APSC 607: Project 2

Submit date, time and method: 09/27/17 5pm (EST) electronically (i.e. email)
You need to submit a report (pdf format) and the individual matlab files. Please compress all the matlab files into one file before you send them.

Important general comments:

1) Be careful to make sure that when you use material you didn't generate yourself to include references. Failure to do so is consider plagiarism and will result in a reduction of the final grade by 50\% !!!
2) Do not use "breaks" in your MATLAB functions. These are bad coding practices that make code illegible and I will subtract half the points on the MATLAB component if you use "breaks" or other ways to terminate a loop before exiting the loop.

Task
Write in Matlab functions to calculate the integral of the following functions using the composite midpoint rule, trapezoidal rule and Simpson's rule.
a) $\int_{0}^{2} e^{2 x} \sin (3 x) d x$
b) $\int_{0}^{2} \frac{1}{x+4} d x$

- Choose h and n carefully.
- What h and n do you need to use for the final result to approximate the analytic solution to within $10^{-4}, 10^{-8}$.
- What is the best tolerance level I can reach? What h and n were needed to reach this tolerance level? What happens if I make h smaller?
- Would an adaptive scheme be useful for either of these integrals? What if integral boundaries were moved?
BONUS points: Implement adaptive composite Simpson's rule and repeat prior questions.
What to turn in
Turn in all the MATLAB code that you wrote to reach the final solution. Also turn in a report describing the methods, your results and discuss your findings.

