
Practical Session 4: Scheme (Functional

programming)

1 Functional Programming

Scheme follows the functional programming paradigm. To put it simply,
functional programming is built around the concept of functions, viewed as
mathematical objects: a function takes some inputs and returns an output,
with no other side-effects. Functional programming avoids mutation of data: an
argument passed to a function is never modified itself, it’s a new object which
is returned as the result of applying a function to an argument. In functional
programming, a program is viewed as a series of functions applied to input data.

2 First-class functions

Like many other functional programming languages, Scheme has first-class
functions. This means that functions can be treated like any other entities and
the program, and more specifically, a function can be passed as argument to,
can be returned from a function and can stored in a variable.

Write a (filter p l) function. This function takes two arguments: the first is
a predicate p and the second is a list l. It returns the list l, in which all the
elements for which p is false have been removed. Consider this example:

(d e f i n e myl i s t ’ (1 2 −3 4 5 −6 7 8 −9))
(f i l t e r p o s i t i v e ? myl i s t)

−> ’ (1 2 4 5 7 8)

positive? is of course a built-in Scheme predicate which returns #t if its argu-
ment is a positive number.

1

In the previous session, you wrote a sum−cubes function which may have looked
like the following:

(d e f i n e (sum−cubes a b)
(i f (> a b)

0
(+ (cube a) (sum−cubes (+ a 1) b))))

Rewrite a more generic sum−func which takes three arguments f , a and b and
which returns the sum of f applied to all integers in {a, a + 1, ...b}. Uses this
function to perform a sum−cubes, for instance:

(sum−func cube 0 3)
−> 36

Finally, define sum−cubes in terms of this new sum−func.

2.1 Anonymous functions

Sometimes it can be useful to write a small function as argument to an-
other directly in the function call, without define’ing it entirely. This is where
lambda’s become handy. For instance, to use filter with a predicate that keeps
all items smaller than 5:

(f i l t e r (lambda (x) (< x 5)) my l i s t)
−> (1 2 −3 4 −6 −9)

The lambda expression creates an anonymous function which, to x associates
the boolean x! = 5.

2

2.2 Map and apply

Some functions defined in the Scheme standard take a functional parameter:
for instance apply or map. They are important functional programming tools
which are also found in many modern languages (sometimes under a different
name)

1. Try to guess / understand what each does based on the following examples:

(d e f i n e myl i s t ’ (1 2 −3 4 5 −6 7 8 −9))

(map (lambda (x) (+ x 1)) myl i s t)
(apply + myl i s t)
(apply max myl i s t)

2. Write a (range a b) utility function which produces a list of all integers
from a to b, included. Then use this function to re-implement sum−cubes
in terms of map and apply.

3. Write a function which takes a list of lists and returns a list containing
the maximum of each list.

(d e f i n e l i s t o f l i s t s ’ ((1 2 3 1) (45 1 3 4 5) (4 5 64)
(4 6) (144) (0 4 4) (14 464 4 7 6)))

(max− l ist l i s t o f l i s t s)
−> ’ (3 45 64 6 144 4 464)

Another common operation we might want to do on list is to accumulate
the result of a function over all the arguments of this list. In many languages,
this function is called fold. However, the Scheme standard does not define this
function.

3

Write an accumulate function. This function will have the following interface :

(accumulate in i t−va lue func t i on l i s t)

And its value is the application of the two-parameter function successively on
all elements of list , with the first parameter being the accumulated value so
far, starting with init−value. In other words, (accumulate x0 f ’(l1 l2 ... ln))
should return

f(ln, f(ln−1, ... f(l2, f(l1, x0)))

For instance :

(accumulate 1 ∗ ’ (2 3 4))
> 24

(accumulate 14 + ’(2 3 4))
> 23

Take care of the parameter order (f(a, b) may not be equal to f(b, a)! Respect
the order given above).
Can you use this function to reverse a list?
Why can you not easily use this function to implement your collatz function of
the previous weeks?

2.3 Higher-order functions

As said above, it is possible for a function to return a function (think for
example about what the lambda builtin returns).

Write a function mean which takes as argument a numeric function f : R→ R
and returns the function:

f ′ : R× R→ R x, y 7→ f(x) + f(y)

2

Use this function with the cube function to generate a mean−cube function.
Then compute the mean-cube of 4 and 16.

(mean−cube 4 16)
−> 2080

3 Special forms and parameter evaluation

From the syntax, it looks like if in Scheme is just another function of three
arguments: (if condition true−expr false−expr). However, we will see that
there is a slight caveat to this approach and that, under the hood, things are a
bit different.

4

Implement a (my−if condition true−expr false−expr) function in terms of
cond. Try it with the following expressions:

(d e f i n e x 4)
(my−if (p o s i t i v e ? x) x (− x))

(my−if (p o s i t i v e ? x)
(d i s p l a y ” p o s i t i v e ”)
(d i s p l a y ” negat ive ”))

What goes on in your my−if function is that the interpreter first evaluates
all the parameters passed to the the function. In the first example, this does
not matter, because x and (− x) simply evaluate to 4 and -4, without any
side-effects. But in the second example, both arguments have the side-effect of
displaying some text on the output, and their evaluation produces #<void>
(this is an implementation choice in racket. The standard simply specifies that
display, returns “an unspecified value”). In other words, both the true and false
blocks are evaluated upon parameter passing, and the function call actually
becomes (my−if #t #<void> #<void>) and the display have already printed
out their arguments.

3.1 Hygienic macros

Because of this, some constructs in Scheme are actually special forms and
not functions. In a special form, the arguments are only evaluated when called
within the special form, and not when passed as arguments. It is possible to
define your own special forms using define−syntax and syntax−rules. You can
refer to the R5RS1 for a reference, or some tutorials available online2 for help
on how to use these constrcuts.

Rewrite my−if using a hygienic macro. Do you observe the problem discovered
above?

1http://www.schemers.org/Documents/Standards/R5RS/
2See for instance http://www.willdonnelly.net/blog/scheme-syntax-rules/

5

http://www.schemers.org/Documents/Standards/R5RS/
http://www.willdonnelly.net/blog/scheme-syntax-rules/

	Functional Programming
	First-class functions
	Anonymous functions
	Map and apply
	Higher-order functions

	Special forms and parameter evaluation
	Hygienic macros

