
BioPype: A crash course in bioinformatics
and custom pipelines

Ethan Gniot

May 2018

Todo list

Still need to add information about the inflammatory bowel disease
dataset . 8

Make URLs footnotes instead of appendix entries 8

Fix bibliography entries in this paragraph and in general. They’re not
correctly referencing even though bib file has entries. 8

Add further software that you end up using (e.g., USEARCH). ALSO,
make sure to update the section that mentions installing packages
if you do so. 13

add 3rd column to table with link to documentation/download source 13

Write a blurb explaining the benefits of using a virtual environment. . 14

Link to resource for further reading on virtual environments 14

Write blurb about what packages are. 15

Link to resource for further reading about packages. 15

Solve the issue with failing to center figures when they’re on their own
page . 16

Talk about setting up the sra-tools workspace (https://trace.ncbi.
nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=std) 16

PYPIPER IS ONLY COMPATIBLEWITH MAC AND LINUX. Start
by coding with just subprocess module commands. If the scripts
work on Windows computers, then forget about using pypiper.
But if the subprocess scripts don’t work on windows, then we’ll
be developing exclusively for Mac anyways, so you could use
pypiper without any worries. In that case, talk about installing
pypiper here. OTHERWISE, delete this section. 16

show image of what the prompt looks like when it’s done initializing. . 16

Reference the figure pypiper-already-installed 18

Figure: pypiper-already-installed . 18

reference figure pypiper-wrong-location 18

Figure: pypiper-wrong-location . 18

Talk about choosing between PyCharm and other options 19

(Talk about putting all the tools in the same path/directory) 19

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=std
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=std

*****Show the user what the result of the commands are. Right now
we show the commands, but not the results. e.g., when we run
a command to get a list of accession numbers, follow it up by
typing the command that just prints the list of numbers in the
terminal. Then the user can see what their results should look
like if they did everything correctly. 21

Figure: highlight where to click to download the runinfo table 22

Either shorten this margin-label, or put it in a footnote. 22

Give a specific name to the RunInfo Table file. People might get
confused if they needs to fill in the name of the file themselves. . 22

Find resource for explaining the .sra file format that we download from
the SRA Database . 33

2

Contents

1 Foreword 5

1.1 Goal . 5

1.2 How to use this book . 5

1.3 Pre-requisites . 6

2 Source Code 7

3 Sample Information 8

4 Setting the scene 9

5 Microbiome Analysis 10

5.1 The Gut Microbiome . 10

5.2 Relative Abundance Analysis 10

5.3 Metagenomics . 10

5.4 Python . 10

6 How to Find Tools 11

6.1 Finding Data . 11

6.2 Finding Software . 11

7 The Plan 12

8 Software and Set-up 13

8.1 Software . 13

8.2 Set-up and Install Dependencies 13

8.2.1 Install Anaconda . 13

8.2.2 Create a New Virtual Environment 14

8.2.3 Install packages . 15

8.2.4 Integrated Development Environment (IDE) 19

8.2.5 PATH . 19

8.3 Analysis Pipeline . 19

9 The Dataset 20

9.1 Download Dataset . 21

9.1.1 Creating the code . 24

9.2 Perform Quality Control on Dataset 24

10 Relative Abundance Analysis 25

11 Predict ORFs 26

12 Create Non-redundant Gene Sets 27

13 Align Genes 28

14 Get GenBank Accession Numbers 29

15 Find COG Functional Classes 30

16 New Analysis 31

A Web Links 32

B Referenced Studies 34

4

1 Foreword

1.1 Goal

This tutorial aims to improve your general understanding of bioinformatics
through several methods:

• Define technical terms commonly used in bioinformatics methods and
found in the literature.

• Provide a collection of various useful resources, including...

1. Resources for finding tools, data, and background information
that can help answer your research questions.

2. Resources that explain details about bioinformatics concepts and
techniques in beginner-friendly language.

• Demonstrate how Python can be used to answer your research ques-
tions by combining existing bioinformatics tools and automating repet-
itive or time-consuming tasks.

1.2 How to use this book

Most reference materials are consolidated in the appendices at the end of
the book. The main text of this book is written in the right-hand margin.
The left-hand margin contains special markers and important notes to the
reader. The book can be used as a self-paced tutorial with the help of the
markers described below.

——————————-

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas eu felis
sodales, interdum purus nec, interdum ex. Integer at nunc ultricies, tempusThis is a margin label. I will

write things here to further
explain the main text, define

jargon, etc.

nibh eget, egestas risus. Suspendisse aliquam, lorem at dictum accumsan,
dolor elit euismod velit, a gravida risus libero non felis. Donec a tortor
tempor, scelerisque sapien posuere, volutpat erat. Morbi in imperdiet velit.
Vivamus sagittis, massa sit amet venenatis euismod, elit eros aliquam diam,
molestie faucibus lectus nisi euismod erat. Nulla id dictum mi.

The arrow that points to this line is an "Attention" marker. It! →
will indicate key pieces of information that you should pay spe-
cial attention to. Curabitur egestas aliquam nisl, pharetra finibus mauris
placerat nec. Nam in diam risus. Nulla mollis purus quis feugiat tristique.
Vestibulum et sollicitudin ante, at sagittis ipsum. Nunc hendrerit ante sed
massa semper eleifend.

Ut ultrices eros velit, at faucibus ante rutrum eget. Pellentesque a molestie→ This kind of annotation
will reference appendix entries
that you can consult for more-
detailed information about the
main text.

diam. Curabitur mattis dui a risus lacinia fringilla. Phasellus porttitor elit
nec neque euismod, id ultrices elit lobortis. Aliquam molestie sem. Cur-
abitur sit amet urna faucibus, vulputate arcu sit amet, fermentum ipsum.
Nulla facilisi. Nam ullamcorper eget leo id malesuada.

1.3 Pre-requisites

Things to know

Computer requirements

• At least 4GB RAM bare minimum, 16GB RAM if possible (basically,
the more RAM, the better)

• Must be able to run macOS 10.12 Sierra, preferably macOS 10.13 High
Sierra

• At least 500GB storage (ideally several TB)

6

2 Source Code

(Source code can be found at github.com/EthanGniot/LU-microbiome)

3 Sample Information

Still need to add information about the
inflammatory bowel disease dataset
Still need to add information about the
inflammatory bowel disease dataset

While we are building the LU-microbiome pipeline, we will need a dataset
that we can use to test our pipeline throughout the process and make sure
it is working as intended. In order to do this, we must use a dataset that’s
already been analyzed so that we know what the results should look like.
When we test our pipeline, if our results match the results of the original
analysis, then we will know that our tool is working correctly.

There are several test datasets available to us for testing the feature that
analyzes the relative abundance of bacteria in the microbiota.

The first is the dataset used in both the QIIME “Illumina Overview Tuto-
rial" (A.1) and the QIIME 2 “Moving Pictures" tutorial (A.2) derived fromMake URLs footnotes instead of ap-

pendix entries
Make URLs footnotes instead of ap-
pendix entries

the Moving Pictures of the Human Microbiome study, where two human→ Caporaso et al, 2011 [?]
subjects collected daily samples from four body sites: the tongue, the palm
of the left hand, the palm of the right hand, and the gut (via fecal samples
obtained by swapping used toilet paper). These data were sequenced using
the barcoded amplicon sequencing protocol described in Global patterns of→ THIS CITATION NEEDS

TO BE FIXED [?] 16S rRNA diversity at a depth of millions of sequences per sample. A more
recent version of this protocol that can be used with the Illumina HiSeq
2000 and MiSeq can be found here.Fix bibliography entries in this para-

graph and in general. They’re not cor-
rectly referencing even though bib file
has entries.

Fix bibliography entries in this para-
graph and in general. They’re not cor-
rectly referencing even though bib file
has entries. (Here is information about the untested inflammatory bowel disease dataset

that we will analyze using the completed pipeline)

4 Setting the scene

("Here" is a hypothetical situation/research question that a student may
have. This is the research question that will be answered by the pipeline we
are creating.)

5 Microbiome Analysis

(This chapter will give some general background information about the top-
ics listed below. More-detailed information will be provided in later chapters
when we are actually creating the pipeline)

5.1 The Gut Microbiome

5.2 Relative Abundance Analysis

5.3 Metagenomics

5.4 Python

6 How to Find Tools

6.1 Finding Data

(Here is where we talk about various databases that users can use to find
general information, data files, study results, public datasets, etc.)

6.2 Finding Software

(Here is where we talk about ways/places that people can look for software
programs that can help answer their research question.)

7 The Plan

(Break down the sub-tasks required to accomplish the two main tasks: Rel-
ative abundance analysis and metagenomic analysis)

1. What is my research question?

2. Is there an existing tool that I can use to directly answer my research
question? If not, proceed to Step 3.

3. What is the step-by-step process required to answer my research ques-
tion?

4. What existing tools are available that can help me accomplish each of
these steps?

5. How do I write code that uses these tools to accomplish the steps?

8 Software and Set-up

8.1 Software

(Table of software name, name in PATH, version number, function of the
software for each one we’re gonna use)Add further software that you end up

using (e.g., USEARCH). ALSO, make
sure to update the section that mentions
installing packages if you do so.

Add further software that you end up
using (e.g., USEARCH). ALSO, make
sure to update the section that mentions
installing packages if you do so. add 3rd column to table with link to documentation/download source

Software name Version number
Anaconda 5.1
Biopython 1.70
BLAT 35
matplotlib 2.2.2
pandas 0.22.0
sra-tools 2.8.2
trim-galore 0.4.5

Table 8.1: Software used to create the tutorial pipeline.

8.2 Set-up and Install Dependencies

Before we write any code, there are several steps that must be completed
to prep your machine for the tasks we will be performing in this tutorial.
Without these prerequisites, the code you write during this tutorial will not
work correctly:

1. Install and open Anaconda

2. Create a new virtual environment

3. Install packages

8.2.1 Install Anaconda

The Anaconda program will play a key role in this tutorial. Anaconda is
essentially Python and a lot of scientific computing tools bundled together,
along with many popular add-ons to Python called packages. Downloading→ RESOURCE FOR LEARN-

ING ABOUT PYTHON PACK-
AGES

all of these tools individually can be difficult, as the quirks of one pack-
age may conflict with another when they’re installed manually; using Ana-
conda to install packages greatly simplifies the process because Anaconda
can smoothly handle all of the minute details that cause manual installations
to fail.

Install and Open:

1. Go to the download page for the Anaconda distribution at
https://www.anaconda.com/download.

https://www.anaconda.com/download

2. Select your preferred operating system from the Windows, macOS,
or Linux tabs, then select the Download option for the Python 3.6
version (Figure 8.1) and follow the installation instructions.

Figure 8.1: The Anaconda download options provided on the Anaconda
distribution website at https://www.anaconda.com/download

.

3. After installation is complete, open the application named "Anaconda-

Navigator" (the icon looks like). After a brief start-up period, you
should see the following window (Figure 8.2):

Figure 8.2: The window displayed to the user upon opening Anaconda-
Navigator.

8.2.2 Create a New Virtual Environment
Write a blurb explaining the benefits of using a virtual environment.

Link to resource for further reading on virtual environments

14

https://www.anaconda.com/download

Figure 8.3: The Environments window of the Anaconda-Navigator.

Make sure the computer has
an internet connection while

completing this section,
otherwise Anaconda will not

let you create a virtual
environment.

1. On the left side of the Anaconda-Navigator window, click on the tab
labeled Environments. (Figure 8.3)

2. Click the Create button on the bottom of the center panel. A new
window titled "Create new environment" will appear. (Figure 8.4)

3. Enter a Name for the environment. You may choose any name you
want, but for the sake of this tutorial we will name the new environ-
ment "BioPype".

4. Select the box labeled Python next to the Packages heading.

5. Choose the latest version of Python from the adjacent drop-down
menu (Python 3.6 is the most current version at the time of this writ-
ing, so we choose 3.6).

6. Click the Create button within the "Create new environment win-
dow".

8.2.3 Install packages

Write blurb about what packages are.

Link to resource for further reading about packages.

1. Change Anaconda’s current environment from the root environment
by selecting the BioPype tab in the middle panel of the Environments
window.

2. Click on the drop-down menu in the right-hand panel that says "In-
stalled" and change it to "All".

15

Figure 8.4: The "Create new environment" window.

3. In the "Search Packages" box, enter "biopython". The search should
return a package named "biopython". Select the checkbox to the left
of the name. (Figure 8.5)

• A pair of green and red boxes (reading "Apply" and "Clear",
respectively) will appear in the bottom-right of the window once
the package is selected. Do not click these just yet.Solve the issue with failing to center

figures when they’re on their own page
Solve the issue with failing to center
figures when they’re on their own page

4. Use the search bar to find and select the other packages listed in Ta-
ble 8.1. Once all packages have been selected, click the green "Apply"
button in the bottom right corner of the window, then select "Apply"
again within the "Install Packages" window that appears. (Figure 8.6)
Anaconda will now install the selected packages.

5.
Talk about setting up the sra-tools workspace (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=
toolkit_doc&f=std)

6.

PYPIPER IS ONLY COMPATIBLE WITH MAC AND LINUX. Start by coding with just sub-
process module commands. If the scripts work on Windows computers, then forget about using
pypiper. But if the subprocess scripts don’t work on windows, then we’ll be developing exclu-
sively for Mac anyways, so you could use pypiper without any worries. In that case, talk about
installing pypiper here. OTHERWISE, delete this section.

(a) Open a terminal window in the BioPype environment by clicking
the "play" button on the BioPype environment tab and then
selecting "Open Terminal".

(b) Wait for the terminal window to finish opening. You’ll know it’s
finished when you see

show image of what the prompt looks like when it’s done initializing.

(c) Install pypiper by typing the following at the command prompt,
followed by pressing return/enter:

pip i n s t a l l −−user pypiper

16

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=std
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=std

Figure 8.5: Searching for a package. When a package is selected, the check-
box next to the package’s name will be green.

Figure 8.6: The window displaying the packages and dependencies that will
be installed.

17

(d) Check that the package was installed correctly by executing the
following in the command prompt:

conda l i s t

This will generate a list of all the packages installed in the current
environment. If you see the pypiper package listed, the instal-
lation was successful and you may skip the rest of this section. If
not, proceed with the following steps.

(e) Execute the install command from step (c) again. This time, the
Terminal should return a message similar to the one displayed in

Reference the figure pypiper-already-installed

. The line that reads "Requirement already satisfied: pypiper
in" tells us the location where the package was (incorrectly)
installed.

pypiper-already-installed

Missing

figure

(f) Open a Terminal window, and navigate to the location indicated
by the message from the previous step. For my example, I need
to start at my home directory and walk through the following
folders: .local | lib | python3.6 | site-packages.

• The folders along the path to the pypiper installation may
be hidden. On a Mac, these hidden folders are preceded by
a "." If the path to the pypiper installation includes hidden
locations, reveal them by pressing "Cmd + Shift + ." in the
Finder window.

• Once you find the site-packages folder containing two pypiper
folders
reference figure pypiper-wrong-location

, copy those folders and their contents and paste them into
the /anaconda/envs/BioPype/lib/python3.6/site-packages
directory. The package should now be installed correctly.

18

pypiper-wrong-location

Missing

figure

8.2.4 Integrated Development Environment (IDE)

Talk about choosing between PyCharm and other options

8.2.5 PATH

(Talk about putting all the tools in the same path/directory)

8.3 Analysis Pipeline

(Use figures to illustrate the stages of the pipeline)

19

9 The Dataset

In the previous chapter, we set up our machine so that it has all of the software BioPype needs in
order to function.

In this chapter, we will use BioPype to download experimental data, and then prepare them
for analysis via a process called "quality control". We will also discuss how the BioPype functions
used in this workflow were created.

Recap

As described in Chapter 4, we want to investigate if there are any differences
in the gut microbiomes of younger patients with IBD compared to older
patients with IBD. Using the methods described in Chapter 6, we found a
study in the SRA database with sequencing data that are useful to us. The
webpage for the SRA Study is reproduced in Figure 9.1 and can be accessed
at https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP115494 .

Figure 9.1: The "SRA Study" webpage.

https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP115494

The dataset is reproduced in Figure 9.2 and can be found by clicking on
"Runs" under "Related SRA data" on the right side of the SRA Study web-
page, or by going to https://trace.ncbi.nlm.nih.gov/Traces/study/
?acc=SRP115494# .

Figure 9.2: The sequencing data collected by the Longitudinal Multi’omics of the Human Microbiome in
Inflammatory Bowel Disease study. (Note: the table’s columns extend beyond the right side of the page
because there are 36 metadata categories.)

To learn more about how to use these pages to find information about the
study and its methods, please refer to Chapter 6.

9.1 Download Dataset
*****Show the user what the result of the commands are. Right now we show the commands, but not the
results. e.g., when we run a command to get a list of accession numbers, follow it up by typing the com-
mand that just prints the list of numbers in the terminal. Then the user can see what their results should
look like if they did everything correctly.

1) Choose sample criteria

1. First, we must decide what criteria we will use to choose our experi-
mental samples.Note: The dataset has a

metadata category called
"BioSample." This is not to
be confused with the generic
term "samples", which in this
case are equivalent to one run

(i.e., one row) of the data
table.

Remember: our research question investigates the effects of age on the
gut microbiomes of inflammatory bowel disease patients. Looking at
the study abstract from Figure 9.1, we can see that the researchers
investigated two types of IBD: Crohn’s disease and ulcerative colitis.
So one of the metadata categories from the dataset (i.e., the columns
from the dataset in Figure 9.2) that we will use to select our samples

21

https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP115494#
https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP115494#

is the "host_disease" category. We will also select our samples based
on the "host_age" metadata.

2. Now we want to select our samples based on these categories.

Download the RunInfo Table file found on the study’s sample page.
The RunInfo table is the browser’s sample table in a .txt file format.

highlight where to click to download
the runinfo table

Missing

figure

3. Open the command line interface for your machine’s operating system.
On a mac, this is the Terminal application.

4. Navigate to your project’s folder and then confirm that you are in the
right location by using the the following commands at the command
prompt:

$ cd <path_to_your_project>
$ pwd

5. Activate the Python interpreter by typing the following into the com-
mand prompt:

$ python3

6. Import BioPype to the current Python environment:

>>> import BioPype

• If not done already, stop and follow the instructions in Chapter 8! →
to configure the BioPype working directory and the SRA Toolkit
Workspace Location.

7. Import BioPype.cmds.runtable to gain access to the RunTable class:

Either shorten this margin-label, or put it in a footnote.

Using "as" in an import
statement lets you reference

the full name of the imported
package by some shorter

name. It is generally
considered better practice to

not import packages "as"
some other name, because it
makes the code less explicit

(which goes against the
purpose of Python), but we
do it in this manual for the

sake of space.

>>> import BioPype . cmds . runtab le as runtab le

8. Create a RunTable object called "my_table" out of the RunInfo Table
.txt file:
Give a specific name to the RunInfo Table file. People might get confused if they needs to fill in
the name of the file themselves.

>>> my_table = runtab le . RunTable (' run in fo tab l e_f i l ename . txt ')

22

• With the my_table object created, you can remind yourself what
the metadata categories are by using the following command:

>>> my_table . column_names
['Assay_Type ' , 'AvgSpotLen ' , ' BioSample ' , ' BioSampleModel ' ,
' Experiment ' , ' Instrument ' , ' L ib r a r ySe l e c t i on ' , ' LibrarySource ' ,
'Library_Name ' , 'LoadDate ' , 'MBases ' , 'MBytes ' , ' Organism ' ,
' ReleaseDate ' , 'Run ' , 'SRA_Sample ' , 'Sample_Name ' ,
' co l l e c t i on_dat e ' , ' env_biome ' , ' env_feature ' , ' env_material ' ,
' host_age ' , ' host_disease ' , ' host_sex ' , ' host_subject_id ' ,
' lat_lon ' , ' BioPro ject ' , ' Consent ' , 'DATASTORE_filetype ' ,
'DATASTORE_provider ' , ' I n s e r t S i z e ' , ' LibraryLayout ' , ' Platform ' ,
'SRA_Study ' , ' geo_loc_name ' , ' host ']

9. We want to first group the samples based on the patients’ disease...
>>>uc_samples=my_table . f i l t e r_da t a (" host_disease " , '== ' , ' u l c e r a t i v e c o l i t i s ')
>>>cd_samples=my_table . f i l t e r_da t a (" host_disease " , '== ' , "Crohn ' ' s d i s e a s e ")

• Note that the "Crohn’s disease" string within the parentheses! →
in the second line of code has two single-quotes/apostrophes be-
tween the "n" and the "s" of "Crohn’s". This is because the
value we input must exactly match the value that the original
study’s researchers input for the host_disease category, and
(for whatever reason) they entered the value for Crohn’s disease
as: "Crohn’’s disease"

This is an example of why it’s important to check the metadata
carefully before you begin the analysis. If the argument does not
exactly match the value of the metadata category, it won’t select
the sample.

10. ... then we want to group them based on age:

>>>uc_young = uc_samples . f i l t e r_da t a ("host_age" , '<= ' , 21)
>>>uc_old = uc_samples . f i l t e r_da t a ("host_age" , '>= ' , 60)
>>>cd_young = cd_samples . f i l t e r_da t a ("host_age" , '<= ' , 21)
>>>cd_old = cd_samples . f i l t e r_da t a ("host_age" , '>= ' , 60)

• Note that the third argument passed to the filter_data()method! →
is not a string like the previous two arguments. It is simply an
integer (no quotation marks around it).

11. Now that we have groups of samples selected, we want to get a list
of SRA accession numbers for each group. The accession numbers are
what we will use to specify the files we want to download from the
SRA database.

>>>uc_young_nums = uc_young . get_accession_numbers ()
>>>uc_old_nums = uc_old . get_accession_numbers ()
>>>cd_young_nums = cd_young . get_accession_numbers ()
>>>cd_old_nums = cd_old . get_accession_numbers ()

12. We can now use the lists of accession numbers to download .sra files→ To learn more about .sra file
format, see Appendix A.7. from the SRA database. However, these are large files that can easily

take up hundreds of gigabytes of memory. They also take time to
download (times will vary based on network speed). To account for
hardware limitations that would severely bottleneck the analysis at

23

file-handling steps like these, we will randomly select a subset of only
3 accession numbers from each list we created in the previous step.
The analysis will go much faster if we analyze fewer samples, so these
subsets are what we will analyze going forward.→ The "random_sample_ sub-

set()" method is preceded by
"RunTable." in this case because
it is a "@staticmethod". To
learn more, see Appendix A.3.

>>>rs_uc_young = RunTable . random_sample_subset (uc_young_nums , n=3)
>>>rs_uc_old = RunTable . random_sample_subset (uc_old_nums , n=3)
>>>rs_cd_young = RunTable . random_sample_subset (cd_young_nums , n=3)
>>>rs_cd_old = RunTable . random_sample_subset (cd_old_nums , n=3)

13. Now we need to download the .sra files linked to these accession num-
bers and get them into .fastq format. First, we’ll need to import the
necessary functions:

>>>from BioPype . cmds . downloadsra import download_sra ,
>>>from BioPype . cmds . downloadsra import convert_sra_to_fastq

14. Use the download_sra() function to download the .sra files:

>>>download_sra (rs_uc_young)
>>>download_sra (rs_uc_old)
>>>download_sra (rs_cd_young)
>>>download_sra (rs_cd_old)

• The .sra files will not be downloaded to the correct location if the! →
SRA Toolkit Workspace Location has not been properly config-
ured (see Chapter 8 for details).

15. Use the convert_sra_to_fastq() function to convert the .sra files to→ To learn more about .fastq
format, see Appendix A.4. .fastq format.

→ To learn more about what
threads are, and how many you
should use, see Appendix A.5. >>>convert_sra_to_fastq (threads=4)

• BioPype will not know where to look for the downloaded .sra files! →
if the SRA Toolkit Workspace Location has not been properly
configured (see Chapter 8 for details).

• The more threads your computer can divide this process between,
the better (it’s more complicated than that, but for now let’s go
with it). The question is: how many threads is your computer
capable of using? For that, you’ll have to do some Googling. You
can find the resources I used to figure out how many threads my
MacBook Pro can run (4) in Appendix A.6. To simplify: my
computer has 1 CPU, the CPU has 2 cores, and each core can
run 2 threads. 1 x 2 x 2 = 4 threads.

9.1.1 Creating the code

9.2 Perform Quality Control on Dataset

24

10 Relative Abundance Analysis

(How to compare relative abundance of bacterial taxa between experimental
conditions using QWRAP.)

11 Predict ORFs

(how to predict the ORFs of the sequencing reads)

12 Create Non-redundant Gene Sets

(How to create non-redundant gene sets using the predicted ORFs and what
kind of information they provide) (Align reads using BLAT)

13 Align Genes

14 Get GenBank Accession Numbers

15 Find COG Functional Classes

16 New Analysis

(Walk user through analysis of new, untested dataset looking for age-related
differences in patients with Inflammatory Bowel Disease.)

Appendix A Web Links

A.1 QIIME Illumina Overview Tutorial

http://nbviewer.jupyter.org/github/biocore/qiime/blob/1.9.1/examples/ipynb/illumina_overview_
tutorial.ipynb

A.2 QIIME 2 Moving Pictures Tutorial

https://docs.qiime2.org/2018.2/tutorials/moving-pictures/

A.3 Explanation of @staticmethod decorator vs @classmethod decorator in
Python

The Basics: Static methods make code easier to read and let you use a class’ methods without needing to
have an object of that class first. This is useful when it makes logical sense to place a function within a class
(because the function is related to the other tasks that the class handles), but the function doesn’t need
to operate on an object/the data of that class. Normal methods are called by typing: my_object.method.
Static methods are called by typing: MyClass().method or MyClass.method.

Basic explanation with slight background on class methods:
https://julien.danjou.info/guide-python-static-class-abstract-methods/

More technical explanations:
https://stackoverflow.com/questions/12179271/meaning-of-classmethod-and-staticmethod-for-beginner
This Stack Overflow question has some basic, easy to understand explanations mixed in with more in-depth
explanations. The top-voted answer isn’t the only one that is useful; each of the answers presents their
explanation with a different degree of simplicity. Make sure to check several answers if the top ones don’t
seem helpful.

A.4 FASTQ Format

https://galaxyproject.org/tutorials/ngs/

This link contains:

1. An explanation of the FASTQ file format

2. An explanation of PHRED quality scores with an accompanying figure (Fig 4)

3. The following quote: "Fastq format is not strictly defined and its variations will always cause headache
for you. See https://www.ncbi.nlm.nih.gov/books/NBK242622/ for more information."

• From the NCBI link: "Text formats, such as FASTQ, are supported, but are not the preferred
submission medium. Poorly defined specifications and high variability within these formats tend
to lead to a higher frequency of failed or problematic submissions."

A.5 How many threads to use?

https://www.jstorimer.com/blogs/workingwithcode/7970125-how-many-threads-is-too-many

http://nbviewer.jupyter.org/github/biocore/qiime/blob/1.9.1/examples/ipynb/illumina_overview_tutorial.ipynb
http://nbviewer.jupyter.org/github/biocore/qiime/blob/1.9.1/examples/ipynb/illumina_overview_tutorial.ipynb
https://docs.qiime2.org/2018.2/tutorials/moving-pictures/
https://julien.danjou.info/guide-python-static-class-abstract-methods/
https://stackoverflow.com/questions/12179271/meaning-of-classmethod-and-staticmethod-for-beginner
https://galaxyproject.org/tutorials/ngs/
https://www.ncbi.nlm.nih.gov/books/NBK242622/
https://www.jstorimer.com/blogs/workingwithcode/7970125-how-many-threads-is-too-many

A.6 How many threads can my computer run?

https://superuser.com/questions/1101311/how-many-cores-does-my-mac-have

A.7 SRA/.sra file format

Find resource for explaining the .sra file format that we download from the SRA Database

33

https://superuser.com/questions/1101311/how-many-cores-does-my-mac-have

Appendix B Referenced Studies

	Foreword
	Source Code
	Sample Information
	Setting the scene
	Microbiome Analysis
	How to Find Tools
	The Plan
	Software and Set-up
	The Dataset
	Relative Abundance Analysis
	Predict ORFs
	Create Non-redundant Gene Sets
	Align Genes
	Get GenBank Accession Numbers
	Find COG Functional Classes
	New Analysis
	Web Links
	Referenced Studies

