
Computer Laboratory

Exercises in

LINEAR PROGRAMMING AND COMBINATORIAL
OPTIMIZATION

LUND INSTITUTE OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS

2013

.

Preparation for the Labs

Download the Matlab files needed for the exercises (lab1.zip and lab2.zip) from the course
website: http://www.maths.lth.se/education/lth/courses/linkombopt/2013/.

Some Useful MATLAB Functions

First an explanation of the command is given with the MATLAB help command and then
an example is given:

FIND Find indices of the non-zero elements.

I = FIND(X) returns the indices of the vector X that are

non-zero. For example, I = FIND(A>100), returns the

indices of A where A is greater than 100. See RELOP.

>> b=[3 5 -2 0 9 -3 -4 8];

>> find(b>0)

ans =

1 2 5 8

>> help max

MAX Largest component.

For vectors, MAX(X) is the largest element in X. For

matrices, MAX(X) is a vector containing the maximum element

from each column. [Y,I] = MAX(X) stores the indices of the

maximum values in vector I. MAX(X,Y) returns a matrix the

same size as X and Y with the largest elements taken from X

or Y. When complex, the magnitude MAX(ABS(X)) is used.

>> max(b)

ans =

9

>> [maxvalue,index]=max(b)

maxvalue =

9

index =

5

>> A=[3 5 4 2 0;7 6 3 5 1;8 6 9 2 0]

A =

3 5 4 2 0

7 6 3 5 1

3

8 6 9 2 0

>> [maxv,index]=max(A)

maxv =

8 6 9 5 1

index =

3 2 3 2 2

>> help sum

SUM Sum of the elements.

For vectors, SUM(X) is the sum of the elements of X.

For matrices, SUM(X) is a row vector with the sum over

each column. SUM(DIAG(X)) is the trace of X.

See also PROD, CUMPROD, CUMSUM.

>> sum(A)

ans =

18 17 16 9 1

>> sum(sum(A))

ans =

61

Note also the element-by-element operations, for example, multiplication:

>> B=[1 1 1 1 1;0 0 0 0 0;2 2 2 2 2]

B =

1 1 1 1 1

0 0 0 0 0

2 2 2 2 2

>> A.*B

ans =

3 5 4 2 0

0 0 0 0 0

16 12 18 4 0

4

Laboratory Exercise 1

This lab is about linear programming. First you should run an available Matlab program that
demonstrates the simplex method. You choose the pivot element on every iteration. Then
you have to modify the program so that the pivot elements are chosen automatically. Finally
you should test your program on some examples.

You should also make a version that produces the result as fast as possible, and investigate
how the execution time increases with the number of constraints and variables.

Cycling can be prevented with Bland’s rule:

1. If there are more than one variable to enter the basis (that is, columns with negative
reduced costs), then choose the one with the lowest index.

2. If there are more than one variable to leave the basis, then choose the one with the
lowest index. (Note: the lowest index of a basis variable.)

The problem to solve at this session is

maximize z = cTx
subject to Ax = b, x ≥ 0.

It is assumed that a feasible choice of basic variables is given. This is easy if the problem has
been converted from its standard form with b ≥ 0. Why?

The simplex method in Matlab. The following procedure requires that the user assigns the
correct variables to enter and leave on every iteration. Observe that the tableau is constructed
with the function checkbasic from hand-in #1.

function [tableau,basicvars,steps]=simpmovie(A,b,c,basicvars)

% [y,basicvars,steps] = simpmovie(A,b,c,basicvars)

%

% A m*n-matrix

% b m*1-matrix, b>=0

% c n*1-matrix

% basicvars 1*m - matrix with indices for feasible basic variables.

%

% Shows a movie of how the simplex method works

% on the problem

% max(c’x), when Ax=b, x>=0.

%

[m,n]=size(A);

% Create a tableau with slack variables

5

[tableau,xb,basic,feasible,optimal]=checkbasic(A,b,c,basicvars);

steps=0;

% Loop until all reduced costs are non-positive

while min(tableau(m+1,1:n)) < -1e-6

steps = steps+1;

clc

disp(tableau)

basicvars

% Input variables to enter and leave

q=input(’entering variable q = ’);

p=input(’leaving variable p = ’);

% Update basic vars

basicvars = union(basicvars, q);

basicvars = setdiff(basicvars, p);

% Compute new tableau with the new basic variables

[tableau,xb,basic,feasible,optimal]=checkbasic(A,b,c,basicvars);

if ~feasible

disp(tableau)

error(’You have chosen an incorrect pivot element. Restart.’);

end

end

disp(’’);

disp(tableau)

disp(’Congratulation! You have understood the simplex method.’)

disp(’(At least for this example.)’)

PREPARATORY EXERCISE. Rewrite the program above and name it
simp(A,b,c,basicvars), so that the pivot elements are chosen automatically. The Matlab
functions min and find are useful. Unbounded problems should be detected. The problem
with cycling can be solved by using Bland’s rule, but this is not compulsory. The number of
steps of the simplex algorithms is returned from the function.

At the computer

1. Go to the subdirectory lab1.

2. Suitable test matrices of size m× n can be obtained with the procedure init:

6

A=9*rand(m,n)+1;

b=ones(m,1);

c=ones(n,1);

A=[A eye(m)];

c=[c;zeros(m,1)];

basicvars=(n+1):(m+n);

A trial run with a 3× 3-matrix is thus done by:

>>m=3

>>n=3

>>init

>>[y,basicvars,steps]=simpmovie(A,b,c,basicvars)

3. To study the phenomenon cycling, write chvatal to create the matrices

% http://people.orie.cornell.edu/~miketodd/or630/SimplexCyclingExample.pdf

A=[0.5 -5.5 -2.5 9 1 0 0;

0.5 -1.5 -0.5 1 0 1 0;

1 0 0 0 0 0 1];

b=[0 0 1]’;

c=[10 -57 -9 -24 0 0 0]’;

basicvars=[5 6 7];

Choose the pivot elements according to “the most negative reduced cost should enter
the basis” and “if more than one variable can leave the basis, then choose the one with
the lowest index”. (The cycling indices are (q, p) = (1, 5), (2, 6), (3, 1), (4, 2), (5, 3), (6, 4).)

4. Make the copy

>>!cp simpmovie.m simp.m (Unix)

>>!copy simpmovie.m simp.m (Windows)

and adjust simp.m according to the preparatory exercise. Test your program on Ex-
ample 1 in section 2.1 of the book (tableau 2.1, 2.3 and 2.4). Test random matrices
(created by init) of sizes from 10× 10 to 100× 100 and make a table of the elapsed
time. How does the execution time seem to depend on m and n? How does the num-
ber of steps grow with m and n? Exponential or polynomial? If you have solved the
problem with cycling, then try the Chvatal example, too.

5. For every rule on how to choose the pivot element it is possible to construct examples
that make the simplex method very slow. Take a look at simpb (write edit simpb from
matlab) which is a simplex method using a ‘Bland’-like rule for selecting the incoming

7

basic variable (q). The script badexample creates a difficult example for this simplex
algorithm. The variable d sets the size of the matrices A of the problem.

>>d=3

>>badexample

>>[y,basicvars,steps]=simpb(A,b,c,basicvars)

How does the number of steps grow with d? Is simplex a polynomial time solution for
the linear programming problem?

8

Laboratory Exercise 2

This lab deals with the transportation problem, the maximal flow problem, the local search
method and the branch and bound method.

You should write a Matlab program that solves the transportation problem and then test
on some problems.

By means of an available Matlab program you should solve a maximal flow problem for a
network with 23 nodes. You should also verify that “max-flow”=“min-cut.”

Finally, you should test the local search algorithm and the branch and bound algorithm
on two test problems: the travelling salesman problem and the VigenÃĺre crypto analysis.

The transportation problem

PREPARATORY EXERCISE. Write a Matlab program with the feature

function [x,cost]=transport(s,d,c);

% [x,cost]=transport(s,d,c)

% Input:

% s = supplies (m*1)

% d = demands (n*1)

% c = costs (m*n)

% Output

% x = optimal solution (m*n)

% cost = minimal transport cost

...

Use the following subroutines, which you can find in your subdirectory lab2.

function [x,b]=northwest(s,d)

% [x,b]=northwest(s,d)

% x: shipments using nw-rule (m*n)

% b: 1 for each basic variables 0 for nonbasic (m*n)

% s: supplies (m*1)

% d: demands (n*1)

if (sum(s)~=sum(d)),

disp(’ERROR: The total supply is not equal to the total demand.’);

return;

end

m=length(s);

n=length(d);

i=1;

j=1;

x=zeros(m,n);

b=zeros(m,n);

9

while ((i<=m) & (j<=n))

if s(i)<d(j)

x(i,j)=s(i);

b(i,j)=1;

d(j)=d(j)-s(i);

i=i+1;

else

x(i,j)=d(j);

b(i,j)=1;

s(i)=s(i)-d(j);

j=j+1;

end

end

function [u,v]=multipliers(x,c,b)

% [u,v]=multipliers(x,c,b)

% x: current solution (m*n)

% b: 1 for each basic variables 0 for nonbasic (m*n)

% c: costs (m*n)

% u: lagrange multipliers for rows (m*1)

% v: lagrange multipliers for columns (n*1)

[m,n]=size(x);

if sum(sum(b))< m+n-1

disp(’Error in multipliers’)

return

else

u=Inf*ones(m,1);

v=Inf*ones(n,1);

u(1)=0; % choose an arbitrary multiplier = 0

nr=1;

while nr<m+n % until all multipliers are assigned

for row=1:m

for col=1:n

if b(row,col)>0

if (u(row)~=Inf) & (v(col)==Inf)

v(col)=c(row,col)-u(row);

nr=nr+1;

elseif (u(row)==Inf) & (v(col)~=Inf)

u(row)=c(row,col)-v(col);

nr=nr+1;

end

end

end

10

end

end

end

function [y,bout]=cycle(x,row,col,b)

% [y,bout]=cycle(x,row,col)

% x: current solution (m*n)

% b: entering basic variables (m*n)

% row,col: index for element entering basis

% y: solution after cycle of change (m*n)

% bout: new basic variables after cycle of change (m*n)

bout=b;

y=x;

[m,n]=size(x);

loop=[row col]; % describes the cycle of change

x(row,col)=Inf; % do not include (row,col) in the search

b(row,col)=Inf;

rowsearch=1; % start searching in the same row

while (loop(1,1)~=row | loop(1,2)~=col | length(loop)==2),

if rowsearch, % search in row

j=1;

while rowsearch

if (b(loop(1,1),j)~=0) & (j~=loop(1,2))

loop=[loop(1,1) j ;loop]; % add indices of found element to loop

rowsearch=0; % start searching in columns

elseif j==n, % no interesting element in this row

b(loop(1,1),loop(1,2))=0;

loop=loop(2:length(loop),:); % backtrack

rowsearch=0;

else

j=j+1;

end

end

else % column search

i=1;

while ~rowsearch

if (b(i,loop(1,2))~=0) & (i~=loop(1,1))

loop=[i loop(1,2) ; loop];

rowsearch=1;

elseif i==m

b(loop(1,1),loop(1,2))=0;

loop=loop(2:length(loop),:);

rowsearch=1;

11

else

i=i+1;

end

end

end

end

% compute maximal loop shipment

l=length(loop);

theta=Inf;

minindex=Inf;

for i=2:2:l

if x(loop(i,1),loop(i,2))<theta,

theta=x(loop(i,1),loop(i,2));

minindex=i;

end;

end

% compute new transport matrix

y(row,col)=theta;

for i=2:l-1

y(loop(i,1),loop(i,2))=y(loop(i,1),loop(i,2))+(-1)^(i-1)*theta;

end

bout(row,col)=1;

bout(loop(minindex,1),loop(minindex,2))=0;

You can test your code using the files example511, example512 and example513. The
solutions are

>> example511; [x cost] = transport(s,d,c)

x =

100 0 20 0

0 60 60 20

0 0 0 100

cost =

1900

>> example512; [x cost] = transport(s,d,c)

x =

0 0 0 30 70

20 60 80 0 0

70 0 0 70 0

cost =

1930

12

>> example513; [x cost] = transport(s,d,c)

x =

0 0 0 30 70

20 60 80 0 0

30 0 0 70 0

cost =

1730

13

1 *6

*

3

2 *3

*

2

3 *3

*

3

4

*

5

*

10

5

*
6

*4
6 *5

*

9

*

7

7 *8

*

3

8 *20
9

10

*
10

*10

*

10

*

10

11 *17
12 *5

13

*
10

*5
14

*
10

15

*

17

16

*
1

*
3

*5

*

4

17

*
10

*10

*

2

18

*
10

*2
19

*
6

20 *13
21

*
9

*11
22

*
10

*9
23

*
10

*
7

Figure 1: Matlab’s graph of the network. The capacities of the arcs
at the start are shown with bold figures and the asterisks symbolizes
arrows, e.g. 6 units can be shipped from node 1 to node 2.

The maximal flow problem

In this session you will find the maximal flow in the network in Figure 1 from node 10 to
node 9. When you have found a new breakthrough for the flow and input it, the graph will
be updated automatically and the asterisks (=arrows) will show in which direction of the arcs
more flow can be shipped. When you think you have found the optimal solution you should
divide the nodes according to the max flow-min cut theorem.

Local search and Branch-and-bound

Study the local search (Steepest descent) method and the branch and bound method on two
problems. In the directory lab2 are two subdirectories @vigcrypto and @tsp. These contain
methods for two new objects: vigcrypot and tsp objects. One can create new objects of these
types using

>> problem = demoproblem(tsp);

>> problem = demoproblem(vigcrypto);

14

One can also construct other instances of the problem classes above using the constructors

>> problem = tsp(relevantdata);

>> problem = vigcrypto(relevandata);

To each of these object a number of methods are given. For example

x=randomindomain(problem);

generates a representative x for a point in the domain of the combinatorial optimization
problem. In general the points x are represented as row matrices.

f=evaluate(problem,x);

evaluates the goal function f at the point x in the domain of the combinatorial optimization
problem.

xlist = getneighbours(problem,x);

generates a list xlist of all neighbours to the point x in the domain of the optimization prob-
lem. Each row of the matrix xlist is a representative of a point (a neighbour) close to x.

D = getdomain(problem);

generates a representative D of the whole domain of the problem. Subsets are also represented
as a row matrix.

[listofsubsets,sizes]=branch(problem,S)

generates a list of representatives of subsets to the set S.

[fl,f,fu]=bound(problem,subset);

calculates upper fu and lower fl bounds on the optimal value of the function f in the subset.
More information can (hopefully) be found in Contents.m and in the comments in each file.
Try for example

help lab2

help tsp

methods tsp

help tsp/evaluate

help branchandbound

15

At the computer

1. Download the Matlab files needed for the session from the course home page. Copy
this file to your home directory, decompress and unpack it. Now you have a subdirec-
tory lab2. Start Matlab, go to this directory, and make sure the Matlab search path
includes the directory lab2. This can be done in matlab using the path command.

>> path(path,pwd);

Information about the routines in the directory can be found in the text file Contents.m

2. Run the program transportmovie.m on Example 1 of section 5.1 in the book with
the following commands

>> example511

>> transportmovie(s,d,c)

Compare the result with your own calculations by hand! Get the matrices s, d and c
from the m-files example511.m, example512.m and example513.m.

3. Test your program transport.m with data from the examples.

4. Solve the maximal flow problem by running maxflow. Mark the solution in Figure 1.
Divide the nodes by a minimal cut into two groups M och M ′ such that the source
belongs to M and the sink to M ′. (Make this division by hand with help of the result
from the run).

5. Copy the code in steepdescstep.pre.m to steepdescstep.m. Modify the code so
that the function returns the neighbour with the lowest value on the goal function and
a boolean lokmin which indicates whether xin is a local minimum to the problem.

function [xout,lokmin]=steepdescstep(problem,xin)

% One step in local search

% Input:

% problem - The optimization problem.

% xin - a point in the domain of problem.

% Output:

% xout - the neighbour to xin with the lowest

% goal function.

% lokmin - 1 if xin is a local minimum, 0 otherwise

% Generate all neighbours to xin.

neighbours=getneighbours(problem,xin);

lokmin=1;

f=evaluate(problem,xin);

16

xout=xin;

for ii=1:size(neighbours,1);

y=neighbours(ii,:);

fnew=evaluate(problem,y);

...

add apropriate code here.

...

end

end

Now try the routine steepdesc (which uses your steepdescstep routine) on both a
travelling salesman problem and the vigcrypto problem. Generate problem objects
with

>> problem = demoproblem(tsp);

>> problem = demoproblem(vigcrypto);

Generate starting points for steepest descent with

xin=randomindomain(problem);

Try with different random starting points. Do the routine end up in different local
minima or most often in the same?

function [xout,steps,locmin]=steepdesc(problem,xin)

if nargin < 2,

xin = randomindomain(problem);

end;

steps=0;

locmin=0;

xout=xin;

while ~locmin,

[xout,locmin]=steepdescstep(problem,xout);

steps=steps+1;

% f = evaluate(problem,xout)

end

end

6. Type

>> edit branchandbound

to see the code for the branch and bound algorithm. Try the algorithm

17

>> [dmin,fumin,res]=branchandbound(problem);

on both a travelling salesman problem and on the vigcrypto problem. Did the local
search find the global minimum?

18

