

1

Azure Apps Lab
MANUAL

Overview

Contoso Events is a SaaS provider with an online service for concerts, sporting and other event ticket

sales. They are redesigning their solution for scale with a microservices strategy and want to implement a

POC for the path that receives the most traffic: ticket ordering.

In this lab, you will construct and test an end-to-end POC for ticket ordering to demonstrate to Contoso

Events a PaaS deployment. You will create resources that include the following services:

1. Service Fabric

2. API Management

3. Function Apps

4. App Services (Web App)

5. Storage Queues

6. Cosmos DB (Documents)

7. Azure Active Directory B2C

Solution Architecture

Service Fabric

Web API
Stateless Service

Ticket Orders Service
Stateless Service

Ticket Order Actor
Stateless Service

API Gateway

Contoso Events Site
Web App

Azure AD B2C

Order Externalization

Storage Queue

Process Order Externalization
Azure Functions

Orders
Cosmos DB

swagger

2

Application Architecture

The agreed upon design with Contoso Events involves queuing ticket orders and executing them

asynchronously. A stateless Web API service receives the request and queues it to a stateful service. An

actor processes the request and persists the order in its state.

The design also calls for saving the state of the ticket order to a Cosmos DB collection for ad hoc queries.

Prerequisites

Prior to beginning the lab, download and install the following:

• Visual Studio Code

• Azure Service Fabric SDK

• Azure PowerShell 5.0.0 or later (if you have Windows 10, you have it)

• A browser (such as Chrome or Firefox)

(Internet Explorer does not work with Swagger commands)

Exercise 1: Setup

Duration: 15 minutes (10 minutes or more provisioning time)

Contoso Events has provided their app binaries for you. They have asked you to use this for deploying the

Ticket Order POC solution with Service Fabric.

Because this is a “born in Azure” solution, it depends on many Azure resources. You will be guided

through creating those resources before you deploy things. The following figure illustrates the resource

group and resources you will create.

Resource Group

Service Fabric Cluster

API Management

Web App (App Services)
Storage Account

(Queues)

Cosmos DB
(Documents)

Function App

Azure AD B2C

Task 1: Download and extract application bits

1. Download the zip file: https://tinyurl.com/y9bwthyw

2. Unzip the contents to your desktop to a folder you can use for the remainder of the lab.

https://code.visualstudio.com/download
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://tinyurl.com/y9bwthyw

3

Task 2: Deploy Resources

ARM templates have been created in advance for you stand up all that’s needed in the lab. This simulates

what a real-world deployment of Contoso Events cloud resources and demonstrates how an application

can be quickly and easily deployed to Azure to create full environments in minutes.

During the deployment, you will create an Azure Resource Group that will hold all items for this exercise.

 Important: This approach will make it easier to clean up later. Because you will want to include the Service Fabric Cluster that

 you create in the same Resource Group as other resources you create during the remaining exercises.

In this deployment, the following resources will be created:

• Service Fabric Cluster (5 nodes)

• API Management account

• Function App

• Web App (with App Service Plan)

• Storage Account (for Storage Queues)

• Cosmos DB Account

 NOTE: You will manually create an Azure Active Directory B2C tenant for authentication.

 IMPORTANT: Most Azure resources require unique names. You will be asked to provide

 an alias during resource deployment. This will be used as the suffix to guarantee

 uniqueness.

Tasks to complete

8. In your browser, navigate to the Azure Portal https://portal.azure.com

9. Next, in a new browser tab, navigate to the ARM template:

https://github.com/kevinhillinger/azure-apps-lab/tree/master/deploy

10. Click on the Deploy to Azure button:

11. Select the subscription you will use for all the steps during the lab.

12. Create a new Resource Group named contoso-events

13. Select West US 2 for the Resource Group Location

14. Fill in your company Alias (replacing <your_alias> in the text box)

15. Fill in your email address for the Api Admin Email

16. Leave the admin username and password as-is. The values are:

 appsadmin | c0ntosoEven+s

Your screen should look similar to the following screenshot:

https://portal.azure.com/
https://github.com/kevinhillinger/azure-apps-lab/tree/master/deploy

4

17. Check the “I agree to the terms and conditions stated above” (you may need to scroll down)

18. Check Pin to Dashboard

19. Click Purchase

Exit criteria

NOTE: the deployment may take up to 10 minutes, so you may proceed to the next task, and return later

to verify.

• Your Resource Group contoso-events is listed in the Azure Portal.

5

• Click on contoso-events in the list

• Then, click on Deployments

• Confirm that the deployment is successful

20. Verify the status of each deployment as Succeeded (as shown above)

Task 3: Cosmos DB

In this section, you will setup the Cosmos DB database and collections that will be used to store events

and collect ticket orders.

 TIP: The deployment of the Cosmos DB account must be finished before completing this task. Please verify the

 account is available (see task 2).

Tasks to complete

1. Azure Portal, navigate to the contoso-events resource group and choose the Cosmos DB

resource that was created.

6

2. Once in the account, choose Overview and +Add Collection

3. Enter “TicketManager” for the Database Id

4. Enter Orders for the Collection Id

5. Storage capacity set to Fixed (10GB)

6. Select Fixed for Storage Capacity, and leave the keys blank (don’t add a unique key)

7

7. Click OK

8. Repeat steps 2-7. This time, add a collection called “Events”, and choose Use existing and

choose the TicketManager database

Exit criteria

• You will be able to see that the two collections exist in the new database.

• Confirm in the Overview area of the Cosmos DB account. It should look like below:

Task 4: Azure Active Directory B2C

In this section you will provision an Azure Active Directory B2C tenant that demonstrates cloud-based

identity to Contoso Events. Rather than using their existing on premises SQL Server solution directly to

IaaS, Azure AD B2C will handle identity.

Tasks to complete

1. Click the + New in the Azure Portal.

8

2. Search “Azure Active Directory B2C” in the search and select Create a new Azure AD B2C Tenant

3. In the next dialog, type “Contoso Events (Azure Apps)” for the Name

4. Next, enter “contosoevents” + [your_alias] for the initial domain name (must be unique)

5. Choose United States for the region if not already selected.

6. Click Create

Exit criteria

• Confirm the tenant is provisioned by refreshing the Portal and expanding the user profile menu at the

top right. The tenant should be in the DIRECTORY list.

9

Exercise 2: Placing ticket orders

Duration: 30 minutes

This exercise will guide you through adding configurations that will light up the actor code that

externalizes its state to a storage queue. In addition, you will set up the Function App to read from the

queue and persist an Order to the Orders collection of the Cosmos DB TicketManager database.

You will be setting the keys’ values in configuration to light up this feature.

Task 1: Set up the Ticket Order Sync queue

The purpose of this task is to complete features of the Contoso Events application so that placing an

order commits it to the backend data store. You will update the configuration settings to correctly

reference the Azure resources you previously created.

Update Service Fabric settings

1. Open Visual Studio Code

2. Choose File → Open Folder…

3. Locate the folder you unzipped the application in Exercise 1, Task 1

4. Open Cloud.xml from the Service Fabric\ApplicationParameters folder

5. You will be updating the configuration parameters for the following items with your own:

 <Parameter Name="DataStorageEndpointUri" Value="" />
 <Parameter Name="DataStoragePrimaryKey" Value="" />
 <Parameter Name="DataStorageDatabaseName" Value="TicketManager" />
 <Parameter Name="DataStorageEventsCollectionName" Value="Events" />
 <Parameter Name="DataStorageOrdersCollectionName" Value="Orders" />
 <Parameter Name="StorageConnectionString" Value="" />
 <Parameter Name="ExternalizationQueueName" Value="ticketorders-externalization" />
 <Parameter Name="SimulationQueueName" Value="ticketorders-simulation-requests" />

Cosmos DB settings

1. From the Azure Portal, browse to the Cosmos DB you created previously

2. Set DataStorageEndpointUri to the Cosmos DB endpoint URI (found in Overview).

3. Set DataStoragePrimaryKey to the Cosmos DB Primary Key. (The key can be retrieved by going

to the account and selecting Keys in the menu)

Storage settings

1. From the Azure Portal, browse to the Storage account that was created. It should be in the format

of “contoso” + [3 random characters] + [your alias].

2. Under SETTINGS, select Keys

3. Copy the Connection String value for key1

10

4. Set the value for the StorageConnectionString with the value you copied from the portal.

Task 2: Publish the Service Fabric application

In this task you will deploy the application to the hosted Service Fabric Cluster.

Update publish profile settings

1. From with Visual Studio Code, open ServiceFabric\PublishProfiles\Cloud.xml

2. Update ConnectionEndpoint attribute value

3. Replace [CLUSTER_NAME] and [LOCATION] with the values from your Service Fabric cluster

Tasks to complete

1. From Windows Explorer, open the folder you unzipped in Setup, Task 1.

2. Locate the publish-servicefabric.ps1 file under ServiceFabric\Scripts.

NOTE: Because this file came from the Internet, you need to unblock it.

11

3. Right click the Deploy-FabricApplication.ps1 and select Properties. Then click the Unblock

checkbox and click OK:

4. Go back to the top level directory for the lab (Azure Apps – Lab Solution). You can click the arrow

in the Windows Explorer twice:

5. Launch PowerShell as Administrator from this location:

12

6. Type the following into the terminal:

NOTE: Be sure to include the extra “.” Dot at the beginning, otherwise the script will fail!

7. Output should be shown similar to the below screenshot:

8. The process can take a few minutes. Once it’s succeeded, proceed to the next task.

Task 3: Service Fabric Explorer

In this task you will browse to the Service Fabric Explorer and view the cluster.

13

Tasks to complete

1. In a new browser tab, navigate to the Service Fabric Explorer for the cluster at:

http://<clusterName>.<location>.cloudapp.azure.com:19080/Explorer/index.html.

7. Observe that the ContosoEventsApp is deployed with the following services:

a. fabric:/ContosoEventsApp/EventActorService

b. fabric:/ContosoEventsApp/TicketOrderActorService

c. fabric:/ContosoEventsApp/TicketOrderService

d. fabric:/ContosoEventsApp/WebApi

Exit criteria

• If you are able to access the Service Fabric Explorer, your environment is in a good state to

continue.

Task 4: Set up the Functions App

The purpose of this task is to create a function that will be triggered by the externalization queue we

created for the app. Each order that is deposited to the queue by the TicketOrderActor type will trigger

the ProcessOrderExternalizations function. The function then persists the order to the Orders collection of

the Cosmos DB instance.

In this task you will also create a second function that will be used to generate load against the system at

runtime. This will be used later for Exercise 5 where the system will be load tested.

 NOTE: Exercise 5 is a bonus exercise and is optional if you have time remaining.

Overall, the Contoso Events Ticketing subsystem has the following queue and function architecture and

this should help visualize how the queues and functions are related:

14

Tasks to complete

1. From the Azure Portal, access the Function App you created previously.

2. Expand the Function App, and click on the ‘’+‘’ icon to the right of Functions or click on New

Function.

3. Under “Choose a language”, click on create your own custom function

4. When you are prompted, enter “queue” in the search, and select the Queue Trigger

15

5. click on JavaScript.

6. Input “ProcessOrderExternalizations” for the Name

7. Input the externalization queue name, “ticketorders-externalization” for the Queue name.

8. Select the Storage account you created previously by clicking on new. This is where the queue will

be located.

9. Click Create

16

10. The screen should look similar to the below screenshot:

11. Click the Integrate link on the left.

12. For the Trigger set the Message parameter name to “orderItem”.

13. Click Save (IMPORTANT or the message parameter name will not be saved!).

17

14. Click + New Output

15. Click Azure Cosmos DB and click Select.

 Now you will supply parameters for the Cosmos DB output.

16. Enter the Document parameter name ”orderDocument”.

17. For Collection Name enter “Orders”.

18. For the database enter “TicketManager”.

19. For the Cosmos DB account connection, click on new and choose the account created earlier to

establish a connection to the account

18

20. Click Save.

21. Select the function in the menu (the name of the function with an f icon).

22. Using Visual Studio Code, locate ProcessTicketOrderExternalizationEvent.js in the \FunctionApp

folder. Copy and paste this code into the Code window.

module.exports = function (context, orderItem) {

 context.log('Ticket Order received: ', orderItem);

 context.bindings.orderDocument = orderItem;

 context.done();

};

23. Click Save.

19

24. From the Logs section note that the function compiled successfully.

Note: Because the ProcessOrdersExternalization function is set up, you will be able to process an

order and see that it is saved to the Orders collection of Cosmos DB.

25. Click the + on the Functions.

26. Now you will create another function for the load simulation you will use later. You will follow the

same steps in this section with the following differences:

a. From the templates scenario enable Experimental Language Support:

b. Select the template QueueTrigger – PowerShell (instead of JavaScript)

c. Set the function name to “ProcessSimulationRequests”.

d. Set the queue name to “ticketorders-simulation-requests”.

e. Set the Storage account connection to the same storage account as before

f. Click Create

20

g. Click on the Integrate link for the function.

h. Choose the message parameter name “simulationRequest”.

i. In this case there is no need to set up an output so you can skip this step.

j. Click Save.

k. Click on the Function link on the left to return to the code screen.

l. From Visual Studio Code, find the file ProcessOrderTicketSimulationRequest.ps1 in the

FunctionApp folder.

m. Copy the contents of this file into the code text area and click Save.

n. The final setting to update is the API Management key. You will return to this when you

set up the API Management service.

Exit criteria

• If each function successfully compiled as you went through these steps, you are ready to proceed

to the next exercise. Review and confirm you matched the case on function and parameter names

above (everything is case-sensitive).

Task 5: Test an order from the cluster

In this task you will test an order against your application deployed to the hosted Service Fabric Cluster.

Tasks to complete

1. From the browser, navigate to the Swagger endpoint for the Web API exposed by the hosted

Service Fabric cluster using port 8082. The URL is made of:

http://<cluster-name>.<location>.cloudapp.azure.com:8082/swagger/ui/index

For example:

http://contosoeventssf-kehilli.eastus.cloudapp.azure.com:8082/swagger/ui/index

http://contosoeventssf-kehilli.eastus.cloudapp.azure.com:8082/swagger/ui/index

21

2. Expand the Orders API and expand the POST /api/orders API operation as shown in the following

screen shot.

22

3. Copy and paste the following JSON to in the parameter text area, then click Try it out.

 {

 "UserName": "johnsmith",

 "Email": "john.smith@gmail.com",

 "Tag": "Manual",

 "EventId": "EVENT1-ID-00001",

 "PaymentProcessorTokenId": "YYYTT6565661652612516125",

 "Tickets": 3

 }

4. This should return successfully with HTTP 200. The response includes a unique order id that

clients could use to track the order.

23

Exit criteria

• Verify that the order has persisted to the Orders collection. From the Azure Portal, find your

Cosmos DB account previously created.

• Click Data Explorer in the menu, then Documents

• Under id, click on an order document to view the contents to the right.

24

Task 6: Test order data sync

In this task you will test the ticket order processing backend to validate that orders are queued and

processed by the TicketOrderProcessing function – ultimately saving the order to the Orders collection of

the Cosmos DB instance.

Tasks to complete

1. From the Azure Portal, navigate to the Function App.

2. Select the ProcessOrderExternalizations function and expand Logs section below the code

textarea.

3. Repeat the necessary steps to “Test an order from the cluster” to submit an order.

4. As orders are processed you will see activity in the function logs.

25

5. Note the order id of the function just processed. Use this information to verify the order is

persisted to the Orders collection.

6. From the Azure Portal you can now confirm in the CosmosDB account’s Data Explorer that the

orders are indeed being stored

Exit criteria

• If the Cosmos DB query returns the order id specified, the order has been fully processed and

persisted

Exercise 3: API Management

Duration: 15 minutes

26

In this exercise you will configure the API Management service.

Task 1: Import API

In this task you will import the Web API description to your API Management service to create an

endpoint.

Tasks to complete

1. First, copy URL shown in the Swagger endpoint of the Service Fabric deployed Web API.

2. Next, from the Azure Portal, select the API Management service area

3. Click Publisher portal

4. Select APIs

5. Select OpenAPI specification

27

6. Paste the Swagger URL into the OpenAPI specification field

7. Display Name is “Events API”

8. Set the Web API URL suffix to “events” as shown in the following screen shot. Take note of what

the URL will be as shown in the screenshot, such as https://contosoeventsSUFFIX.azure-

api.net/events/. This is the URL you will use in your web site configuration in the next exercise.

9. Include product Unlimited.

https://contosoeventssuffix.azure-api.net/events
https://contosoeventssuffix.azure-api.net/events

28

Note: You would typically create a new product for each environment in a scenario like this one. For

example Development, Testing, Acceptance and Production (DTAP) and issue a key for your internal

application usage for each environment, managed accordingly.

10. Click Create

Exit criteria

• You will see your API listed under APIs.

29

Task 2: Retrieve the user subscription key

In this task you will retrieve the subscription key for the client applications to call the new API

Management endpoint.

Tasks to complete

1. From the API Management dashboard in the portal, click the Developer portal menu item to

navigate to the Developer portal as an Administrator with rights to complete the following steps.

2. Click the Administrator menu and then click Profile.

3. Click Show for the Primary Key of the Unlimited subscription to reveal it.

Note: You would typically create a new product subscription for each environment in a scenario like this one.

For example Development, Testing, Acceptance and Production (DTAP) and issue a key for your internal

application usage for each environment, managed accordingly.

4. Save this key to a text file or whatever is easiest for you. You will be using it in the next steps.

30

Exit criteria

• You now have API Management application key you will need to configure the Function App

settings for order load test simulation.

Task 3: Configure the Function App with the API Management key

In this task you will provide the API Management key in a setting for the Function App so it can reach the

Web API through the API Management service.

Tasks to complete

1. From the Azure Portal, browse to the Function App you created

2. You will create an application setting for the function to use the API Management subscription

key.

3. Select Platform features

4. Select Application settings.

5. Scroll down and click on + Add new setting

6. Enter “contosoeventsapimgrkey” for the name

7. For the value, place the key you saved for API Management.

8. Click Save (you may need to scroll back up to the top)

31

Exit criteria

• You will be able to issue a load test from the website in Exercise 5 and see that orders have been

processed through the function – because it will have successfully called the API and you will see

results in the load test status page.

Exercise 4: Configure and publish the web application

Duration: 15 minutes

In this exercise you will configure the website to communicate with the API Management service, deploy

the application and create an order.

Task 1: Configure the Azure Active Directory B2C

In this task you will set up the Azure Active Directory B2C directory for your application to integrate with

it. Make sure you select the tenant under the DIRECTORY list in your profile’s drop down menu (top right

of the portal) before proceeding.

Tasks to complete

1. From the Azure Portal browse to Azure B2C.

32

2. Select it to navigate to the Azure AD B2C Settings blade.

3. You should see the domain name you created earlier for your B2C directory.

4. If your B2C directory is not linked to a subscription, the below notice will appear:

5. Click on the yellow notice, and follow the instructions to link to your subscription

The linking screen will look similar to the below screen:

33

6. (Once completed with the subscription linking if required, switch the directory back to the B2C

directory in the portal)

7. From the Settings blade, select Applications.

34

8. Click + Add.

9. Enter the application name to “Contoso Events - Ticketing".

10. Select Yes for include Web App / Web API.

11. Select Yes for Allow implicit flow.

12. Add a reply URL for the hosted Web App as you named it. For example:

https://contosoeventsweb-ALIAS.azurewebsites.net/

 Note: Make sure to include the closing “/” (slash) or the configuration will not work, and you

 MUST use HTTPS, not HTTP in the URL.

13. Click Create

35

14. In the Settings blade, select Identity providers.

15. Select Username for Local accounts.

16. Click Save.

36

17. In the Settings blade, select Sign-up policies.

18. Click + Add.

19. Set the policy name to “signup”.

37

20. Select Identity providers.

21. Select User ID signup.

22. Click OK.

38

23. Select Sign-up attributes.

24. Select Email Address, Given Name and Surname.

25. Click OK

39

26. Select Application Claims.

27. Select Email Addresses, Given Name, Surname and User’s Object ID.

28. Click OK.

40

29. Click Create.

30. In the Settings blade, select Sign-in policies.

31. Click + Add.

32. Set the policy name to “signin”.

41

33. Select Identity providers.

34. Select Local Account Signin.

35. Click OK.

42

36. Select Application Claims.

37. Select Email Addresses, Given Name, Surname and User’s Object ID.

38. Click OK

43

39. Click Create.

40. In the Settings blade, select Profile editing policies.

41. Click + Add.

42. Set the policy name to “profileedit”.

44

43. Select Identity providers.

44. Select Local Account Signin.

45. Click OK.

45

46. Select Profile attributes.

47. Select Given Name and Surname.

48. Click OK.

46

49. Select Application Claims.

50. Select Email Addresses, Given Name, Surname and User’s Object ID.

51. Click OK.

47

52. Click Create.

53. In the Settings blade, select Applications.

54. Select the created app.

55. Copy and paste the Application ID (to notepad for later) as you will need this for the next Task.

56. In the Settings blade, select All Policies.

48

Exit criteria

• Your B2C directory is ready for use. You should see three policies and the B2C instance. Take note

of the names for these policies with the prefix ‘B2C_1_’ as these names will be confirmed in the

web app’s settings.

49

Task 2: Configure the Web App settings

In this task you will update configuration settings to communicate with the API Management service. You

will be guided through the instructions to find the information necessary to populate the configuration

settings.

Tasks to complete

1. Within Visual Studio Code, expand the \Web App folder and open Web.config. You will update

these app settings in this file:

 <add key="apimng:BaseUrl" value="[REPLACE]" />

 <add key="apimng:SubscriptionKey" value="[REPLACE]" />

API Management

1. For the apimng:BaseUrl enter the base URL of the API you created in API Management such as

https://contosoeventsSUFFIX.azure-api.net/events/

 Note: Make sure to include the trailing “/” (slash)

2. For the apimng:SubscriptionKey enter the subscription key you revealed in API Management

developer portal and saved earlier

Azure Active Directory B2C

8. Within the same Web.config file, you will update the following settings:

<add key="ida:Tenant" value="[your_domain].onmicrosoft.com" />

<add key="ida:ClientId" value="[application_id]" />

<add key="ida:RedirectUri" value="https://[webapp_host]/" />

9. Replace [your_domain] in ida:Tenant with the value you entered earlier in the B2C tenant

creation task.

10. Take the Application ID you saved earlier, and paste it in as the value for ida:ClientId

11. Lastly, replace the value in ida:RedirectUri with the full URL of the Web App (which is also the

Reply URL set in the B2C Application settings. (be sure to use HTTPS).

Exit criteria

• You should have values for the API Management in app settings.

• The Azure AD B2C settings were applied in app settings.

https://contosoeventssuffix.azure-api.net/events/

50

Task 3: Publish the web app

In this task you will publish the Web application to the Web App instance that was created in App

Services.

Tasks to complete

12. In the Azure Portal menu, click on App Services

13. Next, download the publish profile to the folder that you unzipped to the desktop, and rename it

“site.PublishSettings”

 NOTE: the file should be in the same folder as “Service Fabric”, “Web App”, etc.

51

14. Locate the publish-webapp.ps1 file within your lab solution. Unblock the file by right-clicking on

the file, selecting properties and then clicking the Unblock checkbox:

15. Open PowerShell (or within Visual Studio Code), and execute the deployment script for the Web

App by typing the following:

 .\publish-webapp.ps1

16. Open PowerShell (or within Visual Studio Code), and execute the deployment script for the Web

App.

Exit criteria

• When publishing is complete, launch a browser, and navigate to the deployed Web app home

page.

Task 4: Running the Web App and creating an order

In this task you will test the Web application calls to API Management by creating an order through the

UI.

52

Tasks to complete

1. Using a browser, launch the website (use HTTPS).

2. When the application launches you will see the website home page as shown in the following

screen shot.

3. Note the event presented on the home page has an Order Tickets Now button!

4. Create a new account to proceed, and click Sign up

53

5. Once you have an account, Click Order Tickets now to place an order.

6. Choose the number of tickets for the order, then scroll down to see the billing fields.

7. Enter the empty fields with an email, first name and last name.

8. Click Place Order

54

Exit criteria

• Once the order is queued for processing, you will be redirected to a results page as shown in the

following screen shot. It should indicate Success and show you the order id that was queued as

confirmation.

Exercise 5: Load testing (bonus)

Duration: 15 minutes

If you’re done early, this is a bonus task that is optional

In this exercise you will perform a load tests against the Service Fabric Cluster and observe how messages

are distributed across partitions.

Task 1: Simulate a 50 order request

In this task you will simulate a load test of 50 orders against the cluster using the Web application to

submit the load test and monitor partitions.

Tasks to complete

1. Navigate to the published Web application at a URL like https://contosoeventsweb-

SUFFIX.azurewebsites.net.

2. Click the Load Test menu. Optionally give a new name to the tag for tracking. Set load to 50

requests. Click Start Load Test.

3. Navigate to the Load Test Status menu. It shows you the partitions that were created for the ticket

order service (reliable queue).

https://contosoeventsweb-suffix.azurewebsites.net/
https://contosoeventsweb-suffix.azurewebsites.net/

55

4. While the load test is running, refresh this page and watch the changes to the Items in queue

across partitions. It will fill while processing completes and then eventually drain.

Exit criteria

• After a few minutes you will see that the queues are drained and the orders were processed.

Note: If you still have more time, run this again with additional iterations progressively such as 100, 150,

200, 250. Or, take a look at Exercise 9 which takes you through a much more comprehensive load test and

partition analysis process using the API endpoint.

Exercise 6: Cleanup

Duration: 5 minutes

In this exercise, attendees will de-provision any Azure resources that were created in support of the lab.

Tasks to complete

1. Go to the Azure Portal

2. Find the first Resource Group you created for this exercise.

17.

3. Select the Resource Group to delete.

4. Click the Delete menu from the resource blade.

5. In the delete confirmation blade, type the Resource Group name

6. click Delete. You will be able to see all of the resources allocated to the group before you confirm.

56

Exit criteria

• After all of the deletion tasks are complete, the resources will no longer be listed in the Azure

Portal or the Management Portal. This may take about 10 minutes. You can optionally wait to see

a confirmation. Otherwise, you are done!

