
cFE Flight Software Flight Software Application Developers Guide

 1

 GODDARD SPACE FLIGHT CENTER

Core Flight Executive (cFE)

Flight Software Application Developers Guide

582-2007-001

July 9, 2014 (version 5.4)

Maureen O. Bartholomew, Code 582

David L. Kobe, the Hammers Company, Inc.

 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

cFE Flight Software Flight Software Application Developers Guide

 2

Authors:

___ ________________

Maureen O. Bartholomew/Flight Software Engineer/Code 582 Date

___ ________________

David L. Kobe/Flight Software Engineer/tHC, Inc. Date

Approvals:

___ ________________

Maureen O. Bartholomew/cFE Project Manager/Code 582 Date

___ ________________

Elaine Shell/ 582 Branch Head Date

cFE Flight Software Flight Software Application Developers Guide

 3

Acknowledgements

This document was tailored from the SDO Flight Software Developers Guide and the ST5 Flight Software

Developer’s Guide (authors Peter Kutt/CSC, Mark A. Walters, Code 582).

Requirements and recommendations for C coding standards follow the Flight Software Branch C Coding Standard.

Revision History

Revision

Number

Release

Date

Changes to Prior Revision Approval

2.0 7/13/05 Updated API changes contained in cfe2.0 MOB

3.1 12/20/05 Updated API section in order to be consistent with cFE 3.1 MOB

3.2 2/14/06 Updated section 2 for build 3.2 MOB

3.2.1 3/1/06 Added External Time functions and updated directory structure

to match cFE build 3.2

MOB

3.3 6/23/06 Updated to include changes for build 3.3 MOB

4.0 Updated to reference OSAL (DCR 2318)

Updated CFE_SB_ValidateChecksum return value (DCR) 2317

MOB

4.1 6/4/07 Add document number

Added Time API CFE_TIME_GetClockInfo

Added Memory Pool Description

Added elf2cfetbl Utility Instructions

MOB

4.1 6/8/07 Replaced Appendix A.2 – A.7 with Doxygen generated APIs MOB

5.1 2/14/08 Updated the template app documentation to reflect the correct

implementation.

5.2 9/3/08 Removed Appendix A (API specifications) since the cFE

Doxygen generated documents covers this (and is generated by

the code). Note that this whole document will eventually be

incorporated into the cFE Doxygen documentation.

MOB

5.3 3/4/2009 Added comment in memory pool section to refer to users guide RJM, MOB

5.4 7/9/2014 Removed incorrect bullet in section 11.1

Updated directory tree diagrams

SLS

cFE Flight Software Flight Software Application Developers Guide

 4

Table Of Contents

ACKNOWLEDGEMENTS .. 3

REVISION HISTORY .. 3

1 INTRODUCTION ... 7

1.1 SCOPE ... 7
1.2 BACKGROUND .. 7
1.3 APPLICABLE DOCUMENTS .. 8
1.4 ACRONYMS .. 9
1.5 GLOSSARY OF TERMS ... 9

2 CFE APPLICATION DEVELOPMENT ENVIRONMENT .. 12

2.1 DIRECTORY TREE ... 12
2.2 HEADER FILES .. 16

3 CFE DEPLOYMENT ENVIRONMENT .. 16

3.1 ASSUMED ON-BOARD DIRECTORY STRUCTURE ... 17

4 CFE APPLICATION ARCHITECTURE ... 17

4.1 “SOFTWARE ONLY” APPLICATION.. 17
4.2 “HARDWARE SERVICING” APPLICATION .. 18
4.3 MULTI-THREADED APPLICATIONS .. 20
4.4 AVOID “ENDIAN-ESS” DEPENDENCIES ... 20
4.5 CFE APPLICATION TEMPLATE .. 20
4.6 AVOID INTER-TASK DEPENDENCIES ... 34

5 EXECUTIVE SERVICES INTERFACE .. 34

5.1 APPLICATION REGISTRATION ... 35
5.2 APPLICATION NAMES AND IDS ... 35
5.3 CHILD TASK CONTROL ... 35
5.4 APPLICATION START-UP TYPES ... 35
5.5 SHARED LIBRARIES .. 36
5.6 DEVICE DRIVERS .. 38
5.7 OBTAINING OS AND PLATFORM INFORMATION .. 38
5.8 OS QUEUES, SEMAPHORES AND MUTEXES ... 39

5.8.1 Queues ... 39
5.8.2 Binary Semaphores .. 39
5.8.3 Mutex Semaphores ... 40

5.9 INTERRUPT HANDLING ... 41
5.10 EXCEPTIONS ... 42
5.11 FLOATING POINT PROCESSOR EXCEPTIONS .. 42
5.12 MEMORY UTILITIES .. 43

5.12.1 Memory Copy Functions.. 43
5.12.2 Memory Read/Write Functions .. 43
5.12.3 Critical Data Store .. 44
5.12.4 Standard CRC Calculations .. 48

5.13 FILE SYSTEM FUNCTIONS ... 48
5.13.1 Device Functions ... 48
5.13.2 Directory Functions ... 48

cFE Flight Software Flight Software Application Developers Guide

 5

5.13.3 File Functions .. 49
5.14 SYSTEM LOG .. 49
5.15 SOFTWARE PERFORMANCE ANALYSIS .. 49
5.16 MEMORY POOL .. 49

6 SOFTWARE BUS INTERFACE ... 51

6.1 SOFTWARE BUS TERMINOLOGY ... 52
6.1.1 Software Bus Messages.. 52
6.1.2 Pipes .. 52
6.1.3 Routing of Software Bus Messages .. 52

6.2 CREATING SOFTWARE BUS PIPES ... 53
6.3 SOFTWARE BUS MESSAGE SUBSCRIPTION .. 54
6.4 UNSUBSCRIBING FROM RECEIVING SOFTWARE BUS MESSAGES ... 55
6.5 CREATING SOFTWARE BUS MESSAGES .. 55

6.5.1 Modifying Software Bus Message Header Information ... 57
6.6 SENDING SOFTWARE BUS MESSAGES ... 57
6.7 IMPROVING MESSAGE TRANSFER PERFORMANCE FOR LARGE SB MESSAGES .. 58
6.8 RECEIVING SOFTWARE BUS MESSAGES ... 59

6.8.1 Reading Software Bus Message Header Information .. 62
6.9 DELETING SOFTWARE BUS PIPES ... 63

7 EVENT SERVICE INTERFACE .. 63

7.1 EVENT MESSAGES .. 63
7.2 EVENT TYPES ... 63
7.3 EVENT SERVICE REGISTRATION ... 64

7.3.1 Binary Filtering Scheme .. 65
7.4 SENDING AN EVENT MESSAGE ... 67

7.4.1 Event Message Text ... 67
7.5 EVENT SERVICE UN-REGISTRATION ... 68

8 TABLE SERVICE INTERFACE .. 68

8.1 TABLE TERMINOLOGY .. 68
8.1.1 Tables .. 68
8.1.2 Active vs. Inactive Tables .. 68
8.1.3 Single vs. Double Buffered Tables ... 68
8.1.4 Loading/Activating a Table ... 69
8.1.5 Dumping a Table ... 69
8.1.6 Validating a Table ... 69

8.2 REGISTERING TABLES .. 69
8.3 ACCESSING TABLE DATA ... 71

8.3.1 Acquiring Table Data .. 71
8.3.2 Releasing Table Data .. 72

8.4 MANAGING A TABLE .. 72
8.4.1 Validating Table Data ... 72
8.4.2 Loading/Updating Table Data ... 73
8.4.3 Simplifying Table Management ... 74

8.5 CREATING TABLE IMAGE FILES USING THE ELF2CFETBL UTILITY .. 74
8.5.1 elf2cfetbl utility files ... 74
8.5.2 Creating an Executable of the elf2cfetbl Utility ... 75
8.5.3 Preparing a Source File for use with the elf2cfetbl Utility ... 75
8.5.4 Example of Table Data Source File ... 75
8.5.5 elf2cfetbl Utility Command Line Options ... 76

cFE Flight Software Flight Software Application Developers Guide

 6

8.5.6 Converting COFF Object Files into ELF Object Files .. 77

9 FILE SERVICE INTERFACE ... 77

9.1 STANDARD FILE HEADER ... 77
9.2 ACCESSING AND MODIFYING THE STANDARD FILE HEADER .. 78
9.3 OTHER FILE SERVICE UTILITY FUNCTIONS .. 80

10 TIME SERVICE INTERFACE ... 81

10.1 TIME FORMATS .. 81
10.2 TIME VALUES ... 81
10.3 BASIC TIME FUNCTIONS ... 82
10.4 TIME CONVERSION FUNCTIONS .. 83
10.5 TIME MANIPULATION FUNCTIONS .. 83

11 ERROR HANDLING .. 86

11.1 STANDARD ERROR CODES .. 86

APPENDIX A .. 87

A.1 OPERATING SYSTEM .. 87

cFE Flight Software Flight Software Application Developers Guide

 7

1 Introduction

1.1 Scope

The purpose of this document is to provide guidelines and conventions for flight code development using the Core

Flight Executive (cFE) Application Programming Interface (API). These interfaces apply to C&DH, ACS and

instrument control software; note that particular subsystems may need to follow specific software coding guidelines

and standards in addition to using the functions provided within the cFE API.h

These guidelines and conventions are specified with different weights. The weighting can be determined by the use

of the following words:

1. “Shall” or “must” designates the most important weighting level and are mandatory. Any deviations from

these guidelines or conventions must have, at a minimum, the non-compliance documented fully and, at a

maximum, require a project management waiver.

2. “Should” designates guidelines that are determined to be good coding practice and are helpful for code

maintenance, reuse, etc. Noncompliance with should requirements does not require waivers nor additional

documentation but appropriate comments in the code would be useful.

3. “Could” designates the lowest weighting level. These could requirements designate examples of an

acceptable implementation but do not require the developer to follow the example precisely.

1.2 Background

The cFE provides a project-independent Flight Software (FSW) operational environment with a set of services that

are the functional building blocks to create and host FSW Applications. The cFE is composed of six core services:

Executive Service (ES), Software Bus Service (SB), Event Service (EVS), Table Service (TBL), File Service (FS),

and Time Service (TIME) (See Figure 1). Each cFE service defines an API that is available to the application as a

library of functions.

It is important for application developers to realize the long term goal of the cFE. With a standard set of services

providing a standard API, all applications developed with the cFE have an opportunity to become useful on future

missions through code reuse. In order to achieve this goal, applications must be written with care to ensure that their

code does not have dependencies on specific hardware, software or compilers. The cFE and the underlying generic

operating system API (OS API) have been designed to insulate the cFE Application developer from hardware and

software dependencies. The developer, however, must make the effort to identify the proper methods through the

cFE and OS API to satisfy their software requirements and not be tempted to take a “short-cut” and accomplish their

goal with a direct hardware or operating system software interface.

cFE Flight Software Flight Software Application Developers Guide

 8

Figure 1: cFE Core Services

1.3 Applicable Documents

Document ID Document Title

http://opensource.gsfc.nasa.gov/projects/osal/osal.php#software OS Abstraction Layer Library

cFE Flight Software Flight Software Application Developers Guide

 9

1.4 Acronyms

Acronym Description

AC Attitude Control

ACE Attitude Control Electronics

ACS Attitude Control System

API Application Programming Interface

APID CCSDS Application ID

CCSDS Consultative Committee for Space Data Systems

CDH, C&DH Command and Data Handling

CM Configuration Management

CMD Command

CPU Central Processing Unit

EDAC Error Detection and Correction

EEPROM Electrically Erasable Programmable Read-Only Memory

FC Function Code

FDC Failure Detection and Correction

FSW Flight Software

HW, H/W Hardware

ICD Interface Control Document

MET Mission Elapsed Time

OS Operating System

PID Pipeline ID

PKT Packet

RAM Random-Access Memory

SB Software Bus

SDO Solar Dynamics Observatory

ST5 Space Technology Five

STCF Spacecraft Time Correlation Factor

SW, S/W Software

TAI International Atomic Time

TBD To Be Determined

TBL Table

TID Application ID

TLM Telemetry

UTC Coordinated Universal Time

1.5 Glossary of Terms

The following table defines the terms used throughout this document. These terms are identified as proper nouns

and are capitalized.

Term Definition

Application (APP)

A set of data and functions that is treated as a single entity by the cFE. cFE

resources are allocated on a per-Application basis. Applications are made up of a

Main Task and zero or more Child Tasks.

Application ID

A processor unique reference to an Application.

NOTE: This is different from a CCSDS Application ID which is referred to as an

“APID.”

cFE Flight Software Flight Software Application Developers Guide

 10

Application

Programmer’s

Interface (API)

A set of routines, protocols, and tools for building software applications

Board Support

Package (BSP)

A collection of user-provided facilities that interface an OS and the cFE with a

specific hardware platform. The BSP is responsible for hardware initialization.

Child Task A separate thread of execution that is spawned by an Application’s Main Task.

Command
A SB Message defined by the receiving Application. Commands can originate from

other onboard Applications or from the ground.

Core Flight

Executive (cFE)
A runtime environment and a set of services for hosting FSW Applications

Critical Data Store
A collection of data that is not modified by the OS or cFE following a Processor

Reset.

Cyclic Redundancy

Check

A polynomial based method for checking that a data set has remained unchanged

from one time period to another.

Developer Anyone who is coding a cFE Application.

Event Data
Data describing an Event that is supplied to the cFE Event Service. The cFE

includes this data in an Event Message.

Event Filter

A numeric value (bit mask) used to determine how frequently to output an

application Event Message defined by its Event ID (see definition of Event ID

below).

Event Format Mode

Defines the Event Message Format downlink option: short or long. The short

format is used when there is limited telemetry bandwidth and is binary. The long

format is in ASCII and is used for logging to a Local Event Log and to an Event

Message Port.

Event ID A numeric literal used to uniquely name an Application event.

Event Message

A data item used to notify the user and/or an external Application of a significant

event. Event Messages include a time-stamp of when the message was generated, a

processor unique identifier, an Application ID, the Event Type

(DEBUG,INFO,ERROR or CRITICAL), and Event Data. An Event Message can

either be real-time or playback from a Local Event Log.

Event Message

Counter

A count of the number of times a particular Event Message has been generated

since a Reset or since the counter was cleared via a Command. The counter does

not rollover so a user cannot lose the knowledge that an event had occurred.

Event Message Port

A display device that is used to display Event Messages in a test environment. The

communications mechanism between the flight processor and the display device is

platform defined.

Event Type
A classification of an Event Message such as informational, diagnostic, and critical.

See Section 7.2 for a definition of these types.

FIFO
First In First Out - A storage device that implies the first entry in is the first entry

out.

Hardware Platform The target hardware that hosts the FSW.

Interface Control

Document

A document that describes the software interface, in detail, to another piece of

software or hardware.

I/O Data

Any data being written to and read from an I/O port. No structure is placed on the

data and no distinction as to the type of I/O device. I/O data is defined separately

from memory data because it has a separate API and it’s an optional interface of the

cFE.

Local Event Log

An optional Critical Data Store containing Event Messages that are generated on

the same processor on which it resides. One Local Event Log can be defined for

each processor.

Log
A collection of data that an application stores that provides information to diagnose

and debug FSW problems.

cFE Flight Software Flight Software Application Developers Guide

 11

Main Task The thread of execution that is started by the cFE when an Application is started.

Memory Data
Any data being written to and read from memory. No structure is placed on the

data and no distinction as to the type of memory is made.

Message ID An identifier that uniquely defines an SB message.

Mission A particular implementation of cFE FSW for a specific satellite or set of satellites.

MMU

Memory Management Unit. A piece of hardware that manages virtual memory

systems. It automatically translates addresses into physical addresses so that an

application can be linked with one set of addresses but actually reside in a different

part of memory.

MsgId-to-Pipe Limit

The maximum number of messages of a particular Message ID allowed on a Pipe at

any time. When a MsgId-to-Pipe Limit is exceeded, it is considered an error and is

sometimes referred to as a MsgId-to-Pipe Limit error.

Network A connection between subsystems used for communication purposes.

Network Queue
A device that stores messages and controls the flow of SB Messages across a

Network.

Operational

Interface

The Command and Telemetry interface used to manage the cFE and/or

Applications.

Operator Anyone who is commanding the FSW and receiving the FSW telemetry.

Pipe A FIFO device that is used by Application’s to receive SB Messages.

Pipe Depth The numbers of SB Messages a Pipe is capable of storing.

Pipe Overflow

Occurs when an attempt is made to write to a Pipe that is completely full of SB

Messages. The number of SB Messages a Pipe can hold is given by the Pipe Depth.

When a Pipe overflows, it is considered an error and is sometimes referred to as a

Pipe Overflow error

Platform See “Hardware Platform” above.

Processor Reset
The processor resets via the execution of its reset instruction, assertion of its reset

pin, or a watchdog timeout.

Power-on Reset The processor initializes from a no-power state to a power-on state.

Quality of Service

(QoS)
Quality of Service has 2 components, Priority and Reliability.

Request

The act of an Application invoking a cFE service that resides on the same processor

as the Application. A “Request” may be implemented as either function calls or SB

Message exchanges and is specified in this document.

Routing Information Any information required to route SB Messages locally or remotely.

Software Bus An inter-Application message-based communications system

SB Message A message that is sent or received on the software bus.

Subscribe
The act of requesting future instances of an SB Message to be sent on a particular

Pipe. A valid subscription alters the SB Routing Information.

System Log
Special “Event Message” log for events that occur when the Event Services are not

available.

Telemetry

A SB Message defined by the sending Application that contains information

regarding the state of the Application or the state of devices interfaced to the

Application.

Unsubscribe
To request that an SB Message no longer be routed to a particular Pipe. Properly

unsubscribing to an SB Message alters the SB Routing Information.

User

Anyone who interacts with the cFE in its operational state. A user can be a FSW

developer, a FSW tester, a spacecraft tester, a spacecraft operator, or a FSW

maintainer.

cFE Flight Software Flight Software Application Developers Guide

 12

2 cFE Application Development Environment

The following section describes the details of the standard cFE development environment in which the Developer

writes and integrates their Application code. Each Mission could have, for their own reasons, a variation on this

standard.

2.1 Directory Tree

The following diagrams show the standard development and build directory tree or mission tree as it is often

referred to. The purpose of each directory is described as a note under each folder.

cFE Flight Software Flight Software Application Developers Guide

 13

cFE Flight Software Flight Software Application Developers Guide

 14

cFE Flight Software Flight Software Application Developers Guide

 15

cFE Flight Software Flight Software Application Developers Guide

 16

2.2 Header Files

In order for applications to use and call cFE service functions, the Developer must include the appropriate header

files in their source code. The cFE can be easily incorporated by including the following line:

#include “cfe.h” /* Define cFE API prototypes and data types */

However, if the Developer is interested in viewing the API prototype declarations or data type definitions, they must

look for them in the header file for the particular cFE Service. These header files are named as follows:

Filename Contents

cfe_es.h cFE Executive Service interface

cfe_evs.h cFE Event Service Interface

cfe_fs.h cFE File Service Interface

cfe_sb.h cFE Software Bus Interface

cfe_sbp.h cFE Software Bus Protocol Interface

cfe_tbl.h cFE Table Service Interface

cfe_time.h cFE Time Service Interface

All of these header files can be found in the “.../cfe-core/inc/” directory.

3 cFE Deployment Environment

The cFE core makes some assumptions about the target platform. Modifications to these assumptions would require

modification to the cFE core source code.

cFE Flight Software Flight Software Application Developers Guide

 17

3.1 Assumed On-Board Directory Structure

Portions of the cFE are capable of generating/overwriting files in response to commands (e.g. – log files, registry

contents, etc). The cFE assumes that a specific file architecture is present when it generates these files. The file

architecture and the expected contents are described in the diagram below.

4 cFE Application Architecture

In order to achieve the long term goals of the cFE, the Developer should structure their Applications with one of the

following frameworks. Each of the frameworks described below have been designed to minimize code modification

when the code is ported to either another platform and/or another mission.

4.1 “Software Only” Application

A “Software Only” Application is a cFE Application that does not require communication with hardware directly. It

is an Application that receives messages via the Software Bus, manipulates the data, and issues messages which are

either telemetry or commands. Examples of “Software Only” Applications in the past would be Attitude

Determination and Control (ACS), Absolute Time Command Processor (ATCP) and/or Relative Time Command

Processor (RTCP).

A “Software Only” Application has the most promise of being reusable because it is insulated from most mission

and platform specific characteristics. Therefore, the Developer must conform to the framework below to ensure

maximum reusability in the future.

As seen in the following diagram, a “Software Only” application, shown here as either a “Reuse Application” or a

“Mission Application,” should never talk directly with any piece of hardware nor directly with the underlying

operating system.

1.1 RAM:/
RAM – the assumed name for the

RAM disk.

cFE Flight Software Flight Software Application Developers Guide

 18

Hardware

Support

Hardware I/F

Time

Distribution

Time Client/Server

Interface

Hardware

Support

Physical

Layer

Executive

Layer

Mission Application

582 FSW LibraryHardware
Mission Specific

Software

Application

Layer

Supported Hardware

Software Interface

Interrupt

Handlers

Time

Services

Time API

Event

Services

Event API

Software Bus

Software Bus API

Table Services

Table API

Reuse Application

Unsupported Hardware

Utilities

cFE Application

Core Flight Executive

Executive

Application

Hardware

Drivers

Unsupported

OS

Exception

Handlers

User

Interface

OS

Abstraction Layer

Executive Services API

Hardware

Support

Hardware I/F

Time

Distribution

Time Client/Server

Interface

Hardware

Support

Physical

Layer

Executive

Layer

Mission Application

582 FSW LibraryHardware
Mission Specific

Software

Application

Layer

Supported Hardware

Software Interface

Interrupt

Handlers

Time

Services

Time API

Event

Services

Event API

Software Bus

Software Bus API

Table Services

Table API

Reuse Application

Unsupported Hardware

Utilities

cFE Application

Core Flight Executive

Executive

Application

Hardware

Drivers

Unsupported

OS

Exception

Handlers

User

Interface

OS

Abstraction Layer

Executive Services API

The Developer should ensure that all function calls to functions outside of the Application code are either to the cFE

APIs or to the OS Abstraction Layer. Both of these are found in the Executive Layer.

4.2 “Hardware Servicing” Application

A “Hardware Servicing” Application is a cFE Application that is talking directly to a piece of hardware. This could

be mission specific hardware, such as an experiment, or more common hardware, such as a receiver or transmitter.

“Hardware Servicing” Applications should follow the Device Driver model as shown in the following diagram.

cFE Flight Software Flight Software Application Developers Guide

 19

A “hardware servicing” Application first associates a set of three functions with a particular hardware interrupt via

the cFE Executive Services device driver API. The first of the three functions performs any necessary hardware

configuration and initialization. The second function runs within the ISR context whenever there is an interrupt

generated by the hardware. This is useful for performing any realtime processing and hardware handshaking that

must occur quickly and without interruption. Upon completion of the ISR function, the cFE notifies a device

processing task that it created during the registration process that an interrupt occurred. This processing task calls

the third callback function specified by the “hardware servicing” Application. This function, since it is running in a

task context rather than an ISR context, is allowed full use of other cFE Service APIs. It is capable of sending

messages, events, performing memory allocation, etc. For further details on this design, see section 5.6 and the

device management API reference in Appendix A.

cFE Application

H
a

rd
w

a
re

 D
ev

ice b
ein

g
 ser

v
iced

cFE Executive Services

Register Driver Callback

functions with Interrupt

cFE Generic

Low Level

Device ISR

cFE Interrupt

Management

Library

Device

Initialization

Function

Initialization

Call function to initialize

hardware (intInitFuncPtr)

Hardware configured and

initialized for operation

Device

Handshaking

Function

(ISR Context)

Call function to perform any

realtime processing or h/w

handshaking

(intHwHandshakingFuncPtr)

Perform realtime data

processing and h/w
handshaking

cFE Generic

Device

Processing

Task
Device

Initialization

Function

(Task Context)

Wakeup

Task

Call function to perform any
high level processing

(intIsrFuncPtr)

cFE Software Bus,

Events, etc.

Perform non-realtime data

processing and h/w
handshaking

Other cFE

Service APIs

Task function is allowed to

send messages, events, etc.

cFE Flight Software Flight Software Application Developers Guide

 20

4.3 Multi-threaded Applications

The cFE supports the concept of multiple threads within an Application. Each thread is referred to as a Task. The

first Task that executes when the Application is started is referred to as the Main Task. Any other Tasks that are

spawned by the Main Task are called Child Tasks. When deciding on whether to create multiple Applications

versus a single Application with multiple Tasks, the Application Developer should keep in mind these facts:

 Child Tasks can only execute at a priority equal to or less than the priority of the Application’s Main Task.

 If the Main Task of an Application is stopped, either through detection of an exception or via command, all

Child Tasks are also stopped.

4.4 Avoid “Endian-ess” Dependencies

To ensure Application portability, Developers should be aware of code designs that can be affected by the “Endian-

ess” of the processor. An example of where this could be a problem is in those situations where it is necessary to

extract multi-byte data types from a stream of bytes. When this occurs, the Developer should ensure that if the

source of the stream were to change from little-endian to big-endian or vice-versa, that the extraction would be

successful. In a worse case situation, this may require the use of compiler switches based upon a platform’s endian

setting to include the appropriate code.

Another common problem is in telemetry formatting. Frequently a telemetry packet is defined as a data structure of

a variety of data types. Clearly, if the code is ported from a little-endian machine to a big-endian machine or vice-

versa, the ground system telemetry database would be required to change.

4.5 cFE Application Template

Applications designed to interface with the cFE should follow standard templates. The following is the template for

an Application’s interface (header) file:

NOTE: “QQ” and “qq” represent an abbreviation for the Application. Examples of this would be “CI” for

Command Ingest or “TO” for Telemetry Output. The Abbreviation does not have to be just two characters, but

should be kept as small as possible.

cFE Flight Software Flight Software Application Developers Guide

 21

/*

** $Id: $

**

** Purpose: cFE Application "template" (QQ) header file

**

** Author:

**

** Notes:

**

** $Log: $

**

*/

/***/

/*

** Ensure that header is included only once...

*/

#ifndef _qq_app_

#define _qq_app_

/*

** Required header files...

*/

#include "cfe.h"

#include "app_msgids.h"

#include "app_perfids.h"

/***/

/*

** Event message ID's...

*/

#define QQ_INIT_INF_EID 1 /* start up message "informational" */

#define QQ_NOOP_INF_EID 2 /* processed command "informational" */

#define QQ_RESET_INF_EID 3

#define QQ_PROCCESS_INF_EID 4

#define QQ_MID_ERR_EID 5 /* invalid command packet "error" */

#define QQ_CC1_ERR_EID 6

#define QQ_LEN_ERR_EID 7

#define QQ_PIPE_ERR_EID 8

#define QQ_EVT_COUNT 8 /* count of event message ID's */

/*

** QQ command packet command codes...

*/

#define QQ_NOOP_CC 0 /* no-op command */

#define QQ_RESET_CC 1 /* reset counters */

#define QQ_PROCCESS_CC 2 /* Perform Routing Proccessing */

Application specific

Event Message IDs.

Because these numbers

are combined with the

cFE Application ID, the

cFE ensures that every

Event Message in a

system is unique.

Application specific

command codes. NOOP

and RESET are required

for all cFE Applications.

The “cfe.h” and “app_msgids.h” header files are

all that is needed to obtain the cFE interface

information.

Compiler directives to ensure header file is not included

more than once.

cFE Flight Software Flight Software Application Developers Guide

 22

#define QQ_NUM_TABLES 2 /* Number of Tables used by Application */

#define QQ_PIPE_DEPTH 12 /* Depth of the Command Pipe for Application */

#define QQ_LIMIT_HK 2 /* Limit of HouseKeeping Requests on Pipe for Application */

#define QQ_LIMIT_CMD 4 /* Limit of Commands on pipe for Application */

/* Define filenames of default data images for tables */

#define QQ_FIRST_TBL_DEFAULT_FILE "RAM:/FirstTblDef.dat"

#define QQ_SECOND_TBL_DEFAULT_FILE "RAM:/SecondTblDef.dat"

/* Define Application defined error code numbers for validation errors */

#define QQ_TBL_1_ELEMENT_OUT_OF_RANGE_ERR_CODE 1

#define QQ_TBL_2_ELEMENT_OUT_OF_RANGE_ERR_CODE -1

#define QQ_TBL_ELEMENT_1_MAX 10

#define QQ_TBL_ELEMENT_3_MAX 20

/*** Definition of Table Data Structures*/

typedef struct

{

 uint8 TblElement1;

 uint16 TblElement2;

 uint32 TblElement3;

} QQ_MyFirstTable_t;

 typedef struct

{

 int32 TblElement1;

 int16 TblElement2;

 int8 TblElement3;

} QQ_MySecondTable_t;

/*** Type definition Critical Data Store*/

typedef struct

{

 uint32 DataPtOne;

 uint32 DataPtTwo;

 uint32 DataPtThree;

 uint32 DataPtFour;

 uint32 DataPtFive;

} QQ_CdsDataType_t;

///***/

/*

** Type definition (generic "no arguments" command)...

*/

typedef struct

{

 uint8 CmdHeader[CFE_SB_CMD_HDR_SIZE];

} QQ_NoArgsCmd_t;

/***/

Application specific data

structures specifying the

content of the tables.

Full path specification of

the files that contains the

initial table values

Return values from the

table validation

function(s)

Application specific data

structures specifying the

content of command

messages. Pointers to

these data types can be

used to access data from a

received command

message.

It is important to note that headers are declared as byte arrays. This is because the

cFE does not require a specific header format. If Applications need to obtain

information from the message header, it shall get it using Software Bus Library

routines that extract the information for them.

Contents of the Crtitical

Data Store

cFE Flight Software Flight Software Application Developers Guide

 23

/*

** Type definition (QQ housekeeping)...

*/

typedef struct

{

 uint8 TlmHeader[CFE_SB_TLM_HDR_SIZE];

 /*

 ** Command interface counters...

 */

 uint8 CmdCounter;

 uint8 ErrCounter;

} QQ_HkPacket_t;

/***/

/*

** Type definition (QQ app global data)...

*/

typedef struct

{

 /*

 ** Command interface counters...

 */

 uint8 CmdCounter;

 uint8 ErrCounter;

 /*

 ** Housekeeping telemetry packet...

 */

 QQ_HkPacket_t HkPacket;

 /*

 ** Operational data (not reported in housekeeping)...

 */

 CFE_SB_MsgPtr_t MsgPtr;

 CFE_SB_PipeId_t CmdPipe;

 /*

 ** Run Status variable used in the main processing loop

 */

 uint32 RunStatus;

 /*

 ** Operational data (not reported in housekeeping)...

 */

 QQ_CdsDataType_t WorkingCriticalData; /* Define a copy of the critical data thatcan be */

 /* used during Application execution */

 CFE_ES_CDSHandle_t CDSHandle; /* Handle to CDS Memory block */

 /*

 ** Initialization data (not reported in housekeeping)...

 */

 char PipeName[16];

 uint16 PipeDepth;

 uint8 LimitHK;

 uint8 LimitCmd;

 CFE_EVS_BinFilter_t EventFilters[QQ_EVT_COUNT];

 CFE_TBL_Handle_t TblHandles[QQ_NUM_TABLES];

} QQ_AppData_t;

Application specific data

structures specifying the

content of telemetry

messages. Pointers to

these data types can be

used to store data before

sending the structure as a

Software Bus message.

A Command Counter and

Command Error Counter

are required for all cFE

Applications.

See note on previous page regarding message headers.

Organizing a tasks data

into a single data

structure will ensure that

all of the data will be

contiguous in memory.

This is helpful when the

target platform uses

memory protection and/or

an MMU and also for

software maintenance.

cFE Flight Software Flight Software Application Developers Guide

 24

/***/

/*

** Local function prototypes...

**

** Note: Except for the entry point (QQ_AppMain), these

** functions are not called from any other source module.

*/

void QQ_AppMain(void);

void QQ_AppInit(void);

void QQ_AppPipe(CFE_SB_MsgPtr_t msg);

void QQ_HousekeepingCmd(CFE_SB_MsgPtr_t msg);

void QQ_NoopCmd(CFE_SB_MsgPtr_t msg);

void QQ_ResetCmd(CFE_SB_MsgPtr_t msg);

void QQ_RoutineProcessingCmd(CFE_SB_MsgPtr_t msg);

boolean QQ_VerifyCmdLength(CFE_SB_MsgPtr_t msg, uint16 ExpectedLength);

int32 QQ_FirstTblValidationFunc(void *TblData);

int32 QQ_SecondTblValidationFunc(void *TblData);

/***/

#endif /* _qq_app_ */

/************************/

/* End of File Comment */

/************************/

The following is the template for an Application’s implementation file:

A section defining all of

the function prototypes.

cFE Flight Software Flight Software Application Developers Guide

 25

/*

** $Id: $

**

** Subsystem: cFE Application Template (QQ) Application

**

** Author:

**

** Notes:

**

** $Log: $

**

*/

/*

** Required header files...

*/

#include "qq_app.h"

#include <string.h>

/*

** QQ global data...

*/

QQ_AppData_t QQ_AppData;

/* */

/* */

/* QQ_AppMain() -- Application entry point and main process loop */

/* */

/* */

void QQ_AppMain(void)

{

 int32 Status;

 /*

 ** Register application...

 */

 CFE_ES_RegisterApp();

 /*

 ** Create the first Performance Log entry

 */

 CFE_ES_PerfLogEntry(TST_QQ_APPMAIN_PERF_ID);

 /*

 ** Perform application specific initialization

 ** If the Initialization fails, set the RunStatus to

 ** CFE_ES_APP_ERROR and the App will not enter the RunLoop

 */

 Status = QQ_AppInit();

 if (Status != CFE_SUCCESS)

 {

 QQ_AppData.RunStatus= CFE_ES_APP_ERROR;

 }

The Application’s Main function.

All Applications must provide a

“TaskMain” function that

represents their entry point.

The first step is App Registration

which allows cFE to map the Task

to various Executive Service

resources and Operating System

resources.

Next, a Task must initialize itself.

The type of initialization can be

determined through Executive

Service API calls.

The Application then enters a

continuous loop that obtains

Software Bus Messages from its

pipe(s) and performs the

appropriate process on the

received data/commands.

cFE Flight Software Flight Software Application Developers Guide

 26

 /*

 ** Application Main Loop. Call CFE_ES_RunLoop to check for changes

 ** in the Applications status. If there is a request to kill this

 ** App, it will be passed in through the RunLoop call.

 */

 while (CFE_ES_RunLoop (&QQ_AppData.RunStatus == TRUE)

 {

 /*

 ** Performance Log Exit Stamp

 */

 CFE_ES_PerfLogExit(TST_QQ_APPMAIN_PERF_ID);

 /*

 ** Wait for the next Software Bus message...

 */

 Status = CFE_SB_RcvMsg(&QQ_AppData.MsgPtr,

 QQ_AppData.CmdPipe,

 CFE_SB_PEND_FOREVER);

 /*

 ** Performance Log Entry Stamp

 */

 CFE_ES_PerfLogEntry(TST_QQ_APPMAIN_PERF_ID);

 /* Check the return status from the Software Bus*/

 if (Status == CFE_SUCCESS)

 {

 /*

 ** Process Software Bus message. If there are fatal errors

 ** in command processing the command can alter the global

 ** RunStatus variable to exit the main event loop.

 */

 QQ_AppPipe(QQ_AppData.MsgPtr);

 /*

 ** Update the Critical Data Store. Because this data is only updated

 ** in one command, this could be moved to the command processing function.

 ** in command processing the command can alter the global

 ** RunStatus variable to exit the main event loop.

 */

 CFE_ES_CopyToCDS(QQ_AppData.CDSHandle, &QQ_AppData.WorkingCriticalData);

 }

 else

 {

 /* This is an example of exiting on an error.

 ** Note that a SB read error is not always going to

 ** result in an app quitting.

 */

 CFE_EVS_SendEvent(&QQ_PIPE_ERR_EID,CFE_EVS_ERROR,

 "QQ: SB Pipe Read Error, QQ App Will Exit");

 QQ_AppData.RunStatus= CFE_ES_APP_ERROR;

 }

 }

 /*

 ** Performance Log Exit Stamp

 */

 CFE_ES_PerfLogExit(TST_QQ_APPMAIN_PERF_ID);

 /*

 ** Exit the Application

 */

 CFE_ES_ExitApp(QQ_AppData.RunStatus);

} /* End of QQ_AppMain() */

cFE Flight Software Flight Software Application Developers Guide

 27

/* */

/* */

/* QQ_AppInit() -- QQ initialization */

/* */

/* */

void QQ_AppInit(void)

{

 int32 Status;

 int32 ResetType;

 uint32 ResetSubType;

 ResetType = CFE_ES_GetResetType(&ResetSubType);

 /*

 ** For a PowerOn Reset, initialize the Critical variables

 ** If it is a Processor Reset, these variables will be restored

 ** from the Critical Data Store later in the function

 */

 if (ResetType == CFE_ES_POWER_ON)

 {

 QQ_AppData.RunStatus= CFE_ES_APP_ERROR;

 QQ_AppData.WorkingCriticalData.DataPtOne = 1;

 QQ_AppData.WorkingCriticalData.DataPtTwo = 2;

 QQ_AppData.WorkingCriticalData.DataPtThree = 3;

 QQ_AppData.WorkingCriticalData.DataPtFour = 4;

 QQ_AppData.WorkingCriticalData.DataPtFive = 5;

 }

QQ_AppData.RunStatus= CFE_ES_APP_RUN;

 /*

 ** Initialize app command execution counters...

 */

 QQ_AppData.CmdCounter = 0;

 QQ_AppData.ErrCounter = 0;

 /*

 ** Initialize app configuration data...

 */

 strcpy(QQ_AppData.PipeName, "QQ_CMD_PIPE");

 QQ_AppData.PipeDepth = QQ_PIPE_DEPTH;

 QQ_AppData.LimitHK = QQ_LIMIT_HK;

 QQ_AppData.LimitCmd = QQ_LIMIT_CMD;

 /*

 ** Initialize event filter table...

 */

 QQ_AppData.EventFilters[0].EventID = QQ_PROCCES_INF_EID;

 QQ_AppData.EventFilters[0].Mask = CFE_EVS_EVERY_FOURTH_TIME;

 QQ_AppData.EventFilters[1].EventID = QQ_RESET_INF_EID;

 QQ_AppData.EventFilters[1].Mask = CFE_EVS_NO_FILTER;

 QQ_AppData.EventFilters[2].EventID = QQ_CC1_INF_EID;

 QQ_AppData.EventFilters[2].Mask = CFE_EVS_EVERY_OTHER_TWO;

 QQ_AppData.EventFilters[3].EventID = QQ_LEN_ERR_EID;

 QQ_AppData.EventFilters[3].Mask = CFE_EVS_FIRST_8_STOP;

 /*

 ** Register event filter table...

 */

 Status = CFE_EVS_Register(QQ_AppData.EventFilters,

 4,

 CFE_EVS_BINARY_FILTER);

if (Status != CFE_SUCCESS)

Command counters are reset upon

Applicaton initialization.

Task configuration parameters

are initialized to their default

values.

Event Messages are registered

with the cFE.

Event Message IDs and

their associated filters

are defined in an array to

allow them to be

registered with the cFE

en masse.

cFE Flight Software Flight Software Application Developers Guide

 28

 {

 CFE_ES_WriteToSysLog("QQ App: Error Registering Events, RC = 0x%08X\n", Status);

 return (Status);

 }

 /*

 ** Initialize housekeeping packet (clear user data area).

 */

 CFE_SB_InitMsg(&QQ_AppData.HkPacket,

 QQ_HK_TLM_MID,

 sizeof(QQ_HkPacket_t), TRUE);

 /*

 ** Create Software Bus message pipe.

 */

 Status = CFE_SB_CreatePipe(&QQ_AppData.CmdPipe,

 QQ_AppData.PipeDepth,

 QQ_AppData.PipeName);

 if (Status != CFE_SUCCESS)

 {

 /*

 ** Could use an event at this point

 */

 CFE_ES_WriteToSysLog("QQ App: Error Creating SB Pipe, RC = 0x%08X\n", Status);

 return (Status);

 }

 /*

 ** Subscribe to Housekeeping request commands

 */

 Status = CFE_SB_Subscribe(QQ_SEND_HK_MID,QQ_AppData.CmdPipe);

 if (Status != CFE_SUCCESS)

 {

 CFE_ES_WriteToSysLog("QQ App: Error Subscribing \

 to HK Request, RC = 0x%08X\n",

 Status);

 return (Status);

 }

 /*

 ** Subscribe to QQ ground command packets

 */

 Status = CFE_SB_Subscribe(QQ_CMD_MID,QQ_AppData.CmdPipe);

 if (Status != CFE_SUCCESS)

 {

 CFE_ES_WriteToSysLog("QQ App: Error Subscribing to QQ \

 Command, RC = 0x%08X\n", Status);

 return (Status);

 }

 /*

 ** Register tables with cFE and load default data

 */

 Status = CFE_TBL_Register(&QQ_AppData.TblHandles[0],

 "MyFirstTable",

 sizeof(QQ_MyFirstTable_t),

 CFE_TBL_OPT_DEFAULT,

 QQ_FirstTblValidationFunc);

 if (Status != CFE_SUCCESS)

 {

 CFE_ES_WriteToSysLog("QQ App: Error Registering \

 Table 1, RC = 0x%08X\n", Status);

 return (Status);

 }

 else

 {

 Status = CFE_TBL_Load(QQ_AppData.TblHandles[0],

SB Messages that this Application

generates must be initialized so

that they contain appropriate

header information and are

formatted properly.

Applications must request the cFE

to create their Software Bus pipes.

cFE Applications must

inform cFE which SB

Messages they expect to

receive and on which pipe.

This is referred to as a SB

Message Subscription.

cFE Applications must

register their tables with the

cFE. The appropriate

validation function for each

table is included as part of

the registration. Following

registration, tables must be

initialized, either from a file

or from memory.

cFE Flight Software Flight Software Application Developers Guide

 29

 CFE_TBL_SRC_FILE, QQ_FIRST_TBL_DEFAULT_FILE);

 }

 Status = CFE_TBL_Register(&QQ_AppData.TblHandles[1], "MySecondTable",

 sizeof(QQ_MySecondTable_t), CFE_TBL_OPT_DEFAULT,

 QQ_SecondTblValidationFunc);

 if (Status != CFE_SUCCESS)

 {

 CFE_ES_WriteToSysLog("QQ App: Error Registering Table 2, RC = 0x%08X\n", Status);

 return (Status);

 }

 else

 {

 Status = CFE_TBL_Load(QQ_AppData.TblHandles[1], CFE_TBL_SRC_FILE,

QQ_SECOND_TBL_DEFAULT_FILE);

 }

 /*

 ** Create and manage the Critical Data Store

 */

 Status = CFE_ES_RegisterCDS(&QQ_AppData.CDSHandle, sizeof(QQ_CdsDataType_t), QQ_CDS_NAME);

 if(Status == CFE_SUCCESS)

 {

 /*

 ** Setup Initial contents of Critical Data Store

 */

 CFE_ES_CopyToCDS(QQ_AppData.CDSHandle, &QQ_AppData.WorkingCriticalData);

 }

 else if(Status == CFE_ES_CDS_ALREADY_EXISTS)

 {

 /*

 ** Critical Data Store already existed, we need to get a copy

 ** of its current contents to see if we can use it

 */

 Status = CFE_ES_RestoreFromCDS(&QQ_AppData.WorkingCriticalData, QQ_AppData.CDSHandle);

 if(Status == CFE_SUCCESS)

 {

 /*

 ** Perform any logical verifications, if necessary, to validate data

 */

 CFE_ES_WriteToSysLog("QQ App CDS data preserved\n");

 }

 else

 {

 /*

 ** Restore Failied, Perform baseline initialization

 */

 QQ_AppData.WorkingCriticalData.DataPtOne = 1;

 QQ_AppData.WorkingCriticalData.DataPtTwo = 2;

 QQ_AppData.WorkingCriticalData.DataPtThree = 3;

 QQ_AppData.WorkingCriticalData.DataPtFour = 4;

 QQ_AppData.WorkingCriticalData.DataPtFive = 5;

 CFE_ES_WriteToSysLog("Failed to Restore CDS. Re-Initialized CDS Data.\n");

 }

 }

 else

 {

 /*

 ** Error creating my critical data store

 */

 CFE_ES_WriteToSysLog("QQ: Failed to create CDS (Err=0x%08x)", Status);

 return(Status);

 }

 /*

cFE Flight Software Flight Software Application Developers Guide

 30

 ** Application startup event message.

 */

 CFE_EVS_SendEvent(QQ_INIT_INF_EID,

 CFE_EVS_INFORMATION,

 "QQ: Application Initialized");

 return(CFE_SUCCESS);

} /* End of QQ_AppInit() */

/* */

/* */

/* QQ_AppPipe() -- Process command pipe message */

/* */

/* */

void QQ_AppPipe(CFE_SB_MsgPtr_t msg)

{

 CFE_SB_MsgId_t MessageID;

 uint16 CommandCode;

 MessageID = CFE_SB_GetMsgId(msg);

 switch (MessageID)

 {

 /*

 ** Housekeeping telemetry request...

 */

 case QQ_SEND_HK_MID:

 QQ_HousekeepingCmd(msg);

 break;

 /*

 ** QQ ground commands...

 */

 case QQ_CMD_MID:

 CommandCode = CFE_SB_GetCmdCode(msg);

 switch (CommandCode)

 {

 case QQ_NOOP_CC:

 QQ_NoopCmd(msg);

 break;

 case QQ_RESET_CC:

 QQ_ResetCmd(msg);

 break;

 case QQ_PROCESS_CC:

 QQ_RoutineProcessingCmd(msg);

 break;

 default:

 CFE_EVS_SendEvent(QQ_CC1_ERR_EID, CFE_EVS_ERROR,

 "Invalid ground command code: ID = 0x%X, CC = %d",

 MessageID, CommandCode);

 break;

 }

 break;

 default:

 CFE_EVS_SendEvent(QQ_MID_ERR_EID, CFE_EVS_ERROR,

 "Invalid command pipe message ID: 0x%X",

 MessageID);

 break;

 }

An Event Message is issued to

notify operators that the task has

initialized.

cFE Software Bus functions are

used to extract the Message ID.

This way, the cFE is not required

to use the same message header

structure for all missions and

platforms.

Similarly, cFE Software Bus

functions are used to extract the

Command Code from the SB

Message header.

cFE Flight Software Flight Software Application Developers Guide

 31

 return;

} /* End of QQ_AppPipe() */

/* */

/* */

/* QQ_HousekeepingCmd() -- On-board command (HK request) */

/* */

/* */

void QQ_HousekeepingCmd(CFE_SB_MsgPtr_t msg)

{

 uint16 ExpectedLength = sizeof(QQ_NoArgsCmd_t);

 uint16 i;

 /*

 ** Verify command packet length...

 */

 if (QQ_VerifyCmdLength(msg, ExpectedLength))

 {

 /*

 ** Get command execution counters...

 */

 QQ_AppData.HkPacket.CmdCounter = QQ_AppData.CmdCounter;

 QQ_AppData.HkPacket.ErrCounter = QQ_AppData.ErrCounter;

 /*

 ** Send housekeeping telemetry packet...

 */

 CFE_SB_TimeStampMsg((CFE_SB_Msg_t *) &QQ_AppData.HkPacket);

 CFE_SB_SendMsg((CFE_SB_Msg_t *) &QQ_AppData.HkPacket);

 /** Manage any pending table loads, validations, etc. */

 for (i=0; i<QQ_NUM_TABLES; i++)

 {

 CFE_TBL_Manage(QQ_AppData.TblHandles[i]);

 }

 /*

 ** This command does not affect the command execution counter...

 */

 }

 return;

} /* End of QQ_HousekeepingCmd() */

/* */

/* */

/* QQ_NoopCmd() -- QQ ground command (NO-OP) */

/* */

/* */

void QQ_NoopCmd(CFE_SB_MsgPtr_t msg)

{

 uint16 ExpectedLength = sizeof(QQ_NoArgsCmd_t);

 /*

 ** Verify command packet length...

 */

 if (QQ_VerifyCmdLength(msg, ExpectedLength))

 {

Sending an SB Message to the

cFE is essentially a three step

process. First, the contents of

the message are stored in a

data structure that has been

initialized (see TaskInit

above). Second, the Message

is time stamped with the

appropriate mission time

stamp, and finally, the

Message is given to the

Software Bus for routing to

subscribers pipes.

Owners of each table must perform

a periodic check for table updates

for validation requests. The

simplest method is to use the

CFE_TBL_Mange function.

Processing received command

messages are typically done in

three steps. The first step is

validation of the command. In

these examples, this is

accomplished by checking to see if

the packet length matches the

expected packet length. The

second step is performing the

action requested by the command.

The last step is notification of the

operator that the command has

succeeded. In this example, this is

accomplished with an Event

Message.

cFE Flight Software Flight Software Application Developers Guide

 32

 QQ_AppData.CmdCounter++;

 CFE_EVS_SendEvent(QQ_NOOP_INF_EID, CFE_EVS_INFORMATION,

 "No-op command");

 }

 return;

} /* End of QQ_NoopCmd() */

/* */

/* */

/* QQ_ResetCmd() -- QQ ground command (reset counters) */

/* */

/* */

void QQ_ResetCmd(CFE_SB_MsgPtr_t msg)

{

 uint16 ExpectedLength = sizeof(QQ_NoArgsCmd_t);

 /*

 ** Verify command packet length...

 */

 if (QQ_VerifyCmdLength(msg, ExpectedLength))

 {

 QQ_AppData.CmdCounter = 0;

 QQ_AppData.ErrCounter = 0;

 CFE_EVS_SendEvent(QQ_RESET_INF_EID, CFE_EVS_INFORMATION,

 "Reset Counters command");

 }

 return;

} /* End of QQ_ResetCmd() */

/* */

/* */

/* QQ_RoutineProcessingCmd() -- QQ ground command (Process command)*/

/* */

/* */

void QQ_RoutineProcessingCmd(CFE_SB_MsgPtr_t msg)

{

 uint16 ExpectedLength = sizeof(QQ_NoArgsCmd_t);

 QQ_MyFirstTable_t *MyFirstTblPtr;

 QQ_MySecondTable_t *MySecondTblPtr;

 /*

 ** Verify command packet length

 */

 if (QQ_VerifyCmdLength(msg, ExpectedLength))

 {

 /* Obtain access to table data addresses */

 CFE_TBL_GetAddress((void *)&MyFirstTblPtr,

 QQ_AppData.TblHandles[0]);

 CFE_TBL_GetAddress((void *)&MySecondTblPtr,

 QQ_AppData.TblHandles[1]);

 /* Perform routine processing accessing table data via pointers */

 /* . */

 /* . */

 /* . */

Accessing table data requires a

combination of GetAddress and

ReleaseAddress. GetAddress

allows the owner of the table (i.e.

the Application that registered the

table) or the Application that is

sharing the table to access the table

data. Applications must

ReleaseAddress in order for Table

Services to be able to manipulate

the table.

cFE Flight Software Flight Software Application Developers Guide

 33

 /* Once completed with using tables, release addresses */

 CFE_TBL_ReleaseAddress(QQ_AppData.TblHandles[0]);

 CFE_TBL_ReleaseAddress(QQ_AppData.TblHandles[1]);

 /*

 ** Update Critical variables. These variables will be saved

 ** in the Critical Data Store and preserved on a processor reset.

 */

 QQ_AppData.WorkingCriticalData.DataPtOne++;

 QQ_AppData.WorkingCriticalData.DataPtTwo++;

 QQ_AppData.WorkingCriticalData.DataPtThree++;

 QQ_AppData.WorkingCriticalData.DataPtFour++;

 QQ_AppData.WorkingCriticalData.DataPtFive++;

 CFE_EVS_SendEvent(QQ_PROCCESS_INF_EID,CFE_EVS_INFORMATION,

 "QQ: Routine Processing Command");

 }

 return;

} /* End of QQ_RoutineProcessingCmd() */

/* */

/* */

/* QQ_VerifyCmdLength() -- Verify command packet length */

/* */

/* */

boolean QQ_VerifyCmdLength(CFE_SB_MsgPtr_t msg, uint16 ExpectedLength)

{

 boolean result = TRUE;

 uint16 ActualLength = CFE_SB_GetTotalMsgLength(msg);

 /*

 ** Verify the command packet length...

 */

 if (ExpectedLength != ActualLength)

 {

 CFE_SB_MsgId_t MessageID = CFE_SB_GetMsgId(msg);

 uint16 CommandCode = CFE_SB_GetCmdCode(msg);

 CFE_EVS_SendEvent(QQ_LEN_ERR_EID, CFE_EVS_ERROR,

 "Invalid cmd pkt: ID = 0x%X, CC = %d, Len = %d",

 MessageID, CommandCode, ActualLength);

 result = FALSE;

 QQ_AppData.ErrCounter++;

 }

 return(result);

} /* End of QQ_VerifyCmdLength() */

/* */

/* */

/* QQ_FirstTblValidationFunc() -- Verify contents of First Table */

/* buffer contents */

/* */

/* */

int32 QQ_FirstTblValidationFunc(void *TblData)

{

 int32 ReturnCode = CFE_SUCCESS;

 QQ_MyFirstTable_t *TblDataPtr = (QQ_MyFirstTable_t *)TblData;

A helper function that

validates the length of a

received command message.

Note the use of Software Bus

API calls to extract

information from the SB

Message header.

cFE Flight Software Flight Software Application Developers Guide

 34

 if (TblDataPtr->TblElement1 > QQ_TBL_ELEMENT_1_MAX)

 {

 /* First element is out of range, return an appropriate error code */

 ReturnCode = QQ_TBL_1_ELEMENT_OUT_OF_RANGE_ERR_CODE;

 }

 return ReturnCode;

}

/* */

/* */

/* QQ_SecondTblValidationFunc() -- Verify contents of Second Table */

/* buffer contents */

/* */

/* */

int32 QQ_SecondTblValidationFunc(void *TblData)

{

 int32 ReturnCode = CFE_SUCCESS;

 QQ_MySecondTable_t *TblDataPtr = (QQ_MySecondTable_t *)TblData;

 if (TblDataPtr->TblElement3 > QQ_TBL_ELEMENT_3_MAX)

 {

 /* Third element is out of range, return an appropriate error code */

 ReturnCode = QQ_TBL_2_ELEMENT_OUT_OF_RANGE_ERR_CODE;

 }

 return ReturnCode;

}

/************************/

/* End of File Comment */

/************************/

4.6 Avoid Inter-Task Dependencies

The Developer must separate those items that represent interface controlled data structures and values from other

aspects of their software into unique header files. These files are then available to other Applications at compile

time and act as the ICD between two or more Applications. When an Application is modified, it should be the only

Application that needs to be recompiled for a change unless the change affects the published interface to other

Applications.

Examples of items that must be shared with other Applications include Message IDs and Message data structures.

Examples of items that do not need to be shared with other Applications include Table IDs, Table data structures,

Event IDs and Pipe IDs.

5 Executive Services Interface

As seen in the diagram in Section 4.1, the cFE Executive Services is a layer that incorporates the OS Abstraction

Layer (OS API). The OS API was originally developed with the intent to provide a common interface for all

Applications regardless of which RTOS the Application was running on. The OS API was also designed to have as

small a footprint as possible so that it could be implemented on a wide range of processors. The cFE has been

designed to take advantage of this OS Abstraction Layer to improve its portability from one RTOS to the next.

Since the cFE provides additional Executive Services that are not available with a standard RTOS, it stands between

the OS API and the cFE Application. However, since duplicating the OS API in the cFE would add an unnecessary

level in many cases, the OS API is also visible to cFE Applications. Therefore, a developer needs to be cognizant

cFE Flight Software Flight Software Application Developers Guide

 35

that some of the API calls will either start with “CFE_ES_”, because they are a member of the cFE Executive

Services API, or they will start with “OS_” because they are a part of the OS Abstraction Layer. If there are two

functions that appear to behave similarly and one is an “OS_” function and the other is a “CFE_ES_” function, the

Developer should use the “CFE_ES_” function. Additional information about the OS API can be found in the OS

Abstraction Layer Library document.

5.1 Application Registration

All cFE Applications must register immediately with ES when started. This is accomplished with the

CFE_ES_RegisterApp function and it should be the first function called by a cFE Application’s main task.

5.2 Application Names and IDs

The Executive Services maps Application names to Application IDs which are numeric. This simplifies the

identification of Applications within the processor (by the numeric) but retains the human readable Application

names for situations when the information is to be presented to an operator. Translating one reference of an

Application to the other is accomplished with one of the following functions: CFE_ES_GetAppIDByName and

CFE_ES_GetAppName. The first will return the numeric Application ID when given an Application name and the

latter will give the Application name when given the Application ID. If a Task needs to obtain its own Application

ID if can call CFE_ES_GetAppID. For this function, it is important to remember that an Application’s main task

and all of its children tasks are considered to be the same Application. Therefore, no matter whether the call is made

from the Main Task or one of the Child Tasks, the Application ID returned would be the same.

5.3 Child Task Control

As mentioned in section 4.3, cFE Applications can be multi-threaded. Each thread is referred to as a Task. The

thread that is started when the Application is loaded and run is referred to as the Main Task. Any additional threads

that are spawned by this thread are referred to as Child Tasks. There are a handful of functions provided by the

Executive Services for controlling Child Tasks. The first is CFE_ES_CreateChildTask. This function spawns

a Child Task that is “owned” by the Main Task. Each of the Child Tasks must then register with ES via the

CFE_ES_RegisterChildTask function. The remaining functions, CFE_ES_DeleteChildTask,

CFE_ES_SuspendChildTask and CFE_ES_ResumeChildTask can control the existence and execution of

the Child Task. All of these functions require the task ID that is returned by the CFE_ES_CreateChildTask

function in order to identify the Child Task.

5.4 Application Start-Up Types

Upon startup, an Application may need to know which type of restart it is undergoing. As part of its initialization,

an Application should call CFE_ES_GetAppRestartType to determine the type of restart it is undergoing. The

return value of this function can be any one of the following three values:

CFE_ES_APP_POWERON_RESET – Indicates the Application is being started for the first time since

power has been applied to the processor. This is different from a cold reset in that hardware may

need complete re-initialization before use. An example would be memory error detection and

correction (EDAC) circuitry that could generate an exception if memory is accessed before it is

initialized.

cFE Flight Software Flight Software Application Developers Guide

 36

CFE_ES_APP_COLD_RESET – Indicates the Application has been completely reloaded and restarted.

However, the processor board has already undergone its power on reset so some hardware may

have already undergone initialization.

CFE_ES_APP_WARM_RESET – Indicates the Application has had its code segment refreshed but the

data segment has been left untouched. This can be useful when an Application is required to

maintain state information through an Application restart in critical situations. Examples of this

are attitude knowledge, Kalman filter covariances, etc. that require a fair amount of time to obtain.

An example of the use of this function is shown below:

void QQ_AppInit(void)

{

 /*

 ** Initialize data that is not critical

 */

 QQ_InitNonCriticalData();

 if (CFE_ES_GetAppRestartType() != CFE_ES_APP_WARM_RESET)

 {

 /* Initialize Remaining Application Variables */

 QQ_InitCriticalData();

 /* Notify ground that task has been cold started */

 CFE_EVS_SendEvent(QQ_COLD_START_EID, CFE_EVS_INFORMATION,

 "Cold Start Performed");

 }

 else

 {

 /* Notify ground that task has assumed valid data */

 CFE_EVS_SendEvent(QQ_WARM_START_EID, CFE_EVS_INFORMATION,

 "Warm Start Performed");

 }

 return;

} /* End of QQ_AppInit() */

5.5 Shared Libraries

The cFE contains support for shared libraries. For the current version of the cFE, the shared libraries must be loaded

on cFE startup (see the cFE Deployment Guide on how to modify the cfe_es_startup.scr in order to load a shared

library at startup). The capability to add and remove shared libraries during runtime will be available in a later

build.

An example of a shared library is found below:

FILE: tst_lib.h

#include "common_types.h"

#include "cfe_error.h"

/*

** Defines

*/

cFE Flight Software Flight Software Application Developers Guide

 37

/*

** Structure Typedefs

*/

/*

** Functions

*/

/*

** Required library initialization function

*/

int32 TST_LIB_Init (void);

/*

** Library functions

*/

int32 TST_LIB_FunctionOne (int32 test_param1, int32 test_param2);

#endif /* _tst_lib_ */

FILE: testlib.c

int32 TST_LIB_Init(void)

{

 int32 status;

 OS_printf("TST_LIB Initializing\n");

 status = CFE_SUCCESS;

 return(status);

} /* End of TST_LIB_Init */

int32 TST_LIB_FunctionOne(int32 test_param1, int32 test_param2)

{

 int32 status;

 status = CFE_SUCCESS;

 OS_printf("TST_LIB FunctionOne: test_param1 = %d, test_param2 = %d\n",(int)test_param1, (int)test_param2);

 return(status);

} /* End of TST_LIB_Init */

Provides an entry point for

the shared library. All

shared libraries must have an

init routine

cFE Flight Software Flight Software Application Developers Guide

 38

5.6 Device Drivers

As previously discussed in section 4.2, “Hardware Servicing” Applications are required to register device driver

function(s) with the Executive Services. This is accomplished by populating the CFE_ES_DevDriver_t data

structure, shown below, with the appropriate function pointers and then calling CFE_ES_RegisterDriver.

typedef struct

{

 uint32 interruptID;

 void *intInitFuncPtr;

 void *intHWHandshakeFuncPtr;

 void *intIsrFuncPtr;

} CFE_ES_ DevDriver_t;

The definition of each item in the data structure is as follows:

interruptID – the interrupt level number the driver is to be associated with.

intInitFuncPtr – a pointer to a function that will be called to initialize the hardware.

intHWHandshakeFuncPtr – a pointer to a function that will be called whenever the specified

interrupt occurs. This function will be executing in an ISR context and will not be allowed to

make any calls that could lead to a blocking situation. Activities requiring precise timing or

hardware handshaking should occur in this function.

intIsrFuncPtr – a pointer to a function that will be called whenever the specified interrupt occurs.

This function will be executing in a task context and will be allowed to make any type of system

call. Activities that require operating system or cFE API calls that could block must occur in this

function.

All function pointers must conform to the following function prototype:

void intInitFuncPtr(void);

The CFE_ES_RegisterDriver function provides a DriverID that can be used in later API calls.

Once an Application has completed its need for a particular hardware device, it can unload the driver with the

CFE_ES_UnloadDriver function call.

5.7 Obtaining OS and Platform Information

There are numerous function related to obtaining OS and platform information. A number of these functions are not

necessary for the cFE Application Developer. The functions that are the most useful to the Application Developer

are as follows:

OS_BSPGetSpacecraftID returns an identifier associated with a specific spacecraft. This may be useful when

the same software may be executing on multiple spacecraft as part of a multi-spacecraft mission.

OS_InfoGetProcessorID returns an identifier associated with a specific processor. This may be useful when

the same software may be executing on multiple processors on the same spacecraft.

cFE Flight Software Flight Software Application Developers Guide

 39

For understanding and compensating for the processor timer on a particular platform, the following two functions

provide important information.

OS_Milli2Ticks converts a given number of milliseconds into the appropriate number of processor clock ticks

for a given amount of time. The Developer should never hard-code a time related value in clock ticks. When the

code is ported to another processor, it is important for any time values to automatically adjust appropriately.

OS_InfoGetTicks returns the number of microseconds per operating system clock tick. This can also be used to

calculate the appropriate number of system clock ticks for a specific delta time. An example can be seen below:

uint32 ConvertSecs2Ticks(uint32 Seconds)

{

 uint32 NumOfTicks,TickDurationInMicroSec;

 TickDurationInMicroSec = OS_InfoGetTicks();

 NumOfTicks =

 ((Seconds * 1000000) + TickDurationInMicroSec - 1) / TickDurationInMicroSec;

 return(NumOfTicks);

}

Finally, if an Application needs to understand what kind of reset the cFE has just undergone, it can be obtained

through the TBD function. This information may be critical for Applications that have data in a Critical Data Store,

access hardware directly, manage memory, etc. The TBD function can return one of three restart level indicators as

defined below:

TBD

The Developer should use CFE_ES_GetAppID, described above, instead of OS_GetTaskID.

5.8 OS Queues, Semaphores and Mutexes

5.8.1 Queues

Developers are discouraged from using the OS_QueueCreate, OS_QueueGet and OS_QueuePut functions.

These functions are a lower level duplication of the Software Bus Services pipes. Their usage limit the visibility

into data messages being passed between Applications and they would also impose a requirement that two

Applications must reside on the same processor. The only exception to this rule might be communication between a

Main Task and its Child Tasks.

5.8.2 Binary Semaphores

Binary semaphores can be used for Application synchronization. A binary semaphore is essentially a flag that is

available or unavailable. When an Application takes a binary semaphore, using the OS_BinSemTake function, the

outcome depends on whether the semaphore is available or unavailable at the time of the call. If the semaphore is

available, then the semaphore becomes unavailable and the Application continues executing immediately. If the

semaphore is unavailable, the Application is put on a queue of blocked Applications and enters a pending state

waiting for the availability of the semaphore.

When an Application gives a binary semaphore, using the OS_BinSemGive function, the outcome depends on

whether the semaphore is available or unavailable at the time of the call. If the semaphore is already available,

cFE Flight Software Flight Software Application Developers Guide

 40

giving the semaphore has no effect at all. If the semaphore is unavailable and no Application is waiting to take it,

then the semaphore becomes available. If the semaphore is unavailable and one or more Applications are pending on

its availability, then the first Application in the queue of pending Applications is unblocked, and the semaphore is

left unavailable.

Each semaphore is labeled by an integer ID, which is defined in the header file osids.h by a macro of the form

xxx_SEM_ID. To add a new semaphore to a processor, one must modify the osids.h file and osobjtab.c file

for the processor.

5.8.2.1 Binary Semaphore Functions

There are two options for pending on a semaphore:

int32 OS_BinSemTake(uint32 xxx_SEM_ID);

which waits indefinitely for a semaphore to become available, and

int32 OS_BinSemTimedWait(uint32 xxx_SEM_ID , uint32 timeout_in_milliseconds);

which waits for a specified timeout period and quits if the semaphore has not become available. Both functions

return a status code with these possible values:

OS_SUCCESS — semaphore was obtained

OS_SEM_TIMEOUT — semaphore was not obtained within specified timeout

OS_SEM_FAILURE — error (such as invalid semaphore ID)

An application should always check the status code to verify that the semaphore was obtained.

A semaphore is given by using this function:

int32 OS_BinSemGive(uint32 xxx_SEM_ID);

The function returns a status code indicating success (OS_SUCCESS) or failure (OS_SEM_FAILURE). An

application should check the status code and report a failure with an event message since the OS functions do not

report errors themselves.

5.8.3 Mutex Semaphores

Mutex semaphores are used to provide “mutual exclusion” for a shared resource in order to protect against several

Applications using the resource simultaneously. The major issue associated with sharing resources is priority

inversion; the mutex semaphore provides a means for dealing with this problem.

A mutex semaphore is similar to a binary semaphore, but is used by Applications in a different way. When any

Application needs to use a shared resource, it must follow a specific protocol:

Take the mutex, using OS_MutSemTake.

Use the resource.

Release the mutex, using OS_MutSemGive.

cFE Flight Software Flight Software Application Developers Guide

 41

The operating system allows only one Application to hold the mutex at one time. If an Application tries to take a

mutex that is not in use, then it acquires the mutex immediately. If the mutex is already in use, then the Application

pends until the current holder of the mutex has released it.

The code that an Application executes between the Take and Give functions is said to be protected by the mutex.

This code should be written in a structured way so that it is immediately clear what is being done in the protected

region. The Take and Give functions should have the same level of indentation, and there should be exactly one

entry point and one exit point to the protected region.

int32 OS_MutSemTake(uint32 xxx_MUT_ID);

 /* protected region */

 Use the resource...

int32 OS_MutSemGive(uint32 xxx_MUT_ID);

The code in the protected region should be kept as short as possible; any calculations that can be performed before

entering the protected region should be done so. An Application should not hold a mutex any longer than necessary,

since by doing so it may prevent a higher-priority Application from executing immediately. In particular, an

Application should avoid performing any operations in the protected region that may cause the Application to pend,

such as receiving a Software Bus packet, taking a semaphore, or taking another mutex. Any software design that

involves pending in a protected region must be reviewed by the entire development group since it can affect the

timing of the entire system.

Each mutex is labeled by an integer ID, which is defined in the header file osids.h by a macro of the form

xxx_MUT_ID. To add a new mutex to a processor, one must modify the osids.h file and osobjtab.c file for

the processor.

5.8.3.1 Mutex Functions

An application takes a mutex by calling:

int32 OS_MutSemTake(uint32 xxx_MUT_ID);

and gives it by calling:

int32 OS_MutSemGive(uint32 xxx_MUT_ID);

Both functions return a status code with these possible values:

OS_SUCCESS — semaphore was obtained

OS_MUT_FAILURE — error (such as invalid mutex ID)

There is no function for taking a mutex with a timeout limit since mutexes are assumed to be available within a short

time.

5.9 Interrupt Handling

The following function specifies a handler for an interrupt. This is called in the initialization function for an

interrupt handler.

cFE Flight Software Flight Software Application Developers Guide

 42

OS_IntAttachHandler(uint32 InterruptNumber, void *InterruptHandler, int32 Param);

The possible values of InterruptNumber are defined in hardware-specific header files (osplatform.h and

osprocessor.h). The InterruptHandler is a function that will be called when the interrupt is detected and

should have a prototype that looks like the following:

void InterruptHandler(void);

The Param is a value that may be passed to the interrupt handler in some operating systems; it is currently not used

and should be set to 0.

The interrupt handler must not invoke any cFE or OS API function calls that could cause it to block.

The following functions can be used to enable and disable all interrupts. These should be used only when servicing

a hardware device. For protecting a software variable against modification by several applications, one should use a

mutex instead.

status = OS_IntEnableAll();

status = OS_IntDisableAll();

There are similar functions for enabling/disabling specific interrupts. These are OS_IntEnable and

OS_IntDisable. These functions require an interrupt number to identify the interrupt to be enabled or disabled.

To acknowledge the interrupt has been serviced, the interrupt service routine must call OS_IntAck.

5.10 Exceptions

Similar to interrupt service routines, handlers can be associated with specific exceptions. The following function

specifies a handler for an exception:

OS_ExcAttachHandler(uint32 ExceptionNumber, void *ExceptionHandler, int32 Param);

The ExceptionHandler is a function that will be called when the exception is detected and should have a

prototype that looks like the following:

void ExceptionHandler(int32 Param);

There are addition functions for enabling/masking and disabling/unmasking specific exceptions. These are as

follows:

OS_ExcEnable(uint32 ExceptionNumber);

OS_ExcDisable(uint32 ExceptionNumber);

5.11 Floating Point Processor Exceptions

In addition to the exception handlers identified above, a similar paradigm exists for handling floating point processor

exceptions. The following function specifies a handler for an FPU exception:

OS_FPUExcAttachHandler(uint32 ExceptionNumber, void *ExceptionHandler, int32 Param);

cFE Flight Software Flight Software Application Developers Guide

 43

The ExceptionHandler is a function that will be called when the exception is detected and should have a

prototype that looks like the following:

void ExceptionHandler(int32 Param);

There are addition functions for enabling/masking and disabling/unmasking specific exceptions. These are as

follows:

OS_FPUExcEnable(uint32 ExceptionNumber);

OS_FPUExcDisable(uint32 ExceptionNumber);

5.12 Memory Utilities

The Operating System provides several functions for accessing memory locations. The Developer must use these

functions to ensure that the hardware characteristics associated with each memory address are properly taken care

of. For example, attempting to write to EEPROM using the standard C function memcpy will fail. Using

OS_MemCpy will succeed because the EEPROM will be configured for writing before the copy is performed.

5.12.1 Memory Copy Functions

OS_MemCpy is equivalent to the standard C function memcpy, but is guaranteed to handle all hardware-specific

requirements correctly:

OS_MemCpy(void *DestPtr, void *SrcPtr, size_t NumBytes);

The function copies the specified number of bytes from SrcPtr to DestPtr. The memory areas designated by

the SrcPtr and DestPtr cannot overlap. If they do, the results are unknown.

OS_MemSet is equivalent to the standard C function memset, but is guaranteed to handle all hardware-specific

requirements correctly:

OS_MemSet(void *DestPtr, int ByteValue, size_t NumBytes);

The function copies ByteValue into the specified number of bytes, NumBytes, at DestPtr.

5.12.2 Memory Read/Write Functions

The following set of functions reads and writes values of fixed sizes at specified physical addresses. These

functions are intended for accessing hardware registers or memory devices with nonstandard properties. The

EEPROM functions perform whatever operations are required for enabling the modification of EEPROM and then

verify that the modification was successful.

OS_MemRead8 (uint32 MemoryAddress, uint8 *Value);

OS_MemWrite8 (uint32 MemoryAddress, uint8 Value);

OS_EepromWrite8 (uint32 MemoryAddress, uint8 Value);

OS_MemRead16 (uint32 MemoryAddress, uint16 *Value);

OS_MemWrite16 (uint32 MemoryAddress, uint16 Value);

OS_EepromWrite16 (uint32 MemoryAddress, uint16 Value);

cFE Flight Software Flight Software Application Developers Guide

 44

OS_MemRead32 (uint32 MemoryAddress, uint32 *Value);

OS_MemWrite32 (uint32 MemoryAddress, uint32 Value);

OS_EepromWrite32 (uint32 MemoryAddress, uint32 Value);

The functions return one of the following status values:

OS_SUCCESS — successful

OS_ERROR_ADDRESS_MISALIGNED — address is misaligned

OS_ERROR_TIMEOUT — EEPROM modification was not verified within a timeout limit

The following functions are similar to the memory read/write functions except they are designed for access of I/O

port addresses.

OS_PortRead8 (uint32 MemoryAddress, uint8 *Value);

OS_PortWrite8 (uint32 MemoryAddress, uint8 Value);

OS_PortRead16 (uint32 MemoryAddress, uint16 *Value);

OS_PortWrite16 (uint32 MemoryAddress, uint16 Value);

OS_PortRead32 (uint32 MemoryAddress, uint32 *Value);

OS_PortWrite32 (uint32 MemoryAddress, uint32 Value);

The functions return one of the following status values:

OS_SUCCESS — successful

OS_ERROR_ADDRESS_MISALIGNED — address is misaligned

5.12.3 Critical Data Store

When an Application needs to store a small amount of data that will survive a cFE Reset, the cFE provides an area

of memory called a Critical Data Store (CDS). This is an area of memory which, depending on mission parameters

and the chosen platform, is not modified by the cFE during a reset. It could be memory located off-board, for

example in the bulk memory device, or it may just be an area of memory that is left untouched by the cFE. In order

to use the CDS, the Application must request a block of memory large enough to hold the parameters in question.

This is accomplished by calling the CFE_ES_RegisterCDS. If sufficient memory is present, then the cFE will

allocate the block to the calling Application and provide a pointer to the handle associated with the allocated

memory.

The intention is for an Application to use a working copy of the CDS data during Application execution.

Periodically, the Application is then responsible for calling CFE_ES_CopyToCDS API to copy the working image

back into the CDS The cFE then computes a data integrity value for the block of data and stores it in the allocated

CDS block. It should be noted that although the cFE will validate the integrity of the contents of the Application’s

CDS, the Application is responsible for determining whether the contents of a CDS Block are still logically valid.

If the Application is recovering from a re-start and has discovered its CDS is still present, it can call an API to copy

the contents of the CDS into a working image in the Application.

An example of how to use the CDS is shown below:

"qq_task.h":

/* Define the structure for the data stored in my Critical Data Store */

cFE Flight Software Flight Software Application Developers Guide

 45

typedef struct

{

 uint32 MyFirstDataPt; /* Variables that are stored in my CDS */

 uint32 MySecDataPt;

 .

 .

 .

} QQ_MyCDSDataType_t;

typedef struct

{

 .

 .

 .

 CFE_ES_CDSHandle_t MyCDSHandle;/* Handle to CDS memory block */

 QQ_MyCDSDataType_t WorkingCriticalData; /* Define a copy of */

 /* critical data that can be */

 /* used during Application */

 /* execution */

 .

 .

 .

} QQ_TaskData_t;

#define QQ_CDS_NAME "CDS"

cFE Flight Software Flight Software Application Developers Guide

 46

"qq_task.c":

QQ_TaskData_t QQ_TaskData;

int32 QQ_TaskInit(void)

{

 int32 Status = CFE_SUCCESS;

 uint32 CDSCrc;

 /* Create the Critical Data Store */

 Status = CFE_ES_RegisterCDS(&QQ_TaskData.MyCDSHandle,

 sizeof(QQ_MyCDSDataType_t),

 QQ_CDS_NAME);

 if (Status == CFE_ES_CDS_ALREADY_EXISTS)

 {

 /* Critical Data Store already existed, we need to get a */

 /* copy of its current contents to see if we can work use it */

 Status = CFE_ES_RestoreFromCDS(&QQ_MyCDSDataType_t,

QQ_TaskData.MyCDSHandle,

);

 if (Status == CFE_SUCCESS)

 {

 /* Perform any logical verifications, if necessary, */

 /* here to ensure the data is valid */

 }

 else

 {

 /* Perform baseline initialization */

 QQ_InitCriticalData();

 }

 Status = CFE_SUCCESS;

 }

 else if (Status == CFE_SUCCESS)

 {

 /* Perform baseline initialization */

 QQ_InitCriticalData();

 }

 else if (Status != CFE_SUCCESS)

 {

 /* Error creating my critical data store */

 CFE_EVS_SendEvent(QQ_CDS_ERR_EID, CFE_EVS_ERROR,

 "Failed to create CDS (Err=0x%08x)", Status);

 }

 /* Perform common initialization here */

 return Status;

}

cFE Flight Software Flight Software Application Developers Guide

 47

void QQ_TaskMain(void)

{

 int32 Status = CFE_SUCCESS;

 /*

 ** Enter performance log marker

 */

 CFE_ES_PerfLogEntry(QQ_MAIN_TASK_PERF_ID);

 /*

 ** Register task

 */

 CFE_ES_RegisterApp();

 /*

 ** Perform task specific initialization

 */

 Status = QQ_TaskInit();

 /*

 ** Main process loop (forever)

 */

 while (Status >= CFE_SUCCESS)

 {

 CFE_ES_PerfLogExit(QQ_MAIN_TASK_PERF_ID);

 /*

 ** Wait for the next Software Bus message

 */

 Status = CFE_SB_RcvMsg(&QQ_TaskData.MsgPtr,

 QQ_TaskData.CmdPipe,

 CFE_SB_PEND_FOREVER);

 CFE_ES_PerfLogEntry(QQ_MAIN_TASK_PERF_ID);

 if (Status == CFE_SUCCESS)

 {

 /*

 ** Process Software Bus message

 */

 QQ_TaskPipe(CFE_TBL_TaskData.MsgPtr);

 /* Update Critical Data Store */

 CFE_ES_CopyToCDS(QQ_TaskData.MyCDSHandle,

 &QQ_MyCDSDataType_t);

 }

 }

 CFE_EVS_SendEvent(CFE_TBL_EXIT_ERR_EID, CFE_EVS_ERROR,

 "QQ Task terminating, err = 0x%X", Status);

} /* End of QQ_TaskMain() */

cFE Flight Software Flight Software Application Developers Guide

 48

5.12.4 Standard CRC Calculations

There are many Applications that require a validation of received data or of data in memory. This is usually done by

a Cyclic Redundancy Check (CRC). There are many different ways to calculate a CRC. To help ensure that the

calculation is done consistently for a mission, the Executive Services provides an API for a CRC calculation that can

be used by all Applications on a mission. This function looks like the following:

uint32 CFE_ES_CalculateCRC(void *pData, uint32 DataLength, uint32 InputCRC, uint32 TypeCRC);

where pData points to the first byte of an array of bytes that are to have the CRC calculated on, DataLength

specifies the number of sequential bytes to include in the calculation, InputCRC is the initial value of the CRC and

TypeCRC identifies which of the standard CRC polynomials to be used. Currently, there are the following types

available:

CFE_ES_CRC_8 – an 8-bit additive checksum calculation that returns a 32-bit value

CFE_ES_CRC_16 – a 16-bit additive checksum calculation that returns a 32-bit value

CFE_ES_CRC_32 – a 32-bit additive checksum calculation that returns a 32-bit value

CFE_ES_DEFAULT_CRC – the mission specified default CRC calculation

Unless there is a specific interface with a specified CRC calculation, Applications must use the

CFE_ES_DEFAULT_CRC type.

5.13 File System Functions

The OS API provides a POSIX.1 standard interface for performing file system activities. These functions break

down into the following three categories: Device, Directory and File routines. Specific details of the API are not

covered here. They can be found at http://opensource.gsfc.nasa.gov/projects/osal/osal.php

5.13.1 Device Functions

OS API File System Function Brief Description
OS_mkfs Makes a file system on a specified device

OS_mount Mounts a file system to make it accessible

OS_unmount Unmounts a previously mounted file system

OS_chkfs Checks file system to ensure links are correct

5.13.2 Directory Functions

OS API File System Function Brief Description
OS_mkdir Makes a directory

OS_opendir Opens a directory

OS_closedir Closes a directory

OS_readdir Reads a directory

OS_rewinddir Resets a file pointer for a directory back to the beginning

OS_rmdir Deletes a directory

cFE Flight Software Flight Software Application Developers Guide

 49

5.13.3 File Functions

OS API File System Function Brief Description
OS_creat Creates a file

OS_open Opens a file

OS_close Closes a file

OS_read Reads a file

OS_write Writes to a file

OS_chmod Changes access rights to a file (may not be supported for an embedded

system)

OS_stat Obtains file statistics (time of last modification, size, etc)

OS_lseek Moves the file pointer to a particular location in the file

OS_remove Deletes a file

OS_rename Renames a file

5.14 System Log

The Executive Services provide a System Log. A System Log provides a mechanism of recording Events that

cannot be issued as Event Messages because the Event Service is either not running or is untrustworthy. An

example of items that fall into this category are Events related to the boot process. Developer’s should make use of

the Event Services CFE_EVS_SendEvent whenever possible. If, however, there is a significant Event that cannot

be recorded using the CFE_EVS_SendEvent function, then the Developer can use the

CFE_ES_WriteToSysLog function. This function has the following prototype:

int32 CFE_ES_WriteToSysLog(const char *pSpecString, ...);

The function acts just like a standard ‘C’ printf function and records the ASCII string to a buffer that is preserved

during resets.

5.15 Software Performance Analysis

A post processing tool has been developed which can be used to calculate CPU utilization, trace interrupts and track

task CPU usage. In order to use the performance analysis software, the software must be outfitted with entry and

exit calls provided by ES. These entry and exit markers are written to an area of memory where, upon command,

they are written to a file. A post processing tool has been developed which ingests the data and provides a graphical

display of the software timing based on the markers.

5.16 Memory Pool

The Executive Services mempool library provides simple block memory management API’s and functions for

pseudo dynamic memory allocations similar to malloc and dealloc. These functions allow applications to allocate

memory blocks of variable size and return them to a memory pool for use by other application functions without the

drawback of memory fragmentation. It is important to note that the mempool functions only manage a block of

memory provided to it by the application; mempool does not create the block itself. Because of this, the application

must insure that sufficient memory is provided to store the mempool management structures in addition to the

memory needed by the application. After initialization, mempool allocates fixed size blocks as requested from the

application memory block. As each block is requested mempool creates a 12 byte block descriptor with management

structures as well as space for the user application data (see Figure 5.1). The space for user data will be fixed in size

cFE Flight Software Flight Software Application Developers Guide

 50

and greater than or equal to the requested block size. For example, if the application requests 60 bytes, mempool

will return a pointer

Figure 5.1 Block Descriptor

to the 64 user accessible bytes with the 12 byte descriptor “hidden” on the front for a total memory allocation of 72

bytes. All of this memory is allocated from the application pool. Once this memory is allocated it can only be used

again for application requests of 64 bytes or less. It cannot be combined with other blocks to create larger memory

allocations.

With the call to CFE_ES_PoolCreate, mempool takes the memory block allocated by the application and creates one

168 byte management data structure as shown in Figure 5.2 starting at the address of the provided block. This

memory is not available to user applications. As an initialization check, mempool requires that the provided

application block contain enough space for one 168 byte management structure plus one 12 byte descriptor plus the

smallest fixed size block (8 bytes). This constraint allows mempool to create at least one user application block.

Once this structure is created the application can use the CFE_ES_GetPoolBuf and CFE_ES_PutPoolBuf calls to

allocate and de-allocate the memory blocks.

For additional design and user information related to the memory pool, refer to the cFE ES Users Guide.

Figure 5.2 shows an example set of structures for a pool of 2048 bytes and the allocation and deallocation of one

request for 12 bytes.

 uint16 CheckBits;

 uint16 Allocated;

 uint32 Size;

 uint32 *Next;

12 bytes

Block descriptor (BD)

cFE Flight Software Flight Software Application Developers Guide

 51

 uint32 * Start;

 uint32 Size;

 uint32 End;

 uint32 * Current;

 uint32 * SizeListPtr;

 uint32 * CntrListPtr;

 uint16 CheckErrCntr;

 uint16 RequestCntr;

 uint32 MutexId;

 uint32 * Size1Top;

 uint32 Size1Cntr;

 uint32 * Size2Top;

 uint32 Size2Cntr;

 uint32 * Size3Top;

 uint32 Size3Cntr;

 uint32 * Size4Top;

 uint32 Size4Cntr;

 uint32 * Size5Top;

 uint32 Size5Cntr;

 uint32 * Size6Top;

 uint32 Size6Cntr;

 uint32 * Size7Top;

 uint32 Size7Cntr;

 uint32 * Size8Top;

 uint32 Size8Cntr;

 uint32 * Size9Top;

 uint32 Size9Cntr;

 uint32 * Size10Top;

 uint32 Size10Cntr;

 uint32 * Size11Top;

 uint32 Size11Cntr;

 uint32 * Size12Top;

 uint32 Size12Cntr;

 uint32 * Size13Top;

 uint32 Size13Cntr;

 uint32 * Size14Top;

 uint32 Size14Cntr;

 uint32 * Size15Top;

 uint32 Size15Cntr;

 uint32 * Size16Top;

 uint32 Size16Cntr;

 uint32 * Size17Top;

 uint32 Size17Cntr;

168 bytes

 user data

and block

discriptors

 uint16 0x5a5a

 uint16 0xaaaa;

 uint32 16;

 uint32 *Next;

12 bytes user data

Returned

BufPtr = 0x200010B4

 uint32 * Start;

 uint32 Size;

 uint32 End;

 uint32 * Current;

 uint32 * SizeListPtr;

 uint32 * CntrListPtr;

 uint16 CheckErrCntr;

 uint16 RequestCntr;

 uint32 MutexId;

 uint32 * Size1Top;

 uint32 Size1Cntr;

 uint32 * Size2Top;

 uint32 Size2Cntr;

 uint32 * Size3Top;

 uint32 Size3Cntr;

 uint32 * Size4Top;

 uint32 Size4Cntr;

 uint32 * Size5Top;

 uint32 Size5Cntr;

 uint32 * Size6Top;

 uint32 Size6Cntr;

 uint32 * Size7Top;

 uint32 Size7Cntr;

 uint32 * Size8Top;

 uint32 Size8Cntr;

 uint32 * Size9Top;

 uint32 Size9Cntr;

 uint32 * Size10Top;

 uint32 Size10Cntr;

 uint32 * Size11Top;

 uint32 Size11Cntr;

 uint32 * Size12Top;

 uint32 Size12Cntr;

 uint32 * Size13Top;

 uint32 Size13Cntr;

 uint32 * Size14Top;

 uint32 Size14Cntr;

 uint32 * Size15Top;

 uint32 Size15Cntr;

 uint32 * Size16Top;

 uint32 Size16Cntr;

 uint32 * Size17Top;

 uint32 Size17Cntr;

168 bytes

MemPtr = 0x20001000

1880 bytes

user data

and block

discriptors

Size of block pool = 2048

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Don’t care
Don’t care

28 bytes used

0x200010A8 0x200010C4
0x200017FF 0x200017FF

Null

Null

unique #

MemHandle

(Temp storage)
(Temp storage)

MemPtr = 0x20001000

Size of block pool = 2048

 uint32 * Start;

 uint32 Size;

 uint32 End;

 uint32 * Current;

 uint32 * SizeListPtr;

 uint32 * CntrListPtr;

 uint16 CheckErrCntr;

 uint16 RequestCntr;

 uint32 MutexId;

 uint32 * Size1Top;

 uint32 Size1Cntr;

 uint32 * Size2Top;

 uint32 Size2Cntr;

 uint32 * Size3Top;

 uint32 Size3Cntr;

 uint32 * Size4Top;

 uint32 Size4Cntr;

 uint32 * Size5Top;

 uint32 Size5Cntr;

 uint32 * Size6Top;

 uint32 Size6Cntr;

 uint32 * Size7Top;

 uint32 Size7Cntr;

 uint32 * Size8Top;

 uint32 Size8Cntr;

 uint32 * Size9Top;

 uint32 Size9Cntr;

 uint32 * Size10Top;

 uint32 Size10Cntr;

 uint32 * Size11Top;

 uint32 Size11Cntr;

 uint32 * Size12Top;

 uint32 Size12Cntr;

 uint32 * Size13Top;

 uint32 Size13Cntr;

 uint32 * Size14Top;

 uint32 Size14Cntr;

 uint32 * Size15Top;

 uint32 Size15Cntr;

 uint32 * Size16Top;

 uint32 Size16Cntr;

 uint32 * Size17Top;

 uint32 Size17Cntr;

168 bytes

 user data

and block

discriptors

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

Null

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Don’t care
Don’t care

28 bytes used

0x200010C4

0x200017FF

MemPtr = 0x20001000

Size of block pool = 2048

 uint16 0x5a5a

 uint16 0xaaaa;

 uint32 16;

 uint32 *Next;

16 bytes user data

Null

CFE_ES_PoolCreate(HandlePtr, 0x20001000, 2048); CFE_ES_GetPoolBuf(BufPtr, 0x20001000, 12); CFE_ES_PutPoolBuf(0x20001000, 0x200010B4);

4 bytes extra

Figure 5-2 Example mempool allocations

6 Software Bus Interface

The Software Bus (SB) is an inter-application message-based communications system. The main objective of the

Software Bus is to provide a mechanism that allows subsystems to send packets without regard to where the packet

is routed and to receive packets without the knowledge of where the packet came from. The SB uses a message-

based subscription approach for establishing these communication paths. Any application may send an SB Message.

The SB will route the SB Message to all applications that have subscribed to receive the SB Message. In order to

receive an SB Message, an application must first create a Pipe on which to receive SB Messages.

The Software Bus’s message-based subscription supports one-to-one, one-to-many, and many-to-one routing

configurations. Multiple SB Message types can be routed to a single pipe. This is commonly done for applications

that need to process ground commands.

The SB provides different options for an application to check a pipe. Applications may Poll (non-blocking) a pipe

to check if a SB Message is present or it may Pend (blocking) on a pipe and have its execution suspended until an

SB Message arrives. An application may specify a Pend with timeout as well.

cFE Flight Software Flight Software Application Developers Guide

 52

The SB supports inter-processor communications. From an application perspective, multi-processor communication

is transparent.

6.1 Software Bus Terminology

6.1.1 Software Bus Messages

A Software Bus Message (SB Message) is a collection of data treated as a single entity. The format and the

definition of the content is uniquely identified with a 16 bit Message ID. The Message ID is used to identify what

the data is and who would like to receive it. Applications create SB Messages by allocating sufficient memory,

calling the SB API to initialize the contents of the SB Message and then storing any appropriate data into the

structure.

The Software Bus API hides the details of the message structure, providing routines such as CFE_SB_GetMsgTime

and CFE_SB_SetMsgTime in order to get and set a message time. The current version of the cFE supports only

CCSDS, however, the implementation of the message structure can be changed without affecting cFE Applications.

In the CCSDS implementation of the Software Bus, the upper 3 most significant bits of the 16 bit Message ID

Number shall be zero (b’000’). The Software Bus ignores the upper 3 most significant bits defined by CCSDS as

the Version Number. A non-zero value in the Version Number (3 bits) could result in duplicate Message IDs being

defined. For example, x01FF and x81FF are the same Message ID to the Software Bus.

6.1.2 Pipes

The destinations to which SB Messages are sent are called pipes. These are queues that can hold SB Messages until

they are read out and processed by an application. Each pipe can be read by only one application, but an application

may read more than one pipe. Applications can wait (either indefinitely or with a timeout), or perform a simple

check on their pipes to determine if an SB Message has arrived. Applications call the SB API to create their pipes

and to access the data arriving on those pipes.

6.1.2.1 Software Bus Message Limits and Overflows

The SB software places a limit on how many SB Messages may be present at each pipe. The number of SB

Messages at a pipe includes any SB Messages waiting in the pipe as well as the SB Message being processed by the

application. If the limit is reached for a pipe, then additional SB Messages sent to that pipe are rejected (this is

known as an overflow condition). However, SB Messages sent to other pipes continue to be processed normally.

This is to prevent a slowly responding application from interfering with the routing of SB Messages to other

applications.

The choice of buffer limits depends on the timing of both the sending and receiving applications.

6.1.3 Routing of Software Bus Messages

On a spacecraft using the cFE as the backbone of inter-Application communication, the routing of SB Messages

between Applications occurs seamlessly, even between processors. The SB automatically notifies all other

processors of SB Messages that the target processor wishes to receive. When applications send an SB Message to

the SB, the SB searches its Routing Table to identify where the SB Message should be sent and performs the

operations necessary to transfer the SB Message to the target pipe(s). Applications call the SB API to request

specified SB Message IDs to be routed to their previously created pipes.

cFE Flight Software Flight Software Application Developers Guide

 53

6.1.3.1 Sending Applications

Any software application is capable of sending SB Messages. However, interrupt and exception handlers shall not

send SB Messages since the SB service uses operating system calls that may be prohibited (i.e. – they may be

blocking calls) in such circumstances.

6.1.3.2 Receiving Applications

Any software application is capable of receiving SB messages. However, interrupt and exception handlers shall not

receive packets since the SB software uses operating system calls that may be prohibited (i.e. – they may be

blocking calls) in such circumstances.

An SB Message sent to a pipe is stored there until an application receives it (reads it out). SB Messages are received

in the order that they were sent to the pipe. After an application receives an SB Message, it can process it as needed.

The SB Message remains accessible to the application until the application starts to receive a new SB Message from

the pipe, at which point the old SB Message is discarded.

6.2 Creating Software Bus Pipes

During the initialization of an Application, the Application must notify the cFE of pipes that it requires to receive

data. The Application performs this request by calling the CFE_SB_CreatePipe API. The following is a brief

example of how this is accomplished:

FILE: qq_app.h

...

/* Define Input Pipe Characteristics */

#define QQ_PIPE_1_NAME “QQ_PIPE_1”

#define QQ_PIPE_1_DEPTH (10)

...

typedef struct

{

 ...

 CFE_SB_PipeId_t QQ_Pipe_1; /* Variable to hold Pipe ID (i.e.- Handle) */

 ...

} QQ_AppData_t;

FILE: qq_app.c

QQ_AppData_t; QQ_AppData;

...

{

 int32 Status;

 ...

 Status = CFE_SB_CreatePipe(&QQ_AppData.QQ_Pipe_1, /* Variable to hold Pipe ID */

 QQ_PIPE_1_DEPTH, /* Depth of Pipe */

 QQ_PIPE_1_NAME); /* Name of Pipe */

 ...

}

In this example, the Developer has created a Pipe, called “QQ_PIPE_1” with a depth of 10. The Pipe name shall be

at least one character and no more than 15 characters long. Developers should prefix their Pipe names with the

Application’s abbreviated name. Although the Pipe names will not collide with other Application Pipe names in the

cFE Flight Software Flight Software Application Developers Guide

 54

cFE, the Developer/Operator could become confused if every Application named their Pipe(s) “MY_PIPE”. It

should be noted, however, that all Pipes for a single Application must have unique names.

The second parameter specifies the depth of the Pipe. The depth determines the maximum number of SB Messages

that can be queued in the Pipe before an overrun condition occurs (see Section 6.1.2.1).

The first parameter returns the Pipe Identifier. This identifier is important when using other SB API functions. It is

important to realize that the Pipe is not multi-thread safe. Therefore, it is illegal for another thread, even one from

the same Application, to attempt to receive data from the created pipe. If multiple threads require access to

messages, each thread needs to create their own pipe and make their own message subscriptions.

6.3 Software Bus Message Subscription

Once an Application has created a Pipe, it can begin to request data be put into that Pipe. This process is referred to

a SB Message Subscription. An example of this process can be seen below:

FILE: app_msgids.h

...

/* Define Message IDs */

#define QQ_CMDID_1 (0x0123)

...

FILE: qq_app.h

...

/* Define Receive Message ID Characteristics */

#define QQ_CMDID_1_LIMIT (10)

...

typedef struct

{

 ...

 CFE_SB_PipeId_t QQ_Pipe_1; /* Variable to hold Pipe ID (i.e.- Handle) */

 ...

} QQ_AppData_t;

FILE: qq_app.c

QQ_AppData_t QQ_AppData;

...

{

 int32 Status;

 ...

 Status = CFE_SB_SubscribeEX(QQ_CMDID_1, /* Msg Id to Receive */

 QQ_AppData.QQ_Pipe_1, /* Pipe Msg is to be Rcvd on */

 CFE_SB_DEFAULT_QOS, /* Quality of Service */

 QQ_CMDID_1_LIMIT); /* Max Number to Queue */

 ...

}

In this example, the Application is requesting that all SB Messages whose ID is equal to 0x0123 be routed to the

Pipe called “QQ_PIPE_1” (see Section 6.2).

The third parameter specifies the desired Quality of Service (QoS). The Quality of Service determines the priority

and the reliability of the specified SB Message that this particular Application requires. Most Applications will be

satisfied with the default QoS, as defined with the CFE_SB_DEFAULT_QOS macro. Some Applications, such as an

cFE Flight Software Flight Software Application Developers Guide

 55

attitude control Application, may require a higher QoS to ensure receipt of critical sensor data. The current version

of the cFE does NOT implement the QoS feature.

The fourth parameter specifies the limit on the number SB Messages with the specified Message ID that can be

queued simultaneously in the specified Pipe. When messages with the specified Message ID are attempted to be

queued in the specified Pipe and the limit has already been reached, it is referred to as an overrun condition. Note

that this is a limitation on top of the Pipe depth which identifies the maximum number of all SB Messages combined

that can be queued simultaneously. As mentioned previously, exceeding the Pipe depth is referred to as an overflow

condition.

NOTE: SB Message IDs are defined in a separate header file from the rest of the Application’s interface. This

makes it much simpler to port the Application to another mission where SB Message IDs may need to be

renumbered.

Most Applications do not care about QoS nor the Message Limit hence those Applications can use the

CFE_SB_Subscribe function. For those Applications that need to specify something other than the default QoS or

Messages Limit, the SB API provides an additional function, CFE_SB_SubscribeEx that allows those

parameters to be specified.

6.4 Unsubscribing from Receiving Software Bus Messages

If an Application no longer wishes to receive an SB Message that it had previously subscribed to, it can selectively

unsubscribe to specified SB Message IDs. The following is a sample of the API to accomplish this:

FILE: qq_app.c

{

 int32 Status;

 ...

 Status = CFE_SB_Unsubscribe(QQ_CMDID_1, /* Msg Id to Not Receive */

 QQ_AppData.QQ_Pipe_1); /* Pipe Msg currently Rcvd on */

 ...

}

The first parameter identifies the SB Message ID that is to be unsubscribed and the second parameter identifies

which Pipe the message is currently subscribed to.

6.5 Creating Software Bus Messages

For an Application to send a SB Message, it must first create it. The Application shall define the data structure of

the SB Message, allocate memory for it (instantiate it), initialize it with the appropriate SB Message Header

information and fill the rest of the structure with appropriate data. An example of this process can be seen below:

cFE Flight Software Flight Software Application Developers Guide

 56

FILE: app_msgids.h

...

#define QQ_HK_TLM_MID (0x0321) /* Define SB Message ID for QQ’s HK Pkt */

...

FILE: qq_app.h

/*

** Type definition (QQ task housekeeping)...

*/

typedef struct

{

 uint8 TlmHeader[CFE_SB_TLM_HDR_SIZE];

 /*

 ** Task command interface counters...

 */

 uint8 CmdCounter;

 uint8 ErrCounter;

} QQ_HkPacket_t;

typedef struct

{

 ...

 /*

 ** Task command interface counters...

 */

 uint8 CmdCounter;

 uint8 ErrCounter;

 ...

 QQ_HkPacket_t HkPacket; /* Declare instance of Housekeeping Packet */

 ...

} QQ_AppData_t;

FILE: qq_app.c

QQ_AppData_t QQ_AppData; /* Instantiate Task Data */

...

{

 int32 Status;

 ...

 Status = CFE_SB_InitMsg(&QQ_AppData.HkPacket, /* Address of SB Message Data Buffer */

 QQ_HK_TLM_MID, /* SB Message ID associated with Data */

 sizeof(QQ_HkPacket_t), /* Size of Buffer */

 CFE_SB_CLEAR_DATA); /* Buffer should be cleared by cFE */

 ...

}

In this example, the Developer has allocated space for the SB Message header in their structure using the

CFE_SB_TLM_HDR_SIZE macro. If the SB Message was to be a command message, it would have been

important for the Developer to have used the CFE_SB_CMD_HDR_SIZE macro instead.

The CFE_SB_InitMsg API call formats the SB Message Header appropriately with the given SB Message ID, size

and, in this case, clears the data portion of the SB Message (CFE_SB_CLEAR_DATA). Another option for the

cFE Flight Software Flight Software Application Developers Guide

 57

fourth parameter is CFE_SB_NO_CLEAR which would have retained the contents of the data structure and only

updated the SB Message Header.

NOTE: SB Message IDs are defined in a separate header file from the rest of the Application’s interface. This

makes it much simpler to port the Application to another mission where SB Message IDs may need to be

renumbered.

6.5.1 Modifying Software Bus Message Header Information

Before sending an SB Message to the SB, the Application can update the SB Message Header. The most common

update is to put the current time in the SB Message. This is accomplished with one of two SB API functions. The

most commonly used function would be CFE_SB_TimeStampMsg(). This API would insert the current time, in

the mission defined format with the mission defined epoch, into the SB Message Header. The other SB API that can

modify the SB Message Header time is CFE_SB_SetMsgTime(). This API call sets the time in the SB Message

Header to the time specified during the call. This is useful when the Application wishes to time tag a series of SB

Messages with the same time.

Other fields of the SB Message Header can be modified by an Application prior to sending the SB Message. These

fields, and the associated APIs, are listed in the following table:

SB Message Header Field SB API for Modifying the Header Field

Message ID CFE_SB_SetMsgId

Total Message Length CFE_SB_SetTotalMsgLength

User Data Message Length CFE_SB_SetUserDataLength

Command Code CFE_SB_SetCmdCode

Checksum CFE_SB_GenerateChecksum

Applications shall always use these functions to manipulate the SB Message Header. The structure of the SB

Message Header may change from one deployment to the next. By using these functions, Applications are

guaranteed to work regardless of the structure of the SB Message Header.

6.6 Sending Software Bus Messages

To send a SB Message, an application must first construct the SB Message in memory (see Section 6.5), set its

contents to the appropriate values and then the application calls CFE_SB_SendMsg(). An example of this is

shown below:

cFE Flight Software Flight Software Application Developers Guide

 58

FILE: qq_app.c

QQ_AppData_t QQ_AppData; /* Instantiate Task Data */

...

{

 ...

 /*

 ** Get command execution counters and put them into housekeeping SB Message

 */

 QQ_AppData.HkPacket.CmdCounter = QQ_AppData.CmdCounter;

 QQ_AppData.HkPacket.ErrCounter = QQ_AppData.ErrCounter;

 /*

 ** Send housekeeping SB Message after time tagging it with current time

 */

 CFE_SB_TimeStampMsg((CFE_SB_Msg_t *) &QQ_AppData.HkPacket);

 CFE_SB_SendMsg((CFE_SB_Msg_t *) &QQ_AppData.HkPacket);

 ...

}

6.7 Improving Message Transfer Performance for Large SB Messages

Occasionally, there is a need for large quantities of data to be passed between Applications that are on the same

processor (e.g.- Science data analysis and/or compression algorithms along with the science data acquisition

Application). The drawback to using the standard communication protocol described above is that SB Messages are

copied from the sending Application data space into the SB data space. If the copy is too time consuming, the

Developer can choose to implement a “Zero Copy” protocol. Obviously, if the message is subscribed to on a

different processor, the message is not “zero-copied” to those subscribers.

The first step in implementing the “Zero Copy” protocol, is to acquire a data space that can be shared between the

two Applications. This is accomplished with the CFE_SB_ZeroCopyGetPtr API call. The

CFE_SB_ZeroCopyGetPtr function returns a pointer to an area of memory that can contain the desired SB

Message.

Once an Application has formatted and filled the SB Message with the appropriate data, the Application calls the

CFE_SB_ZeroCopySend API. The SB then identifies the Application(s) that have subscribed to this data and

places a pointer to the SB Message Buffer in their Pipe(s). The pointer to the SB Message is no longer valid once

the Application calls the CFE_SB_ZeroCopySend API. Applications should not assume the SB Message

Buffer pointer is accessible once the SB Message has been sent.

If an Application has called the CFE_SB_ZeroCopyGetPtr API call and then later determines that it is not going

to send the SB Message, it shall free the allocated SB Message space by calling the

CFE_SB_ZeroCopyReleasePtr API.

An example of the “Zero Copy” protocol is shown below:

cFE Flight Software Flight Software Application Developers Guide

 59

FILE: app_msgids.h

...

#define QQ_BIG_TLM_MID (0x0231) /* Define SB Message ID for QQ’s Big Pkt */

...

FILE: qq_app.h

...

#define QQ_BIGPKT_DATALEN (32768) /* Define Data Length for QQ’s Big Pkt */

...

/*

** Type definition (QQ task big packet)...

*/

typedef struct

{

 uint8 TlmHeader[CFE_SB_TLM_HDR_SIZE];

 /*

 ** Task command interface counters...

 */

 uint8 Data[QQ_BIGPKT_DATALEN];

} QQ_BigPkt_t;

/* Define Msg Length for QQ’s Big Pkt */

#define QQ_BIGPKT_MSGLEN sizeof(QQ_BigPkt_t)

...

typedef struct

{

 ...

 ...

 QQ_BigPkt_t *BigPktPtr; /* Declare instance of Big Packet */

 ...

} QQ_AppData_t;

FILE: qq_app.c

QQ_AppData_t QQ_AppData; /* Instantiate Task Data */

...

{

 ...

 /*

 ** Get a SB Message block of memory and initialize it

 */

 QQ_AppData.BigPktPtr = (QQ_BigPkt_t *)CFE_SB_ZeroCopyGetPtr(QQ_BIGPKT_MSGLEN);

 CFE_SB_InitMsg((CFE_SB_Msg_t *) QQ_AppData.BigPktPtr,

 QQ_BIG_TLM_MID, QQ_BIGPKT_MSGLEN, CFE_SB_CLEAR_DATA);

 /*

 ** ...Fill Packet with Data...

 */

 /*

 ** Send SB Message after time tagging it with current time

 */

 CFE_SB_TimeStampMsg((CFE_SB_Msg_t *) QQ_AppData.BigPktPtr);

 CFE_SB_ZeroCopySend((CFE_SB_Msg_t *) QQ_AppData.BigPktPtr);

 /* QQ_AppData.BigPktPtr is no longer a valid pointer */

 ...

}

6.8 Receiving Software Bus Messages

To receive a SB Message, an application calls CFE_SB_RcvMsg as follows:

cFE Flight Software Flight Software Application Developers Guide

 60

FILE: qq_app.h

typedef struct

{

 ...

 CFE_SB_MsgPtr_t MsgPtr;

 CFE_SB_PipeId_t CmdPipe;

 ...

} QQ_AppData_t;

FILE: qq_app.c

{

 ...

 while (TRUE)

 {

 /*

 ** Wait for the next Software Bus message...

 */

 SB_Status = CFE_SB_RcvMsg(&QQ_AppData.MsgPtr,

 QQ_AppData.CmdPipe,

 CFE_SB_PEND_FOREVER);

 if (SB_Status == CFE_SB_SUCCESS)

 {

 /*

 ** Process Software Bus message...

 */

 QQ_AppPipe(QQ_AppData.MsgPtr);

 }

 }

}

In the above example, the Application will pend on the QQ_AppData.CmdPipe until a SB Message arrives. A

pointer to the next SB Message in the Pipe will be returned in QQ_AppData.MsgPtr. The Application would

then use SB Message Header accessor functions (as described in Section 6.8.1) to identify the message and typecast

the pointer to an appropriate data structure.

The Application could have chosen to pend with a timeout (specified in milliseconds) as shown in the example

below:

FILE: qq_app.h

...

#define QQ_CMD_PIPE_TIMEOUT (20) /* Wait 20 milliseconds for a SB Message to arrive */

...

FILE: qq_app.c

{

 ...

 while (TRUE)

 {

 /*

 ** Wait for the next Software Bus message...

 */

 SB_Status = CFE_SB_RcvMsg(&QQ_AppData.MsgPtr,

 QQ_AppData.CmdPipe,

 CFE_SB_PEND_FOREVER);

 if (SB_Status == CFE_SB_SUCCESS)

cFE Flight Software Flight Software Application Developers Guide

 61

 {

 /*

 ** Process Software Bus message...

 */

 QQ_AppPipe(QQ_AppData.MsgPtr);

 }

 else if (SB_Status == CFE_SB_TIME_OUT)

 {

 /*

 ** Process Late Data Arrival Case...

 */

 }

 }

}

If a SB Message fails to arrive within the specified timeout period, the cFE will return the CFE_SB_TIME_OUT

status code.

The final method an Application could have chosen would be to quickly poll the Pipe to determine if a SB Message

is present. This is shown in the following example:

FILE: qq_app.c

{

 ...

 while (TRUE)

 {

 /*

 ** Check for the next Software Bus message...

 */

 SB_Status = CFE_SB_RcvMsg(&QQ_AppData.MsgPtr,

 QQ_AppData.CmdPipe,

 CFE_SB_POLL); /* Just check to see if data is present */

 if (SB_Status == CFE_SB_SUCCESS)

 {

 /*

 ** Process Software Bus message...

 */

 QQ_AppPipe(QQ_AppData.MsgPtr);

 }

 else if (SB_Status == CFE_SB_NO_MESSAGE)

 {

 /*

 ** Process No Data Available Case...

 */

 }

 }

}

If the Pipe does not have any data present when the CFE_SB_RcvMsg API is called, the cFE will return a

CFE_SB_NO_MESSAGE status code.

If the Application’s data structure definitions don’t include the header information, then the

CFE_SB_GetUserData API could be used to obtain the start address of the SB Message data. An example of

this can be seen below:

cFE Flight Software Flight Software Application Developers Guide

 62

FILE: qq_app.h

#define QQ_CMDID_WIDGET (0x4321)

...

typedef struct

{

 uint16 Id;

 uint16 NewMode;

} QQ_WidgetCmdData_t;

...

typedef struct

{

 ...

 CFE_SB_MsgPtr_t MsgPtr;

 CFE_SB_PipeId_t CmdPipe;

 ...

 QQ_WidgetCmdData_t *WidgetCmdDataPtr;

 ...

} QQ_AppData_t;

FILE: qq_app.c

{

 ...

 while (TRUE)

 {

 /*

 ** Wait for the next Software Bus message...

 */

 SB_Status = CFE_SB_RcvMsg(&QQ_AppData.MsgPtr,

 QQ_AppData.CmdPipe,

 CFE_SB_PEND_FOREVER);

 if (SB_Status == CFE_SB_SUCCESS)

 {

 /*

 ** Check to make sure this is a Widget Command

 */

 if (CFE_SB_GetMsgId(QQ_AppData.MsgPtr) == QQ_CMDID_WIDGET)

 {

 /*

 ** Typecast the user data portion to the Widget Cmd data structure type

 */

 QQ_AppData.WidgetCmdDataPtr =

 (QQ_WidgetCmdData_t *)CFE_SB_GetUserData(QQ_AppData.MsgPtr);

 }

 }

 }

}

6.8.1 Reading Software Bus Message Header Information

As mentioned earlier, since the SB Message Header is not always the same format, there are SB APIs available for

extracting the SB Message Header Fields. These APIs shall always be used by Applications to ensure the

Applications are portable to future missions. The following table identifies the fields of the SB Message Header and

the appropriate API for extracting that field from the header:

SB Message Header Field SB API for Reading the Header Field
Message ID CFE_SB_GetMsgId

Message Time CFE_SB_GetMsgTime

Total Message Length CFE_SB_GetTotalMsgLength

cFE Flight Software Flight Software Application Developers Guide

 63

User Data Message Length CFE_SB_GetUserDataLength

Command Code CFE_SB_GetCmdCode

Sender ID CFE_SB_GetLastSenderId

Checksum CFE_SB_GetChecksum

In addition to the function for reading the checksum field, there is another API that automatically calculates the

checksum for the packet and compares it to the checksum in the header. The API is called

CFE_SB_ValidateChecksum() and it simply returns a success or failure indication.

It should be noted that the function, CFE_SB_GetLastSendId, is ideal for verifying that critical commands are

arriving from a legitimate source. This function allows the Developer(s) to define a strict ICD between two or more

Applications to ensure that an erroneous Application does not accidentally issue a critical command. However, its

use for routine command verification is discouraged since it would increase the cross-coupling between

Applications and require multiple Applications to be modified if a command’s source changes.

6.9 Deleting Software Bus Pipes

If an Application no longer requires a Pipe, it can delete the Pipe by calling the CFE_SB_DeletePipe API. This

API is demonstrated as follows:

FILE: qq_app.c

{

 int32 Status;

 ...

 Status = CFE_SB_DeletePipe(QQ_Pipe_1); /* Delete pipe created earlier */

 /* QQ_Pipe_1 no longer contains a valid Pipe ID */

 ...

}

The Developer is not required to delete their Pipes before exiting. The cFE monitors what resources Applications

have created/allocated and deletes/frees these resources when the Application exits. This function merely provides a

mechanism for Applications that may only need a Pipe temporarily.

7 Event Service Interface

7.1 Event Messages

Event messages are informational text generated by an application in response to commands, software errors,

hardware errors, application-initialization, etc. Event messages are sent to alert the Flight Operations team that

some significant event on board has occurred. Event messages may also be sent for debugging application code

during development, maintenance, and testing. Note that event messages can be sent from Child Tasks as well as

the Application main task. Event Messages identify the Application not the Child Task so Event Messages coming

from Child Tasks should clearly identify the Child Task. Event Messages IDs should be unique across all Child

Tasks within an Application.

7.2 Event Types

Event Messages are classified within the cFE and on the ground by an Event Type. Event Types defined within the

cFE are:

cFE Flight Software Flight Software Application Developers Guide

 64

CFE_EVS_DEBUG – Events of this type are primarily for the Developer. The messages contain specific

references to code and are of limited use to spacecraft operations personnel. By

default, these types of event messages are disabled.

CFE_EVS_INFORMATION – Events of this type are normal events that confirm expected behavior of the

flight software. Examples would be notification of the processing of a

received command, nominal mode changes, entering/exiting orbit day/night,

etc.

CFE_EVS_ERROR – Events of this type are notifications of abnormal behavior. However, they represent

error conditions that have been identified and corrected for by the flight software.

These typically represent things like erroneous commands, illegal mode change

attempts, switching to redundant hardware, etc.

CFE_EVS_CRITICAL – Events of this type are notifications of error conditions that the flight software is

unable to correct or compensate for. These might be uncorrectable memory

errors, hardware failures, etc.

The cFE API supplies services for sending event messages telemetry to ground and filtering event messages on a per

message basis. These services make up the cFE Event Service (EVS). In order for applications to use cFE event

services they must register with the EVS. See section 7.3 on EVS registration. Upon registration the application

generating filtered events is responsible for supplying their initial event filters to the registration function. Filtered

events may have their event filters modified via ground command. A ground interface is provided to allow

configuration of filtering based on the Event Type per Application and per processor. In addition, the ground has

the ability to add or remove event filters for a cFE Application. See the cFE CFE User’s Guide for more

information on the cFE EVS ground interface.

It is important for the Developer to realize the filtering options provided to Operations personnel. The Application

specifies a filter based upon the number of the specific event occurrences. The Operations personnel can also filter

all events of a particular Event Type or all events from a particular Application or even all of the events of a

particular Event Type from one specific Application. The Developer should consider these filter options when

categorizing their events.

7.3 Event Service Registration

Applications must register with the EVS in order to use cFE event services. Event services include the sending and

filtering of event messages. EVS registration is performed using the CFE_EVS_Register function. This

function takes as its input parameters a pointer to an array of event message filters, or NULL if no filtering is

desired, the number of filters in the input array, and the event filtering scheme the application desires to use. The

array structure containing the event message filters depends on the filtering scheme selected. If the

CFE_EVS_Register function is called more than once by the same application, the application will first be

unregistered from the EVS and then reregistered with the EVS. This implies that all current filtering and the filter

states will be lost. After an application has registered with the EVS, the EVS creates a counter for that application

that keeps a count of how many times the application has sent an event. This information may be supplied to the

ground via routine cFE telemetry or upon receipt of a ground command. The EVS registration function additionally

creates a structure of type flags for each application allowing the ground to turn application events on and off by

Event Type via command. See the cFE CFE User’s Guide for more information on the cFE EVS ground interface.

For an example of how to register an Application with the Event Services, see section 7.3.1 below.

cFE Flight Software Flight Software Application Developers Guide

 65

7.3.1 Binary Filtering Scheme

Currently there exists only one supported filtering scheme within the EVS. The filtering scheme is based upon a

binary filtering algorithm where a filter mask is logically “anded” with a counter value in order to generate a filter

value. When the filter value is greater than zero the message is filtered. When the filter value is equal to zero the

message is sent. This filtering scheme is specified during Application registration with the

CFE_EVS_BINARY_FILTER parameter.

The EVS binary filter structure type, shown below, contains an Event ID along with a hexadecimal bit mask. The

Event ID is a numeric literal used to uniquely identify an application event. The Event ID is defined and supplied to

the EVS by the application requesting services. The hexadecimal bit mask represents the filtering frequency for the

event.

typedef struct

{

 uint16 EventID,

 uint16 Mask

} CFE_EVS_BinFilter_t

Several common bit masks are defined within the EVS. These include:

 CFE_EVS_NO_FILTER

 CFE_EVS_FIRST_ONE_STOP

 CFE_EVS_FIRST_TWO_STOP

 CFE_EVS_EVERY_OTHER_ONE

 CFE_EVS_EVERY_OTHER_TWO

Applications may also create and use their own hexadecimal bit masks. When applications register event filters with

the CFE_EVS_BINARY_FILTER scheme a filter counter is created for each Event ID contained in the binary filter

structure. The binary event filtering is accomplished by “anding” the hexadecimal bit mask with the current value of

the event filter counter. When the result is zero the message is sent. Otherwise it is discarded. The filter counter is

incremented on each call to the CFE_EVS_SendEvent function (See section 7.4) regardless of whether the

message was sent.

An example of an Application registering with Event Services and specifying its binary filters is shown below:

FILE: qq_app.h

...

/*

** Event message ID's...

*/

#define QQ_INIT_INF_EID 1 /* start up message "informational" */

#define QQ_NOOP_INF_EID 2 /* processed command "informational" */

#define QQ_RESET_INF_EID 3

#define QQ_MID_ERR_EID 4 /* invalid command packet "error" */

#define QQ_CC1_ERR_EID 5

#define QQ_LEN_ERR_EID 6

#define QQ_EVT_COUNT 6 /* count of event message ID's */

...

cFE Flight Software Flight Software Application Developers Guide

 66

typedef struct

{

 ...

 CFE_EVS_BinFilter_t EventFilters[QQ_EVT_COUNT];

 ...

} QQ_AppData_t;

FILE: qq_app.c

QQ_AppData_t QQ_AppData; /* Instantiate Task Data */

...

{

 int32 Status;

 ...

 /*

 ** Initialize event filter table...

 */

 QQ_AppData.EventFilters[0].EventID = QQ_INIT_INF_EID;

 QQ_AppData.EventFilters[0].Mask = CFE_EVS_NO_FILTER;

 QQ_AppData.EventFilters[1].EventID = QQ_NOOP_INF_EID;

 QQ_AppData.EventFilters[1].Mask = CFE_EVS_NO_FILTER;

 QQ_AppData.EventFilters[2].EventID = QQ_RESET_INF_EID;

 QQ_AppData.EventFilters[2].Mask = CFE_EVS_NO_FILTER;

 QQ_AppData.EventFilters[3].EventID = QQ_MID_ERR_EID;

 QQ_AppData.EventFilters[3].Mask = CFE_EVS_NO_FILTER;

 QQ_AppData.EventFilters[4].EventID = QQ_CC1_ERR_EID;

 QQ_AppData.EventFilters[4].Mask = 0xFFF0; /* Output 16 msgs, then stop */

 QQ_AppData.EventFilters[5].EventID = QQ_LEN_ERR_EID;

 QQ_AppData.EventFilters[5].Mask = CFE_EVS_EVERY_OTHER_ONE;/* Filter every other msg */

 /*

 ** Register event filter table...

 */

 CFE_EVS_Register(QQ_AppData.EventFilters,

 QQ_EVT_COUNT,

 CFE_EVS_BINARY_FILTER);

 ...

}

Once an application has registered its binary event filters the application may reset its filters by clearing the event

filter counters to zero. Two functions are available within the EVS for clearing an application’s filter counters:

CFE_EVS_ResetFilter and CFE_EVS_ResetAllFilters. The first of these allows the Application to

reset the filter counter for a specified Event ID. The latter function resets all event filter counters for the

Application. An example of resetting a specific Event ID filter counter is shown below:

FILE: qq_app.c

{

 int32 Status;

 ...

 Status = CFE_EVS_ResetFilter(QQ_MID_ERR_EID); /* Reset filter for command pkt errors */

 ...

}

cFE Flight Software Flight Software Application Developers Guide

 67

7.4 Sending an Event Message

Event messages are sent using either the CFE_EVS_SendEvent() function or the

CFE_EVS_SendTimedEvent() function, which are both analogous to the C printf() function in how strings

are formatted. An example of each function call is shown below:

CFE_EVS_SendEvent(EventID, EventType, "Unknown stream on cmd pipe: 0x%04X", sid);

The first argument to the function must be the Event ID of the calling application. The Event ID is defined to be a

numeric literal used to uniquely identify an application event. The Event ID is defined and supplied to the EVS by

the application requesting services. The second argument to the function is the Event Type. The Event Type is

defined to be a numeric literal used to classify an event. See section 7.2. The final argument contains the format

string of the event message to be sent.

The other function that can be called to send an event message is shown below:

CFE_EVS_SendTimedEvent(PktTime, EventID, EventType, "CSS Data Bad: 0x%04X", CssData);

In this case, the first parameter is a time tag that the Application wishes to have associated with the message.

Normally, the current time, as retrieved by the CFE_TIME_GetTime function is automatically associated with the

message when CFE_EVS_SendEvent is called. This latter function allows the Application to override this with

another time. In this example, it is associating the time tag from the packet that contained the CSS data.

The EVS will not send events for applications that have not registered with the EVS. The EVS will ignore all

function calls from unregistered applications. If an application fails to register with the EVS, a call to the

CFE_EVS_SendEvent function will have no effect.

7.4.1 Event Message Text

An event message is a text string with at most 122 characters. Although there is no fixed format for the text, it

should follow these conventions in order to be useful and understandable:

 The text should not contain unprintable or control characters, such as tabs or linefeeds.

 There should be no return characters or line feed characters within the event message text space. The

ground system software will handle printing it out appropriately to the screen.

 It should always be clear what radix a numerical value is expressed in. By default, numbers should be

in decimal. A hexadecimal number should be indicated by prefixing 0x to the digits. Binary should

use a “B” suffix.

 Floating-point numbers of unknown magnitude should be expressed in a exponent format (e,g) rather

than a fixed format (f). Otherwise, a very small value may be printed as zero, and a very large value

may cause the message to exceed the allowed length.

Event messages are one of the few parts of the flight software that are directly visible to the users of the software,

who are primarily operators and scientists, and to a lesser extent testers and software maintenance. One should word

the messages in a way that is meaningful to operators and scientists. Software jargon should be avoided as much as

possible. Because the messages are limited in length, it is often necessary to use abbreviations. These abbreviations

should be commonly used and taken from the standard acronym list for the project that is made available to the

team. One should make an effort to use a consistent style of writing in all messages. One should consult, if

possible, with members of the Flight Operations team and scientists to find what kind of messages are required and

how they should be worded.

cFE Flight Software Flight Software Application Developers Guide

 68

7.5 Event Service Un-registration

Applications that have registered with the EVS can un-register themselves. The cFE, however, will automatically

un-register an Application when the Application is terminated. An example of the function call to perform un-

registration from within an Application is shown below:

CFE_EVS_Unregister ();

8 Table Service Interface

A table is a related set of data values (equivalent to a C structure or array) that can be loaded and dumped as a single

unit by the ground. Tables are used in the flight code to give ground operators the ability to update constants used

by the flight software during normal spacecraft operation without the need for patching the software. Some tables

are also used for dumping infrequently needed status information to the ground on command.

The cFE implements Table Services using a different paradigm than has been used in previous GSFC missions. A

Table is considered a shared memory resource. An Application requests the creation of the shared memory from the

cFE and the Application must routinely request access and subsequently release access to the Table. In this way,

Table Services is able to manage the sharing of tables and perform updates/modifications without the Application

being involved. Developer’s no longer need to develop code to update their Tables. The ground-flight interface for

modifying Tables is consistent across all Applications and any change in the interface will only require a change to

the cFE Table Services rather than modifying each Application.

8.1 Table Terminology

8.1.1 Tables

A Table is a contiguous block of memory that contains, typically, static parameters that an Application stores

requires. These parameters, however, are items that the Developer thinks are configuration items that may change

over the course of a mission or are parameters that configure generic software for a particular mission. Examples of

data contained in Tables are: 1) coefficients used to calibrate Analog to Digital (A/D) devices and translate the

device data into engineering units, 2) telemetry bandwidth and packet filtering settings, 3) attitude control gains and

biases for different control laws or control modes, etc.

8.1.2 Active vs. Inactive Tables

Logically, each Table has an Active and an Inactive image. The Active Table is the Table that an Application can

obtain a pointer to and can access the data stored within the Table. An Inactive Table is a complete copy of the

Active Table that can be operated on either via ground or stored commands. Once desired modifications have been

made to an Inactive Table, the Table Service can, upon command, switch the contents of the Active Table with the

Inactive Table.

8.1.3 Single vs. Double Buffered Tables

When a Table is registered, an Application can decide whether to implement the Table as a Single Buffered Table or

as a Double Buffered Table. A Single Buffered Table has the advantage of requiring the least amount of memory

resources because modifications made to a Single Buffered Table are done in a shared Inactive Table Buffer. Many

cFE Flight Software Flight Software Application Developers Guide

 69

Tables could use this single Inactive Table Buffer to perform modifications. The disadvantage of Single Buffered

Tables is that the Application could be delayed momentarily while the Table is updated with new values.

A Double Buffered Table has the disadvantage of requiring a dedicated Inactive Table Buffer that is the same size as

the Active Table Buffer. The advantage to a Double Buffered Table is that the switch from Inactive to Active is

deterministic, quick and never blocking. This makes Double Buffered Tables ideal for providing data to time

critical operations and Interrupt Service Routines.

8.1.4 Loading/Activating a Table

An Operator and an Application have the ability to Load the contents of a Table Image with values specified in a

file. Applications also have the ability to Load the contents of a Table with the values specified in a block of

memory. For an Operator, loading a Table is a multistep process requiring the uplink of a specified file to the

onboard filesystem followed by a Table Load command that takes the contents of the uplinked file and puts it into

the Inactive Table Image of the specified Table. The Operator is then free to perform validation checks on the

contents of the Inactive Table Image. When the Operator is convinced that the Table is configured correctly, the

Table is “Activated” (i.e. – “Committed”) which causes the contents of the Active Table Image to be replaced by the

contents of the Inactive Table Image.

8.1.5 Dumping a Table

An Operator has the ability to command Table Services to make a Table Dump File. The current contents of the

Active Table Image are written to an onboard filesystem with a command specified filename. This provides a

mechanism for Operators to obtain the current settings of Application parameters. The dump file is in the same

format as a Table Load file and can be used later as a Load Image. Note that Applications can define a data

structure as a dump only table, when registering the table. No buffers are allocated for this capability. This

capability was added to support heritage flight software.

8.1.6 Validating a Table

An Operator can validate the contents of a table. When the operator chooses a Table Image, either the Active or the

Inactive, as a Table to be Validated, two things happen. First, the Table Services calculates the current Data

Integrity Value for the table contents. Second, the owning task, if it has registered a validation function, is notified

that a Validation request has been made. The owning task is then required to perform a Validation on the table.

Typically, this entails checking specific values within the table to ensure they are within bounds and are logically

coherent. The result of this check is combined with the Data Integrity Check Value calculated earlier and reported

to the ground in the Table Services Housekeeping Telemetry Packet.

8.2 Registering Tables

In order for an Application to make use of the features of a Table, it must first request that a Table Image be created.

This is done through the CFE_TBL_Register API. An Application calls the API for each Table they wish to

have created and the cFE responds with an Application unique Table Handle. An example of this process is shown

below:

cFE Flight Software Flight Software Application Developers Guide

 70

FILE: qq_app.h

...

typedef struct

{

 uint16 TableEntry1;

 uint16 TableEntry2;

 uint8 TableEntry3[10];

 ...

} QQ_MyTable_t;

/* Define function prototype for table validation function */

int32 QQ_MyTableValidationFunc(void *TblPtr);

...

FILE: qq_app.c

CFE_TBL_Handle_t MyTableHandle /* Handle to MyTable */

...

{

 int32 Status;

 ...

 /*

 ** Register my table with Table Services

 */

 Status = CFE_TBL_Register(&MyTableHandle, /* Table Handle (to be returned) */

 "MyTableName", /* Application specific Table Name */

 sizeof(QQ_MyTable_t), /* Size of Table being Registered */

 CFE_TBL_OPT_DEFAULT, /* Deflt: Single Buff. and Loadable */

 &QQ_MyTableValidationFunc); /* Ptr to table validation function */

 ...

}

int32 QQ_MyTableValidationFunc(void *TblPtr)

{

 /* Default to successful validation */

 int32 Status = 0;

 QQ_MyTable_t *MyTblPtr = (QQ_MyTable_t *)TblPtr;

 if (TblPtr->TableEntry1 > QQ_MYTABLE_ENTRY_1_MAX)

 {

 Status = 1; /* Failed test on first entry */

 }

 else if (TblPtr->TableEntry2 < QQ_MYTABLE_ENTRY_2_MIN)

 {

 Status = 2;

 }

 ...

 return Status;

}

It should be noted that the Table Services automatically makes the table name processor specific by prepending the

Application name to the given table name. Therefore, after the above example is executed, Table Services would

have added a table with the name “QQ.MyTableName” to the Table Registry.

cFE Flight Software Flight Software Application Developers Guide

 71

If an Application is sharing a Table that is created by another Application, it should use the CFE_TBL_Share API

instead. The CFE_TBL_Share API will locate the specified Table by name and return a Table Handle to the

calling Application. An example of Table sharing is shown below:

FILE: qq2_app.c

CFE_TBL_Handle_t MyTableHandle /* Handle to MyTable */

...

{

 int32 Status;

 ...

 /*

 ** Share the table created by Application QQ

 */

 Status = CFE_TBL_Share(&MyTableHandle, /* Table Handle (to be returned) */

 "QQ.MyTableName"); /* Processor specific Table Name */

 ...

}

8.3 Accessing Table Data

8.3.1 Acquiring Table Data

Once an Application has acquired the Table Handle for a particular Table (either via the CFE_TBL_Register

API or the CFE_TBL_Share API), the Application can obtain a pointer to the start of the data within the Table

using the CFE_TBL_GetAddress or CFE_TBL_GetAddresses APIs.

{

 int32 Status;

 QQ_MyTable_t *MyTblPtr;

 ...

 /*

 ** Get Current Address of MyTable Data

 */

 Status = CFE_TBL_GetAddress(&MyTblPtr, /* Addr of ptr in which table addr will be ret */

 MyTableHandle); /* Table Handle from CFE_TBL_Register call */

 /* Check to see if the table has been updated since the last use */

 if (Status == CFE_TBL_INFO_UPDATED)

 {

 QQ_MyTableInit(MyTblPtr);

 }

 /* Use the table data as necessary */

 VarX = MyTblPtr->TableEntry1 * RawData + MyTblPtr->TableEntry2;

 ...

 /* Once work is done, free the table pointer */

 Status = CFE_TBL_ReleaseAddress(MyTableHandle);

}

The CFE_TBL_GetAddress call can also return the CFE_TBL_ERR_NEVER_LOADED indicating that an

attempt is being made at accessing table data when the table has never been loaded with a default set of values.

cFE Flight Software Flight Software Application Developers Guide

 72

The CFE_TBL_GetAddresses call can simplify this process for a collection of tables by filling an array of

pointers using an array of Table Handles as an input. The disadvantage of the CFE_TBL_GetAddresses call is

that an error in any one table will return an error code that will be difficult to associate with a particular table.

8.3.2 Releasing Table Data

Once an Application is done accessing its Table Data, it must release the pointers it obtained with the

CFE_TBL_ReleaseAddress or CFE_TBL_ReleaseAddresses APIs. It is imperative that an Application

release the pointers it obtains on a periodic basis. The cFE Table Services will be unable to manipulate the Table

contents if the Application does not release its allocated pointers. For an example of acquiring and releasing Table

pointers, see the example above in Section 8.3.1.

8.4 Managing a Table

Each Application is required to perform some activities to allow the operators an opportunity to validate the table’s

contents and to change the contents of a table. The Table Service API has a set of calls that are used by an

Application to perform these management duties. These APIs are CFE_TBL_GetStatus,

CFE_TBL_Validate, CFE_TBL_Update and CFE_TBL_Manage.

8.4.1 Validating Table Data

When an outside entity loads a new image for a table, they may wish to validate the table contents prior to activating

the table for usage. The validation of a table provides an opportunity for the Application to examine a table before it

is activated to determine if the contents make logical sense. It should be noted that the Table Services will always,

in response to a table validation request, compute a data integrity value for the specified table and transmit the result

to the operator for visual inspection. If an application wishes to make a logical analysis of the contents of a table,

they must have associated a table validation function with the table at the time of table registration (see Section 8.2).

An Application is made aware that a Validation Request has been made by examining the return code of the

CFE_TBL_GetStatus API. When the return status is CFE_TBL_INFO_VALIDATION_PENDING, the Application

should call CFE_TBL_Validate with the appropriate Table Handle to perform the necessary validation activities.

This process ensures that the table validation occurs within the context of the Application that created the table thus

allowing the Application to generate their own event messages indicating success or reasons for validation failure.

If the function determines that the validation has failed, it should return a non-zero value. The non-zero values can

be assigned at the Application developer’s discretion. This status value is inspected by the cFE Table Services and

an appropriate success or failure event message is issued and the validation results are returned to the operator in

Table Services Housekeeping Telemetry.

As shown in the Table Registration section above (Section 8.2), assigning and creating a validation function is a

fairly simple process. To use the function, the Application should periodically identify when a Table Validation

Request has been made as shown below:

cFE Flight Software Flight Software Application Developers Guide

 73

{

 int32 Status = CFE_SUCCESS;

 boolean FinishedManaging = FALSE;

 while (!FinishedManaging)

 {

 /* Determine if the table has a validation or update that needs to be performed */

 Status = CFE_TBL_GetStatus(TblHandle);

 if (Status == CFE_TBL_INFO_VALIDATION_PENDING)

 {

 /* Validate the specified Table */

 Status = CFE_TBL_Validate(TblHandle);

 if (Status != CFE_SUCCESS)

 {

 /* If an error occurred during Validate, then do not perform any more managing */

 FinishedManaging = TRUE;

 }

 }

 else if (Status == CFE_TBL_INFO_UPDATE_PENDING)

 {

 /* Update the specified Table */

 Status = CFE_TBL_Update(TblHandle);

 /* After an update, always assume we are done and return Update Status */

 FinishedManaging = TRUE;

 }

 else

 {

 FinishedManaging = TRUE;

 }

 }

 return Status;

}

8.4.2 Loading/Updating Table Data

An Application has control of when the contents of the Table are updated within its execution cycle. If an

Application wishes to change the contents of a Table with a known file or block of memory, it can use the

CFE_TBL_Load API. This is useful when an Application wishes to load the Table with default values or when the

Application is changing modes and wishes to use a different parameter set. An example of this can be seen below:

FILE: qq_app.c

CFE_TBL_Handle_t MyTableHandle /* Handle to MyTable */

QQ_MyTable_t MyTblInitData = { 0x1234, 0x5678, { 2, 3, 4, ... }, ...};

...

{

 int32 Status;

 ...

 /*

 ** Load my table with Data from Memory

 */

 Status = CFE_TBL_Load(MyTableHandle, /* Table Handle */

 CFE_TBL_SRC_ADDR, /* Identify following ptr as memory ptr */

 &MyTblInitData; /* Pointer to data to be loaded */

 ...

}

cFE Flight Software Flight Software Application Developers Guide

 74

If a developer wishes to load the table from a file rather than from a memory image, the code would look something

like the following:

{

 int32 Status;

 ...

 /*

 ** Load my table with data from a file

 */

 Status = CFE_TBL_Load(MyTableHandle, /* Table Handle */

 CFE_TBL_SRC_FILE, /* Identify following ptr as string ptr */

 “MyTableInitFile.dat”); /* Character string containing filename */

 ...

}

An Application also has control of when an Update occurs when the Inactive Table Image has been modified by an

external party (i.e. – ground operations or stored command processor). When Operations has requested that a table

be activated, for example, the request is passed on to the Application when the Application makes the

CFE_TBL_GetStatus API call as shown in the example in Section 8.4.1. A return code of

CFE_TBL_INFO_UPDATE_PENDING is returned when there is an Inactive Table Image waiting to be activated.

The Application performs this update when it feels the time is right by calling the CFE_TBL_Update API.

8.4.3 Simplifying Table Management

The example shown in Section 8.4.1 can be tedious to implement for every table an Application has created.

Therefore, the Table Services API has created an additional API called CFE_TBL_Manage. This API performs all

of the steps mentioned in the example of Section 8.4.1 and simply returns an error code when there is a

programming error, a CFE_SUCCESS code when either no activity is required or a table validation has been

successfully handled, or CFE_TBL_INFO_UPDATED when the table has been successfully updated from an

Inactive Table Image. It is recommended that Applications that do not require a special handling of their tables

should use the CFE_TBL_Manage API to help ensure a consistent approach to table management throughout the

flight system. An Application may wish to make the call to CFE_TBL_Manage during each Housekeeping

Telemetry Request cycle, for example, to keep the management at a reasonable level with a reasonable amount of

lag in its response to Operation requests for table validations and activations.

8.5 Creating Table Image Files using the elf2cfetbl Utility

As discussed earlier, tables are typically loaded from a file. A table image file has two headers. The cFE Standard

File Header (See Section 9.1) and a Table Image Secondary Header. These headers are required to successfully load

an image from a file. In order to generate a file with a properly formatted table image, the developer may wish to

use the elf2cfetbl utility included with the cFE tools. This utility can convert an object file in the ELF format

into a cFE Table Image file format.

8.5.1 elf2cfetbl utility files

In the elf2cfetbl utility directory, one should find the following files:

cfe_tbl_filedef.h - a header file that should be placed into the fsw/cfe-core/inc directory. This file should

only need to be #include'd by source files that define the initial contents of a table.

SampleTblImg.c - a sample .c file that defines the default contents of table image.

cFE Flight Software Flight Software Application Developers Guide

 75

ELF_Structures.h, elf2cfetbl.c - source files for the elf2cfetbl utility.

8.5.2 Creating an Executable of the elf2cfetbl Utility

To build the utility on your particular platform, one should only need to put the two source files into an appropriate

directory and use the gnu CC compiler:

 $ gcc -o elf2cfetbl elf2cfetbl.c

8.5.3 Preparing a Source File for use with the elf2cfetbl Utility

Preparing a .c file for use with the utility requires the use of a special macro. At the bottom of the .c file, after

defining the default contents of a table, the developer should insert the following macro:

CFE_TBL_FILEDEF(ObjName, TblName, Desc, Filename)

where:

ObjName is the name of the variable previously identified in the file for the instance of the

table. Example: MyTblStruct

TblName is the FULL name of the table including the owning application. Example:

MyApp.TableName

Desc is a 32 character or less description of the table image. (NOTE: The description

cannot include commas) Example: Default Table Image

Filename is the default filename that the application is expecting to load upon

initialization. Example: MyTblDefault.bin

An example of the usage of this macro is in the SampleTblImg.c file.

8.5.4 Example of Table Data Source File

Below is the contents of the SampleTblImg.c file which is an example of what the contents of a default table

image source file might look like:

#include "cfe_tbl_filedef.h" /* Required to obtain the CFE_TBL_FILEDEF macro definition */

/*

** The following is an example of a data structure the application may have declared

** as the format of their table.

*/

typedef struct

{

 int Int1;

 int Int2;

 int Int3;

 char Char1;

} MyTblStruct_t;

/*

** The following is an example of the declaration statement that defines the desired

** contents of the table image.

cFE Flight Software Flight Software Application Developers Guide

 76

*/

MyTblStruct_t MyTblStruct = { 0x01020304, 0x05060708, 0x090A0B0C, 0x0D };

/*

** The macro below identifies:

** 1) the data structure type to use as the table image format

** 2) the name of the table to be placed into the cFE Table File Header

** 3) a brief description of the contents of the file image

** 4) the desired name of the table image binary file that is cFE compatible

*/

CFE_TBL_FILEDEF(MyTblStruct, MyApp.TableName, Table Utility Test Table, MyTblDefault.bin)

8.5.5 elf2cfetbl Utility Command Line Options

The command line format for the utility is as follows:

elf2cfetbl [-tTblName] [-d"Description"] [-h] [-v] [-V] [-s#] [-p#] [-eYYYY:MM:DD:hh:mm:ss]

SrcFilename [DestDirectory]

where:

-tTblName replaces the table name specified in the object file with 'TblName'

-d"Description" replaces the description specified in the file with 'Description'

-h produces this output

-v produces verbose output showing the breakdown of object file in detail

-V shows the version of this utility

-s# specifies a Spacecraft ID to be put into file header. # can be specified as decimal,

octal (starting with a zero), or hex (starting with '0x')

-p# specifies a Processor ID to be put into file header. # can be specified as decimal,

octal (starting with a zero), or hex (starting with '0x')

-a# specifies an Application ID to be put into file header. # can be specified as decimal,

octal (starting with a zero), or hex (starting with '0x')

-eYYYY:MM:DD:hh:mm:ss specifies the spacecraft epoch time. The current system time (in UTC) will be

converted to seconds since the specified epoch time and stored in the standard cFE

File Header.

where:

YYYY=year,

MM=month (01-12),

DD=day (01-31),

hh=hour (00-23),

mm=minute (00-59),

ss=seconds (00-59)

If no epoch is specified, the default epoch is 1970:01:01:00:00:00

THIS OPTION IS NOT AVAILABLE WITH UTILITY VERSION 1.1!!

SrcFilename specifies the object file to be converted

cFE Flight Software Flight Software Application Developers Guide

 77

DestDirectory specifies the directory in which the cFE Table Image file is to be created. If a

directory is not specified './' is assumed.

EXAMPLES:
 elf2cfetbl MyObjectFile ../../TblDefaultImgDir/

 elf2cfetbl -s12 -p0x0D -a016 -e2000:01:01:00:00:00 MyObjectFile ../../TblDefaultImgDir/

NOTE: The name of the target file is specified within the source file as part of CFE_TBL_FILEDEF macro. If the

macro has not been included in the source file the utility will fail to convert the object file.

8.5.6 Converting COFF Object Files into ELF Object Files

Some platform compilers, Cygwin is an example, do not produce ELF format object files but produce COFF format

files instead. To use the elf2cfetbl utility, these files must be converted into a ELF format. On Cygwin, there

is a utility that can perform this conversion. It is called objcopy. To perform conversion, the user should issue a

command similar to the following:

 $ objcopy -O elf32-little MyObjFilenameInCoffFormat.o MyObjFilenameInElfFormat.o

where the first specified filename is the original object file and the second is the ELF format of the same file. The

resulting elf format file should then be compatible with the elf2cfetbl utility.

9 File Service Interface

A file is a collection of data. A file can be a text document, an executable program, or a collection of data from an

instrument. A file usually has other attributes associated with it such as name, location, date, size, owner, and access

permissions. To understand the API for creating, opening or closing a file or obtaining, manipulating and writing

data to a file, look in section 0 or reference the OS Abstraction Layer Library document. The File Service API is

concerned mostly with handling of the cFE File Service standard file header.

9.1 Standard File Header

The structure of the standard file header is as follows:

typedef struct

{

 uint32 ContentType; /* Identifies the content type (magic #=’cFE1’) */

 uint32 SubType; /* Type of ContentType, if necessary */

 uint32 Length; /* Length of this primary header */

 uint32 SpacecraftID; /* Spacecraft that generated the file */

 uint32 ProcessorID; /* Processor that generated the file */

 uint32 ApplicationID; /* Application that generated the file */

 uint32 TimeSeconds; /* File creation timestamp (seconds) */

 uint32 TimeSubSeconds; /* File creation timestamp (sub-seconds) */

 char Description[32]; /* File description */

} CFE_FS_Header_t;

The ContentType element is a magic number that identifies this file as conforming to the cFE standard header

type. At the release of this document, the magic number on all cFE compliant files is 0x63464531 which appears

as ‘cFE1’ when seen in ASCII.

cFE Flight Software Flight Software Application Developers Guide

 78

The SubType is an indication of the contents/format of the file. There are some SubType values that are

dedicated to the cFE itself. Application developers should examine the cfe_fs.h file to determine what SubType

values are allowed for them to use to prevent a type collision in the future. When reading a file, an Application

should verify the SubType is of the appropriate value before processing data. This will help avoid situations where

an operator specifies the wrong filename when sending a command to an Application.

The Length specifies the size of the CFE_FS_Header_t and can be used to determine the version of the header

type as well as where the user data is relative to the beginning of the file.

The SpacecraftID, ProcessorID and ApplicationID are all automatically filled by cFE File Services

routines when creating a cFE compliant file. These fields help identify where and how the file was created.

The TimeSeconds and TimeSubSeconds elements contain the Spacecraft Time when the header was created.

The Description field provides a brief ASCII description of the contents of the file.

9.2 Accessing and Modifying the Standard File Header

File Services provides a few functions for accessing and modifying the contents of the standard file header. The

first of these is the CFE_FS_ReadHeader function. This function reads the contents of the header of a specified

file and returns it into a given data structure. An example of this function is shown below:

{

 ...

 CFE_FS_Header_t MyFileHeader; /* Declare file header structure */

 FILE *FileDescriptor;

 FileDescriptor = OS_fopen(MyInputFilename, "r");

 if (FileDescriptor != NULL)

 {

 /* Fill required fields in file header */

 CFE_FS_ReadHeader(FileDescriptor, &MyFileHeader);

 /* Output debug message with File Header Info */

 CFE_EVS_SendEvent(InputFileDebugEventId, CFE_EVS_DEBUG,

 "ScID=0x%08X, ProcID=0x%08X, AppID=0x%08X, SubType=0x%08x, Secs=0x%08X, Sub=0x%08X, Desc=%s",

 MyFileHeader.SpacecraftID, MyFileHeader.ProcessorID,

 MyFileHeader.ApplicationID, MyFileHeader.SubType, MyFileHeader.TimeSeconds,

 MyFileHeader. TimeSubsecs, MyFileHeader.Description);

 ...

 }

 ...

}

The opposite version of this file API is the CFE_FS_WriteHeader function. This function populates the given

header data structure with the SpacecraftID, ProcessorID, ApplicationID, TimeSeconds and

TimeSubsecs as obtained from the Executive and Time Services. The Developer only needs to specify the

SubType and Description fields. After the function successfully writes the standard header to the file, the

given header data structure contains all of the information and the file pointer associated with the specified file is

pointing to the first byte past the standard header. An example of the CFE_FS_WriteHeader function is shown

below:

cFE Flight Software Flight Software Application Developers Guide

 79

{

 ...

 CFE_FS_Header_t MyFileHeader; /* Declare file header structure */

 FILE *FileDescriptor;

 FileDescriptor = OS_fopen(MyOutputFilename, "w");

 if (FileDescriptor != NULL)

 {

 /* Fill required fields in file header */

 snprintf(MyFileHeader.Description, "This has my widget records", 32);

 MyFileHeader.SubType = QQ_FILE_TYPE_ID;

 /* Write header to output file */

 CFE_FS_WriteHeader(FileDescriptor, &MyFileHeader);

 /* Output debug message with File Header Info */

 CFE_EVS_SendEvent(WidgetFileDebugEventId, CFE_EVS_DEBUG,

 "ScID=0x%08X, ProcID=0x%08X, AppID=0x%08X, TimeSecs=0x%08X, TimeSubsecs=0x%08X",

 MyFileHeader.SpacecraftID, MyFileHeader.ProcessorID,

 MyFileHeader.ApplicationID, MyFileHeader.CreateTimeSeconds,

 MyFileHeader.CreateTimeSubsecs);

 ...

 }

 ...

}

In addition to the functions for obtaining and writing the entire header, there are two functions for manipulating the

TimeSeconds and TimeSubseconds fields of the header. The first of these is the

CFE_FS_UpdateHeaderTime function. This function takes the specified file and sets the TimeSeconds and

TimeSubsecs fields equal to the current time as obtained from CFE_TIME_GetTime. The second function,

CFE_FS_SetHeaderTime, allows the Developer to set the create time in the standard header equal to a time

specified using the CFE_TIME_SysTime_t data format. This function may be useful when time tagging

experiment data with the time the data was acquired rather than the time the file was created. An example of using

CFE_FS_UpdateHeaderTime is as follows:

cFE Flight Software Flight Software Application Developers Guide

 80

{

 ...

 FILE *FileDescriptor;

 FileDescriptor = OS_fopen(MyOutputFilename, "r+"); /* Open file for modification */

 if (FileDescriptor != NULL)

 {

 /* Modify contents of existing file */

 ...

 /* Update header to output file with current time */

 CFE_FS_UpdateHeaderTime(FileDescriptor);

 ...

 }

 ...

}

An example of using CFE_FS_SetHeaderTime is as follows:

{

 ...

 FILE *FileDescriptor;

 CFE_TIME_SysTime_t RsdMsgTime;

 CFE_SB_MsgPtr_t RsdMsgPtr;

 /* Get Raw Sensor Data Packet (RsdMsgPtr) from Software Bus */

 ...

/* Get Raw Sensor Data Packet Time */

 RsdMsgTime = CFE_SB_GetMsgTime(RsdMsgPtr);

FileDescriptor = OS_fopen(MyOutputFilename, "r+"); /* Open file for modification */

 if (FileDescriptor != NULL)

 {

 /* Modify contents of existing file */

 ...

 /* Update header to output file with time of raw sensor data packet */

 CFE_FS_SetHeaderTime(FileDescriptor, &RsdMsgTime);

 ...

 }

 ...

}

9.3 Other File Service Utility Functions

The File Service provides a utility function that can move the file pointer associated with a specified file to the first

byte of data following the standard header. This function is called CFE_FS_SeekFileDataStart and an

example of its use can be found below:

cFE Flight Software Flight Software Application Developers Guide

 81

{

 ...

 FILE *FileDescriptor;

 FileDescriptor = OS_fopen(MyInputFilename, "w");

 if (FileDescriptor != NULL)

 {

 /* Skip header information */

 CFE_FS_SeekFileDataStart(FileDescriptor);

 /* Process input data */

 CFE_FS_WriteHeader(FileDescriptor, &MyFileHeader);

 ...

 }

 ...

}

10 Time Service Interface

Time is maintained and accessed through the cFE API Time Service (TIME). As many Developers know, managing

time on a spacecraft is a challenge. The cFE Time Service is an API that allows Applications the ability to access ,

convert and manipulate the current time. The definitions for the TIME API are found in cfe_time.h.

10.1 Time Formats

The cFE Time Service manages time as two 32-bit integers. The first integer represents the number of seconds and

the second integer represents the number of 2-32 seconds. The data structure for this representation of time is as

follows:

typedef struct {

 uint32 Seconds; /* Number of seconds */

 uint32 Subseconds; /* Number of 2^(-32) subseconds */

} CFE_TIME_SysTime_t;

Examples of the subseconds time field would be 0x80000000 equals a half second, 0x40000000 equals a quarter

second, etc. Because time is not simply a single integer or floating point number, the Time Service provides a

collection of functions for converting and manipulating time in these formats. These functions are described in the

sections below.

10.2 Time Values

The cFE Time Service allows each mission to define an Epoch. This is a mission’s time reference to which a derived

number of seconds is added. An Epoch is necessary to determine an absolute time. The Epoch should not have to be

changed during the life of a mission. Mission Elapsed Time (MET) is maintained in a hardware register and is a

running count of clock ticks since the hardware was initialized. MET is not true MET in the sense that it is not the

elapsed time since launch or separation, but the elapsed time since the hardware register was initialized. If the

hardware supports writing to the MET register, then the cFE Time Service allows the register to be updated from the

ground.

The time reference of the MET is not constant because the MET is based on an onboard oscillator that is subject to a

non-constant drift due to temperature and age. The cFE Time Service defines a Spacecraft Time Correlation Factor

(STCF) that is applied to the MET to relate the MET and the epoch to the current time. The cFE Time Server

provides commands to allow the user to update the STCF. The STCF can be updated with a delta time that is

cFE Flight Software Flight Software Application Developers Guide

 82

applied once or continuously applied every second. When continuously applied, the delta time can compensate for a

known spacecraft oscillator drift. The cFE Time Service does not have an automated mechanism to apply a large

delta time across several seconds.

The cFE Time Service’s purpose in defining an Epoch, an MET, and an STCF is to allow the onboard time to be

correlated to a standard time format. The cFE Time Service correlates time to the International Atomic Time (TAI)

and it uses the following equation: TAI = MET + STCF. It should be noted that the time referred to by the cFE as

TAI is only truly TAI when the chosen epoch is the TAI epoch (00:00:00 January 1, 1958). Nothing in the cFE

Time Service precludes the user from setting the epoch and STCF to correlate to a time standard other than TAI.

In addition to TAI, Coordinated Universal Time (UTC) is also commonly desired, so the cFE Time Service provides

a UTC value as well. Universal Time (UT) is based on the Earth’s rotation and TAI is based on highly precise

atomic clocks. Due to the two different reference systems the two time systems drift. By international agreement,

when UT and TAI differ by more than 0.9 seconds, a leap second is applied to UT. The resulting time is UTC. In

the past the FSW typically maintained UTC by using a Universal Time Correlation Factor (UTCF) as follows: UTC

= Epoch + MET + UTCF. Typically, TAI was not an option provided by the FSW. This has two problems. First,

UTC includes leap seconds and some users don’t want leap seconds or UTC. Second, the UTCF was used for both

leap second corrections and to compensate for clock drift so the UTCF could experience large jumps. The cFE

Time Service decouples TAI from UTC and simply adds the number of leap seconds to the TAI. It should be noted

that Leap Seconds is a signed integer and can theoretically be negative, although all leap seconds to date have been

positive. The cFE Time Service computes UTC as follows: UTC = TAI - Leap Seconds. The cFE Time Service

time values are summarized below.

Mission Epoch: An absolute time reference that remains fixed.

MET (Mission Elapsed Time): The number of seconds since an arbitrary epoch and is maintained by an

on-board oscillator. This is the raw source of time on the spacecraft.

STCF (Spacecraft Time Correlation Factor): A numeric value used to correlate the MET with the Mission

Epoch to obtain the current time.

TAI (International Atomic Time): MET + STCF

UTC (Coordinated Universal Time): TAI - Leap Seconds.

10.3 Basic Time Functions

The following Time Service API functions are available for obtaining time information. Most Developer’s will only

need one time function, CFE_TIME_GetTime. This function provides the caller with the current spacecraft time

relative to the mission specific epoch time and may be either TAI or UTC. Developers should attempt to use this

function in all cases to ensure portability of their software to future missions. Two additional time functions are

provided for exceptions. The first of these, CFE_TIME_GetUTC, provides the spacecraft time relative to the

Mission Epoch with the inclusion of Leap Seconds. Developers may need to use this function when their

Application requirements insist on the use of UTC. The second function, CFE_TIME_GetTAI, provides the

spacecraft time since the Mission Epoch and always excludes any Leap Seconds. Developer’s may need to use this

function when their Application requirements insist on using a time that cannot be subject to the occasional one

second jump that occurs when Leap Seconds are updated.

On even more rare occasions, an Application may need to know the Mission Elapsed Time. The Time Service

provides three functions for obtaining the MET. The first, CFE_TIME_GetMET, returns the MET time in the

CFE_Time_SysTime_t format. The other two, CFE_TIME_GetMETSeconds and

CFE_TIME_GetMETSubsecs, return just the appropriate 32-bit integer representing that portion of the time.

cFE Flight Software Flight Software Application Developers Guide

 83

If an Application needs to obtain the current Spacecraft Time Correlation Factor (STCF), the function

CFE_TIME_GetSTCF returns the value in the cFE standard time format described above. The STCF does not

typically, unless the mission operations’ personnel decide to do so, incorporate the number of Leap Seconds

required to convert the onboard TAI time with UTC. To obtain the number of Leap Seconds, the Application must

call CFE_TIME_GetLeapSeconds.

The final time information function is the CFE_TIME_GetClockState function. To understand the return

values of this function, a brief description of how time is managed on the spacecraft is necessary. From the

Application’s perspective, the time obtained through any of the CFE_TIME_Get… functions is directly obtained

from the spacecraft’s primary onboard time base. However, on a spacecraft with multiple processors, only one

processor typically has access to the primary onboard time base. The cFE implements a Time Server / Time Client

paradigm that allows the Time Services on the processor that has access to the primary onboard time base to

broadcast the current time to Time Clients. As long as the Time Server has a working communication path to all

Time Clients, the time available to every Application is essentially the same with neglible errors. When a Time

Server and Time Client become disconnected from one another, they each do their best to maintain the current time

with what information they have available.

If an Application requires accurate time knowledge for its processing, it may require using the

CFE_TIME_GetClockState function. When this function returns CFE_TIME_VALID, then the Application

can feel comfortable that the time obtained through any of the CFE_TIME_Get… functions is synchronized with the

primary onboard time base. If the function returns CFE_TIME_FLYWHEEL, then the Application knows that the

time obtained from any of the CFE_TIME_Get… functions was synchronized at some point in the past but it is now

nothing more than a “best guess” based upon a non-optimal time base. When the return value is

CFE_TIME_INVALID, then the Application knows that the CFE_TIME_Get… functions are returning a local time

that has never been synchronized to the primary onboard time base.

10.4 Time Conversion Functions

Since working with subseconds as an integer of 2-32 seconds is sometimes cumbersome, the cFE Time Services

provides two functions to alleviate this problem. The first, CFE_TIME_Sub2MicroSecs, converts the 32-bit

integer subseconds value to an integral number of microseconds in the range of 0 to 999,999.

The second function, CFE_TIME_Micro2SubSecs, reverses this process and can convert an integer within the

range of 0 to 999,999 into the appropriate number of 2-32 seconds.

10.5 Time Manipulation Functions

In order to understand what is involved in performing arithmetic on time, one must understand that time is

represented in the computer in a circular fashion similar to an analog wall clock. As shown earlier, time is

represented as an unsigned 32-bit integer that counts the number of seconds since some arbitrary epoch time.

cFE Flight Software Flight Software Application Developers Guide

 84

If the counter rolls over (i.e. – goes from 0xFFFFFFFF to 0x00000000), it is not considered an error just like when

an analog wall clock goes from 11:59 to 12:00. This feature is necessary because a mission specific epoch time

could be some time in the future. By allowing rollovers, the time format can be interpreted by ground software as

either a signed integer, so that 0xFFFFFFFF is one second before the epoch time, or as an unsigned integer, where

0xFFFFFFFF is 4,294,967,295 seconds past the epoch time.

The drawback to allowing rollovers is that this adds an interesting dilemma to comparing two absolute times. Going

back to our analog wall clock analogy, let us assume we wish to compute determine whether 9:00 is before or after

2:00. Since the clock is allowed to roll over, which is first? As shown below, 9:00 is either 5 hours before 2:00 or it

is 7 hours later.

The rule that is used by the CFE_TIME_Compare function is that if the smaller delta time is found going in a

counter-clockwise direction, then the first time is considered greater than the second and the comparison function

would return CFE_TIME_A_GT_B. Likewise, if the smaller delta time is found going in a clockwise direction, as

demonstrated in the example above, then the first time is less than the second and the comparison function would

return CFE_TIME_A_LT_B. This rule was chosen because it seemed unlikely that someone would require the

ability to compare two times whose delta time was greater than or equal to 2,147,483,647 seconds (approximately

68 years). If a mission does require this kind of calculation, the Developer will either be required to lobby for a

more appropriate epoch (possibly in the future) or create their own delta time calculation function(s). In addition to

Comparison of

9:00 and 2:00

12

6

9 3 TIME A

TIME B

Onboard Digital 32-bit Clock

0x00000000

0x40000000

0x80000000

0xC0000000

Analog Clock

12

6

9 3

cFE Flight Software Flight Software Application Developers Guide

 85

the rollover phenomenon, the Developer should be aware that comparing an absolute time with a delta time is

meaningless.

The CFE_TIME_Subtract function will compute the delta between two given times. The Developer is

responsible for determining the appropriate order of two absolute times given to the function to obtain the desired

delta time. It may be necessary to call the CFE_TIME_Compare function to determine which absolute time should

be the first time in the subtraction. Otherwise, as shown above, the delta time between two absolute times could

either be 5 hours or 7 hours. An example of a delta time computation function is shown below:

/*

** Since one cannot immediately determine whether one number is

** greater than the other by inspection, call the CFE_TIME_Compare

** function to determine which order items should be subtracted to

** get the shortest time difference between the two.

*/

CFE_TIME_SysTime_t ComputeDeltaTime(CFE_TIME_SysTime_t TimeA,

 CFE_TIME_SysTime_t TimeB)

{

 CFE_TIME_SysTime_t Result;

 if (CFE_TIME_Compare(TimeA, TimeB) == CFE_TIME_A_GT_B)

 {

 Result = CFE_TIME_Subtract(TimeA, TimeB);

 }

 else

 {

 Result = CFE_TIME_Subtract(TimeB, TimeA);

 }

 return Result;

}

Other combinations of subtracted time types will either produce an absolute time, a delta time or garbage as shown

below:

AbsoluteTime – AbsoluteTime = DeltaTime

AbsoluteTime – DeltaTime = AbsoluteTime

DeltaTime – DeltaTime = DeltaTime

DeltaTime – AbsoluteTime = garbage

The CFE_TIME_Add function should be used because it can properly handle the subseconds term and rollovers.

The Developer should remember, however, that adding two absolute times together does not make any sense. One

of the two times must be a delta time.

The cFE Time Services also provide a function called CFE_TIME_Print. This function allows for a time given in

the CFE_TIME_SysTime_t data format to be printed to a string. The resulting string will always be 24

characters long, including the null terminator, and will be of the following format:

yyyy-ddd-hh:mm:ss.xxxxx\0

yyyy = year

ddd = Julian day of the year

hh = hour of the day (0 to 23)

mm = minute (0 to 59)

cFE Flight Software Flight Software Application Developers Guide

 86

ss = second (0 to 59)

xxxxx = subsecond formatted as a decimal fraction (1/4 second = 0.25000)

\0 = trailing null

11 Error Handling

All cFE API calls that can generate an error, return a status code. Developer’s should organize their status codes to

conform to the standard so as to not cause confusion when a status code is reported. By using the standard defined

below, each mission should be able to generate a unique status code for each condition to be reported.

11.1 Standard Error Codes

The status code is designed to have the following bit format:

MSBs STATUS CODE BIT FORMAT LSBs

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9

8

7

6

5

4

3

2

1

0

Sev Rsrvd Service Mission Defined Code

Where

Sev – Severity

00 = Success

01 = Informational

10 = Warning

11 = Error

Rsrvd – Reserved

Service – cFE Service that generated status code

000 = Not a cFE Service

001 = Events Services

010 = Executive Services

011 = File Services

100 = OS API Services

101 = Software Bus Services

110 = Table Services

111 = Time Services

Mission Defined – Each mission can choose how to categorize their own error codes

Code – The number that uniquely identifies the status code. A code value of 0xFFFF is always defined as

a “Not Implemented” error. This is useful for identifying features that are not present either

because of a platform restriction or because it hasn’t been implemented for the current build.

This format allows Application Developer’s to:

 Ensure each status code is unique

 Categorize error codes with sources to simplify identification and translation

cFE Flight Software Flight Software Application Developers Guide

 87

Appendix A

Core Flight Executive (cFE)

Application Programmer’s Interface (API)

This Appendix, which described the interface between the Core Flight Executive (cFE) and the applications that run

in the cFE environment, has been removed. Please reference the cFE Doxygen generated documentation for the

details of the API..

A.1 Operating System

This OS abstraction layer provides a common interface to functions that are usually provided by commercial real-

time operating systems. This abstraction will allow cFE applications to be ported to different RTOSs more easily.

Details of these functions are contained in the document OS Abstraction Layer Library. To avoid duplicate

documentation, those details will not be repeated here.

Task Control Functions:
OS_CreateTask, OS_TaskDelay, OS_TaskSetPriority, OS_TaskRegister

OS_ChangeModes

Informational Functions:
OS_Milli2Ticks, OS_InfoGetTicks,

OS_InfoGetProcessorId, OS_InfoGetTaskId, OS_InfoGetResetType,

OS_InfoGetEnvironment, OS_InfoGetNetworkID, OS_GetSpacecraftID,

OS_GetExecCount, OS_IncExecCount, OS_ClearExecCounters

Queue and Semaphore Functions:
OS_QueueCreate, OS_QueueGet, OS_QueuePut

OS_BinSemCreate, OS_BinSemGive, OS_BinSemTake, OS_BinSemTimedWait

OS_MutSemCreate, OS_MutSemGive, OS_MutSemTake

Interrupt and Exception Functions:
OS_IntAttachHandler, OS_IntEnableAll, OS_IntDisableAll

OS_IntSetMask, OS_IntGetMask, OS_IntAck

OS_ExcAttachHandler, OS_ExcEnable, OS_ExcDisable

Floating Point Unit Functions:
OS_FPUExcAttachHandler, OS_FPUExcEnable, OS_FPUExcDisable,

OS_FPUExcFPUMask, OS_FPUExcGetMask

Memory and Port I/O Functions:
OS_MemRead8, OS_MemRead16, OS_MemRead32,

OS_MemWrite8, OS_MemWrite16, OS_MemWrite32,

OS_EepromWrite8, OS_EepromWrite16, OS_EepromWrite32,

OS_MemCpy, OS_MemSet, OS_MemCheckRange,

OS_MemSetAttributes, OS_MemGetAttributes,

OS_EepromWriteEnable, OS_EepromWriteDisable,

OS_EepromPowerUp, OS_EepromPowerDown

OS_PortRead8, OS_PortRead16, OS_PortRead32,

OS_PortWrite8, OS_PortWrite16, OS_PortWrite32,

cFE Flight Software Flight Software Application Developers Guide

 88

OS_PortSetAttributes, OS_PortGetAttributes

The OS Abstraction Layer also incorporates a subset of the POSIX standard file access routines. To allow the cFE

to be used with simpler file systems, the routines involved with file ownership and “current working directories”

have been omitted. The names of the routines are the same as the POSIX names, with “OS_” pre-pended to them.

Details of these functions are also contained in the document OS Abstraction Layer Library.

File routines: Directory routines: Device routines:
OS_creat OS_mkdir OS_mkfs

OS_open OS_opendir OS_mount

OS_close OS_closedir OS_unmount

OS_read OS_readdir OS_chkfs

OS_write

OS_chmod

OS_stat

OS_lseek OS_rewinddir

OS_remove OS_rmdir

OS_rename

cFE Flight Software Flight Software Application Developers Guide

 89

