
raymon
文本框
cmake学习资料汇总

https://cgold.readthedocs.io/en/latest/overview.html

1.	 Introduction
2.	 Tutorial	1:	Let's	start	with	CMake
3.	 Build	system
4.	 Compilation	and	properties
5.	 Commands	and	variables
6.	 Tutorial	2:	Creating	a	simple	project	-	SimpleCal
7.	 Modules	and	packages
8.	 Tutorial	3:	Creating	a	project	with	CMake,	Qt5	and	OpenCV
9.	 Cross	Compiling
10.	 Tutorial	4:	Compiling	a	project	with	CMake	in	VS	2012
11.	 ctest
12.	 Tutorial	5:	Testing	with	CMake	and	Google	Testing	Framework
13.	 cpack
14.	 Tutorial	6:	Packaging	SimpleCal
15.	 CMake's	development
16.	 Tutorial	7:	Create	a	simple	plugin	for	CMake
17.	 Tutorial	8:	Using	CMake	with	Eclipse
18.	 Conclusion

Table	of	Contents

Recently,	I've	created	a	simple	library	in	C++.	I	want	to	use	CMake	as	the	building	system	so	it’s	the	time	to	learn	a	new
tool.

Introduction
Tutorial	1:	Let's	start	with	CMake
Build	system
Compilation	and	properties
Commands	and	variables
Tutorial	2:	Creating	a	simple	project	-	SimpleCal
Modules	and	packages
Tutorial	3:	Creating	a	project	with	CMake,	Qt5	and	OpenCV
Cross	Compiling
Tutorial	4:	Compiling	a	project	with	CMake	in	VS	2012
ctest
Tutorial	5:	Testing	with	CMake	and	Google	Testing	Framework
cpack
Tutorial	6:	Packaging	SimpleCal
CMake's	development
Tutorial	7:	Create	a	simple	plugin	for	CMake
Tutorial	8:	Using	CMake	with	Eclipse
Conclusion

Introduction

Summary

https://github.com/marker68/simple-k-means

From	the	CMake’s	website:

CMake	is	an	extensible,	open-source	system	that	manages	the	build	process	in	an	operating	system	and	in	a
compiler-independent	manner.	Unlike	many	cross-platform	systems,	CMake	is	designed	to	be	used	in	conjunction
with	the	native	build	environment.	Simple	configuration	files	placed	in	each	source	directory	(called	CMakeLists.txt
files)	are	used	to	generate	standard	build	files	(e.g.,	makefiles	on	Unix	and	projects/workspaces	in	Windows	MSVC)
which	are	used	in	the	usual	way.	CMake	can	generate	a	native	build	environment	that	will	compile	source	code,
create	libraries,	generate	wrappers	and	build	executables	in	arbitrary	combinations.	CMake	supports	in-place	and
out-of-place	builds,	and	can	therefore	support	multiple	builds	from	a	single	source	tree.	CMake	also	supports	static
and	dynamic	library	builds.	Another	nice	feature	of	CMake	is	that	it	generates	a	cache	file	that	is	designed	to	be	used
with	a	graphical	editor.	For	example,	when	CMake	runs,	it	locates	include	files,	libraries,	and	executables,	and	may
encounter	optional	build	directives.	This	information	is	gathered	into	the	cache,	which	may	be	changed	by	the	user
prior	to	the	generation	of	the	native	build	files.

In	a	short	conclusion,	CMake	help	you	to	manage	and	build	your	source	codes	effectively.	If	you	have	some	troubles	with
gcc	and	Makefile,	just	move	out	to	CMake.

To	install	CMake	in	Linux,	just	simply	do	on	your	terminal

#	For	Ubuntu

$	sudo	apt-get	install	cmake

#	For	Redhat

$	yum	install	cmake

#	For	Mac	OS	X	with	Macports

$	sudo	port	install	cmake

So	I	assume	that	you	know	C++	and	what	the	Makefile	is.	CMake	will	do	the	job	of	Makefile	from	now.	Let	start	with	a
simple	C++	program.

//	test.cpp

#include	<iostream>

using	namespace	std;

int	main(void)	{

					cout	<<	"Hello	World"	<<	endl;

					return(0);

}

Chapter	1:	Let's	start	with	CMake

1.	What	is	CMake?

2.	Installation

3.	Quick	start

raymon
高亮

And	you	saved	it	as		test.cpp	,	then	to	compile	it	in	CMake	you	should	create	a	txt	file	named		CMakeLists.txt	

#	Specify	the	minimum	version	for	CMake

cmake_minimum_required(VERSION	2.8)

#	Project's	name

project(hello)

#	Set	the	output	folder	where	your	program	will	be	created

set(CMAKE_BINARY_DIR	${CMAKE_SOURCE_DIR}/bin)

set(EXECUTABLE_OUTPUT_PATH	${CMAKE_BINARY_DIR})

set(LIBRARY_OUTPUT_PATH	${CMAKE_BINARY_DIR})

#	The	following	folder	will	be	included

include_directories("${PROJECT_SOURCE_DIR}")

There	is	a	list	of	CMake’s	global	varibales.	You	should	know	them.

CMAKE_BINARY_DIR

if	you	are	building	in-source,	this	is	the	same	as		CMAKE_SOURCE_DIR	,	otherwise	this	is	the	top	level	directory	of	your	build	tree

CMAKE_SOURCE_DIR

this	is	the	directory,	from	which	cmake	was	started,	i.e.	the	top	level	source	directory

EXECUTABLE_OUTPUT_PATH

set	this	variable	to	specify	a	common	place	where	CMake	should	put	all	executable	files	(instead	of
	CMAKE_CURRENT_BINARY_DIR)

SET(EXECUTABLE_OUTPUT_PATH	${PROJECT_BINARY_DIR}/bin)

LIBRARY_OUTPUT_PATH

set	this	variable	to	specify	a	common	place	where	CMake	should	put	all	libraries	(instead	of		CMAKE_CURRENT_BINARY_DIR)

SET(LIBRARY_OUTPUT_PATH	${PROJECT_BINARY_DIR}/lib)

PROJECT_NAME

the	name	of	the	project	set	by		PROJECT()		command.

PROJECT_SOURCE_DIR

contains	the	full	path	to	the	root	of	your	project	source	directory,	i.e.	to	the	nearest	directory	where		CMakeLists.txt		contains
the	PROJECT()	command	Now,	you	have	to	compile	the		test.cpp	.	The	way	to	do	this	task	is	too	simple.	Add	the	following
line	into	your		CMakeLists.txt	:

add_executable(hello	${PROJECT_SOURCE_DIR}/test.cpp)

Now,	let	build	the	source	code	with	CMake.	At	this	point,	you	will	have	the	folder	with	the	following	files:

$	ls

test.cpp			CMakeLists.txt

raymon
高亮

raymon
高亮

raymon
高亮

raymon
文本框
这个难道在整个编译的流程中永远保持不变吗

raymon
文本框
包含了PROJECT命令的CMakeLists.txt文件所在的目录是什么。。。。。？

所以应该是PROJECT_SOURCE_DIR 目录

raymon
文本框
所以PROJECT目录的作用应该就是确定 PROJECT_SOURCE_DIR 目录

raymon
高亮

To	build	your	project		hello	,	just	do

$	cmake	-H.	-Bbuild

$	cmake	--build	build	--	-j3

The	first	command	will	creates	CMake	configuration	files	inside	folder		build		and	the	second	one	will	generate	the	output
program	hello	in		bin		folder.	You	should	test	your	output:

$./bin/hello

Hello	World

Too	simple,	right?

The	source	code	of	this	sample	project	canbe	found	at	CMakeLists.txt	and	test.cpp

Chapter	2:	CMake's	build	system

	Introduction
	Tutorial 1: Let's start with CMake
	Build system

