
Address Manager
8.3.0 API Guide
November 2017 Update

CONFIDENTIAL - For customer's internal use only.
This document may not be reproduced or distributed without the written consent of BlueCat.

© 2017 BlueCat Networks (USA) Inc. and its affiliates.

Legal Notices

READ THIS BEFORE INSTALLING OR USING THE PRODUCT

This Documentation is subject to the applicable BlueCat License Agreement previously entered into
between BlueCat and your company, or if none, then to BlueCat’s standard terms and conditions which
you can view and download from https://www.bluecatnetworks.com/services-support/support/license-
agreements/. BlueCat reserves the right to revise this Documentation at any time without notice.

Company names and/or data used in screens and sample output are fictitious, unless otherwise stated.

Copyright

©2001—2017 BlueCat Networks (USA) Inc. and its affiliates (collectively ‘BlueCat’). All rights reserved.
This document contains confidential and proprietary information and is intended only for the person(s)
to whom it is transmitted. Any reproduction of this document, in whole or in part, without the prior written
consent of BlueCat is prohibited.

Trademarks

Proteus, Adonis, BlueCat DNS/DHCP Server, BlueCat Address Manager, BlueCat DNS Edge, BlueCat
Device Registration Portal, BlueCat DNS Integrity, BlueCat DNS Integrity Gateway, BlueCat Mobile
Security, BlueCat Address Manager for Windows Server, and BlueCat Threat Protection are trademarks of
BlueCat.

iDRAC is a registered trademark of Dell Inc. Windows is a registered trademark of Microsoft Corporation.
UNIX is a registered trademark of The Open Group. Linux is a registered trademark of Linus Torvalds.
QRadar is a registered trademark of IBM. ArcSight is a registered trademark of Hewlett Packard. Ubuntu is
a registered trademark of Canonical Ltd. CentOS is a trademark of the CentOS Project. All other product
and company names are registered trademarks or trademarks of their respective holders.

3

https://www.bluecatnetworks.com/services-support/support/license-agreements/
https://www.bluecatnetworks.com/services-support/support/license-agreements/

 Contents

Contents

Preface: About this guide..xi
Who should read this guide?... xi
How is this book organized?.. xi
Typographic Conventions... xi
References... xii
How do I contact BlueCat Customer Care?.. xii

Chapter 1: What's New... 13
New API Methods... 14
New Constants.. 14
Changes in 8.3.0 API..14

Chapter 2: Overview..17
Manipulating Address Manager Objects... 18
Implementation.. 18
Finding Objects..18
Address Manager Object Hierarchy..18
Logging In and Out of Address Manager... 20
Session Management..21
Security.. 21

Enabling SSL in Perl Clients..21
Enabling SSL in Java Clients...21

Chapter 3: The Address Manager API...23
Web Services API... 24

SOAP Binding Address.. 24
SOAP Ports.. 24
Maintaining state with cookies... 24

API Objects..24
APIEntity Class... 25
APIAccessRight Class.. 25
APIDeploymentRole Class..25
APIDeploymentOption Class.. 26
APIUserDefinedField Class.. 26
ResponsePolicySearchResult Class...27

API Sessions... 27
Log in and Log out...27
System Information...27

Working with Java API..28
Connecting to Address Manager..28
Logging in and out... 29
Getting Objects... 30
Adding Objects... 31
Deleting Objects... 31
Sequence of Calls in the Client... 32
Changed API methods for Java users... 32

Version 8.3.0 | 5

 Contents

Available Java Classes...33
Working with Perl API... 33

Connecting to Address Manager..34
Logging in and out... 34
Getting, Adding, Deleting, and Updating Objects...35

REST API.. 35
REST vs SOAP.. 36
Authentication and authorization.. 36
REST API Examples.. 37
Limitations... 41
REST API troubleshooting..41

Chapter 4: API Object Methods... 43
Generic Methods... 44

Getting Objects... 44
Searching and Retrieving Entities.. 45
Updating Objects.. 50
Deleting Objects... 52
Linked Entities.. 53
Changing Locale...55

User-defined Fields... 56
Setting UDF values when adding or updating... 56
Getting User-defined Fields..57

IPAM.. 58
IPv4 Blocks... 58
IPv4 Networks...61
IPv4 Network Templates.. 67
IPv4 addresses... 71
Additional IP Addresses... 76
IPv4 Group..77
IPv4 Objects... 78
IPv4 Discovery and Reconciliation...80
IPv6 Objects... 85
Provision Devices... 91

DHCP...93
IPv4 DHCP Ranges..93
IPv6 DHCP Ranges..96
DHCP Client Options..99
DHCP6 Client Options..100
DHCP Custom Options...102
DHCP Service Options...103
DHCP6 Service Options...105
DHCP Vendor Profiles and Options...106
DHCP Match Classes...110
DHCP Raw Options..112
Shared Networks.. 112

DNS... 114
DNS Views..114
DNS Zones... 115
DNS Zone Templates...118
ENUM Zones.. 120
ENUM Numbers..121
DNS Resource Records... 121
DNS Options...136
DNS Raw Option.. 139

6 | Address Manager API Guide

 Contents

DNS Response Policies... 140
Reverse zone name format..142

Deployment options...143
Getting deployment options..143
Raw deployment option..144

TFTP.. 145
TFTP Groups.. 145
TFTP Folders..146
TFTP Files.. 146

Servers and Deployment...147
Servers..147
Server Group.. 153
DNS and DHCP Deployment Roles...154
DHCP Deployment Roles... 156
DNS Deployment Roles..157
TFTP Deployment Roles.. 160

Crossover High Availability (xHA)... 160
Requirements for creating an xHA pair..161
Creating an xHA... 161
Breaking an xHA.. 164
xHA Failover... 165

Address Manager Objects...165
Configurations... 165
Groups and Users.. 167
Authenticators... 169
Access Rights... 170
Object Tag Groups... 173
Object Tags.. 174
Locations...175
Database Management...176
Devices... 178
MAC Pools..179
MAC Addresses..181
Workflow Change Requests... 182

Migration.. 183
Migrate a File..183
Migration Status..183

Collecting Data.. 184
Start Probe..184
Get Probe Status..184
Get Probe Data.. 184

Chapter 5: API Constants...187
Access Right Values... 189
Additional IP Service Type..189
Configuration Setting... 189
Deployment Services...189
Deployment Status.. 189
Device Properties.. 190
DHCP Class Match Criteria.. 191
DHCP Client Options.. 191
DHCP6 Client Options...194
DHCP Custom Option Types.. 194
DHCP Deployment Role Types.. 195
DHCP Service Options..195

Version 8.3.0 | 7

 Contents

DHCPServiceOptionConstants.. 196
DHCP6 Service Options..196
DNS Deployment Role Type...197
DNS Options..197
DNS Option Values... 198
DNSSEC Key Format..199
DNS Zones Deployment Validation Check... 199
Entity Categories... 199
ENUM Services... 200
IP Assignment Action Values..201
IP Discovery Type... 201
Object Properties...201
Object Types... 209
Option Types... 211
PositionRangeBy... 212
Response Policy Type.. 212
Response Policy Search Scopes..212
Reverse Zone Format Type.. 212
Server Capability Profiles..213
Service Types..213
SNMP Version... 213
SNMP Security Levels...214
SNMP Authentication Type... 214
SNMP Privacy Type.. 214
Traversal Methodology.. 214
User Access Type... 215
User-defined Field Type..215
User-defined Field Validator Properties.. 215
User History Privileges..215
User Security Privileges.. 216
User Type.. 216
Vendor Profile Option Types...216
Workflow Levels.. 217
Defined Probe Values... 217
Probe Status Values... 217

Chapter 6: API Method Reference... 219
API Sessions... 220
Generic Methods... 220

Linked Entities.. 220
Changing Locale...221

User-defined Fields... 221
IPAM.. 221

IPv4 Blocks... 221
IPv4 Networks...222
IPv4 Network Templates.. 223
IPv4 Addresses...223
IPv4 Objects... 223
IPv4 Group..224
IPv4 Discovery and Reconciliation... 224
IPv6 Objects... 224
Provision Devices... 225

DHCP...225
IPv4 DHCP Ranges..225
IPv6 DHCP Ranges..226

8 | Address Manager API Guide

 Contents

DHCP Client Options..226
DHCP6 Client Options..226
DHCP Custom Options...227
DHCP Service Options...227
DHCP6 Service Options...227
DHCP Vendor Options... 227
DHCP Match Classes...228
Shared Networks.. 228

DNS... 228
DNS Views..228
DNS Zones... 229
DNS Zone Templates...229
ENUM Zones.. 229
ENUM Numbers..229
Generic Resource Records.. 230
NAPTR Records... 230
External Host Records..230
Host Records.. 230
Alias Records..231
Text Records.. 231
HINFO Records.. 231
MX Records.. 231
SRV Records.. 232
Start of Authority Records.. 232
Generic Records...232
DNS Options...232
DNS Response Policies... 233
Reverse Zone Name Format..233

Deployment Options.. 233
TFTP.. 233

TFTP Groups.. 233
TFTP Folders..234
TFTP Files.. 234

Servers and Deployment...234
Servers..234
Server Group.. 235
DNS and DHCP Deployment Roles...235
DHCP Deployment Roles... 235
DNS Deployment Roles..236
TFTP Deployment Roles.. 236

Crossover High Availability (XHA)...236
Address Manager Objects...236

Configurations... 236
Groups and Users.. 237
Authenticators... 237
Access Rights... 237
Devices... 238
Object Tag Groups... 238
Object Tags.. 238
Locations...238
Database Management...239
MAC Pools..239
MAC Addresses..239
Workflow Change Requests... 239
Migration... 240
Collecting Data... 240

Version 8.3.0 | 9

 Contents

Chapter 7: Property Options Reference..241
Property Options..242

Configuration...242
Views and Zones..242
Resource Records.. 242
Admin.. 244
Tags.. 244
Vendor Profiles... 244
DNSSEC... 245
TFTP Objects..245
MAC Pool Objects.. 245
Device... 245
Location...246
Kerberos Realms.. 247
Server..247
IPv4Objects...248
IPv6Objects...251
DeploymentRoles..252
Access right.. 252

IP Address States... 252
IPv4... 252
IPv6... 253

10 | Address Manager API Guide

Preface

About this guide

The Address Manager API Guide describes the Application Programming Interface (API) for controlling
Address Manager IP Address Management (IPAM) appliances and virtual machines and offers instructions
on its implementation and usage. IP Address Management includes management of DNS (Domain Name
Services), DHCP (Dynamic Host Control Protocol), and IP inventories.

Who should read this guide?
This book is intended for a highly technical audience. This audience may include developers, IT planners,
and IPAM, DNS, and DHCP administrators.

How is this book organized?
Procedural information is organized in numbered points to help in rapid implementation. Examples that are
longer than a couple of lines are separated from other information, and are clearly marked with an Example
heading. All examples are in pseudocode unless otherwise indicated.

Overview—describes the general functionality of the Address Manager API. This chapter describes the
common sequences of operations and lists the available objects and methods.

The Address Manager API—describes the SOAP, Java, Perl, and REST API implementations.

API Object Methods—describes the methods available for the Address Manager object types.

API Constants—lists the constants used by the Address Manager API methods.

API Method Reference—lists methods by Address Manager object type.

Property Options Reference—lists available properties and IP address states.

Typographic Conventions
This guide uses the following conventions:

Bold Command line options, button names, fields, tabs, and icons in the user
interface.

New terms being defined.

Dialog box, window, and screen names.

Blue italic Cross references and hypertext links within the document.

Hypertext links to external URLs.

Monospace Source code examples and terminal output.

Monospace italic Variables in code examples.

Normal italic Emphasis within a concept description.

! Attention: This icon appears alongside an Attention. Attentions usually appear with
critical information or with actions that might result in unexpected behavior.

xi

../_shared_content/h

About this guide

! Caution: This icon appears alongside a Caution. Cautions usually appear where
performing an action may be dangerous to the user or to the equipment, or
where data may be corrupted or incomplete if the caution is not observed.

 Note: This icon appears alongside a Note. Notes give additional details on the
expected behavior about the material presented in concepts and procedures.

 Tip: This icon appears alongside a Tip. Tips are similar to Notes and suggest
alternative ways to accomplish a task or provide ideas for using the product in
the most effective way.

! Warning: This icon appears alongside a Warning. Warnings are more severe than
Cautions in that they alert you to actions that could result in potential data loss
or a service outage.

References
Working with an IPAM system requires in-depth knowledge of many subject areas, including DNS, DHCP,
IP Inventory Management and General Networking.

The following references are provided for readers who require more background knowledge before working
with Address Manager.

• The DHCP Handbook by Ralph Droms and Ted Lemon, SAMS Publishing, ISBN 0-672-32327-3
• Pro DNS and BIND by Ron Aitchison, Apress, ISBN 1-59059-494-0
• The Internet System Consortium website (www.isc.org). This site also hosts the BIND FAQ at

www.isc.org/sw/bind and the DHCP FAQ at www.isc.org/software/dhcp.

How do I contact BlueCat Customer Care?
For 24/7/365 support, visit the BlueCat Customer CARE Portal at https://care.bluecatnetworks.com.

xii | Address Manager API Guide

http://www.isc.org
http://www.isc.org/sw/bind
http://www.isc.org/software/dhcp
https://care.bluecatnetworks.com

Chapter 1

What's New

Topics:

• New API Methods
• New Constants
• Changes in 8.3.0 API

This chapter provides brief lists of new methods and updates to the
existing API methods.

13

Chapter 1: What's New

New API Methods
The Address Manager API includes the following new methods:

Add DHCPv6 Range by Size

Use addDHCP6RangeBySize to add a new IPv6 DHCP range by size. For more information, refer to
Add IPv6 DHCP Range By Size on page 97.

Update User Password

Use updateUserPassword to update Address Manager user password. For more informaiton, refer
to Update User Password on page 169.

Update Address Manager System Password

Use void updateBAMSystemUserPassword to update Address Manager system user password.
For more information, refer to 8966.

Update DNS/DHCP Server System Password

Use void updateBDDSSystemUserPassword to update Address Manager system user password.
For more information, refer to 8966.

New Constants
The Address Manager API includes the following new constants:

New Constants in v8.3.0

• New constant SLAVE_ZONE_NOTIFICATIONS has been added to the DNS deployment option when
using the following methods:

• getDeploymentOptions
• addDNSDeploymentOption
• getDNSDeploymentOption
• updateDNSDeploymentOption
• deleteDNSDeploymentOption

The following rules apply when using the new SLAVE_ZONE_NOTIFICATIONS DNS option:

• This option can only be added at Configuration, DNS view and DNS zone levels.
• You must associate this option with a single server. This option cannot be associated with a server

group object.
• This option can only be associated with one server under the same level.
• The value of the option can be either enable or disable.

Changes in 8.3.0 API
Includes the following changes in behavior:

Added support for CAA resource records

The addGenericRecord API method has been updated to support the Certificate Authority Authorization
(CAA) generic resource record type.

14 | Address Manager API Guide

https://care.bluecatnetworks.com/kA140000000PEFW
https://care.bluecatnetworks.com/kA140000000PEFW

 Changes in 8.3.0 API

Resolved issues

An error related to the same FQDN in multiple resource records has been resolved.

Issue—Previously, when using the following API methods, if there is same FQDN assigned to a normal
resource record and an external host record, an error was tiggered:

• addAliasRecord()
• addSRVRecord()
• addMXRecord()
• addResourceRecord() for CNAME, SRV and MX

Resolved—In Address Manager v8.3.0, when there are normal resource records such as Host and
CNAME and external host records using the same FQDN, the normal resource records will take
precedence over external host records and will be used to create link records such as CNAME, SRV
and MX.

 Note: When there are multiple normal resource records with the same FQDN an error will be
triggered.

Version 8.3.0 | 15

Chapter 2

Overview

Topics:

• Manipulating Address Manager
Objects

• Implementation
• Finding Objects
• Address Manager Object

Hierarchy
• Logging In and Out of Address

Manager
• Session Management
• Security

The Address Manager API (Application Programming Interface) is a
web service that make Address Manager accessible to any system
that has standard network or Internet access.

Use SOAP (Simple Object Access Protocol) or REST
(Representational state transfer) to access this web service. The web
service has a WSDL (Web Service Description Language) file that can
be viewed in a browser. Use the WSDL file to generate client artifacts,
such as methods and serialized classes. Implementers can use this
service directly. Java and Perl API implementations are also provided.

17

Chapter 2: Overview

Manipulating Address Manager Objects
Remotely manipulates objects through the Address Manager API, using a combination of generic and type-
specific methods.

This manipulation involves adding objects, getting objects by name, updating them, adding new child
objects, access rights or object tags to them, and deleting them. The Address Manager API also includes
various query functions, such as a check to see if an IP address is allocated. To access the Address
Manager API, the script or application must log in to Address Manager as an API user.

Implementation
Sessions in the Address Manager API are implemented as Perl or Java programs, or accessed directly
through the web service.

Generally, these sessions log in, perform a function, and then log out again. Provided the script is
successful, the next script then logs in, performs its function, and then logs out.

1. Connect to the Address Manager server.

2. Log in.

3. Get the initial configuration, user, group or tag group object and proceed to step 4, or retrieve a specific
object by name or ID using getEntity() and proceed to step 7.

4. Use getEntities() to find the children of the initial object.

5. Use getEntity() or a less generic method to select a single entity.

6. Add a child object or affect the current object.

7. Log out.

Variations on this pattern are possible, provided the API implementation can provide sufficient information
to retrieve the required objects.

Finding Objects
These search functions provide quick access to Address Manager objects. In most cases this will eliminate
the need to search through the entire Address Manager object tree.

• searchByCategory() returns an array of entities by searching keywords associated with objects of a
specified object category. For more information, refer to Search by Category on page 48.

• searchByObjectTypes() returns an array of entities by searching keywords associated with objects
of a specified object type. You can search for multiple object types with a single method call. For more
information, refer to Search by Object Types on page 48.

• searchResponsePolicyItems returns an array of entities by searching keywords associated with
objects of a specified policy item. For more information, refer to Search Response Policies on page
141.

Address Manager Object Hierarchy
The web services API is designed to facilitate various types of development, and can be implemented
in many different ways. Ultimately, client-side implementations can model the way that data is stored in
Address Manager in order to persist objects temporarily. Keeping this structure in mind will help you create
caching or reference data structures within client implementations.

18 | Address Manager API Guide

 Address Manager Object Hierarchy

Version 8.3.0 | 19

Chapter 2: Overview

Logging In and Out of Address Manager
To access the Address Manager API, the script or application must log in to Address Manager using an
API user account.

All API implementations must first connect to the Address Manager API service, and then log in to start
a session. None of the Address Manager API functionality described in the following subsections is
accessible unless an API user logs on to the system. Address Manager API users have a specific access
type (API) and cannot log in to Address Manager through the GUI (Graphical User Interface). Similarly,
non-API users cannot connect to Address Manager through the API interface.

To connect to the service, you need the IP address for the Address Manager server. Logging in creates a
session for that user with a timeout limit corresponding to that set for all users. API users must also log out
after the required operations have been completed.

For more information about API access, refer to the Address Manager Administration Guide or the online
Help.

1. Using the Address Manager web interface, log in to Address Manager as an administrator.

2. On the Administration page, click Users and Groups. The Users and Groups page appears.

3. In the Users section, click New . The Add User page appears.

4. In the User section, type a name in the Username field.

5. In the Authentication section, type and confirm the API user password in the Password and Confirm
Password fields. If external authenticators are available, an Other checkbox and a list of authenticators
appears in the Authentication section. To use an external authenticator for the API user, click the Other
checkbox, and then select an authenticator from the list.

6. In the Extra Information section, set the following parameters:

E-mail Address

Type an email address for the API user. This information is required.

Phone number

Type a phone number for the API user. This information is optional.

7. In the User Access section you define the user type, security and history privileges, and access type:

Type of User

Select the type of user, either Non-Administrator or Administrator. Non-Administrator users
have access only to DNS and IPAM management functions. Administrator users have unlimited
access to all Address Manager functions.

Security Privilege

select a security privilege type from the drop-down list. This field is available only for Non-
Administrator users with GUI, API, or GUI and API access.

History Privilege

select a history privilege type from the drop-down list. This field is available only for Non-
Administrator users with GUI, or GUI and API access.

Access Type

select the type of access; GUI, API, or GUI and API . GUI (Graphical User Interface) users can
access Address Manager only through the Address Manager web interface. API (Application
Programming Interface) users can access Address Manager only through the API. GUI and API
users can access Address Manager either through the Address Manager web interface or the API.

8. In the Assign to Group section, you can assign the user to one or more existing user groups. In the
text field, type the name of a user group. As you type, a list of user groups matching your text appears.
Select a name from the list, and then click Add to the right of the text field.

20 | Address Manager API Guide

 Session Management

9. In the Change Control section, add comments to describe the changes. This step is optional but may
be set to be required.

10.Click Add at the bottom of the page.

Session Management
Web services do not define a standard for session management. Address Manager maintains a session
ID to associate it with the Address Manager database session obtained from the initial log in attempt. This
accounts for the stateless nature of the HTTP protocol.

Address Manager uses cookies to maintain state. When using WSDL-generated classes, be sure to enable
cookies on your system.

Security
The web service endpoint can be made secure by enabling SSL support using the Address Manager
Administration Console.

This enables SSL for all Address Manager services, including the web interface. For instructions on
enabling SSL on Address Manager, refer to HTTPS in the Address Manager Administration Guide.

Enabling SSL in Perl Clients
To enable SSL in Perl scripts, you need to install the Crypt-SSLeay package.

You can download the package from http://search.cpan.org/dist/Crypt-SSLeay/.

Perl scripts can use SSL in their web service calls by using https instead of http in the proxy definition.

 Note: To ensure that API scripts will continue to operate under the higher security implemented in
Address Manager v3.7.1 and later, the following conditions must be met:

• Perl version must be v5.12 or later.
• When enabling SSL, you must access Address Manager using the same host name that is

defined by the SSL certificate, not the IP address or other canonical names. If you cannot use
that host name, you need to add the following line to the beginning of the script to avoid the API
call failure due to the difference in host name as part of request and certificate.

$ENV{'PERL_LWP_SSL_VERIFY_HOSTNAME'} = 0;

 Note: This line will disable the validation of SSL certifications for the context of the
execution.

Enabling SSL in Java Clients
Steps to enable SSL for Java clients.

Follow these Before beginning, ensure that the Java Development Kit is installed on the client workstation.

1. On Address Manager, enable HTTPS support. For instructions on enabling SSL on Address Manager,
refer to HTTPS in Chapter 10: Appliance Settings in the Address Manager Administration Guide.

2. On the client workstation, create a directory to hold the keystore.

3. On Address Manager, locate the /data/server/conf/server.cert file, and then copy it to the keystore
directory on your client workstation. If SSH is enabled on Address Manager, use an SSH client to copy
the file.

4. On the client workstation, navigate to the keystore directory. Ensure that the directory contains the
server.cert file.

Version 8.3.0 | 21

http://search.cpan.org/dist/Crypt-SSLeay/

Chapter 2: Overview

5. Execute the following command: javaHomePath/bin/keytool -import -trustcacerts -
alias ProteusAPI -file server.cert -keystore client.ks -storepass bluecat

6. Ensure that a client.ks file has been generated and appears in the keystore directory.

7. Delete the server.cert file from the keystore directory on the client workstation.

8. When connecting to service, use the following command to call the ProteusAPIUtils.connect()
method: ProteusAPIUtils.connect(IPAddress, true, pathToClientKeystore\
\client.ks); where IPAddress is the IP address of the Address Manager server, and
pathToClientKeystore is the path to the keystore directory on the client workstation.

22 | Address Manager API Guide

Chapter 3

The Address Manager API

Topics:

• Web Services API
• API Objects
• API Sessions
• Working with Java API
• Working with Perl API
• REST API

This section describes different types of API implementations.

For integrating into different types of network environments, Address
Manager includes the following implementations:

• The most open implementation is the Address Manager service-
oriented architecture implementing SOAP web services. Any
client able to take advantage of web services can use this
implementation.

• RESTful API calls to access Address Manager are supported.
• A Java API implementation is provided to integrate Address

Manager into n-tier Java architectures.
• A Perl API implementation is provided for environments where

scripting is preferred.

23

Chapter 3: The Address Manager API

Web Services API
The Address Manager API is a SOAP web service, so it has an accessible WSDL file.

You can access this file and generate your own classes and methods to use when connecting to the
service. To view the WSDL file in a browser, go to http://AddressManagerAddress/Services/API?wsdl
address. If HTTPS is enabled on Address Manager, use the HTTPS protocol in the address.

SOAP Binding Address
The WSDL file uses the Address Manager server’s host-name as the soap:address location.

For a Address Manager appliance with the factory default host-name, the Address Manager API service
looks like this example:

<service name='ProteusAPI'>
 <port binding='tns:ProteusAPIBinding' name='ProteusAPIPort'>
 <soap:address location='http://new.server/Services/API'/>
 </port>
 </service>

To configure the soap:address location attribute to your Address Manager appliance, download a copy of
the WSDL file to your workstation. Edit the local copy of the WSDL file to change the soap:address location
to the required address. Configure your SOAP tools to load the WSDL file from your local copy of the file,
rather than from the Address Manager appliance.

SOAP Ports

To access the Address Manager API, use the following ports:

• Port 80 when using HTTP
• Port 443 when using HTTPS

Maintaining state with cookies
Address Manager uses cookies to maintain state.

When using WSDL-generated classes, be sure to enable cookies on your system.

API Objects
The web service defines objects representing all Address Manager object types supported in the service.

These objects can be added, retrieved, manipulated, and deleted. For a list of objects and methods, refer
to API Method Reference on page 219.

The following classes reference all objects within the web service:

• APIEntity
• APIAccessRight
• APIDeploymentRole
• APIDeploymentOption
• APIUserDefinedField
• ResponsePolicySearchResult

24 | Address Manager API Guide

 API Objects

APIEntity Class
This class represents all entities except options, roles, and access rights. It manages all other types by
passing the values for the object as a delimited properties string of name–value pairs.

The properties for each object are listed in API Object Methods on page 43.

id the database ID of the object in Address Manager.

name the field name, which might be null.

type the class name of the object. For example, a configuration object has a type equal to
Configuration. This field cannot be null. A list of types is part of the API client (Java
and Perl).

properties a string that contains properties for the object in attribute=value format, with each
separated by a | (pipe) character. For example, a host record object may have a
properties field such as ttl=123|comments=my comment|. This field can be null.

APIAccessRight Class
This class controls Access Rights objects.

entityId the database ID of the object to which the access right applies. This value must be
greater than 0.

userId the database ID of the owner of the access right. This value must be greater than 0.

value the default access right (HIDE, VIEW, ADD, CHANGE, or FULL). This field cannot be
null.

overrides indicates the types that are to be overridden in the access right in the format
objectType=accessRightValue where objectType is the same object type used in
APIEntity and accessRightValue is one of HIDE, VIEW, ADD, CHANGE or FULL.
Multiple override elements are separated by a | (pipe) character.

properties a string containing extra properties for the object in the format attribute=value.

APIDeploymentRole Class
Manages the deployment roles that control the services provided by Address Manager-managed servers.
These objects support the standard object functions.

id the database ID of the deployment role in Address Manager.

type the type of the role (NONE, MASTER, MASTER_HIDDEN, SLAVE,
SLAVE_STEALTH, FORWARDER, STUB, RECURSION, PEER, or AD_MASTER.)
This field cannot be null.

service DNS, DHCP, or TFTP. This field cannot be null.

entityId the database ID of entity. This value must be greater than 0.

serverInterfaceId the database ID of the server interface. This value must be greater than 0.

properties a string containing extra properties for the object in the format attribute=value. This
field can be null if used for forward space. A ViewId property must be provided to
assign DNS Roles to a Network or Block for a particular DNS View (reverse space).
Multiple properties are separated by a | (pipe) character.

Version 8.3.0 | 25

Chapter 3: The Address Manager API

APIDeploymentOption Class
Deployment options configure both DHCP and DNS services on the network. They are available as DHCP
client and service options, as well as standard DNS options. Deployment options support the standard
object functions.

id the database ID of the option in Address Manager.

type the option type listed in Option Types on page 211. This field cannot be null.

name the name of the option.

value the single- or multiple-field value of the option; multiple values are comma-
separated. This field cannot be null.

properties a string containing additional properties. This is used for user-defined fields on
most objects, but also passes some values that do not have their own specific
parameter.

 Note: When adding the DDNS hostname option, you need to specify the value in the following
format: [Type], [Position], [Data] for IP and MAC type, and [Type], [Data] for FIXED
type.

Where:

• Type—type of DDNS hostname. The possible values are

DHCPServiceOptionConstants.DDNS_HOSTNAME_TYPE_IP,

DHCPServiceOptionConstants.DDNS_HOSTNAME_TYPE_MAC, or

DHCPServiceOptionConstants.DDNS_HOSTNAME_TYPE_FIXED.
• Position—specify where you wish to add the data value to the IP or MAC address. The possible

values are DHCPServiceOptionConstants.DDNS_HOSTNAME_POSITION_PREPEND, or
DHCPServiceOptionConstants.DDNS_HOSTNAME_POSITION_APPEND. This is only required
for IP or MAC type with Data.

• Data—For IP and MAC address, this value is used to be prepended or appended to the IP
address or MAC address. For FIXED type, this value must be specified and will be used for the
DDNS hostname. This is optional for IP and MAC type.

APIUserDefinedField Class
User-defined fields can be added to each of the Address Manager object types. This class allows API
users to query and gather user-defined fields information for a specified object type.

name the internal name of the user-defined field.

displayname the name of the user-defined field that appears to users in the Address Manager
interface.

type the type of the user-defined field. Types are available as constants in the
UserDefinedFieldType class. For available constants, refer to User-defined
Field Type on page 215.

defaultValue the default value for the user-defined field.

validatorProperties the validation properties for the user-defined field. Property names are available
as constants in the UserDefinedFieldValidatorProperties class. For available
constants, refer to User-defined Field Validator Properties on page 215.

required the boolean value. If set to true, users must enter data in the field.

26 | Address Manager API Guide

 API Sessions

hideFromSearch the boolean value. If set to true, the user-defined field is hidden from the search.

renderAsRadioButton the boolean value. If set to true, the user-defined field is rendered as a radio
button group.

ResponsePolicySearchResult Class
Represents the Response Policy items that are configured either in local Response Policies or BlueCat
Security feed data.

name the name of the Response Policy item.

parentIds comma-separated values of the parent Response Policy or RP Zone object(s)
ID. If policy item is associated with a Response Policy, it is the Response Policy
object ID. If policy item is associated with BlueCat Security feed data, it is the
RP Zone object ID.

category the name of the BlueCat Security feed category associated with the policy item.
For example, Malicious, Spam or Botnet C&C. For local response policy items,
this will be null.

policyType the type of response policy. For example, whitelist, blacklist, redirect or
blackhole.

configId the object ID of the parent configuration in which the Response Policy item is
configured.

API Sessions
Address Manager API session methods control the connection, log in, and log out processes. There is also
a method to return system information about the appliance.

Log in and Log out
Log in and log out of the Address Manager system.

You must use an API user account to access the Address Manager API.

To log in, use the following method, passing the API user name and password:

login(String name, String password)

To log out, use the following method:

logout();

System Information
Retrieves Address Manager system information through the API.

To retrieve system information, use String getSystemInfo(). This method returns system information
in the following format:

hostName=value|version=value|address=value|clusterRole=value|
replicationRole=value|replicationStatus=value|entityCount=value|
databaseSize=value|loggedInUsers=value

Version 8.3.0 | 27

Chapter 3: The Address Manager API

Parameter:

hostName The host name of the Address Manager server.

version The version of the Address Manager software.

address The IP address of the Address Manager server.

clusterRole The role of the server in an XHA pair, either primary or secondary.

replicationRole The role of the server in database replication, either primary or secondary.

replicationStatus The status of the replication service on the Address Manager server.

entityCount The number of entities within the Address Manager database.

databaseSize The size, in megabytes, of the Address Manager database.

loggedInUsers The number of users presently logged in to Address Manager.

Working with Java API
Implement the Address Manager API in Java.

To use the Address Manager API with Java, you may need to install the Metro implementation of SOAP.
Down package metro_2.3.1 from https://metro.java.net/2.3.1/.

To execute the Address Manager API in Java, you need the following two jar files:

• api.jar
• commons-logging-1.1.3.jar: Apache Commons Logging for logging

 Note: Java environment support

api.jar can be used in Java 7 and Java 8 environment to communicate with Address Manager.

Connecting to Address Manager
To begin an API session, you must first connect to the Address Manager server. The following methods
are available in APILoginUtils.java to establish the connection:

HTTP session

ProteusAPI connect (String hostIP)

Parameter Description

hostIP The addresses of Address Manager appliance.

HTTPS session

ProteusAPI secureConnect (String hostIP, String trustStoreLocation,
 String passphase)

Parameter Description

hostIP The addresses of Address Manager appliance.

trustStoreLocation The location of the certificate on the client.

passphase The passphase of the certificate on the client.

28 | Address Manager API Guide

https://metro.java.net/2.3.1/

 Working with Java API

Output / Response

This method returns a ProteusAPI reference containing the methods for the API.

Deprecated API session method

The following method in ProteusAPIUtils.java has been deprecated.

ProteusAPI_PortType connect (String address, boolean enableSSL,
 String keystoreLocation)

BlueCat recommends using ProteusAPI connect() and ProteusAPI secureConnect() methods
instead.

Parameter Description

address The addresses of Address Manager appliance.

enableSSL If security is enabled on the Address Manager
appliance, set this flag to true.

keystoreLocation The location of the certificate on the client.

 Note: If you are using HTTP, address is the only required parameter for this method.

Output/Response

This method returns a ProteusAPI_PortType reference containing the methods for the API.

Example

Connect to the service using the connect(address) function from APILogInUtils.

Refer to the following example:

// connect to Address Manager
ProteusAPI service = APILoginUtils.connect("HOST");
// connect to Address Manager securely
ProteusAPI service = APILoginUtils.secureConnect("HOST", "KEYSTORE_PATH",
 "KEYSTORE_PASSPHASE");

Deprecated ProteusAPI_PortType class

The use of the ProteusAPI_PortType class has been deprecated. Use ProteusAPI instead.

Deprecated ProteusAPI_PortType class example:

ProteusAPI_PortType service = ProteusAPIUtils.connect("HOST");
// connect to Address Manager securely
ProteusAPI_PortType service = ProteusAPIUtils.connect(HOST, true,
 "KEYSTORE_PATH");

Logging in and out

• Log in as an API user. Use the login() method to log in:

// log in and establish a session
service.login("USENAME", "PASSWARD");

Version 8.3.0 | 29

Chapter 3: The Address Manager API

• After completing API tasks, the API user must log out.

service.logout();

 Note: While a session will expire based on the Session Timeout value set on the Configure
Global Settings page of the Address Manager web interface, an explicit logout is strongly
recommended to close the API user session.

Getting Objects
Address Manager provides various methods for getting existing objects. This section provides samples
showing a few ways to fetch the objects from Address Manager.

getEntity

There are some variations of getEntity such as getEntityById and getEntities. These methods
are useful to find an object. The following examples describe fetching objects under a parent object. In
these particular examples, we are finding a configuration in Address Manager.

// Signature: getEntityByName(long parentId, String name, String type)
APIEntity existingConfiguration = service.getEntityByName(
 0, // Please refer the tip at the end of this section
 "configName", // The name of the configuration object to be searched
 ObjectTypes.Configuration // Type of object, defined in ObjectTypes interface
);

getUserDefinedFields

Use the getUserDefinedFields() method to get the list of all user-defined fields of an Object Type. In
this example, we use IP4Block.

// Signature: getUserDefinedFields(String type, boolean
 requiredFieldsOnly)
APIUserDefinedFieldArray fields =
 service.getUserDefinedFields(ObjectTypes.IP4Block, true);

// Get the fields as a list
List <APIUserDefinedField> udfs = fields.getItem();

Find objects by hint

Address Manager supports a few methods such as getZonesByHint and getIP4NetworksByHint to
find objects using a hint pattern.

// Signature: getZonesByHint(long containerId, int start, int count, String options)

// In this example, we are fetching up to 10 objects with no criteria
APIEntityArray entityArray = service.getZonesByHint(containerId, 0, 10, "");

// Get the entities as a list
List<APIEntity> entities = entityArray.getItem();

// Fetching 10 objects starting from the 5th element, starting with name 'example'
String options = ObjectProperties.hint + "=example";
entityArray = service.getZonesByHint(containerId, 5, 10, options);

 Tip: For almost all object types, the add() and get() methods require parentID, which is the
ID of the parent object. The following objects can take 0 (zero) as the parentID: Configuration,
TagGroup, User, UserGroup, and Authenticator.

30 | Address Manager API Guide

 Working with Java API

Adding Objects
There are several ways to add objects to Address Manager via the API. This section contains examples
of these methods, including a generic addEntity method as well methods for adding specific objects in
Address Manager.

Generic addEntity()

addEntity() is a generic adding method that can be used to create any object. In this example, we are
adding a IP4Block in Address Manager.

// Signature: addEntity(long parentId, APIEntity entity)

// Form the entity object with the data
APIEntity blockEntity = new APIEntity();
// Specify Name
blockEntity.setName("blockName");
// Specify Type
blockEntity.setType(ObjectTypes.IP4Block);
// Specify additional properties required to define object
blockEntity.setProperties(ObjectProperties.CIDR + "=192.168.0.0/16");

// Add this entity under the defined parent
long blockId = service.addEntity(configId, blockEntity);

Specific add methods

There are other add methods that can be used to add specific different objects. In this example, we are
adding a IP4Block in Address Manager.

// Signature: addIP4BlockByCIDR(long parentId, String CIDR, String properties)

// Add the block specifying the CIDR. Name has to be specified using properties in this case
String properties = ObjectProperties.name + "=blockName2";
long blockId = service.addIP4BlockByCIDR(configId, "20.0.0/16", properties);

Deleting Objects
To delete an object, you can invoke the delete() method or one of its variants.

// Signature: delete(long objectId)

// Delete API needs object id, which can be retrieved from the fetched
 object
APIEntity entity = service.getEntityByName(configId, "ip4BlockName",
 ObjectTypes.IP4Block);
long objId = entity.getId();

// API call to delete the object
service.delete(objId);

Version 8.3.0 | 31

Chapter 3: The Address Manager API

Sequence of Calls in the Client

This example adds a host record to an existing zone. It demonstrates a complete session using the
Address Manager API from Java. This example implements the following steps:

1. Connect to the Address Manager API service.
2. Log in.
3. Get the parent configuration object by name.
4. Get the parent view object by name.
5. Get the parent zone object by name (you can use the absolute name), and then retrieve its child. In this

case, to retrieve example.net, we retrieve the parent com to find its child object example.com.
6. Define a host record object and add it to the parent zone object.
7. Log out.

import com.bluecatnetworks.proteus.api.client.java.APILoginUtils;
import com.bluecatnetworks.proteus.api.client.java.constants.ObjectTypes;
import com.bluecatnetworks.proteus.api.client.java.proxy.APIEntity;
import com.bluecatnetworks.proteus.api.client.java.proxy.ProteusAPI;

public class ProteusAddHostRecord
{
 public static void main(String[] args) throws Exception
 {
 ProteusAPI service = APILoginUtils.connect("ProteusIPAddress");
 service.login("api_user", "password");
 APIEntity existingConfiguration = service.getEntityByName(0,
 "Existing Config", ObjectTypes.Configuration);
 APIEntity existingView =
 service.getEntityByName(existingConfiguration.getId(), "Existing View",
 ObjectTypes.View);
 long hostRecordId = service.addHostRecord(existingView.getId(),
 "www.example.com", "10.0.0.6,10.0.0.8", 1, "");
 service.logout();
 }
}

Changed API methods for Java users
This section lists changed API methods for Java users.

Address Manager API methods will no longer return or accept an array element such as APIEntity[] and
APIDeploymentOption[].

An array element has been replaced by an array object. Refer to the following table for the list of array
elements replaced:

Array element Replaced array object

APIEntity[] APIEntityArray

APIAccessRight[] APIAccessRightArray

APIDeploymentOption[] APIDeploymentOptionArray

APIDeploymentRole[] APIDeploymentRoleArray

APIUserDefinedField[] APIUserDefinedFieldArray

long[] com.bluecatnetworks.proteus.api.client.java.proxy.LongArray

String[] com.bluecatnetworks.proteus.api.client.java.proxy.StringArray

32 | Address Manager API Guide

 Working with Perl API

Input type example

An array element ([]) input type has been changed to an array object. For example, long[] can be replaced
with LongArray. Refer to the following code example:

// Create array[] element containing actual values that need to be send in
 request
Long[] subBlockIds = { subblock1Id, subblock2Id };
// Create new Array object
LongArray subBlocks = new LongArray();
// Add values in array element in Array object
subBlocks.getItem().addAll(Arrays.asList(subBlockIds));
// send Array object as part of request.
service.mergeBlocksWithParent(subBlocks);

Return type example

An array element ([]) return type has been changed to an array object. For example, APIEntity[] is
replaced with APIEntityArray. Refer to the following code example:

// Get the Array object from the response
APIEntityArray apiEntityArray = service.getEntities(configId,
 ObjectTypes.IP4Block, 0, 10);
// Get actual values in Array object as list
List<APIEntity> apiEntities = apiEntityArray.getItem();
// Iterate through above list to get APIEntity object
for(APIEntity apiEntity : apiEntities)
{
 printEntity(apiEntity);
}

Available Java Classes
The API includes a number of classes to facilitate the use of the methods (for example, generating the
properties strings).

These classes are discussed below, with the exception of UserSecurityPrivileges.java and
UserHistoryPrivileges.java.

Working with Perl API
The Address Manager API can be implemented in Perl. The module containing the full Perl API
implementation is called API.pm.

On the workstation running Perl, locate the lib directory of your Perl installation and create a new directory,
for example, bam. Copy the API.pm file to the lib/bam directory.

 Note: Older versions of the SOAP:Lite module for Perl may create some warnings. If this is an
issue, upgrade to the latest module

All Address Manager methods that take arguments need to use the SOAP::Data package to convert
these argument into SOAP compatible arguments. For example, to use the login() method, the username
argument should look like this:

SOAP::Data->name ('username')->
 value($username)->
 type('string')->
 attr({xmlns => ''})

Version 8.3.0 | 33

Chapter 3: The Address Manager API

Where:

username

The name of the argument (as described by the WSDL).

value

The value to be passed.

type

The SOAP type (for example, string, int, long, or base64).

attr

Necessary to make the SOAP message compatible with the service.

Connecting to Address Manager
Connect to the service using the connect(address) function from the BAMConnection package.

Refer to the following example:

connect to Address Manager
$service = BAMConnection->connect("address" => 'ipAddress');
use "enableSSL" flag if using SSL
$service = BAMConnection->connect("address" => 'ipAddress', "enableSSL" =>
'true');

Deprecated the Service package

The use of the Service package has been deprecated. Use the BAMConnection package instead.

Deprecated Service package example:

connect to Address Manager
$service = Service->connect("address" => 'ipAddress');
use "enableSSL" flag if using SSL
$service = Service->connect("address" => 'ipAddress', "enableSSL" =>
'true');

Logging in and out

• Log in as an API user. Use the login() method to log in:

log in and establish a session
$service->login(
SOAP::Data->name('username')->
 value('apiUserName')->
 type('string')->
 attr({xmlns => ''}),
SOAP::Data->name('password')->
 value('apiUserPassword')->
 type('string')->
 attr({xmlns => ''}));

• After completing API tasks, the API user must log out.

$service->logout();

 Note: While a session will expire based on the Session Timeout value set on the Configure
Global Settings page of the Address Manager web interface, an explicit logout is strongly
recommended to close the API user session.

34 | Address Manager API Guide

 REST API

Getting, Adding, Deleting, and Updating Objects

• Use the get(), add(), delete(), and update() methods to manipulate Address Manager entities. This
example shows the addition of a new configuration with a shared network:

Add a new configuration with a shared network
my $configuration = APIEntity->new("id" => 0,
 "name" => "Test Configuration",
 "type" => ObjectTypes::Configuration,
 "properties" =>
 ObjectProperties::sharedNetwork."=".$existingSharedNetwork1->
 get_id()."|");
my $configurationId = $service->addEntity(SOAP::Data->type('long')->
 name('parentId')->
 value(0)->
 attr({xmlns => ''}),
SOAP::Data->type('APIEntity')->name('entity')->
 value($configuration)->
 attr({xmlns => ''}))->
 result;
print "New Configuration id = ".$configurationId.->get_id()."\n";

• Use the getUserDefinedFields() method to find the user-defined fields with their settings and values in
Address Manager. For example:

my @udfs= $service->getUserDefinedFields(SOAP::Data->type('string')-
>name('type')->value(ObjectTypes::Device)->attr({xmlns => ''}),
SOAP::Data->type('boolean')->name('requiredFieldsOnly')-
>value('false')
->attr({xmlns => ''}))
->valueof('//getUserDefinedFieldsResponse/return/item');

print"number of fields=".@udfs."\n";

for my $eachUDF (@udfs)
{
my $udf = BAMConnection->blessAPIUserDefinedField("object" => $eachUDF);
print"Object----------------------\n";
print $udf->get_name()."\n";
print "Name=".$udf->get_name()."\n";
print "DisplayName=".$udf->get_displayName()."\n";
print "Type=".$udf->get_type()."\n";
print "defaultValue=".$udf->get_defaultValue()."\n";
print "Validator Properties=".$udf->get_validatorProperties()."\n";
print "PredefinedValues=".$udf->get_predefinedValues()."\n";
print "Required=".$udf->get_required()."\n";
print "Hide from search=".$udf->get_hideFromSearch()."\n";
print "Radio=".$udf->get_renderAsRadioButton()."\n";
}

For almost all object types, the add() and most get() methods require parentID, which is the ID of the
parent object. The following objects can take 0 (zero) as the parentID: Configuration, TagGroup, User,
UserGroup, and Authenticator.

REST API
Address Manager now supports REST APIs to access Address Manager along with conventional SOAP
APIs.

Version 8.3.0 | 35

Chapter 3: The Address Manager API

This section describes BlueCat's RESTful API implementation such as the invoking format, how to
authenticate and authorize, and REST API samples and limitations.

• BlueCat REST APIs support communication over HTTP and HTTPS.
• JSON format supported for sending and receiving data.

REST API format

You can access all BlueCat REST APIs by appending known methods to the base URL http://
<AddressManager_IP or hostname>/Services/REST/v1/<api_method_name>

For example, to invoke the getSystemInfo method, you need to enter:

http://192.168.1.2/Services/REST/v1/getSystemInfo

Web Application Description Language (WADL)

The Address Manager REST API has an accessible WADL. You can access the WADL file by using
http://<AddressManager_IP or hostname>/Services/REST/application.wadl

You can use the WADL file to check various parameters of the API such as:

• API signatures
• HTTP methods (GET/POST/PUT/DELETE) for specific calls
• API request parameters and datatype
• Response datatype and media types

REST vs SOAP
REST APIs have many similarities with the widely used SOAP-based APIs supported by Address
Manager. However, there are a few differences between REST interface and existing SOAP
implementation:

• The names of API methods in REST remain the same as that of SOAP APIs.
• Signatures of all methods including input and output parameters in REST are the same as in SOAP.
• In REST API, various primitive request parameters such as int, long and String are expected as URL

query parameters. Whereas in SOAP, all the request parameters are communicated as part of XML
body.

• Complex parameter types such as APIEntity or APIDeploymentOption need to be passed as a part of
HTTP body of the call in JSON format.

Authentication and authorization
Address Manager uses a token-based authentication and authorization. Once generated, the token must
be used when invoking every subsequent API method in Address Manager.

Generating a token

You need to generate the authentication and authorization token by invoking the login API method. You
must use an API user account to access the Address Manager API. If the credentials are invalid, it will fail
with an error. For more information about log in and log out methods, refer to Log in and Log out on page
27.

Log in format:

http://<AddressManager_IP or hostname>/Services/REST/v1/login?
username=<username>&password=<password>

36 | Address Manager API Guide

 REST API

Output / Response

The body of the JSON response for the above API method will be in the "Session Token->
${ACTUAL_TOKEN} <- for User : ${USERNAME_PASSED}" and it can be used to extract the
authorization token.

The ACTUAL_TOKEN is comprised of the keyword BAMAuthToken and a dynamically generated token
hash. For example, “BAMAuthToken: 4bippMTQ1ODAzNzgwNjE0MzphcGk=”.

Authorizing API methods

The generated authorization token must be passed when invoking any API method. The token needs to be
passed as an Authorization property in the request header.

Configuring the token timeout

By default, the generated token expires after 5 minutes. You can change this behavior according to your
use case.

 Note: For details on how to change the token timeout, refer to knowledge base article 7724 on
BlueCat Customer Care.

REST API Examples
This section describes how to use REST APIs with main generic method examples.

The four main generic Address Manager APIs use these HTTP RESTful methods in the following
examples:

Generic Address Manager API RESTful HTTP method

get() GET

update() PUT

addEntity() POST

delete() DELETE

GET request example
All get related API methods use the GET method in REST API. In this example,
getDNSDeploymentOption will be used to retrieve the DNS option.

API call example:

http://<AddressManager_IP>/Services/REST/v1/getDNSDeploymentOption?
entityId=101041&name=allow-ddns&serverId=100907

URL path:

• /getDNSDeploymentOption

Parameters:

Parameter Description

entityId The object ID for the entity to which this deployment option is assigned.

name The name of the DNS option.

serverId Specifies the server to which this option is assigned. To retrieve an option that
has not been assigned to a server role, set this value to 0(zero).

Version 8.3.0 | 37

https://care.bluecatnetworks.com/kA440000000TO3p

Chapter 3: The Address Manager API

HTTP Header:

• Authorization: BAMAuthToken: UTtSjMTQ1ODAzMTgzMDUxMzphcGk=
• Content-Type: application/json

Response

A JSON (as defined in WADL) containing details of the DNS deployment option.

 {
 "id": 100979,
 "type": "DNS",
 "name": "allow-ddns",
 "value": "any",
 "properties": "inherited=false|"
 }

Passing String[]
String[] parameter needs to be passed as a repeated URL parameter.

API call example:

http://<AddressManager_IP>/Services/REST/customSearch?
filters=filter1=abc&filters=filter2=def&type=IP4Block&options=&start=0&count=10

HTTP Header:

• Authorization: BAMAuthToken: UTtSjMTQ1ODAzMTgzMDUxMzphcGk=
• Content-Type: application/json

HTTP Body:

• None.

POST request example
All add operation related API methods use the POST method in REST API. In this example, addEntity will
be used to add a View object.

API call example:

http://<AddressManager_IP>/Services/REST/v1/addEntity?parentId=100936

URL path:

• /addEntity

Parameters:

Parameter Description

parentId For configurations, always set the parentId value to 0 (zero), which is the root
element.

entity The configuration object, including its name, sharedNetwork, and user-defined
fields (entity will be passed in HTTP Body as JSON)

HTTP Header:

• Authorization: BAMAuthToken: UTtSjMTQ1ODAzMTgzMDUxMzphcGk=
• Content-Type: application/json

38 | Address Manager API Guide

 REST API

HTTP Body:

• JSON containing information for adding a view.

{
"id":0,
"name":"testView",
"type":"View",
"properties":""
}

Response

Returns the character sequence representing the object ID of the new entity.

100936

Passing long[]
long[] parameter will be passed in the HTTP body in an array representation.

API call example:

void mergeBlocksWithParent (long[] blockIDs)
http://<AddressManager_IP>/Services/REST/mergeBlocksWithParent

HTTP Header:

• Authorization: BAMAuthToken: UTtSjMTQ1ODAzMTgzMDUxMzphcGk=
• Content-Type: application/json

HTTP Body:

[
id1, id2, id3
]
e.g.: [
100922, 100923
]

Response

No response. The method has the void return type.

Passing byte[]
long[] parameter will be passed in the HTTP body.

API call example:

void uploadResponsePolicyItems(long parentId, byte[] policyItemsData)
http://<AddressManager_IP>/Services/REST/uploadResponsePolicyItems

HTTP Header:

• Authorization: BAMAuthToken: UTtSjMTQ1ODAzMTgzMDUxMzphcGk=
• Content-Type: application/json

HTTP Body:

• Upload file for above listed API’s in REST API client.

Version 8.3.0 | 39

Chapter 3: The Address Manager API

Response

No response. The method has the void return type.

PUT request example
All update related API methods use the PUT method in REST API. In this example,
updateDNSDeploymentRole will be used to update a specified DNS deployment role.

API call example:

http://<AddressManager_IP>/Services/REST/updateDNSDeploymentRole

URL path:

• PUT / updateDNSDeploymentRole

Parameters:

Parameter Description

role The DNS deployment role object to be updated. It will be passed in the HTTP
body.

HTTP Header:

• Authorization: BAMAuthToken: UTtSjMTQ1ODAzMTgzMDUxMzphcGk=
• Content-Type: application/json

HTTP Body:

• JSON containing the update information of DNS deployment role.

 { "id": 101081,
 "entityId": 101041,
 "serverInterfaceId": 100908,
 "type": "NONE",
 "service": "DNS",
 "properties": "readOnly=false|nsRecordTTL=86400|inherited=false|"
 }

Response

No response. The method has the void return type.

DELETE request example
All delete related API methods use the DELETE method in REST API. In this example,
deleteDHCPClientDeploymentOption will be used to delete a specified DHCP client option.

API call example:

http://<AddressManager_IP>/Services/REST/v1/
deleteDHCPClientDeploymentOption?entityId=101226&name=time-
offset&serverId=101217

URL path:

• DELETE /deleteDHCPClientDeploymentOption

Parameters:

40 | Address Manager API Guide

 REST API

Parameter Description

entityId The object ID for the entity from which the deployment option will be deleted.

Name The name of the DHCPv4 client option to be deleted(Constant listed in BAM API
guide)

serverId The specific server to which this option is deployed. To delete an option that has
not been assigned to a server, set this value to 0 (zero).

HTTP Header:

• Authorization: BAMAuthToken: UTtSjMTQ1ODAzMTgzMDUxMzphcGk=
• Content-Type: application/json

Response

No response. The method has the void return type.

Limitations
The current limitations of the REST API implementation are as follows:

• No API client is available for REST. BlueCat api.jar/API.pm files do not support REST APIs.
• Get related APIs with no matching input will return a sparsely populated object.
• REST API session timeout can be configured only through server.properties. The Address Manager

server needs to be restarted to reflect the new timeout configuration.
• REST API methods that require the body for the API call should be formed correctly by a client. If the

body is formed incorrectly, the server will give you an error.

REST API troubleshooting

Invalid credentials for login

When you use invalid credentials, the login API call will fail with the error code 500 and the following
message will display: "Authentication Error: Ensure that your username and password are correct." You
need to login again with the right credentials.

Invalid or expired token

When a token is invalid or expired, API calls will fail with the error code 401 Unauthorized and the following
message will display: "UNAUTHORIZED USER". You need to generated a new token by logging in again
and use the newly generated token to make subsequent API calls.

Unrecognized field error

If the format of the JSON input request is incorrect, it results in "Unrecognized field" error. For example,

Unrecognized field "parentId" (class
 com.bluecatnetworks.proteus.api.service.types.APIEntity), not marked as
 ignorable (4
 known properties: "type" , "id" , "properties" , "name"])

Version 8.3.0 | 41

Chapter 4

API Object Methods

Topics:

• Generic Methods
• User-defined Fields
• IPAM
• DHCP
• DNS
• Deployment options
• TFTP
• Servers and Deployment
• Crossover High Availability

(xHA)
• Address Manager Objects
• Migration
• Collecting Data

This chapter lists the methods available in the Address Manager API.

Some of the generic methods include implementation examples in
Java and Perl: the others are either described in pseudocode or are
extended from generic methods through passing field values.

 Note: Address Manager API does not validate the user-
defined fields with a pre-defined set of values when adding an
object even though the Require Value property of the UDFs is
set.

43

Chapter 4: API Object Methods

Generic Methods
Many of the object types listed below use the update(), delete(), and get() methods.

While some objects may have specific get() methods, the generic methods described here are required in
many Address Manager API scripts.

Getting Objects
Generic methods for getting entity values.

• Get entities by name
• Get entities by ID
• Get Entities
• Get Parent

Get Entity by Name
Returns objects from the database referenced by their name field.

Output / Response

Returns the requested object from the database.

API call:
APIEntity getEntityByName(long parentId, String name, String type)

Parameter Description

parentId The ID of the target object’s parent object.

name The name of the target object.

type The type of object returned by the method. This string must be one of the
constants listed in Object Types on page 209.

Get Entity by ID
Returns objects from the database referenced by their database ID and with its properties fields populated.

Output / Response

Returns the requested object from the database with its properties fields populated. For more information
about the available options, refer to IPv4Objects on page 248 in the Property Options Reference section.

API call:
APIEntity getEntityById (long id)

Parameter Description

id The object ID of the target object.

Get Entities
Returns an array of requested child objects for a given parentId value. Some objects returned in the
array may not have their properties field set. For those objects, you will need to call them individually using
the getEntityById() method to populate the properties field.

 Note:

44 | Address Manager API Guide

 Generic Methods

• Using getEntities() to search users will return all users existing in Address Manager. Use
getLinkedEntities() or linkEntities() to search users under a specific user group.

• Using getEntities() to query server objects in configurations containing XHA pairs might
result in a connection timeout if any of the servers in an XHA pair are not reachable.

Output / Response

Returns an array of the requested objects from the database without their properties fields populated, or
returns an empty array.

API call:
APIEntity[] getEntities(long parentId, String type, int start, int count)

Parameter Description

parentId The object ID of the target object’s parent object.

type The type of object returned. This must be one of the constants listed in Object
Types on page 209.

start Indicates where in the list of objects to start returning objects. The list begins at
an index of 0.

count Indicates the maximum number of child objects to return.

Get Parent
Returns the parent entity of a given entity.

Output / Response

Returns the APIEntity for the parent entity with its properties fields populated. For more information about
the available options, refer to IPv4Objects on page 248 in the Property Options Reference section.

API call:
APIEntity getParent (long entityId)

Parameter Description

long entityId The entity Id.

Searching and Retrieving Entities
Generic methods for searching and retrieving entities.

• Custom Search
• Search by Category
• Search by Object Types
• Get Entities by Name
• Get Entities by Name Using Options
• Get MAC Address

Supported wildcards in the search string:

You can use the following wildcards when invoking a search method. These wildcards are supported only
in the String parameter:

• ^—matches the beginning of a string. For example, ^ex matches example but not text.
• $—matches the end of string. For example: ple$ matches example but not please.
• *—matches zero or more characters within a string. For example: ex*t matches exit and excellent.

Version 8.3.0 | 45

Chapter 4: API Object Methods

 Note: You cannot use the following characters in the search string:

• , (comma)
• ‘ (single quotation mark)
• () (parentheses)
• [] (square brackets)
• { } (braces)
• % (percent)
• ? (question mark)
• + (addition/plus sign)

Custom Search
Search for an array of entities by specifying object properties.

Output / Response

Returns an array of APIEntities matching the specified object properties or returns an empty array. The
APIEntity will at least contain Object Type, Object ID, Object Name, and Object Properties.

API call:
APIEntity[] customSearch (String[] filters, String type, String[] options, int start, int count
)

Parameter Description

filters The list of properties on which the search will be based. The valid format is Field
name=value. Refer to Supported object types and fields for details.

 Note: The field name is case-sensitive.

In addition to the fields that are specified in the table, any user-defined fields will
also be supported.

 Note: The valid format for the Date type user-defined field value is
DD-MMM-YYYY. You can also use partial formatting. For example, 10-
Jan-2016, 10-Jan, Jan-2016 or 2016.

For more information on passing a String array through RESTful API calls, refer
to Passing String[] on page 38.

type The object type that you wish to search. The type cannot be null or empty string
(""). This must be one for the following object types:

• IP4Block
• IP4Network
• IP4Addr
• GenericRecord
• HostRecord
• Any other objects with user-defined fields

options The list of search options specifying the search behavior. Reserved for future
use.

For more information on passing a String array through RESTful API calls, refer
to Passing String[] on page 38.

start Indicates where in the list of returned objects to start returning objects. The value
must be a non-negative value and cannot be null or empty.

46 | Address Manager API Guide

 Generic Methods

Parameter Description

count The maximum number of objects to return. The value must be a positive value
between 1 and 1000. This value cannot be null or empty.

Supported object types and fields

Object type Field name=value

IP4Block • inheritDNSRestrictions=Boolean
• pingBeforeAssign=Boolean
• reverseZoneSigned=Boolean
• allowDupHost=Boolean
• inheritDefaultDomains=Boolean
• highwatermark=Integer
• lowwatermark=Integer

IP4Network • inheritDNSRestrictions=Boolean
• pingBeforeAssign=Boolean
• reverseZoneSigned=Boolean
• allowDupHost=Boolean
• inheritDefaultDomains=Boolean
• portInfo=Text
• highwatermark=Integer
• lowwatermark=Integer

IP4Addr • routerPortInfo=Text
• portInfo=Text
• vlanInfo=Text

GenericRecord • comments=Text
• ttl=Long
• recordType=Text
• rdata=Text

HostRecord • comments=Text
• ttl=Long

Java client example

• If using ProteusAPI_PortType:

//Define filters array
String[] filters = new String[] { "udf_Int=10", "udf_Text=textudfvalue",
 "udf_Date=12-Dec-2016", "udf_Boolean=true", "udf_ea=a@a.com",
 "udf_url=http://a.com", "udf_long=12354" };

//customSearch API call
APIEntity[] entityArray = service.customSearch(filters,
 ObjectTypes.IP4Block, new String[] {}, 0, 1000);

Version 8.3.0 | 47

Chapter 4: API Object Methods

• If using ProteusAPI:

//Define filters array
StringArray filters = new StringArray();
//filters.getItem().add("udf_name=udf_value");
filters.getItem().add("udf_Int=10");
filters.getItem().add("udf_Text=textudfvalue");
filters.getItem().add("udf_Date=12-Dec-2016");
filters.getItem().add("udf_Boolean=true");
filters.getItem().add("udf_ea=a@a.com");
filters.getItem().add("udf_url=http://a.com");
filters.getItem().add("udf_long=12354");

//customSearch API call
APIEntityArray entityArray = service.customSearch(filters,
 ObjectTypes.IP4Block, new StringArray(), 0, 1000);

Search by Category
Returns an array of entities by searching for keywords associated with objects of a specified object
category.

Output / Response

Returns an array of entities matching the keyword text and the category type, or returns an empty array.

API call:
APIEntity[] searchByCategory (String keyword, String category, int start, int count)

Parameter Description

keyword The search keyword string. This value cannot be null or empty.

category The entity category to be searched. This must be one of the entity categories
listed in Entity Categories on page 199.

start Indicates where in the list of returned objects to start returning objects. The list
begins at an index of 0. This value cannot be null or empty.

count The maximum number of objects to return. The default value is 10. This value
cannot be null or empty.

Search by Object Types
Returns an array of entities by searching for keywords associated with objects of a specified object type.
You can search for multiple object types with a single method call.

Output / Response

Returns an array of entities matching the keyword text and the category type, or returns an empty array.

API call:
APIEntity[] searchByObjectTypes (String keyword, String types, int start, int count)

Parameter Description

keyword The search keyword string. This value cannot be null or empty.

types The object types for which to search, specified in the following format:
"type1[,type2…]". The object type must be one of the types listed in
Object Types on page 209.

48 | Address Manager API Guide

 Generic Methods

Parameter Description

start Indicates where in the list of returned objects to start returning objects. The
list begins at an index of 0. This value cannot be null or empty.

count The maximum number of objects to return. The default value is 10. This
value cannot be null or empty.

Get Entities by Name
Returns an array of entities that match the specified parent, name, and object type.

Output / Response

Returns an array of entities. The array is empty if there are no matching entities.

API call:
APIEntity[] getEntitiesByName (long parentId, String name, String type, int start, int count)

Parameter Description

parentId The object ID of the parent object of the entities to be returned.

name The name of the entity.

types The type of object to be returned. This value must be one of the object types
listed in Object Types on page 209.

start Indicates where in the list of returned objects to start returning objects. The list
begins at an index of 0. This value cannot be null or empty.

count The maximum number of objects to return. The default value is 10. This value
cannot be null or empty.

Get Entities by Name Using Options
Returns an array of entities that match the specified name and object type. Searching behavior can be
changed by using the options.

Output / Response

Returns an array of entities. The array is empty if there are no matching entities.

API call:
APIEntity[] getEntitiesByNameUsingOptions (long parentId, String name, String type, int
start, int count, String options)

Parameter Description

parentId The object ID of the parent object of the entities to be returned.

name The name of the entity.

types The type of object to be returned. This value must be one of the object types listed
in Object Types on page 209.

start Indicates where in the list of returned objects to start returning objects. The list
begins at an index of 0. This value cannot be null or empty.

count The maximum number of objects to return. The default value is 10. This value
cannot be null or empty.

Version 8.3.0 | 49

Chapter 4: API Object Methods

Parameter Description

options A string containing options. Currently the only available option is
ObjectProperties.ignoreCase. By default, the value is set to false. Setting this
option to true will ignore the case-sensitivity used while searching entities by
name.

ObjectProperties.ignoreCase = [true | false]

Get MAC Address
Returns an APIEntity for a MAC address.

Output / Response

Returns an APIEntity for the MAC address. Returns an empty APIEntity if the MAC address does not exist.
The property string of the returned entity should include the MAC address:

address=nn-nn-nn-nn-nn-nn|

If the MAC address is in a MAC pool, the property string includes the MAC pool information:

macPool=macPoolName|

API call:
APIEntity getMACAddress (long configurationId, String macAddress)

Parameter Description

configurationId The object ID of the configuration in which the MAC address is located.

macAddress The MAC address in the format nnnnnnnnnnnn, nn-nn-nn-nn-nn-nn or
nn:nn:nn:nn:nn:nn, where nn is a hexadecimal value.

Updating Objects
Generic methods for updating an object.

Updating an object involves two steps:

1. Building the object or parameter string used to update the object.
2. Performing the update.

Update
Updates entity objects.

API call:

All entity update statements follow this format:

void update (APIEntity entity)

Parameter Description

entity The actual API entity passed as an entire object that has its mutable
values updated.

Modified behavior for User-defined fields in the update() method:

50 | Address Manager API Guide

 Generic Methods

• Removing existing UDF values

Commit the update()method with empty UDF value. If the UDF parameter is set to mandatory, the
method fails as the UDF parameter cannot be empty.

• Updating UDF values

Commit the update()method with the new UDF value. If you do not want to update the existing
value, leave the UDF parameter and its value unchanged.

• If the UDF parameter is set to mandatory and has a default value, committing the update() method with
an empty UDF value will take the default value.

Update examples
Provides an example how the update method can be used in Java and Perl.

In this example, an existing shared network is passed to a configuration object as a parameter. After the
values in the object or properties string have been set, the update() method modifies the value in the
Address Manager database. Property values can be a string, long, or integer value. Address Manager uses
the appropriate method to process the data for that property.

Java example

This example uses Java to return a managed server as an APIEntity, get the properties for the server, add
a connected property with the value true, set the properties for the server, and then update the server.

// Get the object, here Server
 APIEntity server = service.getEntityByName(config.getId(), serverName,
 ObjectTypes.Server);

 // Get the current properties & add a new property
 EntityProperties props = new EntityProperties(server.getProperties());
 props.addProperty(ObjectProperties.connected, "true");

 // Set the changed properties on the object & send it to server to update
 server.setProperties(props.getPropertiesString());
 service.update(server);

Perl example

This example uses Perl to update an external host record.

my $externalHostRecord = $service->getEntityById(SOAP::Data-
>type('long')->
name('id')->
value($externalHostRecordId)->
attr({xmlns => ''})) ->result;
$externalHostRecord = BAMConnection->blessAPIEntity("object" =>
 $externalHostRecord);
$externalHostRecord->set_name("external2.host2.com");
$service->update(SOAP::Data->type('APIEntity')->
name('entity')->
value($externalHostRecord)-> attr({xmlns => ''}));

Update with Options
Updates objects requiring a certain behavior that is not covered by the regular update() method. This
method is currently used for CName, MX and SRV records, and the option is only applicable to these
types.

Output / Response

Version 8.3.0 | 51

Chapter 4: API Object Methods

None.

API call:
void updateWithOptions (APIEntity entity, String options)

Parameter Description

entity The actual API entity to be updated.

options A string containing the update options. Currently, only one option is
supported: linkToExternalHost=boolean|. If true, update will search for
the external host record specified in linkedRecordName even if a host
record with the same exists under the same DNS View. If the external host
record is not present, it will throw an exception. If false, update will search
for the host record specified in linkedRecordName.

Deleting Objects
Generic methods for deleting an object.

There are two generic methods for getting entity values:

• Delete
• Delete with Options

Delete
Deletes an object using the generic delete() method.

Output / Response

None.

API call:

Pass the entity ID from the database identifying the object to be deleted.

void delete (long ObjectId)

Parameter Description

ObjectId The ID for the object to be deleted.

Delete with Options
Deletes objects that have options associated with their removal. This method currently works only with the
deletion of dynamic records from the Address Manager database. When deleted, dynamic records present
the option of not dynamically deploying to DNS/DHCP Server.

Output / Response

None.

API call:
void deleteWithOptions (long ObjectId, String options)

Parameter Description

ObjectId The ID for the object to be deleted. This must be the object ID of a resource
record.

options A string containing the following delete options:

52 | Address Manager API Guide

 Generic Methods

Parameter Description

• noServerUpdate—a Boolean value. This applies to the dynamic resource
records. Set to true to update the record only in the Address Manager web
interface. The change will not be deployed to the DNS server. The default
value is false.

• deleteOrphanedIPAddresses—a Boolean value. This applies to the delete
operation on Host Records. Set to true to free IP addresses associated with
a host record if no other host records are associated with the IP address. The
default value is false.

Linked Entities
Generic methods for getting, link or unlink entities.

• Get Linked Entities
• Link Entities
• Unlink Entities

Get Linked Entities
Returns an array of entities containing the entities linked to a specified entity. The array is empty if there
are no linked entities.

Output / Response

Returns an array of entities. The array is empty if there are no linked entities.

API call:
APIEntity[] getLinkedEntities (long entityId, String type, int start, int count)

Parameter Description

entityId The object ID of the entity for which to return linked entities.

type The type of linked entities which need to be returned. This value must be one of
the types listed in Object Types on page 209.

! Attention:

• While specifying a resource record as the entityId, if you want to find
all the records (CNAME, MX, or SRV records) having links to this
record, you can use RecordWithLink for the type parameter.

• When specifying a MAC address as the entityId, this method
returns the IPv4 address associated with the MAC address. When
appropriate, leaseTimeand expiryTimeinformation also appears in
the returned properties string.

start Indicates where in the list of returned objects to start returning objects. The list
begins at an index of 0. This value cannot be null or empty.

count The maximum number of objects to return.

Link Entities
Establishes a link between two specified Address Manager entities.

Output / Response

None.

Version 8.3.0 | 53

Chapter 4: API Object Methods

This method works on the following types of objects and links:

Type of entity for entity1Id Type of entity for entity2Id Result

Any entity Tag Applies the tag linked to the entity.

Tag Any entity Applies the entities from the object
tag.

MACPool MACAddress Applies the MAC address from the
MAC pool.

MACAddress MACPool Applies the MAC pool from the MAC
address.

User UserGroup Applies the user group from the user.

UserGroup User Applies the user from the user group.

Location IP or server object Applies the IP or server object to a
location.

IP or server object Location Applies the location to an object.

Server Group Server Applies a server to a Server Group
object.

Server Server Group Applies a Server Group to a server
object.

API call:
void linkEntities (long entity1Id, long entity2Id, String properties)

Parameter Description

entity1Id The object ID of the first entity in the pair of linked entities.

entity2Id The object ID of the second entity in the pair of linked entities.

properties Adds object properties, including user-defined fields.

Unlink Entities
Removes the link between two specified Address Manager entities.

Output / Response

None.

This method works on the following types of objects and links:

Type of entity for entity1Id Type of entity for entity2Id Result

Any entity Tag Removes the tag linked to the entity.

Tag Any entity Removes the entities from the object
tag.

MACPool MACAddress Removes the MAC address from the
MAC pool.

MACAddress MACPool Removes the MAC pool from the
MAC address.

54 | Address Manager API Guide

 Generic Methods

Type of entity for entity1Id Type of entity for entity2Id Result

User UserGroup Removes the user group from the
user.

UserGroup User Removes the user from the user
group.

Location IP or server object Removes the location from an object.

IP or server object Location Removes the location from an object.

Server Group Server Applies a server to a Server Group
object.

Server Server Group Applies a Server Group to a server
object.

 Note: To obtain the object ID of the Deny MAC pool, use the getEntityByName() method.

For example:

entity = service.getEntityByName(<parentId>, <name>, "DenyMACPool");

API call:
void unlinkEntities (long entity1Id, long entity2Id, String properties)

Parameter Description

entity1Id The object ID of the first entity in the pair of linked entities.

entity2Id The object ID of the second entity in the pair of linked entities.

properties Adds object properties, including user-defined fields.

Changing Locale
Address Manager v4.1.1 and greater supports Japanese language in order for API users to update and
view the UDF display name in Japanese.

Log in with Options
Log in as API user. To change the locale to Japanese, use the following method when logging in to the
Address Manager server. Changing Locale only affects the behavior of getUserDefinedFields() and
updateBulkUdf() methods.

Output / Response

None.

API call:
void loginWithOptions (String userName, String password, String options)

Parameter Description

userName The username for the API user created using the Address Manager user
interface.

password The password for the API user logging into Address Manager.

options Following option can be used:

• locale=ja-JA

Version 8.3.0 | 55

Chapter 4: API Object Methods

User-defined Fields
Add user-defined fields to any Address Manager object type.

These fields are available on all of the object adding and editing forms. A user-defined field can include
several enforced data types and can be validated against a complex set of criteria. Any reasonable
number of user-defined fields can be added to an object type to track data according to your data schema
requirements.

Setting UDF values when adding or updating
Existing user-defined fields for objects can be set and updated through API calls.

Values for these fields can be set in the properties parameter where they are noted the same as any other
object field. If a value is set or updated for a non-existent user-defined field, an exception is thrown. These
are passed as name-value pairs, and multiple user-defined fields are separated by a |(pipe) character. For
example, to set values of two UDFs: TextUDF and IntegerUDF with values testTextValue and 1005, the
properties string should be passed as: TextUDF=testTextValue|IntegerUDF=1005.

The following examples are the code snippets to add or update zone with the above Scenario:

Java API Examples
Java clients are equipped with a wrapper class EntityPropertieswhich will help in forming the
propertiesStringby specifying various properties forming the name value.

Add in Java

long parentZoneId; //Id of the parent Zone
EntityProperties properties = new EntityProperties();
properties.addProperty("TextUDF", "testTextValue");
properties.addProperty("IntegerUDF", "1005");
String propertyString = properties.getPropertiesString();
long zoneId = service.addZone(parentZoneId, "example.abc.com",
 propertyString);

Update in Java

APIEntity zone = service.getEntityById(zoneId);
EntityProperties properties = new EntityProperties(zone.getProperties()); //
Populate with the existing values and then update the only properties which
 need to
be modified.
properties.addProperty("TextUDF", "testTextValue");
properties.addProperty("IntegerUDF", "1005");
zone.setProperties(properties.getPropertiesString());
service.update(zone);

Perl API Examples
Perl API example for setting UDF values when adding.

Add in Perl

my $newZoneId = $service->addZone(SOAP::Data->type('long')-
>name('parentId')->value($newZoneId)->attr({xmlns => ''}),
SOAP::Data->type('string')->name('absoluteName')-
>value("example.abc.com")->attr({xmlns => ''}),

56 | Address Manager API Guide

 User-defined Fields

SOAP::Data->type('string')->name('properties')->value(
"TextUDF=testTextValue|IntegerUDF=1005")->attr({xmlns => ''}))->result;

Getting User-defined Fields
Get UDFs through API calls.

Get User-defined Field
Returns the user-defined fields information.

Output / Response

Returns the user-defined fields information.

API call:
APIUserDefinedField[] getUserDefinedFields (String type, boolean requiredFieldsOnly)

Parameter Description

type The type of the user-defined fields. This must be one of the constants
listed in Object Types on page 209.

requiredFieldsOnly Specifies whether all user-defined fields of the object type will be returned
or not. If set to true, only required fields will be returned.

Update Bulk User-defined Field
Updates values of various UDFs for different objects.

Output / Response

Returns a CSV file containing the following information:

LineNumber

The respective line number in the input CSV file. This appears in the first column in the output CSV file.

FailureMessage

The reason for the failure identified by the system. This appears in the second column in the output
CSV file.

 Note: An empty CSV file will be returned when all the rows in the input CSV file were processed
successfully.

API call:
byte[] updateBulkUdf (byte[] data, String properties)

Parameter Description

data The file to be used to update UDFs. The file is passed to Address Manager
as a byte array that is the stream of the CSV file contents. The file must
follow the following pattern:

• EntityId - The object ID of the entity on which the UDF needs to be
updated. This must be entered into the first column.

• UDFName - The actual name of the UDF that needs to be updated. This
must be entered into the second column.

• newUDFValue - The new value of the UDF which needs to be updated
on the entity. This must be entered into the third column.

 Note:

Version 8.3.0 | 57

Chapter 4: API Object Methods

Parameter Description

• The file format should be CSV.
• The file should not contain any header.
• The data should start from the first line.
• To include any special characters, users need to escape the

data.

properties Reserved for future use.

IPAM
The IP core contains information about network structures or allocation blocks and static and dynamic
allocations.

This information is integrated with the DNS core to keep the DNS space current with the IP networks that
it represents. DHCP configuration is modeled on the allocation blocks in the Address Manager IP core and
is kept current by real-time feedback from managed servers. Dynamic DNS changes, such as address
allocations, from Active Directory and other updating systems are sent to Address Manager in real time,
showing administrators that an automated process made a configuration change.

IPv4 Blocks
An IPv4 block is a group of IPv4 addresses that is separated from a larger network by subnetting.

Addresses within a block cannot be routed until they have been allocated into a network. Blocks can be
added and returned by IP range or CIDR notation. You can specify default DNS domains for IPv4 blocks
with the defaultDomains property. To add a single default domain, specify the object ID for the required
domain. To add multiple default domains, specify the object IDs for multiple domains as a comma-delimited
list of domain object IDs.

Add IPv4 Block by CIDR
Adds a new IPv4 Block using CIDR notation.

Output / Response

Returns the object ID for the new IPv4 block.

API call:
long addIP4BlockByCIDR (long parentId, String CIDR, String properties)

Parameter Description

parentId The object ID of the target object’s parent object.

CIDR The CIDR notation defining the block (for example, 10.10/16).

properties A string containing options. For more information about the available
options, refer to IPv4Objects on page 248 in the Property Options
Reference section.

Add IPv4 Block by Range
Adds a new IPv4 block defined by an address range.

Output / Response

Returns the object ID for the new IPv4 block.

58 | Address Manager API Guide

 IPAM

API call:
long addIP4BlockByRange (long parentId, String start, String end, String properties)

Parameter Description

parentId The object ID of the target object’s parent object.

start An IP address defining the lowest address or start of the block.

end An IP address defining the highest address or end of the block.

properties A string containing options. For more information about the available options,
refer to IPv4Objects on page 248 in the Property Options Reference section.

Add Parent Block
Creates an IPv4 or IPv6 block from a list of IPv4 or IPv6 blocks or networks. All blocks and networks must
have the same parent but it does not need to be contiguous.

Output / Response

Returns the object ID for the new IPv4 or IPv6 parent block. This method does not create a name for the
new block.

API call:
void addParentBlock (long[] blockOrNetworkIDs)

Parameter Description

blockOrNetworkIDs An array containing the object IDs of IPv4 or IPv6 blocks or networks.

Add Parent Block with Properties
Creates an IPv4 or IPv6 block with a name from a list of IPv4 or IPv6 blocks or networks. All blocks and
networks must have the same parent but it does not need to be contiguous.

Output / Response

Returns the object ID for the new IPv4 or IPv6 parent block.

API call:
long addParentBlockWithProperties (long[] blockOrNetworkIDs, String properties)

Parameter Description

blockOrNetworkIDs An array containing the object IDs of IPv4 or IPv6 blocks or networks.

properties A string containing the following option:

• name-the name of the new IPv4 or IPv6 block to be created.

Get IP Range by IP Address
Returns the IPv4 Block containing the specified IPv4 address.

Use this method to find the Configuration, IPv4 Block, IPv4 Network, or DHCP Range containing a
specified address. You can specify the type of object to be returned, or you can leave the type of object
empty to find the most direct container for the object.

Output / Response

Returns an APIEntity for the object containing the specified address. If no object is found,
returns an empty APIEntity. If ObjectTypes.IP4Block, ObjectTypes.IP4Network, or

Version 8.3.0 | 59

Chapter 4: API Object Methods

ObjectTypes.DHCP4Range is specified as the type parameter, returns an object of the specified type. If
an empty string ("") is specified as the type parameter, returns the most direct container for the IPv4
address.

API call:
APIEntity getIPRangedByIP (long containerId, String type, String address)

Parameter Description

containerId The object ID of the container in which the IPv4 address is located. This can be
a Configuration, IPv4 Block, IPv4 Network, or DHCP Range. When you do not
know the block, network, or range in which the address is located, specify the
configuration.

type The type of object containing the IPv4 or IPv6 address.
Specify ObjectTypes.IP4Block, ObjectTypes.IP4Network, or
ObjectTypes.DHCP4Range to find the block, network, or range containing the
IPv4 address. Specify an empty string ("") to return the most direct container
for the IPv4 address.

address An IPv4 address.

Get IPv4 Block by CIDR
Returns an IPv4 Block object by calling the block using CIDR notation.

Output / Response

Returns the specified IPv4 block object from the database.

API call:
APIEntity getEntityByCIDR (long parentId, String cidr, String type)

Parameter Description

parentId The object ID of the target object’s parent object.

CIDR CIDR notation defining the block to be returned (for example, 10.10/16).

type The type of object returned: IP4Block. This must be one of the constants listed
in Object Types on page 209.

Get IPv4 Block by Range
Returns an IPv4 Block by calling the block using its address range.

Output / Response

Returns the requested IPv4 block object from the database.

API call:
APIEntity getEntityByRange (long parentId, String address1, String address2, String type)

Parameter Description

parentId The object ID of the target object’s parent object.

address1 An IP address defining the lowest address or start of the block.

address2 An IP address defining the highest address or end of the block.

60 | Address Manager API Guide

 IPAM

Parameter Description

type The type of object returned: IP4Block. This must be one of the constants listed
in Object Types on page 222.

Merge Blocks with Parent
Merges specified IPv4 blocks into a single block. The blocks must all have the same parent and must be
contiguous. Blocks whose parent object is the configuration cannot contain networks.

Output / Response

None.

API call:
void mergeBlocksWithParent (long[] blockIDs)

Parameter Description

blockIDs An array containing a list of IPv4 block IDs.

Merge Selected Blocks or Networks
Merges specified IPv4 blocks or IPv4 networks into a single IPv4 block or IPv4 network. The list of objects
to be merged must all be of the same type (for example, all blocks or all networks). The objects must all
have the same parent and must be contiguous.

Output / Response

None.

API call:
void mergeSelectedBlocksOrNetworks (long[] blockOrNetworkIds, long
blockOrNetworkToKeep)

Parameter Description

blockOrNetworkIds An array containing a list of IPv4 block or network IDs.

blockOrNetworkToKeepThe ID of the IPv4 block or IPv4 network that will retain its identity after the merge.

Update IPv4 Block
An IPv4 block’s name property can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

IPv4 Block Generic Methods
IPv4 blocks can be deleted using the generic delete() method.

For more information, see Deleting Objects on page 52.

IPv4 Networks
An IPv4 network is an object that attaches to a router interface that routes directly to individual IP
addresses.

An IPv4 network is therefore a group of IPv4 addresses that can be routed. An IPv4 network always has
a network or a block as its parent object in Address Manager. Networks can be added and returned both
by IP range and CIDR notation. The next available network can also be returned and allocated. You can

Version 8.3.0 | 61

Chapter 4: API Object Methods

specify default DNS domains for IPv4 networks with the defaultDomains property. To add a single default
domain, specify the object ID for the required domain. To add multiple default domains, specify the object
IDs for multiple domains as a comma-delimited list of domain object IDs.

Add IPv4 Network
Adds an IPv4 network using CIDR notation.

Output / Response

Returns the object ID for the new IPv4 network.

API call:
long addIP4Network (long blockId, String CIDR, String properties)

Parameter Description

blockId The object ID of the new network’s parent IPv4 block.

CIDR The CIDR notation defining the network (for example, 10.10.10/24).

properties A string containing options. For more information about the available options,
please refer to IPv4Objects on page 264in the Property Options Reference
section.

Get IPv4 Range by IP Address
Returns the IPv4 Network containing the specified IPv4 address.

Use this method to find the Configuration, IPv4 Block, IPv4 Network, or DHCP Range containing a
specified address. You can specify the type of object to be returned, or you can leave the type of object
empty to find the most direct container for the object.

Output / Response

Returns an APIEntity for the object containing the specified address. If no object is found, returns an
empty APIEntity. If ObjectTypes.IP4Block, ObjectTypes.IP4Network, or ObjectTypes.DHCP4Range is
specified as the type parameter, returns an object of the specified type. If an empty string is specified as
the type parameter, returns the most direct container for the IPv4 address.

API call:
APIEntity getIPRangedByIP (long containerId, String type, String address)

Parameter Description

containerId The object ID of the container in which the IPv4 address is located. This can be
a Configuration, IPv4 Block, IPv4 Network, or DHCP Range. When you do not
know the block, network, or range in which the address is located, specify the
configuration.

type The type of object containing the IPv4 address. Specify
ObjectTypes.IP4Block, ObjectTypes.IP4Network, or
ObjectTypes.DHCP4Range to find the block, network, or range containing the
IPv4 address. Specify an empty string to return the most direct container for
the IPv4 address.

address An IPv4 address.

Get IPv4 Network by CIDR
Returns an IPv4 Network object from the database by calling it using CIDR notation.

62 | Address Manager API Guide

 IPAM

Output / Response

Returns the specified IPv4 network object from the database.

API call:
APIEntity getEntityByCIDR (long parentId, String cidr, String type)

Parameter Description

parentId The object ID of the network’s parent object.

CIDR CIDR notation defining the network (for example, 10.10.10/24).

type The type of object returned: IP4Network. This must be one of the constants
listed in Object Types on page 209.

Get IPv4 Network by Hint
Returns an array of IPv4 networks found under a given container object. The networks can be filtered by
using ObjectProperties.hint, ObjectProperties.accessRight, and ObjectProperties.overrideType
options.

Output / Response

Returns an array of IPv4 networks based on the input argument without their properties fields populated,
or returns an empty array if containerId is invalid. If no access right option is specified, the View access
level will be used by default.

API call:
APIEntity[] getIP4NetworksByHint (long containerId, int start, int count, String options)

Parameter Description

containerId The object ID for the container object. It can be the object ID of any object in the
parent object hierarchy. The highest parent object is the configuration level

start Indicates where in the list of objects to start returning objects. The list begins at
an index of 0.

count Indicates the maximum number of child objects that this method will return.

options A string containing options. The Option names available in the ObjectProperties
are ObjectProperties.hint, ObjectProperties.accessRight, and
ObjectProperties.overrideType. Multiple options can be separated by a |
(pipe) character. For example:

hint=ab|overrideType=HostRecord|accessRight=ADD

The values for the ObjectProperties.hint option can be the prefix of the IP
address for a network or the name of a network.

• Example 1

The following example will match networks that have the network ID starting
with 192.168. For example, 192.168.0.0/24 or 192.168.1.0/24.

String options = ObjectProperties.hint + “=198.168|”

• Example 2

Version 8.3.0 | 63

Chapter 4: API Object Methods

Parameter Description

The following example will match networks that have a name starting with
“abc”. For example, “abc”, “abc123” or “abcdef”.

String options = ObjectProperties.hint + “=abc|”

 Note: Matching networks to a network ID (Example 1) will take
precedence over matching networks to a name (Example 2).

The values for the ObjectProperties.accessRight and
ObjectProperties.overrideType options must be one of the constants listed
in Access Right Values on page 189 and Object Types on page 209. For
example:

String options = ObjectProperties.accessRight + "=" +
 AccessRightValues.AddAccess +
"|"+ ObjectProperties.overrideType + "=" +
 ObjectTypes.HostRecord;

Get IPv4 Network by Range
Returns an IPv4 Network object from the database by calling it using its address range.

Output / Response

Returns the specified IPv4 network object from the database.

API call:
APIEntity getEntityByRange (long parentId, String address1, String address2, String type)

Parameter Description

parentId The object ID of the network’s parent object.

address1 An IP address defining the lowest address or start of the network.

address2 An IP address defining the highest address or end of the network.

type The type of object returned: IP4Network. This must be one of the constants
listed in Object Types on page 209.

Get Next Available Network
returns the object ID for the next available (unused) network within a configuration or block.

Output / Response

Returns the object ID for the existing next available IPv4 network or, if the next available network did not
exist and autoCreate was set to true, the newly created IPv4 network.

API call:
long getNextAvailableIP4Network (long parentId, long size, boolean isLargerAllowed,
boolean autoCreate)

Parameter Description

parentId The object ID of the network’s parent object.

size The size of the network, expressed as a power of 2.

64 | Address Manager API Guide

 IPAM

Parameter Description

isLargerAllowed This Boolean value indicates whether to return larger networks than those
specified with the size parameter.

autoCreate This Boolean value indicates whether the next available network should be
created if it does not exist.

Get Next Available IP Range
Returns the object ID for the next available (unused) block or network within a configuration or block.

Output / Response

Returns the object ID for the existing next available IPv4 range or, if the next available IP range does not
exist and autoCreate was set to true, the newly created IPv4 range.

API call:
APIEntity getNextAvailableIPRange (long parentId, long size, String type, String
properties)

Parameter Description

parentId The object ID of the parent object under which the next available range resides
(Configuration or Block).

size The size of the range, expressed as a power of 2.

type The type of the range object to be fetched. Currently IPv4 block and network are
supported.

properties The string containing the following properties and values:

• reuseExisting—True or False. This Boolean value indicates whether to
search existing empty networks to find the available IP range of specified
size.

• isLargerAllowed—True or False. This Boolean value indicates whether to
return larger networks than those specified with the sizeparameter.

• autoCreate—True or False. This Boolean value indicates whether the next
available IP range should be created in the parent object if it does not exist.

• traversalMethod—This parameter identifies the appropriate search
algorithm to find the suitable object. The possible values are:

• TraversalMethodology.NO_TRAVERSAL (NO_TRAVERSAL)—will
attempt to find the next range directly under the specified parent object. It
will not search through to the lower level objects.

• TraversalMethodology.DEPTH_FIRST (DEPTH_FIRST)—will attempt
to find the next range under the specified object by iteratively through
its children one by one. After exploring the object recursively for its child
ranges, it will move to the next child object.

• TraversalMethodology.BREADTH_FIRST (BREADTH_FIRST)—will
attempt to find the next range under the specified object by iterative
levels. It will first find the range immediately below the specified parent
object. If not found, then it will attempt to find the range under all the first
child objects.

Get Next Available IP Ranges
Returns the object IDs for the next available (unused) blocks or networks within a configuration or block.

Version 8.3.0 | 65

Chapter 4: API Object Methods

Output / Response

Returns consecutive matching IPv4 range object IDs. If the next available ranges do not exist and you
have set the autoCreate property to true, new IPv4 ranges will be created and their object IDs will be
returned.

API call:
APIEntity[] getNextAvailableIPRanges (long parentId, long size, String type, int count, String
properties)

Parameter Description

parentId The object ID of the parent object under which the next available range resides
(Configuration or Block).

size The size of the range, expressed as a power of 2.

type The type of the range object to be fetched. Currently only IPv4 network is supported.

count The number of networks to be found.

 Note: If the number of networks count is greater than 1:

• isLargerAllowed and traversalMethod properties will not be applicable.
• The DEPTH_FIRST methodology will be used to search objects.

properties The string containing the following properties and values:

• reuseExisting—True or False. This Boolean value indicates whether to search
existing empty networks to find the available IP range of specified size.

• isLargerAllowed—True or False. This Boolean value indicates whether to return
larger networks than those specified with the sizeparameter.

• autoCreate—True or False. This Boolean value indicates whether the next
available IP range should be created in the parent object if it does not exist.

• traversalMethod—This parameter identifies the appropriate search algorithm to
find the suitable object. The possible values are:

• TraversalMethodology.NO_TRAVERSAL (NO_TRAVERSAL)—will attempt
to find the next range directly under the specified parent object. It will not
search through to the lower level objects.

• TraversalMethodology.DEPTH_FIRST (DEPTH_FIRST)—will attempt to find
the next range under the specified object by iteratively through its children one
by one. After exploring the object recursively for its child ranges, it will move to
the next child object.

• TraversalMethodology.BREADTH_FIRST (BREADTH_FIRST)—will attempt
to find the next range under the specified object by iterative levels. It will first
find the range immediately below the specified parent object. If not found, then
it will attempt to find the range under all the first child objects.

Split IPv4 Network
Splits an IPv4 network into the specified number of networks.

Output / Response

Returns an array of networks created after splitting the network.

API call:
APIEntity[] splitIP4Network (long networkId, int numberOfParts, String options)

66 | Address Manager API Guide

 IPAM

Parameter Description

networkId The database object ID of the network that is being split.

numberOfParts The number of the networks into which the network will be split. Valid values are
2 to the power of 2 up to 1024.

options A string containing the following options:

• assignDefaultGateway—a Boolean value. If set to true, a gateway will be
created by using the default gateway value which is the first IP address in
the network. If set to false, no gateway will be created. The default value is
true.

• overwriteConflicts—a Boolean value. If set to true, any conflicts within the
split IPv4 network will be removed. The default value is false.

• template—a network template ID. The default value is 0 which means no
network template will be used. Specify a network template ID if you wish to
apply one.

• preserveGateway—a Boolean value. If set to true, the gateway in the
original network will be preserved. The default value is true.

Update IPv4 Network
An IPv4 network’s name property can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

IPv4 Network Generic Methods
IPv4 networks can be deleted using the generic delete() method.

For more information, see Deleting Objects on page 52.

IPv4 Network Templates
IPv4 network templates allow you to create standard settings that can be applied when you create new
networks.

Whenever you change template settings, all networks based on the template are updated accordingly. Use
network templates to standardize address assignments and DHCP options.

Address Manager API v4.0 and greater includes the following changes to IPv4 network templates when
performing Add, Update and Get operations for IPv4 Network Templates through API:

• The pipe (|) separator in the sub-type value has been replaced with commas (,).
• If the name properties contains commas (,) or back-slashes (\), it needs to be escaped with backward

slash (\).

Add IPv4 Network Template
Add an IPv4 network template to the specified configuration.

Output / Response

Returns the object ID of the new IPv4 network template.

API call:
long addIP4NetworkTemplate (long configurationId, String name, String properties)

Version 8.3.0 | 67

Chapter 4: API Object Methods

Parameter Description

configurationId The object ID of the configuration in which the IPv4 template is located.

name The name of the IPv4 network template. This value cannot be empty or null.

properties A string defining the IPv4 network template properties.
For example, gateway=[gateway_offset]|
reservedAddresses={type,offset,size,dirction,name}. Refer to
the Properties lists table.

Properties lists

Property Value

gateway_offset This is to specify which address to assign an IPv4 gateway. When there is a
negative sign in front of the gateway offset, then the gateway is at the end of the
range. For example, if the value of gateway offset is -n, the nth IP address from
the end of range will be the gateway.

type Can be either RESERVED_BLOCK or RESERVED_DHCP_RANGE.

offset This is to specify from which address to start to assign IPv4 addresses.

size The size of the network.

direction Can be either FROM_START or FROM_END.

name The name of the network.

Assign or Update Template
Assigns, updates, or removes DNS zone and IPv4 network templates.

Output / Response

None.

API call:
void assignOrUpdateTemplate (long entityId, long templateId, String properties)

Parameter Description

entityId The object ID of the IPv4 network to which the network template is to be
assigned or updated, or the object ID of the zone to which the zone template is
to be assigned or updated.

templateId The object ID of the DNS zone template or IPv4 network template. To remove a
template, set this value to 0 (zero).

properties A string containing the following settings:

• ObjectProperties.templateType - Specifies the type of template
on which this operation is being performed. This is mandatory. The
possible values are ObjectProperties.IP4NetworkTemplateType
(Assigning or updating IP4NetworkTemplate on an IP4Network) and
ObjectProperties.zoneTemplateType (Assigning or updating zoneTemplate
on a DNS zone).

Along with ObjectProperties.templateType, you can also specify the reapply
mode for various properties of the template.

68 | Address Manager API Guide

 IPAM

Parameter Description

For Network template, the following additional parameters can also be
specified:

• ObjectProperties.gatewayReapplyMode
• ObjectProperties.reservedAddressesReapplyMode
• ObjectProperties.dhcpRangesReapplyMode
• ObjectProperties.ipGroupsReapplyMode
• ObjectProperties.optionsReapplyMode

For Zone Template, the following additional parameter can also be specified:

• ObjectProperties.zoneTemplateReapplyMode

The possible values for re-apply mode properties are:

• ObjectProperties.templateReapplyModeUpdate
• ObjectProperties.templateReapplyModeIgnore
• ObjectProperties.templateReapplyModeOverwrite

If the re-apply mode is not specified in the properties, the default
ObjectProperties.templateReapplyModeIgnore mode is used.

 Note: If you are not using Java or Perl, refer to Object Properties on
page 201 for the actual values.

Java client example

EntityProperties ntProp = new EntityProperties();
ntProp.addProperty(ObjectProperties.templateType,
ObjectProperties.IP4NetworkTemplateType);
ntProp.addProperty(ObjectProperties.gatewayReapplyMode,
ObjectProperties.templateReapplyModeUpdate);
ntProp.addProperty(ObjectProperties.reservedAddressesReapplyMode,
ObjectProperties.templateReapplyModeUpdate);
service.assignOrUpdateTemplate(ip4N20_26Id, networkTemplateId,
ntProp.getPropertiesString());

Perl client example

SOAP::Data->type('string')->name('properties')->
value(ObjectProperties::templateType."=".ObjectProperties::
IP4NetworkTemplateType."|".
ObjectProperties:: gatewayReapplyMode."=".ObjectProperties::
templateReapplyModeUpdate."|")
->attr({xmlns => ''}))->result;

Re-apply Template
Reapplies IPv4 network templates. The template must already be applied to an object before you can re-
apply or remove it.

Output / Response

None.

API call:
void reapplyTemplate (long templateId,String properties)

Version 8.3.0 | 69

Chapter 4: API Object Methods

Parameter Description

templateId The object ID of the IPv4 network template or DNS zone template to be
assigned or updated.

properties A string containing the following settings:

• The properties value must include ObjectProperties.templateType
with the value of ObjectProperties.IP4NetworkTemplateType or
ObjectProperties.zoneTemplateType.

• To re-apply the network gateway in a IPv4 network template, include
ObjectProperties.gatewayReapplyMode. This is optional.

• If the re-apply mode is not specified in the properties, the default
ObjectProperties.templateReapplyModeIgnore mode is used.

• The available re-apply modes include:

• ObjectProperties.templateReapplyModeUpdate
• ObjectProperties.templateReapplyModeIgnore
• ObjectProperties.templateReapplyModeOverwrite

 Note:

• ObjectProperties.templateReapplyModeOverwrite is
not applicable for Gateway and Reserved Addresses. Use
ObjectProperties.templateReapplyModeUpdate instead to
update.

• ObjectProperties.templateReapplyModeUpdate is not applicable
for Reserved DHCP Ranges, IP Groups and Zone Templates. Use
ObjectProperties.templateReapplyModeOverwrite instead to
update.

• Both ObjectProperties.templateReapplyModeUpdate and
ObjectProperties.templateReapplyModeOverwrite are applicable
for Deployment Options.

Java client example

EntityProperties ntProp = new EntityProperties();
ntProp.addProperty(ObjectProperties.templateType,
ObjectProperties.IP4NetworkTemplateType);
ntProp.addProperty(ObjectProperties.gatewayReapplyMode,
ObjectProperties.templateReapplyModeUpdate);
ntProp.addProperty(ObjectProperties.reservedAddressesReapplyMode,
ObjectProperties.templateReapplyModeUpdate);
service.reapplyTemplate(networkTemplateId3, ntProp.getPropertiesString());

Perl client example

SOAP::Data->type('string')->name('properties')->
value(ObjectProperties::templateType."=".ObjectProperties::
IP4NetworkTemplateType."|".
ObjectProperties:: gatewayReapplyMode."=".ObjectProperties::
templateReapplyModeUpdate."|")
->attr({xmlns => ''}))->result;

Update IPv4 Network Template Name
An IPv4 network template’s name property can be updated using the generic update() method.

70 | Address Manager API Guide

 IPAM

For more information, see Updating Objects on page 50.

IPv4 Network Template Generic Methods
IPv4 network templates use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

IPv4 addresses
An address is the actual IP address leased or assigned to a member of a network.

IPv4 addresses need to be assigned a particular allocation rather than simply be added. The address
allocation can be checked, along with any host records that are dependent on it. The next available
address can also be returned. Only addresses within an existing network can be assigned.

Assign IPv4 Address
Assigns a MAC address and other properties to an IPv4 address.

Output / Response

Returns the object ID for the newly assigned IPv4 address.

API call:
long assignIP4Address (long configurationId, String ip4Address, String macAddress, String hostInfo,
String action, String properties)

Parameter Description

configurationId The object ID of the configuration in which the IPv4 address is located.

ip4Address The IPv4 address.

macAddress The MAC address to assign to the IPv4 address. The MAC address can
be specified in the format nnnnnnnnnnnn, nn-nn-nn-nn-nn-nn or
nn:nn:nn:nn:nn:nn, where nn is a hexadecimal value.

hostInfo A string containing host information for the address in the following format:

hostname,viewId,reverseFlag,sameAsZoneFlag[,
hostname,viewId,reverseFlag,sameAsZoneFlag,...]

Where:

• hostname - The Fully Qualified Domain Name (FQDN) for the host record to
be added.

• viewId - The object ID of the view under which this host should be created.
• reverseFlag - The flag indicating if a reverse record should be created. The

possible values are true or false.
• sameAsZoneFlag - The flag indicating if record should be created as same

as zone record. The possible values are true or false.

The comma-separated parameters may be repeated in the order shown above.
The string must not end with a comma.

action This parameter must be set to one of the constants shown in IP Assignment
Action Values on page 201.

properties A string containing the following property, including user-defined fields:

Version 8.3.0 | 71

Chapter 4: API Object Methods

Parameter Description

• ptrs—a string containing the list of unmanaged external host records to be
associated with the IPv4 address in the following format:

viewId,exHostFQDN[, viewId,exHostFQDN,...]

You can assign External Host records to an IPv4 address using the following
method:

EntityProperties props = new EntityProperties();
 props.addProperty(ObjectProperties.ptrs,
 "123,exHostFQDN.com,456,exHostFQDN.net")
 long addressId =
 service.assignIP4Address(configurationId,
 IPv4Address, macAddressStr, hostInfo,
 IPAssignmentActionValues.MAKE_STATIC,
 props.getPropertiesString());

• name—name of the IPv4 address.
• locationCode—the hierarchical location code consists of a set of 1 to 3

alpha-numeric strings separated by a space. The first two characters indicate
a country, followed by next three characters which indicate a city in UN/
LOCODE. New custom locations created under a UN/LOCODE city are
appended to the end of the hierarchy. For example, CA TOR OF1 indicates:
CA= Canada TOR=Toronto OF1=Office 1.

 Note: The code is case-sensitive. It must be all UPPER CASE letters.
The country code and child location code should be alphanumeric
strings.

Assign Next Available IPv4 Address
Assigns a MAC address and other properties to the next available and unallocated IPv4 address within a
configuration, block, or network.

Output / Response

Returns the object ID for the newly assigned IPv4 address.

API call:
APIEntity assignNextAvailableIP4Address (long configurationId, long parentId, String
macAddress, String hostInfo, String action, String properties)

Parameter Description

configurationId The object ID of the configuration in which the IPv4 address is located.

parentId The object ID of the configuration, block, or network in which to look for the next
available address.

macAddress The MAC address to assign to the IPv4 address. The MAC address can
be specified in the format nnnnnnnnnnnn, nn-nn-nn-nn-nn-nn or
nn:nn:nn:nn:nn:nn, where nn is a hexadecimal value.

hostInfo A string containing host information for the address in the following format:

hostname,viewId,reverseFlag,sameAsZoneFlag[,
hostname,viewId,reverseFlag,sameAsZoneFlag,...]

Where:

72 | Address Manager API Guide

 IPAM

Parameter Description

• hostname - The Fully Qualified Domain Name (FQDN) for the host record to
be added.

• viewId - The object ID of the view under which this host should be created.
• reverseFlag - The flag indicating if a reverse record should be created. The

possible values are true or false.
• sameAsZoneFlag - The flag indicating if record should be created as same

as zone record. The possible values are true or false.

The comma-separated parameters may be repeated in the order shown above.
The string must not end with a comma.

action This parameter must be set to one of the constants shown in IP Assignment
Action Values on page 201.

properties A string containing the following property, including user-defined fields:

• ptrs—a string containing the list of unmanaged external host records to be
associated with the IPv4 address in the following format:

viewId,exHostFQDN[, viewId,exHostFQDN,...]

You can assign External Host records to an IPv4 address using the following
method:

EntityProperties props = new EntityProperties();
 props.addProperty(ObjectProperties.ptrs,
 "123,exHostFQDN.com,456,exHostFQDN.net")
 long addressId =
 service.assignIP4Address(configurationId,
 IPv4Address, macAddressStr, hostInfo,
 IPAssignmentActionValues.MAKE_STATIC,
 props.getPropertiesString());

• name—name of the IPv4 address.
• locationCode—the hierarchical location code consists of a set of 1 to 3

alpha-numeric strings separated by a space. The first two characters indicate
a country, followed by next three characters which indicate a city in UN/
LOCODE. New custom locations created under a UN/LOCODE city are
appended to the end of the hierarchy. For example, CA TOR OF1 indicates
CA= Canada TOR=Toronto OF1=Office 1.

 Note: The code is case-sensitive. It must be all UPPER CASE letters.
The county code and child location code should be alphanumeric
strings.

• skip—This is optional. Use to specify the IP address ranges or IP addresses
to skip. You can specify multiple IP addresses separated by comma. To
specify the range between the start and end addresses, use a hyphen (-). For
example, skip=192.0.2.128-192.0.2.222,192.0.2.223.

• offset—This is optional. Use to specify from which address to start to assign
IPv4 address. For example, offset=192.0.2.100.

• excludeDHCPRange—true or false. To specify whether IP addresses in
DHCP ranges should be excluded from assignment. The default value is false.
For example, offset=192.0.2.100|excludeDHCPRange=true.

Get IPv4 Address
Returns the details for the requested IPv4 address object.

Version 8.3.0 | 73

Chapter 4: API Object Methods

Output / Response

Returns the requested IPv4 Address object from the database.

API call:
APIEntity getIP4Address (long containerId, String address)

Parameter Description

containerId The object ID for the configuration, block, network, or DHCP range in which this
address is located.

address The IPv4 address.

Get Next IPv4 Address
Returns the next available IP addresses in octet notation under specified circumstances.

Output / Response

Returns the IPv4 address in octet notation.

API call:
String getNextIP4Address (long parentId, String properties)

Parameter Description

parentId The network or configuration Id.

properties The property string contains three properties; skip, offset and
excludeDHCPRange. The values for skip and offset must be IPv4 addresses
and must appear in dotted octet notation.

• skip - This is optional. It is used to specify the IP address ranges or IP
addresses to skip, separated by comma. A hyphen(-), not a dash is used to
separate the start and end addresses.

 Note: Do not use the skip property if the parentId is a configuration
Id. If you do, an error message appears, ‘Skip is not allowed
for configuration level’.

• offset - This is optional. This is to specify from which address to start to
assign IPv4 Address.

• excludeDHCPRange - This specifies whether IP addresses in DHCP ranges
should be excluded from assignment. The value is either true or false,
default value is false.

skip=10.10.10.128-10.10.11.200,10.10.11.210|
offset=10.10.10.100|excludeDHCPRange=true|

Check Allocation for IPv4 Address
Returns the allocation information for an IPv4 DHCP allocated address.

Output / Response

Returns a Boolean value indicating whether the address is allocated.

API call:
boolean isAddressAllocated (long configurationId, String ipAddress, String macAddress)

74 | Address Manager API Guide

 IPAM

Parameter Description

configurationId The object ID for the configuration in which the IPv4 DHCP allocated address is
located.

ipAddress The IPv4 DHCP allocated address.

macAddress The MAC address associated with the IPv4 DHCP allocated address. The MAC
address can be specified in the format nnnnnnnnnnnn, nn-nn-nn-nn-nn-nn
or nn:nn:nn:nn:nn:nn, where nn is a hexadecimal value.

Get Next Available Address
Returns the IPv4 address for the next available (unallocated) address within a configuration, block, or
network.

Output / Response

Returns the next available IPv4 address in an existing network as a string.

API call:
String getNextAvailableIP4Address (long parentId)

Parameter Description

parentId The object ID for configuration, block, or network in which to look for the next
available address.

Update IPv4 Address
An IPv4 address’s name property can be updated using the generic update() method.

For more information, refer to Updating Objects on page 50.

IPv4 Address Generic Methods
IPv4 addresses can be deleted using the generic delete() method.

For more information, see Deleting Objects on page 52.

Change IPv4 Address State
Converts the state of an address from and between Reserved, DHCP Reserved, and Static, or DHCP
Allocated to DHCP Reserved.

Output / Response

Converts an IP address from its current state to a target state; statically assigned, DHCP reserved,
or logically reserved (non-DHCP). For example, this method can convert an IP address from a logical
reservation to a static assignment or vise versa.

API call:
void changeStateIP4Address (long addressId, String targetState, String macAddress)

Parameter Description

addressId The database ID of the address object.

targetState One of MAKE_STATIC, MAKE_RESERVED, MAKE_DHCP_RESERVED. All of
these constants are defined in the Java Class IPAssignmentActionValues or in
the API.pm file for Perl.

Version 8.3.0 | 75

Chapter 4: API Object Methods

Parameter Description

macAddress Optional and only needed, if the target requires it. (e.g.
MAKE_DHCP_RESERVED)

Additional IP Addresses
Add multiple IPv4 addresses to the Services interface or loopback address for DNS services.

Multiple DNS service addresses provide flexibility and centralized control when consolidating old DNS
servers into one single server without disrupting any configurations that might be using the old IP
addresses.

 Note:

• You can configure a maximum of 400 IP addresses per DNS/DHCP Server appliance or VM,
including IPv4, IPv6, IPv6 link-local addresses, and loopback addresses.

• IP addresses that you are adding must be unique and must not conflict with other IP addresses
used by the server.

! Attention: VLAN interfaces are not currently supported by the following API methods:

• void addAdditionalIPAddresses()
• void removeAdditionalIPAddresses()
• String getAdditionalIPAddresses()

Add Additional IP Addresses
Adds additional IPv4 addresses and loopback addresses to the Services interface for DNS service.

Output / Response

None.

! Attention: This method does not support VLAN interfaces.

API call:
void addAdditionalIPAddresses (long serverId, String ipsToAdd, String properties)

Parameter Description

serverId The database object ID of the server to which additional services IP address will
be added.

ipsToAdd The list of IP addresses to be added. You can specify multiple IP addresses
with a separator (|). The supported format is [IP,serviceType|
IP,serviceType]. For example, 10.0.0.10/32,loopback|11.0.0.3/24,service|
12.0.0.3,loopback.

properties Adds object properties. Currently there is no supported properties. Reserved for
future use.

Remove Additional IP Addresses
Removes additional IPv4 addresses and loopback addresses from the Services interface.

Output / Response

None.

! Attention: This method does not support VLAN interfaces.

76 | Address Manager API Guide

 IPAM

API call:
void removeAdditionalIPAddresses (long serverId, String ipsToRemove, String properties)

Parameter Description

serverId The database object ID of the server from which additional services IP addresses
need to be removed.

ipsToRemove The list of IP addresses to be removed. You can specify multiple IP
addresses with a separator (|). The supported format is [IP,serviceType|
IP,serviceType]. For example, 10.0.0.10/32,loopback|11.0.0.3/24,service|
12.0.0.3,loopback.

properties Adds object properties. Currently there is no supported properties. Reserved for
future use.

Get Additional IP Addresses
Returns IPv4 addresses and loopback addresses added to the Service interface for DNS services.

Output / Response

Returns the list of additional IP addresses configured on the server in the following format:
[IP,serviceType|IP,serviceType]. For example, 10.0.0.10/32,loopback|11.0.0.3/24,service|12.0.0.3/
32,loopback.

! Attention: This method does not support VLAN interfaces.

API call:
String getAdditionalIPAddresses (long adonisID, String properties)

Parameter Description

adonisID The database object ID of the server on which additional services IP address
have been added.

properties The supported property is:

• serviceType—type of service for which a list of IP addresses will be
retrieved. Available types are AdditionalIPServiceType.SERVICE and
AdditionalIPServiceType.LOOPBACK. If serviceType is not provided, all
additional IP addresses of the services interface will be returned.

IPv4 Group
IP grouping dedicates a set of IP addresses to a certain group in order to limit a user’s accessibility to
these IP addresses, depending on the user’s access rights.

IP grouping helps you better manage IP addresses and troubleshoot easily when you have issues with IP
addresses. You can define the range of IP addresses and grant access rights to a certain user or a group.
The specified user or group can only access the IP addresses defined in the IP group and manipulate
as needed. This feature is especially useful when there are multiple IP networks with large number of
addresses. You can group the IP addresses based on user, department, or tasks.

Add IPv4 IP Group by Range
Adds an IPv4 IP group by range bounds; start address and end address.

Output / Response

Returns the object ID for the new IPv4 IP group range.

Version 8.3.0 | 77

Chapter 4: API Object Methods

API call:
long addIP4IPGroupByRange (long parentId, String name, String start, String end, String properties)

Parameter Description

parentId The object ID for the network in which this IP group is located.

name The name of the IP group.

start A start IP address of the IP group range.

end An end IP address of the IP group range.

properties Addes object properties, including the user-defined fields.

Add IPv4 IP Group by Size
Adds an IPv4 IP group by size.

Output / Response

returns the object ID for the new IPv4 IP group range.

API call:
long addIP4IPGroupBySize (long parentId, String name, int size, String positionRangeBy, String
positionValue, String properties)

Parameter Description

parentId The object ID for the network in which this IP group is located.

name The name of the IP group.

size The number of addresses in the IP group.

positionRangeBy A string specifying the position of the IP group range in the parent network. The
value must be one of the constants listed in PositionRangeBy on page 225. This
is optional. If specified, positionValue must be provided.

positionValue The offset value when using positionRangeBy.START_OFFSET or
positionRangeBy.END_OFFSET. The start address of the IP group in the
network when using positionRangeBy.START_ADDRESS. This is required only
if positionRangeBy is specified.

properties Adds object properties, including the user-defined fields.

IPv4 Objects
IPv4 objects include blocks, networks, DHCP ranges, templates, addresses and reconciliation policy.

Move IPv4 Object (deprecated)
Moves an IPv4 block, an IPv4 network, or an IPv4 address to a new IPv4 address.

Output / Response

None.

! Attention: This method is deprecated in favor or the more extensive Move IP Object method. Use
moveIPObject() instead.

 Note: The block or network being moved must fit fully within the new parent object and must also
not overlap its sibling objects. A network object cannot be moved directly beneath a configuration
as it must be a child of a block object.

78 | Address Manager API Guide

 IPAM

API call:
void moveIP4Object (long objectId, String address)

Parameter Description

objectId The object ID of the IPv4 block, network, or IP address to be moved.

address The new address for the IPv4 block, network, or IP address.

Move IP Object
Moves an IPv4 block, IPv4 network, IPv4 address, IPv6 block or IPv6 network to a new IPv4 or IPv6
address.

Output / Response

None.

 Note: This method is a more extensive version of the Move IPv4 Object method that this method
replaces. Use this method to move various supported IP objects.

API call:
void moveIPObject (long objectId, String address, String options)

Parameter Description

objectId The ID of the object to be moved. Currently IPv4 blocks, IPv4 networks, IPv4
addresses, IPv6 blocks and IPv6 networks are supported.

address The new address for the object.

options A string containing the noServerUpdate option.

• noServerUpdate - A boolean value. If set to true, instant dynamic host record
changes will not be performed on DNS/DHCP Servers when moving an IPv4
address object.

 Note: noServerUpdate works only for an IPv4 address object.

Resize Range
Changes the size of an IPv4 block, IPv4 network, DHCPv4 range, IPv6 block or IPv6 network.

Output / Response

None.

API call:
void resizeRange (long objectId, String range, String options)

Parameter Description

objectId The ID of the object to be resized. Currently IPv4 block, IPv4 network, DHCPv4
range, IPv6 Block and IPv6 Network are supported.

range The new size for the object to be resized.

For the IPv4 block, IPv4 network or DHCPv4 range, specify the size in CIDR
notation or as an address range in the ipAddressStart-ipAddressEnd format.

For the IPv6 block or IPv6 network, specify the size in Starting address/Size
format.

Version 8.3.0 | 79

Chapter 4: API Object Methods

Parameter Description

options A string containing the following options:

• ObjectProperties.convertOrphanedIPAddressesTo

 Note: This option applies only to DHCPv4 range.

The possible values are:

• STATIC
• DHCP_RESERVED
• UNALLOCATED

For example:

service.resizeRange(<rangeID>,
 <"ipAddressStart-ipAddressEnd">,
 "convertOrphanedIPAddressesTo=<value>");

• If the value is an empty string (""), the default is DHCP_RESERVED.
• If the option value is incorrect, an exception will be thrown.
• If the option name is incorrect, the option will be ignored. Therefore,

orphaned IP addresses will remain as assigned.

IPv4 Discovery and Reconciliation
IPv4 address discovery and reconciliation service in Address Manager discovers IPv4 addresses on your
network.

Using a specifically defined discovery engine in the policy, you can explore your network from one or
multiple routers and layer 3 switches for a host's IPv4 addresses, hardware addresses, interfaces,
VLAN and port information, and their DNS host names if DNS is available. The discovered results of a
reconciliation policy are stored in a JSON file in the Address Manager file system and then read by the
reconciliation service to compare the result with the existing IPv4 addresses in Address Manager.

After running IPv4 reconciliation policies, JSON files that contain discovered results are kept in the Address
Manager file system until the API method is run again. You can use the following API methods to access
this discovery result in the JSON files:

• Get Discovered Devices on page 83
• Get Discovered Device on page 83
• Get Discovered Device Interfaces on page 83
• Get Discovered Device Networks on page 83
• Get Discovered Device Hosts on page 84
• Get Discovered Device Vlans on page 84
• Get Discovered Device ARP Entries on page 84
• Get Discovered Device MAC Address Entries on page 85

Add IPv4 Reconciliation Policy
Adds an IPv4 reconciliation policy.

Output / Response

Adds an IPv4 reconciliation policy.

API call:
long addIP4ReconciliationPolicy (long parentId, string name, string properties)

80 | Address Manager API Guide

 IPAM

Parameter Description

parentId The object ID of the parent network of the policy. You can create IPv4
reconciliation policies at the configuration, IPv4 block or IPv4 network levels.

name The name of the policy.

properties A string containing properties and values listed in List of properties and values.

List of properties and values

discoveryType A type of discovery method to use for the network discovery
operation. This must be one of the constants listed in IP
Discovery Type on page 201.

seedRouterAddress IPv4 address. This is not the Default Gateway Address.

snmpVersion Constants defined in SNMP Version. This must be one of the
constants listed in SNMP Version on page 213.

snmpPortNumber An integer greater than 0.

snmpCommunityString Strings separated by comma (,). For example,
community10,community12,community13.

securityLevel This must be one of the constants listed in SNMP Security
Levels on page 214.

context A string. This is required only when snmpVersion is v3.

authenticationType Constants defined in SNMP Authentication Type. This must
be one of the constants listed in SNMP Authentication Type
on page 214. This is required only when securityLevel is
AUTH_NOPRIV or AUTH_PRIV.

authPassphrase A string. This is required only when securityLevel is
AUTH_NOPRIV or AUTH_PRIV.

privacyType A string containing the privacy encryption types. This must be
one of the constants listed in SNMP Privacy Type on page
214. This is required only when securityLevel is AUTH_PRIV.

privacyPassphrase A string containing the privacy authentication password. This is
required only when securityLevel is AUTH_PRIV.

networkBoundaries IPv4 ranges separated by comma(,). CIDR and IPv4 range
formats are supported. For example, 10.0/8,13.0.0.1-13.0.0.126.

blackHoleVlan VLAN ID for the black hole VLAN. This is used as a default
VLAN for all unused ports.

trunkDefaultVlan Unused VLAN ID to be assigned to a trunk as a native/default
VLAN to protect controlled traffic from being spoofed.

skipFqdn True or false. This is used to determine whether Address
Manager discovery engine to perform FQDN resolution and
DNS lookups against any DNS server.

dnsServers One or more IPv4 or IPv6 address separated by comma (,). This
is used to perform FQDN and DNS reverse lookups.

enableLayer2Discovery True or false.

Version 8.3.0 | 81

Chapter 4: API Object Methods

schedule Schedule settings:

• Format: hh:mma,dd MMM yyyy, frequencyType
• frequency: frequencyPeriod
• frequencyType: EVERY or ONCE
• frequency: an integer greater than 0
• frequencyPeriod: constant defined in TimeUnits which

includes [MINUTES|HOURS|DAYS]

For example, 03:37am,31 May 2011,EVERY,6,Days

activeStatus True or false.

acceptanceCriteriaReclaim Used to enable automated acceptance.
acceptanceCriteriaReclaim, acceptanceCriteriaUnknown,
acceptanceCriteriaMismatch and view should be used together
as a complete configuration.

• Format: timeValue, timeUnit, actionType
• timeValue: a integer greater than 0
• timeUnit: constant defined in timeUnits which includes

[MINUTES|HOURS|DAYS]
• actionType: constant defined in AcceptanceActionType

which includes [RECONCILE, NOACTION]

For example, 10,MINUTES,RECONCILE

acceptanceCriteriaUnknown Used to enable automated acceptance.

• Format: timeValue, timeUnit, actionType
• timeValue: a integer greater than 0
• timeUnit: constant defined in timeUnits which includes

[MINUTES|HOURS|DAYS]
• actionType: constant defined in AcceptanceActionType

which includes [RECONCILE, NOACTION]

For example, 20,HOURS,NOACTION

acceptanceCriteriaMismatch Used to enable automated acceptance.

• Format: timeValue, timeUnit,actionType
• timeValue: a integer greater than 0
• timeUnit: constant defined in timeUnits which includes

[MINUTES|HOURS|DAYS]
• actionType: constant defined in AcceptanceActionType

which includes [RECONCILE, NOACTION]

For example, 30,MINUTES,RECONCILE

view This is used if a user wants to enable the automated acceptance
for an existing view’s name.

overrideList IPv4 ranges separated by comma(,). CIDR and
IP4 range formats are supported. For example,
10/16,172/16,172.25.0.2-172.25.0.18.

IPv4 Discovery and Reconciliation Generic Methods
IPv4 Discovery and Reconciliation use the generic get(), update() and delete() methods for entities.

82 | Address Manager API Guide

 IPAM

For more information, refer to Getting Objects on page 44, Updating Objects on page 50 and
Deleting Objects on page 52.

Get Discovered Devices
Returns a list of discovered Layer 2 or Layer 3 devices by running an IPv4 reconciliation policy specified.

Output / Response

Returns an array of discovered Layer 2 or Layer 3 devices.

To understand the returned result, refer to the constants listed in Device Properties on page 190.

API call:
APIEntity[] getDiscoveredDevices (long policyId)

Parameter Description

policyId The object ID for the IPv4 reconciliation policy.

Get Discovered Device
Returns the object ID of the discovered device by running an IPv4 reconciliation policy.

Output / Response

Returns the object ID of the discovered device.

To understand the returned result, refer to the constants listed in Device Properties on page 190.

API call:
APIEntity getDiscoveredDevice (long policyId, long deviceId)

Parameter Description

policyId The object ID for the IPv4 reconciliation policy.

deviceId The object ID of the discovered device.

Get Discovered Device Interfaces
Returns all interfaces of a specific device discovered by running an IPv4 reconciliation policy.

Output / Response

Returns all interfaces of a specific device.

To understand the returned result, refer to the constants listed in Device Properties on page 190.

API call:
APIEntity[] getDiscoveredDeviceInterfaces (long policyId, long deviceId)

Parameter Description

policyId The object ID for the IPv4 reconciliation policy.

deviceId The object ID of the discovered device.

Get Discovered Device Networks
Returns all networks of a specific device discovered by running an IPv4 reconciliation policy.

Output / Response

Version 8.3.0 | 83

Chapter 4: API Object Methods

Returns all networks of a specific device.

To understand the returned result, refer to the constants listed in Device Properties on page 190.

API call:
APIEntity[] getDiscoveredDeviceNetworks (long policyId, long deviceId)

Parameter Description

policyId The object ID for the IPv4 reconciliation policy.

deviceId The object ID of the discovered device.

Get Discovered Device Hosts
Returns all hosts of a specific device discovered by running an IPv4 reconciliation policy.

Output / Response

Returns all hosts of a specific device.

To understand the returned result, refer to the constants listed in Device Properties on page 190.

API call:
APIEntity[] getDiscoveredDeviceHosts (long policyId, long deviceId)

Parameter Description

policyId The object ID for the IPv4 reconciliation policy.

deviceId The object ID of the discovered device.

Get Discovered Device Vlans
Returns all Vlans of a specific device discovered by running an IPv4 reconciliation policy.

Output / Response

Returns all Vlans of a specific device.

To understand the returned result, refer to the constants listed in Device Properties on page 190.

API call:
APIEntity[] getDiscoveredDeviceVlans (long policyId, long deviceId)

Parameter Description

policyId The object ID for the IPv4 reconciliation policy.

deviceId The object ID of the discovered device.

Get Discovered Device ARP Entries
Returns all ARP entries of a specific device discovered by running an IPv4 reconciliation policy.

Output / Response

Returns all ARP entries of a specific device.

To understand the returned result, refer to the constants listed in Device Properties on page 190.

API call:
APIEntity[] getDiscoveredDeviceArpEntries (long policyId, long deviceId)

84 | Address Manager API Guide

 IPAM

Parameter Description

policyId The object ID for the IPv4 reconciliation policy.

deviceId The object ID of the discovered device.

Get Discovered Device MAC Address Entries
Returns all MAC address entries of a specific device discovered by running an IPv4 reconciliation policy.

Output / Response

Returns all MAC address entries of a specific device.

To understand the returned result, refer to the constants listed in Device Properties on page 190.

API call:
APIEntity[] getDiscoveredDeviceMacAddressEntries (long policyId, long deviceId)

Parameter Description

policyId The object ID for the IPv4 reconciliation policy.

deviceId The object ID of the discovered device.

IPv6 Objects
IPv6 objects include blocks, networks, DHCP ranges, addresses, DUID and reconciliation policy.

Add IPv6 Address
Adds an IPv6 address to a specified IPv6 network.

Output / Response

Returns the object ID of the new IPv6 address..

API call:
long addIP6Address (long containerId, String address, String type, String name, String
properties)

Parameter Description

containerId The object ID of the container in which the IPv6 address is being added. This can
be the object ID of a Configuration, IPv6 block or IPv6 network. The parent IPv6
network object must exist before adding an IPv6 address, otherwise an error will
occur.

address The IPv6 address to be added. This value cannot be empty. address and type
must be consistent. For example, if the type is ObjectTypes.IP6Address, the
address must be a string representing an IPv6 address.

type The type of IPv6 address. This value must be one of the following: macAddress,
IP6Address, or InterfaceID. address and type must be consistent. For
example, if the type is ObjectTypes.IP6Address, the address must be a string
representing an IPv6 address.

name Descriptive name for the IPv6 address. This value can be empty.

properties Adds object properties, including user-defined fields.

Version 8.3.0 | 85

Chapter 4: API Object Methods

Add IPv6 Block by MAC Address
Adds a IPv6 block by specifying the MAC address of the server.

Output / Response

Returns the object ID of the new IPv6 block.

API call:
long addIP6BlockByMACAddress (long parentId, String macAddress, String name, String
properties)

Parameter Description

parentId The object ID of the parent object of the new IPv6 block. The parent object must
be another IPv6 block.

macAddress The MAC address of the server in the format nnnnnnnnnnnn, nn-nn-nn-nn-nn-nn
or nn:nn:nn:nn:nn:nn, where nn is a hexadecimal value.

name Descriptive name for the IPv6 block. This value can be empty.

properties Adds object properties, including user-defined fields. This value can be empty.

Add IPv6 Block by Prefix
adds an IPv6 block be specifying the prefix for the block.

Output / Response

Returns the object ID of the new IPv6 block.

API call:
long addIP6BlockByPrefix (long parentId, String prefix, String name, String properties)

Parameter Description

parentId The object ID of the parent object of the new IPv6 block. The parent object may
be a configuration or another IPv6 block.

prefix The IPv6 prefix for the new block. This value cannot be empty.

name Descriptive name for the IPv6 block. This value can be empty.

properties Adds object properties, including user-defined fields. This value can be empty.

Add IPv6 Network by Prefix
adds an IPv6 network be specifying the prefix for the network.

Output / Response

Returns the object ID of the new IPv6 network.

API call:
long addIP6NetworkByPrefix (long parentId, String prefix, String name, String properties)

Parameter Description

parentId The object ID of the IPv6 block in which the new IPv6 network will be located.

prefix The IPv6 prefix for the new network. This value cannot be empty.

name Descriptive name for the IPv6 network. This value can be empty.

86 | Address Manager API Guide

 IPAM

Parameter Description

properties Adds object properties, including user-defined fields. This value can be empty.

Split IPv6 Block or Network
Splits an IPv6 block or network into the specified number of blocks or networks.

Output / Response

Returns an array of IPv6 blocks or networks created after splitting the block or network.

API call:
APIEntity[] splitIP6Range (long rangeId, int numberOfParts, String options)

Parameter Description

rangeId The database object ID of the block or network that is being split.

numberOfParts The number of the blocks or networks into which the block or network will be
split. Valid values are 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024.

options No options available. Reserved for future use.

Get IPv6 Range by IP Address
Returns the DHCPv6 Range containing the specified IPv6 address. Use this method to find the
Configuration, IPv6 Block, IPv6 Network, or DHCPv6 Range containing a specified address. You can
specify the type of object to be returned, or you can leave the type of object empty to find the most direct
container for the object..

Output / Response

Returns an APIEntity for the object containing the specified address. If no object is found, returns an
empty APIEntity. If ObjectTypes.IP6Block, ObjectTypes.IP6Network,or ObjectTypes.DHCP6Range is
specified as the type parameter, returns an object of the specified type. If an empty string is specified as
the type parameter, returns the most direct container for the IPv6 address.

API call:
APIEntity getIPRangedByIP (long containerId, String type, String address)

Parameter Description

containerId The object ID of the container in which the IPv6 address is located. This can be
a Configuration, IPv6 Block, IPv6 Network, or DHCPv6 Range. When you do not
know the block, network, or range in which the address is located, specify the
configuration.

type The type of object containing the IPv6 address. Specify ObjectTypes.IP6Block,
ObjectTypes.IP6Network, or ObjectTypes.DHCP6Range to find the block,
network, or range containing the IPv6 address. Specify an empty string to return
the most direct container for the IPv6 address.

address An IPv6 address.

Get IPv6 Objects by Hint
Returns an array of IPv6 objects found under a given container object. The networks can be filtered by
using ObjectProperties.hint and ObjectProperties.accessRight options. Currently, it only supports IPv6
networks.

Version 8.3.0 | 87

Chapter 4: API Object Methods

Output / Response

Returns an array of IPv6 objects based on the input argument without their properties fields populated, or
returns an empty array if containerId is invalid. If no access right option is specified, the View access
level will be used by default.

API call:
APIEntity[] getIP6ObjectsByHint (long containerId, String objectType, int start, int
count, String options)

Parameter Description

containerId The object ID for the container object. It can be the object ID of any object in the
parent object hierarchy. The highest parent object is the configuration level.

objectType The type of object containing the IPv6 network. Currently, it only supports
ObjectTypes.IP6Network.

start Indicates where in the list of objects to start returning objects. The list begins at
an index of 0.

count Indicates the maximum number of child objects that this method will return.

options A string containing options. The Option names available in ObjectProperties are
ObjectProperties.hint and ObjectProperties.accessRight.

Multiple options can be separated by a | (pipe) character. For example:

hint=ab|accessRight=ADD

The values for the ObjectProperties.hint option can be the prefix of the IP
address for a network or the name of a network.

• Example 1

The following example will match networks that have the network ID starting
with 2000::. For example, 2000::/64.

String options = ObjectProperties.hint + “=2000::”

• Example 2

The following example will match networks that have a name starting with
“abc”. For example, “abc”, “abc123” or “abcdef”.

String options = ObjectProperties.hint + “=abc|”

 Note: Matching networks to a network ID (Example 1) will take
precedence over matching networks to a name (Example 2).

The values for the ObjectProperties.accessRight option must be one of the
constants listed in Access Right Values on page 189 and Object Types on
page 209. For example:

String options = ObjectProperties.accessRight + "=" +
 AccessRightValues.AddAccess;

Assign IPv6 Address
Assigns an IPv6 address to a MAC address and host.

Output / Response

88 | Address Manager API Guide

 IPAM

Returns true if the IPv6 address is successfully assigned; returns false if the address is not successfully
assigned.

API call:
boolean assignIP6Address (long containerId, String address, String action, String
macAddress, String hostInfo, String properties)

Parameter Description

containerId The object ID of the container in which the IPv6 address is being assigned. This
can be the object ID of a Configuration, IPv6 block or IPv6 network. The parent
IPv6 network object must exist before adding an IPv6 address, otherwise an error
will occur.

address The IPv6 address to be assigned. This value cannot be empty. The address
must be created with addIP6Address() before it can be assigned. For more
information, refer to Add IPv6 Address on page 85. The address must be a
string representing an IPv6 address.

action Determines how to assign the address. Valid values are MAKE_STATIC or
MAKE_DHCP_RESERVED.

macAddress The MAC address in the format nnnnnnnnnnnn, nn-nn-nn-nn-nn-nn or
nn:nn:nn:nn:nn:nn, where nn is a hexadecimal value.

hostInfo The host information for the IPv6 address. This value can be empty. The hostInfo
string uses the following format: viewId, hostname, ifSameAsZone,
ifReverseMapping.

Where viewId is the object ID of the DNS view; hostname is the name of
DNS zone for the address; ifSameAsZone is a Boolean value, with true
indicating that the name of the resource record should be the same as the host;
ifReverseMapping is a Boolean value, with trueindicating that a reverse record
should be created.

Shown here is an example of a hostInfo string:
2030445,www.example.com,false,true.

properties A string containing the following property, including user-defined fields:

• ptrs—a string containing the list of unmanaged external host records to be
associated with the IPv6 address in the following format:

viewId,exHostFQDN[, viewId,exHostFQDN,...]

You can assign External Host records to an IPv6 address using the following
method:

EntityProperties props = new EntityProperties();
 props.addProperty(ObjectProperties.ptrs,
 "123,exHostFQDN.com,456,exHostFQDN.net")
 long addressId =
 service.assignIP4Address(configurationId,
 IPv6Address, macAddressStr, hostInfo,
 IPAssignmentActionValues.MAKE_STATIC,
 props.getPropertiesString());

• name—name of the IPv6 address.
• DUID—DHCPv6 unique identifier.
• locationCode—the hierarchical location code consists of a set of 1 to 3

alpha-numeric strings separated by a space. The first two characters indicate

Version 8.3.0 | 89

Chapter 4: API Object Methods

Parameter Description

a country, followed by next three characters which indicate a city in UN/
LOCODE. New custom locations created under a UN/LOCODE city are
appended to the end of the hierarchy. For example, CA TOR OF1 indicates:
CA= Canada TOR=Toronto OF1=Office 1.

 Note: The code is case-sensitive. It must be all UPPER CASE letters.
The county code and child location code should be alphanumeric
strings.

This value can be empty.

Clear IPv6 Address
Clears a specified IPv6 address assignment.

Output / Response

Returns true to indicate that the IPv6 address has been cleared, or returns false if the operation was
unsuccessful.

API call:
boolean clearIP6Address (long addressId)

Parameter Description

addressId The object ID of the IPv6 address to be deleted.

Get Entity by Prefix
Returns an APIEntity for the specified IPv6 block or network.

Output / Response

Returns an APIEntity for the specified IPv6 block or network. The APIEntity is empty if the block or network
does not exist.

API call:
APIEntity getEntityByPrefix (long containerId, String prefix, String type)

Parameter Description

containerId The object ID of higher-level parent object (IPv6 block or configuration) in which
the IPv6 block or network is located.

prefix The prefix value for the IPv6 block or network. This value cannot be empty.

type The type of object to be returned. This value must be either IP6Block or
IP6Network.

Get IPv6 Address
Returns an APIEntity for the specified IPv6 address.

Output / Response

Returns an APIEntity for the specified IPv6 address. The APIEntity is empty of the IPv6 address does not
exist.

API call:
APIEntity getIP6Address (long containerId, String address)

90 | Address Manager API Guide

 IPAM

Parameter Description

containerId The object ID of the container in which the IPv6 address is located. The container
can be a configuration, an IPv6 block, or an IPv6 network.

address The IPv6 address.

Reassign IPv6 Address
Reassigns an existing IPv6 address to a new IPv6 address. The destination address can be specified as
an IPv6 address or as a MAC address from which an IPv6 address can be calculated.

Output / Response

Returns the object ID of the reassigned IPv6 address.

API call:
long reassignIP6Address (long oldAddressId, String destination, String properties)

Parameter Description

oldAddressId The object ID of the current IPv6 address.

destination The destination of the reassigned address. This can be specified as an IPv6
address string (NetworkID and InterfaceID), or as a MAC address from which the
new IPv6 address can be calculated. The MAC address can be specified in the
format nnnnnnnnnnnn or nn-nn-nn-nn-nn-nn, where nn is a hexadecimal value.

properties Adds object properties, including user-defined fields.

Provision Devices
Provision and manage new devices for the network.

Add Device Instance
Used to provision new devices for the network and combines a number of existing API methods into one.
This method assigns the next available, or manually defined, IP address and optionally adds a DNS host
record and MAC address that are linked to the IP address and returns the property string containing IP
address, netmask and gateway. When configured with a DNS host record, addDeviceInstance() will
update the DNS server to immediately deploy the host record.

 Note: Address Manager adds the DNS host record directly to the DNS/DHCP Server so that
the individual host record is made live instantly. This is done through the Address Manager to
DNS/DHCP Server communication service (Command Server) and does NOT require a standard
Address Manager deployment.

Output / Response

Returns the property string containing IP address, netmask and gateway.

API call:
String addDeviceInstance (String configName, String deviceName, String ipAddressMode,
String ipEntity, String viewName, String zoneName, String recordName, String macAddressMode,
String macEntity, String options)

Parameter Description

configName Name of parent configuration. If the value is empty or cannot be found, an
exception will be thrown.

Version 8.3.0 | 91

Chapter 4: API Object Methods

Parameter Description

deviceName IP/device name of the new instance. Reserved for future use.

ipAddressMode Accepted values are REQUEST_STATIC, REQUEST_DHCP_RESERVED and
PASS_VALUE. REQUEST_STATIC or REQUEST_DHCP_RESERVED is used
to get the next available IP address. PASS_VALUE is used to pass an existing
IP address. Metadata values will be updated to the newly assigned IP address
only. REQUEST_DHCP_RESERVED is reserved for future use.

ipEntity If ipAddressMode is REQUEST_STATIC or REQUEST_DHCP_RESERVED,
this needs to be the network where the IP address will be provisioned from in
the format of an IP address range in CIDR format or range. If ipAddressMode is
PASS_VALUE, this needs to be an IP address.

viewName Name of parent view.

 Note: Specify an empty string ("") for all viewName, zoneName and
recordName parameters to ignore DNS object creation.

zoneName Parent zone of the record. This must be specified and existing if the viewName
parameter is an empty string and existing.

 Note: Specify an empty string ("") for all viewName, zoneName and
recordName parameters to ignore DNS object creation.

recordName Name of the host record to add. This cannot be empty if both viewName
and zoneName are specified and in use. The viewName, zoneName and
recordName parameters need to be used together: the values must all be an
empty string (""), or they must all be populated with specific values.

 Note: If all three parameter values are an empty string, DNS objects will
not be created but an IP address will be assigned from a network and
linked to a MAC address.

macAddressMode Accepted values are REQUEST_VALUE or PASS_VALUE. If specified an
empty string (""), the MACEntity parameter will be ignored. Use PASS_VALUE to
manually provide the MAC address linked to IP address. REQUEST_VALUE is
reserved for future use.

macEntity If macAddressMode is PASS_VALUE, this must be a MAC address. If
macAddressMode is REQUEST_VALUE, this is a MAC mask.

options The options string contains four properties; skip, offset, excludeDHCPRange
and allowDuplicateHosts.

• skip—This is optional. It is applied to REQUEST_STATIC and
REQUEST_DHCP_RESERVED for ipAddressMode. It is used to specify the
IP address ranges or IP addresses to skip, separated by comma. A hyphen(-),
not a dash is used to separate the start and end addresses.

• offset—This is optional. It is applied to REQUEST_VALUE for
ipAddressMode. This is to specify from which address to start to assign IPv4
Address.

• excludeDHCPRange—This specifies whether IP addresses in DHCP
ranges should be excluded from assignment or not. It is applied to
REQUEST_STATIC only for ipAddressMode. The value is either true
or false, default value is false. The value will always be set to true if the
ipAddressMode is REQUEST_DHCP_RESERVED.

92 | Address Manager API Guide

 DHCP

Parameter Description

• allowDuplicateHosts—This specifies whether the IP address can be added
to an existing host record or not. The value is either true or false, default value
is false.

 Note: The values for skip and offset must be IPv4 addresses and must
appear in dotted octet notation.

Delete Device Instance
Deletes either the IP address or MAC address (and all related DNS entries including host records, PTR
records, or DHCP reserved addresses) on both the Address Manager and DNS/DHCP Server based on
the IPv4 address or a MAC address supplied.

 Note: Address Manager adds the DNS host record directly to the DNS/DHCP Server so that
the individual host record is made live instantly. This is done through the Address Manager to
DNS/DHCP Server communication service (Command Server) and does NOT require a standard
Address Manager deployment.

Output / Response

None.

API call:
void deleteDeviceInstance (String configName, String identifier, String options)

Parameter Description

configName Name of parent configuration. If the value is empty or cannot be found, an
exception will be thrown.

identifier IP address or MAC address. If the value is empty or cannot be found, an
exception will be thrown. Relevant IP addresses, host records and MAC
addresses liked to multiple entities will be updated. Relevant IP addresses, host
records and MAC addresses liked to a single entity will be deleted.

options Currently empty. This parameter is reserved for future use.

DHCP
DHCP is an essential part of IPAM. DHCP manages the dynamic allocation of IP addresses on an IP
network using the concept of address leases.

In Address Manager, DHCP is integrated into the IP core and defined using range objects. At most
levels of the IP core, deployment options control the behavior of the DHCP service for an object and
its descendant objects within the Address Managermanaged network. A deployment role can also be
associated with a server to provide DHCP services for a specific subnet.

IPv4 DHCP Ranges
DHCP ranges indicate the portion of a network that is dedicated to DHCP.

Ranges can have deployment options assigned to them to control the exact settings that clients receive.
Address Manager then manages the deployment of the DHCP ranges to the managed server and activates
the configuration.

Version 8.3.0 | 93

Chapter 4: API Object Methods

Add IPv4 DHCP Range
Adds IPv4 DHCP ranges.

Output / Response

Returns the object ID for the new DHCPv4 range.

API call:
long addDHCP4Range (long networkId, String start, String end, String properties)

Parameter Description

networkId The object ID for the network in which this DHCP range is located.

start An IP address defining the lowest address or start of the range.

end An IP address defining the highest address or end of the range.

properties Adds object properties, including the object name and user-defined fields.

Add IPv4 DHCP Range By Size
Adds IPv4 DHCP ranges by offset and percentage.

Output / Response

Returns the object ID for the new DHCPv4 range.

API call:
long addDHCP4RangeBySize (long networkId, String offset, String size, String properties)

Parameter Description

networkId The object ID for the network in which this DHCP range is located.

offset An integer value specifying the point where the range should begin. The positive
values indicate that the starting IP address of the range will be counted from
the Network ID (first IP address) and forward in the range. The negative values
indicate that the starting IP address of the range will be counted from the
Network Broadcast Address (last IP address) and backward in the range.

size The size of the range. Currently the range size can only be specified in a relative
size in proportion to the parent network size. To define the relative range size,
defineRangeBy must be set with the OFFSET_AND_PERCENTAGE value in the
properties field.

properties Optional object properties that can contain the object name, the value of
defineRangeBy, and user-defined fields. The possible values for defineRangeBy
are OFFSET_AND_SIZE and OFFSET_AND_PERCENTAGE.

 Note: OFFSET_AND_SIZE is reserved for future use.

Get IPv4 Range by IP Address
Returns the DHCP Range containing the specified IPv4 address. Use this method to find the Configuration,
IPv4 Block, IPv4 Network, or DHCP Range containing a specified address. You can specify the type of
object to be returned, or you can leave the type of object empty to find the most direct container for the
object.

Output / Response

94 | Address Manager API Guide

 DHCP

Returns an APIEntity for the object containing the specified address. If no object is found, returns an
empty APIEntity. If ObjectTypes.IP4Block, ObjectTypes.IP4Network, or ObjectTypes.DHCP4Range is
specified as the type parameter, returns an object of the specified type. If an empty string ("") is specified
as the type parameter, returns the most direct container for the IPv4 address.

API call:
APIEntity getIPRangedByIP (long containerId, String type, String address)

Parameter Description

containerId The object ID of the container in which the IPv4 address is located. This can be
a Configuration, IPv4 Block, IPv4 Network, or DHCP Range. When you do not
know the block, network, or range in which the address is located, specify the
configuration.

type The type of object containing the IPv4 address. Specify ObjectTypes.IP4Block,
ObjectTypes.IP4Network, or ObjectTypes.DHCP4Range to find the block,
network, or range containing the IPv4 address. Specify an empty string ("") to
return the most direct container for the IPv4 address.

address An IPv4 address.

Get IPv4 DHCP Range
Returns an IPv4 DHCP range object by calling it using its range.

Output / Response

Returns the specified DHCP4Range object from the database.

API call:
APIEntity getEntityByRange (long parentId, String address1, String address2, String type)

Parameter Description

containerId The object ID of the parent object of the DHCP range.

address1 An IP address defining the lowest address or start of the range.

address2 An IP address defining the highest address or end of the range.

type The type of object returned: DHCP4Range. This must be one of the constants
listed in Object Types on page 209.

Get IPv4 DHCP Ranges
Returns multiple IPv4 DHCP ranges for the specified parent ID.

Output Response

Returns an array of DHCPv4 range objects from the database.

API call:
APIEntity[] getEntities (long parentId, String type, int start, int count)

Parameter Description

parentId The object ID of the parent object of the DHCP range.

type The type of object returned: DHCP4Range. This must be one of the constants
listed in Object Types on page 209.

Version 8.3.0 | 95

Chapter 4: API Object Methods

Parameter Description

start Indicates where in the list of child ranges to start returning range objects. The list
begins at an index of 0.

count The type of object returned: DHCP4Range. This must be one of the constants
listed in Object Types on page 209.

Get Max Allowed Range
Finds the maximum possible address range to which the existing IPv4 DHCP range can be extended. This
method only supports the IPv4 DHCP range.

Output / Response

Returns the possible start address and end address for the specified IPv4 DHCP range object in the form
of array of length 2.

API call:
String[] getMaxAllowedRange (long rangeId)

Parameter Description

rangeId The object ID of the IPv4 DHCP range.

Update IPv4 DHCP Range
A DHCP range’s name property can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

IPv4 DHCP Range Generic Methods
DHCP ranges can be deleted using the generic delete() method.

For more information, see Deleting Objects on page 52.

IPv6 DHCP Ranges
DHCPv6 ranges indicate the portion of a network that is dedicated to DHCPv6.

Ranges can have deployment options assigned to them to control the exact settings that clients receive.
Address Manager then manages the deployment of the DHCPv6 ranges to the managed server and
activates the configuration.

Add IPv6 DHCP Range
Adds IPv6 DHCP ranges.

Output / Response

Returns the object ID for the new DHCPv6 range.

API call:
long addDHCP6Range (long networkId, String start, String end, String properties)

Parameter Description

networkId The object ID for the network in which this DHCPv6 range is located.

start An IP address defining the lowest address or start of the range.

96 | Address Manager API Guide

 DHCP

Parameter Description

end An IP address defining the highest address or end of the range.

properties Adds object properties, including the object name and user-defined fields.

Add IPv6 DHCP Range By Size
Adds IPv6 DHCP ranges by size.

Output / Response

Returns the object ID for the new DHCPv6 range.

API call:
long addDHCP6RangeBySize (long networkId, String start, String size, String properties)

Parameter Description

networkId The object ID for the network in which this DHCP range is located.

start An integer value or IPv6 address specifying the point where the range should
begin. The positive values indicate that the starting IP address of the range will
be counted from the Network ID (first IP address) and forward in the range. The
IPv6 address value indicates the starting address of the range.

 Note:

• If defineRangeBy is set with the AUTOCREATE_BY_SIZE value in
the property field, the start field must contain an empty string ("").

• If defineRangeBy is set with the OFFSET_AND_SIZE value in the
property field, the start field must contain a non-negative integer
value.

• If defineRangeBy is set with the START_ADDRESS_AND_SIZE
value in the property field, the start field must contain a valid IPv6
address that will be used as the starting address of the DHCP range.

size The size of the range. Currently the range size can only be specified in a relative
size in proportion to the parent network size.

properties Optional object properties that can contain the object name, the value
of defineRangeBy, and user-defined fields. The possible values for
defineRangeBy are AUTOCREATE_BY_SIZE, OFFSET_AND_SIZE, and
START_ADDRESS_AND_SIZE.

 Note: If you do not specify the defineRangeBy value, the DHCP range
will be created using AUTOCREATE_BY_SIZE by default.

Get IPv6 Range by IP Address
Returns the DHCPv6 Range containing the specified IPv6 address.

Use this method to find the Configuration, IPv6 Block, IPv6 Network, or DHCPv6 Range containing a
specified address. You can specify the type of object to be returned, or you can leave the type of object
empty ("") to find the most direct container for the object.

Output / Response

Returns an APIEntity for the DHCPv6 Range containing the specified IPv6 address. If no object
is found, returns an empty APIEntity. If ObjectTypes.IP6Block, ObjectTypes.IP6Network,or
ObjectTypes.DHCP6Range is specified as the type parameter, returns an object of the specified type.

Version 8.3.0 | 97

Chapter 4: API Object Methods

If an empty string ("") is specified as the type parameter, returns the most direct container for the IPv6
address.

API call:
APIEntity getIPRangedByIP (long containerId, String type, String address)

Parameter Description

containerId The object ID of the container in which the IPv6 address is located. This can be
a Configuration, IPv6 Block, IPv6 Network, or DHCP Range. When you do not
know the block, network, or range in which the address is located, specify the
configuration.

type The type of object containing the IPv6 address. Specify ObjectTypes.IP6Block,
ObjectTypes.IP6Network, or ObjectTypes.DHCP6Range to find the block,
network, or range containing the IPv6 address. Specify an empty string ("") to
return the most direct container for the IPv6 address.

address An IPv6 address.

Get IPv6 DHCP Range
Returns an IPv6 DHCP range by calling it using its range.

Output / Response

Returns the specified DHCP6Range object from the database.

API call:
APIEntity getEntityByRange (long parentId, String address1, String address2, String type)

Parameter Description

parentId The object ID of the parent object of the DHCPv6 range.

address1 An IP address defining the lowest address or start of the range.

address2 An IP address defining the highest address or end of the range.

type The type of object returned: DHCPv6 Range. This must be one of the constants
listed in Object Types on page 209.

Get Multiple IPv6 DHCP Ranges
Returns multiple DHCPv6 range objects for the specified parent ID.

Output / Response

Returns an array of DHCPv6 range objects from the database.

API call:
APIEntity[] getEntities (long parentId, String type, int start, int count)

Parameter Description

parentId The object ID of the parent object of the DHCPv6 range.

type The type of object returned: DHCPv6 Range. This must be one of the constants
listed in Object Types on page 229.

start Indicates where in the list of child ranges to start returning range objects. The list
begins at an index of 0.

98 | Address Manager API Guide

 DHCP

Parameter Description

count The maximum number of DHCPv6 range objects to return.

Update IPv6 DHCP Range
A DHCPv6 range’s name property can be updated using the generic update() method.

For more information, refer to Updating Objects on page 50.

IPv6 DHCP Range Generic Methods
DHCPv6 ranges can be deleted using the generic delete() method.

For more information, refer to Deleting Objects on page 52.

DHCP Client Options
DHCP options that can be added to a DHCP configuration to specify deployment instructions relating to
extra settings for client configuration.

For more information about these options, refer to RFCs 2132, 2242, 2610, 2241, and 2485. Readers
are also encouraged to examine RFCs 1497 and 1122 for background information. Options that accept
Boolean values are activated by a value of 1 unless otherwise specified. When specifying a list of IPv4
addresses, the first address takes precedence.

Add DHCP Client Option
Adds DHCP client options and returns the object ID for the new option object.

Output / Response

Returns the object ID for the new DHCPv4 client option object.

API call:
long addDHCPClientDeploymentOption (long entityId, String name, String value, String
properties)

Parameter Description

entityId The object ID for the entity to which the deployment option is being added.

name The name of the DHCPv4 client option being added. This name must be one of
the constants listed in DHCP Client Options on page 191.

value The value being assigned to the option.

properties Adds object properties, including user-defined fields.

Get DHCP Client Option
Returns DHCPv4 client options assigned for the object specified excluding the options inherited from the
higher-level parent object.

Output / Response

Returns the specified DHCPv4 client option object from the database.

API call:
APIDeploymentOption getDHCPClientDeploymentOption (long entityId, String name, long
serverId)

Version 8.3.0 | 99

Chapter 4: API Object Methods

Parameter Description

entityId The object ID for the entity to which the deployment option has been applied.

name The name of the DHCPv4 client option being added. This name must be one of
the constants listed in DHCP Client Options on page 191.

serverId The specific server or server group to which this option is deployed. To return an
option that has not been assigned to a server, set this value to 0(zero). Omitting
this parameter from the method call will result in an error.

Update DHCP Client Option
Updates DHCP client options.

Output / Response

None.

API call:
void updateDHCPClientDeploymentOption (APIDeploymentOption option)

Parameter Description

option The DHCP client option object to be updated.

 Note: The Name field of the DHCP client deployment option object
cannot be updated.

Delete DHCP Client Option
Deletes DHCP client options.

Output / Response

None.

API call:
void deleteDHCPClientDeploymentOption (long entityId, String name, long serverId)

Parameter Description

entityId The object ID for the entity from which the deployment option will be deleted.

name The name of the DHCPv4 client option to be deleted. This name must be one of
the constants listed in DHCP Client Options on page 191.

serverId The specific server or server group to which this option is deployed. To delete an
option that has not been assigned to a server, set this value to 0 (zero). Omitting
this parameter from the method call will result in an error.

DHCP6 Client Options
DHCPv6 options that can be added to a DHCP configuration to specify deployment instructions relating to
extra settings for client configuration.

Add DHCP6 Client Option
Adds DHCPv6 client options and returns the database object ID for the new option object.

Output / Response

100 | Address Manager API Guide

 DHCP

Returns the object ID of the new DHCPv6 client object.

API call:
long addDHCP6ClientDeploymentOption (long entityId, String name, String value, String
properties)

Parameter Description

entityId The object ID for the entity to which the deployment option is being added.

name The name of the DHCPv6 client option being added. This name must be one of
the constants listed in the DHCP6 Client Options on page 194.

value The value being assigned to the option.

properties Adds object properties, including user-defined fields.

Get DHCP6 Client Option
Returns DHCP6 client options assigned for the object specified excluding the options inherited from the
higher-level parent object.

Output / Response

Returns the specified DHCPv6 client option object from the database.

API call:
APIDeploymentOption getDHCP6ClientDeploymentOption (long entityId, String name, long
serverId)

Parameter Description

entityId The object ID for the entity.

name The name of the DHCPv6 client option being added. This name must be one of
the constants listed in the DHCP6 Client Options on page 194.

serverId The specific server or server group to which this option is deployed. To return
an option that has not been assigned to a server role, set this value to 0 (zero).
Omitting this parameter from the method call will result in an error.

Update DHCP6 Client Option
Updates DHCPv6 client options.

Output / Response

None.

API call:
void updateDHCP6ClientDeploymentOption (APIDeploymentOption option)

Parameter Description

entityId The DHCPv6 client option object that is updated.

 Note: The Name field of the DHCPv6 client deployment option object
cannot be updated.

Delete DHCP6 Client Option
Deletes DHCPv6 client options.

Version 8.3.0 | 101

Chapter 4: API Object Methods

Output / Response

None.

API call:
void deleteDHCP6ClientDeploymentOption (long entityId, String name, long serverId)

Parameter Description

entityId The database object ID for the entity from which this deployment option will be
deleted.

name The name of the DHCPv6 client option being deleted. This name must be one of
the constants listed in the DHCP6 Client Options on page 194.

serverId The specific server or server group to which this option is deployed. To delete
an option that has not been assigned to a server role, set this value to 0 (zero).
Omitting this parameter from the method call will result in an error.

DHCP Custom Options
This method is available to add DHCP custom option definitions.

Add Custom Deployment Option
Adds a custom deployment option.

Output / Response

Returns the object ID of the new option defined.

API call:
long addCustomOptionDefinition (long configurationId, String name, long optionId, String
optionType, boolean allowMultiple, String properties)

Parameter Description

configurationId The object ID of the parent configuration.

name The name of the custom deployment option. This value cannot be empty.

optionId The option code for the custom deployment option. This value must be within the
range of 151 to 174, 178 to 207, 212 to 219, 222 to 223, or 224 to 254.

optionType The type of custom deployment option. This value must be one of the items listed
in DHCP Custom Option Types on page 194.

allowMultiple Determines whether or not the custom option requires multiple values. The
default value is false. The value cannot be empty.

In Perl script, only an empty string and 0 (zero) are considered as false;
other values are considered as true. Therefore, a string containing the word
false is considered to be true because the string is not empty. In Perl, set the
allowMultiple data type to string and set the value to either true or false:

SOAP::Data->type('string')->
name('allowMultiple')->
value("false")->
attr({xmlns => ''})

102 | Address Manager API Guide

 DHCP

Parameter Description

Or, set the allowMultiple data type to boolean. Set the value to either 0 or an
empty string to represent false. Set the value to any other text to represent true.

SOAP::Data->type('boolean')
->name('allowMultiple')
->value(0)
->attr({xmlns => ''})

properties Adds object properties, including user-defined fields

DHCP Service Options
These are the DHCP service options that can be added to a DHCP configuration to specify deployment
instructions relating to extra settings for service configuration.

Add DHCP Service Option
Adds DHCP service options.

Output / Response

Returns the object ID for the new DHCPv4 service option.

API call:
long addDHCPServiceDeploymentOption (long entityId, String name, String value, String
properties)

Parameter Description

entityId The object ID for the entity to which the deployment option is being added.

name The name of the DHCPv4 service option being added. This name must be one of
the constants listed in DHCP Service Options on page 195.

value The value being assigned to the option.

When adding the DDNS hostname option, you need to specify the value
in the following format: [Type],[Position],[Data] for IP and MAC type, and
[Type],[Data] for FIXED type. Where:

• Type—type of DDNS hostname. The possible values are
DHCPServiceOptionConstants.DDNS_HOSTNAME_TYPE_IP,
DHCPServiceOptionConstants.DDNS_HOSTNAME_TYPE_MAC, or
DHCPServiceOptionConstants.DDNS_HOSTNAME_TYPE_FIXED.

• Position—specify where you wish to add the data value
to the IP or MAC address. The possible values are
DHCPServiceOptionConstants.DDNS_HOSTNAME_POSITION_PREPEND,
or DHCPServiceOptionConstants.DDNS_HOSTNAME_POSITION_APPEND.
This is only required for IP or MAC type with Data.

• Data—For IP and MAC address, this value is used to be prepended or
appended to the IP address or MAC address. For FIXED type, this value must
be specified and will be used for the DDNS hostname. This is optional for IP
and MAC type.

properties Adds object properties, including user-defined fields.

Version 8.3.0 | 103

Chapter 4: API Object Methods

Get DHCP Service Option
Returns DHCP service options assigned for the object specified excluding the options inherited from the
higher-level parent object.

Output / Response

Returns the requested DHCPv4 service option object from the database.

API call:
APIDeploymentOption getDHCPServiceDeploymentOption (long entityId, String name, long
serverId)

Parameter Description

entityId The object ID for the entity to which the deployment option is assigned.

name The name of the DHCPv4 service option being retrieved. This name must be one
of the constants listed in DHCP Service Options on page 195.

serverId Specifies the server or server group to which the option is deployed for the
specified entity. To retrieve an option that has not been assigned to a server role,
specify 0 as a value. Omitting this parameter from the method call will result in an
error.

Update DHCP Service Option
Updates DHCP service options.

 Note: The Name field of the DHCP service deployment option object cannot be updated.

Output / Response

None.

API call:
void updateDHCPServiceDeploymentOption (APIDeploymentOption option)

Parameter Description

option The DHCP service option object to be updated.

Delete DHCP Service Option
Deletes DHCP service options.

 Note: The Name field of the DHCP service deployment option object cannot be updated.

Output / Response

None.

API call:
void deleteDHCPServiceDeploymentOption (long entityId, String name, long serverId)

Parameter Description

entityId The object ID for the entity from which this deployment option is being deleted.

name The name of the DHCPv4 service option being deleted. This name must be one
of the constants listed in DHCP Service Options on page 212.

104 | Address Manager API Guide

 DHCP

Parameter Description

serverId Specifies the server or server group to which the option is deployed for the
specified entity. To retrieve an option that has not been assigned to a server role,
set this value to 0(zero). Omitting this parameter from the method call will result
in an error.

DHCP6 Service Options
These are the DHCPv6 service options that can be added to a DHCP configuration to specify deployment
instructions relating to extra settings for service configuration.

Add DHCP6 Service Option
Adds DHCPv6 service options.

Output / Response

Returns the object ID for the new option.

API call:
long addDHCP6ServiceDeploymentOption (long entityId, String name, String value, String
properties)

Parameter Description

entityId The object ID for the entity to which the deployment option is being added.

name The name of the DHCPv6 service option being added. This name must be one of
the constants listed in DHCP6 Service Options on page 196.

value The value being assigned to the option.

When adding the DDNS hostname option, you need to specify the value in the
following format: [Type],[Data] for IP and DUID. Where:

• Type—type of DDNS hostname. The possible values are
DHCPServiceOptionConstants.DDNS_HOSTNAME_TYPE_IP,
DHCPServiceOptionConstants.DDNS_HOSTNAME_TYPE_DUID.

• Data—For IP and DUID, this value is used to form the DDNS hostname. This
is optional.

properties Adds object properties, including user-defined fields.

Get DHCP6 Service Option
Returns DHCPv6 service options assigned for the object specified excluding the options inherited from the
higher-level parent object.

Output / Response

Returns the requested DHCPv6 service option object from the database.

API call:
APIDeploymentOption getDHCP6ServiceDeploymentOption (long entityId, String name, long
serverId)

Parameter Description

entityId The database object ID for the entity to which the deployment option is assigned.

Version 8.3.0 | 105

Chapter 4: API Object Methods

Parameter Description

name The name of the DHCPv6 service option being added. This name must be one of
the constants listed in DHCP6 Service Options on page 196.

serverId Specifies the server or server group to which the option is deployed for the
specified entity. To retrieve an option that has not been assigned to a server role,
set this value to 0(zero). Omitting this parameter from the method call will result
in an error.

Update DHCP6 Service Option
Updates DHCPv6 service options.

 Note: The Name field of the DHCPv6 service deployment option object cannot be updated.

Output / Response

None.

API call:
void updateDHCP6ServiceDeploymentOption (APIDeploymentOption option)

Parameter Description

option The DHCPv6 service option object to be updated.

Delete DHCP6 Service Option
Deletes DHCPv6 service options.

Output / Response

None.

API call:
void deleteDHCP6ServiceDeploymentOption (long entityId, String name, long serverId)

Parameter Description

entityId The object ID for the entity from which this deployment option is being deleted.

name The name of the DHCPv4 service option being deleted. This name must be one
of the constants listed in DHCP6 Service Options on page 196.

serverId Specifies the server or server group to which the option is deployed for the
specified entity. To return an option that has not been assigned to a server role,
set this value to 0(zero). Omitting this parameter from the method call will result
in an error.

DHCP Vendor Profiles and Options
Vendor profiles are sets of DHCP options required by particular devices. For example, a VoIP phone might
need a very specific set of DHCP options.

A vendor profile is the container in which the DHCP vendor options are stored. A single vendor profile
contains several DHCP vendor options, all of which can be sent to a specific type of device such as an
IP handset. After the vendor profile is created and populated with the appropriate options, the options
themselves can be defined and set at the appropriate level.

106 | Address Manager API Guide

 DHCP

Add DHCP Vendor Deployment Option
Adds a DHCP vendor deployment to specified objects.

Output / Response

Returns the object ID of the new DHCP vendor deployment option.

API call:
long addDHCPVendorDeploymentOption (long parentId, long optionId, String value, String
properties)

Parameter Description

parentId The object ID of the parent object for the DHCP vendor deployment option. The
parent object must not be a DNS object. Valid parent types are Configuration,
IP4Block, IP4Network, IP4NetworkTemplate, IP4Addr, IP4DHCPRange, Server,
MACAddr, and MACPool.

optionId The object ID of the vendor option definition. All DHCP vendor client
deployment options have a fixed option code of 60 and a unique option
sub-code. The unique sub-code is set with the optionId value in the
addVendorOptionDefinition() method.

value The value for the option. This value cannot be empty. The value should be
appropriate for its option type. For example, if the option type is IP4 and
allowMultiple is set as true in the vendor option definition, then the value of the
DHCP vendor client deployment option should be multiple IPv4 addresses in a
comma-separated list.

properties Adds object properties, including user-defined fields. This value can be empty.
If the DHCP vendor client deployment option is intended for use with a specific
server, the object ID of the server must be specified in the properties string.

Add Vendor Option Definition
Adds a vendor option definition to a vendor profile.

Output / Response

Returns the object ID of the new vendor option definition.

API call:
long addVendorOptionDefinition (long vendorProfileId, long optionId, String name, String
optionType, String description, boolean allowMultiple, String properties)

Parameter Description

vendorProfileId The object ID of the vendor profile.

optionId The deployment option ID. This value must be within the range of 1 to 254.

name The name of the vendor option. This value cannot be empty.

optionType The option type. This value must be one of the types listed in Vendor Profile
Option Types on page 216.

description A description of the vendor option. This value cannot be empty.

allowMultiple Determines whether or not the custom option requires multiple values. The
default value is false. This value cannot be empty.

Version 8.3.0 | 107

Chapter 4: API Object Methods

Parameter Description

In Perl script, only an empty string and 0 (zero) are considered as false;
other values are considered as true. Therefore, a string containing the word
“false” is considered to be true because the string is not empty. In Perl, set the
allowMultipledata type to string and set the value to either true or false:

SOAP::Data->type('string')->
name('allowMultiple')->
value("false")->
attr({xmlns => ''})

Or, set the allowMultipledata type to boolean. Set the value to either 0or an
empty string to represent false. Set the value to any other text to represent true.

SOAP::Data->type('boolean')
->name('allowMultiple')
->value(0)
->attr({xmlns => ''})

properties Adds object properties, including user-defined fields. This value can be empty.

Add Vendor Profile
Adds a vendor profile and returns the object ID for the new vendor profile.

Output / Response

Returns the object ID of the new vendor profile.

API call:
long addVendorProfile (String identifier, String name, String description, String
properties)

Parameter Description

identifier The Vendor Class Identifier.

name A descriptive name for the vendor profile. This name is not matched against
DHCP functionality.

description A description of the vendor profile.

properties Adds object properties, including user-defined fields.

Delete DHCP Vendor Deployment Option
Deletes a specified DHCP vendor deployment option.

Output / Response

None.

API call:
void deleteDHCPVendorDeploymentOption (long entityId, long optionId, long serverId)

Parameter Description

entityId The object ID of the object to which the DHCP vendor deployment option is
assigned.

108 | Address Manager API Guide

 DHCP

Parameter Description

optionId the object ID of the vendor option definition. All DHCP vendor client
deployment options have a fixed option code of 60 and a unique option
sub-code. The unique sub-code is set with the optionId value in the
addVendorOptionDefinition() method.

serverId The object ID of the server or server group where the DHCP vendor deployment
option is used. If the option is generic, set this value to 0 (zero). Omitting this
parameter from the method call will result in an error.

Get DHCP Vendor Deployment Option
Retrieves a DHCP vendor deployment option assigned for the object specified excluding the options
inherited from the higher-level parent object.

Output / Response

Returns an APIDeploymentOption for the DHCP vendor client deployment option. The
APIDeploymentOption is empty if the specified option does not exist. The property string of the returned
APIDeploymentOption contains at least contain the following substring to represent vendor option
definitions:

optionId=optionID|optionType=Integer(-128 to 127)|
optionDescription=description
multipleSignedInt8|optionAllowMultiple=boolean|server=serverID|

server=serverID only appears if the DHCP vendor client deployment option is used for a specific server.

API call:
APIDeploymentOption getDHCPVendorDeploymentOption (long entityId, long optionId, long
serverId)

Parameter Description

entityId The object ID of the entity to which the DHCP vendor deployment option is
assigned. This must be the ID of a configuration, IPv4 block, IPv4 network, IPv4
address, IPV4 DHCP rage, server, MAC address, or MAC Pool.

optionId The object ID of the DHCP vendor option definition.

serverId The specific server or server group to which this option is deployed for the
specified entity. To return an option that has not been assigned to a server, set
this value to 0 (zero). Omitting this parameter from the method call will result in
an error.

Update DHCP Vendor Deployment Option
Updates the specified DHCP vendor deployment option.

 Note: The Name field of the DHCP vendor deployment option object cannot be updated.

Output / Response

None.

API call:
void updateDHCPVendorDeploymentOption (APIDeploymentOption option)

Version 8.3.0 | 109

Chapter 4: API Object Methods

Parameter Description

option APIDeploymentOption to be updated. This is what
getDHCPVendorDeploymentOption() returns.

DHCP Match Classes
Match classes in Address Manager (also known as classes in ISC DHCP and as user and vendor classes
in Microsoft DHCP) allow you to restrict address allocation and assign options to clients that match
specified criteria.

For example, using a match class, you could assign a specific DHCP lease length to clients that match a
MAC address pattern or clients that are configured to send a specific identifier. A DHCP client becomes a
member of a class when it matches the specified criteria.

Address Manager provides the following seven match criteria values:

• MATCH_HARDWARE
• MATCH_DHCP_CLIENT_ID
• MATCH_DHCP_VENDOR_ID
• MATCH_AGENT_CIRCUIT_ID
• MATCH_AGENT_REMOTE_ID
• CUSTOM_MATCH
• CUSTOM_MATCH_IF

Add DHCP Match Classes
Adds DHCP match classes to Address Manager.

Output / Response

Returns the object ID of the new DHCP match class added.

API Call:
long addDHCPMatchClass (long configurationId, String name, String matchCriteria, String
properties)

Parameter Description

configurationId The object ID of the configuration to which the DHCP match class is being
added.

name The name of the DHCP match class.

matchCriteria A string defining the match criteria. The value must be one of the constants
listed in DHCP Class Match Criteria on page 191.

properties A string containing the following properties and values:

• description—a description of the match class.
• matchOffset—Match Offset value for the MatchClass. It refers to the point

where the match should begin.
• matchLength—Match Length value for the Matchclass. It refers to the

number of characters to match.
• customMatchRawString—a raw string that maps directly to a data

or boolean expression for DHCP_CLASS_CUSTOM_MATCH and
DHCP_CLASS_CUSTOM_MATCH_IF constants. Use the syntax and
grammar supported by the ISC’s DHCP daemon. End the string with a “;”
semicolon. If you omit the semicolon, one is automatically added when the
condition is deployed.

110 | Address Manager API Guide

 DHCP

Parameter Description

 Note:

• matchOffset and matchLength are only applicable to the
following five constants:

• DHCP_CLASS_HARDWARE
• DHCP_CLASS_CLIENT_ID
• DHCP_CLASS_VENDOR_ID
• DHCP_CLASS_AGENT_CIRCUIT_ID
• DHCP_CLASS_AGENT_REMOTE_ID

• matchOffset and matchLength must be specified together.

Update DHCP Match Classes
A DHCP Match class’ name property can be updated using the generic update() method.

Parameter Description

properties A string containing options, in addition to the following element:

• ignoreError—If true, the validation errors for the available match values
violating the match conditions will be ignored.

For more information, refer to Updating Objects on page 50.

Delete DHCP Match Classes
DHCP Match Classes can be deleted using the generic delete() method.

For more information, refer to Deleting Objects on page 52.

Add DHCP Sub Classes
Adds DHCP match class values.

Output / Response

Returns the object ID of the new DHCP match class value.

API Call:
long addDHCPSubClass (long matchClassId, String matchValue, String properties)

Parameter Description

matchClassId The object ID of the match class in which the DHCP match class value is being
defined.

matchValue The value of the DHCP match value to be matched with the match class. The
length of the match value must be equal to the length, in bytes, specified in the
match class.

properties A string containing the following element:

• description—a description of the match class.

Update DHCP Sub Classes
A DHCP Sub class’ matchValue and description properties can be updated using the generic update()
method.

Version 8.3.0 | 111

Chapter 4: API Object Methods

For more information, refer to Updating Objects on page 50.

Delete DHCP Sub Classes
DHCP Sub Classes can be deleted using the generic delete() method.

For more information, refer to Deleting Objects on page 52.

DHCP Raw Options
The DHCPv4 and DHCPv6 Raw options allow you to add DHCPv4 and DHCPv6 deployment options that
are not directly supported by Address Manager.

A raw option is passed to the DHCP services on the managed server exactly as you type it in the rawData
parameter. Therefore, it is essential that you enter the data with the correct syntax. There is no error
checking or data checking on the raw option. In the event of a syntax error in a DHCP Raw option, DHCP
service will stop then rollback to the previous DHCP configuration, resulting in a service outage.

Raw options are not inherited between levels. They cannot be set at the configuration level or the IP block
level because options set at these levels would not be inherited below. They can be set at the following
levels:

• For DHCPv4 raw options:

• Server
• Server group
• IPv4 network
• IPv4 network template
• IPv4 DHCP range
• DHCP match class
• DHCP match class value
• MacAddress
• MacPool
• IPv4 DHCP reserved address

• For DHCPv6 raw options:

• Server
• Server group
• IPv6 network
• IPv6 DHCP reserved address

To add or update DHCP raw deployment options, refer to Add Raw Deployment Option on page 144 and
Update Raw Deployment Option on page 145.

Shared Networks
Shared network declarations in DHCP are used to group together different logical subnets that share the
same physical network.

 Note: Shared networks are known as superscopes in Windows.

 Note: For shared networks, each member networks of the shared network must have the same
type of DHCP deployment role assigned to its network object.

For example, consider a network with 250 workstations on a physicalnetwork with the logical address ID of
192.168.6.0/24. You need to add 100 workstationsto this physical network, but the only available subnet
ID is 192.168.12.0/24. If the subnets were contiguous (that is, 192.168.6.0/24 and 192.168.7.0/ 24), you
could modify the subnet mask to create a single logical subnet to accommodate the additional computers
(192.168.6.0/23). However, the two network IDs are not contiguous.

112 | Address Manager API Guide

 DHCP

By configuring a shared network, you can group the two networks together. The benefit is that your DHCP
server can allocate IP addresses from the common shared network to any host on either of the networks,
without the need to isolate the networks to different router interfaces.

Tag groups and tags are the mechanism by which subnets are grouped into DHCP shared networks.
To use shared networks, you need to associate a single tag group with a configuration. A configuration
can have many associated tags, but only one tag that is associated for the purpose of forming shared
networks.

Link a Shared Network Tag
Links an IPv4 network with a shared network tag.

Output / Response

None.

API Call:
void shareNetwork (long networkId, long tagId)

Parameter Description

networkId The object ID of the IPv4 network that is being linked with a
shared network tag. If networkId is not valid, an error will be
returned.

tagId The object ID of the tag that is linked. If tagId is not valid, an
error will be returned.

Unlink a Shared Network Tag
Unlinks the shared network tag from an IPv4 network.

Output / Response

None.

API Call:
void unshareNetwork (long networkId)

Parameter Description

networkId The object ID of the IPv4 network that is being unlinked
from a shared network tag. If networkId is not valid, an error
will be returned.

Get Shared Networks
Returns multiple IPv4 networks linked to the given shared network tag.

Output / Response

Returns an array of entities of all the IPv4 networks linked to the given shared network tag. If no networks
are found, an empty array will be returned.

API Call:
APIEntity[] getSharedNetworks (long tagId)

Version 8.3.0 | 113

Chapter 4: API Object Methods

Parameter Description

tagId The object ID of the tag that is linked with shared IPv4
networks. If tagId is not valid, an error will be returned.

DNS
The DNS service part of the Address Manager API implements DNS structures through views and zones.
All supported DNS resource record types can be manipulated through this part of the API. Control of DNS
options allows you to customize the DNS service.

DNS Views
Address Manager treats all DNS structures as views. Address Manager creates the default View clause
in the named.conf files and then creates additional Views as needed to add customized DNS response
groups to the structure.

Each view is a child of a configuration object. Beneath the views are zones, which can contain sub-
zones or resource records. All views can be associated with an Access Control List (ACL) to filter client
requests and provide different sets of DNS information in response to requests from different clients. BIND
views and Address Manager views are the same. Views in Address Manager use the same IP address to
deliver different DNS services to different clients depending on their IP address. In a Address Manager
configuration, you can add views for each client group that requires filtering against an ACL. Address
Manager differs from standard implementations of views in the area of zone transfers. Address Manager
only assigns a single IP address for DNS to a managed server. To send notifications to a slave server to
request a zone transfer, DNS/DHCP Servers recognize each other through the use of TSIG keys. The
TSIG keys enable each DNS/DHCP Server appliance to be dealt with on an individual basis with high
security in terms of data integrity and authentication. Address Manager handles all of the implementation
details for these advanced features while providing views-based service on a single port and on a single
address.

Add DNS View
Adds DNS Views.

Output / Response

Returns the object ID for the new DNS view.

API Call:
long addView (long configurationId, String name, String properties)

Parameter Description

configurationId The object ID of the parent configuration in which this DNS view is
located.

name The name of the view.

properties Adds object properties, including user-defined fields.

Update DNS View
A DNS view’s name property can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

114 | Address Manager API Guide

 DNS

DNS View Generic Methods
DNS views use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Updating Objects on page 50.

Add Access Control List (ACL)
Adds an Access Control List to a view.

Output / Response

Returns the object ID for the new ACL object.

API Call:
long addACL(long configurationId, String name, String properties)

Parameter Description

configurationId The object ID of the configuration on which ACL need to be added.

name The name of the ACL.

properties A string containing the comma-separated list of options in the following
format:

aclValues=IP4Address, IP6Address, IP4Network’s CIDR,
 IP6Network’s CIDR, ACL’s name,
TSIG key’s name, Predefined BIND ACL values

where:

• IP4Address—the IPv4 address.
• IP6Address—the IPv6 address.
• IP4Network’s CIDR—the CIDR notation defining the IPv4 network.
• IP6Network’s CIDR—the CIDR notation defining the IPv6 network.
• ACL’s name—the name of the ACL (Example: acl aclName).
• TSIG key’s name—the name of the TSIG key (Example: key

TSIGName).
• Predefined BIND ACL values—Example: ‘none’, 'any', 'localhost',

'localnets' or 'All', 'None', 'Local Host', 'Local Networks'.

 Note: Use an exclamation mark (!) to exclude a certain option.
For example, !none, !acl aclName, !10/ 24, etc.

Update Access Control List (ACL)
An Access Control List (ACL) can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

DNS Zones
In Address Manager, DNS zones are child objects of views. Zones can contain sub-zones and resource
records. Sub-zones can be created several layers deep, as required.

Add Entity for DNS Zones
Adds DNS zones.

Version 8.3.0 | 115

Chapter 4: API Object Methods

addEntity() is a generic method for adding configurations, DNS zones, and DNS resource records.
When using addEntity() to add a zone, you must specify a single zone name without any . (dot)
characters. The parent object must be either a DNS view or another DNS zone.

Output / Response

Returns the object ID for the new DNS zone.

API call:
long addEntity(long parentId, APIEntity entity)

Parameter Description

parentId The object ID of the parent DNS view or DNS zone to which the zone is
added.

entity The zone name, without any . (dot) characters, to be added.

Add Zone
Adds DNS zones. When using addZone(), you can use . (dot) characters to create the top level domain
and subzones.

Output / Response

Returns the object ID for the new DNS zone.

API Call:
long addZone(long parentId, String absoluteName, String properties)

Parameter Description

parentId The object ID for the parent object to which the zone is being added. For
top-level domains, the parent object is a DNS view. For sub zones, the
parent object is a top-level domain or DNS zone.

absoluteName The complete FQDN for the zone with no trailing dot (for example,
example.com).

properties Adds object properties, including a flag for deployment, an optional
network template association, and user-defined fields in the format:

deployable=<true|false>|template=<template id>|
<userField>=<userFieldValue>

The deployable flag is false by default and is optional. To make the zone
deployable, set the deployable flag to true.

Get Zones by Hint
Returns an array of accessible zones of child objects for a given containerId value.

Output / Response

Returns an array of zones based on the input argument without their properties fields populated, or returns
an empty array if containerId is invalid. If no access right option is specified, the View access level will be
used by default.

API Call:
APIEntity[] getZonesByHint(long containerId, int start, int count, String options)

116 | Address Manager API Guide

 DNS

Parameter Description

containerId The object ID for the container object. It can be the object ID of any object in
the parent object hierarchy. The highest parent object can be the configuration
level.

start Indicates where in the list of objects to start returning objects. The list begins at
an index of 0.

count Indicates the maximum number of child objects that this method will return. The
maximum number of child objects cannot exceed more than 10.

options A string containing options. The Option names available in the ObjectProperties
are ObjectProperties.hint, ObjectProperties.accessRight, and
ObjectProperties.overrideType. Multiple options can be separated by a |
(pipe) character. For example:

hint=ab|overrideType=HostRecord|accessRight=ADD

The values for ObjectProperties.hint option can be the prefix of a zone name.
For example:

String options = ObjectProperties.hint + "=abc|"

The values for the ObjectProperties.accessRight and
ObjectProperties.overrideType options must be one of the constants listed
in Access Right Values on page 189 and Object Types on page 209. For
example:

String options = ObjectProperties.accessRight + "=" +
 AccessRightValues.AddAccess +
"|"+ ObjectProperties.overrideType + "=" +
 ObjectTypes.HostRecord;

Update Zone
A DNS zone’s name property can be updated using the generic update() method.

For more information, refer to Updating Objects on page 50.

Zone Generic Methods
DNS zones use the generic get() and delete() methods for entities.

For more information, refer to Getting Objects on page 44 and Deleting Objects on page 52.

Get Key Signing Key
Returns a string containing all active Key Signing Keys (KSK) for a given entityId value in a specified
output format with its start time and expire time, divided by a delimiter (|). The list of returned KSKs is
sorted in descending order by expiry date.

Output / Response

Returns a string containing up-to two active KSK(s) of an entity in the following format:

KSK in specified format|create time|expire time.

Version 8.3.0 | 117

Chapter 4: API Object Methods

API Call:
String[] getKSK(long entityId, String format)

Parameter Description

entityId The object ID of the entity associated with the KSK. The only supported entity
types are Zone, IPv4 block, and IPv4 network.

format The output format of the KSK of an entity. The value must be one of the
constants listed in DNSSEC Key Format on page 199.

DNS Zone Templates
DNS zone templates provide a standard set of DNS records and options that can be maintained in a
central location. These templates contain the same tabs as a regular zone except for the Deployment
Roles tab.

Any settings that should be repeated in several zones, such as mail servers or web servers, should be
added to a zone template so that the setting can be applied easily and consistently across zones. The
records and options set in a zone template are created in any zones to which the template is applied.

If a record or an option is updated in the template, it is also updated in any zones to which the template
applies. Modifying a template-applied record or option in a zone severs the link between the template
and the modified record or option. If the template is re-applied, you have a choice to ignore conflicts or
overwrite the conflicting objects with the settings in the template.

Zone templates can be edited to change the template name. Editing a zone template is exactly the same
as building a zone, with the exception of assigning deployment roles, because zone templates are not
deployable.

Add Zone Template
Adds a DNS zone template.

Output / Response

Returns the object ID of the new DNS zone template.

API Call:
long addZoneTemplate(long parentId, String name, String properties)

Parameter Description

parentId The object ID of the parent DNS view when adding a view-level zone
template. The object ID of the configuration when adding a configuration-
level zone template.

name The name of the DNS zone template. This value can be an empty string
("").

properties Adds object properties, including user-defined fields.

Assign or Update Template
Assigns, updates, or removes DNS zone and IPv4 network templates.

Output / Response

None.

API Call:
void assignOrUpdateTemplate(long entityId, long templateId, String properties)

118 | Address Manager API Guide

 DNS

Parameter Description

entityId The object ID of the IPv4 network to which the network template is to
be assigned or updated, or the object ID of the zone to which the zone
template is to be assigned or updated.

templateId The object ID of the DNS zone template or IPv4 network template. To
remove a template, set this value to 0 (zero).

properties A string containing the following settings:

• ObjectProperties.templateType—Specifies the type of template on
which this operation is being performed.

The possible values are ObjectProperties.IP4NetworkTemplateType
(Assigning or updating IP4NetworkTemplate on an IP4Network)
and ObjectProperties.zoneTemplateType (Assigning or updating
zoneTemplate on a DNS zone). This is mandatory.

Along with ObjectProperties.templateType, user can also specify the
reapply mode for various properties of the template.

• For Network template, the following additional parameters can also be
specified:

• ObjectProperties.gatewayReapplyMode
• ObjectProperties.reservedAddressesReapplyMode
• ObjectProperties.dhcpRangesReapplyMode
• ObjectProperties.ipGroupsReapplyMode
• ObjectProperties.optionsReapplyMode

• For Zone Template, the following additional parameter can also be
specified:

• ObjectProperties.zoneTemplateReapplyMode

The possible values for re-apply mode properties are:

• ObjectProperties.templateReapplyModeUpdate
• ObjectProperties.templateReapplyModeIgnore
• ObjectProperties.templateReapplyModeOverwrite

If the re-apply mode is not specified in the properties, the default
ObjectProperties.templateReapplyModeIgnoremode is used.

 Note: If you are not using Java or Perl, refer to Object Properties
on page 201 for the actual values.

Java client example:

EntityProperties ntProp = new EntityProperties();
ntProp.addProperty(ObjectProperties.templateType,
ObjectProperties.IP4NetworkTemplateType);
ntProp.addProperty(ObjectProperties.gatewayReapplyMode,
ObjectProperties.templateReapplyModeUpdate);
ntProp.addProperty(ObjectProperties.reservedAddressesReapplyMode,
ObjectProperties.templateReapplyModeUpdate);
service.assignOrUpdateTemplate(ip4N20_26Id, networkTemplateId,
ntProp.getPropertiesString());

Version 8.3.0 | 119

Chapter 4: API Object Methods

Perl client example:

SOAP::Data->type('string')->name('properties')->
value(ObjectProperties::templateType."=".ObjectProperties::
IP4NetworkTemplateType."|".
ObjectProperties:: gatewayReapplyMode."=".ObjectProperties::
templateReapplyModeUpdate."|")
->attr({xmlns => ''}))->result;

Update Zone Template
A zone template’s name property can be updated using the generic update() method.

For more information, refer to Updating Objects on page 50.

Zone Template Generic Methods
Zone templates use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Add Records to DNS Zone Template
addEntity() is a generic method for adding configuration, DNS zones, and DNS resource records.

You must use this method to add or update DNS resource records to DNS zone templates. For more
information, refer to Add Entity for Resource Records on page 124.

ENUM Zones
ENUM zones provide voice over IP (VoIP) functionality within a DNS server.

The system requires DNS to manage the phone numbers associated with client end points; Address
Manager provides an E164 or ENUM zone type for this purpose. The ENUM zone represents the area
code for the phone prefixes and numbers stored in it. ENUM zones contain special sub-zones called
prefixes that represent telephone exchanges and can contain the records for the actual devices.

VoIP devices are addressed in several ways. A uniform resource identifier (URI) string provides custom
forward locator references for these devices as covered in RFC 3401. Reverse DNS is used to discover
the relevant information for a device based on its phone number. Name authority pointer (NAPTR) records
are used to represent this information.

Add ENUM Zone
Adds ENUM zones.

Output / Response

Returns the object ID for the new ENUM zone.

API Call:
long addEnumZone(long parentId, long prefix, String properties)

Parameter Description

parentId The object ID for the parent object of the ENUM zone.

prefix The number prefix for the ENUM zone.

properties Adds object properties, including user-defined fields.

120 | Address Manager API Guide

 DNS

Update ENUM Zone
An ENUM zone’s name property can be updated using the generic update() method.

For more information, refer to Updating Objects on page 50.

ENUM Zone Generic Methods
ENUM zones use the generic get() and delete() methods for entities.

For more information, refer to Getting Objects on page 44 and Deleting Objects on page 52.

ENUM Numbers
ENUM number objects represent VoIP phone numbers within Address Manager. This functionality is
provided as an alternative to using raw NAPTR records.

Add ENUM Number
adds ENUM numbers.

Output / Response

Returns the object ID for the new ENUM number record.

API Call:
long addEnumNumber(long parentId, int number, String properties)

Parameter Description

parentId The object ID of the parent object for the ENUM number. The parent object for
an ENUM number is always an ENUM zone.

number The ENUM phone number.

properties Adds object properties, and user-defined fields, including the data string, which
includes service, URI, comment and ttl values.

Update ENUM Number
You can update an ENUM number’s number property using the generic update() method.

For more information, refer to Updating Objects on page 50.

ENUM Number Generic Methods
ENUM numbers use the generic get() and delete() methods for entities.

For more information, refer to Getting Objects on page 44 and Deleting Objects on page 52.

DNS Resource Records
In Address Manager, DNS resource records describe the characteristics of a zone or sub-zone. Address
Manager supports the following types of resource records.

Resource Record Type Description

Host Record Designates an IP address for a device. A new host requires a name
and an IP address. Multiple addresses may exist for the same device.

Mail Exchanger Record Designates the host name and preference for a mail server or
exchanger. An MX record requires a name and a priority value.

Version 8.3.0 | 121

Chapter 4: API Object Methods

Resource Record Type Description

Priorities with a lower numeric value are chosen first in assessing
delivery options.

CNAME Alias Record Specifies an alias for a host name. The alias record type requires a
name.

Service Record Defines services available within a zone, such as LDAP. A service
record requires a name, priority, port, and weight. A lower priority
value indicates precedence. The port value indicates the port on
which the service is available. The weight value is used when multiple
services have the same priority value; a higher weight value indicates
precedence.

HINFO Host Info Record Specifies optional text information about a host. The host info record
includes CPU and OS information.

TXT Text Record Associates arbitrary text with a host name. A text record includes name
and text information. This record is used to support record types such
as those used in Sender Policy Framework (SPF) e-mail validation.

Generic Record The following generic record types are available: A, A6, AAAA, AFSDB,
APL, CAA, CERT, DHCID, DNAME, DS, IPSECKEY, ISDN, KEY, KX,
LOC, MB, MG, MINFO, MR, NS, NSAP, PTR, PX, RP, RT, SINK, SPF,
SSHFP, TLSA, WKS, and X25. These records contain name, type, and
value information.

NAPTR Naming Authority
Pointer Record

Specifies settings for applications, such as VoIP. These records are
used in Address Manager to populate ENUM zones.

Handling dotted resource records
The resource record adder includes two new property parameters, namely, parentZoneName and
linkedParentZoneName. Both parameters should be absolute names. The record absolute name must end
with the zone absolute name; otherwise an exception is thrown, and an error message appears. Record
name is not subset of parent zone: abc.bcn.example.com.

 Note: The linkedParentZoneName parameter must be used only for adding or updating the linked
records for CName, MX and SRV records.

The parentZoneName parameter refers to a destination zone for the record to be added to, and applies
to all resource record you add. This parameter makes it possible to support dot-separated record
names. For example, an API user can add a resource record named abc.xyz.example.com to the zone
example.com.

 Note: You should not use parentZoneName when updating records, because you cannot change
the parent zone of a record. If you try to do this an exception is thrown.

Example 1:

Suppose the zone example.com has a dot separated host record abc.xyz. A user add a sub-zone
called xyz, and then adds a host record abc to this sub-zone. There are now two host records named
abc.xyz.example.com.

If an API user wants to link a CName record to abc.xyz.example.com, the linked record will be the one
located in the sub-zone, because the user cannot link the record to the one in the parent zone. To allow
API users to choose whatever parent zone they want, use the linkedParentZoneName parameter.

 Note: Use this parameter with CName, MX and SRV records. It cannot be used as metadata fields
for these records. If this parameter is used in updating other resource records, an error occurs.

122 | Address Manager API Guide

 DNS

Example 2:

An API entity CName abcName.example.com has the following property string:

ttl=123|absoluteName=abcName.example.com|
linkedRecordName=bcnhost.dot.bcn.com|

An API user wants to change the linked record name to abc.bcn.example.com. The user applies the
following updates to the property string:

 linkedParentZoneName=example.com|absoluteName=abcName.example.com|ttl=123|
linkedRec ordName=abc.bcn.example.com|

If the API user does not use the linkedParentZoneName parameter, Address Manager chooses the internal
host record or alias record if it exists; otherwise it chooses the external host record for the linked record.

Generic Resource Records
Each resource record type has a specialized add method, but there are two general methods for adding
resource records in the Address Manager API.

• Add Resource Records on page 123
• Add Entity for Resource Records on page 124

Add Resource Records
This method is a generic method for adding resource records of any kind by specifying the name, type, and
rdata arguments.

Output / Response

Returns the object ID for the new resource record.

API Call:
long addResourceRecord(long viewId, String absoluteName, String type, String rdata, long ttl,
String properties)

Parameter Description

viewId The object ID for the parent view to which the resource record is being added.

absoluteName The absolute name of the record, specified as an FQDN. If you are adding a
record in a zone that is linked to a incremental Naming Policy, a single hash (#)
sign must be added at the appropriate location in the FQDN. Depending on the
policy order value, the location of the single hash (#) sign varies.

type The type of record being added. Valid values for this parameter are the resource
record types shown in Object Types on page 209:

• AliasRecord
• HINFORecord
• HostRecord
• MXRecord
• TXTRecord

 Note: To add NAPTRRecord, SRVRecord and GenericRecord,
you must use addNAPTRRecord(), add SRVRecord() and
addGenericRecord() methods respectively.

rdata The data for the resource record in BIND format (for example, for A records, A
10.0.0.4). You can specify either a single IPv4 or IPv6 address for the record.

Version 8.3.0 | 123

Chapter 4: API Object Methods

Parameter Description

ttl The time-to-live value for the record. To ignore the ttl, set this value to -1.

properties Adds object properties, including user-defined fields.

Add Entity for Resource Records
addEntity() is a generic method for adding configurations, DNS zones, and DNS resource records. Use
this method to add resource records that have . (dot) characters in their names.

 Note: In order to add DNS resource records to a DNS zone template, you must use the
addEntity() method.

Output / Response

Returns the object ID for the new resource record.

API Call:
long addEntity(long parentId, APIEntity entity)

Parameter Description

parentId The object ID of the parent zone to which the record is added.

APIEntity The resource record object being passed to the database.

Move Resource Records
Moves resource records between different zones that already exist.

Output / Response

None.

API Call:
void moveResourceRecord(long resourceRecordId, String destinationZone)

Parameter Description

resourceRecordId The object ID of the resource record to be moved.

destinationZone Fully qualified domain name of the destination DNS zone to which the resource
record will be moved.

NAPTR Records
NAPTR records specify settings for applications, such as VoIP. Address Manager uses NAPTR records to
populate ENUM zones.

Add NAPTR Record
Adds NAPTR records.

This method will add the record under a zone. In order to add records under templates, you must use Add
Entity for Resource Records on page 124.

Output / Response

Returns the object ID for the new NAPTR resource record.

API Call:
long addNAPTRRecord(long viewId, String absoluteName, int order, int preference, String
service, String regexp, String replacement, String flags, long ttl, String properties)

124 | Address Manager API Guide

 DNS

Parameter Description

viewId The object ID for the parent view to which this record is added.

absoluteName The FQDN for the record. If you are adding a record in a zone that is linked
to a incremental Naming Policy, a single hash (#) sign must be added at the
appropriate location in the FQDN. Depending on the policy order value, the
location of the single hash (#) sign varies.

order Specifies the order in which NAPTR records are read if several are present and
are possible matches. The lower ordervalue takes precedence.

preference Specifies the order in which NAPTR records are read if the ordervalues are the
same in multiple records. The lower preferencevalue takes precedence.

service Specifies the service used for the NAPTR record. Valid settings for this
parameter are listed in ENUM Services on page 200.

regexp A regular expression, enclosed in double quotation marks, used to transform
the client data. If a regular expression is not specified, a domain name must be
specified in the replacement parameter.

replacement Specifies a domain name as an alternative to the regexp. This parameter
replaces client data with a domain name.

flags An optional parameter used to set flag values for the record.

ttl The time-to-live value for the record. To ignore the ttl, set this value to -1.

properties Adds object properties, including comments and user-defined fields.

Update NAPTR Record
A NAPTR record’s name, ttl, comment, order, preference, service, regexp, and replacement properties
can be updated using the generic update() method.

For more information, refer to Updating Objects on page 50.

NAPTR Record Generic Methods
NAPTR records use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

External Host Records
External hosts, specified with an FQDN, represent host names that reside outside the Address Manager-
managed servers.

External hosts are never deployed, but act as glue that lets other records (such as MX and CNAME
records) link to hosts that are not managed by Address Manager. Any references within a view that refer
to entities completely outside of the IP space and DNS namespace managed by Address Manager are
defined here.

Add External Host Record
Adds external host records.

This method will add the external host record under a zone. In order to add external host records under
templates, you must use Add Entity for Resource Records on page 124.

Output / Response

Returns the object ID for the new external host record.

Version 8.3.0 | 125

Chapter 4: API Object Methods

API Call:
long addExternalHostRecord(long viewId, String name, String properties)

Parameter Description

viewId The object ID for the parent view to which this record is being added.

name The FQDN for the host record.

properties Adds object properties, including comments and user-defined fields.

Get External Host Records associated with IP addresses
Returns an array of external host records that are associated with IPv4 or IPv6 addresses.

You can use the getLinkedEntities() method to retrieve the array of external host records that are
assigned to IP addresses. Use ObjectTypes.ExternalHostRecord to retrieve all linked external host
records with IP addresses. For example:

APIEntity[] linkedEntities = service.getLinkedEntities(ipAddressId,
 ObjectTypes.ExternalHostRecord, 0, Integer.MAX_VALUE);

Get IP address assigned with External Host Records
Retrieves IP addresses that are assigned with external host records.

Use the following methods to get the address linked with external host records:

• getEntityById()
• getEntityByName()
• getEntities()
• getEntitiesByName()

Update External Host Record
An external host record’s name and comment properties can be updated using the generic update()
method.

For more information, see Updating Objects on page 50.

Update External Host Records assigned to IP addresses

You can update external host records that are assigned to IPv4 or IPv6 addresses using the generic
update() method. Refer to the following ptrs property values and example:

• null—updates IPv4 or IPv6 address without any change.
• empty string ("")—use an empty string ("") for the ptrs property value when updating. This will remove

all linked external host records.
• Valid comma-separated external host records string—use a valid string. This will remove previously

linked external host records and link newly specified external host records. The records previously
linked should not be unlinked.

EntityProperties props = new EntityProperties();
 props.addProperty(ObjectProperties.ptrs,
 "123,exHostFQDN.com,456,exHostFQDN.net");
 service.update(ipAddress);

External Host Record Generic Methods
External host records use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

126 | Address Manager API Guide

 DNS

Host Records
A host record, or A record, designates an IP address for a device.

A new host requires a name and an IP address. Multiple addresses may exist for the same device. Set
the time-to-live for this record to an override value here so that the record has a longer or shorter ttl. A
comment field is also included.

Add Host Record
Adds host records for IPv4 or IPv6 addresses. All addresses must be valid addresses.

This method will add the record under a zone. In order to add records under templates, you must use Add
Entity for Resource Records on page 124.

When adding a host record, the reverseRecord property, if not explicitly set in the properties string, is
set to true and Address Manager creates a reverse record automatically. IPv4 addresses can be added
in both workflow and non-workflow mode. IPv6 addresses can be added in non-workflow mode only. For
more information on workflow mode, see Workflow Change Requests on page 182.

Output / Response

Returns the object ID for the new host resource record.

API call:
long addHostRecord (long viewId, String absoluteName, String addresses, long ttl, String
properties)

Parameter Description

viewId The object ID for the parent view to which this record is being added.

absoluteName The FQDN for the host record. If you are adding a record in a zone that is linked
to a incremental Naming Policy, a single hash (#) sign must be added at the
appropriate location in the FQDN. Depending on the policy order value, the
location of the single hash (#) sign varies.

addresses A list of comma-separated IP addresses (for example, 10.0.0.5,130.4.5.2).

ttl The time-to-live value for the record. To ignore the ttl, set this value to -1.

properties Adds object properties, including comments and user-defined fields.

Add Bulk Host Records
Adds host records using auto-increment from the specific starting address.

This method will add the record under a zone. In order to add records under templates, you must use Add
Entity for Resource Records on page 124.

This method adds host records to a zone linked to a DNS naming policy, each with an IP address auto-
incremented starting from a specific address in a network.

Output / Response

Returns an array of host record APIEntity objects based on available addresses and number of IP
addresses required. If no addresses are available, an error will be shown.

API call:
APIEntity[] addBulkHostRecord (long viewId, String absoluteName, long ttl, long
networkId, String startAddress, int numberOfAddresses, String properties)

Version 8.3.0 | 127

Chapter 4: API Object Methods

Parameter Description

viewId The object ID for the parent view to which this record is being added.

absoluteName The FQDN for the host record. If you are adding a record in a zone that is linked
to a incremental Naming Policy, a single hash (#) sign must be added at the
appropriate location in the FQDN. Depending on the policy order value, the
location of the single hash (#) sign varies.

ttl The time-to-live value for the record. To ignore the ttl, set this value to -1.

networkId The network which to get the available IP addresses. Each address is used for
one host record.

startAddress The starting IPv4 address for getting the available addresses.

numberOfAddresses The number of addresses.

properties excludeDHCPRange=true/false, if true then IP addresses within a DHCP
range will be skipped. This argument can also contain user-defined fields.

Get Host Record by Hint
Returns an array of objects with host record type.

Output / Response

Returns an array of host record APIEntity objects.

API call:
APIEntity[] getHostRecordsByHint (int start, int count, String options)

Parameter Description

start Indicates where in the list of objects to start returning objects. The list begins at
an index of 0.

count Indicates the maximum of child objects that this method will return. The value
must be less than or equal to 10.

options A string containing options. The supported options are hint and retrieveFields.
Multiple options can be separated by a | (pipe) character. For example:

hint=^abc|retrieveFields=false

If the hint option is not specified in the string, searching criteria will be based on
the same as zone host record. The following wildcards are supported in the hint
option.

• ^—matches the beginning of a string. For example: ^ex matches example
but not text.

• $—matches the end of a string. For example: ple$ matches example but not
please.

• ^ $—matches the exact characters between the two wildcards. For example:
^example$ only matches example.

• ?—matches any one character. For example: ex?t matches exit.
• *—matches one or more characters within a string. For example: ex*t

matches exit and excellent.

The default value for the retrieveFields option is set to false. If the option is set
to true, user-defined field will be returned. If the options string does not contain
retrieveFields, user-defined field will not be returned.

128 | Address Manager API Guide

 DNS

Get IP Address with Host Records
Returns an array of IP addresses with linked records and the IP addresses that are assigned as DHCP
Reserved, Static or Gateway.

Output / Response

Returns an array of IP address APIEntity objects with their linked host records and the IP addresses
that are assigned as DHCP Reserved, Static or Gateway. The output has the following format:
hostId:hostName:zoneId:zoneName:viewId:viewName:hasAlias;.

API call:
APIEntity[] getNetworkLinkedProperties (long networkId)

Parameter Description

networkId The object ID for the IPv4 network.

Get Dependent Records
Returns any CNAME, MX, or SRV resource records that reference the specified host record.

 Note: This method is deprecated. Using this method now returns an error message. Use the
getLinkedEntities() method instead. For more information, see Get Linked Entities on page
53.

Output / Response

Returns an array of APIEntity objects representing the CNAME, MS, or SRV records referencing the
specified host record.

API call:
APIEntity[] getDependentRecords (long entityId, int start, int count)

Parameter Description

entityId The object ID for the host record for which you want to retrieve dependent
records.

start Indicates where in the list of dependent records to start returning objects. This
list begins at an index of 0.

count The maximum number of dependent records to return.

Update Host Record
A host records’s name, ttl, comment, and addresses properties can be updated using the generic
update() method.

For more information, see Updating Objects on page 50.

Host Record Generic Methods
Host records use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Alias Records
This is a Canonical Name or CNAME record, used to specify an alias for a host name.

The alias record type requires only a name to be supplied. The time-to-live for this record can be set to an
override value so that this record has a longer or shorter ttl. A comment field is also included.

Version 8.3.0 | 129

Chapter 4: API Object Methods

Add Alias Record
Adds alias records.

This method attempts to link to an existing host record. If an existing host record cannot be located, the
method attempts to link to an existing external host record. If neither can be located, the method fails. This
method will add the record under a zone. In order to add records under templates, you must use Add Entity
for Resource Records on page 124.

Output / Response

Returns the object ID for the new alias resource record.

API call:
long addAliasRecord (long viewId, String absoluteName, String linkedRecordName, long ttl,
String properties)

Parameter Description

viewId The object ID for the parent view to which this record is being added.

absoluteName The FQDN of the alias. If you are adding a record in a zone that is linked to
a incremental Naming Policy, a single hash (#) sign must be added at the
appropriate location in the FQDN. Depending on the policy order value, the
location of the single hash (#) sign varies.

linkedRecordName The name of the record to which this alias will link.

ttl The time-to-live value for the record. To ignore the ttl, set this value to -1.

properties Adds object properties, including comments and user-defined fields.

Get Aliases by Hint
Returns an array of CNAMEs with linked record name.

Output / Response

Returns an array of Alias APIEntity objects.

API call:
APIEntity[] getAliasesByHint (int start, int count, String options)

Parameter Description

start indicates where in the list of objects to start returning objects. The list begins at
an index of 0.

count indicates the maximum of child objects that this method will return. The value
must be less than or equal to 10.

options a string containing options. The supported options are hintand retrieveFields.
Multiple options can be separated by a | (pipe) character. For example:

hint=^abc|retrieveFields=false

If the hint option is not specified in the string, searching criteria will be based on
the same as zone alias. The following wildcards are supported in the hint option.

• ^—matches the beginning of a string. For example: ^ex matches example
but not text.

• $—matches the end of a string. For example: ple$ matches example but not
please.

130 | Address Manager API Guide

 DNS

Parameter Description

• ^ $—matches the exact characters between the two wildcards. For example:
^example$ only matches example.

• ?—matches any one character. For example: ex?t matches exit.
• *—matches one or more characters within a string. For example: ex*t

matches exit and excellent.

The default value for the retrieveFields option is set to false. If the option is set
to true, user-defined field will be returned. If the options string does not contain
retrieveFields, user-defined field will not be returned.

Update Alias Record
An alias record’s name, ttl, comment, and linked record properties can be updated using the generic
update() method.

For more information, see Updating Objects on page 50.

Alias Record Generic Methods
Alias records use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Text Records
Text records associate arbitrary text with a host name.

This record features name and text fields and is used to support record types such as those used in SPF
email validation. The time-to-live for this record can be set to an override value here so that this record has
a longer or shorter ttl. A comment field is also included.

Add Text Record
Adds TXT records.

This method will add the record under a zone. To add records under templates, you must use Add Entity
for Resource Records on page 124.

Output / Response

Returns the object ID for the new TXT record.

API call:
long addTXTRecord (long viewId, String absoluteName, String txt, long ttl, String properties)

Parameter Description

viewId The object ID for the parent view to which the record is being added.

absoluteName The FQDN of the text record. If you are adding a record in a zone that is linked
to a incremental Naming Policy, a single hash (#) sign must be added at the
appropriate location in the FQDN. Depending on the policy order value, the
location of the single hash (#) sign varies.

txt The text data for the record.

ttl The time-to-live value for the record. To ignore the ttl, set this value to -1.

properties Adds object properties, including comments and user-defined fields.

Version 8.3.0 | 131

Chapter 4: API Object Methods

Update Text Record
A text record’s name, ttl, comment, and text data properties can be updated using the generic update()
method. For more information, see Updating Objects on page 52.

For more information, see Updating Objects on page 50.

Text Record Generic Methods
Text records use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

HINFO Records
The Host Info or HINFO resource record contains optional text information about a host.

The standard version of this record has name, cpu and os fields. The time-to-live for this record can be set
to an override value here so that it has a longer or shorter ttl. A comment field is also included. This record
type is a good candidate for user-defined fields to track information about hosts on the network.

Add HINFO Record
Adds HINFO records.

Output / Response

Returns the object ID for the new HINFO resource record.

API call:
long addHINFORecord (long viewId, String absoluteName, String cpu, String os, long ttl, String
properties)

Parameter Description

viewId The object ID for the parent view to which the HINFO record is being added.

absoluteName The FQDN of the HINFO record. If you are adding a record in a zone that is
linked to a incremental Naming Policy, a single hash (#) sign must be added at
the appropriate location in the FQDN. Depending on the policy order value, the
location of the single hash (#) sign varies.

cpu A string providing central processing unit information.

os A string providing operating system information.

ttl The time-to-live value for the record. To ignore the ttl, set this value to -1.

properties Adds object properties, including comments and user-defined fields.

Update HINFO Record
An HINFO record’s name, ttl, comment, cpu, and os properties can be updated using the generic
update() method.

For more information, see Updating Objects on page 50.

HINFO Record Generic Methods
HINFO records use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

132 | Address Manager API Guide

 DNS

MX Records
A Mail Exchanger or MX record designates the host name and preference value for a mail server or
exchanger, as defined in RFC 974.

An MX Record requires a name and a priority value. Priorities with a lower numeric value are chosen first
in assessing delivery options. The time-to-live for this record can be set to an override value, so that this
record has a longer or shorter ttl. A comment field is also included. This method attempts to link to an
existing host record. If an existing host record cannot be located, the method attempts to link to an existing
external host record. If neither can be located, the method fails.

Add MX Record
Adds MX records.

This method will add the record under a zone. In order to add records under templates, you must use Add
Entity for Resource Records on page 124.

Output / Response

Returns the object ID for the new MX resource record.

API call:
long addMXRecord (long viewId, String absoluteName, int priority, String linkedRecordName,
long ttl, String properties)

Parameter Description

viewId The object ID for the parent view to which the MX record is being added.

absoluteName The FQDN for the record. If you are adding a record in a zone that is linked
to a incremental Naming Policy, a single hash (#) sign must be added at the
appropriate location in the FQDN. Depending on the policy order value, the
location of the single hash (#) sign varies.

priority Specifies which mail server to send clients to first when multiple matching MX
records are present. Multiple MX records with equal priority values are referred
to in a round-robin fashion.

linkedRecordName The FQDN of the host record to which this MX record is linked.

ttl The time-to-live value for the record. To ignore the ttl, set this value to -1.

properties Adds object properties, including comments and user-defined fields.

Update MX Record
An MX record’s name, ttl, comment, linked record, and priority properties can be updated using the
generic update() method.

For more information, see Updating Objects on page 50.

MX Record Generic Methods
MX records use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

SRV Records
Service records define services that are available within the zone, such as LDAP.

An SRV record requires a name by which it is known in Address Manager. The time-to-live for this record
can be set to an override value here so that this record has a longer or shorter ttl. A comment field is

Version 8.3.0 | 133

Chapter 4: API Object Methods

also included. This method attempts to link to an existing host record. If an existing host record cannot
be located, the method attempts to link to an existing external host record. If neither can be located, the
method fails.

Add SRV Record
Adds SRV records.

This method will add the record under a zone. In order to add records under templates, you must use Add
Entity for Resource Records on page 124.

Output / Response

Returns the object ID for the new SRV record.

API call:
long addSRVRecord (long viewId, String absoluteName, int priority, int port, int weight, String
linkedRecordName, long ttl, String properties)

Parameter Description

viewId The object ID for the parent view to which the SRV record is being added.

absoluteName The FQDN of the SRV record. If you are adding a record in a zone that
is linked to a incremental Naming Policy, a single hash (#) sign must be
added at the appropriate location in the FQDN. Depending on the policy
order value, the location of the single hash (#) sign varies.

priority Specifies which SRV record to use when multiple matching SRV records
are present. The record with the lowest value takes precedence.

port The TCP/UDP port on which the service is available.

weight If two matching SRV records within a zone have equal priority, the weight
value is checked. If the weight value for one object is higher than the other,
the record with the highest weight has its resource records returned first.

linkedRecordName The FQDN of the host record to which this SRV record is linked.

ttl The time-to-live value for the record. To ignore the ttl, set this value to -1.

properties Adds object properties, including comments and user-defined fields.

Update SRV Record
An SRV record’s name, ttl, comment, linked record, priority, port, and weight properties can be
updated using the generic update() method.

For more information, see Updating Objects on page 50.

SRV Record Generic Methods
SRV records use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Start of Authority Records
Start of Authority (SOA) records are used to define administrative information relating to particular zones.

Add Start of Authority Record
Adds SOA records.

Output / Response

134 | Address Manager API Guide

 DNS

Returns the object ID for the new SOA record.

API call:
long addStartOfAuthority (long parentId, String email, long refresh, long retry, long
expire, long minimum, String properties)

Parameter Description

parentId The object ID of the parent object of the SOA record.

email Specifies the email address of the administrator for the zones to which the
SOA applies.

refresh The amount of time that a slave server waits before attempting to refresh
zone files from the master server. This is specified in seconds using a 32-
bit integer value. RFC 1912 recommends a value between 1200 and 4300
seconds.

retry Specifies the amount of time that the slave server should wait before re-
attempting a zone transfer from the master server after the refresh value
has expired. This is specified as a number of seconds using a 32-bit integer
value.

expire Specifies the length of time that a slave server will use a non-updated set
of zone data before it stops sending queries. This is specified as a number
of seconds using a 32-bit integer. RFC 1912 recommends a value from
1209600 to 2419200 seconds or 2 to 4 weeks.

minimum Specifies the maximum amount of time that a negative cache response is
held in cache. A negative cache response is a response to a DNS query
that does not return an IP address (a failed request). Until this value expires,
queries for this DNS record return an error. The maximum value for this field
is 10800 seconds, or 3 hours.

properties Adds object properties, including comments and user-defined fields. The
supported properties are time-to-live (TTL), primary server (mname) and
serial number format (serialNumberFormat). To override the default TTL
value for SOA records, use ObjectProperties.ttl=”<value>” in the properties
string.

Update Start of Authority Record
Use the generic update() method to update an SOA record.

The following properties of an SOA record can be updated using the generic update() method:

• name
• email
• refresh
• retry
• expire
• minimum
• mname
• serialNumberFormat

For more information, see Updating Objects on page 50.

Start of Authority Record Generic Methods
SOA records use the generic get() and delete() methods for entities.

Version 8.3.0 | 135

Chapter 4: API Object Methods

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Generic Records
Use the generic resource record methods to add and update the following resource record types: A6,
AAAA, AFSDB, APL, CAA, CERT, DNAME, DNSKEY, DS, ISDN, KEY, KX, LOC, MB, MG, MINFO, MR,
NS, NSAP, PX, RP, RT, SINK, SSHFP, TLSA, WKS, and X25.

The fields available are name, type (which defines the custom record type), and data (the rdata value for
the custom type). The time-to-live for this record can be set to an override value, so the record has a longer
or shorter ttl. A comment field is also included.

Add Generic Record
Adds Generic records.

Output / Response

Returns the object ID for the new generic resource record.

API call:
long addGenericRecord (long viewId, String absoluteName, String type, String rdata, long ttl,
String properties)

Parameter Description

viewId The object ID for the parent view to which the record is being added.

absoluteName The FQDN of the record. If you are adding a record in a zone that is linked
to a incremental Naming Policy, a single hash (#) sign must be added at the
appropriate location in the FQDN. Depending on the policy order value, the
location of the single hash (#) sign varies.

type The type of record being added. Valid settings for this parameter are the
generic resource record types supported in Address Manager: A6, AAAA,
AFSDB, APL, CAA, CERT, DNAME, DNSKEY, DS, ISDN, KEY, KX, LOC,
MB, MG, MINFO, MR, NS, NSAP, PX, RP, RT, SINK, SSHFP, TLSA, WKS,
and X25.

rdata The data for the resource record in BIND format (for example, for A records,
10.0.0.4).

ttl The time-to-live value for the record. To ignore the ttl, set this value to -1.

properties Adds object properties, including comments and user-defined fields.

Update Generic Record
A generic record’s name, type, rdata, ttl, and comment properties can be updated using the generic
update() method.

For more information, see Updating Objects on page 50.

Generic Record Generic Methods
Generic records use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

DNS Options
DNS options define the deployment of Address Manager DNS services. Address Manager supports most
of the options used by both BIND and Microsoft DNS.

136 | Address Manager API Guide

 DNS

For options that are not directly supported by Address Manager, you can use the raw deployment option.
For more information, refer to Add Raw Deployment Option on page 144 and Update Raw Deployment
Option on page 145.

Add DNS Option
Adds DNS options.

Output / Response

Returns long type and represents the database object ID of the newly added DNS deployment option.

API Call:
long addDNSDeploymentOption(long entityId, String name, String value, String properties)

Parameter Description

entityId The object ID for the entity to which this deployment option is being added.

name The name of the DNS option being added. This name must be one of the
constants listed in DNS Options on page 197.

value The value being assigned to the option.

 Note: Depending on the type of DNS deployment option being
added, the format of the value input might differ. For more
information, refer to Reference: DNS Option value formats on page
138.

properties Adds object properties, including comments and user-defined fields.

Get DNS Option
Retrieves all DNS options assigned for the object specified excluding the options inherited from the higher-
level parent object.

Output / Response

Returns an instance of the type APIDeploymentOption that represents the DNS deployment option or
empty if none were found.

API Call:
APIDeploymentOption getDNSDeploymentOption(long entityId, String name, long serverId)

Parameter Description

entityId The object ID for the entity to which this deployment option is assigned.

name The name of the DNS option. This name must be one of the constants
listed in DNS Options on page 197.

 Note: Depending on the type of DNS deployment option
being retrieved, the format of the value might differ. For more
information, refer to Reference: DNS Option value formats on
page 138.

serverId Specifies the server or server group to which this option is assigned. To
retrieve an option that has not been assigned to a server role, set this
value to 0(zero). Omitting this parameter from the method call will result in
an error.

Version 8.3.0 | 137

Chapter 4: API Object Methods

Update DNS Option
Updates DNS options.

Output / Response

None.

API Call:
void updateDNSDeploymentOption(APIDeploymentOption option)

Parameter Description

option The object ID of the DNS option to be updated.

Delete DNS Option
Deletes DNS options.

Output / Response

None.

API Call:
void deleteDNSDeploymentOption(long entityId, String name, long serverId)

Parameter Description

entityId The object ID for the entity to which the deployment option is assigned.

name The name of the DNS option being deleted. This name must be one of the
constants listed in DNS Options on page 197.

serverId Specifies the server or server group to which the option is assigned. To
delete an option that has not been assigned to a server role, set this value
to 0(zero). Omitting this parameter from the method call will result in an
error.

Reference: DNS Option value formats
The input and output value formats for DNS Option API methods.

When performing an add operation of DNS deployment options, the value input is in double quotation
marks (""). For example, adding a Lame TTL DNS deployment option with a value of "300" using the
addDNSDeploymentOption API method to Address Manager would look similar to the following:

Input

long optId = service.addDNSDeploymentOption(100977, DNSOptions.LAME_TTL,
 "300", "");

Similarly, retrieving a Lame TTL DNS deployment option with a value of "300" using the
getDeploymentOptions API method would return values similar to the following:

Output

{
 "id": 100977,
 "type": "DNS",
 "name": "lame-ttl",
 "value": "300",
 "properties": "inherited=false|"

138 | Address Manager API Guide

 DNS

}

Exception - When performing an add, update, or get API call with the Root Hints (CACHE) DNS
deployment option, the value input is in double quotation marks and braces ("{}"). For example, adding
a Root Hint DNS deployment option with a specified name value of "admin.corp" and IP address of
172.25.19.53 using the addDNSDeploymentOption API method would look similar to the following:

Input

logn optId = service.addDNSDeploymentOption(100977, DNSOptions.CACHE,
 "{admin.corp,172.25.19.53}","");

Similarly, retrieving a Root Hint DNS deployment option with a specified name value of "admin.corp" and IP
address of 172.25.19.53 using the getDeploymentOption API method would return values similar to the
following:

Output

{
 "id": 100977,
 "type": "DNS",
 "name": "cache",
 "value": "{admin.corp,172.25.19.53}",
 "properties": "inherited=false|"
}

 Note: When adding a Root Hint DNS deployment option with the value of "Auto", the value defined
in the add API method must be empty double quotation marks and braces ("{}"). Similarly, when
performing a get API method of DNS deployment options where the Root Hint has a value of
"Auto", the value returned is empty double quotation marks and braces ("{}").

DNS Raw Option
The DNS raw option allows you to add options to the DNS service in a raw format that gets passed to the
service when deployed. Address Manager does not perform any data checking on raw options. You must
ensure that the syntax for these options is correct.

Raw options assigned to a parent object are not inherited by child objects. For example, an option set at a
parent zone is not inherited by a child zone. However, raw options assigned to a server group are inherited
only by the servers that are linked to that server group.

DNS raw options can be set at the following levels:

• Server
• Server group
• DNS View
• DNS zone
• Root zone
• ENUM zone
• Zone template
• IPv4 block
• IPv4 network
• IPv4 network template
• IPv6 block
• IPv6 network

 Note: DNS raw options cannot be configured for Windows servers.

Version 8.3.0 | 139

Chapter 4: API Object Methods

To add or update DNS raw deployment options, refer to Add Raw Deployment Option on page 144 and
Update Raw Deployment Option on page 145.

DNS Response Policies
The Response Policies feature allows users to manage a recursive DNS resolver attempting to respond to
the queries that might not be desirable or legal.

You can set the types of response policies based on your needs and deploy to a DNS server managed
under Address Manager. By setting up these response policies, you can block, redirect, or allow particular
domain name queries that you wish to and must prevent. For example:

• If you are a corporate user and want to prevent employees from being connected to any harmful
website, you can setup the response policies and block these harmful websites so that they does not
return the query response or the employees can simply be redirected to an appropriate website.

• If you need to follow a government regulation that mandates certain DNS blocking, the response
policies can be used to implement this requirement.

There are three different types of response policies that can be set based on user requirements:

Blacklist

Matching items in the list of blacklist object return an NXDomain result.

Blackhole

Matching items in this response policy object return a NOERROR result with no answers.

Whitelist

Matching items in this response policy object are excluded from further processing.

Add Response Policy
Adds a DNS response policy.

Output / Response

Returns the object ID of the new DNS response policy added.

API Call:
long addResponsePolicy(long configurationId, String name, String responsePolicyType,
long ttl, String properties)

Parameter Description

configurationId The object ID of the configuration to which the response policy is being added.

name The name of the DNS response policy being added.

responsePolicyType The type of response policy being added. The available values are BLACKLIST,
BLACKHOLE and WHITELIST.

 Note: The responsePolicyType values need to be in CAPITAL letters.

ttl The time-to-live value in seconds.

properties A string containing options, including comments and user-defined fields.

Update Response Policy
A response policy’s name, ttl and responsePolicyType properties can be updated using the generic
update() method.

For more information, refer to Updating Objects on page 50.

140 | Address Manager API Guide

 DNS

Response Policy Generic Methods
Response policy uses the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Upload Response Policy Item
Uploads one response policy file containing a list of fully qualified domain names (FQDNs).

Output / Response

None.

API Call:
void uploadResponsePolicyItems(long parentId, byte[] policyItemsData)

Parameter Description

parentId The object ID of the parent response policy under which the response policy
item file is being uploaded.

policyItemsData The file to be uploaded under the response policy. This file is passed to
Address Manager as a byte array.

 Note: This actual file size should be no more than 75 MB.

Search Response Policies
Searches Response Policy items configured in local Response Policies or predefined BlueCat Security
feed data. The search will return a list of all matching items in Address Manager across all configurations.

Use this method to fetch response policy items and their associated properties or objects such as
Response Policy, RP Zone, Threat Protection category for feed data, policy type and the parent
configuration.

Output / Response

Returns an array of ResponsePolicySearchResult objects. Each object contains information of one
Response Policy item found either in local Response Policies or BlueCat Security feed data.

API Call:
ResponsePolicySearchResult[] searchResponsePolicyItems(String keyword, String scope,
int start, int count, String properties)

Parameter Description

keyword The search string for which you wish to search.

• ^—matches the beginning of a string. For example: ^ex matches example
but not text.

• $—matches the end of string. For example: ple$ matches example but not
please.

• *—matches zero or more characters within a string. For example: ex*t
matches exit and excellent.

scope The scope in which the search is to be performed. The possible values are:

• RPItemSearchScope.LOCAL—to search policy items configured in local
Response Policies.

• RPItemSearchScope.FEED—to search policy items configured in
predefined BlueCat Security Feed data.

Version 8.3.0 | 141

Chapter 4: API Object Methods

Parameter Description

• RPItemSearchScope.ALL—to search policy items configured in both local
Response Policies and predefined BlueCat Security Feed data.

start A starting number from where the search result will be returned. The possible
value is a positive integer ranging from 0 to 999. For example, specifying 99 will
return the search result from the 100th result to the maximum number that you
specify with the count option.

count The total number of results to be returned. The possible value is a positive
integer ranging from 1 to 1000.

properties Reserved for future use. Use an empty string ("") for now.

Reverse zone name format
Address Manager creates the reverse zone and reverse zone structure automatically when deploying a
DNS deployment role configuration to DNS/DHCP Server.

Previously, only one reverse zone format was supported and this resulted in issues when importing an
existing reverse zone that did not follow the default Address Manager format. Because there are number
of other acceptable formats that can be used to generate reverse DNS zones, Address Manager now
supports setting a custom reverse zone format.

Add Reverse Zone Name Format
Adds custom DNS reverse zone name formats.

Output / Response

Returns the object ID of the new DNS reverse zone name format added.

API Call:
long addDNSDeploymentOption(long entityId, String name, String value, String properties)

Parameter Description

entityId The object ID for the entity to which this deployment option is being added.

name The name must be DNSOptions.CLASSLESS_REVERSE_ZONE_FORMAT or
“classless-reverse-zoneformat”.

value The following values are supported:

• ReverseZoneFormatType.STARTIP_NETMASK_NET or "[start-ip]-[net-
mask].[net].inaddr.arpa"

• ReverseZoneFormatType.STARTIP_ENDIP_NET or "[start-ip]-[end-ip].
[net].in-addr.arpa"

• ReverseZoneFormatType.STARTIP_SLASH_NETMASK_NET or "[start-ip]/
[netmask].[net].in-addr.arpa"

• ReverseZoneFormatType.STARTIP_SLASH_ENDIP_NET or "[start-ip]/[end-
ip].[net].inaddr.arpa"

• ReverseZoneFormatType.CUSTOM +
ReverseZoneFormatType.SEPARATOR + "[customformat-value]" or
“custom:<custom-format-value>”

properties Adds object properties, including comments and user-defined fields.

142 | Address Manager API Guide

 Deployment options

Deployment options
Deployment is the process by which the configuration in Address Manager becomes a running set of
services on Address Manager-managed servers, and Deployment Options define the deployment of
Address Manager DNS and DHCP services.

Deployment options can be applied at many different levels within a configuration such as server, block,
network, DNS Views, or DNS Zones level.

Getting deployment options
This is the generic API method for getting Deployment options for Address Manager DNS and DHCP
services.

Get Deployment Options
Retrieves deployment options for Address Manager DNS and DHCP services.

Output / Response

Returns all deployment options assigned to the specified object including inherited options from higher-
level parent objects. If an option is inherited and overridden, then only the overriding option will be
returned.

 Note: Multiple raw options with long values can cause longer than normal processing time when
returning the values.

API Call:
APIDeploymentOption[] getDeploymentOptions(long entityId, String optionTypes, long
serverId)

Parameter Description

entityId The object ID of the entity to which the DNS or DHCP deployment option is
assigned.

optionTypes The type of deployment options. Multiple options can be separated by a | (pipe)
character. This value must be one of the following items:

• DNSOption
• DNSRawOption
• DHCPRawOption
• DHCPV6RawOption
• DHCPV4ClientOption
• DHCPV6ClientOption
• DHCPServiceOption
• DHCPV6ServiceOption
• VendorClientOption
• StartOfAuthority

For complete list of Option Types and Object Types constants, refer to Option
Types on page 211 and Object Types on page 209.

• If Invalid deployment option types or invalid strings are specified, the API
execution will fail and return the error message: "Invalid deployment option
found". For example, if the user passes DHCPv6ClientOption for IPv4
networks, it will return this error message as DHCPv6 client options are not a
valid for IPv4 networks.

Version 8.3.0 | 143

Chapter 4: API Object Methods

Parameter Description

• If specified as an empty string (""), all deployment options for the specified
entity will be returned.

• Depending on the type of DNS deployment option being retrieved, the format
of the value might differ. For more information, refer to Reference: DNS
Option value formats on page 138.

serverId The specific server or server group to which options are deployed. The valid
values are as follows:

• >0—returns only the options that are linked to the specified server ID.
• <0—returns all options regardless of the server ID specified.
• =0—returns only the options that are linked to all servers.

Raw deployment option
This is the generic API method for adding and updating raw deployment option to DNS and DHCP services
in a raw format.

The raw option allows you to add DNS or DHCP options that are not directly supported by Address
Manager.

A raw option is passed to the DNS or DHCP service on the managed server exactly as you type it in the
rawData parameter. Therefore, it is essential that you enter the data with the correct syntax. There is no
error checking or data checking on the raw option .

Add Raw Deployment Option
Adds deployment options to DNS or DHCP services in a raw format that will be passed to the service when
deployed.

Output / Response

Returns the object ID for the newly added Raw option.

API Call:
long addRawDeploymentOptions(long parentId, String optionTypes, String rawData, String
properties)

Parameter Description

parentId The object ID of the entity to which the DNS or DHCP raw deployment option is
assigned.

optionType The type of the raw deployment option being assigned. This value must be one
of the following items:

• DNS_RAW
• DHCP_RAW
• DHCPV6_RAW

For complete list of Option Types constants, refer to Option Types on page
211.

rawData The raw option value. The maximum supported characters are 65,536. The
raw option will be passed to the DNS or DHCP service on the managed server
exactly as you enter here. Therefore, it is essential that you enter the data with
the correct syntax.

144 | Address Manager API Guide

 TFTP

Parameter Description

properties Adds object properties, including associated server and server group, and user-
defined fields.

Update Raw Deployment Option
Updates raw deployment options.

Output / Response

None.

API Call:
long updateRawDeploymentOptions(APIDeploymentOption option)

Parameter Description

option The DNS or DHCP raw option object to be updated.

TFTP
Address Manager uses Trivial File Transfer Protocol (TFTP) to provide configuration files to end-point
devices.

TFTP Groups
TFTP files are organized into a list of tree structures. Each tree has a root, called a TFTP group. The
leaves of this tree are files, and the nodes of the tree are folders. TFTP groups are child objects of
configurations. Each tree structure reflects the directory structure on a target TFTP server.

Add TFTP Group
Adds TFTP groups.

Output / Response

Returns the object ID for the new TFTP group.

API Call:
long addTFTPGroup(long configurationId, String name, String properties)

Parameter Description

configurationId The object ID of the configuration to which the TFTP group is being added.

name The name of the TFTP group.

properties Adds object properties, including comments and user-defined fields.

Update TFTP Group
A TFTP group’s name property can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

TFTP Group Generic Methods
TFTP groups use the generic get() and delete() methods for entities.

Version 8.3.0 | 145

Chapter 4: API Object Methods

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

TFTP Folders
TFTP folders are used to create the directory structure on the TFTP server.

Add TFTP Folder
Adds TFTP folders.

Output / Response

Returns the object ID for the new TFTP folder.

API Call:
long addTFTPFolder(long parentId, String name, String properties)

Parameter Description

parentId The object ID of the parent object of the TFTP folder. The parent is either a
TFTP group or another TFTP folder object.

name The name of the TFTP folder.

properties Adds object properties, including comments and user-defined fields.

Update TFTP Folder
A TFTP folder’s name property can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

TFTP Folder Generic Methods
TFTP folders use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

TFTP Files
TFTP files contain configuration information that is passed to the client end-point devices to be configured.

Add TFTP File
Adds TFTP files.

Output / Response

Returns the object ID for the new TFTP file.

API Call:
long addTFTPFile(long parentId, String name, String version, byte[] data, String properties)

Parameter Description

parentId The object ID of the parent object of the TFTP file. The parent will always be a
TFTP folder.

name The name of the TFTP file.

version The version of the file. This parameter is optional.

146 | Address Manager API Guide

 Servers and Deployment

Parameter Description

data The file to be uploaded and distributed to clients by TFTP. The file is passed to
Address Manager as a byte array.

properties Adds object properties, including comments and user-defined fields.

Update TFTP File
A TFTP file’s name, version, and description properties can be updated using the generic update()
method.

For more information, see Updating Objects on page 50.

TFTP File Generic Methods
TFTP files use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Servers and Deployment
Address Manager deploys settings and services separately from designing and configuring the actual
services.

Server objects must be added to Address Manager, and then server roles can associate various DNS,
DHCP, and TFTP services to the servers on which they will run. Deployment can be scheduled within
the Address Manager interface, but only immediate deployments can be performed through the Address
Manager API.

Servers
To use a DNS/DHCP Server with Address Manager, you must add the server to the Address Manager
configuration.

This involves providing information in the Add Server screen, and then connecting to the server, or using
the addServer() method. A successful connection places the DNS/DHCP Server under the control of
Address Manager and disables the native DNS/DHCP Server command server agent. As a result, the
server is no longer managed through the DNS/DHCP Server Management Console and responds only to
commands from Address Manager.

Servers are added to a Address Manager configuration so that services can be deployed to them using
deployment roles and server options. Servers can be added with the API or in the Address Manager
GUI without connecting to them if the server objects need to be created and configured before the actual
servers are available. The method described here adds the server to a Address Manager configuration
only, and does not connect to the server.

Before deploying a configuration, you must connect to servers added using this method or using the
Address Manager web interface. For more information about connecting to existing servers using the
Address Manager web interface refer to the Address Manager Administration Guide and the online
help. Server control is available through the Address Manager web interface and the Address Manager
Administration Console.

Address Manager v8.0.0 and greater, and DNS/DHCP Server v7.0.0 and greater feature support
for dedicated management on multi-interface DNS/DHCP Server appliances (DNS/DHCP Server
hardware models 1900, 1925, and 1950). These DNS/DHCP Server appliances include support for three
interface ports (Services, XHA, Management) and four interface ports (Services, XHA, Management, and
Redundancy through port bonding: eth0 + eth3).

Version 8.3.0 | 147

Chapter 4: API Object Methods

 Note: The procedure for configuring a DNS/DHCP Server and adding it to Address Manager will
vary according to the number of interfaces on your DNS/DHCP Server appliance, and the number
of interfaces that you wish to utilize.

The following table describes the interfaces that are being used by different types of DNS/DHCP Server:

Number of ports eth0 eth1 eth2 eth3

2 Services /
Management

XHA N/A N/A

3 Services XHA Dedicated
Management

N/A

4 Services XHA Dedicated
Management

Redundancy

 Note: If you are using multi-port DNS/DHCP Server appliances and want to use dedicated
management, you must enable it from the Administration Console before adding a DNS/DHCP
Server to Address Manager.

Add Server
Adds servers to Address Manager.

 Note: Existing customers who have upgraded their Address Manager API to v8.0.0 or greater
may need to update their API calls to add a server with dedicated management enabled. For more
information, refer to KB-939.

Output / Response

Returns the object ID for the new server.

API Call:
long addServer (long configurationId, string name, string defaultInterfaceAddress, string
fullHostName, string profile, string properties)

Parameter Description

configurationId The object ID of the configuration to which the server is being added.

name The name of the server within Address Manager.

defaultInterfaceAddress The physical IP address for the server within Address Manager.

fullHostName The DNS FQDN by which the server is referenced.

profile The server capability profile. The profile describes the type of server
or appliance being added and determines the services that can be
deployed to this server. This must be one of the constants found in Server
Capability Profiles on page 213.

properties A string containing the following options:

• connected—either true or false; indicates whether or not to connect to
a server. In order to add and configure multi-port DNS/DHCP Servers,
this option must be set to true. If false, other interface property options
will be ignored.

• upgrade—indicates whether or not to apply the latest version of DNS/
DHCP Server software once the appliance is under Address Manager
control. The value is either true or false (by default, true).

• password—the server password (by default, bluecat).

148 | Address Manager API Guide

https://care.bluecatnetworks.com/ics/support/KBAnswer.asp?questionID=939

 Servers and Deployment

Parameter Description

• servicesIPv4Address—IPv4 address used only for services traffic
such as DNS, DHCP, DHCPv6, and TFTP. If dedicated management
is enabled, this option must be specified.

• servicesIPv4Netmask—IPv4 netmask used only for services traffic
such as DNS, DHCP, DHCPv6, and TFTP. If dedicated management
is enabled, this option must be specified.

• servicesIPv6Address—IPv6 address used only for services traffic
such as DNS, DHCP, DHCPv6, and TFTP. This is optional.

• servicesIPv6Subnet—IPv6 subnet used only for services traffic such
as DNS, DHCP, DHCPv6, and TFTP. This is optional.

• xhaIPv4Address—IPv4 address used for XHA. This is optional.
• xhaIPv4Netmask—IPv4 netmask used for XHA. This is optional.
• redundancyScenario—networking redundancy scenarios. The

possible values are ACTIVE_BACKUP (Failover) and IEEE_802_3AD
(Load Balancing).

The following properties only apply to the Windows server:

• ProteusDDW—enter the object ID of the DDW server.
• readOnly—indicates if the Windows server is added in read-only

mode. The value is either true or false (by default, true). If set to false,
the server will be added in read-write mode.

• enableDNS—indicates if DNS is enabled. The value is either true or
false (by default, true).

• enableDHCP—indicates if DHCP is enabled. The value is either true
or false (by default, true).

• importViewName—enter a View name for the Windows server. When
you manage Windows DNS from Address Manager, you must specify
a DNS View. Only DNS records contained in this View are deployed.
This is mandatory if enableDNS is set to true.

• authenticationCredentialDomain—enter the domain name of the
Windows Active Directory domain to which this server belongs. If the
server is not a member of a domain, enter the server’s NETBIOS
computer name.

• authenticationCredentialUsername—enter the username for the
Windows server.

• authenticationCredentialPassword—enter the user password for the
Windows server.

 Note: For DNS/DHCP Servers without multi-port support, the
interface-related property options will be ignored.

Import Server
Imports Windows DNS or DHCP services from Managed Windows servers.

Output / Response

Returns void.

API Call:
void importServer(long serverId, boolean importDns, boolean importDhcp, string properties
)

Version 8.3.0 | 149

Chapter 4: API Object Methods

Parameter Description

serverId The object ID of the server that needs to be imported.

 Note: You must set at least one of the following Boolean parameters,
but you cannot set both of them to False.

importDns Imports DNS service if true.

importDhcp Imports DHCP service if true.

properties Reserved for future use.

Replace Server
Allows you to replace a server.

Output / Response

Replaces the server using the existing server ID.

API Call:
void replaceServer(long serverId, string name, string defaultInterface, string hostName,
string password, boolean upgrade, string properties)

Parameter Description

serverId The object ID of the server that needs to be replaced.

name Name of the server to be replaced.

defaultInterface Management interface address for the server.

hostName The DNS FQDN by which the server is referenced.

password The server password (by default, bluecat).

upgrade Flag indicating that server needs to be upgraded or not. True means server
needs to be upgraded.

properties A string containing the following options:

• servicesIPv4Address—IPv4 address used only for services traffic such
as DNS, DHCP, DHCPv6 and TFTP. If dedicated management is enabled,
this option must be specified. If dedicated management is disabled, this
address must be the same as defaultInterfaceAddress which is management
interface address.

• servicesIPv4Netmask—IPv4 netmask used only for services traffic such as
DNS, DHCP, DHCPv6 and TFTP. If dedicated management is enabled, this
option must be specified. If dedicated management is disabled, this netmask
address must be the same as the management interface netmask address.

• servicesIPv6Address—IPv6 address used only for services traffic such as
DNS, DHCP, DHCPv6 and TFTP. This is optional.

• servicesIPv6Subnet—IPv6 subnet used only for services traffic such as
DNS, DHCP, DHCPv6 and TFTP. This is optional.

• xhaIPv4Address—IPv4 address used for XHA. This is optional.
• xhaIPv4Netmask—IPv4 netmask used for XHA. This is optional.
• redundancyScenario—networking redundancy scenarios. The possible

values are ACTIVE_BACKUP (Failover) and IEEE_802_3AD (Load
Balancing).

150 | Address Manager API Guide

 Servers and Deployment

Parameter Description

• resetServices—allows you to replace the DNS/DHCP Server while
maintaining existing configurations for DNS, DHCP, and TFTP services.
Define this option only if you have modified the IPv4 or IPv6 addresses of
the Services interface or wish to reset configurations for DNS, DHCP, and
TFTP services on the DNS/DHCP Server. The value is either true or false
(by default, false).

 Note: For DNS/DHCP Servers without multi-port support, the interface-
related property options will be ignored.

! Caution: Resetting DNS/DHCP Servers will result in a service outage.
This service outage will last until you have deployed services to the
replacement system. Only reset DNS/DHCP Server services if you are
replacing the DNS/DHCP Server with a new appliance of a different
type and/or reconfiguring the IPv4 or IPv6 addresses of the Services
interface on the appliance. BlueCat recommends that you schedule a
maintenance window before performing a reset of DNS/DHCP Server
services.

Deploy Server
Deploys servers. When this method is invoked, the server is immediately deployed.

Output / Response

None.

Deployment is the process through which the configuration created in Address Manager becomes a
running set of services on the Address Manager-managed servers. Deployment takes account of the
IP, DHCP, and DNS design determined during configuration. This is represented by a set of service
configuration files deployed to the servers.

API Call:
void deployServer(long serverId)

Parameter Description

serverId The object ID of the server to be deployed.

Deploy Server Configuration
Allows you to deploy specific configuration(s) to a particular server.

Output / Response

Deploys specific configuration(s) to a particular server.

API Call:
void deployServerConfig(long serverId, String properties)

Parameter Description

serverId The database object ID of the server that will immediately be deployed.

properties A string containing property names. The property names available
in the ObjectProperties are ObjectProperties.services, and

Version 8.3.0 | 151

Chapter 4: API Object Methods

Parameter Description

ObjectProperties.forceDNSFullDeployment. Multiple options can be separated
by a | (pipe) character. For example:

ObjectProperties.services=DNS|forceDNSFullDeployment=true

The values for properties are:

• services—the name of the valid service configuration that needs to
be deployed. These are the valid values for the services: DNS, DHCP,
DHCPv6, and TFTP.

• forceDNSFullDeployment—a boolean value. set to true to perform a full
DNS deployment. Omit this parameter from the method call to perform a
differential deployment.

Deploy Server Services
Allows you to deploys specific service(s) to a particular server.

Output / Response

Deploys specific service(s) to a particular server.

API Call:
void deployServerServices(long serverId, String services)

Parameter Description

serverId The database object ID of the server for which deployment services to be
deployed.

services The name of the valid services to be deployed. Specify multiple services using a
comma (,). The valid format is services=DNS,DHCP,TFTP.

Quick Deployment
Allows you to instantly deploy changes you made to DNS resource records made since the last full or quick
deployment. This function applies only to DNS resource records that you have changed and does not
deploy any other data.

Output / Response

Instantly deploys changes to DNS resource records made since the last full deployment or quick
deployment.

API Call:
void quickDeploy(long entityId, String properties)

Parameter Description

entityId The object ID of the DNS zone or network for which deployment service needs
to be deployed.

properties A string containing the services option. It can also be empty.

• services—the name of the valid service that need to be deployed. The only
valid service name for quick deployment is DNS. Any other service names
will throw an error.

152 | Address Manager API Guide

 Servers and Deployment

Deployment Status
Returns the server's deployment status.

Output / Response

Returns status code for deployment of a particular server. These are the possible returning code values:

• EXECUTING = -1
• INITIALIZING = 0
• QUEUED = 1
• CANCELLED = 2
• FAILED = 3
• NOT_DEPLOYED = 4
• WARNING = 5
• INVALID = 6
• DONE = 7
• NO_RECENT_DEPLOYMENT = 8

API Call:
int getServerDeploymentStatus(long serverId, String properties)

Parameter Description

serverId The object ID of the server whose deployment status needs to be checked.

properties Ignore this for now. The valid value is empty.

Server Generic Methods
Servers use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Get Published Interface
To get the published interface IP address for a server, use the getEntities() method with the
PublishedServerInterface type to return the server properties. The publiushedInterfaceAddress
property appears in the returned properties string.

Server Group
A Server Group is a logical container in which multiple servers are grouped together for common purposes.

Grouping servers in a Server Group allows you to apply DNS and DHCP deployment options to all servers
that comprise the group. After you have created a Server Group, you can add one or more DNS/DHCP
Servers to the Server Group. DNS or DHCP options can then be applied to the Server Group and these
options will be inherited by all servers that are added to that specific Server Group. When DNS or DHCP
options are removed from the Server Group, the options are no longer inherited by the servers that are
added to that group.

! Attention:

• Only BlueCat DNS/DHCP Servers can be added to a Server Group.
• A DNS/DHCP Server can only be added to a single server group.
• Deployment options applied to specific servers within a Server Group will override the options

set on the Server Group.

Version 8.3.0 | 153

Chapter 4: API Object Methods

Add Server Group
Adds a Server Group that will contain multiple DNS/DHCP Servers.

You can use the generic addEntity() method to add a Server Group. Use ObjectType.ServerGroup to
define the Server Group entity. For example:

serverGroup = new APIEntity(0, name, properties, ObjectTypes.ServerGroup);
serverGroupId = service.addEntity(configurationId, serverGroup);

 Note: When defining a Server Group entity, the entity name cannot be empty.

For more information about addEntity(), refer to Adding Objects on page 31

Output / Response

Returns the object ID for the new Server Group.

Update Server Group
Updates the Server Group's name property using the generic update() method.

When updating a Server Group entity, the name property must not be empty. For more information, refer to
Updating Objects on page 50.

Server Group Generic Methods
Server Group uses the generic get () and delete () methods for entities.

For more information, refer to Getting Objects on page 44 and Deleting Objects on page 52.

Add Server to Server Group
Use the generic linkEntities() method to add a server to a Server Group.

For more information, refer to Link Entities on page 53.

Remove Server from Server Group
Use the generic unlinkEntities() method to remove a server from a Server Group.

For more information, refer to Unlink Entities on page 54.

DNS and DHCP Deployment Roles
Deployment roles determine the general pattern of the deployment. A deployment role exists on a
particular server interface (physical or published) specified with an IP address.

Each server interface can have multiple DNS roles and one DHCP role with the most locally-specified
server role taking precedence. The addition of a deployment role is allowed only if that role is possible
under that server’s service capability profile as described in the Address Manager Administration Guide.

Get Servers Associated with a Deployment Role
Returns a list of all servers associated with the specified deployment role.

Output / Response

Returns an APIEntity object representing the servers associated with the specified deployment role.

API Call:
APIEntity getServerForRole(long roleId)

154 | Address Manager API Guide

 Servers and Deployment

Parameter Description

roleId The object ID for the deployment role whose servers are to be returned.

Get Server’s Associated Deployment Roles
Returns a list of all deployment roles associated with the server.

Output / Response

Returns a list of all deployment roles associated with the server.

API Call:
APIDeploymentRole[] getServerDeploymentRoles(long serverId)

Parameter Description

serverId The object ID of the server with which deployment roles are associated.

Get Deployment Roles for DNS and IP Address Space Objects
Returns the DNS and DHCP deployment roles associated with the specified object. For DNS Views
and zones, getDeploymentRoles() returns DNS deployment roles. For IP address space objects,
such as IPv4 blocks and networks, IPv6 blocks and networks, DHCP classes, and MAC pools,
getDeploymentRoles() returns DNS and DHCP deployment roles.

Output / Response

Returns an array of APIDeploymentRole objects representing the deployment roles associated with the
specified object. The properties string contains the following elements:

• view—for DNS deployment roles set for IP address space objects.
• zoneTransServerInterface—the server interface for zone transfers for the deployment role types of

slave, stealth slave, forwarder and stub.
• inherited—returns true or false to indicate whether the deployment role was inherited or not.

API Call:
APIDeploymentRole[] getDeploymentRoles(long entityId)

Parameter Description

entityId The object ID for a DNS view, DNS zone, IPv4 block or network, IPv6 block or
network, DHCP class, or MAC pool.

Move Deployment Roles
Moves all DNS and DHCP deployment roles from a server to the specified interface of another server.

 Note: You CANNOT move deployment roles if the target server has deployment roles associated
with it. You MUST remove all deployment roles assigned to the target server before moving the
roles.

 Note: Either the moveDnsRoles or moveDhcpRoles parameter must be set to true.

API Call:

Output / Response

None.

void moveDeploymentRoles(long sourceServerId, long targetServerInterfaceId, boolean
moveDnsRoles, boolean moveDhcpRoles, String options)

Version 8.3.0 | 155

Chapter 4: API Object Methods

Parameter Description

sourceServerId The object ID of the server that contains the roles.

targetServerInterfaceId The object ID of the server interface of the server to which the roles are to be
moved.

moveDnsRoles If set to true, DNS roles will be moved to the target server interface.

moveDhcpRoles If set to true, DHCP roles will be moved to the target server interface.

options This is reserved for future use.

DHCP Deployment Roles
The DHCP server role can be set to either master or none. Roles set to none are not deployed.

Roles can also be applied at many points throughout a configuration, with the most local roles taking
precedence over those assigned to objects higher in the object hierarchy.

Add DHCP Deployment Role
Adds a DHCP deployment role to a specified object.

Output / Response

Returns the object ID for the new DHCP server role object.

API call:
long addDHCPDeploymentRole(long entityId, long serverInterfaceId, String type, String
properties)

Parameter Description

entityId The object ID for the object to which the deployment role is to be added.

serverInterfaceId The object ID of the server interface to which the role is to be deployed.

type The type of DHCP role to be added. The type must be one of those listed in
DHCP Deployment Role Types on page 195.

properties A string containing options including:

• inherited—either true or false;indicates whether or not the deployment role
was inherited.

• secondaryServerInterfaceId—the object ID of the secondary server
interface for a DHCP failover.

Get DHCP Deployment Role
Retrieves the DHCP deployment role assigned to a specified object.

Output / Response

Returns the DHCP deployment role assigned to the specified object, or returns an empty
APIDeploymentRole if no role is defined. For information about the output properties, refer to Property
Options Reference on page 241.

API call:
APIDeploymentRole getDHCPDeploymentRole(long entityId, long serverInterfaceId)

156 | Address Manager API Guide

 Servers and Deployment

Parameter Description

entityId The object ID for the object to which the deployment role is assigned.

serverInterfaceId The object ID of the server interface to which the role is assigned.

Update DHCP Deployment Role
Updates a DHCP deployment role.

Output / Response

None.

void updateDHCPDeploymentRole(APIDeploymentRole role)

Parameter Description

role The DHCP deployment role object to be updated.

Delete DHCP Deployment Role
Deletes DHCP deployment roles.

Output / Response

None.

void deleteDHCPDeploymentRole(long entityId, long serverInterfaceId)

Parameter Description

entityId The object ID for the object from which the deployment role is to be deleted.

serverInterfaceId The object ID of the server interface from which the deployment roles is to be
deleted.

DNS Deployment Roles
At a minimum, DNS roles must be applied at the View level in order for DNS deployment to occur.

They can also be applied further into the DNS core if desired. For Reverse DNS, a DNS deployment role
must be applied to either a block or a network in order to deploy the Reverse DNS settings for that object
and its sub-objects.

The following DNS server roles are available:

DNS role Description

None This DNS role is not deployed. Use this option for DNS objects that exist, but
should not be deployed.

Master This role deploys details and options consistent with a DNS master. This role
is also used on a DNS/DHCP Server 250 with the appropriate DNS options to
create a caching-only DNS server.

Hidden Master This role deploys details and options consistent with a DNS master. However,
no name server records are created for the server, thus hiding it from DNS
queries.

Slave This role deploys details and options consistent with a DNS slave.

Version 8.3.0 | 157

Chapter 4: API Object Methods

DNS role Description

Stealth Slave A stealth slave is a DNS slave server that does not have any name server
records pointing to it. This is useful for testing purposes or for having a hot
spare stand-by server. However, this is not a commonly used DNS role.

Forwarder This role deploys details and options consistent with a DNS forwarder. You
must use both the forwarding policy and forwarding options to make this role
function properly.

Stub A stub zone contains only the name server records for a domain. Address
Manager generates name server records automatically during deployment, so
a zone deployed within a stub role will not contain any user-selected details or
options.

Recursion This role creates DNS caching servers. The options and root zone associated
with this role are described in the Address Manager Administration Guide.

Add DNS Deployment Role
Adds a DNS deployment role to a specified object.

Output / Response

Returns the object ID for the new DNS server role object.

API call:
long addDNSDeploymentRole(long entityId, long serverInterfaceId, String type, String
properties)

Parameter Description

entityId The object ID for the object to which the deployment role is to be added.

serverInterfaceId The object ID of the server interface to which the role is to be added.

type The type of DNS role to be added. The type must be one of those listed in DNS
Deployment Role Type on page 197.

properties Adds object properties, including the View associated with this DNS deployment
role and user-defined fields.

Get DNS Deployment Role
Retrieves a DNS deployment role from a specified object.

Output / Response

Returns a DNS deployment role from the specified object, or returns an empty APIDeploymentRole if no
role is defined. For information about the output properties, refer to Property Options Reference on page
241.

API call:
APIDeploymentRole getDNSDeploymentRole(long entityId, long serverInterfaceId)

Parameter Description

entityId The object ID for the object to which the DNS deployment role is assigned.

serverInterfaceId The object ID of the server interface to which the DNS deployment role is
assigned.

158 | Address Manager API Guide

 Servers and Deployment

Get DNS Deployment Role for View
Retrieves the DNS deployment role assigned to a view-level objects in the IP space for ARPA zones.

Output / Response

Returns the requested APIDeploymentRole object. For information about the output properties, refer to
Property Options Reference on page 241.

API call:
APIDeploymentRole getDNSDeploymentRoleForView(long entityId, long
serverInterfaceId, long viewId)

Parameter Description

entityId The object ID for the object to which the DNS deployment role is assigned.

serverInterfaceId The object ID of the server interface to which the DNS deployment role is
assigned.

viewId The view in which the DNS deployment role is assigned.

Update DNS Deployment Role
Updates a specified DNS deployment role.

Output / Response

None.

API call:
void updateDNSDeploymentRole(APIDeploymentRole role)

Parameter Description

role The DNS deployment role object to be updated.

Delete DNS Deployment Role
Deletes a specified DNS deployment roles.

Output / Response

None.

API call:
void deleteDNSDeploymentRole(long entityId, long serverInterfaceId)

Parameter Description

entityId The object ID for the object from which this DNS deployment role is to be
deleted.

serverInterfaceId The object ID of the server interface to which the DNS deployment role is
assigned.

Delete DNS Deployment Role for View
Deletes the DNS deployment role assigned to view-level objects in the IP space for ARPA zones.

Output / Response

None.

Version 8.3.0 | 159

Chapter 4: API Object Methods

API call:
void deleteDNSDeploymentRoleForView(long entityId, long serverInterfaceId, long
viewId)

Parameter Description

entityId The object ID for the object from which this DNS deployment role is to be
deleted.

serverInterfaceId The object ID of the server interface to which the DNS deployment role is
assigned.

viewId The view from which the DNS deployment role is to be deleted.

TFTP Deployment Roles
TFTP deployment roles are used to assign TFTP services to DHCP servers.

Add TFTP Deployment Role
Adds a TFTP deployment role to a specified object.

Output / Response

Returns the object ID for the new TFTP deployment role object.

API call:
long addTFTPDeploymentRole(long entityId, long serverId, String properties)

Parameter Description

entityId The object ID for the object to which the TFTP deployment role is to be added.

serverId The object ID of the server interface to which the TFTP deployment role is to be
added.

properties Adds object properties, including user-defined fields.

Update TFTP Deployment Role
TFTP deployment roles cannot be updated.

TFTP Deployment Role Generic Methods
TFTP deployment roles use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Crossover High Availability (xHA)
DNS/DHCP Server Crossover High Availability (xHA) provides disaster recovery through the use of
redundant appliances: xHA makes two DNS/DHCP Server appliances function as a single appliance.

If one of the appliances fails for any reason, the other takes its place and continues providing services. The
pair appears as a single server for DNS queries because both servers share an IP address. Each server
in the pair has its own IP addresses for management through Address Manager. For details about xHA,
please refer to Address Manager Administration Guide.

160 | Address Manager API Guide

 Crossover High Availability (xHA)

Requirements for creating an xHA pair
Before you create an xHA pair in Address Manager, you must have the following requirements in place:

• You must have at least two connected and managed DNS/DHCP Servers in the configuration.
• DNS/DHCP Servers must be either two physical appliances or two virtual machines. Mixed xHA pairs of

appliance and VM are NOT supported.
• Both DNS/DHCP Servers must be at the same software version before creating an xHA pair.
• Both DNS/DHCP Servers must be of the same profile, such as two DNS/DHCP Server 60 or two DNS/

DHCP Server 100 profiles.
• Both DNS/DHCP Servers must be of the same architecture, That is, two 64-bit servers, or two 32-bit

servers (such as two XMB2 appliances).

! Attention: Cross-architecture xHA pairs, such as one 64-bit node and one 32-bit node, are
NOT supported.

• In order to create an xHA pair with the Active node on which the dedicated management interface
enabled, the dedicated management interface on the Passive node must be enabled.

• The Active and Passive nodes must be on the same network.
• The servers for the xHA pair must not be associated with a deployment schedule.
• The server intended for the passive role must not be associated with a deployment role.
• To avoid split-brain scenarios (where both servers are active or passive at the same time), the use of

xHA Backbone Communication is mandatory.

! Attention:

• If you are currently using the xHA/eth1 ports for another purpose, you can reset and then
reconfigure them for xHA communication, but you cannot use the eth1 ports for xHA
communication and for their previous purpose.

• If you are upgrading from a previous version of DNS/DHCP Server, you must delete each
eth1 port to reset it. This is because previous versions did not support eth1, and it is not reset
automatically.

Creating an xHA
With xHA prerequisites are met, you can create an xHA pair.

 Note: You cannot configure interface and network settings of DNS/DHCP Server appliances
that are part of a functioning xHA pair. You must configure interface and network settings before
creating a xHA pair.

Create xHA
Creates an xHA pair.

Output / Response

Returns the object ID for the xHA pair created.

API call:
long createXHAPair(long configurationId, long activeServerId, long passiveServerId,
String activeServerNewIPv4Address, String properties)

Parameter Description

configurationId The object ID of the configuration in which the xHA servers are located.

activeServerId The object ID of the active DNS/DHCP Server server.

passiveServerId The object ID of the passive DNS/DHCP Server server.

Version 8.3.0 | 161

Chapter 4: API Object Methods

Parameter Description

activeServerNewIPv4Address The new IPv4 address for the active server.

 Note: This is the physical interface of the active server used
during creation of the pair. The original IP address of the active
server is assigned to the virtual interface.

properties A string containing options listed in List of options.

List of options

activeServerPassword The deployment password for the active server (by default,
bluecat).

passiveServerPassword The deployment password for the passive server (by default,
bluecat).

pingAddress An IPv4 address that is accessible to both active and passive
servers in the xHA pair.

ip6Address An optional IPv6 address for the xHA pair.

newManagementAddress The new IPv4 address for the Management interface for the
active server (only for DNS/DHCP Servers with dedicated
management enabled).

backboneActiveServerIPv4Address The IPv4 address of the xHA interface for the active server
(eth1).

backboneActiveServerIPv4Netmask The IPv4 netmask of the xHA interface for the active server
(eth1).

backbonePassiveServerIPv4Address The IPv4 address of the xHA interface for the passive server
(eth1).

backbonePassiveServerIPv4NetmaskThe IPv4 netmask of the xHA interface for the passive server
(eth1).

activeServerIPv4AddressForNAT The inside virtual IPv4 address for the active server.

passiveServerIPv4AddressForNAT The inside virtual IPv4 address for the passive server.

activeServerNewIPv4AddressForNATThe inside physical IPv4 address for the active server.

Edit xHA
Updates the xHA pair created.

Output / Response

None.

API call:
void editXHAPair(long xHAServerId, String name, String properties)

Parameter Description

xHAServerId The object ID of the xHA server.

name The name of the xHA server being updated.

properties A string containing options listed in List of options.

162 | Address Manager API Guide

 Crossover High Availability (xHA)

List of options

backboneActiveServerIPv4Address The IPv4 address of the xHA interface for the active
server (eth1).

backboneActiveServerIPv4Netmask The IPv4 netmask of the xHA interface for the active
server (eth1).

backbonePassiveServerIPv4Address The IPv4 address of the xHA interface for the passive
server (eth1).

backbonePassiveServerIPv4Netmask The IPv4 netmask of the xHA interface for the
passive server (eth1).

overrideDHCPValidation True or false; indicates whether or not the
deployment validation settings set at the configuration
level is inherited.

checkDHCPConfigurationDeployment True or false; checks the syntax of the dhcpd.conf file
and validate data deployed from Address Manager.

overrideDNSValidation True or false; indicates whether or not the
deployment validation settings set at the configuration
level is inherited.

checkDNSConfigurationDeployment True or false; checks the syntax of the named.conf
file and validate data deployed from Address
Manager.

checkDNSZonesDeployment True or false; checks the syntax of each DNS
zone file and validate data deployed from Address
Manager.

postLoadZoneIntegrityValidationDNSDeploy Checks the syntax based on the mode selected. The
available modes are as follows:

• Full—checks for the following conditions:

• If MX records refer to A or AAAA records, for
both in-zone and out-of-zone hostnames.

• If SRV records refer to A or AAAA records, for
both in-zone and out-of-zone hostnames.

• If Delegation NS records refer to A or AAAA
records, for both in-zone and out-of-zone
hostnames

• If glue address records in the zone match
those specified by the child.

• Local—checks for the following conditions:

• If MX records refer to A or AAAA records, for
in-zone hostnames.

• If SRV records refer to A or AAAA records, for
in-zone hostnames.

• If Delegation NS records refer to an A or AAAA
record, for in-zone hostnames.

• If glue address records in the zone match
those specified by the child.

• Full-sibling—performs the same checks as in Full
mode but does not check the glue records.

Version 8.3.0 | 163

Chapter 4: API Object Methods

• Local-sibling—performs the same checks as in
Local mode but does not check the glue records.

• None—disables all post-load zone integrity
checks.

checkNamesValidationModeDNSDeploy Checks names. Specify Ignore, Warn or Fail to
determine how Address Manager handles conditions
found by this check.

checkIfMXRecordsAreIPsDNSDeploy Checks if MX records point to an IP address rather
than an A or AAAA record. Specify Ignore, Warn
or Fail to determine how Address Manager handles
conditions found by this check.

checkIfMXRecordsPointToCNAMEsDNSDeploy Checks if MX records point to a CNAME record rather
than an A or AAAA record. Specify Ignore, Warn
or Fail to determine how Address Manager handles
conditions found by this check.

checkIfNSRecordsAreIPsDNSDeploy Checks if NS record point to an IP address rather
than an A or AAAA record. Specify Ignore, Warn
or Fail to determine how Address Manager handles
conditions found by this check.

checkIfSRVRecordsPointToCNAMEsDNSDeployChecks if SRV record point to a CNAME record
rather than an A or AAAA record. Specify Ignore,
Warn or Fail to determine how Address Manager
handles conditions found by this check.

checkForNonTerminalWildcardsDNSDeploy Checks for wildcards in zone names that do not
appear as the last segment of a zone name. Specify
Ignore or Warn to determine how Address Manager
handles conditions found by this check.

Breaking an xHA
Breaking an xHA pair returns each server to its original stand-alone state.

The server that held the active role remains connected to Address Manager while the server that held the
passive role is disconnected and has HA-NODE2 appended to its name. Each server is re-assigned its
original IP address.

Break xHA
Breaks an xHA pair and returns each server to its original stand-alone state.

Output / Response

Breaks an xHA pair.

API call:
void breakXHAPair(long xHAServerId, boolean breakInProteusOnly)

Parameter Description

xHAServerId The object ID of the xHA server.

breakInProteusOnly Either true or false; determines whether or not the xHA pair breaks in Address
Manager interface only. This argument breaks the xHA pair in Address Manager
even if the xHA settings are not removed on the actual servers.

164 | Address Manager API Guide

 Address Manager Objects

xHA Failover
Under normal operation, xHA automatically fails over in the event of a hardware, network or service failure
related to the Active node.

However, you can perform a manual xHA failover for maintenance or verification purposes.

Failover xHA
Performs a manual xHA failover.

Output / Response

Performs a manual xHA failover.

API call:
void failoverXHA(long xHAServerId)

Parameter Description

xHAServerId The object ID of the xHA server.

Address Manager Objects
The other objects managed by the Address Manager API are native Address Manager objects.

These objects are part of the Address Manager server rather than the services it manages. For more
information about Address Manager object types, refer to Address Manager Object Hierarchy on page 22,
and to the Address Manager Administration Guide.

Configurations
Address Manager provides a separation between the logical design of a network and its implementation on
the actual network hardware.

An administrator designs a network as a configuration. The configuration uses global elements such as
users and groups, and local elements such as DNS and IP designs. When combined, these create a
complete logical network design. During this process or afterward, servers (defined for each configuration)
can be associated with different parts of the configuration using the various deployment roles available
within the configuration.

Add Configuration
A generic method for adding configurations, DNS zones, and DNS resource records.

Output / Response

Returns the object ID for the new configuration.

API call:
long addEntity(long parentId, APIEntity entity)

Parameter Description

parentId For configurations, always set the parentId value to 0 (zero), which is the root
element.

entity The configuration object, including its name, sharedNetwork, and user-defined
fields.

Version 8.3.0 | 165

Chapter 4: API Object Methods

Update Configuration
A configuration’s name and sharedNetwork properties can be updated using the generic update()
method.

For more information, see Updating Objects on page 50.

Configuration Generic Methods
Configurations use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Get Configuration Setting
A method to get the configuration setting.

Output / Response

Returns the properties of the setting of the configuration in the following format:

attribute1=value1|attribute2=value2

 Note: Currently, the getConfigurationSetting method only returns the
OPTION_INHERITANCE setting.

API call:
String getConfigurationSetting(long configurationId, String settingName)

Parameter Description

configurationId The object ID of the configuration in which the setting is to be located.

settingName The name of the specific setting to be read. Only the option inheritance
(OPTION_INHERITANCE) setting is supported.

Update Configuration Setting
A method to update the configuration setting.

Output / Response

Updates the configuration setting.

API call:
void updateConfigurationSetting(long configurationId, String settingName, String
properties)

Parameter Description

configurationId The object ID of the configuration in which the setting is to be located.

settingName The name of the specific setting to be read. Only the option inheritance
(OPTION_INHERITANCE) setting is supported.

properties The new properties of the configuration setting to be updated. Only the disable
DNS option inheritance (disableDnsOptionInheritance) property is supported. If
set to true, DNS options that have been configured on a zone are not inherited
by the child zone. In the reverse space, DNS options that have been configured
on a block are not inherited by the child block or network.

 Note:

166 | Address Manager API Guide

 Address Manager Objects

Parameter Description

• Disabling DNS option inheritance only affect options attached to a
zone or block and the inheritance of those options by child zones,
blocks, or networks.

• You cannot disable the inheritance of DNS options that are attached
to a configuration, view, or server. These DNS options will continue
to be inherited by all zones, blocks, or networks found under the
object.

Groups and Users
Address Manager is designed to accommodate environments that require the ability to host multiple
concurrent users who could be located in different regions. Address Manager can also be run by a single
administrator.

Add Group
Adds user groups.

Output / Response

Returns the object ID for the new Address Manager user group.

 Tip: To add users to a user group, use the linkEntities() method, specifying the user ID and
the group ID. It does not matter in which order you specify the user ID and the group ID. Either of
the following will add a user to a user group:

void linkEntities (long user_id, long group_id, String properties)
or
void linkEntities (long group_id, long user_id, String properties)

API Call:
long addUserGroup(String name, String properties)

Parameter Description

name The name of the user group.

properties Adds object properties, including user-defined fields.

Update Group
A user group’s name property can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

Group Generic Methods
User groups use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Add User
Adds Address Manager users.

Output / Response

Returns the object ID for the new Address Manager user.

Version 8.3.0 | 167

Chapter 4: API Object Methods

 Tip: To add users to a user group, use the linkEntities() method, specifying the user ID and
the group ID. It does not matter in which order you specify the user ID and the group ID. Either of
the following will add a user to a user group:

void linkEntities (long user_id, long group_id, String properties)
or
void linkEntities (long group_id, long user_id, String properties)

API Call:
long addUser(String username, String password, String properties)

Parameter Description

username The name of the user.

password The Address Manager password for the user. The password must be set even if
the authenticator property option is defined.

properties A string containing user-defined fields and options listed in List of options.
Multiple property values can be separated by a | (pipe) character. For
example: my $properties = “email=$email|phoneNumber=$tel|
authenticator=1368969|userAccessType=$accessType”

 Note: You must add a | (pipe) character at the end in the properties
string.

List of options

authenticator The object ID of the external authenticator defined in Address Manager.

securityPrivilege A security privilege type for Non-Administrator users with GUI, API, or GUI
and API access. NO ACCESS is the default value.

historyPrivilege A history privilege type for Non-Administrator users with GUI, or GUI and
API access. HIDE is the default value.

email The email address for the user. This is required.

phoneNumber The phone number for the user.

UserType ADMIN or REGULAR (non-administrator—REGULAR is the default value).

UserAccessType API, GUI, or GUI and API. This is required. This string must be one of the
constants listed in User Access Type on page 215.

User types and access types

UserType UserAccessType Privileges

ADMIN n/a History and Security privileges are set automatically.

REGULAR GUI History and Security privileges are set to a user-
specific value.

REGULAR API Security privilege is set to a user-specific value.

REGULAR GUI and API History and Security privileges are set to a user-
specific value.

168 | Address Manager API Guide

 Address Manager Objects

Update User
A Address Manager user’s securityPrivilege and historyPrivilege properties can be updated using the
generic update() method.

For more information, see Updating Objects on page 50.

Update User Password
Updates an Address Manager user password. You must be an Address Manager administrator to invoke
this method.

Output / Response

None.

API Call:
void updateUserPassword(long userId, String newPassword, String[] options)

Parameter Description

userId The userId of an application user who is either a primary or a secondary
authenticator whose password is to be updated.

newPassword The new password for the user.

options Reserved for future use.

User Generic Methods
Address Manager user objects use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Authenticators
Address Manager includes a fully featured authentication subsystem. The Address Manager administrator
uses this system to securely log in to Address Manager and administer the system when it is being
configured.

Address Manager also supports mixed-mode authentication through RADIUS, LDAP, Microsoft Active
Directory, or Kerberos. Support for RSA Secure ID is accomplished through the RADIUS authentication
module.

The necessary settings must be in place before Address Manager can pass authentication information
to these remote systems. Also, the authentication method must be associated with a Address Manager
user. This is accomplished by creating an authenticator and assigning it to a user. Authenticators are
system objects that represent a connection to an external authentication system. The use of that system’s
native safeguards applies for communications between it and Address Manager. Address Manager acts
as a proxy client for the authentication system, validating the identity of a Address Manager user without
managing or validating the user’s password or credentials.

After the users are authenticated against the external system, they are considered to be validated
in Address Manager until they close their sessions, or until it is invalidated by a session time-out.
Authentication is not a substitute for Address Manager user management. Being a Address Manager user
is still a requirement to log in to the system. Authenticators move the responsibility of validating credentials
to another system.

Many organizations centralize control over internal digital identities. In such scenarios, suspending or
revoking credentials and password management are tightly controlled. Address Manager is designed to
be deployed within all major network authentication frameworks. This lets Address Manager assist with
enforcing network standards, rather than requiring a circumvention.

Version 8.3.0 | 169

Chapter 4: API Object Methods

A user may be assigned several authenticators. These are used in order of primary-secondary.

Update Authenticator
An authenticator’s name property can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

Authenticator Generic Methods
Authenticators use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Access Rights
Address Manager is arranged as a hierarchy of objects with the server itself at the highest level. This offers
a security and privilege system that is both simple and adaptive because different subsections of the server
do not have separate systems.

An object may be an entire configuration, a single subnet, a tag, etc. However, this means that existing
security schemes must be mapped to the Address Manager architecture. This section outlines the
concepts necessary to perform this mapping.

The Address Manager server is a hierarchical structure with a configuration, user, group, or Object Tag
group as the root element of the tree. Because everything in this hierarchy is an object, a user can have a
different set of rights for each object within the system. However, permissions are more likely granted for a
certain level as well as for everything below that level (with certain exceptions).

Access rights within Address Manager can be assigned to both users and groups. Furthermore, multiple
rights can exist for the same object. Three simple rules dictate a user’s access rights for any object:

• Administrators always have full control over any system object.
• Local rights take precedence over rights assigned higher in the object hierarchy.
• In the case of conflicting object rights, the most permissive right always takes precedence.

These three rules cover all of the possible cases for access rights. For more information about Address
Manager user rights and security, refer to the Address Manager Administration Guide.

Add Access Right
Adds access rights to a specified object.

Output / Response

Returns the object ID for the new access right.

API Call:
long addAccessRight(long entityId, long userId, String value, String overrides, String
properties)

Parameter Description

entityId The object ID of the entity to which the access right is being added. Set this to 0
if the access right is being added to the root level (default access rights).

userId The object ID of the user to whom this access right applies.

value The value of the access right being added. Valid values for this parameter are
listed in Access Right Values on page 189.

170 | Address Manager API Guide

 Address Manager Objects

Parameter Description

overrides A list of type-specific overrides in the following format:

"objectType=accessValue|objectType=accessValue"

properties A string including the following options:

• workflowLevel—valid values for this option are as follows:

• None—changes made by the user or group take effect immediately.
• Recommend—changes made by the user or group are saved as change

requests and must be reviewed and approved before they take effect.
• Approve—changes made by the user or group take effect immediately

and the user or group can approve change requests from other users or
groups.

• deploymentAllowed—either true or false; to indicate whether or not the
user or group can perform a full deployment of data from the configuration to
a managed server.

• quickDeploymentAllowed—either true or false; to indicate whether or not
the user or group can instantly deploy changed DNS resource records.

 Note:

• All these Properties are optional.
• The deploymentAllowedproperty is applicable only for

configuration, server or root with Full access.
• The workflowLevelproperty is applicable only for Change, Add, or

Full access rights.

Get Access Right
Retrieves an access right for a specified object.

 Note: If the full access right is set on the parent object, the getAccessRight() method for the
child object will retrieve the full access right even if there is a hide override set for the child object
type. It is the caller’s responsibility to evaluate the returned APIAccessRight’s value and overrides
to determine the effective access level for the child object.

Output / Response

Returns the access right for the specified object.

API Call:
APIAccessRight getAccessRight(long entityId, long userId)

Parameter Description

entityId The object ID of the entity to which the access right is assigned.

userId The object ID of the user to whom the access right is applied.

Get Access Rights for Entity
Returns an array of access rights for entities.

Output / Response

Returns an array of access right objects.

Version 8.3.0 | 171

Chapter 4: API Object Methods

API Call:
APIAccessRight[] getAccessRightsForEntity(long entityId,int start, int count)

Parameter Description

entityId The object ID of the entity whose access rights are returned.

start Indicates where in the list of child access right objects to start returning objects.
The list begins at an index of 0.

count The maximum number of access right child objects to return.

Get Access Rights for User
Returns an array of access rights for a specified user.

Output / Response

Returns an array of access right objects.

API Call:
APIAccessRight[] getAccessRightsForUser(long userId,int start, int count)

Parameter Description

entityId The object ID of the user whose access rights are returned.

start Indicates where in the list of child access right objects to start returning objects.
The list begins at an index of 0.

count The maximum number of access right child objects to return.

Update Access Rights
Updates access rights for a specified object.

Output / Response

None.

API Call:
void updateAccessRight(long entityId, long userId, String value,String overrides, String
properties)

Parameter Description

entityId The object ID of the entity to which the access right is assigned.

userId The object ID of the user to whom the access right is assigned. This value is not
mutable.

value The new value for the access right. Valid entries are listed in Access Right
Values on page 189.

overrides A list of potentially modified type-specific overrides in the following format:

"objectType=accessValue|objectType=accessValue"

properties A string including the following options:

• workflowLevel—valid values for this option are as follows:

• None—changes made by the user or group take effect immediately.

172 | Address Manager API Guide

 Address Manager Objects

Parameter Description

• Recommend—changes made by the user or group are saved as change
requests and must be reviewed and approved before they take effect.

• Approve—changes made by the user or group take effect immediately
and the user or group can approve change requests from other users or
groups.

• deploymentAllowed—either true or false; to indicate whether or not the user
or group can perform a full deployment of data from the configuration to a
managed server

• quickDeploymentAllowed—either true or false; to indicate whether or not the
user or group can instantly deploy changed DNS resource records.perform a
full deployment of data from the configuration to a managed server.

 Note:

• All these Properties are optional.
• The deploymentAllowed property is applicable only for

configuration, server or root with Full access.
• The workflowLevel property is applicable only for Change, Add, or

Full access rights.

Delete Access Rights
Deletes an access right for a specified object.

Output / Response

None.

API Call:
void deleteAccessRight(long entityId, long userId)

Parameter Description

entityId The object ID of the entity to which the access right is assigned.

userId The object ID of the user to whom this access right is applied.

Object Tag Groups
Object tags can change the entire scheme by which users navigate Address Manager. By tagging various
objects, companies can assign privileges based on existing business authority regimes, and limit access to
system objects using familiar business models.

Address Manager object tags are arranged in a hierarchical tree structure. This should accommodate most
element-based XML designs, because any realistic number of elements are supported at each level of the
hierarchy below a top-level or root tag known as a tag group. The system supports more than one hundred
levels of tags, so it can accommodate complex nested structures.

The object tagging structure comprises large sets of XML elements that are without attributes. They begin
with a root element and all subsequent tags belong to branches below the tag group in a series of parent-
child relationships. The tag groups cannot be applied to objects.

Add Object Tag Group
Adds object tag groups.

Output / Response

Version 8.3.0 | 173

Chapter 4: API Object Methods

Returns the object ID for the new tag group.

API Call:
long addTagGroup(String name, String properties)

Parameter Description

name The name of the tag group.

properties Adds object properties, including user-defined fields.

Update Object Tag Group
A tag group’s name property can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

Object Tag Group Generic Methods
This object implements the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Object Tags
Object tag groups use the generic get() and delete() methods for entities.

Add Object Tag
Adds object tags.

Output / Response

Returns the object ID for the new object tag.

API Call:
long addTag(long parentid, String name, String properties)

Parameter Description

parentid The object ID of the parent for this object tag. The parent is either an object tag
or an object tag group.

name The name of the object tag.

properties Adds object properties, including user-defined fields.

Assign Object Tag
Assigns object tags to objects through the Address Manager API.

 Note: This method is deprecated. Using this method now returns an error message. Use the
linkEntities() method instead. For more information, see Get Linked Entities on page 53.

Output / Response

None.

API Call:
void tagEntity(long entityId, String tagId)

174 | Address Manager API Guide

 Address Manager Objects

Parameter Description

entityId The object ID of the entity to which the tag is assigned.

tagId The object ID of the tag that is assigned.

Remove Object Tag
Removes object tags from specified objects.

 Note: This method is deprecated. Using this method now returns an error message. Use the
unlinkEntities() method instead. For more information, refer to Unlink Entities on page 54.

Output / Response

None.

API Call:
void tagEntity(long entityId, String tagId)

Parameter Description

entityId The object ID of the entity from which the tag is to be removed.

tagId The object ID of the tag to be removed.

Update Object Tag
An object tag’s name property can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

Object Tag Generic Methods
Object tags use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Locations
The Location feature in Address Manager helps organizations with a large global network infrastructure
manage their network objects and standardize location information.

You can use the Location feature to customize your network location structure by adding your own location
objects under default master location objects. Master location objects are available by default in Address
Manager. You cannot create, edit or delete any default master location objects.

Add a Location
Adds a location object under a parent location object.

addEntity() is a generic method for adding Address Manager API objects.

Output / Response

Returns the object ID for the newly added location object in Address Manager.

API Call:
long addEntity(long parentId, APIEntity entity)

Parameter Description

parentId The object ID of the parent location object.

Version 8.3.0 | 175

Chapter 4: API Object Methods

Parameter Description

entity The location object. For a list of supported properties, refer to Location on page
246.

Get Location By Code
Use this method to get the location object with the specified hierarchical location code.

Output / Response

Returns the entity that matches the specified hierarchical location code. If no entity is found, returns an
empty APIEntity. For a list of supported properties, refer to Location on page 246.

API Call:
APIEntity getLocationByCode(String code)

Parameter Description

code The hierarchical location code consists of a set of 1 to 3 alpha-numeric strings
separated by a space. The first two characters indicate a country, followed
by next three characters which indicate a city in UN/LOCODE. New custom
locations created under a UN/LOCODE city are appended to the end of the
hierarchy. For example, CA TOR OF1 indicates:

• CA—Canada
• TOR—Toronto
• OF1—Office 1

 Note: The code is case-sensitive. It must be all UPPER CASE letters.

The county code and child location code should be alphanumeric
strings.

Get All Used Locations
Use this method to get all location objects that are used to annotate other objects.

Output / Response

Returns an array of location APIEntity objects. For a list of supported properties, refer to Location on page
246.

API Call:
APIEntity[] getAllUsedLocations()

Database Management
BlueCat Address Manager comes with built-in PostgreSQL database to store data such as DHCP and DNS
objects, configuration information, notifications, server information, events, and alerts.

The Address Manager Database functions transparently to store the data. Because the database is built
inside Address Manager, you do not need to install or set up the database separately to get it functioning.
However, you need to configure administrative features such as database backup, replication, restoration,
or disaster recovery from the Address Manager Administration Console.

176 | Address Manager API Guide

 Address Manager Objects

Configure Replication
Enables database replication on a remote system in order to automate the setup of replication between two
or three Address Manager systems. This API method must be run against the Address Manager system
that will be primary.

Output / Response

None.

API Call:
void configureReplication(String standbyServer, boolean compressReplication, long
replicationQueueThreshold, long replicationBreakThreshold, String properties)

Parameter Description

standbyServer The IP address of the standby server.

 Note: The standby server must be accessible from the primary
server and must have database access from the primary server.
To enable database access, refer to the Configuring database
replication section in the Address Manager Administration Guide.

compressReplication The boolean value. Set to true to compress the database replication files.

 Note: Compressing database replication files is a resource-
intensive process that might affect system performance. Use
caution when performing this action.

replicationQueueThreshold A value to specify the threshold size of the replication directory in
megabytes (MB). The valid values are in the range of 16 to 99999999.

replicationBreakThreshold A value to specify the threshold size of the replication break in gigabytes
(GB). The valid values are in the range of 5 to 30. This value multiplied by
1024 must be greater than the value of replicationQueueThreshold.

properties A string containing the following property:

• secondStandbyServer—the IP address of the second standby
server. This is optional.

 Note: Any property string other than secondStandbyServer
option will be ignored.

Purge History
Run the purge function.

Output / Response

Returns 0 (zero) when the purge service has successfully completed.

The following codes will be returned if you specify the waitOption parameter to true. These returning codes
will be logged in the /var/log/jetty/server.log file:

• 33 – <untilWhenTimestamp> is either empty or does not contain a hyphen and no valid value found in
either of the two numeric alternatives.

• 35 – <untilWhenTimestamp> contains a hyphen but is not a valid timestamp.

The details of the output or the reason for failure will be logged in /tmp/purge_results.out.

Version 8.3.0 | 177

Chapter 4: API Object Methods

API Call:
int purgeHistoryNow(String untilWhenTimestamp, int numberOfDaysToKeep, int
numberOfMonthsToKeep, boolean waitOption)

 Note: This API method will examine each of the following three retention-period specifying
parameters in sequential order to decide which parameter value it will use to run the purge service.
The first valid parameter will be used:

1. untilWhenTimestamp
2. numberOfDaysToKeep
3. numberOfMonthsToKeep

Parameter Description

untilWhenTimestamp The string specifying the point in time after which history is to be preserved.
The valid timestamp pattern is YYYY-MM[-DD[HH:MM:SS[.mmm]]].
Set this parameter with an empty string ("") if you are using either
numbeOfDaysToKeep or numberOfMonthsToKeep. Using this parameter
will not archive any data.

numberOfDaysToKeep The number of days for which the data will be preserved in the database.
The valid value for this parameter is between 1 and 3650. Set this
parameter to -1 if you are using either untilWhenTimestamp or
numberOfMonthsToKeep. Using this parameter will archive all history that
will be purged and overwrite existing archive files in the /data/Archive
directory.

numberOfMonthsToKeep The number of months for which the data will be preserved in the database.
The valid value for this parameter is between 0 to infinite months. Set
this parameter to -1 if you are using either untilWhenTimestamp or
numberOfDaysToKeep. Using this parameter will not archive any data.

waitOption The Boolean value. If set to true, the purge will be performed and the
result will be returned when completed. The default value is false.

Devices
A device is an actual physical component, such as a router or printer or other equipment to which one or
more IP addresses are assigned.

Devices are organized by device types and device sub-types. A device type is a general category of
devices; a device sub-type is a more specific category of devices. For example, a general device type
might be Printers. More specific device sub-types might include Laser Printers, Plotters, and Imagesetters.

Add Device
Adds a device to a configuration.

Output / Response

Returns the object ID of the new device.

API Call:
long addDevice(long configurationId, String name, long deviceTypeId, long
deviceSubtypeId, String ip4Addresses, String ip6Addresses, String properties)

Parameter Description

configurationId The object ID of the configuration in which the device is to be located.

name The descriptive name of the device.

178 | Address Manager API Guide

 Address Manager Objects

Parameter Description

deviceTypeId The object ID of the device type with which the device is associated. The value
can be 0 if you do not wish to associate a device type to the device you are
adding.

deviceSubtypeId The object ID of the device sub-type with which the device is associated. The
value can be 0 if you do not wish to associate a device sub-type to the device
you are adding.

ip4Addresses One or more IPv4 addresses to which the device is assigned. Specify multiple
addresses in a comma-delimited list.

ip6Addresses One or more IPv6 addresses to which the device is assigned. Specify multiple
addresses in a comma-delimited list.

properties Adds object properties, including user-defined fields.

Add Device Type
Adds a device type to Address Manager. Use device types and device sub-types to categorize and
organize devices on the network.

Output / Response

Returns the object ID of the new device type

API Call:
long addDeviceType(String name, String properties)

Parameter Description

name The descriptive name for the device type.

properties Adds object properties, including user-defined fields.

Add Device Subtype
Adds a device sub-type to Address Manager. Use device types and device sub-types to categorize and
organize devices on the network.

Output / Response

Returns the object ID of the new device sub-type

API Call:
long addDeviceSubtype(long parentId, String name, String properties)

Parameter Description

parentId The object ID of the parent device type object.

name The descriptive name for the device sub-type.

properties Adds object properties, including user-defined fields.

MAC Pools
Media Access Control (MAC) pools are used to group MAC addresses for functionality such as Network
Access Control (NAC).

Version 8.3.0 | 179

Chapter 4: API Object Methods

Each MAC pool can be linked to multiple MAC addresses, and each MAC address can be linked to multiple
IP addresses of different networks. However, each MAC address can belong to only one MAC pool, and
each IP address can belong to only one MAC address. The MAC pools include one default global ‘Deny’
pool object that the user cannot delete. All pools created by the user can be deleted. A MAC pool contains
a name (required), and optional links to MAC addresses.

Get MAC Addresses in Pool
Returns a list of the MAC address objects within a specified MAC pool.

 Note: This method is deprecated. Using this method now returns an error message. Use the
getLinkedEntities() method instead. For more information, see Get Linked Entities on page
53.

Output / Response

Returns an array of MAC address objects.

API Call:
APIEntity[] getMACAddressesInPool(long macPoolId, int start, int count)

Parameter Description

macPoolId The object ID for the MAC pool.

start Indicates where in the list of children to start returning objects. The list begins at
an index of 0.

count This is the maximum number of child objects to return.

Add MAC Pool
Returns the object ID for the new MAC pool.

You can use the generic addEntity() method to add a MAC pool.

Output / Response

Returns the object ID for the new MAC pool.

API Call:
long addEntity(long parentID, APIEntity entity)

Parameter Description

parentId The object ID of the parent Configuration to which the MAC pool is added.

entity The MAC pool object with its name defined.

Update MAC Pool
A MAC pool’s name property can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

MAC Pool Generic Methods
MAC pools use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

180 | Address Manager API Guide

 Address Manager Objects

MAC Addresses
MAC address objects are used to reference the MAC addresses of endpoints.

Add MAC Address
Adds MAC addresses.

 Note: To assign a MAC address to the DENY MAC pool, use the denyMACAddress() method.
For more information, see Deny MAC Address on page 181.

Output / Response

Returns the object ID for the new MAC address.

API Call:
long addMACAddress(long configurationId, String macAddress, String properties)

Parameter Description

configurationId The object ID of the parent configuration in which the MAC address resides.

macAddress The MAC address in the format nnnnnnnnnnnn, nn-nn-nn-nn-nn-nn or
nn:nn:nn:nn:nn:nn, where nn is a hexadecimal value.

properties Adds object properties, including the name, MAC Pool ID (macPool), and user-
defined fields.

Associate MAC Address
Associates a MAC address with a MAC pool.

! Attention: To assign a MAC address to the DENY MAC pool, use the denyMACAddress()
method. For more information, see Deny MAC Address on page 181.

Output / Response

None.

API Call:
void associateMACAddressWithPool(long configurationId, String macAddress, long poolId)

Parameter Description

configurationId The object ID of the parent configuration in which the MAC address resides.

macAddress The MAC address in the format nnnnnnnnnnnn, nn-nn-nn-nn-nn-nn or
nn:nn:nn:nn:nn:nn, where nn is a hexadecimal value.

poolId The object ID of the MAC pool with which this MAC address is associated.

Deny MAC Address
Denies MAC addresses.

Output / Response

None.

API Call:
void denyMACAddress(long configurationId, String macAddress)

Version 8.3.0 | 181

Chapter 4: API Object Methods

Parameter Description

configurationId The object ID of the parent configuration in which the MAC address resides.

macAddress The MAC address in the format nnnnnnnnnnnn, nn-nn-nn-nn-nn-nn or
nn:nn:nn:nn:nn:nn, where nn is a hexadecimal value.

Is Address Allocated?
Queries a MAC address to determine if the address has been allocated to an IP address.

Output / Response

Returns a Boolean value indicating whether the address is allocated.

API Call:
boolean isAddressAllocated(long configurationId, String ipAddress, String macAddress)

Parameter Description

configurationId The object ID of the parent configuration in which the MAC address resides.

ipAddress The IPv4 DHCP allocated address to be checked against the MAC address.

macAddress The MAC address in the format nnnnnnnnnnnn, nn-nn-nn-nn-nn-nn or
nn:nn:nn:nn:nn:nn, where nn is a hexadecimal value.

Update MAC Address
A MAC address’s name and macPoolId properties can be updated using the generic update() method.

For more information, see Updating Objects on page 50.

MAC Address Generic Methods
MAC addresses use the generic get() and delete() methods for entities.

For more information, see Getting Objects on page 44 and Deleting Objects on page 52.

Workflow Change Requests
You can use change requests to manage the creation of network, resource records, zones, and IP address
assignments. Workflow permissions are assigned to users along with access rights.

Users with a default access right of Change, Add, or Full Access can be assigned one of these workflow
levels:

• None—the user is not affected by the change request process and can create networks, resource
records, zones, and IP address assignments. Users with the None level cannot access or work with
workflow change requests.

• Recommend—when the user creates, edits, or deletes a network, resource record, zone, or IP address
assignment, Address Manager creates a change request for the object. The change request must be
approved before the object is actually created, edited, or deleted. Users with the Recommend level can
review their change requests.

• Approve—the user can approve change requests made by other users. Users with the Approve level
can create, edit, or delete networks, resource records, zones, and IP address assignments.

For information about adding access rights and Workflow Levels, refer to Add Access Right on page 195.
Users who are assigned the workflow level of Recommend create a change request each time they add,
edit, or delete a network, resource record, zone, or IP address.

The following objects support workflow mode operations:

182 | Address Manager API Guide

 Migration

• Zone
• HostRecord
• AliasRecord (CName)
• MXRecord
• TXTRecord
• GenericRecord
• HINFORecord
• NAPTRRecord
• SRVRecord
• IP4Network
• IP4Address

The following API operations support workflow mode operations:

• Add (for all objects except IP4Address)
• Update
• Delete

Migration
You can use XML files to migrate data from other systems into Address Manager. For more information on
the migration document type definition (DTD) and performing migrations from the Address Manager web
interface, see Migration in the Address Manager Administration Guide and Address Manager online help.

The Address Manager API provides two methods for managing the migration service:

• migrateFile() migrates a specified XML file in to Address Manager.
• isMigrationRunning() indicates if migrations are queued or in progress.

Migrate a File
Migrates the specified XML file in to Address Manager. The file must be located in the /data/migration/
incoming directory on the Address Manager server. The file name must not include a path.

Output / Response

None.

API Call:
void migrateFile(String filename)

Parameter Description

filename The filename of the XML file in the data/migration/incoming directory. Do not
include a path in the filename.

Migration Status
Returns true or false to indicate if the migration service is running. Specify a filename to determine if the
specified file is migrating. Specify an empty string ("") to determine if any migration files are migrating or
queued for migration.

API Call:
boolean isMigrationRunning(String filename)

Version 8.3.0 | 183

Chapter 4: API Object Methods

Parameter Description

filename The filename of the XML file in the data/migration/incoming directory. Do not
include a path in the filename. This value can be empty.

Output / Response

Returns a Boolean value indicating if the specified file is currently migrating. When an empty string ("") is
specified for the filename, returns a true if there are any migration files queued for migration or currently
migrating.

Collecting Data
The Address Manager API provides three methods for gathering data from the Address Manager
database.

Start Probe
Starts collecting data from Address Manager’s database using pre-defined SQL queries.

Output / Response

None.

API Call:
void startProbe(String definedProbe, String properties)

Parameter Description

definedProbe Pre-defined SQL queries that will be triggered to collect data. The available
values are LEASE_COUNT_PER_DATE and NETWORK_BLOOM.

properties Reserved for future use.

Get Probe Status
Returns the status of the triggered data collection process.

Output / Response

This method will return a pre-defined value from 0 to 3, depending on the status of the data collection
process. For more information, refer to Probe Status Values on page 217.

API Call:
int getProbeStatus(String definedProbe)

Parameter Description

definedProbe Pre-defined SQL queries that have been triggered to collect data. The available
values are LEASE_COUNT_PER_DATE and NETWORK_BLOOM.

Get Probe Data
Returns the JSON response from the properties field of the APIData object.

Output / Response

Returns the JSON response from the properties field of the APIData object.

184 | Address Manager API Guide

 Collecting Data

API Call:
APIData getProbeData(String definedProbe, String properties)

Parameter Description

definedProbe Pre-defined SQL queries that will be triggered to collect data. The available
values are LEASE_COUNT_PER_DATE and NETWORK_BLOOM.

properties Reserved for future use.

Version 8.3.0 | 185

Chapter 5

API Constants

Topics:

• Access Right Values
• Additional IP Service Type
• Configuration Setting
• Deployment Services
• Deployment Status
• Device Properties
• DHCP Class Match Criteria
• DHCP Client Options
• DHCP6 Client Options
• DHCP Custom Option Types
• DHCP Deployment Role Types
• DHCP Service Options
• DHCPServiceOptionConstants
• DHCP6 Service Options
• DNS Deployment Role Type
• DNS Options
• DNS Option Values
• DNSSEC Key Format
• DNS Zones Deployment

Validation Check
• Entity Categories
• ENUM Services
• IP Assignment Action Values
• IP Discovery Type
• Object Properties
• Object Types
• Option Types
• PositionRangeBy
• Response Policy Type
• Response Policy Search

Scopes
• Reverse Zone Format Type
• Server Capability Profiles
• Service Types
• SNMP Version
• SNMP Security Levels
• SNMP Authentication Type
• SNMP Privacy Type
• Traversal Methodology
• User Access Type

The Address Manager API uses various constants in its methods. To
accommodate changes in values, these constants are wrapped in
various libraries (such as Java and Perl).

The proceeding tables describe the Library (type of constant),
Property Key which is the name of the property in the library, and
Property Value which is the value to be used for the actual API call.
When you are not using the provided wrappers for Java and Perl, you
should use the value in the Property Value field.

187

Chapter 5: API Constants

• User-defined Field Type
• User-defined Field Validator

Properties
• User History Privileges
• User Security Privileges
• User Type
• Vendor Profile Option Types
• Workflow Levels
• Defined Probe Values
• Probe Status Values

188 | Address Manager API Guide

 Access Right Values

Access Right Values
Constants used in Access Right API methods.

Property Key Property Value

HideAccess HIDE

ViewAccess VIEW

AddAccess ADD

ChangeAccess CHANGE

FullAccess FULL

Additional IP Service Type
Constants used in the Additional IP Service Type.

Property Key Property Value

SERVICE service

LOOPBACK loopback

Configuration Setting
Constants used in the Configuration Setting.

Property Key Property Value

OPTION_INHERITANCE OPTION_INHERITANCE

Deployment Services
Constants used in Deployment Services API methods.

Property Key Property Value

DNS DNS

DHCP DHCP

TFTP TFTP

DHCPv6 DHCPv6

Deployment Status
Constants used in the Deployment Status API method.

Property Key Property Value

EXECUTING -1

INITIALIZING 0

Version 8.3.0 | 189

Chapter 5: API Constants

Property Key Property Value

QUEUED 1

CANCELLED 2

FAILED 3

NOT_DEPLOYED 4

WARNING 5

INVALID 6

DONE 7

NO_RECENT_DEPLOYMENT 8

Device Properties
Constants used in the Device Properties.

Property Key Property Value

DEVICE_ROUTER ROUTER

DEVICE_SWITCH L2SWITCH

DEVICE_INTERFACE INTERFACE

DEVICE_VLAN VLAN

DEVICE_LOCATION location

DEVICE_IP ip

TOTAL_INTERFACES totalInterfaces

TOTAL_VLANS totalVlans

TOTAL_ARPS totalArps

TOTAL_MACS totalMacs

TOTAL_NETWORKS totalNetworks

TOTAL_IPS totalIps

INTERFACE_ALIAS alias

INTERFACE_DESC description

INTERFACE_INDEX ifIndex

INTERFACE_SPEED speed

INTERFACE_CONNECTOR connector

MAC_ADDRESS physicalAddress

VLAN_ID vlanId

PORT_MODE portMode

190 | Address Manager API Guide

 DHCP Class Match Criteria

DHCP Class Match Criteria
Constants used in the DHCP Class Match Criteria API method.

Property Key Property Value

DHCP_CLASS_HARDWARE MATCH_HARDWARE

DHCP_CLASS_CLIENT_ID MATCH_DHCP_CLIENT_ID

DHCP_CLASS_VENDOR_ID MATCH_DHCP_VENDOR_ID

DHCP_CLASS_AGENT_CIRCUIT_ID MATCH_AGENT_CIRCUIT_ID

DHCP_CLASS_AGENT_REMOTE_ID MATCH_AGENT_REMOTE_ID

DHCP_CLASS_CUSTOM_MATCH CUSTOM_MATCH

DHCP_CLASS_CUSTOM_MATCH_IF CUSTOM_MATCH_IF

DHCP Client Options
Constants used in the DHCP Client Options API method.

Property Key Property Value

TIME_OFFSET time-offset

ROUTER router

TIME_SERVER time-server

IEN_NAME_SERVER ien-name-server

DNS_SERVER dns-server

LOG_SERVER log-server

COOKIE_SERVER cookie-server

LPR_SERVER lpr-server

IMPRESS_SERVER impress-server

RESOURCE_LOCATION_SERVER resource-location-server

HOST_NAME host-name

BOOT_SIZE boot-size

MERIT_DUMP_FILE merit-dump-file

DOMAIN_NAME domain-name

SWAP_SERVER swap-server

ROOT_PATH root-path

EXTENSIONS_PATH extensions-path

IP_FORWARDING ip-forwarding

NON_LOCAL_SOURCE_ROUTING non-local-source-routing

POLICY_FILTER_MASKS policy-filter-masks

Version 8.3.0 | 191

Chapter 5: API Constants

Property Key Property Value

MAX_DATAGRAM_REASSEMBLU max-datagram-reassembly

DEFAULT_IP_TTL default-ip-ttl

PATH_MTU_AGING_TIMEOUT path-mtu-aging-timeout

PATH_MTU_PLATEAU_TABLE path-mtu-plateau-table

INTERFACE_MTU interface-mtu

ALL_SUBNETS_LOCAL all-subnets-local

BROADCAST_ADDRESS broadcast-address

PERFORM_MASK_DISCOVERY perform-mask-discovery

MASK_SUPPLIER mask-supplier

ROUTER_DISCOVERY router-discovery

ROUTER_SOLICITATION_ADDRESS router-solicitation-address

STATIC_ROUTES static-routes

TRAILER_ENCAPSULATION trailer-encapsulation

ARP_CACHE_TIMEOUT arp-cache-timeout

IEEE_802_3_ENCAPSULATION ieee-802-3-encapsulation

DEFAULT_TCP_TTL default-tcp-ttl

TCP_KEEP_ALIVE_INTERVAL tcp-keep-alive-interval

TCP_KEEP_ALIVE_GARBAGE tcp-keep-alive-garbage

NIS_DOMAIN nis-domain

NIS_SERVER nis-server

VENDOR_ENCAPSULATED_OPTIONS vendor-encapsulated-options

NTP_SERVER ntp-server

WINS_NBNS_SERVER wins-nbns-server

NETBIOS_OVER_TCP_IP_NBDD netbios-over-tcp-ip-nbdd

WINS_NBT_NODE_TYPE wins-nbt-node-type

NETBIOS_SCOPE_ID netbios-scope-id

X_WINDOW_FONT_MANAGER x-window-font-manager

X_WINDOW_DISPLAY_MANAGER x-window-display-manager

NETWARE_IP_DOMAIN nwip.domain

NETWARE_IP_NSQ_BROADCAST nwip.nsq-broadcast

NETWARE_IP_PREFERRED_DSS nwip.preferred-dss

NETWARE_IP_NEAREST_NWIP_SERVER nwip.nearest-nwip-server

NETWARE_IP_AUTO_RETRIES nwip.auto-retries

NETWARE_IP_AUTO_RETRY_DELAY nwip.auto-retry-delay

192 | Address Manager API Guide

 DHCP Client Options

Property Key Property Value

NETWARE_IP_1_1_COMPATIBILITY nwip.1-1-compatibility

NETWARE_IP_PRIMARY_DSS nwip.primary-dss

NIS_PLUS_DOMAIN_NAME nis-plus-domain-name

NIS_PLUS_SERVER nis-plus-server

TFTP_SERVER_NAME tftp-server-name

BOOT_FILE_NAME boot-file-name

MOBILE_IP_HOME_AGENT mobile-ip-home-agent

SMTP_SERVER smtp-server

POP3_SERVER pop3-server

NNTP_SERVER nntp-server

WWW_SERVER www-server

FINGER_SERVER finger-server

IRC_SERVER irc-server

STREET_TALK_SERVER street-talk-server

STREET_TALK_DIRECTORY_ASSISTANCE_
SERVER

street-talk-directory-assistance-server

SLP_DIRECTORY_AGENT slp-directory-agent

SLP_SERVICE_SCOPE slp-service-scope

NDS_SERVER nds-server

NDS_TREE_NAME nds-tree-name

NDS_CONTEXT nds-context

UAP_SERVER uap-server

NAME_SERVICE_SEARCH name-service-search

DOMAIN_SEARCH domain-search

SIP_SERVERS sip-server

CLASSLESS_STATIC_ROUTE_OPTION classless-static-route-option

CCC_PRIMARY_DHCP_SERVER_ADDRESS cablelabs.primary-dhcp-server

CCC_SECONDARY_DHCP_SERVER_ADDRESS cablelabs.secondary-dhcp-server

CCC_PROVISIONING_SERVER_ADDRESS cablelabs.provisioning-server

CCC_AS_BACKOFF_AND_RETRY cablelabs.as-backoff-retry

CCC_AP_BACKOFF_RETRY cablelabs.ap-backoff-retry

CCC_KERBEROS_REALM_NAME cablelabs.kerberos-realm-name

CCC_TICKET_GRANTING_SERVER_
UTILIZATION

cablelabs.ticket-granting-server-utilization

CCC_PROVISIONING_TIMER_VALUE cablelabs.provisioning-timer-value

Version 8.3.0 | 193

Chapter 5: API Constants

Property Key Property Value

TFTP_SERVER_ADDRESS tftp-server

IP_TELEPHONE ip-telephone

WPAD_URL wpad-url

DHCP6 Client Options
Constants used in the DHCP6 Client Options API method.

Property Key Property Value

UNICAST unicast

DNS_SERVERS dns-servers

DOMAIN_SEARCH_LIST domain-search-list

SNTP_SERVERS sntp-servers

INFORMATION_REFRESH_TIME information-refresh-time

wpad-url

DHCP Custom Option Types
Constants used in the DHCP Custom Option Types.

Property Key Property Value

IP4 IP4

TEXT TEXT

UNSIGNED_INT_8 UNSIGNED_INT_8

UNSIGNED_INT_16 UNSIGNED_INT_16

UNSIGNED_INT_32 UNSIGNED_INT_32

UNSIGNED_INT_64 UNSIGNED_INT_64

SIGNED_INT_8 SIGNED_INT_8

SIGNED_INT_16 SIGNED_INT_16

SIGNED_INT_32 SIGNED_INT_32

BOOLEAN BOOLEAN

IP4_MASK IP4_MASK

IP4_RANGE IP4_RANGE

IP4_BLOCK IP4_BLOCK

STRING STRING

BINARY BINARY

ENCAPSULATED ENCAPSULATED

194 | Address Manager API Guide

 DHCP Deployment Role Types

DHCP Deployment Role Types
Constants used in DHCP Deployment Role API methods.

Property Key Property Value

NONE NONE

MASTER MASTER

DHCP Service Options
Constants used in the Deployment Status API method.

Property Key Property Value

DEFAULT_LEASE_TIME default-lease-time

MAX_LEASE_TIME max-lease-time

MIN_LEASE_TIME min-lease-time

CLIENT_UPDATES client-updates

DDNS_DOMAINNAME ddns-domainname

DDNS_HOSTNAME ddns-hostname

DDNS_REV_DOMAINNAME ddns-rev-domainname

DDNS_TTL ddns-ttl

DDNS_UPDATES ddns-updates

PING_CHECK ping-check

ALWAYS_BROADCAST always-broadcast

ALWAYS_REPLY_RFC1048 always-reply-rfc1048

DYNAMIC_BOOTP_LEASE_LENGTH dynamic-bootp-lease-length

FILENAME filename

GET_LEASE_HOSTNAMES get-lease-hostnames

MIN_SECS min-secs

NEXT_SERVER next-server

SERVER_IDENTIFIER server-identifier

SITE_OPTION_SPACE site-option-space

STASH_AGENT_OPTIONS stash-agent-options

UPDATE_OPTIMIZATION update-optimization

UPDATE_STATIC_LEASES update-static-leases

USE_LEASE_ADDR_FOR_DEFAULT_ROUTE use-lease-addr-for-default-route

ONE_LEASE_PER_CLIENT one-lease-per-client

ALLOW_MAC_POOL allow-mac-pool

Version 8.3.0 | 195

Chapter 5: API Constants

Property Key Property Value

DENY_MAC_POOL deny-mac-pool

DENY_UNKNOWN_MAC_ADDRESSES deny-unknown-mac-addresses

LOAD_BALANCE_OVERRIDE load-balance-override

LOAD_BALANCE_SPLIT load-balance-split

MCLT mclt

MAX_RESPONSE_DELAY max-response-delay

MAX_UNACKED_UPDATES max-unacked-updates

DHCP_CLASS_LEASE_LIMIT dhcp-class-lease-limit

ALLOW_DHCP_CLASS_MEMBERS allow-dhcp-class-members

DENY_DHCP_CLASS_MEMBERS deny-dhcp-class-members

APPLY_MAC_AUTHENTICATION_POLICY apply-mac-authentication-policy

DENY_DHCP_CLIENTS deny-dhcp-clients

CONFLICT_DETECTION conflict-detection

UPDATE_CONFLICT_DETECTION update-conflict-detection

DO_REVERSE_UPDATES do-reverse-updates

DHCPServiceOptionConstants
Constants used in the DHCPServiceOption API method.

Property Key Property Value

DDNS_HOSTNAME_TYPE_IP ip

DDNS_HOSTNAME_TYPE_MAC mac

DDNS_HOSTNAME_TYPE_FIXED fixed

DDNS_HOSTNAME_TYPE_DUID duid

DDNS_HOSTNAME_POSITION_APPEND append

DDNS_HOSTNAME_POSITION_PREPEND prepend

DHCP6 Service Options
Constants used in the DHCP6 service options API method.

Property Key Property Value

DEFAULT_LEASE_TIME default-lease-time

CLIENT_UPDATES client-updates

DDNS_DOMAINNAME ddns-domainname

DDNS_HOSTNAME ddns-hostname

DDNS_TTL ddns-ttl

196 | Address Manager API Guide

 DNS Deployment Role Type

Property Key Property Value

DDNS_UPDATES ddns-updates

LIMIT_ADDRESSES_PER_IA limit-addresses-per-ia

DO_REVERSE_UPDATES do-reverse-updates

SERVER_PREFERENCE server-preference

PREFERRED_LIFETIME preferred-lifetime

RAPID_COMMIT rapid-commit

DNS Deployment Role Type
Constants used in the reverse zone format type.

Property Key Property Value

NONE NONE

MASTER MASTER

MASTER_HIDDEN MASTER_HIDDEN

SLAVE SLAVE

SLAVE_STEALTH SLAVE_STEALTH

FORWARDER FORWARDER

STUB STUB

RECURSION RECURSION

AD_MASTER AD_MASTER

DNS Options
Constants used in the DNS Options.

Property Key Property Value

ALLOW_XFER allow-xfer

ALSO_NOTIFY also-notify

ALLOW_DDNS allow-ddns

ALLOW_RECURSION allow-recursion

ALLOW_QUERY allow-query

FORWARDING_POLICY forwarding-policy

FORWARDING forwarding

NOTIFY notify

MAX_CACHE_TTL max-cache-ttl

MAX_NEG_CACHE_TTL max-neg-cache-ttl

TRANSFERS_IN transfers-in

Version 8.3.0 | 197

Chapter 5: API Constants

Property Key Property Value

TRANSFERS_OUT transfers-out

TCP_CLIENTS tcp-clients

MAX_TRANSFER_TIME_OUT max-transfer-time-out

MAX_TRANSFER_TIME_IN max-transfer-time-in

MAX_TRANSFER_IDLE_OUT max-transfer-idle-out

MAX_TRANSFER_IDLE_IN max-transfer-idle-in

TRANSFER_FORMAT transfer-format

MAX_CACHE_SIZE max-cache-size

RECURSIVE_CLIENTS recursive-clients

TRANSFERS_PER_NS transfers-per-ns

LAME_TTL lame-ttl

ALLOW_UPDATE_FORWARDING allow-update-forwarding

VERSION version

MATCH_CLIENTS match-clients

DENY_CLIENTS deny-clients

CACHE cache

ALLOW_NOTIFY allow-notify

ZONE_DEFAULT_TTL zone-default-ttl

DNSSEC_ENABLE dnssec-enable

DNSSEC_VALIDATION dnssec-validation

DNSSEC_KEY_DIRECTORY dnssec-key-directory

DNSSEC_TRUST_ANCHORS dnssec-trust-anchors

DNSSEC_MUST_BE_SECURE dnssec-must-be-secure

ALLOW_QUERY_CACHE allow-query-cache

DNSSEC_ACCEPT_EXPIRED dnssec-accept-expired

START_OF_AUTHORITY start-of-authority

CLASSLESS_REVERSE_ZONE_FORMAT classless-reverse-zone-format

TSIG_KEY_FOR_SERVER_PAIR tsig-key-for-server-pair

SLAVE_ZONE_NOTIFICATIONS slave-zone-notifications

DNS Option Values
Constants used in the DNS options values.

Property Key Property Value

SINGLE SINGLE

198 | Address Manager API Guide

 DNSSEC Key Format

Property Key Property Value

MANY_ANSWERS MANY_ANSWERS

FIRST FIRST

ONLY ONLY

DNSSEC Key Format
Constants used in the DNSSEC Key Format.

Property Key Property Value

TRUST_ANCHOR TRUST_ANCHOR

DNS_KEY DNS_KEY

DS_RECORD DS_RECORD

DNS Zones Deployment Validation Check
Constants used in the DNS Zones Deployment Validation Check.

Property Key Property Value

FAIL FAIL

WARN WARN

IGNORE IGNORE

NONE NONE

FULL FULL

FULL_SIBLING FULL_SIBLING

LOCAL LOCAL

LOCAL_SIBLING LOCAL_SIBLING

Entity Categories
Constants used in the Entity Categories.

Property Key Property Value

all ALL

admin ADMIN

Configuration CONFIGURATION

deploymentOptions DEPLOYMENT_OPTIONS

deploymentRoles DEPLOYMENT_ROLES

deploymentSchedulers DEPLOYMENT_SCHEDULER

dhcpClassObjects DHCPCLASSES_OBJECTS

Version 8.3.0 | 199

Chapter 5: API Constants

Property Key Property Value

dhcpNACPolicies DHCPNACPOLICY_OBJECTS

IP4Objects IP4_OBJECTS

IP6Objects IP6_OBJECTS

MACPoolObjects MACPOOL_OBJECTS

resourceRecords RESOURCE_RECORD

servers SERVERS

tags TAGS

tasks TASKS

TFTPObjects TFTP_OBJECTS

vendorProfiles VENDOR_PROFILES

viewZones VIEWS_ZONES

TSIGKeys TSIG_KEYS

GSS GSS

DHCPZones DHCP_ZONES

ServerGroup SERVERGROUP

ENUM Services
Constants used in the ENUM Services.

Property Key Property Value

H323 H323

SIP SIP

ifax_mailto ifax mailto

pres pres

web_http web http

web_https web https

ft_ftp ft ftp

email_mailto email mailto

fax_tel fax tel

sms_tel sms tel

sms_mailto sms mailto

ems_tel ems tel

ems_mailto ems mailto

mms_tel mms tel

mms_mailto mms mailto

200 | Address Manager API Guide

 IP Assignment Action Values

Property Key Property Value

VPIM_MAILTO VPIM MAILTO

VPIM_LDAP VPIM LDAP

voice_tel voice tel

pstn_tel pstn tel

pstn_sip pstn sip

xmpp xmpp

im im

IP Assignment Action Values
Constants used in the IP Assignment Action Values.

Property Key Property Value

MAKE_STATIC MAKE_STATIC

MAKE_RESERVED MAKE_RESERVED

MAKE_DHCP_RESERVED MAKE_DHCP_RESERVED

IP Discovery Type
Constants used in the IP address discovery type.

Property Key Property Value

SNMP SNMP

PINGSWEEP PINGSWEEP

SNMP_PINGSWEEP SNMP_PINGSWEEP

NO_DISCOVERY NO_DISCOVERY

Object Properties
Constants used in the Object Properties.

Property Key Property Value

name name

sharedNetwork sharedNetwork

CIDR CIDR

start start

end end

template template

deployable deployable

Version 8.3.0 | 201

Chapter 5: API Constants

Property Key Property Value

authenticator authenticator

securityPrivilege securityPrivilege

historyPrivilege historyPrivilege

email email

phoneNumber phoneNumber

users users

version version

description description

addresses addresses

address address

state state

server server

serverGroup serverGroup

serverInterface serverInterface

zoneTransServerInterface zoneTransServerInterface

macPool macPool

view view

refresh refresh

retry retry

expire expire

minimum minimum

absoluteName absoluteName

userAccessType userAccessType

allowDuplicateHost allowDuplicateHost

pingBeforeAssign pingBeforeAssign

defaultDomains defaultDomains

dnsRestrictions dnsRestrictions

defaultView defaultView

comments comments

ttl ttl

reverseRecord reverseRecord

txt txt

parentZoneName parentZoneName

linkedParentZoneName linkedParentZoneName

202 | Address Manager API Guide

 Object Properties

Property Key Property Value

linkedRecordName linkedRecordName

priority priority

port port

weight weight

order order

preference preference

service service

regexp regexp

replacement replacement

flags flags

os os

cpu cpu

type type

rdata rdata

prefix prefix

identifier identifier

parentId parentId

parentType parentType

addressIds addressIds

linkToExternalHost linkToExternalHost

defaultInterfaceAddress defaultInterfaceAddress

publishedInterfaceAddress publishedInterfaceAddress

publishedInterfaceIPv6Address publishedInterfaceIPv6Address

secondaryServerInterfaceId secondaryServerInterfaceId

fullHostName fullHostName

profile profile

connected connected

upgrade upgrade

readOnly readOnly

servicesIPv4Address servicesIPv4Address

servicesIPv4Netmask servicesIPv4Netmask

servicesIPv6Address servicesIPv6Address

servicesIPv6Subnet servicesIPv6Subnet

xhaIPv4Address xhaIPv4Address

Version 8.3.0 | 203

Chapter 5: API Constants

Property Key Property Value

xhaIPv4Netmask xhaIPv4Netmask

redundancyScenario redundancyScenario

xHAServerId xHAServerId

activeServerId activeServerId

passiveServerId passiveServerId

activeServerNewIPv4Address activeServerNewIPv4Address

activeServerPassword activeServerPassword

passiveServerPassword passiveServerPassword

pingAddress pingAddress

ip6Address ip6Address

newManagementAddress newManagementAddress

activeServerIPv4AddressForNAT activeServerIPv4AddressForNAT

passiveServerIPv4AddressForNAT passiveServerIPv4AddressForNAT

activeServerNewIPv4AddressForNAT activeServerNewIPv4AddressForNAT

backboneActiveServerIPv4Address backboneActiveServerIPv4Address

backboneActiveServerIPv4Netmask backboneActiveServerIPv4Netmask

backbonePassiveServerIPv4Address backbonePassiveServerIPv4Address

backbonePassiveServerIPv4Netmask backbonePassiveServerIPv4Netmask

nodeType nodeType

breakInProteusOnly breakInProteusOnly

overrideDHCPValidation overrideDHCPValidation

checkDHCPConfigurationDeployment checkDHCPConfigurationDeployment

overrideDNSValidation overrideDNSValidation

checkDNSConfigurationDeployment checkDNSConfigurationDeployment

checkDNSZonesDeployment checkDNSZonesDeployment

postLoadZoneIntegrityValidationDNSDeploy postLoadZoneIntegrityValidationDNSDeploy

checkNamesValidationModeDNSDeploy checkNamesValidationModeDNSDeploy

checkIfMXRecordsAreIPsDNSDeploy checkIfMXRecordsAreIPsDNSDeploy

checkIfMXRecordsPointToCNAMEsDNSDeploy checkIfMXRecordsPointToCNAMEsDNSDeploy

checkIfNSRecordsAreIPsDNSDeploy checkIfNSRecordsAreIPsDNSDeploy

checkIfSRVRecordsPointToCNAMEsDNSDeploy checkIfSRVRecordsPointToCNAMEsDNSDeploy

checkForNonTerminalWildcardsDNSDeploy checkForNonTerminalWildcardsDNSDeploy

ProteusDDW ProteusDDW

enableDHCP enableDHCP

204 | Address Manager API Guide

 Object Properties

Property Key Property Value

enableDNS enableDNS

services services

importViewName importViewName

authenticationCredentialDomain authenticationCredentialDomain

authenticationCredentialUsername authenticationCredentialUsername

authenticationCredentialPassword authenticationCredentialPassword

forceDNSFullDeployment forceDNSFullDeployment

gateway gateway

reservedAddresses reservedAddresses

reservedBlock RESERVED_BLOCK

reservedDHCPRange RESERVED_DHCP_RANGE

ipGroup IP_GROUP

templateType templateType

zoneTemplateType zonetemplate

IP4NetworkTemplateType ip4networktemplate

zoneTemplateReapplyMode zoneReapplyMode

templateReapplyModeIgnore IGNORE

templateReapplyModeUpdate UPDATE_IF_POSSIBLE

templateReapplyModeOverwrite OVERWRITE

gatewayReapplyMode gatewayReapplyMode

reservedAddressesReapplyMode reservedAddressesReapplyMode

dhcpRangesReapplyMode dhcpRangesReapplyMode

ipGroupsReapplyMode ipGroupsReapplyMode

optionsReapplyMode optionsReapplyMode

noGateway noGateway

seedRouterAddress seedRouterAddress

snmpVersion snmpVersion

snmpPortNumber snmpPortNumber

snmpCommunityString snmpCommunityString

securityLevel securityLevel

context context

authenticationType authenticationType

authPassphrase authPassphrase

privacyPassphrase privacyPassphrase

Version 8.3.0 | 205

Chapter 5: API Constants

Property Key Property Value

networkBoundaries networkBoundaries

schedule schedule

activeStatus activeStatus

enableLayer2Discovery enableLayer2Discovery

acceptanceCriteriaReclaim acceptanceCriteriaReclaim

acceptanceCriteriaUnknown acceptanceCriteriaUnknown

acceptanceCriteriaMismatch acceptanceCriteriaMismatch

overrideList overrideList

matchCriteria matchCriteria

matchOffset matchOffset

matchLength matchLength

customMatchRawString customMatchRawString

ignoreError ignoreError

matchValue matchValue

splitStaticAddresses splitStaticAddresses

noServerUpdate noServerUpdate

transientParent transientParent

optionId optionId

optionType optionType

optionAllowMultiple optionAllowMultiple

optionDescription optionDescription

deviceTypeId deviceTypeId

deviceSubtypeId deviceSubtypeId

ip4Addresses ip4Addresses

ip6Addresses ip6Addresses

overrideNamingPolicy overrideNamingPolicy

deleteKeys deleteKeys

excludeDHCPRange excludeDHCPRange

skip skip

offset offset

displayName displayName

hint hint

accessRight accessRight

overrideType overrideType

206 | Address Manager API Guide

 Object Properties

Property Key Property Value

retrieveFields retrieveFields

ignoreCase ignoreCase

size size

positionRangeBy positionRangeBy

positionValue positionValue

ipGroupBySize ipGroupBySize

configName configName

deviceName deviceName

ipAddressMode ipAddressMode

ipEntity ipEntity

viewName viewName

zoneName zoneName

recordName recordName

macAddressMode macAddressMode

macEntity macEntity

VCO_MODE_REQUEST_VALUE REQUEST_VALUE

VCO_MODE_REQUEST_STATIC REQUEST_STATIC

VCO_MODE_REQUEST_DHCP_RESERVED REQUEST_DHCP_RESERVED

VCO_MODE_PASS_VALUE PASS_VALUE

allowDuplicateHosts allowDuplicateHosts

netmask netmask

ip ip

inherited inherited

redirectTarget redirectTarget

responsePolicyType responsePolicyType

workflowLevel workflowLevel

deploymentAllowed deploymentAllowed

quickDeploymentAllowed quickDeploymentAllowed

TraversalMethodology.NO_TRAVERSAL NO_TRAVERSAL

TraversalMethodology.DEPTH_FIRST DEPTH_FIRST

TraversalMethodology.BREADTH_FIRST BREADTH_FIRST

reuseExisting reuseExisting

secondStandbyServer secondStandbyServer

nsRecordTTL nsRecordTTL

Version 8.3.0 | 207

Chapter 5: API Constants

Property Key Property Value

serviceType serviceType

routerPortInfo routerPortInfo

switchPortInfo switchPortInfo

vlanInfo vlanInfo

discoveryType discoveryType

pingSweepRange pingSweepRange

seedRouterAddress seedRouterAddress

snmpVersion snmpVersion

snmpPortNumber snmpPortNumber

snmpCommunityString snmpCommunityString

secutityLevel secutityLevel

context context

authenticationType authenticationType

authPassphrase authPassphrase

privacyPassphrase privacyPassphrase

privacyType privacyType

networkBoundaries networkBoundaries

blackHoleVlan blackHoleVlan

trunkDefaultVlan trunkDefaultVlan

skipFqdn skipFqdn

dnsServers dnsServers

schedule schedule

ipV4ReconciliationStatus ipV4ReconciliationStatus

acceptanceCriteriaReclaim acceptanceCriteriaReclaim

acceptanceCriteriaUnknown acceptanceCriteriaUnknown

acceptanceCriteriaMismatch acceptanceCriteriaMismatch

overriddenList overriddenList

convertOrphanedIPAddressesTo convertOrphanedIPAddressesTo

locationCode locationCode

locationInherited locationInherited

code code

country country

subdivision subdivision

localizedName localizedName

208 | Address Manager API Guide

 Object Types

Property Key Property Value

description description

latitude latitude

longitude longitude

reserved reserved

mname mname

serialNumberFormat serialNumberFormat

parameterRequestList parameterRequestList

vendorClassIdentifier vendorClassIdentifier

macVendor macVendor

disableDnsOptionInheritance disableDnsOptionInheritance

leaseTime leaseTime

expiryTime expiryTime

deleteOrphanedIPAddresses deleteOrphanedIPAddresses

ptrs ptrs

Object Types
Constants used in the Object Types.

Property Key Property Value

Entity Entity

Configuration Configuration

View View

Zone Zone

InternalRootZone InternalRootZone

ZoneTemplate ZoneTemplate

EnumZone EnumZone

EnumNumber EnumNumber

HostRecord HostRecord

AliasRecord AliasRecord

MXRecord MXRecord

TXTRecord TXTRecord

SRVRecord SRVRecord

GenericRecord GenericRecord

HINFORecord HINFORecord

NAPTRRecord NAPTRRecord

Version 8.3.0 | 209

Chapter 5: API Constants

Property Key Property Value

RecordWithLink RecordWithLink

ExternalHostRecord ExternalHostRecord

StartOfAuthority StartOfAuthority

IP4Block IP4Block

IP4Network IP4Network

IP6Block IP6Block

IP6Network IP6Network

IP6Address IP6Address

IP4NetworkTemplate IP4NetworkTemplate

DHCP4Range DHCP4Range

DHCP6Range DHCP6Range

IP4Address IP4Address

MACPool MACPool

DenyMACPool DenyMACPool

MACAddress MACAddress

TagGroup TagGroup

Tag Tag

User User

UserGroup UserGroup

Server Server

ServerGroup ServerGroup

NetworkServerInterface NetworkServerInterface

PublishedServerInterface PublishedServerInterface

NetworkInterface NetworkInterface

VirtualInterface VirtualInterface

LDAP LDAP

Kerberos Kerberos

KerberosRealm KerberosRealm

Radius Radius

TFTPGroup TFTPGroup

TFTPFolder TFTPFolder

TFTPFile TFTPFile

TFTPDeploymentRole TFTPDeploymentRole

DNSDeploymentRole DNSDeploymentRole

210 | Address Manager API Guide

 Option Types

Property Key Property Value

DHCPDeploymentRole DHCPDeploymentRole

DNSOption DNSOption

DHCPV4ClientOption DHCPV4ClientOption

DHCPServiceOption DHCPServiceOption

DHCPRawOption DHCPRawOption

DNSRawOption DNSRawOption

DHCPV6ClientOption DHCPV6ClientOption

DHCPV6ServiceOption DHCPV6ServiceOption

DHCPV6RawOption DHCPV6RawOption

VendorProfile VendorProfile

VendorOptionDef VendorOptionDef

VendorClientOption VendorClientOption

CustomOptionDef CustomOptionDef

DHCPMatchClass DHCPMatchClass

DHCPSubClass DHCPSubClass

Device Device

DeviceType DeviceType

DeviceSubtype DeviceSubtype

DeploymentScheduler DeploymentScheduler

IP4ReconciliationPolicy IP4ReconciliationPolicy

DNSSECSigningPolicy DNSSECSigningPolicy

IP4IPGroup IP4IPGroup

ResponsePolicy ResponsePolicy

TSIGKey TSIGKey

RPZone RPZone

Location Location

InterfaceID InterfaceID

Option Types
Constants used in the Option Types.

Property Key Property Value

DNS_RAW DNS_RAW

DHCP_RAW DHCP_RAW

DHCPV6_RAW DHCPV6_RAW

Version 8.3.0 | 211

Chapter 5: API Constants

Property Key Property Value

DNS DNS

DHCPClient DHCPClient

DHCPVendorClient DHCPVendorClient

DHCPService DHCPService

DHCP6Client DHCP6Client

DHCP6VendorClient DHCP6VendorClient

DHCP6Service DHCP6Service

START_OF_AUTHORITY START_OF_AUTHORITY

PositionRangeBy
Constants used in the PositionRangeBy API.

Property Key Property Value

START_OFFSET START_OFFSET

END_OFFSET END_OFFSET

START_ADDRESS START_ADDRESS

Response Policy Type
Constants used in the Response Policy Type.

Property Key Property Value

BLACKLIST BLACKLIST

BLACKHOLE BLACKHOLE

WHITELIST WHITELIST

REDIRECT REDIRECT

Response Policy Search Scopes
Constants used in the Response Policy Search.

Property Key Property Value

RPItemSearchScope.LOCAL Local

RPItemSearchScope.FEED Feed

RPItemSearchScope.ALL All

Reverse Zone Format Type
Constants used in the reverse zone format type.

212 | Address Manager API Guide

 Server Capability Profiles

Property Key Property Value

STARTIP_NETMASK_NET "[start-ip]-[net-mask].[net].in-addr.arpa"

STARTIP_ENDIP_NET "[start-ip]-[end-ip].[net].in-addr.arpa"

STARTIP_SLASH_NETMASK_NET "[start-ip]/[net-mask].[net].in-addr.arpa"

STARTIP_SLASH_ENDIP_NET "[start-ip]/[end-ip].[net].in-addr.arpa"

CUSTOM “custom”

Server Capability Profiles
Constants used in the Server Capability Profiles.

Property Key Property Value

ADONIS_800 ADONIS_800

ADONIS_1200 ADONIS_1200

ADONIS_1900 ADONIS_1900

ADONIS_1950 ADONIS_1950

ADONIS_XMB2 ADONIS_XMB2

ADONIS_XMB3 ADONIS_XMB3

DNS_DHCP_SERVER_20 DNS_DHCP_SERVER_20

DNS_DHCP_SERVER_45 DNS_DHCP_SERVER_45

DNS_DHCP_SERVER_60 DNS_DHCP_SERVER_60

DNS_DHCP_SERVER_100 DNS_DHCP_SERVER_100

DNS_DHCP_SERVER_100_D DNS_DHCP_SERVER_100_D

AFILIAS_DNS_SERVER AFILIAS_DNS_SERVER

OTHER_DNS_SERVER OTHER_DNS_SERVER

PROTEUS_DDW PROTEUS_DDW

WINDOWS_SERVER WINDOWS_SERVER

Service Types
Constants used in the Service Types.

Property Key Property Value

DNS DNS

DHCP DHCP

SNMP Version
Constants used in the SNMP Version.

Version 8.3.0 | 213

Chapter 5: API Constants

Property Key Property Value

V1 v1

V2C v2c

V3 v3

SNMP Security Levels
Constants used in the SNMP Security Levels.

Property Key Property Value

AUTH_PRIV AUTH_PRIV

AUTH_NOPRIV AUTH_NOPRIV

NOAUTH_NOPRIV NOAUTH_NOPRIV

SNMP Authentication Type
Constants used in the SNMP Authentication Type.

Property Key Property Value

MD5 MD5

SHA SHA

SNMP Privacy Type
Constants used in the SNMP Privacy Type.

Property Key Property Value

DES DES

AES128 AES128

AES192 AES192

AES256 AES256

Traversal Methodology
Constants used in the Traversal Methodology.

Property Key Property Value

TraversalMethodology.NO_TRAVERSAL NO_TRAVERSAL

TraversalMethodology.DEPTH_FIRST DEPTH_FIRST

TraversalMethodology.BREADTH_FIRST BREADTH_FIRST

214 | Address Manager API Guide

 User Access Type

User Access Type
Constants used in the User Access Type.

Property Key Property Value

GUI GUI

API API

GUI_AND_API GUI_AND_API

User-defined Field Type
Constants used in the User-defined Field Type.

Property Key Property Value

TEXT TEXT

DATE DATE

BOOLEAN BOOLEAN

INTEGER INTEGER

LONG LONG

EMAIL EMAIL

URL URL

User-defined Field Validator Properties
Constants used in the User-defined Field Validator Properties.

Property Key Property Value

MIN min

MAX max

MIN_LENGTH minLength

MAX_LENGTH maxLength

PATTERN pattern

User History Privileges
Constants used in the User History Privileges.

Property Key Property Value

HIDE HIDE

VIEW_HISTORY_LIST VIEW_HISTORY_LIST

Version 8.3.0 | 215

Chapter 5: API Constants

User Security Privileges
Constants used in the User Security Privileges.

Property Key Property Value

NO_ACCESS NO_ACCESS

VIEW_MY_ACCESS_RIGHTS VIEW_MY_ACCESS_RIGHTS

VIEW_OTHERS_ACCESS_RIGHTS VIEW_OTHERS_ACCESS_RIGHTS

CHANGE_ACCESS_RIGHTS CHANGE_ACCESS_RIGHTS

ADD_ACCESS_RIGHTS ADD_ACCESS_RIGHTS

DELETE_ACCESS_RIGHTS DELETE_ACCESS_RIGHTS

User Type
Constants used in the User Type.

Property Key Property Value

ADMIN ADMIN

REGULAR REGULAR

Vendor Profile Option Types
Constants used in the Vendor Profile Option Types.

Property Key Property Value

IP4 IP4

TEXT TEXT

UNSIGNED_INT_8 UNSIGNED_INT_8

UNSIGNED_INT_16 UNSIGNED_INT_16

UNSIGNED_INT_32 UNSIGNED_INT_32

UNSIGNED_INT_64 UNSIGNED_INT_64

SIGNED_INT_8 SIGNED_INT_8

SIGNED_INT_16 SIGNED_INT_16

SIGNED_INT_32 SIGNED_INT_32

BOOLEAN BOOLEAN

IP4_MASK IP4_MASK

STRING STRING

BINARY BINARY

ENCAPSULATED ENCAPSULATED

216 | Address Manager API Guide

 Workflow Levels

Workflow Levels
Constants used in the Workflow Levels.

Property Key Property Value

None NONE

Recommend RECOMMEND

Approve APPROVE

Defined Probe Values
Constants used in the Data collection process.

Property Key Property Value

LEASE_COUNT_PER_DATE LEASE_COUNT_PER_DATE

NETWORK_BLOOM NETWORK_BLOOM

Probe Status Values
Constants used to check the status of the Data collection process.

Property Key Property Value

INIT 0

INQUEUE 1

PROCESSING 2

COMPLETED 3

Version 8.3.0 | 217

Chapter 6

API Method Reference

Topics:

• API Sessions
• Generic Methods
• User-defined Fields
• IPAM
• DHCP
• DNS
• Deployment Options
• TFTP
• Servers and Deployment
• Crossover High Availability

(XHA)
• Address Manager Objects

This chapter provides the reference table for all methods available in
the Address Manager API.

219

Chapter 6: API Method Reference

API Sessions

Log in and Log out login (String name, String password), logout()

System Information String getSystemInfo()

Generic Methods

Updating Objects void update (APIEntity entity)

All extensions of this method in this table list only
mutable parameters.

Update with Options void updateWithOptions (APIEntity entity, String
options)

Deleting Objects void delete (long ObjectId)

Delete with Options void deleteWithOptions (long objectId, String
options)

Get Entity by Name APIEntity getEntityByName (long parentId, String
name, String type)

Get Entity by ID APIEntity getEntityById (long id)

Get Entities APIEntity[] getEntities (long parentId, String type,
int start, int count)

Get Parent APIEntity[] getParent(long entityId)

Get Entities by Name APIEntity[] getEntitiesByName (long parentId,
String name, String type, int start ,int count)

Get Entities by Name Using Options APIEntity[] getEntitiesByNameUsingOptions (long
parentId, String name, String type, int start ,int
count, String options)

Get MAC Address APIEntity[] getMACAddress (long configurationId,
String macAddress)

Get Linked Entities APPIEntity[] getLinkedEntities (long entityId, String
type, int start, int count)

Custom Search APIEntity[] customSearch (String[] filters, String
type, String[] options, Integer start, Integer count)

Search by Category APIEntity[] searchByCategory (String keyword,
String category, int start, int count)

Search by Object Types APIEntity[] searchByObjectTypes (String keyword,
String types, int start, int count)

Linked Entities

Link Entities void linkEntities (long entity1Id, long entity2Id,
String properties)

220 | Address Manager API Guide

 User-defined Fields

Unlink Entities void unlinkEntities (long entity1Id, long entity2Id,
String properties)

Changing Locale

Log in with Options void loginWithOptions(String userName, String
password, String options)

User-defined Fields

Get User-defined Field APIUserDefinedField[] getUserDefinedFields
(String type, boolean requiredFieldsOnly)

Update Bulk User-defined Field byte[] updateBulkUdf (byte[] data, String
properties)

IPAM

IPv4 Blocks

Add IPv4 Block by CIDR long addIP4BlockByCIDR (long parentId, String
CIDR, String properties)

Add IPv4 Block by Range long addIP4BlockByRange (long parentId, String
start, String end, String properties)

Add Parent Block void addParentBlock (long[] blockOrNetworkIDs)

Add Parent Block with Properties long addParentBlockWithProperties (long[]
blockOrNetworkIDs String properties)

Get IP Range by IP Address APIEntity getIPRangedByIP (long containerId,
String type, String address)

Get IPv4 Block by CIDR APIEntity getEntityByCIDR (long parentId, String
cidr, String type)

Get IPv4 Block by Range APIEntity getEntityByRange (long parentId, String
address1, String address2, String type)

Merge Blocks with Parent void mergeBlocksWithParent (long[] blockIDs)

Merge Selected Blocks or Networks void mergeSelectedBlocksOrNetworks (long[]
blockOrNetworkIds, long blockOrNetworkToKeep)

Move IPv4 Object void moveIP4Object (long objectId, String
address)

Move IP Object void moveIP4Object (long objectId, String
address, String options)

Resize Range void resizeRange (long objectId, String range,
String options)

Version 8.3.0 | 221

Chapter 6: API Method Reference

Update IPv4 Block void update (APIEntity entity)

For more information, see generic update()
method.

IPv4 Block Generic Methods void delete (long objectId)

IPv4 Networks

Add IPv4 Network long addIP4Network (long blockId, String CIDR,
String properties)

Get IPv4 Range by IP Address APIEntity getIPRangedByIP (long containerId,
String type, String address)

Get IPv4 Network by CIDR APIEntity getEntityByCIDR (long parentId, String
cidr, String type)

Get IPv4 Network by Hint APIEntity[] getIP4NetworksByHint (long
containerId, int start, int count, String options)

Get IPv4 Network by Range APIEntity getEntityByRange (long parentId, String
address1, String address2, String type)

Get Next Available Network long getNextAvailableIP4Network (long parentId,
long size, boolean isLargerAllowed, boolean
autoCreate)

Get Next Available IP Range APIEntity getNextAvailableIPRange (long
parentId, long size, String type, String properties)

Get Next Available IP Ranges APIEntity[] getNextAvailableIPRanges (long
parentId, long size, String type, int count, String
properties)

Split IPv4 Network APIEntity[] splitIP4Network (long networkId, int
numberOfParts, String options)

Merge Selected Blocks or Networks void mergeSelectedBlocksOrNetworks (long[]
blockOrNetworkIds, long blockOrNetworkToKeep)

Move IPv4 Object void moveIP4Object (long objectId, String
address)

Move IP Object void moveIP4Object (long objectId, String
address, String options)

Resize Range void resizeRange (long objectId, String range
String options)

Update IPv4 Network void update (APIEntity entity)

For more information, see generic update()
method.

IPv4 Network Generic Methods void delete (long objectId)

222 | Address Manager API Guide

 IPAM

IPv4 Network Templates

Update IPv4 Network Template Name void update (APIEntity entity)

For more information, see generic update()
method.

IPv4 Network Template Generic Methods get()

void delete(long objectId)

Add IPv4 Network Template long addIP4NetworkTemplate (long
configurationId, String name, String properties)

Assign or Update Template void assignOrUpdateTemplate (long entityId, long
templateId, String properties)

Re-apply Template void reapplyTemplate (long templateId, String
properties)

IPv4 Addresses

Assign IPv4 Address long assignIP4Address (long configurationId,
String ip4Address, String macAddress, String
hostInfo, String action, String properties)

Assign Next Available IPv4 Address APIEntity assignNextAvailableIP4Address (long
configurationId, long parentId, String macAddress,
String hostInfo, String action, String properties)

Get IPv4 Address APIEntity getIP4Address (long containerId, String
address)

Get Next IPv4 Address String getNextIP4Address (long parentId, String
properties)

Check Allocation for IPv4 Address boolean isAddressAllocated (long configurationId,
String ipAddress, String macAddress)

Get Next Available Address String getNextAvailableIP4Address (long
parentId)

Update IPv4 Address void update (APIEntity entity)

For more information, see generic update()
method.

IPv4 Address Generic Methods void delete (long objectId)

Change IPv4 Address State void changeStateIP4Address (long addressId,
String targetState, String macAddress)

IPv4 Objects

Move IPv4 Object void moveIP4Object(long objectId, String address)

Version 8.3.0 | 223

Chapter 6: API Method Reference

Move IP Object void moveIP4Object(long objectId, String address,
String options)

Resize Range void resizeRange(long objectId, String range,
String options)

IPv4 Group

Add IPv4 IP Group by Range long addIP4IPGroupByRange(long parentId,
String start, String end, String properties)

Add IPv4 IP Group by Size long addIP4IPGroupBySize(long parentId, String
name, int size, String positionRangeBy, String
positionValue, String properties)

IPv4 Discovery and Reconciliation

Add IPv4 Reconciliation Policy long addIP4ReconciliationPolicy (long parentId,
String name, String properties)

Get Discovered Devices APIEntity[] getDiscoveredDevices (long policyId)

Get Discovered Device APIEntity getDiscoveredDevice (long policyId, long
deviceId)

Get Discovered Device Interfaces APIEntity getDiscoveredDeviceInterfaces (long
policyId, long deviceId)

Get Discovered Device Networks APIEntity getDiscoveredDeviceNetworks (long
policyId, long deviceId)

Get Discovered Device Hosts APIEntity getDiscoveredDeviceHosts (long
policyId, long deviceId)

Get Discovered Device Vlans APIEntity getDiscoveredDeviceVlans (long
policyId, long deviceId)

Get Discovered Device ARP Entries APIEntity getDiscoveredDeviceArpEntries (long
policyId, long deviceId)

Get Discovered Device MAC Address Entries APIEntity getDiscoveredDeviceMacAddressEntries
(long policyId, long deviceId)

IPv6 Objects

Add IPv6 Address long addIP6Address(long containerId, String
address, String type, String name, String
properties)

Add IPv6 Block by MAC Address long addIP6BlockByMACAddress(long parentId,
String macAddress, String name, String properties)

Add IPv6 Block by Prefix long addIP6BlockByPrefix(long parentId, String
prefix, String name, String properties)

Add IPv6 Network by Prefix long addIP6NetworkByPrefix(long parentId, String
prefix, String name, String properties)

224 | Address Manager API Guide

 DHCP

Split IPv6 Block or Network APIEntity[] splitIP6Range (long rangeID, int
numberOfParts, String options)

Get IPv6 Range by IP Address APIEntity getIPRangedByIP(long containerId,
String type, String address)

Get IPv6 Network by Hint APIEntity getIP6ObjectsByHint (long containerId,
String objectType, int start, int count, String
options)

Assign IPv6 Address boolean assignIP6Address(long containerId, String
address, String action, String macAddress, String
hostInfo, String properties)

Clear IPv6 Address boolean clearIP6Address(long addressId)

Get Entity by Prefix APPIEntity getEntityByPrefix(long containerId,
String prefix, String type)

Get IPv6 Address APPIEntity getIP6Address(long containerId, String
address)

Reassign IPv6 Address long reassignIP6Address(long oldAddressId, String
destination, String properties)

Provision Devices

Add Device Instance String addDeviceInstance (String configName,
String deviceName, String ipAddressMode, String
ipEntity, String viewName, String zoneName,
String recordName, String macAddressMode,
String macEntity, String options)

Delete Device Instance void deleteDeviceInstance (String configName,
String identifier, String options)

DHCP

IPv4 DHCP Ranges

Add IPv4 DHCP Range long addDHCP4Range(long networkId, String start,
String end, String properties)

Add IPv4 DHCP Range By Size long addDHCP4RangeBySize(long networkId,
String offset, String size, String properties)

Get IPv4 Range by IP Address APIEntity getIPRangedByIP(long containerId,
String type, String address)

Get IPv4 DHCP Range APIEntity getEntityByRange(long parentId, String
address1, String address2, String type)

Get IPv4 DHCP Ranges APIEntity[] getEntities(long parentId, String type, int
start, int count)

Get Max Allowed Range String[] getMaxAllowedRange(long rangeId)

Version 8.3.0 | 225

Chapter 6: API Method Reference

Update IPv4 DHCP Range void update(APIEntity entity)For more information,
see generic update() method.

IPv4 DHCP Range Generic Methods void delete(long objectId)

IPv6 DHCP Ranges

Add IPv6 DHCP Range long addDHCP6Range(long networkId, String
start, String end, String properties)

Add IPv6 DHCP Range by Size long addDHCP6RangeBySize(long networkId,
String start, String size, String properties)

Get IPv6 Range by IP Address APIEntity getIPRangedByIP(long containerId,
String type, String address)

Get IPv6 DHCP Range APIEntity getEntityByRange(long parentId, String
address1, String address2, String type)

Get Multiple IPv6 DHCP Ranges APIEntity[] getEntities(long parentId, String type, int
start, int count)

Update IPv6 DHCP Range void update(APIEntity entity)For more information,
see generic update() method.

IPv6 DHCP Range Generic Methods void delete(long objectId)

DHCP Client Options

Add DHCP Client Option long addDHCPClientDeploymentOption(long
entityId, String name, String value, String
properties)

Get DHCP Client Option APIDeploymentOption
getDHCPClientDeploymentOption(long entityId,
String name, long serverId)

Update DHCP Client Option void updateDHCPClientDeploymentOption
(APIDeploymentOption option)

Delete DHCP Client Option void deleteDHCPClientDeploymentOption(long
entityId, String name, long serverId)

DHCP6 Client Options

Add DHCP6 Client Option long addDHCP6ClientDeploymentOption(long
entityId, String name, String value, String
properties)

Get DHCP6 Client Option APIDeploymentOption
getDHCP6ClientDeploymentOption(long entityId,
String name, long serverId)

Update DHCP6 Client Option void updateDHCP6ClientDeploymentOption
(APIDeploymentOption option)

226 | Address Manager API Guide

 DHCP

Delete DHCP6 Client Option void deleteDHCP6ClientDeploymentOption(long
entityId, String name, long serverId)

DHCP Custom Options

Add Custom Deployment Option long addCustomOptionDefinition(long
configurationId, String name, long optionId,
String optionType, boolean allowMultiple, String
properties)

DHCP Service Options

Add DHCP Service Option long addDHCPServiceDeploymentOption(long
entityId, String name, String value, String
properties)

Get DHCP Service Option APIDeploymentOption
getDHCPServiceDeploymentOption(long entityId,
String name, long serverId)

Update DHCP Service Option void updateDHCPServiceDeploymentOption
(APIDeploymentOption option)

Delete DHCP Service Option void deleteDHCPServiceDeploymentOption(long
entityId, String name, long serverId)

DHCP6 Service Options

Add DHCP6 Service Option long addDHCP6ServiceDeploymentOption(long
entityId, String name, String value, String
properties)

Get DHCP6 Service Option APIDeploymentOption
getDHCP6ServiceDeploymentOption(long entityId,
String name, long serverId)

Update DHCP6 Service Option void updateDHCP6ServiceDeploymentOption
(APIDeploymentOption option)

Delete DHCP6 Service Option void deleteDHCP6ServiceDeploymentOption(long
entityId, String name, long serverId)

DHCP Vendor Options

Add DHCP Vendor Deployment Option long addDHCPVendorDeploymentOption(long
parentId, long optionId, String value, String
properties)

Add Vendor Option Definition long addVendorOptionDefinition(long
vendorProfileId, long optionId, String name,
String optionType, String description, boolean
allowMultiple, String properties)

Version 8.3.0 | 227

Chapter 6: API Method Reference

Add Vendor Profile long addVendorProfile(String identifier, String
name, String description, String properties)

Delete DHCP Vendor Deployment Option void deleteDHCPVendorDeploymentOption(long
entityId, long optionId, long serverId)

Get DHCP Vendor Deployment Option APIDeploymentOption
getDHCPVendorDeploymentOption(long entityId,
long optionId, long serverId)

Update DHCP Vendor Deployment Option void updateDHCPVendorDeploymentOption
(APIDeploymentOption option)

DHCP Match Classes

Add DHCP Match Classes long addDHCPMatchClass (long configurationId,
String name, String matchCriteria, String
properties)

Update DHCP Match Classes void update (APIEntity entity)

For more information, see generic update()
method.

Delete DHCP Match Classes void delete (long objectId)

Add DHCP Sub Classes long addDHCPSubClass (long matchClassId,
String matchValue, String properties)

Update DHCP Sub Classes void update (APIEntity entity)

For more information, see generic update()
method.

Delete DHCP Sub Classes void delete (long objectId)

Shared Networks

Link a Shared Network Tag void shareNetwork (long networkId, long tagId)

Unlink a Shared Network Tag void unshareNetwork (long networkId)

Get Shared Networks APIEntity[] getSharedNetworks (long tagId)

DNS

DNS Views

Add DNS View long addView(long configurationId, String name,
String properties)

Update DNS View void update(APIEntity entity)For more information,
see generic update() method.

DNS View Generic Methods getEntity()void delete(long objectId)

228 | Address Manager API Guide

 DNS

Add Access Control List (ACL) long addACL(long configurationId, String name,
String properties)

Update Access Control List (ACL) void update(APIEntity entity)For more information,
see Updating Objects on page 52.

DNS Zones

Add Entity for DNS Zones long addEntity(long parentId, APIEntity entity)

Add Zone long addZone(long parentId, String absoluteName,
String properties)

Get Zones by Hint APIEntity[] getZonesByHint(long containerId, int
start, int count, String options)

Update Zone void update(APIEntity entity)For more information,
see generic update() method.

Zone Generic Methods getEntity()void delete(long objectId)

Get Key Signing Key String[] getKSK (long entityId, String format)

DNS Zone Templates

Add Zone Template long addZoneTemplate(long parentId, String name,
String properties)

Assign or Update Template void assignOrUpdateTemplate(long entityId, long
templatedId, String properties)

Update Zone Template void update(APIEntity entity) For more information,
see generic update() method.

Zone Template Generic Methods getEntity()void delete(long objectId)

Add Records to DNS Zone Template addEntity()

ENUM Zones

Add ENUM Zone long addEnumZone(long parentId, long prefix,
String properties)

Update ENUM Zone void update(APIEntity entity)For more information,
see generic update() method.

ENUM Zone Generic Methods getEntity()void delete(long objectId)

ENUM Numbers

Add ENUM Number long addEnumNumber(long parentId, int number,
String properties)

Update ENUM Number void update(APIEntity entity)For more information,
see generic update() method.

Version 8.3.0 | 229

Chapter 6: API Method Reference

ENUM Number Generic Methods getEntity()void delete(long objectId)

Generic Resource Records

Add Resource Record long addResourceRecord(long viewId, String
absoluteName, String type, String rdata, long ttl,
String properties)

Add Entity for Resource Records long addEntity(long parentId, APIEntity entity)

Move Resource Records void moveResourceRecord(long
resourceRecordId, String destinationZone)

NAPTR Records

Add NAPTR Record long addNAPTRRecord(long viewId, String
absoluteName, int order, int preference, String
service, String regexp, String replacement, String
flags, long ttl, String properties)

Update NAPTR Record update(int order, int preference, String service,
String regexp, String replacement, long ttl)For
more information, see generic update() method.

NAPTR Record Generic Methods getEntity()void delete(long objectId)

External Host Records

Add External Host Record long addExternalHostRecord(long viewId, String
name, String properties)

Update External Host Record void update(APIEntity entity)For more information,
see generic update() method.

External Host Record Generic Methods getEntity()void delete(long objectId)

Host Records

Add Host Record long addHostRecord(long viewId, String
absoluteName, String addresses, long ttl, String
properties)

Add Bulk Host Records APIEntity[] addBulkHostRecord (long viewId,
String absoluteName, long ttl, long networkId,
String startAddress, int numberOfAddresses, String
properties)

Get Host Record by Hint APIEntity[] getHostRecordsByHint (int start, int
count, String options)

Get IP Address with Host Records APIEntity[] getNetworkLinkedProperties(long
networkId)

230 | Address Manager API Guide

 DNS

Get Dependent Records APIEntity[] getDependentRecords(long entityId, int
start, int count)

Update Host Record void update(String addresses, long ttl, String
comment)For more information, see generic
update() method.

Host Record Generic Methods getEntity()void delete(long objectId)

Alias Records

Add Alias Record long addAliasRecord(long viewId, String
absoluteName, String linkedRecordName, long ttl,
String properties)

Get Aliases by Hint APIEntity[] getAliasesByHint (int start, int count,
String options)

Update Alias Record void update(String linkedRecordName, long ttl,
String comment)For more information, see generic
update() method.

Alias Record Generic Methods getEntity()void delete(long objectId)

Text Records

Add Text Record long addTXTRecord(long viewId, String
absoluteName, String txt, long ttl, String properties)

Update Text Record void update(long ttl, String comment String txt)For
more information, see generic update() method.

Text Record Generic Methods getEntity()void delete(long objectId)

HINFO Records

Add HINFO Record long addHINFORecord(long viewId, String
absoluteName, String cpu, String os, long ttl, String
properties)

Update HINFO Record void update(long ttl, String comment String cpu,
String os)For more information, see generic
update() method.

HINFO Record Generic Methods getEntity()void delete(long objectId)

MX Records

Add MX Record long addMXRecord(long viewId, String
absoluteName, int priority, String
linkedRecordName, long ttl, String properties)

Version 8.3.0 | 231

Chapter 6: API Method Reference

Update MX Record void update(String linkedRecordName, long ttl, int
priority, String comment)For more information, see
generic update() method.

MX Record Generic Methods getEntity()void delete(long objectId)

SRV Records

Add SRV Record long addSRVRecord(long viewId, String
absoluteName, int priority, int port, int weight,
String linkedRecordName, long ttl, String
properties)

Update SRV Record void update(String linkedRecordName, long ttl, int
priority, int port, int weight, String comment)For
more information, see generic update() method.

SRV Record Generic Methods getEntity()void delete(long objectId)

Start of Authority Records

Add Start of Authority Record long addStartOfAuthority(long parentId, String
email, long refresh, long retry, long expire, long
minimum, String properties)

Update Start of Authority Record void update(String email, long refresh, long retry,
long expire, long minimum)For more information,
see generic update() method.

Start of Authority Record Generic Methods getEntity()void delete(long objectId)

Generic Records

Add Generic Record long addGenericRecord(long viewId, String
absoluteName, String type, String rdata, long ttl,
String properties)

Update Generic Record void update(String type, String rdata, long ttl,
String comment)For more information, see generic
update() method.

Generic Record Generic Methods getEntity()void delete(long objectId)

DNS Options

Add DNS Option long addDNSDeploymentOption(long entityId,
String name, String value, String properties)

Get DNS Option APIDeploymentOption
getDNSDeploymentOption(long entityId, String
name, long serverId)

232 | Address Manager API Guide

 Deployment Options

Update DNS Option void
updateDNSDeploymentOption(APIDeploymentOption
option)

Delete DNS Option void deleteDNSDeploymentOption(long entityId,
String name, long serverId)

DNS Response Policies

Add Response Policy long addResponsePolicy(long configurationId,
String name, String responsePolicyType, long ttl,
String properties)

Upload Response Policy Item void uploadResponsePolicyItems(long parentId,
byte[] policyItemsData)

Search Response Policies ResponsePolicySearchResult[]
searchResponsePolicyItems(String keyword,
String scope, int start, int count, String properties)

Reverse Zone Name Format

Add Reverse Zone Name Format long addDNSDeploymentOption(long entityId,
String name, String value, String properties)

Deployment Options

Get Deployment Options APIDeploymentOption[]
getDeploymentOptions(long entityId, String
optionTypes, long serverId)

Add Raw Deployment Option long addRawDeploymentOption (long parentId,
String optionType, String rawData, String
properties)

Update Raw Deployment Option void updateRawDeploymentOption
(APIDeploymentOption option)

TFTP

TFTP Groups

Add TFTP Group long addTFTPGroup(long configurationId, String
name, String properties)

Update TFTP Group void update(APIEntity entity)For more information,
see generic update() method.

TFTP Group Generic Methods getEntity()void delete(long objectId)

Version 8.3.0 | 233

Chapter 6: API Method Reference

TFTP Folders

Add TFTP Folder long addTFTPFolder(long parentId, String name,
String properties)

Update TFTP Folder void update(APIEntity entity)For more information,
see generic update() method.

TFTP Folder Generic Methods getEntity()void delete(long objectId)

TFTP Files

Add TFTP File long addTFTPFile(long parentId, String name,
String version, byte[] data, String properties)

Update TFTP File void update(String name, String version, byte[]
data, String description)For more information, see
generic update() method.

TFTP File Generic Methods getEntity()void delete(long objectId)

Servers and Deployment

Servers

Add Server long addServer(long configurationId, string
name, string defaultInterfaceAddress, string
fullHostName, string profile, string properties)

Import Server void importServer(long serverId, boolean
importDns, boolean importDhcp, string properties)

Replace Server void replaceServer(long serverId, string name,
string defaultInterface, string hostName, string
password, boolean upgrade, string properties)

Deploy Server void deployServer(long serverId)

Deploy Server Configuration void deployServerConfig (long serverID, String
properties)

Deploy Server Services void deployServerServices(long serverId, String
services)

Quick Deployment void quickDeploy(long zoneId, String properties)

Deployment Status int getServerDeploymentStatus(long serverId,
String properties)

Server Generic Methods getEntity()void delete(long objectId)

234 | Address Manager API Guide

 Servers and Deployment

Server Group

Add Server Group long addEntity(long parentId, APIEntity entity)

Update Server Group void update (APIEntity entity)

For more information, refer to generic
update() method.

Server Group Generic Methods getEntity()

void delete(long objectId)

For more information, refer to Getting Objects
on page 44 and Deleting Objects on page 52.

Add Server to Server Group void linkEntities (long entity1Id, long entity2Id,
String properties)

For more information, refer to Link Entities on
page 53.

Remove Server from Server Group void unlinkEntities (long entity1Id, long
entity2Id, String properties)

For more information, refer to Unlink Entities
on page 54.

DNS and DHCP Deployment Roles

Get Servers Associated with a Deployment Role APIEntity getServerForRole (long roleId)

Get Server’s Associated Deployment Roles APIDeploymentRole[] getServerDeploymentRoles
(long serverId)

Get Deployment Roles for DNS and IP Address
Space Objects

APIDeploymentRole[] getDeploymentRoles (long
entityId)

Move Deployment Roles moveDeploymentRoles (long sourceServerId, long
targetServerInterfaceId, boolean moveDnsRoles,
boolean moveDhcpRoles, String options)

DHCP Deployment Roles

Add DHCP Deployment Role long addDHCPDeploymentRole(long entityId, long
serverInterfaceId, String type, String properties)

Get DHCP Deployment Role APIDeploymentRole
getDHCPDeploymentRole(long entityId, long
serverInterfaceId)

Update DHCP Deployment Role void
updateDHCPDeploymentRole(APIDeploymentRole
role)

Delete DHCP Deployment Role void deleteDHCPDeploymentRole(long entityId,
long serverInterfaceId)

Version 8.3.0 | 235

Chapter 6: API Method Reference

DNS Deployment Roles

Add DNS Deployment Role long addDNSDeploymentRole(long entityId, long
serverInterfaceId, String type, String properties)

Get DNS Deployment Role APIDeploymentRole getDNSDeploymentRole(long
entityId, long serverInterfaceId)

Get DNS Deployment Role for View APIDeploymentRole
getDNSDeploymentRoleForView(long entityId, long
serverInterfaceId, long viewId)

Update DNS Deployment Role void
updateDNSDeploymentRole(APIDeploymentRole
role)

Delete DNS Deployment Role void deleteDNSDeploymentRole(long entityId, long
serverInterfaceId)

Delete DNS Deployment Role for View void deleteDNSDeploymentRoleForView(long
entityId, long serverInterfaceId, long viewId)

TFTP Deployment Roles

Add TFTP Deployment Role long addTFTPDeploymentRole(long entityId, long
serverId, String properties)

Update TFTP Deployment Role Not supported

TFTP Deployment Role Generic Methods getEntity()void delete(long objectId)

Crossover High Availability (XHA)

Create XHA long createXHAPair(long configurationId, long
activeServerId, long passiveServerId, String
activeServerNewIPv4Address, String properties)

Edit XHA void editXHAPair(long xHAServerId, String name,
String properties)

Failover XHA void failoverXHA(long xHAServerId)

Break XHA void breakXHAPair(long xHAServerId, boolean
breakInProteusOnly)

Address Manager Objects

Configurations

Add Configuration long addEntity(long parentId, APIEntity entity)

Update Configuration void update(String name, String properties)

236 | Address Manager API Guide

 Address Manager Objects

For more information, see generic update()
method.

Configuration Generic Methods getEntity()void delete(long objectId)

Get Configuration Setting String getConfigurationSetting(long
configurationId, String settingName)

Update Configuration Setting void updateConfigurationSetting(long
configurationId, String settingName, String
properties)

Groups and Users

Add Group long addUserGroup(String name, String properties)

Update Group void update(APIEntity entity)For more information,
see generic update() method.

Group Generic Methods getEntity()void delete(long objectId)

Add User long addUser(String username, String password,
String properties)

Update User void update(properties =
"securityPrivilege=<value>|
historyPrivilege=<value>")For more information,
see generic update() method.

Update User Password void updateUserPassword(long userId, String
newPassword, String[] options)

User Generic Methods getEntity()void delete(long objectId)

Authenticators

Update Authenticator void update(APIEntity entity)For more information,
see generic update() method.

Authenticator Generic Methods getEntity()void delete(long objectId)

Access Rights

Add Access Right long addAccessRight(long entityId, long userId,
String value, String overrides)

Get Access Right APIAccessRight getAccessRight(long entityId, long
userId)

Get Access Rights for Entity APIAccessRight[] getAccessRightsForEntity(long
entityId, int start, int count)

Get Access Rights for User APIAccessRight[] getAccessRightsForUser(long
userId, int start, int count)

Update Access Rights void updateAccessRight(long entityId, long userId,
String value String overrides)

Version 8.3.0 | 237

Chapter 6: API Method Reference

Delete Access Rights void deleteAccessRight(long entityId, long userId)

Devices

Add Device long addDevice(long configurationId, String
name, long deviceTypeId, long deviceSubtypeId,
String ip4Addresses, String ip6Addresses, String
properties)

Add Device Subtype long addDeviceSubtype(long parentId, String
name, String properties)

Add Device Type long addDeviceType(String name, String
properties)

Object Tag Groups

Add Object Tag Group long addTagGroup(String name, String properties)

Update Object Tag Group void update(APIEntity entity)For more information,
see generic update() method.

Object Tag Group Generic Methods getEntity()void delete(long objectId)

Object Tags

Add Object Tag long addTag (long parentid, String name, String
properties)

Assign Object Tag This method is deprecated. Using this method now
returns an error message. Use the linkEntities()
method instead. For more information, see Link
Entities on page 50.

Remove Object Tag This method is deprecated. Using this method now
returns an error message. Use the unlinkEntities()
method instead. For more information, see Unlink
Entities on page 51.

Update Object Tag void update (APIEntity entity)

For more information, see generic update()
method.

Object Tag Generic Methods getEntity()

void delete (long objectId)

Locations

Add a Location long addLocation (String name, long parentId,
String properties)

Get Location By Code APIEntity[] getLocations (long parentId)

238 | Address Manager API Guide

 Address Manager Objects

Get All Used Locations APIEntity getLocationByCode (String code)

Database Management

Configure Replication void configureReplication (String
standbyServer, boolean compressReplication,
long replicationQueueThreshold, long
replicationBreakThreshold, String properties)

Purge History int purgeHistoryNow(String untilWhenTimestamp,
int numberOfDaysToKeep, int
numberOfMonthsToKeep, boolean waitOption)

MAC Pools

Get MAC Addresses in Pool This method is deprecated. Using this method
now returns an error message. Use the
getLinkedEntities() method instead. For more
information, see Get Linked Entities on page 49.

Add MAC Pool long addEntity(long parentID, APIEntity entity)

Update MAC Pool void update(APIEntity entity)For more information,
see generic update() method.

MAC Pool Generic Methods getEntity()void delete(long objectId)

MAC Addresses

Add MAC Address long addMACAddress(long configurationId, String
macAddress, String properties)

Associate MAC Address void associateMACAddressWithPool(long
configurationId, String macAddress, long poolId)

Deny MAC Address void denyMACAddress(long configurationId, String
macAddress)

Is Address Allocated? boolean isAddressAllocated(long configurationId,
String ipAddress, String macAddress)

Update MAC Address void update(String name, String macpoolId)For
more information, see generic update() method.

MAC Address Generic Methods getEntity()void delete(long objectId)

Get MAC Address APIEntity getMACAddress(long configurationId,
String macAddress)

Workflow Change Requests

Workflow Change Requests For more information, see Access Rights on page
195.

Version 8.3.0 | 239

Chapter 6: API Method Reference

Migration

Migrate a File void migrateFile(String filename)

Migration Status boolean isMigrationRunning(String filename)

Collecting Data

Start Probe void startProbe (String definedProbe, String
properties)

Get Probe Status int getProbeStatus (String definedProbe)

Get Probe Data APIData getProbeData (String definedProbe,
String properties)

240 | Address Manager API Guide

Chapter 7

Property Options Reference

Topics:

• Property Options
• IP Address States

This chapter provides the lists of available properties and IP address
states.

241

Chapter 7: Property Options Reference

Property Options
This chapter provides the reference table for the available properties that can be updatable or read-only
when using the get, add or update API methods. The properties marked with read-only cannot be updated
when committing add or update methods. Refer to these tables to find what value of properties will be
returned and what values can be updated.

Configuration

Object Type Properties Read-only/Updatable

Configuration None None

Views and Zones

Object Type Properties Read-only/Updatable

View None None

Zone deployable Both

Zone Template None None

EnumZone deployable Both

Response Policy None None

name BothEnumNumber

data Both

Resource Records

Object Type Properties Read-only/
Updatable

ttl=time-to-live value Both

absolutName=the FQDN for the host record Read-only

addresses=a list of comma-separated IP addresses (For example:
10.0.0.5,130.4.5.2)

Both

Host Record

reverseRecord Both

ttl=time-to-live value Both

absolutName=the FQDN for the host record Read-only

Alias Record

linkedRecordName=the name of the record to which this alias will link. Both

External Host addresses=a list of comma-separated IP addresses.

 Note: The External Host Record API entity returns the
addresses property only when it is linked with an IP address. If
there is no linked IP address, it will return null.

Read-only

242 | Address Manager API Guide

 Property Options

Object Type Properties Read-only/
Updatable

ttl = time-to-live value Both

absolutName = the FQDN for the host record Read-only

type = Resource record type (For example: A/AAAA/PTR/SRV/MX) Read-only

Generic Record

rdata = Resource record data (comma-separated values as per the
record type)

Both

ttl = time-to-live value Both

absolutName = the FQDN for the host record Read-only

os = a string providing operation system information Both

Host Info Record

cpu = a string providing central processing unit information Both

ttl = time-to-live value Both

absolutName = the FQDN for the host record Read-only

linkedRecordName = the FQDN of the host record to which this MX
record is linked

Both

Mail Exchanger
Record

priority = specifies which mail server to send clients to first when
multiple matching MX records are present. Multiple MX records with
equal priority values are referred to in a round-robin fashion.

Both

ttl = time-to-live value Both

absolutName = the FQDN for the host record Read-only

order = specifies the order in which NAPTR records are read, if
several records are present and are possible matches. The lower
order value takes precedence.

Both

preference = specifies the order in which NAPTR records are read
if the order values are the same in multiple records. The lower
preference value takes precedence.

Both

service = specifies the service used for the NAPTR record Both

regexp = a regular expression, enclosed in double quotation marks,
used to transform the client data. If a regular expression is not
specified, a domain name must be specified in the replacement
parameter.

Both

replacement = specifies a domain name as an alternative to the
regexp. This parameter replaces client data with a domain name

Both

Naming Authority
Pointer

flags = an optional parameter used to set flag values for the record. Both

ttl = time-to-live value Both

absolutName = the FQDN for the host record Read-only

linkedRecordName = the FQDN of the host record to which this
service record is linked.

Both

Service Record

port = the TCP/UDP port on which the service is available. Both

Version 8.3.0 | 243

Chapter 7: Property Options Reference

Object Type Properties Read-only/
Updatable

priority = specifies which SRV record to use when multiple matching
SRV records are present. The record with the lowest value takes
precedence

Both

weight = if two matching SRV records within a zone have equal
priority, the weight value is checked. If the weight value for one object
is higher than the other, the record with the highest weight has its
resource records returned first.

Both

ttl = time-to-live value Both

absolutName = the FQDN for the host record Read-only

Text Record

txt Both

Start of Authority
Records

ttl = time-to-live value Both

Admin

Object Type Properties Read-only/
Updatable

userType Read-only

securityPrivilege Both

historyPrivilege Both

email Both

phoneNumber Both

authenticator Both

User

userAccessType Both

UserGroup None None

Authenticator None None

Tags

Object Type Properties Read-only/
Updatable

Tag None None

TagGroup None None

Vendor Profiles

Object Type Properties Read-only/
Updatable

VendorProfile identifier = the Vendor Class Identifier Both

244 | Address Manager API Guide

 Property Options

Object Type Properties Read-only/
Updatable

optonId = DNS Vendor Option ID Read-only

optionType = a data type for the option Read-only

optionDescription = a description of the information passed by the
option

Both

displayName = display name or screen name for the option. Both

VendorProfileOption

optionAllowMultiple = allow the option to accept multiple values. Read-only

DNSSEC

Object Type Properties Read-only/
Updatable

DNSSEC Signing
Policies

None None

TFTP Objects

Object Type Properties Read-only/
Updatable

TFTPGroup None None

TFTPFolder None None

MAC Pool Objects

Object Type Properties Read-only/
Updatable

address = String representing the mac address Both

macPool = Associated mac pool’s name Both

MACAddress

macVendor = the IEEE MAC vendor of the MAC address. If not
specified or found, Not Found is displayed.

Read-only

MACPool None None

Device

Object Type Properties Read-only/
Updatable

DeviceType None None

DeviceSubtype None None

Device deviceTypeId = Id of associated DeviceType. If Device is associated
with DeviceSubType, it will list the ID of the device type of the
associated DevicesSubType.

Both

Version 8.3.0 | 245

Chapter 7: Property Options Reference

Object Type Properties Read-only/
Updatable

deviceSubtypeId = Id of associated DeviceSubType (This property is
available only if Device is associated with DeviceSubType.)

Both

ip4Addresses = Comma delimited list of associated IP4Addresses. Both

ip6Addresses = Comma delimited list of associated IP6Addresses. Both

TSIGKey None None

Location

Object Type Properties Read-only/
Updatable

code = The hierarchical location code consists of a set of 1 to 3
alpha-numeric strings separated by a space. The first two characters
indicate a country, followed by next three characters which indicate
a city in UN/LOCODE. New custom locations created under a UN/
LOCODE city are appended to the end of the hierarchy. For example,
CA TOR OF1 indicates:

• CA—Canada
• TOR—Toronto
• OF1—Office 1

 Note: The code is case-sensitive. It must be all UPPER
CASE letters.

The county code and child location code should be
alphanumeric strings.

Both

country = The 2-digit country code. This property is only supported for
get location methods.

Both

description = The description of the location. Both

localizedname = The name of the location in your local language. For
example, for Tokyo Office 1 in Japan, you can enter 東京オフィス1
in Japanese. If your location name contains diacritic marks, you can
enter the name with diacritic marks in this field as well. For example,
Montréal.

Both

subDivision = The ISO 1-3 character alphabetic and/or numeric code
for the administrative division of the country.

Both

latitude = The geographical coordinate showing the north-south
position of the location.

Both

Location

longitude = The geographical coordinate showing the east-west
position of the location.

Both

246 | Address Manager API Guide

 Property Options

Kerberos Realms

Object Type Properties Read-only/
Updatable

KerberosRealm None None

KDC None None

ServicePrincipal None None

Server

Object Type Properties Read-only/
Updatable

defaultInterfaceAddress = IP address of Server Both

fullHostName = Host name of Server Both

profile - Profile of server. Possible values are ADONIS_XMB2,
ADONIS_XMB3, ADONIS_1950, ADONIS_1900,
ADONIS_1200, ADONIS_800, DNS_DHCP_SERVER_20,
DNS_DHCP_SERVER_45, DNS_DHCP_SERVER_60,
DNS_DHCP_SERVER_100, DNS_DHCP_SERVER_100_D,
WINDOWS_SERVER, OTHER_DNS_SERVER,
PROTEUS_DDW, AFILIAS_DNS_SERVER.

Both

activeNodeId = active server object IDpassiveNodeId = passive
server object IDactiveNodePhysicalAddress = active server
IP addresspassiveNodePhysicalAddress = passive server IP
addressNote: For xHA Server type only. If the server is not in
xHA, this property is not available.

Read-only

importViewName = name of the Windows view. Applicable only
for Windows servers.

Both

enableDNS = True if DNS is enabled, else false. This property will
be present only if Server is a Windows server.

Both

enableDHCP = True if DHCP is enabled, else false. This property
will be present only if Server is windows server.

Both

readOnly = True if Windows is added in read-only mode, else
false. This property will be present only if Server is a Windows
server.

Both

authenticationCredentialUsername = Username for server. This
property will be present only if Server is Windows and pmm
server.

Both

authenticationCredentialPassword - User password for server.
This property will be updated only for Window server and PMM
server.

Write-only

SingleServer

authenticationCredentialDomain = Domain for server. This
property will be present only if Server is Windows and pmm
server.

Both

ScheduledDeployment None None

Version 8.3.0 | 247

Chapter 7: Property Options Reference

IPv4Objects

Object Type Properties Read-only/
Updatable

CIDR = CIDR value of the block. (if it forms a valid CIDR.) Read-only

name = name of the block Both

defaultDomains = Comma separated IDs of the default domains. Both

start = Start of the block. (if it does not form a valid CIDR) Read-only

end = End of the block. (if it does not form a valid CIDR) Read-only

defaultView = ID of the default View for the block. Both

dnsRestrictions = Comma separated IDs of the DNS zones or
Views to restrict the IPv4 blocks to be used in.

Both

allowDuplicateHost = Duplicate host names check option property.
The possible values are Enable or Disable.

Both

pingBeforeAssign = Ping check option property. The possible
values are Enable or Disable.

Both

inheritAllowDuplicateHost = Duplicate host names inheritance
check option property. The possible values are True or False.
If True, the AllowDuplicateHost option set at the parent object
level will be used. If False, the allowDuplicateHost option must be
specified and the value specified will be used.

Both

inheritPingBeforeAssign = PingBeforeAssign option inheritance
check option property. The possible values are True or False. If
True, the PingBeforeAssign option set at the parent object level will
be used. If False, the PingBeforeAssign option must be specified
and the value specified will be used.

Both

inheritDNSRestrictions = The possible values are True or False. If
True, the IDs of the DNS zone or View to restrict the IPv4 blocks
to be used in will be inherited from the parent object. If False, the
DNSRestrictions option must be specified and the value specified
will be used.

Both

inheritDefaultDomains = The possible values are True or False. If
True, the IDs of the default domain will be inherited from the parent
object. If False, the DefaultDomains option must be specified and
the value specified will be used.

Both

inheritDefaultView = The possible values are True or False. If True,
the ID of the default View for the block will be inherited from the
parent object. If False, the DefaultView option must be specified
and the value specified will be used.

Both

IP4Block

locationCode = The hierarchical location code consists of a set of
1 to 3 alpha-numeric strings separated by a space. The first two
characters indicate a country, followed by next three characters
which indicate a city in UN/LOCODE. New custom locations
created under a UN/LOCODE city are appended to the end of the
hierarchy. For example, CA TOR OF1 indicates: CA= Canada
TOR=Toronto OF1=Office 1.

Both

248 | Address Manager API Guide

 Property Options

Object Type Properties Read-only/
Updatable

 Note: The code is case-sensitive. It must be all UPPER
CASE letters. The country code and child location code
should be alphanumeric strings.

locationInherited = This defines if the location property was defined
directly on the object level or was inherited from the parent object.

Read-only

CIDR = CIDR value of the block. (if it forms a valid CIDR.) Read-only

template = ID of the linked template. Read-only

gateway = Gateway of the network. Both

defaultDomains = Comma separated IDs of the default domains. Both

defaultView = ID of the default view for the block. Both

dnsRestrictions = Comma separated IDs of the DNS zones or
views to restrict the IPv4 networks to be used in.

Both

allowDuplicateHost = Duplicate host names check option property.
The possible values are Enable or Disable.

Both

pingBeforeAssign = Ping check option property. The possible
values are Enable or Disable.

Both

inheritAllowDuplicateHost = Duplicate host names inheritance
check option property. The possible values are True or False.
If True, the AllowDuplicateHost option set at the parent object
level will be used. If False, the allowDuplicateHost option must be
specified and the value specified will be used.

Both

inheritPingBeforeAssign = PingBeforeAssign option inheritance
check option property. The possible values are True or False. If
True, the PingBeforeAssign option set at the parent object level will
be used. If False, the PingBeforeAssign option must be specified
and the value specified will be used.

Both

inheritDNSRestrictions = The possible values are True or False. If
True, the IDs of the DNS zone or View to restrict the IPv4 blocks
to be used in will be inherited from the parent object. If False, the
DNSRestrictions option must be specified and the value specified
will be used.

Both

inheritDefaultDomains = The possible values are True or False. If
True, the IDs of the default domain will be inherited from the parent
object. If False, the DefaultDomains option must be specified and
the value specified will be used.

Both

inheritDefaultView = The possible values are True or False. If True,
the ID of the default View for the block will be inherited from the
parent object. If False, the DefaultView option must be specified
and the value specified will be used.

Both

IP4Network

locationCode = The hierarchical location code consists of a set of
1 to 3 alpha-numeric strings separated by a space. The first two
characters indicate a country, followed by next three characters
which indicate a city in UN/LOCODE. New custom locations
created under a UN/LOCODE city are appended to the end of the

Both

Version 8.3.0 | 249

Chapter 7: Property Options Reference

Object Type Properties Read-only/
Updatable

hierarchy. For example, CA TOR OF1 indicates: CA= Canada
TOR=Toronto OF1=Office 1.

 Note: The code is case-sensitive. It must be all UPPER
CASE letters. The country code and child location code
should be alphanumeric strings.

locationInherited = This defines if the location property was defined
directly on the object level or was inherited from the parent object.

Read-only

address = Address string. Read-only

state = state of the address. For possible values, refer to IP
Address States on page 252.

Read-only

macAddress = MAC address of the IP4Address. Both

routerPortInfo = Connected router port information of the
IPv4Address.

Read-only

switchPortInfo = Connected switch port information of the
IPvAddress.

Read-only

vlanInfo = VLAN information of the IPv4Address. Read-only

ptrs = a string providing unmanaged external host records with
which the IPv4 address will be associated in the format:

viewId,exHostFQDN[, viedId,exHostFQDN,...]

Write-only

leaseTime = the time when the IP address was leased. Read-only

expiryTime = the date and time that the DHCP lease expires. This
is only for the DHCP Allocated IP address type.

Read-only

parameterRequestList = the list of parameters the device
requested from the DHCP server.

Read-only

vendorClassIdentifier = an identifier sent by the DHCP client
software running on a device.

Read-only

locationCode = The hierarchical location code consists of a set of
1 to 3 alpha-numeric strings separated by a space. The first two
characters indicate a country, followed by next three characters
which indicate a city in UN/LOCODE. New custom locations
created under a UN/LOCODE city are appended to the end of the
hierarchy. For example, CA TOR OF1 indicates: CA= Canada
TOR=Toronto OF1=Office 1.

 Note: The code is case-sensitive. It must be all UPPER
CASE letters. The country code and child location code
should be alphanumeric strings.

Both

IP4Address

locationInherited = This defines if the location property was defined
directly on the object level or was inherited from the parent object.

Read-only

start = Start of the range. BothIP4DHCPRange

end = End of the range. Both

250 | Address Manager API Guide

 Property Options

Object Type Properties Read-only/
Updatable

offset = IPv4 address from which the range should begin. Both

size = the size of the range to be created. Both

defineRangeBy = the possible values are OFFSET_AND_SIZE and
OFFSET_AND_PERCENTAGE.

Both

gateway = gateway of the network. BothIP4NetworkTemplate

reservedAddress = the list of reserved addresses being set on the
network template.

Both

IPv6Objects

Object Type Properties Read-only/
Updatable

prefix = Prefix of the Network Read-only

locationCode = The hierarchical location code consists of a set of
1 to 3 alpha-numeric strings separated by a space. The first two
characters indicate a country, followed by next three characters
which indicate a city in UN/LOCODE. New custom locations created
under a UN/LOCODE city are appended to the end of the hierarchy.
For example, CA TOR OF1 indicates: CA= Canada TOR=Toronto
OF1=Office 1.

 Note: The code is case-sensitive. It must be all UPPER
CASE letters. The country code and child location code
should be alphanumeric strings.

Both

IP6Network

locationInherited = This defines if the location property was defined
directly on the object level or was inherited from the parent object.

Read-only

address = Address string Read-only

macAddress = MAC address of the IP6Address Read-only

state = State of the address. For possible values, refer to IP Address
States on page 252.

Read-only

ptrs = a string providing unmanaged external host records with which
the IPv6 address will be associated in the format:

viewId,exHostFQDN[, viedId,exHostFQDN,...]

Write-only

IP6Address

locationCode = The hierarchical location code consists of a set of
1 to 3 alpha-numeric strings separated by a space. The first two
characters indicate a country, followed by next three characters
which indicate a city in UN/LOCODE. New custom locations created
under a UN/LOCODE city are appended to the end of the hierarchy.
For example, CA TOR OF1 indicates: CA= Canada TOR=Toronto
OF1=Office 1.

 Note: The code is case-sensitive. It must be all UPPER
CASE letters. The country code and child location code
should be alphanumeric strings.

Both

Version 8.3.0 | 251

Chapter 7: Property Options Reference

Object Type Properties Read-only/
Updatable

locationInherited = This defines if the location property was defined
directly on the object level or was inherited from the parent object.

Read-only

start = Start of the range Read-only

end = End of the range Read-only

size = the size of the range to be created. Read-only

IP6DHCPRange

defineRangeBy = the possible values are AUTOCREATE_BY_SIZE,
OFFSET_AND_SIZE, and START_ADDRESS_AND_SIZE

Read-only

DeploymentRoles

Object Type Properties Read-only/
Updatable

view Both

zoneTransServerInterface Both

DNSDeploymentRole

inherited Read-only

inherited Read-onlyDHCPDeploymentRole

secondaryServerInterfaceId Both

Access right

Object Type Properties Read-only/
Updatable

workflowLevel = valid values are None, Recommend, and Approve. Both

deploymentAllowed = true to perform a full deployment of data to a
managed server, else false.

Both

Access right

quickDeploymentAllowed = ture to instantly deploy changed DNS
resource records, else false.

Both

IP Address States
The following tables list the available values of the state parameter of the IP address.

IPv4

State Description

UNALLOCATED Available and unassigned IP address for DNS or DHCP.

STATIC Statically assigned hosts and only used for DNS purposes.

DHCP_ALLOCATED Dynamically assigned through DHCP to the given MAC address.

DHCP_FREE Dynamically assigned through DHCP but are now in a free or unallocated state.

252 | Address Manager API Guide

 IP Address States

State Description

DHCP_RESERVED Represent DHCP reservations, and may yet be assigned to a host. These
addresses can be inside or outside of a DHCP range.

DHCP_LEASED Used in a DHCP lease.

RESERVED Reserved for future use. While reserved, the address cannot be assigned a
DNS hot name and cannot be deployed to DHCP.

GATEWAY Network gateway (router) addresses.

IPv6

State Description

UNALLOCATED Available and unassigned IP address for DNS or DHCP.

STATIC Statically assigned hosts and only used for DNS purposes.

DHCP_ALLOCATED Dynamically assigned through DHCP to the given MAC address.

DHCP_FREE Dynamically assigned through DHCP but are now in a free or unallocated state.

DHCP_RESERVED Represent DHCP reservations, and may yet be assigned to a host. These
addresses can be inside or outside of a DHCP range.

DHCP_LEASED Used in a DHCP lease.

RESERVED Reserved for future use. While reserved, the address cannot be assigned a
DNS hot name and cannot be deployed to DHCP.

GATEWAY Network gateway (router) addresses.

Version 8.3.0 | 253

Index

Index

A

Address Manager API
API Objects

APIEntity Class 25
Java API Examples

Available Java Classes 33
Connecting 28
Logging in 29

Perl API Examples
Adding 35
Connecting 34
Deleting 35
Getting 35
Logging in 34
Updating 35

REST API 35
SOAP ports 24
Web Services API

SOAP Binding Address 24
API Constants

Access Right Values 189
Additional IP Service Type 189
Configuration Setting 189
Defined probe values 217
Deployment Services 189
Deployment Status 189
Device Properties 190
DHCP6 Client Options 194
DHCP6 Service Options 196
DHCP Class Match Criteria 191
DHCP Client Options 191
DHCP Custom Option Types 194
DHCP Deployment Role Types 195
DHCPServiceOptionConstants 196
DHCP Service Options 195
DNS Deployment Role Type 197
DNS Options 197, 198
DNSSEC Key Format 199
DNS Zones Deployment Validation Check 199
Entity Categories 199
ENUM Services 200
IP Assignment Action Values 201
IP discovery type 201
Object Properties 201
Object Types 209
Option Types 211
PositionRangeBy 212
Probe status values 217
Response Policy Search 212
Response Policy Type 212
Reverse Zone Format Type 212
Server Capability Profiles 213
Service Types 213
SNMP authentication type 214
SNMP Privacy type 214
SNMPSecurityLevels 214
SNMP Version 213

Traversal Methodology 214
User Access Type 215
User-defined Field Type 215
User-defined Field Validator Properties 215
User History Privileges 215
User Security Privileges 216
User Type 216
Vendor Profile Option Types 216
Workflow Levels 217

API Method Reference
Address Manager Objects

Access Rights 237
Authenticators 237
Collecting Data 240
Configurations 236
Database Management 239
Devices 238
Groups and Users 237
Location 238
MAC Addresses 239
MAC Pools 239
Migration 240
Object Tag Groups 238
Object Tags 238
Workflow Change Requests 239

API Sessions 220
Crossover High Availability (XHA) 236
Deployment Options 233
DHCP

DHCP6 Client Options 226
DHCP6 Service Options 227
DHCP Client Options 226
DHCP Custom Options 227
DHCP Match Classes 228
DHCP Service Options 227
DHCP Vendor Options 227
IPv4 DHCP Ranges 225
IPv6 DHCP Ranges 226
Shared Networks 228

DNS
Alias Records 231
DNS Options 232
DNS Response Policies 233
DNS Views 228
DNS Zones 229
DNS Zone Templates 229
ENUM Numbers 229
ENUM Zones 229
External Host Records 230
Generic Records 232
Generic Resource Records 230
HINFO Records 231
Host Records 230
MX Records 231
NAPTR Records 230
Reverse zone name format 233
SRV Records 232
Start of Authority Records 232

Version 8.3.0 | 255

Index

Text Records 231
Generic Methods

Changing Locale 221
Liked Entities 220

IPAM
IP Discovery and Reconciliation 224
IPv4 Addresses 223
IPv4 Blocks 221
IPv4 Group 224
IPv4 Networks 222
IPv4 Network Templates 223
IPv4 Objects 223
IPv6 Objects 224
Provision Devices 225

Servers and Deployment
DHCP Deployment Roles 235
DNS and DHCP Deployment Roles 235
DNS Deployment Roles 236
Server Group 235
Servers 234
TFTP Deployment Roles 236

TFTP
TFTP Files 234
TFTP Folders 234
TFTP Groups 233

User-defined Fields 221
API Object Methods

Address Manager Objects
Access Rights

Add Access Right 170
Delete Access Rights 173
Get Access Right 171
Get Access Rights for Entity 171
Get Access Rights for User 172
Update Access Rights 172

Authenticators
Authenticator Generic Methods 170
Update Authenticator 170

Configurations
Add Configuration 165
Configuration Generic Methods 166
Get Configuration Setting 166
Update Configuration 166
Update Configuration Setting 166

Database Management
Configure Replication 177
Purge history 177

Devices
Add Device 178
Add Device Subtype 179
Add Device Type 179

Groups and Users
Add Group 167
Add User 167
Group Generic Methods 167
Update Group 167
update password 169
Update User 169
User Generic Methods 169

Location Groups 175
Locations

Add Location 175

Get Location By Code 176
Get Locations 176

MAC Addresses
Add MAC Address 181
Associate MAC Address 181
Deny MAC Address 181
Is Address Allocated? 182
MAC Address Generic Methods 182
Update MAC Address 182

MAC Pools
Add MAC Pool 180
Get MAC Addresses in Pool 180
MAC Pool Generic Methods 180
Update MAC Pool 180

Object Tag Groups
Add Object Tag Group 173
Object Tag Group Generic Methods 174
Update Object Tag Group 174

Object Tags
Add Object Tag 174
Assign Object Tag 174
Object Tag Generic Methods 175
Remove Object Tag 175
Update Object Tag 175

Workflow Change Requests 182
Changing Locale

Log in with Options 55
Crossover High Availability (xHA)

Breaking an xHA
Break xHA 164

Creating an xHA
Create xHA 161
Edit xHA 162

Requirements for creating an xHA pair 161
xHA Failover

Failover xHA 165
Data collection

Get probe data 184
Get probe status 184
Start probe 184

Deployment options
Add Raw Deployment Option 144
Get Deployment Options 143
Getting deployment options 143
Raw deployment options 144
Update Raw Deployment Option 145

DHCP
DHCP6 Client Options 100
DHCP6 Service Options 105
DHCP Client Options 99
DHCP Custom Options 102
DHCP Match Classes

Add DHCP Match Classes 110
Add DHCP Sub Classes 111
Delete DHCP Match Classes 111
Delete DHCP Sub Classes 112
Update DHCP Match Classes 111
Update DHCP Sub Classes 111

DHCP Raw Options 112
DHCP Service Options 103
DHCP Vendor Profiles and Options 106
IPv4 DHCP Ranges 93

256 | Address Manager API Guide

Index

IPv6 DHCP Ranges 96
Shared Networks

Get Shared Networks 113
Link a Shared Network Tag 113
Unlink a Shared Network Tag 113

DNS
DNS Options

Add DNS Option 137
Delete DNS Option 138
DNS Option value formats 138
Get DNS Option 137
Update DNS Option 138

DNS Raw Option 139
DNS Resource Records

Alias Records
Add Alias Record 130
Alias Record Generic Methods 131
Get Aliases by Hint 130
Update Alias Record 131

Dotted resource records 122
External Host Records

Add External Host Record 125
External Host Record Generic Methods
126
Get IP address with External Host records
126
Update External Host Record 126

Generic Records
Add Generic Record 136
Generic Record Generic Methods 136
Update Generic Record 136

Generic Resource Records
Add Entity for Resource Records 124
Add Resource Records 123
Move Resource Records 124

HINFO Records
Add HINFO Record 132
HINFO Record Generic Methods 132
Update HINFO Record 132
Update MX Record 133

Host Records
Add Bulk Host Records 127
Add Host Record 127
Get Dependent Records 129
Get Host Record by Hint 128
Get IP Address with Host Records 129
Host Record Generic Methods 129
Update Host Record 129

MX Records
Add MX Record 133
MX Record Generic Methods 133

NAPTR Records
Add NAPTR Record 124
NAPTR Record Generic Methods 125
Update NAPTR Record 125

SRV Records
Add SRV Record 134
SRV Record Generic Methods 134
Update SRV Record 134

Start of Authority Records
Add Start of Authority Records 134

Start of Authority Record Generic
Methods 135
Update Start of Authority Record 135

Text Records
Add Text Record 131
Text Record Generic Methods 132
Update Text Record 132

DNS Response Policies
Add Response Policy 140
Response Policy Generic Methods 141
Search Response Policy 141
Update Response Policy 140
Upload Response Policy Item 141

ENUM Numbers
Add ENUM Number 121
ENUM Number Generic Methods 121
Update ENUM Number 121

ENUM Zones
Add ENUM Zone 120
ENUM Zone Generic Methods 121
Update ENUM Zone 121

Reverse zone name format
Add Reverse Zone Name Format 142

Zones
Add Entity for DNS Zones 115
Add Zone 116
Get Key Signing Key 117
Get Zones by Hint 116
Update Zone 117
Zone Generic Methods 82, 117

Zone templates
Add Records to DNS Zone Template 120
Add Zone Template 118
Assign or Update Template 118
Update Zone Template 120
Zone Template Generic Methods 120

DNS Views
Add Access Control List (ACL) 115
Add DNS View 114
DNS View Generic Methods 115
Update Access Control List (ACL) 115
Update DNS View 114

Generic Methods
Deleting Objects

Delete 52
Delete with Options 52

getting objects
Get Entities 44
Get Entity by ID 44
Get Entity by Name 44
Get Parent 45

Linked Entities
Get Linked Entities 53
Link Entities 53
Unlink Entities 54

search and retrieve entities
Custom search 46
Get Entities by Name 49
Get Entities by Name Using Options 49
Get MAC Address 50
Search by Category 48
Search by Object Types 48

Version 8.3.0 | 257

Index

update objects
examples 51
Update 50, 51
Update with Options 51

IPAM
Additional IP Addresses 76
IP Discovery and Reconciliation

Add IPv4 Reconciliation Policy 80
Get Discovered Device 83
Get Discovered Device ARP Entries 84
Get Discovered Device Hosts 84
Get Discovered Device Interfaces 83
Get Discovered Device MAC Address Entries
85
Get Discovered Device Networks 83
Get Discovered Devices 83
Get Discovered Device Vlans 84

IPv4 addresses 71
IPv4 Blocks

Add IPv4 Block by CIDR 58
Add IPv4 Block by Range 58
Add Parent Block 59

IPv4 Discovery and Reconciliation 80
IPv4 Group 77
IPv4 networks

Add IPv4 Network 62
IPv4 network templates 67
IPv4 objects 78
IPv6 objects 85
Provision devices 91

Migration
Migrate a File 183
Migration Status 183

Servers and Deployment
DNS and DHCP Deployment Roles

DHCP Deployment Roles
Add DHCP Deployment Role 156
Delete DHCP Deployment Role 157
Get DHCP Deployment Role 156
Update DHCP Deployment Role 157

DNS Deployment Roles
Add DNS Deployment Role 158
Delete DNS Deployment Role 159
Delete DNS Deployment Role for View
159
Get DNS Deployment Role 158
Get DNS Deployment Role for View 159
Update DNS Deployment Role 159

Get Deployment Roles for DNS and IP
Address Space Objects 155
Get Servers Associated with a Deployment
Role 154
Get Server’s Associated Deployment Roles
155
Move Deployment Roles 155
TFTP Deployment Roles

Add TFTP Deployment Role 160
TFTP Deployment Role Generic Methods
160
Update TFTP Deployment Role 160

Server Group
Add Server Group 154

Generic methods 154
Link server to server group 154
Unlink server from server group 154
update 154

Servers
Add Server 148
Deployment Status 153
Deploy Server 151
Deploy Server Configuration 151
Deploy Server Services 152
Get Published Interface 153
Import Server 149
Quick Deployment 152
Replace Server 150
Server Generic Methods 153

TFTP
TFTP Files

Add TFTP File 146
TFTP File Generic Methods 147
Update TFTP File 147

TFTP Folders
Add TFTP Folder 146
TFTP Folder Generic Methods 146
Update TFTP Folder 146

TFTP Groups
Add TFTP Group 145
TFTP Group Generic Methods 145
Update TFTP Group 145

User-defined Fields
Getting User-defined fields

Get User-defined Field 57
Update Bulk User-defined Field 57

Java API Examples 56
Perl API Examples 56

API Objects
APIAccessRight Class 25
APIDeploymentOption Class 26
APIDeploymentRole Class 25
APIUserDefinedField Class 26
ResponsePolicySearchResult Class 27

API Sessions
connect to Address Manager 27

D

delete objects 31
DHCP

DHCP6 Client Options
Add DHCP6 Client Option 100
Delete DHCP6 Client Option 101
Get DHCP6 Client Option 101
Update DHCP6 Client Option 101

DHCP6 Service Options
Add DHCP6 Service Option 105
Delete DHCP6 Service Option 106
Get DHCP6 Service Option 105
Update DHCP6 Service Option 106

DHCP Client Options
Add DHCP Client Option 99
Delete DHCP Client Option 100
Get DHCP Client Option 99
Update DHCP Client Option 100

258 | Address Manager API Guide

Index

DHCP Custom Options
Add Custom Deployment Option 102

DHCP Service Options
Add DHCP Service Option 103
Delete DHCP Service Option 104
Get DHCP Service Option 104
Update DHCP Service Option 104

DHCP Vendor Profiles and Options
Add DHCP Vendor Deployment Option 107
Add Vendor Option Definition 107
Add Vendor Profile 108
Delete DHCP Vendor Deployment Option 108
Get DHCP Vendor Deployment Option 109
Update DHCP Vendor Deployment Option 109

Get IPv4 DHCP Ranges 95
Get Max Allowed Range 96
IPv4 DHCP Range Generic Methods 96
IPv6 DHCP Ranges

Add IPv6 DHCP Range 96
Get IPv6 DHCP Range 98
Get IPv6 Range by IP Address 97
Get Multiple IPv6 DHCP Ranges 98
IPv6 DHCP Range Generic Methods 99
Update IPv6 DHCP Range 99

Update IPv4 DHCP Range 96

I

IPAM
Additional IP Addresses

Add Additional IP Addresses 76
Get Additional IP Addresses 77
Remove Additional IP Addresses 76

Delete Device Instance 93
DHCP

Add IPv4 DHCP Range 94
Add IPv4 DHCP Range by size 94, 97
Get IPv4 DHCP Range 95
Get IPv4 Range by IP Address 94

IPv4 addresses
assign IPv4 addresses 71
Assign Next Available IPv4 Address 72
Change IPv4 Address State 75
Check Allocation for IPv4 Address 74
Get IPv4 Address 73
Get Next Available Address 75
Get Next IPv4 Address 74
IPv4 Address Generic Methods 75
Update IPv4 Address 75

IPv4 Blocks
add parent block with properties 59
get IP range by IP address 59
get IPv4 Block by CIDR 60
get IPv4 Block by Range 60
Merge blocks with parent 61
Merge selected blocks or networks 61, 61, 61

IPv4 Group
Add IPv4 IP Group by Range 77
Add IPv4 IP Group by Size 78

IPv4 Networks
Add IPv4 Network Template 67, 68
Get IPv4 network by CIDR 62

Get IPv4 Network by Hint 63
Get IPv4 Network by Range 64
Get IPv4 Range by IP Address 62
Get Next Available IP Range 65
Get Next Available IP Ranges 65
Get Next Available Network 64
IPv4 Network Generic Methods 67
IPv4 Network Template Generic Methods 71
Re-apply Template 69
Split IPv4 Network 66
Update IPv4 Network 67
Update IPv4 Network Template Name 70

IPv4 objects
Move IP object 79
Move IPv4 object 78
Resize Range 79

IPv6 objects
Add Device Instance 91
Add IPv6 Address 85
Add IPv6 Block by MAC Address 86
Add IPv6 Block by Prefix 86
Add IPv6 Network by Prefix 86
Assign IPv6 Address 88
Clear IPv6 Address 90
Get Entity by Prefix 90
Get IPv6 Address 90
Get IPv6 objects by Hint 87
Get IPv6 Range by IP Address 87
Reassign IPv6 Address 91
Split IPv6 Block 87
Split IPv6 Network 87

Provision devices 93

O

Objects 18

P

Property Options Reference
IP Address States 252
Property options

Access right 252
Admin 244
Configuration 242
DeploymentRoles 252
Device 245
DNSSEC 245
IPv4 252
IPv4Objects 248
IPv6 253
IPv6Objects 251
Kerberos Realms 247
Location 246
MAC Pool Objects 245
Resource Records 242
Server 247
Tags 244
TFTP Objects 245
Vendor Profiles 244
Views and Zones 242

Version 8.3.0 | 259

Index

S

SOAP Binding Address 24
SSL 21

W

What's New 13

260 | Address Manager API Guide

BlueCat Networks (USA) Inc. and its affiliates.

www.bluecatnetworks.com

Toll Free: 1.866.895.6931

Document #: BAM_API_v8.3.0-R1

Published in Canada

Date: November 2017

	Contents
	About this guide
	Who should read this guide?
	How is this book organized?
	Typographic Conventions
	References
	How do I contact BlueCat Customer Care?

	What's New
	New API Methods
	New Constants
	Changes in 8.3.0 API

	Overview
	Manipulating Address Manager Objects
	Implementation
	Finding Objects
	Address Manager Object Hierarchy
	Logging In and Out of Address Manager
	Session Management
	Security
	Enabling SSL in Perl Clients
	Enabling SSL in Java Clients

	The Address Manager API
	Web Services API
	SOAP Binding Address
	SOAP Ports
	Maintaining state with cookies

	API Objects
	APIEntity Class
	APIAccessRight Class
	APIDeploymentRole Class
	APIDeploymentOption Class
	APIUserDefinedField Class
	ResponsePolicySearchResult Class

	API Sessions
	Log in and Log out
	System Information

	Working with Java API
	Connecting to Address Manager
	Logging in and out
	Getting Objects
	Adding Objects
	Deleting Objects
	Sequence of Calls in the Client
	Changed API methods for Java users
	Available Java Classes

	Working with Perl API
	Connecting to Address Manager
	Logging in and out
	Getting, Adding, Deleting, and Updating Objects

	REST API
	REST vs SOAP
	Authentication and authorization
	REST API Examples
	GET request example
	Passing String[]

	POST request example
	Passing long[]
	Passing byte[]

	PUT request example
	DELETE request example

	Limitations
	REST API troubleshooting

	API Object Methods
	Generic Methods
	Getting Objects
	Get Entity by Name
	Get Entity by ID
	Get Entities
	Get Parent

	Searching and Retrieving Entities
	Custom Search
	Search by Category
	Search by Object Types
	Get Entities by Name
	Get Entities by Name Using Options
	Get MAC Address

	Updating Objects
	Update
	Update examples

	Update with Options

	Deleting Objects
	Delete
	Delete with Options

	Linked Entities
	Get Linked Entities
	Link Entities
	Unlink Entities

	Changing Locale
	Log in with Options

	User-defined Fields
	Setting UDF values when adding or updating
	Java API Examples
	Perl API Examples

	Getting User-defined Fields
	Get User-defined Field
	Update Bulk User-defined Field

	IPAM
	IPv4 Blocks
	Add IPv4 Block by CIDR
	Add IPv4 Block by Range
	Add Parent Block
	Add Parent Block with Properties
	Get IP Range by IP Address
	Get IPv4 Block by CIDR
	Get IPv4 Block by Range
	Merge Blocks with Parent
	Merge Selected Blocks or Networks
	Update IPv4 Block
	IPv4 Block Generic Methods

	IPv4 Networks
	Add IPv4 Network
	Get IPv4 Range by IP Address
	Get IPv4 Network by CIDR
	Get IPv4 Network by Hint
	Get IPv4 Network by Range
	Get Next Available Network
	Get Next Available IP Range
	Get Next Available IP Ranges
	Split IPv4 Network
	Update IPv4 Network
	IPv4 Network Generic Methods

	IPv4 Network Templates
	Add IPv4 Network Template
	Assign or Update Template
	Re-apply Template
	Update IPv4 Network Template Name
	IPv4 Network Template Generic Methods

	IPv4 addresses
	Assign IPv4 Address
	Assign Next Available IPv4 Address
	Get IPv4 Address
	Get Next IPv4 Address
	Check Allocation for IPv4 Address
	Get Next Available Address
	Update IPv4 Address
	IPv4 Address Generic Methods
	Change IPv4 Address State

	Additional IP Addresses
	Add Additional IP Addresses
	Remove Additional IP Addresses
	Get Additional IP Addresses

	IPv4 Group
	Add IPv4 IP Group by Range
	Add IPv4 IP Group by Size

	IPv4 Objects
	Move IPv4 Object (deprecated)
	Move IP Object
	Resize Range

	IPv4 Discovery and Reconciliation
	Add IPv4 Reconciliation Policy
	IPv4 Discovery and Reconciliation Generic Methods
	Get Discovered Devices
	Get Discovered Device
	Get Discovered Device Interfaces
	Get Discovered Device Networks
	Get Discovered Device Hosts
	Get Discovered Device Vlans
	Get Discovered Device ARP Entries
	Get Discovered Device MAC Address Entries

	IPv6 Objects
	Add IPv6 Address
	Add IPv6 Block by MAC Address
	Add IPv6 Block by Prefix
	Add IPv6 Network by Prefix
	Split IPv6 Block or Network
	Get IPv6 Range by IP Address
	Get IPv6 Objects by Hint
	Assign IPv6 Address
	Clear IPv6 Address
	Get Entity by Prefix
	Get IPv6 Address
	Reassign IPv6 Address

	Provision Devices
	Add Device Instance
	Delete Device Instance

	DHCP
	IPv4 DHCP Ranges
	Add IPv4 DHCP Range
	Add IPv4 DHCP Range By Size
	Get IPv4 Range by IP Address
	Get IPv4 DHCP Range
	Get IPv4 DHCP Ranges
	Get Max Allowed Range
	Update IPv4 DHCP Range
	IPv4 DHCP Range Generic Methods

	IPv6 DHCP Ranges
	Add IPv6 DHCP Range
	Add IPv6 DHCP Range By Size
	Get IPv6 Range by IP Address
	Get IPv6 DHCP Range
	Get Multiple IPv6 DHCP Ranges
	Update IPv6 DHCP Range
	IPv6 DHCP Range Generic Methods

	DHCP Client Options
	Add DHCP Client Option
	Get DHCP Client Option
	Update DHCP Client Option
	Delete DHCP Client Option

	DHCP6 Client Options
	Add DHCP6 Client Option
	Get DHCP6 Client Option
	Update DHCP6 Client Option
	Delete DHCP6 Client Option

	DHCP Custom Options
	Add Custom Deployment Option

	DHCP Service Options
	Add DHCP Service Option
	Get DHCP Service Option
	Update DHCP Service Option
	Delete DHCP Service Option

	DHCP6 Service Options
	Add DHCP6 Service Option
	Get DHCP6 Service Option
	Update DHCP6 Service Option
	Delete DHCP6 Service Option

	DHCP Vendor Profiles and Options
	Add DHCP Vendor Deployment Option
	Add Vendor Option Definition
	Add Vendor Profile
	Delete DHCP Vendor Deployment Option
	Get DHCP Vendor Deployment Option
	Update DHCP Vendor Deployment Option

	DHCP Match Classes
	Add DHCP Match Classes
	Update DHCP Match Classes
	Delete DHCP Match Classes
	Add DHCP Sub Classes
	Update DHCP Sub Classes
	Delete DHCP Sub Classes

	DHCP Raw Options
	Shared Networks
	Link a Shared Network Tag
	Unlink a Shared Network Tag
	Get Shared Networks

	DNS
	DNS Views
	Add DNS View
	Update DNS View
	DNS View Generic Methods
	Add Access Control List (ACL)
	Update Access Control List (ACL)

	DNS Zones
	Add Entity for DNS Zones
	Add Zone
	Get Zones by Hint
	Update Zone
	Zone Generic Methods
	Get Key Signing Key

	DNS Zone Templates
	Add Zone Template
	Assign or Update Template
	Update Zone Template
	Zone Template Generic Methods
	Add Records to DNS Zone Template

	ENUM Zones
	Add ENUM Zone
	Update ENUM Zone
	ENUM Zone Generic Methods

	ENUM Numbers
	Add ENUM Number
	Update ENUM Number
	ENUM Number Generic Methods

	DNS Resource Records
	Handling dotted resource records
	Generic Resource Records
	Add Resource Records
	Add Entity for Resource Records
	Move Resource Records

	NAPTR Records
	Add NAPTR Record
	Update NAPTR Record
	NAPTR Record Generic Methods

	External Host Records
	Add External Host Record
	Get External Host Records associated with IP addresses
	Get IP address assigned with External Host Records
	Update External Host Record
	External Host Record Generic Methods

	Host Records
	Add Host Record
	Add Bulk Host Records
	Get Host Record by Hint
	Get IP Address with Host Records
	Get Dependent Records
	Update Host Record
	Host Record Generic Methods

	Alias Records
	Add Alias Record
	Get Aliases by Hint
	Update Alias Record
	Alias Record Generic Methods

	Text Records
	Add Text Record
	Update Text Record
	Text Record Generic Methods

	HINFO Records
	Add HINFO Record
	Update HINFO Record
	HINFO Record Generic Methods

	MX Records
	Add MX Record
	Update MX Record
	MX Record Generic Methods

	SRV Records
	Add SRV Record
	Update SRV Record
	SRV Record Generic Methods

	Start of Authority Records
	Add Start of Authority Record
	Update Start of Authority Record
	Start of Authority Record Generic Methods

	Generic Records
	Add Generic Record
	Update Generic Record
	Generic Record Generic Methods

	DNS Options
	Add DNS Option
	Get DNS Option
	Update DNS Option
	Delete DNS Option
	Reference: DNS Option value formats

	DNS Raw Option
	DNS Response Policies
	Add Response Policy
	Update Response Policy
	Response Policy Generic Methods
	Upload Response Policy Item
	Search Response Policies

	Reverse zone name format
	Add Reverse Zone Name Format

	Deployment options
	Getting deployment options
	Get Deployment Options

	Raw deployment option
	Add Raw Deployment Option
	Update Raw Deployment Option

	TFTP
	TFTP Groups
	Add TFTP Group
	Update TFTP Group
	TFTP Group Generic Methods

	TFTP Folders
	Add TFTP Folder
	Update TFTP Folder
	TFTP Folder Generic Methods

	TFTP Files
	Add TFTP File
	Update TFTP File
	TFTP File Generic Methods

	Servers and Deployment
	Servers
	Add Server
	Import Server
	Replace Server
	Deploy Server
	Deploy Server Configuration
	Deploy Server Services
	Quick Deployment
	Deployment Status
	Server Generic Methods
	Get Published Interface

	Server Group
	Add Server Group
	Update Server Group
	Server Group Generic Methods
	Add Server to Server Group
	Remove Server from Server Group

	DNS and DHCP Deployment Roles
	Get Servers Associated with a Deployment Role
	Get Server’s Associated Deployment Roles
	Get Deployment Roles for DNS and IP Address Space Objects
	Move Deployment Roles

	DHCP Deployment Roles
	Add DHCP Deployment Role
	Get DHCP Deployment Role
	Update DHCP Deployment Role
	Delete DHCP Deployment Role

	DNS Deployment Roles
	Add DNS Deployment Role
	Get DNS Deployment Role
	Get DNS Deployment Role for View
	Update DNS Deployment Role
	Delete DNS Deployment Role
	Delete DNS Deployment Role for View

	TFTP Deployment Roles
	Add TFTP Deployment Role
	Update TFTP Deployment Role
	TFTP Deployment Role Generic Methods

	Crossover High Availability (xHA)
	Requirements for creating an xHA pair
	Creating an xHA
	Create xHA
	Edit xHA

	Breaking an xHA
	Break xHA

	xHA Failover
	Failover xHA

	Address Manager Objects
	Configurations
	Add Configuration
	Update Configuration
	Configuration Generic Methods
	Get Configuration Setting
	Update Configuration Setting

	Groups and Users
	Add Group
	Update Group
	Group Generic Methods
	Add User
	Update User
	Update User Password
	User Generic Methods

	Authenticators
	Update Authenticator
	Authenticator Generic Methods

	Access Rights
	Add Access Right
	Get Access Right
	Get Access Rights for Entity
	Get Access Rights for User
	Update Access Rights
	Delete Access Rights

	Object Tag Groups
	Add Object Tag Group
	Update Object Tag Group
	Object Tag Group Generic Methods

	Object Tags
	Add Object Tag
	Assign Object Tag
	Remove Object Tag
	Update Object Tag
	Object Tag Generic Methods

	Locations
	Add a Location
	Get Location By Code
	Get All Used Locations

	Database Management
	Configure Replication
	Purge History

	Devices
	Add Device
	Add Device Type
	Add Device Subtype

	MAC Pools
	Get MAC Addresses in Pool
	Add MAC Pool
	Update MAC Pool
	MAC Pool Generic Methods

	MAC Addresses
	Add MAC Address
	Associate MAC Address
	Deny MAC Address
	Is Address Allocated?
	Update MAC Address
	MAC Address Generic Methods

	Workflow Change Requests

	Migration
	Migrate a File
	Migration Status

	Collecting Data
	Start Probe
	Get Probe Status
	Get Probe Data

	API Constants
	Access Right Values
	Additional IP Service Type
	Configuration Setting
	Deployment Services
	Deployment Status
	Device Properties
	DHCP Class Match Criteria
	DHCP Client Options
	DHCP6 Client Options
	DHCP Custom Option Types
	DHCP Deployment Role Types
	DHCP Service Options
	DHCPServiceOptionConstants
	DHCP6 Service Options
	DNS Deployment Role Type
	DNS Options
	DNS Option Values
	DNSSEC Key Format
	DNS Zones Deployment Validation Check
	Entity Categories
	ENUM Services
	IP Assignment Action Values
	IP Discovery Type
	Object Properties
	Object Types
	Option Types
	PositionRangeBy
	Response Policy Type
	Response Policy Search Scopes
	Reverse Zone Format Type
	Server Capability Profiles
	Service Types
	SNMP Version
	SNMP Security Levels
	SNMP Authentication Type
	SNMP Privacy Type
	Traversal Methodology
	User Access Type
	User-defined Field Type
	User-defined Field Validator Properties
	User History Privileges
	User Security Privileges
	User Type
	Vendor Profile Option Types
	Workflow Levels
	Defined Probe Values
	Probe Status Values

	API Method Reference
	API Sessions
	Generic Methods
	Linked Entities
	Changing Locale

	User-defined Fields
	IPAM
	IPv4 Blocks
	IPv4 Networks
	IPv4 Network Templates
	IPv4 Addresses
	IPv4 Objects
	IPv4 Group
	IPv4 Discovery and Reconciliation
	IPv6 Objects
	Provision Devices

	DHCP
	IPv4 DHCP Ranges
	IPv6 DHCP Ranges
	DHCP Client Options
	DHCP6 Client Options
	DHCP Custom Options
	DHCP Service Options
	DHCP6 Service Options
	DHCP Vendor Options
	DHCP Match Classes
	Shared Networks

	DNS
	DNS Views
	DNS Zones
	DNS Zone Templates
	ENUM Zones
	ENUM Numbers
	Generic Resource Records
	NAPTR Records
	External Host Records
	Host Records
	Alias Records
	Text Records
	HINFO Records
	MX Records
	SRV Records
	Start of Authority Records
	Generic Records
	DNS Options
	DNS Response Policies
	Reverse Zone Name Format

	Deployment Options
	TFTP
	TFTP Groups
	TFTP Folders
	TFTP Files

	Servers and Deployment
	Servers
	Server Group
	DNS and DHCP Deployment Roles
	DHCP Deployment Roles
	DNS Deployment Roles
	TFTP Deployment Roles

	Crossover High Availability (XHA)
	Address Manager Objects
	Configurations
	Groups and Users
	Authenticators
	Access Rights
	Devices
	Object Tag Groups
	Object Tags
	Locations
	Database Management
	MAC Pools
	MAC Addresses
	Workflow Change Requests
	Migration
	Collecting Data

	Property Options Reference
	Property Options
	Configuration
	Views and Zones
	Resource Records
	Admin
	Tags
	Vendor Profiles
	DNSSEC
	TFTP Objects
	MAC Pool Objects
	Device
	Location
	Kerberos Realms
	Server
	IPv4Objects
	IPv6Objects
	DeploymentRoles
	Access right

	IP Address States
	IPv4
	IPv6

	Index

