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The software GPOPS was developed in response to a demand from the research and academic community for a
MATLAB software for solving complex optimal control problems. Since the original release of GPOPS in the
Fall of 2008, the methods and the software have undergone extensive changes. Originally the software utilized
the Gauss pseudospectral method, but more research in the area of pseudospectral methods for solving
optimal control has led us to the current version of the software that implements the Radau pseudospectral
method. In addition, we now offer a code that implements an hp–adaptive mesh refinement algorithm that
iteratively determines a mesh that accurately distributes the collocation points. The bulk of the changes to
GPOPS are internal, that is, the user-interface has changed only slightly from earlier versions of the code.
The authors of GPOPS hope sincerely that the code is useful.

Disclaimer

This software is provided “as is” and free-of-charge. Neither the authors nor their employers assume any
responsibility for any harm resulting from the use of this software. The authors do, however, hope that users
will find this software useful for research and other purposes.

Preface to The GPOPS Software

It is noted that GPOPS has been designed to work with the nonlinear programming solver SNOPT.1 The
current version of GPOPS now includes a restricted version of SNOPT. Next, GPOPS has been re-written
so that now the objective function and constraint Jacobian derivatives can be estimated using built-in finite-
differencing, sparse complex-step differentiation, or forward mode automatic differentiation. In addition,
GPOPS still retains the ability to use the forward mode automatic differentiator INTLAB. It is noted that
INTLAB can be downloaded from http://www.ti3.tu-harburg.de/rump/intlab/. Commercial use of
INTLAB requires a license which can be obtained by contacting Professor Siegfried Rump via e-mail at
rumptu-harburg.de.

Changes in GPOPS Version 5.0

All of the changes in GPOPS Version 5.0 are internal. Specifically, the mesh refinement method used in
GPOPS has been updated to be more robust from that which was used in GPOPS Version 4.x. In addition,
the automatic scaling routine has been revised and this modification has been found to work significantly
better than the previous automatic scaling routine. It is noted that users of GPOPS 4.x will not see any
changes in syntax to the software, but it is expected (hoped) that this new version of GPOPS will run more
efficiently in comparison to Version 4.x

Licensing Agreement

By downloading, using, modifying, or distributing GPOPS , you agree to the terms of this license agreement.
This license gives you extremely GENEROUS RIGHTS, so if you do not agree to the terms of this agreement,
you may not proceed further with using, using, modifying, or distributing GPOPS.

License for GPOPS Software

This is a license for the software General Pseudospectral Optimal Control Software (GPOPS ). The license
for GPOPS is based on the Simple Public License. In the same spirit as the Simple Public License, the
language for the GPOPS License is similar to that of GPL 2.0. The words are different, but the goal is the
same: to guarantee for all users the freedom to share and change software. If anyone wonders about the
meaning of the GPOPS License, they should interpret it as consistent with GPL 2.0.

http://www.ti3.tu-harburg.de/rump/intlab/


3

The GPOPS License applies to the software’s source and object code and comes with any rights that
I have in it (other than trademarks). You agree to the GPOPS License simply by downloading, copying,
distributing, or making a derivative work of the software. You get the royalty-free right to

• Use the software for any purpose;

• Make derivative works of it (this is called a ”Derived Work”);

• Copy and distribute it and any Derived Work.

If you distribute the software or a Derived Work, you must give back to the community by

• Prominently noting the date of any changes you make;

• Leaving other people’s copyright notices, warranty disclaimers, and license terms in place;

• Providing the source code, build scripts, installation scripts, and interface definitions in a form that is
easy to get and best to modify;

• Licensing it to everyone under the terms of this license agreement without adding further restrictions
to the rights provided;

• Conspicuously announcing that it is available under this license.

Restrictions for Use and Distribution of GPOPS

GPOPS is a completely free software both for use and for redistribution. Furthermore, while it may be used
within commercial organizations, it is not for sale or resale. The only exception to the sales restriction above
is that GPOPS may be included as a part of a free open-source software (for example, a distribution of the
Linux operating system). When distributing GPOPS with a free operating system, no fee beyond the price
of the operating system itself may be added (that is, you cannot profit from the redistribution of GPOPS ).
GPOPS is not for commercial use with the exception that it may be used by commercial organizations
for internal research and development. Any use of GPOPS by commercial organizations that involve the
presentation of results for profit-making purposes is strictly prohibited. In addition, there are some things
that you must shoulder:

• You get no warranties of any kind;

• If the software damages you in any way, you may only recover direct damages up to the amount you
paid for it (that is, you get zero if you did not pay anything for the software);

• You may not recover any other damages, including those called ”consequential damages.” (The state
or country where you live may not allow you to limit your liability in this way, so this may not apply
to you).

The GPOPS License continues perpetually, except that your license rights end automatically if

• You do not abide by the ”give back to the community” terms (your licensees get to keep their rights
if they abide);

• Anyone prevents you from distributing the software under the terms of this license agreement.

• You sell the software in any manner with the one exception listed above.

In addition, to the license given above, the authors of GPOPS request that the following documents be
cited in any publication where GPOPS was used to obtain the results:

(1) Rao, A. V., Benson, D. A., Darby, C. L., Patterson, M. A., Francolin, C., Sanders, I., and Huntington, G.
T., ”Algorithm 902: GPOPS , A MATLAB Software for Solving Multiple-Phase Optimal Control Prob-
lems Using the Gauss Pseudospectral Method,” ACM Transactions on Mathematical Software, Vol. 37,
No. 2, April–June, 2010, Article 22, 39 pages.
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(2) Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V., ”Direct Trajectory Optimization
and Costate Estimation via an Orthogonal Collocation Method, Journal of Guidance, Control, and
Dynamics, Vol. 29, No. 6, November–December 2006, pp. 1435–1440.

(3) Garg, D., Patterson, M. A., Darby, C. L., Francolin, C., Huntington, G. T., Hager, W. W., and Rao,
A. V., ”Direct Trajectory Optimization and Costate Estimation of Finite-Horizon and Infinite-Horizon
Optimal Control Problems Using a Radau Pseudospectral Method,” Computational Optimization and
Applications, Vol. 49, No. 2, June 2011, pp. 335–358.

(4) Garg, D., Patterson, M. A., Hager, W. W., Rao, A. V., Benson, D. A., and Huntington, G. T., ”A Unified
Framework for the Numerical Solution of Optimal Control Problems Using Pseudospectral Methods,”
Automatica, Vol. 46, No. 11 November 2010, pp. 1843-1851.

(5) Garg, D., Hager, W. W., and Rao, A. V., ”Pseudospectral Methods for Solving Infinite-Horizon Optimal
Control Problems,” Automatica, Vol. 47, No. 4, April 2011, pp. 829–837.

The GPOPS software is provided “as is” without warranty of any kind, expressed or implies, including but
not limited to the warranties of merchantability, fitness for a particular purpose, and non-infringement. In
no event shall the authors or copyright holders be liable for any claim, damages, or other liability, whether
in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the
use or dealings in the software.
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1 Introduction to General Pseudospectral Optimization Software
(GPOPS )

General Pseudospectral Optimization Software (GPOPS ) is a software program written in MATLAB1 R©
for solving multiple-phase optimal control problems of the following form. Given a set of P phases (where
p = 1, . . . , P ), minimize the cost functional

J =

P∑
p=1

J (p) =

P∑
p=1

[
Φ(p)(x(p)(t0), t0,x

(p)(tf ), tf ; q(p)) + L(p)(x(p)(t),u(p)(t), t; q(p))dt
]

(1)

subject to the dynamic constraint

ẋ(p) = f (p)(x(p),u(p), t; q(p)), (p = 1, . . . , P ), (2)

the boundary conditions

φmin ≤ φ(p)(x(p)(t0), t
(p)
0 ,x(p)(tf ), t

(p)
f ; q(p)) ≤ φmax, (p = 1, . . . , P ), (3)

the inequality path constraints

C
(p)
min ≤ C(p)(x(p)(t),u(p)(t), t; q(p)) ≤ C(p)

max, (p = 1, . . . , P ), (4)

and the phase continuity (linkage) constraints

P(s)(x(psl )(tf ), t
(psl )
f ; q(psl ),x(psu)(t0), t

(psu)
0 ; q(psu)) = 0, (pl, pu ∈ [1, . . . , P ], s = 1, . . . , L) (5)

where x(p)(t) ∈ Rnp , u(p)(t) ∈ Rmp , q(p) ∈ Rqp , and t ∈ R are, respectively, the state, control, static
parameters, and time in phase p ∈ [1, . . . , P ], L is the number of phases to be linked, psl ∈ [1, . . . , P ], (s =
1, . . . , L) are the “left” phase numbers, and psu ∈ [1, . . . , P ], (s = 1, . . . , L) are the “right” phase numbers.

While much of the time a user may want to solve a problem consisting of multiple phases, it is important
to note that the phases need not be sequential. To the contrary, any two phases may be linked provided
that the independent variable does not change direction (i.e., the independent variable moves in the same
direction during each phase that is linked). A schematic of how phases can potentially be linked is given in
Fig. 1.

1.1 Radau Pseudospectral Method Employed by GPOPS

The method employed by GPOPS is the Radau Pseudospectral Method (RPM). The RPM is an orthogonal
collocation method where the collocation points are the Legendre-Gauss-Radau points. The theory of the
RPM can be found in.2,3, 4, 5, 6 Some of the interesting features of the RPM are as follows: (1) it is a
Gaussian quadrature implicit integration scheme; (2) it has been demonstrated to converge exponentially
fast for problems whose solutions are smooth; (3) an elegant connection exists between the continuous-time
optimal control problem and the discrete approximation; (4) it lends itself to the hp–adaptive approach used
in GPOPS .

1.2 Organization of GPOPS

GPOPS is organized as follows. In order to specify the optimal control problem that is to be solved, the
user must write MATLAB functions that define the following functions in each phase of the problem:

(1) the cost functional

(2) the right-hand side of the differential equations and the path constraints(i.e., the differential-algebraic
equations)

1MATLAB is a registered trademark of The Mathworks, Inc., One Apple Hill, Natick, MA
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Phases 2 and 5 Connected

Phases 3 and 4 Connected

Figure 1: Schematic of linkages for multiple-phase optimal control problem. The example shown in the
picture consists of five phases where the ends of phases 1, 2, and 3 are linked to the starts of phases 2, 3,
and 4, respectively, while the end of phase 3 is linked to the start of phase 5.

(3) the boundary conditions (i.e., event conditions)

(4) the linkage constraints (i.e., how the phases are connected)

In addition, the user must also specify the lower and upper limits on every component of the following
quantities:

(1) initial and terminal time of the phase

(2) the state at the following points in time:

• at the beginning of the phase

• during the phase

• at the end of the phase

(3) the control

(4) the static parameters

(5) the path constraints

(6) the boundary conditions

(7) the phase duration (i.e., total length of phase in time)

(8) the linkage constraints (i.e., phase-connect conditions)

It is noted that each of the functions must be defined for each phase of the problem. The remainder of
this document is devoted to describing in detail the MATLAB R© syntax for describing the optimal control
problem and each of the constituent functions.



1.3 Notation Used Throughout Remainder of This Manual 8

1.3 Notation Used Throughout Remainder of This Manual

The following notation is adopted for use throughout the remainder of this manual. First, all user-specified
names will be denoted by slanted characters (not italic, but slanted). Second, any item denoted by boldface
characters are pre-defined and cannot be changed by the user. Finally, users with color capability will see
the slanted characters in red and will see the boldface characters in blue.

1.4 Constructing an Optimal Control Problem in GPOPS

We now proceed to describe the constructs required to specify an optimal control problem in GPOPS .
We note that the key MATLAB programming elements used in constructing an optimal control problem in
GPOPS are structure and arrays of structures.

1.5 Preliminary Information

Before proceeding to the details of setting up a problem in GPOPS , the following few preliminary details
are useful. First, it is important to understand that the GPOPS interface is laid out in phases. Using
a phase-based approach, it is possible to describe each segment of the problem independently of the other
segments. The segments are then linked together using linkage conditions (or phase-connect conditions).
Second, it is important to note that GPOPS uses the vectorization capabilities of MATLAB. In this vein all
matrices and vectors in GPOPS are oriented column-wise for maximum efficiency. As you read through
manual, please keep in mind the column-wise orientation of all matrices used in GPOPS .

2 Constructing an Optimal Control Problem Using GPOPS

In this Section we provide the details of constructing a problem using GPOPS . First, the call to GPOPS is
deceptively simple and is given as follows:

[output,gpopsHistory]=gpops(setup)

The input setup is a user-defined structure that contains all of the information about the optimal control
problem to be solved 2. Finally, the variables output and gpopsHistory are a structure and an array of
structures that contain, respectively, the information on the final run of the mesh refinement (output) and
a complete history of the solutions on every mesh on which the problem was solved (gpopsHistory).3.

2.1 Syntax for Input Structure setup

The user-defined structure setup contains required fields and optional fields. The required fields in the
structure setup are as follows:

• name: a string containing the name of the problem.

• funcs: a structure whose elements contain the names of the user-defined function in the problem (see
Section 2.2 below).

• limits: an array of structures that contains the information about the lower and upper limits on the
variables and constraints in each phase of the problem (see Section 2.3 below).

• guess: an array of structures that contains contains a guess of the solution in each phase of the problem
(see Section 2.10 below).

The optional fields (and their default values) are as follows:

• linkages: an array of structures that contains the information about the lower and upper limits of the
linkage constraints (see Section 2.4 below).

2see the detailed description of setup in Section 2.1
3See the detailed description of the output in Section 5.
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• mesh: Specifies the parameters to be used by the hp–adaptive method refinement algorithm that is
implemented in GPOPS (see Section 3 below).

• autoscale: a string that indicates whether or not the user would like the optimal control problem to
be scaled automatically before it is solved. (default=“off”) (see Section 2.11 below).

• derivatives: a string indicating differentiation method to be used. Possible values for this string
are “finite-difference”, “complex”, “automatic”, “automatic-INTLAB”, “analytic” (default=“finite-
difference”) (see Section 4 below).

• checkDerivatives: a flag to check user defined analytic derivatives (default=“0”) (see Section 4
below).

• maxIterations: a positive integer indicating the maximum number of iterations that can be taken by
the NLP solver.

• printoff: a flag that will supress all printing from GPOPS to the screen (default=“0”).

• tolerances: two element array specifiying the NLP solver Optimality and Feasibility Tolerances
(default=“[1e-6, 2e-6]”).

Furthermore, it is important to note that GPOPS has been designed so that the independent variable must
be monotonically increasing’ across each phase of the trajectory.

2.2 Syntax for Structure setup.funcs

The syntax for specifying the names of the MATLAB functions is done by setting the fields in the structure
FUNCS and is given as follows:

setup.funcs.cost = ‘costfun.m′

setup.funcs.dae = ‘daefun.m′

setup.funcs.event = ‘eventfun.m′

setup.funcs.link = ‘linkfun.m′

Example of Specifying Function Names for Use in GPOPS

Suppose we have a problem whose cost functional, differential-algebraic equations, event constraints, and link-
age constraints are defined, respectively, via the user-defined functions mycostfun.m, mydaefun.m, myevent-
fun.m, and mylinkfun.m. Then the syntax for specifying these functions for use in GPOPS is given as
follows:

setup.funcs.cost = ’mycostfun’;

setup.funcs.dae = ’mydaefun’;

setup.funcs.event = ’myeventfun’;

setup.funcs.link = ’mylinkfun’;

2.3 Syntax for limits Structure

Once the user-defined structure setup has been defined, the next step in setting up a problem for use with
GPOPS is to create an array of structures of length P (where P is the number of phases) called limits,
where limits is a field of the structure setup. The array of structures limits is specified as follows:

• limits(p).meshPoints: a monotonically increasing row vector of length Mp, (p ∈ [1, . . . , P ]), where
each entry in the vector is on the domain [−1,+1], that contains a set of mesh points for the initial
run of GPOPS . If the user does not have an estimate of the mesh point locations, this field should be
left blank.
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• limits(p).nodesPerInterval: a row vector of length Mp − 1, (p ∈ [1, . . . , P ]), where each entry in
the vector is a positive integer that contains the number of collocation points in each mesh interval for
the initial run of GPOPS . If the user does not have an estimate of the number of collocation points
in each mesh interval, this entry should be left blank.

• limits(p).time.min and limits(p).time.max: row vectors, each of length two, that contain the
information about the lower and upper limits, respectively, on the initial and terminal time in phase
p ∈ [1, . . . , P ]. The row vectors limits(p).time.min and limits(p).time.max have the following
form:

limits(p).time.min =
[
tmin
0 tmin

f

]
limits(p).time.max =

[
tmax
0 tmax

f

]
• limits(p).state.min and limits(p).state.max: matrices, each of size np × 3, that contain the lower

and upper limits, respectively, on the state in phase p ∈ [1, . . . , P ]. Each of the columns of the matrices
limits(p).state.min and limits(p).state.max are given as follows:

– limits(p).state.min(:,1): a column vector containing the lower (upper) limits on the state at
the start of phase p ∈ [1, . . . , P ].

– limits(p).state.min(:,2): a column vector containing the lower (upper) limits on the state at
the during phase p ∈ [1, . . . , P ].

– limits(p).state.min(:,3): a column vector containing the lower (upper) limits on the state at
the terminus of phase p ∈ [1, . . . , P ].

The matrices limits(p).state.min and limits(p).state.max then have the following form:

limits(p).state.min =

 xmin
10 xmin

1 xmin
1f

...
...

...
xmin
n0 xmin

n xmin
nf



limits(p).state.max =

 xmax
10 xmax

1 xmax
1f

...
...

...
xmax
n0 xmax

n xmax
nf


• limits(p).control.min and limits(p).control.max: column vectors, each of length mp, that contain

the lower and upper limits, respectively, on the controls in phase p ∈ [1, . . . , P ]. The column vectors
limits(p).control.min and limits(p).control.max have the following form:

limits(p).control.min =

 umin
1
...

umin
m



limits(p).control.max =

 umax
1
...

umax
m


• limits(p).parameter.min and limits(p).parameter.max: column vectors, each of length qp, that

contain the lower and upper limits, respectively, on the static parameters in phase p ∈ [1, . . . , P ]. The
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column vectors limits(p).parameter.min and limits(p).parameters.max have the following form:

limits(p).parameter.min =

 qmin
1
...

qmin
qp



limits(p).parameter.max =

 qmax
1
...

qmax
qp


• limits(p).path.min and limits(p).path.max: column vectors, each of length rp, that contain the

lower and upper limits, respectively, on the path constraints in phase p ∈ [1, . . . , P ]. The column
vectors limits(p).path.min and limits(p).path.max have the following form:

limits(p).path.min =

 cmin
1
...

cmin
rp



limits(p).path.max =

 cmax
1
...

cmax
rp


• limits(p).event.min and limits(p).event.max: column vectors, each of length ep, that contain

the lower and upper limits on the event constraints in phase p ∈ [1, . . . , P ]. The column vectors
limits(p).event.min and limits(p).event.max have the following form:

limits(p).event.min =

 φmin
1
...

φmin
ep



limits(p).event.max =

 φmin
1
...

φmin
ep


• limits(p).duration.min and limits(p).duration.max: scalars that contain the lower and upper lim-

its on the duration of phase p ∈ [1, . . . , P ]. The scalars limits(p).duration.min and limits(p).duration.max
have the following form:

limits(p).duration.min = Tmin

limits(p).duration.max = Tmax

• limits(p).dependencies: (optional) Matrix of size (np+rp x np+mp) which defines the dependencies
of the dae functions on the state and control in phase p ∈ [1, . . . , P ]. An entry of 1 indicates that
ode / path constraint corresponding to the row depends on (i.e. has a non-zero derivative) the state /
control corresponding to the column. An entry of 0 indicates no dependence. User specification of this
matrix reduces the number of values in the non-linear sparsity problem and can improve the solution
time. A simple finite-difference check is performed to avoid specifying no dependence if a dependence
actually exists. (default=all-ones)

Note: any fields that do not apply to a problem (i.e. a problem without event constraints, path constraints,
etc.) may be omitted or left as empty matrices (“[]”).
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Example of Setting Up a Limits Structure

As an example of setting up a limits structure in GPOPS , consider the following two-phase optimal control problem. In particular,
suppose that phase 1 of the problem has 3 states, 2 controls, 2 path constraints, and 5 event constraints. Furthermore, suppose in
phase 1 that we choose to initialize GPOPS with four mesh points) at the locations (−1,−1/3, 1/3,+1) with 3, 4, and 5 collocation
points, respectively, in the first, second, and third mesh intervals. In addition, suppose that the lower and upper limits on the initial
and terminal time in the first phase are given as

0 ≤ t
(1)
0 ≤ 0

50 ≤ t
(1)
f ≤ 100

Next, suppose that the lower and upper limits on the states at the start of the first phase are given, respectively, as

1 ≤ x1(t
(1)
0 ) ≤ 1

−3 ≤ x2(t
(1)
0 ) ≤ 0

0 ≤ x2(t
(1)
0 ) ≤ 5

Similarly, suppose that the lower and upper limits on the states during the first phase are given, respectively, as

1 ≤ x1(t(1)) ≤ 10

−50 ≤ x2(t(1)) ≤ 50

−20 ≤ x2(t(1)) ≤ 20

Finally, suppose that the lower and upper limits on the states at the terminus of the first phase are given, respectively, as

5 ≤ x1(t
(1)
f ) ≤ 7

2 ≤ x2(t
(1)
f ) ≤ 2.5

−π ≤ x2(t
(1)
f ) ≤ π

Next, suppose that the lower and upper limits on the controls during the first phase are given, respectively, as

−50 ≤ u1(t(1)) ≤ 50

−100 ≤ u2(t(1)) ≤ 100

Next, suppose that the lower and upper limits on the path constraints during the first phase are given, respectively, as

−10 ≤ p1(t(1)) ≤ 10

1 ≤ p2(t(1)) ≤ 1

Next, suppose that the lower and upper limits on the event constraints of the first phase are given, respectively, as

0 ≤ φ
(1)
1 ≤ 1

−2 ≤ φ
(1)
2 ≤ 4

8 ≤ φ
(1)
3 ≤ 20

3 ≤ φ
(1)
4 ≤ 3

10 ≤ φ
(1)
5 ≤ 10

In a similar manner, suppose that phase 2 of the problem contains the following information: 4 states, 3 controls, 1 path con-
straint, and 4 event constraints. Also, suppose that we choose to initialize GPOPS with a mesh consisting of six mesh points
(−1,−0.75,−0.5, 0, 0.5, 0.75,+1) with the 2, 4, 4, 3, and 2 collocation points in the first through fifth mesh intervals, respectively.
In addition, suppose now that the lower and upper limits on the initial and terminal time in the first phase are given, respectively, as

50 ≤ t
(2)
0 ≤ 100

100 ≤ t
(2)
f ≤ 200

Next, suppose that the lower and upper limits on the states at the start of the second phase are given, respectively, as

3 ≤ x1(t
(2)
0 ) ≤ 3

−10 ≤ x2(t
(2)
0 ) ≤ 4

7 ≤ x3(t
(2)
0 ) ≤ 18

25 ≤ x4(t
(2)
0 ) ≤ 75

Similarly, suppose that the lower and upper limits on the states during the second phase are given, respectively, as

−200 ≤ x1(t(2)) ≤ 200

−50 ≤ x2(t(2)) ≤ 50

−20 ≤ x3(t(2)) ≤ 20

−80 ≤ x4(t(2)) ≤ 80

Finally, suppose that the lower and upper limits on the states at the terminus of the second phase are given, respectively, as

12 ≤ x1(t
(2)
f ) ≤ 12

−60 ≤ x2(t
(2)
f ) ≤ 30

−90 ≤ x3(t
(2)
f ) ≤ 10

100 ≤ x4(t
(2)
f ) ≤ 500
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Next, suppose that the lower and upper limits on the controls during the second phase are given, respectively, as

−90 ≤ u1(t(2)) ≤ 90

−120 ≤ u2(t(2)) ≤ 120

Next, suppose that the lower and upper limits on the path constraints during the second phase are given, respectively, as

−10 ≤ p1(t(2)) ≤ 10

1 ≤ p2(t(2)) ≤ 1

Finally, suppose that the lower and upper limits on the events constraints of the second phase phase are given, respectively, as

0 ≤ φ
(2)
1 ≤ 1

−2 ≤ φ
(2)
2 ≤ 4

8 ≤ φ
(2)
3 ≤ 20

3 ≤ φ
(2)
4 ≤ 3

Then a MATLAB code that would generate the above specification is given as follows:

iphase = 1; % Set the phase number to 1
limits(iphase).meshPoints = [-1 -1/3 1/3 +1];
limits(iphase).nodesPerInterval = [3 4 5];
limits(iphase).time.min = [0 50];
limits(iphase).time.max = [0 100];
limits(iphase).state.min = [1 1 5; -3 -50 2; 0 -20 -pi];
limits(iphase).state.max = [1 10 7; 0 50 2.5; 5 20 pi];
limits(iphase).control.min = [-50; -100];
limits(iphase).control.max = [ 50; 100];
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = [-10; 1];
limits(iphase).path.max = [10; 1];
limits(iphase).event.min = [0; -2; 8; 3; 10];
limits(iphase).event.max = [1; 4; 20; 3; 10];

iphase = 2; % Set the phase number to 2
limits(iphase).meshPoints = [-1 -0.75 -0.5 0.5 0.75 1];
limits(iphase).nodesPerInterval = [2 4 4 3 2];
limits(iphase).time.min = [50 100];
limits(iphase).time.max = [100 200];
limits(iphase).state.min = [3 -200 12; -10 -50 -60; 7 -20 -90; 25 -80 100];
limits(iphase).state.max = [3 200 12; 4 50 30; 18 20 10; 75 80 500];
limits(iphase).control.min = [-90; -120];
limits(iphase).control.max = [ 90; 120];
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = [-10; 10];
limits(iphase).path.max = [1; 1];
limits(iphase).event.min = [0; -2; 8; 3];
limits(iphase).event.max = [1; 4; 20; 3];

setup.limits = limits;

Note: in order to make the coding easier, we have introduced the auxiliary integer variableiphase so that
the user can more easily reuse code from phase to phase.

2.4 Syntax for linkages Array of Structures

Another required field in the structure setup is an array of structures called linkages that defines the way
that the phases are to be linked. If there is only one phase in the problem, then setup.linkages may be set
to “[]”. If the problem contains more than a single phase, then linkages is an array of structures of length
L (where L is the number of pairs of phases to be linked). The array of structures linkages is specified as
follows:

• linkages(s).min: a column vector of length ls containing the lower limits on the sth pair of linkages.

• linkages(s).max: a column vector of length ls containing the upper limits on the sth pair of linkages.

• linkages(s).left.phase: an integer containing the “left” phase in the pair of phases to be connected
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• linkages(s).right.phase: an integer containing the “right” phase in the pair of phases to be connected

Note that we use the terminology “left” and “right” in the sense of viewing a graph of the trajectory on a
page where time is increasing to the right. Thus, the “left” phase corresponds to the terminus of a phase
while the “right” phase corresponds to the start of a phase.

2.5 Syntax of Each Function Specified in Structure setup.funcs

Now that we know which functions GPOPS will use, the next step is to discuss the syntax of each of these
functions. In general, the syntax for each function will differ because the quantities being evaluated are
different in nature. In this section we will explain the syntax of each function.

2.6 Syntax of Cost Functional Specified in setup.funcs.cost

The syntax used to evaluate a user-defined cost functional is given as follows:

function [Mayer,Lagrange]=mycostfun(solcost);

where mycostfun.m is the name of the MATLAB function, solcost is the input to the function, and Mayer
and Lagrange are the outputs. The input solcost is a structure while the outputs Mayer and Lagrange are
the endpoint cost and the integrand of the integrated cost, respectively. The input structure solcost has the
following fields (note that N=number of LGR points which are on the interior of the time interval):

• solcost.phase: the phase number

• solcost.initial.time: the initial time in phase solcost.phase

• solcost.initial.state: the initial state in phase solcost.phase

• solcost.terminal.time: the terminal time in phase solcost.phase

• solcost.terminal.state: the terminal state in phase solcost.phase

• solcost.time: a column vector of length N that contains the time (excluding the initial and terminal
points) in phase solcost.phase

• solcost.state: a matrix of size N × n (where n is the number of states) that contains the values of the
state (excluding the initial and terminal points) in phase solcost.phase

• solcost.control: a matrix of size N ×m (where m is the number of controls) that contains the values
of the control (excluding the initial and terminal points) in phase solcost.phase

• solcost.parameter: a column vector of length q that contains the values of the static parameters in
phase solcost.phase

Finally, the outputs of mycostfun are as follows:

• Mayer: a scalar, i.e., size 1× 1

• Lagrange: a column vector of size N × 1

Warning About Outputs to Cost Function

For many optimal control problems the output Lagrange in the user-defined cost function mycostfun is
zero. As such, it is appealing to set Lagrange to zero by the MATLAB command

Lagrange=0; (6)
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However, the integrand cannot be set to a scalar value!. Instead, the integrand must be set to
a column vector of zeros!. The way to set the integrand to zero and that will work in all cases
(i.e., finite-difference or automatic differentiation) is as follows:

Lagrange=zeros(size(solcost.time); (7)

The user is urged to use the syntax of Eq. (7) whenever the integrand is identically zero.

Example of a Cost Functional

Suppose we have a two-phase optimal control problem that uses a cost functional named “mycostfun.m”. Suppose further that the
dimension of the state in each phase is 2 while the dimension of the control in each phase is 2. Also, suppose that the endpoint and
integrand cost in phase 1 are given, respectively, as

Φ(1)(x(1)(t0), t
(1)
0 ,x(1)(tf ), t

(1)
f ) = xT (tf )Sx(tf )

L(1)(x(1)(t),u(1)(t), t) = xT Qx + uT Ru

while the endpoint and integrand in phase 2 are given, respectively, as

Φ(2)(x(2)(t
(2)
0 ), t

(2)
0 ,x(2)(t

(2)
f ), t

(2)
f ) = xT (tf )x(tf )

L(2)(x(2)(t),u(2)(t), t) = uT Ru

Then the syntax of the above cost functional is given as follows:

function [endpoint,integrand]=mycostfun(solcost);

Q = [5 0; 0 2];
R = [1 0; 0 3];
S = [1 5; 5 1];
iphase = solcost.phase;
t0 = solcost.initial.time;
x0 = solcost.initial.state;
tf = solcost.terminal.time;
xf = solcost.terminal.state;
t = solcost.time;
x = solcost.state;
u = solcost.control;
p = solcost.parameter;

if iphase==1,
Mayer = dot(xf,S*xf);
Lagrange = dot(x,x*Q’,2)+dot(u,u*R’,2); % Note transposes

elseif iphase==2,
Mayer = dot(xf,xf);
Lagrange = dot(u,u*R’,2); % Note transposes

end;

It is noted in the above function call that the third argument in the command dot takes the dot product across the rows, thereby
producing a column vector.

2.7 Syntax for Differential-Algebraic Equations Function Specified in setup.funcs.dae

The calling syntax used evaluate the right-hand side of a user-defined vector of differential equations is given
as follows:

function dae=mydaefun(soldae);

where mydaefun.m is the name of the MATLAB function, soldae is the input to the function, and dae is the
output (i.e., the right-hand side of the differential equations and the values of the path constraints). The
input soldae is a structure while the output dae is a matrix of size N × (n + c) where n is the number of
differential equations, c is the number of path constraints, and N is the number of LGR points. The input
structure soldae has the following fields:

• soldae.phase: the phase number
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• soldae.time: a column vector of length N that contains the time (excluding the initial and terminal
points) in phase soldae.phase

• soldae.state: a matrix of size N × n (where n is the number of states) that contains the values of the
state (excluding the initial and terminal points) in phase soldae.phase

• soldae.control: a matrix of size N ×m (where m is the number of controls) that contains the values
of the control (excluding the initial and terminal points) in phase soldae.phase

• soldae.parameter: a column vector of length q that contains the values of the static parameters in
phase soldae.phase

Finally, the output of myodefun are as follows:

• dae: a matrix of size N × (n + c) containing the values of the right-hand side of the n differential
equations and the c path constraints evaluated at the N LGR points

Example of a Differential-Algebraic Equation

Suppose we have a two-phase optimal control problem that uses a differential equation function called “mydaefun.m”. Suppose
further that the dimension of the state in each phase is 2, the dimension of the control in each phase is 2. Furthermore, suppose that
there are no path constraints in phase 1 and one path constraint in phase 2. Next, suppose that the differential equations in phase 1
are given as

ẋ1 = −x2
1 − x

2
2 + u1u2

ẋ2 = −x1x2 + 2(u1 + u2)

Also, suppose that the differential equations in phase 2 are given as

ẋ1 = sin(x2
1 + x2

2) + u1u
2
2

ẋ2 = − sin x1 cos x2 + 2u1u2

Finally, suppose that the path constraint in phase 2 is given as

u
2
1 + u

2
2 = 1

Then a MATLAB code that will evaluate the above system of differential-algebraic equations is given as follows:

function dae = mydaefun(soldae);

iphase = soldae.phase;
t = soldae.time;
x = soldae.state;
u = soldae.control;
p = soldae.parameter;

if iphase==1,
x1dot = -x(:,1).^2-x(:,2).^2 + u(:,1).*u(:,2);
x2dot = -x(:,1).*x(:,2) + 2*(u(:,1)+u(:,2));
path = [];

elseif iphase==2,
x1dot = sin(x(:,1).^2 + x(:,2).^2) + u(:,1).*u(:,2).^2;
x2dot = -sin(x(:,1)).*cos(x(:,2))+2*u(:,1).*u(:,2);
path = u(:,1).^2+u(:,2).^2;

end;
dae = [x1dot x2dot path];

2.8 Syntax of Event Constraint Function Specified in setup.funcs.event

The syntax used to evaluate a user-defined vector of event constraints is given as follows:

function events=myeventfun(solevents,iphase);

where myeventfun.m is the name of the MATLAB function, solevents and iphase are the inputs to the
function, and event is the output (i.e., the value of the event constraints). The inputs solevents and iphase
are a structure and an integer, respectively, while the output event is a column vector of length e where e is
the number of event constraints. The input structure solevents has the following elements:

• solevents.phase: the phase number
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• solevents.initial.time: the time at the start of the phase

• solevents.initial.state: the state at the start of the phase

• solevents.terminal.time: the time at the terminus of the phase

• solevents.terminal.state: the state at the terminus of the phase

• solevents.parameter: the static parameters in the phase

Example of Event Constraints

Suppose we have a one-phase optimal control problem that has two initial event constraints and three terminal event constraints.
Suppose further that the number of states in the phase is six and that the function that computes the values of these constraints is
called “myeventfun.m”. Finally, let the two initial event constraints be given as

φ01 = x1(t0)2 + x2(t0)2 + x3(t0)2

φ02 = x4(t0)2 + x5(t0)2 + x6(t0)2

while the three terminal event constraints are given as

φf1 = sin(x1(tf )) cos(x2(tf ) + x3(tf ))
φf2 = tan(x2

4(tf ) + x2
5(tf ) + x2

6(tf ))
φf3 = x4(tf ) + x5(tf ) + x6(tf )

Then the syntax of the above event function is given as

function events = myeventfun(solevents);

iphase = solevents.phase;
t0 = solevents.initial.time;
x0 = solevents.initial.state;
tf = solevents.terminal.time;
xf = solevents.terminal.state;

ei1 = dot(x0(1:3),x0(1:3));
ei2 = dot(x0(4:6),x0(4:6));
ef1 = sin(xf(1))*cos(xf(2)+xf(3));
ef2 = tan(dot(xf(4:6),xf(4:6)));
ef3 = xf(4)+xf(5)+xf(6);

events = [ei1;ei2;ef1;ef2;ef3];

Finally, it is noted that each event constraint need not be a function of either the initial or the terminal
state, but can also be functions that contain both the initial and terminal state and/or the initial and terminal
time. As an example of an event constraint that contains both the initial and terminal state, consider the
following example.

Example of Event Constraint Containing Both Initial and Terminal State

Suppose we have a one-phase optimal control problem that contains only a single state. Furthermore, suppose that the problem contains
a single event constraint on the difference between the terminal value of the state and the initial value of the state. Finally, suppose
that the function that computes the values of these constraints is called “myeventfun.m”. Then the event constraint is evaluated as

φ = x(tf )− x(t0)

Then the syntax of the above event function is given as

function events = myeventfun(solevents);

t0 = solevents.initial.time;
x0 = solevents.initial.state;
tf = solevents.terminal.time;
xf = solevents.terminal.state;

events = xf-x0;
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2.9 Syntax of Linkage Constraint Function Specified in setup.funcs.link

The syntax used to define the user defined vector of linkage constraints between two phases is given as
follows:

function links=mylinkfun(sollink);

where mylinkfun.m is the name of the MATLAB function, sollink is the input to the function, and links is
the output (i.e., the value of the linkage constraints). The input sollink is a structure while the output links
is a column vector of length l, where l is the number of event constraints. The input structure sollink has
the following fields:

• sollink.left.phase: the left phase of the pair of phases to be linked

• sollink.right.phase: the right phase of the pair of phases to be linked

• sollink.left.state: the state at the terminus of phase sollink.left.phase

• sollink.right.state: the state at the start of phase sollink.right.phase

• sollink.left.parameter: the static parameters in phase sollink.left.phase

• sollink.right.state: the static parameters in phase sollink.right.phase

The terms left and right are conventions adopted to help the user orient the phases on a page from left to
right.

Example of Linkage Constraint

Suppose we have a multiple phase optimal control problem with a simple link between the phases, i.e. the state of the end of the phase
is equal to the state at the beginning of the next phase.

P = x
l
(tf )− xr

(t0)

Then the syntax of the above linkage is given as

function links = mylinkagefun(sollink);

left_phase = sollink.left.phase;
right_phase = sollink.right.phase;
xf_left = sollink.left.state;
p_left = sollink.left.parameter;
x0_left = sollink.right.phase;
p_left = sollink.right.parameter;

links = xf_left - x0_right;

2.10 Specifying an Initial Guess of The Solution

The field guess of the user-defined structure setup contains the initial guess for the problem. The field guess
is an array of structures of length P (where P is the number of phases in the problem). The pth element of
the array of structures guess contains the initial guess of the problem in phase p ∈ [1, . . . , P ]. The fields of
each element of array of structures guess are given as follows:

• guess(p).time: a column vector of length s where s is the number of time points used in the guess

• guess(p).state: a matrix of size s × n where s is the number of time points and n is the number of
states in the phase

• guess(p).control: a matrix of size s×m where s is the number of time points and m is the number
of controls in the phase

• guess(p).parameter: a column vector of length q where q is the number of static parameters in the
phase
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It is noted that the element guess(p).time must be monotonically increasing. Schematically, in each phase
of the problem the guess for the time, states, controls, and parameters is structured as follows:

guess(p).time =


t0
t1
t2
· · ·
ts



guess(p).state =


x10 x20 · · · xn0

x11 x21 · · · xn1

...
...

...
...

x1s x2s · · · xns



guess(p).control =


u10 x20 · · · xm0

u11 u21 · · · xm1

...
...

...
...

u1s u2s · · · ums



guess(p).parameter =


q1

q2

...
qq


Example of Specifying an Initial Guess

Suppose we have a two-phase problem that has three states and two controls in phase 1 while it has two states and one control in
phase 2. Furthermore, suppose that we choose five time points for the guess in phase 1 while we choose 3 time points for the guess in
phase 2. A MATLAB code that would create such an initial guess is given below.

iphase = 1;
guess(iphase).time = [0; 1; 3; 5; 7];
guess(iphase).state(:,1) = [1.27; 3.1; 5.8; 9.6; -13.7272];
guess(iphase).state(:,2) = [-4.2; -9.6; 8.5; 25.73; 100.00];
guess(iphase).state(:,3) = [18.727; 1.827; 25.272; -14.272; 26.84];
guess(iphase).control(:,1) = [8.4; -13.7; -26.5; 19; 87];
guess(iphase).control(:,2) = [-1.2; 5.8; -3.77; 14; 19.787];
guess(iphase).parameter = [];

iphase = 2;
guess(iphase).time = [7; 7.5; 8];
guess(iphase).state(:,1) = [0.5; 1.5; 8];
guess(iphase).state(:,2) = [-0.5; -2.5; 19];
guess(iphase).control(:,1) = [8.4; -13.7; -26.5; 19; 87];
guess(iphase).parameter = [];

setup.guess = guess;

It is noted again that, for the above example, auxiliary integer variables were used to minimize the
cumbersomeness of coding and to minimize the chance of error.

2.11 Scaling of Optimal Control Problem

As with any numerical optimization procedure, the approach employed by GPOPS requires a well-scaled
optimal control problem. In general, it is recommended that the user scale the problem in accordance with
any known large discrepancies either in the sizes of various quantities (i.e., state, control) or the sizes of
the derivatives of such quantities. While it is beyond the scope of this user’s manual to provide a general
procedure for scaling, in an attempt to reduce the burden on the user an automatic scaling procedure has
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been developed for use in GPOPS . This procedure is based on the scaling algorithm developed in.7 In order
to invoke the automatic scaling routine, the user must set the field autoscale in the user-defined structure
setup to the string “on”.

The automatic scaling procedure operates as follows. The bounds on the variables are used to scale all
components of the state, control, parameters, and time to lie between -1 and 1. As a result, it is essential
that the user provide sensible bounds on all quantities (e.g., do not provide unreasonably large bounds as
this will result in a poorly scaled problem). Next, the constraints are scaled to make the row norms of the
Jacobians of the respective functions approximately unity. The automatic scaling procedure is by no means
foolproof, but it has been found in practice to work well on many problems that otherwise would require
scaling by hand. The advice given here is to try the automatic scaling procedure, but not to use it for too
long if it is proving to be unsuccessful.

3 Specification of Parameters for Mesh Refinement

An hp–adaptive mesh refinement algorithm is now included as part of GPOPS . While the user does not
need to provide any parameters in order to use this algorithm, supplying values for these parameters is
recommended. The mesh refinement algorithm parameters are specified in the structure setup.mesh and
are given as follows (with the default values shown in the parentheses):

• tolerance: a scalar real number containing the mesh refinement tolerance (default: mesh.tolerance=10−3).

• iteration: a positive integer containing the number of mesh refinement iterations to perform (default:
mesh.iteration=10).

• nodesPerInterval: a structure containing the fields min and max, where min and max are integers
containing the minimum and maximum number of allowable collocation points in a mesh interval
(defaults: nodesPerInterval.min=4 and nodesPerInterval.max=12).

• splitmult: a real number greater than or equal to unity that specified how quickly to increase the
total number of segments in the mesh (default: mesh.splitmult=1.2).

It is noted that the user should use the default values until the problem under consideration is reasonably
well understood. Finally, if one wants to solve a problem with no mesh refinement and with a specified mesh
distribution, it is necessary to set setup.mesh.iteration=0 and provide the necessary information in fields
meshPoints and nodesPerInterval of the limits structure as described in Section 2.3.

4 Different Options for Specification of Derivatives

The user has six choices for the computation of the derivatives of the objective function gradient and the
constraint Jacobian for use within the NLP solver. As stated above, the choices for derivatives are “finite-
difference”, “complex”, “automatic”, “automatic-INTLAB”, and “analytic” and correspond to the following
differentiation methods:

• setup.derivatives=“finite-difference”: default internal sparse finite-differencing algorithm is used.

• setup.derivatives=“complex”: the built-in complex-step differentiation method is used.

• setup.derivatives=“automatic”, the built-in automatic differentiator is used.

• setup.derivatives=“automatic-INTLAB”: automatic differentiation using the third-party program
INTLAB is used (if the program INTLAB is installed on your computer).

• setup.derivatives=“analytic”: analytic derivatives (supplied by the user) are used.

It is noted that INTLAB can be obtained from Prof. Siegfried Rump by visiting the URL http://www.ti3.

tu-harburg.de/rump/intlab/.

http://www.ti3.tu-harburg.de/rump/intlab/
http://www.ti3.tu-harburg.de/rump/intlab/
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4.1 Complex-Step Differentiation

Of the differention methods given above, either the built-in automatic differentiator or the complex-step
differentiator most preferred because these two methods provide highly accurate derivatives and are both
included as part of the GPOPS software (i.e., the user does not have to obtain any third-party software).
One drawback with complex-step differentiation, however, is that certain functions need to be handled with
great care. In particular, the functions min, max, abs, and dot need to be redefined for use in complex-step
differentiation (see Ref. 8 and the URL http://mdolab.utias.utoronto.ca/resources/complex-step/

complexify.f90 for details). Finally, the transpose operator must be replaced with a dot-transpose (i.e., a
real transpose) because the standard transpose in MATLAB produces a complex conjugate transpose and it
is necessary to maintain a real transpose when computing derivatives via complex-step differentiation.

4.2 Analytic Differentiation

Analytic differentiation has the advantage that it is the fasted and most accurate of the four methods,
however, it is by far the most complex for the user to compute, code, and verify. The derivatives for
the objective function gradient and the constraint Jacobian are computed from the user defined analytic
derivatives. These derivatives are supplied as an additional output of the user functions for the cost, dae
functions, event constraints, and linkage constraints (if applicable). The user defined derivatives can be
checked relative to a finite-difference approximation by setting the flag setup.checkDerivatives equal to
one. Upon execution of GPOPS , the derivatives will be computed at the user supplied initial guess using
a finite-difference approximation and compared to the analytic derivatives with the results printed to the
screen. It is recommended that the user run the derivative checking algorithm a least one time to verify
that the derivatives are correct, however, it should be noted that the algorithm is not guaranteed to find
any incorrect derivatives. The user must take special care to ensure that the analytic derivatives are coded
correctly in order to take advantage of the speed and accuracy of analytic differentiation.

4.2.1 Syntax of Cost Function Using Analytic Derivatives

The syntax used to evaluate the user-defined cost derivatives is given as follows:

function [Mayer,Lagrange,DerivMayer,DerivLagrange]=mycostfun(solcost);

See Section 2.6 for the definition of the regular inputs/outputs. The additional outputs of mycostfun are as
follows:

• DerivMayer: a row vector of size 1× (2n+ 2 + q)

• DerivLagrange: a matrix of size N × (n+m+ q + 1)

where n is the number of states, m is the number of controls, q is the number of parameters, and N is the
number of LGR points in the phase. The row vector DerivMayer defines the partial derivatives of the Mayer
cost with respect to the initial state, initial time, final state, final time, and finally the parameters:

DerivMayer =

[
∂Φ

∂x(t0)

∂Φ

∂t0

∂Φ

∂x(tf )

∂Φ

∂tf

∂Φ

∂p

]
where

∂Φ

∂x(t0)
∈ R1×n

∂Φ

∂t0
∈ R

∂Φ

∂x(tf )
∈ R1×n

∂Φ

∂tf
∈ R

∂Φ

∂p
∈ R1×q

(8)

http://mdolab.utias.utoronto.ca/resources/complex-step/complexify.f90
http://mdolab.utias.utoronto.ca/resources/complex-step/complexify.f90
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The matrix DerivLagrange defines the partial derivatives of the Lagrange cost with respect to the state,
control, parameters, and time at each of the N LGR points:

DerivLagrange =

[
∂L
∂x

∂L
∂u

∂L
∂t

∂L
∂p

]
where

∂L
∂x

∈ RN×n

∂L
∂u

∈ RN×m

∂L
∂t

= RN×1

∂L
∂p

= RN×q

(9)

It is important to provide all the derivatives in the correct order even if they are zero.

Example of a Cost Functional with Derivatives

Suppose we have a two-phase optimal control problem that uses a cost functional named “mycostfun.m”. Suppose further that the
dimension of the state in each phase is 2 while the dimension of the control in each phase is 2. Also, suppose that the endpoint and
integrand cost in phase 1 are given, respectively, as

Φ(1)(x(1)(t0), t
(1)
0 ,x(1)(tf ), t

(1)
f ) = xT (tf )Sx(tf )

L(1)(x(1)(t),u(1)(t), t) = xT Qx + uT Ru

while the endpoint and integrand in phase 2 are given, respectively, as

Φ(2)(x(2)(t
(2)
0 ), t

(2)
0 ,x(2)(t

(2)
f ), t

(2)
f ) = xT (tf )x(tf )

L(2)(x(2)(t),u(2)(t), t) = uT Ru

Then the syntax of the above cost functional is given as follows:

function [Mayer,Lagrange,DerivMayer,DerivLagrange]=mycostfun(solcost,iphase);

Q = [5 0; 0 2];
R = [1 0; 0 3];
S = [1 5; 5 1];
t0 = solcost.initial.time;
x0 = solcost.initial.state;
tf = solcost.terminal.time;
xf = solcost.terminal.state;
t = solcost.time;
x = solcost.state;
u = solcost.control;
p = solcost.parameter;

if iphase==1,
Mayer = dot(xf,S*xf);
Lagrange = dot(x,x*Q’,2)+dot(u,u*R’,2); % Note transposes
DerivMayer = [zeros(1,length(x0)), zeros(1,length(t0)), ...

xf’*S, zeros(1,length(tf), zeros(1,length(p))];
DerivLagrange = [x*Q’, u*R’,zeros(size(t)), zeros(length(t),length(p))];

elseif iphase==2,
Mayer = dot(xf,xf);
Lagrange = dot(u,u*R’,2); % Note transposes
DerivMayer = [zeros(1,length(x0)), zeros(1,length(t0)), xf’, zeros(1,length(tf), zeros(1,length(p))];
DerivLagrange = [zeros(size(x)), u*R’, zeros(length(t),length(p)), zeros(size(t))];

end;

It is noted in the above function call that the third argument in the command dot takes the dot product across the rows, thereby
producing a column vector.

4.2.2 Syntax of Differential-Algebraic Equations Function Using Analytic Derivatives

The calling syntax used evaluate the derivatives of the right-hand side of a user-defined vector of differential
equations is given as follows:
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function [dae,Derivdae]=mydaefun(soldae);

See Section 2.7 for the definition of the regular inputs/outputs. The additional output of myodefun is as
follows:

• Derivdae: a matrix of size N(n+ c)× (n+m+ q + 1)

where n is the number of states, m is the number of controls, q is the number of parameters, c is the number
of path constraints, and N is the number of LGR points in the phase. The matrix Derivdae defines the partial
derivatives of the differential equations and path constraints with respect to the state, control, parameters,
and time at each of the N LGR points:

Derivdae =



∂f1

∂x

∂f1

∂u

∂f1

∂t

∂f1

∂p

...
...

...
...

∂f2

∂x

∂f2

∂u

∂f2

∂t

∂f2

∂p

...
...

...
...

∂fn
∂x

∂fn
∂u

∂fn
∂t

∂fn
∂p

∂C1

∂x

∂C1

∂u

∂C1

∂t

∂C1

∂p

...
...

...
...

∂Cr
∂x

∂Cr
∂u

∂Cr
∂t

∂Cr
∂p


where fi, (i = 1, . . . , n) is the right-hand side of the ith differential equation, and Cj , (j = 1, . . . , r) is the
jth path constraint. Each of the elements of Derivdae have the following sizes:

∂fi
∂x

∈ RN×n, (i = 1, . . . , n)

∂fi
∂u

∈ RN×m, (i = 1, . . . , n)

∂fi
∂t

∈ RN×1, (i = 1, . . . , n)

∂fi
∂p

∈ RN×q, (i = 1, . . . , n)

∂Ci
∂x

∈ RN×n, (i = 1, . . . , r)

∂Ci
∂u

∈ RN×m, (i = 1, . . . , r)

∂Ci
∂t

∈ RN×1, (i = 1, . . . , r)

∂Ci
∂p

∈ RN×q, (i = 1, . . . , r)

(10)

It is important to provide all the derivatives in the correct order even if they are zero.
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Example of a Differential-Algebraic Equation with Derivatives

Suppose we have a two-phase optimal control problem that uses a differential equation function called “mydaefun.m”. Suppose
further that the dimension of the state in each phase is 2, the dimension of the control in each phase is 2. Furthermore, suppose that
there are no path constraints in phase 1 and one path constraint in phase 2. Next, suppose that the differential equations in phase 1
are given as

ẋ1 = −x2
1 − x

2
2 + u1u2

ẋ2 = −x1x2 + 2(u1 + u2)

Also, suppose that the differential equations in phase 2 are given as

ẋ1 = sin(x2
1 + x2

2) + u1u
2
2

ẋ2 = − sin x1 cos x2 + 2u1u2

Finally, suppose that the path constraint in phase 2 is given as

u
2
1 + u

2
2 = 1

Then a MATLAB code that will evaluate the above system of differential-algebraic equations is given as follows:

function [dae, Derivdae] = mydaefun(soldae);

iphase = soldae.phase;
t = soldae.time;
x = soldae.state;
u = soldae.control;
p = soldae.parameter;

if iphase==1,
x1dot = -x(:,1).^2-x(:,2).^2 + u(:,1).*u(:,2);
x2dot = -x(:,1).*x(:,2) + 2*(u(:,1)+u(:,2));
path = [];
df1_dx1 = -2*x(:,1);
df1_dx2 = -2*x(:,2);
df1_du1 = u(:,2);
df1_du2 = u(:,1);
df2_dx1 = -x(:,2);
df2_dx2 = -x(:,1);
df2_du1 = 2*ones(size(t));
df2_du2 = 2*ones(size(t));
dpath_dx1 = [];
dpath_dx2 = [];
dpath_du1 = [];
dpath_du2 = [];
dpath_dp = [];
dpath_dt = [];

elseif iphase==2,
x1dot = sin(x(:,1).^2 + x(:,2).^2) + u(:,1).*u(:,2).^2;
x2dot = -sin(x(:,1)).*cos(x(:,2)) + 2*u(:,1).*u(:,2);
path = u(:,1).^2+u(:,2).^2;
df1_dx1 = 2*x(:,1)*cos(x(:,1).^2 + x(:,2).^2);
df1_dx2 = 2*x(:,2)*cos(x(:,1).^2 + x(:,2).^2);
df1_du1 = u(:,2).^2;
df1_du2 = 2*u(:,1).*u(:,2);
df2_dx1 = -cos(x(:,1)).*cos(x(:,2));
df2_dx2 = sin(x(:,1)).*sin(x(:,2));
df2_du1 = 2*u(:,2);
df2_du2 = 2*u(:,1);
dpath_dx1 = zeros(size(x(:,1)));
dpath_dx2 = zeros(size(x(:,2)));
dpath_du1 = 2*u(:,1);
dpath_du2 = 2*u(:,2);
dpath_dp = zeros(length(t),length(p));
dpath_dt = zeros(size(t));

end;
df1_dp = zeros(length(t),length(p));
df1_dt = zeros(size(t));
df2_dp = zeros(length(t),length(p));
df2_dt = zeros(size(t));

dae = [x1dot x2dot path];

Derivdae = [df1_dx1, df1_dx2, df1_du1, df1_du2, df1_dt, df1_dp; ...
df2_dx1, df2_dx2, df2_du1, df2_du2, df2_dt df2_dp,; ...

dpath_dx1, dpath_dx2, dpath_du1, dpath_du2, dpath_dt, dpath_dp,];
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4.2.3 Syntax of Event Constraint Function Using Analytic Derivatives

The syntax used to evaluate the derivative of a user-defined vector of event constraints is given as follows:

function [events, Derivevents]=myeventfun(solevents);

See Section 2.8 for the definition of the regular inputs/outputs. The additional output of myeventfun is as
follows:

• Derivevents: a matrix of size e× (2n+ 2 + q)

where n is the number of states, q is the number of parameters, and e is the number of event constraints in
the phase. The matrix Derivevents defines the partial derivatives of each event constraint with respect to
the initial state, initial time, final state, final time, and parameters:

Derivevents =



∂φ1

∂x(t0)
,

∂φ1

∂t0
,

∂φ1

∂x(tf )
,

∂φ1

∂tf
,

∂φ1

∂p

...,
...,

...,
...,

...

∂φe
∂x(t0)

,
∂φe
∂t0

,
∂φe
∂x(tf )

,
∂φe
∂tf

,
∂φe
∂p


where φi, (i = 1, . . . , e) is the ith event constraint. The sizes of each of the entries in Derivevents are as
follows:

∂φi
∂x(t0)

∈ R1×n

∂φi
∂t0

∈ R

∂φi
∂x(tf )

∈ R1×n

∂φi
∂tf

∈ R

∂Φ

∂p
∈ R1×q

, (i = 1, . . . , e) (11)

It is important to provide all the derivatives in the correct order even if they are zero.

Example of Event Constraints with Derivatives

Suppose we have a one-phase optimal control problem that has two initial event constraints and three terminal event constraints.
Suppose further that the number of states in the phase is six and that the function that computes the values of these constraints is
called “myeventfun.m”. Finally, let the two initial event constraints be given as

φ01 = x1(t0)2 + x2(t0)2 + x3(t0)2

φ02 = x4(t0)2 + x5(t0)2 + x6(t0)2

while the three terminal event constraints are given as

φf1 = sin(x1(tf )) cos(x2(tf ) + x3(tf ))
φf2 = tan(x2

4(tf ) + x2
5(tf ) + x2

6(tf ))
φf3 = x4(tf ) + x5(tf ) + x6(tf )

Then the syntax of the above event function is given as

function [events, Derivevents] = myeventfun(solevents);

iphase = solevents.phase;
t0 = solevents.initial.time;
x0 = solevents.initial.state;
tf = solevents.terminal.time;
xf = solevents.terminal.state;

ei1 = dot(x0(1:3),x0(1:3));
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ei2 = dot(x0(4:6),x0(4:6));
ef1 = sin(xf(1))*cos(xf(2)+xf(3));
ef2 = tan(dot(xf(4:6),xf(4:6)));
ef3 = xf(4)+xf(5)+xf(6);

events = [ei1;ei2;ef1;ef2;ef3];

dei1_dx0 = [2*x0(1:3).’ zeros(1,3)];
dei1_dt0 = 0;
dei1_dxf = zeros(1,6);
dei1_dtf = 0;
dei1_dp = [];
dei1_dt = 0;
dei2_dx0 = [zeros(1,3), 2*x0(4:6).’];
dei2_dt0 = 0;
dei2_dxf = zeros(1,6);
dei2_dtf = 0;
dei2_dp = [];
def1_dx0 = zeros(1,6);
def1_dt0 = 0;
def1_dxf = [cos(xf(1))*cos(xf(2)+xf(3)), -sin(xf(1))*sin(xf(2)+xf(3)), ...

-sin(xf(1))*sin(xf(2)+xf(3)), zeros(1,3)];
def1_dtf = 0;
def1_dp = [];
def2_dx0 = zeros(1,6);
def2_dt0 = 0;
def2_dxf = [zeros(1,3), 2*xf(4:6).’]/(cos(dot(xf(4:6),xf(4:6))))^2;
def2_dtf = 0;
def2_dp = [];
def3_dx0 = zeros(1,6);
def3_dt0 = 0;
def3_dxf = [zeros(1,3), ones(1,3)];
def3_dtf = 0;
def3_dp = [];

Derivevents = [dei1_dx0, dei1_dt0, dei1_dxf, dei1_dtf, dei1_dt, dei1_dp; ...
dei2_dx0, dei2_dt0, dei1_dxf, dei2_dtf, dei2_dt, dei2_dp; ...
def1_dx0, def1_dt0, def1_dxf, def1_dtf, def1_dt, def1_dp; ...
def2_dx0, def2_dt0, def2_dxf, def2_dtf, def2_dt, def2_dp; ...
def3_dx0, def3_dt0, def3_dxf, def3_dtf, def3_dt, def3_dp];

4.2.4 Syntax of Linkage Constraint Function Using Analytic Derivatives

The syntax used to define the user defined vector of linkage constraints between two phases is given as
follows:

function [links,Derivlinks]=mylinkfun(sollink);

See Section 2.9 for the definition of the regular inputs/outputs. The additional output of mylinkfun is as
follows:

• Derivlinks: a matrix of size l × (nl + ql + nr + qr)

where l is the number of linkages in the constraint, nl is the number of states in the left phase, ql is the
number of parameters in the left phase, nr is the number of states in the right phase, and qr is the number
of parameters in the right phase. The matrix Derivlinks defines the partial derivatives of each linkage with
respect to the left state, left parameters, right state, and right parameters:

Derivlinks =



∂P1

∂xl(tf )
,

∂P1

∂pl
,

∂P1

∂xr(t0)
,

∂P1

∂pr

...,
...,

...,
...

∂Pl

∂xl(tf )
,

∂Pl

∂pl
,

∂Pl

∂xr(t0)
,

∂Pl

∂pr


where Pi, (i = 1, . . . , l) is the ith linkage constraint. It is important to provide all the derivatives in the
correct order even if they are zero.
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Example of Linkage Constraint with Derivatives

Suppose we have a multiple phase optimal control problem with a simple link between the phases, i.e. the state of the end of the phase
is equal to the state at the beginning of the next phase.

P = x
l
(tf )− xr

(t0)

Then the syntax of the above linkage is given as

function [links, Derivlinks] = mylinkagefun(sollink,left_phase,right_phase);

xf_left = sollink.left.state;
p_left = sollink.left.parameter;
x0_right = sollink.right.state;
p_right = sollink.right.parameter;

links = xf_left - x0_right;

nlink = length(xf_left); %number of linkages
Derivlinks = [ eye(nlink), zeros(nlink,length(p_left)), ...

-eye(nlink), zeros(nlink,length(p_right))];

5 Output from an Execution of GPOPS

Upon execution of GPOPS , new fields are created in the output structure output. In particular, upon
completion of the execution of GPOPS , the following new fields are created (in addition to the fields that
were created prior to running GPOPS on the problem):

• solution: an array of structures of length P (where P is the number of phases) containing the solution
in each phase

• solutionPlot: an array of structures of length P (where P is the number of phases) containing a
solution obtained using Lagrange polynomial interpolation that can be used for a graphical display of
the solution (often because the structure solution is obtained on a coarse grid due to the high accuracy
of the pseudospectral method).

The pth element in solution contains the solution in phase p ∈ [1, . . . , P ]. The fields of solution are as
follows:

• solution(p).time: a column vector containing the time at each discretization point along the trajec-
tory.

• solution(p).state: an array whose rows contain the state at each time point in solution(p).time.

• solution(p).control: an array whose rows contain the control at each time point in solution(p).time.

• solution(p).parameter: a column vector containing the static parameters.

• solution(p).costate: an array whose rows contain the costate at each time point in solution(p).time.

• solution(p).pathmult: an array whose rows contain the path constraint multipliers at each time
point in

• solution(p).Hamiltonian: a column vector whose rows contain the Hamiltonian at each time point
in solution(p).time.

• solution(p).Mayer cost: The Mayer part of the cost along the trajectory

• solution(p).Lagrange cost: The Lagrange (integrated) cost along the trajectory

The pth element in solutionPlot contains the solution in phase p ∈ [1, . . . , P ]. The fields of solutionPlot
are as follows:
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• solution(p).time: a column vector containing the time at each discretization point along the trajec-
tory.

• solution(p).state: an array whose rows contain the state at each time point in solution(p).time.

• solution(p).control: an array whose rows contain the control at each time point in solution(p).time.

• solution(p).costate: an array whose rows contain the costate at each time point in solution(p).time.

It is noted that the field parameter would be the same in solutionPlot as it is in solution and thus,
parameter is omitted from solutionPlot.

6 Useful Information for Debugging a GPOPS Problem

One aspect of GPOPS that may appear confusing when debugging code pertains to the dimensions of the
arrays and the corresponding time values. It is important to remember that GPOPS uses collocation at
Legendre-Gauss-Radau points. Because the Legendre-Gauss-Radau points include the initial point but do
not include the final point, the dynamics, path constraints, and integrand cost are computed only at the
Legendre-Gauss-Radau points. While this may appear to be a bit strange, the fundamental point here
is that Legendre-Gauss-Radau quadrature (which is used in GPOPS ) only evaluates the functions at the
Legendre-Gauss-Radau points. Do not try to “fool” GPOPS by adding the endpoints to the computation of
the dynamics, path constraints, or integrand cost. If you do this, you will get an error because the dimensions
are incorrect. For a more complete mathematical description of the collocation method used in GPOPS , see
the references on the Radau pseudospectral method as given in the bibliography at the end of this manual.

7 GPOPS Examples

In this Chapter we provide three complete examples of using GPOPS . For each example the optimal control
problem is first described quantitatively, then the GPOPS code is provided.

7.1 Hyper-Sensitive Problem

Consider the following optimal control problem. Minimize the cost functional

J = 1
2

∫ tf

0

(
x2 + u2

)
dt (12)

subject to the dynamic constraint
ẋ = −x3 + u (13)

and the boundary conditions
x(0) = 1.5
x(tf ) = 1

(14)

with tf = 50. It is noted that this problem is taken from Ref. 9. The GPOPS code that solves this problem
is shown below. In particular, the following three MATLAB functions are defined:

• hyperSensitiveMain.m: MATLAB m-file (main driver) for problem

• hyperSensitiveCost.m: MATLAB function that evaluates the cost functional

• hyperSensitiveDae.m: MATLAB function that evaluates the differential-algebraic equations

The beginning and end of each function is labeled by a MATLAB comment.
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%------------------------------------------------------------------%
% BEGIN: script hyperSensitiveMain.m %
%------------------------------------------------------------------%
% This example is taken from the following reference: %
% Rao, A. V. and Mease, K. D., "Eigenvector Approximate Dichotomic %
% Basis Method for Solving Hypersensitive Optimal Control %
% Problems," Optimal Control Applications and Methods, Vol. 21, %
% No. 1, 2000, pp. 1-19. %
% The optimal control problem is described as follows: %
% Minimize J = 0.5*(x^2+u^2) %
% subject to the dynamic constraint %
% xdot = -x^3 + u %
% and the boundary conditions %
% x(0) = 1.5 %
% x(tf) = 1 %
%------------------------------------------------------------------%
clear all
clc

t0 = 0; tf = 5000; x0 = 1.5; xf = 1;
xmin = -10; xmax = 10; umin = -10; umax = 10;

iphase = 1;
limits(iphase).time.min = [t0 tf];
limits(iphase).time.max = [t0 tf];
limits(iphase).state.min = [x0 xmin xf];
limits(iphase).state.max = [x0 xmax xf];
limits(iphase).control.min = umin;
limits(iphase).control.max = umax;
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = [];
limits(iphase).path.max = [];
limits(iphase).event.min = [];
limits(iphase).event.max = [];
guess(iphase).time = [t0; tf];
guess(iphase).state(:,1) = [x0; xf];
guess(iphase).control = [-1; 1];
guess(iphase).parameter = [];

setup.name = ’HyperSensitive-Problem’;
setup.funcs.cost = ’hyperSensitiveCost’;
setup.funcs.dae = ’hyperSensitiveDae’;
setup.linkages = [];
setup.limits = limits;
setup.guess = guess;
setup.derivatives = ’finite-difference’;
setup.checkDerivatives = 0;
setup.autoscale = ’off’;
setup.mesh.tolerance = 1e-6;
setup.mesh.iteration = 20;
setup.mesh.nodesPerInterval.min = 4;
setup.mesh.nodesPerInterval.max = 10;

[output,gpopsHistory] = gpops(setup);
%----------------------------------%
% END: script hyperSensitiveMain.m %
%----------------------------------%

%--------------------------------------%
% BEGIN: function hyperSensitiveCost.m %
%--------------------------------------%
function [Mayer,Lagrange] = hypersensitiveCost(sol);

t0 = sol.initial.time;
x0 = sol.initial.state;
tf = sol.terminal.time;
xf = sol.terminal.state;
t = sol.time;
x = sol.state;
u = sol.control;
p = sol.parameter;
Mayer = zeros(size(t0));
Lagrange = 0.5*(x.^2+u.^2);

%--------------------------------------%
% END: function hyperSensitiveCost.m %
%--------------------------------------%

%-------------------------------------%
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% BEGIN: function hyperSensitiveDae.m %
%-------------------------------------%
function [dae] = hyperSensitiveDae(sol);

t = sol.time;
x = sol.state;
u = sol.control;
p = sol.parameter;

dae = -x.^3+u;

%-------------------------------------%
% END: function hyperSensitiveDae.m %
%-------------------------------------%

The state, x(t), control, u(t), and costate, λ(t) resulting from the execution of GPOPS using the above
code is summarized in Figs. 2a–2c.

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

x
(t
)

(a) State, x(t), vs. t.

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

2

2.5

t

u
(t
)

(b) Control, u(t), vs. t.

0 10 20 30 40 50
−2.5

−2

−1.5

−1

−0.5

0

0.5

t

λ
(t
)

(c) Costate, λ(t), vs. t.

Figure 2: State,Control, and Costate for Hyper-Sensitive Optimal Control Problem
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7.2 Bryson-Denham Problem

Consider the following optimal control problem. Minimize the cost functional

J = x3(tf ) (15)

subject to the dynamic constraints
ẋ1 = x2

ẋ2 = u
ẋ3 = 1

2u
2

(16)

the path constraint
0 ≤ x1(t) ≤ 1/9 (17)

and the boundary conditions
x1(0) = 0
x2(0) = 1
x3(0) = 0
x1(tf ) = 0
x2(tf ) = −1

(18)

The above problem was originally formulated by Bryson and Denham10 and is referred to as the Bryson-
Denham problem. The GPOPS code that solves the Bryson-Denham problem is shown below. In particular,
the following four MATLAB files are defined:

• brysonDenhamMain.m: MATLAB m-file (main driver) for problem

• brysonDenhamCost.m: MATLAB function that evaluates the cost functional

• brysonDenhamDae.m: MATLAB function that evaluates the differential-algebraic equation

• brysonDenhamEvent.m: MATLAB function that evaluates the event constraints

The beginning and end of each function is labeled by a MATLAB comment. It is noted that while all five
boundary conditions are simple bounds (and are, thus, linear, they are treated as general event constraints
in order to demonstrate the proper use of an event function.

%-----------------------------------------------------%
% Bryson-Denham Example Problem. %
% This example is taken from the following reference: %
% Bryson, A. E., Denham, W. F., and Dreyfus, S. E., %
% "Optimal Programming Problems with Inequality %
% Constraints. I: Necessary Conditions for Extremal %
% Solutions, AIAA Journal, Vol. 1, No. 11, November, %
% 1963, pp. 2544-2550. %
%-----------------------------------------------------%
clear all
clc

x10 = 0;
x20 = 1;
x30 = 0;
x1f = 0;
x2f = -1;
x1min = 0;
x1max = 1/9;
x2min = -10;
x2max = 10;
x3min = -10;
x3max = 10;

param_min = [];
param_max = [];
path_min = [];
path_max = [];
event_min = [];
event_max = [];
duration_min = [];
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duration_max = [];

iphase = 1;
limits(iphase).time.min = [0 0];
limits(iphase).time.max = [0 50];
limits(iphase).state.min(1,:) = [x10 x1min x1f];
limits(iphase).state.max(1,:) = [x10 x1max x1f];
limits(iphase).state.min(2,:) = [x20 x2min x2f];
limits(iphase).state.max(2,:) = [x20 x2max x2f];
limits(iphase).state.min(3,:) = [x30 x3min x3min];
limits(iphase).state.max(3,:) = [x30 x3max x3max];
limits(iphase).control.min = -5;
limits(iphase).control.max = 10;
limits(iphase).parameter.min = param_min;
limits(iphase).parameter.max = param_max;
limits(iphase).path.min = path_min;
limits(iphase).path.max = path_max;
limits(iphase).event.min = event_min;
limits(iphase).event.max = event_max;
limits(iphase).duration.min = [];
limits(iphase).duration.max = [];
guess(iphase).time = [0; 1];
guess(iphase).state(:,1) = [x10; x1f];
guess(iphase).state(:,2) = [x20; x2f];
guess(iphase).state(:,3) = [x30; x30];
guess(iphase).control = [0; 0];
guess(iphase).parameter = [];

setup.name = ’Bryson-Denham-Problem’;
setup.funcs.cost = ’brysonDenhamCost’;
setup.funcs.dae = ’brysonDenhamDae’;
setup.limits = limits;
setup.guess = guess;
setup.linkages = [];
setup.derivatives = ’finite-difference’;
setup.checkDerivatives = 0;
setup.autoscale = ’off’;
setup.mesh.tolerance = 1e-6;
setup.mesh.iteration = 10;
setup.mesh.nodesPerInterval.min = 4;
setup.mesh.nodesPerInterval.max = 10;
[output,gpopsHistory] = gpops(setup);
solution = output.solution;
solutionPlot = output.solutionPlot;

%--------------------------------%
% END: script brysonDenhamMain.m %
%--------------------------------%

%------------------------------------%
% BEGIN: function brysonDenhamCost.m %
%------------------------------------%
function [Mayer,Lagrange]=brysonDenhamCost(sol);

t0 = sol.initial.time;
x0 = sol.initial.state;
tf = sol.terminal.time;
xf = sol.terminal.state;
t = sol.time;
x = sol.state;
u = sol.control;
p = sol.parameter;

Mayer = xf(3);
Lagrange = zeros(size(t));

%----------------------------------%
% END: function brysonDenhamCost.m %
%----------------------------------%

%-----------------------------------%
% BEGIN: function brysonDenhamDae.m %
%-----------------------------------%
function [dae] = brysonDenhamDae(sol);

t = sol.time;
x = sol.state;
u = sol.control;
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(c) Costate vs. Time.

x1dot = x(:,2);
x2dot = u;
x3dot = u.^2/2;
dae = [x1dot x2dot x3dot];

%-----------------------------------%
% END: function brysonDenhamDae.m %
%-----------------------------------%

The output obtained by solving the Bryson-Denham problem using the GPOPS code above is summarized
in Figs. 3a–3c.
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7.3 Multiple-Stage Launch Vehicle Ascent Problem

The problem considered in this section is the ascent of a multiple-stage launch vehicle. The objective is to
maneuver the launch vehicle from the ground to the target orbit while maximizing the remaining fuel in the
upper stage. It is noted that this example is taken verbatim from Ref. 11.

7.3.1 Vehicle Properties

The launch vehicle considered in this example has two main stages along with nine strap-on solid rocket
boosters. The flight of the vehicle can be divided into four distinct phases. The first phase begins with the
rocket at rest on the ground and at time t0, the main engine and six of the nine solid boosters ignite. When
the boosters are depleted at time t1, their remaining dry mass is jettisoned. The final three boosters are
then ignited, and along with the main engine, represent the thrust for the second phase of flight. These three
remaining boosters are jettisoned when their fuel is exhausted at time t2, and the main engine alone creates
the thrust for the third phase. The fourth phase begins when the main engine fuel has been exhausted
(MECO) and the dry mass associated with the main engine is ejected at time t3. The thrust during phase
four is from a second stage, which burns until the target orbit has been reached (SECO) at time t4, thus
completing the trajectory. The specific characteristics of these rocket motors can be seen in Table 1. Note
that the solid boosters and main engine burn for their entire duration (meaning t1, t2, and t3 are fixed),
while the second stage engine is shut off when the target orbit is achieved (t4 is free).

Table 1: Mass and propulsion properties of the launch vehicle ascent problem.

Solid Boosters Stage 1 Stage 2

Total Mass (kg) 19290 104380 19300
Propellant Mass (kg) 17010 95550 16820
Engine Thrust (N) 628500 1083100 110094

Isp (sec) 284 301.7 462.4
Number of Engines 9 1 1

Burn Time (sec) 75.2 261 700

7.3.2 Dynamic Model

The equations of motion for a non-lifting point mass in flight over a spherical rotating planet are expressed
in Cartesian Earth centered inertial (ECI) coordinates as

ṙ = v

v̇ = − µ

‖r‖3 r +
T

m
u +

D

m

ṁ = − T

g0Isp

(19)

where r(t) =
[
x(t) y(t) z(t)

]T
is the position, v =

[
vx(t) vy(t) vz(t)

]T
is the Cartesian ECI

velocity, µ is the gravitational parameter, T is the vacuum thrust, m is the mass, g0 is the acceleration due

to gravity at sea level, Isp is the specific impulse of the engine, u =
[
ux uy uz

]T
is the thrust direction,

and D =
[
Dx Dy Dz

]T
is the drag force. The drag force is defined as

D = −1

2
CDArefρ‖vrel‖vrel (20)

where CD is the drag coefficient, Aref is the reference area, ρ is the atmospheric density, and vrel is the
Earth relative velocity, where vrel is given as

vrel = v − ω × r (21)
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where ω is the angular velocity of the Earth relative to inertial space. The atmospheric density is modeled
as the exponential function

ρ = ρ0exp[−h/h0] (22)

where ρ0 is the atmospheric density at sea level, h = ‖r‖ − Re is the altitude, Re is the equatorial radius
of the Earth, and h0 is the density scale height. The numerical values for these constants can be found in
Table 2.

Table 2: Constants used in the launch vehicle example.

Constant Value

Payload Mass (kg) 4164
Aref (m2) 4π

Cd 0.5
ρ0 (kg/m3) 1.225
h0 (km) 7.2
t1 (s) 75.2
t2 (s) 150.4
t3 (s) 261

Re (km) 6378.14
VE (km/s) 7.905

7.3.3 Constraints

The launch vehicle starts on the ground at rest (relative to the Earth) at time t0, so that the ECI initial
conditions are

r(t0) = r0 =
[

5605.2 0 3043.4
]T

km

v(t0) = v0 =
[

0 0.4076 0
]T

km/s

m(t0) = m0 = 301454 kg

(23)

which corresponds to the Cape Canaveral launch site. The terminal constraints define the target geosyn-
chronous transfer orbit (GTO), which is defined in orbital elements as

af = 24361.14 km,
ef = 0.7308,
if = 28.5 deg,

Ωf = 269.8 deg,
ωf = 130.5 deg

(24)

The orbital elements, a, e, i,Ω, and ω represent the semi-major axis, eccentricity, inclination, right ascension
of the ascending node (RAAN), and argument of perigee, respectively. Note that the true anomaly, ν, is
left undefined since the exact location within the orbit is not constrained. These orbital elements can be
transformed into ECI coordinates via the transformation, To2c, where To2c is given in.12

In addition to the boundary constraints, there exists both a state path constraint and a control path
constraint in this problem. A state path constraint is imposed to keep the vehicle’s altitude above the surface
of the Earth, so that

|r| ≥ Rr (25)

where Re is the radius of the Earth, as seen in Table 2. Next, a path constraint is imposed on the control
to guarantee that the control vector is unit length, so that

|u| = 1 (26)
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Lastly, each of the four phases in this trajectory is linked to the adjoining phases by a set of linkage
conditions. These constraints force the position and velocity to be continuous and also account for the mass
ejections, as

r(p)(tf )− r(p+1)(t0) = 0,
v(p)(tf )− v(p+1)(t0) = 0, (p = 1, . . . , 3)

m(p)(tf )−m(p)
dry −m(p+1)(t0) = 0

(27)

where the superscript (p) represents the phase number.
The optimal control problem is then to find the control, u, that minimizes the cost function

J = −m(4)(tf ) (28)

subject to the conditions of Eqs. (19), (23), (24), (25), and (26).
The MATLAB code that solves the multiple-stage launch vehicle ascent problem using GPOPS is shown

below. In particular, this problem requires the specification of a function that computes the cost func-
tional, the differential-algebraic equations (which, it is noted, include both the differential equations and
the path constraints), and the event constraints in each phase of the problem along with the phase-connect
(i.e., linkage) constraints. The problem was posed in SI units and the built-in autoscaling procedure was
used.

% --------------------------------------------
% Multiple-Stage Launch Vehicle Ascent Example
% --------------------------------------------
% -----------------------------------------------------------------------
% This example can be found in one of the following three references:
% Benson, D. A., A Gauss Pseudospectral Transcription for Optimal
% Control, Ph.D. Thesis, Department of Aeronautics and
% Astronautics, Massachusetts Institute of Technology, November 2004.
%
% Huntington, G. T. Advancement and Analysis of a Gauss
% Pseudospectral Transcription for Optimal Control, Ph.D. Thesis,
% Department of Aeronautics and Astronautics, Massachusetts
% Institute of Technology, May 2007.
%
% Huntington, G. T., Benson, D. A., Kanizay, N., Darby, C. L.,
% How, J. P., and Rao, A. V., "Computation of Boundary Controls
% Using a Gauss Pseudospectral Method," 2007 Astrodynamics
% Specialist Conference, Mackinac Island, Michigan, August 19-23, 2007.
% -----------------------------------------------------------------------
clear setup guess limits linkages

global CONSTANTS

omega = 7.29211585e-5; % Earth rotation rate (rad/s)
omega_matrix = [0 -omega 0; omega 0 0; 0 0 0];
CONSTANTS.omega_matrix = omega_matrix; % Rotation rate matrix (rad/s)
CONSTANTS.mu = 3.986012e14; % Gravitational parameter (m^3/s^2)
CONSTANTS.cd = 0.5; % Drag coefficient
CONSTANTS.sa = 4*pi; % Surface area (m^2)
CONSTANTS.rho0 = 1.225; % sea level gravity (kg/m^3)
CONSTANTS.H = 7200.0; % Density scale height (m)
CONSTANTS.Re = 6378145.0; % Radius of earth (m)
CONSTANTS.g0 = 9.80665; % sea level gravity (m/s^2)

lat0 = 28.5*pi/180; % Geocentric Latitude of Cape Canaveral
x0 = CONSTANTS.Re*cos(lat0); % x component of initial position
z0 = CONSTANTS.Re*sin(lat0); % z component of initial position
y0 = 0;
r0 = [x0; y0; z0];
v0 = CONSTANTS.omega_matrix*r0;

bt_srb = 75.2;
bt_first = 261;
bt_second = 700;

t0 = 0;
t1 = 75.2;
t2 = 150.4;
t3 = 261;
t4 = 961;

m_tot_srb = 19290;
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m_prop_srb = 17010;
m_dry_srb = m_tot_srb-m_prop_srb;
m_tot_first = 104380;
m_prop_first = 95550;
m_dry_first = m_tot_first-m_prop_first;
m_tot_second = 19300;
m_prop_second = 16820;
m_dry_second = m_tot_second-m_prop_second;
m_payload = 4164;
thrust_srb = 628500;
thrust_first = 1083100;
thrust_second = 110094;
mdot_srb = m_prop_srb/bt_srb;
ISP_srb = thrust_srb/(CONSTANTS.g0*mdot_srb);
mdot_first = m_prop_first/bt_first;
ISP_first = thrust_first/(CONSTANTS.g0*mdot_first);
mdot_second = m_prop_second/bt_second;
ISP_second = thrust_second/(CONSTANTS.g0*mdot_second);

af = 24361140;
ef = 0.7308;
incf = 28.5*pi/180;
Omf = 269.8*pi/180;
omf = 130.5*pi/180;
nuguess = 0;
cosincf = cos(incf);
cosOmf = cos(Omf);
cosomf = cos(omf);
oe = [af ef incf Omf omf nuguess];
[rout,vout] = launchoe2rv(oe,CONSTANTS.mu);
rout = rout’;
vout = vout’;

m10 = m_payload+m_tot_second+m_tot_first+9*m_tot_srb;
m1f = m10-(6*mdot_srb+mdot_first)*t1;
m20 = m1f-6*m_dry_srb;
m2f = m20-(3*mdot_srb+mdot_first)*(t2-t1);
m30 = m2f-3*m_dry_srb;
m3f = m30-mdot_first*(t3-t2);
m40 = m3f-m_dry_first;
m4f = m_payload;

CONSTANTS.thrust_srb = thrust_srb;
CONSTANTS.thrust_first = thrust_first;
CONSTANTS.thrust_second = thrust_second;
CONSTANTS.ISP_srb = ISP_srb;
CONSTANTS.ISP_first = ISP_first;
CONSTANTS.ISP_second = ISP_second;

rmin = -2*CONSTANTS.Re;
rmax = -rmin;
vmin = -10000;
vmax = -vmin;

iphase = 1;
limits(iphase).time.min = [t0 t1];
limits(iphase).time.max = [t0 t1];
limits(iphase).state.min(1,:) = [r0(1) rmin rmin];
limits(iphase).state.max(1,:) = [r0(1) rmax rmax];
limits(iphase).state.min(2,:) = [r0(2) rmin rmin];
limits(iphase).state.max(2,:) = [r0(2) rmax rmax];
limits(iphase).state.min(3,:) = [r0(3) rmin rmin];
limits(iphase).state.max(3,:) = [r0(3) rmax rmax];
limits(iphase).state.min(4,:) = [v0(1) vmin vmin];
limits(iphase).state.max(4,:) = [v0(1) vmax vmax];
limits(iphase).state.min(5,:) = [v0(2) vmin vmin];
limits(iphase).state.max(5,:) = [v0(2) vmax vmax];
limits(iphase).state.min(6,:) = [v0(3) vmin vmin];
limits(iphase).state.max(6,:) = [v0(3) vmax vmax];
limits(iphase).state.min(7,:) = [m10 m1f m1f];
limits(iphase).state.max(7,:) = [m10 m10 m10];
limits(iphase).control.min(1,:) = -1;
limits(iphase).control.max(1,:) = 1;
limits(iphase).control.min(2,:) = -1;
limits(iphase).control.max(2,:) = 1;
limits(iphase).control.min(3,:) = -1;
limits(iphase).control.max(3,:) = 1;
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
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limits(iphase).path.min = 1;
limits(iphase).path.max = 1;
guess(iphase).time = [t0; t1];
guess(iphase).state(:,1) = [r0(1); r0(1)];
guess(iphase).state(:,2) = [r0(2); r0(2)];
guess(iphase).state(:,3) = [r0(3); r0(3)];
guess(iphase).state(:,4) = [v0(1); v0(1)];
guess(iphase).state(:,5) = [v0(2); v0(2)];
guess(iphase).state(:,6) = [v0(3); v0(3)];
guess(iphase).state(:,7) = [m10; m1f];
guess(iphase).control(:,1) = [0; 0];
guess(iphase).control(:,2) = [1; 1];
guess(iphase).control(:,3) = [0; 0];
guess(iphase).parameter = [];

iphase = 2;
limits(iphase).time.min = [t1 t2];
limits(iphase).time.max = [t1 t2];
limits(iphase).state.min(1,:) = [rmin rmin rmin];
limits(iphase).state.max(1,:) = [rmax rmax rmax];
limits(iphase).state.min(2,:) = [rmin rmin rmin];
limits(iphase).state.max(2,:) = [rmax rmax rmax];
limits(iphase).state.min(3,:) = [rmin rmin rmin];
limits(iphase).state.max(3,:) = [rmax rmax rmax];
limits(iphase).state.min(4,:) = [vmin vmin vmin];
limits(iphase).state.max(4,:) = [vmax vmax vmax];
limits(iphase).state.min(5,:) = [vmin vmin vmin];
limits(iphase).state.max(5,:) = [vmax vmax vmax];
limits(iphase).state.min(6,:) = [vmin vmin vmin];
limits(iphase).state.max(6,:) = [vmax vmax vmax];
limits(iphase).state.min(7,:) = [m2f m2f m2f];
limits(iphase).state.max(7,:) = [m20 m20 m20];
limits(iphase).control.min(1,:) = -1;
limits(iphase).control.max(1,:) = 1;
limits(iphase).control.min(2,:) = -1;
limits(iphase).control.max(2,:) = 1;
limits(iphase).control.min(3,:) = -1;
limits(iphase).control.max(3,:) = 1;
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = 1;
limits(iphase).path.max = 1;
guess(iphase).time = [t1; t2];
guess(iphase).state(:,1) = [r0(1); r0(1)];
guess(iphase).state(:,2) = [r0(2); r0(2)];
guess(iphase).state(:,3) = [r0(3); r0(3)];
guess(iphase).state(:,4) = [v0(1); v0(1)];
guess(iphase).state(:,5) = [v0(2); v0(2)];
guess(iphase).state(:,6) = [v0(3); v0(3)];
guess(iphase).state(:,7) = [m20; m2f];
guess(iphase).control(:,1) = [0; 0];
guess(iphase).control(:,2) = [1; 1];
guess(iphase).control(:,3) = [0; 0];
guess(iphase).parameter = [];

iphase = 3;
limits(iphase).time.min = [t2 t3];
limits(iphase).time.max = [t2 t3];
limits(iphase).state.min(1,:) = [rmin rmin rmin];
limits(iphase).state.max(1,:) = [rmax rmax rmax];
limits(iphase).state.min(2,:) = [rmin rmin rmin];
limits(iphase).state.max(2,:) = [rmax rmax rmax];
limits(iphase).state.min(3,:) = [rmin rmin rmin];
limits(iphase).state.max(3,:) = [rmax rmax rmax];
limits(iphase).state.min(4,:) = [vmin vmin vmin];
limits(iphase).state.max(4,:) = [vmax vmax vmax];
limits(iphase).state.min(5,:) = [vmin vmin vmin];
limits(iphase).state.max(5,:) = [vmax vmax vmax];
limits(iphase).state.min(6,:) = [vmin vmin vmin];
limits(iphase).state.max(6,:) = [vmax vmax vmax];
limits(iphase).state.min(7,:) = [m3f m3f m3f];
limits(iphase).state.max(7,:) = [m30 m30 m30];
limits(iphase).control.min(1,:) = -1;
limits(iphase).control.max(1,:) = 1;
limits(iphase).control.min(2,:) = -1;
limits(iphase).control.max(2,:) = 1;
limits(iphase).control.min(3,:) = -1;
limits(iphase).control.max(3,:) = 1;
limits(iphase).parameter.min = [];
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limits(iphase).parameter.max = [];
limits(iphase).path.min = 1;
limits(iphase).path.max = 1;
guess(iphase).time = [t2; t3];
guess(iphase).state(:,1) = [rout(1); rout(1)];
guess(iphase).state(:,2) = [rout(2); rout(2)];
guess(iphase).state(:,3) = [rout(3); rout(3)];
guess(iphase).state(:,4) = [vout(1); vout(1)];
guess(iphase).state(:,5) = [vout(2); vout(2)];
guess(iphase).state(:,6) = [vout(3); vout(3)];
guess(iphase).state(:,7) = [m30; m3f];
guess(iphase).control(:,1) = [0; 0];
guess(iphase).control(:,2) = [1; 1];
guess(iphase).control(:,3) = [0; 0];
guess(iphase).parameter = [];

iphase = 4;
limits(iphase).time.min = [t3 t3];
limits(iphase).time.max = [t3 t4];
limits(iphase).state.min(1,:) = [rmin rmin rmin];
limits(iphase).state.max(1,:) = [rmax rmax rmax];
limits(iphase).state.min(2,:) = [rmin rmin rmin];
limits(iphase).state.max(2,:) = [rmax rmax rmax];
limits(iphase).state.min(3,:) = [rmin rmin rmin];
limits(iphase).state.max(3,:) = [rmax rmax rmax];
limits(iphase).state.min(4,:) = [vmin vmin vmin];
limits(iphase).state.max(4,:) = [vmax vmax vmax];
limits(iphase).state.min(5,:) = [vmin vmin vmin];
limits(iphase).state.max(5,:) = [vmax vmax vmax];
limits(iphase).state.min(6,:) = [vmin vmin vmin];
limits(iphase).state.max(6,:) = [vmax vmax vmax];
limits(iphase).state.min(7,:) = [m4f m4f m4f];
limits(iphase).state.max(7,:) = [m40 m40 m40];
limits(iphase).control.min(1,:) = -1;
limits(iphase).control.max(1,:) = 1;
limits(iphase).control.min(2,:) = -1;
limits(iphase).control.max(2,:) = 1;
limits(iphase).control.min(3,:) = -1;
limits(iphase).control.max(3,:) = 1;
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = 1;
limits(iphase).path.max = 1;
limits(iphase).event.min = [af; ef; incf; Omf; omf];
limits(iphase).event.max = [af; ef; incf; Omf; omf];
guess(iphase).time = [t3; t4];
guess(iphase).state(:,1) = [rout(1) rout(1)];
guess(iphase).state(:,2) = [rout(2) rout(2)];
guess(iphase).state(:,3) = [rout(3) rout(3)];
guess(iphase).state(:,4) = [vout(1) vout(1)];
guess(iphase).state(:,5) = [vout(2) vout(2)];
guess(iphase).state(:,6) = [vout(3) vout(3)];
guess(iphase).state(:,7) = [m40; m4f];
guess(iphase).control(:,1) = [0; 0];
guess(iphase).control(:,2) = [1; 1];
guess(iphase).control(:,3) = [0; 0];
guess(iphase).parameter = [];

ipair = 1; % First pair of phases to link
linkages(ipair).left.phase = 1;
linkages(ipair).right.phase = 2;
linkages(ipair).min = [0; 0; 0; 0; 0; 0; -6*m_dry_srb];
linkages(ipair).max = [0; 0; 0; 0; 0; 0; -6*m_dry_srb];

ipair = 2; % Second pair of phases to link
linkages(ipair).left.phase = 2;
linkages(ipair).right.phase = 3;

linkages(ipair).min = [0; 0; 0; 0; 0; 0; -3*m_dry_srb];
linkages(ipair).max = [0; 0; 0; 0; 0; 0; -3*m_dry_srb];

ipair = 3; % Third pair of phases to link
linkages(ipair).left.phase = 3;
linkages(ipair).right.phase = 4;
linkages(ipair).min = [0; 0; 0; 0; 0; 0; -m_dry_first];
linkages(ipair).max = [0; 0; 0; 0; 0; 0; -m_dry_first];

setup.name = ’Launch-Vehicle-Ascent’;
setup.funcs.cost = ’launchCost’;
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setup.funcs.dae = ’launchDae’;
setup.funcs.event = ’launchEvent’;
setup.funcs.link = ’launchLink’;
setup.derivatives = ’finite-difference’;
setup.checkDerivatives = 0;
setup.limits = limits;
setup.guess = guess;
setup.linkages = linkages;
setup.autoscale = ’on’;

if isequal(setup.derivatives,’automatic-intlab’),
CONSTANTS.derivatives = ’automatic-intlab’;

else
CONSTANTS.derivatives = [];

end;
setup.mesh.tolerance = 1e-6;
setup.mesh.iteration = 10;
setup.mesh.nodesPerInterval.min = 4;
setup.mesh.nodesPerInterval.max = 12;

[output,gpopsHistory] = gpops(setup);
solutionPlot= output.solutionPlot;
solution = output.solution;

% ------------------------%
% End File: launchMain.m %
% ------------------------%

% --------------------------%
% Begin File: launchCost.m %
% --------------------------%
function [Mayer,Lagrange, DMayer, DLagrange] = launchCost(sol);

global CONSTANTS

t0 = sol.initial.time;
x0 = sol.initial.state;
tf = sol.terminal.time;
xf = sol.terminal.state;
t = sol.time;
x = sol.state;
u = sol.control;
p = sol.parameter;

Lagrange = zeros(size(t));
if sol.phase==4,

Mayer = -xf(7);
else

Mayer = zeros(size(t0));
end;

% avoid calc of derivs in not necessary
if nargout == 4

if sol.phase==4,
% DMayer = [ dM/dx0, dM/dt0, dM/dxf,
DMayer = [zeros(1,length(x0)), zeros(1,length(t0)), [zeros(1,6) -1], ...
... % dM/dtf, dM/dp]

zeros(1,length(tf)), zeros(1,length(p))];
else

% DMayer = [ dM/dx0, dM/dt0, dM/dxf,
DMayer = [zeros(1,length(x0)), zeros(1,length(t0)), zeros(1,length(xf)), ...
... % dM/dtf, dM/dp]

zeros(1,length(tf)), zeros(1,length(p))];
end

% DLagrange = [ dL/dx, dL/du, dL/dp, dL/dt]
DLagrange =[ zeros(size(x)), zeros(size(u)), zeros(length(t),length(p)), zeros(size(t))];

end

% ------------------------%
% End File: launchCost.m %
% ------------------------%

% -------------------------%
% Begin File: launchDae.m %
% -------------------------%
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function [dae Ddae] = launchDae(sol);

global CONSTANTS;
t = sol.time;
x = sol.state;
u = sol.control;
p = sol.parameter;
iphase = sol.phase;
r = x(:,1:3);
v = x(:,4:6);
m = x(:,7);

rad = sqrt(sum(r.*r,2));
omega_matrix = CONSTANTS.omega_matrix;
omegacrossr = r*omega_matrix.’;
vrel = v-omegacrossr;
speedrel = sqrt(sum(vrel.*vrel,2));
if isequal(CONSTANTS.derivatives,’automatic-intlab’),

% to eliminate divide by zero in INTLAB deriv calc
speedrel(logical(speedrel == 0)) = 1;

end;
altitude = rad-CONSTANTS.Re;
rho = CONSTANTS.rho0*exp(-altitude/CONSTANTS.H);
bc = (rho./(2*m)).*CONSTANTS.sa*CONSTANTS.cd;
bcspeed = bc.*speedrel;
% bcspeedmat = [bcspeed bcspeed bcspeed];
bcspeedmat = repmat(bcspeed,1,3);

Drag = -bcspeedmat.*vrel;
muoverradcubed = CONSTANTS.mu./rad.^3;
muoverradcubedmat = [muoverradcubed muoverradcubed muoverradcubed];
grav = -muoverradcubedmat.*r;

if iphase==1,
T_srb = 6*CONSTANTS.thrust_srb*ones(size(t));
T_first = CONSTANTS.thrust_first*ones(size(t));
T_tot = T_srb+T_first;
m1dot = -T_srb./(CONSTANTS.g0*CONSTANTS.ISP_srb);
m2dot = -T_first./(CONSTANTS.g0*CONSTANTS.ISP_first);
mdot = m1dot+m2dot;

elseif iphase==2,
T_srb = 3*CONSTANTS.thrust_srb*ones(size(t));
T_first = CONSTANTS.thrust_first*ones(size(t));
T_tot = T_srb+T_first;
m1dot = -T_srb./(CONSTANTS.g0*CONSTANTS.ISP_srb);
m2dot = -T_first./(CONSTANTS.g0*CONSTANTS.ISP_first);
mdot = m1dot+m2dot;

elseif iphase==3
T_first = CONSTANTS.thrust_first*ones(size(t));
T_tot = T_first;
mdot = -T_first./(CONSTANTS.g0*CONSTANTS.ISP_first);

elseif iphase==4,
T_second = CONSTANTS.thrust_second*ones(size(t));
T_tot = T_second;
mdot = -T_second./(CONSTANTS.g0*CONSTANTS.ISP_second);

end;

path = sum(u.*u,2);
Toverm = T_tot./m;
Tovermmat = [Toverm Toverm Toverm];
thrust = Tovermmat.*u;

rdot = v;
vdot = thrust+Drag+grav;

dae = [rdot vdot mdot path];

% avoid calc of derivs in not necessary
if nargout == 2

% to eliminate divide by zero in analytic deriv calc
speedrel(logical(speedrel == 0)) = 1;

Ddae = zeros(8*length(t),11);
N = length(t); %number of nodes

% drdot/dx
Ddae(1:N,4) = 1; % drdot1/dv1
Ddae(N+1:2*N,5) = 1; % drdot2/dv2
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Ddae(2*N+1:3*N,6) = 1; % drdot3/dv3

% dvdot/dx
dDrag1_dr1 = bc.*vrel(:,2).*vrel(:,1)./speedrel*CONSTANTS.omega_matrix(2,1) ...

+ bc.*speedrel.*vrel(:,1).*r(:,1)./rad./CONSTANTS.H;
dDrag1_dr2 = -bc.*vrel(:,1).*vrel(:,1)./speedrel*CONSTANTS.omega_matrix(2,1) ...

+ bc.*speedrel.*vrel(:,1)./CONSTANTS.H.*r(:,2)./rad ...
- bc.*speedrel*CONSTANTS.omega_matrix(2,1);

dDrag1_dr3 = bc.*speedrel.*vrel(:,1)./CONSTANTS.H.*r(:,3)./rad;
dDrag2_dr1 = bc.*vrel(:,2).*vrel(:,2)./speedrel*CONSTANTS.omega_matrix(2,1) ...

+ bc.*speedrel.*vrel(:,2)./CONSTANTS.H.*r(:,1)./rad ...
+ bc.*speedrel*CONSTANTS.omega_matrix(2,1);

dDrag2_dr2 = -bc.*vrel(:,1).*vrel(:,2)./speedrel*CONSTANTS.omega_matrix(2,1) ...
+ bc.*speedrel.*vrel(:,2)./CONSTANTS.H.*r(:,2)./rad;

dDrag2_dr3 = bc.*speedrel.*vrel(:,2)./CONSTANTS.H.*r(:,3)./rad;
dDrag3_dr1 = bc.*vrel(:,2).*vrel(:,3)./speedrel*CONSTANTS.omega_matrix(2,1) ...

+ bc.*speedrel.*vrel(:,3)./CONSTANTS.H.*r(:,1)./rad;
dDrag3_dr2 = -bc.*vrel(:,1).*vrel(:,3)./speedrel*CONSTANTS.omega_matrix(2,1) ...

+ bc.*speedrel.*vrel(:,3)./CONSTANTS.H.*r(:,2)./rad;
dDrag3_dr3 = bc.*speedrel.*vrel(:,3)./CONSTANTS.H.*r(:,3)./rad;

dgrav1_dr1 = -muoverradcubed + 3*CONSTANTS.mu.*r(:,1).^2./rad.^5;
dgrav1_dr2 = 3*CONSTANTS.mu.*r(:,1).*r(:,2)./rad.^5;
dgrav1_dr3 = 3*CONSTANTS.mu.*r(:,1).*r(:,3)./rad.^5;
dgrav2_dr1 = 3*CONSTANTS.mu.*r(:,2).*r(:,1)./rad.^5;
dgrav2_dr2 = -muoverradcubed + 3*CONSTANTS.mu.*r(:,2).^2./rad.^5;
dgrav2_dr3 = 3*CONSTANTS.mu.*r(:,2).*r(:,3)./rad.^5;
dgrav3_dr1 = 3*CONSTANTS.mu.*r(:,3).*r(:,1)./rad.^5;
dgrav3_dr2 = 3*CONSTANTS.mu.*r(:,3).*r(:,2)./rad.^5;
dgrav3_dr3 = -muoverradcubed + 3*CONSTANTS.mu.*r(:,3).^2./rad.^5;

Ddae(3*N+1:4*N,1) = dDrag1_dr1 + dgrav1_dr1; % dvdot1/dr1
Ddae(3*N+1:4*N,2) = dDrag1_dr2 + dgrav1_dr2; % dvdot1/dr2
Ddae(3*N+1:4*N,3) = dDrag1_dr3 + dgrav1_dr3; % dvdot1/dr3
Ddae(4*N+1:5*N,1) = dDrag2_dr1 + dgrav2_dr1; % dvdot2/dr1
Ddae(4*N+1:5*N,2) = dDrag2_dr2 + dgrav2_dr2; % dvdot2/dr2
Ddae(4*N+1:5*N,3) = dDrag2_dr3 + dgrav2_dr3; % dvdot2/dr3
Ddae(5*N+1:6*N,1) = dDrag3_dr1 + dgrav3_dr1; % dvdot3/dr1
Ddae(5*N+1:6*N,2) = dDrag3_dr2 + dgrav3_dr2; % dvdot3/dr2
Ddae(5*N+1:6*N,3) = dDrag3_dr3 + dgrav3_dr3; % dvdot3/dr3

dspeedreldv1 = (v(:,1)-omegacrossr(:,1))./speedrel;
dspeedreldv2 = (v(:,2)-omegacrossr(:,2))./speedrel;
dspeedreldv3 = (v(:,3)-omegacrossr(:,3))./speedrel;
dDrag1_dv1 = -bc.*((v(:,1)-omegacrossr(:,1)).^2+speedrel.^2)./speedrel;
% dDrag1_dv1 = -bc.*(dspeedreldv1.*v(:,1)+speedrel)./speedrel;
dDrag1_dv2 = -bc.*vrel(:,1).*vrel(:,2)./speedrel;
dDrag1_dv3 = -bc.*vrel(:,1).*vrel(:,3)./speedrel;
dDrag2_dv1 = -bc.*vrel(:,2).*vrel(:,1)./speedrel;
% dDrag2_dv2 = -bc.*(dspeedreldv2.*v(:,2)+speedrel);
dDrag2_dv2 = -bc.*((v(:,2)-omegacrossr(:,2)).^2+speedrel.^2)./speedrel;
dDrag2_dv3 = -bc.*vrel(:,2).*vrel(:,3)./speedrel;
dDrag3_dv1 = -bc.*vrel(:,3).*vrel(:,1)./speedrel;
dDrag3_dv2 = -bc.*vrel(:,3).*vrel(:,2)./speedrel;
% dDrag3_dv3 = -bc.*(dspeedreldv3.*v(:,3)+speedrel);
dDrag3_dv3 = -bc.*((v(:,3)-omegacrossr(:,3)).^2+speedrel.^2)./speedrel;

Ddae(3*N+1:4*N,4) = dDrag1_dv1; % dvdot1/dv1
Ddae(3*N+1:4*N,5) = dDrag1_dv2; % dvdot1/dv2
Ddae(3*N+1:4*N,6) = dDrag1_dv3; % dvdot1/dv3
Ddae(4*N+1:5*N,4) = dDrag2_dv1; % dvdot2/dv1
Ddae(4*N+1:5*N,5) = dDrag2_dv2; % dvdot2/dv2
Ddae(4*N+1:5*N,6) = dDrag2_dv3; % dvdot2/dv3
Ddae(5*N+1:6*N,4) = dDrag3_dv1; % dvdot3/dv1
Ddae(5*N+1:6*N,5) = dDrag3_dv2; % dvdot3/dv2
Ddae(5*N+1:6*N,6) = dDrag3_dv3; % dvdot3/dv3

dDrag1_dm = -Drag(:,1)./m;
dDrag2_dm = -Drag(:,2)./m;
dDrag3_dm = -Drag(:,3)./m;

Ddae(3*N+1:4*N,7) = dDrag1_dm - thrust(:,1)./m; % dvdot1/dm
Ddae(4*N+1:5*N,7) = dDrag2_dm - thrust(:,2)./m; % dvdot2/dm
Ddae(5*N+1:6*N,7) = dDrag3_dm - thrust(:,3)./m; % dvdot3/dm

%dvdot/du
Ddae(3*N+1:4*N,8) = Toverm; % dvdot1/du1
Ddae(4*N+1:5*N,9) = Toverm; % dvdot2/du2
Ddae(5*N+1:6*N,10) = Toverm; % dvdot3/du3
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% mass dynamics independant of State
% Ddae(6*N+1:7*N,:) = 0

%dpath/du
Ddae(7*N+1:8*N,8) = 2*u(:,1); % dp/du1
Ddae(7*N+1:8*N,9) = 2*u(:,2); % dp/du2
Ddae(7*N+1:8*N,10) = 2*u(:,3); % dp/du3

end

% -----------------------%
% End File: launchDae.m %
% -----------------------%

% ---------------------------%
% Begin File: launchEvent.m %
% ---------------------------%
function [event Devent] = launchEvent(sol);

global CONSTANTS
t0 = sol.initial.time;
x0 = sol.initial.state;
tf = sol.terminal.time;
xf = sol.terminal.state;
p = sol.parameter;
iphase = sol.phase;

if iphase==4,
oe = launchrv2oe(xf(1:3),xf(4:6),CONSTANTS.mu);
event = oe(1:5);

else
event = [];

end;

% avoid calc of derivs in not necessary
if nargout == 2

if iphase == 4
Doe = launchrv2oe_D(xf(1:3),xf(4:6),CONSTANTS.mu,CONSTANTS.Re);

% Devents = [dE/dx0, dE/dt0, dE/dxf, dE/dtf, dE/dp]
lx0 = length(x0);
lp = length(p);
Devent = [zeros(5,lx0), zeros(5,1), [Doe, zeros(5,1)], zeros(5,1), zeros(5,lp)];

else
Devent = [];

end
end

% -------------------------%
% End File: launchEvent.m %
% -------------------------%

function oe = launchrv2oe(rv,vv,mu);

K = [0;0;1];
hv = cross(rv,vv);
nv = cross(K,hv);
n = sqrt(nv.’*nv);
h2 = (hv.’*hv);
v2 = (vv.’*vv);
r = sqrt(rv.’*rv);
ev = 1/mu *( (v2-mu/r)*rv - (rv.’*vv)*vv );
p = h2/mu;
%
% now compute the oe’s
%
e = sqrt(ev.’*ev); % eccentricity
a = p/(1-e*e); % semimajor axis
i = acos(hv(3)/sqrt(h2)); % inclination
Om = acos(nv(1)/n); % RAAN
if ( nv(2) < 0-eps ) % fix quadrant

Om = 2*pi-Om;
end;
om = acos(nv.’*ev/n/e); % arg of periapsis
if ( ev(3) < 0 ) % fix quadrant

om = 2*pi-om;
end;
nu = acos(ev.’*rv/e/r); % true anomaly
if ( rv.’*vv < 0 ) % fix quadrant
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nu = 2*pi-nu;
end;
oe = [a; e; i; Om; om; nu]; % assemble "vector"

function [ri,vi] = launchoe2rv(oe,mu)
a=oe(1); e=oe(2); i=oe(3); Om=oe(4); om=oe(5); nu=oe(6);
p = a*(1-e*e);
r = p/(1+e*cos(nu));
rv = [r*cos(nu); r*sin(nu); 0];
vv = sqrt(mu/p)*[-sin(nu); e+cos(nu); 0];
cO = cos(Om); sO = sin(Om);
co = cos(om); so = sin(om);
ci = cos(i); si = sin(i);
R = [cO*co-sO*so*ci -cO*so-sO*co*ci sO*si;

sO*co+cO*so*ci -sO*so+cO*co*ci -cO*si;
so*si co*si ci];

ri = R*rv;
vi = R*vv;

The output of the above code from GPOPS is summarized in the following three plots that contain the
altitude, speed, and controls.
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(a) Altitude vs. Time.
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(b) Speed vs. Time.
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(c) Mass vs. Time.
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7.4 Minimum Time-to-Climb of a Supersonic Aircraft

The problem considered in this section is the classical minimum time-to-climb of a supersonic aircraft. The
objective is to determine the minimum-time trajectory and control from take-off to a specified altitude and
speed. This problem was originally stated in the open literature in the work of Ref. 13, but the model used
in this study was taken from Ref. 7 with the exception that a linear extrapolation of the thrust data as found
in Ref. 7 was performed in order to fill in the “missing” data points.

The minimum time-to-climb problem for a supersonic aircraft is posed as follows. Minimize the cost
functional

J = tf (29)

subject to the dynamic constraints

ḣ = v sinα (30)

v̇ =
T cosα−D

m
(31)

γ̇ =
T sinα+ L

mv
+
(v
r
− µ

vr2

)
cos γ (32)

ṁ = − T

g0Isp
(33)

and the boundary conditions

h(0) = 0 ft (34)

v(0) = 129.3144 m/s (35)

γ(0) = 0 rad (36)

h(tf ) = 19994.88 m (37)

v(tf ) = 295.092 ft/s (38)

γ(tf ) = 0 rad (39)

where h is the altitude, v is the speed, γ is the flight path angle, m is the vehicle mass, T is the magnitude
of the thrust force, and D is the magnitude of the drag force. It is noted that this example uses table data
obtained from Ref. 13. In this example GPOPS is implemented using the finite-difference derivative option
(that is, using the option setup.derivatives=’finite-difference’) together with an interpolation of the table
data with the MATLAB functions ’interp1’ and ’interp2’. The MATLAB code that solves the minimum
time-to-climb of a supersonic aircraft is shown below.

% ----------------------------------------------
% Minimum Time-to-Climb of a Supersonic Aircraft
% ----------------------------------------------
% This example is taken verbatim from the following reference:
% Betts, J. T., Practical Methods for Optimal Control Using
% Nonlinear Programming, SIAM Press, Philadelphia, 2001.
clear setup limits guess

% Initialize all of the data for the problem
load brysonMinimumClimbAeroData.mat;
global CONSTANTS;

% U.S. 1976 Standard Atmosphere Table
% Reference: U.S. 1976 Standard Atmosphere, National Oceanographic
% and Atmospheric Administration, 1976.
% Column 1: Altitude (m)
% Column 2: Atmospheric Density (kg/m^3)
% Column 3: Speed of Sound (m/s)
us1976 = [-2000 1.478e+00 3.479e+02

0 1.225e+00 3.403e+02
2000 1.007e+00 3.325e+02
4000 8.193e-01 3.246e+02
6000 6.601e-01 3.165e+02
8000 5.258e-01 3.081e+02
10000 4.135e-01 2.995e+02
12000 3.119e-01 2.951e+02
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14000 2.279e-01 2.951e+02
16000 1.665e-01 2.951e+02
18000 1.216e-01 2.951e+02
20000 8.891e-02 2.951e+02
22000 6.451e-02 2.964e+02
24000 4.694e-02 2.977e+02
26000 3.426e-02 2.991e+02
28000 2.508e-02 3.004e+02
30000 1.841e-02 3.017e+02
32000 1.355e-02 3.030e+02
34000 9.887e-03 3.065e+02
36000 7.257e-03 3.101e+02
38000 5.366e-03 3.137e+02
40000 3.995e-03 3.172e+02
42000 2.995e-03 3.207e+02
44000 2.259e-03 3.241e+02
46000 1.714e-03 3.275e+02
48000 1.317e-03 3.298e+02
50000 1.027e-03 3.298e+02
52000 8.055e-04 3.288e+02
54000 6.389e-04 3.254e+02
56000 5.044e-04 3.220e+02
58000 3.962e-04 3.186e+02
60000 3.096e-04 3.151e+02
62000 2.407e-04 3.115e+02
64000 1.860e-04 3.080e+02
66000 1.429e-04 3.044e+02
68000 1.091e-04 3.007e+02
70000 8.281e-05 2.971e+02
72000 6.236e-05 2.934e+02
74000 4.637e-05 2.907e+02
76000 3.430e-05 2.880e+02
78000 2.523e-05 2.853e+02
80000 1.845e-05 2.825e+02
82000 1.341e-05 2.797e+02
84000 9.690e-06 2.769e+02
86000 6.955e-06 2.741e+02];

% Mtab is a table of Mach number values
Mtab = [0; 0.2; 0.4; 0.6; 0.8; 1; 1.2; 1.4; 1.6; 1.8];
% alttab is a table of altitude values (in ft)
alttab = [0 5000 10000 15000 20000 25000 30000 40000 50000 70000];
% Convert altitude table to meters
alttab = 0.3048*alttab;
% Ttab is a table of aircraft thrust values (in lbf)
% Ttab is taken from Bryson’s 1969 Journal of Aircraft paper (also
% Betts’ book), but the table has been extended via linear
% extrapolation to fill in the "missing" data points.
Ttab = 1000*[24.2 24.0 20.3 17.3 14.5 12.2 10.2 5.7 3.4 0.1;

28.0 24.6 21.1 18.1 15.2 12.8 10.7 6.5 3.9 0.2;
28.3 25.2 21.9 18.7 15.9 13.4 11.2 7.3 4.4 0.4;
30.8 27.2 23.8 20.5 17.3 14.7 12.3 8.1 4.9 0.8;
34.5 30.3 26.6 23.2 19.8 16.8 14.1 9.4 5.6 1.1;
37.9 34.3 30.4 26.8 23.3 19.8 16.8 11.2 6.8 1.4;
36.1 38.0 34.9 31.3 27.3 23.6 20.1 13.4 8.3 1.7;
36.1 36.6 38.5 36.1 31.6 28.1 24.2 16.2 10.0 2.2;
36.1 35.2 42.1 38.7 35.7 32.0 28.1 19.3 11.9 2.9;
36.1 33.8 45.7 41.3 39.8 34.6 31.1 21.7 13.3 3.1];

% Convert Thrust to Newtons
Ttab = 4.448222*Ttab;

% M2 is the Mach number used to compute the aerodynamic coefficients
M2 = [0 0.4 0.8 0.9 1.0 1.2 1.4 1.6 1.8];
Clalphatab = [3.44 3.44 3.44 3.58 4.44 3.44 3.01 2.86 2.44];
CD0tab = [0.013 0.013 0.013 0.014 0.031 0.041 0.039 0.036 0.035];
etatab = [0.54 0.54 0.54 0.75 0.79 0.78 0.89 0.93 0.93];

CONSTANTS.CDdat = CDdat;
CONSTANTS.CLdat = CLdat;
CONSTANTS.etadat = etadat;
CONSTANTS.M = Mtab;
CONSTANTS.M2 = M2;
CONSTANTS.alt = alttab;
CONSTANTS.T = Ttab;
CONSTANTS.Clalpha = Clalphatab;
CONSTANTS.CD0 = CD0tab;
CONSTANTS.eta = etatab;
CONSTANTS.ppCLalpha = polyfit(CONSTANTS.M2,CONSTANTS.Clalpha,8);
CONSTANTS.ppCD0 = polyfit(CONSTANTS.M2,CONSTANTS.CD0,8);
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CONSTANTS.ppeta = polyfit(CONSTANTS.M2,CONSTANTS.eta,8);
CONSTANTS.Re = 6378145;
CONSTANTS.mu = 3.986e14;
CONSTANTS.S = 49.2386;
CONSTANTS.g0 = 9.80665;
CONSTANTS.Isp = 1600;
CONSTANTS.H = 7254.24;
CONSTANTS.rho0 = 1.225;
CONSTANTS.us1976 = us1976;

mass0 = 19050.864;
% Compute Scale Factors
if 0,

scales.length = CONSTANTS.Re;
scales.area = scales.length*scales.length;
scales.volume = scales.area*scales.length;
scales.speed = sqrt(CONSTANTS.mu/scales.length);
scales.time = scales.length/scales.speed;
scales.acceleration = scales.speed/scales.time;
scales.mass = mass0;
scales.force = scales.mass*scales.acceleration;
scales.density = scales.mass/scales.volume;
scales.gravparameter = scales.volume/scales.time^2;

else
scales.length = 1;
scales.area = 1;
scales.volume = 1;
scales.speed = 1;
scales.time = 1;
scales.acceleration = 1;
scales.mass = 1;
scales.force = 1;
scales.density = 1;
scales.gravparameter = 1;

end;

% Scale all quantities in problem
CONSTANTS.us1976(:,1) = us1976(:,1)/scales.length;
CONSTANTS.us1976(:,2) = us1976(:,2)/scales.density;
CONSTANTS.us1976(:,3) = us1976(:,3)/scales.speed;
CONSTANTS.alt = CONSTANTS.alt/scales.length;
CONSTANTS.T = CONSTANTS.T/scales.force;
CONSTANTS.Re = CONSTANTS.Re/scales.length;
CONSTANTS.mu = CONSTANTS.mu/scales.gravparameter;
CONSTANTS.S = CONSTANTS.S/scales.area;
CONSTANTS.g0 = CONSTANTS.g0/scales.acceleration;
CONSTANTS.Isp = CONSTANTS.Isp/scales.time;
CONSTANTS.H = CONSTANTS.H/scales.length;
CONSTANTS.rho0 = CONSTANTS.rho0/scales.density;
[aa,mm] = meshgrid(alttab,Mtab);
CONSTANTS.aa = aa;
CONSTANTS.mm = mm;

% Boundary conditions (taken from Betts 2001 & converted to SI units)
t0 = 0/scales.time; % Initial time [scales.time]
alt0 = 0/scales.time; % Initial altitude [scales.length]
altf = 19994.88/scales.length; % Final altitude [scales.length]
speed0 = 129.314/scales.speed; % Initial speed [scales.speed]
speedf = 295.092/scales.speed; % Final speed [scales.speed]
fpa0 = 0; % Initial flight path angle [rad]
fpaf = 0; % Final flight path angle [rad]
mass0 = mass0/scales.mass; % Initial mass [scales.mass]

% Bounds on variables (taken from Betts, 2001)
tfmin = 100/scales.time;
tfmax = 800/scales.time;
altmin = 0/scales.length;
altmax = 21031.2/scales.length;
speedmin = 5/scales.speed;
speedmax = 1000/scales.speed;
fpamin = -40*pi/180;
fpamax = 40*pi/180;
massmin = 22/scales.mass;
massmax = 20410/scales.mass;
% alphamin = -pi/2;
% alphamax = pi/2;
alphamin = -pi/4;
alphamax = pi/4;
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iphase = 1;
% Bounds on initial and terminal values of time
% limits(iphase).meshPoints = [-1 1];
% limits(iphase).nodesPerInterval = [20];
limits(iphase).time.min = [t0 tfmin];
limits(iphase).time.max = [t0 tfmax];
limits(iphase).state.min(1,:) = [alt0 altmin altf];
limits(iphase).state.max(1,:) = [alt0 altmax altf];
limits(iphase).state.min(2,:) = [speed0 speedmin speedf];
limits(iphase).state.max(2,:) = [speed0 speedmax speedf];
limits(iphase).state.min(3,:) = [fpa0 fpamin fpaf];
limits(iphase).state.max(3,:) = [fpa0 fpamax fpaf];
limits(iphase).state.min(4,:) = [mass0 massmin massmin];
limits(iphase).state.max(4,:) = [mass0 massmax massmax];
limits(iphase).control.min = alphamin;
limits(iphase).control.max = alphamax;
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
guess(iphase).time = [0; 100];
guess(iphase).state(:,1) = [alt0; altf];
guess(iphase).state(:,2) = [speed0; speedf];
guess(iphase).state(:,3) = [fpa0; fpaf];
guess(iphase).state(:,4) = [mass0; mass0];
guess(iphase).control = [20; -20]*pi/180;
guess(iphase).parameter = [];

setup.name = ’Bryson-Minimum-Time-to-Climb-Problem’;
setup.funcs.cost = ’brysonMinimumClimbCost’;
setup.funcs.dae = ’brysonMinimumClimbDae’;
setup.funcs.link = ’’;
setup.limits = limits;
setup.guess = guess;
%================================================%
% WARNING: AT THIS TIME THIS PROBLEM CAN ONLY %
% BE SOLVED USING NUMERICAL DIFFERENTIATION! %
% DO NOT SET "SETUP.DERIVATIVES" TO ANYTHING BUT %
% "finite-difference". %
%================================================%
setup.derivatives = ’finite-difference’;
setup.autoscale = ’on’;
% setup.tolerances = [1e-3 2e-3];
setup.mesh.tolerance = 1e-4;
setup.mesh.iteration = 10;
setup.mesh.nodesPerInterval.min = 4;
setup.mesh.nodesPerInterval.max = 12;

output = gpops(setup);

solution = output.solution;
solutionPlot = output.solutionPlot;
plotfigures;

%-----------------------------------------%
% End Function: brysonMinimumClimbMain.m %
%-----------------------------------------%

%-------------------------------------------%
% Begin Function: brysonMinimumClimbCost.m %
%-------------------------------------------%
function [Mayer,Lagrange] = brysonMinimumClimbCost(solcost);

tf = solcost.terminal.time;
t = solcost.time;

Mayer = tf;
Lagrange = zeros(size(t));
%-----------------------------------------%
% End Function: brysonMinimumClimbCost.m %
%-----------------------------------------%

%------------------------------------------%
% Begin Function: brysonMinimumClimbDae.m %
%------------------------------------------%
function dae = brysonMinimumClimbDae(sol)

global CONSTANTS

us1976 = CONSTANTS.us1976;
Ttab = CONSTANTS.T;
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mu = CONSTANTS.mu;
S = CONSTANTS.S;
g0 = CONSTANTS.g0;
Isp = CONSTANTS.Isp;
Re = CONSTANTS.Re;

x = sol.state;
u = sol.control;

h = x(:,1);
v = x(:,2);
fpa = x(:,3);
mass = x(:,4);
alpha = u(:,1);

r = h+Re;
rho = interp1(us1976(:,1),us1976(:,2),h,’spline’);
sos = interp1(us1976(:,1),us1976(:,3),h,’spline’);
Mach = v./sos;
[CD0,Clalpha,eta]=brysonMinimumClimbAeroCompute(Mach);
Thrust = interp2(CONSTANTS.aa,CONSTANTS.mm,Ttab,h,Mach,’spline’);
CD = CD0 + eta.*Clalpha.*alpha.^2;
CL = Clalpha.*alpha;
q = 0.5.*rho.*v.*v;
D = q.*S.*CD;
L = q.*S.*CL;
hdot = v.*sin(fpa);
vdot = (Thrust.*cos(alpha)-D)./mass - mu.*sin(fpa)./r.^2;
fpadot = (Thrust.*sin(alpha)+L)./(mass.*v)+cos(fpa).*(v./r-mu./(v.*r.^2));
mdot = -Thrust./(g0.*Isp);

dae = [hdot vdot fpadot mdot];

%----------------------------------------%
% End Function: brysonMinimumClimbDae.m %
%----------------------------------------%

%------------------------------------------%
% Begin Function: brysonMinimumClimbDae.m %
%------------------------------------------%
function dae = brysonMinimumClimbDae(sol)

global CONSTANTS

us1976 = CONSTANTS.us1976;
Ttab = CONSTANTS.T;

mu = CONSTANTS.mu;
S = CONSTANTS.S;
g0 = CONSTANTS.g0;
Isp = CONSTANTS.Isp;
Re = CONSTANTS.Re;

x = sol.state;
u = sol.control;

h = x(:,1);
v = x(:,2);
fpa = x(:,3);
mass = x(:,4);
alpha = u(:,1);

r = h+Re;
rho = interp1(us1976(:,1),us1976(:,2),h,’spline’);
sos = interp1(us1976(:,1),us1976(:,3),h,’spline’);
Mach = v./sos;
[CD0,Clalpha,eta]=brysonMinimumClimbAeroCompute(Mach);
Thrust = interp2(CONSTANTS.aa,CONSTANTS.mm,Ttab,h,Mach,’spline’);
CD = CD0 + eta.*Clalpha.*alpha.^2;
CL = Clalpha.*alpha;
q = 0.5.*rho.*v.*v;
D = q.*S.*CD;
L = q.*S.*CL;
hdot = v.*sin(fpa);
vdot = (Thrust.*cos(alpha)-D)./mass - mu.*sin(fpa)./r.^2;
fpadot = (Thrust.*sin(alpha)+L)./(mass.*v)+cos(fpa).*(v./r-mu./(v.*r.^2));
mdot = -Thrust./(g0.*Isp);

dae = [hdot vdot fpadot mdot];
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%----------------------------------------%
% End Function: brysonMinimumClimbDae.m %
%----------------------------------------%

The components of the state and the control obtained from running the above GPOPS code is summarized
in Figs. 3a–3e.
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8 Concluding Remarks

While the authors have put for the effort to make GPOPS a user-friendly software, it is important to
understand several aspects of computational optimal control in order to make GPOPS easier to use. First, it
is highly recommended that the user scale a problem manually using insight from the physics/mathematics
of the problem because the automatic scaling procedure is by no means foolproof. Second, the particular
parameterization of a problem can make all the difference with regard to obtaining a solution in a reliable
manner. Finally, even if the NLP solver returns the result that the optimality conditions have been satisfied,
it is important to verify the solution. In short, a great deal of time in solving optimal control problems is
spent in formulation and analysis.
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