
AM335x PRU-ICSS Reference Guide

Literature Number: SPRUHF8A
May 2012–Revised June 2013

x0143074
Typewritten Text
Capabilities not supported by TI but "Community" support may be offered at
BeagleBoard.org/discuss

http://beagleboard.org/discuss

Contents

1 Introduction .. 13
1.1 Features ... 15

2 Integration .. 16
2.1 PRU-ICSS Connectivity Attributes ... 17
2.2 PRU-ICSS Clock and Reset Management ... 17
2.3 PRU-ICSS Pin List ... 18

3 PRU-ICSS Register Overview .. 19
3.1 Local Memory Map .. 19
3.2 Global Memory Map ... 20

4 PRU-ICSS Internal Pinmux Overview .. 21
5 PRU ... 23

5.1 Introduction ... 23
5.2 Functional Description ... 25
5.3 Basic Programming Model .. 36
5.4 PRUSS_PRU_CTRL Registers .. 75
5.5 PRU_ICSS_PRU_DEBUG Registers ... 85

6 Interrupt Controller .. 152
6.1 Introduction .. 152
6.2 Functional Description ... 153
6.3 Basic Programming Model .. 156
6.4 PRU_ICSS_INTC Registers .. 156

7 PRU-ICSS Interrupts ... 222
8 Universal Asynchronous Receiver/Transmitter .. 224

8.1 Introduction .. 224
8.2 Functional Description ... 226
8.3 Registers .. 237

9 Industrial Ethernet Peripheral (IEP) .. 256
9.1 Introduction .. 256
9.2 Functional Description ... 256
9.3 PRU_ICSS_IEP Registers .. 256

10 CFG .. 272
10.1 PRU_ICSS_CFG Registers ... 272

2 SPRUHF8A–May 2012–Revised June 2013

List of Figures
1 Block Diagram ... 14
2 PRU-ICSS Integration... 16
3 PRU-ICSS Internal Signal Muxing: pin_mux_sel[0]... 21
4 PRU-ICSS Internal Signal Muxing: pin_mux_sel[1]... 22
5 PRU Block Diagram ... 24
6 PRU R31 (GPI) Direct Connection Mode Block Diagram .. 28
7 PRU R31 (GPI) 16-Bit Parallel Capture Mode Block Diagram .. 28
8 PRU R31 (GPI) 28-Bit Shift Mode... 29
9 PRU R30 (GPO) Direct Connection Mode Block Diagram... 30
10 PRU R30 (GPO) Shift Out Mode Block Diagram.. 30
11 Integration of the PRU and MAC .. 32
12 Multiply-Only Mode Functional Diagram.. 33
13 Multiply and Accumulate Mode Functional Diagram.. 33
14 Integration of PRU and Scratch Pad.. 34
15 PRU Peripherals Mapped to PRU Transfer Bus .. 68
16 Possible Implementations of a 32-Byte Data Window Peripheral... 68
17 PRU Registers Mapped into Multiple Internal Device Registers .. 69
18 CONTROL Register ... 76
19 STATUS Register ... 78
20 WAKEUP_EN Register ... 79
21 CYCLE Register ... 80
22 STALL Register .. 81
23 CTBIR0 Register... 82
24 CTBIR1 Register... 83
25 CTPPR0 Register ... 84
26 CTPPR1 Register ... 85
27 GPREG0 Register ... 88
28 GPREG1 Register ... 89
29 GPREG2 Register ... 90
30 GPREG3 Register ... 91
31 GPREG4 Register ... 92
32 GPREG5 Register ... 93
33 GPREG6 Register ... 94
34 GPREG7 Register ... 95
35 GPREG8 Register ... 96
36 GPREG9 Register ... 97
37 GPREG10 Register ... 98
38 GPREG11 Register ... 99
39 GPREG12 Register .. 100
40 GPREG13 Register .. 101
41 GPREG14 Register .. 102
42 GPREG15 Register .. 103
43 GPREG16 Register .. 104
44 GPREG17 Register .. 105
45 GPREG18 Register .. 106
46 GPREG19 Register .. 107
47 GPREG20 Register .. 108

3SPRUHF8A–May 2012–Revised June 2013

48 GPREG21 Register .. 109
49 GPREG22 Register .. 110
50 GPREG23 Register .. 111
51 GPREG24 Register .. 112
52 GPREG25 Register .. 113
53 GPREG26 Register .. 114
54 GPREG27 Register .. 115
55 GPREG28 Register .. 116
56 GPREG29 Register .. 117
57 GPREG30 Register .. 118
58 GPREG31 Register .. 119
59 CT_REG0 Register .. 120
60 CT_REG1 Register .. 121
61 CT_REG2 Register .. 122
62 CT_REG3 Register .. 123
63 CT_REG4 Register .. 124
64 CT_REG5 Register .. 125
65 CT_REG6 Register .. 126
66 CT_REG7 Register .. 127
67 CT_REG8 Register .. 128
68 CT_REG9 Register .. 129
69 CT_REG10 Register... 130
70 CT_REG11 Register... 131
71 CT_REG12 Register... 132
72 CT_REG13 Register... 133
73 CT_REG14 Register... 134
74 CT_REG15 Register... 135
75 CT_REG16 Register... 136
76 CT_REG17 Register... 137
77 CT_REG18 Register... 138
78 CT_REG19 Register... 139
79 CT_REG20 Register... 140
80 CT_REG21 Register... 141
81 CT_REG22 Register... 142
82 CT_REG23 Register... 143
83 CT_REG24 Register... 144
84 CT_REG25 Register... 145
85 CT_REG26 Register... 146
86 CT_REG27 Register... 147
87 CT_REG28 Register... 148
88 CT_REG29 Register... 149
89 CT_REG30 Register... 150
90 CT_REG31 Register... 151
91 Interrupt Controller Block Diagram .. 153
92 Flow of System Interrupts to Host ... 154
93 REVID Register .. 159
94 CR Register... 160
95 GER Register... 161
96 GNLR Register ... 162

4 SPRUHF8A–May 2012–Revised June 2013

97 SISR Register .. 163
98 SICR Register .. 164
99 EISR Register .. 165
100 EICR Register .. 166
101 HIEISR Register.. 167
102 HIDISR Register ... 168
103 GPIR Register .. 169
104 SRSR0 Register.. 170
105 SRSR1 Register.. 171
106 SECR0 Register.. 172
107 SECR1 Register.. 173
108 ESR0 Register.. 174
109 ERS1 Register.. 175
110 ECR0 Register ... 176
111 ECR1 Register ... 177
112 CMR0 Register ... 178
113 CMR1 Register ... 179
114 CMR2 Register ... 180
115 CMR3 Register ... 181
116 CMR4 Register ... 182
117 CMR5 Register ... 183
118 CMR6 Register ... 184
119 CMR7 Register ... 185
120 CMR8 Register ... 186
121 CMR9 Register ... 187
122 CMR10 Register ... 188
123 CMR11 Register ... 189
124 CMR12 Register ... 190
125 CMR13 Register ... 191
126 CMR14 Register ... 192
127 CMR15 Register ... 193
128 HMR0 Register ... 194
129 HMR1 Register ... 195
130 HMR2 Register ... 196
131 HIPIR0 Register .. 197
132 HIPIR1 Register .. 198
133 HIPIR2 Register .. 199
134 HIPIR3 Register .. 200
135 HIPIR4 Register .. 201
136 HIPIR5 Register .. 202
137 HIPIR6 Register .. 203
138 HIPIR7 Register .. 204
139 HIPIR8 Register .. 205
140 HIPIR9 Register .. 206
141 SIPR0 Register ... 207
142 SIPR1 Register ... 208
143 SITR0 Register ... 209
144 SITR1 Register ... 210
145 HINLR0 Register ... 211

5SPRUHF8A–May 2012–Revised June 2013

146 HINLR1 Register ... 212
147 HINLR2 Register ... 213
148 HINLR3 Register ... 214
149 HINLR4 Register ... 215
150 HINLR5 Register ... 216
151 HINLR6 Register ... 217
152 HINLR7 Register ... 218
153 HINLR8 Register ... 219
154 HINLR9 Register ... 220
155 HIER Register .. 221
156 UART Block Diagram.. 225
157 UART Clock Generation Diagram ... 226
158 Relationships Between Data Bit, BCLK, and UART Input Clock .. 227
159 UART Protocol Formats... 229
160 UART Interface Using Autoflow Diagram ... 232
161 Autoflow Functional Timing Waveforms for UARTn_RTS ... 233
162 Autoflow Functional Timing Waveforms for UARTn_CTS ... 233
163 UART Interrupt Request Enable Paths ... 235
164 Receiver Buffer Register (RBR).. 238
165 Transmitter Holding Register (THR) ... 239
166 Interrupt Enable Register (IER) .. 240
167 Interrupt Identification Register (IIR)... 241
168 FIFO Control Register (FCR) ... 243
169 Line Control Register (LCR) .. 244
170 Modem Control Register (MCR) ... 246
171 Line Status Register (LSR) ... 247
172 Modem Status Register (MSR)... 250
173 Scratch Pad Register (SCR).. 251
174 Divisor LSB Latch (DLL) .. 252
175 Divisor MSB Latch (DLH) ... 252
176 Revision Identification Register 1 (REVID1).. 253
177 Revision Identification Register 2 (REVID2).. 253
178 Power and Emulation Management Register (PWREMU_MGMT).. 254
179 Mode Definition Register (MDR) ... 255
180 GLOBAL_CFG Register... 258
181 GLOBAL_STATUS Register.. 259
182 COMPEN Register... 260
183 COUNT Register ... 261
184 CMP_CFG Register ... 262
185 CMP_STATUS Register .. 263
186 CMP0 Register ... 264
187 CMP1 Register ... 265
188 CMP2 Register ... 266
189 CMP3 Register ... 267
190 CMP4 Register ... 268
191 CMP5 Register ... 269
192 CMP6 Register ... 270
193 CMP7 Register ... 271
194 REVID Register .. 273

6 SPRUHF8A–May 2012–Revised June 2013

195 SYSCFG Register.. 274
196 GPCFG0 Register.. 275
197 GPCFG1 Register.. 277
198 CGR Register... 279
199 ISRP Register .. 281
200 ISP Register .. 282
201 IESP Register .. 283
202 IECP Register .. 284
203 PMAO Register... 285
204 MII_RT Register.. 286
205 IEPCLK Register ... 287
206 SPP Register ... 288
207 PIN_MX Register... 289

7SPRUHF8A–May 2012–Revised June 2013

List of Tables
1 PRU-ICSS Connectivity Attributes .. 17
2 PRU-ICSS Clock Signals ... 17
3 PRU-ICSS Pin List .. 18
4 Local Instruction Memory Map... 19
5 Local Data Memory Map ... 19
6 Global Memory Map... 20
7 PRU-ICSS Internal Signal Muxing: pin_mux_sel[0]... 21
8 PRU-ICSS Internal Signal Muxing: pin_mux_sel[1]... 21
9 PRU0/1 Constant Table .. 25
10 Real-Time Status Interface Mapping (R31) Field Descriptions.. 26
11 Event Interface Mapping (R31) Field Descriptions.. 26
12 PRU 31 (GPI) Modes ... 27
13 GPI Mode Descriptions ... 27
14 Effective Clock Values .. 28
15 PRU R30 (GPO) Output Mode .. 29
16 GPO Mode Descriptions.. 29
17 Effective Clock Values .. 30
18 MAC_CTRL_STATUS Register (R25) Field Descriptions.. 32
19 Scratch Pad XFR ID .. 35
20 Scratch Pad XFR Collision Conditions ... 35
21 Register Byte Mapping in Little Endian ... 53
22 SBBO Result for Little Endian Mode.. 53
23 First Byte Affected in Little Endian Mode... 53
24 Register Addressing in Little Endian .. 54
25 PRUSS_PRU_CTRL REGISTERS.. 75
26 CONTROL Register Field Descriptions... 76
27 STATUS Register Field Descriptions ... 78
28 WAKEUP_EN Register Field Descriptions ... 79
29 CYCLE Register Field Descriptions ... 80
30 STALL Register Field Descriptions.. 81
31 CTBIR0 Register Field Descriptions .. 82
32 CTBIR1 Register Field Descriptions .. 83
33 CTPPR0 Register Field Descriptions ... 84
34 CTPPR1 Register Field Descriptions ... 85
35 PRU_ICSS_PRU_DEBUG REGISTERS... 85
36 GPREG0 Register Field Descriptions... 88
37 GPREG1 Register Field Descriptions... 89
38 GPREG2 Register Field Descriptions... 90
39 GPREG3 Register Field Descriptions... 91
40 GPREG4 Register Field Descriptions... 92
41 GPREG5 Register Field Descriptions... 93
42 GPREG6 Register Field Descriptions... 94
43 GPREG7 Register Field Descriptions... 95
44 GPREG8 Register Field Descriptions... 96
45 GPREG9 Register Field Descriptions... 97
46 GPREG10 Register Field Descriptions ... 98
47 GPREG11 Register Field Descriptions ... 99

8 SPRUHF8A–May 2012–Revised June 2013

48 GPREG12 Register Field Descriptions.. 100
49 GPREG13 Register Field Descriptions.. 101
50 GPREG14 Register Field Descriptions.. 102
51 GPREG15 Register Field Descriptions.. 103
52 GPREG16 Register Field Descriptions.. 104
53 GPREG17 Register Field Descriptions.. 105
54 GPREG18 Register Field Descriptions.. 106
55 GPREG19 Register Field Descriptions.. 107
56 GPREG20 Register Field Descriptions.. 108
57 GPREG21 Register Field Descriptions.. 109
58 GPREG22 Register Field Descriptions.. 110
59 GPREG23 Register Field Descriptions.. 111
60 GPREG24 Register Field Descriptions.. 112
61 GPREG25 Register Field Descriptions.. 113
62 GPREG26 Register Field Descriptions.. 114
63 GPREG27 Register Field Descriptions.. 115
64 GPREG28 Register Field Descriptions.. 116
65 GPREG29 Register Field Descriptions.. 117
66 GPREG30 Register Field Descriptions.. 118
67 GPREG31 Register Field Descriptions.. 119
68 CT_REG0 Register Field Descriptions .. 120
69 CT_REG1 Register Field Descriptions .. 121
70 CT_REG2 Register Field Descriptions .. 122
71 CT_REG3 Register Field Descriptions .. 123
72 CT_REG4 Register Field Descriptions .. 124
73 CT_REG5 Register Field Descriptions .. 125
74 CT_REG6 Register Field Descriptions .. 126
75 CT_REG7 Register Field Descriptions .. 127
76 CT_REG8 Register Field Descriptions .. 128
77 CT_REG9 Register Field Descriptions .. 129
78 CT_REG10 Register Field Descriptions .. 130
79 CT_REG11 Register Field Descriptions .. 131
80 CT_REG12 Register Field Descriptions .. 132
81 CT_REG13 Register Field Descriptions .. 133
82 CT_REG14 Register Field Descriptions .. 134
83 CT_REG15 Register Field Descriptions .. 135
84 CT_REG16 Register Field Descriptions .. 136
85 CT_REG17 Register Field Descriptions .. 137
86 CT_REG18 Register Field Descriptions .. 138
87 CT_REG19 Register Field Descriptions .. 139
88 CT_REG20 Register Field Descriptions .. 140
89 CT_REG21 Register Field Descriptions .. 141
90 CT_REG22 Register Field Descriptions .. 142
91 CT_REG23 Register Field Descriptions .. 143
92 CT_REG24 Register Field Descriptions .. 144
93 CT_REG25 Register Field Descriptions .. 145
94 CT_REG26 Register Field Descriptions .. 146
95 CT_REG27 Register Field Descriptions .. 147
96 CT_REG28 Register Field Descriptions .. 148

9SPRUHF8A–May 2012–Revised June 2013

97 CT_REG29 Register Field Descriptions .. 149
98 CT_REG30 Register Field Descriptions .. 150
99 CT_REG31 Register Field Descriptions .. 151
100 PRU_ICSS_INTC REGISTERS.. 156
101 REVID Register Field Descriptions .. 159
102 CR Register Field Descriptions .. 160
103 GER Register Field Descriptions .. 161
104 GNLR Register Field Descriptions ... 162
105 SISR Register Field Descriptions .. 163
106 SICR Register Field Descriptions .. 164
107 EISR Register Field Descriptions .. 165
108 EICR Register Field Descriptions .. 166
109 HIEISR Register Field Descriptions ... 167
110 HIDISR Register Field Descriptions ... 168
111 GPIR Register Field Descriptions.. 169
112 SRSR0 Register Field Descriptions ... 170
113 SRSR1 Register Field Descriptions ... 171
114 SECR0 Register Field Descriptions ... 172
115 SECR1 Register Field Descriptions ... 173
116 ESR0 Register Field Descriptions ... 174
117 ERS1 Register Field Descriptions ... 175
118 ECR0 Register Field Descriptions ... 176
119 ECR1 Register Field Descriptions ... 177
120 CMR0 Register Field Descriptions... 178
121 CMR1 Register Field Descriptions... 179
122 CMR2 Register Field Descriptions... 180
123 CMR3 Register Field Descriptions... 181
124 CMR4 Register Field Descriptions... 182
125 CMR5 Register Field Descriptions... 183
126 CMR6 Register Field Descriptions... 184
127 CMR7 Register Field Descriptions... 185
128 CMR8 Register Field Descriptions... 186
129 CMR9 Register Field Descriptions... 187
130 CMR10 Register Field Descriptions ... 188
131 CMR11 Register Field Descriptions ... 189
132 CMR12 Register Field Descriptions ... 190
133 CMR13 Register Field Descriptions ... 191
134 CMR14 Register Field Descriptions ... 192
135 CMR15 Register Field Descriptions ... 193
136 HMR0 Register Field Descriptions... 194
137 HMR1 Register Field Descriptions... 195
138 HMR2 Register Field Descriptions... 196
139 HIPIR0 Register Field Descriptions.. 197
140 HIPIR1 Register Field Descriptions.. 198
141 HIPIR2 Register Field Descriptions.. 199
142 HIPIR3 Register Field Descriptions.. 200
143 HIPIR4 Register Field Descriptions.. 201
144 HIPIR5 Register Field Descriptions.. 202
145 HIPIR6 Register Field Descriptions.. 203

10 SPRUHF8A–May 2012–Revised June 2013

146 HIPIR7 Register Field Descriptions.. 204
147 HIPIR8 Register Field Descriptions.. 205
148 HIPIR9 Register Field Descriptions.. 206
149 SIPR0 Register Field Descriptions .. 207
150 SIPR1 Register Field Descriptions .. 208
151 SITR0 Register Field Descriptions... 209
152 SITR1 Register Field Descriptions... 210
153 HINLR0 Register Field Descriptions... 211
154 HINLR1 Register Field Descriptions... 212
155 HINLR2 Register Field Descriptions... 213
156 HINLR3 Register Field Descriptions... 214
157 HINLR4 Register Field Descriptions... 215
158 HINLR5 Register Field Descriptions... 216
159 HINLR6 Register Field Descriptions... 217
160 HINLR7 Register Field Descriptions... 218
161 HINLR8 Register Field Descriptions... 219
162 HINLR9 Register Field Descriptions... 220
163 HIER Register Field Descriptions .. 221
164 PRU-ICSS Interrupts .. 222
165 Baud Rate Examples for 150-MHZ UART Input Clock and 16× Over-sampling Mode 227
166 Baud Rate Examples for 150-MHZ UART Input Clock and 13× Over-sampling Mode 227
167 UART Signal Descriptions .. 228
168 Character Time for Word Lengths ... 231
169 UART Interrupt Requests Descriptions ... 235
170 UART Registers .. 237
171 Receiver Buffer Register (RBR) Field Descriptions ... 238
172 Transmitter Holding Register (THR) Field Descriptions... 239
173 Interrupt Enable Register (IER) Field Descriptions .. 240
174 Interrupt Identification Register (IIR) Field Descriptions .. 241
175 Interrupt Identification and Interrupt Clearing Information .. 242
176 FIFO Control Register (FCR) Field Descriptions .. 243
177 Line Control Register (LCR) Field Descriptions.. 244
178 Relationship Between ST, EPS, and PEN Bits in LCR ... 245
179 Number of STOP Bits Generated.. 245
180 Modem Control Register (MCR) Field Descriptions ... 246
181 Line Status Register (LSR) Field Descriptions ... 247
182 Modem Status Register (MSR) Field Descriptions .. 250
183 Scratch Pad Register (MSR) Field Descriptions ... 251
184 Divisor LSB Latch (DLL) Field Descriptions .. 252
185 Divisor MSB Latch (DLH) Field Descriptions ... 252
186 Revision Identification Register 1 (REVID1) Field Descriptions ... 253
187 Revision Identification Register 2 (REVID2) Field Descriptions ... 253
188 Power and Emulation Management Register (PWREMU_MGMT) Field Descriptions 254
189 Mode Definition Register (MDR) Field Descriptions... 255
190 PRU_ICSS_IEP REGISTERS.. 256
191 GLOBAL_CFG Register Field Descriptions .. 258
192 GLOBAL_STATUS Register Field Descriptions ... 259
193 COMPEN Register Field Descriptions .. 260
194 COUNT Register Field Descriptions... 261

11SPRUHF8A–May 2012–Revised June 2013

195 CMP_CFG Register Field Descriptions ... 262
196 CMP_STATUS Register Field Descriptions .. 263
197 CMP0 Register Field Descriptions ... 264
198 CMP1 Register Field Descriptions ... 265
199 CMP2 Register Field Descriptions ... 266
200 CMP3 Register Field Descriptions ... 267
201 CMP4 Register Field Descriptions ... 268
202 CMP5 Register Field Descriptions ... 269
203 CMP6 Register Field Descriptions ... 270
204 CMP7 Register Field Descriptions ... 271
205 PRU_ICSS_CFG REGISTERS .. 272
206 REVID Register Field Descriptions .. 273
207 SYSCFG Register Field Descriptions ... 274
208 GPCFG0 Register Field Descriptions ... 275
209 GPCFG1 Register Field Descriptions ... 277
210 CGR Register Field Descriptions .. 279
211 ISRP Register Field Descriptions .. 281
212 ISP Register Field Descriptions .. 282
213 IESP Register Field Descriptions .. 283
214 IECP Register Field Descriptions .. 284
215 PMAO Register Field Descriptions .. 285
216 MII_RT Register Field Descriptions ... 286
217 IEPCLK Register Field Descriptions... 287
218 SPP Register Field Descriptions ... 288
219 PIN_MX Register Field Descriptions .. 289

12 SPRUHF8A–May 2012–Revised June 2013

The hardware module(s) and the features described in this Reference Guide are not supported by
Texas Instruments. "Community" support may be offered at BeagleBoard.org/discuss. The
information contained in this Reference Guide is for informational purpose only and any use of the
information contained herein is done so at the user's own risk. The Reference Guide, including the
hardware module(s) and associated features, are provided "AS IS" and Texas Instruments
disclaims all warranties, express or implied, including but not limited to any implied warranties of
merchantability or fitness for a particular purpose.

1 Introduction
The Programmable Real-Time Unit and Industrial Communication Subsystem (PRU-ICSS) consists of dual
32-bit RISC cores (Programmable Real-Time Units, or PRUs), shared, data, and instruction memories,
internal peripheral modules, and an interrupt controller (INTC). The programmable nature of the PRUs,
along with their access to pins and events, provide flexibility in implementing custom peripheral interfaces,
fast real-time responses, power saving techniques, specialized data handling and DMA operations, and in
offloading tasks from the other processor cores of the system-on-chip (SoC).

Figure 1 shows the PRU-ICSS details. The subsystem available on this device is the next-generation PRU
(PRUSSv2). Compared to the previous generation available on AM1x and OMAP-L13x, this version
includes the following enhancements:
• Additional data memory (8 KB compared with 512 B) and instruction memory (8 KB compared with 4

KB)
• 12 KB Shared RAM
• Enhanced GPIO (EGPIO), adding serial, parallel, and MII capture of the PRU input/output pins
• Scratch pad (SPAD) shared by the PRU cores
• Multiplier with optional accumulation (MAC)
• Internal peripheral modules (UART, eCAP, MII_RT, MDIO, and IEP)

Similar to the previous generation, the PRUs have access to all resources on the SoC through the
Interface/OCP master port, and the external host processors can access the PRU-ICSS resources through
the Interface/OCP Master port. The Switched Central Resource (SCR) connects the various internal and
external masters to the resources inside the PRU-ICSS. The INTC handles system input events and posts
events back to the device-level host CPU.

The PRU cores are programmed with a small, deterministic instruction set. Each PRU can operate
independently or in coordination with each other and can also work in coordination with the device-level
host CPU. This interaction between processors is determined by the nature of the firmware loaded into the
PRU’s instruction memory.

13SPRUHF8A–May 2012–Revised June 2013

http://BeagleBoard.org/discuss

PRU1 Core
(8KB Program)

PRU-ICSS

PRU0 Core
(8KB Program)

Data Mem0
(8KB)

Data Mem1
(8KB)

Shared RAM
(12KB)

eCAP0

MII0_RT

IEP

UART0

CFG

3
2
-B

it
 I
n
te

rc
o
n
n
e
c
t
B

u
s

SPAD

EGP MAC

EGP MAC

INTC

Introduction

Figure 1. Block Diagram

The subsystem available on this device is the next-generation PRU (PRUSSv2).

14 SPRUHF8A–May 2012–Revised June 2013

 Introduction

1.1 Features

The PRU subsystem includes the following main features:
• Two PRUs each with:

– 8KB program memory
– 8KB data memory
– High Performance Interface/OCP Master port for accessing external memories
– Enhanced GPIO (EGPIO) with async capture and serial support
– Multiplier with optional accumulation (MAC)

• One scratch pad (SPAD) memory and broadside direct connect
– 3 Banks of 30 32-bit registers

• 12 KB general purpose shared memory
• One Interrupt Controller (INTC)

– Up to 64 input events supported
– Interrupt mapping to 10 interrupt channels
– 10 Host interrupts (2 to PRU0 and PRU1, 8 output to chip level)
– Each system event can be enabled and disabled
– Each host event can be enabled and disabled
– Hardware prioritization of events

• 16 software Events generation by 2 PRUs
• One Ethernet MII_RT module with two MII ports and configurable connections to PRUs*
• One MDIO Port*
• One Industrial Ethernet Peripheral (IEP) to manage/generate Industrial Ethernet functions

– One Industrial Ethernet timer with 10 capture* and eight compare events
– Two Industrial Ethernet sync signals*
– Two Industrial Ethernet 16-bit watchdog timers*
– Industrial Ethernet digital IOs*

• One 16550-compatible UART with a dedicated 192-MHz clock
• One Enhanced Capture Module (ECAP)
• Flexible power management support
• Integrated switched central resource (SCR) bus for connecting the various internal and external

masters to the resources inside the PRU-ICSS
• Interface/OCP Slave port for external masters to access PRU-ICSS memories
• Optional address translation for PRU transaction to External Host
• All memories within the PRU-ICSS support parity

NOTE: * — Module or feature is used by EtherCAT. For availability of EtherCAT and these
features, see the device features in Chapter 1, Introduction, in the AM335x ARM® Cortex™-
A8 Microprocessors (MPUs) Technical Reference Manual (literature number SPRUH73).

15SPRUHF8A–May 2012–Revised June 2013

http://www.ti.com/lit/pdf/SPRUH73

PRU-ICSS

Interface/
OCP Slave port

A
s
y
n
c

B
ri
d
g
e

L4 Fast

A
s
y
n
c

B
ri
d
g
e

L3 Fast

OCP_HP0
(Interface/OCP

Master port)

PRU0 Core
(8KB Program RAM)

3
2
-b

it
 I
n
te

rc
o
n
n
e
c
t
S

C
R

MII_RT

Data RAM0
(8KB)

Data RAM1
(8KB)

Shared RAM
(12KB)

CFG

Industrial
Ethernet

Peripheral
(IEP)

UART0

eCAP pr1_ecap0_ecap_capin_apwm_o

pr1_uart0_cts_n
pr1_uart0_rts_n
pr1_uart0_rxd
pr1_uart0_txd

pr1_edio_sof
pr1_edio_latch_in
pr1_edio_data_in/out[7:0]
pr1_edc_latch0_in
pr1_edc_latch1_in
pr1_edc_sync0_rxd
pr1_edc_sync1_txd

pr1_mii_mt0_clk
pr1_mii0_rxlink
pr1_mii0_crs
pr1_mii0_col
pr1_mii0_rxer
pr1_mii0_txen
pr1_mii0_txd3
pr1_mii0_txd2
pr1_mii0_txd1
pr1_mii0_txd0
pr1_mii_mr0_clk
pr1_mii0_rxdv
pr1_mii0_rxd3
pr1_mii0_rxd2
pr1_mii0_rxd1
pr1_mii0_rxd0
pr1_mdio_data
pr1_mdio_mdclk
pr1_mii_mt1_clk
pr1_mii1_rxlink
pr1_mii1_crs
pr1_mii1_col
pr1_mii1_rxer
pr1_mii1_txen
pr1_mii1_txd3
pr1_mii1_txd2
pr1_mii1_txd1
pr1_mii1_txd0
pr1_mii_mr1_clk
pr1_mii1_rxdv
pr1_mii1_rxd3
pr1_mii1_rxd2
pr1_mii1_rxd1
pr1_mii1_rxd0

Enhanced
GPIO

pr1_pru0_pru_r31[16:0]
pr1_pru0_pru_r30[15:0]

Clocks/ResetPRCM

ocp_clk
uart_clk
iep_clk

rst_main_arst_n

A
s
y
n
c

B
ri
d
g
e

L3 Fast
OCP_HP1

(Interface/OCP
Master port)

PRU1 Core
(8KB Program RAM)

Enhanced
GPIO

pr1_pru1_pru_r31[16:0]
pr1_pru1_pru_r30[15:0]

To Host ARM Interrupts
To EDMA Events

To TSC_ADC Event
INTC

Events from Select
Peripherals

MAC

Scratch
Pad

MAC

Integration

2 Integration
The device includes a programmable real-time unit subsystem (PRU-ICSS) consisting of two independent
Programmable Real-time Units (PRUs). Each PRU is a 32-bit Load/Store RISC processor with dedicated
memories. The PRU-ICSS integration is shown in Figure 2.

Figure 2. PRU-ICSS Integration

For the availability of all features, see the device features in Chapter 1, Introduction, in the AM335x ARM® Cortex™-
A8 Microprocessors (MPUs) Technical Reference Manual (literature number SPRUH73).

16 SPRUHF8A–May 2012–Revised June 2013

http://www.ti.com/lit/pdf/SPRUH73

 Integration

2.1 PRU-ICSS Connectivity Attributes

The general connectivity attributes for the PRU subsystem are shown in Table 1.

Table 1. PRU-ICSS Connectivity Attributes
Attributes Type
Power Domain Peripheral Domain
Clock Domain PD_PER_PRU_ICSS_OCP_GCLK (OCP clock)

PD_PER_PRU_ICSS_IEP_GCLK (IEP clock)
PD_PER_PRU_ICSS_UART_GCLK (UART clock)

Reset Signals PRU_ICSS_LRST_N
Idle/Wakeup Signals Standby

Idle
Interrupt Requests 8 Interrupts

pr1_host_intr[7:1] (1) to MPU Subsystem
pr1_host_intr[0] (1) to MPU Subsystem and TSC_ADC

DMA Requests No dedicated DMA events but pr1_host_intr[7:6] (1) interrupt
outputs also connected as DMA events

Physical Address L4 Fast Slave Port
(1) pr1_host_intr[0:7] corresponds to Host-2 to Host-9 of the PRU-ICSS interrupt controller.

2.2 PRU-ICSS Clock and Reset Management

The PRU-ICSS module uses the following functional and OCP interface clocks.

Table 2. PRU-ICSS Clock Signals
Clock Signal Max Freq Reference / Source Comments
l3_clk 200 MHz CORE_CLKOUTM4 or Display pd_per_pru_icss_ocp_gclk
Interface Clock PLL CLKOUT from PRCM

Clocks both L3 master and L4F
slave

uart_clk 192 MHz PER_CLKOUTM2 pd_per_pru_icss_uart_gclk
Functional Clock from PRCM

UART Clock
iep_clk 200 MHz CORE_CLKOUTM4 pd_per_pru_icss_iep_gclk from
Functional Clock PRCM

Industrial Ethernet Peripheral
Clock

17SPRUHF8A–May 2012–Revised June 2013

Integration

2.3 PRU-ICSS Pin List

The PRU-ICSS external interface signals are shown in Table 3. The PRU-ICSS has a large number of
available I/O signals. Most of these are multiplexed with other functional signals at the chip level. Please
refer to the device's System Reference Guide or datasheet for specific signal availability through pin
muxing.

Table 3. PRU-ICSS Pin List
Pin Type Description
pr1_mii_mr0_clk I MII0 Receive Clock
pr1_mii0_rxdv I MII0 Receive Data Valid
pr1_mii0_rxd[3:0] I MII0 Receive Data
pr1_mii0_rxlink I MII0 Receive Link
pr1_mii0_rxer I MII0 Receive Data Error
pr1_mii0_crs I MII0 Carrier Sense
pr1_mii0_col I MII0 Carrier Sense
pr1_mii_mt0_clk I MII0 Transmit Clock
pr1_mii0_txen O MII0 Transmit Enable
pr1_mii0_txd[3:0] O MII0 Transmit Data
pr1_mii_mr1_clk I MII1 Receive Clock
pr1_mii1_rxdv I MII1 Receive Data Valid
pr1_mii1_rxd[3:0] I MII1 Receive Data
pr1_mii1_rxlink I MII1 Receive Link
pr1_mii1_rxer I MII1 Receive Data Error
pr1_mii1_crs I MII1 Carrier Sense
pr1_mii1_col I MII1 Carrier Sense
pr1_mii_mt1_clk I MII1 Transmit Clock
pr1_mii1_txen O MII1 Transmit Enable
pr1_mii1_txd[3:0] O MII1 Transmit Data
pr1_mdio_mdclk O MDIO Clk
pr1_mdio_data I/O MDIO Data
pr1_edio_sof O ECAT Digital I/O Start of Frame
pr1_edio_latch_in I ECAT Digital I/O Latch In
pr1_edio_data_in[7:0] I ECAT Digital I/O Data In
pr1_edio_data_out[7:0] O ECAT Digital I/O Data Out
pr1_edc_sync0_out O ECAT Distributed Clock Sync Out
pr1_edc_sync1_out O ECAT Distributed Clock Sync Out
pr1_edc_latch0_in I ECAT Distributed Clock Latch In
pr1_edc_latch1_in I ECAT Distributed Clock Latch In
pr1_uart0_cts_n I UART Clear to Send
pr1_uart0_rts_n O UART Request to Send
pr1_uart0_rxd I UART Receive Data
pr1_uart0_txd O UART Transmit Data
pr1_ecap0_ecap_capin_apwm_o IO Enhanced capture (ECAP) input or

Auxiliary PWM out
pr1_pru0_pru_r30[15:0] O PRU0 Register R30 Outputs
pr1_pru0_pru_r31[16:0] I PRU0 Register R31 Inputs
pr1_pru1_pru_r30[15:0] O PRU1 Register R30 Outputs
pr1_pru1_pru_r31[16:0] I PRU1 Register R31 Inputs

18 SPRUHF8A–May 2012–Revised June 2013

 PRU-ICSS Register Overview

3 PRU-ICSS Register Overview
The PRU-ICSS comprises various distinct addressable regions that are mapped to both a local and global
memory map. The local memory maps are maps with respect to the PRU point of view. The global
memory maps are maps with respect to the Host point of view, but can also be accessed by the PRU-
ICSS.

3.1 Local Memory Map

The PRU-ICSS memory map is documented in Table 4 (Instruction Space) and in Table 5 (Data Space).
Note that these two memory maps are implemented inside the PRU-ICSS and are local to the
components of the PRU-ICSS.

3.1.1 Local Instruction Memory Map
Each PRU has a dedicated 8KB of Instruction Memory which needs to be initialized by a Host processor
before the PRU executes instructions. This region is only accessible to masters via the interface/ OCP
slave port when the PRU is not running.

Table 4. Local Instruction Memory Map
Start Address PRU0 PRU1
0x0000_0000 8KB IRAM 8KB IRAM

3.1.2 Local Data Memory Map
The local data memory map in Table 5 allows each PRU core to access the PRU-ICSS addressable
regions and the external host’s memory map.

The PRU accesses the external Host memory map through the Interface/OCP Master port (System
OCP_HP0/1) starting at address 0x0008_0000. By default, memory addresses between 0x0000_0000 –
0x0007_FFFF will correspond to the PRU-ICSS local address in Table 5. To access an address between
0x0000_0000–0x0007_FFFF of the external Host map, the address offset of –0x0008_0000 feature is
enabled through the PMAO register of the PRU-ICSS CFG register space.

Table 5. Local Data Memory Map
Start Address PRU0 PRU1
0x0000_0000 Data 8KB RAM 0 (1) Data 8KB RAM 1 (1)

0x0000_2000 Data 8KB RAM 1 (1) Data 8KB RAM 0 (1)

0x0001_0000 Data 12KB RAM2 (Shared) Data 12KB RAM2 (Shared)
0x0002_0000 INTC INTC
0x0002_2000 PRU0 Control Registers PRU0 Control Registers
0x0002_2400 Reserved Reserved
0x0002_4000 PRU1 Control PRU1 Control
0x0002_4400 Reserved Reserved
0x0002_6000 CFG CFG
0x0002_8000 UART 0 UART 0
0x0002_A000 Reserved Reserved
0x0002_C000 Reserved Reserved
0x0002_E000 IEP IEP
0x0003_0000 eCAP 0 eCAP 0
0x0003_2000 MII_RT_CFG MII_RT_CFG
0x0003_2400 MII_MDIO MII_MDIO
0x0003_4000 Reserved Reserved

(1) When PRU0 accesses Data RAM0 at address 0x00000000, PRU1 also accesses Data RAM1 at address 0x00000000. Data
RAM0 is intended to be the primary data memory for PRU0 and Data RAM1 for PRU1. However, for passing information
between PRUs, each PRU can access the data ram of the other PRU at address 0x0001_0000.

19SPRUHF8A–May 2012–Revised June 2013

PRU-ICSS Register Overview

Table 5. Local Data Memory Map (continued)
Start Address PRU0 PRU1
0x0003_8000 Reserved Reserved
0x0004_0000 Reserved Reserved
0x0008_0000 System OCP_HP0 System OCP_HP1

3.2 Global Memory Map

The global view of the PRU-ICSS internal memories and control ports is shown in Table 6. The offset
addresses of each region are implemented inside the PRU-ICSS but the global device memory mapping
places the PRU-ICSS slave port in the address range shown in the external Host top-level memory map.

The global memory map is with respect to the Host point of view, but it can also be accessed by the PRU-
ICSS. Note that PRU0 and PRU1 can use either the local or global addresses to access their internal
memories, but using the local addresses will provide access time several cycles faster than using the
global addresses. This is because when accessing via the global address the access needs to be routed
through the switch fabric outside PRU-ICSS and back in through the PRU-ICSS slave port.

Each of the PRUs can access the rest of the device memory (including memory mapped peripheral and
configuration registers) using the global memory space addresses. See Table 6, Memory Map, for base
addresses of each module in the device.

Table 6. Global Memory Map
Offset Address PRU-ICSS
0x0000_0000 Data 8KB RAM 0
0x0000_2000 Data 8KB RAM 1
0x0001_0000 Data 12KB RAM 2 (Shared)
0x0002_0000 INTC
0x0002_2000 PRU0 Control
0x0002_2400 PRU0 Debug
0x0002_4000 PRU1 Control
0x0002_4400 PRU1 Debug
0x0002_6000 CFG
0x0002_8000 UART 0
0x0002_A000 Reserved
0x0002_C000 Reserved
0x0002_E000 IEP
0x0003_0000 eCAP 0
0x0003_2000 MII_RT_CFG
0x0003_2400 MII_MDIO
0x0003_4000 PRU0 8KB IRAM
0x0003_8000 PRU1 8KB IRAM
0x0004_0000 Reserved

20 SPRUHF8A–May 2012–Revised June 2013

PRU-ICSS
pr1_mii0_rxd[3:0]

pin_mux_sel[0]

1

0

pr1_pru1_pru_r31[11:8]

mii0_rxd[3:0]

pru1_r31[11:8]

 PRU-ICSS Internal Pinmux Overview

4 PRU-ICSS Internal Pinmux Overview
The PRU-ICSS supports an internal pinmux selection option that expands the device-level pinmuxing. The
internal pinmuxing is programmable through the PIN_MX register of the PRU-ICSS CFG register space.

The pin_mux_sel[0] determines the external signals routed to the internal input signals, mii0_rxd[3:0]. The
pin_mux_sel[1] determines the internal output signals routed to the external signals,
pr1_pru0_pru_r30[13:8], and the external signals routed to the internal input signals, pru0_r30[5:0].

Note: pin_mux_sel[x] = 0 is always the standard pin mapping (default).

Table 7. PRU-ICSS Internal Signal Muxing: pin_mux_sel[0]
pin_mux_sel[0] = 1 pin_mux_sel[0] = 0

Internal PRU-ICSS Signal Name External Chip Level Signal Name
mii0_rxd[3:0] pr1_pru1_pru_r31[11:8] pr1_mii0_rxd[3:0]

Figure 3. PRU-ICSS Internal Signal Muxing: pin_mux_sel[0]

Table 8. PRU-ICSS Internal Signal Muxing: pin_mux_sel[1]
pin_mux_sel[1] = 1 pin_mux_sel[1] = 0

External Chip Level Signal Name Internal PRU-ICSS Signal Name
pr1_pru0_pru_r30[13:8] pru1_r30[5:0] pru0_r30[13:8]
Internal PRU-ICSS Signal Name External Chip Level Signal Name
pru1_r31[5:0] pr1_pru0_pru_r31[13:8] pr1_pru1_pru_r31[5:0]

21SPRUHF8A–May 2012–Revised June 2013

PRU-ICSS

pr1_pru0_pru_r30[13:8]

pr1_pru1_pru_r30[5:0]

pru0_r30[13:8]

pru1_r30[5:0]

pin_mux_sel[1]

pr1_pru1_pru_r31[5:0]

pin_mux_sel[1]

pr1_pru0_pru_r31[13:8]

pru1_r31[5:0]

pru0_r31[13:8]

1

0

1

0

PRU-ICSS Internal Pinmux Overview

Figure 4. PRU-ICSS Internal Signal Muxing: pin_mux_sel[1]

22 SPRUHF8A–May 2012–Revised June 2013

 PRU

5 PRU

5.1 Introduction

The PRU is a processor optimized for performing embedded tasks that require manipulation of packed
memory mapped data structures, handling of system events that have tight real-time constraints and
interfacing with systems external to the SoC. The PRU is both very small and very efficient at handling
such tasks.

The major attributes of the PRU are as follows.

Attribute Value
IO Architecture Load / Store
Data Flow Architecture Register to Register

Core Level Bus Architecture
4-Bus Harvard (1 Instruction, 3 Data)Type
32-BitInstruction I/F
32-BitMemory I/F 0
32-BitMemory I/F 1

Execution Model
ScalarIssue Type
None (Purposefully)Pipelining
In OrderOrdering
Unsigned IntegerALU Type

Registers
29 (R1 – R30)General Purpose (GP)
1 (R31)External Status
1 (R0)GP / Indexing
Bit, Byte (8-bit), Halfword (16-bit), Word (32-bit), PointerAddressability in Instruction

Addressing Modes
16-bit ImmediateLoad Immediate

Register Base + Register OffsetLoad / Store – Memory
Register Base + 8-bit Immediate Offset
Register Base with auto increment / decrement
Constant Table Base + Register Offset
Constant Table Base + 8-bit Immediate Offset
Constant Table Base with auto increment / decrement

Data Path Width 32-Bits
Instruction Width 32-Bits
Accessibility to Internal PRU Structures Provides 32-bit slave with three regions:

• Instruction RAM
• Control / Status registers
• Debug access to internal registers (R0-R31) and constant

table

23SPRUHF8A–May 2012–Revised June 2013

D
e
s
ti
n
a
ti
o
n
 S

e
le

c
to

r

R0

R1

R2

. . .

R29

R30

R31(Status)

R31(Event)

o
p
3
 M

u
x

Register
File

Output
Multiplexers

Execution Unit

PRU Core

events_out[31:0]

R0

R1

. . .

R30

R31

R0

R1

. . .

R30

R31

R0

R1

. . .

R30

R31

o
p
2
 M

u
x

o
p
1
 M

u
x

Decode and Control

Output
Shifter

Program
Counter

ALU
Data
Path

Constants
I/F

Memory
I/F

Coprocessor I/F

Shift/Mask

Shift/Mask

Shift/Mask

regs_XXX

mem1_XXX

mem0_XXX

const_base_sel[4:0]

Constants Table

const_base[31:0]

PRU

i_data[31:0]

Instruction
RAM/ROM
(Clocked)

i_addr[31:0]

iram_XXXOp4

status_in[31:0]

PRU

The processor is based on a four-bus architecture which allows instructions to be fetched and executed
concurrently with data transfers. In addition, an input is provided in order to allow external status
information to be reflected in the internal processor status register. Figure 5 shows a block diagram of the
processing element and the associated instruction RAM/ROM that contains the code that is to be
executed.

Figure 5. PRU Block Diagram

24 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.2 Functional Description

This section describes the supported functionality of the PRU by describing the constant table, module
interface and enhanced GPIOs.

5.2.1 Constant Table
The PRU Constants Table is a structure connected to a dedicated interface on the PRU core within the
PRU that is used to provide the base address for the Load Burst Constant + Offset (LBCO) and Store
Burst Constant + Offset (SBCO). The PRU constants table is provided in order to maximize the usage of
the PRU register file for embedded processing applications by moving many of the commonly used
constant or deterministically calculated base addresses from the internal register file to an external table.
Since this table is accessed using a dedicated interface, no performance difference is realized between
the LBCO and LBBO or SBCO and SBBO instructions.

Table 9. PRU0/1 Constant Table
Entry No. Region Pointed To Value [31:0]
0 PRU0/1 Local INTC 0x0002_0000
1 DMTIMER2 0x4804_0000
2 I2C1 0x4802_A000
3 eCAP (local) 0x0003_0000
4 PRU-ICSS CFG (local) 0x0002_6000
5 MMCHS 0 0x4806_0000
6 MCSPI 0 0x4803_0000
7 UART 0(local) 0x0002_8000
8 McASP0 DMA 0x4600_0000
9 GEMAC 0x4A10_0000
10 Reserved 0x4831_8000
11 UART1 0x4802_2000
12 UART2 0x4802_4000
13 Reserved 0x4831_0000
14 DCAN0 0x481C_C000
15 DCAN1 0x481D_0000
16 MCSPI 1 0x481A_0000
17 I2C2 0x4819_C000
18 eHRPWM1/eCAP1/eQEP1 0x4830_0000
19 eHRPWM2/eCAP2/ePWM2 0x4830_2000
20 eHRPWM3/eCAP3/ePWM3 0x4830_4000
21 MDIO (local) 0x0003_2400
22 Mailbox 0 0x480C_8000
23 Spinlock 0x480C_A000
24 PRU0/1 Local Data 0x0000_0n00, n = c24_blk_index[3:0]
25 PRU1/0 Local Data 0x0000_2n00, n = c25_blk_index[3:0]
26 IEP (local) 0x0002_En00, n = c26_blk_index[3:0]
27 MII_RT (local) 0x0003_2n00, n = c27_blk_index[3:0]
28 Shared PRU RAM (local) 0x00nn_nn00, nnnn = c28_pointer[15:0]
29 TPCC 0x49nn_nn00, nnnn = c29_pointer[15:0]
30 L3 OCMC0 0x40nn_nn00, nnnn = c30_pointer[15:0]
31 EMIF0 DDR Base 0x80nn_nn00, nnnn = c31_pointer[15:0]

25SPRUHF8A–May 2012–Revised June 2013

PRU

NOTE: Constants not in this table can be created ‘on the fly’ by two consecutive LDI #16
instructions. These constants are just ones that are expected to be commonly used, enough
so to be hard-coded in the PRU constants table.

Constants entries 24–31 are not fully hardcoded. They contain a programmable bit field (e.g.,
c24_blk_index[3:0]) that is programmable through the PRU control register space.

5.2.2 PRU Module Interface
The PRU module interface consists of the PRU internal registers 30 and 31 (R30 and R31). The register
R31 serves as an interface with the dedicated PRU general purpose input (GPI) pins and INTC. Reading
R31 returns status information from the GPI pins and INTC via the PRU Real Time Status Interface.
Writing to R31generates PRU system events via the PRU Event Interface. The register R30 serves as an
interface with the dedicated PRU general purpose output (GPO) pins.

5.2.2.1 Real-Time Status Interface Mapping (R31): Interrupt Events Input

The PRU Real Time Status Interface directly feeds information into register 31 (R31) of the PRU’s internal
register file. The firmware on the PRU uses the status information to make decisions during execution.
The status interface is comprised of signals from different modules inside of the PRU-ICSS which require
some level of interaction with the PRU. More details on the Host interrupts imported into bit 30 and 31 of
register R31 of both the PRUs is provided in Section 6, Interrupt Controller.

Table 10. Real-Time Status Interface Mapping (R31) Field Descriptions

Bit Field Value Description
31 pru_intr_in[1] PRU Interrupt 1 from local INTC
30 pru_intr_in[0] PRU Interrupt 0 from local INTC

29-0 pru<n>_r31_statu Status inputs from primary input via Enhanced GPI port
s[29:0]

5.2.2.2 Event Interface Mapping (R31): PRU System Events

This PRU Event Interface directly feeds pulsed event information out of the PRU’s internal ALU. These
events are exported out of the PRU-ICSS and need to be connected to the system interrupt controller at
the SoC level. The event interface can be used by the firmware to create software interrupts from the PRU
to the Host processor.

Table 11. Event Interface Mapping (R31) Field Descriptions

Bit Field Value Description
31-6 Reserved

5 pru<n>_r31_vec_ Valid strobe for vector output
valid

4 Reserved
3-0 pru<n>_r31_vec[3 Vector output

:0]

Writing a ‘1’ to pru<n>_r31_vec_valid (R31 bit 5) simultaneously with a channel number from 0 to 16
written to pru<n>_r31_vec[3:0] (R31 bits 3:0) creates a pulse on the output of the appropriate
demultiplexer output. For example, writing ‘100000’ will generate a pulse on demux channel 0, writing
‘100001’ will generate a pulse on demux channel 1, and so on to where writing ‘101111’ will generate a
pulse on demux channel 15 and writing ‘0xxxxx’ will not generate any pulse on the demux output. The
demultiplexed values from both PRU are ORed together. The composite demultiplexed output channels
0–15 are connected to system interrupts 16–31, respectively.

26 SPRUHF8A–May 2012–Revised June 2013

 PRU

This allows the PRU to assert one of the system interrupts 16-31 by writing to its own R31 register. The
system interrupt is used to either post a completion event to one of the host CPUs (ARM) or to signal the
other PRU. The host to be signaled is determined by the system interrupt to interrupt channel mapping
(programmable). The 16 events are named as pr<0/1>_pru_mst_intr<15:0>_intr_req. See the PRU-ICSS
Interrupt Controller (INTC) for more details.

5.2.2.3 General-Purpose Inputs (R31): Enhanced PRU GP Module

The PRU-ICSS implements an enhanced General Purpose Input Output (GPIO) module that supports
direct connection, 16-bit parallel capture, 28-bit serial shift, and MII_RT modes for general purpose inputs.
Register R31 serves as an interface with the general purpose inputs. Table 12 describes the four input
modes in detail.

Table 12. PRU 31 (GPI) Modes
Mode Function Configuration
Direct connection PRU<n>_DATAIN (pru<n>_r31_status Default state

[16:0]) feeds directly into the PRU
16-bit parallel capture PRU<n>_DATAIN (pru<n>_r31_status Enabled by CFG

[15:0]) is captured by posedge of
PRU<n>_CLOCK (pru<n>_r31_status
[16]) or the negedge of PRU<n>_CLOCK

28-bit shift PRU<n>_DATAIN (pru<n>_r31_status [0]) Enabled by CFG
is sampled and shifted into a 28-bit shift Start Bit (SB) is cleared by CFG
register. Cnt_16 is cleared by CFG
Shift Counter (Cnt_16) feature uses
pru<n>_r31_status [28].
Start Bit detection (SB) feature uses
pru<n>_r31_status [29].

MII_RT mii_rt_r31_status [29:0] internally driven Enabled by CFG
by the MII_RT module

Only one GPI mode is active at a time. Each mode uses the same R31 signals and internal register bits
for different purposes. A summary of the naming convention for each mode and corresponding signal
names and aliases are found in the following table

Table 13. GPI Mode Descriptions
Function Alias Internal Signal Name

Direct Mode
Data input PRU<n>_DATAIN pru<n>_r31_status[16:0]

Parallel Capture Mode
Data input PRU<n>_DATAIN pru<n>_r31_status[15:0]
Clock PRU<n>_CLOCK pru<n>_r31_status[16]

Shift Mode
Data input PRU<n>_DATAIN pru<n>_r31_status[0]
Shift counter PRU<n>_CNT_16 pru<n>_r31_status[28]
Start bit detection PRU<n>_GPI_SB pru<n>_r31_status[29]

5.2.2.3.1 Direct Connection

The pru<n>_r31_status [16:0] (PRU<n>_DATAIN) signals are mapped out of the PRU-ICSS and are
brought out as general purpose input pins. Each PRU of the PRU-ICSS has a separate mapping to pins
so that there are 34 total general purpose inputs to the PRU-ICSS. See the device's system reference
guide or datasheet for device specific pin mapping.

27SPRUHF8A–May 2012–Revised June 2013

PRU<n>_R31

0
1
…
14
15

PR1_PRU<n>_PRU_R31[15:0]

PR1_PRU<n>_PRU_R31[16]

PRU<n>DATAIN

PRU<n>CLOCK

16

16

200 MHz
Sync Flop

200 MHz
Sync Flop

200 MHz
Sync Flop

PRU<n>_R31

PR1_PRU<n>_PRU_R31[16:0]

0

1

…

15

16

17

PRU<n>DATAIN

PRU

Figure 6. PRU R31 (GPI) Direct Connection Mode Block Diagram

5.2.2.3.2 16-Bit Parallel Capture

The pru<n>_r31_status [16:0] are mapped out of the PRU-ICSS and are brought out as general-purpose
input pins. The pru<n>_r31_status [16] (PRU<n>_CLOCK) is designated for an external strobe clock and
is used to capture pru<n>_r31_status [15:0] (PRU<n>_DATAIN). The PRU<n>_DATAIN can be captured
either by the positive or the negative edge of PRU<n>_CLOCK, programmable through the PRU-ICSS
CFG register space.

If the clocking is configured through the PRU-ICSS CFG register to be positive, then it will equal
PRU<n>_CLOCK. However, if the clocking is configured to be negative, then it will equal
PRU<n>_CLOCK inverted.

Figure 7. PRU R31 (GPI) 16-Bit Parallel Capture Mode Block Diagram

5.2.2.3.3 28-Bit Shift

The pru<n>_r31_status [0] (PRU<n>_DATAIN) is sampled and shifted into a 28-bit shift register on an
internal clock pulse. The register fills in LSB order (from bit 0 to 27) and then overflows into a bit bucket.
The 28-bit register can be cleared in software through the PRU-ICSS CFG register space.

The shift rate is controlled by the effective divisor of two cascaded dividers applied to the 200-MHz clock.
These cascaded dividers can each be configured through the PRU-ICSS CFG register space to a value of
{1, 1.5, …, 16}. Table 14 shows sample effective clock values and the divisor values that can be used to
generate these clocks.

Table 14. Effective Clock Values
Generated clock PRU<n>_GPI_DIV0 PRU<n>_GPI_DIV1
8-MHz 12.5 (0x15) 2 (0x02)
10-MHz 10 (0x10) 2 (0x02)
16-MHz 16 (0x1e) 1 (0x00)
20-MHz 10 (0x10) 1 (0x00)

28 SPRUHF8A–May 2012–Revised June 2013

200 MHz

Bit 0 Bit 27

28-bit shift register 29 (GPI_SB)

27

PR1_PRU<n>_PRU_R31[0] 0

PRU<n>_R31

…

PRU<n>DATAIN

PRU<n>
GPO_DIV0

PRU<n>
GPO_DIV1

Bit Bucket

27

28 (Cnt_16)

 PRU

The 28-bit shift mode also supports the following features:
• Start Bit (PRU<n>_GPI_SB or pru<n>_r31_status [29]) is set when the first 1 is captured on

PRUn_DATAIN. PRUn_GPI_SB is cleared in software through the PRU-ICSS CFG register space.
• Cnt_16 (PRU<n>_CNT_16 or pru<n>_r31_status [28]) is set on every 16 shift clock samples after the

Start Bit has been received. PRU<n>_CNT_16 is self clearing and is connected to the PRU-ICSS
INTC. See the PRU-ICSS Interrupt Controller (INTC) section for more details.

Figure 8. PRU R31 (GPI) 28-Bit Shift Mode

5.2.2.3.4 General-Purpose Outputs (R30): Enhanced PRU GP Module

The PRU-ICSS implements an enhanced General Purpose Input Output (GPIO) module that supports
direct connection and shift out modes for general purpose outputs. Table 15 describes these modes in
detail.

Table 15. PRU R30 (GPO) Output Mode
Mode Function Configuration
Direct connection PRU<n>_DATAOUT (pru<n>_r30 [15:0]) Default state

feeds directly out of the PRU
Shift out PRU<n>_DATAOUT (pru<n>r30 [0]) is Enabled by CFG

shifted out on every rising edge of
PRU<n>_CLOCK (pru<n>r30 [1])

Only one GPO mode is active at a time. Each mode uses the same R30 signals and internal register bits
for different purposes. A summary of the naming convention for each mode and corresponding signal
names and aliases are found in the following table.

Table 16. GPO Mode Descriptions
Function Alias Internal Signal Name

Direct Mode
Data output PRU<n>_DATAOUT pru<n>_r30 [15:0]

Shift Mode
Data output PRU<n>_DATAOUT pru<n>_r30 [0]
Clock PRU<n>_CLOCK pru<n>_r30 [1]
Load gpo_sh0 PRU<n>_LOAD_GPO_SH0 pru<n>_r30 [29]
Load gpo_sh1 PRU<n>_LOAD_GPO_SH1 pru<n>_r30 [30]
Enable shift PRU<n>_ENABLE_SHIFT pru<n>_r30 [31]

29SPRUHF8A–May 2012–Revised June 2013

200 MHz

PRU<n>DATAOUT

PRU<n>_R30

PRU<n>CLOCK

0

1

…

15

…

29 (gp_sh0_load)

30 (gp_sh1_load)

31 (enable_shift)

16

16

16

16

GP_SH0

GP_SH1

16
PR1_PRU<n>_PRU_R30[0]

PR1_PRU<n>_PRU_R30[1]
PRU<n>

GPO_DIV0
PRU<n>

GPO_DIV1

PRU<n>_R30

PR1_PRU<n>_PRU_R30[15:0]
0

1

…

15
16

PRU<n>DATAOUT

PRU

5.2.2.3.4.1 Direct Connction

The pru<n>_r30 [15:0] (PRU<n>_DATAOUT) bits are exported out of the PRU-ICSS and are brought out
as general purpose output pins. Each PRU of the PRU-ICSS has a separate mapping to pins, so that
there are 32 total general-purpose outputs from the PRU-ICSS. See the device's system reference guide
or datasheet for device-specific pin mapping.

Figure 9. PRU R30 (GPO) Direct Connection Mode Block Diagram

5.2.2.3.4.2 Shift Out

In shift out mode, data is shifted out of pru<n>_r30[0] (PRU<n>_DATAOUT) on every rising edge of
pru<n>_r30[1] (PRU<n>_CLOCK). The shift rate is controlled by the effective divisor of two cascaded
dividers applied to the 200-MHz clock. These cascaded dividers can each be configured through the PRU-
ICSS CFG register space to a value of {1, 1.5, …, 16}. Table 17 shows sample effective clock values and
the divisor values that can be used to generate these clocks.

Table 17. Effective Clock Values
Generated Clock PRU<n>_GPO_DIV0 PRU<n>_GPO_DIV1
8 MHz 12.5 (0x15) 2 (0x02)
10 MHz 10 (0x10) 2 (0x02)
16 MHz 16 (0x1e) 1 (0x00)
20 MHz 10 (0x10) 1 (0x00)

Shift out mode uses two 16-bit shadow registers (gpo_sh0 and gpo_sh1) to support ping-pong buffers.
Each shadow register has independent load controls programmable through pru<n>_r30[29:30]
(PRU<n>_LOAD_GPO_SH [0:1]). The data shift will start from gpo_sh0 when pru<n>_r30[31]
(PRU<n>_ENABLE_SHIFT) is set. Note that if no new data is loaded into gpo_shn<n> after shift
operation, the shift operation will continue looping and shifting out the pre-loaded data. The shift operation
will stop and reset when PRU<n>_ENABLE_SHIFT is cleared.

Figure 10. PRU R30 (GPO) Shift Out Mode Block Diagram

30 SPRUHF8A–May 2012–Revised June 2013

 PRU

Follow these steps to use the GPO shift out mode:
Initialization:

Load 16-bits of data into gpo_sh0
Set R30[29] = 1 (PRU<n>_LOAD_GPO_SH0)
Load data in R30[15:0]
Clear R30[29] to turn off load controller

Load 16-bits of data into gpo_sh1
Set R30[30] = 1 (PRU<n>_LOAD_GPO_SH1)
Load data in R30[15:0]
Clear R30[30] to turn off load controller

Start shift operation
Set R30[31] = 1 (PRU<n>_ENABLE_SHIFT)

Shift Loop:
Monitor when a shadow register has finished shifting out data and can be loaded with new data

Poll PRU<n>_GPI_SH_SEL bit of the GPCFG<n> register
Load new 16-bits of data into gpo_sh0 if PRU<n>_GPI_SH_SEL = 1
Load new 16-bits of data into gpo_sh1 if PRU<n>_GPI_SH_SEL = 0

If more data to be shifted out, loop to Shift Loop
If no more data, exit loop

Exit:
End shift operation

Clear R30[31] to turn off shift operation

NOTE: Until the shift operation is disabled, the shift loop will continue looping and shifting out the
pre-loaded data if no new data has been loaded into gpo_sh<n>.

5.2.3 Multiplier With Optional Accumulation
Each PRU core has a designated multiplier with optional accumulation (MAC). The MAC has two modes
of operation: Multiply Only or Multiply and Accumulate. The MAC is directly connected with the PRU
internal registers R25–R29 and uses the broadside load/store PRU interface and XFR instructions to both
control the mode of the MAC and import the multiplication results into the PRU.

5.2.3.1 Features
• Configurable Multiply Only and Multiply and Accumulate functionality via PRU register R25
• 32-bit operands with direct connection to PRU registers R29 and R28
• 64-bit result (with carry flag) with direct connection to PRU registers R26 and R27
• PRU broadside interface and XFR instructions (XIN, XOUT) allow for importing multiplication results

and initiating accumulate function

5.2.3.2 PRU and MAC Interface

The MAC directly connects with the PRU internal registers R25–R29 through use of the PRU broadside
interface and XFR instructions. Figure 11 shows the functionality of each register.

31SPRUHF8A–May 2012–Revised June 2013

Auto-sampled

or XOUT

XOUT

MAC

XFR device ID for
MAC = 0

R26

R27

R28

R29

XIN

Bit

[0] loads current state of MAC_mode

[1] loads the current state of

XIN
Lower 32 bit product

XIN
Upper 32 bit product

R25

MAC mode /status

R26

R27

R28

R29

R25

MAC mode /status

R26

Lower product

R27

Upper product

R25

MAC mode /status

Bit

[0] Loads MAC_mode, if set to “1”, the
MAC will perform one multiply and
accumulate function.

[1] write “1” clears ACC_carry

Auto-sampled

or XOUT

R29

Operand

R28

Operand
32 operands:

sampled every clock in
multiply mode or sampled
every XOUT in multiply
and accumulate mode

Function Function

PRU

ACC_carry

PRU

Figure 11. Integration of the PRU and MAC

The XFR instructions (XIN and XOUT) are used to load/store register contents between the PRU core and
the MAC. These instructions define the start, size, direction of the operation, and device ID. The device ID
number corresponding to the MAC is 0.

The PRU register R25 is mapped to the MAC_CTRL_STATUS register (Table 18). The MAC’s current
status (MAC_mode and ACC_carry states) is loaded into R25 using the XIN command on R25. The PRU
sets the MAC’s mode and clears the ACC_carry using the XOUT command on R25.

Table 18. MAC_CTRL_STATUS Register (R25) Field Descriptions

Bit Field Value Description
7-2 Reserved Reserved
1 ACC_carry Write 1 to clear

0 64-bit accumulator carry has not occurred
1 64-bit accumulator carry occurred

0 MAC_mode 0 Accumulation mode disabled and accumulator is cleared
1 Accumulation mode enabled

The two 32-bit operands for the multiplication are loaded into R28 and R29. These registers have a
direction connection with the MAC. Therefore, XOUT is not required to load the MAC. In multiply mode,
the MAC samples these registers every clock cycle. In multiply and accumulate mode, the MAC samples
these registers every XOUT R25[7:0] transaction when MAC_mode = 1.

The product from the MAC is linked to R26 (lower 32 bits) and R27 (upper 32 bits). The product is loaded
into register R26 and R27 using XIN.

5.2.3.2.1 Multiply-Only Mode (Default State), MAC_mode = 0

On every clock cycle, the MAC multiplies the contents of R28 and R29.

32 SPRUHF8A–May 2012–Revised June 2013

R28

32-bit operand

X

R29

32-bit operand

=

R27

Upper 32-bit product

R26

Lower 32-bit operand

MAC
XIN

Multiply and Accumulate mode
:sampled every XOUT of R25

R28

32-bit operand

X

R29

32-bit operand

=

R27

Upper 32-bit product

R26

Lower 32-bit operand

MAC
XIN

Multiply mode:
sampled every clock cycle

 PRU

Figure 12. Multiply-Only Mode Functional Diagram

The following steps are performed by the PRU firmware for multiply-only mode:
1. Enable multiply only MAC_mode.

• Clear R25[0] for multiply only mode.
• Store MAC_mode to MAC using XOUT instruction on R25. For example: XOUT 0, R25, 1.

2. Load operands into R29 and R28.
3. Load product into PRU using XIN instruction on R27, R26.

Repeat steps 2 and 3 for each new operand.

5.2.3.2.2 Multiply and Accumulate Mode, MAC_mode = 1

On every XOUT R25_reg[7:0] transaction, the MAC multiplies the contents of R28 and R29, adds the
product to its accumulated result, and sets ACC_carry if an accumulation overflow occurs.

Figure 13. Multiply and Accumulate Mode Functional Diagram

The following steps are performed by the PRU firmware for multiply and accumulate mode:
1. Enable multiply and accumulate MAC_mode.

• Set R25[1:0] = 1 for accumulate mode.
• Store MAC_mode to MAC using XOUT instruction on R25. For example: XOUT 0, R25, 1.

2. Clear accumulator and carry flag.
• Set R25[1:0] = 3 to clear accumulator.
• Store accumlator to MAC using XOUT instruction on R25. For example: XOUT 0, R25, 1.

3. Load operands into R29 and R28.
4. Multiply and accumulate, XOUT R25_reg[1:0] = 1

Repeat step 4 for each multiply and accumulate using same operands.
Repeat step 3 and 4 for each multiply and accumulate for new operands.

5. Load the accumulated product into R27_reg, R26_reg and the ACC_carry status into R25_reg using
the XIN instruction.

Note: Steps one and two are required to set the accumulator mode and clear the accumulator and carry
flag.

33SPRUHF8A–May 2012–Revised June 2013

PRU0

R0
R1
R2
…

R28
R29

PRU1

R0
R1
R2
…

R28
R29

Bank0

R0
R1
R2
…

R28
R29

Bank1

R0
R1
R2
…

R28
R29

Bank2

R0
R1
R2
…

R28
R29

b
ro

a
d
s
id

e
in

te
rf

a
c
e

b
ro

a
d
s
id

e
 i
n

te
rf

a
c
e

PRU

5.2.4 PRU0/1 Scratch Pad
The PRU-ICSS supports a scratch pad with three independent banks accessible by the PRU cores. The
PRU cores interact with the scratch pad through broadside load/store PRU interface and XFR instructions.
The scratch pad can be used as a temporary place holder for the register contents of the PRU cores.
Direct connection between the PRU cores is also supported for transferring register contents directly
between the cores.

5.2.4.1 Features

The PRU-ICSS scratch pad supports the following features:
• Three scratch pad banks of 30, 32-bit registers (R29:0)
• Flexible load/store options

– User-defined start byte and length of the transfer
– Length of transfer ranges from one byte of a register to the entire register content (R29 to R0)
– Simultaneous transactions supported between PRU0 ↔ Bank<n> and PRU1 ↔ Bank<m>
– Direct connection of PRU0 → PRU1 or PRU1 → PRU0 for all registers R29–R0

• XFR instruction operate in one clock cycle
• Optional XIN/XOUT shift functionality allows remapping of registers (R<n> → R<m>) during load/store

operation

Figure 14. Integration of PRU and Scratch Pad

5.2.4.2 Implementations and Operations

XFR instructions are used to load/store register contents between the PRU cores and the scratch pad
banks. These instructions define the start, size, direction of the operation, and device ID. The device ID
corresponds to the external source or destination (either a scratch pad bank or the other PRU core). The
device ID numbers are shown in Table 19. Note the direct connect mode (device ID 14) can be used to
synchronize the PRU cores.

34 SPRUHF8A–May 2012–Revised June 2013

 PRU

Table 19. Scratch Pad XFR ID
Device ID Function
10 Selects Bank0
11 Selects Bank1
12 Selects Bank2
13 Reserved
14 Selects other PRU core (Direct connect mode)

A collision occurs when two XOUT commands simultaneously access the same asset or device ID.
Table 20 shows the priority assigned to each operation when a collision occurs. In direct connect mode
(device ID 14), any PRU transaction will be terminated if the stall is greater than 1024 cycles. This will
generate the event pr<1/0>_xfr_timeout that is connected to INTC.

Table 20. Scratch Pad XFR Collision Conditions
Operation Collision Handling
PRU<n> XOUT (→) bank[j] If both PRU cores access the same bank simultaneously, PRU0

is given priority. PRU1 will temporarily stall until the PRU0
operation completes.

PRU<n> XOUT (→) PRU<m> If PRU<n> executes XOUT before PRU<m> executes XIN, then
PRU<n> will stall until either PRU<m> executes XIN or the stall
is greater than 1024 cycles.

PRU<n> XIN (←) PRU<m> If PRU<n> executes XIN before PRU<m> executes XOUT, then
PRU<n> will stall until either PRU<m> executes XIN or the stall
is greater than 1024 cycles.

5.2.4.2.1 Optional XIN/XOUT Shift

The optional XIN/XOUT shift functionality allows register contents to be remapped or shifted within the
destination’s register space. For example, the contents of PRU0 R6-R8 could be remapped to Bank1 R10-
12. The XIN/XOUT shift feature is not supported for direct connect mode, only for transfers between a
PRU core and scratch pad bank.

The shift feature is enabled or disabled through the SPP register of the PRU-ICSS CFG register space.
When enabled, R0[4:0] (internal to the PRU) defines the number of 32-bit registers in which content is
shifted in the scratch pad bank. Note that scratch pad banks do not have registers R30 or R31.

5.2.4.2.2 Example Scratch Pad Operations

The following PRU firmware examples demonstrate the shift functionality. Note these assume the
SHIFT_EN bit of the SPP register of the PRU-ICSS CFG register space has been set.

XOUT Shift By 4 Registers
MOV R0.b0, 4
XOUT 10, R4, 16 // Store R4:R7 to R8:R11 in bank0

XOUT Shift By 9 Registers, With Wrap Around
MOV R0.b0, 9
XOUT 11, R25, 20 // Store R25:R29 to R4:R9 in bank1

XIN Shift By 10 Registers
MOV R0.b0, 10
XIN 12, R4, 12 // Load R14:R16 from bank2 to R4:R6

35SPRUHF8A–May 2012–Revised June 2013

PRU

5.3 Basic Programming Model

5.3.1 PASM — PRU Assembler Overview
PASM is a command-line-driven assembler for the programmable real-time execution unit (PRU) of the
programmable real-time unit subsystem (PRUSS). It is designed to build single executable images using a
flexible source code syntax and a variety of output options. PASM is available for Windows and Linux.

5.3.1.1 Calling Syntax

The command line syntax to PASM is:
pasm_2 -V3 [bcmldz] SourceFile [OutFileBasename] [-Dname=value] [-CArrayName]

Note that only the source file SourceFile is required on the command line. The assembler will default to
output option "-c" which generates a C array containing the binary opcode data. The majority of the option
flags select a variety of output formats.

The output file OutFileBasename is a base name only. It defaults to the same name as the source file (for
example "myprog.p" would have a default base name of "myprog"). Standard filename extensions are
applied to the base name to create the final output filename(s), depending on the output option(s)
selected.

When specifying PASM options, options can be specified individually or as a group. For example, either of
the two invocations below is valid:
pasm_2 -V3 -cdl myprog.p
pasm_2 -V3 -c -d -l myprog.p

Filenames and options can also be mixed, for example:
pasm_2 -V3 myprog.p -cdl
pasm_2 -V3 -cd myprog.p -DMYVAL=1 -l

5.3.1.1.1 Output Formats

All program images start at Programmable Real-Time Unit (PRU) address 0. For example, if a program
has an internal origin of 8, the first eight 32 bit words of the program image output will be zero.

The following output options are supported. The output file name shown in the table is generated
assuming a base name of “myprog”:

Command Line Option Output Format Output Filename
-b Little endian binary file myprog.bin
-c C include file containing unsigned long myprog_bin.h

array called PRUcode[] (1)

-m Image file containing one 32 bit hex myprog.img
opcode per line

-L Listing file containing original source code myprog.txt
and generated opcodes.

-l Listing file containing post-processed code myprog.lst
and generated opcodes

-d Debugger output file (opcodes with source myprog.dbg
and label info)

(1) The name “PRUcode[]” can be redefined using the –C option.

36 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.1.1.2 Additional Options

PASM supports some additional command line options that are not associated with output file format:

Command Line Option Function
-V# PRU core version number. V3 for PRUSSv2.
-C Rename the code array declared when using the -c option
-D Constant definition
-z Enable PASM assembler debug output

5.3.1.1.2.1 Rename the Code Array for the -c Option

By default, the –c option will create an output file with a name ending in “_bin.h”. Inside this created
include file, the output code is defined as a C array of 32 bit values. The default name of the array is
“PRUcode[]”. The –C option allows the user to redefine this name to something more appropriate. For
example the following command line will create an output file named “myprog_bin.h”, and the C array
inside the created file will be called “MyProg_Release_003a[]”.
pasm_2 -V3 -c myprog.p -CMyProg_Release_003a

5.3.1.1.2.2 Constant Definitions

When the “-D” option is specified, the remaining command line argument is interpreted as a constant
assignment. For example, to add an assignment “1” to the constant “MYVAL”, any of the following is valid:
pasm_2 -V3 -cdl myprog.p -DMYVAL=1
pasm_2 -V3 -c -d -l -DMYVAL=1 myprog.p
pasm_2 -V3 myprog.p -cdlDMYVAL=1

Since the default value assigned to a constant is “1”, the following is also equivalent:
pasm_2 -V3 -c -d -l -DMYVAL myprog.p

Note that constants defined on the command line do not override constants defined in the source code.

5.3.2 PASM Source File Syntax
PASM is a non-linking two pass assembler. It assembles programs as a single monolithic image and
directly generates executable code. As there is no linking stage in a PASM build, there are no section or
segment directives, nor memory maps or command files.

In PASM, there are four basic assembly operators. These include dot “.” commands, hash “#” commands,
labels, and instructions (mnemonics). The user may supply comments that are invisible to the assembler.

5.3.2.1 Dot Commands

Dot commands are used to control the assembler, for example “.origin” and “.proc”. They can also be used
to declare complex data types as in the “.struct” directive.

5.3.2.1.1 Syntax

The rules for a dot command are as follows:
• Must be the only assembly type on the line
• Can be followed by a comment
• Does not need to start in column 0

37SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.2.1.2 Origin (.origin) Command

The origin command is used to specify a code offset in the PRU source file. Typically a single origin
statement is specified before any instructions, but multiple origin commands can be specified in order to
insert space into the code map.

Example:
.origin 8 // Start the next instruction at code offset 8

5.3.2.1.3 Entry Point (.entrypoint) Command

The entry point command is used to specify the code entry point to the debugger, and stores the
information in the debug output file (*.dbg). It has no affect on any other output file type.

By default PASM will set the entry point to the first instruction generated by the assembly.

Examples:
.entrypoint 0 // Set code entrypoint to address 0
.entrypoint Start // Set code entrypoint to the code label "Start"

5.3.2.1.4 Set Call/Return Register (.setcallreg) Command

This command sets the call/return register that is used in the CALL and RET pseudo op instructions. If this
command is not specified, a default register of R30.w0 is used. This command must appear in the source
code prior to any program instructions, and it must specify a 16-bit register field.

Example:
.setcallreg r15.w2 // Use R15.W2 in the CALL/RET pseudo ops

5.3.2.1.5 Start Macro Definition (.macro)

The .macro command is used to begin the definition of a macro. In the assembler, a macro can only be
used in place of an opcode. There is always a single parameter to the command, being the name of the
macro. Each macro section must start with a “.macro” and end with an “.endm”.

See Section 5.3.3.1 for more details on using macros.

Example:
.macro mov32 // Define macro "mov32"

5.3.2.1.6 Specific Macro Parameter(s) (.mparam)

The .mparam command is used to add one or more parameters to a macro. The form of the command is:
.mparam param1 [= default_value] [, param2 [= default_value]]

When a parameter is given a default value, it is considered an optional parameter. Any optional
parameters must be the last parameters specified in the parameter list. It is acceptable to supply both
required and optional parameters on the same .mparam line.

See Section 5.3.3.1 for more details on using macros.

Example:
.mparam dst, src // Define 2 required parameters, "dst" and "src"
.mparam temp = r0 // Define an optional parameter "temp" that

// defaults to the value 'r0'.

5.3.2.1.7 End Macro Definition (.endm)

The .endm command is used to complete the definition of a macro. It is required at the end of any macro
specification. There are no parameters.

See Section 5.3.3.1 for more details on using macros.

Example:
.endm // Completed defining macro

38 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.2.1.8 Structure (.struct) Command

The structure command is used to open a declaration to a new structure in PASM. PASM uses structures
to generate standard equates, and allow the user to perform register allocation to private structure
instances.

See Section 5.3.3.2 for more details on using scope and structures.

Example:
.struct myStruct // Declare a structure template called "myStruct"

5.3.2.1.9 End Structure (.ends) Command

The end structure command is used to close a structure declaration. PASM uses structures to generate
standard equates, and allow the user to perform register allocation to private structure instances.

See Section 5.3.3.2 for more details on using scope and structures.

Example:
.ends

5.3.2.1.10 Field Directives (.u8, .u16, .u32)

Field directives are used within an open structure declaration to define fields within the structure.

See Section 5.3.3.2 for more details on using scope and structures.

Example:
.struct MyStruct

.u32 MyInt // 32-bit field

.u16 MyShort // 16-bit field

.u8 MyByte1 // 8-bit field

.u8 MyByte2 // 8-bit field
.ends

5.3.2.1.11 Assignment Directive (.assign)

The assignment directive is used to map a defined structure onto the PRU register file. An assign
statement can begin on any register boundary.

The programmer may declare the full assignment span manually (both starting and ending register), or
leave the ending register blank. When the programmer declares a full register span, PASM will generate
an error when the specified span is incorrect. This allows the programmer to formally map structures to
specific register spans, reducing the chance that register assignments will accidentally overlap.

Some structures will also require specific alignments due to how their fields are arranged within the
structure. PASM will generate an error if the structure alignment requirements can not be met with the
specified starting register.

See Section 5.3.3.2 for more details on using scope and structures.

Example:
.assign MyStruct, R4, R5, MyName1 // Make sure this uses R4 thru R5
.assign MyStruct, R6, *, MyName2 // Don’t need to validate the range

5.3.2.1.12 Enter New Variable Scope (.enter)

The .enter command is used to create and enter a new variable scope. There is a single parameter to the
command that specifies the name of the scope. Any structures that are assigned inside a named scope
can only be accessed when the scope is open. Use of variable scopes is optional.

See Section 5.3.3.2 for more details on using scope and structures.

Example:
.enter Scope1 // Create and enter scope named "Scope1"

39SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.2.1.13 Leave a Variable Scope (.leave)

The .leave command is used to leave a specific variable scope. There is a single parameter to the
command that specifies the name of the scope to leave. Scopes do not need to be entered or left in any
particular order, but a natural ordering can be enforced by the programmer.

See Section 5.3.3.2 for more details on using scope and structures.

Example:
.enter Scope1 // Create and enter scope named "Scope1"

.enter Scope2 // Create and enter scope named "Scope2"

.leave Scope2 // Leave scope named "Scope2"
.leave Scope1 // Leave scope named "Scope1"

5.3.2.1.14 Referencing an Existing Variable Scope (.using)

The .using command is used to enter a specific variable scope that has been previously created and left.
There is a single parameter to the command that specifies the name of the scope to enter. The .leave
command is then used to leave the scope after being entered with .using.

See Section 5.3.3.2 for more details on using scope and structures.

Example:
.using Scope1 // Enter existing scope named "Scope1"

.using Scope2 // Enter existing scope named "Scope2"

.leave Scope2 // Leave scope named "Scope2"
.leave Scope1 // Leave scope named "Scope1"

5.3.2.2 Hash Commands

Hash commands are used to control the assembler pre-processor. They are quite similar to their C
counterparts.

5.3.2.2.1 Syntax

The rules for a hash command are as follows:
• Must be the only assembly type on the line
• Can be followed by a comment
• Does not need to start in column 0

5.3.2.2.2 Include (#include) Command

The #include command is used to include additional source files in the assembly process. When a
“#include” is specified, the included file is immediately opened, parsed, and processed.

The calling syntax for #include can use quotes ‘” “’ or brackets “< >". Specifying quotes is functionally
equivalent to specifying brackets. For example:
#include "localInclude.h"

#include "c:\include\myInclude.h"

#include <inc\myInclude.h>

As PASM uses a monolithic single source approach, the #include statement can be used to specify
external source files. This allows a developer to break up a complicated application into several smaller
source files.

For example, an application may consist of a master source file “myApp.p” which itself contains nothing
but include commands for including sub source files. The contents of “myApp.p” may appear as follows:
#include "myInitialization.p"
#include "myMainLoop.p"
#include "mySubroutines.p"

40 SPRUHF8A–May 2012–Revised June 2013

 PRU

The above lines would include each source file in turn, concatenating one after the other in the final code
image. Each of these included source files may have additional include files of their own.

Including the same include file multiple times will not result in an error, however including files recursively
will result in an error.

5.3.2.2.3 Define (#define) Command

The “#define” command is used to specify a simple text substitution. Any text defined in a #define is
substituted for the defined name within the code.

For example, if the programmer writes:
#define BUFFER_ADDRESS 0x08001000

ldi r1.w0, BUFFER_ADDRESS & 0xFFFF
ldi r1.w2, BUFFER_ADDRESS >> 16

This would load 0x1000 into register r1.w0 and then 0x0800 into register r1.w2.

Equates are expanded recursively, so the value of the define does not need to be resolved until it is used.
For example:
#define B A
#define A 1

ldi r1, B

The above will load “1” in register r1.

5.3.2.2.4 Undefine (#undef) Command

The “#undef” command is used to undefined a constant that was previously assigned via #define.

For example:
// Redefine our buffer address without generating an assmbler warning
#undef BUFFER_ADDRESS
#define BUFFER_ADDRESS 0x08001000

5.3.2.2.5 Error (#error) Command

The “#error” command is used to specify an error during assembly. For example, if the programmer
wishes to verify the constant value MYMODE is defined, they can write:
#ifndef MYMODE
#error Mode not specified
#endif

The above will produce an error if the program is assembled and MYMODE is not defined.

5.3.2.2.6 Warning (#warn) Command

The “#warn” command is used to specify a warning during pass 1 of the assembly. For example, if the
programmer wishes to verify the constant value MYMODE is defined, but still allow a default mode, they
can write:
#ifndef MYMODE
#warn Mode not specified - setting default
#define MYMODE DEFAULT_MODE
#endif

The above will produce an assembler warning if the program is assembled and MYMODE is not defined.

41SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.2.2.7 Notation (#note) Command

The “#note” command is used to specify a notation during pass 1 of the assembly. For example, if the
programmer wishes to allow a default setting of the constant value MYMODE, but still notify the
programmer what is happening, they can write:
#ifndef MYMODE
#note Using default MYMODE
#define MYMODE DEFAULT_MODE
#endif

The above will produce an assembler notation if the program is assembled and MYMODE is not defined,
but it is not counted as an error or a warning.

5.3.2.2.8 If Defined (#ifdef) Command

The “#ifdef” command is used to specify a block of conditional code based on whether the supplied
constant is defined. Here, the code inside the #ifdef block will be assembled only if the constant is defined,
regardless of its defined value. Every #ifdef must be followed by a #endif. For example:
#define MYVAL 1
#ifdef MYVAL

// This code in this block will be assembled
#endif

#undef MYVAL
#ifdef MYVAL

// This code in this block will NOT be assembled
#endif

5.3.2.2.9 If Not Defined (#ifndef) Command

The “#ifndef” command is used to specify a block of conditional code based on whether the supplied
constant is defined. Here, the code inside the #ifndef block will be assembled only if the constant is not
defined. Every #ifndef must be followed by a #endif. For example:
#define MYVAL 1
#ifndef MYVAL

// This code in this block will NOT be assembled
#endif

#undef MYVAL
#ifndef MYVAL

// This code in this block will be assembled
#endif

5.3.2.2.10 End If (#endif) Command

The “#endif” command is used to close a previously open #ifdef or #ifndef, thus closing the conditional
assembly block.

5.3.2.2.11 Else (#else) Command

The “#else” command is used to specify a block of conditional code based on a previous #ifdef or #ifndef,
allowing for the opposite case. For example:
#define MYVAL 1
#ifdef MYVAL

// This code in this block will be assembled
#else

// This code in this block will NOT be assembled
#endif

42 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.2.3 Labels

Labels are used denote program addresses. When placed at the beginning of a source line and
immediately followed by a colon ‘:’, they mark a program address location. When referenced by an
instruction, the corresponding marked address is substituted for the label.

The syntax rules for labels are as follows:
• A label definition must be immediately followed by a colon.
• Only instructions and/or comments can occupy the same source line as a label.
• Labels can use characters ‘A’-‘Z’, ‘a’-‘z’, ‘0’-‘9’ plus underscores ‘_’ and dots ‘.’.
• A label can not begin with a number (‘0’-‘9’).

The following illustrates defining and using the label named “loop_label”:
ldi r0, 100

loop_label:
sub r0, r0, 1
qbne loop_label, r0, 0
ret

5.3.2.4 Comments

In PASM comments are transparent to all other operations, thus they can appear anywhere on any source
line. However, since comments are terminated by the end of line, they are by definition, the last field on a
line.

The syntax rules for comments are as follows:
• Comments must be preceded by '//'.
• Comments are always the last field to appear on a line.

The following illustrates defining a comment:
//-------------------------
// This is a comment
//-------------------------
ldi r0, 100 // This is a comment

5.3.2.5 PRU Assembly Instructions

Instruction lines include a PRU mnemonic, followed by a list of parameters appropriate for the mnemonic.
See Section 5.3.4, PRU Instruction Set, for supported instructions. Note that some of these are pseudo
ops, which do not affect their use, but may affect how they are displayed when disassembled by a
debugger.

5.3.2.5.1 Syntax

An instruction line consists of a mnemonic is followed by a specific number of parameters appropriate for
the instruction. Parameters are always separated by commas. For example:
mnemonic parameter1, parameter2, parameter3, parameter4

Each instruction accepts either a fixed or varying number of parameters. Those that use a varying number
of parameters do so for either flexibility in formatting, or to adjust to different use cases. In most cases, at
least one of the parameters can be one of a couple different types. For example, on many instructions the
third parameter can be either a register or an immediate value.

All parameters take the form a register, label, or immediate value. There exists both a formal and informal
syntax for instruction lines. The formal syntax was inherited from an earlier assembler. Modern
applications typically use the informal syntax. These are discussed in more detail later in section dealing
with parameter type, but here are some examples of both formal and informal syntax.

43SPRUHF8A–May 2012–Revised June 2013

PRU

Formal Syntax:
LDI R2, #5
LDI R3, #3
ADD R1, R2, R3
QBNE (LABEL), R1, #8
JMP (LABEL)

Informal Syntax:
ldi r2, 5
ldi r3, 3
add r1, r2, r3
qbne label, r1, 8
jmp label

5.3.2.5.2 Registers

The PASM assembler treats PRU registers as bit fields within the register file. All registers start with a
base register (R0 through R31). A base register defines an unsigned 32 bit quantity. This 32 bit base field
can be modified by appending different register modifier suffixes. The modifier suffix selects which portion
of the register on which to operate. The suffixes are as follows:

Suffix Range of n Meaning
.wn 0 to 2 16 bit field with a byte offset of n within

the parent field
.bn 0 to 3 8 bit field with a byte offset of n within the

parent field
.tn 0 to 31 1 bit field with a bit offset of n within the

parent field

Multiple suffixes may appear on a base register to further modify the desired field. For example:

Register Meaning
R5 32 bit value, bits 0 to 32 of register R5

R5.w0 16 bit value, bits 0 to 15 of register R5
R5.w1 16 bit value, bits 8 to 23 of register R5
R5.b1 8 bit value, bits 8 to 15 of register R5
R5.t7 1 bit value, bit 7 of register R5

R5.w1.b1 8 bit value, bits 8 to 15 of “R5.w1”
(this corresponds to bits 16 to 23 of register R5)

R5.w1.b1.t7 1 bit value, bit 7 of R5.w1.b1
(since R5.w1.b1 is bits 16 to 23 of R5, this is bit 23 of register
R5)

Note that some suffix combinations are illegal. A combination is illegal when a modifier attempts to extract
a field that is not contained in the parent field. For example:

Illegal Register Reason for Illegality
R5.t0.b0 A byte field can be extracted from a single bit field
R5.w2.b2 Bits 16 to 23 can not be extracted out of a 16 bit field
R5.b0.t8 Bit 8 can not be extracted out of an 8 bit field

R5.w0.w1 Bits 8 to 23 can not be extracted out of a 16 bit field. Note that
R5.w1.w0 would be legal, but not of much use as R5.w1.w0 ==
R5.w1

44 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.2.5.3 Loop/Byte Count Registers

Register R0 is used in some instructions to specify a loop count or byte count value. A count of this type is
always the last parameter in the parameter list. A loop/byte count is always an 8 bit sub-field of R0. For
legacy reasons, the register is expressed only by its modifier suffix. For example: “b0” is taken to mean
“R0.b0” and “b2” is taken to mean “R0.b2”.

Register loop/byte counts are allowed only in very specific circumstances which are detailed in the
appropriate instruction description.

5.3.2.5.4 Labels

Labels are used to reference code locations in a program. In PASM, labels are used to specify targets of
jump instructions, but can also be used in an instruction that calls for an immediate value (so long as the
label’s value fits in the immediate field’s specified bit width). When specifying a label, the user has the
option of enclosing it in parenthesis “()” for legacy concerns, but it is not required or recommended. For
example:

QBNE (MyLabel), R1, #8
JMP (MyLabel)
LDI R1.W0, #MyLabel
qbne MyLabel, r1, 8
jmp MyLabel
ldi r1.w0, MyLabel

5.3.2.5.5 Immediate Values

Immediate values are simple numbers or expressions that compute to constant values. Immediate values
or expressions can be preceded by a hash character ‘#’ for legacy concerns, but this is not required or
recommended. For example:

LDI R1, #0x25
and r2, r1, 0b1001011
ldi r1.w0, 0x12345678 & 0xFFFF
ldi r1.w2, 0x12345678 >> 16
add r2, r3, (6*(5-3)/2) << 2

Note that if an immediate value is lead by a ‘0’ without a format notation of ‘x’ or ‘b’, then the base is
assumed to be in octal format.

5.3.2.5.6 Syntax Terms and Definitions

The following terms are definitions are used to specify parameters in a formal instruction definition.

Field Name Meaning Examples
REG, REG1, REG2, … Any register field from 8 to 32 bits r0

r1.w0
r3.b2

Rn, Rn1, Rn2, … Any 32 bit register field (r0 through r31) r0
r1

Rn.tx Any 1 bit register field (x denotes the bit r0.t23
position) r1.b1.t4

Cn, Cn1, Cn2, … Any 32 bit constant register entry (c0 c0
through c31) c1

bn Specifies a field that must be b0, b1, b2, b0
or b3 – denoting r0.b0, r0.b1, r0.b2, and
r0.b3 respectively.

LABEL Any valid label, specified with or without loop1
parenthesis. An immediate value denoting (loop1)
an instruction address is also acceptable. 0

IM(n) An immediate value from 0 to n. #23
Immediate values can be specified with or 0b0110
without a leading hash “#” character. 2+2
Immediate values, labels, and register &r3.w2
addresses are all acceptable.

45SPRUHF8A–May 2012–Revised June 2013

PRU

Field Name Meaning Examples
OP(n) This is a combination (or the union) of r0

REG and IM(n). It specifies a register field r1.w0
from 8 to 32 bits, or an immediate value #0x7F
from 0 to n. A label or register address 1<<3
that resolves to a value within the denoted loop1
range is also acceptable. &r1.w0

For example the following is the definition for the ADD instruction:
ADD REG1, REG2, OP(255)

This means that the first and second parameters can be any register field from 8 to 32 bits. The third
parameter can be any register field from 8 to 32 bits or an immediate value from 0 to 255. Thus the
following are all legal ADD instructions:

ADD R1, R1, #0x25 // r1 += 37
ADD r1, r1, 0x25 // r1 += 37
ADD r3, r1, r2 // r3 = r1 + r2
ADD r1.b0, r1.b0, 0b100 // r1.b0 += 4
ADD r2, r1.w0, 1<<3 // r2 = r1.w0 + 8

5.3.3 Advanced Topics

5.3.3.1 Using Macros

Macros are used to define custom instructions for the CPU. They are similar to in-line subroutines in C.

5.3.3.1.1 Defining a Macro

A macro is defined by first declaring the start of a macro block and specifying the macro name, then
specifying the assembly code to implement the intended function, and finally closing the macro block.

.macro macro name

.mparam macro parameters
< lines of assembly code >
< lines of assembly code >
< lines of assembly code >

.endm

The assembly code within a macro block is identical to that used outside a macro block with minor
variances:
• Macros cannot be nested
• No dot commands may appear within a macro block other than “.mparam”.
• Pre-processor definitions and conditional assembly are processed when the macro is defined.
• Structure references are expanded when the macro is used.
• Labels defined within a macro are considered local and can only be referenced from within the macro.
• References to external labels from within a macro are allowed.

46 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.3.1.2 Macro Parameters

The macro parameters can be specified on one “.mparam” line or multiple. They are processed in the
order that they are encountered. There are two types of parameters, mandatory and optional. Optional
parameters are assigned a default value that is used in the event that they are not specified when the
macro is used. Since parameters are always processed in order, any optional parameters must come last,
and once an optional parameter is used, none of the remaining parameters may be specified.

For example:
.macro mv1 // Define macro "mv1"
.mparam dst=r0, src=5 // Two optional parameters

mov dst, src
.endm

For the above macro, the following expansions are possible:

Macro Invocation Result
mv1 r1, 7 mov r1, 7
mv1 r2 mov r2, 5
mv1 mov r0, 5

Note that optional parameters can not be passed by using “empty” delimiters. For example, the following
invocation of “mv1” is illegal:

mv1 , 7 // Illegal attempt to do ‘mov r0, 7’

5.3.3.1.3 Example Macros

5.3.3.1.3.1 Example 1: Move 32-bit Value (mov32)

The mov32 macro is a good example of a simple macro that saves some typing and makes a source code
look a little cleaner.

Note: The latest assembler supports 32-bit immediate values natively, making this MACRO undesirable
for general use (but it makes a good macro example).

Specification:
//
// mov32 : Move a 32bit value to a register
//
// Usage:
// mov32 dst, src
//
// Sets dst = src. Src must be a 32 bit immediate value.
//
.macro mov32
.mparam dst, src

mov dst.w0, (src) & 0xFFFF
mov dst.w2, (src) >> 16

.endm

Example Invocation:
The invocation for this macro is the same as the standard mov pseudo op:

mov32 r0, 0x12345678

Example Expansion:
The expansion of the above invocation uses to immediate value moves to accomplish the 32-bit load.

mov r0.w0, (0x12345678) & 0xFFFF
mov r0.w2, (0x12345678) >> 16

47SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.3.1.3.2 Example 2: Quick Branch If in Range (qbir)

Any label defined within a macro is altered upon expansion to be unique. Thus internal labels are local to
the macro and code defined outside of a macro cannot make direct use of a label that is defined inside a
macro. However code contained within a macro can make free use of externally defined labels.

The qbir macro is a simple example that uses a local label. The macro instruction will jump to the supplied
label if the test value is within the specified range.

Specification:
//
// qbir : Quick branch in range
//
// Usage:
// qbir label, test, low, high
//
// Jumps to label if (low <= test <= high).
// Test must be a register. Low and high can be
// a register or a 8 bit immediate value.
//
.macro qbir
.mparam label, test, low, high

qbgt out_of_range, test, low
qbge label, test, high

out_of_range:
.endm

Example Invocation:
The example below checks the value in R5 for membership of two different ranges. Note that the range
“low” and “high” values could also come from registers. They do not need to be immediate values:

qbir range1, r5, 1, 9 // Jump if (1 <= r5 <= 9)
qbir range2, r5, 25, 50 // Jump if (25 <= r5 <= 50)

Example Expansion:
The expansion of the above invocation illustrates how external labels are used unmodified while internal
labels are altered on expansion to make them unique.

qbgt _out_of_range_1_, R5, 1
qbge range1, r5, 9

_out_of_range_1_:
qbgt _out_of_range_2_, R5, 25
qbge range2, r5, 50

_out_of_range_2_:

48 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.3.2 Using Structures and Scope

5.3.3.2.1 Basic Structures

Structures are used in PASM to eliminate the tedious process of defining structure offset fields for using in
LBBO/SBBO, and the even more painful process of mapping structures to registers.

5.3.3.2.1.1 Declaring Structure Types

Structures are declared in PASM using the “.struct” dot command. This is similar to using a “typedef” in C.
PASM automatically processes each declared structure template and creates an internal structure type.
The named structure type is not yet associated with any registers or storage. For example, say the
application programmer has the following structure in C:
typedef struct _PktDesc {

struct _PktDesc *pNext;
char *pBuffer;
unsigned short Offset;
unsigned short BufLength;
unsigned short Flags;
unsigned short PktLength;

} PKTDESC;

The equivalent PASM structure type is created using the following syntax:
.struct PktDesc

.u32 pNext

.u32 pBuffer

.u16 Offset

.u16 BufLength

.u16 Flags

.u16 PktLength
.ends

5.3.3.2.1.2 Assigning Structure Interfaces to Registers

The second function of the PASM structure is to allow the application developer to map structures onto the
PRU register file without the need to manually allocate registers to each field. This is done through the
“.assign” dot command. For example, say the application programmer performs the following assignment:

.assign PktDesc, R4, R7, RxDesc // Make sure this uses R4 thru R7

When PASM sees this assignment, it will perform three tasks for the application developer:
1. PASM will verify that the structure perfectly spans the declared range (in this case R4 through R7).

The application developer can avoid the formal range declaration by substituting ‘*’ for ‘R7’ above.
2. PASM will verify that all structure fields are able to be mapped onto the declared range without any

alignment issues. If an alignment issue is found, it is reported as an error along with the field in
question. Note that assignments can begin on any register boundary.

3. PASM will create an internal data type named “RxDesc”, which is of type “PktDesc”.

For the above assignment, PASM will use the following variable equivalencies. Note that PASM will
automatically adjust for endian mode.

Variable Little Endian
RxDesc R4
RxDesc.pNext R4
RxDesc.pBuffer R5
RxDesc.Offset R6.w0
RxDesc.BufLength R6.w2
RxDesc.Flags R7.w0
RxDesc.PktLength R7.w2

49SPRUHF8A–May 2012–Revised June 2013

PRU

For example the source line below will be converted to the output shown:
// Input Source Line
ADD r20, RxDesc.pBuffer, RxDesc.Offset

// Output Source Line
ADD r20, R5, R6.w0

5.3.3.2.2 SIZE and OFFSET Operators

SIZE and OFFSET are two useful operators that can be applied to either structure types or structure
assignments. The SIZE operator returns the byte size of the supplied structure or structure field. The
OFFSET operator returns the byte offset of the supplied field from the start of the structure.

5.3.3.2.2.1 SIZE Operator Example

Using the assignment example from the previous section, the following SIZE equivalencies would apply:

Variable Operation Results
SIZE(PktDesc) 16
SIZE(PktDesc.pNext) 4
SIZE(PktDesc.pBuffer) 4
SIZE(PktDesc.Offset) 2
SIZE(PktDesc.BufLength) 2
SIZE(PktDesc.Flags) 2
SIZE(PktDesc.PktLength) 2
SIZE(RxDesc) 16
SIZE(RxDesc.pNext) 4
SIZE(RxDesc.pBuffer) 4
SIZE(RxDesc.Offset) 2
SIZE(RxDesc.BufLength) 2
SIZE(RxDesc.Flags) 2
SIZE(RxDesc.PktLength) 2

5.3.3.2.2.2 OFFSET Operator Example

Using the assignment example from the previous section, the following OFFSET equivalencies would
apply:

Variable Operation Results
OFFSET(PktDesc) 0
OFFSET(PktDesc.pNext) 0
OFFSET(PktDesc.pBuffer) 4
OFFSET(PktDesc.Offset) 8
OFFSET(PktDesc.BufLength) 10
OFFSET(PktDesc.Flags) 12
OFFSET(PktDesc.PktLength) 14
OFFSET(RxDesc) 0
OFFSET(RxDesc.pNext) 0
OFFSET(RxDesc.pBuffer) 4
OFFSET(RxDesc.Offset) 8
OFFSET(RxDesc.BufLength) 10
OFFSET(RxDesc.Flags) 12
OFFSET(RxDesc.PktLength) 14

50 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.3.2.3 Using Variable Scopes

On larger PASM applications, it is common for different structures to be applied to the same register range
for use at different times in the code. For example, assume the programmer uses three structures, one
called “global”, one called “init” and one called “work”. Assume that the global structure is always valid, but
that the init and work structures do not need to be used at the same time.

The programmer could assign the structures as follows:
.assign struct_global, R2, R8, myGlobal
.assign struct_init R9, R12, init // Registers shared with "work"
.assign struct_work R9, R13, work // Registers shared with "init"

The program code may look something like the following:

Start:

call InitGlobalData

Using R9 to R12 for "init" structuremov init.suff, myGlobal.data

call InitProcessing

qbbs InitComplete, init.flags.fComplete

DoWork:

call LoadWorkRecord

Using R9 to R13 for "work" structuremov r0, myGlobal.Status

qbeq type1, work.type, myGlobal.WorkType1

...

InitProcessing:

mov init.start, init.stuff

Using R9 to R12 for "init" structureset init.flags.fComplete

ret

The code has been shaded to emphasize when the shared registers are being used for the “init” structure
and when they are been used for the “work” structure. The above is quite legal, but in this example, PASM
does not provide any enforcement for the register sharing. For example, assume the work section of the
code contained a reference to the “init” structure:

DoWork:

call LoadWorkRecord

mov r0, myGlobal.Status

The reference to "init" would not cause an
set init.flags.fWorkStarted assembly error.

qbeq type1, work.type, myGlobal.WorkType1

...

The above example would not result in an assembly error even though using the same registers for two
different purposes at the same time would result in a functional error.

51SPRUHF8A–May 2012–Revised June 2013

PRU

To solve this potential problem, named variable scopes can be defined in which the register assignments
are to be made. For example, the above shared assignments can be revised to as shown below to include
the creation of variable scopes:
.assign struct_global, R2, R8, myGlobal // Available in all scopes

.enter Init_Scope // Create new scope Init_Scope
.assign struct_init R9, R12, init // Only available in Init_Scope

.leave Init_Scope // Leave scope Init_Scope

.enter Work_Scope // Create new scope Work_Scope
.assign struct_work R9, R13, work // Only available in Work_Scope

.leave Work_Scope // Leave scope Work_Scope

Once the scopes have been defined, the structures assigned within can only be accessed while the scope
is open. Previously defined scopes can be reopened via the “.using” command.

.using Init_Scope

Start:

call InitGlobalData

Using "Init_Scope"mov init.suff, myGlobal.data

call InitProcessing

qbbs InitComplete, init.flags.fComplete

.leave Init_Scope

.using Work_Scope

DoWork:

call LoadWorkRecord

Using "Work_Scope"mov r0, myGlobal.Status

qbeq type1, work.type, myGlobal.WorkType1

...

.leave Work_Scope

.using Init_Scope

InitProcessing:

mov init.start, init.stuff

Using "Init_Scope"set init.flags.fComplete

ret

.leave Init_Scope

When using scopes as in the above example, any attempted reference to a structure assignment made
outside a currently open scope will result in an assembly error.

5.3.3.3 Register Addressing and Spanning

Certain PRU instructions act upon or affect more than a single register field. These include MVIx, ZERO,
SCAN, LBxO, and SBxO. It is important to understand how register fields are packed into registers, and
how these fields are addressed when using one of these PRU functions.

5.3.3.3.1 Little Endian Register Mapping

The registers of the PRU are memory mapped with the little endian byte ordering scheme. For example,
say we have the following registers set to the given values:

R0 = 0x80818283

R1 = 0x84858687

Table 21 is the register mapping to byte offset in little endian:

52 SPRUHF8A–May 2012–Revised June 2013

 PRU

Table 21. Register Byte Mapping in Little Endian
Byte Offset 0 1 2 3 4 5 6 7
Register R0.b0 R0.b1 R0.b2 R0.b3 R1.b0 R1.b1 R1.b2 R1.b3
Field
Example 0x83 0x82 0x81 0x80 0x87 0x86 0x85 0x84
Value

There are three factors affected by register mapping and little endian mapping. There are register spans,
the first byte affected in a register field, and register addressing. In addition, there are some alterations in
PRU opcode encoding.

5.3.3.3.1.1 Register Spans

The concept of how the register file is spanned can be best viewed using the tables created in the
example from section 3.3.1. Registers are spanned by incrementing the byte offset from the start of the
register file for each subsequent byte.

For example assume we have the following registers set to their indicated values:

R0 = 0x80818283

R1 = 0x84858687

R2 = 0x00001000

If the instruction “SBBO R0.b2, R2, 0, 5” is executed, it will result in a memory write to memory address
0x1000 as shown in little endian:

Table 22. SBBO Result for Little Endian Mode
Byte Address 0x1000 0x1001 0x1002 0x1003 0x1004
Value 0x81 0x80 0x87 0x86 0x85

5.3.3.3.1.2 First Byte Affected

The first affected byte in a register field is literally the first byte to be altered when executing a PRU
instruction. For example, in the instruction “LBBO R0, R1, 0, 4”, the first byte to be affected by the LBBO
is R0.b0 in little endian. The width of a field in a register span operation is almost irrelevant in little endian,
since the first byte affected is independent of field width. For example, consider the following table:

Table 23. First Byte Affected in Little Endian Mode
Register Expression First Byte Affected
R0 R0.b0
R0.w0 R0.b0
R0.w1 R0.b1
R0.w2 R0.b2
R0.b0 R0.b0
R0.b1 R0.b1
R0.b2 R0.b2
R0.b3 R0.b3

As can be seen in the table above, for any expression the first byte affected is always the byte offset of
the field within the register. Thus in little endian, the expressions listed below all result in identical
behavior.
• LBBO R0, R1, 0, 4
• LBBO R0.w0, R1, 0, 4
• LBBO R0.b0, R1, 0, 4

53SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.3.3.1.3 Register Address

The MVIx, ZERO, SCAN, LBxO, and SBxO instructions may use or require a register address instead of
the direct register field in the instruction. In the assembler a leading ‘&’ character is used to specify that a
register address is to be used. The address of a register is defined to be the byte offset within the register
file of the first affected byte in the supplied field.

Given the information already presented in this chapter, it should be straight forward to verify the following
register address mappings:

Table 24. Register Addressing in Little Endian
Register Address Expression Little Endian

First Byte Affected Register Address
&Rn Rn.b0 (n*4)
&Rn.w0 Rn.b0 (n*4)
&Rn.w1 Rn.b1 (n*4) + 1
&Rn.w2 Rn.b2 (n*4) + 2
&Rn.b0 Rn.b0 (n*4)
&Rn.b1 Rn.b1 (n*4) + 1
&Rn.b2 Rn.b2 (n*4) + 2
&Rn.b3 Rn.b3 (n*4) + 3

Register addresses are very useful for writing endian agnostic code, or for overriding the declared field
widths in a structure element.

5.3.3.3.1.4 PRU Opcode Generation

The PRU binary opcode formats for LBBO, SBBO, LBCO, and SBCO use a byte offset for the
source/destination register in the PRU register file. For example, only the following destination fields can
actually be encoded into a PRU opcode for register R1:
• LBBO R1.b0, R0, 0, 4
• LBBO R1.b1, R0, 0, 4
• LBBO R1.b2, R0, 0, 4
• LBBO R1.b3, R0, 0, 4

54 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.4 PRU Instruction Set

5.3.4.1 Arithmetic and Logical

All operations are 32 bits wide (with a 33-bit result in the case of arithmetic). The source values are zero
extended prior to the operation. If the destination is too small to accept the result, the result is truncated.

On arithmetic operations, the first bit to the right of the destination width becomes the carry value. Thus if
the destination register is an 8 bit field, bit 8 of the result becomes the carry. For 16 and 32 bit
destinations, bit 16 and bit 32 are used as the carry bit respectively.

5.3.4.1.1 Unsigned Integer Add (ADD)

Performs 32-bit add on two 32 bit zero extended source values.

Definition:
ADD REG1, REG2, OP(255)

Operation:
REG1 = REG2 + OP(255)
carry = ((REG2 + OP(255)) >> bitwidth(REG1)) & 1

Example:
add r3, r1, r2
add r3, r1.b0, r2.w2
add r3, r3, 10

5.3.4.1.2 Unsigned Integer Add with Carry (ADC)

Performs 32-bit add on two 32 bit zero extended source values, plus a stored carry bit.

Definition:
ADC REG1, REG2, OP(255)

Operation:
REG1 = REG2 + OP(255) + carry
carry = ((REG2 + OP(255) + carry) >> bitwidth(REG1)) & 1

Example:
adc r3, r1, r2
adc r3, r1.b0, r2.w2
adc r3, r3, 10

5.3.4.1.3 Unsigned Integer Subtract (SUB)

Performs 32-bit subtract on two 32 bit zero extended source values.

Definition:
SUB REG1, REG2, OP(255)

Operation:
REG1 = REG2 - OP(255)
carry = ((REG2 - OP(255)) >> bitwidth(REG1)) & 1

Example:
sub r3, r1, r2
sub r3, r1.b0, r2.w2
sub r3, r3, 10

55SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.4.1.4 Unsigned Integer Subtract with Carry (SUC)

Performs 32-bit subtract on two 32 bit zero extended source values with carry (borrow).

Definition:
SUC REG1, REG2, OP(255)

Operation:
REG1 = REG2 - OP(255) - carry
carry = ((REG2 - OP(255) - carry) >> bitwidth(REG1)) & 1

Example:
suc r3, r1, r2
suc r3, r1.b0, r2.w2
suc r3, r3, 10

5.3.4.1.5 Reverse Unsigned Integer Subtract (RSB)

Performs 32-bit subtract on two 32 bit zero extended source values. Source values reversed.

Definition:
RSB REG1, REG2, OP(255)

Operation:
REG1 = OP(255) - REG2
carry = ((OP(255) - REG2) >> bitwidth(REG1)) & 1

Example:
rsb r3, r1, r2
rsb r3, r1.b0, r2.w2
rsb r3, r3, 10

5.3.4.1.6 Reverse Unsigned Integer Subtract with Carry (RSC)

Performs 32-bit subtract on two 32 bit zero extended source values with carry (borrow). Source values
reversed.

Definition:
RSC REG1, REG2, OP(255)

Operation:
REG1 = OP(255) - REG2 - carry
carry = ((OP(255) - REG2 - carry) >> bitwidth(REG1)) & 1

Example:
rsc r3, r1, r2
rsc r3, r1.b0, r2.w2
rsc r3, r3, 10

5.3.4.1.7 Logical Shift Left (LSL)

Performs 32-bit shift left of the zero extended source value.

Definition:
LSL REG1, REG2, OP(31)

Operation:
REG1 = REG2 << (OP(31) & 0x1f)

Example:
lsl r3, r3, 2
lsl r3, r3, r1.b0
lsl r3, r3.b0, 10

56 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.4.1.8 Logical Shift Right (LSR)

Performs 32-bit shift right of the zero extended source value.

Definition:
LSR REG1, REG2, OP(31)

Operation:
REG1 = REG2 >> (OP(31) & 0x1f)

Example:
lsr r3, r3, 2
lsr r3, r3, r1.b0
lsr r3, r3.b0, 10

5.3.4.1.9 Bitwise AND (AND)

Performs 32-bit logical AND on two 32 bit zero extended source values.

Definition:
AND REG1, REG2, OP(255)

Operation:
REG1 = REG2 & OP(255)

Example:
and r3, r1, r2
and r3, r1.b0, r2.w2
and r3.b0, r3.b0, ~(1<<3) // Clear bit 3

5.3.4.1.10 Bitwise OR (OR)

Performs 32-bit logical OR on two 32 bit zero extended source values.

Definition:
OR REG1, REG2, OP(255)

Operation:
REG1 = REG2 | OP(255)

Example:
or r3, r1, r2
or r3, r1.b0, r2.w2
or r3.b0, r3.b0, 1<<3 // Set bit 3

5.3.4.1.11 Bitwise Exclusive OR (XOR)

Performs 32-bit logical XOR on two 32 bit zero extended source values.

Definition:
XOR REG1, REG2, OP(255)

Operation:
REG1 = REG2 ^ OP(255)

Example:
xor r3, r1, r2
xor r3, r1.b0, r2.w2
xor r3.b0, r3.b0, 1<<3 // Toggle bit 3

57SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.4.1.12 Bitwise NOT (NOT)

Performs 32-bit logical NOT on the 32 bit zero extended source value.

Definition:
NOT REG1, REG2

Operation:
REG1 = ~REG2

Example:
not r3, r3
not r1.w0, r1.b0

5.3.4.1.13 Copy Minimum (MIN)

Compares two 32 bit zero extended source values and copies the minimum value to the destination
register.

Definition:
MIN REG1, REG2, OP(255)

Operation:
if(OP(255) > REG2)

REG1 = REG2;
else

REG1 = OP(255);

Example:
min r3, r1, r2
min r1.w2, r1.b0, 127

5.3.4.1.14 Copy Maximum (MAX)

Compares two 32 bit zero extended source values and copies the maximum value to the destination
register.

Definition:
MAX REG1, REG2, OP(255)

Operation:
if(OP(255) > REG2)

REG1 = REG2;
else

REG1 = OP(255);

Example:
max r3, r1, r2
max r1.w2, r1.b0, 127

58 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.4.1.15 Clear Bit (CLR)

Clears the specified bit in the source and copies the result to the destination. Various calling formats are
supported:

Format 1:
Definition:
CLR REG1, REG2, OP(255)

Operation:
REG1 = REG2 & ~(1 << (OP(31) & 0x1f))

Example:
clr r3, r1, r2 // r3 = r1 & ~(1<<r2)
clr r1.b1, r1.b0, 5 // r1.b1 = r1.b0 & ~(1<<5)

Format 2 (same source and destination):
Definition:
CLR REG1, OP(255)

Operation:
REG1 = REG1 & ~(1 << (OP(31) & 0x1f))

Example:
clr r3, r1 // r3 = r3 & ~(1<<r1)
clr r1.b1, 5 // r1.b1 = r1.b1 & ~(1<<5)

Format 3 (source abbreviated):
Definition:
CLR REG1, Rn.tx

Operation:
REG1 = Rn & ~Rn.tx

Example:
clr r3, r1.t2 // r3 = r1 & ~(1<<2)
clr r1.b1, r1.b0.t5 // r1.b1 = r1.b0 & ~(1<<5)

Format 4 (same source and destination – abbreviated):
Definition:
CLR Rn.tx

Operation:
Rn = Rn & ~Rn.tx

Example:
clr r3.t2 // r3 = r3 & ~(1<<2)

5.3.4.1.16 Set Bit

Sets the specified bit in the source and copies the result to the destination. Various calling formats are
supported.

Note: Whenever R31 is selected as the source operand to a SET, the resulting source bits will be NULL,
and not reflect the current input event flags that are normally obtained by reading R31.

Format 1:
Definition:
SET REG1, REG2, OP(255)

Operation:
REG1 = REG2 | (1 << (OP(31) & 0x1f))

59SPRUHF8A–May 2012–Revised June 2013

PRU

Example:
set r3, r1, r2 // r3 = r1 | (1<<r2)
set r1.b1, r1.b0, 5 // r1.b1 = r1.b0 | (1<<5)

Format 2 (same source and destination):
Definition:
SET REG1, OP(255)

Operation:
REG1 = REG1 | (1 << (OP(31) & 0x1f))

Example:
set r3, r1 // r3 = r3 | (1<<r1)
set r1.b1, 5 // r1.b1 = r1.b1 | 1<<5)

Format 3 (source abbreviated):
Definition:
SET REG1, Rn.tx

Operation:
REG1 = Rn | Rn.tx

Example:
set r3, r1.t2 // r3 = r1 | (1<<2)
set r1.b1, r1.b0.t5 // r1.b1 = r1.b0 | (1<<5)

Format 4 (same source and destination – abbreviated):
Definition:
SET Rn.tx

Operation:
Rn = Rn | Rn.tx

Example:
set r3.t2 // r3 = r3 | (1<<2)

5.3.4.1.17 Left-Most Bit Detect (LMBD)

Scans REG2 from its left-most bit for a bit value matching bit 0 of OP(255), and writes the bit number in
REG1 (writes 32 to REG1 if the bit is not found).

Definition:
LMBD REG1, REG2, OP(255)

Operation:
for(i=(bitwidth(REG2)-1); i>=0; i--)
if(!(((REG2>>i) ^ OP(255))&1))

break;
if(i<0)

REG1 = 32;
else

REG1 = i;

Example:
lmbd r3, r1, r2
lmbd r3, r1, 1
lmbd r3.b3, r3.w0, 0

60 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.4.1.18 NULL Operation (NOPn)

This instruction performs no standard operation. The instruction may or may not provide custom
functionality that will vary from platform to platform.

There are 16 forms of the instruction including NOP0 through NOP9, and NOPA through NOPF.

Definition:
NOPn REG1, REG2, OP(255)

Operation:
NULL operation or Platform dependent

Example:
nop0 r3, r1, r2
nop9 r3, r1.b0, r2.w2
nopf r3, r3, 10

5.3.4.2 Register Load and Store

5.3.4.2.1 Copy Value (MOV)

The MOV instruction moves the value from OP(0xFFFFFFFF), zero extends it, and stores it into REG1.
The instruction is a pseudo op, and is coded with different PRU instructions, depending on how it is used.
When used with a constant, it is similar to the LDI instruction except that it allows for moving values up to
32-bits by automatically inserting two LDI instructions. It will always select the optimal coding method to
perform the desired operation.

Definition:
MOV REG1, OP(0xFFFFFFFF)

Operation:
REG1 = OP(0xFFFFFFFF)

Example:
mov r3, r1
mov r3, r1.b0 // Zero extend r1.b0 into r3
mov r1, 10 // Move 10 into r1
mov r1, #10 // Move 10 into r1
mov r1, 0b10 + 020/2 // Move 10 into r1
mov r1, 0x12345678 // Move 0x12345678 into r1
mov r30.b0, &r2 // Move the offset of r2 into r30.b0

5.3.4.2.2 Load Immediate (LDI)

The LDI instruction moves the value from IM(65535), zero extends it, and stores it into REG1. This
instruction is one form of MOV (the MOV pseudo op uses LDI when the source data is an immediate
value).

Definition:
LDI REG1, IM(65535)

Operation:
REG1 = IM(65535)

Example:
ldi r1, 10 // Load 10 into r1
ldi r1, #10 // Load 10 into r1
ldi r1, 0b10 + 020/2 // Load 10 into r1
ldi r30.b0, &r2 // Load the offset of r2 into r30.b0

61SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.4.2.3 Move Register File Indirect (MVIx)

The MVIx instruction family moves an 8-, 16-, or 32-bit value from the source to the destination. The size
of the value is determined by the exact instruction used; MVIB, MVIW, and MVID, for 8-, 16-, and 32-bit
values respectively. The source, destination, or both can be register pointers. There is an option for auto-
increment and auto-decrement on register pointers.

Definition:
MVIB [*][&][--]REG1[++], [*][&][--]REG2[++]
MVIW [*][&][--]REG1[++], [*][&][--]REG2[++]
MVID [*][&][--]REG1[++], [*][&][--]REG2[++]

Operation:
• Register pointers are byte offsets into the register file
• Auto increment and decrement operations are done by the byte width of the operation

– Increments are post-increment; incremented after the register offset is used
– Decrements are pre-decrement; decremented before the register offset is used

• When the destination register is not expressed as register pointer, the size of the data written is
determined by the field width of the destination register. If the data transfer size is less than the width
of the destination, the data is zero extended. Size conversion occurs after indirect reads, and before
indirect writes.

• When the source register is not expressed as a register pointer, the size of the data read is the lesser
of register source width and the instruction width. For example, a MVIB from R0 will read only 8 bits
from R0.b3, and a MVID from R0.b3 will read 8 bits from R0.b3 (and then zero extend it to a 32-bit
value).

Note that register pointer registers are restricted to r1.b0, r1.b1, r1.b2, and r1.b3.

5.3.4.2.3.1 Notes on Endian Mode and Size Conversion

On an indirect read operation, the data is first read indirectly using the source pointer. The resulting data
size is the size specified by the MVIx opcode. It is then converted to the destination register size using
truncation or zero extend.

Say we have the following registers set:
R1.b0 = 8 (this is &R2)
R2 = 0x01020304
R3 = 0

The following are some indirect read examples:

Result
Operation

Little Endian
mvib r3, *r1.b0 R3 = 0x00000004
mviw r3, *r1.b0 R3 = 0x00000304
mvid r3, *r1.b0 R3 = 0x01020304
mvid r3.w0, *r1.b0 R3 = 0x00000304
mvid r3.b0, *r1.b0 R3 = 0x00000004

On an indirect write operation, the data is first converted to the size as specified by the MVIx opcode using
zero extend or truncation. It is then written indirectly using the destination pointer.

Say we have the following registers set:
R1.b0 = 8 (this is &R2)
R2 = 0
R3 = 0x01020304

The following are some indirect write examples:

62 SPRUHF8A–May 2012–Revised June 2013

 PRU

Result
Operation

Little Endian
mvib *r1.b0, r3 R2 = 0x00000004
mviw *r1.b0, r3 R2 = 0x00000304
mvid *r1.b0, r3 R2 = 0x01020304
mvid *r1.b0, r3.w0 R2 = 0x00000304
mvid *r1.b0, r3.b0 R2 = 0x00000004

5.3.4.2.4 Load Byte Burst (LBBO)

The LBBO instruction is used to read a block of data from memory into the register file. The memory
address to read from is specified by a 32 bit register (Rn2), using an optional offset. The destination in the
register file can be specified as a direct register, or indirectly through a register pointer.

Note: Either the traditional direct register syntax or the more recent register address offset syntax can be
used for the first parameter.

Format 1 (immediate count):
Definition:
LBBO REG1, Rn2, OP(255), IM(124)

Operation:
memcpy(offset(REG1), Rn2+OP(255), IM(124));

Example:
lbbo r2, r1, 5, 8 // Copy 8 bytes into r2/r3 from the

// memory address r1+5

lbbo &r2, r1, 5, 8 // Copy 8 bytes into r2/r3 from the
// memory address r1+5

Format 2 (register count):
Definition:
LBBO REG1, Rn2, OP(255), bn

Operation:
memcpy(offset(REG1), Rn2+OP(255), bn);

Example:
lbbo r3, r1, r2.w0, b0 // Copy "r0.b0" bytes into r3 from the

// memory address r1+r2.w0

lbbo &r3, r1, r2.w0, b0 // Copy "r0.b0" bytes into r3 from the
// memory address r1+r2.w0

5.3.4.2.5 Store Byte Burst (SBBO)

The SBBO instruction is used to write a block of data from the register file into memory. The memory
address to write to is specified by a 32 bit register (Rn2), using an optional offset. The source in the
register file can be specified as a direct register, or indirectly through a register pointer.

Note: Either the traditional direct register syntax or the more recent register address offset syntax can be
used for the first parameter.

Format 1 (immediate count):
Definition:
SBBO REG1, Rn2, OP(255), IM(124)

Operation:
memcpy(Rn2+OP(255), offset(REG1), IM(124));

63SPRUHF8A–May 2012–Revised June 2013

PRU

Example:
sbbo r2, r1, 5, 8 // Copy 8 bytes from r2/r3 to the

// memory address r1+5

sbbo &r2, r1, 5, 8 // Copy 8 bytes from r2/r3 to the
// memory address r1+5

Format 2 (register count):
Definition:
SBBO REG1, Rn2, OP(255), bn

Operation:
memcpy(Rn2+OP(255), offset(REG1), bn);

Example:
sbbo r3, r1, r2.w0, b0 // Copy "r0.b0" bytes from r3 to the

// memory address r1+r2.w0

sbbo &r3, r1, r2.w0, b0 // Copy "r0.b0" bytes from r3 to the
// memory address r1+r2.w0

5.3.4.2.6 Load Byte Burst with Constant Table Offset (LBCO)

The LBCO instruction is used to read a block of data from memory into the register file. The memory
address to read from is specified by a 32 bit constant register (Cn2), using an optional offset from an
immediate or register value. The destination in the register file is specified as a direct register.

Note: Either the traditional direct register syntax or the more recent register address offset syntax can be
used for the first parameter.

Format 1 (immediate count):
Definition:
LBCO REG1, Cn2, OP(255), IM(124)

Operation:
memcpy(offset(REG1), Cn2+OP(255), IM(124));

Example:
lbco r2, c1, 5, 8 // Copy 8 bytes into r2/r3 from the

// memory address c1+5

lbco &r2, c1, 5, 8 // Copy 8 bytes into r2/r3 from the
// memory address c1+5

Format 2 (register count):
Definition:
LBCO REG1, Cn2, OP(255), bn

Operation:
memcpy(offset(REG1), Cn2+OP(255), bn);

Example:
lbco r3, c1, r2.w0, b0 // Copy "r0.b0" bytes into r3 from the

// memory address c1+r2.w0

lbco &r3, c1, r2.w0, b0 // Copy "r0.b0" bytes into r3 from the
// memory address c1+r2.w0

64 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.4.2.7 Store Byte Burst with Constant Table Offset (SBCO)

The SBCO instruction is used to write a block of data from the register file into memory. The memory
address to write to is specified by a 32 bit constant register (Cn2), using an optional offset from an
immediate or register value. The source in the register file is specified as a direct register.

Note: Either the traditional direct register syntax or the more recent register address offset syntax can be
used for the first parameter.

Format 1 (immediate count):
Definition:
SBCO REG1, Cn2, OP(255), IM(124)

Operation:
memcpy(Cn2+OP(255), offset(REG1), IM(124));

Example:
sbco r2, c1, 5, 8 // Copy 8 bytes from r2/r3 to the

// memory address c1+5

sbco &r2, c1, 5, 8 // Copy 8 bytes from r2/r3 to the
// memory address c1+5

Format 2 (register count):
Definition:
SBCO REG1, Cn2, OP(255), bn

Operation:
SBCO REG1, Cn2, OP(255), bn

Example:
sbco r3, c1, r2.w0, b0 // Copy "r0.b0" bytes from r3 to the

// memory address c1+r2.w0

sbco &r3, c1, r2.w0, b0 // Copy "r0.b0" bytes from r3 to the
// memory address c1+r2.w0

65SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.4.2.8 Clear Register Space (ZERO)

Clear space in the register file (set to zero).

Definition:
ZERO IM(123), IM(124)
ZERO ®1, IM(124)

Operation: The register file data starting at offset IM(123) (or ®1) with a length of IM(124) is cleared
to zero.

Example:
zero 0, 8 // Set R0 and R1 to zero
zero &r0, 8 // Set R0 and R1 to zero
// Set all elements in myStruct zero
zero &myStruct, SIZE(myStruct)

This pseudo-op is implemented using a form of the XFR instruction, and always completes in a single
clock cycle.

5.3.4.2.9 Fill Register Space (FILL)

Set all bits in a register file range.

Definition:
FILL IM(123), IM(124)
FILL ®1, IM(124)

Operation: The register file data starting at offset IM(123) (or ®1) with a length of IM(124) is set to
one.

Example:
fill 0, 8 // Set R0 and R1 to 0xFFFFFFFF
fill &r0, 8 // Set R0 and R1 to 0xFFFFFFFF
// Set all elements in myStruct 0xFF
fill &myStruct, SIZE(myStruct)

This pseudo-op will generate the necessary XFR instruction and will always complete in a single clock
cycle.

5.3.4.2.10 Register Transfer In, Out, and Exchange (XIN, XOUT, XCHG)

These XFR pseudo-ops use the XFR wide transfer bus to read in a range of bytes into the register file,
write out a range of bytes from the register file, or exchange the range of bytes to/from the register file.

Definition:
XIN IM(253), REG, IM(124)
XIN IM(253), REG, bn
XOUT IM(253), REG, IM(124)
XOUT IM(253), REG, bn
XCHG IM(253), REG, IM(124)
XCHG IM(253), REG, bn

Operation:
On XIN, the register file data starting at the register REG with a length of IM(124) is read in from the
parallel XFR interface from the hardware device with the device id specified in IM(253).
On XOUT, the register file data starting at the register REG with a length of IM(124) is written out to
the parallel XFR interface to the hardware device with the device id specified in IM(253).
On XCHG, the register file data starting at the register REG with a length of IM(124) is exchanged on
the parallel XFR interface between the register file and the hardware device with the device id
specified in IM(253).

66 SPRUHF8A–May 2012–Revised June 2013

 PRU

Example:
XIN XID_SCRATCH, R2, 8 // Read 8 bytes from scratch to R2:R3
XOUT XID_SCRATCH, R2, b2 // Write ‘b2’ byte to scratch starting at R2
XCHG XID_SCRATCH, R2, 8 // Exchange the values of R2:R3 with 8 bytes

// from scratch
XIN XID_PKTFIFO, R6, 24 // Read 24 bytes from the "Packet FIFO"

// info R6:R7:R8:R9

5.3.4.2.11 Register and Status Transfer In, Out, and Exchange (SXIN, SXOUT, SXCHG)

These XFR pseudo-ops use the XFR wide transfer bus to read in a range of bytes into the register file,
write out a range of bytes from the register file, or exchange the range of bytes to/from the register file.
This version also transfers status along with any specified registers.

Definition:
SXIN IM(253), REG, IM(124)
SXIN IM(253), REG, bn
SXOUT IM(253), REG, IM(124)
SXOUT IM(253), REG, bn
SXCHG IM(253), REG, IM(124)
SXCHG IM(253), REG, bn

Operation: Operation of their instructions is identical to their non-status counterparts, except that core
status is transferred along with any specified registers. Status includes things such as instruction pointer
and the carry/borrow bit.

5.3.4.2.11.1 Notes on the Register Transfer Bus

All register transfers use the same fixed alignment. For example, the contents of R0.b3 may only be
transferred to the exact byte location that is mapped to R0.b3 on the destination device. Although
transfers ideally complete in one cycle, peripherals have the ability to stall the PRU when a transfer can
not be completed.

A transfer can start and end on a register byte boundary, but must be contiguous. For example, a transfer
of 9 bytes starting at R0.b1 will transfer the following bytes:

Endian Mode Bytes Transferred (9 bytes starting with R0.b1)
Little Endian R0.b1, R0.b2, R0.b3, R1.b0, R1.b1, R1.b2, R1.b3, R2.b0, R2.b1

Some peripherals may limit transfers to multiples of 4 bytes on word boundaries.

5.3.4.2.11.2 Transfer Bus Hardware Connection

The transfer bus coming out of the PRU consists of 124 bytes of data and a sufficient number of control
lines to control the transfer. Any given transfer will consist of a direction (in or out of the PRU), a
peripheral ID, a starting byte offset, and a length. These can be represented in hardware as register and
byte enable signals as needed for a proper implementation (which is beyond the scope of this description).

How the bus transfer is used is entirely up to the peripherals that connect to it. The number of registers
that are implemented on the peripheral and how they align to the PRU register file is determined by the
peripheral connection. For example, the system below connects PRU registers R1::R3 to “peripheral A”
registers A0::A2, and connects PRU registers R2::R4 to “peripheral B” registers B0::B2.

67SPRUHF8A–May 2012–Revised June 2013

R31

R14

R30

R6

R13

Peripheral with Single Range

Register Mapping

32 byte
data

window

R31

R30

Peripheral with Replicated

Register Mapping

R0

R5

PRU
Registers Peripheral

Register
Space

Peripheral
Register
Space

PRU
Registers

R6

R13

R0

R5

32 byte
data

window

R14

R21

R22

R29

ID’n’ ID’n’

..
.

Two PRU Peripherals Mapped onto

the PRU Transfer Bus
PDSP

Registers R
0

A0

A1

A2

Peripheral A
Peripheral ID = 1

B0

B1

B2

R
1

R
2

R
3

R
5

R
4

Peripheral B
Peripheral ID = 2

PRU

Figure 15. PRU Peripherals Mapped to PRU Transfer Bus

5.3.4.2.11.3 Device Register Mappings

Using the XFR command, the PRU can transfer register contents between its register file and externally
connected peripherals. The transfer id used for the source and destination allows for up to 253 additional
peripherals to be connected to the PRU with register transfer capability.

Not all peripherals will implement the entire 32 PRU register space, and any transfer from space that is
not implemented on the peripheral will return undefined results. Peripherals that do not implement the full
space can define which register range to implement, and can even replicated a smaller set of registers
across the PRU register space.

The example below shows two possible implementations of a peripheral that only contains a 32 byte data
window (8 registers). The first example has a straight register mapping. The second example maps three
PRU register spans onto the same local peripheral space. This allows the PRU to transfer peripheral data
to or from any one of the three possible spans, allowing for much greater flexibility in using the peripheral.

Figure 16. Possible Implementations of a 32-Byte Data Window Peripheral

68 SPRUHF8A–May 2012–Revised June 2013

R6

R21

Peripheral with Single Range

Register Mapping

32 byte
data

window

R31

R30

Peripheral with Dual Register

Mapping using 2 Transfer ID values

R0

R5

PRU
Registers Peripheral

Register
Space

Peripheral
Register
Space

PRU
Registers

R6

R13

R0

R5

64 byte
data

window R14

R29

R31

R30

R22

R29

32 byte
data

window

ID’n’

ID’n+1’

ID’n’

 PRU

It is also possible for a peripheral to map the same PRU registers into multiple internal device registers by
using more that one peripheral ID. For example, below are two possible implementations of a peripheral
with a 64 byte register space. The first uses a standard transfer, while the second makes use of 2 transfer
ID values to allow the same PRU register span to be mapped to both of its internal register sets. Mapping
the same PRU register space into multiple peripheral registers can benefit the PRU when the entire space
need not be valid at any particular time. For example, a network packet search engine may map the Layer
2 fields to the same PRU register space at the Layer 3 fields, knowing that they both do not need to be
valid at the same time and thus freeing up addition PRU registers for other use.

Figure 17. PRU Registers Mapped into Multiple Internal Device Registers

5.3.4.3 Flow Control

5.3.4.3.1 Unconditional Jump (JMP)

Unconditional jump to a 16 bit instruction address, specified by register or immediate value.

Definition:
JMP OP(65535)

Operation:
PRU Instruction Pointer = OP(65535)

Example:
jmp r2.w0 // Jump to the address stored in r2.w0
jmp myLabel // Jump to the supplied code label

69SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.4.3.2 Unconditional Jump and Link (JAL)

Unconditional jump to a 16 bit instruction address, specified by register or immediate value. The address
following the JAL instruction is stored into REG1, so that REG1 can later be used as a “return” address.

Definition:
JAL REG1, OP(65535)

Operation:
REG1 = Current PRU Instruction Pointer + 1
PRU Instruction Pointer = OP(65535)

Example:
jal r2.w2, r2.w0 // Jump to the address stored in r2.w0

// put return location in r2.w2
jal r30.w0, myLabel // Jump to the supplied code label and

// put the return location in r30.w0

5.3.4.3.3 Call Procedure (CALL)

The CALL instruction is a pseudo op designed to emulate a subroutine call on a stack based processor.
Here, the JAL instruction is used with a specific call/ret register being the location to save the return
pointer. The default register is R30.w0, but this can be changed by using the .setcallreg dot command.
This instruction works in conjunction with the “.ret” dot command (deprecated) or the RET pseudo op
instruction.

Definition:
CALL OP(65535)

Operation:
JAL call register, OP(65535) (where call register defaults to r30.w0)

Example:
call r2.w0 // Call to the address stored in r2.w0
call myLabel // Call to the supplied code label

5.3.4.3.4 Return from Procedure (RET)

The RET instruction is a pseudo op designed to emulate a subroutine return on a stack based processor.
Here, the JMP instruction is used with a specific call/ret register being the location of the return pointer.
The default register is R30.w0, but this can be changed by using the .setcallreg dot command. This
instruction works in conjunction with the CALL pseudo op instruction.

Definition:
RET

Operation:
JMP call register (where call register defaults to r30.w0)

Example:
ret // Return address stored in our call register

5.3.4.3.5 Quick Branch if Greater Than (QBGT)

Jumps if the value of OP(255) is greater than REG1.

Definition:
QBGT LABEL, REG1, OP(255)

Operation: Branch to LABEL if OP(255) > REG1

Example:
qbgt myLabel, r2.w0, 5 // Branch if 5 > r2.w0
qbgt myLabel, r3, r4 // Branch if r4 > r3

70 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.4.3.6 Quick Branch if Greater Than or Equal (QBGE)

Jumps if the value of OP(255) is greater than or equal to REG1.

Definition:
QBGE LABEL, REG1, OP(255)

Operation:
Branch to LABEL if OP(255) >= REG1

Example:
qbge myLabel, r2.w0, 5 // Branch if 5 >= r2.w0
qbge myLabel, r3, r4 // Branch if r4 >= r3

5.3.4.3.7 Quick Branch if Less Than (QBLT)

Jumps if the value of OP(255) is less than REG1.

Definition:
QBLT LABEL, REG1, OP(255)

Operation:
Branch to LABEL if OP(255) < REG1

Example:
qblt myLabel, r2.w0, 5 // Branch if 5 < r2.w0
qblt myLabel, r3, r4 // Branch if r4 < r3

5.3.4.3.8 Quick Branch if Less Than or Equal (QBLE)

Jumps if the value of OP(255) is less than or equal to REG1.

Definition:
QBLE LABEL, REG1, OP(255)

Operation:
Branch to LABEL if OP(255) <= REG1

Example:
qble myLabel, r2.w0, 5 // Branch if 5 <= r2.w0
qble myLabel, r3, r4 // Branch if r4 <= r3

5.3.4.3.9 Quick Branch if Equal (QBEQ)

Jumps if the value of OP(255) is equal to REG1.

Definition:
QBGT LABEL, REG1, OP(255)

Operation:
Branch to LABEL if OP(255) == REG1

Example:
qbeq myLabel, r2.w0, 5 // Branch if r2.w0==5
qbeq myLabel, r3, r4 // Branch if r4==r3

71SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.4.3.10 Quick Branch if Not Equal (QBNE)

Jumps if the value of OP(255) is NOT equal to REG1.

Definition:
QBNE LABEL, REG1, OP(255)

Operation:
Branch to LABEL if OP(255) != REG1

Example:
qbne myLabel, r2.w0, 5 // Branch if r2.w0==5
qbne myLabel, r3, r4 // Branch if r4!=r3

5.3.4.3.11 Quick Branch Always (QBA)

Jump always. This is similar to the JMP instruction, only QBA uses an address offset and thus can be
relocated in memory.

Definition:
QBA LABEL

Operation:
Branch to LABEL

Example:
qba myLabel // Branch

5.3.4.3.12 Quick Branch if Bit is Set (QBBS)

Jumps if the bit OP(31) is set in REG1.

Format 1:
Definition:
QBBS LABEL, REG1, OP(255)

Operation:
Branch to LABEL if(REG1 & (1 << (OP(31) & 0x1f)))

Example:
qbbs myLabel r3, r1 // Branch if(r3&(1<<r1))
qbbs myLabel, r1.b1, 5 // Branch if(r1.b1 & 1<<5)

Format 2:
Definition:
QBBS LABEL, Rn.tx

Operation:
Branch to LABEL if(Rn & Rn.tx)

Example:
qbbs myLabel, r1.b1.t5 // Branch if(r1.b1 & 1<<5)
qbbs myLabel, r0.t0 // Brach if bit 0 in R0 is set

72 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.4.3.13 Quick Branch if Bit is Clear (QBBC)

Jumps if the bit OP(31) is clear in REG1.

Format 1:
Definition:
QBBC LABEL, REG1, OP(255)

Operation:
Branch to LABEL if(!(REG1 & (1 << (OP(31) & 0x1f))))

Example:
qbbc myLabel r3, r1 // Branch if(!(r3&(1<<r1)))
qbbc myLabel, r1.b1, 5 // Branch if(!(r1.b1 & 1<<5))

Format 2:
Definition:
QBBC LABEL, Rn.tx

Operation:
Branch to LABEL if(!(Rn & Rn.tx))

Example:
qbbc myLabel, r1.b1.t5 // Branch if(!(r1.b1 & 1<<5))
qbbc myLabel, r0.t0 // Brach if bit 0 in R0 is clear

5.3.4.3.14 Wait Until Bit Set (WBS)

The WBS instruction is a pseudo op that uses the QBBC instruction. It is used to poll on a status bit,
spinning until the bit is set. In this case, REG1 is almost certainly R31, else this instruction could lead to
an infinite loop.

Format 1:
Definition:
WBS REG1, OP(255)

Operation:
QBBC $, REG1, OP(255)

Example:
wbs r31, r1 // Spin here while (!(r31&(1<<r1)))
wbs r31.b1, 5 // Spin here while (!(r31.b1 & 1<<5))

Format 2:
Definition:
WBS Rn.tx

Operation:
QBBC $, Rn.tx

Example:
wbs r31.b1.t5 // Spin here while (!(r31.b1 & 1<<5))
wbs r31.t0 // Spin here while bit 0 in R31 is clear

73SPRUHF8A–May 2012–Revised June 2013

PRU

5.3.4.3.15 Wait Until Bit Clear (WBC)

The WBC instruction is a pseudo op that uses the QBBS instruction. It is used to poll on a status bit,
spinning until the bit is clear. In this case, REG1 is almost certainly R31, else this instruction could lead to
an infinite loop.

Format 1:
Definition:
WBC REG1, OP(255)

Operation:
QBBS $, REG1, OP(255)

Example:
wbc r31, r1 // Spin here while (r31&(1<<r1))
wbc r31.b1, 5 // Spin here while (r31.b1 & 1<<5)

Format 2:
Definition:
WBC Rn.tx

Operation:
QBBS $, Rn.tx

Example:
wbc r31.b1.t5 // Spin here while (r31.b1 & 1<<5)
wbc r31.t0 // Spin here while bit 0 in R31 is set

5.3.4.3.16 Halt Operation (HALT)

The HALT instruction disables the PRU. This instruction is used to implement software breakpoints in a
debugger. The PRU program counter remains at its current location (the location of the HALT). When the
PRU is re-enabled, the instruction is re-fetched from instruction memory.

Definition: HALT

Operation: Disable PRU

Example: halt

5.3.4.3.17 Sleep Operation (SLP)

The SLP instruction will sleep the PRU, causing it to disable its clock. This instruction can specify either a
permanent sleep (requiring a PRU reset to recover) or a “wake on event”. When the wake on event option
is set to “1”, the PRU will wake on any event that is enabled in the PRU Wakeup Enable register.

Definition: SLP IM(1)

Operation: Sleep the PRU with operational "wake on event" flag.

Example:
SLP 0 // Sleep without wake events
SLP 1 // Sleep until wake event set

74 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.3.4.3.18 Hardware Loop Assist (LOOP, ILOOP)

Defines a hardware-assisted loop operation. The loop can be non-interruptible (LOOP), or can be
interruptible based on an external break signal (ILOOP). The loop operation works by detecting when the
instruction pointer would normal hit the instruction at the designated target label, and instead
decrementing a loop counter and jumping back to the instruction immediately following the loop
instruction.

Definition:
LOOP LABEL, OP(256)

ILOOP LABEL, OP(256)

Operation:
LoopCounter = OP(256)

LoopTop = $+1
While (LoopCounter>0)

{
If (InstructionPointer==LABEL)

{
LoopCounter--;
InstructionPointer = LoopTop;

}
}

Example 1:
loop EndLoop, 5 // Peform the loop 5 times

mvi r2, *r1.b0 // Get value
xor r2, r2, r3 // Change value
mvi *r1.b0++, r1 // Save value

EndLoop:

Example 2:
mvi r2, *r1.b0++ // Get the number of elements

loop EndLoop, r2 // Peform the loop for each element
mvi r2, *r1.b0 // Get value
call ProcessValue // It is legal to jump outside the loop
mvi *r1.b0++, r1 // Save value

EndLoop:

Note: When the loop count is set from a register, only the 16 LS bits are used (regardless of the field
size). If this 16-bit value is zero, the instruction jumps directly to the end of loop.

5.4 PRUSS_PRU_CTRL Registers

Table 25 lists the memory-mapped registers for the PRUSS_PRU_CTRL. All register offset addresses not
listed in Table 25 should be considered as reserved locations and the register contents should not be
modified.

Table 25. PRUSS_PRU_CTRL REGISTERS
Offset Acronym Register Name Section

0h CONTROL Section 5.4.1
4h STATUS Section 5.4.2
8h WAKEUP_EN Section 5.4.3
Ch CYCLE Section 5.4.4
10h STALL Section 5.4.5
20h CTBIR0 Section 5.4.6
24h CTBIR1 Section 5.4.7
28h CTPPR0 Section 5.4.8
2Ch CTPPR1 Section 5.4.9

75SPRUHF8A–May 2012–Revised June 2013

PRU

5.4.1 CONTROL Register (offset = 0h) [reset = 1h]
CONTROL is shown in Figure 18 and described in Table 26.

CONTROL REGISTER

Figure 18. CONTROL Register
31 30 29 28 27 26 25 24

PCOUNTER_RST_VAL

R/W-0h

23 22 21 20 19 18 17 16

PCOUNTER_RST_VAL

R/W-0h

15 14 13 12 11 10 9 8

RUNSTATE Reserved Reserved SINGLE_STEP

R-0h R-0h R/W-0h

7 6 5 4 3 2 1 0

Reserved COUNTER_ENABLE SLEEPING ENABLE SOFT_RST_N

R/W-0h R/W-0h R/W-0h R-1h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 26. CONTROL Register Field Descriptions

Bit Field Type Reset Description
31-16 PCOUNTER_RST_VAL R/W 0h Program Counter Reset Value: This field controls the address where

the PRU will start executing code from after it is taken out of reset.
15 RUNSTATE R 0h Run State: This bit indicates whether the PRU is currently executing

an instruction or is halted.
0 = PRU is halted and host has access to the instruction RAM and
debug registers regions.
1 = PRU is currently running and the host is locked out of the
instruction RAM and debug registers regions.
This bit is used by an external debug agent to know when the PRU
has actually halted when waiting for a HALT instruction to execute, a
single step to finish, or any other time when the pru_enable has
been cleared.

14 Reserved R 0h Reserved.
8 SINGLE_STEP R/W 0h Single Step Enable: This bit controls whether or not the PRU will

only execute a single instruction when enabled.
0 = PRU will free run when enabled.
1 = PRU will execute a single instruction and then the pru_enable bit
will be cleared.
Note that this bit does not actually enable the PRU, it only sets the
policy for how much code will be run after the PRU is enabled.
The pru_enable bit must be explicitly asserted.
It is legal to initialize both the single_step and pru_enable bits
simultaneously.
(Two independent writes are not required to cause the stated
functionality.)

3 COUNTER_ENABLE R/W 0h PRU Cycle Counter Enable: Enables PRU cycle counters.
0 = Counters not enabled
1 = Counters enabled

2 SLEEPING R/W 0h PRU Sleep Indicator: This bit indicates whether or not the PRU is
currently asleep.
0 = PRU is not asleep
1 = PRU is asleep If this bit is written to a 0, the PRU will be forced
to power up from sleep mode.

76 SPRUHF8A–May 2012–Revised June 2013

 PRU

Table 26. CONTROL Register Field Descriptions (continued)
Bit Field Type Reset Description
1 ENABLE R/W 0h Processor Enable: This bit controls whether or not the PRU is

allowed to fetch new instructions.
0 = PRU is disabled.
1 = PRU is enabled.
If this bit is de-asserted while the PRU is currently running and has
completed the initial cycle of a multi-cycle instruction
(LBxO,SBxO,SCAN, etc.), the current instruction will be allowed to
complete before the PRU pauses execution.
Otherwise, the PRU will halt immediately.
Because of the unpredictability/timing sensitivity of the instruction
execution loop, this bit is not a reliable indication of whether or not
the PRU is currently running.
The pru_state bit should be consulted for an absolute indication of
the run state of the core.
When the PRU is halted, its internal state remains coherent therefore
this bit can be reasserted without issuing a software reset and the
PRU will resume processing exactly where it left off in the instruction
stream.

0 SOFT_RST_N R 1h Soft Reset: When this bit is cleared, the PRU will be reset.
This bit is set back to 1 on the next cycle after it has been cleared.

77SPRUHF8A–May 2012–Revised June 2013

PRU

5.4.2 STATUS Register (offset = 4h) [reset = 0h]
STATUS is shown in Figure 19 and described in Table 27.

STATUS REGISTER

Figure 19. STATUS Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved PCOUNTER

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 27. STATUS Register Field Descriptions

Bit Field Type Reset Description
15-0 PCOUNTER R 0h Program Counter: This field is a registered (1 cycle delayed)

reflection of the PRU program counter.
Note that the PC is an instruction address where each instruction is
a 32 bit word.
This is not a byte address and to compute the byte address just
multiply the PC by 4 (PC of
2 = byte address of 0x8, or PC of
8 = byte address of 0x20).

78 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.4.3 WAKEUP_EN Register (offset = 8h) [reset = 0h]
WAKEUP_EN is shown in Figure 20 and described in Table 28.

WAKEUP ENABLE REGISTER

Figure 20. WAKEUP_EN Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BITWISE_ENABLES

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 28. WAKEUP_EN Register Field Descriptions

Bit Field Type Reset Description
31-0 BITWISE_ENABLES R/W 0h Wakeup Enables: This field is ANDed with the incoming R31 status

inputs (whose bit positions were specified in the stmap parameter) to
produce a vector which is unary ORed to produce the
status_wakeup source for the core.
Setting any bit in this vector will allow the corresponding status input
to wake up the core when it is asserted high.
The PRU should set this enable vector prior to executing a SLP
(sleep) instruction to ensure that the desired sources can wake up
the core.

79SPRUHF8A–May 2012–Revised June 2013

PRU

5.4.4 CYCLE Register (offset = Ch) [reset = 0h]
CYCLE is shown in Figure 21 and described in Table 29.

CYCLE COUNT. This register counts the number of cycles for which the PRU has been enabled.

Figure 21. CYCLE Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CYCLECOUNT

0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 29. CYCLE Register Field Descriptions

Bit Field Type Reset Description
31-0 CYCLECOUNT 0h This value is incremented by 1 for every cycle during which the PRU

is enabled and the counter is enabled (both bits ENABLE and
COUNTENABLE set in the PRU control register).
Counting halts while the PRU is disabled or counter is disabled, and
resumes when re-eneabled.
Counter clears the COUNTENABLE bit in the PRU control register
when the count reaches 0xFFFFFFFF.
(Count does does not wrap).
The register can be read at any time.
The register can be cleared when the counter or PRU is disabled.
Clearing this register also clears the PRU Stall Count Register.

80 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.4.5 STALL Register (offset = 10h) [reset = 0h]
STALL is shown in Figure 22 and described in Table 30.

STALL COUNT. This register counts the number of cycles for which the PRU has been enabled, but
unable to fetch a new instruction. It is linked to the Cycle Count Register (0x0C) such that this register
reflects the stall cycles measured over the same cycles as counted by the cycle count register. Thus the
value of this register is always less than or equal to cycle count.

Figure 22. STALL Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STALLCOUNT

0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 30. STALL Register Field Descriptions

Bit Field Type Reset Description
31-0 STALLCOUNT 0h This value is incremented by 1 for every cycle during which the PRU

is enabled and the counter is enabled (both bits ENABLE and
COUNTENABLE set in the PRU control register), and the PRU was
unable to fetch a new instruction for any reason.

81SPRUHF8A–May 2012–Revised June 2013

PRU

5.4.6 CTBIR0 Register (offset = 20h) [reset = 0h]
CTBIR0 is shown in Figure 23 and described in Table 31.

CONSTANT TABLE BLOCK INDEX REGISTER 0. This register is used to set the block indices which are
used to modify entries 24 and 25 in the PRU Constant Table. This register can be written by the PRU
whenever it needs to change to a new base pointer for a block in the State / Scratchpad RAM. This
function is useful since the PRU is often processing multiple processing threads which require it to change
contexts. The PRU can use this register to avoid requiring excessive amounts of code for repetitive
context switching. The format of this register is as follows:

Figure 23. CTBIR0 Register
31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

C25_BLK_INDEX

R/W-0h

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

C24_BLK_INDEX

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 31. CTBIR0 Register Field Descriptions

Bit Field Type Reset Description
23-16 C25_BLK_INDEX R/W 0h PRU Constant Entry 25 Block Index: This field sets the value that will

appear in bits
11:8 of entry 25 in the PRU Constant Table.

7-0 C24_BLK_INDEX R/W 0h PRU Constant Entry 24 Block Index: This field sets the value that will
appear in bits
11:8 of entry 24 in the PRU Constant Table.

82 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.4.7 CTBIR1 Register (offset = 24h) [reset = 0h]
CTBIR1 is shown in Figure 24 and described in Table 32.

CONSTANT TABLE BLOCK INDEX REGISTER 1. This register is used to set the block indices which are
used to modify entries 24 and 25 in the PRU Constant Table. This register can be written by the PRU
whenever it needs to change to a new base pointer for a block in the State / Scratchpad RAM. This
function is useful since the PRU is often processing multiple processing threads which require it to change
contexts. The PRU can use this register to avoid requiring excessive amounts of code for repetitive
context switching. The format of this register is as follows:

Figure 24. CTBIR1 Register
31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

C27_BLK_INDEX

R/W-0h

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

C26_BLK_INDEX

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 32. CTBIR1 Register Field Descriptions

Bit Field Type Reset Description
23-16 C27_BLK_INDEX R/W 0h PRU Constant Entry 27 Block Index: This field sets the value that will

appear in bits
11:8 of entry 27 in the PRU Constant Table.

7-0 C26_BLK_INDEX R/W 0h PRU Constant Entry 26 Block Index: This field sets the value that will
appear in bits
11:8 of entry 26 in the PRU Constant Table.

83SPRUHF8A–May 2012–Revised June 2013

PRU

5.4.8 CTPPR0 Register (offset = 28h) [reset = 0h]
CTPPR0 is shown in Figure 25 and described in Table 33.

CONSTANT TABLE PROGRAMMABLE POINTER REGISTER 0. This register allows the PRU to set up
the 256-byte page index for entries 28 and 29 in the PRU Constant Table which serve as general purpose
pointers which can be configured to point to any locations inside the session router address map. This
register is useful when the PRU needs to frequently access certain structures inside the session router
address space whose locations are not hard coded such as tables in scratchpad memory. This register is
formatted as follows:

Figure 25. CTPPR0 Register
31 30 29 28 27 26 25 24

C29_POINTER

R/W-0h

23 22 21 20 19 18 17 16

C29_POINTER

R/W-0h

15 14 13 12 11 10 9 8

C28_POINTER

R/W-0h

7 6 5 4 3 2 1 0

C28_POINTER

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 33. CTPPR0 Register Field Descriptions

Bit Field Type Reset Description
31-16 C29_POINTER R/W 0h PRU Constant Entry 29 Pointer: This field sets the value that will

appear in bits
23:8 of entry 29 in the PRU Constant Table.

15-0 C28_POINTER R/W 0h PRU Constant Entry 28 Pointer: This field sets the value that will
appear in bits
23:8 of entry 28 in the PRU Constant Table.

84 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.4.9 CTPPR1 Register (offset = 2Ch) [reset = 0h]
CTPPR1 is shown in Figure 26 and described in Table 34.

CONSTANT TABLE PROGRAMMABLE POINTER REGISTER 1. This register functions the same as the
PRU Constant Table Programmable Pointer Register 0 but allows the PRU to control entries 30 and 31 in
the PRU Constant Table. This register is formatted as follows:

Figure 26. CTPPR1 Register
31 30 29 28 27 26 25 24

C31_POINTER

R/W-0h

23 22 21 20 19 18 17 16

C31_POINTER

R/W-0h

15 14 13 12 11 10 9 8

C30_POINTER

R/W-0h

7 6 5 4 3 2 1 0

C30_POINTER

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 34. CTPPR1 Register Field Descriptions

Bit Field Type Reset Description
31-16 C31_POINTER R/W 0h PRU Constant Entry 31 Pointer: This field sets the value that will

appear in bits
23:8 of entry 31 in the PRU Constant Table.

15-0 C30_POINTER R/W 0h PRU Constant Entry 30 Pointer: This field sets the value that will
appear in bits
23:8 of entry 30 in the PRU Constant Table.

5.5 PRU_ICSS_PRU_DEBUG Registers

Table 35 lists the memory-mapped registers for the PRU_ICSS_PRU_DEBUG. All register offset
addresses not listed in Table 35 should be considered as reserved locations and the register contents
should not be modified.

Table 35. PRU_ICSS_PRU_DEBUG REGISTERS
Offset Acronym Register Name Section

0h GPREG0 Section 5.5.1
4h GPREG1 Section 5.5.2
8h GPREG2 Section 5.5.3
Ch GPREG3 Section 5.5.4
10h GPREG4 Section 5.5.5
14h GPREG5 Section 5.5.6
18h GPREG6 Section 5.5.7
1Ch GPREG7 Section 5.5.8
20h GPREG8 Section 5.5.9
24h GPREG9 Section 5.5.10
28h GPREG10 Section 5.5.11
2Ch GPREG11 Section 5.5.12
30h GPREG12 Section 5.5.13
34h GPREG13 Section 5.5.14

85SPRUHF8A–May 2012–Revised June 2013

PRU

Table 35. PRU_ICSS_PRU_DEBUG REGISTERS (continued)
Offset Acronym Register Name Section

38h GPREG14 Section 5.5.15
3Ch GPREG15 Section 5.5.16
40h GPREG16 Section 5.5.17
44h GPREG17 Section 5.5.18
48h GPREG18 Section 5.5.19
4Ch GPREG19 Section 5.5.20
50h GPREG20 Section 5.5.21
54h GPREG21 Section 5.5.22
58h GPREG22 Section 5.5.23
5Ch GPREG23 Section 5.5.24
60h GPREG24 Section 5.5.25
64h GPREG25 Section 5.5.26
68h GPREG26 Section 5.5.27
6Ch GPREG27 Section 5.5.28
70h GPREG28 Section 5.5.29
74h GPREG29 Section 5.5.30
78h GPREG30 Section 5.5.31
7Ch GPREG31 Section 5.5.32
80h CT_REG0 Section 5.5.33
84h CT_REG1 Section 5.5.34
88h CT_REG2 Section 5.5.35
8Ch CT_REG3 Section 5.5.36
90h CT_REG4 Section 5.5.37
94h CT_REG5 Section 5.5.38
98h CT_REG6 Section 5.5.39
9Ch CT_REG7 Section 5.5.40
A0h CT_REG8 Section 5.5.41
A4h CT_REG9 Section 5.5.42
A8h CT_REG10 Section 5.5.43
ACh CT_REG11 Section 5.5.44
B0h CT_REG12 Section 5.5.45
B4h CT_REG13 Section 5.5.46
B8h CT_REG14 Section 5.5.47
BCh CT_REG15 Section 5.5.48
C0h CT_REG16 Section 5.5.49
C4h CT_REG17 Section 5.5.50
C8h CT_REG18 Section 5.5.51
CCh CT_REG19 Section 5.5.52
D0h CT_REG20 Section 5.5.53
D4h CT_REG21 Section 5.5.54
D8h CT_REG22 Section 5.5.55
DCh CT_REG23 Section 5.5.56
E0h CT_REG24 Section 5.5.57
E4h CT_REG25 Section 5.5.58
E8h CT_REG26 Section 5.5.59
ECh CT_REG27 Section 5.5.60
F0h CT_REG28 Section 5.5.61

86 SPRUHF8A–May 2012–Revised June 2013

 PRU

Table 35. PRU_ICSS_PRU_DEBUG REGISTERS (continued)
Offset Acronym Register Name Section

F4h CT_REG29 Section 5.5.62
F8h CT_REG30 Section 5.5.63
FCh CT_REG31 Section 5.5.64

87SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.1 GPREG0 Register (offset = 0h) [reset = 0h]
GPREG0 is shown in Figure 27 and described in Table 36.

DEBUG PRU GENERAL PURPOSE REGISTER 0. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 27. GPREG0 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER0

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 36. GPREG0 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER0 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

88 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.2 GPREG1 Register (offset = 4h) [reset = 0h]
GPREG1 is shown in Figure 28 and described in Table 37.

DEBUG PRU GENERAL PURPOSE REGISTER 1. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 28. GPREG1 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER1

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 37. GPREG1 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER1 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

89SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.3 GPREG2 Register (offset = 8h) [reset = 0h]
GPREG2 is shown in Figure 29 and described in Table 38.

DEBUG PRU GENERAL PURPOSE REGISTER 2. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 29. GPREG2 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER2

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 38. GPREG2 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER2 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

90 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.4 GPREG3 Register (offset = Ch) [reset = 0h]
GPREG3 is shown in Figure 30 and described in Table 39.

DEBUG PRU GENERAL PURPOSE REGISTER 3. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 30. GPREG3 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER3

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 39. GPREG3 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER3 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

91SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.5 GPREG4 Register (offset = 10h) [reset = 0h]
GPREG4 is shown in Figure 31 and described in Table 40.

DEBUG PRU GENERAL PURPOSE REGISTER 4. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 31. GPREG4 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER4

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 40. GPREG4 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER4 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

92 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.6 GPREG5 Register (offset = 14h) [reset = 0h]
GPREG5 is shown in Figure 32 and described in Table 41.

DEBUG PRU GENERAL PURPOSE REGISTER 5. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 32. GPREG5 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER5

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 41. GPREG5 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER5 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

93SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.7 GPREG6 Register (offset = 18h) [reset = 0h]
GPREG6 is shown in Figure 33 and described in Table 42.

DEBUG PRU GENERAL PURPOSE REGISTER 6. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 33. GPREG6 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER6

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 42. GPREG6 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER6 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

94 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.8 GPREG7 Register (offset = 1Ch) [reset = 0h]
GPREG7 is shown in Figure 34 and described in Table 43.

DEBUG PRU GENERAL PURPOSE REGISTER 7. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 34. GPREG7 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER7

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 43. GPREG7 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER7 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

95SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.9 GPREG8 Register (offset = 20h) [reset = 0h]
GPREG8 is shown in Figure 35 and described in Table 44.

DEBUG PRU GENERAL PURPOSE REGISTER 8. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 35. GPREG8 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER8

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 44. GPREG8 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER8 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

96 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.10 GPREG9 Register (offset = 24h) [reset = 0h]
GPREG9 is shown in Figure 36 and described in Table 45.

DEBUG PRU GENERAL PURPOSE REGISTER 9. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 36. GPREG9 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER9

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 45. GPREG9 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER9 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

97SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.11 GPREG10 Register (offset = 28h) [reset = 0h]
GPREG10 is shown in Figure 37 and described in Table 46.

DEBUG PRU GENERAL PURPOSE REGISTER 10. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 37. GPREG10 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER10

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 46. GPREG10 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER10 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

98 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.12 GPREG11 Register (offset = 2Ch) [reset = 0h]
GPREG11 is shown in Figure 38 and described in Table 47.

DEBUG PRU GENERAL PURPOSE REGISTER 11. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 38. GPREG11 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER11

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 47. GPREG11 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER11 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

99SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.13 GPREG12 Register (offset = 30h) [reset = 0h]
GPREG12 is shown in Figure 39 and described in Table 48.

DEBUG PRU GENERAL PURPOSE REGISTER 12. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 39. GPREG12 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER12

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 48. GPREG12 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER12 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

100 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.14 GPREG13 Register (offset = 34h) [reset = 0h]
GPREG13 is shown in Figure 40 and described in Table 49.

DEBUG PRU GENERAL PURPOSE REGISTER 13. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 40. GPREG13 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER13

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 49. GPREG13 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER13 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

101SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.15 GPREG14 Register (offset = 38h) [reset = 0h]
GPREG14 is shown in Figure 41 and described in Table 50.

DEBUG PRU GENERAL PURPOSE REGISTER 14. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 41. GPREG14 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER14

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 50. GPREG14 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER14 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

102 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.16 GPREG15 Register (offset = 3Ch) [reset = 0h]
GPREG15 is shown in Figure 42 and described in Table 51.

DEBUG PRU GENERAL PURPOSE REGISTER 15. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 42. GPREG15 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER15

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 51. GPREG15 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER15 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

103SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.17 GPREG16 Register (offset = 40h) [reset = 0h]
GPREG16 is shown in Figure 43 and described in Table 52.

DEBUG PRU GENERAL PURPOSE REGISTER 16. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 43. GPREG16 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER16

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 52. GPREG16 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER16 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

104 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.18 GPREG17 Register (offset = 44h) [reset = 0h]
GPREG17 is shown in Figure 44 and described in Table 53.

DEBUG PRU GENERAL PURPOSE REGISTER 17. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 44. GPREG17 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER17

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 53. GPREG17 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER17 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

105SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.19 GPREG18 Register (offset = 48h) [reset = 0h]
GPREG18 is shown in Figure 45 and described in Table 54.

DEBUG PRU GENERAL PURPOSE REGISTER 18. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 45. GPREG18 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER18

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 54. GPREG18 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER18 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

106 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.20 GPREG19 Register (offset = 4Ch) [reset = 0h]
GPREG19 is shown in Figure 46 and described in Table 55.

DEBUG PRU GENERAL PURPOSE REGISTER 19. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 46. GPREG19 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER19

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 55. GPREG19 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER19 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

107SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.21 GPREG20 Register (offset = 50h) [reset = 0h]
GPREG20 is shown in Figure 47 and described in Table 56.

DEBUG PRU GENERAL PURPOSE REGISTER 20. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 47. GPREG20 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER20

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 56. GPREG20 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER20 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

108 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.22 GPREG21 Register (offset = 54h) [reset = 0h]
GPREG21 is shown in Figure 48 and described in Table 57.

DEBUG PRU GENERAL PURPOSE REGISTER 21. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 48. GPREG21 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER21

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 57. GPREG21 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER21 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

109SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.23 GPREG22 Register (offset = 58h) [reset = 0h]
GPREG22 is shown in Figure 49 and described in Table 58.

DEBUG PRU GENERAL PURPOSE REGISTER 22. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 49. GPREG22 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER22

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 58. GPREG22 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER22 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

110 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.24 GPREG23 Register (offset = 5Ch) [reset = 0h]
GPREG23 is shown in Figure 50 and described in Table 59.

DEBUG PRU GENERAL PURPOSE REGISTER 23. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 50. GPREG23 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER23

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 59. GPREG23 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER23 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

111SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.25 GPREG24 Register (offset = 60h) [reset = 0h]
GPREG24 is shown in Figure 51 and described in Table 60.

DEBUG PRU GENERAL PURPOSE REGISTER 24. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 51. GPREG24 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER24

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 60. GPREG24 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER24 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

112 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.26 GPREG25 Register (offset = 64h) [reset = 0h]
GPREG25 is shown in Figure 52 and described in Table 61.

DEBUG PRU GENERAL PURPOSE REGISTER 25. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 52. GPREG25 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER25

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 61. GPREG25 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER25 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

113SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.27 GPREG26 Register (offset = 68h) [reset = 0h]
GPREG26 is shown in Figure 53 and described in Table 62.

DEBUG PRU GENERAL PURPOSE REGISTER 26. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 53. GPREG26 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER26

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 62. GPREG26 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER26 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

114 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.28 GPREG27 Register (offset = 6Ch) [reset = 0h]
GPREG27 is shown in Figure 54 and described in Table 63.

DEBUG PRU GENERAL PURPOSE REGISTER 27. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 54. GPREG27 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER27

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 63. GPREG27 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER27 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

115SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.29 GPREG28 Register (offset = 70h) [reset = 0h]
GPREG28 is shown in Figure 55 and described in Table 64.

DEBUG PRU GENERAL PURPOSE REGISTER 28. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 55. GPREG28 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER28

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 64. GPREG28 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER28 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

116 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.30 GPREG29 Register (offset = 74h) [reset = 0h]
GPREG29 is shown in Figure 56 and described in Table 65.

DEBUG PRU GENERAL PURPOSE REGISTER 29. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 56. GPREG29 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER29

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 65. GPREG29 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER29 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

117SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.31 GPREG30 Register (offset = 78h) [reset = 0h]
GPREG30 is shown in Figure 57 and described in Table 66.

DEBUG PRU GENERAL PURPOSE REGISTER 30. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 57. GPREG30 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP_REGISTER30

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 66. GPREG30 Register Field Descriptions

Bit Field Type Reset Description
31-0 GP_REGISTER30 R/W 0h PRU Internal GP Register n: Reading / writing this field directly

inspects/modifies the corresponding internal register in the PRU
internal regfile.

118 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.32 GPREG31 Register (offset = 7Ch) [reset = 0h]
GPREG31 is shown in Figure 58 and described in Table 67.

DEBUG PRU GENERAL PURPOSE REGISTER 31. This register allows an external agent to debug the
PRU while it is disabled. Reading or writing to these registers will have the same effect as a read or write
to these registers from an internal instruction in the PRU. For R30, this includes generation of the pulse
outputs whenever the register is written.

Figure 58. GPREG31 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GPREG31

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 67. GPREG31 Register Field Descriptions

Bit Field Type Reset Description
31-0 GPREG31 R/W 0h

119SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.33 CT_REG0 Register (offset = 80h) [reset = 20000h]
CT_REG0 is shown in Figure 59 and described in Table 68.

DEBUG PRU CONSTANTS TABLE ENTRY 0. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 59. CT_REG0 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER0

R-20000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 68. CT_REG0 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER0 R 20000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

120 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.34 CT_REG1 Register (offset = 84h) [reset = 48040000h]
CT_REG1 is shown in Figure 60 and described in Table 69.

DEBUG PRU CONSTANTS TABLE ENTRY 1. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 60. CT_REG1 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER1

R-48040000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 69. CT_REG1 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER1 R 48040000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

121SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.35 CT_REG2 Register (offset = 88h) [reset = 4802A000h]
CT_REG2 is shown in Figure 61 and described in Table 70.

DEBUG PRU CONSTANTS TABLE ENTRY 2. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 61. CT_REG2 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER2

R-4802A000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 70. CT_REG2 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER2 R 4802A000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

122 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.36 CT_REG3 Register (offset = 8Ch) [reset = 30000h]
CT_REG3 is shown in Figure 62 and described in Table 71.

DEBUG PRU CONSTANTS TABLE ENTRY 3. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 62. CT_REG3 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER3

R-30000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 71. CT_REG3 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER3 R 30000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

123SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.37 CT_REG4 Register (offset = 90h) [reset = 26000h]
CT_REG4 is shown in Figure 63 and described in Table 72.

DEBUG PRU CONSTANTS TABLE ENTRY 4. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 63. CT_REG4 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER4

R-26000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 72. CT_REG4 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER4 R 26000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

124 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.38 CT_REG5 Register (offset = 94h) [reset = 48060000h]
CT_REG5 is shown in Figure 64 and described in Table 73.

DEBUG PRU CONSTANTS TABLE ENTRY 5. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 64. CT_REG5 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER5

R-48060000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 73. CT_REG5 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER5 R 48060000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

125SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.39 CT_REG6 Register (offset = 98h) [reset = 48030000h]
CT_REG6 is shown in Figure 65 and described in Table 74.

DEBUG PRU CONSTANTS TABLE ENTRY 6. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 65. CT_REG6 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER6

R-48030000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 74. CT_REG6 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER6 R 48030000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

126 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.40 CT_REG7 Register (offset = 9Ch) [reset = 28000h]
CT_REG7 is shown in Figure 66 and described in Table 75.

DEBUG PRU CONSTANTS TABLE ENTRY 7. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 66. CT_REG7 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER7

R-28000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 75. CT_REG7 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER7 R 28000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

127SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.41 CT_REG8 Register (offset = A0h) [reset = 46000000h]
CT_REG8 is shown in Figure 67 and described in Table 76.

DEBUG PRU CONSTANTS TABLE ENTRY 8. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 67. CT_REG8 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER8

R-46000000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 76. CT_REG8 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER8 R 46000000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

128 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.42 CT_REG9 Register (offset = A4h) [reset = 4A100000h]
CT_REG9 is shown in Figure 68 and described in Table 77.

DEBUG PRU CONSTANTS TABLE ENTRY 9. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 68. CT_REG9 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER9

R-4A100000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 77. CT_REG9 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER9 R 4A100000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

129SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.43 CT_REG10 Register (offset = A8h) [reset = 48318000h]
CT_REG10 is shown in Figure 69 and described in Table 78.

DEBUG PRU CONSTANTS TABLE ENTRY 10. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 69. CT_REG10 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER10

R-48318000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 78. CT_REG10 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER10 R 48318000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

130 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.44 CT_REG11 Register (offset = ACh) [reset = 48022000h]
CT_REG11 is shown in Figure 70 and described in Table 79.

DEBUG PRU CONSTANTS TABLE ENTRY 11. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 70. CT_REG11 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER11

R-48022000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 79. CT_REG11 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER11 R 48022000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

131SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.45 CT_REG12 Register (offset = B0h) [reset = 48024000h]
CT_REG12 is shown in Figure 71 and described in Table 80.

DEBUG PRU CONSTANTS TABLE ENTRY 12. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 71. CT_REG12 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER12

R-48024000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 80. CT_REG12 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER12 R 48024000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

132 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.46 CT_REG13 Register (offset = B4h) [reset = 48310000h]
CT_REG13 is shown in Figure 72 and described in Table 81.

DEBUG PRU CONSTANTS TABLE ENTRY 13. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 72. CT_REG13 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER13

R-48310000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 81. CT_REG13 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER13 R 48310000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

133SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.47 CT_REG14 Register (offset = B8h) [reset = 481CC000h]
CT_REG14 is shown in Figure 73 and described in Table 82.

DEBUG PRU CONSTANTS TABLE ENTRY 14. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 73. CT_REG14 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER14

R-481CC000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 82. CT_REG14 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER14 R 481CC000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

134 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.48 CT_REG15 Register (offset = BCh) [reset = 481D0000h]
CT_REG15 is shown in Figure 74 and described in Table 83.

DEBUG PRU CONSTANTS TABLE ENTRY 15. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 74. CT_REG15 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER15

R-481D0000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 83. CT_REG15 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER15 R 481D0000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

135SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.49 CT_REG16 Register (offset = C0h) [reset = 481A0000h]
CT_REG16 is shown in Figure 75 and described in Table 84.

DEBUG PRU CONSTANTS TABLE ENTRY 16. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 75. CT_REG16 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER16

R-481A0000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 84. CT_REG16 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER16 R 481A0000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

136 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.50 CT_REG17 Register (offset = C4h) [reset = 4819C000h]
CT_REG17 is shown in Figure 76 and described in Table 85.

DEBUG PRU CONSTANTS TABLE ENTRY 17. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 76. CT_REG17 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER17

R-4819C000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 85. CT_REG17 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER17 R 4819C000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

137SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.51 CT_REG18 Register (offset = C8h) [reset = 48300000h]
CT_REG18 is shown in Figure 77 and described in Table 86.

DEBUG PRU CONSTANTS TABLE ENTRY 18. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 77. CT_REG18 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER18

R-48300000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 86. CT_REG18 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER18 R 48300000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

138 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.52 CT_REG19 Register (offset = CCh) [reset = 48302000h]
CT_REG19 is shown in Figure 78 and described in Table 87.

DEBUG PRU CONSTANTS TABLE ENTRY 19. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 78. CT_REG19 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER19

R-48302000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 87. CT_REG19 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER19 R 48302000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

139SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.53 CT_REG20 Register (offset = D0h) [reset = 48304000h]
CT_REG20 is shown in Figure 79 and described in Table 88.

DEBUG PRU CONSTANTS TABLE ENTRY 20. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 79. CT_REG20 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER20

R-48304000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 88. CT_REG20 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER20 R 48304000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

140 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.54 CT_REG21 Register (offset = D4h) [reset = 32400h]
CT_REG21 is shown in Figure 80 and described in Table 89.

DEBUG PRU CONSTANTS TABLE ENTRY 21. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 80. CT_REG21 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER21

R-32400h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 89. CT_REG21 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER21 R 32400h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

141SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.55 CT_REG22 Register (offset = D8h) [reset = 480C8000h]
CT_REG22 is shown in Figure 81 and described in Table 90.

DEBUG PRU CONSTANTS TABLE ENTRY 22. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 81. CT_REG22 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER22

R-480C8000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 90. CT_REG22 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER22 R 480C8000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

142 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.56 CT_REG23 Register (offset = DCh) [reset = 480CA000h]
CT_REG23 is shown in Figure 82 and described in Table 91.

DEBUG PRU CONSTANTS TABLE ENTRY 23. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 82. CT_REG23 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER23

R-480CA000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 91. CT_REG23 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER23 R 480CA000h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.

143SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.57 CT_REG24 Register (offset = E0h) [reset = 0h]
CT_REG24 is shown in Figure 83 and described in Table 92.

DEBUG PRU CONSTANTS TABLE ENTRY 24. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 83. CT_REG24 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER24

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 92. CT_REG24 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER24 R 0h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.
This entry is partially programmable through the C24_BLK_INDEX in
the PRU Control register.
The reset value for this Constant Table Entry is 0x00000n00,
n=C24_BLK_INDEX
[3:0].

144 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.58 CT_REG25 Register (offset = E4h) [reset = 0h]
CT_REG25 is shown in Figure 84 and described in Table 93.

DEBUG PRU CONSTANTS TABLE ENTRY 25. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 84. CT_REG25 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER25

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 93. CT_REG25 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER25 R 0h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.
This entry is partially programmable through the C25_BLK_INDEX in
the PRU Control register.
The reset value for this Constant Table Entry is 0x00002n00,
n=C25_BLK_INDEX
[3:0].

145SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.59 CT_REG26 Register (offset = E8h) [reset = 0h]
CT_REG26 is shown in Figure 85 and described in Table 94.

DEBUG PRU CONSTANTS TABLE ENTRY 26. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 85. CT_REG26 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER26

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 94. CT_REG26 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER26 R 0h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.
This entry is partially programmable through the C26_BLK_INDEX in
the PRU Control register.
The reset value for this Constant Table Entry is 0x0002En00,
n=C26_BLK_INDEX
[3:0].

146 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.60 CT_REG27 Register (offset = ECh) [reset = 0h]
CT_REG27 is shown in Figure 86 and described in Table 95.

DEBUG PRU CONSTANTS TABLE ENTRY 27. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 86. CT_REG27 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER27

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 95. CT_REG27 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER27 R 0h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.
This entry is partially programmable through the C27_BLK_INDEX in
the PRU Control register.
The reset value for this Constant Table Entry is 0x00032n00,
n=C27_BLK_INDEX
[3:0].

147SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.61 CT_REG28 Register (offset = F0h) [reset = 0h]
CT_REG28 is shown in Figure 87 and described in Table 96.

DEBUG PRU CONSTANTS TABLE ENTRY 28. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 87. CT_REG28 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER28

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 96. CT_REG28 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER28 R 0h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.
This entry is partially programmable through the C28_POINTER in
the PRU Control register.
The reset value for this Constant Table Entry is 0x00nnnn00,
nnnn=C28_POINTER
[15:0].

148 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.62 CT_REG29 Register (offset = F4h) [reset = 0h]
CT_REG29 is shown in Figure 88 and described in Table 97.

DEBUG PRU CONSTANTS TABLE ENTRY 29. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 88. CT_REG29 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER29

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 97. CT_REG29 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER29 R 0h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.
This entry is partially programmable through the C29_POINTER in
the PRU Control register.
The reset value for this Constant Table Entry is 0x49nnnn00,
nnnn=C29_POINTER
[15:0].

149SPRUHF8A–May 2012–Revised June 2013

PRU

5.5.63 CT_REG30 Register (offset = F8h) [reset = 0h]
CT_REG30 is shown in Figure 89 and described in Table 98.

DEBUG PRU CONSTANTS TABLE ENTRY 30. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 89. CT_REG30 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER30

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 98. CT_REG30 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER30 R 0h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.
This entry is partially programmable through the C30_POINTER in
the PRU Control register.
The reset value for this Constant Table Entry is 0x40nnnn00,
nnnn=C30_POINTER
[15:0].

150 SPRUHF8A–May 2012–Revised June 2013

 PRU

5.5.64 CT_REG31 Register (offset = FCh) [reset = 0h]
CT_REG31 is shown in Figure 90 and described in Table 99.

DEBUG PRU CONSTANTS TABLE ENTRY 31. This register allows an external agent to debug the PRU
while it is disabled. Since some of the constants table entries may actually depend on system inputs / and
or the internal state of the PRU, these registers are provided to allow an external agent to easily
determine the state of the constants table.

Figure 90. CT_REG31 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CT_REGISTER31

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 99. CT_REG31 Register Field Descriptions

Bit Field Type Reset Description
31-0 CT_REGISTER31 R 0h PRU Internal Constants Table Entry n: Reading this field directly

inspects the corresponding entry in the PRU internal constants table.
This entry is partially programmable through the C31_POINTER in
the PRU Control register.
The reset value for this Constant Table Entry is 0x80nnnn00,
nnnn=C31_POINTER
[15:0].

151SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6 Interrupt Controller

6.1 Introduction

The PRU-ICSS interrupt controller (INTC) is an interface between interrupts coming from different parts of
the system (referred to as system events) and the PRU-ICSS interrupt interface.

The PRU-ICSS INTC has the following features:
• Capturing up to 64 System Events
• Supports up to 10 interrupt channels.
• Generation of 10 Host Interrupts

– 2 Host Interrupts for the PRUs.
– 8 Host Interrupts exported from the PRU-ICSS for signaling the ARM interrupt controllers.

• Each system event can be enabled and disabled.
• Each host event can be enabled and disabled.
• Hardware prioritization of events.

152 SPRUHF8A–May 2012–Revised June 2013

Channel-0

Channel-1

Channel-2

Channel-3

Channel-4

Channel-5

Channel-6

Channel-7

Channel-8

Channel-9

Peripheral A

Host-0

Host-1

Host-2

Host-3

Host-4

Host-5

Host-6

Host-7

Host-8

Host-9
Peripheral Z

Sys_event 1

Sys_event 2

Sys_event 30

Sys_event 31

Sys_event 58

Sys_event 34

PRU0/1
R31 bit 30

PRU0/1
R31 bit 31

Channel Mapping of System eventsHost Mapping of channels

 Interrupt Controller

6.2 Functional Description

The PRU-ICSS INTC supports up to 64 system interrupts from different peripherals and PRUs to be
mapped to 10 channels inside the INTC (see Figure 91). Interrupts from these 10 channels are further
mapped to 10 Host Interrupts.
• Any of the 64 system interrupts can be mapped to any of the 10 channels.
• Multiple interrupts can be mapped to a single channel.
• An interrupt should not be mapped to more than one channel.
• Any of the 10 channels can be mapped to any of the 10 host interrupts. It is recommended to map

channel “x” to host interrupt “x”, where x is from 0 to 9
• A channel should not be mapped to more than one host interrupt
• For channels mapping to the same host interrupt, lower number channels have higher priority.
• For interrupts on same channel, priority is determined by the hardware interrupt number. The lower the

interrupt number, the higher the priority.
• Host Interrupt 0 is connected to bit 30 in register 31 of PRU0 and PRU1.
• Host Interrupt 1 is connected to bit 31 in register 31 for PRU0 and PRU1.
• Host Interrupts 2 through 9 exported from PRU-ICSS for signaling ARM interrupt controllers or other

machines like EDMA.

Figure 91. Interrupt Controller Block Diagram

6.2.1 PRU-ICSS System Events
The PRU-ICSS system events can be found in the interrupt section of TRM. The device includes a internal
mux that selects the Non Ethercat (default) or Ethercat mode system events. The mux control signal is
controlled by MIIRTEEN [MII_RT_EVENT_EN], which can be modified by software in PRU-ICSS CFG
register space.

6.2.2 INTC Methodology
The INTC module controls the system event mapping to the host interrupt interface. System events are
generated by the device peripherals or PRUs. The INTC receives the system interrupts and maps them to
internal channels. The channels are used to group interrupts together and to prioritize them. These
channels are then mapped onto the host interrupts. Interrupts from the system side are active high in
polarity. They are also pulse type of interrupts.

153SPRUHF8A–May 2012–Revised June 2013

Prioritization

Vectorization

Host Int
Mapping

Channel
Mapping

Debug
Int

Host
Interfacing

System
Interrupts

Debug Ints

Host Ints

Enabling ProcessingStatus

Interrupt Controller

The INTC encompasses many functions to process the system interrupts and prepare them for the host
interface. These functions are: processing, enabling, status, channel mapping, host interrupt mapping,
prioritization, and host interfacing. Figure 92 illustrates the flow of system interrupts through the functions
to the host. The following subsections describe each part of the flow.

Figure 92. Flow of System Interrupts to Host

6.2.2.1 Interrupt Processing

This block does following tasks:
• Synchronization of slower and asynchronous interrupts
• Conversion of polarity to active high
• Conversion of interrupt type to pulse interrupts

After the processing block, all interrupts will be active high pulses.

6.2.2.1.1 Interrupt Enabling

The next stage of INTC is to enable system interrupts based on programmed settings. The following
sequence is to be followed to enable interrupts:
• Enable all host interrupts: By setting the ENABLE bit in the global enable register (GER) to 1, all host

interrupts will be enabled. Individual host interrupts are still enabled or disabled from their individual
enables and are not overridden by the global enable.

• Enable required host interrupts: By writing to the INDEX field in the host interrupt enable indexed set
register (HIEISR), enable the required host interrupts. The host interrupt to enable is the index value
written. This enables the host interrupt output or triggers the output again if that host interrupt is
already enabled.

• Enable required system interrupts: System interrupts that are required to get propagated to host are to
be enabled individually by writing to INDEX field in the system interrupt enable indexed set register
(EISR). The interrupt to enable is the index value written. This sets the Enable Register bit of the given
index.

6.2.2.2 Interrupt Status Checking

The next stage is to capture which system interrupts are pending. There are two kinds of pending status:
raw status and enabled status. Raw status is the pending status of the system interrupt without regards to
the enable bit for the system interrupt. Enabled status is the pending status of the system interrupts with
the enable bits active. When the enable bit is inactive, the enabled status will always be inactive. The
enabled status of system interrupts is captured in system interrupt status enabled/clear registers (SECR1-
SECR2).

Status of system interrupt 'N' is indicated by the Nth bit of SECR1-SECR2. Since there are 64 system
interrupts, two 32-bit registers are used to capture the enabled status of interrupts. The pending status
reflects whether the system interrupt occurred since the last time the status register bit was cleared. Each
bit in the status register can be individually cleared.

154 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.2.2.3 Interrupt Channel Mapping

The INTC has 10 internal channels to which enabled system interrupts can be mapped. Channel 0 has
highest priority and channel 9 has the lowest priority. Channels are used to group the system interrupts
into a smaller number of priorities that can be given to a host interface with a very small number of
interrupt inputs.

When multiple system interrupts are mapped to the same channel their interrupts are ORed together so
that when either is active the output is active. The channel map registers (CMRm) define the channel for
each system interrupt. There is one register per 4 system interrupts; therefore, there are16 channel map
registers for a system of 64 interrupts. The channel for each system interrupt can be set using these
registers.

6.2.2.3.1 Host Interrupt Mapping

The hosts can be the PRUs or ARM CPU. The 10 channels from the INTC can mapped to any of the 10
Host interrupts. The Host map registers (HMRm) define the channel for each system interrupt. There is
one register per 4 channels; therefore, there are 3 host map registers for 10 channels. When multiple
channels are mapped to the same host interrupt, then prioritization is done to select which interrupt is in
the highest-priority channel and which should be sent first to the host.

6.2.2.3.2 Interrupt Prioritization

The next stage of the INTC is prioritization. Since multiple interrupts can feed into a single channel and
multiple channels can feed into a single host interrupt, it is to read the status of all system interrupts to
determine the highest priority interrupt that is pending. The INTC provides hardware to perform this
prioritization with a given scheme so that software does not have to do this. There are two levels of
prioritizations:
• The first level of prioritization is between the active channels for a host interrupt. Channel 0 has the

highest priority and channel 9 has the lowest. So the first level of prioritization picks the lowest
numbered active channel.

• The second level of prioritization is between the active system interrupts for the prioritized channel.
The system interrupt in position 0 has the highest priority and system interrupt 63 has the lowest
priority. So the second level of prioritization picks the lowest position active system interrupt.

This is the final prioritized system interrupt for the host interrupt and is stored in the global prioritized index
register (GPIR). The highest priority pending interrupt with respect to each host interrupts can be obtained
using the host interrupt prioritized index registers (HIPIRn).

6.2.2.4 Interrupt Nesting

The INTC can also perform a nesting function in its prioritization. Nesting is a method of disabling certain
interrupts (usually lower-priority interrupts) when an interrupt is taken so that only those desired interrupts
can trigger to the host while it is servicing the current interrupt. The typical usage is to nest on the current
interrupt and disable all interrupts of the same or lower priority (or channel). Then the host will only be
interrupted from a higher priority interrupt.

The nesting is done in one of three methods:
1. Nesting for all host interrupts, based on channel priority: When an interrupt is taken, the nesting level is

set to its channel priority. From then, that channel priority and all lower priority channels will be
disabled from generating host interrupts and only higher priority channels are allowed. When the
interrupt is completely serviced, the nesting level is returned to its original value. When there is no
interrupt being serviced, there are no channels disabled due to nesting. The global nesting level
register (GNLR) allows the checking and setting of the global nesting level across all host interrupts.
The nesting level is the channel (and all of lower priority channels) that are nested out because of a
current interrupt.

2. Nesting for individual host interrupts, based on channel priority: Always nest based on channel priority
for each host interrupt individually. When an interrupt is taken on a host interrupt, then, the nesting
level is set to its channel priority for just that host interrupt, and other host interrupts do not have their
nesting affected. Then for that host interrupt, equal or lower priority channels will not interrupt the host
but may on other host interrupts if programmed. When the interrupt is completely serviced the nesting

155SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

level for the host interrupt is returned to its original value. The host interrupt nesting level registers
(HINLR1 and HINLR2) display and control the nesting level for each host interrupt. The nesting level
controls which channel and lower priority channels are nested. There is one register per host interrupt.

3. Software manually performs the nesting of interrupts. When an interrupt is taken, the software will
disable all the host interrupts, manually update the enables for any or all the system interrupts, and
then re-enables all the host interrupts. This now allows only the system interrupts that are still enabled
to trigger to the host. When the interrupt is completely serviced the software must reverse the changes
to re-enable the nested out system interrupts. This method requires the most software interaction but
gives the most flexibility if simple channel based nesting mechanisms are not adequate.

6.2.2.5 Interrupt Status Clearing

After servicing the interrupt (after execution of the ISR), interrupt status is to be cleared. If a system
interrupt status is not cleared, then another host interrupt may not be triggered or another host interrupt
may be triggered incorrectly. It is also essential to clear all system interrupts before the PRU is halted as
the PRU does not power down unless all the interrupt status are cleared. For clearing the status of an
interrupt, whose interrupt number is N, write a 1 to the Nth bit position in the system interrupt status
enabled/clear registers (SECR1-SECR2). System interrupt N can also be cleared by writing the value N
into the system interrupt status indexed clear register (SICR).

6.2.3 Interrupt Disabling
At any time, if any interrupt is not to be propagated to the host, then that interrupt should be disabled. For
disabling an interrupt whose interrupt number is N, write a 1 to the Nth bit in the system interrupt enable
clear registers (ECR1-ECR2). System interrupt N can also be disabled by writing the value N in the
system interrupt enable indexed clear register (EICR).

6.3 Basic Programming Model

Follow these steps to configure the interrupt controller.
1. Set polarity and type of system event through the System Interrupt Polarity Registers (SIPR1 and

SPIR2) and the System Interrupt Type Registers (SITR1 and SITR2). Polarity of all system interrupts is
always high. Type of all system interrupts is always pulse.

2. Map system event to INTC channel through CHANMAP registers.
3. Map channel to host interrupt through HOSTMAP registers. Recommend channel “x” be mapped to

host interrupt “x”.
4. Clear system interrupt by writing 1s to SECR registers.
5. Enable host interrupt by writing index value to HOSTINTENIDX register.
6. Enable interrupt nesting if desired.
7. Globally enable all interrupts through GLBLEN register.

6.4 PRU_ICSS_INTC Registers

Table 100 lists the memory-mapped registers for the PRU_ICSS_INTC. All register offset addresses not
listed in Table 100 should be considered as reserved locations and the register contents should not be
modified.

Table 100. PRU_ICSS_INTC REGISTERS
Offset Acronym Register Name Section

0h REVID Section 6.4.1
4h CR Section 6.4.2

10h GER Section 6.4.3
1Ch GNLR Section 6.4.4
20h SISR Section 6.4.5
24h SICR Section 6.4.6
28h EISR Section 6.4.7

156 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

Table 100. PRU_ICSS_INTC REGISTERS (continued)
Offset Acronym Register Name Section
2Ch EICR Section 6.4.8
34h HIEISR Section 6.4.9
38h HIDISR Section 6.4.10
80h GPIR Section 6.4.11
200h SRSR0 Section 6.4.12
204h SRSR1 Section 6.4.13
280h SECR0 Section 6.4.14
284h SECR1 Section 6.4.15
300h ESR0 Section 6.4.16
304h ERS1 Section 6.4.17
380h ECR0 Section 6.4.18
384h ECR1 Section 6.4.19
400h CMR0 Section 6.4.20
404h CMR1 Section 6.4.21
408h CMR2 Section 6.4.22
40Ch CMR3 Section 6.4.23
410h CMR4 Section 6.4.24
414h CMR5 Section 6.4.25
418h CMR6 Section 6.4.26
41Ch CMR7 Section 6.4.27
420h CMR8 Section 6.4.28
424h CMR9 Section 6.4.29
428h CMR10 Section 6.4.30
42Ch CMR11 Section 6.4.31
430h CMR12 Section 6.4.32
434h CMR13 Section 6.4.33
438h CMR14 Section 6.4.34
43Ch CMR15 Section 6.4.35
800h HMR0 Section 6.4.36
804h HMR1 Section 6.4.37
808h HMR2 Section 6.4.38
900h HIPIR0 Section 6.4.39
904h HIPIR1 Section 6.4.40
908h HIPIR2 Section 6.4.41
90Ch HIPIR3 Section 6.4.42
910h HIPIR4 Section 6.4.43
914h HIPIR5 Section 6.4.44
918h HIPIR6 Section 6.4.45
91Ch HIPIR7 Section 6.4.46
920h HIPIR8 Section 6.4.47
924h HIPIR9 Section 6.4.48
D00h SIPR0 Section 6.4.49
D04h SIPR1 Section 6.4.50
D80h SITR0 Section 6.4.51
D84h SITR1 Section 6.4.52
1100h HINLR0 Section 6.4.53
1104h HINLR1 Section 6.4.54

157SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

Table 100. PRU_ICSS_INTC REGISTERS (continued)
Offset Acronym Register Name Section
1108h HINLR2 Section 6.4.55
110Ch HINLR3 Section 6.4.56
1110h HINLR4 Section 6.4.57
1114h HINLR5 Section 6.4.58
1118h HINLR6 Section 6.4.59
111Ch HINLR7 Section 6.4.60
1120h HINLR8 Section 6.4.61
1124h HINLR9 Section 6.4.62
1500h HIER Section 6.4.63

158 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.1 REVID Register (offset = 0h) [reset = 4E82A900h]
REVID is shown in Figure 93 and described in Table 101.

Revision ID Register

Figure 93. REVID Register
31 30 29 28 27 26 25 24

REV_SCHEME Reserved REV_MODULE

R-1h R-E82h

23 22 21 20 19 18 17 16

REV_MODULE

R-E82h

15 14 13 12 11 10 9 8

REV_RTL REV_MAJOR

R-15h R-1h

7 6 5 4 3 2 1 0

REV_CUSTOM REV_MINOR

R-0h R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 101. REVID Register Field Descriptions

Bit Field Type Reset Description
31-30 REV_SCHEME R 1h SCHEME
27-16 REV_MODULE R E82h MODULE ID
15-11 REV_RTL R 15h RTL REVISIONS
10-8 REV_MAJOR R 1h MAJOR REVISION
7-6 REV_CUSTOM R 0h CUSTOM REVISION
5-0 REV_MINOR R 0h MINOR REVISION

159SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.2 CR Register (offset = 4h) [reset = 0h]
CR is shown in Figure 94 and described in Table 102.

The Control Register holds global control parameters and can forces a soft reset on the module.

Figure 94. CR Register
31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved Reserved NEST_MODE Reserved Reserved

R-0h R/W-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 102. CR Register Field Descriptions

Bit Field Type Reset Description
4 Reserved R 0h Reserved.

3-2 NEST_MODE R/W 0h The nesting mode.
0 = no nesting
1 = automatic individual nesting (per host interrupt)
2 = automatic global nesting (over all host interrupts)
3 = manual nesting

1 Reserved R/W 0h Reserved.

160 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.3 GER Register (offset = 10h) [reset = 0h]
GER is shown in Figure 95 and described in Table 103.

The Global Host Interrupt Enable Register enables all the host interrupts. Individual host interrupts are still
enabled or disabled from their individual enables and are not overridden by the global enable.

Figure 95. GER Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ENA
BLE
_HI
NT_
ANY

R/
W-
0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 103. GER Register Field Descriptions

Bit Field Type Reset Description
0 ENABLE_HINT_ANY R/W 0h The current global enable value when read.

Writes set the global enable.

161SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.4 GNLR Register (offset = 1Ch) [reset = 100h]
GNLR is shown in Figure 96 and described in Table 104.

The Global Nesting Level Register allows the checking and setting of the global nesting level across all
host interrupts when automatic global nesting mode is set. The nesting level is the channel (and all of
lower priority) that are nested out because of a current interrupt. This register is only available when
nesting is configured.

Figure 96. GNLR Register
31 30 29 28 27 26 25 24

AUTO_OVERRIDE Reserved

W-0h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved GLB_NEST_LEVEL

R/W-100h

7 6 5 4 3 2 1 0

GLB_NEST_LEVEL

R/W-100h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 104. GNLR Register Field Descriptions

Bit Field Type Reset Description
31 AUTO_OVERRIDE W 0h Always read as 0.

Writes of 1 override the automatic nesting and set the nesting_level
to the written data.

8-0 GLB_NEST_LEVEL R/W 100h The current global nesting level (highest channel that is nested).
Writes set the nesting level.
In auto nesting mode this value is updated internally unless the
auto_override bit is set.

162 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.5 SISR Register (offset = 20h) [reset = 0h]
SISR is shown in Figure 97 and described in Table 105.

The System Interrupt Status Indexed Set Register allows setting the status of an interrupt. The interrupt to
set is the index value written. This sets the Raw Status Register bit of the given index.

Figure 97. SISR Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved STATUS_SET_INDEX

W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 105. SISR Register Field Descriptions

Bit Field Type Reset Description
9-0 STATUS_SET_INDEX W 0h Writes set the status of the interrupt given in the index value.

Reads return 0.

163SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.6 SICR Register (offset = 24h) [reset = 0h]
SICR is shown in Figure 98 and described in Table 106.

The System Interrupt Status Indexed Clear Register allows clearing the status of an interrupt. The
interrupt to clear is the index value written. This clears the Raw Status Register bit of the given index.

Figure 98. SICR Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved STATUS_CLR_INDEX

W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 106. SICR Register Field Descriptions

Bit Field Type Reset Description
9-0 STATUS_CLR_INDEX W 0h Writes clear the status of the interrupt given in the index value.

Reads return 0.

164 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.7 EISR Register (offset = 28h) [reset = 0h]
EISR is shown in Figure 99 and described in Table 107.

The System Interrupt Enable Indexed Set Register allows enabling an interrupt. The interrupt to enable is
the index value written. This sets the Enable Register bit of the given index.

Figure 99. EISR Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ENABLE_SET_INDEX

W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 107. EISR Register Field Descriptions

Bit Field Type Reset Description
9-0 ENABLE_SET_INDEX W 0h Writes set the enable of the interrupt given in the index value.

Reads return 0.

165SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.8 EICR Register (offset = 2Ch) [reset = 0h]
EICR is shown in Figure 100 and described in Table 108.

The System Interrupt Enable Indexed Clear Register allows disabling an interrupt. The interrupt to disable
is the index value written. This clears the Enable Register bit of the given index.

Figure 100. EICR Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ENABLE_CLR_INDEX

W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 108. EICR Register Field Descriptions

Bit Field Type Reset Description
9-0 ENABLE_CLR_INDEX W 0h Writes clear the enable of the interrupt given in the index value.

Reads return 0.

166 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.9 HIEISR Register (offset = 34h) [reset = 0h]
HIEISR is shown in Figure 101 and described in Table 109.

The Host Interrupt Enable Indexed Set Register allows enabling a host interrupt output. The host interrupt
to enable is the index value written. This enables the host interrupt output or triggers the output again if
already enabled.

Figure 101. HIEISR Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved HINT_ENABLE_SET_INDEX

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 109. HIEISR Register Field Descriptions

Bit Field Type Reset Description
9-0 HINT_ENABLE_SET_IND R/W 0h Writes set the enable of the host interrupt given in the index value.

EX Reads return 0.

167SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.10 HIDISR Register (offset = 38h) [reset = 0h]
HIDISR is shown in Figure 102 and described in Table 110.

The Host Interrupt Enable Indexed Clear Register allows disabling a host interrupt output. The host
interrupt to disable is the index value written. This disables the host interrupt output.

Figure 102. HIDISR Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved HINT_ENABLE_CLR_INDEX

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 110. HIDISR Register Field Descriptions

Bit Field Type Reset Description
9-0 HINT_ENABLE_CLR_IND R/W 0h Writes clear the enable of the host interrupt given in the index value.

EX Reads return 0.

168 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.11 GPIR Register (offset = 80h) [reset = 80000000h]
GPIR is shown in Figure 103 and described in Table 111.

The Global Prioritized Index Register shows the interrupt number of the highest priority interrupt pending
across all the host interrupts.

Figure 103. GPIR Register
31 30 29 28 27 26 25 24

GLB_NONE Reserved

R-1h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved GLB_PRI_INTR

R-0h

7 6 5 4 3 2 1 0

GLB_PRI_INTR

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 111. GPIR Register Field Descriptions

Bit Field Type Reset Description
31 GLB_NONE R 1h No Interrupt is pending.

Can be used by host to test for a negative value to see if no
interrupts are pending.

9-0 GLB_PRI_INTR R 0h The currently highest priority interrupt index pending across all the
host interrupts.

169SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.12 SRSR0 Register (offset = 200h) [reset = 0h]
SRSR0 is shown in Figure 104 and described in Table 112.

The System Interrupt Status Raw/Set Register0 show the pending enabled status of the system interrupts
0 to 31. Software can write to the Status Set Registers to set a system interrupt without a hardware
trigger. There is one bit per system interrupt.

Figure 104. SRSR0 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RAW_STATUS_31_0

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 112. SRSR0 Register Field Descriptions

Bit Field Type Reset Description
31-0 RAW_STATUS_31_0 R/W 0h System interrupt raw status and setting of the system interrupts 0 to

31.
Reads return the raw status.
Write a 1 in a bit position to set the status of the system interrupt.
Writing a 0 has no effect.

170 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.13 SRSR1 Register (offset = 204h) [reset = 0h]
SRSR1 is shown in Figure 105 and described in Table 113.

The System Interrupt Status Raw/Set Register1 show the pending enabled status of the system interrupts
32 to 63. Software can write to the Status Set Registers to set a system interrupt without a hardware
trigger. There is one bit per system interrupt.

Figure 105. SRSR1 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RAW_STATUS_63_32

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 113. SRSR1 Register Field Descriptions

Bit Field Type Reset Description
31-0 RAW_STATUS_63_32 R/W 0h System interrupt raw status and setting of the system interrupts 32 to

63.
Reads return the raw status.
Write a 1 in a bit position to set the status of the system interrupt.
Writing a 0 has no effect.

171SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.14 SECR0 Register (offset = 280h) [reset = 0h]
SECR0 is shown in Figure 106 and described in Table 114.

The System Interrupt Status Enabled/Clear Register0 show the pending enabled status of the system
interrupts 0 to 31. Software can write to the Status Clear Registers to clear a system interrupt after it has
been serviced. If a system interrupt status is not cleared then another host interrupt may not be triggered
or another host interrupt may be triggered incorrectly. There is one bit per system interrupt.

Figure 106. SECR0 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENA_STATUS_31_0

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 114. SECR0 Register Field Descriptions

Bit Field Type Reset Description
31-0 ENA_STATUS_31_0 R/W 0h System interrupt enabled status and clearing of the system interrupts

0 to 31.
Reads return the enabled status (before enabling with the Enable
Registers).
Write a 1 in a bit position to clear the status of the system interrupt.
Writing a 0 has no effect.

172 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.15 SECR1 Register (offset = 284h) [reset = 0h]
SECR1 is shown in Figure 107 and described in Table 115.

The System Interrupt Status Enabled/Clear Register1 show the pending enabled status of the system
interrupts 32 to 63. Software can write to the Status Clear Registers to clear a system interrupt after it has
been serviced. If a system interrupt status is not cleared then another host interrupt may not be triggered
or another host interrupt may be triggered incorrectly. There is one bit per system interrupt.

Figure 107. SECR1 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENA_STATUS_63_32

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 115. SECR1 Register Field Descriptions

Bit Field Type Reset Description
31-0 ENA_STATUS_63_32 R/W 0h System interrupt enabled status and clearing of the system interrupts

32 to 63.
Reads return the enabled status (before enabling with the Enable
Registers).
Write a 1 in a bit position to clear the status of the system interrupt.
Writing a 0 has no effect.

173SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.16 ESR0 Register (offset = 300h) [reset = 0h]
ESR0 is shown in Figure 108 and described in Table 116.

The System Interrupt Enable Set Register0 enables system interrupts 0 to 31 to trigger outputs. System
interrupts that are not enabled do not interrupt the host. There is a bit per system interrupt.

Figure 108. ESR0 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENABLE_SET_31_0

0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 116. ESR0 Register Field Descriptions

Bit Field Type Reset Description
31-0 ENABLE_SET_31_0 0h System interrupt enables system interrupts 0 to 31.

Read returns the enable value (
0 = disabled,
1 = enabled).
Write a 1 in a bit position to set that enable.
Writing a 0 has no effect.

174 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.17 ERS1 Register (offset = 304h) [reset = 0h]
ERS1 is shown in Figure 109 and described in Table 117.

The System Interrupt Enable Set Register1 enables system interrupts 32 to 63 to trigger outputs. System
interrupts that are not enabled do not interrupt the host. There is a bit per system interrupt.

Figure 109. ERS1 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENABLE_SET_63_32

0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 117. ERS1 Register Field Descriptions

Bit Field Type Reset Description
31-0 ENABLE_SET_63_32 0h System interrupt enables system interrupts 32 to 63.

Read returns the enable value (
0 = disabled,
1 = enabled).
Write a 1 in a bit position to set that enable.
Writing a 0 has no effect.

175SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.18 ECR0 Register (offset = 380h) [reset = 0h]
ECR0 is shown in Figure 110 and described in Table 118.

The System Interrupt Enable Clear Register0 disables system interrupts 0 to 31 to map to channels.
System interrupts that are not enabled do not interrupt the host. There is a bit per system interrupt.

Figure 110. ECR0 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENABLE_CLR_31_0

0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 118. ECR0 Register Field Descriptions

Bit Field Type Reset Description
31-0 ENABLE_CLR_31_0 0h System interrupt enables system interrupts 0 to 31.

Read returns the enable value (
0 = disabled,
1 = enabled).
Write a 1 in a bit position to clear that enable.
Writing a 0 has no effect.

176 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.19 ECR1 Register (offset = 384h) [reset = 0h]
ECR1 is shown in Figure 111 and described in Table 119.

The System Interrupt Enable Clear Register1 disables system interrupts 32 to 63 to map to channels.
System interrupts that are not enabled do not interrupt the host. There is a bit per system interrupt.

Figure 111. ECR1 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENABLE_CLR_63_32

0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 119. ECR1 Register Field Descriptions

Bit Field Type Reset Description
31-0 ENABLE_CLR_63_32 0h System interrupt enables system interrupts 32 to 63.

Read returns the enable value (
0 = disabled,
1 = enabled).
Write a 1 in a bit position to clear that enable.
Writing a 0 has no effect.

177SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.20 CMR0 Register (offset = 400h) [reset = 0h]
CMR0 is shown in Figure 112 and described in Table 120.

The Channel Map Register0 specify the channel for the system interrupts 0 to 3. There is one register per
4 system interrupts.

Figure 112. CMR0 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_3

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_2

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_1

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_0

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 120. CMR0 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_3 R/W 0h Sets the channel for the system interrupt 3
19-16 CH_MAP_2 R/W 0h Sets the channel for the system interrupt 2
11-8 CH_MAP_1 R/W 0h Sets the channel for the system interrupt 1
3-0 CH_MAP_0 R/W 0h Sets the channel for the system interrupt 0

178 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.21 CMR1 Register (offset = 404h) [reset = 0h]
CMR1 is shown in Figure 113 and described in Table 121.

The Channel Map Register1 specify the channel for the system interrupts 4 to 7. There is one register per
4 system interrupts.

Figure 113. CMR1 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_7

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_6

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_5

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_4

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 121. CMR1 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_7 R/W 0h Sets the channel for the system interrupt 7
19-16 CH_MAP_6 R/W 0h Sets the channel for the system interrupt 6
11-8 CH_MAP_5 R/W 0h Sets the channel for the system interrupt 5
3-0 CH_MAP_4 R/W 0h Sets the channel for the system interrupt 4

179SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.22 CMR2 Register (offset = 408h) [reset = 0h]
CMR2 is shown in Figure 114 and described in Table 122.

The Channel Map Register2 specify the channel for the system interrupts 8 to 11. There is one register
per 4 system interrupts.

Figure 114. CMR2 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_11

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_10

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_9

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_8

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 122. CMR2 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_11 R/W 0h Sets the channel for the system interrupt 11
19-16 CH_MAP_10 R/W 0h Sets the channel for the system interrupt 10
11-8 CH_MAP_9 R/W 0h Sets the channel for the system interrupt 9
3-0 CH_MAP_8 R/W 0h Sets the channel for the system interrupt 8

180 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.23 CMR3 Register (offset = 40Ch) [reset = 0h]
CMR3 is shown in Figure 115 and described in Table 123.

The Channel Map Register3 specify the channel for the system interrupts 12 to 15. There is one register
per 4 system interrupts.

Figure 115. CMR3 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_15

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_14

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_13

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_12

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 123. CMR3 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_15 R/W 0h Sets the channel for the system interrupt 15
19-16 CH_MAP_14 R/W 0h Sets the channel for the system interrupt 14
11-8 CH_MAP_13 R/W 0h Sets the channel for the system interrupt 13
3-0 CH_MAP_12 R/W 0h Sets the channel for the system interrupt 12

181SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.24 CMR4 Register (offset = 410h) [reset = 0h]
CMR4 is shown in Figure 116 and described in Table 124.

The Channel Map Register4 specify the channel for the system interrupts 16 to 19. There is one register
per 4 system interrupts.

Figure 116. CMR4 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_19

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_18

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_17

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_16

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 124. CMR4 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_19 R/W 0h Sets the channel for the system interrupt 19
19-16 CH_MAP_18 R/W 0h Sets the channel for the system interrupt 18
11-8 CH_MAP_17 R/W 0h Sets the channel for the system interrupt 17
3-0 CH_MAP_16 R/W 0h Sets the channel for the system interrupt 16

182 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.25 CMR5 Register (offset = 414h) [reset = 0h]
CMR5 is shown in Figure 117 and described in Table 125.

The Channel Map Register5 specify the channel for the system interrupts 20 to 23. There is one register
per 4 system interrupts.

Figure 117. CMR5 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_23

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_22

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_21

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_20

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 125. CMR5 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_23 R/W 0h Sets the channel for the system interrupt 23
19-16 CH_MAP_22 R/W 0h Sets the channel for the system interrupt 22
11-8 CH_MAP_21 R/W 0h Sets the channel for the system interrupt 21
3-0 CH_MAP_20 R/W 0h Sets the channel for the system interrupt 20

183SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.26 CMR6 Register (offset = 418h) [reset = 0h]
CMR6 is shown in Figure 118 and described in Table 126.

The Channel Map Register6 specify the channel for the system interrupts 24 to 27. There is one register
per 4 system interrupts.

Figure 118. CMR6 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_27

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_26

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_25

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_24

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 126. CMR6 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_27 R/W 0h Sets the channel for the system interrupt 27
19-16 CH_MAP_26 R/W 0h Sets the channel for the system interrupt 26
11-8 CH_MAP_25 R/W 0h Sets the channel for the system interrupt 25
3-0 CH_MAP_24 R/W 0h Sets the channel for the system interrupt 24

184 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.27 CMR7 Register (offset = 41Ch) [reset = 0h]
CMR7 is shown in Figure 119 and described in Table 127.

The Channel Map Register7 specify the channel for the system interrupts 28 to 31. There is one register
per 4 system interrupts.

Figure 119. CMR7 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_31

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_30

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_29

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_28

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 127. CMR7 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_31 R/W 0h Sets the channel for the system interrupt 31
19-16 CH_MAP_30 R/W 0h Sets the channel for the system interrupt 30
11-8 CH_MAP_29 R/W 0h Sets the channel for the system interrupt 29
3-0 CH_MAP_28 R/W 0h Sets the channel for the system interrupt 28

185SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.28 CMR8 Register (offset = 420h) [reset = 0h]
CMR8 is shown in Figure 120 and described in Table 128.

The Channel Map Register8 specify the channel for the system interrupts 32 to 35. There is one register
per 4 system interrupts.

Figure 120. CMR8 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_35

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_34

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_33

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_32

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 128. CMR8 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_35 R/W 0h Sets the channel for the system interrupt 35
19-16 CH_MAP_34 R/W 0h Sets the channel for the system interrupt 34
11-8 CH_MAP_33 R/W 0h Sets the channel for the system interrupt 33
3-0 CH_MAP_32 R/W 0h Sets the channel for the system interrupt 32

186 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.29 CMR9 Register (offset = 424h) [reset = 0h]
CMR9 is shown in Figure 121 and described in Table 129.

The Channel Map Register9 specify the channel for the system interrupts 36 to 39. There is one register
per 4 system interrupts.

Figure 121. CMR9 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_39

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_38

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_37

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_36

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 129. CMR9 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_39 R/W 0h Sets the channel for the system interrupt 39
19-16 CH_MAP_38 R/W 0h Sets the channel for the system interrupt 38
11-8 CH_MAP_37 R/W 0h Sets the channel for the system interrupt 37
3-0 CH_MAP_36 R/W 0h Sets the channel for the system interrupt 36

187SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.30 CMR10 Register (offset = 428h) [reset = 0h]
CMR10 is shown in Figure 122 and described in Table 130.

The Channel Map Register10 specify the channel for the system interrupts 40 to 43. There is one register
per 4 system interrupts.

Figure 122. CMR10 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_43

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_42

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_41

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_40

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 130. CMR10 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_43 R/W 0h Sets the channel for the system interrupt 43
19-16 CH_MAP_42 R/W 0h Sets the channel for the system interrupt 42
11-8 CH_MAP_41 R/W 0h Sets the channel for the system interrupt 41
3-0 CH_MAP_40 R/W 0h Sets the channel for the system interrupt 40

188 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.31 CMR11 Register (offset = 42Ch) [reset = 0h]
CMR11 is shown in Figure 123 and described in Table 131.

The Channel Map Register11 specify the channel for the system interrupts 44 to 47. There is one register
per 4 system interrupts.

Figure 123. CMR11 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_47

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_46

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_45

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_44

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 131. CMR11 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_47 R/W 0h Sets the channel for the system interrupt 47
19-16 CH_MAP_46 R/W 0h Sets the channel for the system interrupt 46
11-8 CH_MAP_45 R/W 0h Sets the channel for the system interrupt 45
3-0 CH_MAP_44 R/W 0h Sets the channel for the system interrupt 44

189SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.32 CMR12 Register (offset = 430h) [reset = 0h]
CMR12 is shown in Figure 124 and described in Table 132.

The Channel Map Register12 specify the channel for the system interrupts 48 to 51. There is one register
per 4 system interrupts.

Figure 124. CMR12 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_51

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_50

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_49

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_48

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 132. CMR12 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_51 R/W 0h Sets the channel for the system interrupt 51
19-16 CH_MAP_50 R/W 0h Sets the channel for the system interrupt 50
11-8 CH_MAP_49 R/W 0h Sets the channel for the system interrupt 49
3-0 CH_MAP_48 R/W 0h Sets the channel for the system interrupt 48

190 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.33 CMR13 Register (offset = 434h) [reset = 0h]
CMR13 is shown in Figure 125 and described in Table 133.

The Channel Map Register13 specify the channel for the system interrupts 52 to 55. There is one register
per 4 system interrupts.

Figure 125. CMR13 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_55

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_54

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_53

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_52

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 133. CMR13 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_55 R/W 0h Sets the channel for the system interrupt 55
19-16 CH_MAP_54 R/W 0h Sets the channel for the system interrupt 54
11-8 CH_MAP_53 R/W 0h Sets the channel for the system interrupt 53
3-0 CH_MAP_52 R/W 0h Sets the channel for the system interrupt 52

191SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.34 CMR14 Register (offset = 438h) [reset = 0h]
CMR14 is shown in Figure 126 and described in Table 134.

The Channel Map Register14 specify the channel for the system interrupts 56 to 59. There is one register
per 4 system interrupts.

Figure 126. CMR14 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_59

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_58

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_57

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_56

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 134. CMR14 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_59 R/W 0h Sets the channel for the system interrupt 59
19-16 CH_MAP_58 R/W 0h Sets the channel for the system interrupt 58
11-8 CH_MAP_57 R/W 0h Sets the channel for the system interrupt 57
3-0 CH_MAP_56 R/W 0h Sets the channel for the system interrupt 56

192 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.35 CMR15 Register (offset = 43Ch) [reset = 0h]
CMR15 is shown in Figure 127 and described in Table 135.

The Channel Map Register15 specify the channel for the system interrupts 60 to 63. There is one register
per 4 system interrupts.

Figure 127. CMR15 Register
31 30 29 28 27 26 25 24

Reserved CH_MAP_63

R/W-0h

23 22 21 20 19 18 17 16

Reserved CH_MAP_62

R/W-0h

15 14 13 12 11 10 9 8

Reserved CH_MAP_61

R/W-0h

7 6 5 4 3 2 1 0

Reserved CH_MAP_60

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 135. CMR15 Register Field Descriptions

Bit Field Type Reset Description
27-24 CH_MAP_63 R/W 0h Sets the channel for the system interrupt 63
19-16 CH_MAP_62 R/W 0h Sets the channel for the system interrupt 62
11-8 CH_MAP_61 R/W 0h Sets the channel for the system interrupt 61
3-0 CH_MAP_60 R/W 0h Sets the channel for the system interrupt 60

193SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.36 HMR0 Register (offset = 800h) [reset = 0h]
HMR0 is shown in Figure 128 and described in Table 136.

The Host Interrupt Map Register0 define the host interrupt for channels 0 to 3. There is one register per 4
channels. Channels with forced host interrupt mappings will have their fields read-only.

Figure 128. HMR0 Register
31 30 29 28 27 26 25 24

Reserved HINT_MAP_3

R/W-0h

23 22 21 20 19 18 17 16

Reserved HINT_MAP_2

R/W-0h

15 14 13 12 11 10 9 8

Reserved HINT_MAP_1

R/W-0h

7 6 5 4 3 2 1 0

Reserved HINT_MAP_0

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 136. HMR0 Register Field Descriptions

Bit Field Type Reset Description
27-24 HINT_MAP_3 R/W 0h HOST INTERRUPT MAP FOR CHANNEL 3
19-16 HINT_MAP_2 R/W 0h HOST INTERRUPT MAP FOR CHANNEL 2
11-8 HINT_MAP_1 R/W 0h HOST INTERRUPT MAP FOR CHANNEL 1
3-0 HINT_MAP_0 R/W 0h HOST INTERRUPT MAP FOR CHANNEL 0

194 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.37 HMR1 Register (offset = 804h) [reset = 0h]
HMR1 is shown in Figure 129 and described in Table 137.

The Host Interrupt Map Register1 define the host interrupt for channels 4 to 7. There is one register per 4
channels. Channels with forced host interrupt mappings will have their fields read-only.

Figure 129. HMR1 Register
31 30 29 28 27 26 25 24

Reserved HINT_MAP_7

R/W-0h

23 22 21 20 19 18 17 16

Reserved HINT_MAP_6

R/W-0h

15 14 13 12 11 10 9 8

Reserved HINT_MAP_5

R/W-0h

7 6 5 4 3 2 1 0

Reserved HINT_MAP_4

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 137. HMR1 Register Field Descriptions

Bit Field Type Reset Description
27-24 HINT_MAP_7 R/W 0h HOST INTERRUPT MAP FOR CHANNEL 7
19-16 HINT_MAP_6 R/W 0h HOST INTERRUPT MAP FOR CHANNEL 6
11-8 HINT_MAP_5 R/W 0h HOST INTERRUPT MAP FOR CHANNEL 5
3-0 HINT_MAP_4 R/W 0h HOST INTERRUPT MAP FOR CHANNEL 4

195SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.38 HMR2 Register (offset = 808h) [reset = 0h]
HMR2 is shown in Figure 130 and described in Table 138.

The Host Interrupt Map Register2 define the host interrupt for channels 8 to 9. There is one register per 4
channels. Channels with forced host interrupt mappings will have their fields read-only.

Figure 130. HMR2 Register
31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved HINT_MAP_9

R/W-0h

7 6 5 4 3 2 1 0

Reserved HINT_MAP_8

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 138. HMR2 Register Field Descriptions

Bit Field Type Reset Description
11-8 HINT_MAP_9 R/W 0h HOST INTERRUPT MAP FOR CHANNEL 9
3-0 HINT_MAP_8 R/W 0h HOST INTERRUPT MAP FOR CHANNEL 8

196 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.39 HIPIR0 Register (offset = 900h) [reset = 80000000h]
HIPIR0 is shown in Figure 131 and described in Table 139.

The Host Interrupt Prioritized Index Register0 shows the highest priority current pending interrupt for the
host interrupt 0. There is one register per host interrupt.

Figure 131. HIPIR0 Register
31 30 29 28 27 26 25 24

NONE_HINT_0 Reserved

R-1h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved PRI_HINT_0

R-0h

7 6 5 4 3 2 1 0

PRI_HINT_0

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 139. HIPIR0 Register Field Descriptions

Bit Field Type Reset Description
31 NONE_HINT_0 R 1h No pending interrupt.
9-0 PRI_HINT_0 R 0h HOST INT 0 PRIORITIZED INTERRUPT.

Interrupt number of the highest priority pending interrupt for this host
interrupt.

197SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.40 HIPIR1 Register (offset = 904h) [reset = 80000000h]
HIPIR1 is shown in Figure 132 and described in Table 140.

The Host Interrupt Prioritized Index Register1 shows the highest priority current pending interrupt for the
host interrupt 1. There is one register per host interrupt.

Figure 132. HIPIR1 Register
31 30 29 28 27 26 25 24

NONE_HINT_1 Reserved

R-1h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved PRI_HINT_1

R-0h

7 6 5 4 3 2 1 0

PRI_HINT_1

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 140. HIPIR1 Register Field Descriptions

Bit Field Type Reset Description
31 NONE_HINT_1 R 1h No pending interrupt.
9-0 PRI_HINT_1 R 0h HOST INT 1 PRIORITIZED INTERRUPT.

Interrupt number of the highest priority pending interrupt for this host
interrupt.

198 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.41 HIPIR2 Register (offset = 908h) [reset = 80000000h]
HIPIR2 is shown in Figure 133 and described in Table 141.

The Host Interrupt Prioritized Index Register2 shows the highest priority current pending interrupt for the
host interrupt 2. There is one register per host interrupt.

Figure 133. HIPIR2 Register
31 30 29 28 27 26 25 24

NONE_HINT_2 Reserved

R-1h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved PRI_HINT_2

R-0h

7 6 5 4 3 2 1 0

PRI_HINT_2

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 141. HIPIR2 Register Field Descriptions

Bit Field Type Reset Description
31 NONE_HINT_2 R 1h No pending interrupt.
9-0 PRI_HINT_2 R 0h HOST INT 2 PRIORITIZED INTERRUPT.

Interrupt number of the highest priority pending interrupt for this host
interrupt.

199SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.42 HIPIR3 Register (offset = 90Ch) [reset = 80000000h]
HIPIR3 is shown in Figure 134 and described in Table 142.

The Host Interrupt Prioritized Index Register3 shows the highest priority current pending interrupt for the
host interrupt 3. There is one register per host interrupt.

Figure 134. HIPIR3 Register
31 30 29 28 27 26 25 24

NONE_HINT_3 Reserved

R-1h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved PRI_HINT_3

R-0h

7 6 5 4 3 2 1 0

PRI_HINT_3

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 142. HIPIR3 Register Field Descriptions

Bit Field Type Reset Description
31 NONE_HINT_3 R 1h No pending interrupt.
9-0 PRI_HINT_3 R 0h HOST INT 3 PRIORITIZED INTERRUPT.

Interrupt number of the highest priority pending interrupt for this host
interrupt.

200 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.43 HIPIR4 Register (offset = 910h) [reset = 80000000h]
HIPIR4 is shown in Figure 135 and described in Table 143.

The Host Interrupt Prioritized Index Register4 shows the highest priority current pending interrupt for the
host interrupt 4. There is one register per host interrupt.

Figure 135. HIPIR4 Register
31 30 29 28 27 26 25 24

NONE_HINT_4 Reserved

R-1h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved PRI_HINT_4

R-0h

7 6 5 4 3 2 1 0

PRI_HINT_4

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 143. HIPIR4 Register Field Descriptions

Bit Field Type Reset Description
31 NONE_HINT_4 R 1h No pending interrupt.
9-0 PRI_HINT_4 R 0h HOST INT 4 PRIORITIZED INTERRUPT.

Interrupt number of the highest priority pending interrupt for this host
interrupt.

201SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.44 HIPIR5 Register (offset = 914h) [reset = 80000000h]
HIPIR5 is shown in Figure 136 and described in Table 144.

The Host Interrupt Prioritized Index Register5 shows the highest priority current pending interrupt for the
host interrupt 5. There is one register per host interrupt.

Figure 136. HIPIR5 Register
31 30 29 28 27 26 25 24

NONE_HINT_5 Reserved

R-1h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved PRI_HINT_5

R-0h

7 6 5 4 3 2 1 0

PRI_HINT_5

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 144. HIPIR5 Register Field Descriptions

Bit Field Type Reset Description
31 NONE_HINT_5 R 1h No pending interrupt.
9-0 PRI_HINT_5 R 0h HOST INT 5 PRIORITIZED INTERRUPT.

Interrupt number of the highest priority pending interrupt for this host
interrupt.

202 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.45 HIPIR6 Register (offset = 918h) [reset = 80000000h]
HIPIR6 is shown in Figure 137 and described in Table 145.

The Host Interrupt Prioritized Index Register6 shows the highest priority current pending interrupt for the
host interrupt 6. There is one register per host interrupt.

Figure 137. HIPIR6 Register
31 30 29 28 27 26 25 24

NONE_HINT_6 Reserved

R-1h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved PRI_HINT_6

R-0h

7 6 5 4 3 2 1 0

PRI_HINT_6

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 145. HIPIR6 Register Field Descriptions

Bit Field Type Reset Description
31 NONE_HINT_6 R 1h No pending interrupt.
9-0 PRI_HINT_6 R 0h HOST INT 6 PRIORITIZED INTERRUPT.

Interrupt number of the highest priority pending interrupt for this host
interrupt.

203SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.46 HIPIR7 Register (offset = 91Ch) [reset = 80000000h]
HIPIR7 is shown in Figure 138 and described in Table 146.

The Host Interrupt Prioritized Index Register7 shows the highest priority current pending interrupt for the
host interrupt 7. There is one register per host interrupt.

Figure 138. HIPIR7 Register
31 30 29 28 27 26 25 24

NONE_HINT_7 Reserved

R-1h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved PRI_HINT_7

R-0h

7 6 5 4 3 2 1 0

PRI_HINT_7

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 146. HIPIR7 Register Field Descriptions

Bit Field Type Reset Description
31 NONE_HINT_7 R 1h No pending interrupt.
9-0 PRI_HINT_7 R 0h HOST INT 7 PRIORITIZED INTERRUPT.

Interrupt number of the highest priority pending interrupt for this host
interrupt.

204 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.47 HIPIR8 Register (offset = 920h) [reset = 80000000h]
HIPIR8 is shown in Figure 139 and described in Table 147.

The Host Interrupt Prioritized Index Register8 shows the highest priority current pending interrupt for the
host interrupt 8. There is one register per host interrupt.

Figure 139. HIPIR8 Register
31 30 29 28 27 26 25 24

NONE_HINT_8 Reserved

R-1h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved PRI_HINT_8

R-0h

7 6 5 4 3 2 1 0

PRI_HINT_8

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 147. HIPIR8 Register Field Descriptions

Bit Field Type Reset Description
31 NONE_HINT_8 R 1h No pending interrupt.
9-0 PRI_HINT_8 R 0h HOST INT 8 PRIORITIZED INTERRUPT.

Interrupt number of the highest priority pending interrupt for this host
interrupt.

205SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.48 HIPIR9 Register (offset = 924h) [reset = 80000000h]
HIPIR9 is shown in Figure 140 and described in Table 148.

The Host Interrupt Prioritized Index Register9 shows the highest priority current pending interrupt for the
host interrupt 9. There is one register per host interrupt.

Figure 140. HIPIR9 Register
31 30 29 28 27 26 25 24

NONE_HINT_9 Reserved

R-1h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved PRI_HINT_9

R-0h

7 6 5 4 3 2 1 0

PRI_HINT_9

R-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 148. HIPIR9 Register Field Descriptions

Bit Field Type Reset Description
31 NONE_HINT_9 R 1h No pending interrupt.
9-0 PRI_HINT_9 R 0h HOST INT 9 PRIORITIZED INTERRUPT.

Interrupt number of the highest priority pending interrupt for this host
interrupt.

206 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.49 SIPR0 Register (offset = D00h) [reset = 1h]
SIPR0 is shown in Figure 141 and described in Table 149.

The System Interrupt Polarity Register0 define the polarity of the system interrupts 0 to 31. There is a
polarity for each system interrupt. The polarity of all system interrupts is active high; always write 1 to the
bits of this register.

Figure 141. SIPR0 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

POLARITY_31_0

R/W-1h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 149. SIPR0 Register Field Descriptions

Bit Field Type Reset Description
31-0 POLARITY_31_0 R/W 1h Interrupt polarity of the system interrupts 0 to 31.

0 = active low.
1 = active high.

207SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.50 SIPR1 Register (offset = D04h) [reset = 1h]
SIPR1 is shown in Figure 142 and described in Table 150.

The System Interrupt Polarity Register1 define the polarity of the system interrupts 32 to 63. There is a
polarity for each system interrupt. The polarity of all system interrupts is active high; always write 1 to the
bits of this register.

Figure 142. SIPR1 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

POLARITY_63_32

R/W-1h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 150. SIPR1 Register Field Descriptions

Bit Field Type Reset Description
31-0 POLARITY_63_32 R/W 1h Interrupt polarity of the system interrupts 32 to 63.

0 = active low.
1 = active high.

208 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.51 SITR0 Register (offset = D80h) [reset = 0h]
SITR0 is shown in Figure 143 and described in Table 151.

The System Interrupt Type Register0 define the type of the system interrupts 0 to 31. There is a type for
each system interrupt. The type of all system interrupts is pulse; always write 0 to the bits of this register.

Figure 143. SITR0 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TYPE_31_0

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 151. SITR0 Register Field Descriptions

Bit Field Type Reset Description
31-0 TYPE_31_0 R/W 0h Interrupt type of the system interrupts 0 to 31.

0 = level or pulse interrupt.
1 = edge interrupt (required edge detect).

209SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.52 SITR1 Register (offset = D84h) [reset = 0h]
SITR1 is shown in Figure 144 and described in Table 152.

The System Interrupt Type Register1 define the type of the system interrupts 32 to 63. There is a type for
each system interrupt. The type of all system interrupts is pulse; always write 0 to the bits of this register.

Figure 144. SITR1 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TYPE_63_32

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 152. SITR1 Register Field Descriptions

Bit Field Type Reset Description
31-0 TYPE_63_32 R/W 0h Interrupt type of the system interrupts 32 to 63.

0 = level or pulse interrupt.
1 = edge interrupt (required edge detect).

210 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.53 HINLR0 Register (offset = 1100h) [reset = 100h]
HINLR0 is shown in Figure 145 and described in Table 153.

The Host Interrupt Nesting Level Register0 display and control the nesting level for host interrupt 0. The
nesting level controls which channel and lower priority channels are nested. There is one register per host
interrupt.

Figure 145. HINLR0 Register
31 30 29 28 27 26 25 24

AUTO_OVERRIDE Reserved

W-0h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved NEST_HINT_0

R/W-100h

7 6 5 4 3 2 1 0

NEST_HINT_0

R/W-100h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 153. HINLR0 Register Field Descriptions

Bit Field Type Reset Description
31 AUTO_OVERRIDE W 0h Reads return 0.

Writes of a 1 override the auto updating of the nesting_level and use
the write data.

8-0 NEST_HINT_0 R/W 100h Reads return the current nesting level for the host interrupt.
Writes set the nesting level for the host interrupt.
In auto mode the value is updated internally unless the
auto_override is set and then the write data is used.

211SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.54 HINLR1 Register (offset = 1104h) [reset = 100h]
HINLR1 is shown in Figure 146 and described in Table 154.

The Host Interrupt Nesting Level Register1 display and control the nesting level for host interrupt 1. The
nesting level controls which channel and lower priority channels are nested. There is one register per host
interrupt.

Figure 146. HINLR1 Register
31 30 29 28 27 26 25 24

AUTO_OVERRIDE Reserved

W-0h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved NEST_HINT_1

R/W-100h

7 6 5 4 3 2 1 0

NEST_HINT_1

R/W-100h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 154. HINLR1 Register Field Descriptions

Bit Field Type Reset Description
31 AUTO_OVERRIDE W 0h Reads return 0.

Writes of a 1 override the auto updating of the nesting_level and use
the write data.

8-0 NEST_HINT_1 R/W 100h Reads return the current nesting level for the host interrupt.
Writes set the nesting level for the host interrupt.
In auto mode the value is updated internally unless the
auto_override is set and then the write data is used.

212 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.55 HINLR2 Register (offset = 1108h) [reset = 100h]
HINLR2 is shown in Figure 147 and described in Table 155.

The Host Interrupt Nesting Level Register2 display and control the nesting level for host interrupt 2. The
nesting level controls which channel and lower priority channels are nested. There is one register per host
interrupt.

Figure 147. HINLR2 Register
31 30 29 28 27 26 25 24

AUTO_OVERRIDE Reserved

W-0h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved NEST_HINT_2

R/W-100h

7 6 5 4 3 2 1 0

NEST_HINT_2

R/W-100h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 155. HINLR2 Register Field Descriptions

Bit Field Type Reset Description
31 AUTO_OVERRIDE W 0h Reads return 0.

Writes of a 1 override the auto updating of the nesting_level and use
the write data.

8-0 NEST_HINT_2 R/W 100h Reads return the current nesting level for the host interrupt.
Writes set the nesting level for the host interrupt.
In auto mode the value is updated internally unless the
auto_override is set and then the write data is used.

213SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.56 HINLR3 Register (offset = 110Ch) [reset = 100h]
HINLR3 is shown in Figure 148 and described in Table 156.

The Host Interrupt Nesting Level Register3 display and control the nesting level for host interrupt 3. The
nesting level controls which channel and lower priority channels are nested. There is one register per host
interrupt.

Figure 148. HINLR3 Register
31 30 29 28 27 26 25 24

AUTO_OVERRIDE Reserved

W-0h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved NEST_HINT_3

R/W-100h

7 6 5 4 3 2 1 0

NEST_HINT_3

R/W-100h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 156. HINLR3 Register Field Descriptions

Bit Field Type Reset Description
31 AUTO_OVERRIDE W 0h Reads return 0.

Writes of a 1 override the auto updating of the nesting_level and use
the write data.

8-0 NEST_HINT_3 R/W 100h Reads return the current nesting level for the host interrupt.
Writes set the nesting level for the host interrupt.
In auto mode the value is updated internally unless the
auto_override is set and then the write data is used.

214 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.57 HINLR4 Register (offset = 1110h) [reset = 100h]
HINLR4 is shown in Figure 149 and described in Table 157.

The Host Interrupt Nesting Level Register4 display and control the nesting level for host interrupt 4. The
nesting level controls which channel and lower priority channels are nested. There is one register per host
interrupt.

Figure 149. HINLR4 Register
31 30 29 28 27 26 25 24

AUTO_OVERRIDE Reserved

W-0h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved NEST_HINT_4

R/W-100h

7 6 5 4 3 2 1 0

NEST_HINT_4

R/W-100h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 157. HINLR4 Register Field Descriptions

Bit Field Type Reset Description
31 AUTO_OVERRIDE W 0h Reads return 0.

Writes of a 1 override the auto updating of the nesting_level and use
the write data.

8-0 NEST_HINT_4 R/W 100h Reads return the current nesting level for the host interrupt.
Writes set the nesting level for the host interrupt.
In auto mode the value is updated internally unless the
auto_override is set and then the write data is used.

215SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.58 HINLR5 Register (offset = 1114h) [reset = 100h]
HINLR5 is shown in Figure 150 and described in Table 158.

The Host Interrupt Nesting Level Register5 display and control the nesting level for host interrupt 5. The
nesting level controls which channel and lower priority channels are nested. There is one register per host
interrupt.

Figure 150. HINLR5 Register
31 30 29 28 27 26 25 24

AUTO_OVERRIDE Reserved

W-0h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved NEST_HINT_5

R/W-100h

7 6 5 4 3 2 1 0

NEST_HINT_5

R/W-100h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 158. HINLR5 Register Field Descriptions

Bit Field Type Reset Description
31 AUTO_OVERRIDE W 0h Reads return 0.

Writes of a 1 override the auto updating of the nesting_level and use
the write data.

8-0 NEST_HINT_5 R/W 100h Reads return the current nesting level for the host interrupt.
Writes set the nesting level for the host interrupt.
In auto mode the value is updated internally unless the
auto_override is set and then the write data is used.

216 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.59 HINLR6 Register (offset = 1118h) [reset = 100h]
HINLR6 is shown in Figure 151 and described in Table 159.

The Host Interrupt Nesting Level Register6 display and control the nesting level for host interrupt 6. The
nesting level controls which channel and lower priority channels are nested. There is one register per host
interrupt.

Figure 151. HINLR6 Register
31 30 29 28 27 26 25 24

AUTO_OVERRIDE Reserved

W-0h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved NEST_HINT_6

R/W-100h

7 6 5 4 3 2 1 0

NEST_HINT_6

R/W-100h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 159. HINLR6 Register Field Descriptions

Bit Field Type Reset Description
31 AUTO_OVERRIDE W 0h Reads return 0.

Writes of a 1 override the auto updating of the nesting_level and use
the write data.

8-0 NEST_HINT_6 R/W 100h Reads return the current nesting level for the host interrupt.
Writes set the nesting level for the host interrupt.
In auto mode the value is updated internally unless the
auto_override is set and then the write data is used.

217SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.60 HINLR7 Register (offset = 111Ch) [reset = 100h]
HINLR7 is shown in Figure 152 and described in Table 160.

The Host Interrupt Nesting Level Register7 display and control the nesting level for host interrupt 7. The
nesting level controls which channel and lower priority channels are nested. There is one register per host
interrupt.

Figure 152. HINLR7 Register
31 30 29 28 27 26 25 24

AUTO_OVERRIDE Reserved

W-0h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved NEST_HINT_7

R/W-100h

7 6 5 4 3 2 1 0

NEST_HINT_7

R/W-100h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 160. HINLR7 Register Field Descriptions

Bit Field Type Reset Description
31 AUTO_OVERRIDE W 0h Reads return 0.

Writes of a 1 override the auto updating of the nesting_level and use
the write data.

8-0 NEST_HINT_7 R/W 100h Reads return the current nesting level for the host interrupt.
Writes set the nesting level for the host interrupt.
In auto mode the value is updated internally unless the
auto_override is set and then the write data is used.

218 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.61 HINLR8 Register (offset = 1120h) [reset = 100h]
HINLR8 is shown in Figure 153 and described in Table 161.

The Host Interrupt Nesting Level Register8 display and control the nesting level for host interrupt 8. The
nesting level controls which channel and lower priority channels are nested. There is one register per host
interrupt.

Figure 153. HINLR8 Register
31 30 29 28 27 26 25 24

AUTO_OVERRIDE Reserved

W-0h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved NEST_HINT_8

R/W-100h

7 6 5 4 3 2 1 0

NEST_HINT_8

R/W-100h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 161. HINLR8 Register Field Descriptions

Bit Field Type Reset Description
31 AUTO_OVERRIDE W 0h Reads return 0.

Writes of a 1 override the auto updating of the nesting_level and use
the write data.

8-0 NEST_HINT_8 R/W 100h Reads return the current nesting level for the host interrupt.
Writes set the nesting level for the host interrupt.
In auto mode the value is updated internally unless the
auto_override is set and then the write data is used.

219SPRUHF8A–May 2012–Revised June 2013

Interrupt Controller

6.4.62 HINLR9 Register (offset = 1124h) [reset = 100h]
HINLR9 is shown in Figure 154 and described in Table 162.

The Host Interrupt Nesting Level Register9 display and control the nesting level for host interrupt 9. The
nesting level controls which channel and lower priority channels are nested. There is one register per host
interrupt.

Figure 154. HINLR9 Register
31 30 29 28 27 26 25 24

AUTO_OVERRIDE Reserved

W-0h

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved NEST_HINT_9

R/W-100h

7 6 5 4 3 2 1 0

NEST_HINT_9

R/W-100h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 162. HINLR9 Register Field Descriptions

Bit Field Type Reset Description
31 AUTO_OVERRIDE W 0h Reads return 0.

Writes of a 1 override the auto updating of the nesting_level and use
the write data.

8-0 NEST_HINT_9 R/W 100h Reads return the current nesting level for the host interrupt.
Writes set the nesting level for the host interrupt.
In auto mode the value is updated internally unless the
auto_override is set and then the write data is used.

220 SPRUHF8A–May 2012–Revised June 2013

 Interrupt Controller

6.4.63 HIER Register (offset = 1500h) [reset = 0h]
HIER is shown in Figure 155 and described in Table 163.

The Host Interrupt Enable Registers enable or disable individual host interrupts. These work separately
from the global enables. There is one bit per host interrupt. These bits are updated when writing to the
Host Interrupt Enable Index Set and Host Interrupt Enable Index Clear registers.

Figure 155. HIER Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ENABLE_HINT

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 163. HIER Register Field Descriptions

Bit Field Type Reset Description
9-0 ENABLE_HINT R/W 0h The enable of the host interrupts (one per bit).

0 = disabled
1 = enabled

221SPRUHF8A–May 2012–Revised June 2013

PRU-ICSS Interrupts

7 PRU-ICSS Interrupts

Table 164. PRU-ICSS Interrupts
Int Number Signal Name (Non-Ethercat Source Signal Name

Mode) (Ethercat Mode) (1)

63 tpcc_int_pend_po1 TPCC (EDMA)
62 tpcc_errint_pend_po TPCC (EDMA)
61 tptc_erint_pend_po TPTC0 (EDMA)
60 initiator_sinterrupt_q_n1 Mbox0 - mail_u1_irq (mailbox

interrupt for pru0)
59 initiator_sinterrupt_q_n2 Mbox0 - mail_u2_irq (mailbox

interrupt for pru1)
58 Emulation Suspend Signal Debugss

(software use)
57 POINTRPEND1 GPIO0
56 pwm_trip_zone eHRPWM0/eHRPWM1/eHRP

WM2
55 mcasp_x_intr_pend McASP0 Tx pr1_mii1_crs(external)
54 mcasp_r_intr_pend McASP0 Rx PRU1_RX_EOF
53 gen_intr_pend ADC_TSC MDIO_MII_LINK[1]
52 nirq UART2 PORT1_TX_OVERFLOW
51 nirq UART0 PORT1_TX_UNDERFLOW
50 c0_rx_thresh_pend 3PGSW (GEMAC) PRU1_RX_OVERFLOW
49 c0_rx_pend 3PGSW (GEMAC) PRU1_RX_NIBBLE_ODD
48 c0_tx_pend 3PGSW (GEMAC) PRU1_RX_CRC
47 c0_misc_pend 3PGSW (GEMAC) PRU1_RX_SOF
46 epwm_intr_intr_pend eHRPWM1 PRU1_RX_SFD
45 eqep_intr_intr_pend eQEP0 PRU1_RX_ERR32
44 SINTERRUPTN McSPI0 PRU1_RX_ERR
43 epwm_intr_intr_pend eHRPWM0 pr1_mii0_crs(external)
42 ecap_intr_intr_pend eCAP0 PRU0_RX_EOF
41 POINTRPEND I2C0 MDIO_MII_LINK[0]
40 dcan_intr DCAN0 PORT0_TX_OVERFLOW
39 dcan_int1 DCAN0 PORT0_TX_UNDERFLOW
38 dcan_uerr DCAN0 PRU0_RX_OVERFLOW
37 epwm_intr_intr_pend eHRPWM2 PRU0_RX_NIBBLE_ODD
36 ecap_intr_intr_pend eCAP2 PRU0_RX_CRC
35 ecap_intr_intr_pend eCAP1 PRU0_RX_SOF
34 mcasp_r_intr_pend McASP1 Rx PRU0_RX_SFD
33 mcasp_x_intr_pend McASP1 Tx PRU0_RX_ERR32
32 nirq UART1 PRU0_RX_ERR
31 pr1_pru_mst_intr[15]_intr_req pru0 or pru1
30 pr1_pru_mst_intr[14]_intr_req pru0 or pru1
29 pr1_pru_mst_intr[13]_intr_req pru0 or pru1
28 pr1_pru_mst_intr[12]_intr_req pru0 or pru1
27 pr1_pru_mst_intr[11]_intr_req pru0 or pru1 PRU-ICSS Internal Interrupts
26 pr1_pru_mst_intr[10]_intr_req pru0 or pru1
25 pr1_pru_mst_intr[9]_intr_req pru0 or pru1
24 pr1_pru_mst_intr[8]_intr_req pru0 or pru1
23 pr1_pru_mst_intr[7]_intr_req pru0 or pru1

(1) Signals 63–56 and 31–0 for Ethercat Mode are the same as for Non-Ethercat Mode.

22 SPRUHF8A–May 2012–Revised June 2013

 PRU-ICSS Interrupts

Table 164. PRU-ICSS Interrupts (continued)
Int Number Signal Name (Non-Ethercat Source Signal Name

Mode) (Ethercat Mode) (1)

22 pr1_pru_mst_intr[6]_intr_req pru0 or pru1
21 pr1_pru_mst_intr[5]_intr_req pru0 or pru1
20 pr1_pru_mst_intr[4]_intr_req pru0 or pru1
19 pr1_pru_mst_intr[3]_intr_req pru0 or pru1
18 pr1_pru_mst_intr[2]_intr_req pru0 or pru1
17 pr1_pru_mst_intr[1]_intr_req pru0 or pru1
16 pr1_pru_mst_intr[0]_intr_req pru0 or pru1
15 pr1_ecap_intr_req PRU-ICSS eCAP
14 sync0_out_pend PRU-ICSS IEP (Ethercat)
13 sync1_out_pend PRU-ICSS IEP (Ethercat)
12 latch0_in (input to PRU-ICSS) PRU-ICSS IEP (Ethercat) PRU-ICSS Internal Interrupts
11 latch1_in (input to PRU-ICSS) PRU-ICSS IEP (Ethercat)
10 pdi_wd_exp_pend PRU-ICSS IEP (Ethercat)
9 pd_wd_exp_pend PRU-ICSS IEP (Ethercat)
8 digio_event_req PRU-ICSS IEP (Ethercat)
7 pr1_iep_tim_cap_cmp_pend PRU-ICSS IEP
6 pr1_uart_uint_intr_req PRU-ICSS UART
5 pr1_uart_utxevt_intr_req PRU-ICSS UART
4 pr1_uart_urxevt_intr_req PRU-ICSS UART
3 pr1_xfr_timeout PRU-ICSS Scratch Pad
2 pr1_pru1_r31_status_cnt16 PRU1 (Shift Capture)
1 pr1_pru0_r31_status_cnt16 PRU0 (Shift Capture)
0 pr1_parity_err_intr_pend PRU-ICSS Parity Logic

Note: For the availability of EtherCAT and non-EtherCAT mode, see Chapter 1, Introduction, in the
AM335x ARM® Cortex™-A8 Microprocessors (MPUs) Technical Reference Manual (literature number
SPRUH73).

223SPRUHF8A–May 2012–Revised June 2013

http://www.ti.com/lit/pdf/SPRUH73

Universal Asynchronous Receiver/Transmitter

8 Universal Asynchronous Receiver/Transmitter

8.1 Introduction

8.1.1 Purpose of the Peripheral
The UART peripheral is based on the industry standard TL16C550 asynchronous communications
element, which in turn is a functional upgrade of the TL16C450. Functionally similar to the TL16C450 on
power up (single character or TL16C450 mode), the UART can be placed in an alternate FIFO
(TL16C550) mode. This relieves the CPU of excessive software overhead by buffering received and
transmitted characters. The receiver and transmitter FIFOs store up to 16 bytes including three additional
bits of error status per byte for the receiver FIFO.

The UART performs serial-to-parallel conversions on data received from a peripheral device and parallel-
to-serial conversion on data received from the CPU. The CPU can read the UART status at any time. The
UART includes control capability and a processor interrupt system that can be tailored to minimize
software management of the communications link.

The UART includes a programmable baud generator capable of dividing the UART input clock by divisors
from 1 to 65535 and producing a 16× reference clock or a 13× reference clock for the internal transmitter
and receiver logic. For detailed timing and electrical specifications for the UART, see your device-specific
data manual.

8.1.2 Features
Check your device-specific data manual to see the list of features that are supported and that are not
supported by the UART.

8.1.3 Functional Block Diagram
A functional block diagram of the UART is shown in Figure 156.

8.1.4 Industry Standard(s) Compliance Statement
The UART peripheral is based on the industry standard TL16C550 asynchronous communications
element, which is a functional upgrade of the TL16C450. The information in this chapter assumes you are
familiar with these standards.

224 SPRUHF8A–May 2012–Revised June 2013

8

Receiver
Buffer

Register

Divisor
Latch (LS)

Divisor
Latch (MS)

Baud
Generator

Receiver
FIFO

Line
Status

Register

Transmitter
Holding
Register

Modem

Control

Register

Line
Control
Register

Transmitter
FIFO

Interrupt
Enable

Register

Interrupt
Identification

Register

FIFO
Control
Register

Interrupt/
Event

Control
Logic

S
e
l
e
c
t

Data
Bus

Buffer

UARTn_RXD

UARTn_TXD

Peripheral
Bus

S
e
l
e
c
t

Receiver
Shift

Register

Receiver
Timing and

Control

Transmitter
Timing and

Control

Transmitter
Shift

Register

Control

Logic

16

8

8

8

8

8

Interrupt to CPU

16

8

signal

signal

8

88

8

Power and
Emulation

Control
Register

Event to DMA controller

 Universal Asynchronous Receiver/Transmitter

Figure 156. UART Block Diagram

NOTE: The value n indicates the applicable UART where there are multiple instances. For the PRU-ICSS, there is
only one instance and all UART signals should reflect this (e.g., UART0_TXD instead of UARTn_TXD).

225SPRUHF8A–May 2012–Revised June 2013

PRU-ICSS

generator

Clock

DLH:DLL

UART input clock
Input clock

UART

Receiver

timing and

control

Transmitter

timing and

control

Baud

generator

BCLK

Other logic

UART input clock frequency
Divisor MDR.OSM _ SEL 1

Desired baud rate 13
= =é ùë û´

UART input clock frequency
Divisor MDR.OSM _ SEL 0

Desired baud rate 16
= =é ùë û´

Universal Asynchronous Receiver/Transmitter

8.2 Functional Description

8.2.1 Clock Generation and Control
The UART bit clock is derived from an input clock to the UART. See your device-specific data manual to
check the maximum data rate supported by the UART.

Figure 157 is a conceptual clock generation diagram for the UART. The processor clock generator
receives a signal from an external clock source and produces a UART input clock with a programmed
frequency. The UART contains a programmable baud generator that takes an input clock and divides it by
a divisor in the range between 1 and (216 - 1) to produce a baud clock (BCLK). The frequency of BCLK is
sixteen times (16×) the baud rate (each received or transmitted bit lasts 16 BCLK cycles) or thirteen times
(13×) the baud rate (each received or transmitted bit lasts 13 BCLK cycles). When the UART is receiving,
the bit is sampled in the 8th BCLK cycle for 16× over sampling mode and on the 6th BCLK cycle for 13×
over-sampling mode. The 16× or 13× reference clock is selected by configuring the OSM_SEL bit in the
mode definition register (MDR). The formula to calculate the divisor is:

Two 8-bit register fields (DLH and DLL), called divisor latches, hold this 16-bit divisor. DLH holds the most
significant bits of the divisor, and DLL holds the least significant bits of the divisor. For information about
these register fields, see the UART register descriptions. These divisor latches must be loaded during
initialization of the UART in order to ensure desired operation of the baud generator. Writing to the divisor
latches results in two wait states being inserted during the write access while the baud generator is loaded
with the new value.

Figure 158 summarizes the relationship between the transferred data bit, BCLK, and the UART input
clock. Note that the timing relationship depicted in Figure 158 shows that each bit lasts for 16 BCLK
cycles . This is in case of 16x over-sampling mode. For 13× over-sampling mode each bit lasts for 13
BCLK cycles .

Example baud rates and divisor values relative to a 150-MHz UART input clock and 16× over-sampling
mode are shown in Table 165.

Figure 157. UART Clock Generation Diagram

2 SPRUHF8A–May 2012–Revised June 2013

BCLK

Each bit lasts 16 BCLK cycles.
When receiving, the UART samples the bit in the 8th cycle.

D0

UARTn_TXD,
UARTn_RXD D1 D2

PARITYD7D6D5 STOP2STOP1D1 D4D2 D3START D0UARTn_TXD,
UARTn_RXD

UART input clock

n UART input clock cycles, where n = divisor in DLH:DLL

n

BCLK

 Universal Asynchronous Receiver/Transmitter

Figure 158. Relationships Between Data Bit, BCLK, and UART Input Clock

Table 165. Baud Rate Examples for 150-MHZ UART Input Clock and 16× Over-sampling Mode
Baud Rate Divisor Value Actual Baud Rate Error (%)
2400 3906 2400.154 0.01
4800 1953 4800.372 0.01
9600 977 9595.701 -0.04
19200 488 19211.066 0.06
38400 244 38422.131 0.06
56000 167 56137.725 0.25
128000 73 129807.7 0.33
3000000 3 3125000 4.00

Table 166. Baud Rate Examples for 150-MHZ UART Input Clock and 13× Over-sampling Mode
Baud Rate Divisor Value Actual Baud Rate Error (%)
2400 4808 2399 -0.01
4800 2404 4799.646 -0.01
9600 1202 9599.386 -0.01
19200 601 19198.771 -0.01
38400 300 38461.538 0.16
56000 206 56011.949 0.02
128000 90 128205.128 0.16
3000000 4 2884615.385 -4.00

227SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

8.2.2 Signal Descriptions
The UARTs utilize a minimal number of signal connections to interface with external devices. The UART
signal descriptions are included in Table 167. Note that the number of UARTs and their supported
features vary on each device, see your device-specific data manual for more details.

Table 167. UART Signal Descriptions

Signal Name (1) Signal Type Function
UARTn_TXD Output Serial data transmit
UARTn_RXD Input Serial data receive
UARTn_CTS (2) Input Clear-to-Send handshaking signal
UARTn_RTS (2) Output Request-to-Send handshaking signal

(1) The value n indicates the applicable UART; that is, UART0, UART1, etc.
(2) This signal is not supported in all UARTs. See your device-specific data manual to check if it is

supported.

8.2.3 Pin Multiplexing
Extensive pin multiplexing is used to accommodate the largest number of peripheral functions in the
smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at
device reset and software programmable register settings. See your device-specific data manual to
determine how pin multiplexing affects the UART.

8.2.4 Protocol Description

8.2.4.1 Transmission

The UART transmitter section includes a transmitter hold register (THR) and a transmitter shift register
(TSR). When the UART is in the FIFO mode, THR is a 16-byte FIFO. Transmitter section control is a
function of the UART line control register (LCR). Based on the settings chosen in LCR, the UART
transmitter sends the following to the receiving device:
• 1 START bit
• 5, 6, 7, or 8 data bits
• 1 PARITY bit (optional)
• 1, 1.5, or 2 STOP bits

8.2.4.2 Reception

The UART receiver section includes a receiver shift register (RSR) and a receiver buffer register (RBR).
When the UART is in the FIFO mode, RBR is a 16-byte FIFO. Receiver section control is a function of the
UART line control register (LCR). Based on the settings chosen in LCR, the UART receiver accepts the
following from the transmitting device:
• 1 START bit
• 5, 6, 7, or 8 data bits
• 1 PARITY bit (optional)
• 1 STOP bit (any other STOP bits transferred with the above data are not detected)

228 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

8.2.4.3 Data Format

The UART transmits in the following format:

1 START bit + data bits (5, 6, 7, 8) + 1 PARITY bit (optional) + STOP bit (1, 1.5, 2)

It transmits 1 START bit; 5, 6, 7, or 8 data bits, depending on the data width selection; 1 PARITY bit, if
parity is selected; and 1, 1.5, or 2 STOP bits, depending on the STOP bit selection.

The UART receives in the following format:

1 START bit + data bits (5, 6, 7, 8) + 1 PARITY bit (optional) + 1 STOP bit

It receives 1 START bit; 5, 6, 7, or 8 data bits, depending on the data width selection; 1 PARITY bit, if
parity is selected; and 1 STOP bit.

The protocol formats are shown in Figure 159.

Figure 159. UART Protocol Formats
Transmit/Receive for 5-bit data, parity Enable, 1 STOP bit

D0 D1 D2 D3 D4 PARITY STOP1

Transmit/Receive for 6-bit data, parity Enable, 1 STOP bit

D0 D1 D2 D3 D4 D5 PARITY STOP1

Transmit/Receive for 7-bit data, parity Enable, 1 STOP bit

D0 D1 D2 D3 D4 D5 D6 PARITY STOP1

Transmit/Receive for 8-bit data, parity Enable, 1 STOP bit

D0 D1 D2 D3 D4 D5 D6 D7 PARITY STOP1

229SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

8.2.5 Operation

8.2.5.1 Transmission

The UART transmitter section includes a transmitter hold register (THR) and a transmitter shift register
(TSR). When the UART is in the FIFO mode, THR is a 16-byte FIFO. Transmitter section control is a
function of the UART line control register (LCR). Based on the settings chosen in LCR, the UART
transmitter sends the following to the receiving device:
• 1 START bit
• 5, 6, 7, or 8 data bits
• 1 PARITY bit (optional)
• 1, 1.5, or 2 STOP bits

THR receives data from the internal data bus, and when TSR is ready, the UART moves the data from
THR to TSR. The UART serializes the data in TSR and transmits the data on the UARTn_TXD pin.

In the non-FIFO mode, if THR is empty and the THR empty (THRE) interrupt is enabled in the interrupt
enable register (IER), an interrupt is generated. This interrupt is cleared when a character is loaded into
THR or the interrupt identification register (IIR) is read. In the FIFO mode, the interrupt is generated when
the transmitter FIFO is empty, and it is cleared when at least one byte is loaded into the FIFO or IIR is
read.

8.2.5.2 Reception

The UART receiver section includes a receiver shift register (RSR) and a receiver buffer register (RBR).
When the UART is in the FIFO mode, RBR is a 16-byte FIFO. Timing is supplied by the 16× receiver
clock. Receiver section control is a function of the UART line control register (LCR). Based on the settings
chosen in LCR, the UART receiver accepts the following from the transmitting device:
• 1 START bit
• 5, 6, 7, or 8 data bits
• 1 PARITY bit (optional)
• 1 STOP bit (any other STOP bits transferred with the above data are not detected)

RSR receives the data bits from the UARTn_RXD pin. Then RSR concatenates the data bits and moves
the resulting value into RBR (or the receiver FIFO). The UART also stores three bits of error status
information next to each received character, to record a parity error, framing error, or break.

In the non-FIFO mode, when a character is placed in RBR and the receiver data-ready interrupt is enabled
in the interrupt enable register (IER), an interrupt is generated. This interrupt is cleared when the character
is read from RBR. In the FIFO mode, the interrupt is generated when the FIFO is filled to the trigger level
selected in the FIFO control register (FCR), and it is cleared when the FIFO contents drop below the
trigger level.

230 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

8.2.5.3 FIFO Modes

The following two modes can be used for servicing the receiver and transmitter FIFOs:
• FIFO interrupt mode. The FIFO is enabled and the associated interrupts are enabled. Interrupts are

sent to the CPU to indicate when specific events occur.
• FIFO poll mode. The FIFO is enabled but the associated interrupts are disabled. The CPU polls status

bits to detect specific events.

Because the receiver FIFO and the transmitter FIFO are controlled separately, either one or both can be
placed into the interrupt mode or the poll mode.

8.2.5.3.1 FIFO Interrupt Mode

When the receiver FIFO is enabled in the FIFO control register (FCR) and the receiver interrupts are
enabled in the interrupt enable register (IER), the interrupt mode is selected for the receiver FIFO. The
following are important points about the receiver interrupts:
• The receiver data-ready interrupt is issued to the CPU when the FIFO has reached the trigger level

that is programmed in FCR. It is cleared when the CPU or the DMA controller reads enough characters
from the FIFO such that the FIFO drops below its programmed trigger level.

• The receiver line status interrupt is generated in response to an overrun error, a parity error, a framing
error, or a break. This interrupt has higher priority than the receiver data-ready interrupt. For details,
see Section 8.2.8.

• The data-ready (DR) bit in the line status register (LSR) indicates the presence or absence of
characters in the receiver FIFO. The DR bit is set when a character is transferred from the receiver
shift register (RSR) to the empty receiver FIFO. The DR bit remains set until the FIFO is empty again.

• A receiver time-out interrupt occurs if all of the following conditions exist:
– At least one character is in the FIFO,
– The most recent character was received more than four continuous character times ago. A

character time is the time allotted for 1 START bit, n data bits, 1 PARITY bit, and 1 STOP bit,
where n depends on the word length selected with the WLS bits in the line control register (LCR).
See Table 168.

– The most recent read of the FIFO has occurred more than four continuous character times before.
• Character times are calculated by using the baud rate.
• When a receiver time-out interrupt has occurred, it is cleared and the time-out timer is cleared when

the CPU or the EDMA controller reads one character from the receiver FIFO. The interrupt is also
cleared if a new character is received in the FIFO or if the URRST bit is cleared in the power and
emulation management register (PWREMU_MGMT).

• If a receiver time-out interrupt has not occurred, the time-out timer is cleared after a new character is
received or after the CPU or EDMA reads the receiver FIFO.

When the transmitter FIFO is enabled in FCR and the transmitter holding register empty (THRE) interrupt
is enabled in IER, the interrupt mode is selected for the transmitter FIFO. The THRE interrupt occurs when
the transmitter FIFO is empty. It is cleared when the transmitter hold register (THR) is loaded (1 to 16
characters may be written to the transmitter FIFO while servicing this interrupt) or the interrupt
identification register (IIR) is read.

Table 168. Character Time for Word Lengths

Word Length (n) Character Time Four Character Times
5 Time for 8 bits Time for 32 bits
6 Time for 9 bits Time for 36 bits
7 Time for 10 bits Time for 40 bits
8 Time for 11 bits Time for 44 bits

231SPRUHF8A–May 2012–Revised June 2013

rts

Receiver

FIFO

D[7:0]

UART

Serial to
Parallel

Flow
Control

Transmitter

FIFO

Parallel to
Serial

Flow
Control

Parallel to
Serial

Flow
Control

Serial to
Parallel

Flow
Control

UART

Transmitter

FIFO

Receiver

FIFO

D[7:0]

Device Off-chip

tx

cts

rx

UARTn_RXD

UARTn_RTS

UARTn_TXD

UARTn_CTS

Universal Asynchronous Receiver/Transmitter

8.2.5.3.2 FIFO Poll Mode

When the receiver FIFO is enabled in the FIFO control register (FCR) and the receiver interrupts are
disabled in the interrupt enable register (IER), the poll mode is selected for the receiver FIFO. Similarly,
when the transmitter FIFO is enabled and the transmitter interrupts are disabled, the transmitted FIFO is in
the poll mode. In the poll mode, the CPU detects events by checking bits in the line status register (LSR):
• The RXFIFOE bit indicates whether there are any errors in the receiver FIFO.
• The TEMT bit indicates that both the transmitter holding register (THR) and the transmitter shift

register (TSR) are empty.
• The THRE bit indicates when THR is empty.
• The BI (break), FE (framing error), PE (parity error), and OE (overrun error) bits specify which error or

errors have occurred.
• The DR (data-ready) bit is set as long as there is at least one byte in the receiver FIFO.

Also, in the FIFO poll mode:
• The interrupt identification register (IIR) is not affected by any events because the interrupts are

disabled.
• The UART does not indicate when the receiver FIFO trigger level is reached or when a receiver time-

out occurs.

8.2.5.4 Autoflow Control

The UART can employ autoflow control by connecting the UARTn_CTS and UARTn_RTS signals. Note
that all UARTs do not support autoflow control, see your device-specific data manual for supported
features. The UARTn_CTS input must be active before the transmitter FIFO can transmit data. The
UARTn_RTS becomes active when the receiver needs more data and notifies the sending device. When
UARTn_RTS is connected to UARTn_CTS, data transmission does not occur unless the receiver FIFO
has space for the data. Therefore, when two UARTs are connected as shown in Figure 160 with autoflow
enabled, overrun errors are eliminated.

Figure 160. UART Interface Using Autoflow Diagram

232 SPRUHF8A–May 2012–Revised June 2013

UARTn_TXD

UARTn_CTS

Start StopBits0−7 Start StopBits 0−7 Start StopBits 0−7

UARTn_RXD

UARTn_RTS

Start Start StartStopStopBits N Bits N+1Start Stop

 Universal Asynchronous Receiver/Transmitter

8.2.5.4.1 UARTn_RTS Behavior

UARTn_RTS data flow control originates in the receiver block (see Figure 156). When the receiver FIFO
level reaches a trigger level of 1, 4, 8, or 14 (see Figure 161), UARTn_RTS is deasserted. The sending
UART may send an additional byte after the trigger level is reached (assuming the sending UART has
another byte to send), because it may not recognize the deassertion of UARTn_RTS until after it has
begun sending the additional byte. For trigger level 1, 4, and 8, UARTn_RTS is automatically reasserted
once the receiver FIFO is emptied. For trigger level 14, UARTn_RTS is automatically reasserted once the
receiver FIFO drops below the trigger level.

Figure 161. Autoflow Functional Timing Waveforms for UARTn_RTS

(1) N = Receiver FIFO trigger level.
(2) The two blocks in dashed lines cover the case where an additional byte is sent.

8.2.5.4.2 UARTn_CTS Behavior

The transmitter checks UARTn_CTS before sending the next data byte. If UARTn_CTS is active, the
transmitter sends the next byte. To stop the transmitter from sending the following byte, UARTn_CTS
must be released before the middle of the last STOP bit that is currently being sent (see Figure 162).
When flow control is enabled, UARTn_CTS level changes do not trigger interrupts because the device
automatically controls its own transmitter. Without autoflow control, the transmitter sends any data present
in the transmitter FIFO and a receiver overrun error may result.

Figure 162. Autoflow Functional Timing Waveforms for UARTn_CTS

(1) When UARTn_CTS is active (low), the transmitter keeps sending serial data out.
(2) When UARTn_CTS goes high before the middle of the last STOP bit of the current byte, the transmitter

finishes sending the current byte but it does not send the next byte.
(3) When UARTn_CTS goes from high to low, the transmitter begins sending data again.

8.2.5.5 Loopback Control

The UART can be placed in the diagnostic mode using the LOOP bit in the modem control register (MCR),
which internally connects the UART output back to the UART input. In this mode, the transmit and receive
data paths, the transmitter and receiver interrupts, and the modem control interrupts can be verified
without connecting to another UART.

233SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

8.2.6 Reset Considerations

8.2.6.1 Software Reset Considerations

Two bits in the power and emulation management register (PWREMU_MGMT) control resetting the parts
of the UART:
• The UTRST bit controls resetting the transmitter only. If UTRST = 1, the transmitter is active;

if UTRST = 0, the transmitter is in reset.
• The URRST bit controls resetting the receiver only. If URRST = 1, the receiver is active;

if URRST = 0, the receiver is in reset.

In each case, putting the receiver and/or transmitter in reset will reset the state machine of the affected
portion but does not affect the UART registers.

8.2.6.2 Hardware Reset Considerations

When the processor RESET pin is asserted, the entire processor is reset and is held in the reset state
until the RESET pin is released. As part of a device reset, the UART state machine is reset and the UART
registers are forced to their default states. The default states of the registers are shown in .

8.2.7 Initialization
The following steps are required to initialize the UART:
1. Perform the necessary device pin multiplexing setup (see your device-specific data manual).
2. Set the desired baud rate by writing the appropriate clock divisor values to the divisor latch registers

(DLL and DLH).
3. If the FIFOs will be used, select the desired trigger level and enable the FIFOs by writing the

appropriate values to the FIFO control register (FCR). The FIFOEN bit in FCR must be set first, before
the other bits in FCR are configured.

4. Choose the desired protocol settings by writing the appropriate values to the line control register
(LCR).

5. If autoflow control is desired, write appropriate values to the modem control register (MCR). Note that
all UARTs do not support autoflow control, see your device-specific data manual for supported
features.

6. Choose the desired response to emulation suspend events by configuring the FREE bit and enable the
UART by setting the UTRST and URRST bits in the power and emulation management register
(PWREMU_MGMT).

8.2.8 Interrupt Support

8.2.8.1 Interrupt Events and Requests

The UART generates the interrupt requests described in Table 169. All requests are multiplexed through
an arbiter to a single UART interrupt request to the CPU, as shown in Figure 163. Each of the interrupt
requests has an enable bit in the interrupt enable register (IER) and is recorded in the interrupt
identification register (IIR).

If an interrupt occurs and the corresponding enable bit is set to 1, the interrupt request is recorded in IIR
and is forwarded to the CPU. If an interrupt occurs and the corresponding enable bit is cleared to 0, the
interrupt request is blocked. The interrupt request is neither recorded in IIR nor forwarded to the CPU.

8.2.8.2 Interrupt Multiplexing

The UARTs have dedicated interrupt signals to the CPU and the interrupts are not multiplexed with any
other interrupt source.

234 SPRUHF8A–May 2012–Revised June 2013

UART interrupt
request to CPU

IER(ETBEI)

IER(ERBI)

Transmitter holding
register empty

Receiver data ready

THREINT

RDRINT

Overrun error

IER(ELSI)

RTOINT

Conditions Enable bits UART interrupt requests

Arbiter

Parity error
Framing error

Break

RLSINT

Receiver time-out

 Universal Asynchronous Receiver/Transmitter

Table 169. UART Interrupt Requests Descriptions
UART Interrupt
Request Interrupt Source Comment
THREINT THR-empty condition: The transmitter holding register If THREINT is enabled in IER, by setting the ETBEI

(THR) or the transmitter FIFO is empty. All of the data bit, it is recorded in IIR.
has been copied from THR to the transmitter shift As an alternative to using THREINT, the CPU can poll
register (TSR). the THRE bit in the line status register (LSR).

RDAINT Receive data available in non-FIFO mode or trigger If RDAINT is enabled in IER, by setting the ERBI bit,
level reached in the FIFO mode. it is recorded in IIR.

As an alternative to using RDAINT, the CPU can poll
the DR bit in the line status register (LSR). In the
FIFO mode, this is not a functionally equivalent
alternative because the DR bit does not respond to
the FIFO trigger level. The DR bit only indicates the
presence or absence of unread characters.

RTOINT Receiver time-out condition (in the FIFO mode only): The receiver time-out interrupt prevents the UART
No characters have been removed from or input to from waiting indefinitely, in the case when the receiver
the receiver FIFO during the last four character times FIFO level is below the trigger level and thus does not
(see Table 168), and there is at least one character in generate a receiver data-ready interrupt.
the receiver FIFO during this time. If RTOINT is enabled in IER, by setting the ERBI bit,

it is recorded in IIR.
There is no status bit to reflect the occurrence of a
time-out condition.

RLSINT Receiver line status condition: An overrun error, parity If RLSINT is enabled in IER, by setting the ELSI bit, it
error, framing error, or break has occurred. is recorded in IIR.

As an alternative to using RLSINT, the CPU can poll
the following bits in the line status register (LSR):
overrun error indicator (OE), parity error indicator
(PE), framing error indicator (FE), and break indicator
(BI).

Figure 163. UART Interrupt Request Enable Paths

235SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

8.2.9 DMA Event Support
In the FIFO mode, the UART generates the following two DMA events:
• Receive event (URXEVT): The trigger level for the receiver FIFO (1, 4, 8, or 14 characters) is set with

the RXFIFTL bit in the FIFO control register (FCR). Every time the trigger level is reached or a receiver
time-out occurs, the UART sends a receive event to the EDMA controller. In response, the EDMA
controller reads the data from the receiver FIFO by way of the receiver buffer register (RBR). Note that
the receive event is not asserted if the data at the top of the receiver FIFO is erroneous even if the
trigger level has been reached.

• Transmit event (UTXEVT): When the transmitter FIFO is empty (when the last byte in the transmitter
FIFO has been copied to the transmitter shift register), the UART sends an UTXEVT signal to the
EDMA controller. In response, the EDMA controller refills the transmitter FIFO by way of the transmitter
holding register (THR). The UTXEVT signal is also sent to the DMA controller when the UART is taken
out of reset using the UTRST bit in the power and emulation management register
(PWREMU_MGMT).

Activity in DMA channels can be synchronized to these events. In the non-FIFO mode, the UART
generates no DMA events. Any DMA channel synchronized to either of these events must be enabled at
the time the UART event is generated. Otherwise, the DMA channel will miss the event and, unless the
UART generates a new event, no data transfer will occur.

8.2.10 Power Management
The UART peripheral can be placed in reduced-power modes to conserve power during periods of low
activity. The power management of the UART peripheral is controlled by the processor Power and Clock
Management (PRCM). The PRCM acts as a master controller for power management for all of the
peripherals on the device. For detailed information on power management procedures using the PSC, see
the chapter Power, Reset, and Clock Management (PRCM) in the device reference manual.

8.2.11 Emulation Considerations
The FREE bit in the power and emulation management register (PWREMU_MGMT) determines how the
UART responds to an emulation suspend event such as an emulator halt or breakpoint. If FREE = 0 and a
transmission is in progress, the UART halts after completing the one-word transmission; if FREE = 0 and
a transmission is not in progress, the UART halts immediately. If FREE = 1, the UART does not halt and
continues operating normally.

Note also that most emulator accesses are transparent to UART operation. Emulator read operations do
not affect any register contents, status bits, or operating states, with the exception of the interrupt
identification register (IIR). Emulator writes, however, may affect register contents and may affect UART
operation, depending on what register is accessed and what value is written.

The UART registers can be read from or written to during emulation suspend events, even if the UART
activity has stopped.

8.2.12 Exception Processing

8.2.12.1 Divisor Latch Not Programmed

Since the processor reset signal has no effect on the divisor latch, the divisor latch will have an unknown
value after power up. If the divisor latch is not programmed after power up, the baud clock (BCLK) will not
operate and will instead be set to a constant logic 1 state.

The divisor latch values should always be reinitialized following a processor reset.

8.2.12.2 Changing Operating Mode During Busy Serial Communication

Since the serial link characteristics are based on how the control registers are programmed, the UART will
expect the control registers to be static while it is busy engaging in a serial communication. Therefore,
changing the control registers while the module is still busy communicating with another serial device will
most likely cause an error condition and should be avoided.

236 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

8.3 Registers

The system programmer has access to and control over any of the UART registers that are listed in
Table 170. These registers, which control UART operations, receive data, and transmit data, are available
at 32-bit addresses in the device memory map.
• RBR, THR, and DLL share one address. When the DLAB bit in LCR is 0, reading from the address

gives the content of RBR, and writing to the address modifies THR. When DLAB = 1, all accesses at
the address read or modify DLL. DLL can also be accessed with address offset 20h.

• IER and DLH share one address. When DLAB = 0, all accesses read or modify IER. When DLAB = 1,
all accesses read or modify DLH. DLH can also be accessed with address offset 24h.

• IIR and FCR share one address. Regardless of the value of the DLAB bit, reading from the address
gives the content of IIR, and writing modifies FCR.

Table 170. UART Registers
Offset Acronym Register Description Section

0h RBR Receiver Buffer Register (read only) Section 8.3.1
0h THR Transmitter Holding Register (write only) Section 8.3.2
4h IER Interrupt Enable Register Section 8.3.3
8h IIR Interrupt Identification Register (read only) Section 8.3.4
8h FCR FIFO Control Register (write only) Section 8.3.5
Ch LCR Line Control Register Section 8.3.6
10h MCR Modem Control Register Section 8.3.7
14h LSR Line Status Register Section 8.3.8
18h MSR Modem Status Register Section 8.3.9
1Ch SCR Scratch Pad Register Section 8.3.10
20h DLL Divisor LSB Latch Section 8.3.11
24h DLH Divisor MSB Latch Section 8.3.11
28h REVID1 Revision Identification Register 1 Section 8.3.12
2Ch REVID2 Revision Identification Register 2 Section 8.3.12
30h PWREMU_MGMT Power and Emulation Management Register Section 8.3.13
34h MDR Mode Definition Register Section 8.3.14

237SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

8.3.1 Receiver Buffer Register (RBR)
The receiver buffer register (RBR) is shown in Figure 164 and described in Table 171.

The UART receiver section consists of a receiver shift register (RSR) and a receiver buffer register (RBR).
When the UART is in the FIFO mode, RBR is a 16-byte FIFO. Timing is supplied by the 16x receiver clock
or 13x receiver clock by programming OSM_SEL bit field of MDR register. Receiver section control is a
function of the line control register (LCR).

RSR receives serial data from the UARTn_RXD pin. Then RSR concatenates the data and moves it into
RBR (or the receiver FIFO). In the non-FIFO mode, when a character is placed in RBR and the receiver
data-ready interrupt is enabled (DR = 1 in IER), an interrupt is generated. This interrupt is cleared when
the character is read from RBR. In the FIFO mode, the interrupt is generated when the FIFO is filled to the
trigger level selected in the FIFO control register (FCR), and it is cleared when the FIFO contents drop
below the trigger level.

Access considerations:
RBR, THR, and DLL share one address. To read RBR, write 0 to the DLAB bit in LCR, and read from the
shared address. When DLAB = 0, writing to the shared address modifies THR. When DLAB = 1, all
accesses at the shared address read or modify DLL.

DLL also has a dedicated address. If you use the dedicated address, you can keep DLAB = 0, so that
RBR and THR are always selected at the shared address.

Figure 164. Receiver Buffer Register (RBR)
31 16

Reserved
R-0

15 8 7 0
Reserved DATA

R-0 R-0
LEGEND: R = Read only; -n = value after reset

Table 171. Receiver Buffer Register (RBR) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-0 DATA 0-FFh Received data

238 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

8.3.2 Transmitter Holding Register (THR)
The transmitter holding register (THR) is shown in Figure 165 and described in Table 172.

The UART transmitter section consists of a transmitter hold register (THR) and a transmitter shift register
(TSR). When the UART is in the FIFO mode, THR is a 16-byte FIFO. Transmitter section control is a
function of the line control register (LCR).

THR receives data from the internal data bus and when TSR is idle, the UART moves the data from THR
to TSR. The UART serializes the data in TSR and transmits the data on the TX pin. In the non-FIFO
mode, if THR is empty and the THR empty (THRE) interrupt is enabled (ETBEI = 1 in IER), an interrupt is
generated. This interrupt is cleared when a character is loaded into THR or the interrupt identification
register (IIR) is read. In the FIFO mode, the interrupt is generated when the transmitter FIFO is empty,
and it is cleared when at least one byte is loaded into the FIFO or IIR is read.

Access considerations:
RBR, THR, and DLL share one address. To load THR, write 0 to the DLAB bit of LCR, and write to the
shared address. When DLAB = 0, reading from the shared address gives the content of RBR. When
DLAB = 1, all accesses at the address read or modify DLL.

DLL also has a dedicated address. If you use the dedicated address, you can keep DLAB = 0, so that
RBR and THR are always selected at the shared address.

Figure 165. Transmitter Holding Register (THR)
31 16

Reserved
R-0

15 8 7 0
Reserved DATA

R-0 W-0
LEGEND: R = Read only; W = Write only; -n = value after reset

Table 172. Transmitter Holding Register (THR) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-0 DATA 0-FFh Data to transmit

239SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

8.3.3 Interrupt Enable Register (IER)
The interrupt enable register (IER) is used to individually enable or disable each type of interrupt request
that can be generated by the UART. Each interrupt request that is enabled in IER is forwarded to the
CPU. IER is shown in Figure 166 and described in Table 173.

Access considerations:
IER and DLH share one address. To read or modify IER, write 0 to the DLAB bit in LCR. When DLAB = 1,
all accesses at the shared address read or modify DLH.

DLH also has a dedicated address. If you use the dedicated address, you can keep DLAB = 0, so that IER
is always selected at the shared address.

Figure 166. Interrupt Enable Register (IER)
31 16

Reserved
R-0

15 4 3 2 1 0
Reserved Rsvd ELSI ETBEI ERBI

R-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 173. Interrupt Enable Register (IER) Field Descriptions

Bit Field Value Description
31-4 Reserved 0 Reserved

3 EDSSI 0 Enable Modem Status Interrupt
2 ELSI Receiver line status interrupt enable.

0 Receiver line status interrupt is disabled.
1 Receiver line status interrupt is enabled.

1 ETBEI Transmitter holding register empty interrupt enable.
0 Transmitter holding register empty interrupt is disabled.
1 Transmitter holding register empty interrupt is enabled.

0 ERBI Receiver data available interrupt and character timeout indication interrupt enable.
0 Receiver data available interrupt and character timeout indication interrupt is disabled.
1 Receiver data available interrupt and character timeout indication interrupt is enabled.

240 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

8.3.4 Interrupt Identification Register (IIR)
The interrupt identification register (IIR) is a read-only register at the same address as the FIFO control
register (FCR), which is a write-only register. When an interrupt is generated and enabled in the interrupt
enable register (IER), IIR indicates that an interrupt is pending in the IPEND bit and encodes the type of
interrupt in the INTID bits. Reading IIR clears any THR empty (THRE) interrupts that are pending.

IIR is shown in Figure 167 and described in Figure 167.

The UART has an on-chip interrupt generation and prioritization capability that permits flexible
communication with the CPU. The UART provides three priority levels of interrupts:
• Priority 1 - Receiver line status (highest priority)
• Priority 2 - Receiver data ready or receiver timeout
• Priority 3 - Transmitter holding register empty

The FIFOEN bit in IIR can be checked to determine whether the UART is in the FIFO mode or the non-
FIFO mode.

Access consideration:
IIR and FCR share one address. Regardless of the value of the DLAB bit in LCR, reading from the
address gives the content of IIR, and writing to the address modifies FCR.

Figure 167. Interrupt Identification Register (IIR)
31 16

Reserved
R-0

15 8 7 6 5 4 3 1 0
Reserved FIFOEN Reserved INTID IPEND

R-0 R-0 R-0 R-0 R-1
LEGEND: R = Read only; -n = value after reset

Table 174. Interrupt Identification Register (IIR) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-6 FIFOEN 0-3h FIFOs enabled.

0 Non-FIFO mode
1h-2h Reserved

3h FIFOs are enabled. FIFOEN bit in the FIFO control register (FCR) is set to 1.
5-4 Reserved 0 Reserved
3-1 INTID 0-7h Interrupt type. See Table 175.

0 Reserved
1h Transmitter holding register empty (priority 3)
2h Receiver data available (priority 2)
3h Receiver line status (priority 1, highest)

4h-5h Reserved
6h Character timeout indication (priority 2)
7h Reserved

0 IPEND Interrupt pending. When any UART interrupt is generated and is enabled in IER, IPEND is forced to 0.
IPEND remains 0 until all pending interrupts are cleared or until a hardware reset occurs. If no interrupts
are enabled, IPEND is never forced to 0.

0 Interrupts pending.
1 No interrupts pending.

241SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

Table 175. Interrupt Identification and Interrupt Clearing Information
IIR BitsPriority

Level 3 2 1 0 Interrupt Type Interrupt Source Event That Clears Interrupt
None 0 0 0 1 None None None

1 0 1 1 0 Receiver line status Overrun error, parity error, framing For an overrun error, reading the line
error, or break is detected. status register (LSR) clears the

interrupt. For a parity error, framing
error, or break, the interrupt is
cleared only after all the erroneous
data have been read.

2 0 1 0 0 Receiver data-ready Non-FIFO mode: Receiver data is Non-FIFO mode: The receiver buffer
ready. register (RBR) is read.
FIFO mode: Trigger level reached. If FIFO mode: The FIFO drops below
four character times (see Table 168) the trigger level. (1)

pass with no access of the FIFO, the
interrupt is asserted again.

2 1 1 0 0 Receiver time-out FIFO mode only: No characters have One of the following events:
been removed from or input to the • A character is read from the
receiver FIFO during the last four receiver FIFO. (1)

character times (see Table 168), and • A new character arrives in thethere is at least one character in the receiver FIFO.receiver FIFO during this time.
• The URRST bit in the power

and emulation management
register (PWREMU_MGMT) is
loaded with 0.

3 0 0 1 0 Transmitter holding Non-FIFO mode: Transmitter holding A character is written to the
register empty register (THR) is empty. transmitter holding register (THR) or

FIFO mode: Transmitter FIFO is the interrupt identification register
empty. (IIR) is read.

(1) In the FIFO mode, the receiver data-ready interrupt or receiver time-out interrupt is cleared by the CPU or by the DMA controller,
whichever reads from the receiver FIFO first.

8.3.5 FIFO Control Register (FCR)
The FIFO control register (FCR) is a write-only register at the same address as the interrupt identification
register (IIR), which is a read-only register. Use FCR to enable and clear the FIFOs and to select the
receiver FIFO trigger level FCR is shown in Figure 168 and described in Table 176. The FIFOEN bit must
be set to 1 before other FCR bits are written to or the FCR bits are not programmed.

Access consideration:
IIR and FCR share one address. Regardless of the value of the DLAB bit, reading from the address gives
the content of IIR, and writing to the address modifies FCR.

CAUTION
For proper communication between the UART and the EDMA controller, the
DMAMODE1 bit must be set to 1. Always write a 1 to the DMAMODE1 bit, and
after a hardware reset, change the DMAMODE1 bit from 0 to 1.

242 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

Figure 168. FIFO Control Register (FCR)
31 16

Reserved
R-0

15 8
Reserved

R-0

7 6 5 4 3 2 1 0
RXFIFTL Reserved DMAMODE1 (1) TXCLR RXCLR FIFOEN

W-0 R-0 W-0 W1C-0 W1C-0 W-0
LEGEND: R = Read only; W = Write only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset

(1) Always write 1 to the DMAMODE1 bit. After a hardware reset, change the DMAMODE1 bit from 0 to 1. DMAMODE = 1 is required for
proper communication between the UART and the DMA controller.

Table 176. FIFO Control Register (FCR) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-6 RXFIFTL 0-3h Receiver FIFO trigger level. RXFIFTL sets the trigger level for the receiver FIFO. When the trigger level

is reached, a receiver data-ready interrupt is generated (if the interrupt request is enabled). Once the
FIFO drops below the trigger level, the interrupt is cleared.

0 1 byte
1h 4 bytes
2h 8 bytes
3h 14 bytes

5-4 Reserved 0 Reserved
3 DMAMODE1 DMA MODE1 enable if FIFOs are enabled. Always write 1 to DMAMODE1. After a hardware reset,

change DMAMODE1 from 0 to 1. DMAMOD1 = 1 is a requirement for proper communication between
the UART and the EDMA controller.

0 DMA MODE1 is disabled.
1 DMA MODE1 is enabled.

2 TXCLR Transmitter FIFO clear. Write a 1 to TXCLR to clear the bit.
0 No effect.
1 Clears transmitter FIFO and resets the transmitter FIFO counter. The shift register is not cleared.

1 RXCLR Receiver FIFO clear. Write a 1 to RXCLR to clear the bit.
0 No effect.
1 Clears receiver FIFO and resets the receiver FIFO counter. The shift register is not cleared.

0 FIFOEN Transmitter and receiver FIFOs mode enable. FIFOEN must be set before other FCR bits are written to
or the FCR bits are not programmed. Clearing this bit clears the FIFO counters.

0 Non-FIFO mode. The transmitter and receiver FIFOs are disabled, and the FIFO pointers are cleared.
1 FIFO mode. The transmitter and receiver FIFOs are enabled.

243SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

8.3.6 Line Control Register (LCR)
The line control register (LCR) is shown in Figure 169 and described in Table 177.

The system programmer controls the format of the asynchronous data communication exchange by using
LCR. In addition, the programmer can retrieve, inspect, and modify the content of LCR; this eliminates the
need for separate storage of the line characteristics in system memory.

Figure 169. Line Control Register (LCR)
31 16

Reserved
R-0

15 8 7 6 5 4 3 2 1 0
Reserved DLAB BC SP EPS PEN STB WLS

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 177. Line Control Register (LCR) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved

7 DLAB Divisor latch access bit. The divisor latch registers (DLL and DLH) can be accessed at dedicated
addresses or at addresses shared by RBR, THR, and IER. Using the shared addresses requires
toggling DLAB to change which registers are selected. If you use the dedicated addresses, you can
keep DLAB = 0.

0 Allows access to the receiver buffer register (RBR), the transmitter holding register (THR), and the
interrupt enable register (IER) selected. At the address shared by RBR, THR, and DLL, the CPU can
read from RBR and write to THR. At the address shared by IER and DLH, the CPU can read from and
write to IER.

1 Allows access to the divisor latches of the baud generator during a read or write operation (DLL and
DLH). At the address shared by RBR, THR, and DLL, the CPU can read from and write to DLL. At the
address shared by IER and DLH, the CPU can read from and write to DLH.

6 BC Break control.
0 Break condition is disabled.
1 Break condition is transmitted to the receiving UART. A break condition is a condition where the

UARTn_TXD signal is forced to the spacing (cleared) state.
5 SP Stick parity. The SP bit works in conjunction with the EPS and PEN bits. The relationship between the

SP, EPS, and PEN bits is summarized in Table 178.
0 Stick parity is disabled.
1 Stick parity is enabled.

• When odd parity is selected (EPS = 0), the PARITY bit is transmitted and checked as set.
• When even parity is selected (EPS = 1), the PARITY bit is transmitted and checked as cleared.

4 EPS Even parity select. Selects the parity when parity is enabled (PEN = 1). The EPS bit works in
conjunction with the SP and PEN bits. The relationship between the SP, EPS, and PEN bits is
summarized in Table 178.

0 Odd parity is selected (an odd number of logic 1s is transmitted or checked in the data and PARITY
bits).

1 Even parity is selected (an even number of logic 1s is transmitted or checked in the data and PARITY
bits).

3 PEN Parity enable. The PEN bit works in conjunction with the SP and EPS bits. The relationship between the
SP, EPS, and PEN bits is summarized in Table 178.

0 No PARITY bit is transmitted or checked.
1 Parity bit is generated in transmitted data and is checked in received data between the last data word

bit and the first STOP bit.

244 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

Table 177. Line Control Register (LCR) Field Descriptions (continued)
Bit Field Value Description
2 STB Number of STOP bits generated. STB specifies 1, 1.5, or 2 STOP bits in each transmitted character.

When STB = 1, the WLS bit determines the number of STOP bits. The receiver clocks only the first
STOP bit, regardless of the number of STOP bits selected. The number of STOP bits generated is
summarized in Table 179.

0 1 STOP bit is generated.
1 WLS bit determines the number of STOP bits:

• When WLS = 0, 1.5 STOP bits are generated.
• When WLS = 1h, 2h, or 3h, 2 STOP bits are generated.

1-0 WLS 0-3h Word length select. Number of bits in each transmitted or received serial character. When STB = 1, the
WLS bit determines the number of STOP bits.

0 5 bits
1h 6 bits
2h 7 bits
3h 8 bits

Table 178. Relationship Between ST, EPS, and PEN Bits in LCR
ST Bit EPS Bit PEN Bit Parity Option

x x 0 Parity disabled: No PARITY bit is transmitted or checked
0 0 1 Odd parity selected: Odd number of logic 1s
0 1 1 Even parity selected: Even number of logic 1s
1 0 1 Stick parity selected with PARITY bit transmitted and checked as set
1 1 1 Stick parity selected with PARITY bit transmitted and checked as cleared

Table 179. Number of STOP Bits Generated
Word Length Selected Number of STOP Bits Baud Clock (BCLK)

STB Bit WLS Bits with WLS Bits Generated Cycles
0 x Any word length 1 16
1 0h 5 bits 1.5 24
1 1h 6 bits 2 32
1 2h 7 bits 2 32
1 3h 8 bits 2 32

245SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

8.3.7 Modem Control Register (MCR)
The modem control register (MCR) is shown in Figure 170 and described in Table 180. The modem
control register provides the ability to enable/disable the autoflow functions, and enable/disable the
loopback function for diagnostic purposes.

Figure 170. Modem Control Register (MCR)
31 16

Reserved
R-0

15 6 5 4 3 2 1 0
Reserved AFE (1) LOOP OUT2 OUT1 RTS (1) Rsvd

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

(1) All UARTs do not support this feature, see your device-specific data manual for supported features. If this feature is not available, this bit
is reserved and should be cleared to 0.

Table 180. Modem Control Register (MCR) Field Descriptions

Bit Field Value Description
31-6 Reserved 0 Reserved

5 AFE Autoflow control enable. Autoflow control allows the UARTn_RTS and UARTn_CTS signals to provide
handshaking between UARTs during data transfer. When AFE = 1, the RTS bit determines the autoflow
control enabled. Note that all UARTs do not support this feature, see your device-specific data manual
for supported features. If this feature is not available, this bit is reserved and should be cleared to 0.

0 Autoflow control is disabled.
1 Autoflow control is enabled:

• When RTS = 0, UARTn_CTS is only enabled.
• When RTS = 1, UARTn_RTS and UARTn_CTS are enabled.

4 LOOP Loop back mode enable. LOOP is used for the diagnostic testing using the loop back feature.
0 Loop back mode is disabled.
1 Loop back mode is enabled. When LOOP is set, the following occur:

• The UARTn_TXD signal is set high.
• The UARTn_RXD pin is disconnected
• The output of the transmitter shift register (TSR) is lopped back in to the receiver shift register (RSR)

input.
3 OUT2 0 OUT2 Control Bit
2 OUT1 0 OUT1 Control Bit
1 RTS RTS control. When AFE = 1, the RTS bit determines the autoflow control enabled. Note that all UARTs

do not support this feature, see your device-specific data manual for supported features. If this feature
is not available, this bit is reserved and should be cleared to 0.

0 UARTn_RTS is disabled, UARTn_CTS is only enabled.
1 UARTn_RTS and UARTn_CTS are enabled.

0 Reserved 0 Reserved

246 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

8.3.8 Line Status Register (LSR)
The line status register (LSR) is shown in Figure 171 and described in Table 181. LSR provides
information to the CPU concerning the status of data transfers. LSR is intended for read operations only;
do not write to this register. Bits 1 through 4 record the error conditions that produce a receiver line status
interrupt.

Figure 171. Line Status Register (LSR)
31 16

Reserved
R-0

15 8 7 6 5 4 3 2 1 0
Reserved RXFIFOE TEMT THRE BI FE PE OE DR

R-0 R-0 R-1 R-1 R-0 R-0 R-0 R-0 R-0
LEGEND: R = Read only; -n = value after reset

Table 181. Line Status Register (LSR) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved

7 RXFIFOE Receiver FIFO error.
In non-FIFO mode:

0 There has been no error, or RXFIFOE was cleared because the CPU read the erroneous character
from the receiver buffer register (RBR).

1 There is a parity error, framing error, or break indicator in the receiver buffer register (RBR).
In FIFO mode:

0 There has been no error, or RXFIFOE was cleared because the CPU read the erroneous character
from the receiver FIFO and there are no more errors in the receiver FIFO.

1 At least one parity error, framing error, or break indicator in the receiver FIFO.
6 TEMT Transmitter empty (TEMT) indicator.

In non-FIFO mode:
0 Either the transmitter holding register (THR) or the transmitter shift register (TSR) contains a data

character.
1 Both the transmitter holding register (THR) and the transmitter shift register (TSR) are empty.

In FIFO mode:
0 Either the transmitter FIFO or the transmitter shift register (TSR) contains a data character.
1 Both the transmitter FIFO and the transmitter shift register (TSR) are empty.

5 THRE Transmitter holding register empty (THRE) indicator. If the THRE bit is set and the corresponding
interrupt enable bit is set (ETBEI = 1 in IER), an interrupt request is generated.
In non-FIFO mode:

0 Transmitter holding register (THR) is not empty. THR has been loaded by the CPU.
1 Transmitter holding register (THR) is empty (ready to accept a new character). The content of THR has

been transferred to the transmitter shift register (TSR).
In FIFO mode:

0 Transmitter FIFO is not empty. At least one character has been written to the transmitter FIFO. You can
write to the transmitter FIFO if it is not full.

1 Transmitter FIFO is empty. The last character in the FIFO has been transferred to the transmitter shift
register (TSR).

247SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

Table 181. Line Status Register (LSR) Field Descriptions (continued)
Bit Field Value Description
4 BI Break indicator. The BI bit is set whenever the receive data input (UARTn_RXD) was held low for longer

than a full-word transmission time. A full-word transmission time is defined as the total time to transmit
the START, data, PARITY, and STOP bits. If the BI bit is set and the corresponding interrupt enable bit
is set (ELSI = 1 in IER), an interrupt request is generated.
In non-FIFO mode:

0 No break has been detected, or the BI bit was cleared because the CPU read the erroneous character
from the receiver buffer register (RBR).

1 A break has been detected with the character in the receiver buffer register (RBR).
In FIFO mode:

0 No break has been detected, or the BI bit was cleared because the CPU read the erroneous character
from the receiver FIFO and the next character to be read from the FIFO has no break indicator.

1 A break has been detected with the character at the top of the receiver FIFO.
3 FE Framing error (FE) indicator. A framing error occurs when the received character does not have a valid

STOP bit. In response to a framing error, the UART sets the FE bit and waits until the signal on the RX
pin goes high. Once the RX signal goes high, the receiver is ready to detect a new START bit and
receive new data. If the FE bit is set and the corresponding interrupt enable bit is set (ELSI = 1 in IER),
an interrupt request is generated.
In non-FIFO mode:

0 No framing error has been detected, or the FE bit was cleared because the CPU read the erroneous
data from the receiver buffer register (RBR).

1 A framing error has been detected with the character in the receiver buffer register (RBR).
In FIFO mode:

0 No framing error has been detected, or the FE bit was cleared because the CPU read the erroneous
data from the receiver FIFO and the next character to be read from the FIFO has no framing error.

1 A framing error has been detected with the character at the top of the receiver FIFO.
2 PE Parity error (PE) indicator. A parity error occurs when the parity of the received character does not

match the parity selected with the EPS bit in the line control register (LCR). If the PE bit is set and the
corresponding interrupt enable bit is set (ELSI = 1 in IER), an interrupt request is generated.
In non-FIFO mode:

0 No parity error has been detected, or the PE bit was cleared because the CPU read the erroneous data
from the receiver buffer register (RBR).

1 A parity error has been detected with the character in the receiver buffer register (RBR).
In FIFO mode:

0 No parity error has been detected, or the PE bit was cleared because the CPU read the erroneous data
from the receiver FIFO and the next character to be read from the FIFO has no parity error.

1 A parity error has been detected with the character at the top of the receiver FIFO.
1 OE Overrun error (OE) indicator. An overrun error in the non-FIFO mode is different from an overrun error

in the FIFO mode. If the OE bit is set and the corresponding interrupt enable bit is set (ELSI = 1 in IER),
an interrupt request is generated.
In non-FIFO mode:

0 No overrun error has been detected, or the OE bit was cleared because the CPU read the content of
the line status register (LSR).

1 Overrun error has been detected. Before the character in the receiver buffer register (RBR) could be
read, it was overwritten by the next character arriving in RBR.
In FIFO mode:

0 No overrun error has been detected, or the OE bit was cleared because the CPU read the content of
the line status register (LSR).

1 Overrun error has been detected. If data continues to fill the FIFO beyond the trigger level, an overrun
error occurs only after the FIFO is full and the next character has been completely received in the shift
register. An overrun error is indicated to the CPU as soon as it happens. The new character overwrites
the character in the shift register, but it is not transferred to the FIFO.

248 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

Table 181. Line Status Register (LSR) Field Descriptions (continued)
Bit Field Value Description
0 DR Data-ready (DR) indicator for the receiver. If the DR bit is set and the corresponding interrupt enable bit

is set (ERBI = 1 in IER), an interrupt request is generated.
In non-FIFO mode:

0 Data is not ready, or the DR bit was cleared because the character was read from the receiver buffer
register (RBR).

1 Data is ready. A complete incoming character has been received and transferred into the receiver buffer
register (RBR).
In FIFO mode:

0 Data is not ready, or the DR bit was cleared because all of the characters in the receiver FIFO have
been read.

1 Data is ready. There is at least one unread character in the receiver FIFO. If the FIFO is empty, the DR
bit is set as soon as a complete incoming character has been received and transferred into the FIFO.
The DR bit remains set until the FIFO is empty again.

249SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

8.3.9 Modem Status Register (MSR)
The Modem status register (MSR) is shown in Figure 172 and described in Table 182. MSR provides
information to the CPU concerning the status of modem control signals. MSR is intended for read
operations only; do not write to this register.

Figure 172. Modem Status Register (MSR)
31 16

Reserved
R-0

15 8 7 6 5 4 3 2 1 0
Reserved CD RI DSR CTS DCD TERI DDSR DCTS

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
LEGEND: R = Read only; -n = value after reset

Table 182. Modem Status Register (MSR) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved

7 CD 0 Complement of the Carrier Detect input. When the UART is in the diagnostic test mode (loopback mode
MCR[4] = 1), this bit is equal to the MCR bit 3 (OUT2).

6 RI 0 Complement of the Ring Indicator input. When the UART is in the diagnostic test mode (loopback mode
MCR[4] = 1), this bit is equal to the MCR bit 2 (OUT1).

5 DSR 0 Complement of the Data Set Ready input. When the UART is in the diagnostic test mode (loopback
mode MCR[4] = 1), this bit is equal to the MCR bit 0 (DTR).

4 CTS 0 Complement of the Clear To Send input. When the UART is in the diagnostic test mode (loopback
mode MCR[4] = 1), this bit is equal to the MCR bit 1 (RTS).

3 DCD 0 Change in DCD indicator bit. DCD indicates that the DCD input has changed state since the last time it
was read by the CPU. When DCD is set and the modem status interrupt is enabled, a modem status
interrupt is generated.

2 TERI 0 Trailing edge of RI (TERI) indicator bit. TERI indicates that the RI input has changed from a low to a
high. When TERI is set and the modem status interrupt is enabled, a modem status interrupt is
generated.

1 DDSR 0 Change in DSR indicator bit. DDSR indicates that the DSR input has changed state since the last time it
was read by the CPU. When DDSR is set and the modem status interrupt is enabled, a modem status
interrupt is generated.

0 DCTS 0 Change in CTS indicator bit. DCTS indicates that the CTS input has changed state since the last time it
was read by the CPU. When DCTS is set (autoflow control is not enabled and the modem status
interrupt is enabled), a modem status interrupt is generated. When autoflow control is enabled, no
interrupt is generated.

250 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

8.3.10 Scratch Pad Register (SCR)
The Scratch Pad register (SCR) is shown in Figure 173 and described in Table 183. SCR is intended for
programmer's use as a scratch pad. It temporarily holds the programmer's data without affecting UART
operation.

Figure 173. Scratch Pad Register (SCR)
31 16

Reserved
R-0

15 8 7 0
Reserved SCR

R-0 R-0
LEGEND: R = Read only; -n = value after reset

Table 183. Scratch Pad Register (MSR) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-0 SCR 0 These bits are intended for the programmer's use as a scratch pad in the sense that it temporarily holds

the programmer's data without affecting any other UART operation.

8.3.11 Divisor Latches (DLL and DLH)
Two 8-bit register fields (DLL and DLH), called divisor latches, store the 16-bit divisor for generation of the
baud clock in the baud generator. The latches are in DLH and DLL. DLH holds the most-significant bits of
the divisor, and DLL holds the least-significant bits of the divisor. These divisor latches must be loaded
during initialization of the UART in order to ensure desired operation of the baud generator. Writing to the
divisor latches results in two wait states being inserted during the write access while the baud generator is
loaded with the new value.

Access considerations:
• RBR, THR, and DLL share one address. When DLAB = 1 in LCR, all accesses at the shared address

are accesses to DLL. When DLAB = 0, reading from the shared address gives the content of RBR, and
writing to the shared address modifies THR.

• IER and DLH share one address. When DLAB = 1 in LCR, accesses to the shared address read or
modify to DLH. When DLAB = 0, all accesses at the shared address read or modify IER.

DLL and DLH also have dedicated addresses. If you use the dedicated addresses, you can keep the
DLAB bit cleared, so that RBR, THR, and IER are always selected at the shared addresses.

The divisor LSB latch (DLL) is shown in Figure 174 and described in Table 184. The divisor MSB latch
(DLH) is shown in Figure 175 and described in Table 185.

251SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

Figure 174. Divisor LSB Latch (DLL)
31 16

Reserved
R-0

15 8 7 0
Reserved DLL

R-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 184. Divisor LSB Latch (DLL) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-0 DLL 0-Fh The 8 least-significant bits (LSBs) of the 16-bit divisor for generation of the baud clock in the baud rate

generator.

Figure 175. Divisor MSB Latch (DLH)
31 16

Reserved
R-0

15 8 7 0
Reserved DLH

R-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 185. Divisor MSB Latch (DLH) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-0 DLH 0-Fh The 8 most-significant bits (MSBs) of the 16-bit divisor for generation of the baud clock in the baud rate

generator.

252 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

8.3.12 Revision Identification Registers (REVID1 and REVID2)
The revision identification registers (REVID1 and REVID2) contain peripheral identification data for the
peripheral. REVID1 is shown in Figure 176 and described in Table 186. REVID2 is shown in Figure 177
and described in Table 187.

Figure 176. Revision Identification Register 1 (REVID1)
31 0

REVID1
R-1102 0002h

LEGEND: R = Read only; -n = value after reset

Table 186. Revision Identification Register 1 (REVID1) Field Descriptions

Bit Field Value Description
31-0 REVID1 1102 0002h Peripheral Identification Number

Figure 177. Revision Identification Register 2 (REVID2)
31 16

Reserved
R-0

15 8 7 0
Reserved REVID2

R-0 R-0
LEGEND: R = Read only; -n = value after reset

Table 187. Revision Identification Register 2 (REVID2) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-0 REVID2 0 Peripheral Identification Number

253SPRUHF8A–May 2012–Revised June 2013

Universal Asynchronous Receiver/Transmitter

8.3.13 Power and Emulation Management Register (PWREMU_MGMT)
The power and emulation management register (PWREMU_MGMT) is shown in Figure 178 and described
in Table 188.

Figure 178. Power and Emulation Management Register (PWREMU_MGMT)
31 16

Reserved
R-0

15 14 13 12 1 0
Rsvd UTRST URRST Reserved FREE

R/W-0 R/W-0 R/W-0 R-1 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 188. Power and Emulation Management Register (PWREMU_MGMT) Field Descriptions

Bit Field Value Description
31-16 Reserved 0 Reserved

15 Reserved 0 Reserved. This bit must always be written with a 0.
14 UTRST UART transmitter reset. Resets and enables the transmitter.

0 Transmitter is disabled and in reset state.
1 Transmitter is enabled.

13 URRST UART receiver reset. Resets and enables the receiver.
0 Receiver is disabled and in reset state.
1 Receiver is enabled.

12-1 Reserved 1 Reserved
0 FREE Free-running enable mode bit. This bit determines the emulation mode functionality of the UART. When

halted, the UART can handle register read/write requests, but does not generate any
transmission/reception, interrupts or events.

0 If a transmission is not in progress, the UART halts immediately. If a transmission is in progress, the
UART halts after completion of the one-word transmission.

1 Free-running mode is enabled; UART continues to run normally.

254 SPRUHF8A–May 2012–Revised June 2013

 Universal Asynchronous Receiver/Transmitter

8.3.14 Mode Definition Register (MDR)
The Mode Definition register (MDR) determines the over-sampling mode for the UART. MDR is shown in
Figure 179 and described in Table 189.

Figure 179. Mode Definition Register (MDR)
31 16

Reserved
R-0

15 1 0
Reserved OSM_SEL

R-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 189. Mode Definition Register (MDR) Field Descriptions

Bit Field Value Description
31-1 Reserved 0 Reserved

0 OSM_SEL Over-Sampling Mode Select.
0 16× over-sampling.
1 13× over-sampling.

255SPRUHF8A–May 2012–Revised June 2013

Industrial Ethernet Peripheral (IEP)

9 Industrial Ethernet Peripheral (IEP)

9.1 Introduction

The industrial ethernet peripheral (IEP) is intended to do the hardware work required for industrial ethernet
functions. The IEP module features an industrial ethernet timer with eight compare events.

9.2 Functional Description

9.2.1 Clock Generation
The IEP has a dedicated input clock with a configurable clock source. Two clock sources are supported
for the IEP input clock:
• iep_clk (default): Runs at 200 MHz.
• ocp_clk: Programmable through the IEPCLK register of the PRU-ICSS CFG register space. When

software enables the ocp_clk (OCP_EN), no transactions must be accruing to the IEP block.

Switching from iep_clk to ocp_clk is only supported in software. Switching back from ocp_clk to iep_clk is
only supported through a hardware reset of the PRU-ICSS.

9.2.2 Industrial Ethernet Timer
The industrial ethernet timer is a simple 32-bit timer. This timer is intended for use by industrial ethernet
functions but can also be leveraged as a generic timer in other applications.

9.2.2.1 Features

The industrial ethernet timer supports the following features:
• One master 32-bit count-up counter with an overflow status bit.

– Runs on ocp_clk 200 MHz.
– Write 1 to clear status.
– Supports a programmable increment value from 1 to 16 (default 5).
– An optional compensation method allows the increment value to apply a compensation increment

value from 1 to 16, counting up to 2^24 iep_clk/ocp_clk events.
• Eight 32-bit compare registers (CMP[8:0], CMP_STAT).

– Eight status bits, write 1 to clear.
– Eight individual event outputs.
– One global event (any compare event) output for interrupt generation triggered by any compare

event.
• 16 outputs, one high level and one high pulse for each compare hit event.
• CMP[0], if enabled, will reset the counter.

9.3 PRU_ICSS_IEP Registers

Table 190 lists the memory-mapped registers for the PRU_ICSS_IEP. All register offset addresses not
listed in Table 190 should be considered as reserved locations and the register contents should not be
modified.

Table 190. PRU_ICSS_IEP REGISTERS
Offset Acronym Register Name Section

0h GLOBAL_CFG Section 9.3.1
4h GLOBAL_STATUS Section 9.3.2
8h COMPEN Section 9.3.3
Ch COUNT Section 9.3.4

256 SPRUHF8A–May 2012–Revised June 2013

 Industrial Ethernet Peripheral (IEP)

Table 190. PRU_ICSS_IEP REGISTERS (continued)
Offset Acronym Register Name Section

40h CMP_CFG Section 9.3.5
44h CMP_STATUS Section 9.3.6
48h CMP0 Section 9.3.7
4Ch CMP1 Section 9.3.8
50h CMP2 Section 9.3.9
54h CMP3 Section 9.3.10
58h CMP4 Section 9.3.11
5Ch CMP5 Section 9.3.12
60h CMP6 Section 9.3.13
64h CMP7 Section 9.3.14

257SPRUHF8A–May 2012–Revised June 2013

Industrial Ethernet Peripheral (IEP)

9.3.1 GLOBAL_CFG Register (offset = 0h) [reset = 550h]
GLOBAL_CFG is shown in Figure 180 and described in Table 191.

GLOBAL CONFIGURE

Figure 180. GLOBAL_CFG Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved

R-0h

15 14 13 12 11 10 9 8

Reserved CMP_INC

R-0h R/W-5h

7 6 5 4 3 2 1 0

DEFAULT_INC Reserved CNT_ENABLE

R/W-5h R-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 191. GLOBAL_CFG Register Field Descriptions

Bit Field Type Reset Description
31-12 Reserved R 0h
11-8 CMP_INC R/W 5h Defines the increment value when compensation is active
7-4 DEFAULT_INC R/W 5h Defines the default increment value
3-1 Reserved R 0h
0 CNT_ENABLE R/W 0h Counter enable

0: Disables the counter.
The counter maintains the current count.
1: Enables the counter.

258 SPRUHF8A–May 2012–Revised June 2013

 Industrial Ethernet Peripheral (IEP)

9.3.2 GLOBAL_STATUS Register (offset = 4h) [reset = 0h]
GLOBAL_STATUS is shown in Figure 181 and described in Table 192.

GLOBAL STATUS

Figure 181. GLOBAL_STATUS Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved

R-0h

15 14 13 12 11 10 9 8

Reserved

R-0h

7 6 5 4 3 2 1 0

Reserved CNT_OVF

R-0h R/W1toClr-0h

LEGEND: R/W = Read/Write; R = Read only; W1toClr = Write 1 to clear bit; -n = value after reset

Table 192. GLOBAL_STATUS Register Field Descriptions

Bit Field Type Reset Description
31-1 Reserved R 0h

0 CNT_OVF R/W1toClr 0h Counter overflow status.
0: No overflow
1: Overflow occurred

259SPRUHF8A–May 2012–Revised June 2013

Industrial Ethernet Peripheral (IEP)

9.3.3 COMPEN Register (offset = 8h) [reset = 0h]
COMPEN is shown in Figure 182 and described in Table 193.

COMPENSATION

Figure 182. COMPEN Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

COMPEN_CNT

R/W-0h

15 14 13 12 11 10 9 8

COMPEN_CNT

R/W-0h

7 6 5 4 3 2 1 0

COMPEN_CNT

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 193. COMPEN Register Field Descriptions

Bit Field Type Reset Description
31-24 Reserved R 0h
23-0 COMPEN_CNT R/W 0h Compensation counter.

Read returns the current COMPEN_CNT value.
0: Compensation is disabled and counter will increment by
DEFAULT_INC.
n: Compensation is enabled until COMPEN_CNT decrements to 0.
The COMPEN_CNT value decrements on every iep_clk cycle.
When COMPEN_CNT is greater than 0, then count value increments
by CMP_INC.

260 SPRUHF8A–May 2012–Revised June 2013

 Industrial Ethernet Peripheral (IEP)

9.3.4 COUNT Register (offset = Ch) [reset = 0h]
COUNT is shown in Figure 183 and described in Table 194.

COUNT is a free running counter with a sticky over flag status bit. The counter over flow flag will be set
when the counter switches/rollover from 0xffff_ffff -> 0x0000_0000 and continue to count up. The software
will need to read and clear the counter over flow flag and increment the MSB in software variable.

Figure 183. COUNT Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COUNT

R/W1toClr-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 194. COUNT Register Field Descriptions

Bit Field Type Reset Description
31-0 COUNT R/W1toClr 0h 32-bit count value.

Increments by (DEFAULT_INC or CMP_INC) on every positive edge
of iep_clk (200MHz).

261SPRUHF8A–May 2012–Revised June 2013

Industrial Ethernet Peripheral (IEP)

9.3.5 CMP_CFG Register (offset = 40h) [reset = 0h]
CMP_CFG is shown in Figure 184 and described in Table 195.

COMPARE CONFIGURE

Figure 184. CMP_CFG Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved

R-0h

15 14 13 12 11 10 9 8

Reserved CMP_EN

R-0h R/W-0h

7 6 5 4 3 2 1 0

CMP_EN CMP0_RST_CNT_EN

R/W-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 195. CMP_CFG Register Field Descriptions

Bit Field Type Reset Description
31-9 Reserved R 0h
8-1 CMP_EN R/W 0h Compare registers enable, where CMP_EN[n] maps to CMP[n]

0: Disables event
1: Enables event

0 CMP0_RST_CNT_EN R/W 0h Counter reset enable.
0: Disable
1: Enable the reset of the counter if a CMP0 event occurs

262 SPRUHF8A–May 2012–Revised June 2013

 Industrial Ethernet Peripheral (IEP)

9.3.6 CMP_STATUS Register (offset = 44h) [reset = 0h]
CMP_STATUS is shown in Figure 185 and described in Table 196.

COMPARE STATUS

Figure 185. CMP_STATUS Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved

R-0h

15 14 13 12 11 10 9 8

Reserved

R-0h

7 6 5 4 3 2 1 0

CMP_HIT

R/W1toClr-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 196. CMP_STATUS Register Field Descriptions

Bit Field Type Reset Description
31-8 Reserved R 0h
7-0 CMP_HIT R/W1toClr 0h Status bit for each of the compare registers, where CMP_HIT[n]

maps to CMP[n].
Note Match means the current counter is greater than or equal to the
compare value.
0: Match has not occurred
1: Match occurred.
The associated hardware event signal will assert and remain high
until the status is cleared

263SPRUHF8A–May 2012–Revised June 2013

Industrial Ethernet Peripheral (IEP)

9.3.7 CMP0 Register (offset = 48h) [reset = 0h]
CMP0 is shown in Figure 186 and described in Table 197.

COMPARE0

Figure 186. CMP0 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP0

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 197. CMP0 Register Field Descriptions

Bit Field Type Reset Description
31-0 CMP0 R/W 0h Compare 0 value

264 SPRUHF8A–May 2012–Revised June 2013

 Industrial Ethernet Peripheral (IEP)

9.3.8 CMP1 Register (offset = 4Ch) [reset = 0h]
CMP1 is shown in Figure 187 and described in Table 198.

COMPARE1

Figure 187. CMP1 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP1

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 198. CMP1 Register Field Descriptions

Bit Field Type Reset Description
31-0 CMP1 R/W 0h Compare 1 value

265SPRUHF8A–May 2012–Revised June 2013

Industrial Ethernet Peripheral (IEP)

9.3.9 CMP2 Register (offset = 50h) [reset = 0h]
CMP2 is shown in Figure 188 and described in Table 199.

COMPARE2

Figure 188. CMP2 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP2

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 199. CMP2 Register Field Descriptions

Bit Field Type Reset Description
31-0 CMP2 R/W 0h Compare 2 value

266 SPRUHF8A–May 2012–Revised June 2013

 Industrial Ethernet Peripheral (IEP)

9.3.10 CMP3 Register (offset = 54h) [reset = 0h]
CMP3 is shown in Figure 189 and described in Table 200.

COMPARE3

Figure 189. CMP3 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP3

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 200. CMP3 Register Field Descriptions

Bit Field Type Reset Description
31-0 CMP3 R/W 0h Compare 3 value

267SPRUHF8A–May 2012–Revised June 2013

Industrial Ethernet Peripheral (IEP)

9.3.11 CMP4 Register (offset = 58h) [reset = 0h]
CMP4 is shown in Figure 190 and described in Table 201.

COMPARE4

Figure 190. CMP4 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP4

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 201. CMP4 Register Field Descriptions

Bit Field Type Reset Description
31-0 CMP4 R/W 0h Compare 4 value

268 SPRUHF8A–May 2012–Revised June 2013

 Industrial Ethernet Peripheral (IEP)

9.3.12 CMP5 Register (offset = 5Ch) [reset = 0h]
CMP5 is shown in Figure 191 and described in Table 202.

COMPARE5

Figure 191. CMP5 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP5

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 202. CMP5 Register Field Descriptions

Bit Field Type Reset Description
31-0 CMP5 R/W 0h Compare 5 value

269SPRUHF8A–May 2012–Revised June 2013

Industrial Ethernet Peripheral (IEP)

9.3.13 CMP6 Register (offset = 60h) [reset = 0h]
CMP6 is shown in Figure 192 and described in Table 203.

COMPARE6

Figure 192. CMP6 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP6

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 203. CMP6 Register Field Descriptions

Bit Field Type Reset Description
31-0 CMP6 R/W 0h Compare 6 value

270 SPRUHF8A–May 2012–Revised June 2013

 Industrial Ethernet Peripheral (IEP)

9.3.14 CMP7 Register (offset = 64h) [reset = 0h]
CMP7 is shown in Figure 193 and described in Table 204.

COMPARE7

Figure 193. CMP7 Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP7

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 204. CMP7 Register Field Descriptions

Bit Field Type Reset Description
31-0 CMP7 R/W 0h Compare 7 value

271SPRUHF8A–May 2012–Revised June 2013

CFG

10 CFG
The PRU-ICSS CFG block contains the registers for control and status of power management, memory
parity, and enhanced PRU GP ports functions. See the following register sections for details.

10.1 PRU_ICSS_CFG Registers

Table 205 lists the memory-mapped registers for the PRU_ICSS_CFG. All register offset addresses not
listed in Table 205 should be considered as reserved locations and the register contents should not be
modified.

Table 205. PRU_ICSS_CFG REGISTERS
Offset Acronym Register Name Section

0h REVID Section 10.1.1
4h SYSCFG Section 10.1.2
8h GPCFG0 Section 10.1.3
Ch GPCFG1 Section 10.1.4
10h CGR Section 10.1.5
14h ISRP Section 10.1.6
18h ISP Section 10.1.7
1Ch IESP Section 10.1.8
20h IECP Section 10.1.9
28h PMAO Section 10.1.10
2Ch MII_RT Section 10.1.11
30h IEPCLK Section 10.1.12
34h SPP Section 10.1.13
40h PIN_MX Section 10.1.14

272 SPRUHF8A–May 2012–Revised June 2013

 CFG

10.1.1 REVID Register (offset = 0h) [reset = 47000000h]
REVID is shown in Figure 194 and described in Table 206.

The Revision Register contains the ID and revision information.

Figure 194. REVID Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REVID

R-47000000h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 206. REVID Register Field Descriptions

Bit Field Type Reset Description
31-0 REVID R 47000000h Revision ID

273SPRUHF8A–May 2012–Revised June 2013

CFG

10.1.2 SYSCFG Register (offset = 4h) [reset = 1Ah]
SYSCFG is shown in Figure 195 and described in Table 207.

The System Configuration Register defines the power IDLE and STANDBY modes.

Figure 195. SYSCFG Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved

R-0h

15 14 13 12 11 10 9 8

Reserved

R-0h

7 6 5 4 3 2 1 0

Reserved SUB_MWAIT STANDBY_INIT STANDBY_MODE IDLE_MODE

R-0h R-0h R/W-1h R/W-2h R/W-2h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 207. SYSCFG Register Field Descriptions

Bit Field Type Reset Description
31-6 Reserved R 0h

5 SUB_MWAIT R 0h Status bit for wait state.
0 = Ready for Transaction
1 = Wait until 0

4 STANDBY_INIT R/W 1h 1 = Initiate standby sequence.
0 = Enable OCP master ports.

3-2 STANDBY_MODE R/W 2h 0h = Force standby mode: Initiator unconditionally in standby
(standby = 1).
1h = No standby mode: Initiator unconditionally out of standby
(standby = 0).
2h = Smart standby mode: Standby requested by initiator depending
on internal conditions.
3h = Reserved.

1-0 IDLE_MODE R/W 2h 0h = Force-idle mode.
1h = No-idle mode.
2h = Smart-idle mode.
3h = Reserved.

274 SPRUHF8A–May 2012–Revised June 2013

 CFG

10.1.3 GPCFG0 Register (offset = 8h) [reset = 0h]
GPCFG0 is shown in Figure 196 and described in Table 208.

The General Purpose Configuration 0 Register defines the GPI/O configuration for PRU0.

Figure 196. GPCFG0 Register
31 30 29 28 27 26 25 24

Reserved PRU0_GPO_SH_SEL PRU0_GPO_DIV1

R-0h R-0h R/W-0h

23 22 21 20 19 18 17 16

PRU0_GPO_DIV1 PRU0_GPO_DIV0

R/W-0h R/W-0h

15 14 13 12 11 10 9 8

PRU0_GPO_DIV0 PRU0_GPO_MODE PRU0_GPI_SB PRU0_GPI_DIV1

R/W-0h R/W-0h 0h R/W-0h

7 6 5 4 3 2 1 0

PRU0_GPI_DIV0 PRU0_GPI_CLK_MO PRU0_GPI_MODE
DE

R/W-0h R/W-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 208. GPCFG0 Register Field Descriptions

Bit Field Type Reset Description
31-26 Reserved R 0h

25 PRU0_GPO_SH_SEL R 0h Defines which shadow register is currently getting used for GPO
shifting.
0 = gpo_sh0 is selected
1 = gpo_sh1 is selected

24-20 PRU0_GPO_DIV1 R/W 0h Divisor value (divide by PRU0_GPO_DIV1 + 1).
0h = div 1.0.
1h = div 1.5.
2h = div 2.0.
..
1eh = div 16.0.
1fh = reserved.

19-15 PRU0_GPO_DIV0 R/W 0h Divisor value (divide by PRU0_GPO_DIV0 + 1).
0h = div 1.0.
1h = div 1.5.
2h = div 2.0.
..
1eh = div 16.0.
1fh = reserved.

14 PRU0_GPO_MODE R/W 0h 0 = Direct output mode
1 = Serial output mode

13 PRU0_GPI_SB 0h Start Bit event for 28-bit shift mode.
PRU0_GPI_SB (pru0_r31_status[29]) is set when first capture of a 1
on pru0_r31_status[0].
Read 1: Start Bit event occurred.
Read 0: Start Bit event has not occurred.
Write 1: Will clear PRU0_GPI_SB and clear the whole shift register.
Write 0: No Effect.

12-8 PRU0_GPI_DIV1 R/W 0h Divisor value (divide by PRU0_GPI_DIV1 + 1).
0h = div 1.0.
1h = div 1.5.
2h = div 2.0.
..
1eh = div 16.0.
1fh = reserved.

275SPRUHF8A–May 2012–Revised June 2013

CFG

Table 208. GPCFG0 Register Field Descriptions (continued)
Bit Field Type Reset Description
7-3 PRU0_GPI_DIV0 R/W 0h Divisor value (divide by PRU0_GPI_DIV0 + 1).

0h = div 1.0.
1h = div 1.5.
2h = div 2.0.
..
1eh = div 16.0.
1fh = reserved.

2 PRU0_GPI_CLK_MODE R/W 0h Parallel
16-bit capture mode clock edge.
0 = Use the positive edge of pru0_r31_status[16]
1 = Use the negative edge of pru0_r31_status[16]

1-0 PRU0_GPI_MODE R/W 0h 0h = Direct connection mode.
1h =
16-bit parallel capture mode.
2h =
28-bit shift mode.
3h = Mii_rt mode.

276 SPRUHF8A–May 2012–Revised June 2013

 CFG

10.1.4 GPCFG1 Register (offset = Ch) [reset = 0h]
GPCFG1 is shown in Figure 197 and described in Table 209.

The General Purpose Configuration 1 Register defines the GPI/O configuration for PRU1.

Figure 197. GPCFG1 Register
31 30 29 28 27 26 25 24

Reserved PRU1_GPO_SH_SEL PRU1_GPO_DIV1

R-0h R-0h R/W-0h

23 22 21 20 19 18 17 16

PRU1_GPO_DIV1 PRU1_GPO_DIV0

R/W-0h R/W-0h

15 14 13 12 11 10 9 8

PRU1_GPO_DIV0 PRU1_GPO_MODE PRU1_GPI_SB PRU1_GPI_DIV1

R/W-0h R/W-0h 0h R/W-0h

7 6 5 4 3 2 1 0

PRU1_GPI_DIV0 PRU1_GPI_CLK_MO PRU1_GPI_MODE
DE

R/W-0h R/W-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 209. GPCFG1 Register Field Descriptions

Bit Field Type Reset Description
31-26 Reserved R 0h

25 PRU1_GPO_SH_SEL R 0h Defines which shadow register is currently getting used for GPO
shifting.
0 = gpo_sh0 is selected
1 = gpo_sh1 is selected

24-20 PRU1_GPO_DIV1 R/W 0h Divisor value (divide by PRU1_GPO_DIV1 + 1).
0h = div 1.0.
1h = div 1.5.
2h = div 2.0.
..
1eh = div 16.0.
1fh = reserved.

19-15 PRU1_GPO_DIV0 R/W 0h Divisor value (divide by PRU1_GPO_DIV0 + 1).
0h = div 1.0.
1h = div 1.5.
2h = div 2.0.
..
1eh = div 16.0.
1fh = reserved.

14 PRU1_GPO_MODE R/W 0h 0 = Direct output mode
1 = Serial output mode

13 PRU1_GPI_SB 0h 28-bit shift mode Start Bit event.
PRU1_GPI_SB (pru1_r31_status[29]) is set when first capture of a 1
on pru1_r31_status[0].
Read 1: Start Bit event occurred.
Read 0: Start Bit event has not occurred.
Write 1: Will clear PRU1_GPI_SB and clear the whole shift register.
Write 0: No Effect.

12-8 PRU1_GPI_DIV1 R/W 0h Divisor value (divide by PRU1_GPI_DIV1 + 1).
0h = div 1.0.
1h = div 1.5.
2h = div 2.0.
..
1eh = div 16.0.
1fh = reserved.

277SPRUHF8A–May 2012–Revised June 2013

CFG

Table 209. GPCFG1 Register Field Descriptions (continued)
Bit Field Type Reset Description
7-3 PRU1_GPI_DIV0 R/W 0h Divisor value (divide by PRU1_GPI_DIV0 + 1).

0h = div 1.0.
1h = div 1.5.
2h = div 2.0.
..
1eh = div 16.0.
1fh = reserved.

2 PRU1_GPI_CLK_MODE R/W 0h Parallel
16-bit capture mode clock edge.
0 = Use the positive edge of pru1_r31_status[16]
1 = Use the negative edge of pru1_r31_status[16]

1-0 PRU1_GPI_MODE R/W 0h 0h = Direct connection mode.
1h =
16-bit parallel capture mode.
2h =
28-bit shift mode.
3h = Mii_rt mode.

278 SPRUHF8A–May 2012–Revised June 2013

 CFG

10.1.5 CGR Register (offset = 10h) [reset = 24924h]
CGR is shown in Figure 198 and described in Table 210.

The Clock Gating Register controls the state of Clock Management of the different modules. Software
should not clear {module}_CLK_EN until {module}_CLK_STOP_ACK is 0x1.

Figure 198. CGR Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved IEP_CLK_EN IEP_CLK_STOP_ACK

R-0h R/W-1h R-0h

15 14 13 12 11 10 9 8

IEP_CLK_STOP_RE ECAP_CLK_EN ECAP_CLK_STOP_A ECAP_CLK_STOP_R UART_CLK_EN UART_CLK_STOP_A UART_CLK_STOP_R INTC_CLK_EN
Q CK EQ CK EQ

R/W-0h R/W-1h R-0h R/W-0h R/W-1h R-0h R/W-0h R/W-1h

7 6 5 4 3 2 1 0

INTC_CLK_STOP_AC INTC_CLK_STOP_RE PRU1_CLK_EN PRU1_CLK_STOP_A PRU1_CLK_STOP_R PRU0_CLK_EN PRU0_CLK_STOP_A PRU0_CLK_STOP_R
K Q CK EQ CK EQ

R-0h R/W-0h R/W-1h R-0h R/W-0h R/W-1h R-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 210. CGR Register Field Descriptions

Bit Field Type Reset Description
31-18 Reserved R 0h

17 IEP_CLK_EN R/W 1h IEP clock enable.
0 = Disable Clock
1 = Enable Clock

16 IEP_CLK_STOP_ACK R 0h Acknowledgement that IEP clock can be stopped.
0 = Not Ready to Gate Clock
1 = Ready to Gate Clock

15 IEP_CLK_STOP_REQ R/W 0h IEP request to stop clock.
0 = do not request to stop Clock
1 = request to stop Clock

14 ECAP_CLK_EN R/W 1h ECAP clock enable.
0 = Disable Clock
1 = Enable Clock

13 ECAP_CLK_STOP_ACK R 0h Acknowledgement that ECAP clock can be stopped.
0 = Not Ready to Gate Clock
1 = Ready to Gate Clock

12 ECAP_CLK_STOP_REQ R/W 0h ECAP request to stop clock.
0 = do not request to stop Clock
1 = request to stop Clock

11 UART_CLK_EN R/W 1h UART clock enable.
0 = Disable Clock
1 = Enable Clock

10 UART_CLK_STOP_ACK R 0h Acknowledgement that UART clock can be stopped.
0 = Not Ready to Gate Clock
1 = Ready to Gate Clock

9 UART_CLK_STOP_REQ R/W 0h UART request to stop clock.
0 = do not request to stop Clock
1 = request to stop Clock

8 INTC_CLK_EN R/W 1h INTC clock enable.
0 = Disable Clock
1 = Enable Clock

279SPRUHF8A–May 2012–Revised June 2013

CFG

Table 210. CGR Register Field Descriptions (continued)
Bit Field Type Reset Description
7 INTC_CLK_STOP_ACK R 0h Acknowledgement that INTC clock can be stopped.

0 = Not Ready to Gate Clock
1 = Ready to Gate Clock

6 INTC_CLK_STOP_REQ R/W 0h INTC request to stop clock.
0 = do not request to stop Clock
1 = request to stop Clock

5 PRU1_CLK_EN R/W 1h PRU1 clock enable.
0 = Disable Clock
1 = Enable Clock

4 PRU1_CLK_STOP_ACK R 0h Acknowledgement that PRU1 clock can be stopped.
0 = Not Ready to Gate Clock
1 = Ready to Gate Clock

3 PRU1_CLK_STOP_REQ R/W 0h PRU1 request to stop clock.
0 = do not request to stop Clock
1 = request to stop Clock

2 PRU0_CLK_EN R/W 1h PRU0 clock enable.
0 = Disable Clock
1 = Enable Clock

1 PRU0_CLK_STOP_ACK R 0h Acknowledgement that PRU0 clock can be stopped.
0 = Not Ready to Gate Clock
1 = Ready to Gate Clock

0 PRU0_CLK_STOP_REQ R/W 0h PRU0 request to stop clock.
0 = do not request to stop Clock
1 = request to stop Clock

280 SPRUHF8A–May 2012–Revised June 2013

 CFG

10.1.6 ISRP Register (offset = 14h) [reset = 0h]
ISRP is shown in Figure 199 and described in Table 211.

The IRQ Status Raw Parity register is a snapshot of the IRQ raw status for the PRU ICSS memory parity
events. The raw status is set even if the event is not enabled.

Figure 199. ISRP Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved RAM_PE_RAW

R-0h R/W-0h

15 14 13 12 11 10 9 8

PRU1_DMEM_PE_RAW PRU1_IMEM_PE_RAW

R/W-0h R/W-0h

7 6 5 4 3 2 1 0

PRU0_DMEM_PE_RAW PRU0_IMEM_PE_RAW

R/W-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 211. ISRP Register Field Descriptions

Bit Field Type Reset Description
31-20 Reserved R 0h
19-16 RAM_PE_RAW R/W 0h RAM Parity Error RAW for Byte3, Byte2, Byte1, Byte0.

Note RAM_PE_RAW[0] maps to Byte0.
Write 0: No action.
Read 0: No event pending.
Read 1: Event pending.
Write 1: Set event (debug).

15-12 PRU1_DMEM_PE_RAW R/W 0h PRU1 DMEM Parity Error RAW for Byte3, Byte2, Byte1, Byte0.
Note PRU1_DMEM_PE_RAW[0] maps to Byte0.
Write 0: No action.
Read 0: No event pending.
Read 1: Event pending.
Write 1: Set event (debug).

11-8 PRU1_IMEM_PE_RAW R/W 0h PRU1 IMEM Parity Error RAW for Byte3, Byte2, Byte1, Byte0.
Note PRU1_IMEM_PE_RAW[0] maps to Byte0.
Write 0: No action.
Read 0: No event pending.
Read 1: Event pending.
Write 1: Set event (debug).

7-4 PRU0_DMEM_PE_RAW R/W 0h PRU0 DMEM Parity Error RAW for Byte3, Byte2, Byte1, Byte0.
Note PRU0_DMEM_PE_RAW[0] maps to Byte0.
Write 0: No action.
Read 0: No event pending.
Read 1: Event pending.
Write 1: Set event (debug) .

3-0 PRU0_IMEM_PE_RAW R/W 0h PRU0 IMEM Parity Error RAW for Byte3, Byte2, Byte1, Byte0.
Note PRU0_IRAM_PE_RAW[0] maps to Byte0.
Write 0: No action.
Read 0: No event pending.
Read 1: Event pending.
Write 1: Set event (debug) .

281SPRUHF8A–May 2012–Revised June 2013

CFG

10.1.7 ISP Register (offset = 18h) [reset = 0h]
ISP is shown in Figure 200 and described in Table 212.

The IRQ Status Parity Register is a snapshot of the IRQ status for the PRU ICSS memory parity events.
The status is set only if the event is enabled. Write 1 to clear the status after the interrupt has been
serviced.

Figure 200. ISP Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved RAM_PE

R-0h 0h

15 14 13 12 11 10 9 8

PRU1_DMEM_PE PRU1_IMEM_PE

0h 0h

7 6 5 4 3 2 1 0

PRU0_DMEM_PE PRU0_IMEM_PE

0h 0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 212. ISP Register Field Descriptions

Bit Field Type Reset Description
31-20 Reserved R 0h
19-16 RAM_PE 0h RAM Parity Error for Byte3, Byte2, Byte1, Byte0.

Note RAM_PE[0] maps to Byte0.
Write 0: No action.
Read 0: No (enabled) event pending.
Read 1: Event pending.
Write 1: Clear event.

15-12 PRU1_DMEM_PE 0h PRU1 DMEM Parity Error for Byte3, Byte2, Byte1, Byte0.
Note PRU1_DMEM_PE[0] maps to Byte0.
Write 0: No action.
Read 0: No (enabled) event pending.
Read 1: Event pending.
Write 1: Clear event.

11-8 PRU1_IMEM_PE 0h PRU1 IMEM Parity Error for Byte3, Byte2, Byte1, Byte0.
Note PRU1_IMEM_PE[0] maps to Byte0.
Write 0: No action.
Read 0: No (enabled) event pending.
Read 1: Event pending.
Write 1: Clear event.

7-4 PRU0_DMEM_PE 0h PRU0 DMEM Parity Error for Byte3, Byte2, Byte1, Byte0.
Note PRU0_DMEM_PE[0] maps to Byte0.
Write 0: No action.
Read 0: No(enabled) event pending.
Read 1: Event pending.
Write 1: Clear event.

3-0 PRU0_IMEM_PE 0h PRU0 IMEM Parity Error for Byte3, Byte2, Byte1, Byte0.
Note PRU0_IMEM_PE[0] maps to Byte0.
Write 0: No action.
Read 0: No (enabled) event pending.
Read 1: Event pending.
Write 1: Clear event.

282 SPRUHF8A–May 2012–Revised June 2013

 CFG

10.1.8 IESP Register (offset = 1Ch) [reset = 0h]
IESP is shown in Figure 201 and described in Table 213.

The IRQ Enable Set Parity Register enables the IRQ PRU ICSS memory parity events.

Figure 201. IESP Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved RAM_PE_SET

R-0h R/W-0h

15 14 13 12 11 10 9 8

PRU1_DMEM_PE_SET PRU1_IMEM_PE_SET

R/W-0h R/W-0h

7 6 5 4 3 2 1 0

PRU0_DMEM_PE_SET PRU0_IMEM_PE_SET

R/W-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 213. IESP Register Field Descriptions

Bit Field Type Reset Description
31-20 Reserved R 0h
19-16 RAM_PE_SET R/W 0h RAM Parity Error Set Enable for Byte3, Byte2, Byte1, Byte0.

Note RAM_PE_SET[0] maps to Byte0.
Write 0: No action.
Read 0: Interrupt disabled (masked).
Read 1: Interrupt enabled.
Write 1: Enable interrupt.

15-12 PRU1_DMEM_PE_SET R/W 0h PRU1 DMEM Parity Error Set Enable for Byte3, Byte2, Byte1, Byte0.
Note PRU1_DMEM_PE_SET[0] maps to Byte0.
Write 0: No action.
Read 0: Interrupt disabled (masked).
Read 1: Interrupt enabled.
Write 1: Enable interrupt.

11-8 PRU1_IMEM_PE_SET R/W 0h PRU1 IMEM Parity Error Set Enable for Byte3, Byte2, Byte1, Byte0.
Note PRU1_IMEM_PE_SET[0] maps to Byte0.
Write 0: No action.
Read 0: Interrupt disabled (masked).
Read 1: Interrupt enabled.
Write 1: Enable interrupt.

7-4 PRU0_DMEM_PE_SET R/W 0h PRU0 DMEM Parity Error Set Enable for Byte3, Byte2, Byte1, Byte0.
Note PRU0_DMEM_PE_SET[0] maps to Byte0.
Write 0: No action.
Read 0: Interrupt disabled (masked).
Read 1: Interrupt enabled.
Write 1: Enable interrupt.

3-0 PRU0_IMEM_PE_SET R/W 0h PRU0 IMEM Parity Error Set Enable for Byte3, Byte2, Byte1, Byte0.
Note PRU0_IMEM_PE_SET[0] maps to Byte0.
Write 0: No action.
Read 0: Interrupt disabled (masked).
Read 1: Interrupt enabled.
Write 1: Enable interrupt.

283SPRUHF8A–May 2012–Revised June 2013

CFG

10.1.9 IECP Register (offset = 20h) [reset = 0h]
IECP is shown in Figure 202 and described in Table 214.

The IRQ Enable Clear Parity Register disables the IRQ PRU ICSS memory parity events.

Figure 202. IECP Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved

R-0h

15 14 13 12 11 10 9 8

PRU1_DMEM_PE_CLR PRU1_IMEM_PE_CLR

R/W-0h R/W-0h

7 6 5 4 3 2 1 0

PRU0_DMEM_PE_CLR PRU0_IMEM_PE_CLR

R/W-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 214. IECP Register Field Descriptions

Bit Field Type Reset Description
31-16 Reserved R 0h
15-12 PRU1_DMEM_PE_CLR R/W 0h PRU1 DMEM Parity Error Clear Enable for Byte3, Byte2, Byte1,

Byte0.
Note PRU1_DMEM_PE_CLR[0] maps to Byte0.
Write 0: No action.
Read 0: Interrupt disabled (masked).
Read 1: Interrupt enabled.
Write 1: Disable interrupt.

11-8 PRU1_IMEM_PE_CLR R/W 0h PRU1 IMEM Parity Error Clear Enable for Byte3, Byte2, Byte1,
Byte0.
Note PRU1_IMEM_PE_CLR[0] maps to Byte0.
Write 0: No action.
Read 0: Interrupt disabled (masked).
Read 1: Interrupt enabled.
Write 1: Disable interrupt.

7-4 PRU0_DMEM_PE_CLR R/W 0h PRU0 DMEM Parity Error Clear Enable for Byte3, Byte2, Byte1,
Byte0.
Note PRU0_DMEM_PE_CLR[0] maps to Byte0.
Write 0: No action.
Read 0: Interrupt disabled (masked).
Read 1: Interrupt enabled.
Write 1: Disable interrupt.

3-0 PRU0_IMEM_PE_CLR R/W 0h PRU0 IMEM Parity Error Clear Enable for Byte3, Byte2, Byte1,
Byte0.
Note PRU0_IMEM_PE_CLR[0] maps to Byte0.
Write 0: No action .
Read 0: Interrupt disabled (masked).
Read 1: Interrupt enabled.
Write 1: Disable interrupt.

284 SPRUHF8A–May 2012–Revised June 2013

 CFG

10.1.10 PMAO Register (offset = 28h) [reset = 0h]
PMAO is shown in Figure 203 and described in Table 215.

The PRU Master OCP Address Offset Register enables for the PRU OCP Master Port Address to have an
offset of minus 0x0008_0000. This enables the PRU to access External Host address space starting at
0x0000_0000.

Figure 203. PMAO Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved

R-0h

15 14 13 12 11 10 9 8

Reserved

R-0h

7 6 5 4 3 2 1 0

Reserved PMAO_PRU1 PMAO_PRU0

R-0h R/W-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 215. PMAO Register Field Descriptions

Bit Field Type Reset Description
31-2 Reserved R 0h

1 PMAO_PRU1 R/W 0h PRU1 OCP Master Port Address Offset Enable.
0 = Disable address offset.
1 = Enable address offset of -0x0008_0000.

0 PMAO_PRU0 R/W 0h PRU0 OCP Master Port Address Offset Enable.
0 = Disable address offset.
1 = Enable address offset of -0x0008_0000.

285SPRUHF8A–May 2012–Revised June 2013

CFG

10.1.11 MII_RT Register (offset = 2Ch) [reset = 1h]
MII_RT is shown in Figure 204 and described in Table 216.

The MII_RT Event Enable Register enables Ethercat (or MII_RT) mode events to the PRU ICSS INTC.

Figure 204. MII_RT Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved

R-0h

15 14 13 12 11 10 9 8

Reserved

R-0h

7 6 5 4 3 2 1 0

Reserved MII_RT_EVENT_EN

R-0h R/W-1h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 216. MII_RT Register Field Descriptions

Bit Field Type Reset Description
31-1 Reserved R 0h

0 MII_RT_EVENT_EN R/W 1h Enables the MII_RT Events to the INTC.
0 = Disabled (use external events).
1 = Enabled (use MII_RT events).

286 SPRUHF8A–May 2012–Revised June 2013

 CFG

10.1.12 IEPCLK Register (offset = 30h) [reset = 0h]
IEPCLK is shown in Figure 205 and described in Table 217.

The IEP Clock Source Register defines the source of the IEP clock.

Figure 205. IEPCLK Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved

R-0h

15 14 13 12 11 10 9 8

Reserved

R-0h

7 6 5 4 3 2 1 0

Reserved OCP_EN

R-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 217. IEPCLK Register Field Descriptions

Bit Field Type Reset Description
31-1 Reserved R 0h

0 OCP_EN R/W 0h 0 = iep_clk is the source.
1 = ocp_clk is the source.

287SPRUHF8A–May 2012–Revised June 2013

CFG

10.1.13 SPP Register (offset = 34h) [reset = 0h]
SPP is shown in Figure 206 and described in Table 218.

The Scratch Pad Priority and Configuration Register defines the access priority assigned to the PRU cores
and configures the scratch pad XFR shift functionality.

Figure 206. SPP Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved

R-0h

15 14 13 12 11 10 9 8

Reserved

R-0h

7 6 5 4 3 2 1 0

Reserved XFR_SHIFT_EN PRU1_PAD_HP_EN

R-0h R/W-0h R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 218. SPP Register Field Descriptions

Bit Field Type Reset Description
31-2 Reserved R 0h

1 XFR_SHIFT_EN R/W 0h Enables XIN/XOUT shift functionality.
When enabled, R0
[4:0] (internal to PRU) defines the
32-bit offset for XIN and XOUT operations with the scratch pad.
0 = Disabled.
1 = Enabled.

0 PRU1_PAD_HP_EN R/W 0h Defines which PRU wins write cycle arbitration to a common scratch
pad bank.
The PRU which has higher priority will always perform the write cycle
with no wait states.
The lower PRU will get stalled/wait states until higher PRU is not
performing write cycles.
If the lower priority PRU writes to the same byte has the higher
priority PRU, then the lower priority PRU will over write the bytes.
0 = PRU0 has highest priority.
1 = PRU1 has highest priority.

288 SPRUHF8A–May 2012–Revised June 2013

 CFG

10.1.14 PIN_MX Register (offset = 40h) [reset = 0h]
PIN_MX is shown in Figure 207 and described in Table 219.

The Pin Mux Select Register defines the state of the PRU ICSS internal pinmuxing.

Figure 207. PIN_MX Register
31 30 29 28 27 26 25 24

Reserved

R-0h

23 22 21 20 19 18 17 16

Reserved

R-0h

15 14 13 12 11 10 9 8

Reserved

R-0h

7 6 5 4 3 2 1 0

PIN_MUX_SEL

R/W-0h

LEGEND: R/W = Read/Write; R = Read only; W1toCl = Write 1 to clear bit; -n = value after reset

Table 219. PIN_MX Register Field Descriptions

Bit Field Type Reset Description
31-8 Reserved R 0h
7-0 PIN_MUX_SEL R/W 0h Defines the state of PIN_MUX_SEL

[1:0] for internal pinmuxing.

289SPRUHF8A–May 2012–Revised June 2013

	AM335x PRU-ICSS Reference Guide
	Table of Contents
	1 Introduction
	1.1 Features

	2 Integration
	2.1 PRU-ICSS Connectivity Attributes
	2.2 PRU-ICSS Clock and Reset Management
	2.3 PRU-ICSS Pin List

	3 PRU-ICSS Register Overview
	3.1 Local Memory Map
	3.1.1 Local Instruction Memory Map
	3.1.2 Local Data Memory Map

	3.2 Global Memory Map

	4 PRU-ICSS Internal Pinmux Overview
	5 PRU
	5.1 Introduction
	5.2 Functional Description
	5.2.1 Constant Table
	5.2.2 PRU Module Interface
	5.2.2.1 Real-Time Status Interface Mapping (R31): Interrupt Events Input
	5.2.2.2 Event Interface Mapping (R31): PRU System Events
	5.2.2.3 General-Purpose Inputs (R31): Enhanced PRU GP Module

	5.2.3 Multiplier With Optional Accumulation
	5.2.3.1 Features
	5.2.3.2 PRU and MAC Interface

	5.2.4 PRU0/1 Scratch Pad
	5.2.4.1 Features
	5.2.4.2 Implementations and Operations

	5.3 Basic Programming Model
	5.3.1 PASM — PRU Assembler Overview
	5.3.1.1 Calling Syntax

	5.3.2 PASM Source File Syntax
	5.3.2.1 Dot Commands
	5.3.2.2 Hash Commands
	5.3.2.3 Labels
	5.3.2.4 Comments
	5.3.2.5 PRU Assembly Instructions

	5.3.3 Advanced Topics
	5.3.3.1 Using Macros
	5.3.3.2 Using Structures and Scope
	5.3.3.3 Register Addressing and Spanning

	5.3.4 PRU Instruction Set
	5.3.4.1 Arithmetic and Logical
	5.3.4.2 Register Load and Store
	5.3.4.3 Flow Control

	5.4 PRUSS_PRU_CTRL Registers
	5.4.1 CONTROL Register (offset = 0h) [reset = 1h]
	5.4.2 STATUS Register (offset = 4h) [reset = 0h]
	5.4.3 WAKEUP_EN Register (offset = 8h) [reset = 0h]
	5.4.4 CYCLE Register (offset = Ch) [reset = 0h]
	5.4.5 STALL Register (offset = 10h) [reset = 0h]
	5.4.6 CTBIR0 Register (offset = 20h) [reset = 0h]
	5.4.7 CTBIR1 Register (offset = 24h) [reset = 0h]
	5.4.8 CTPPR0 Register (offset = 28h) [reset = 0h]
	5.4.9 CTPPR1 Register (offset = 2Ch) [reset = 0h]

	5.5 PRU_ICSS_PRU_DEBUG Registers
	5.5.1 GPREG0 Register (offset = 0h) [reset = 0h]
	5.5.2 GPREG1 Register (offset = 4h) [reset = 0h]
	5.5.3 GPREG2 Register (offset = 8h) [reset = 0h]
	5.5.4 GPREG3 Register (offset = Ch) [reset = 0h]
	5.5.5 GPREG4 Register (offset = 10h) [reset = 0h]
	5.5.6 GPREG5 Register (offset = 14h) [reset = 0h]
	5.5.7 GPREG6 Register (offset = 18h) [reset = 0h]
	5.5.8 GPREG7 Register (offset = 1Ch) [reset = 0h]
	5.5.9 GPREG8 Register (offset = 20h) [reset = 0h]
	5.5.10 GPREG9 Register (offset = 24h) [reset = 0h]
	5.5.11 GPREG10 Register (offset = 28h) [reset = 0h]
	5.5.12 GPREG11 Register (offset = 2Ch) [reset = 0h]
	5.5.13 GPREG12 Register (offset = 30h) [reset = 0h]
	5.5.14 GPREG13 Register (offset = 34h) [reset = 0h]
	5.5.15 GPREG14 Register (offset = 38h) [reset = 0h]
	5.5.16 GPREG15 Register (offset = 3Ch) [reset = 0h]
	5.5.17 GPREG16 Register (offset = 40h) [reset = 0h]
	5.5.18 GPREG17 Register (offset = 44h) [reset = 0h]
	5.5.19 GPREG18 Register (offset = 48h) [reset = 0h]
	5.5.20 GPREG19 Register (offset = 4Ch) [reset = 0h]
	5.5.21 GPREG20 Register (offset = 50h) [reset = 0h]
	5.5.22 GPREG21 Register (offset = 54h) [reset = 0h]
	5.5.23 GPREG22 Register (offset = 58h) [reset = 0h]
	5.5.24 GPREG23 Register (offset = 5Ch) [reset = 0h]
	5.5.25 GPREG24 Register (offset = 60h) [reset = 0h]
	5.5.26 GPREG25 Register (offset = 64h) [reset = 0h]
	5.5.27 GPREG26 Register (offset = 68h) [reset = 0h]
	5.5.28 GPREG27 Register (offset = 6Ch) [reset = 0h]
	5.5.29 GPREG28 Register (offset = 70h) [reset = 0h]
	5.5.30 GPREG29 Register (offset = 74h) [reset = 0h]
	5.5.31 GPREG30 Register (offset = 78h) [reset = 0h]
	5.5.32 GPREG31 Register (offset = 7Ch) [reset = 0h]
	5.5.33 CT_REG0 Register (offset = 80h) [reset = 20000h]
	5.5.34 CT_REG1 Register (offset = 84h) [reset = 48040000h]
	5.5.35 CT_REG2 Register (offset = 88h) [reset = 4802A000h]
	5.5.36 CT_REG3 Register (offset = 8Ch) [reset = 30000h]
	5.5.37 CT_REG4 Register (offset = 90h) [reset = 26000h]
	5.5.38 CT_REG5 Register (offset = 94h) [reset = 48060000h]
	5.5.39 CT_REG6 Register (offset = 98h) [reset = 48030000h]
	5.5.40 CT_REG7 Register (offset = 9Ch) [reset = 28000h]
	5.5.41 CT_REG8 Register (offset = A0h) [reset = 46000000h]
	5.5.42 CT_REG9 Register (offset = A4h) [reset = 4A100000h]
	5.5.43 CT_REG10 Register (offset = A8h) [reset = 48318000h]
	5.5.44 CT_REG11 Register (offset = ACh) [reset = 48022000h]
	5.5.45 CT_REG12 Register (offset = B0h) [reset = 48024000h]
	5.5.46 CT_REG13 Register (offset = B4h) [reset = 48310000h]
	5.5.47 CT_REG14 Register (offset = B8h) [reset = 481CC000h]
	5.5.48 CT_REG15 Register (offset = BCh) [reset = 481D0000h]
	5.5.49 CT_REG16 Register (offset = C0h) [reset = 481A0000h]
	5.5.50 CT_REG17 Register (offset = C4h) [reset = 4819C000h]
	5.5.51 CT_REG18 Register (offset = C8h) [reset = 48300000h]
	5.5.52 CT_REG19 Register (offset = CCh) [reset = 48302000h]
	5.5.53 CT_REG20 Register (offset = D0h) [reset = 48304000h]
	5.5.54 CT_REG21 Register (offset = D4h) [reset = 32400h]
	5.5.55 CT_REG22 Register (offset = D8h) [reset = 480C8000h]
	5.5.56 CT_REG23 Register (offset = DCh) [reset = 480CA000h]
	5.5.57 CT_REG24 Register (offset = E0h) [reset = 0h]
	5.5.58 CT_REG25 Register (offset = E4h) [reset = 0h]
	5.5.59 CT_REG26 Register (offset = E8h) [reset = 0h]
	5.5.60 CT_REG27 Register (offset = ECh) [reset = 0h]
	5.5.61 CT_REG28 Register (offset = F0h) [reset = 0h]
	5.5.62 CT_REG29 Register (offset = F4h) [reset = 0h]
	5.5.63 CT_REG30 Register (offset = F8h) [reset = 0h]
	5.5.64 CT_REG31 Register (offset = FCh) [reset = 0h]

	6 Interrupt Controller
	6.1 Introduction
	6.2 Functional Description
	6.2.1 PRU-ICSS System Events
	6.2.2 INTC Methodology
	6.2.2.1 Interrupt Processing
	6.2.2.2 Interrupt Status Checking
	6.2.2.3 Interrupt Channel Mapping
	6.2.2.4 Interrupt Nesting
	6.2.2.5 Interrupt Status Clearing

	6.2.3 Interrupt Disabling

	6.3 Basic Programming Model
	6.4 PRU_ICSS_INTC Registers
	6.4.1 REVID Register (offset = 0h) [reset = 4E82A900h]
	6.4.2 CR Register (offset = 4h) [reset = 0h]
	6.4.3 GER Register (offset = 10h) [reset = 0h]
	6.4.4 GNLR Register (offset = 1Ch) [reset = 100h]
	6.4.5 SISR Register (offset = 20h) [reset = 0h]
	6.4.6 SICR Register (offset = 24h) [reset = 0h]
	6.4.7 EISR Register (offset = 28h) [reset = 0h]
	6.4.8 EICR Register (offset = 2Ch) [reset = 0h]
	6.4.9 HIEISR Register (offset = 34h) [reset = 0h]
	6.4.10 HIDISR Register (offset = 38h) [reset = 0h]
	6.4.11 GPIR Register (offset = 80h) [reset = 80000000h]
	6.4.12 SRSR0 Register (offset = 200h) [reset = 0h]
	6.4.13 SRSR1 Register (offset = 204h) [reset = 0h]
	6.4.14 SECR0 Register (offset = 280h) [reset = 0h]
	6.4.15 SECR1 Register (offset = 284h) [reset = 0h]
	6.4.16 ESR0 Register (offset = 300h) [reset = 0h]
	6.4.17 ERS1 Register (offset = 304h) [reset = 0h]
	6.4.18 ECR0 Register (offset = 380h) [reset = 0h]
	6.4.19 ECR1 Register (offset = 384h) [reset = 0h]
	6.4.20 CMR0 Register (offset = 400h) [reset = 0h]
	6.4.21 CMR1 Register (offset = 404h) [reset = 0h]
	6.4.22 CMR2 Register (offset = 408h) [reset = 0h]
	6.4.23 CMR3 Register (offset = 40Ch) [reset = 0h]
	6.4.24 CMR4 Register (offset = 410h) [reset = 0h]
	6.4.25 CMR5 Register (offset = 414h) [reset = 0h]
	6.4.26 CMR6 Register (offset = 418h) [reset = 0h]
	6.4.27 CMR7 Register (offset = 41Ch) [reset = 0h]
	6.4.28 CMR8 Register (offset = 420h) [reset = 0h]
	6.4.29 CMR9 Register (offset = 424h) [reset = 0h]
	6.4.30 CMR10 Register (offset = 428h) [reset = 0h]
	6.4.31 CMR11 Register (offset = 42Ch) [reset = 0h]
	6.4.32 CMR12 Register (offset = 430h) [reset = 0h]
	6.4.33 CMR13 Register (offset = 434h) [reset = 0h]
	6.4.34 CMR14 Register (offset = 438h) [reset = 0h]
	6.4.35 CMR15 Register (offset = 43Ch) [reset = 0h]
	6.4.36 HMR0 Register (offset = 800h) [reset = 0h]
	6.4.37 HMR1 Register (offset = 804h) [reset = 0h]
	6.4.38 HMR2 Register (offset = 808h) [reset = 0h]
	6.4.39 HIPIR0 Register (offset = 900h) [reset = 80000000h]
	6.4.40 HIPIR1 Register (offset = 904h) [reset = 80000000h]
	6.4.41 HIPIR2 Register (offset = 908h) [reset = 80000000h]
	6.4.42 HIPIR3 Register (offset = 90Ch) [reset = 80000000h]
	6.4.43 HIPIR4 Register (offset = 910h) [reset = 80000000h]
	6.4.44 HIPIR5 Register (offset = 914h) [reset = 80000000h]
	6.4.45 HIPIR6 Register (offset = 918h) [reset = 80000000h]
	6.4.46 HIPIR7 Register (offset = 91Ch) [reset = 80000000h]
	6.4.47 HIPIR8 Register (offset = 920h) [reset = 80000000h]
	6.4.48 HIPIR9 Register (offset = 924h) [reset = 80000000h]
	6.4.49 SIPR0 Register (offset = D00h) [reset = 1h]
	6.4.50 SIPR1 Register (offset = D04h) [reset = 1h]
	6.4.51 SITR0 Register (offset = D80h) [reset = 0h]
	6.4.52 SITR1 Register (offset = D84h) [reset = 0h]
	6.4.53 HINLR0 Register (offset = 1100h) [reset = 100h]
	6.4.54 HINLR1 Register (offset = 1104h) [reset = 100h]
	6.4.55 HINLR2 Register (offset = 1108h) [reset = 100h]
	6.4.56 HINLR3 Register (offset = 110Ch) [reset = 100h]
	6.4.57 HINLR4 Register (offset = 1110h) [reset = 100h]
	6.4.58 HINLR5 Register (offset = 1114h) [reset = 100h]
	6.4.59 HINLR6 Register (offset = 1118h) [reset = 100h]
	6.4.60 HINLR7 Register (offset = 111Ch) [reset = 100h]
	6.4.61 HINLR8 Register (offset = 1120h) [reset = 100h]
	6.4.62 HINLR9 Register (offset = 1124h) [reset = 100h]
	6.4.63 HIER Register (offset = 1500h) [reset = 0h]

	7 PRU-ICSS Interrupts
	8 Universal Asynchronous Receiver/Transmitter
	8.1 Introduction
	8.1.1 Purpose of the Peripheral
	8.1.2 Features
	8.1.3 Functional Block Diagram
	8.1.4 Industry Standard(s) Compliance Statement

	8.2 Functional Description
	8.2.1 Clock Generation and Control
	8.2.2 Signal Descriptions
	8.2.3 Pin Multiplexing
	8.2.4 Protocol Description
	8.2.4.1 Transmission
	8.2.4.2 Reception
	8.2.4.3 Data Format

	8.2.5 Operation
	8.2.5.1 Transmission
	8.2.5.2 Reception
	8.2.5.3 FIFO Modes
	8.2.5.4 Autoflow Control
	8.2.5.5 Loopback Control

	8.2.6 Reset Considerations
	8.2.6.1 Software Reset Considerations
	8.2.6.2 Hardware Reset Considerations

	8.2.7 Initialization
	8.2.8 Interrupt Support
	8.2.8.1 Interrupt Events and Requests
	8.2.8.2 Interrupt Multiplexing

	8.2.9 DMA Event Support
	8.2.10 Power Management
	8.2.11 Emulation Considerations
	8.2.12 Exception Processing
	8.2.12.1 Divisor Latch Not Programmed
	8.2.12.2 Changing Operating Mode During Busy Serial Communication

	8.3 Registers
	8.3.1 Receiver Buffer Register (RBR)
	8.3.2 Transmitter Holding Register (THR)
	8.3.3 Interrupt Enable Register (IER)
	8.3.4 Interrupt Identification Register (IIR)
	8.3.5 FIFO Control Register (FCR)
	8.3.6 Line Control Register (LCR)
	8.3.7 Modem Control Register (MCR)
	8.3.8 Line Status Register (LSR)
	8.3.9 Modem Status Register (MSR)
	8.3.10 Scratch Pad Register (SCR)
	8.3.11 Divisor Latches (DLL and DLH)
	8.3.12 Revision Identification Registers (REVID1 and REVID2)
	8.3.13 Power and Emulation Management Register (PWREMU_MGMT)
	8.3.14 Mode Definition Register (MDR)

	9 Industrial Ethernet Peripheral (IEP)
	9.1 Introduction
	9.2 Functional Description
	9.2.1 Clock Generation
	9.2.2 Industrial Ethernet Timer
	9.2.2.1 Features

	9.3 PRU_ICSS_IEP Registers
	9.3.1 GLOBAL_CFG Register (offset = 0h) [reset = 550h]
	9.3.2 GLOBAL_STATUS Register (offset = 4h) [reset = 0h]
	9.3.3 COMPEN Register (offset = 8h) [reset = 0h]
	9.3.4 COUNT Register (offset = Ch) [reset = 0h]
	9.3.5 CMP_CFG Register (offset = 40h) [reset = 0h]
	9.3.6 CMP_STATUS Register (offset = 44h) [reset = 0h]
	9.3.7 CMP0 Register (offset = 48h) [reset = 0h]
	9.3.8 CMP1 Register (offset = 4Ch) [reset = 0h]
	9.3.9 CMP2 Register (offset = 50h) [reset = 0h]
	9.3.10 CMP3 Register (offset = 54h) [reset = 0h]
	9.3.11 CMP4 Register (offset = 58h) [reset = 0h]
	9.3.12 CMP5 Register (offset = 5Ch) [reset = 0h]
	9.3.13 CMP6 Register (offset = 60h) [reset = 0h]
	9.3.14 CMP7 Register (offset = 64h) [reset = 0h]

	10 CFG
	10.1 PRU_ICSS_CFG Registers
	10.1.1 REVID Register (offset = 0h) [reset = 47000000h]
	10.1.2 SYSCFG Register (offset = 4h) [reset = 1Ah]
	10.1.3 GPCFG0 Register (offset = 8h) [reset = 0h]
	10.1.4 GPCFG1 Register (offset = Ch) [reset = 0h]
	10.1.5 CGR Register (offset = 10h) [reset = 24924h]
	10.1.6 ISRP Register (offset = 14h) [reset = 0h]
	10.1.7 ISP Register (offset = 18h) [reset = 0h]
	10.1.8 IESP Register (offset = 1Ch) [reset = 0h]
	10.1.9 IECP Register (offset = 20h) [reset = 0h]
	10.1.10 PMAO Register (offset = 28h) [reset = 0h]
	10.1.11 MII_RT Register (offset = 2Ch) [reset = 1h]
	10.1.12 IEPCLK Register (offset = 30h) [reset = 0h]
	10.1.13 SPP Register (offset = 34h) [reset = 0h]
	10.1.14 PIN_MX Register (offset = 40h) [reset = 0h]

