
Connect Raspberry Pi to a Wi-Fi network using command line
Firstly, connect a WiFi dongle to the USB port of the Raspberry Pi.
Open the Terminal and type the following commands-

sudo nano /etc/network/interfaces
In the nano text editor, you’ll see something like this:

auto lo
iface lo inet loopback
iface eth0 inet dhcp

That’s the very basic configuration that governs your Pi’s Ethernet connect (indicated
by the eth0 portion). We need to add on a very minor bit to enable the Wi-Fi dongle.
Use the arrow keys to move down below the existing entry and add the following lines:

allow-hotplug wlan0
iface wlan0 inet dhcp
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp

Once you’ve annotated the file, press CTRL+X to save the file and exit the nano editor.
At the prompt again, enter the following command:

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

Compare the contents of the file, if it exists, to the following code. If the file is empty,
you can use this code to populate it. Take note of the commented lines (indicated by
the # marks) to reference which variable you should use based on your current Wi-Fi
node configuration.

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

network={
ssid="YOURSSID"
psk="YOURPASSWORD"

Protocol type can be: RSN (for WP2) and WPA (for WPA1)
proto=WPA

Key management type can be: WPA-PSK or WPA-EAP (Pre-Shared or Enterprise)
key_mgmt=WPA-PSK

Pairwise can be CCMP or TKIP (for WPA2 or WPA1)
pairwise=TKIP

#Authorization option should be OPEN for both WPA1/WPA2 (in less commonly used are SHARED
and LEAP)
auth_alg=OPEN
}

When you’re done editing the file, press CTRL+X to save and exit the document. Now
is the time to unplug the Ethernet cable and plug in the Wi-Fi dongle.
At the command prompt, enter the following command

sudo reboot

When the device finishes rebooting, it should automatically connect to the Wi-Fi node.
If for some reason it fails to appear on the network, you can always plug the Ethernet
cable back in to double check the two files and the variables you altered.
Code for EM18 RFID reader
First, we need to open up the UART of the RaspBerry Pi.
UART pins are on pins 8 (TX), 10 (RX)
To search for available serial ports we use the command

dmesg | grep tty

The output is something like this

pi@raspberrypi ~ $ dmesg | grep tty
 [0.000000] Kernel command line: dma.dmachans=0x7f35 bcm2708_fb.fbwidth=656 bcm2708_fb.
fbheight=416 bcm2709.boardrev=0xa01041 bcm2709.serial=0x93f9c7f9 smsc95xx.macaddr=B8:27:
EB:F9:C7:F9 bcm2708_fb.fbswap=1 bcm2709.disk_led_gpio=47 bcm2709.disk_led_active_low=0 s
dhci-bcm2708.emmc_clock_freq=250000000 vc_mem.mem_base=0x3dc00000 vc_mem.mem_size=
0x3f000000 dwc_otg.lpm_enable=0 console=tty1 console=ttyAMA0,115200 root=/dev/mmcblk0p2 r
ootfstype=ext4 elevator=deadline rootwait
 [0.001774] console [tty1] enabled
 [0.749509] dev:f1: ttyAMA0 at MMIO 0x3f201000 (irq = 83, base_baud = 0) is a PL011 rev3
 [1.268971] console [ttyAMA0] enabled
 pi@raspberrypi ~ $

Last line indicates that the console is enabled on the serial port ttyAMA0, so we disable
it
Run the configuration command and follow the instructions below

sudo raspi-config

Reboot and try with
dmesg | grep tty

Output now is
pi@raspberrypi ~ $ dmesg | grep tty
 [0.000000] Kernel command line: dma.dmachans=0x7f35 bcm2708_fb.fbwidth=656 bcm2708_fb.
fbheight=416 bcm2709.boardrev=0xa01041 bcm2709.serial=0x93f9c7f9 smsc95xx.macaddr=B8:27:
EB:F9:C7:F9 bcm2708_fb.fbswap=1 bcm2709.disk_led_gpio=47 bcm2709.disk_led_active_low=0 s
dhci-bcm2708.emmc_clock_freq=250000000 vc_mem.mem_base=0x3dc00000 vc_mem.mem_size=
0x3f000000 dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=de
adline rootwait
 [0.001769] console [tty1] enabled

 [0.749438] dev:f1: ttyAMA0 at MMIO 0x3f201000 (irq = 83, base_baud = 0) is a PL011 rev3

Now we can use the serial ttyAMA0. We connect an adapter usb / serial, then we will
try to establish a communication between the two serial ports; obviously in a practical
application to every serial we could connect a device, for example a modem, RFID
reader etc.
Open the Terminal of RaspBerry Pi and type:

 pi@raspberrypi ~ $ sudo idle

Once the Idle opens, create a new file and type the following codes.
The code:

import serial
def readrfid():
 Ser=serial.Serial(”/dev/ttyAMA0”)
 ser.baudrate=9600
 data=ser.read(12)
 ser.close()
 return data
id=readrfid()
print(id)

Data Logging using Phant server
If the sensor will detect the vehicle, it will activate the RFID reader, which will read
the ID in the tag. The following script will take the values of the reader and the
sensor and the put the data in the phant cloud.

import RPi.GPIO as GPIO
import time
import httplib, urllib
import socket
import serial

server= “data.sparkfun.com”
publicKey= “VGX6Jn9A15INybNybHYOJ3Z”
privateKey= “9Yglm8pAwzhA76wypoD1”
fields= [“location”,”rfid”,”timestamp”]
try:
 def locat(loc, rfid):
 print(“Here we go! Press Ctrl+C to exit”)
 print(“Sending an update!”)
 data={}
 data[fields[0]] = location
 data[fields[1]] = rfid
 data[fields[2]] = time.strftime(“%A %B %d, %Y %H:%M:%S”)
 params = urllib.urlencode(data)

 headers={}
 headers[“Content-Type”] = ”application/x-www-form-urlencoded”

 headers[“Connection”] = ”close”
 headers[“Content-Length”] = len(params)
 headers[“Phant-Private-Key”] = privateKey

 c = httplib.HTTPConnection(server)
 c.request(“POST”, “/input/” + “.txt”, params, headers)
 r = c.getresponse()
 print r.status, r.reason
 time.sleep()

except KeyboardInterrupt:
 GPIO.cleanup()

Now open up the terminal, and navigate to the directory where your script lives, and
run it like this:

pi@raspberrypi ~/code/phant-pi $ sudo python phant-raspi.py

With the script running, a handful of messages will appear each time a message is sent.
You want to see “200 OK” after the “Sending an Update!” message. That should
indicate that the HTTP POST was succesfully sent.

Connection with the FireBase Server for app to collect the data
FireBase server is used as phant cloud is not accessible for app development.
Therefore, we shall put the data in FireBase server, so that the app can access the real-
time data from it.

 Register an account in the FireBase account, in order to access it.
 Copy the given URL and paste in the following script.
 Check for network connectivity and run the code.

import urllib2
import calendar
import time
import json
url=”https://rfidbsp.firebaseio.com/rfid”
def locat(loc, rfid):
 postdata = {
 ‘time’: time.strftime(“%A %B %d, %Y %H:%M:%S”)
 ‘location’: loc,
 ‘id’: rfid
 }
 req= urllib2.Request(url)
 req.add_header(‘Content-Type’,’application/json’)
 data = json.dumps(postdata)
 response=urllib2.urlopen(req,data)

Interfacing Raspberry Pi with IR sensors for product tracking (The
running script)
import serial
import time
import Rpi.GPIO as GPIO
from rfid import readrfid
from fire import locat

GPIO.setmode(GPIO.BOARD)
GPIO.setup(11,GPIO.IN)
GPIO.setup(12,GPIO.IN)
GPIO.setup(13,GPIO.IN)
GPIO.setup(15,GPIO.IN)
GPIO.setup(16,GPIO.IN)
GPIO.setup(18,GPIO.IN)

while True:
 loc1= GPIO.input(11)
 loc2= GPIO.input(12)
 plant1= GPIO.input(13)
 plant2= GPIO.input(15)
 customer= GPIO.input(16)
 park= GPIO.input(18)

 if plant1 == True:
 print(“Parcel has reached plant 1”)

 x=”a”
 y=readrfid()
 locat(x,y)
 time.sleep(1)

 elif plant2 == True:
 print(“Parcel has reached plant 2”)
 x=”b”
 y=readrfid()
 locat(x,y)
 time.sleep(1)

 elif loc1 == True:
 print(“Parcel has reached location 1”)
 x=”c”
 y=readrfid()
 locat(x,y)
 time.sleep(1)

 elif loc2 == True:
 print(“Parcel has reached location 2”)
 x=”d”
 y=readrfid()
 locat(x,y)
 time.sleep(1)
 elif customer == True:

 print(“Parcel has reached customer”)
 x=”e”
 y=readrfid()
 locat(x,y)
 time.sleep(1)
else:
 print(“”)
 time.sleep(1)

Setting up the XBees
X-CTU is free software, provided by Digi (the manufacturer of XBee), which we use
to configure and manage XBees, and test XBee networks.
Adding XBees
Before continuing on, make sure you’ve plugged an XBee (correctly) into your
Explorer, and have the Explorer plugged into your computer. When you installed the
drivers for your Explorer it should have been assigned port number. You’ll need that
shortly.
After initially opening X-CTU, you’ll be presented with a window like this:

To add XBee(s), click the “Add device” icon in the upper-left part of the window. That
will prompt this screen to show up:

Select communication port. If the Serial Explorer is not showing up, make sure the
switch onboard is set to “On”
This window also allows you to specify more specific serial characteristics like baud
rate, data bits, and stop bits. Click Finish.
A “Discovering radio modules…” window will briefly scroll by, after which you
should be presented with the original window, but with an addition to the “Radio
Modules” section on the left.
Click that new module, and wait a few seconds as X-CTU reads the configuration
settings of XBee.

As you can see by scrolling down the right half, there are a lot of configuration
settings available. We’ll get to some of those later. For now, though, verify that the
configurable settings visible in the screenshot above match those of your XBee
(channel=C, PAN ID=3332, DH=0, DL=0, MY=0).

Now, connect one of the XBee to the Raspberry Pi and the other to the IR sensor at
parking lot. Type the following code to get the data from the XBee.
import serial

ser=serial.Serial(‘/dev/tttyUSB0’, 9600)
while True:
 if ser.readline() == 0x7E:
 for i in range (0,19):
 byte.discard=ser.readline()
 park=ser.readline()
 if park == True:
 print “Parking lot 1 is occupied”
 time.sleep(1)
 else:
 print “Please park the vehicle at Parking lot 1”

