparison (-1, 0 or 1).

Input Parameters:

Name Type Description
plntl ASNI1BigInt* The first big integer value to compare.
plntl ASNI1BigInt* The second big integer value to compare.

rtBigIntCopy — Copy one big integer structure into another

The rtBigIntCopy function copies one big integer structure into another one. The destination big integer
structure should not be initialized yet.

Calling Sequence:

stat = rtBigIntCopy (pCtxt, pSrc, pDst);

Return Value:

Name Type Description

stat int Status value of the operation. This is one of the status values described in
Appendix A.

Input Parameters:

Name Type Description

pCitxt ASNICTXT Pointer to a context structure. This provides a storage area for the function to

store all working variables that must be maintained between function calls.

pSrc ASNI1BigInt* The source big integer value to copy.
pDst ASNI1BigInt* The destination big integer value to receive copied value. Should not be
initialized.

ASNIC V5.3 285

rtBigIntFastCopy — Fast copy of one big integer structure into another

The rtBigintFastCopy function copies one big integer structure into another one. The destination big integer
structure should be initialized before use of this function. This function might be faster than rtBigintCopy
because if the destination big integer already has enough allocated memory then memory will be reused

without allocation.

Calling Sequence:

stat = rtBigIntFastCopy (pCtxt, pSrc, pDst);

Return Value:

Name

Type

Description

stat

int

Status value of the operation. This is one of the status values described in
Appendix A.

Input Parameters:

Name Type Description

pCtxt ASNICTXT Pointer to a context structure. This provides a storage area for the function to
store all working variables that must be maintained between function calls.

pSrc ASNI1BigInt* The source big integer value to copy.

pDst ASNI1Biglnt* The destination big integer value to receive copied value. Should be initialized.

ASNIC V5.3

286

APPENDIX A

The following error status codes can be returned by the run-time library functions or by generated ASN1C

code:

Error Constant Value Description

ASN_OK 0 Decode successful (successful encode returns a positive value equal to the
number of bytes encoded).

ASN OK FRAG 2 OK fragment. This is a success status returned by some PER functions to
indicate encode or decode was successful, but that a message fragment was
encountered. The results are not yet complete.

ASN_E BUFOVFLW -1 Encode buffer overflow. Occurs when the size of a static encode buffer is
exceeded.

ASN E ENDOFBUF -2 Unexpected end-of-buffer on decode. Occurs when a decode function
encounters the end of the buffer when expecting to find more data.

ASN E IDNOTFOU -3 Identifier not found on decode. Occurs when an unexpected tag is
encountered during message decoding.

ASN_E INVOBIJID -4 Invalid object identifier code. Occurs when the ASN.1 rules for specifying an
object identifier value are violated.

ASN_E INVLEN -5 Invalid length component on decode. The actual length of data in a given
field did not match the encoded length.

ASN_E INVENUM -6 Enumerated value parsed from a field was not in the defined set for that field.

ASN _E SETDUPL -7 A duplicate occurrence of a tagged element within a SET was encountered
during decoding.

ASN_E SETMISRQ -8 Decoding of a SET construct was completed and one or more required (i.e.,
not OPTIONAL) SET elements were missing.

ASN_E NOTINSET -9 A tagged element was encountered during the decoding of a SET that was not
a member of the defined SET.

ASN_E SEQOVFLW -10 More elements were encountered in a sized SEQUENCE OF or SET OF
construct then were specified in the SIZE specification.

ASN_E INVOPT -11 An element was encountered during decoding of a CHOICE construct that
was not defined to be an option for the CHOICE.

ASN_E NOMEM -12 No dynamic memory available.

ASN_E INVHEXS -14 Invalid ASN.1 hexadecimal string value. This error occurs if a string is
passed to a run-time function that is expecting an ASN.1 hex string value in
ASN.1 value notation format and the string is not properly formatted (i.e., in
the form “xxxx’H).

ASN_E INVBINS -15 Invalid ASN.1 binary string value. This error occurs if a string is passed to a

run-time function that is expecting an ASN.1 binary string value in ASN.1
value notation format and the string is not properly formatted (i.e., in the form
‘xxxx’B).

ASNIC V5.3

287

ASN_E INVREAL -16 Invalid real value. This is returned by the ASN.1 REAL type decode
functions if an encoded real value violates any of the ASN.1 encoding rules
for a REAL value.

ASN_E STROVFLW -17 More OCTETs or BITS were encountered in a sized OCTET or BIT STRING
field then were specified in the SIZE specification.

ASN _E BADVALUE -18 Invalid value specification.

ASN E UNDEFVAL -19 Definition not found for referenced defined value.

ASN_E UNDEFTYPE -20 Definition not found for referenced defined type.

ASN_E BADTAG -21 An ID number in a tag value was encountered in decoding which was greater
then the maximum value supported by the ASN1C compiler (8191).

ASN_E TOODEEP -22 Message contains nested constructs greater then the maximum defined depth.

ASN_E CONSVIO -23 Value constraint violation (for example, integer value not within the given
range).

ASN _E RANGERR -24 Invalid range specification (lower value greater than upper value or endpoints
are of different types).

ASN_E ENDOFFILE -25 This is returned from the decode from file functions (xdf) if an unexpected
end-of-file condition is encountered. An example would be an indefinite
length encoding in which the EOC marker was not found before end-of-file
occurred.

ASN_E INVUTFS -26 Invalid UTF-8 encoded string.

ASN_E _CONCMODF -27 Concurrent list modification. This is returned by ASN1CSeqOfListlterator’s
methods if the list was modified during the usage of the iterator.

ASN E ILLSTATE -28 Illegal state error. This is returned by ASN1CSeqOfListlterator’s methods if
the iterator is in illegal state for some operations (for example, call of
remove() or set() method before the first call of next() or prev()).

ASN_E OUTOFBND -29 Out of bounds. This is returned if some indices are out of bounds (of array,
for example).

ASN_E INVPARAM -30 Invalid parameter.

ASN_E INVFORMAT -31 Invalid time string format.

ASN_E NOTINIT -32 Not initialized. This is returned if some data is not initialized before use (for
example, if ASN1CTXT is not initialized by rtInitContext function before use
of this context).

ASN_E NOTSUPP -99 Non-supported ASN.1 construct encountered.

ASNIC V5.3

288

APPENDIX B

This version of the ASN1C compiler can parse all syntax as set forth in the 1997 ITU-T recommendations
X.680 through X.683. However, all syntax does not result in the generation of corresponding C or C++
code. In general, the approach is to extract what is needed to form accurate C/C++ types and
encode/decode functions for encoding the base types in a specification. It is up to the user to accurately put
them together in places where layered messages are necessary to form a complete PDU.

The following ASN.1 constructs result in the generation of limited or no C/C++ code in this version of the
ASNI1C compiler:

e Constructed ASN.1 value specifications (including DEFAULT on a SEQUENCE).
e General constraints and table constraints.

e Value set specifications.

e EMBEDDED PDV type

e Selection Type

e Macros from the X.208 specification (note: a special version of the compiler is included that can parse
ROSE OPERATION and ERROR macros).

ASNIC V5.3 289

%ASN prefix, 13
16-bit character string, 36
alphabet character set, 248
converting from 8-bit null terminated C string,
83
converting from null-terminated C string, 273
decode functions, 188, 239
encode functions, 169, 222
32-bit character string, 36
alphabet character set, 248
converting from null-terminated C string, 274
decode functions, 188, 241
encode functions, 170, 223
32-bits encoded string
converting to WCS, 276
8-bit character string
decode functions, 238
derivation, 35
encode functions, 220, 221
8-bit null-terminated C string, conversion, 83
Add Size Constraint (pu_addSizeConstraint),
246
Add Typed Error Parameters to Error
Information (rtErrAdd<type>Param), 257
addEventHandler run-time method, 83
Align Buffer on a Byte Boundary
(pd_byte align), 229
Align Encode Buffer on a Byte Boundary
(pe_byte_align), 212
Allocate Dynamic Memory (rtMemAlloc), 253
Allocate Dynamic Memory (xu_malloc), 201
Allocate Elements for an Array (xu_alloc_array),
202
ANSI-standard source code, for base run-time
libraries, 7
ANY or ANY DEFINED BY constructs, 35
Append an Item to a Doubly Linked List
(rtDListAppend), 265, 266, 267, 268, 269
Append an Item to a Singly Linked List
(rtSListAppend), 270
append run-time method, 122
argument, message buffer, 42
ASN.1 8-bit Character String Decode Function,
238
ASN.1 8-bit Character String Encode Function,
221
ASN.1 C++ run-time class reference, 75—-160

Index

ASN.1 constructs that generate limited or no

C/C++ code, 289

ASN.1 primitive type definitions, asnltype.h

include file, 162
ASN.1 run-time library, 6
ASN1BERDecodeBuffer
ASNI1BERDecodeBuffer, 93
FindElement, 93
ParseTagLen, 94
ASN1BERDecodeBuffer run-time class
constructor, 93
ASNI1BEREncodeBuffer
ASNI1BEREncodeBuffer, 91
GetMsgCopy, 91
GetMsgPtr, 92
Init, 92
ASN1BEREncodeBuffer run-time class
constructor, 91
ASNIBERMessageBuffer
CalcIndefLen, 89
BinDump, 89
HexDump, 90
ASN1C90, 76
ROSE OPERATION and ERROR, 76
SNMP OBJECT TYPE, 78
ASNI1CBitStr
ASNI1CBitStr, 104
change, 105
clear, 106
set, 107
invert, 108
get, 109
isSet, 110
isEmpty, 110
size, 111
length, 111
cardinality, 111
getBytes, 112
doAnd, 112
doOr, 114
doXor, 115
doAndNot, 116
shiftLeft, 118
shiftRight, 118
unusedBitsInLastUnit, 119
operator ASN1TDynBitStr, 119
ASNI1CBItStr class constructor, 104

ASNIC V5.3

290

ASN1CGeneralizedTime
ASNI1CGeneralizedTime, 148
getCentury, 149
setCentury, 149

ASNI1CGeneralizedTime class constructor, 148

ASN1Context
ASNI1Context, 81
~ASNI1Context, 81
PrintErrorInfo, 82

ASN1Context classes

GetPtr, 81

ASN1Context run-time class constructor, 81

ASN1Context run-time class destructor, 81

ASNI1CSeqOfList
ASNI1CSeqOfList, 121
append, 122
insert, 122
remove, 122
removeFirst, 123
removeLast, 123
indexOf, 124
contains, 124
getFirst, 125
getLast, 125
get, 125
operator[], 126
set, 126
clear, 126
isEmpty, 127
size, 127
iterator, 127
iteratorFromLast, 128
iteratorFrom, 128

ASNI1CSeqOfList run-time class constructor,

121

ASNI1CSeqOfListlterator
hasNext, 130
hasPrev, 130
next, 131
prev, 131
remove, 131
set, 132
insert, 132

ASNI1CTime
ASNI1CTime, 134
getYear, 135
getMonth, 135
getDay, 135
getHour, 136
getMinute, 136
getSecond, 137
getFraction, 137
getDiffHour, 138
getDiffMinute, 138
getDiff, 138
getUTC, 139
getTime, 139
setYear, 140
setMonth, 140

setDay, 141

setHour, 141

setMinute, 142

setSecond, 142

setFraction, 142

setDiffHour, 143

setDiff, 143

setDiff, 144

setUTC, 144

setTime, 145

parseString, 145

clear, 146

operator=, 146

operator==, 147

operator>, 147

operator<, 147

operator>=, 147

operator<=, 147
ASN1Ctime class constructor, 134
ASNI1CType

ASN1CType, 101

Encode, 101

Decode, 101

memAlloc, 102

memFreeAll, 102
ASNICType run-time class constructor, 101
ASN1ICUTCTime

ASN1CUTCTime, 150

setYear, 151
ASNI1CUTCTime class constructor, 150
ASN1ErrorHandler classes, 160
ASN1MessageBuffer

addEventHandler, 83

CStringToBMPString, 83

getBytelndex, 84

getContext, 84

getMsgCopy, 85

getMsgPtr, 85

Init, 86

isA, 86

PrintErrorInfo, 87

setErrorHandler, 87
ASNI1NamedEventHandler

startElement, 152

endElement, 152

bootValue, 153

intValue, 153

ulntValue, 154

bitStrValue, 154

octStrValue, 155

charStrValue, 155

charStrValue, 156

nullValue, 156

oidValue, 156

realValue, 157

enumValue, 157

octStrValue, 158

openTypeValue, 158
ASNIPERDecodeBuffer classes, 100

ASNIC V5.3

291

ASNI1PERDecodeBuffer run-time class
constructor, 100
ASNIPEREncodeBuffer
ASNI1PEREncodeBuffer, 97
GetMsgBitCnt, 97
GetMsgCopy, 98
GetMsgPtr, 98
Init, 98
ASNI1PEREncodeBuffer run-time class
constructor, 97
ASN1PERMessageBuffer
BinDump, 95
HexDump, 95
GetMsgLen, 95
SetTrace, 96
asnltype.h include file
ASN.1 primitive type definitions, 162
error constants, 161
sizing constants, 162
tagging value and mask constants, 161
attribute
global level, 10
module level, 10
production level, 11
specified in more than one section, 9
Basic Encoding Rules, 1, 5, 89, 91, 161
ber command line option, 5
BER decode function. See also BER/DER C
decode functions
decoding a series of messages using C++
control class interface, 55
generated C function format and calling
parameters, 52
generated C++ decode method format and
calling parameters, 52
performance consideration of dynamic
memory management, 57
procedure for calling C decode functions, 53
procedure for calling in C, 53
procedure for using C++ control class decode
method, 54
BER encode function. See also BER/DER C
encode functions
encoding a series of messages using C++
control class interface, 50
generated C function format and calling
parameters, 44
generated C++ encode method format and
calling parameters, 44
populating generated structure variables for
encoding, 45
procedure for calling C encode functions, 46
procedure for calling in C, 46
procedure for using C++ control class encode
method, 48
BER encoded message, diagram, 46
BER run-time library functions
asnltype.h Include File, 161
BER/DER C decode functions, 178-96

BER/DER C encode functions, 16377
BER/DER C file functions, 197-200
BER/DER C utility functions, 201-8

BER/DER C decode functions

xd 16BitCharStr - Decode 16-Bit Character
String, 188

xd_32BitCharStr - Decode 32-Bit Character
String, 188

xd_bigint - Decode Big Integer, 183

xd_bitstr - Decode BIT STRING, 184

xd_bitstr_s - Decode BIT STRING (static),
184

xd boolean - Decode BOOLEAN, 181

xd_charstr - Decode Character String, 187

xd chkend - Check for End of Context, 193

xd_count - Count Message Components, 194

xd_enum - Decode ENUMERATED, 189

xd_indeflen - Calculate Indefinite Length, 196

xd_integer - Decode INTEGER, 181

xd_match - Match Tag, 180

xd_memcpy - Copy Decoded Contents, 194

xd_NextElement - Move to Next Element, 195

xd null - Decode NULL, 190

xd_objid - Decode OBJECT IDENTIFIER,
190

xd_octstr - Decode OCTET STRING, 185

xd_octstr_s - Decode OCTET STRING
(static), 186

xd_OpenType - Decode Open Type, 192

xd_OpenTypeExt - Decode Open Type
Extension, 193

xd_real - Decode REAL, 191

xd_setp - Set Decode Buffer Pointer, 178

xd tag len - Decode Tag and Length, 179

xd unsigned - Decode Unsigned INTEGER,
182

BER/DER C encode functions

xe_16BitCharStr - Encode 16-Bit Character
String, 169

xe_32BitCharStr - Encode 32-Bit Character
String, 170

xe_bigint - Encode Big Integer, 167

xe_bitstr - Encode BIT STRING, 167

xe_boolean - Encode BOOLEAN, 165

xe_charstr - Encode Character String, 169

xe_derCanonicalSort - DER Canonical Sort,
176

xe_enum - Encode ENUMERATED, 171

xe_expandBuffer - Expand Dynamic Encode
Buffer, 174

xe_free - Free Encoder Dynamic Memory, 174

xe_getp - Get Encode Buffer Pointer, 164

xe_integer - Encode INTEGER, 165

xe_len - Encode a Length Value, 175

xe_memcpy - Copy Bytes to Encode Buffer,
175

xe_null - Encode NULL, 171

xe_objid - Encode OBJECT IDENTIFIER,
172

ASNIC V5.3

292

xe_octstr - Encode OCTET STRING, 168
xe_OpenType - Encode Open Type, 173
xe_real - Encode Real, 172
xe_set - Set Encode Buffer Pointer, 163
xe _tag len - Encode Tag and Length, 164
xe_TagAndIndefLen - Encode Tag and
Indefinite Length, 177
xe_unsigned - Encode Unsigned INTEGER,
166
BER/DER C file functions
xdf len - Decode Length from File, 197
xdf ReadContents - Read Contents from File,
199
xdf ReadPastEOC - Read Past End-of-
Context, 199
xdf tag - Decode Tag from File, 197
xdf TagAndLen - Decode Tag and Length
from File, 198
BER/DER C utility functions
xu_alloc_array - Allocate Elements for an
Array, 202
xu_dump - Dump Encoded ASN.1 Message,
203
xu_fdump - Dump Encoded ASN.1 Message
to a Text File, 204
xu_fmtErrMsg - Format Error Message, 206
xu_freeall - Free Dynamic Memory, 202
xu_hexdump - Dump Binary Data, 204
xu_log error - Log Error Information, 205
xu_malloc - Allocate Dynamic Memory, 201
xu_perror - Print Error Information, 205
Big integer helper functions
rtBigIntCopy, 285
rtBigIntDigitsNum, 283
rtBigIntFastCopy, 286
rtBiglntlnit, 280
rtBigIntToString, 284
rtCompareBiglnt, 285
rtGetBiglnt, 282
rtGetBigIntLen, 282
rtPrintBiglnt, 284
rtSetBytesToBiglnt, 281
rtSetInt64ToBiglnt, 281
rtSetStrToBiglnt, 280
big integers, 18, 280
binary string value specification, 40
BinDump run-time method, 89, 95
bit string
definition of bits, 20
for specifying named constants for bit
positions, 20
bit string type definition
Dynamic, 18
Named Bits, 20
Static (sized), 19
bitStrValue run-time method, 154
boolean type definition, 17
BOOLEAN value specification, 40
bootValue run-time method, 153

buffer argument. message, 42
buffer object, encode message, 46
¢ command line option, 5
C Mapping Enumerated type definition, 22
c++ command line option, 5
C++ control class decode method, procedure for
using, 54
C++ control class encode method
procedure for using in generated BER encode
functions, 48
procedure for using in generated PER encode
functions, 60, 66
C++ control class interface
decoding a series of message, 55
decoding a series of PER messages, 67
encoding a series of BER messages, 50
encoding a series of PER messages, 63
C++ Mapping Enumerated type definition, 23
CalcIndefLen run-time method, 89
Calculate Indefinite Length (xd_indeflen), 196
calling C BER or DER decode functions, 53
calling C BER or DER encode functions, 46
calling C PER decode functions, 65
calling C PER encode functions, 59
calling parameters
generated C for BER decode function, 52
generated C for BER encode function, 44
generated C for PER decode function, 64
generated C for PER encode function, 58
generated C++ for BER decode function, 52
generated C++ for BER encode function, 44
generated C++ for PER decode function, 64
generated C++ for PER encode function, 58
cardinality run-time method, 111
case, importance in syntax errors, 13
change run-time method, 105
character string conversion functions, run-time
common library
rtBMPToCString - Convert BMP to C String,
273
rtBMPToNewCString - Convert BMP to New
C String, 274
rtCToBMPString - Convert C to 16-Bit BMP
String, 273
rtCToUCSString - Convert C to 32-Bit String,
274
rtUCSToCString - Convert 32-bit String to C
String, 275
rtUCSToNewCString - Convert 32-bit String
to New C String, 276
rtUCSToWCSString - Convert a 32-bits
Encoded String to a Wide Character String,
276
rtUTF8ToWCS - Convert a UTF-8 Encoded
String to a Wide Character String, 278
rtValidateUTF8 - Validate UTF-8 Encoded
String, 278

ASNIC V5.3

293

rtWCSToUCSString - Convert Wide
Character String to 32-bits Encoded String,
277
rtWCSToUTFS - Convert Wide Character
String to UTF-8 Encoded String, 277
Character String types type definition, 35
character string value specification, 41
charStrValue run-time method, 155, 156
Check Encode Buffer Size (pe_CheckBuffer),
226
Check for End of Context (xd_chkend), 193
choice structures, populating for CHOICE type
definition, 34
CHOICE type definition
basic mapping, 32
populating generated choice structures, 34
class definition, generated, 42
clear run-time method, 146
clear run-time method, 106, 126
codes, error status, 287
command line options, 4-6
commas, when to use, 13
compact command line option, 6
compacting code, 6
compiler
error reporting, 13
running, 3—6
compiling generated code, 6
config command line option, 5
configuration specifications. See also attribute
examples, 9
configuration table, compiler, 9—12
constants, for named bits, 20
constraint specification functions
pu_addSizeConstraint - Add Size Constraint,
246
pu_setl6BitCharSet - Set 16-bit Character Set,
248
pu_set32BitCharSet - Set 32-bit Character Set,
248
pu_setCharSet - Set Character Set, 247
contains run-time method, 124
contents method, 70
Convert 32-bit String to C String
(rtUCSToCString), 275
Convert 32-bit String to New C String
(rtUCSToNewCString), 276
Convert a 32-bits Encoded String to a Wide
Character String (tUCSToWCSString), 276
Convert a UTF-8 Encoded String to a Wide
Character String (rtUTF8ToWCS), 278
Convert ASN.1 Bit String Value to String
(rtBitStrToString), 260
Convert ASN.1 Boolean Value to String
(rtBoolToString), 259
Convert ASN.1 Integer Value to String
(rtIntToString), 259
Convert ASN.1 Object Identifier Value to String
(rtOIDStrToString), 261

Convert ASN.1 Octet String Value to String
(rtOctStrToString), 261

Convert ASN.1 Tag to String
(rtTagStrToString), 262

Convert ASN.1 Unsigned Integer Value to String
(rtUIntToString), 260

Convert BMP to C String (rtBMPToCString),
273

Convert BMP to New C String
(rtBMPToNewCString), 274

Convert C to 16-Bit BMP String
(rtCToBMPString), 273

Convert C to 32-Bit String (rtCToUCSString),
274

Convert Wide Character String to 32-bits
Encoded String (rtWCSToUCSString), 277

Convert Wide Character String to UTF-8
Encoded String (tWCSToUTFS), 277

Copy Bytes to Encode Buffer (xe_memcpy), 175

Copy Decoded Contents (xd_memcpy), 194

Count Message Components (xd_count), 194

Create a Singly Linked List Structure
(rtSListCreate), 270

Create a Stack Structure (rtStackCreate), 271

CStringToBMPString run-time method, 83

Decode 16-bit Character String
(pd_16BitConstrainedString), 239

Decode 16-Bit Character String
(xd_16BitCharStr), 188

Decode 32-bit Character String
(pd_32BitConstrainedString), 241

Decode 32-bit Character String
(pd_UniversalString), 241

Decode 32-Bit Character String
(xd_32BitCharStr), 188

Decode 8-bit Character String
(pd_ConstrainedString), 238

Decode a Bit String (pd_BitString), 234

Decode a Constrained Integer (pd_ConsInteger),
231

Decode a Constrained Unsigned Integer
(pd_ConsUnsigned), 232

Decode a Constrained Whole Number
(pd_ConsWholeNumber), 230

Decode a Dynamic Bit String
(pd_DynBitString), 235

Decode a Dynamic Octet String
(pd_DynOctetString), 236

Decode a Length Determinant (pd_Length), 231

Decode a Single Bit Value (pd_bit), 228

Decode a Small Non-negative Whole Number
(pd_SmallNonNegWholeNumber), 230

Decode an Octet String (pd_OctetString), 235

Decode an Unconstrained Integer
(pd_UnconsInteger), 232

Decode an Unconstrained Unsigned Integer
(pd_UnconsUnsigned), 233

Decode Big Integer (pd_Biglnteger), 233

Decode Big Integer (xd_bigint), 183

ASNIC V5.3

294

Decode BIT STRING (static) (xd_bitstr_s), 184
Decode BIT STRING (xd_bitstr), 184
Decode Bit Values (pd_bits), 229
Decode BMP Character String (pd BMPString),
240
Decode BOOLEAN (xd_boolean), 181
Decode Character String (xd_charstr), 187
Decode ENUMERATED (xd_enum), 189
decode function
ASN.1 8-bit Character String for PER C, 238
prototype, 41
Decode INTEGER (xd_integer), 181
Decode Length from File (xdf len), 197
decode method
C++ control class, 54
in generated C/C++ source code, 43
Decode NULL (xd_null), 190
Decode Object Identifier (pd_Objectldentifier),
237
Decode OBJECT IDENTIFIER (xd_objid), 190
Decode OCTET STRING (static) (xd_octstr_s),
186
Decode OCTET STRING (xd_octstr), 185
Decode Open Type (pd_OpenType), 242
Decode Open Type (xd_OpenType), 192
Decode Open Type Extension
(pd_OpenTypeExt), 242
Decode Open Type Extension
(xd_OpenTypeExt), 193
Decode Real (pd_Real), 237
Decode REAL (xd _real), 191
Decode run-time method, 101
Decode Tag and Length (xd_tag_len), 179
Decode Tag and Length from File
(xdf TagAndLen), 198
Decode Tag from File (xdf tag), 197
Decode Unsigned INTEGER (xd unsigned), 182
decommissioned options, 6
DEFAULT keyword in SEQUENCE type
definition, 28
DER Canonical Sort (xe_derCanonicalSort), 176
der command line option, 5
DER decode function. See also BER/DER C
decode functions
procedure for calling in C, 53
DER encode function. See also BER/DER C
encode functions
procedure for calling in C, 46
diagnostic messages, adding to generated code, 5
diagnostic printing functions
pu_bindump - Dump Binary Data, 249
pu_hexdump - Dump Hexadecimal Data, 249
diagnostic trace functions, run-time common
library
rtdiag - Output Trace Messages, 254
rtSetDiag - Set Diagnostic Tracing, 254
directory
generated files, 6
searching for IMPORT items, 6

directory tree, for porting run-time code, 8

Distinguished Encoding Rules, 5

doAnd run-time method, 112

doAndMot run-time method, 116

doOr run-time method, 114

doXor run-time method, 115

Dump Binary Data (pu_bindump), 249

Dump Binary Data (xu_hexdump), 204

Dump Encoded ASN.1 Message (xu_dump), 203

Dump Encoded ASN.1 Message to a Text File
(xu_fdump), 204

Dump Hexadecimal Data (pu_hexdump), 249

Dynamic BIT STRING type definition, 18

dynamic encode buffer, 46, 48
for BER encoding, 49
for PER encoding, 60, 62

dynamic memory management
performance considerations in generated BER

decode functions, 57
performance considerations in generated PER
decode functions, 68

Dynamic OCTET STRING type definition, 21

Dynamic SEQUENCE OF type definition, 30

dynamic-link library, 7

Encode 16-bit Character String
(pe_16BitConstrainedString), 222

Encode 16-Bit Character String
(xe_16BitCharStr), 169

Encode 32-bit Character String
(pe_32BitConstrainedString), 223

Encode 32-bit Character String
(pe_UniversalString), 224

Encode 32-Bit Character String
(xe_32BitCharStr), 170

Encode 8-bit Character String
(pe_ConstrainedString), 220

Encode a Bit String (pe_BitString), 218

Encode a Constrained Integer (pe_ConsInteger),
215

Encode a Constrained Unsigned Integer
(pe_ConsUnsigned), 217

Encode a Constrained Whole Number
(pe_ConsWholeNumber), 214

Encode a Length Determinant (pe_Length), 215

Encode a Length Value (xe_len), 175

Encode a Non-negative Binary Integer
(pe_NonNegBinlInt), 213

Encode a Single Bit Value (pe_bit), 211

Encode a Small Non-negative Whole Number
(pe_SmallNonNegWholeNumber), 214

Encode a Two's Complement Binary Integer
(pe_2sCompBinlnt), 213

Encode an Octet String (pe OctetString), 219

Encode an Unconstrained Integer
(pe_Unconslnteger), 216

Encode an Unconstrained Unsigned Integer
(pe_UnconsUnsigned), 217

Encode Big Integer (pe_Biglnteger), 218

Encode Big Integer (xe_bigint), 167

ASNIC V5.3

295

Encode BIT STRING (xe_bitstr), 167
Encode Bit Values (pe_bits), 211
Encode BMP Character String (pe_ BMPString),
223
Encode BOOLEAN (xe_boolean), 165
encode buffer, dynamic
for BER encoding, 49
for PER encoding, 60, 62
encode buffer, static
for BER encoding, 46, 48, 49
for PER encoding, 62
Encode Character String (xe charstr), 169
Encode ENUMERATED (xe_enum), 171
encode function
ASN.1 8-bit Character String for PER C, 221
BER, 44-51
prototype, 41
Encode INTEGER (xe_integer), 165
encode message buffer object, 46
encode method, C++ control class
using in generated BER encode functions, 48
using in generated PER encode functions, 60,
66
encode method, using in generated C/C++ source
code, 43
Encode NULL (xe_null), 171
Encode Object Identifier (pe_Objectldentifier),
220
Encode OBJECT IDENTIFIER (xe_objid), 172
Encode OCTET STRING (xe_octstr), 168
Encode Octets (pe_octets), 212
Encode Open Type (pe_OpenType), 225
Encode Open Type (xe_OpenType), 173
Encode Open Type Extension
(pe_OpenTypeExt), 225
Encode Real (pe_Real), 219
Encode Real (xe_real), 172
Encode run-time method, 101
Encode Tag and Indefinite Length
(xe_TagAndIndefLen), 177
Encode Tag and Length (xe tag len), 164
Encode Unsigned INTEGER (xe_unsigned), 166
encode/decode context initialization
pu_freeContext - Release All Dynamic
Memory, 246
pu_initContext - Initialize Context Structure,
244
pu_initContextBuffer - Initialize Context
Buffer, 245
pu_newContext - Initialize Context Buffer
with New Structure, 245
encode/decode functions
source file for, 5
suppressing, 5
endElement event, 70
endElement run-time method, 152
ENUMERATED type definition
C Mapping, 22
C++ Mapping, 23

enumPrefix attribute, 11, 12
enumValue run-time method, 157
error
semantic, 13
syntax, 13
error constants, asnltype.h include file, 161
error event, 70
error formatting functions, run-time common
library
rtErrAdd<type>Param - Add Typed Error
Parameters to Error Information, 257
rtErrFreeParams - Free Error Parameter
Memory, 257
rtErrLogUsingCB - Log Using Callback
Function, 255
rtErrPrint - Print Error Information, 255
rtErrSetData - Set Error Information, 256
error macro, ROSE, 78
error reporting functions, run time, 205
error reporting, compiler, 13
error run-time method, 160
error status codes, 287
event
endElement, 70
error, 70
startElement, 70
event handler interface
example-formatted print handler, 71
example-XML converter class, 73
how it works, 70
how to use it, 71
events command line option, 5
Expand Dynamic Encode Buffer
(xe_expandBuffer), 174
Expand Encode Buffer (pe_ExpandBuffer), 226
export of types, 75
Extended Markup Language, 9
extension elements in SEQUENCE type
definition, 28
External Type type definition, 37
field
fixed type, 39
variable type, 39
file, platform.mk, 8
FindElement run-time method, 93
fixed type field, 39
Format Error Message (xu_fmtErrMsg), 206
formatted printing functions, run-time common
library
rtBitStrToString - Convert ASN.1 Bit String
Value to String, 260
rtBoolToString - Convert ASN.1 Boolean
Value to String, 259
rtintToString - Convert ASN.1 Integer Value
to String, 259
rtOctStrToString - Convert ASN.1 Octet
String Value to String, 261
rtOIDStrToString - Convert ASN.1 Object
Identifier Value to String, 261

ASNIC V5.3

296

rtPrint<type> - Print ASN.1 Values to
Standard Output, 263
rtTagStrToString - Convert ASN.1 Tag to
String, 262
rtUIntToString - Convert ASN.1 Unsigned
Integer Value to String, 260
Free Dynamic Memory (xu_freeall), 202
Free Encoder Dynamic Memory (xe_free), 174
Free Error Parameter Memory
(rtErrFreeParams), 257
function, encode/decode prototypes, 41, 42
generated BER decode function
decoding a series of messages using C++
control class interface, 55
generated C function format and calling
parameters, 52
generated C++ decode method format and
calling parameters, 52
performance consideration of dynamic
memory management, 57
procedure for calling C decode functions, 53
procedure for using C++ control class decode
method, 54
generated BER encode function
encoding a series of messages using C++
control class interface, 50
generated C function format and calling
parameters, 44
generated C++ encode method format and
calling parameters, 44
populating generated structure variables for
encoding, 45
procedure for calling C encode functions, 46
procedure for using C++ control class encode
method, 48
generated C function format
BER decode method, 52
BER encode method, 44
PER decode method, 64
PER encode method, 58
generated C/C++ source code
ASN1C90, 76
event handler interface, 70-74
generated BER decode functions, 5257
generated BER encode functions, 44-51
generated PER decode functions, 64—68
generated PER encode functions, 58—63
generated print methods, 69
header file, 1543
IMPORT/EXPORT of types, 75
ROSE OPERATION and ERROR, 76-78
SNMP OBIJECT TYPE, 78-79
generated C++ decode method format
BER decode method, 52
PER decode method, 64
generated C++ encode method format
BER encode method, 44
PER encode method, 58
generated class definition, 42

generated methods, 43
generated PER decode function
generated C function format and calling
parameters, 64
generated C++ decode method format and
calling parameters, 64
performance consideration of dynamic
memory management, 68
procedure for calling C decode functions, 65
generated PER encode function
decoding a series of messages using C++
control class interface, 67
encoding a series of messages using C++
control class interface, 63
generated C function format and calling
parameters, 58
generated C++ encode method format and
calling parameters, 58
populating generated structure variables for
encoding, 59
procedure for calling C encode functions, 59
procedure for using C++ control class encode
method, 60, 66
generated print functions, 69
generated structure variables
populating for BER encoding, 45
populating for PER encoding, 59
Get Count of Bits in Encoded Message
(pe_GetMsgBitCnt), 210
Get Encode Buffer Pointer (xe_get), 164
Get Encoded Message Pointer (pe_GetMsgPtr),
210
Get Length of Encoded Message
(pe_GetMsgLen), 209
get run-time method, 109, 125
getBytelndex run-time method, 84
getBytes run-time method, 112
getCentury run-time method, 149
getContext run-time method, 84
getDay run-time method, 135
getDiff run-time method, 138
getDiffHour run-time method, 138
getDiffMinute run-time method, 138
getFirst run-time method, 125
getFraction run-time method, 137
getHour run-time method, 136
getLast run-time method, 125
getMinute run-time method, 136
getMonth run-time method, 135
GetMsgBitCnt run-time method, 97
GetMsgCopy method, 49
getMsgCopy run-time method, 85
GetMsgCopy run-time method, 91, 98
GetMsgLen run-time method, 95
GetMsgPtr method, 49
getMsgPtr run-time method, 85
GetMsgPtr run-time method, 92, 98
GetPtr run-time method, 81
getSecond run-time method, 137

ASNIC V5.3

297

getTime run-time method, 139

getUTC run-time method, 139

getYear run-time method, 135

global level attributes, 10

h command line option, 5

hasNext run-time method, 130

hasPrev run-time method, 130

header file, 5
differences between C and C++ versions, 16
sample from a C header file, 15
sample from a C++ header file, 16

hexadecimal string value specification, 40

HexDump run-time method, 90, 95

hyphens. See special characters, invalid

1 command line option, 6

import of types, 75

indexOf run-time method, 124

information objects type definition, 38

Init run-time method, 86, 92, 98

Initialize a Doubly Linked List Structure
(rtDListInit), 265

Initialize a Singly Linked List Structure
(rtSListInit), 269

Initialize a Stack Structure (rtStacklInit), 271

Initialize Context Buffer (pu_initContextBuffer),
245

Initialize Context Buffer with New Structure
(pu_newContext), 245

Initialize Context Structure (pu_initContext),
244

insert run-time method, 132

insert run-time method, 122

integer
for holding bit number, 18
size, big integer, 18

INTEGER type definition, 17

INTEGER type definition, large integer support,
17

INTEGER value specification, 40

intValue run-time method, 153

invert run-time method, 108

iSA run-time method, 86

isBiglnteger attribute, 12

isEmpty run-time method, 110, 127

isPDU attribute, 12

i1sSet run-time method, 110

iterator run-time method, 127

iteratorFrom run-time method, 128

iteratorFromLast run-time method, 128

ITU X.680 ASN.1 sstandard, 3

Jjava command line option, 5

Java package name
adding a prefix to, 6
changing, 6

large integer support type definition, 17

length run-time method, 111

library
BER run-time library, 160-208
dynamic link, 7

run time, 6
run-time common library, 251-74
linked list functions, run-time common library
rtDListAppend - Append an Item to a Doubly
Linked List, 265, 266, 267, 268, 269
rtDListlnit - Initialize a Doubly Linked List
Structure, 265
rtSListAppend - Append an Item to a Singly
Linked List, 270
rtSListCreate - Create a Singly Linked List
Structure, 270
rtSListInit - Initialize a Singly Linked List
Structure, 269
rtStackCreate - Create a Stack Structure, 271
rtStacklInit - Initialize a Stack Structure, 271
rtStackPop - Pop an Element from the Stack,
272
rtStackPush - Push an Element onto the Stack,
272
linking generated code, 6
list command line option, 6
list-based SEQUENCE OF type, generating, 30
Log Error Information (xu_log_error), 205
Log Using Callback Function
(rtErrLogUsingCB), 255
lowercase letters, when to use, 13
macro
ROSE OPERATION, 3, 39
ROSE OPERATION and ERROR, 76
SNMP OBJECT TYPE), 78
Match Tag (xd_match), 180
memAlloc run-time method, 102
memFreeAll run-time method, 102
memory management
allocating variables on the stack, 45
use run-time library functions, 46
using C malloc and free C functions, 46
memory management functions
xu_alloc_array - Allocate Elements for an
Array, 202
xu_freeall - Free Dynamic Memory, 202
xu_malloc - Allocate Dynamic Memory, 201
memory management functions, run-time
common library
rtMemAlloc - Allocate Dynamic Memory, 253
rtMemFree - Release Dynamic Memory, 253
memory management, dynamic
performance considerations in generated BER
decode functions, 57
performance considerations in generated PER
decode functions, 68
message buffer argument, 42
messages
BER encoded, diagram, 46
repetitive BER encoding, 50
repetitive PER encoding, 63
method
contents, 70
generated, 43

ASNIC V5.3

298

GetMsgCopy, 49
getMsgPtr, 49
module level attributes, 10
module, specification, 9
Move to Next Element (xd NextElement), 195
name attribute, 10, 12
named bit constants, 20
Named Bits BIT STRING type definition, 20
next run-time method, 131
nodecode command line option, 5
noencode command line option, 5
nolndefLen command line option, 5
noPDU attribute, 11
NULL type definition, 23
nullValue run-time method, 156
o command line option, 6
object identifier helper functions, run-time
common library
rtPrintOID - Print Object Identifier Structure,
264
rtSetOID - Populate Object Identifier
Structure, 264
OBIJECT IDENTIFIER type definition, 23
object identifier value specification, 41
OCTET STRING type definition
Dynamic, 21
Static (sized), 22
octet, for holding bit string contents, 18
octStrValue run-time method, 155, 158
oidValue run-time method, 156
Open Type type definition, 35
openTypeValue run-time method, 158
operator ASN1TDynBitStr run-time method, 119
operator|[] run-time method, 126
operator< run-time method, 147
operator<= run-time method, 147
operator= run-time method, 146
operator== run-time method, 147
operator> run-time method, 147
operator>= run-time method, 147
OPTIONAL keyword in SEQUENCE type
definition, 27
options, decommissioned, 6
output formatting functions
xu_dump - Dump Encoded ASN.1 Message,
203
xu_fdump - Dump Encoded ASN.1 Message
to a Text File, 204
xu_hexdump - Dump Binary Data, 204
Output Trace Messages (rtdiag), 254
Packed Encoding Rules, 1, 5, 95, 209
parameterized type definition, 37
parse errors, finding by generating a listing, 6
parseString run-time method, 145
ParseTagLen run-time method, 94
parsing process
diagram of significant events, 70
events passed to user, 70

pd_16BitConstrainedString - Decode 16-bit
Character String, 239

pd_32BitConstrainedString - Decode 32-bit
Character String, 241

pd_Biglnteger - Decode a Big Integer, 233

pd_bit - Decode a Single Bit Value, 228

pd_bits - Decode Bit Values, 229

pd_BitString - Decode a Bit String, 234

pd_BMPString - Decode BMP Character String,
240

pd_byte align - Align Buffer on a Byte
Boundary, 229

pd_Conslnteger - Decode a Constrained Integer,
231

pd_ConstrainedString - Decode 8-bit Character
String, 238

pd_ConsUnsigned - Decode a Constrained
Unsigned Integer, 232

pd_ConsWholeNumber - Decode a Constrained
‘Whole Number, 230

pd_DynBitString - Decode a Dynamic Bit
String, 235

pd_DynOctetString - Decode a Dynamic Octet
String, 236

pd_Length - Decode a Length Determinant, 231

pd_Objectldentifier - Decode Object Identifier,
237

pd_OctetString - Decode an Octet String, 235

pd_OpenType - Decode Open Type, 242

pd_OpenTypeExt - Decode Open Type
Extension, 242

pd_Real - Decode Real, 237

pd_SmallNonNegWholeNumber - Decode a
Small Non-negative Whole Number, 230

pd_UnconsInteger - Decode an Unconstrained
Integer, 232

pd_UnconsUnsigned - Decode an Unconstrained
Unsigned Integer, 233

pd_UniversalString - Decode 32-bit Character
String, 241

pe_16BitConstrainedString - Encode 16-bit
Character String, 222

pe_2sCompBinlInt - Encode a Two's
Complement Binary Integer, 213

pe_32BitConstrainedString - Encode 32-bit
Character String, 223

pe_Biglnteger - Encode Big Integer, 218

pe_bit - Encode a Single Bit Value, 211

pe_bits - Encode Bit Values, 211

pe_BitString - Encode a Bit String, 218

pe_BMPString - Encode BMP Character String,
223

pe_byte align - Align Encode Buffer on a Byte
Boundary, 212

pe_CheckBuffer - Check Encode Buffer Size,
226

pe_Conslnteger - Encode a Constrained Integer,
215

ASNIC V5.3

299

pe_ConstrainedString - Encode 8-bit Character
String, 220
pe_ConsUnsigned - Encode a Constrained
Unsigned Integer, 217
pe_ConsWholeNumber - Encode a Constrained
Whole Number, 214
pe_ExpandBuffer - Expand Encode Buffer, 226
pe_GetMsgBitCnt - Get Count of Bits in
Encoded Message, 210
pe_GetMsgLen - Get Length of Encoded
Message, 209
pe_GetMsgPtr - Get Encoded Message Pointer,
210
pe_Length - Encode a Length Determinant, 215
pe_NonNegBinlnt - Encode a Non-negative
Binary Integer, 213
pe_Objectldentifier - Encode Object Identifier,
220
pe_octets - Encode Octets, 212
pe_OctetString - Encode an Octet String, 219
pe_OpenType - Encode Open Type, 225
pe_OpenTypeExt - Encode Open Type
Extension, 225
pe_Real - Encode Real, 219
pe_SmallNonNegWholeNumber - Encode a
Small Non-negative Whole Number, 214
pe_Unconslnteger - Encode an Unconstrained
Integer, 216
pe_UnconsUnsigned - Encode an Unconstrained
Unsigned Integer, 217
pe_UniversalString - Encode 32-bit Character
String, 224
PER C decode functions
ASN.1 8-bit Character String Decode
Function, 238
pd_16BitConstrainedString - Decode 16-bit
Character String, 239
pd_32BitConstrainedString - Decode 32-bit
Character String, 241
pd_Biglnteger - Decode a Big Integer, 233
pd_bit - Decode a Single Bit Value, 228
pd_bits - Decode Bit Values, 229
pd_BitString - Decode a Bit String, 234
pd_BMPString - Decode BMP Character
String, 240
pd_byte align - Align Buffer on a Byte
Boundary, 229
pd_ConslInteger - Decode a Constrained
Integer, 231
pd_ConstrainedString - Decode 8-bit
Character String, 238
pd_ConsUnsigned - Decode a Constrained
Unsigned Integer, 232
pd_ConsWholeNumber - Decode a
Constrained Whole Number, 230
pd_DynBitString - Decode a Dynamic Bit

pd_Length - Decode a Length Determinant,
231

pd_Objectldentifier - Decode Object
Identifier, 237

pd_OctetString - Decode an Octet String, 235

pd_OpenType - Decode Open Type, 242

pd_OpenTypeExt - Decode Open Type
Extension, 242

pd_Real - Decode Real, 237

pd_SmallNonNegWholeNumber - Decode a
Small Non-negative Whole Number, 230

pd_Unconslnteger - Decode an Unconstrained
Integer, 232

pd_UnconsUnsigned - Decode an
Unconstrained Unsigned Integer, 233

pd_UniversalString - Decode 32-bit Character
String, 241

PER C encode functions

ASN.1 8-bit Character String Encode
Function, 221

pe_16BitConstrainedString - Encode 16-bit
Character String, 222

pe_2sCompBinlnt - Encode a Two's
Complement Binary Integer, 213

pe_32BitConstrainedString - Encode 32-bit
Character String, 223

pe_Biglnteger - Encode Big Integer, 218

pe_bit - Encode a Single Bit Value, 211

pe_bits - Encode Bit Values, 211

pe_BitString - Encode a Bit String, 218

pe_BMPString - Encode BMP Character
String, 223

pe_byte align - Align Encode Buffer on a
Byte Boundary, 212

pe_CheckBuffer - Check Encode Buffer Size,
226

pe_Conslnteger - Encode a Constrained
Integer, 215

pe_ConstrainedString - Encode 8-bit
Character String, 220

pe_ConsUnsigned - Encode a Constrained
Unsigned Integer, 217

pe_ConsWholeNumber - Encode a
Constrained Whole Number, 214

pe_ExpandBuffer - Expand Encode Buffer,
226

pe_GetMsgBitCnt - Get Count of Bits in
Encoded Message, 210

pe_GetMsgLen - Get Length of Encoded
Message, 209

pe_GetMsgPtr - Get Encoded Message
Pointer, 210

pe_Length - Encode a Length Determinant,
215

pe_NonNegBinlnt - Encode a Non-negative
Binary Integer, 213

String, 235 pe_Objectldentifier - Encode Object Identifier,
pd_DynOctetString - Decode a Dynamic Octet 220
String, 236 pe_octets - Encode Octets, 212
ASNIC V5.3 300

pe_OctetString - Encode an Octet String, 219
pe_OpenType - Encode Open Type, 225
pe_OpenTypeExt - Encode Open Type
Extension, 225
pe_Real - Encode Real, 219
pe_SmallNonNegWholeNumber - Encode a
Small Non-negative Whole Number, 214
pe_Unconslnteger - Encode an Unconstrained
Integer, 216
pe_UnconsUnsigned - Encode an
Unconstrained Unsigned Integer, 217
pe_UniversalString - Encode 32-bit Character
String, 224
PER C utility functions
pu_addSizeConstraint - Add Size Constraint,
246
pu_bindump - Dump Binary Data, 249
pu_freeContext - Release All Dynamic
Memory, 246
pu_hexdump - Dump Hexadecimal Data, 249
pu_initContext - Initialize Context Structure,
244
pu_initContextBuffer - Initialize Context
Buffer, 245
pu_newContext - Initialize Context Buffer
with New Structure, 245
pu_setl6BitCharSet - Set 16-bit Character Set,
248
pu_set32BitCharSet - Set 32-bit Character Set,
248
pu_setCharSet - Set Character Set, 247
per command line option, 5
PER encode function
format of generated prototype, 42
procedure for calling in C, 59
PER run-time library, 208-51
PER run-time library functions
PER C decode functions, 22843
PER C encode functions, 209-27
PER C utility functions, 244-51
pkgname command line option, 6
pkgpfx command line option, 6
platform.mk, editing, 8
Pop an Element from the Stack (rtStackPop), 272
Populate Object Identifier Structure (rtSetOID),
264
populating generated structure variables
for BER encoding, 45
for PER encoding, 59
Porting Run-time Code to Other Platforms, 7—8

prefix
%ASN, 13
adding to a Java package name, 6
ASNIC , 16
ASNID , 42
ASNIE , 42
ASNIT , 17,33
ASNI1V_, 40

enumPrefix, 11, 12, 23

for BER/DER decode functions, 197
for big integers, 167, 183, 218, 234
for error code constants, 161
for generated BER decode function, 52
for generated BER encode function, 44
for generated C/C++ source code, 69
for generated PER decode function, 64
for generated PER encode function, 58
for PER encode, decode, and utility functions,
209
for PER generated prototypes, 42
for PER prototypes, 16
for run-time common library functions, 251
for Tag Mask, 162
for Tag Value, 162
for universal ASN.1 IDs, 162
type (for attirubtes specified in more than one
section, 9
typePrefix, 11, 12
valuePrefix, 11
prev run-time method, 131
Print ASN.1 Values to Standard Output
rtPrint16BitCharStr, 263
rtPrint32BitCharStr, 263
rtPrintBitStr, 263
rtPrintBoolean, 263
rtPrintCharStr, 263
rtPrintInteger, 263
rtPrintOctStr, 263
rtPrintOID, 263
rtPrintOpenType, 263
rtPrintReal, 263
rtPrintUnsigned, 263
Print ASN.1 Values to Standard Output
(rtPrint<type>), 263
print command line option, 5
Print Error Information (rtErrPrint), 255
Print Error Information (xu_perror), 205
print functions
generated, 69
source file for, 5
print functions, diagnostic
pu_bindump - Dump Binary Data, 249
pu_hexdump - Dump Hexadecimal Data, 249
print functions, run-time common library
rtBitStrToString - Convert ASN.1 Bit String
Value to String, 260
rtBoolToString - Convert ASN.1 Boolean
Value to String, 259
rtErrAdd<type>Param - Add Typed Error
Parameters to Error Information, 257
rtErrFreeParams - Free Error Parameter
Memory, 257
rtErrLogUsingCB - Log Using Callback
Function, 255
rtErrPrint - Print Error Information, 255
rtErrSetData - Set Error Information, 256
rtIntToString - Convert ASN.1 Integer Value
to String, 259

ASNIC V5.3

301

rtOctStrToString - Convert ASN.1 Octet
String Value to String, 261
rtOIDStrToString - Convert ASN.1 Object
Identifier Value to String, 261
rtPrint<type> - Print ASN.1 Values to
Standard Output, 263
rtTagStrToString - Convert ASN.1 Tag to
String, 262
rtUIntToString - Convert ASN.1 Unsigned
Integer Value to String, 260
Print Object Identifier Structure (rtPrintOID),
264
PrintErrorInfo run-time method, 82, 87
production level attributes, 11
production, specification, 9
pu_addSizeConstraint - Add Size Constraint, 246
pu_bindump - Dump Binary Data, 249
pu_freeContext - Release All Dynamic Memory,
246
pu_hexdump - Dump Hexadecimal Data, 249
pu_initContext - Initialize Context Structure, 244
pu_initContextBuffer - Initialize Context Buffer,
245
pu_newContext - Initialize Context Buffer with
New Structure, 245
pu_setl6BitCharSet - Set 16-bit Character Set,
248
pu_set32BitCharSet - Set 32-bit Character Set,
248
pu_setCharSet - Set Character Set, 247
Push an Element onto the Stack (rtStackPush),
272
Read Contents from File (xdf ReadContents),
199
Read Past End-of-Context (xdf ReadPastEOC),
199
REAL type definition, 24
realValue run-time method, 157
Release All Dynamic Memory (pu_freeContext
), 246
Release Dynamic Memory (rtMemFree), 253
Remote Operations Service Element (ROSE), 76
remove run-time method, 131
remove run-time method, 122
removeFirst run-time method, 123
removeLast run-time method, 123
ROSE
decode process, 77
encode process, 77
ERROR MACRO, 78
ROSE OPERATION and ERROR, 76
ROSE OPERATION macro, 3, 39
rtBigIntCopy, 285
rtBigIntDigitsNum, 283
rtBigIntFastCopy, 286
rtBiglntlnit, 280
rtBigIntToString, 284
rtBitStrToString - Convert ASN.1 Bit String
Value to String, 260

rtBMPToCString - Convert BMP to C String,
273

rtBMPToNewCString - Convert BMP to New C
String, 274

rtBoolToString - Convert ASN.1 Boolean Value
to String, 259

rtCompareBiglInt, 285

rtCToBMPString - Convert C to 16-Bit BMP
String, 273

rtCToUCSString - Convert C to 32-Bit String,
274

rtdiag - Output Trace Messages, 254

rtDListAppend - Append an Item to a Doubly
Linked List, 265, 266, 267, 268, 269

rtDListInit - Initialize a Doubly Linked List
Structure, 265

rtErrAdd<type>Param - Add Typed Error
Parameters to Error Information, 257

rtErrFreeParams - Free Error Parameter
Memory, 257

rtErrLogUsingCB - Log Using Callback
Function, 255

rtErrPrint - Print Error Information, 255

rtErrSetData - Set Error Information, 256

rtGetBiglnt, 282

rtGetBiglntLen, 282

rtIntToString - Convert ASN.1 Integer Value to
String, 259

rtMemAlloc - Allocate Dynamic Memory, 253

rtMemFree - Release Dynamic Memory, 253

rtOctStrToString - Convert ASN.1 Octet String
Value to String, 261

rtOIDStrToString - Convert ASN.1 Object
Identifier Value to String, 261

rtPrint<type> - Print ASN.1 Values to Standard
Output, 263

rtPrint16BitCharStr, 263

rtPrint32BitCharStr, 263

rtPrintBigint, 284

rtPrintBitStr, 263

rtPrintBoolean, 263

rtPrintCharStr, 263

rtPrintInteger, 263

rtPrintOctStr, 263

rtPrintOID, 263

rtPrintOID - Print Object Identifier Structure,
264

rtPrintOpenType, 263

rtPrintReal, 263

rtPrintUnsigned, 263

rtSetBytesToBiglnt, 281

rtSetDiag - Set Diagnostic Tracing, 254

rtSetInt64ToBiglnt, 281

rtSetOID - Populate Object Identifier Structure,
264

rtSetStrToBiglnt, 280

rtSListAppend - Append an Item to a Singly
Linked List, 270

ASNIC V5.3

302

rtSListCreate - Create a Singly Linked List
Structure, 270

rtSListInit - Initialize a Singly Linked List
Structure, 269

rtStackCreate - Create a Stack Structure, 271

rtStacklInit - Initialize a Stack Structure, 271

rtStackPop - Pop an Element from the Stack, 272

rtStackPush - Push an Element onto the Stack,
272

rtTagStrToString - Convert ASN.1 Tag to String,
262

rtUCSToCString - Convert 32-bit String to C
String, 275

rtUCSToNewCString - Convert 32-bit String to
New C String, 276

rtUCSToWCSString - Convert a 32-bits
Encoded String to a Wide Character String,
276

rtUIntToString - Convert ASN.1 Unsigned
Integer Value to String, 260

rtUTF8ToWCS - Convert a UTF-8 Encoded
String to a Wide Character String, 278

rtValidateUTFS - Validate UTF-8 Encoded
String, 278

rtWCSToUCSString - Convert Wide Character
String to 32-bits Encoded String, 277

rtWCSToUTFS - Convert Wide Character String
to UTF-8 Encoded String, 277

rules
Basic Encoding Rules, 1, 5, 89, 91, 161
Distinguished Encoding Rules, 5
Packed Encoding Rules, 5, 95, 209

run-time class reference, ASN.1 C++, 75-160

run-time classes
ASN1BERDecodeBuffer class, 93
ASN1BEREncodeBuffer class, 91
ASN1BERMessageBuffer class, 89
ASNI1CBitStr class, 104
ASN1CGeneralizedTime class, 148
ASN1Context class, 81
ASNI1CSeqOfList class, 121
ASN1CSeqOfListlterator class, 130
ASNI1CTime class, 134
ASNI1CType class, 101
ASNICUTCTime class, 150
ASN1ErrorHandler class, 160
ASNI1MessageBuffer class, 83
ASNI1NamedEventHandler class, 152
ASNI1PERDecodeBuffer class, 100
ASNI1PEREncodeBuffer class, 97
ASNI1PERMessageBuffer class, 95

run-time code, porting to other platforms, 7-8

run-time common library functions
character string conversion functions, 273-74
diagnostic trace functions, 254-55
error formatting and print functions, 255—

58

formatted printing functions, 102
linked list and stack utility functions, 265-73

memory management functions, 251-54,
251-54
object identifier helper functions, 264
run-time error reporting functions
xu_fmtErrMsg - Format Error Message, 206
xu_log error - Log Error Information, 205
xu_perror - Print Error Information, 205
run-time library functions, BER, 160-208
run-time library, ASN.1, 6
SAX, 70
semantic errors, 13
SEQUENCE OF type definition
basic mapping, 29
dynamic, 30
generating temporary types, 31
list-based SEQUENCE OF type, 30
other constructed types, 31
static (sized), 30
SEQUENCE type definition
basic mapping, 24
DEFAULT keyword, 28
extension elements, 28
OPTIONAL keyword, 27
unnamed elements, 27
Set 16-bit Character Set (pu_set16BitCharSet),
248
Set 32-bit Character Set (pu_set32BitCharSet),
248
Set Character Set (pu_setCharSet), 247
Set Decode Buffer Pointer (xd_setp), 178
Set Diagnostic Tracing (rtSetDiag), 254
Set Encode Buffer Pointer (xe_set), 163
Set Error Information (rtErrSetData), 256
SET OF type definition, 32
set run-time method, 132
set run-time method, 107, 126
SET type definition, 29
setCentury run-time method, 149
setDay run-time method, 141
setDiff run-time method, 143, 144
setDiffHour run-time method, 143
setErrorHandler run-time method, 87
setFraction run-time method, 142
setHour run-time method, 141
setMinute run-time method, 142
setMonth run-time method, 140
setSecond run-time method, 142
setTime run-time method, 145
SetTrace run-time method, 96
setUTC run-time method, 144
setYear run-time method, 140, 151
shiftLeft run-time method, 118
shiftRight run-time method, 118
size run-time method, 111, 127
sizing constants, asnltype.h include file, 162
SNMP OBJECT TYPE macro, 78
source code, ANSI standard, 7
source file
for encode/decode functions, 5

ASNIC V5.3

303

for generated print functions, 5
sourceFile attribute, 11
special characters, invalid, 13
specification
attribute in more thanone section, 9
module, 9
production, 9
stack utility functions, run-time common library
rtDListAppend - Append an Item to a Doubly
Linked List, 265, 266, 267, 268, 269
rtDListInit - Initialize a Doubly Linked List
Structure, 265
rtSLisAppend - Append an Item to a Singly
Linked List, 270
rtSListCreate - Create a Singly Linked List
Structure, 270
rtSListInit - Initialize a Singly Linked List
Structure, 269
rtStackCreate - Create a Stack Structure, 271
rtStacklnit - Initialize a Stack Structure, 271
rtStackPop - Pop an Element from the Stack,
272
rtStackPush - Push an Element onto the Stack,
272
standard, ITU X 680, 3
startElement event, 70
startElement run-time method, 152
Static (sized) BIT STRING type definition, 19
Static (sized) OCTET STRING type definition,
22
static (sized) SEQUENCE OF type definition, 30
static encode buffer
for BER encoding, 46, 48, 49
for PER encoding, 62
storage attribute, 10, 12
syntax errors, 13
syntax, resulting in limited or no C/C++ code,
289
tagging value and mask constants, asnltype.h
include file, 161
temporary types, generating for SEQUENCE OF
type definition, 31
Time String types type definition, 36
trace command line option, 5
tree, directory, 8
type definition
bit string, 18
boolean, 17
C Mapping, 22
C++ Mapping, 23
Character String types, 35
CHOICE, 32
DEFAULT keyword in SEQUENCE, 28
Dynamic BIT STRING, 18
Dynamic OCTET STRING, 21
Dynamic SEQUENCE OF, 30
ENUMERATED, 22
extension elements in SEQUENCE, 28
External Type, 37

generating list-based SEQUENCE OF type, 30
generating temporary types for SEQUENCE
OF, 31
information objects, 38
INTEGER, 17
Named Bits, 20
NULL, 23
OBJECT IDENTIFIER, 23
octet string, 21
Open Type, 35
OPTIONAL keyword in SEQUENCE, 27
parameterized types, 37
populating generated choice structure, 34
REAL, 24
SEQUENCE, 24-29
SEQUENCE OF, 29-32
SEQUENCE OF type elements in other
constructed types, 31
SET, 29
SET OF, 32
Static (sized) BIT STRING, 19
Static (sized) OCTET STRING, 22
Static (sized) SEQUENCE OF, 30
Time String types, 36
unnamed elements in SEQUENCE, 27
value specifications, 40—41
typePrefix attribute, 11, 12
types, import and export, 75
ulntValue run-time method, 154
unnamed elements in SEQUENCE type
definition, 27
unusedBitsInLastUnit run-time method, 119
uppercase letters, when to use, 13
UTF-8 encoded string
converting to WCS, 278
validating, 278
UTEF-8 string data, 36
utility functions, BER/DER C
memory management functions, 201
output formatting functions, 203
run-time error reporting functions, 205
utility functions, PER C
constraint specification functions, 246
diagnostic printing functions, 249
encode/decode context initialization, 244
v51 command line option, 6
Validate UTF-8 Encoded String
(rtValidateUTFS8), 278
value specification
binary string, 40
BOOLEAN, 40
character string, 41
hexadecimal string, 40
INTEGER, 40
object identifier, 41
type definition, 4041
valuePrefix attribute, 11
variable type field, 39
version 5.1 compatible code, generating, 6

ASNIC V5.3

304

warnings command line option, 6

warnings, output information, 6

wide character string, converting to 32-bits
Encoded String, 277

wide character string, converting to UTF-8, 277

xd_16BitCharStr - Decode 16-Bit Character
String, 188

xd_32BitCharStr - Decode 32-Bit Character
String, 188

xd_bigint - Decode Big Integer, 183

xd_bitstr - Decode BIT STRING, 184

xd bitstr_s - Decode BIT STRING (static), 184

xd_boolean - Decode BOOLEAN, 181

xd_charstr - Decode Character String, 187

xd_chkend - Check for End of Context, 193

xd_count - Count Message Components, 194

xd_enum - Decode ENUMERATED, 189

xd_indeflen - Calculate Indefinite Length, 196

xd_integer - Decode INTEGER, 181

xd_match - Match Tag, 180

xd_memcpy - Copy Decoded Contents, 194

xd_NextElement - Move to Next Element, 195

xd_null - Decode NULL, 190

xd_objid - Decode OBJECT IDENTIFIER, 190

xd_octstr - Decode OCTET STRING, 185

xd octstr_s - Decode OCTET STRING (static),
186

xd_OpenType - Decode Open Type, 192

xd_OpenTypeExt - Decode Open Type
Extension, 193

xd_real - Decode REAL, 191

xd_setp - Set Decode Buffer Pointer, 178

xd_tag len - Decode Tag and Length, 179

xd _unsigned - Decode Unsigned INTEGER, 182

xdf len - Decode Length from File, 197

xdf ReadContents - Read Contents from File,
199

xdf ReadPastEOC - Read Past End-of-Context,
199

xdf tag - Decode Tag from File, 197

xdf TagAndLen - Decode Tag and Length from
File, 198

xe_16BitCharStr - Encode 16-Bit Character
String, 169

xe_32BitCharStr - Encode 32-Bit Character
String, 170

xe_bigint - Encode Big Integer, 167

xe_bitstr - Encode BIT STRING, 167

xe_boolean - Encode BOOLEAN, 165

xe_charstr - Encode Character String, 169

xe_derCanonicalSort - DER Canonical Sort, 176

xe_enum - Encode ENUMERATED, 171

xe_expandBuffer - Expand Dynamic Encode
Buffer, 174

xe_free - Free Encoder Dynamic Memory, 174

xe_get - Get Encode Buffer Pointer, 164

xe_integer - Encode INTEGER, 165

xe_len - Copy Bytes to Encode Buffer, 175

xe_memcpy - Copy Bytes to Encode Buffer, 175

xe_null - Encode NULL, 171

xe_objid - Encode OBJECT IDENTIFIER, 172

xe_octstr - Encode OCTET STRING, 168

xe_OpenType - Encode Open Type, 173

xe_real - Encode Real, 172

xe_set - Set Encode Buffer Pointer, 163

xe_tag len - Encode Tag and Length, 164

xe_TagAndIndefLen - Encode Tag and
Indefinite Length, 177

xe_unsigned - Encode Unsigned INTEGER, 166

xu_alloc array - Allocate Elements for an Array,
202

xu_dump - Dump Encoded ASN.1 Message, 203

xu_fdump - Dump Encoded ASN.1 Message to a
Text File, 204

xu_fmtErrMsg - Format Error Message, 206

xu_freeall - Free Dynamic Memory, 202

xu_hexdump - Dump Binary Data, 204

xu_log error - Log Error Information, 205

xu_malloc - Allocate Dynamic Memory, 201

xu_perror - Print Error Information, 205

ASNIC V5.3

305

