
IS1200/IS1500

Lab 4 – Processor Design
2017-01-17

Introduction
Welcome to this lab! In this laboratory exercise, you will learn the fundamentals of processor
design. After finishing this lab, you should be able to

1. Construct a simple single-cycle processor that executes a real assembly program.

2. Explain how bit selection and instruction decoding works.

3. Explain the basic principles of the data path and the control unit.

Preparations

You must do the lab work in advance, except for the Surprise Assignment. The teachers will
examine your skills and knowledge at the lab session.

We recommend that you book a lab-session well in advance, and start preparing at least a week
before the session.

You can ask for help anytime before the lab session. There are several ways to get help; see the
course website for details and alternatives. We especially encourage you to post questions on KTH
social.

During the lab session, the teachers work with examination as well as offering help. Make sure to
state clearly that you want to ask questions, rather than being examined.

Sometimes, our teachers may have to refer help-seekers to other sources of information, so that
other students can be examined.

Software

In this lab, we use the the open source software Logisim. You can download and install the software
from http://cburch.com/logisim/. If you have not performed the LD-Lab, you need to learn the
basics of using this software before you do Lab 4.

To teach yourself how to use the Logisim tool, please go through Logisim's “Beginner's tutorial”.
You can find the tutorial in the documentation section on Logisim's webpages. Note that you need
to perform each of the steps by using the software, so that you really learn how to use the tool.

IS1200/IS1500 – Lab 4 – Processor Design page 1

http://cburch.com/logisim/

If you are taking course IS1200, you should already know the basics of digital design and the
content of the LD-Lab (Logic Design), that is only examined for students taking IS1500. However,
if you find Lab 4 a bit hard, we recommend that you perform at least parts of the LD-Lab to refresh
your knowledge about digital design.

Resources and Reading Guidelines

• Lectures 9.
• Harris & Harris (2013) course book. Chapters 5.2.4 (about the ALU),

and 7.1, 7.3 (about the single-cycle processor). The book is available online.
• The MIPS Reference Sheet.
• See the course web page Literature and Resources for links and details.

Examination

Examination is divided into three parts:

Part 1 – Assignments 1 and 2.

Part 2 – Assignments 3 and 4.

Part 3 – Assignments 5 and 6 (the surprise).

Examining one part takes between 5 to 15 minutes. Make sure to call the teacher immediately when
you are done with an assignment.

Please state clearly that you want to be examined, rather than getting help.

The teacher checks that your solution behaves correctly, and that your solution follows all coding
requirements and is easily readable.

The teacher will also ask questions, to check that your knowledge of the design and implementation
of your solution is deep, detailed, and complete. When you create your solution, do not forget to
make detailed notes. With these notes, you can quickly refresh your memory during examination, if
some particular detail has slipped your mind.

You must be able to answer all questions. In the unlikely case that some of your answers are
incorrect or incomplete, we follow a specific procedure for re-examination.

IS1200/IS1500 – Lab 4 – Processor Design page 2

Assignments
Through-out all assignments, test your components carefully by trying different input data and
check the output against expected output.

NOTE! Before you start, download file processor.circ from the course website. This is the template
project in which you should implement all your solutions. Open this file in Logisim and start your
processor design journey!

Assignment 1: Arithmetic/Logical Unit (ALU)

The ALU is the heart of the processor and is the digital building block that performs the actual
computations. The purpose of this assignment is to get a deeper understanding of how an ALU can
be designed, by implementing a basic ALU. The ALU is very similar to the one presented at Lecture
9, with one extension (see below).

Task 1.1
Open circuit ALU in the processor.circ project. Implement the ALU with the following properties:

• One 32-bit wide data input port named A.

• One 32-bit wide data input port named B.

• One 3-bit input port named F that determines the function of the ALU.

• One 32-bit data output port named Y that outputs the result of the selected function.

• One 1-bit output port named Zero that output value 1 if all bits of Y is zero else it outputs
value 0.

Note that the input and output components and some other help components are already located in
the ALU circuit.

The ALU should implement the following functionality.

• F = 0002 should perform operation A AND B.

• F = 0012 should perform operation A OR B.

• F = 0102 should perform operation A + B.

• F = 1102 should perform operation A - B.

• F = 1112 should perform operation set less than (SLT). That is, if A < B then the ALU
should output value 1, else it should output value 0.

For all other values of F, the output is undefined (we do not care what the output is).

When the ALU circuit is used in another circuit, the layout will look like this.

The layout for the component is already provided in the project.

Please note: For this lab, you are not allowed to use the Subtractor component in Logisim. All the
other pre-defined components are allowed.

IS1200/IS1500 – Lab 4 – Processor Design page 3

Some advice:

• Input pins and output pins can be configured to be 32-bit. Note, however, that the most
significant byte is displayed at the top and the least significant byte at the bottom. Take a
look at Example 1 in circuit Tests (part of the project) and convince yourself of the bit
structure.

• The ALU is very similar to the one that is presented in Harris & Harris in Section 5.2.4, as
well as the one presented in Lecture 9. Note however the new Zero output port, which must
be defined using Logisim components of your choice.

• One option to perform the zero extension (for the SLT operation) is to nest two Splitter
components to extract the sign bit, followed by a Bit Extender component, which can be
found in the Wire library folder. As an alternative, use the Bit Selector component that can
be found in the Plexers library folder. You can also take a look at examples 2 and 3 in the
Tests circuit.

Questions for Assignment 1

These questions are useful to prepare yourself for the oral examination. However, at the
examination, the teacher may choose to ask questions that are not on this list.

• Explain how each of the ALU functions are defined. In particular, you need to be able to
explain how subtraction works, including the use of two's complement.

• How did you implement the logic for the Zero output port? Did you consider any
alternatives? Be prepared to explain your design choices.

• What is the purpose of the ALU? Why are several functions grouped together into one
component?

Assignment 2: Register File

In this assignment, you will implement a register file with 2 read ports and 1 write port. The register
file will then later be used to store the register values for the processor. This register file will only
be able to handle the first 8 registers ($0, $at, $v0, $v1, $a0, $a1, $a2, and $a3). All registers are 32-
bit. We do this simplification to avoid that the circuits get too complex.

In circuit RegisterFile, an almost complete 3-bit addressed register file is provided.

Task 2.1

Register $0 (also called $Zero) has a special semantics. Implement the correct behavior for $0 in the
circuit.

Task 2.2

For debugging purposes in later assignments, it is convenient to output the value for register $v0.
Add connections to the circuit so that register $v0 is sent to output port v0.

IS1200/IS1500 – Lab 4 – Processor Design page 4

Questions for Assignment 2

These questions are useful to prepare yourself for the oral examination. However, at the
examination, the teacher may choose to ask questions that are not on this list.

• Explain if the read operation or the write operation, or both operations are clocked (updated
at the clock edge). Why is it implement this way?

• Explain the semantics of reading from and writing to $0, and how you implemented this
behavior.

• How many bits of data can this register file store? If the address width was the same size as
for a complete 32-bits MIPS processor, how many bits would in such a case such register
file store?

Assignment 3: Control Unit

In this assignment you will implement a small control unit. You need to have a good understand of
both the control unit an the data path for the single-cycle processor, as presented at the lectures and
in the course book. Note also that this control unit is a simplified version of the unit presented at the
lectures and in the book; it cannot handle all instructions.

Circuit Control Unit is prepared with correct (but not optimal) implementation that can handle
instructions addi and add.

Task 3.1

Add logic and components to circuit ControlUnit so that it can also handle the correct control
signals for instruction beq.

Questions for Assignment 3

These questions are useful to prepare yourself for the oral examination. However, at the
examination, the teacher may choose to ask questions that are not on this list.

• Explain how you have implemented the control signals for the beq instruction. Why is this a
correct solution?

• Be prepared to explain why the RegDst control signal or the AluSrc signal is hooked up to
certain signals. You should be prepared to explain this using the following figure.

IS1200/IS1500 – Lab 4 – Processor Design page 5

Assignment 4: Data path

In this task, you should create a data path that can handle three MIPS instructions correctly:
instructions addi, add, and beq. This is the most demanding assignment in this lab, so follow the
instructions below carefully. It is very important that you verify each of the instructions using the
supplied test program.

Task 4.1: Updating the program counter and fetching instructions

1. Go to the Datapath circuit. All components in this assignment should be added to this
circuit.

2. The circuit already contains the register for the PC counter and the connection to the
instruction memory. Add logic for incrementing the PC with value 4 (next instruction). Note
that the address width of the program counter is 8 bits, so that we do not need to allocate a
too big ROM memory. Test the circuit with the provided clock.

3. The code memory should be implemented using the read-only memory (ROM) component
in Logisim (under library director Memory). This component is already provided in the
Datapath circuit. The address bit width is 8 bits and the data bit width 32 bits. Note also
that we have added a shift component before the ROM address input (shift right by 2) so
that the PC address corresponds to extracting one word (4 bytes). Initiate it and test that you
can fetch instructions after each other. To see that it works correctly, it is good to add an
output port, that you can for observing output during testing.

Task 4.2: Implementing the addi instruction.

1. The first thing to do is to create a test program that we can use to see that the operation
works. Download the program test.asm from the course web page. Open the program in the
MARS simulator and go to the execute view (shown below). In the Code column, we have
the machine code for the instructions. Run the program and convince yourself of its
behavior.

2. Enter the machine code for the two first instructions in the ROM memory (the two first addi
instructions). Before you add the instructions, right click on the component and select “Clear
contents”. After that you have added the instructions, the edit view should then look like
this:

IS1200/IS1500 – Lab 4 – Processor Design page 6

NOTE: you might need to save the content to a file and then load it again to be able to
update the memory in the component.

3. Add the RegisterFile and the ALU components. See the course book and lecture 9 for
details about how you implement an immediate instruction. Note that the address width is 3
bits for the RegisterFile, which means that you should only use the 3 least significant bits of
the MIPS addresses after decoding. To select bits, use the Bit Selector component (can be
found in the Plexer library folder). In the circuit Tests, there are two examples that shows
how the Bit selector component can be used. You probably need to play with these examples
to understand how it works.

4. Attach the data path to the relevant control signals of the control unit. Do not forget to feed
the instruction into the control unit.

5. Test that the execution sequence of the 2 instructions works as expected. You may need to
add a few output components to see what happens in the circuit.

Task 4.3: Implementing the add instruction (R-type).

1. Open file test.asm again in MARS and enter the three first instructions to the ROM
component (including the 3rd instruction that is an add-instruction).

2. Implement the necessary logic for the add instruction in the data path. Note that you need to
add two multiplexors. Connect these multiplexors to the right control signals.

3. Test that the sequence of two addi and one add instruction work correctly.

Task 4.4: Implementing the beq instruction.

1. Add the logic for the beq-instruction. Connect the relevant control signals.

2. Implement the rest of the test program test.asm into the ROM. Initialize the PC to 0x14 and
check that the jump is performed.

Questions for Assignment 4

These questions are useful to prepare yourself for the oral examination. However, at the
examination, the teacher may choose to ask questions that are not on this list.

• Explain how the bit selection works for the alternatives that are controlled by the RegDst
control signal. Which instructions are using what logic and why?

• Explain how the beq instruction is implement, how the address is calculated, and how the
signals are controlled by the control unit.

IS1200/IS1500 – Lab 4 – Processor Design page 7

Assignment 5: Factorial Function in Assembler

In this task, you should develop a small MIPS assembly program and execute it on your new
processor.

Task 5.1

Open the MARS simulator and implement an assembly program that computes the factorial number
n!, where n is a input parameter. The program has the following requirements:

• Only three instructions are allowed to be used: add, addi, and beq.

• Only registers with numbers 0 to 7 are allowed to be used. That is, you are allowed to use
$0, $at, $v0, $v1, $a0, $a1, $a2, and $a3.

• The input value should be given in $a0. That is, the first instruction should assign $a0 to
value n.

• The final result should be stored in $v0.

• At the end of the program, implement a “stop” loop, i.e., a loop that that jumps to itself
forever.

Note that you do not have a mul operation available. Hence, you should simply implement the mul
operation by performing a loop with add instructions. This is not the fastest implementation, but it
is good enough for testing your processor!

Task 5.2

In the MARS simulator, test that the program works for at least 0!, 3!, and 8!.

Task 5.3

Move the machine code of the complete program into the ROM memory of your processor. Test that
your processor gives the correct result for at least 0!, 3!, and 8!.

Some advice: You can easily move your machine code from the MARS simulator into the ROM
memory in Logisim.

1. In MARS, assemble the program.

2. Choose "Dump Memory..." from the File menu in MARS.

3. In the "Dump Memory To File" dialog window, set "Dump Format" to "Hexadecimal Text".

4. Click "Dump To File..." and save the file on your system as a .txt file such as, "mips1.txt".

5. Use a plain text editor, such as Notepad or gedit, to open the file ("mips1.txt"), to add a new
line at the very beginning of the file with the following contents:
v2.0 raw

6. Save the file, then load it into Logisim.

On the next page, there is a graphical overview of the procedure.

Questions for Assignment 5

These questions are useful to prepare yourself for the oral examination. However, at the
examination, the teacher may choose to ask questions that are not on this list.

• Show and explain how the factorial function works for arbitrary input value n (the teaching
assistant will give you the value that you should test). Be prepared so that you know how to
change the input value easily.

• Explain how you implemented unconditional jumps in your program.

IS1200/IS1500 – Lab 4 – Processor Design page 8

Assignment 6: Surprise assignment

You will get a surprise assignment at the lab session. We will hand out the surprise assignment
directly at the beginning of the lab, presupposed that you have finished all the other assignments. If
you have not received the surprise assignment, please ask the teaching assistant for the assignment
paper.

IS1200/IS1500 – Lab 4 – Processor Design page 9

IS1200/IS1500 – Lab 4 – Processor Design page 10

Revision history

2016-08-24: Added a requirement to Assignment 1: the Subtractor component must not be used.

2016-01-14: First published version for Fall, 2016.

2017-01-17: Added instructions on how to move machine code from MARS into Logisim.

	IS1200/IS1500
	Lab 4 – Processor Design 2017-01-17

	Introduction
	Preparations
	Software
	Resources and Reading Guidelines
	Examination

	Assignments
	Assignment 1: Arithmetic/Logical Unit (ALU)
	Assignment 2: Register File
	Assignment 3: Control Unit
	Assignment 4: Data path
	Assignment 5: Factorial Function in Assembler
	Assignment 6: Surprise assignment

