
MATH5003 - Assignment in Mathematics

Modeling and Simulating Football Results

James Adam Gardner - 200318885

Supervisor - Dr Jochen Voss

May 6, 2011



Abstract

This report contains the description and implementation of a Poisson regression model being

used to model football results. The steps taken to set up the model are explained in full and

the statistical program R is used to carry out the numerical calculations. After modeling the

football results, new games can be simulated to analyse the randomness of football league tables.

Modeling and simulating the results can then be used to try to predict, or indicate the outcome of,

future football matches. All of the R code used is given in the appendix and can be downloaded

and used at http://www.maths.leeds.ac.uk/~voss/projects/2010-sports/. The data used

throughout the report is taken from the website http://www.football-data.co.uk/ [4].

http://www.maths.leeds.ac.uk/~voss/projects/2010-sports/
http://www.football-data.co.uk/
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Chapter 1

Introduction

The Betting Market

Trying to predict the outcome of games in sport is extremely common in the world today. Betting

companies do it on a regular basis to be able set their odds appropriately so that the favourite

has the lowest odds, i.e. a person placing a bet on the favourite will win less if they predict the

outcome correctly as it is the most likely result. Also, the betting company has to make sure that

it will make money overall. One way this could be done is by tempting gamblers into betting

on the least likely outcome. Longer (higher) odds will be placed on this outcome so betters will

be enticed to bet as there will be big winnings if this outcome does come true, even though it is

perhaps very unlikely.

It is not only the bookies (betting companies) that try and predict what will happen. The

gamblers that are going to bet on the odds that the bookies propose will also make their own

predictions on the outcome. These predictions are normally made by the gambler using his/her

intuition and self-knowledge about the sport they are betting on. However, there will be some

who try to use certain techniques to anticipate the final results. One of these techniques is to

use mathematics, mainly statistics and probability, to try and work out systematically whether

a certain team or player will win an event. Odds used to be calculated by hand but are now

worked out using computers so a lot maths is required.

Mathematics in Sport

Mathematics in this day and age is extremely advanced in solving the vast majority of problems,

however, every sports fan knows how random sport can be, so is it possible to use mathematics

to predict what will happen? If so, how often will it bring out the correct result? This report

will look into a possible mathematical method that can be used to predict football results, and

attempt to figure out whether this method is actually successful.

Not only will the report look at predicting football results but simulating them too to analyse

the statistics of results. The analysis will include looking at the randomness of a football league
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table, the difference in strengths between the teams and whether these affect the simulations and

randomness and also where teams are likely to finish due to all of these. One main model will

be used to try to simulate and predict results called the Poisson regression model (chapter 3).

Obviously any predictions made will not be totally accurate and whilst they may be able to give

a good interpretation of what is most likely to happen, it is very risky to use them for betting

purposes.

All of the simulations and predictions will be carried out in the statistical program R and the

source code used to do so can be found at the website http://www.maths.leeds.ac.uk/~voss/

projects/2010-sports/. All of the functions are built in R and are explained during this report

and in the appendix (A etc...) where each function is given in full and the input and output is

briefly explained.

Alternatively, the following R code can be entered to download the functions straight into R (the

first line of code), use the 2009-2010 data set that is used throughout the report (the second line

of code) and to start with, parameters can be estimated (the third line of code).

source("http://www.maths.leeds.ac.uk/~voss/projects/2010-sports/Football.R")

results0910 <- read.csv("http://www.maths.leeds.ac.uk/~voss/projects/2010-sports

/Results0910.csv", stringsAsFactors=F, header=F)

Parameters(results0910)

The other functions can then be implemented using this output of parameters.
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Chapter 2

Poisson Models

2.1 Poisson Process

The “events” that happen in sport are random. However, when looking at how and when these

events occur during the period of a game, it can be seen that they can be viewed as a timeline

of events which in turn can be interpreted as a 1-dimensional scatter diagram. Take a football

match for example where the goals scored by either team throughout the 90 minutes happen at

random times over the period of the 90 minute game. For a match that finishes 3-2, say, with the

goals being scored in the 10th, 35th, 39th, 67th and 84th minutes (ignoring which team scored

each goal), then each goal can be represented by marking the events on a 1-D scatter diagram,

represented as a timeline (Figure 2.1).

Minutes

0 10 20 30 40 50 60 70 80 90

Figure 2.1: Example of times of goals in a football match which can be viewed as 1-D Poisson

process

This seemingly random selection of “events”, goals in the example above, can be viewed as a

counting process. The crosses could be seen as representing many other events, not just goals

in football. They could represent other events in sport, for example, a try in rugby, or as events

not in sport, e.g. when earthquakes occur. This will depend on what you are analysing. Also,
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the minutes along the bottom could be changed so that the timeline represents whichever sport,

or anything else, that someone wishes to evaluate, e.g. the minutes would only go up to 80 for

rugby, or for the earthquake example, they could be years over a certain time span.

2.1.1 Definition - Counting Process

For each real number t ≥ 0, let N(t) denote the number of times a specified event occurs by time

t. Note that N(t) is a nonnegative-integer valued random variable for each t ≥ 0. The collection

of random variables N(t) : t ≥ 0 is called a counting process because it counts the number of

times the specified event occurs in time. [7, page 686]

2.1.2 Definition - Poisson Process

A counting process N(t) : t ≥ 0 is said to be a Poisson process with rate λ if the following

three conditions hold [7, page 688]:

(a) N(0) = 0.

(b) N(t) : t ≥ 0 has independent increments.

(c) N(t)−N(s) ∼ Poiss(λ(t− s)) for 0 ≤ s < t <∞.

The second condition in the definition mentions that the increments in time are independent.

However, in sport, this may not be the case. Say a football match is split into 2 increments,

first half and second half, then it is obvious that, whatever has happened in the first half could

affect what happens in the second half. This could be for a variety of reasons such as a losing

team needs a rest and then plays much better in the second half or a manager makes excellent

tactical changes because his team is losing and this affects the game. This dependency could

cause problems so, for the purpose of modeling football scores, it is easier to first concentrate on

the game as a whole and assume independence.

2.1.3 Modelling a Poisson process

It is obvious to see that, at the start of the process where t = 0,

N(0) = 0

and for the example of a football match finishing 3-2 (ignoring the possibility of added time)

N(90) = 5.

It is also clear, as Weiss [7, page 686] states, that:

N(t)−N(s) = number of successes in the time interval (s, t] for 0 ≤ s < t <∞

This shows that even different time intervals between 0 and t can be viewed as a Poisson process.
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Examples

In the example above it would be looking at goals in a football match before the 90th minute,

or normally a little bit longer due to added stoppage/injury time. The process N(t) is a “non-

negative integer valued random variable” representing the number of occurrences of an event

during time t and a collection of these random variables is what can be viewed as a Poisson

process. Although for sporting games it is only possible to view the events as 1-D Poisson

processes, they can be seen in higher dimensions.

Kingman [5, Page 1] gives a good example of a 2-D Poisson process by showing stars in the sky.

These are positioned randomly throughout space and as they are viewed, “the stars appear to

be distributed over the surface of a sphere”, so if the sphere is ‘flattened’ out to view them as a

2-D scatter graph they can be assessed as a 2-D Poisson process, an example of which is given

in Figure 2.2.
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Figure 2.2: 20 points at random coordinates can be modeled as a 2-D Poisson process

The 1-D Poisson process is clearly the option that shows a football match or sport event best.

This is because the events can be viewed as a timeline as explained earlier. So for the example

of a football match, each match that is used as data will have a different value for N(t) and the

collection of these will be the Poisson model that can be tested. To analyse the probabilities,

it is possible to use the similarities between the Poisson process and the Poisson distribution.

The Poisson distribution will be explained later on in chapter 2.2. The link is the fact that, as

Kingman [5, page 3] states, each Poisson process N(t) ”are not merely independent” but ”that

each has the Poisson distribution Poiss(µ) for a suitable choice of µ.

There is an argument here that football matches themselves are not independent due to varying

strengths of the teams that will play each other. Various dependencies can affect the outcome of
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a match, e.g. which team is at home, whether a team has injuries to their squad or how strong

one team is compared to the other, however, for the purpose of modeling football results, it will

be taken that a Poisson process N(t) has a Poisson distribution. A test of how closely football

results fit to a Poisson distribution will be carried out in section 2.2.4.

2.2 The Poisson Distribution

It is now clear that football scores can be viewed as a Poisson process. Therefore, the link

between the Poisson process and Poisson distribution can be used. This will mean that the

football scores can be modeled using the Poisson distribution.

2.2.1 Definition - Poisson Random Variable

A discrete random variable X is called a Poisson random variable if its probability mass

function is of the form

pX(x) = exp(−λ)
λx

x!
(2.2.1)

for x = 0, 1, 2, ... and pX(x) = 0 otherwise, where λ is some positive real number. It is said that

X has the Poisson distribution with parameter λ. For convenience, it is sometimes written

as X ∼ Poiss(λ) to indicate that X has the Poisson distribution with parameter λ. [7, page223]

The probability mass function (2.2.1) shows that the probability of the random variable X being

a value x equals the right hand side of (2.2.1) and can be written as pX(x) = P (X = x). Since

it is used to calculate probabilities of the number of times the event will occur, and it is clear

that the total probability of the number of events to happen is equal to 1, then:

∞∑
x=1

exp(−λ)
λx

x!
= 1 (2.2.2)

for any value of λ, where λ is the expected value of the variable. A sum is used here as a Poisson

process and distribution uses discrete values, whereas in the continuous case, this would be an

integral as the area under the curve would be needed. However, in the discrete Poisson case,

it is only required that the number of occurrences at each time is recorded as the data points,

which can then be viewed in a bar chart. The graphical representation of this will look different

for differing values of λ. Lower values of lambda will skew the density to the left as the expected

value of the random variable is low meaning that a higher percentage of low values will occur.

The bar charts (Figure 2.3) show probability mass shape for a Poisson random variable with

various values of λ by processing 200 random Poisson values for each λ.

For a Poisson distribution, the value λ represents the expected number of occurrences of an event

for the variable in question. A unique property of the Poisson distribution is that both the mean
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Figure 2.3: 4 Poisson variables processing 200 random values for different values of λ

the variance are equal to this value of λ.

2.2.2 Theorem - Mean and Variance of a Poisson Distribution

Let X be a discrete Poisson random variable with probability density function (2.2.2). Then

E(X) = λ and V ar(X) = λ.

Proof:

Let X ∼ Poiss(λ) be a discrete Poisson random variable with probability density function (2.2.2).

Take E(X) first. It is known that

E(X) =

∞∑
x=0

xpX(x). (2.2.3)

However, for the case where x = 0, it is clear to see that

E(X) = 0
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and therefore E(X) (2.2.3) can be simplified to

E(X) =
∞∑
x=1

xpX(x).

Now, using equation (2.2.1):

E(X) =
∞∑
x=1

x
λx exp(−λ)

x!

=

∞∑
x=1

λx exp(−λ)

(x− 1)!
.

= λ
∞∑
x=1

λx−1 exp(−λ)

(x− 1)!
.

Now let u = x− 1, ⇒

E(X) = λ
∞∑
u=0

λu exp(−λ)

(u)!
.

The equation within the sum now represents a probability mass function and therefore, by (2.2.2),

the sum equals 1. Thus E(X) = λ.

Now, to show V ar(X), it is known that V ar(X) = E(X2)−(E(X))2. So all that needs calculating

now, as E(X) = λ from above, is E(X2). This can be done in the same way as above, ignoring

the x = 0 case again as E(X2) = 0 for x = 0, by using the known equation:

E(X2) =

∞∑
x=1

x2
λx exp(−λ)

x!

=
∞∑
x=1

x
λx exp(−λ)

(x− 1)!
.

Let u = x− 1 again, and therefore x = u+ 1. So,

E(X2) =
∞∑
u=0

(u+ 1)
λu+1 exp(−λ)

u!

=
∞∑
u=0

u
λu+1 exp(−λ)

u!
+
∞∑
u=0

λu+1 exp(−λ)

u!

=

∞∑
u=0

λu+1 exp(−λ)

(u− 1)!
+

∞∑
u=0

λu+1 exp(−λ)

u!

= λ2
∞∑
u=0

λu−1 exp(−λ)

(u− 1)!
+ λ

∞∑
u=0

λu exp(−λ)

u!

= λ

[
λ

∞∑
u=0

λu−1 exp(−λ)

(u− 1)!
+

∞∑
u=0

λu exp(−λ)

u!

]
.
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The two equations within the summations are now both probability mass functions and therefore,

by (2.2.2), both sums are equal to 1. Thus, E(X2) = λ(λ+1). Using this result and the previous

result of E(X) = λ:

V ar(X) = E(X2)− (E(X))2

= λ(λ+ 1)− (λ)2

= λ2 + λ− λ2

= λ.

So E(X) = λ and V ar(X) = λ.

2.2.3 Modeling Football Scores as a Poisson Distribution

Taking the 2009-2010 Premiership football season as an example, where information on all 380

matches [4] is considered, and looking at the total number of goals scored by both teams in each

of the 380 games played, it is easy to see that the distribution of the goals scored (Figure 2.4)

looks very similar to the shape of a Poisson distribution discussed earlier. The total number of

goals scored in this Premiership season was 1053, giving an average of 1053
380 = 2.7710526... goals

per game. Therefore, let X be the set of data of the total number of goals in all 380 matches,

then E(X) ≈ 2.771053 and from the theorem above λ ≈ 2.771053. Below are two bar charts, the

left hand side of Figure 2.4 is the actual data for total goals scored in each of the 380 matches

from the 2009-2010 Premiership season and the other on the right hand side of Figure 2.4 is a

random Poisson variable for the value λ = 2.771053 where the probabilities of each number of

occurrences is calculated from λ = 2.771053 and using 2.2.1.

Comparing the two charts, it is clear to see that the goals scored in the games of the 2009-2010

Premiership season do very closely follow a Poisson distribution with a mean of the average

number of goals scored in a game in that season. This can be seen due to the fact that scoring a

higher number of goals than the mean, which is generally around 2 goals per game, is a lot less

likely.

2.2.4 Test of Distribution

How close the total goals fits the Poisson distribution can be tested using a goodness of fit test.

As the Poisson distribution and the football data are discrete, the Chi-squared goodness of fit

test can be used. It tests whether observed data (the 2009-2010 Premiership football season)

follows a particular distribution (the Poisson distribution). A null hypothesis of

H0: The distribution of total goals in a game is approximately a Poisson distribution
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Figure 2.4: Goals scored in each of the 2009-2010 Premiership games vs Poisson probability mass

function for λ = 2.771053 (X represents a football game, k represents number of goals)

is taken and the test statistic χ2
t is calculated using the formula

χ2
t =

n∑
i=1

(Oi − Ei)
2

Ei
(2.2.4)

where Oi are the observed values from the data, Ei are the expected values for the distribu-

tion is question and n is the number of observations. The observed values from the 2009-2010

Premiership football season of total number of goals in the 380 games are the frequencies

Table 2.1: Total goals in a game in the 2009-2010 Premiership football season

Number of Goals 0 1 2 3 4 5 6 7 8 9 10

Frequency 32 59 89 87 59 28 12 8 4 1 1

which can be seen in a bar plot on the left hand side of figure 2.4. The mean number of

goals scored in a game in this season was 2.771053 as discussed earlier in the chapter and

the distribution to test this data against is the Poisson distribution with λ = 2.771053 whose

probability mass function is displayed on the right hand side of figure 2.4. The expected frequency

of total goals is calculated using the probability mass function (2.2.1) for x = 0, ..., 10 and

λ = 2.771053. These expected values can be computed using the ‘goodfit’ function in the
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statistical program ’R’ using the R code below where the table (2.1) has been created and

inputted into the goodfit function. Also the type of distribution has been specified as ‘Poisson’

so that the values are calculated using 2.2.1 and the method of estimation is specified as ‘ML’

(maximum likelihood) so that the correct method of estimation is used (this will be discussed in

section 3.3).

> tg <- rep(0:10,c(32,59,89,87,59,28,12,8,4,1,1))

> fretabtg <- table(tg)

> fretabtg

tg

0 1 2 3 4 5 6 7 8 9 10

32 59 89 87 59 28 12 8 4 1 1

> gf <- goodfit(fretabtg, type= "poisson", method= "ML")

> gf

Observed and fitted values for poisson distribution

with parameters estimated by ‘ML’

count observed fitted

0 32 23.7865102

1 59 65.9136717

2 89 91.3251266

3 87 84.3555775

4 59 58.4384363

5 28 32.3871965

6 12 14.9577710

7 8 5.9212530

8 4 2.0510130

9 1 0.6314961

10 1 0.1749909

The table gives observed values in the observed column and expected values in the fitted column

as they have been fitted to the theoretical distribution being tested. Now it is possible to calculate

the test statistic (2.2.4) for these values which R can provide by looking at the summary of this

goodfit function.

> summary(gf)

Goodness-of-fit test for poisson distribution

X^2 df P(> X^2)

Likelihood Ratio 8.941242 9 0.4427157

This shows that χ2
t = 8.941242 with 9 degrees of freedom and the p-value (P (> X2) = 0.4427157)

given means that the probability of the χ2 value in the χ2 table being above the value of χ2
t
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is ≈ 44%. Therefore it is possible to say that there is 44% chance that the distributions are

similar. This is quite significant due the large amount of data and so it can be said that the null

hypothesis can be accepted and the distribution of total goals from the 2009-2010 Premiership

football season does in fact follow a Poisson distribution. Consequently this backs up the idea

that the Poisson distribution is the correct distribution for football data and will provide a good

model to use.
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Chapter 3

Poisson Regression

The Poisson regression model is used as the ”standard model for count data” [1, page 9] and

is ”derived from the Poisson distribution by allowing the intensity parameter µ to depend on

covariates (regressors)”. The parameter µ is represented by λ in the previous explanation of the

Poisson distribution in section 2.2. The Poisson regression model follows the same steps as a

normal linear regression model y = Xβ+ ε where the scalor variables y and variables X are used

to estimate the parameters β. However it is slightly different in that values need to be positive

for count data which means exponentials need to be used and that the Poisson distribution is

specifically used as the model. This will be explained in more detail throughout this chapter.

3.1 Definition - Count Data

An event count refers to the number of times an event occurs, for example the number of airline

accidents or earthquakes. An event count is the realisation of a non-negative integer-valued

random variable. [1, page 1]

3.2 Poisson Regression Model

A counting process (2.1.1) is a way of resembling sporting events or data and these events can

therefore be viewed as count data [1, page 9]. The events that happen over a time period take

the form of count data so that they are in a format to be analysed. This count data can in turn

can be modeled using a standard nonlinear regression model known as the Poisson regression

model.

The Poisson regression model comes directly from the Poisson distribution by using the same

mass function and using variables which describe the occurrences of the events. In this model,

yi are the scalar dependent variables which will correspond to the number of times the event in

question occurs and xi is a vector of linearly independent regressors [1, page 9], i.e. a variable
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that has an effect on the values yi. Therefore, as yi depends upon the xi, the model looks at the

random variable yi|xi, i.e. yi given xi, that, following the Poisson distribution, has density

f(yi|xi) =
exp(−µi)µyii

yi!
. (3.2.1)

for i = 1, ..., n. This is where µi = µ(xi,β) = E[yi|xi] are the mean vectors with yi ∈ N0. The

dimensions of the terms matters here because otherwise the matrix-vector multiplication of Xβ

in the model would fail. So xT
i = [x1i, ..., xdi] is a d-dimensional vector of the regressors xji

(j = 1, ..., d) where xi ∈ Rd. Also, β gives the parameters of the model where β ∈ Rd is a ‘d× 1’

sized vector. So yi is an ‘n×1’ vector, xi is an ‘n×d’ matrix and β is a ‘d×1’ vector. Therefore,

matrix multiplication of xiβ is an ‘n× 1’ which are the dimensions of yi.

The parameters β are estimated using an estimation method. As Cameron and Trivedi explain

[1, page21] “The standard estimator for this model is the maximum likelihood estimator”. This

is the case because the parameter vector β is unknown and “The basic idea of the maximum

likelihood principle is to consider the density” [6, page33] so the Poisson density can be used.

Also, the other main estimation method is Ordinary Least Squares (OLS) which requires residuals

ε in the model. However the Poisson regression model does not contain the residuals so OLS

cannot be used.

3.3 Maximum Likelihood

The parameters can be estimated using the log-linear Poisson regression model. In this model,

the mean vectors are µi = exp(xT
i β) are now the exponential mean functions for the Poisson

distribution to ensure that they are positive as is required for count data. This exponential is

where the ”log” comes from in the name ”log-linear Poisson regression model”. To estimate the

parameters β, the method of maximum likelihood estimation is used as just discussed at the end

of section 3.2. The maximum likelihood estimator (MLE) of the parameter vector is calculated

as a function of the parameter vector [6, page33]. Therefore this estimation is computed using

the likelihood function (3.3.1) which takes a product of all the densities (3.2.1) from i = 1, ...n

and takes the logarithm of this product due to the exponential in the mean vector.

L(β; yi,xi) = log

( n∏
i=1

f(yi|xi)

)
(3.3.1)

Therefore using (3.2.1) and that µi = exp(xT
i β), the likelihood function becomes:
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L(β; yi,xi) = log

( n∏
i=1

exp(−µi)µyii
yi!

)

= log

( n∏
i=1

(exp(xT
i β))yi exp(− exp(xT

i β))

yi!

)

=
n∑

i=1

log

(
exp(yix

T
i β) exp(− exp(xT

i β))

yi!

)

=
n∑

i=1

(
yix

T
i β − exp(xT

i β)− log(yi!)

)
.

The last line of these equations is given by Cameron and Trivedi [1, page 21] (equation 2.5) but

the steps taken to get from the likelihood function (3.3.1) are not given in the text. The next

step is to estimate the parameter vector and get to 3.3.2 (equation 2.6 in the text) but they do

not give the full working here either.

So, to estimate the parameter vector β as required, first differentiate the likelihood function with

respect to each individual parameter βj where j = 1, ..., d.

δ

δβj
L(β) =

n∑
i=1

yixij − xij exp(xT
i β)

=

n∑
i=1

(
yi − exp(xT

i β)

)
xij

Then setting this derivative equal to 0, β̂ replaces β because it is now an estimate for the

parameter vector. Therefore the equation below is achieved as Cameron and Trivedi give.

n∑
i=1

(
yi − exp(xT

i β̂)

)
xij = 0 (3.3.2)

As stated [1, page 21], there is no analytical solution for β̂ from equation 3.3.2 and it would have

to be calculated numerically. By hand, this is very difficult and would take too long to compute.

However, these numerical calculations can be carried out by a computer and the statistical

program R is a good environment to take care of this. The function in R that estimates the

parameters is called glm standing for ‘generalised linear model’. For the glm function, the inputs

needed are a formula and the family of model that is to be used. So the formula to input for the

Poisson regression model is

Y = exp(Xβ) (3.3.3)
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where Y = Y T
i is the vector of data, X = xT

i represents the matrix for the regressors and β is

the vector of parameters. The actual formula inputted into the glm function will be Y = Xβ and

specifying the family of the model to be Poisson will initiate the exponential. A simple example

of the function set up is

glm(formula = Y ~ X, family = poisson)

where glm will add β to Y and X and calculate it from equation 3.3.3 numerically. However,

the matrix X must have full rank for the parameter vector β to be estimated using maximum

likelihood, i.e. rank(X) = d as there are d parameters to be estimated. This is pointed out

by Toutenburg [6, page23-24] in ‘Best Linear Unbiased Estimation’ where to estimate to the

unknown parameter vector β, “X is of order T ×K, with full rank K”. So for the set up above,

T = n and K = d.

3.4 Implementing Poisson Regression in R

Now the process of Poisson regression has been explained, the steps outlined above can be

implemented in the statistical program R via the glm function. To create the model in R the two

variables yi and xi will be used, which are the scalar dependent variables and linearly independent

regressors respectively. From section 3.2, it is known that µi = E[yi|xi] are the mean vectors and

that µi = exp(xT
i β) where β are the parameters of the model. Therefore, as a Poisson process

has the property E[X] = λ, the Poisson model in R will be based on

λ = exp(xT
i β). (3.4.1)

For a Poisson distribution, Y ∼ Poiss(λ) where Y is the data is question. So plugging in (3.4.1)

this then becomes

Yi ∼ Poiss(exp(xT
i β)) (3.4.2)

where Yi is a vector, xT
i is a matrix and β is a vector. The elements of these vectors and matrices

that will be used will be explained later in chapter 4.2 where football data will be applied to the

method described during this chapter.
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Chapter 4

Poisson Regression and Football

Data

The next stage is to apply the Poisson Regression Model to real football data. Full data from

the top 4 leagues in England can be found on the Internet [4] along with data for many other

leagues across Europe. The data for a season of a particular league from a particular season (the

earliest available dating back to the 1993-1994 season for a lot of the leagues) comes in the form

of an Excel spreadsheet where numerous amounts of statistics are given for each game in that

season. For the model, the only 4 bits of data from each game that will be used for now are ‘home

team’, ‘away team’, ‘home goals’ and ‘away goals’. So by downloading the spreadsheet wanted

and deleting all but the 4 columns of data needed and saving the file as a ‘comma separated

value’ spreadsheet, the season’s results are ready to input into R.

4.1 Football Data

Take the data set used earlier of the 2009-2010 Premiership football season which, as described

above, is in the form of a ‘comma separated value’ spreadsheet. This contains the 4 bits of data

for each of the 380 games in this season that are required. This spreadsheet can be imported

into the statistical program R using the command below.

> results0910 <- read.table("Results0910.csv", sep=",", stringsAsFactors=F)

> results0910

V1 V2 V3 V4

1 Aston Villa Wigan 0 2

2 Blackburn Man City 0 2

3 Bolton Sunderland 0 1

...

378 Man United Stoke 4 0

379 West Ham Man City 1 1

380 Wolves Sunderland 2 1
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So for each of the 20 teams in the Premiership in the 2009-2010 season, there are home and away

results against each of the other 19 teams. The table gives the home team in column 1, away

team in column 2, home team score in column 3 and away team score in column 4. There are

380 games because there were 20 teams in the Premiership in the 2009-2010 season, as there has

been since 1995 when the number of teams was reduced from 22 to 20, and each of the 20 teams

has to play each of the other 19 teams twice (one at home and one away). So the first team will

play 19 home games against the other 19 teams, as will all of the other 19 teams. This therefore

includes each team’s away fixture against each of the other 19 teams as well. Therefore there

are 20 × 19 = 380 games which matches the table results0910 as there are 380 rows of data

depicting the 380 games of the season.

Now all of the results are inputted into R, there needs to be a way to view the league table of

these games. This could just be found on the Internet, however for later on, a way to create a

table will be required. To create this table, a function can be constructed in R where an empty

data frame is created to start with. The row names of the data frame are the names of the 20

teams and the column names are the shortened names of the statistics that are normally on view

in a football table. These headings are displayed below in table 4.1.

Table 4.1: Table heading abbreviations

Abbreviation Meaning

P Number of games played

HW Number of home games won

HD Number of home games drawn

HL Number of home games lost

HF Number of goals scored at home

HA Number of goals conceded at home

AW Number of away games won

AD Number of away games drawn

AL Number of away games lost

AF Number of goals scored away

AA Number of goals conceded away

GD Goal difference, total goals scored - total goals conceded

Points Number of points achieved

Then by inserting a loop into the function, it can look at each of the 380 games and add the

correct numbers into the correct places in the data frame. So for each game, numerous ‘if’

statements are used within the function to ascertain which of two teams has scored the most

goals, or whether it was a draw. These ‘if’ functions will ascertain where to add numbers to.

For example, the first game in the results table is Aston Villa 0-2 Wigan so the ‘if’ statement

asking if the away team’s goals is larger will take effect. In this case the function would add ‘1’

to each of the teams’ ‘P’ column for games played. Then a ‘1’ would be added to Aston Villa’s

‘HL’ column (a home loss) and to Wigan’s ‘AW’ column (an away win). Next, ‘0’ would be
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added to Aston Villa’s ‘HF’ column (0 goals scored at home) and to Wigan’s ‘AA’ column (0

goals conceded away) and ‘2’ would be added to Aston Villa’s ‘HA’ column (2 goals conceded at

home) and to Wigan’s ‘AF’ column (2 goals scored away). Then ‘-2’ would be added to Aston

Villa’s ‘GD’ column (2 more goals conceded than scored) and ‘2’ would be added to Wigan’s ‘GD’

column (2 more goals scored than conceded). Finally, ‘3’ would be added to Wigan’s ‘Points’

column (3 points for the win) and ‘0’ would be added to Aston Villa’s ‘Points’ column (0 points

for the loss).

In modern football, this is the common format where 3 points are awarded for a win, 1 point for

a draw and 0 points for a loss. This was brought in in 1981 into the English set up and has had

a big effect on the game in that teams are forced to try and win games more than they used to

because there are more points on offer.

The function, named Table, is shown in full in appendix A. This creates a table which is sorted

so that the teams, and their stats from the set of games, are given in order of points gained.

However, in the case where the number of points gained by two teams are equal, then the teams

are sorted by who has the best goal difference. The input to the function must be a set of games

in the same format as shown above (results0910) for the results from the 2009-2010 season.

These results are labeled as results0910 and can be inputted into this table function and the

resulting table labeled as Table0910, both of which are shown below.

> Table0910 <- Table(results0910)

> Table0910

Team P HW HD HL HF HA AW AD AL AF AA GD Points

1 Chelsea 38 17 1 1 68 14 10 4 5 35 18 71 86

2 Man United 38 16 1 2 52 12 11 3 5 34 16 58 85

3 Arsenal 38 15 2 2 48 15 8 4 7 35 26 42 75

4 Tottenham 38 14 2 3 40 12 7 5 7 27 29 26 70

5 Man City 38 12 4 3 41 20 6 9 4 32 25 28 67

6 Aston Villa 38 8 8 3 29 16 9 5 5 23 23 13 64

7 Liverpool 38 13 3 3 43 15 5 6 8 18 20 26 63

8 Everton 38 11 6 2 35 21 5 7 7 25 28 11 61

9 Birmingham 38 8 9 2 19 13 5 2 12 19 34 -9 50

10 Blackburn 38 10 6 3 28 18 3 5 11 13 37 -14 50

11 Stoke 38 7 6 6 24 21 4 8 7 10 27 -14 47

12 Fulham 38 11 3 5 27 15 1 7 11 12 31 -7 46

13 Sunderland 38 9 7 3 32 19 2 4 13 16 37 -8 44

14 Bolton 38 6 6 7 26 31 4 3 12 16 36 -25 39

15 Wolves 38 5 6 8 13 22 4 5 10 19 34 -24 38

16 Wigan 38 6 7 6 19 24 3 2 14 18 55 -42 36

17 West Ham 38 7 5 7 30 29 1 6 12 17 37 -19 35

18 Burnley 38 7 5 7 25 30 1 1 17 17 52 -40 30

19 Hull 38 6 6 7 22 29 0 6 13 12 46 -41 30

20 Portsmouth 38 5 3 11 24 32 2 4 13 10 34 -32 28
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This set of results is for the complete 380 games from the 2009-2010 Premiership football season

and therefore the table shows the final standings of the teams 1. As can be seen, Chelsea won

the title and Burnley, Hull and Portsmouth were relegated to the lower division, as is the case

for every Premiership season that the bottom 3 are relegated.

The function to create the table can be implemented for any number of games that are inputted

meaning that a mid-season table can also be made. Also, if the set of games has more or less

teams in it then the table function is able to count the number of teams and make the table the

correct size, i.e. the Championship has 24 teams so the table would be larger by 4 rows.

4.2 Poisson Regression for Football Data

The next step of this procedure is to input the football data into the Poisson regression model.

The football data had been inputted into R, now it needs to be explained how to fit the football

data to the Poisson regression model and then to implement the model into R with the inputted

football data.

For football data, let n be the number of teams and g be the number of games being used as

the data. Then the model would use i = 1, ..., 2g as the data for the number of goals scored by

the home teams and away teams in each of the g games, hence i goes all the way up to 2g. It

would also use d = 2n because sensible parameters for the model to have would be home and

away parameters for each team. These parameters would represent strengths corresponding to

how good each team is at home and away compared to the rest of the teams in the league. This

could change to d = 2n + 1 where a home advantage parameter is included. This additional

parameter will be discussed later on in section 4.3 as to whether its inclusion is necessary.

From the formula 3.4.2, Y is the data and will be the scores of the teams involved in the football

matches. As Yi is a vector, it can be constructed by inserting all of the teams scores in order to

create it. So if the data contains g amount of games then the length of Yi will be 2g as there will

be two bits of data for each game, the home team’s score and the away team’s score. It is clear

that Yi ∈ N0 as the team’s scores will be an integer of 0 or larger, with large numbers being very

unlikely, and i = 1, ..., 2g. So the vector will be of the form

Y T = (y1i1,j1 , y
1
j1,i1 , y

2
i2,j2 , y

2
j2,i2 , ..., y

g
ig ,jg

, ygjg ,ig)

where yca,b represents the number of goals scored by team a versus team b in game c. For the

purpose of the Poisson regression model, these scores are assumed to be Poisson distributed

which is explained in section 2.2.3. Therefore the scores in Y are assumed to have a mean λ

shown in 3.4.1. The mean is therefore influenced by what games took place, i.e. where the

1This table does not quite represent the actual 2009-2010 Premiership final standings. Portsmouth actually

only gained 19 points after being deducted 9 points due to going into administration. However, fortunately, this

does not change the look of the table calculated by R above so it will have little or no effect.
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numbers are entered in xT
i to give the correct team parameters for each game which in turn give

λ for each individual score.

The β is a vector containing the parameters for the model, as described in chapter 3.4. In this

case, β is of length 2n because each of the n teams will have an attack and defence strength. So

the first half of the vector will contain the attack strengths, αk say, of the n teams and second

half will contain the defence strengths, γk say, of the n teams. So the vector will be of the form

βT = (α1, ..., αn, γ1, ..., γn). (4.2.1)

The linearly independent regressors xT
i ∈ Rd are vectors collected together to form a matrix

where i = 1, ..., 2g, as is the case for Yi, because there needs to be a vector for each of the two

team’s scores in each game and d = 2n where n is the number of different teams. This xT
i

will be constructed so that it picks out the correct parameters to work out a particular team’s

score. The transpose forces the vector for each score to be the rows of the matrix so that when

multiplied by the parameters (a column vector) the calculation will be correct due to the fact

that a matrix times a vector is done by multiplying the rows by the vector. Each vector is of

length 2n because the first half (n elements) will pick out the attack strength of the team’s score

it is calculating and the second half (n elements) will pick out the defence strength of the team

they are playing. To do this for a game between team a and team b say, a number ‘1’ will be

placed in the ath place of the first n elements of xi (with the rest being 0’s to ignore the other

attack strengths) and then a ‘−1’ will be placed in the bth place of the second n elements of xi

(again the rest being 0’s to ignore the other defence strengths). So a vector for one team in a

game would be of the form

xT = (0, ..., 1, ..., 0, 0, ...,−1, ..., 0). (4.2.2)

So to check these 2 vectors and matrix make sense, check the dimensions of the multiplication

add up correctly. For simplicity, let the equation be as described in 3.3.3 where Y = Y T
i is

the vector of data of the goals scored, X = xT
i represents the matrix for all the games and β

is the vector of parameters. X is of size 2g × 2n and β is of size 2n × 1 and therefore, when

multiplied together, give a vector of size 2g×1 which are the dimensions of Y . This implies that

the calculation will work and that the vector Y will take the form

Y = (exp(αa − γb), exp(αb − γa), ...) (4.2.3)

where team a plays team b. However as can be seen here, exp(αa − γb) is the λ discussed earlier

and therefore the values given in Y are actually just values of λ for the goals scored for each

team. Therefore, to predict how many goals a team will score, these λs will be used as the mean

of different Poisson distributions. How this works will be described later in section 5.
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Example

Take a small example of 3 football matches finishing as follows

Table 4.2: 3 example football results

Game Home Away Home goals Away goals

1 Arsenal Chelsea 3 2

2 Liverpool Arsenal 1 4

3 Chelsea Liverpool 5 0

then the vectors Y and β and matrix X described above would be represented as shown below.

Y T = (3, 2, 1, 4, 5, 0) (4.2.4)

βT = (αArs, αChe, αLiv, γArs, γChe, γLiv) (4.2.5)

X =



Ars Che Liv Ars Che Liv

game1 1 0 0 0 −1 0

game1 0 1 0 −1 0 0

game2 0 0 1 −1 0 0

game2 1 0 0 0 0 −1

game3 0 1 0 0 0 −1

game3 0 0 1 0 −1 0


(4.2.6)

Therefore, as described in the general case in equation (4.2.3), the multiplication of Xβ for

equation 3.3.3 gives

(Xβ)T = (αArs − γChe, αChe − γArs, αLiv − γArs, αArs − γLiv, αChe − γLiv, αLiv − γChe). (4.2.7)

So from equation 3.3.3, exponentials of each of these elements will be taken to give the vector

Y . The elements of Y represent values of λ for the number of goals to be scored by a team in a

particular game. How these are to be used will be discussed in section 5.1.

4.3 The Home Advantage Parameter

The setup in the previous section is good, however, there is no distinction between the team at

home and the team away. Therefore an extra parameter can be added to give the home team an

advantage. A home advantage parameter would give the home team an extra weighting because,

in football, it is generally the case that whoever is playing at home in a game has an advantage.
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This could be for a variety of reasons such as having large amounts of their own fans there or

they are used to playing at their home ground. A similar model for estimating parameters is

used by Davison ([3, page498]) and he also used a home advantage parameter which gives an

idea that it will prove significant.

A test can be done to see if there is a need for this parameter. An appropriate test is a significance

test. Take the two sample t-test which can test the difference between two means. To find out

whether there should be a home advantage parameter, this test can be used on the two samples

from the football data of home goals and away goals. Testing the difference of the means of these

two samples will show whether there is a clear difference between them, i.e. do teams score more

goals at home than away.

An example of this type of test can be found in “A basic course in Statistics” [2, page416] by

Clarke and Cooke. There are 380 games in the football data from the 2009-2010 Premiership

season so each of the samples, X1 (home) and X2 (away), have 380 bits of data which means that

a large sample test can be used. The t-test requires the samples to be normally distributed but

the scores, as discussed in section 2.2.3, are in fact Poisson distributed. The Poisson distribution

is a skewed distribution but, as Clarke and Cooke state, “If X has a very skew distribution, we

need a sample of considerable size (say, at least 200) before the distribution of X̄ approaches

reasonably closely to a normal distribution” [2, page416]. Therefore, as both samples contain

380 bits of data, a large two-sample t-test can be carried out on the data. Example 17.8 given

by Clarke and Cooke [2, page417] is a perfect test to follow as it is a “Large-sample test on

difference of means”.

4.3.1 Test for Home Advantage

The model for the test will use the two samples from the 2009-2010 Premiership football season

of home and away goals. The set of home goals scored will be represented as X1 and the away

goals as X2 where X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2).

To test whether the two means are different, let the null hypothesis (H0) and alternative hy-

pothesis (H1) to be as shown below.

H0 : µ1 = µ2

H1 : µ1 6= µ2

As the test is whether the means are different and not if one is larger than the other, this is a

two-sided test. Under H0, µ0 = 0 where µ0 = µ1 − µ2 and

x̄1 − x̄2 ∼ N

(
0,
σ21
n1

+
σ22
n2

)
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where n1 and n2 are the number of elements of data in each sample. To carry out the test, the

figures of x̄1 and x̄2 are needed, as well as estimates s21 and s22 (sample variances from the data)

of σ21 and σ22 respectively. These are calculated below in R from the data.

> mean(results0910[,3])

[1] 1.697368

> mean(results0910[,4])

[1] 1.073684

> var(results0910[,3])

[1] 2.153555

> var(results0910[,4])

[1] 1.261047

Now these values are known, the test statistic for the t-test can be computed using the formula

below.

Z =
(x̄1 − x̄2)− µ0√

σ2

This is where the estimates of s21 and s22 are used to compute σ2 as follows.

σ2 = V ar(x̄1 − x̄2)

=
s21
n1

+
s22
n2

=
2.153555

380
+

1.261047

380
= 0.00898579...

Therefore, under H0, the test statistic is as below.

Z =
(1.697368− 1.073684)− 0√

0.00898579...
= 6.5794...

To see if this value is significant or not, the student’s t-distribution table gives p-values at various

significance levels. For the standard normal variable, the values from the ∞ row of the table are

used. So for the 1% significance level, the p-value is P (1%) = 2.576 and therefore, as Z > P (1%),

H0 can be strongly rejected at the 99% confidence level. Also, Z > P (0.1%) = 3.291 which means

that, at a 99.9% confidence level, it can be said that then means of home goals and away goals

from the 2009-2010 seasons data are different. It is clear that it is the home goals that are the

biggest as the mean is x̄1 ≈ 1.7 and the mean for away goals is only x̄2 ≈ 1.1.
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This very significant test indicates that the home advantage parameter is clearly needed so that

the model represents the data as close as possible. The necessary inclusion of the home parameter

could also be seen using common sense. If it was not taken then the order of the data for each

game wouldn’t matter. Take a game inputted into R in the form

Team1 Team2 Score1 Score2

as one of the rows/games entered (an example can be seen in results0910 from section 4.1).

As before, Team1 corresponds to the home team, Team2 to the away team, Score1 to the home

team’s score and Score2 to the away team’s score. Therefore, without the home advantage

parameter included, this game could be inputted as

Team2 Team1 Score2 Score1

and when the parameters are estimated, the change would make no difference. So if a team is

better at home in the real data then this would not follow through in the simulated environment

e.g. a team’s poor away record would even out the good home record. When a table is then

simulated, every team’s home and away records would be very similar which is not the case in real

life (see Table0910 where clearly most teams are better at home). This needs to translate into

the simulation and hence the use of a home advantage parameter so the simulated parameters

will represent the real data much more accurately.

This home advantage parameter, call it δ, will be added to the parameter vector β as it is an

extra parameter that needs estimating from the data. Therefore 4.2.1 becomes

βT = (α1, ..., αn, γ1, ..., γn, δ). (4.3.1)

and now has dimension (2n + 1) × 1. Also, equation 4.2.2 changes. Before it represented any

team in a game but now there will be a difference between a home and away rows. The row for

a home team will now be

xT = (0, ..., 1, ..., 0, 0, ...,−1, ..., 0, 1) (4.3.2)

where it is formulated as before but with a ‘1’ at the end to pick out the home parameter from β.

The away row will be the same but with a ‘0’ at the end instead as to ignore the home parameter

for the away team. So it will be

xT = (0, ..., 1, ..., 0, 0, ...,−1, ..., 0, 0). (4.3.3)

So each xi is now of dimension (2n+ 1)× 1 meaning that X now has dimension 2g × (2n+ 1).

These dimensions still work because when the multiplication in 3.3.3 is carried out, Xβ has
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dimension 2g×1 which is the dimension of Y . The new Y , as given previously in equation 4.2.3,

is

Y = (exp(αa − γb), exp(αb − γa), ...) (4.3.4)

where team a (at home) plays team b.

Example

Referring back to the example in section 4.2 and adding in this home parameter, the equations

change slightly. The equation for Y (4.2.4) remains the same but the equations for X (4.2.6)

and β (4.2.5) do change to become

βT = (αArs, αChe, αLiv, γArs, γChe, γLiv, δ) (4.3.5)

X =



Ars Che Liv Ars Che Liv Home

game1 1 0 0 0 −1 0 1

game1 0 1 0 −1 0 0 0

game2 0 0 1 −1 0 0 1

game2 1 0 0 0 0 −1 0

game3 0 1 0 0 0 −1 1

game3 0 0 1 0 −1 0 0


. (4.3.6)

Also, these changes mean that equation 4.2.7 becomes

(Xβ)T = (αArs− γChe + δ, αChe− γArs, αLiv− γArs + δ, αArs− γLiv, αChe− γLiv + δ, αLiv− γChe).

(4.3.7)

4.4 Formulating Y and X in R

So now it is known how to input football data into R and how the data need to be set up for

the generalised linear model (Poisson regression model). Now this needs to be implemented.

Firstly, to create Y , which is the vector of goals scored in the games, the following R code is

used.

g <- nrow(games)

Y <- matrix(0,2*g,1)

for (i in 1:g) {

Y[((2*i)-1)] <- games[i,3]

Y[(2*i)] <- games[i,4]

}
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This requires a table of games in the same format as results0910 from section 4.1. The number

of games in this table is represented by the number of rows and this number of games is assigned

to the letter g. Then a vector named Y is created but full of 0’s ready to be comprised of the

scores. The size of Y is 2g × 1 where g is the number of games as in the description in section

4.2. The for loop then goes through each of the games and places the two scores of the teams

involved in each game into Y . So the first game’s scores will go into places 1 and 2 of Y , the

second game’s scores into places 3 and 4 and so on.

Now the matrix X needs to be created. The R code below builds the matrix so that each game

in the data (games) is represented by two rows as in equations 4.3.2 and 4.3.3.

teams <- sort(unique(c(games[,1], games[,2])), decreasing = FALSE)

n <- length(teams)

X <- matrix(0,2*g,((2*n)+1))

for (i in 1:g) {

M <- which(teams == games[i,1])

N <- which(teams == games[i,2])

X[((2*i)-1),M] <- 1

X[((2*i)-1),N+n] <- -1

X[(2*i),N] <- 1

X[(2*i),M+n] <- -1

X[((2*i)-1),((2*n)+1)] <- 1

}

For the same input of games, an alphabetically ordered vector of team names is generated from the

two columns of home and away team names by picking out all of the different names. Duplicates

are avoided using the unique command. The number of teams n is then labeled as the length

of this vector. Matrix X is then created of dimension 2g × (2n+ 1) as is now the case with the

home advantage parameter and the matrix is filled with 0s. This works well because most of

the matrix will be entries of 0 with either 2 or 3 entries in each row depending on whether it

is a home or away row. These entries are then entered using the for loop in the function. The

which command asks which number element a team name from games is in the vector teams

and produces this number.

Before the model is implemented in R using the glm function described in section 3.3, the rank of

the matrix X needs to be checked. Using the R function qr which gives a selection of stats on a

matrix, including it’s rank which can be extracted on its own as shown below. This is calculated

using the data results0910 from section 4.1 and building the matrix X using the code above.

> x <- qr(X)

> x$rank

[1] 40

So the rank of the matrix X is 40, which is equal to 2n where n is the number of teams in the

2009-2010 Premiership season in which 20 teams made up the league. Therefore the matrix does

29



not have full rank of 2n+1 which is required for estimation of the parameter vector as explained

at the end of section 3.3. As the rank is less than the full value, as Toutenburg explains [6,

page26], the parameter vector cannot be estimated.

This implies that one of the parameters is redundant and the matrix X needs to be shortened

by a column. Taking the first column away from X

XX <- X[,-1]

will then give it dimensions of 2g × 2n and therefore the parameter vector β now has to have

dimensions 2n×1 for the multiplication of the two to give the correct dimensions for Y of 2g×1.

So the redundant parameter (used as the first parameter for ease) has been removed from the

model. This parameter is fixed arbitrarily to be 0, so let the first parameter α1 = 0 so that

in R it is easy to remove. Therefore, as Arsenal are the first team alphabetically in the 2009-

2010 Premiership season, Arsenal’s attack strength is being set to 0. Davison ([3, page499]) also

used this technique of setting one parameter to be 0, which happens to be Arsenal’s as well,

probably due to them being first alphabetically. This actually makes sense because now the

other 40 parameters (19 attack strengths, 20 defence strengths and the home advantage) can be

calculated by using this as the benchmark. Since Arsenal are one of the best teams in the league,

it can be expected that only Manchester United and Chelsea (who were the only two teams to

come above Arsenal in the league in 2009-2010, see Table0910 in section 4.1) will have strengths

above 0 and the majority of other strengths will be below 0.

4.4.1 Estimating the Parameter Vector β

Using data inputted into R, it is possible to estimate the parameters using a function called glm

which stands for ‘generalised linear model’. The Poisson regression model is a form of generalised

linear model but with the Poisson distribution taken into account, i.e. when estimating the

parameters using maximum likelihood, the Poisson mass function is used as the formulas show

in section 3.3. The glm function is described earlier in section 3.3 and estimates the 40 remaining

parameters, using the benchmark of the removed parameter, after this redundant parameter is

removed. Vector Y and matrix X are inputted into the function which the code for is shown

below, where XX is X with one column (the first) removed and the 0 is added to represent the

arbitrary first parameter.

glm(formula = Y ~ 0 + XX, family = poisson)

This sets up the formula Y = exp(Xβ) with the new X with one column removed and the first

parameter fixed at 0. The family of the generalised linear model is specified as Poisson and

then the function will carry out the numerical estimation of the parameter vector after using the

maximum likelihood estimation (3.3).

A list of 40 parameters is outputted from this function and then the arbitrary parameter can

be added to the front of these. So, instead of implementing each of these steps separately, i.e.
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creating Y , X and using glm, the function Parameters (appendix B) can be used. This has an

input of a set of games in the same style as results0910 and will produce the 41 parameters

and create a neat output of them in one step. The set of results already used in all of the earlier

examples is inputted below into the function to give the output shown. Here, from the earlier

description, the αi are the attack strengths of the teams, the γi are the defence strengths of the

teams and δ is the home advantage.

> TeamParameters <- Parameters(results0910)

> TeamParameters

$teams

Attack Defence

Arsenal 0.00000000 -0.29966558

Aston Villa -0.47087219 -0.21825368

Birmingham -0.77721659 -0.39136711

Blackburn -0.69316106 -0.55183181

Bolton -0.65696644 -0.75069397

Burnley -0.64168730 -0.95337217

Chelsea 0.20736792 -0.07159737

Everton -0.31741611 -0.45507449

Fulham -0.75218030 -0.37080784

Hull -0.86077397 -0.85571938

Liverpool -0.31488666 -0.11875535

Man City -0.12473511 -0.38284408

Man United 0.02234448 0.07978077

Portsmouth -0.86981651 -0.72757785

Stoke -0.88764279 -0.40852499

Sunderland -0.53414397 -0.57689704

Tottenham -0.21482565 -0.28337794

West Ham -0.54516113 -0.74067321

Wigan -0.77192547 -0.91086544

Wolves -0.94049578 -0.56096282

$home

[1] 0.4579831

As expected from looking at the final 2009-2010 league table, only Chelsea and Manchester

United have attack strengths larger than Arsenal. Both teams also have defence strengths larger

than Arsenal’s, which also makes sense as they finished higher in the table. However Aston

Villa, Liverpool and Tottenham also have larger defence strengths despite being lower in the

table. This will be because they have a better defence than Arsenal but not as good an attack

and therefore Arsenal’s superior attack strength must outweigh their inferior defence strength

and hence they came third. The home advantage parameter shows it’s significance by being

comfortably above 0 meaning that it has a large effect on the scores.
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Chapter 5

Simulating Games

5.1 Simulating One Game From the Parameters

The set of parameters estimated in the previous chapter open up many new avenues of statistics

to analyse. To calculate the parameters, the scores from games, Y , were used. Now these

parameters can be used to simulate scores of games. By setting up the matrix X for the games

to be simulated and putting the set of 41 parameters into order and named as the vector β, they

can inserted into the formula Y = exp(Xβ) as in 3.3.3 and the vector Y is calculated. This

vector will be formed as shown in equation 4.3.4:

Y = (exp(αa − γb + δ), exp(αb − γa), ...).

As discussed in section 4.2 these values contained in the vector are λ values of a Poisson distri-

bution for the scores.

Example

Say a game between Arsenal and Wolves is to be simulated with Arsenal playing at home.

Parameters calculated from the 2009-2010 Premiership season can be used from the end of the

previous chapter. So using these parameters and equation 5.1.1, Arsenal’s score would have

λArs = exp(αArs − γWol + δ)

= exp(0− (−0.56096282) + 0.4579831)

= 2.77027313... (5.1.1)

and Wolves’ score would have
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λWol = exp(αWol − γArs)

= exp(−0.94049578− (−0.29966558))

= 0.52685484... (5.1.2)

meaning that Arsenal look very likely to win the game as their expected number of goals is much

higher than Wolves’. This expected number of goals is because E(X) = λ where X is the number

of goals scored by a team and is proved in section 2.2.2. Obviously the score in the game cannot

be ‘Arsenal 2.77...− 0.52... Wolves’ as this is impossible with count data. Therefore, as the two

values are λ values for two different Poisson distribution, the R function rpois can be used to

give one random value from each of these distributions as shown below.

> Arsenal <- rpois(1,lambdaArs)

> Wolves <- rpois(1,lambdaWol)

> Arsenal

[1] 2

> Wolves

[1] 0

This is where lambdaArs = λArs and lambdaWol = λWol are calculated in R in the same way as

equations 5.1.1 and 5.1.2. This particular random generation of a score gives a result of Arsenal

2-0 Wolves. By looking at the distributions for each value of λ for each team in figure 5.1, it is

clear that this is in fact the most likely result as P (X = 2) is highest for Arsenal and P (X = 0)

is highest for Wolves. If a large number of values are randomly generated, i.e. rpois(n,lambda)

for large n and specified value of λ, then frequency bar charts are drawn of the results, for the

λ values for Arsenal and Wolves, the bar charts would look very similar to the probability mass

functions in figure 5.1. As n→∞, the frequency chart will tend to the pmf (equation 2.2.1).

So to simulate a single game, the code above can be used as it involves working out the expected

number of goals for each team given who they are playing against. This gives a general knowledge

of what the score is expected to be. Then the rpois function gives a random value from each

distribution of expected values to give a simulated score. This random selection represents the

randomness in sport which is very common. More often than not, Arsenal will come out winners

of this game due to their higher λ value.

The graphs (figure 5.1) show the expected probabilities of each team scoring a particular number

of goals. Therefore, it is possible it calculate the probability of each result happening. For

example, to work out the probability of the score Arsenal 0-0 Wolves, the formula P (Ars =

0andWol = 0) = P (Ars = 0) × P (Wol = 0) can be used. This is the probability of Arsenal

scoring 0 goals and Wolves scoring 0 goals both happening. Independence is assumed here so

that the formula

P (AB) = P (A)P (B)
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Figure 5.1: Probability mass functions for Arsenal and Wolves expected number of goals

can be used to multiply the two probabilities together. Obviously there is going to be some

dependence in real life on how many goals the teams score as they are playing against each

other. However for the purpose of simulating games from the model, independence is assumed.

Using this for every result, a probability table can be formed to show all the probabilities of

different results in one table. A probability table for the game ‘Arsenal vs Wolves’ is shown

below, built using the R function in appendix C.

> Probabilities <- ProbTable(TeamParameters,"Arsenal","Wolves")

> Probabilities

0 1 2 3 4 5 6 7+

0 3.70 10.25 14.19 13.11 9.08 5.03 2.32 1.37

1 1.95 5.40 7.48 6.91 4.78 2.65 1.22 0.72

2 0.51 1.42 1.97 1.82 1.26 0.70 0.32 0.19

3 0.09 0.25 0.35 0.32 0.22 0.12 0.06 0.03

4 0.01 0.03 0.05 0.04 0.03 0.02 0.01 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

So the most likely score according to this probability table is Arsenal 2-0 Wolves with probability

14.19%. This was already known from the two graphs 5.1 showing the probability mass functions
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of the two team’s expected number of goals. Also, the second most likely score is 3-0 to Arsenal

(13.11%) and the third 1-0 to Arsenal (10.25%). From general football knowledge these results

do make sense as Arsenal are one the of strongest teams in the Premiership and Wolves are one

of the weakest. Now the probabilities of each score can be used to calculate the probability of

each result, i.e. home win, draw and away win, also using an R function shown in appendix D.

This works by adding all of the probabilities of results where Arsenal win together and saying

that is the probability of Arsenal winning. The same is done for a draw and a Wolves win.

> ResultProbabilities <- ResultProbs(Probabilities)

> ResultProbabilities

$HomeWin

[1] 83.86

$Draw

[1] 11.42

$AwayWin

[1] 4.7

Therefore Arsenal have a probability of winning of 83.86%, there is a 11.42% chance of there

being a draw between the two teams and Wolves have a 4.7% chance of winning. Obviously

these probabilities are not exact because they are only based on the strengths on the two teams

from one season’s data and anything can happen on the day on a football match. However they

do give an indication of how the game is likely to end up.

5.2 Simulating a Whole Season From the Parameters

If one game can be simulated using the estimated parameters as shown in the previous section

(5.1) then a whole season’s worth of games can also be simulated. To do this, all possible games

between the n teams in the parameter table need to be created and simulated one at a time.

Again, a function built in R can produce a set of games for a full season using an input of a

parameter table e.g. TeamParameters. The function, named Games as shown in appendix E,

takes the set of parameters and creates the full set of games from the n teams in the parameter

table. This is done by taking the list of teams in the parameter table and giving each of the

n teams n − 1 home games against each of the other n − 1 teams and therefore including each

team’s away fixture against each of the other n − 1 teams as well. The if statement in the

function makes sure a team cannot play itself.

So these n sets of n − 1 games (equating to n × (n − 1) games overall) are created as rows of

a data frame one at a time and simulated as in the previous section. Therefore a data frame

will be outputted in the same format as results0910 with n × (n − 1) rows representing that

number of games. So for the example of a Premiership season with 20 teams there would be 380
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games outputted. These games would have the first alphabetical team’s home games in the first

n− 1 rows and each team’s n− 1 home games in alphabetical order there after.

Example

Using the parameters TeamParameters from the end of section 4.4.1 and inputting these into

the R function Games, a whole season can be simulated.

> SimSeason <- Games(TeamParameters)

> SimSeason

V1 V2 V3 V4

1 Arsenal Aston Villa 1 0

2 Arsenal Birmingham 4 2

3 Arsenal Blackburn 4 0

...

378 Wolves Tottenham 0 3

379 Wolves West Ham 1 0

380 Wolves Wigan 2 0

So these 380 games simulate a Premiership season with the same teams in it as in the 2009-

2010 Premiership season from which the parameters were estimated. As pointed out, the first

team alphabetically, Arsenal, have their games first and so on until the last team alphabetically,

Wolves, have their home games at the end of the list. Each game is simulated as shown in section

5.1 and gives a full set of results for the season. This is the same set of games as the 2009-2010

Premiership season but with simulated results rather than the real life results, so by creating a

table using the function Table (appendix A) as used before to create a league table from a set

of results, it is possible to compare the simulated season with the real one.

> SimTable <- Table(SimSeason)

> SimTable

Team P HW HD HL HF HA AW AD AL AF AA GD Points

1 Man United 38 18 1 0 55 12 10 2 7 32 20 55 87

2 Tottenham 38 14 3 2 41 14 13 3 3 33 14 46 87

3 Chelsea 38 16 2 1 59 15 8 8 3 39 24 59 82

4 Arsenal 38 14 4 1 45 20 8 7 4 37 25 37 77

5 Aston Villa 38 11 4 4 30 16 10 2 7 21 24 11 69

6 Liverpool 38 11 5 3 37 18 9 3 7 31 24 26 68

7 Everton 38 10 4 5 37 25 7 4 8 29 27 14 59

8 Fulham 38 12 6 1 23 8 2 4 13 10 31 -6 52

9 Man City 38 10 4 5 32 20 4 3 12 24 33 3 49

10 Blackburn 38 10 3 6 25 24 5 1 13 11 26 -14 49

11 Bolton 38 13 3 3 24 12 1 4 14 10 38 -16 49

12 Sunderland 38 9 4 6 24 19 3 6 10 20 36 -11 46

13 Birmingham 38 7 7 5 14 15 3 5 11 11 26 -16 42

14 Stoke 38 7 4 8 16 20 3 6 10 15 27 -16 40
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15 Portsmouth 38 6 2 11 22 28 4 4 11 11 26 -21 36

16 West Ham 38 7 4 8 30 32 2 4 13 10 37 -29 35

17 Wolves 38 7 4 8 20 26 1 6 12 12 33 -27 34

18 Hull 38 6 8 5 18 21 1 5 13 12 39 -30 34

19 Wigan 38 5 6 8 21 27 3 3 13 19 48 -35 33

20 Burnley 38 5 5 9 20 28 2 3 14 13 35 -30 29

There are a few key differences that can be seen between this simulated season and the real

season. One is that Tottenham have finished in second place, ahead of Chelsea and Arsenal. This

is not necessarily expected because Tottenham are not viewed to be good enough to achieve this

league position, however, perhaps due to good attack and defence strengths, over this simulated

season, they have managed to finish second. Two more large differences are that Manchester

City finished 9th compared to their 5th place finish in the real table and Portsmouth finished

15th1 compared to their real finish of 20th.

Different finishing positions of each team between the real and simulated seasons will be mainly

because of the random value taken to simulate a team’s score in each match. Although the

parameters represent the strengths of the teams compared to each other, there is still room

for unexpected results. This randomness however, does try and enact what happens in real life

where there are many twists and turns that happen that will not occur in a simulated season. For

example, if a team went on a long cup run meaning they had a lot a games to play and faltered

in the league consequently, this would not be taken into account in the simulated environment.

When trying to simulate a whole season at one time, this cannot be taken into account, along

with other variables that can occur during a season. These variables can include: cup runs (as

mentioned); injuries to key players; difference in form (also mentioned) which can also result in

pressure on a team; and many others. None of these variables that all happen within a season

will, or can, be taken into account when simulating a season all in one go. This is because when

a season is simulated as above, all games are effectively taking place at the same time.

The next step is to look at how a team is affected from season to season, rather than during the

season. One of the main variables that affects teams between seasons is the transfers of players

in and out which inevitably changes a team’s strength. This could mean a team is likely to finish

higher or lower than the previous season depending on the transfers. Is this the case, or is the

difference in a team’s final league position from season to season just a random fluctuation?

5.3 League Table Randomness

To test whether there are random fluctuations between seasons, instead of just simulating one

season from the parameters estimated using the 2009-2010 Premiership season, simulate numer-

ous seasons and then look at the statistics of where the 20 teams have finished in each season.

To do this, another function built in R can be used called Sim (appendix F). This function takes

1With Portsmouth’s 9 point reduction that they incurred during the season, in the simulated season they would

finis with 27 points and finish 20th but this can be ignored for the purpose of analysing the simulation.
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the parameters as an input, along with a specified number of simulations to process (k) and

simulates k league tables one at a time as shown in the previous section (5.2).

A for loop is used to do each simulation and the league positions of the teams are stored in a

data frame after each simulation. The output is a data frame with each row representing one of

the teams and each column representing each simulation and giving the position a team finished

in that simulation. To get a large enough set of results to give a good representation for the

statistics, let k = 1, 000 which should cancel out any extreme randomness that occurs.

> Simulations <- Sim(TeamParameters, 1000)

> Simulations

...

V988 V989 V990 V991 V992 V993 V994 V995 V996 V997 V998 V999 V1000

Arsenal 3 4 2 5 2 3 4 2 4 7 3 7 5

Aston Villa 6 6 6 6 4 5 8 8 6 3 6 9 8

Birmingham 10 14 13 17 14 12 10 11 18 12 11 8 11

Blackburn 16 13 9 10 15 14 12 12 12 14 12 17 14

Bolton 17 12 12 12 17 15 7 16 13 19 13 11 17

Burnley 13 18 14 20 18 19 14 13 17 18 14 12 19

Chelsea 1 1 1 2 1 1 1 3 1 2 1 1 1

Everton 12 7 8 7 7 8 9 7 7 9 4 4 9

Fulham 15 11 11 9 8 10 17 10 10 10 15 14 10

Hull 19 20 18 13 20 20 20 20 19 20 17 18 20

Liverpool 5 8 10 4 5 6 5 5 3 4 5 2 3

Man City 4 3 3 3 6 4 3 4 8 5 8 3 7

Man United 2 2 4 1 3 2 2 1 2 1 2 5 2

Portsmouth 11 10 20 18 19 16 19 15 14 15 20 19 12

Stoke 8 17 7 15 11 9 15 14 16 13 16 13 16

Sunderland 14 9 16 14 10 11 11 9 15 6 9 10 13

Tottenham 7 5 5 8 9 7 6 6 5 8 7 6 4

West Ham 9 16 17 11 13 13 13 17 9 11 10 16 6

Wigan 18 19 15 16 12 17 16 19 20 17 19 20 15

Wolves 20 15 19 19 16 18 18 18 11 16 18 15 18

Simulation Statistics

So now the 1,000 simulations have been implemented, some statistics can be calculated about each

team’s set of finishing positions. The statistics used for each team are average position along with

mode position to give an idea of where a team is likely to finish and also and standard deviation

of the 1,000 positions for each team which gives the spread of where the results. Standard

deviation is the statistic that will indicate the randomness of the league table. To calculate the

statistics (SimulationStats) another R function can be used called SimStats (appendix G)

where simulations are inputted and statistics about each row (team) are outputted.

> SimulationStats <- SimStats(Simulations)
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> SimulationStats

Team Average StDev Mode Attack Defence

1 Chelsea 1.500 0.7102848 1 0.20736792 -0.07159737

2 Man United 1.965 0.9448109 2 0.02234448 0.07978077

3 Arsenal 3.673 1.4512674 3 0.00000000 -0.29966558

4 Liverpool 5.156 1.7494927 4 -0.31488666 -0.11875535

5 Man City 5.159 1.7101590 5 -0.12473511 -0.38284408

6 Tottenham 5.365 1.8174372 5 -0.21482565 -0.28337794

7 Aston Villa 7.081 1.9349892 7 -0.47087219 -0.21825368

8 Everton 7.458 2.0075523 8 -0.31741611 -0.45507449

9 Sunderland 11.131 2.6920412 9 -0.53414397 -0.57689704

10 Fulham 11.214 2.7069414 9 -0.75218030 -0.37080784

11 Birmingham 11.836 2.8564424 9 -0.77721659 -0.39136711

12 Blackburn 12.604 2.9287816 11 -0.69316106 -0.55183181

13 West Ham 13.052 2.9250388 13 -0.54516113 -0.74067321

14 Stoke 13.110 2.8927959 13 -0.88764279 -0.40852499

15 Bolton 14.704 2.8132363 14 -0.65696644 -0.75069397

16 Wolves 15.421 2.8432100 18 -0.94049578 -0.56096282

17 Portsmouth 16.708 2.5524990 18 -0.86981651 -0.72757785

18 Burnley 17.083 2.4446037 19 -0.64168730 -0.95337217

19 Wigan 17.814 2.1489584 20 -0.77192547 -0.91086544

20 Hull 17.966 2.2139887 20 -0.86077397 -0.85571938

These statistics show some interesting facts, some of which confirm what general knowledge

about football would conclude. Firstly, looking at the average position for each team, this

column indicates that there is a clear top 8 in the Premiership because Everton in 8th have an

average position of ≈ 7.5 whereas the team one behind them, Sunderland in 9th, have an average

position of ≈ 11.1 which is almost 4 positions lower. This has generally been the case in real

life football over the last few years so this does seem to show that the parameters estimated

are representative of the teams’ strengths. However, the mode values for the teams (i.e. most

common position) makes for different reading because the top 11 teams have modal values of 9

or lower. There are also big differences between average and mode values towards the bottom of

the table. Some of these will be analysed in section 5.3.1.

The lower standard deviations of these top 8 teams confirms that over the 1,000 simulations they

are fairly certain to finish in these top 8 places. Standard deviation values of less than 1 for

Chelsea and Manchester United show that they are very likely to finish in the top two due to

superior strengths. Again this had been the case over recent years that these two teams have

been finishing in the top two positions. Both teams are quite similar in strength however, which

could indicate some randomness between who finishes in 1st position with the odd random year

being that neither win the league.

What is interesting though is that the standard deviations of the teams are larger in the bottom

half. So when looking at the randomness of the table, it is clear that it is fairly certain who

is going to come in the top 2-3 positions, then quite certain who will finish in positions 4-8.

However, from positions 9-17, each of the teams had a standard deviation of between 2.5-3. This
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means, assuming the positions of a team are normally distributed around the mean, that the

teams in the botom half of the table are more likely randomly positioned.

The normal distribution means that one of these teams with a standard deviation of 2.5, say, has

a probability of ≈ 68% of being one standard deviation (i.e. 2-3 positions either side of the mean)

away form the mean. Also, a team with standard deviation of 2.5 would have a probability of

≈ 95% of coming 5 positions either side of their mean. Ranges of this size show that these teams

cannot be certain of where they are going to finish. Figure 5.2 shows how the bottom half of

the table can have a much more random finish to it than the top half due to the high standard

deviations in the lower teams. This will probably be because the teams are well matched and

have similar strengths to each other. Whereas the top teams are significantly higher giving a

structure to the league with a certain aspect of randomness too.
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Figure 5.2: Mean position against Standard Deviation of positions from set of simulations

The main areas of interest in the Premiership are the top 6 places (the winner and European

qualification places) and the bottom 3 places (relegation to the lower division. Although the

top 6 can be predicted, the order in which they finish cannot due to the natural randomness

in football. The bottom three places are very difficult to predict. As figure 5.2 shows, there

are 4 teams with a slightly lower standard deviation than the 8 teams in the rankings above

them suggesting those 4 teams more likely to be in the bottom 4. However still with standard

deviations between 2 and 2.5, there is room for variation. This is because the teams seem to be

very similar in strength in the bottom half and so it would only take a good season from one
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team and a bad season by another to change the table around. As the parameters show though,

the bottom three teams in the simulations do have the worst defensive parameters by a decent

margin and looks like this is why they are in the relegation zone.

> SimulationStats

Team Average StDev Mode Attack Defence

1 Newcastle 1.48 1.114460 1 0.505509767 0.53805517

2 West Brom 2.67 1.657886 2 0.503946292 0.22230569

3 Forest 4.63 2.798466 3 0.183244581 0.42260697

4 Cardiff 6.29 3.830486 4 0.309772467 0.11612533

5 Blackpool 6.90 3.421560 5 0.326370606 0.04376507

6 Leicester 6.90 3.328785 8 0.123273454 0.30756345

7 Middlesbrough 8.92 4.113737 7 0.076403733 0.20422765

8 Sheffield United 9.48 4.423263 7 0.146859316 0.10583578

9 Reading 10.38 4.644493 5 0.245322536 -0.03467123

10 Doncaster 11.24 4.463364 8 0.099370717 0.05482786

11 Swansea 11.35 4.689070 12 -0.304914488 0.51860797

12 Crystal Palace 13.30 5.201981 22 -0.070054022 0.15168496

13 QPR 13.73 4.800789 15 0.087387122 -0.05860225

14 Watford 14.81 5.147707 16 0.140141761 -0.10603504

15 Bristol City 14.89 5.065022 14 0.052225517 -0.05713019

16 Derby 15.47 4.368054 13 -0.004405411 -0.02361717

17 Ipswich 15.54 5.277013 11 -0.064235617 0.01089174

18 Preston 16.55 3.916747 19 0.093299103 -0.17492727

19 Barnsley 17.27 4.437797 21 0.000000000 -0.11476006

20 Coventry 18.08 4.665974 23 -0.124021960 -0.03500610

21 Scunthorpe 18.42 4.190369 21 0.168370331 -0.31863481

22 Sheffield Weds 19.56 3.712714 22 -0.078620351 -0.11182089

23 Plymouth 20.48 3.696791 24 -0.210191650 -0.09280829

24 Peterboro 21.66 3.029218 24 -0.133825247 -0.25781574

Interestingly, looking at the stats for the Championship where the parameters are estimated

from the 2009-2010 season and 100 simulations are calculated, the standard deviations are a lot

higher. This could be because the teams are much more evenly matched than in the Premiership

and so could finish in a larger range of positions. Crystal Palace have a very intriguing statistic

that their average position puts them in 12th position whereas their most common position is

22nd which probably means they are equally as likely to come in most positions. It does seem to

be fairly certain however that Newcastle and West Brom are going to finish in the top two and

Sheffield Wednesday, Plymouth and Peterborough are likely to be the bottom three teams due

to their lower standard deviation values.

5.3.1 Team Statistics

To look at some of the statistics a bit more closely, take the two teams who have been analysed

before of Arsenal and Wolves and also look at Sunderland who will give a mid-table team to
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compare with as well. Each of their sets of 1,000 positions from the simulation are shown in

figure 5.3 so it can be seen where their statistics came from. Arsenal, Sunderland and Wolves

are two very different teams so will give a good comparison between the types of team. It is

actually Wolves’ statistics that are very interesting. Although the team’s mean finishing position

is 15.421 which means, on average, they would avoid being relegated from the league and this

average puts Wolves in 15th in the ranking but Wolves’ modal value is actually 18 meaning that

their most common finishing is in the relegation places. Fortunately for Wolves, this modal value

is only slightly more frequent than the number of times the team finished 15th, 16th or 17th.
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Figure 5.3: Position frequencies from the 1,000 simulations

These graphs show the difference in range of positions between the top and bottom halves of the

league. Arsenal, whose mean value is 3.673 and modal value is 3, have a very small range (1st

to 9th) of positions showing that it is fairly certain in what area of the table they will finish.

Sunderland however, who are ranked 9th in the simulation statistics, have a huge range of between

3rd and 20th. This shows that Sunderland, whilst being a reasonably strong team, are susceptible

to finishing lower in the table. Their modal finish is 9th whereas their mean position is actually

11.131. This is represented in the the figure though (figure 5.3) because Sunderland also finished

10th, 11th and 12th. Random fluctuations from season to season could result in the spread of

finishing positions, along with all of the other teams around Sunderland. As these teams are all

so closely matched as the stats suggest, randomness is a logical explanation.

Wolves have a similar range but only finished a highest position of 7th. However, the frequencies
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of their finishes a lot more spread out. By looking at the y-axis of each team’s graph, it can be

seen that Wolves finish in different positions a larger number of times. Their modal position is

18th but positions 15, 16 and 17 were all achieved a similar number of times. Clearly the three

team’s standard deviations have the main effect on the spread here but it does depend on how

strong the team is as to whether they have a large or small range of possible positions.

5.4 Parameter Accuracy

Simulations have been carried out using the estimated parameters but are these parameters

accurate? To test whether they are, take the original parameters and use the Games function

(appendix E) to simulate a set of games from these parameters. If this is done k times, say, from

the original parameters and new parameters are estimated from each set of simulated games

using the function Parameters (appendix B) then an statistics of these k sets of parameters can

be taken. This gives a set of bias and standard deviation values for each team’s k parameter

estimations. The bias is calculated using the formula

bias = E(θ − θ̂)

where θ is the original parameter estimated and θ̂ is the average of the set of k parameters. So the

bias calculates the difference between the original parameters and the average of the estimated

parameters. The standard deviations are calculated using the usual formula

s =
n

n− 1
sqrtx̄2 − x̄2

for standard deviation. An R function MultiPara (appendix H) can be used and the original

parameters inputted to output the statistics about the parameters. To eradicate any errors,

choose the number of sets of parameters to be estimated to be large (1,000 say). Then in R, this

can be implemented as below.

> MultiParameters <- MultiPara(TeamParameters,1000)

> MultiParameters

$teams

Attack.bias Attack.sd Defence.bias Defence.sd

Arsenal 0.000000000 0.0000000 -0.0089995629 0.2030080

Aston Villa 0.005597228 0.1793082 -0.0182264683 0.1980455

Birmingham 0.019092982 0.1922822 -0.0155696513 0.1865079

Blackburn 0.017634342 0.1951727 -0.0103789954 0.1828515

Bolton 0.009288657 0.1946217 -0.0088078697 0.1701315

Burnley 0.010600368 0.1969018 -0.0005486783 0.1596348

Chelsea 0.006629344 0.1492916 -0.0206157729 0.2170217

Everton 0.002806169 0.1739145 -0.0150988317 0.1866231

Fulham 0.005503256 0.2012078 -0.0220704375 0.1919449

Hull 0.011737158 0.2121938 -0.0085660405 0.1651465

Liverpool 0.003280723 0.1733819 -0.0141952641 0.2109052
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Man City -0.001420856 0.1625654 -0.0122604157 0.1923252

Man United 0.001110368 0.1567345 -0.0277248375 0.2284775

Portsmouth 0.004264397 0.2105170 -0.0119166144 0.1703035

Stoke 0.006672052 0.2008677 -0.0187160499 0.1875453

Sunderland 0.008956824 0.1806824 -0.0068197871 0.1749779

Tottenham 0.003115948 0.1710935 -0.0116028601 0.1946505

West Ham 0.012261710 0.1822414 -0.0102045820 0.1758287

Wigan 0.005134414 0.2001824 -0.0130726713 0.1628383

Wolves 0.002150422 0.2082838 -0.0068289441 0.1728925

$home.bias

[1] 0.0002660008

$home.sd

[1] 0.0638572

The standard deviations for each parameter shown here are very small, in fact all are below 0.25.

This shows that the set of parameters estimated using the original ones are all very close to the

original estimated parameters. The bias values also show this because they are all very close

to 0, showing that very little bias has occurred in the 1,000 simulated set of parameters. This

gives a lot of confidence that the parameter estimation method used has been successful and

does represent the real strengths of the teams and home advantage very well. Another way to

show this is the rankings table (5.1).

The rankings table (5.1) shows that the parameters and the simulations do follow what happened

in real life so the Poisson regression model seems to have been the correct method to use. It is

quite interesting to see however, that some teams clearly overachieved and some underachieved

in the 2009-2010 season. By comparing the 09-10 final position to that of their simulated position

and strengths, Sunderland and West Ham are the two teams that have underachieved the most.

This could have been because of their much lower defensive ranking. Although their lower finish

may have just been random fluctuations in the league. Fulham also seemed to have underachieved

and they will hope that their superior defensive strength will mean they finish higher in the future.

The main overachievers are Birmingham whose defensive strength seems to have helped a lot

in this season. Other than these stand out teams though, apart form random fluctuations in

the league that the statistics show seem to occur, the simulations and parameter estimations do

closely follow the real life table.
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Team 09-10 Simulated Attack Defence Average Parameter

Chelsea 1 1 1 2 1.5

Man United 2 2 2 1 1.5

Arsenal 3 3 3 6 4.5

Tottenham 4 6 5 5 5

Man City 5 5 4 8 6

Aston Villa 6 7 8 4 6

Liverpool 7 4 6 3 4.5

Everton 8 8 7 11 9

Birmingham 9 11 16 9 12.5

Blackburn 10 12 13 12 12.5

Stoke 11 14 19 10 14.5

Fulham 12 10 14 7 10.5

Sunderland 13 9 9 14 11.5

Bolton 14 15 12 17 14.5

Wolves 15 16 20 13 16.5

Wigan 16 19 15 19 17

West Ham 17 13 10 16 13

Burnley 18 18 11 20 15.5

Hull 19 20 17 18 17.5

Portsmouth 20 17 18 15 16.5

Table 5.1: Rankings of the 20 2009-2010 Premiership teams for: the 09-10 real season; the

average position in the simulations; attack and defence strengths; average ranking of attack and

defence.
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Chapter 6

Predicting a Future Table

Now it is known that the parameter estimation is done to a good degree of accuracy, it is the

next step to try and predict results and tables. The 2010-2011 Premiership season has not

finished yet so trying to predict the whole season from the beginning will mean the resulting

table can be compared to what is actually happening. However, just taking the results from the

2009-2010 Premiership season to predict the 2010-2011 season is not good enough as there are

3 new teams who were promoted from the Championship. Therefore, just using the data form

the 2009-2010 premiership will not give parameters for these 3 new teams. To solve this, the

2009-2010 Championship data is needed. This is still not enough because the 3 promoted teams

do not have any comparison to the Premiership teams and will therefore be very high which will

clearly not be the case. To combat this, there needs to be some crossover between the leagues so

if both the 2008-2009 and 2009-2010 seasons for both leagues are taken into account then there

will be teams who have played against everyone (i.e. whoever got relegated form the Premiership

in 2008-2009 and whoever got promoted form the Championship in the same year).

There are 24 teams in the Championship so it will contain 24 × 23 = 552 games in a season.

Therefore the data set named results080910 will contain (2× 380) + (2× 552) = 1864 games.

Taking all these 4 seasons worth of data means that there will be parameters for 47 teams, 20

from the Premiership, 24 from the Championship and 3 extra for the teams who were promoted

to the Championship in 2008-2009. The set of results is inputted into the Parameters function

in R below and the output is shown.

> TeamParameters1 <- Parameters(results080910)

> TeamParameters1

$teams

Attack Defence

Arsenal 0.00000000 -0.27716147

Aston Villa -0.35010151 -0.36276063

Barnsley -1.05174343 -1.03212219

Birmingham -0.86960688 -0.46093337

Blackburn -0.60504299 -0.62934185
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Blackpool -0.84468144 -0.95005142

...

Watford -0.77135057 -1.14159310

West Brom -0.53677108 -0.77396438

West Ham -0.51271559 -0.59806728

Wigan -0.73240131 -0.69961198

Wolves -0.66259038 -0.72098259

$home

[1] 0.3291451

As can be seen, parameters for the Championship teams (Barnsley, Blackpool, Watford and West

Brom and more that are not shown to save space) have smaller parameters than the others. This

is because Newcastle, Middlesbrough and West Brom have played in the Premiership in 2008-

2009 and the Championship in 2009-2010 so have played everyone giving a comparison between

the two leagues.

6.1 Predicting the 2010-2011 Premiership Season

The set of parameters estimated now contain parameters for the 20 teams competing in the 2010-

2011 Premiership season. These are the same as the 2009-2010 season but without Burnley, Hull

and Portsmouth and with Newcastle, West Brom and Blackpool. So to simulate the current 2010-

2011 season, input the parameters above (TeamParamters1) into the function Games (appendix

E) and create a table using the function Table (appendix A). The change that needs to be made

is that the second line in the Games function changes to

teams <- c("Arsenal", "Aston Villa", "Birmingham", "Blackburn", "Blackpool",

"Bolton", "Chelsea", "Everton", "Fulham", "Liverpool", "Man City",

"Man United", "Newcastle", "Stoke", "Sunderland", "Tottenham",

"West Brom", "West Ham", "Wigan", "Wolves")

so that only the parameters for these teams involved in the 2010-2011 season are used. Then the

predicted table is given below.

> PredTable <- Table(Games(TeamParameters1))

> PredTable

Team P HW HD HL HF HA AW AD AL AF AA GD Points

1 Man United 38 14 1 4 32 10 12 5 2 35 11 46 84

2 Chelsea 38 15 3 1 56 9 11 2 6 40 25 62 83

3 Arsenal 38 13 1 5 29 17 9 7 3 33 19 26 74

4 Liverpool 38 11 6 2 30 10 9 5 5 24 16 28 71

5 Man City 38 10 6 3 30 12 11 2 6 35 27 26 71

6 Tottenham 38 11 2 6 31 21 7 5 7 19 25 4 61
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7 Bolton 38 9 4 6 27 20 7 4 8 25 29 3 56

8 Aston Villa 38 9 4 6 26 15 7 3 9 21 23 9 55

9 Newcastle 38 9 5 5 23 14 4 6 9 17 28 -2 50

10 Fulham 38 8 5 6 25 21 5 6 8 15 22 -3 50

11 Sunderland 38 9 3 7 26 23 6 2 11 17 29 -9 50

12 Blackburn 38 9 2 8 23 22 5 4 10 17 33 -15 48

13 Wolves 38 5 5 9 22 27 8 2 9 15 23 -13 46

14 Everton 38 7 4 8 25 26 5 4 10 19 25 -7 44

15 West Brom 38 5 7 7 25 34 4 6 9 16 22 -15 40

16 Birmingham 38 7 3 9 18 25 3 6 10 12 27 -22 39

17 Stoke 38 7 4 8 19 26 3 5 11 12 30 -25 39

18 West Ham 38 6 6 7 24 27 3 5 11 17 34 -20 38

19 Wigan 38 5 5 9 17 29 4 3 12 11 28 -29 35

20 Blackpool 38 2 7 10 11 24 3 1 15 12 43 -44 23

To see if this prediction is close to what is actually happening in the league, the current 2010-2011

as of May 6th 2011 is given below.

> Table1011 <- Table(results1011)

> Table1011

Team P HW HD HL HF HA AW AD AL AF AA GD Points

1 Man United 35 16 1 0 43 9 5 9 4 28 24 38 73

2 Chelsea 35 14 2 2 37 11 7 5 5 29 17 38 70

3 Arsenal 35 11 4 3 32 13 8 6 3 36 23 32 67

4 Man City 34 11 4 2 30 12 7 4 6 23 19 22 62

5 Liverpool 35 12 4 2 37 12 4 3 10 17 27 15 55

6 Tottenham 34 8 8 1 27 17 6 5 6 23 26 7 55

7 Everton 35 7 7 3 28 22 4 8 6 20 21 5 48

8 Bolton 35 10 5 2 33 20 2 5 11 15 28 0 46

9 Fulham 35 8 6 3 26 16 2 9 7 17 20 7 45

10 Stoke 35 9 4 4 28 16 3 3 12 15 27 0 43

11 West Brom 35 7 6 5 29 30 4 4 9 22 35 -14 43

12 Newcastle 35 5 7 5 36 23 5 4 9 13 28 -2 41

13 Aston Villa 35 7 6 4 24 18 3 5 10 20 39 -13 41

14 Sunderland 35 7 5 6 24 24 3 6 8 15 28 -13 41

15 Birmingham 35 6 8 4 19 20 2 7 8 16 32 -17 39

16 Blackburn 35 7 6 5 21 15 3 2 12 20 40 -14 38

17 Blackpool 35 4 5 9 26 34 5 3 9 22 36 -22 35

18 Wigan 35 4 8 6 19 32 3 6 8 16 26 -23 35

19 Wolves 35 7 4 6 25 26 2 3 13 13 35 -23 34

20 West Ham 35 5 4 8 23 27 2 7 9 17 36 -23 32

By comparing both of the leagues, the prediction has actually given a close representation of

what is taking place in real life. There are some differences like Aston Villa are not doing as

well in real life and Stoke are doing a lot better but this will account for the randomness of

the league table that can occur. The prediction has given a clear indication of which teams are
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going to finish in certain positions. One of the main results is that it has predicted the top 6

correctly with only Liverpool and Manchester City interchanged and it has predicted two of the

correct bottom 3 teams of West Ham and Wigan. There are still 31 games left to play in the

Premiership however, so the real table is subject to change. Although it is unlikely to change

dramatically, the predicted table is a good representation of the real life game.

6.2 Predicting the Remaining 2010-2011 Premiership Season

With 31 games remaining in the Premiership, it is possible to predict the results of these games.

A slightly different method of simulating the results can be used to give the most likely results,

rather than a random simulation from the λ values. This is done by using the probability table

discussed in section 5.1 and picking out the highest probability as the most likely result in the

match. So a slightly different version of the Games function can be used called Games1 (appendix

I) which gives the most likely result for a set of fixtures given. The R code below shows the results

form the 2010-2011 Premiership season being inputted into R, along with the fixtures which are

in the same format but without scores. Then parameters are estimated from the seasons results

and the set of predictions of the most likely results are given as the output.

> fixtures <- read.table("Fixtures.csv", sep=",",stringsAsFactors=F)

> results <- read.table("Results1011.csv", sep=",", stringsAsFactors=F)

> TeamParameters <- Parameters(results)

> Predictions <- Games1(TeamParameters,fixtures)

> Predictions

V1 V2 V3 V4 V5

1 Aston Villa Wigan 1 0 0.11280577

2 Bolton Sunderland 1 0 0.12266889

3 Everton Man City 1 1 0.13428078

4 Newcastle Birmingham 1 0 0.12656826

5 West Ham Blackburn 1 1 0.11712360

6 Tottenham Blackpool 2 1 0.09268980

7 Wolves West Brom 1 1 0.09951460

8 Stoke Arsenal 1 1 0.12705474

9 Man United Chelsea 1 1 0.12557075

10 Fulham Liverpool 1 0 0.14535411

11 Man City Tottenham 1 0 0.14206406

12 Blackburn Man United 0 1 0.10833538

13 Blackpool Bolton 1 1 0.10015245

14 Sunderland Wolves 1 0 0.11871878

15 West Brom Everton 1 1 0.10939886

16 Chelsea Newcastle 2 0 0.13147555

17 Arsenal Aston Villa 2 0 0.11250295

18 Birmingham Fulham 0 1 0.15539653

19 Liverpool Tottenham 1 0 0.11877566

20 Wigan West Ham 1 1 0.12126930
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21 Man City Stoke 1 0 0.16757189

22 Aston Villa Liverpool 1 1 0.12191029

23 Bolton Man City 1 1 0.13182555

24 Everton Chelsea 0 1 0.13436078

25 Fulham Arsenal 1 1 0.13352383

26 Man United Blackpool 3 0 0.09638827

27 Newcastle West Brom 2 1 0.09453687

28 Stoke Wigan 1 0 0.14893192

29 Tottenham Birmingham 1 0 0.13738565

30 West Ham Sunderland 1 1 0.12236317

31 Wolves Blackburn 1 1 0.12073829

These are the most likely results of the remaining 31 Premiership games as of May 6th 2011. The

probabilities of each result are given as well. As this shows, the probabilities of these results are

only around 10 − 15% mainly. This is because any certain score is not very likely. However, it

does give an indication of who is most likely to win each game and what the most likely outcome

will be. Adding these results to the set of results that have already occurred, the table below

shows a prediction of what the league will look like by the time the season has finished. These

results can indicate whether a game is likely to finish as a home win, a draw or an away win by

looking at what result appears in the table above.

> fullresults <- rbind(results,Predictions)

> PredTable1011 <- Table(fullresults)

> PredTable1011

Team P HW HD HL HF HA AW AD AL AF AA GD Points

1 Man United 38 17 2 0 47 10 6 9 4 29 24 42 80

2 Chelsea 38 15 2 2 39 11 8 6 5 31 18 41 77

3 Arsenal 38 12 4 3 34 13 8 8 3 38 25 34 72

4 Man City 38 13 4 2 32 12 7 6 6 25 21 24 70

5 Tottenham 38 10 8 1 30 18 6 5 8 23 28 7 61

6 Liverpool 38 13 4 2 38 12 4 4 11 18 29 15 59

7 Fulham 38 9 7 3 28 17 3 9 7 18 20 9 52

8 Bolton 38 11 6 2 35 21 2 6 11 16 29 1 51

9 Everton 38 7 8 4 29 24 4 9 6 21 22 4 50

10 Stoke 38 10 5 4 30 17 3 3 13 15 28 0 47

11 Newcastle 38 7 7 5 39 24 5 4 10 13 30 -2 47

12 Sunderland 38 8 5 6 25 24 3 7 9 16 30 -13 45

13 Aston Villa 38 8 7 4 26 19 3 5 11 20 41 -14 45

14 West Brom 38 7 7 5 30 31 4 5 10 24 38 -15 45

15 Blackburn 38 7 6 6 21 16 3 4 12 22 42 -15 40

16 Birmingham 38 6 8 5 19 21 2 7 10 16 34 -20 39

17 Wolves 38 7 6 6 27 28 2 3 14 13 36 -24 36

18 Wigan 38 4 9 6 20 33 3 6 10 16 28 -25 36

19 Blackpool 38 4 6 9 27 35 5 3 11 23 41 -26 36

20 West Ham 38 5 6 8 25 29 2 8 9 18 37 -23 35
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So using the predictions, Wigan, Blackpool and West Ham are going to be relegated to the

Championship and Manchester United are going to win the league.
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Chapter 7

Conclusion

Throughout this report, the Poisson regression model has been analysed to see whether it is a

good method of estimating parameters for football teams. It is used to give each of the teams

an attack and defence strength along with setting a home advantage strength too. By using

football knowledge of the teams in real life, the parameters estimated (4.4.1) do represent the

corresponding strengths of the teams and by using these parameters, games can be simulated

to test whether they give sensible results. The statistics on the simulations (5.3) show that the

simulated environment created by the parameter estimation does compare very closely to the

real football data.

This means that the simulations can be used to assess the randomness of the league table

in football. In football, teams tend to not finish in the same position each season and don’t

necessarily finish where they are expected to. The statistics about the simulations show that

there is less randomness at the top of the Premiership than in the bottom half of the league.

This may be because the teams who are better are much superior and will always come in the

top positions, however towards the bottom of the league, teams are much more evenly matched

and can therefore finish above and below each other very easily (see the statistics in section 5.3

to show this).

So the model fits the football data well, however, the parameters cannot be totally accurate. This

is because a lot can happen in football that cannot be simulated. For example, when predicting

a whole season, a cup run by a team or a serious injury to a key player can affect teams and

these cannot be included in the parameter estimation. If each set of games were predicted one

at a time during the season then the parameters could be adjusted accordingly but this is very

difficult to get right as there is no way of telling how much something will affect a team.

Different ways of setting up the model could mean that the parameters are more accurate. For

example, an away parameter could be added in to show the away strength, or weakness, of the

teams. This would mean there were 42 parameters (41 for the glm function) and then a home

team and away team’s λ values would be calculated as follows instead.
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Home ∼ Poiss(exp((αA +Home)− γB))

Away ∼ Poiss(exp(αB)− (γA +Away))

Also, even more parameters could be added. Attack and defence strengths for home and away

for each team could be used to specify each team’s home and away strength along with their

attack and defence. There would then be no need for a home or an away parameter. However,

there would then be 80 parameters because each team would have 4 each (attack, defence, home

and away). This would just mean that X and β would be set up differently to incorporate the

extra parameters. With only 380 games in a season though, 80 parameters is probably too many

to estimate as there is not enough data to get a true representation. Another season could be

added so the 760 games were used which could work and give more accurate parameters. Going

any further back is risky though as teams do change a lot over 3 years.

The next steps to this project would be to try different sets of parameters in the model and

seeing which give the best representation of real life. I would expect however, that the current

method will be the most accurate because it is the simplest. Also, other leagues could also be

analysed. The lower leagues in England could be analysed to a greater depth and also some

European leagues could be looked into. The model should be able to analyse other sports too so

this would be a very interesting idea to look into.

The results predicted in the report should not be used for betting purposes. They are only a

representation of real life football and cannot be relied upon to give accurate predictions to future

football matches. They do however give an excellent indication of what is likely to happen.
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Appendix A

Creating a League Table

For this function, an input of a set of games is required in the same style as results0910 in

section 4.1. The output is a league table for the results entered of the teams involved.

Table <- function(games) {

teams <- sort(unique(c(games[,1], games[,2])), decreasing = FALSE)

n <- length(teams)

g <- nrow(games)

zero <- mat.or.vec(n, 1)

T <- data.frame(Team=teams, P=zero, HW=zero, HD=zero, HL=zero, HF=zero, HA=zero,

AW=zero, AD=zero, AL=zero, AF=zero, AA=zero, GD=zero, Points=zero)

for (i in 1:g) {

if (games[i,3] > games[i,4]) {

T[which(teams == games[i,1]),"Points"] <-

T[which(teams == games[i,1]),"Points"] + 3

T[which(teams == games[i,1]),"HW"] <-

T[which(teams == games[i,1]),"HW"] + 1

T[which(teams == games[i,2]),"AL"] <-

T[which(teams == games[i,2]),"AL"] + 1

} else {

if (games[i,3] == games[i,4]) {

T[which(teams == games[i,1]),"Points"] <-

T[which(teams == games[i,1]),"Points"] + 1

T[which(teams == games[i,2]),"Points"] <-

T[which(teams == games[i,2]),"Points"] + 1

T[which(teams == games[i,1]),"HD"] <-

T[which(teams == games[i,1]),"HD"] + 1

T[which(teams == games[i,2]),"AD"] <-

T[which(teams == games[i,2]),"AD"] + 1

} else {

T[which(teams == games[i,2]),"Points"] <-

T[which(teams == games[i,2]),"Points"] + 3

T[which(teams == games[i,2]),"AW"] <-
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T[which(teams == games[i,2]),"AW"] + 1

T[which(teams == games[i,1]),"HL"] <-

T[which(teams == games[i,1]),"HL"] + 1

}

}

T[which(teams == games[i,1]),"P"] <- T[which(teams == games[i,1]),"P"] + 1

T[which(teams == games[i,2]),"P"] <- T[which(teams == games[i,2]),"P"] + 1

T[which(teams == games[i,1]),"HF"] <- T[which(teams == games[i,1]),"HF"] +

games[i,3]

T[which(teams == games[i,1]),"HA"] <- T[which(teams == games[i,1]),"HA"] +

games[i,4]

T[which(teams == games[i,2]),"AF"] <- T[which(teams == games[i,2]),"AF"] +

games[i,4]

T[which(teams == games[i,2]),"AA"] <- T[which(teams == games[i,2]),"AA"] +

games[i,3]

T[which(teams == games[i,1]),"GD"] <- T[which(teams == games[i,1]),"GD"] +

(games[i,3] - games[i,4])

T[which(teams == games[i,2]),"GD"] <- T[which(teams == games[i,2]),"GD"] +

(games[i,4] - games[i,3])

}

S <- data.frame(row.names=c(1:n), T[with(T, order(-Points, -GD)), ])

return(S)

}
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Appendix B

Parameter Estimation

The input for estimating the parameters is a set of games in the same format as used for creating

a table (A). The output is a set of parameters for the teams involved.

Parameters <- function(games) {

teams <- sort(unique(c(games[,1], games[,2])), decreasing = FALSE)

n <- length(teams)

g <- nrow(games)

Y <- matrix(0,2*g,1)

for (i in 1:g) {

Y[((2*i)-1)] <- games[i,3]

Y[(2*i)] <- games[i,4]

}

X <- matrix(0,2*g,((2*n)+1))

for (i in 1:g) {

M <- which(teams == games[i,1])

N <- which(teams == games[i,2])

X[((2*i)-1),M] <- 1

X[((2*i)-1),N+n] <- -1

X[(2*i),N] <- 1

X[(2*i),M+n] <- -1

X[((2*i)-1),((2*n)+1)] <- 1

}

XX <- X[,-1]

parameters <- glm(formula = Y ~ 0 + XX, family = poisson)

Z <- c(0, coefficients(parameters))

P <- data.frame(row.names=teams, Attack=Z[1:n], Defence=Z[(n+1):(2*n)])

return(list(teams=P,home=as.numeric(Z[2*n+1])))

}
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Appendix C

Probability Table

An input of a set of parameters in the format created by the previous function (B) along with

two teams that the probability table is wished to be created about. These two teams need to

have ”hometeam” around their names. The output is a table of probabilities for the set of results

possible for a football match.

ProbTable <- function(parameters,hometeam,awayteam) {

teams <- rownames(parameters$teams)

P <- parameters$teams

home <- parameters$home

a <- which(teams == hometeam)

b <- which(teams == awayteam)

lambdaa <- exp(P[a,]$Attack - P[b,]$Defence + home)

lambdab <- exp(P[b,]$Attack - P[a,]$Defence)

A <- as.numeric()

B <- as.numeric()

for(i in 0:6) {

A[(i+1)] <- dpois(i,lambdaa)

B[(i+1)] <- dpois(i,lambdab)

}

A[8] <- 1 - sum(A[1:7])

B[8] <- 1 - sum(B[1:7])

name <- c("0","1","2","3","4","5","6","7+")

zero <- mat.or.vec(8,1)

C <- data.frame(row.names=name)

for(j in 1:8) {

for(k in 1:8) {

C[j,k] <- A[k]*B[j]

}

}

colnames(C) <- name

return(round(C*100,2))

}
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Appendix D

Result Probabilities

Inputting the probability table from the previous function (C) gives an output of three proba-

bilities for the different outcomes of a football match.

ResultProbs <- function(probs) {

R <- matrix(0,3,1)

n <- length(probs)

for(i in 1:n) {

for(j in 1:n) {

if(i > j) {

R[3] <- R[3] + probs[i,j]

} else {

if(i == j) {

R[2] <- R[2] + probs[i,j]

} else {

R[1] <- R[1] + probs[i,j]

}

}

}

}

return(list(HomeWin=R[1], Draw=R[2], AwayWin=R[3]))

}
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Appendix E

Simulate a Full Season

An input of the parameters from B will give an output of a set of games in the same format as

shown in 4.1.

Games <- function(parameters) {

teams <- rownames(parameters)

P <- parameters$teams

home <- parameters$home

n <- length(teams)

C <- data.frame()

row <- 1

for (i in 1:n) {

for (j in 1:n) {

if (i != j) {

C[row,1] <- teams[i]

C[row,2] <- teams[j]

C[row,3] <- rpois(1, exp(P[i,]$Attack - P[j,]$Defence + home))

C[row,4] <- rpois(1, exp(P[j,]$Attack - P[i,]$Defence))

row <- row + 1

}

}

}

return(C)

}
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Appendix F

Simulate k Seasons

A same input as the previous function but a number k inputted as well to specify how many sets

of games to simulate. Tables are then created for each set of games and the output is a table

giving each finishing position of each team from each table.

Sim <- function(parameters, k) {

teams <- rownames(parameters$teams)

n <- length(teams)

A <- data.frame(row.names=teams)

for(i in 1:k) {

T <- Table(Games(parameters))

for(j in 1:n) {

A[teams[j],i] <- which(T == teams[j])

}

}

return(A)

}
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Appendix G

Simulation Statistics

Entering the set of simulations outputted from F gives statistics about each team’s set of finishing

positions.

SimStats <- function(Sim) {

teams <- rownames(Sim)

n <- length(teams)

zero <- matrix(0,n,1)

M <- data.frame(Team=teams, Average=rowMeans(Sim), StDev=zero, Mode=zero)

for(i in 1:n) {

a <- as.numeric(Sim[i,])

M[i,"StDev"] <- sd(a)

M[i,"Mode"] <- names(sort(-table(a)))[1]

}

N <- data.frame(row.names=c(1:20), M[with(M, order(Average)), ])

return(N)

}
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Appendix H

Multiple Parameter

An input of a set of parameters as outputted from B along with a number k gives an output of

statistics about the k sets of new parameters that are estimated.

MultiPara <- function(realpara,k) {

teams <- rownames(realpara$teams)

n <- length(teams)

zero <- matrix(0,n,1)

Q <- data.frame(row.names=teams, Attack=zero, ASQ=zero, Defence=zero, DSQ=zero)

homepara <- 0

homeSQ <- 0

for(i in 1:k) {

G <- Games(realpara)

P <- Parameters(G)

for(j in 1:n) {

Q[j,1] <- Q[j,1] + P$teams[j,1]

Q[j,2] <- Q[j,2] + P$teams[j,1]^2

Q[j,3] <- Q[j,3] + P$teams[j,2]

Q[j,4] <- Q[j,4] + P$teams[j,2]^2

}

homepara <- homepara + P$home

homeSQ <- homeSQ + P$home^2

}

R <- data.frame(row.names=teams,

Attack.bias=realpara$teams[,1] - Q[,1]/k,

Attack.sd=(k/(k-1))*(sqrt(Q[,2]/k - (Q[,1]/k)^2)),

Defence.bias=realpara$teams[,2] - Q[,3]/k,

Defence.sd=(k/(k-1))*(sqrt(Q[,4]/k - (Q[,3]/k)^2)))

return(list(teams=R, home.bias=realpara$home - homepara/k,

home.sd=(k/(k-1))*(sqrt(homeSQ/k - (homepara/k)^2))))

}
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Appendix I

Simulate Fixtures

An adaption to E with an extra input of a set of fixtures to be simulated. An output of the most

likely scores for these fixtures is given.

Games1 <- function(parameters,fixtures) {

teams <- sort(unique(c(rownames(parameters$teams))), decreasing = FALSE)

P <- parameters$teams

home <- parameters$home

n <- nrow(fixtures)

A <- data.frame()

for(i in 1:n) {

A[i,1] <- fixtures[i,1]

A[i,2] <- fixtures[i,2]

x <- which(teams == fixtures[i,1])

y <- which(teams == fixtures[i,2])

lambdax <- exp(P[x,]$Attack - P[y,]$Defence + home)

lambday <- exp(P[y,]$Attack - P[x,]$Defence)

X <- as.numeric()

Y <- as.numeric()

for(j in 0:6) {

X[(j+1)] <- dpois(j,lambdax)

Y[(j+1)] <- dpois(j,lambday)

}

X[8] <- 1 - sum(X[1:7])

Y[8] <- 1 - sum(Y[1:7])

A[i,3] <- which(X == max(X)) - 1

A[i,4] <- which(Y == max(Y)) - 1

A[i,5] <- (max(X))*(max(Y))

}

return(A)

}
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