Instructions for asmlib

A multi-platform library of highly optimized functions for C and C++,

By Agner Fog. Technical University of Denmark
Version 2.51. 2016-11-16
© 2003-2016. GNU General Public License

Contents
3 o o [T o T o PSSR 2
1.1 Support for multiple platformsouuii e 2
1.2 Calling from other programming lanNQUAGEScceiieeeriiiiiiiiiieieeeee e e e 2
1.3 POSItioN-iNdEPENUENT COUE.........uuuuiiiiiiiiiiiiiiiie e nnnne 3
1.4 Overriding standard function liDraries. ... 3
1.5 Comparison with other function librariescccooeii i, 4
1.6 EXCOPTIONS ...ttt 4
1.7 String instructions and safety PreCaUtiONS............uuuuuuuuiriiiiiiiiiieiiiieieeeeeeeeeeeeeeeaee 5
A o1 =T V=] 67T] - PP 6
3 Memory and StHNG fFUNCHIONS.........cooiiiicie e e e e 7
o T8 1 0= 0 o3 o) PSPPSR 7
B2 MEBIMIMOVE ...ttt ettt ettt oottt e ettt e e ettt e e e e e et e e e ee b e e e eeta s e e eenb e eeenbaaeaennnnaaaenes 7
IS I 1 01T 00T S TSP TP PP UPPPPTRPPPPIN 8
I 1 0T 0 0 o3 0] o TP PP PP 8
N JE= 11 (07 | OO UPPPPTR PPN 8
LG TN I (o0 o)V PPN 9
R =1 1 [T o 9
IR 211 £ 1 (PRSPPI 9
G TR I o] 1] o PP 10
G T K0 IR 1T 1 0] o SO 10
T I 1 7 o TR (5] o PRSP PP 11
T 2 =10 o 1= 1T o PSS 11
3.1.3 SEOIOWET, SIIEOUPPET ... ettt e e e et e e e e e e e e e e et e e e e e e e e e ear b aaeaeas 12
314 SICOUNT_UT S ..t e et e et e e e e et e e e aaaaeaeee 12
315 SITCOUNTINSEL. ...t et e et e e e et e e e et e e e aaa e aaee 12
4 Integer diVISION FUNCLONSii e e e e e e e e e e ar s 13
4.1 Signed and unsigned integer diVISION...........ccooii i 13
4.2 Integer VECION AIVISIONccoiiiiiiiiiiieiiee e 14
5 MISCEIIANEOUS FUNCHIONS ... uuutivittiieititiiiitieeieeeeaeeeaeeeeeseeeseessessseseesesssnsssssssssssnssssnnsssssnnnnnnes 15
ST A o ¥ Vo TR 15
2 o o] o Tol o 11 o | S PP SSPPPPPPTPPTRR 16
RGN 1 E1 1 0 Tod 1T 0 RS = PP 16
5.4 ProCESSOINAIME .. .ottt e ettt e ettt e e e et e e e e et e e e e rra s 17
R O oL Ul 1Y/ o1 PR UPPPPPPPPPTRR 17
5.6 DAtACACNESIZEccciieeeeiiee et a e 18
5.7 CPUI_ADCH ...oeee e 18
S T ox o1V [T J = PSPPI 18
RS LT T I 1 PP 19
5.10 DEDBUGBIEAK..... oo 19
6 Random number generator fUNCHONS oo e e 19
6.1 MEISEINNE tWISTET ...iiiiieiiiiiee e e e e e e e e e e ettt e e e e e e e e e e tta s e e e eeeeeeaenenas 21
6.2 Mother-of-all GENETALONcoeeeeeeee e 22
6.3 SFMT generator and combined generatorcoouviiiiiiiiiin e 23
6.4 PRYSICAISEEAo 24
7 Patches for Intel compiler and lDrarieS.uueuuiieiiiiiiiiiiiiiiiee e 25
S 1 1= 0 SRS 25
S I ot =] g Y= o) T 1110 o L SRS 27

O N (oI TU o] o o] ¢ APPSO P PP PPPPUPPPPPPPIN 28

1 Introduction

Asmlib is a function library to call from C or C++ for all x86 and x86-64 platforms. It is not
intended to be a complete function library, but contains mainly:

e Faster versions of several standard C functions

e Useful functions that are difficult to find elsewhere

e Functions that are best written in assembly language
o Efficient random number generators

These functions are written in assembly language for the sake of optimizing speed. Many of
the functions have multiple branches for different instruction sets, such as SSE2, SSE4.2,
AVX, AVX2, AVX512 etc. These functions will detect which instruction set is supported by
the microprocessor it is running on and select the optimal branch. This detection is done
automatically the first time such a function is called, and an internal pointer is set to the
optimal version of the function so that no detection is required when the same function is
called again.

This library is also intended as a showcase to illustrate the optimization methods explained
in my optimization manuals and as an example of how to make a cross-platform function
library.

The latest version of asmlib is always available at www.agner.org/optimize.

1.1 Support for multiple platforms

Different operating systems and compilers use different object file formats and different
calling conventions. Asmlib is available in different versions, supporting 32-bit and 64-bit
Windows, Linux, BSD and Mac running Intel, AMD and VIA x86 and x86-64 family
processors. The following object file formats are supported: OMF, COFF, ELF, Mach-O.
Almost all C and C++ compilers for these platforms support at least one of these object file
formats. Processors running other instruction sets, such as Itanium, Power-PC or ARM are
not supported.

Version 2.20 and later of asmlib is written in the NASM/YASM dialect of assembly syntax
because the NASM and YASM assemblers support multiple platforms.

Version 2.50 and later no longer includes position-independent 32-bit versions of the
libraries because these can only be built with the YASM assembler, which is no longer
maintained.

See page 6 for a list of asmlib versions for different platforms.

1.2 Calling from other programming languages

Asmlib is designed for calling from C and C++. Calling the library functions from other
programming languages can be quite difficult. It is necessary to use dynamic linking (DLL)
under Windows if the compiler does not support static linking or if the static link library is
incompatible.

A DLL under 32-bit Windows uses the stdcall calling convention by default. Only some of
the functions in asmlib have a stdcall version. See the description of each function.

http://www.agner.org/optimize

Strings and arrays are represented differently in other programming languages. It is not
possible to use string and memory functions in other programming languages unless there
is a feature for linking with C. See the manual for the specific compiler to see how to link
with C code.

For example, to call the Mersenne twister random number generator from Borland Delphi
Pascal, use the function declarations:

Procedure MersenneRandomInitD (seed:integer); stdcall;
external 'libad32.dl1l';

Procedure MersenneRandomInitByArrayD (seeds:PInteger;
NumSeeds:integer); stdcall; external 'libad32.dl1l';
{ seeds must point to first element of array }

Function MersenneRandomD: double; stdcall; external 'libad32.dll';

Function MersenneIRandomD (min,max:integer) :integer; stdcall;
external 'libad32.dll';

Function MersenneIRandomXD (min,max:integer) :integer; stdcall;
external 'libad32.dl1l';

Function MersenneBRandomD:integer; stdcall; external 'libad32.dl1l';

Linking with Java is particularly difficult. It is necessary to use the Java Native Interface
(JINI).

1.3 Position-independent code

Shared objects (*.s0) in 32-bit Linux, BSD and Mac require position-independent code.
Position-independent 32-bit code is no longer supported in asmlib.

1.4 Overriding standard function libraries

The standard libraries that are included with common compilers are not always fully
optimized and may not use the latest instruction set extensions. It is sometimes possible to
improve the speed of a program simply by using a faster function library.

You may use a profiler to measure how much time a program spends in each function. If a
significant amount of time is spent executing library functions then it may be possible to
improve performance by using faster versions of these functions.

There are two ways to replace a standard function with a faster version:

1. Use a different name for the faster version of the function. For example call
A memcpy instead of memcpy. Asmlib have functions with 2 prefix as replacements
for several standard functions.

2. Asmlib is available in an "override" version that uses the same function names as
the standard libraries. If two function libraries contain the same function name then
the linker will take the function from the library that is linked first.

If you use the "override" version of the asmlib library then you do not have to modify the
program source code. All you have to do is to link the appropriate version of asmlib into your
project. See page 6 for available versions of asmlib. If standard libraries are included
explicitly in your project then make sure asmlib comes before the standard libraries.

The override method will replace not only the function calls you write in the source code, but
also function calls generated implicitly by the compiler as well as calls from other libraries.
For example, the compiler may call memcpy when copying a big object. The override
version of asmlib accepts function names both with and without the A prefix.

3

The override method sometimes fails to call the asmlib function because the compiler uses
built-in inline codes for some common functions rather than calling a library. The built-in
codes are not optimal on modern microprocessors. Use option -fno-builtin onthe Gnu
compiler or /01i- on the Microsoft compiler to make sure the library functions are called.

The override method may fail if the standard library has multiple functions in the same
module. If the standard library has two functions in the same module, and your program
uses both functions, then you cannot replace one without replacing the other. If asmlib
replaces one, but not the other, then the linker will then generate an error message saying
that there are two definitions of the replaced function.

If the override method fails or if you do not want to override the standard library then use the

no-override version of asmlib and call the desired functions with the 2 prefix.

1.5 Comparison with other function libraries

< O =1 < Q| 20| 0 >
°| 8| 5| 8| 2|82|32| 3
2| @ B ER|ER| &
= o S| =g | =C
= |55 | 3=
Test Processor
memcpy 16kB Intel 0.12 | 0.18 |0.12 |0.11 |0.18 | 0.18 |0.18 |0.11
aligned operands | Core 2
memcpy 16kB Intel 0.63 |0.75 [0.18 |0.11 |1.21 |0.57 |0.44 |0.12
unaligned op. Core 2
memcpy 16kB AMD 024 |0.25 [0.24 |na. |[1.00 |0.25 |0.28 |0.22
aligned operands | Opteron K8
memcpy 16kB AMD 0.38 |0.44 | 040 |na. |1.00 [0.35 |0.29 |0.28
unaligned op. Opteron K8
strlen 128 Intel 0.77 | 0.89 [0.40 |0.30 |45 |0.82 |0.59 |0.27
bytes Core 2
strlen 128 AMD 1.09 | 125 |161 |[na. |223 [095 |0.6 1.19
bytes Opteron K8

Comparing performance of different function libraries.
Numbers in the table are core clock cycles per byte of data (low numbers mean good
performance). Aligned operands means that source and destination both have addresses

divisible by 16.

Library versions tested (not up to date):

Microsoft Visual studio 2008, v. 9.0
CodeGear Borland bcc, v. 5.5
Mac: Darwin8 g++ v 4.0.1.
Gnu: Glibcv. 2.7, 2.8.

Asmlib: v. 2.10.

Intel C++ compiler, v. 10.1.020. Functions intel fast memcpy and

intel new strleninlibrary 1ibircmt.1ib (undocumented function names).

See my manual Optimizing software in C++ for a discussion of the different function

libraries.

1.6 Exceptions

Asmlib does not support structured exception handling. A general protection violation
exception can occur if any of the functions in asmlib attempts to access invalid memory

4

http://www.agner.org/optimize/#manuals

addresses. The division functions can generate an exception in case of division by zero or a
divisor out of range. Such an exception is likely to be the result of a programming error
rather than intended behavior. The exception will cause a fatal error message but it is not
possible to catch the exception and recover from it. The exception-handling methods are
platform specific, and | have given higher priority to fast execution and portability than to
support an exception catching that is not likely to be useful.

1.7 String instructions and safety precautions

The string instructions in this library use the traditional C language way of handling strings
because this is much faster than the C++ style string classes with dynamic memory
allocation (see my manual "Optimizing software in C++"). The strings are stored in char
arrays with the end of each string marked by a zero. Before storing a string in an array, the
program must check that the size of the array is at least the length of the string plus one in
order to hold the terminating zero. Writing beyond the boundaries of an array can cause
malfunctions elsewhere in the program that are difficult to diagnose. This applies to the
functions strcopy, strcat, substring, and any other functions that write strings.

Some of the string functions in the asmlib library can read beyond the end of a string (but
never write beyond the end of a string). This is because they use the very efficient SSE4.2
instructions (if available) which will handle 16 characters at a time. The following asmlib
functions can read up to 15 bytes beyond the end of a string: strstr, strcmp, strspn,
strcspn, strtolower, strtoupper, strcount UTF8, strCountInSet. Reading
irrelevant bytes will not normally cause a problem as long as nothing is written to the
irrelevant addresses. But this can possibly cause an error if the string is placed at the very
end of data memory so that it attempts to read into a non-existing address space. This will
cause the program to stop immediately with an error message.

If we wanted to prevent the library functions from reading non-existing memory addresses
then we would have to check for memory page boundaries for every 16-bytes read. This
would cause the functions to be much slower. Since the main focus of the asmlib library is
to improve speed, we have chosen a different solution to this problem, namely to make sure
that no string is placed at the very end of valid data memory. The functions simply add 16
bytes of unused memory to the uninitialized data section (.bss) which comes after the
normal data section (. data). This will most likely prevent any error, but the programmer
should take care of the following considerations if you want to be absolutely safe:

String literals, static arrays, and global arrays are stored in a static data section, which is
followed by the .bss section and often several other sections. This is safe to use if one of
the abovementioned functions is included in the same executable. A DLL or shared object
has its own data sections. These data sections are usually followed by import tables,
exception handler tables, etc. To be absolutely sure, you may link one of the above
functions into the DLL/shared object by making a (dummy) call to it, for example

A strcmp ("","").

An array declared inside a function is a good and efficient place to store a string. The array
is stored on the stack (unless declared static) and deallocated when the function returns.
Reading beyond the end of the string array will not cause problems because there will
always be something else (parameters and return addresses) at the end of the stack
section.

Strings that are dynamically allocated with new or malloc or use C++ style string classes
are stored on the heap. | do not have detailed information about the implementation of the
heap in various systems to tell whether there is an end node of at least 15 bytes. It is
recommended to allocate sufficient heap space if you are using dynamically allocated
strings. A safer and more efficient solution is to allocate a memory pool of sufficient size and
store multiple strings in the same memaory pool. An implementation of such a string pool is

5

http://www.agner.org/optimize/#manuals

provided in www.agner.org/optimize/cppexamples.zip, which also has support for using
asmlib.

Most of the string functions can be used with either ASCII strings or UTF-8 encoded strings
or any code page that uses single-byte codes. The UTF-8 coding system uses a single byte
for the most common characters and multiple bytes for the less common characters. The
UTF-8 is designed so that no part of a multi-byte code will in itself be a valid UTF-8 code.
Thanks to this feature, it is possible to use search functions such as strcmp and strstr
with UTF-8 strings. It is not safe to use the substring function on UTF-8 strings, unless
you make special checks to avoid cutting off part of a multi-byte character code.

2 Library versions

The asmlib library has many versions for compatibility with different platforms and
compilers. Use the tables below to select the right version for a particular application.

Library version selection guide: Windows

Compiler/language File Override 32 hit 64 bit
format standard library
MS C++ unmanaged, COFF yes libacof320.lib libacof640.lib
Intel, Gnu no libacof32.lib libacof64.lib
Borland C++, Watcom, | OMF yes libaomf32o0.lib
Digital Mars no libaomf32.lib
MS C++ .net, C#, VB DLL no libad32.dll libad64.dll
Borland Delphi DLL no libad32.dll
Other languages DLL no libad32.dll libad64.dll
Library version selection guide: Linux and BSD (x86 and x86-64)
Compiler/language File Override standard | 32 bit 64 bit
format library executable
Gnu, Clang, Intel C++ ELF yes libaelf320.a libaelf64o.a
no libaelf32.a libaelf64.a
Library version selection guide: Mac (Intel based)
Compiler/language File Override standard | 32 bit 64 bit
format library executable
Gnu, Clang, Intel C++ | MachO yes libamac320.a libamac640.a
no libamac32.a libamac64.a

Explanation of the column headings:
Compiler/language: The compiler and programming language used. Different compilers may
use different object file formats.

File format: It is necessary to select a library in the right object file format, or a dynamic link

library if static linking is not possible.

Override standard library: Libraries with suffix o use the same names for standard functions
as standard libraries. If this library is linked before the standard library then it will replace
standard functions such as memcpy, memset, strlen, etc.. Libraries without suffix o use
different names for the standard functions.

32 bit / 64 bit: Use the appropriate version when compiling for 32-bit mode or 64-bit mode.

32 bit executable: Use this version when making a main executable binary file.

http://www.agner.org/optimize/cppexamples.zip

3 Memory and string functions

3.1 memcpy

Function prototype
void * A memcpy(void * dest, const void * src, size t count);

Description

Fast implementation of the standard memcpy function. Copies count bytes from src to
dest. Itis the responsibility of the programmer to make sure count does not exceed the
size in bytes of dest. If the beginning of the destination block overlaps with the source then
it is possible that part of the source is overwritten before it is copied. The programmer
cannot rely on the data being copied in any particular order. This function uses different
methods for different CPU models, based on tests of which method is fastest on each type
of CPU.

Uncached writes

This function can write either via the data cache or directly to memory. Writing to the cache
is usually faster, but it may be advantageous to write directly to memory when the size of
the data block is very big, in order to avoid polluting the cache.

The 2 memcpy function will use uncached writes when the size specified by count is
bigger than a certain limit. This limit is set by default to half the size of the last level cache.
The limit can be read with GetMemcpyCacheLimit and changed with
SetMemcpyCacheLimit. These functions are defined as:

size t GetMemcpyCachelLimit (void) ;

void SetMemcpyCachelLimit (size t limit);

The latter function will restore the default value (half the size of the last level cache) when
called with 1imit = 0.

Versions included
Standard library override version: Yes
Stdcall version: No

3.2 memmove

Function prototype
void * A memmove (void * dest, const void * src, size t count);

Description
Fast implementation of the standard memmove function. Copies count bytes from src to

dest. Itis the responsibility of the programmer to make sure that count does not exceed
the size in bytes of dest. This function allows overlap between src and dest by making
sure that overlapping memory positions are read before they are written. The programmer
cannot rely on the data being copied in any particular order, except for this rule. This
function uses different methods for different CPU models, based on tests of which method is
fastest on each type of CPU.

Uncached writes
The A memmove function will use uncached writes when the size specified by count is
bigger than a certain limit. This limit is the same as for 2 memcpy, see page 7.

Versions included
Standard library override version: Yes
Stdcall version: No

3.3 memset

Function prototype
void * A memset (void * dest, int c, size t count);

Description
Fast implementation of the standard memset function. Inserts count copies of the lower

byte of c into dest. It is the responsibility of the programmer to make sure count does not
exceed the size in bytes of dest. This function uses different methods for different CPU
models, based on tests of which method is fastest on each type of CPU.

Uncached writes

This function can write either via the data cache or directly to memory. Writing to the cache
is usually faster, but it may be advantageous to write directly to memory when the size of
the data block is very big, in order to avoid polluting the cache.

The A memset function will use uncached writes when the size specified by count is
bigger than a certain limit. This limit is set by default to half the size of the last level cache.
The limit can be read with GetMemsetCacheLimit and changed with
SetMemsetCacheLimit. These functions are defined as:

size t GetMemsetCachelLimit (void) ;

void SetMemsetCachelLimit (size t limit);

The latter function will restore the default value (half the size of the last level cache) when
called with 1imit =0.

Versions included
Standard library override version: Yes
Stdcall version: No

3.4 memcmp

Function prototype
int A memcmp (const void * bufl, const void * buf2, size t count);

Description
Fast implementation of the standard memcmp function. Compares two blocks of memory of

size count bytes. The return value is zero if the two memory blocks ptrl and ptr2 are
equal. The return value is positive if the first differing byte is bigger in ptrl thanin ptr2
when compared as unsigned bytes. The return value is negative if the first differing byte is
smaller in ptr1 than in ptr2 when compared as unsigned bytes.

Versions included
Standard library override version: Yes
Stdcall version: No

3.5 strcat

Function prototype
char * A strcat(char * dest, const char * src);

Description
Fast implementation of the standard strcat function. Concatenates two zero-terminated

strings by inserting a copy of src after dest followed by a terminating zero. It is the
responsibility of the programmer to make sure that strlen (dest) +strlen(src)+1 does
not exceed the size in bytes of the array containing dest.

8

Uncached writes
Extremely long strings can bypass the cache, see page 7.

Versions included
Standard library override version: Yes
Stdcall version: No

3.6 strcopy

Function prototype
char * A strcpy(char * dest, const char * src);

Description
Fast implementation of the standard strcopy function. Copies a zero-terminated string

src into an array dest followed by a terminating zero. It is the responsibility of the
programmer to make sure that strlen (src) +1 does not exceed the size in bytes of the
array dest.

Uncached writes
Extremely long strings can bypass the cache, see page 7.

Versions included
Standard library override version: Yes
Stdcall version: No

3.7 strlen

Function prototype
size t A strlen(const char * str);

Description
Fast implementation of the standard strlen function. Returns the length of a zero-

terminated string str, not counting the terminating zero.

If str is an ASCII string then the return value is the number of characters. If str is UTF-8
encoded then the return value is the number of code bytes, not the number of Unicode
characters. See also the function strcount UTE8 on page 12.

Versions included
Standard library override version: Yes
Stdcall version: No

3.8 strstr

Function prototype
char * A strstr (char * haystack, const char * needle);
const char * A strstr (const char * haystack, const char * needle);

Description
Searches for the first occurrence of the substring needle in the string haystack. The

return value is a pointer to the first occurrence of the substring needle in haystack, or
zero (NULL) if not found. This function is particularly fast if the SSE4.2 instruction set is
supported by the processor.

The two parameters can be zero-terminated ASCII or UTF-8 strings. It works with UTF-8
strings because no part of a multi-byte UTF-8 character can be a valid character. This
implementation is useful for speeding up lexical processing, text parsing and DNA analysis
applications.

Note

This function may read up to 15 bytes beyond the ends of the two strings. See page 5 for
necessary precautions.

Versions included
Standard library override version: No, because of the special precautions needed.
Stdcall version: No.

3.9 strcmp

Function prototype
int A strcmp (const char * stringl, const char * string2);

Description
Compares two strings with case sensitivity. The two parameters can be zero-terminated

ASCII or UTF-8 strings.

The return value is negative if stringl < string2, zero if stringl = string2, and
positive if stringl > string2. The comparison is based on the unsigned ASCII or
Unicode value of the first character that differs between stringl and string?2.

Note

This function may read up to 15 bytes beyond the ends of the two strings. See page 5 for
necessary precautions.

Versions included

Standard library override version: No, because of the special precautions needed as
explained in the above note.

Stdcall version: No.

3.10 stricmp

Function prototype
int A stricmp(const char *stringl, const char *string2);

Description
String comparison without case sensitivity. This is similar to the standard library function

variously named stricmp, stricmp, strcmpi Of strcasecmp, but it differs by not
depending on locale settings or codepages. The two parameters are zero-terminated ASCII
or UTF-8 strings.

A stricmp is faster than the standard function stricmp etc. when a locale or codepage is
defined because it does not have to look up all characters in tables. The letters A-Z are
compared as if they were lower case, but other letters such as A & A & A, 4 etc. are
regarded as all different and unique.

The return value is negative if stringl < string2, zero if stringl = string2, and
positive if stringl > string2. The comparison is based on the unsigned ASCII or
Unicode value of the first character that differs between stringl and string2, with A-Z
converted to lower case.

10

If multiple comparisons are needed then it is faster to convert both strings to lower case with
A strtolower and then compare with A strcmp.

Versions included
Standard library override version: No, because not exactly identical function.
Stdcall version: No.

3.11 strspn, strcspn

Function prototype
size t strspn (const char * str, const char * set);
size t strcspn (const char * str, const char * set);

Description
strspn finds the length of the initial portion of st r which consists only of characters that

are part of set. (This is the same as the zero-based index to the first character not
contained in of set).

strcspn finds the length of the initial portion of st r which consists only of characters that
are not part of set. (This is the same as the zero-based index to the first character that is
contained in set).

The two parameters are zero-terminated ASCII strings. The functions will not work correctly
if set contains multi-byte UTF-8 encoded characters.

These functions are useful for string parsing and finding whitespace, delimiters, etc. The
functions are particularly fast if the SSE4.2 instruction set is supported by the
microprocessor.

Note

This function may read up to 15 bytes beyond the ends of the two strings. See page 5 for
necessary precautions.

Versions included

Standard library override version: No, because of the special precautions needed as
explained in the above note.

Stdcall version: No.

3.12 substring

Function prototype
size t A substring(char * dest, const char * source, size t pos,
size t len);

Description
Makes a substring from source, starting at position pos (zero-based), and length 1en and

stores it in the array dest. It is the responsibility of the programmer that the size of the
dest array is at least 1en+1 in order to make space for the string and the terminating zero.
The return value is the actual length of the substring. This may be less than 1en if the
length of source is less than pos+1len. source must be a zero-terminated ASCII string.
The substring stored in dest will be zero-terminated, even if its length is zero. This function
is not found in standard C libraries, though it is often needed.

It is not safe to use this function for UTF-8 encoded strings because it may cut off part of a
multi-byte character code. Such a partial character code will surely mess up the subsequent
processing of the substring.

11

Versions included
Standard library override version: No.
Stdcall version: No.

3.13 strtolower, strtoupper

Function prototype
void A strtolower (char * string);
void A strtoupper (char * string);

Description
Converts a zero-terminated string to lower or upper case. Only the letters a-z or A-Z are

converted. Other letters such as 4, &, &, a are not converted. The functions save time by not
looking up locale-specific characters. The parameter can be a zero-terminated ASCII or
UTF-8 string.

Note

This function may read up to 15 bytes beyond the end of the string. See page 5 for
necessary precautions.

Versions included
Standard library override version: No.
Stdcall version: No.

3.14 strcount_UTF8

Function prototype
size t strcount UTFS8 (const char * str);

Description
Counts the number of characters in a zero-terminated UTF-8 encoded string. This value is

less than the value returned by strlen if the string contains multi-byte character codes.
The terminating zero is not included in the count. Any byte order mark (BOM) is counted as
one character.

This function does not check if the string contains valid UTF-8 code. It only counts the
number of bytes, excluding continuation bytes.

Note

This function may read up to 15 bytes beyond the end of the string. See page 5 for
necessary precautions.

Versions included
Stdcall version: No.

3.15 strCountlnSet

Function prototype
size t strCountInSet (const char * str, const char * set);

Description
Counts how many characters in the string str that belong to the set defined by the

characters in set. Both strings are zero-terminated ASCII strings. Does not work if set
contains multi-byte UTF-8 characters.

12

Note

This function may read up to 15 bytes beyond the ends of the two strings. See page 5 for
necessary precautions.

Versions included
Stdcall version: No.

4 Integer division functions

These functions are intended for fast integer division when the same divisor is used multiple
times. Division is slow on most microprocessors. In floating point calculations, we can do
multiple divisions with the same divisor faster by multiplying with the reciprocal, for example:

float a, b, d;
a /=d; b /= d;
can be changed to:

float a, b, d, r;
r =1.0f / d;
a *= r; b *= r;

If we want to do something similar with integers then we have to scale the reciprocal divisor
by 2" and then shift n places to the right after the multiplication. A good deal of sophistication
is needed to determine a suitable value for n and to compensate for rounding errors. The
following functions implement this method in such a way that the result is truncated towards
zero in order to get exactly the same result as we get with the '/' operator.

Most compilers will actually use this method automatically if the value of the divisor is a
constant known at compile time. However, if the divisor is known only at runtime and you
are doing multiple divisions with the same divisor then it is faster to use the functions
described below.

The same method is useful for integer division in vector registers. This is implemented in the
vector class library, available from www.agner.org/optimize/#vectorclass. If you do not want
to use the vector class library then you may use the vector division functions below.

4.1 Signed and unsigned integer division

Function prototype, signed version
void setdivisori32 (int buffer[2], int d);
int dividefixedi32 (const int buffer[2], int x);

Function prototype, unsigned version

void setdivisoru32 (unsigned int buffer[2], unsigned int d);
unsigned int dividefixedu32 (const unsigned int buffer[2], unsigned
int x);

Description
The buf fer parameter is used internally for storing the reciprocal divisor and the shift

count. setdivisor.. must be called first with the desired divisor d. Then

dividefixed. . can be called for each x that you want to divide by d. Note that the divisor
d must be positive, while the dividend x can have any value. If you need a negative divisor
then change the sign of the divisor to positive and change the sign of the result. You may
use multiple buffers if you have multiple divisors.

13

http://www.agner.org/optimize/#vectorclass

Wrapper class and overloaded /' operator

A wrapper class with an overloaded '/* operator is included when using C++. The name of
this wrapper class is div_ 132 for the signed version and div u32 for the unsigned
version. It can be used in the following way:

int a, b, d;

div_132 div(d); // Object div represents divisor d
a =a / div; // Same as a/d but faster
b =Db / div; // Same as b/d but faster

You may have multiple instances of the class if you have different divisors, or change the
divisor with div.setdivisor (NewDivisor) ;

Error conditions

d = 0 will generate a divide-by-zero exception. d < 0 will generate a division overflow
exception in the signed version.

Versions included
Stdcall versions: No.

4.2 Integer vector division

Function prototype, vector of 8 signed 16-bit integers
void setdivisorV8ilé6(ml28i buf[2], intl6 t d);
~ ml28i dividefixedVv8il6 (const ml28i buf[2], ml28i x);

Function prototype, vector of 8 unsigned 16-bit integers
void setdivisorV8ul6(ml281 buf[2], uintle t d);
~ ml281 dividefixedV8ulb6 (const ml28i buf([2], ml28i x);

Function prototype, vector of 4 signed 32-bit integers
void setdivisorV4i32(ml28i buf[2], int32 t d);
~ ml281i dividefixedV4i32 (const ml28i buf([2], ml28i x);

Function prototype, vector of 4 unsigned 32-bit integers
void setdivisorV4u32(ml28i buf[2], uint32 t d);
__m128i dividefixedV4u32 (const __m128i buf[2], __m128i X);

Description
The buf parameter is used internally for storing the reciprocal divisor and the shift count.

setdivisor.. must be called first with the desired divisor d. Then dividefixed.. can
be called for each vector x that you want to divide by d. Note that the divisor d must be
positive, while the dividend x can have any value. If you need a negative divisor then
change the sign of the divisor to positive and change the sign of the result. You may use
multiple buffers if you have multiple divisors. The 16-bit versions are faster than the 32-bit
versions, measured by the time it takes to divide a whole vector.

The header file emmintrin.h must be included before asmlib.h in order to enable the
vector type m128i if you use these functions.

Error conditions

d = 0 will generate a divide-by-zero exception. d < 0 will generate a division overflow
exception in the signed versions.

Versions included
Stdcall versions: No.

14

Vector classes and overloaded '/' operator

Vector classes with overloaded operators for integer vector division are provided in the
vector class library www.agner.org/optimize/VectorClass.zip.

These vector classes can be used as shown in the following example:

// Example for dividing 400 integers by 10
#include <vectorclass.h> // Header file for vector classes

numbers to work with
make divisor object
temporary vector of 4 int

int dividends[4007],
Divisor4di div10(10);
Vec4i temp;

//
//
//

quotients[400];

// loop for 4 elements per iteration

for (int i = 0; 1 < 400; i += 4) {
temp.load (dividends+i) ; // load 4 elements
temp /= div10; // divide each element by 10

store 4 elements

/7

temp.store (quotients+i);

If Intel's header file dvec.h is available then you may use the vector classes in dvec.h
instead, though it is less versatile. This example illustrates how:

// Intel vector classes
// asmlib header file

#include <dvec.h>
#include "asmlib.h"

// define class for encapsulating division parameters
class Divisor Is32vecd {
public:
~ ml281i buf[2];
Divisor Is32vec4 (int d) {
setdivisorV4i32 (buf,d);

// parameters

// constructor

// calculate parameters
}

}i

// define operator for dividing vector by divisor object
Is32vec4 operator / (Is32vecd const & a, Divisor Is32vec4 const & d)

return dividefixedv4i32 (d.buf, a);
}
int dividends[400], quotients[400]; // numbers to work with
Divisor Is32vecd4 div10(10); // make divisor object
Is32vecd temp; // temporary vector of 4 int

// loop for 4 elements per iteration

for (int 1 = 0; 1 < 400; 1 += 4) {
temp = *(Is32vecd*) (dividends+i); // load 4 elements
temp = temp / div1O0; // divide each element by 10

* (Is32vecd™*) (quotients+i) = temp; // store 4 elements

5 Miscellaneous functions

5.1 round

Function prototypes
int RoundF (float

X) ;

15

http://www.agner.org/optimize/VectorClass.zip

int RoundD (double x);

int Round(float x); // C++ overloaded
int Round (double x); // C++ overloaded
Description

Converts a floating point number to the nearest integer. When two integers are equally near,
then the even integer is chosen (provided that the current rounding mode is set to default).
This function does not check for overflow. The default way of converting floating point
numbers to integers in C++ is truncation. Rounding is much faster than truncation in 32 bit
mode when the SSE2 instruction set is not enabled.

Versions included
Stdcall versions: No

Alternatives

Compilers with C99 or C++0x support have the identical functions 1rint and 1rintf.
Compilers with intrinsic functions support have mm cvtsd si32 and mm cvt ss2si
when SSE2 is enabled.

5.2 popcount

Function prototype
unsigned int A popcount (unsigned int x);

Description
Population count. Counts the number of 1-bits in a 32-bit integer.

Versions included
Stdcall versions: No

5.3 InstructionSet

Function prototype
int InstructionSet (void) ;

Description
This function detects which instructions are supported by the microprocessor and the

operating system. The return value is also stored in a global variable named IInstrSet. If
IInstrSet is not negative then InstructionsSet has already been called and you do not
need to call it again.

Return values:

16

Return value Meaning

0 80386 instruction set only

1 or above MMX instructions supported

2 or above conditional move and FCOMI supported

3 or above SSE (XMM) supported by processor and enabled by Operating system
4 or above SSE2 supported

5 or above SSE3 supported

6 or above Supplementary-SSE3 supported (SSSE3)

8 or above SSEA4.1 supported

9 or above POPCNT supported

10 or above SSEA4.2 supported

11 or above AVX (YMM) supported by processor and enabled by Operating system
12 or above PCLMUL and AES supported

13 or above AVX2 supported

14 or above FMA3, F16C, BMI1, BMI2, LZCNT

15 or above AVX512F

16 or above AVX512BW, AVX512DQ, AVX512VL

The return value will always be 4 or more in 64-bit systems.

This function is intended to indicate only instructions that are supported by Intel, AMD and
VIA and instructions that might be supported by all these vendors in the future. Each level is
reported only if all the preceding levels are also supported.

Instructions and features that do not form a natural sequence or which may not be
supported in future processors are not included here.

Vendor-specific instructions (e.g. XOP for AMD) are not included here.

Versions included
Stdcall version: Same version can be used.

5.4 ProcessorName

Function prototype
char * ProcessorName (void) ;

Description
Returns a pointer to a static zero-terminated ASCII string with a description of the

microprocessor as returned by the CPUID instruction.

Versions included
Stdcall version: Same version can be used.

5.5 CpuType

Function prototype
void CpuType (int * vendor, int * family, int * model);

Description
Determines the vendor, family and model number of the current CPU and returns these to

the variables pointed to by the parameters.

Values of vendor:

0 = unknown, 1 = Intel, 2 = AMD, 3 = VIA/Centaur, 4 = Cyrix, 5 = NexGen.

The value returned as family is the sum of the family and extended family numbers as given
by the cpuid instruction.

17

The value returned as model is the model number + (extended model number << 8), as
given by the cpuid instruction.

Null pointers are allowed for values that are not needed.

Versions included
Stdcall versions: No

5.6 DataCacheSize

Function prototype
size t DataCacheSize (int level);

Description
Gives the size in bytes of the level-1, level-2 or level-3 data cache, for 1evel =1, 2, or 3,

respectively. The size of the largest-level cache is returned when 1evel = 0. This function
does not tell the size of the code cache.

A value of 0 is returned if there is no cache or if the function fails to determine the cache
size.

Versions included
Stdcall versions: No

5.7 cpuid_abcd

Function prototype
void cpuild abcd(int abcd[4], int eax);

Description
This function calls the CPUID machine instruction.

The input value of register eax is in eax.

The output value of register eax is returned in abcd [
The output value of register ebx is returned in abcd [
The output value of register ecx is returned in abcd [
The output value of register edx is returned in abcd [
The use of the CPUID instruction is documented in manuals from Intel and AMD.

0]

17].
27].
37.

Alternative

Compilers with support for intrinsic functions may have the similar function cpuid.

Versions included
Stdcall version: No.

5.8 cpuid_ex

Function prototype
void cpuid ex(int abcd[4], int eax, int ecx);

Description
This function calls the CPUID machine instruction.

The input value of register eax is in eax.
The input value of register ecx is in ecx.
The output value of register eax is returned in abcd [0].
The output value of register ebx is returned in abcd[1].
The output value of register ecx is returned in abcd[2].

18

The output value of register edx is returned in abcd [3].
The use of the CPUID instruction is documented in manuals from Intel and AMD.

Alternative
Compilers with support for intrinsic functions may have the similar function cpuidex.

Versions included
Stdcall versions: No

5.9 ReadTSC

Function prototype
uint64 t ReadTSC (void);

Description
This function returns the value of the internal clock counter in the microprocessor. Execution

is serialized before and after reading the time stamp counter in order to prevent out-of-order
execution. Does not work on the old 80386 and 80486 processors. A 32-bit value is
returned if the compiler does not support 64-bit integers.

To count how many clock cycles a piece of code takes, call ReadTscC before and after the
code to measure and calculate the difference.

You may see that the count varies a lot because you may not be able to prevent interrupts
during the execution of your code. If the measurement is repeated then you will see that the
code takes longer time the first time it is executed than the subsequent times because code
and data are less likely to be in the cache at the first execution.

Time measurements with ReadTsC () may not be fully reproducible on Intel processors with
SpeedStep technology (i.e. Core and later) because the clock frequency is variable.

Versions included
Stdcall version: Same version can be used.

5.10 DebugBreak

Function prototype
void A DebugBreak (void) ;

Description
Makes a debug breakpoint for testing purposes. Will not work when the program is not

running in a debugger.

Versions included
Stdcall version: Same version can be used.

6 Random number generator functions

These random number generators form a part of the random number generator library,
available from www.agner.org/random. Please see the random number generator library for
instructions, theoretical details and for generating different probability distributions.

Large applications may instead use the random number vector generator in the vector class
library http://www.agner.org/optimize/#vectorclass.

19

http://www.agner.org/random/
http://www.agner.org/optimize/#vectorclass

There are several different pseudo random number generators available in asmlib:

Pseudo random number
generator

Description

Mersenne twister

This generator has become very popular because of its good
randomness, long cycle length and high speed.

SFMT generator

A further development of the Mersenne twister, specially
designed for computers with vector instructions. Better and
faster than the standard Mersenne twister.

Mother-of-all generator

An older generator with a small memory footprint. Has higher
bifurcation but lower cycle length than the other generators.

Combined SFMT and
Mother-of-all generator

Combines the SFMT generator and the Mother-of-all
generator for the most demanding applications.

There is also a non-deterministic random number generator PhysicalSeed, see page 24.

Each of the pseudo random number generators are available in different implementations:

Variant

Description

Single threaded, C, static
link

Simple to call from * . 1ib or * . a library. Not for multiple
threads.

Single threaded, DLL

Windows DLL. To call from programming languages that
cannot link to a *. 1ib library. Not for multiple threads.

Thread-safe, C, static link

For multi-threaded applications in C language. Caller must
supply a storage buffer for each thread. Link with * . 1ib or
* . a library.

Thread-safe, C++, static
link

Convenient C++ class for single and multi-threaded
applications, linking to *.1ib or *. a library.

Thread-safe, C++ source

Source code in C++. Does not need external library. Provided
in randomc . zip package, www.agner.org/random.

Pseudo-random numbers are generated by calling the following functions. Each function
has different variants for the different generators. You must initialize the random number
generator before generating the first random number.

Function

Purpose

RandomlInit

Initialize random number generator with a 32-bit integer as
seed. Each seed generates a different sequence of pseudo-
random numbers. Starting again with the same seed will
generate the same sequence.

InitByArray

Initialize random number with an array of multiple integers as
seed. The generated sequence depends on all values in the
array. (Not available for Mother-of-all generator).

Random

Generates a random floating point number with uniform
distribution in the interval 0 < x < 1. Double precision.
Resolution: 32 bits in Mersenne Twister and Mother-Of-All
generator, 52 bits in SFMT and combined generator.

RandomL

Same as Random, but with long double precision. Only
available with SFMT generator, and only for compilers that
support long double precision. Resolution: 63 bits.

IRandom

Generates a random integer with uniform distribution in an
arbitrary interval. The distribution may be slightly biased due
to rounding errors, especially for very large intervals that are
not a power of 2.

Restrictions: max = min and max - min + 1 < 2%,

20

http://www.agner.org/random

IRandomX Same as IRandom, but with exactly uniform distribution.
Slower than IRandom, especially when the interval length is
changing. (Not available for Mother-of-all generator).

BRandom Generates 32 random bits as a 32-bit integer.

These function names have different prefixes etc. for the different generator variants. The
complete function declarations are listed below.

6.1 Mersenne twister

Single threaded, C language, static link version
Function prototypes in asmlibran.h.

void MersenneRandomInit (int seed);

void MersenneRandomInitByArray (int const seeds[], int NumSeeds) ;
int MersenneIRandom (int min, int max);

int MersenneIRandomX (int min, int max);

double MersenneRandom () ;

uint32 t MersenneBRandom() ;

Single threaded, Windows DLL version
Function prototypes in asmlibran.h.

void stdcall MersenneRandomInitD (int seed);
void stdcall MersenneRandomInitByArrayD (int const seeds[],
int NumSeeds) ;

int stdcall MersenneIRandomD (int min, int max);
int stdcall MersenneIRandomXD (int min, int max);
double ___stdcall MersenneRandomD () ;

uint32 t stdcall MersenneBRandomD () ;

Thread-safe, C language, static link version
Function prototypes in asmlibran.h.

void MersRandomInit (void * Pthis, int seed);

void MersRandomInitByArray (void * Pthis, int const seeds][],
int NumSeeds) ;

int MersIRandom (void * Pthis, int min, int max);

int MersIRandomX (void * Pthis, int min, int max);

double MersRandom (void * Pthis);

uint32 t MersBRandom (void * Pthis);

Pthis must point to a storage buffer of size MERS BUFFERSIZE bytes. Use a separate

buffer for each thread.

Thread-safe, C++, static link version
Class definition in asmlibran.h.

class CRandomMersenneA {
public:
CRandomMersenneA (int seed);
void RandomInit (int seed);

21

void RandomInitByArray (int const seeds[], int NumSeeds) ;
int IRandom (int min, int max);
int IRandomX (int min, int max);
double Random() ;
uint32 t BRandom() ;
private:
char internals[MERS BUFFERSIZE];
}s
Make one instance of the class for each thread.

Thread-safe, C++ source code

Class definition in randomc . h. Source code in mersenne. cpp
See randomc. zip.

6.2 Mother-of-all generator

Single threaded, C language, static link version
Function prototypes in asmlibran.h.

void MotherRandomInit (int seed);

int MotherIRandom (int min, int max);
double MotherRandom () ;

uint32 t MotherBRandom() ;

Single threaded, Windows DLL version
Function prototypes in asmlibran.h.

void __stdcall MotherRandomInitD (int seed);
int ~_stdcall MotherIRandomD (int min, int max);
double ~_stdcall MotherRandomD () ;

uint32 t stdcall MotherBRandomD () ;

Thread-safe, C language, static link version
Function prototypes in asmlibran.h.

void MotRandomInit (void * Pthis, int seed);

int MotIRandom (void * Pthis, int min, int max);
double MotRandom (void * Pthis);

uint32 t MotBRandom(void * Pthis);

Pthis must point to a storage buffer of size MOTHER BUFFERSIZE bytes. Use a separate
buffer for each thread.

Thread-safe, C++, static link version
Class definition in asmlibran.h.

class CRandomMotherA ({
public:
CRandomMotherA (int seed) ;
vold RandomInit (int seed) ;
int IRandom(int min, int max);

22

double Random () ;

uint32 t BRandom() ;
private:

char internals[MOTHER BUFFERSIZE];
}s
Make one instance of the class for each thread.

Thread-safe, C++ source code

Class definition in randomc . h. Source code in mersenne. cpp
See randomc. zip.

6.3 SFMT generator and combined generator

Set the parameter TncludeMother to O (default) to get the SFMT generator alone, or 1 to
combine the SFMT generator with the Mother-of-all generator.

Single threaded, C language, static link version
Function prototypes in asmlibran.h.

void SFMTgenRandomInit (int seed, int IncludeMother = 0);

void SFMTgenRandomInitByArray (int const seeds[], int NumSeeds,
int IncludeMother = 0);

int SEFMTgenIRandom (int min, int max);

int SEFMTgenIRandomX (int min, int max);

double SFMTgenRandom() ;

long double SFMTgenRandomL () ;

uint32 t SFMTgenBRandom() ;

Single threaded, Windows DLL version
Function prototypes in asmlibran.h.

void stdcall SFMTgenRandomInitD (int seed, int IncludeMother);
void stdcall SFMTgenRandomInitByArrayD(int const seeds]|],
int NumSeeds, int IncludeMother);

int stdcall SFMTgenIRandomD (int min, int max);
int stdcall SFMTgenIRandomXD (int min, int max);
double __stdcall SFMTgenRandombD () ;

uint32 t stdcall SFMTgenBRandomD () ;

Thread-safe, C language, static link version
Function prototypes in asmlibran.h.

void SFMTRandomInit (void * Pthis, int ThisSize, int seed,
int IncludeMother = 0);
void SFMTRandomInitByArray(void * Pthis, int ThisSize,

int const seeds[], int NumSeeds, int IncludeMother = 0);
int SFMTIRandom (void * Pthis, int min, int max);
int SFMTIRandomX (void * Pthis, int min, int max);

double SFMTRandom (void * Pthis);
long double SFMTRandomL (void * Pthis);
uint32 t SFMTBRandom (void * Pthis);

23

Pthis must point to a storage buffer of size SFMT BUFFERSIZE bytes. Use a separate
buffer for each thread.

Thread-safe, C++, static link version
Class definition in asmlibran.h.

class CRandomSFMTA {

public:
CRandomSFMTA (int seed, int IncludeMother = 0);
void RandomInit (int seed, int IncludeMother = 0);

void RandomInitByArray (int const seeds[], int NumSeeds,
int IncludeMother = 0);
int IRandom (int min, int max);
int IRandomX (int min, int max);
double Random () ;
long double RandomL () ;
uint32 t BRandom() ;
private:
char internals[SFMT BUFFERSIZE];
}i
Make one instance of the class for each thread.

class CRandomSEMTAl : public CRandomSFMTA {
public:
CRandomSFMTAL (int seed) : CRandomSFMTA (seed,1l) {}
i
Combined generator. Same as CRandomSFMTA with Mother-of-all generator included.

Thread-safe, C++ source code

Class definition in sfmt .h. Source code in sfmt.cpp.
See randomc. zip.

6.4 PhysicalSeed

This function generates non-deterministic random integers based on the random motion of
electrons if this feature is supported by the CPU. It is useful for generating seeds for the
pseudo random number generators listed above.

Function prototype
int PhysicalSeed(int seeds[], int NumSeeds) ;

Description
Generates random integers. This function uses a physical and non-deterministic source of

random numbers if possible. The array seeds will be filled with random 32-bit integers.
NumSeeds is the desired number of random integers to put into the array seeds. Itis the
responsibility of the programmer that the seeds array has at least NumSeeds elements.

The return value indicates the method used:

Failure. No suitable instruction available, or method failed.

No physical random number generator available. Uses internal clock counter instead.
VIA physical random number generator used.

RDRAND instruction used.

RDSEED instruction used.

A WNEFLO

24

The return value will indicate the best available method if NumSeeds is zero.

All modern microprocessors can be expected to return a value of at least 1. You need to
consider the situation where the return value is 1. This indicates that the processor has no
physical random number generator. Instead the function uses the internal clock counter in
the CPU. The clock counter returns the number of clock cycles since the computer was last
turned on.

The resolution of the internal clock counter is determined by the CPU clock frequency. If, for
example, the CPU frequency is 2 GHz, then the resolution is 0.5 nanoseconds. This can
provide a good seed for a random number generator if the event somehow depends on the
time of a command from a human user. No human is able to press a button with
nanosecond precision. However, any subsequent calls will not be independent of the first
one because it will be equal to the preceding value plus the time it takes to execute the
code until the next call. While the time it takes to execute a piece of code is not always the
same, it might possibly be exactly the same as last time this code executed. If you need
another seed that is independent of the first one then you must wait for a new user input or
some other external event that has no precise timing. Only the first two elements in seeds
will have nonzero values if the return value is 1. The first element has a resolution defined
by the internal clock frequency. The second element contains the upper 32 bits of the 64-bit
clock count if NumSeeds > 1.

If the return value is 2 or more then you can generate any number of random integers. This
function is slower than a pseudo random number generator. Therefore, it is recommended
to use the PhysicalSeed function only to generate a seed for a pseudo random number
generator and then use the pseudo random number generator for making a sequence of
random numbers.

Versions included
Stdcall version: Yes (PhysicalSeedD)

7 Patches for Intel compiler and libraries

In many cases, Intel compilers generate code that performs poorly on non-Intel CPU’s. The
compiler inserts a function that checks the CPU brand and selects a code path for an
inferior instruction set if the CPU is not an Intel. The same applies to some function libraries
from Intel, even if they are used with a different compiler. See
http://www.agner.org/optimize/blog/read.php?i=49 and
http://www.agner.org/optimize/#manual_cpp for further discussion of this issue.

The included file inteldispatchpatch.zip includes code that can be used to circumvent this
problem and improve the compatibility of the code with CPU’s from other vendors than Intel.
See the file dispatchpatch.txt for instructions.

8 File list

Files in asmlib.zip

asmlib-instructions.pdf This file

asmlib.h C/C++ Header file for asmlib functions

asmlibran.h C/C++ Header file for random number generators
libaelf32.a Library 32-bit ELF format

libaelf320.a Library 32-bit ELF format, override standard library
libaelf64.a Library 64-bit ELF format

25

http://www.agner.org/optimize/blog/read.php?i=49
http://www.agner.org/optimize/#manual_cpp

libaelf640.a Library 64-bit ELF format, override standard library

libamac32.a Library 32-bit Mach-O format

libamac320.a Library 32-bit Mach-O format, override standard library

libamac64.a Library 64-bit Mach-O format

libamac640.a Library 64-bit Mach-O format, override standard library

libad32.dll Library 32-bit Windows DLL

libad32.lib Import library for libad32.dll

libad64.dll Library 64-bit Windows DLL

libad64.lib Import library for libad64.dll

libacof32.lib Library 32-bit COFF format

libacof320.lib Library 32-bit COFF format, override standard library

libacof64.lib Library 64-bit COFF format

libacof640.lib Library 64-bit COFF format, override standard library

libaomf32.lib Library, 32-bit OMF format

libaomf32o0.lib Library, 32-bit OMF format, override standard library

license.txt Gnu general public license

asmlibSrc.zip Source code

inteldispatchpatch.zip Alternative CPU dispatchers for improving the compatibility of Intel
function libraries with non-Intel CPUs

Files in asmlibSrc.zip

cachesize32.asm cachesize64.asm

Source code for DataCacheSize function

cpuid32.asm cpuid64.asm

Source code for cpuid... functions

cputype32.asm cputype64.asm

Source code for CpuType function

debugbreak32.asm debugbreak64.asm

Source code for DebugBreak function

dispatchpatch32/64.asm

Source code for object files in inteldispatchpatch.zip

divfixedi32.asm divfixedi64.asm

Source code for integer division functions

divfixedv32.asm divfixedv64.asm

Source code for integer vector division functions

instrset32.asm instrset64.asm

Source code for InstructionSet function

libad32.asm libad64.asm

Source code for DLL entry

memcpy32.asm memcpy64.asm

Source code for memcpy function

memmove32.asm memmove64.asm

Source code for memmove function

memset32.asm memset64.asm

Source code for memset function

mersenne32.asm mersenne64.asm

Source code for Mersenne twister

mother32.asm mother64.asm

Source code for Mother-of-all generator

physseed32.asm physseed64.asm

Source code for PhysicalSeed function

popcount32.asm popcount64.asm

Source code for popcount function

procname32.asm procname64.asm

Source code for ProcessorName function

rdtsc32.asm rdtsc64.asm

Source code for ReadTSC function

round32.asm round64.asm

Source code for Round functions

serialize32.asm serialize64.asm

Source code for Serialize function

sfmt32.asm sfmt64.asm

Source code for SFMT generator

strcat32.asm strcat64.asm

Source code for strcat function

strcmp32.asm strcmp64.asm

Source code for strcmp function

strcountset32.asm strcountset64.asm

Source code for strCountinSet function

strcountutf832.asm strcountutf864.asm

Source code for strcount UTF8 function

strcpy32.asm strcpy64.asm

Source code for strcpy function

stricmp32.asm stricmp64.asm

Source code for stricmp function

strlen32.asm strlen64.asm

Source code for strlen function

strspn32.asm strspn64.asm

Source code for strspn and strcspn functions

strstr32.asm strstr64.asm

Source code for strstr function

strtouplow32.asm strtouplow64.asm

Source code for strtolower and strtoupper functions

substring32.asm substring64.asm

Source code for substring function

unalignedisfaster32/64.asm

Source code for internal function

26

randomah.asi Source code for pseudo random number generators
testalib.cpp Test example

testmem.cpp Example for testing memory functions
testrandom.cpp Example for testing random generator functions
libad32.def Exports definition function for libad32.dll

libad64.def Exports definition function for libad64.dll
MakeAsmlib.bat Batch file for making asmlib

asmlib.make Makefile for making asmlib

Files in inteldispatchpatch.zip

dispatchpatch.txt Instructions: Patches for improving the compatibility of
Intel function libraries and Intel compiler generated code
with non-Intel CPUs
intel_cpu_feature_patch.c Workaround for Intel compiler and SVML library
intel_mkI_feature_patch.c Workaround for Intel math kernel library (MKL)
dispatchpatch32.0 Dispatchers for MKL/VML, Linux, 32 bit
dispatchpatch64.0 Dispatchers for MKL/VML, Linux, 64 bit
dispatchpatch32.0bj Dispatchers for MKL/VML, Windows, 32 bit
dispatchpatch64.0bj Dispatchers for MKL/VML, Windows, 64 bit
dispatchpatch32.mac.o Dispatchers for MKL/VML, Mac, 32 bit
dispatchpatch64.mac.o Dispatchers for MKL/VML, Mac, 64 bit
9 Change log

Version 2.51. 2016-11-16:
AVX512F version of memmove.
Fixed bug in SetMemcpyCacheLimit.

Version 2.50. 2016-11-09:

AVX512F version of memcpy, memset, and memcmp.

AVX512BW version of memcpy, memmove, memset, and memcmp.
InstructionSet function added value 16.

Position-independent 32-bit versions of libraries no longer included.
Fixed bug in strCountinSetGeneric

Version 2.32. 2013-08-21:
AVX version of memcpy, memmove and memset improved for some Intel processors.
InstructionSet function added values 14 and 15.

Version 2.20. 2011-07-06:
Assembly code switched to NASM syntax.

10 License conditions

These software libraries are free: you can redistribute the software and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the license, or any later version.

Commercial licenses are available on request to www.agner.org/contact.

This software is distributed in the hope that it will be useful, but without any warranty. See
the file 1icense. txt or www.gnu.org/licenses for the license text.

27

http://www.fsf.org/
http://www.fsf.org/
http://www.agner.org/contact
http://www.gnu.org/licenses/

11 No support

Note that asmlib is a free library provided without warranty or support. This library is for
experts only, and it may not be compatible with all compilers and linkers. If you have
problems using it, then don't.

| am sorry that | don't have the time and resources to provide support for this library. If you

ask me to help with your programming problems then you will not get any answer. Bug
reports are welcome, though.

28

	1 Introduction
	1.1 Support for multiple platforms
	1.2 Calling from other programming languages
	1.3 Position-independent code
	1.4 Overriding standard function libraries
	1.5 Comparison with other function libraries
	1.6 Exceptions
	1.7 String instructions and safety precautions

	2 Library versions
	3 Memory and string functions
	3.1 memcpy
	3.2 memmove
	3.3 memset
	3.4 memcmp
	3.5 strcat
	3.6 strcopy
	3.7 strlen
	3.8 strstr
	Note

	3.9 strcmp
	Note

	3.10 stricmp
	3.11 strspn, strcspn
	Note

	3.12 substring
	3.13 strtolower, strtoupper
	Note

	3.14 strcount_UTF8
	Note

	3.15 strCountInSet
	Note

	4 Integer division functions
	4.1 Signed and unsigned integer division
	Wrapper class and overloaded '/' operator
	Error conditions

	4.2 Integer vector division
	Error conditions
	Vector classes and overloaded '/' operator

	5 Miscellaneous functions
	5.1 round
	5.2 popcount
	5.3 InstructionSet
	5.4 ProcessorName
	5.5 CpuType
	5.6 DataCacheSize
	5.7 cpuid_abcd
	Alternative

	5.8 cpuid_ex
	Alternative

	5.9 ReadTSC
	5.10 DebugBreak

	6 Random number generator functions
	6.1 Mersenne twister
	Single threaded, C language, static link version
	Single threaded, Windows DLL version
	Thread-safe, C language, static link version
	Thread-safe, C++, static link version
	Thread-safe, C++ source code

	6.2 Mother-of-all generator
	Single threaded, C language, static link version
	Single threaded, Windows DLL version
	Thread-safe, C language, static link version
	Thread-safe, C++, static link version
	Thread-safe, C++ source code

	6.3 SFMT generator and combined generator
	Single threaded, C language, static link version
	Single threaded, Windows DLL version
	Thread-safe, C language, static link version
	Thread-safe, C++, static link version
	Thread-safe, C++ source code

	6.4 PhysicalSeed

	7 Patches for Intel compiler and libraries
	8 File list
	Files in asmlib.zip
	Files in asmlibSrc.zip
	Files in inteldispatchpatch.zip

	9 Change log
	10 License conditions
	11 No support

