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1 Overview

1.1 What Is FAC

FAC stands for The Flexible Atomic Code. It is an integrated software package to calculate various atomic
radiative and collisional processes, including energy levels, radiative transition rates, collisional excitation
and ionization by electron impact, photoionization, autoionization, radiative recombination and dielectronic
capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas
under different physical conditions.

The atomic structure calculation in FAC is based on the relativistic configuration interaction with indepen-
dent particle basis wavefunctions. These basis wavefunctions are derived from a local central potential, which
is self-consistently determined to represent electronic screening of the nuclear potential. Relativistic effects
are fully taken into account using the Dirac Coulomb Hamiltonian. Higher order QED effects are included
with Breit interaction in the zero energy limit for the exchanged photon, and hydrogenic approximations for
self-energy and vacuum polarization effects. Continuum processes are treated in the distorted-wave (DW)
approximation. Systematic application of the factorization-interpolation method of (author?) [3] makes
the present code highly efficient for large scale calculations. The details of theoretical background and com-
putational methods are not discussed in this manual, instead, they are described in a series of papers which
are distributed along with this package and this manual.

FAC is a step forward to bring detailed atomic model accessable to a wide community of laboratory and
astrophysical plasma diagnostics. Its flexible interface is designed to be useful even for people without a
deep understanding of the underlying atomic theories. It is also powerful enough for experienced users to
explore the effects of algorithmic choices and different physical approximations.

FAC is freely distributed in the hope that it will be useful. The author makes every effort to ensure its
correctness. However, he does not guarantee its fitness to any specific purpose. The author is not responsible
for any damage resulting from the use of this program, including failure to obtain or loss of tenure.

1.2 Obtain and Install FAC

The latest version of FAC is 1.1.4. It can be obtained from http://sprg.ssl.berkeley.edu/ mfgu/fac.
I can also send a copy to you through email. Please request to mfgu@ssl.berkeley.edu. It is being
continously developed at present, so please check regularly to get the newest version.

Much of the FAC package is written in ANSI C and Fortran 77. It should therefore work on any platform
with a C and Fortran 77 compilers. However, this is only true to the rather simple command parser that
comes with FAC, referred to as SFAC. The flexibility of FAC is realized when the Python interface (PFAC)
is used. The numerical subroutines implemented in FAC are exported through several Python modules.
The computation task can therefore be completed by programming in the scripting language Python. These
python modules are compiled as shared objects, and are dynamically loaded. This primarily works under
ELF systems, such as almost all modern Unix and Linux systems. It has also been tested to work under
Mac OS X and Windows (In the case of Windows, the Unix API emulation by Cygwin is required, which
is available at www.cygwin.com). To fully utilize the strength of FAC, it is strongly recommended that
Python be installed, which can be obtained from www.python.org.

Step-by-step instructions for installation can be found in the README file in the top directory of FAC
distribution.
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1.3 Quick Start
1.3.1 SFAC Interface

The SFAC interface is basically a stripped down command interpreter modeled after Python syntax, with
the omission of flow control freatures, such as conditional execution and loops. Therefore simple Python
scripts may be converted to SFAC input files without difficulty. The Python interface actually contains
functions to do the convertion automatically. Through out this manual, we mainly focus on the more useful
Python interface. Most of the Python fuctions implemented in the extension modules are also available in
SFAC interface with identical calling sequences. To use SFAC, one passes the input files to the 3 executables
sfac, scrm and spol on the command line such as

sfac input.sf
scrm input.sf

or, one may invoke sfac and scrm without arguments, in which case, they read from stdin for inputs,
where commands are interpreted line by line. The program sfac handles atomic calculations, scrm is used
to construct collisional radiative spectral models, and spol is used to calculate line polarizations due to
collisional excitation.

1.3.2 PFAC Interface

To use the PFAC interface, one needs to be familiar with the basics of Python scripting language. Python
has excellent documentations that come with the standard distribution. It is an extremely well designed
language to learn, and to use.

Perhaps, the quickest way to get familiar with FAC is to inspect the simple demo scripts in the demo/
directory in FAC distribution. There are individual scripts and their SFAC conterparts demonstrating the
calculation of energy levels, radiative transition rates, collisional excitation and ionization cross sections,
radiative recombination cross sections and autoionization rates. There is also a more advanced example for
the calculation of iron L-shell atomic data, and their application in the collisional radiative model.

In this section, we look into the details of one of these scripts, demo/structure/fel7_structure.py for the
calculation of Ne-like iron energy levels and radiative transition rates between n = 2 and n = 3 complexes.
The following is a duplication of that script.

1: from pfac import fac

fac.SetAtom(’Fe’)

# 1s shell is closed
fac.Closed(’1s’)

fac.Config(’2%8’, group = ’n2’)

: fac.Config(’2%7 3%1’, group = ’n3’)

o O WN

7: # Self-consistent iteration for optimized central potential
8: fac.ConfigEnergy(0)
# the configurations passed to OptimizeRadial should always
# be one or two of the lowest lying ones. If you need more highly
# excited levels, such as n=4, 5, 6, ..., do not put them into
# OptimizeRadial.

9: fac.OptimizeRadial([’n2’])

10: fac.ConfigEnergy(1)

11: fac.Structure(’ne.lev.b’, [’n2’, ’n3’])

12: fac.MemENTable(’ne.lev.b’)

13: fac.PrintTable(’ne.lev.b’, ’ne.lev’, 1)

13



14: fac.TransitionTable(’ne.tr.b’, [’n2’], [’n3’])
15: fac.PrintTable(’ne.tr.b’, ’ne.tr’, 1)

Line numbers are added for easy reference, they are not part of the script. As is evident from the above
list, all functions implemented in the FAC extension modules have a naming convention of concatenated
capitalized words. Line 1 imports the extension module fac from the package pfac. Alternatively, one
could have used

from pfac.fac import *

then, all module qualifiers fac. in the following lines can be omitted. Line 2 set the atomic element to be iron.
Line 3 is a comment, which starts with a #. Line 4-6 specifies the electronic configurations to be included
in the calculation. The closed shells specified by the function Closed must be inactive in this calculation.
In the Config functions, 2%8 stands for an n = 2 complexes with 8 electrons, while 27 3*1 stands for all
configurations resulting from excitation of one electron from n = 2 to n = 3. For more possibilities in the
specification of electronic configurations, one is referred to Chapter [3] Line 8-10 carries out a Dirac-Fock-
Slater self-consistent calculation to derive a local central potential which represents the electronic screening
of the nuclear potential. In this calculation, the potential is optimized to the average electron clouds of
configurations n2 and n3, since in FAC, all atomic processes are treated with basis wavefunctions generated
from a single potential. This results in the potential to be less optimized for n2 and n3 individually. Lines
8 and 10 are used to make a crude correction to the resulting energy levels due to this effect. The first call
to ConfigEnergy(0) will make individual optimization to all configuration groups. The average energy of
each configuration group with these indivudually optimized potential is then calculated and stored. The
second call to ConfigEnergy (1) will then recalculate the average energy of configuration groups under
the potential taking into account all configuration groups. The difference between the two represents the
effect of a less optimized potential, and are used to adjust the final energy levels. If this procedure is not
needed, one can omit line 8 and 10 in this script. Line 11 sets up the Hamiltonian matrix for levels in
n = 2 and n = 3 complexes, diagonalize it, and saves to the energy level information in the binary file
ne.lev.b. Line 12 builds an in-memory table of energy levels, which is used to convert the binary files to
their ASCII counterparts in verbose mode, such as done in Line 13, which converts ne.lev.b to ne.lev
(the last argument to PrintTable indicates it be done in verbose mode). For the conversion in simple mode
(the last argument is 0), the in-memory table is not needed, and Line 12 may be omitted. For the difference
between the verbose and simple ASCII files, see Chapter Line 14 calculates the E1 oscillator strength
and transition rates between cofiguration groups n2 and n3, and saves the results in the binary file ne.tr.b.
The function TransitionTable accepts an optional 4th integer argument specifying the transition type. A
negative integer means electric multipol and a positive integer for magnetic multipole. The absolute value of
the integer indicates the rank of the multipole. Therefore, —1 would be E1, +1 would be M1, etc. Without
this argument, the default is E1, as is done here. Line 15 converts the binary output to an ASCII file in
verbose mode. The exact formats of binary and ASCII files are explained in Chapter [2| Here we list the two
ASCII files ne.lev and ne.tr resulted from this calculation.

File ne.lev:
FAC 1.0.7

Endian = 1
TSess = 1103048155

Type = 1
Verbose = 1
Fe Z = 26.0
NBlocks = 1

EO = 0, -3.12289011E+04

NELE = 10

14



NLEV = 37

ILEV IBASE  ENERGY P VNL 2J
0 -1 0.00000000E+00 0 201 0 1%2 2%8 2p6 2p+4(0)0

1 -1 7.23817529E+02 1 300 4 1*2 247 31  2p5 3sl 2p+3(3)3 3s+1(1)4
2 -1 7.25866864E+02 1 300 2 1*2 247 3%1  2p5 3sl 2p+3(3)3 3s+1(1)2
3 -1 7.36421878E+02 1 300 0 1*2 247 31  2p5 3si 2p-1(1)1 3s+1(1)0
4 -1 7.37744083E+02 1 300 2 1%2 247 3%1  2p5 3sl 2p-1(1)1 3s+1(1)2
5 -1 7.54155726E+02 0 301 2 1%2 247 3%1  2p5 3pl 2p+3(3)3 3p-1(1)2
6 -1 7.57795103E+02 0 301 4 1%2 2+7 3%1  2p5 3pl 2p+3(3)3 3p-1(1)4
7 -1 7.59348028E+02 0 301 6 1*2 247 3%1  2p5 3pl 2p+3(3)3 3p+1(3)6
8 -1 7.60559034E+02 0 301 2 1%2 247 31  2p5 3pl 2p+3(3)3 3p+1(3)2
9 -1 7.62368042E+02 0 301 4 1%2 247 3%1  2p5 3pl 2p+3(3)3 3p+1(3)4
10 -1 7.68005929E+02 0 301 O 1%2 247 3%1  2p5 3pl 2p+3(3)3 3p+1(3)0
11 -1 7.69846810E+02 0 301 2 1%2 247 3%1  2p5 3pl 2p-1(1)1 3p-1(1)2
12 -1 7.73062840E+02 0 301 2 1*2 2%7 31  2p5 3pl 2p-1(1)1 3p+1(3)2
13 -1 7.73470206E+02 0 301 4 1*2 247 31  2p5 3pl 2p-1(1)1 3p+1(3)4
14 -1 7.90365155E+02 0 301 O 1%2 247 31  2p5 3pl 2p-1(1)1 3p-1(1)0
15 -1 8.00169329E+02 1 302 0 1#2 247 3%1  2p5 3di 2p+3(3)3 3d-1(3)0
16 -1 8.01137358E+02 1 302 2 1#2 247 31  2p5 3dil 2p+3(3)3 3d-1(3)2
17 -1 8.02966076E+02 1 302 4 1*2 247 31  2p5 3di 2p+3(3)3 3d+1(5)4
18 -1 8.03096178E+02 1 302 8 1*2 247 31  2p5 3di 2p+3(3)3 3d+1(5)8
19 -1 8.03812355E+02 1 302 6 1%2 247 3%1  2p5 3d1 2p+3(3)3 3d-1(3)6
20 -1 8.05502105E+02 1 302 4 1%2 247 3%1  2p5 3di 2p+3(3)3 3d-1(3)4
21 -1 8.06580377E+02 1 302 6 1%2 247 3%1  2p5 3dil 2p+3(3)3 3d+1(5)6
22 -1 8.11326891E+02 1 302 2 1#2 247 31  2p5 3dil 2p+3(3)3 3d+1(5)2
23 -1 8.16455702E+02 1 302 4 1%2 247 31  2p5 3di 2p-1(1)1 3d-1(3)4
24 -1 8.17103423E+02 1 302 4 1*2 247 31  2p5 3di 2p-1(1)1 3d+1(5)4
25 -1 8.17679088E+02 1 302 6 1%2 247 3%1  2p5 3di 2p-1(1)1 3d+1(5)6
26 -1 8.25272086E+02 1 302 2 1%2 247 3%1  2p5 3di 2p-1(1)1 3d-1(3)2
27 -1 8.60711742E+02 0 300 2 1#2 247 31  2s1 3si 2s+1(1)1 3s+1(1)2
28 -1 8.67823477E+02 0 300 O 1*2 247 31  2s1 3si 2s+1(1)1 3s+1(1)0
29 -1 8.93685214E+02 1 301 0 1*2 247 31  2s1 3pl 2s+1(1)1 3p-1(1)0
30 -1 8.94146680E+02 1 301 2 1%2 247 3%1  2s1 3pil 2s+1(1)1 3p-1(1)2
31 -1 8.96450212E+02 1 301 4 1%2 247 3%1  2s1 3pl 2s+1(1)1 3p+1(3)4
32 -1 8.98437005E+02 1 301 2 1#2 247 3%1  2s1 3pl 2s+1(1)1 3p+1(3)2
33 -1 9.38592464E+02 0 302 2 1*2 247 31  2sl 3di 2s+1(1)1 3d-1(3)2
34 -1 9.38724254E+02 0 302 4 1%2 2+7 31  2s1 3di 2s+1(1)1 3d-1(3)4
35 -1 9.38975219E+02 0 302 6 1x2 247 31  2s1 3di 2s+1(1)1 3d+1(5)6
36 -1 9.43734651E+02 0 302 4 1%2 247 3%1  2s1 3di 2s+1(1)1 3d+1(5)4

File ne.tr:

FAC 1.0.
Endian
TSess
Type 2
Verbose 1

Fe Z = 26.0
NBlocks

~

1
1103048155

I
-

NELE 10



NTRANS 7

MULTIP = -1

GAUGE = 2

MODE =1
2 2 0O O 7.2587E+02 1.130597E-01 8.616084E+11 1.127617E-01
4 2 0 O T7.3774E+02 9.944485E-02 7.828559E+11 1.048997E-01
16 2 0 O 8.0114E+02 9.438239E-03 8.761793E+10 -3.101188E-02
22 2 0 O 8.1133E+02 6.221187E-01 5.923155E+12 -2.501928E-01
26 2 0 O 8.2527E+02 2.493449E+00 2.456309E+13 4.966355E-01
30 2 0 O 8.9415E+02 3.203146E-02 3.704097E+11 5.407792E-02
32 2 0 O 8.9844E+02 2.652003E-01 3.096259E+12 -1.552313E-01

In file ne.lev, the energy, parity, 2J (J is the total angular momentum of the level), and configuration
coupling informations are listed. In file ne.tr, the upper and lower level indexes, the 2J values of these
levels, the transition energy, g f-values, radiative decay rates, and the reduced multipole matrix elements are
given.
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2 Description of Output Files

The primary output files of FAC are in binary format. The I/O functionality and the conversion from binary
to ASCII format are implemented in the source files faclib/dbase.h and faclib/dbase.c. In this chapter,
we describe the structure of these files in detail.

2.1 Binary Format

Presently, FAC produces different types of files. Each type is asigned a unique integer, which corresponds
to a macro define in the file faclib/dbase.h. These types are

DB_EN
DB_TR =
DB_CE =
DBRR =
DB_AI =
DBCI =
DB_SP =
DBRT =
DBDR =
DB_AIM
DB_CIM

1:

© 00 N o o b w N

Energy levels produced by the function fac.Structure.

Radiative transition rates produced by fac.TransitionTable.

Collisional excitation cross sections produced by fac.CETable.

Radiative recombination and photoionization cross sections produced by fac.RRTable.
Autoionization rates produced by fac.AITable.

Collisional ionization cross sections produced by fac.CITable.

Spectral line strengths produced by crm.SpecTable.

Various population rates produced by crm.RateTable.

Various population rates produced by crm.DRStrength.

10 :  Magnetic sublevel autoionization rates and DR capture strengths produced by fac.AITableMSub.

11 : Magnetic sublevel collisional ionization cross sections produced by fac.CITableMSub.

All files have a common structure. It consists of a file header and one or more data blocks. Each data block
is comprised of a data header and one or more data records. In the following, we show the C definition of all
structs and describe each field in detail. When one field is a pointer, it means that an array is saved in the
database. The pointer points to the memory location where the data is stored. In versions 1.0.8 or earlier,
the value of the pointer itself is also saved in the file followed by the data stored in the array. Obviously, the
saved pointer itself has no meaning once the program exits (since it is a memory location). When reading
out the data from the database file, these pointer values should be ignored. In version 1.0.9 or later, the
pointers are no longer saved, and the file IO are rewritten in a platform independent way, i.e., the structure
fields are written and read one by one, instead of dealing with the structure as an integrated object. This
avoids the different memory padding added by the compilers which may be different on different machines.

2.1.1 F_HEADER

F_HEADER is the file header common to all data files.

typedef struct _F_HEADER_ {
tsession;
version;

long
int
int
int

sversion;
ssversion;

17



int type;
float atom;
char symbol[4];
int nblocks;

} F_HEADER;

Field Description:

long tsession:

int version:
int sversion:
int ssversion:
int type:
float atom:

char symbol([4]:

int nblocks:

2.1.2 EN_HEADER

Time stamp when the file is created. This is the value returned by the
C lib function time(0). It is platform dependent.

Major version number of FAC.
Minor version number of FAC.
Release number of FAC.

Type of the data file.

Atomic number.

The first 3 bytes contains a NULL terminated C string representing the
2-charactor abbreviation of the atomic symbol. The 4th byte is either 0
or 1, indicating whether the platform stores data in litle or big endian.

Number of data blocks in this file.

EN_HEADER is the data header for energy level data blocks.

typedef struct _EN_HEADER_ {

long position;
long length;
int nele;
int nlevels;

} EN_HEADER;

Field Description:

long position:

long length:
int nele:

int nlevels:

2.1.3 EN_RECORD

The number of bytes from the beginning of the file to the place where
this data block starts.

Number of bytes in this data block, excluding the length of the header.
Number of electrons in the ion for this block.

Number of levels in this block.

EN_RECORD represents an energy level.

#define LNCOMPLEX 32
#define LSNAME 24
#define LNAME 56

typedef struct _EN_RECORD_ {

short p;
short j;

18



int ilev;
int ibase;
double energy;
char ncomplex [LNCOMPLEX] ;
char sname [LSNAME] ;
char name [LNAME] ;
} EN_RECORD;

Field Description:
LNCOMPLEX:
LSNAME:
LNAME:

short p:

short j:

int ilev:

int ibase:

energy:

char ncomplex [LNCOMPLEX]:

char sname [LSNAME]:

char name[LNAME]:

The length of array holding the complex name.
The length of array holding the non-relativistic configuration name.
The length of array holding the relativistic configuration array.

The parity of the level. This parameter was changed in version 0.7.6,
and it becomes £(100 x n+1), where n and [ are the principle quantum
number and orbital angular number of the valence electron, and the +
sign indicates an even (+) or odd (—) parity state.

2 x the total angular momentum of the level. In UTA mode, j is
supposed to be the statistical weight minus 1 of the UTA level. However,
because a short variable is sometimes insufficient to store that value,
the code stores it in ibase instead. In this case, j is always —1.

The index of the level.

The index of the base level. The base level obtained by peeling off
the valence electron, and the resulting levels must be present in the
same level file. Other wise, its value is -1. It is not always possible to
determine the base level, e.g., when the valence orbital is occupied by
more than one electrons. In such cases, ibase is also -1. The value
of ibase is primarily used in dealing with DR and RE rates, where
it may help the distinguish different resonance channels and facilitate
easy extrapolation. This variable is only added in version FAC 1.0.4.
So these later versions are not compartible with the binary output of
the ealier versions.

The energy of the level in Hartree.

The complex name. It is in the format of n1*nql n2*nq2---, where n1
and n2 are the principle quantum numbers of the shell, nq1 and nq2 are
the occupation number of these shells.

The non-relativstic configuration name of the level. Each non-relativistic
shell is denoted by the standard spectroscopic notation, e.g., 2p2 for 2
electrons in 2p shell. Only open and non-empty shells are given. No
coupling information is available in this name.

The relativstic configuration name of the level. Each shell is denoted
such that 2p+2(2) represents 2 electrons in 2ps,5(J = 1) and 2p-2(2)
represents 2 electrons in 2p; j5(J = 1). The number in the parenthesis is
2 times the total angular momentum of the coupled shell. Immediately
after the parenthesis, there is a number indicate the 2.J value when all
preceding shells are coupled. Therefore, 2p+2(2)2 2p-2(2)0 represents
a state [ng/z(J = 1)2pf/2(,] =1)]J=0.
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2.1.4 TR_HEADER

TR_HEADER is the data header for the radiative transition data blocks.

typedef struct _TR_HEADER_ {

long position;
long length;
int nele;
int ntransitions;
int gauge;
int mode;
int multipole;
} TR_HEADER;

Field Description:

long position:

long length:
int nele:
int ntransitions:

int gauge:

int mode:

int multipole:

2.1.5 TR_RECORD

The number of bytes from the beginning of the file to the place where
this data block starts.

Number of bytes in this data block, excluding the length of the header.
Number of electrons in the ion for this block.
Number of transitions in this block.

Gauge used in the calculation. 1 is Coulomb gauge, or the velocity form
in non-relativistic limit. 2 is Babushkin gauge or the length form.

Mode used in the calculation. 0 is fully relativistic. 1 is non-relativistic
approximation for multipole operators.

Multipole type of the transition. Its absolute value is the rank of the
multipole, 1 for dipole, 2 for quadrupole, etc. The positive sign repre-
sents magnetic type and negative sign represents electric type.

TR_RECORD is the for radiative transition data.

typedef struct _TR_RECORD_ {

int lower;

int upper;

float strength;
} TR_RECORD;

Field Description:

int lower:
int upper:

float strength:

20

The lower level index of the transition.
The upper level index of the transition.

In version 1.0.6 or older, This is the weighted oscillator strength gf of
the transition. The weighted radiative transition rate is related to gf
as (in atomic units):

gA = 203w%gf, (2.1)

where « is the fine structure constant, and w is transition energy in
Hartree atomic units.



2.1.6 TR_EXTRA

In version 1.0.7 or newer, this stores the multipole matrix elements M
instead. It is related to the gf value as

gf = 2L +1) " w(aw)* 2 M2, (2.2)

where L is the multipole rank.

TR_EXTRA contains the UTA related transition data, namely, the transition energy including the UTA shift,
the UTA Gaussian width, and the configuration interaction multipler. This structure is written to the DB_TR
file only in UTA mode, which is set by SetUTA() function.

typedef struct _TR_EXTRA_ {

float energy;
float sdev;
float sci;

} TR_EXTRA;

Field Description:

float energy:
float sdev:

float sci:

2.1.7 CE_HEADER

The transition energy including UTA shift.
The Gaussian standard deviation of the UTA.

The configuration interaction multipler, which accounts for the CI within
the same non-relativistic configurations.

CE_HEADER is the data header for collisional excitation data blocks.

typedef struct _CE_HEADER_ {

long position;

long length;

int nele;

int ntransitions;

int gk_mode;

int n_tegrid;

int n_egrid;

int egrid_type;

int n_usr;

int usr_egrid_type;

int nparams;

int pw_type;

int msub;

float teO;

double *tegrid;

double *egrid;

double *usr_egrid;
} CE_HEADER;

Field Description:

long position: The number of bytes from the beginning of the file to the place where

this data block starts.
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long length:
int nele:
int ntransitions:

int gk_mode:

int n_tegrid:
int n_egrid:

int egrid_type:

int n_usr:

int usr_egrid_type:

int nparams:

int pw_type:

int msub:

float teO:

double *tegrid:
double *egrid:

double *usr_egrid:

2.1.8 CE_RECORD

Number of bytes in this data block, excluding the length of the header.
Number of electrons in the ion for this block.
Number of transitions in this block.

The mode for the calculation of radial integrals. There are 3 choices
for collisional excitation. 0 for EXACT, 1 for INTERPOLATE, and 2
for FIT. In the EXACT mode, the collison strengths are calculated at
the energy grid specified as is, so the egrid and usr_egrid must be the
same. In the INTERPOLATE mode, the collision strengths are calcu-
lated at egrid, and interpolated to usr_egrid. In the FIT mode, the
collision strengths are fitted to an analytic formula and the parameters
are output as well. For collision strengths of magnetic sublevels, the
FIT mode is not implemented.

Number of points for the transition energy grid.
Number of points for the collision energy grid.

Type of the energy grid. 0 for the incident electron energy, 1 for scat-
tered electron energy. In the present implementation, only scattered
electron energy grid is supported.

Number of points for the user collision energy grid.

Type of the user energy grid. 0 for the incident electron energy, 1 for
scattered electron energy. In the present implementation, only scattered
electron energy grid is supported.

Number of parameters in the fitting formula if the collision strengths
are calculated in the FIT mode. At present, nparams is 4.

Partial wave type for the last summation. 0 for the incident electron, 1
for the scattered electron.

0 for total collision strength, 1 for magnetic sublevel specific collision
strength.

The characteristic transition energy of the transition array. This is
used for the automatic construction of the collision energy grid. The
grid has equal space in In(egrid+te0) if egrid type = 1, otherwise,
this variable is not used.

The transition energy grid, the number of elements is given by n_tegrid.
The energy grid, the number of elements is given by n_egrid.

The user energy grid, the number of elements is given by n_usr.

CE_RECORD is for collisional excitation data.

typedef struct _CE_RECORD_ {

22

int lower;

int upper;

int nsub;
float bethe;
float born[2];



float *params;
float *strength;
} CE_RECORD;

Field Description:
int lower:
int upper:

int nsub:

float bethe:

float born[2]:

float *params:

The lower level index.
The upper level index.

Number of magnetic sublevel transitions. Because of time reversal sym-
metry, Om,—my = T—m,——msy, O0ly cross sections with m; <= 0 are
tabulated.

The Bethe coefficients in the first-Born approximation. It is the log-
arithmic coefficients at high energies. If bethe[0]< 0, it is a spin
forbidden transition. Otherwise, it is either a optical-allowed transition
or other multipole-allowed transitions.

The Born limit of the collision strengths at high energies, which is

)
En
Q = bo ln(a:) + bl, (23)

where by is given by bethe, if it is an allowed transition. The parameter
by is calculated at an energy given by bs, which is chosen to be very high,
about 102E,;, or higher. For spin forbidden transitions, by = 0. by, by
are stored in the array born[2]. These numbers are useful to extrap-
olate the collision strengths to high energies with correct aysmptotic
behaviour.

Parameters for the fitting formula, if the fitting mode is used. The
number of elements is given by nparams in CE_HEADER. In the present
implementation, different fitting formulae are used for allowed and for-
bidden transitions. The number of parameters is 4 in all cases. The
FIT mode is not robust, avoid using it.

For dipole and higher multipole allowed transitions, the collision strength
Q is given by

Ey

E,

1 p1 1 p3
Q = po () + p2 (1 - ) +blnz, (2.4)
x x

where Ej is the energy of the incident electron, Fyj is the transition
threshold, pg, p1, p2 and ps are four parameters, and b is the Bethe
coeffificient, which is 0 for non-dipole transitions.

For forbidden transitions, the collision strength is given by

1 N 1 \?2
psta T \psta

= pox”. (2.5)

vy = —=204+p

The FIT mode only applies to the calculation of total cross sections. For
magnetic sublevel cross sections, params has nsub elements, which are
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float *stregnth:

2.1.9 RR_HEADER

the ratios of magnetic sublevel collision strengths to the total collision
strength at high energy limit for allowed transitions. For forbidden
transitions, these numbers are all 0.

Collision stregnth on the user energy grid. The number of elements is
given by n_usr in CE_HEADER. It is related to the excitation cross section
as (in atomic units):

7r

= -0, 2.6
kggo ( )

o
where gg is the statistical weight of the initial state, and kg is the kinetic
momentum of the incident electron. The number of elements in this
array is nsubxn_usr.

RR_HEADER is the data header for radiative recombination and photoionization data blocks.

typedef struct _RR_HEADER_ {
long position;
long length;

int
int
int
int
int
int
int
int
int
int

nele;
ntransitions;
qk_mode;
multipole;
n_tegrid;
n_egrid;
egrid_type;
n_usr;
usr_egrid_type;
nparams;

double *tegrid;
double *egrid;
double *usr_egrid;
} RR_HEADER;

Field Description:
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long position:

long length:
int nele:
int ntransitions:

int gk-mode:

int multipole:

The number of bytes from the beginning of the file to the place where
this data block starts.

Number of bytes in this data block, excluding the length of the header.
Number of electrons in the ion for this block.
Number of transitions in this block.

The mode for the calculation of radial integrals. There are 3 choices at
present. 0 for EXACT, 1 for INTERPOLATE, and 2 for FIT, similar to
collsional excitation. However, even if the FIT mode is used, the fitting
formula is only valid in the high energy asymptotic regions. The low
energy results should be obtained by interpolation.

Multipole type of the transition. Its absolute value is the rank of the
multipole, 1 for dipole, 2 for quadrupole, etc. The positive sign for
magnetic type and negative sign for electric type. Usually, only E1 type
is relavent for radiative recombination and photoionization.



int n_tegrid:
int n_egrid:

int egrid_type:

int n_usr:

int usr_egrid_type:

int nparams:

double *tegrid:
double *egrid:

double *usr_egrid:

2.1.10 RR_RECORD

Number of points for the transition energy grid.
Number of points for the collision energy grid.

Type of the energy grid. 0 for the incident photon energy, 1 for photo-
electron energy.

Number of points for the user collision energy grid.

Type of the user energy grid. 0 for the incident photon energy, 1 for
photo-electron energy.

Number of parameters in the fitting formula if the bound-free oscillator
strengths are calculated in the FIT mode. In the present imprementa-
tion, nparams is 4.

The transition energy grid, the number of elements is given by n_tegrid.
The energy grid, the number of elements is given by n_egrid.

The user energy grid, the number of elements is given by n_usr.

RR_RECORD is for radiative recombination and photoionization data.

typedef struct _RR_RECORD_ {

int b;

int f;

int k1;

float *params;

float *strength;
} RR_RECORD;

Field Description:
int b:
int f:

int kl:

float *params:

The bound state index.
The free state index.

The orbital angular momentum of the ionized shell for the dominant
wavefunction component.

The parameters in the fitting formula for the bound-free oscillator strength,
if the FIT mode is used. The fitting formula only provides a high en-
ergy asymptotic behavior. Low energy values should be interpolated
from the tabulated strengths. The fitting formula is

E. +ps3
g = =—=eThrs
ps3
_ 14p
Y VT A+ po
d(gf) E, —3.5—1+1

—7L = 1 x0T TPy P 2.7
dE E, +p3p0 ¥ ( )

where E, is the photo-electron energy, E. is the photon energy, Eyy, is
the ionization threshold, pg, p1, p2, and p3 are the parameters, and [
is the orbital angular momentum of the ionized shell. The asymptotic
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float *strength:

2.1.11 AT _HEADER

behavior represented by the power law only takes into account the ion-
ization of the dominant basis in the wavefunction expansion. The result

is in atomic unit Hartree 1.

The weighted bound-free oscillator strength in atomic units. It is related
to photoionization and radiative recombination as (in atomic units):

_ i
opr = 7TadE

2ra 1+ e d(gf)

9i 1+ 3a% dE

2 2
o’ g; w
orp = — 22— _opp 2.8
RR 2 gre(1+ 3a%) P (28)
where « is the fine structure constant, g; and g; are the statistical
weight of the bound states before and after the photoionzation takes

place respectively, w is the photon energy, and ¢ is the energy of the
ejected photo-electron. The tabulated values are d(gf)/dE.

AI_HEADER is the data header for autoionization data blocks.

typedef struct _AI_HEADER_ {

long position;
long length;
int nele;
int ntransitions;
int channel;
int n_egrid;
double *egrid;

} AI_HEADER;

Field Description:

long position:

long length:
int nele:
int ntransitions:

int channel:

int n_egrid:

double *egrid:

2.1.12 AI_RECORD

The number of bytes from the beginning of the file to the place where
this data block starts.

Number of bytes in this data block, excluding the length of the header.
Number of electrons in the ion for this block.
Number of transitions in this block.

This an identifier to label the autoionization channel, which does not
have specific physical meaning.

The number of points for the Auger electron energy grid. The autoion-
zation radial integrals are calculated on this grid and interpolated to
the actual discrete energies.

The energy grid. The number of elements is given by n_egrid.

AI_RECORD is for autoionization data.
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typedef struct _AI_RECORD_ {

int
int

b;
f;

float rate;
} AI_RECORD;

Field Description:

float

2.1.13 CI_HEADER

int b: The bound state index.
int f: The free state index.

rate: The autoionization rate.

CI_HEADER is the data header for collisional ionization data blocks.

typedef struct _CI_HEADER_ {
long position;
long length;

int
int
int
int
int
int
int
int
int
int

nele;
ntransitions;
gk_mode;
n_tegrid;
n_egrid;
egrid_type;
n_usr;
usr_egrid_type;
nparams;
pw_type;

double *tegrid;

double *egrid;

double *usr_egrid;
} CI_HEADER;

Field Description:

long pos
long 1
int

int ntransi

ition: The number of bytes from the beginning of the file to the place where
this data block starts.

ength: Number of bytes in this data block, excluding the length of the header.
nele: Number of electrons in the ion for this block.

tions: Number of transitions in this block.

int gk-mode: The mode for the calculation of radial integrals. At present, there are

3 choices. 3 for CB mode (Coulomb-Born), 4 for DW mode (distorted-
wave), and 5 for BED mode (binary-encounter-dipole). In CB mode, the
radial integrals are obtained by looking up a table of Coulomb-Born-
Exchange results from (author?) [, [5], which is very fast. In DW
mode, the integrals are calculated using the distorted-wave approxi-
mation, which is very slow. In BED mode, the binary-encounter-dipole
theory of (author?) [6] is used which makes use of bound-free oscillator
strength of the same transition. This method is also very fast.
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int n_tegrid:
int n_egrid:

int egrid_type:

int n_usr:

int usr_egrid_type:

int nparams:

int pw_type:

double *tegrid:

double *egrid:

double *usr_egrid:

2.1.14 CI_RECORD

Number of points for the transition energy grid.
Number of points for the collision energy grid.

Type of the energy grid. 0 for the incident electron energy, 1 for the
total energy of scattered and ejected electron.

N umber of points for the user collision energy grid.

Type of the user energy grid. 0 for the incident electron energy, 1 for
the total energy of scattered and ejected electrons .

Number of parameters in the fitting formula. The final collision strength
for total ionization cross sections are fitted with a 4 parameter formula.

Partial wave type for the last summation. 0 for the incident electron, 1
for the scattered electron. It is always 0 for distorted-wave calculation
of ionization.

The transition energy grid, the number of elements is given by n_tegrid.
The energy grid, the number of elements is given by n_egrid.

The user energy grid, the number of elements is given by n_usr.

CI_RECORD is for collisional ionization data.

typedef struct _CI_RECORD_ {

int b;

int f;

int k1;

float *params;

float *strength;
} CI_RECORD;

Field Description:
int b:
int f£:

int k1:

float *params:
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The bound state index.
The free state index.

The orbital angular momentum of the ionized shell for the dominant
wavefunction component.

The parameters in the fitting formula for the collision strength. The
number of elements is given by nparams in CI_HEADER, which is 4. The
formula used is

. _ B
By,
1
y = 1—-
X
) 1 1
Q = polnz+py P2y + P35y, (2.9)

where Ej is the energy of the incident electron, Eij is the ionization
threshold, pg, p1, p2, and p3 are the four parameters. The parameter
po is actually obtained from the bound-free oscillator strength, which



is more reliable than one would get by fitting the calculated collision
stregnths.

float *strength: The collision strength for ionization. It is related to the ionization cross
section as (in atomic units):

1

o=55—
k%go

Q, (2.10)

where kg is the kinetic momentum of the incident electron, and gq is
the statistical weight of the initial state. The missing of the factor = as
compared to the formula for collisional excitation is due to the different
normalization for bound and free states.

2.1.15 SP_HEADER

SP_HEADER is the data header for spectral line data blocks. The spectral data are generated by CRM model.
A DB_SP data file contains two parts. The first part is the detailed level population table. The second part
is the spectral line emissivity table. Energy levels in a CRM model are divided into superlevel blocks. One
superlevel block occupies one data block in the first part, and all transitions between two superlevel blocks
make up one data block in the second part.

typedef struct _SP_HEADER_ {
long position;
long length;
int nele;
int ntransitions;
int iblock;
int fblock;
char icomplex[LNCOMPLEX] ;
char fcomplex [LNCOMPLEX] ;
int type;

} SP_HEADER;

Field Description:

long position: The number of bytes from the beginning of the file to the place where
this data block starts.

long length: Number of bytes in this data block, excluding the length of the header.
int nele: Number of electrons in the ion for this block.

int ntransitions: For the first part, this the number of levels in the block. For the second
part, this is the number of spectral lines.

int iblock: For the first part, this the superlevel block index. For the second part,
this is the superlevel block index for the initial states of transitions.

int fblock: For the first part, this is always 0. For the second part, this is the
superlevel block index for the final states of the transitions.

char icomplex[LNCOMPLEX]: The configuration complex name for the initial states.

char fcomplex[LNCOMPLEX]: The configuration complex name for the final states. For the first part,
this is always an empty string.

29



int type: Type of the block. For the first part, the type is always 0. For the
second part, the type is encoded as 10000 x ng + 100 X ny + ns, where
n1 is the initial principle quantum number of the electron making the
transition, and ns is the final principle quantum number. If ng # 0,
this transition is the so called dielectronic recombination satellite line,
which have a spectator electron at the orbital with principle quantum
number ng. If ng = n; = 0, then the line is radiative recombination
continuum onto the orbital with principal quantum number n.

2.1.16 SP_RECORD

typedef struct _SP_RECORD_ {
int lower;
int upper;
float energy;
float strength;
float rrate;
float trate;
} SP_RECORD;

Field Description:

int lower: For the level population table, this is level index within the same ion.
For the line emissivity table, this is the level index for the lower state
of the transition.

int upper: For the level population table, this is the level index within the same
superlevel block. For the line emissivity, this is the index for the upper
state of the transition.

float energy: For the level population table, this is the energy of the level in atomic
unit. For the line emissivity, this is the transition energy in eV.

float strength: For the level population table, this is the concentration of the level. For
the line emissivity, this is the line luminosity in photons/s.

float rrate: The radiative transition rate from upper to lower.

float trate: The total decay rate of upper.

2.1.17 SP_EXTRA
SP_EXTRA contains the UTA width of the transition. It is written to the DB_SP file only in the UTA mode.

typedef struct _SP_EXTRA_ {
float sdev;
} SP_EXTRA;

Field Description:

float sdev: The Gaussian UTA standard deviation of the transition.

2.1.18 RT_HEADER

RT_HEADER is the header for the rate data file. The rates are generated by the CRM model. It tabulates the
rates for individual processes from and to specific levels or superlevel blocks. In the DB_RT files, a data block
consists the rates from all other states to one level or one superlevel depending on how the file is created.

30



typedef struct _RT_HEADER_ {

long position;
long length;

int ntransitions;

int iedist;
int np_edist;

double *p_edist;

float eden;
int ipdist;
int np_pdist;

double *p_pdist;

float pden;
} RT_HEADER;

Field Description:

long position:

long length:

int ntransitions:

int iedist:

int np_edist:

double *p_edist:

float eden: The electron density in unit of 10'° cm

The number of bytes from the beginning of the file to the place where
this data block starts.

Number of bytes in this data block, excluding the length of the header.

The number of superlevel blocks from which the rates are tabulated in
this block.

The type of electron energy distribution for the CRM model. At present,
two types are supported. 0 for Maxwellian, and 1 for an Gaussian
monoenergetic beam.

Number of parameters for the electron energy distribution.

Parameters for the electron energy distribution. The following table
describes the parameters for exsisting distributions:

ID Dist

Params Unit

0 | Maxwellian | O: T, eV
1: Emin eV
2: FEnee €V
1 Gaussian 0: Ey eV
1: OR eV
2: Emzn eV
3: Enae eV
2 MaxPower | O: T, eV
1: «
2: g—;
3 EP. eV
4: EP .. eV
5 EN.. eV
6: E.. ¢V
3 PowerLaw | 0: «
1: Emzn eV
2: FEnee €V

int ipdist: The type of photon energy distribution for the CRM model. At present,

only one type is supported. 0 for power law.
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int np_pdist: Number of parameters for the photon energy distribution.

double #*p_pdist: Parameters for the photon energy distribution. The following table

describes the parameters for exsisting distributions:

1D Dist Params Unit
0 | Black Body | 0: T eV
1: Emzn eV
2: Fouz eV
1 PowerLaw | 0: «
11 Emin eV
2: Foae eV

float pden: The photon energy density of the radiation field in unit of erg cm=3. If

2.1.19 RT_RECORD

the distribution is Black Body, this is the dilution factor.

typedef struct _RT_RECORD_ {
int dir;
int iblock;

float
float
float
float
float
float

char icomplex[LNCOMPLEX] ;

nb;
tr;
ce;
Irr;
ai;
ci;

} RT_RECORD;

Field Description:

char icomplex [LNCOMPLEX]:

int dir:

int iblock:

float nb:

float
float

float

float

float

2.1.20 DR_HEADER

tr:
ce:

rr:

ai:

ci:

The direction of the transition. If dir is 0, the rate is into this super-
level, if dir is 1, the rate is out of this superlevel.

The index of the superlevel block from which the rates originate.

The concentration of the superlevel block from which the rates originate.
The radiative transition rates.

The collisional excitation rates.

The radiative recombination and possible photoionization rates (if there
is radiation field included in the model).

The autoionization rates and dielectronic capture rates.
The collisional ionization rates.

The configuration complex name of the superlevel block from which the
rates originate.

typedef struct _DR_HEADER_ {
long int position;
long int length;
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int
int

nele;
ilev;
ntransitions;
int vn;
int j;
float energy;
} DR_HEADER;

int

Field Description:

long position:

long length:
int nele:
int ilev:

int ntransitions:
int vn:
int j:

float energy:

2.1.21 DR_RECORD

The number of bytes from the beginning of the file to the place where
this data block starts.

Number of bytes in this data block, excluding the length of the header.
Number of electrons in the recombining ion for this block.
The level index of the recombining ion for this block.

The number of superlevel blocks from which the rates are tabulated in
this block.

The principle quantum number of the captured electron.
The 25 value of the recombining state.

The energy of the recombining state.

typedef struct _DR_RECORD_ {

int ilev;
flev;
ibase;

fbase;

int
int
int
int vl;
int j;
float
float
float
float ai;
float total_rate;
} DR_RECORD;

energy;
etrans;
br;

Field Description:
int ilev:

int flev:

int ibase:
int fbase:
int vl:

int j:

The level index of the autoionizing state.

The level index of the final state due to the decay (either autoioniza-
tion or radiative) of the autoionizing state. For the total DR strength,
this variable is always -1, since the result is the sum of all radiative
stabilazation routes.

The level index of the core for the resonance state.
The level index of the core for the final state, if applicable.
The orbital angular momentum of the captured electron.

The 25 value of the autoionizaing state.
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float energy:

float etrans:

float br:

float ai:

float total_rate:

2.1.22 AIM_HEADER

typedef struct _AIM_HEADER_
long int position;
long int length;
int nele;
int ntransitions;
int channel;
int n_egrid;
double *egrid;
} AIM_HEADER;

Field Description:

long position:

long length:
int nele:
int ntransitions:

int channel:

int n_egrid:

double *egrid:

2.1.23 AIM_RECORD

typedef struct _AIM_RECORD_

int b;

int f;

int nsub;

float *rate;
} AIM_RECORD;

Field Description:

34

The energy of the autoionizing state relative to the recombining state,
whose energy is given in the DR_HEADER.

The transition energy from ilev to flev.

The branching ratio of the autoionizing state to various final states.
For total DR strength, this is the total radiative branching ratio. For
resonance excitation, this is the branching ratio of autoionization to
individual states. For satellite calculations, this is the braching ratio of
radiative transition to individual states.

The autoionization rate to the recombining level.

The total decay rate of the autoionization state, i.e., including all au-
toionization and radiative decay channels.

{

The number of bytes from the beginning of the file to the place where
this data block starts.

Number of bytes in this data block, excluding the length of the header.
Number of electrons in the ion for this block.
Number of transitions in this block.

This an identifier to label the autoionization channel, which does not
have specific physical meaning.

The number of points for the Auger electron energy grid. The autoion-
zation radial integrals are calculated on this grid and interpolated to
the actual discrete energies.

The energy grid. The number of elements is given by n_egrid.
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int b:
int f£:

int nsub:

float *rate:

2.1.24 CIM_HEADER

The bound state index.
The free state index.

The number of entries in array rate. It is twice the number of transi-
tions tabulated, because both autoionziation and DR capture strength
need to be stored.

An array containing magnetic sublevel autoionization rates and DR cap-
ture strength. Suppose A(Mj7, Ms) represents autoionization rate from
M, sublevel of b to My sublevel of £, and R(Mj, M) is capture strength
from M, sublevel of £ to M; sublevel of b. Then the array rate is gen-
erated in the order consistent with the following code:

t =0
for (M1 = -J1; M1 <= 0; Mi++) {
for (M2 = -J2; M2 <= J2; M2++) {
rate[t++] = A(M1,M2);
rate[t++] R(M1,M2);

}
}

Due to axial symmetry, values for M; > 0 can be obtained from those

CIM_HEADER is the data header for magnetic sublevel collisional ionization data blocks.

typedef struct _CIM_HEADER_ {
long position;
long length;

int
int
int
int
int
int

nele;
ntransitions;
n_egrid;
egrid_type;
n_usr;
usr_egrid_type;

double *egrid;
double *usr_egrid;
} CIM_HEADER;

Field Description:

long position:

long length:

int nele:

int ntransitions:
int n_egrid:

int egrid_type:

int n_usr:

The number of bytes from the beginning of the file to the place where
this data block starts.

Number of bytes in this data block, excluding the length of the header.
Number of electrons in the ion for this block.

Number of transitions in this block.

Number of points for the collision energy grid.

Type of the energy grid. 0 for the incident electron energy, 1 for the
total energy of scattered and ejected electron.

N umber of points for the user collision energy grid.
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int usr_egrid_type: Type of the user energy grid. 0 for the incident electron energy, 1 for
the total energy of scattered and ejected electrons .

double *tegrid: The transition energy grid, the number of elements is given by n_tegrid.
double *egrid: The energy grid, the number of elements is given by n_egrid.

double *usr_egrid: The user energy grid, the number of elements is given by n_usr.

2.1.25 CIM_RECORD
CIM_RECORD is for magnetic sublevel collisional ionization data.

typedef struct _CIM_RECORD_ {
int b;
int f;
int nsub;
float *strength;
} CIM_RECORD;

Field Description:
int b: The bound state index.
int f: The free state index.
int nusb: The number of sublevel transitions in the strength array.

float *strength: The magnetic sublevel collision strength for ionization. It is related to
the ionization cross section as (in atomic units):

1

= = 11
Z (211)

g

where kg is the kinetic momentum of the incident electron. The different
magnetic sublevel transitions are arranged in the order similar to those
for excitation, i.e., =J; = =Jfp, =J; = =Jp + 1, -+, =J; = Jp, =J; +
1—=—Jp, —Ji+1—=—Jg+1,---, =Ji +1 = Jf, ---. Only the cross
sections with M; < 0 are included, since those with M; > 0 can be
obtained using time reversal symmetry.

2.2 ASCII Format

FAC provides functions to convert the binary output to ASCII files. There are two types of ASCII formats,
a simple translation of binary files and a more verbose version that adds more derived information for the
sake of convenience. If the ASCII files are created to be human-readable, the verbose form should be used.

In the simple form, the contents of binary files are converted to ASCII format as is. No additional information
is added. All physical values are in atomic units as is in binary files. The different byte-order used by different
platforms are taken into account automatically. Therefore, it is possible to create the binary files on a little
endian machine (probably faster), then convert them to ASCII format on a slower big endian machine.

In the verbose form, the more common units of physical quanties are used. Specifically, s~! for transition
rates, 10729 cm? for cross sections, and eV for energies. For data files other than DB_EN type, the energies
and angular momenta of the levels involved in the processes are not included in the binary version. In the
verbose form of corresponding ASCII files, these infomations are added by looking up in the energy level
table. Also, for DB_TR files, not only matrix elements, but also gf values and radiative transition rates
are tabulated. For DB_CE and DB_CI, cross sections are tabulated along with the collision strengths. For

36



DB_RR, radiative recombination and photionization cross sections are tabulated along with the bound-free
differential gf values. For DB_AI, the energy integrated dielectronic capture strengths (in unit of 1072 eV
cm?) are tabulated in addition to the autoionization rates.

In the following sections, a portion of each type of database file in the verbose form is listed and significant
fields explained. The lines start with a “#” are the added explanation, which are not part of the output file.
These files are generated with the scripts in the demo/ directory come with FAC.

2.2.1 DB_EN

# version numbers

FAC 1.0.4

# binary order used in the binary file
Endian = 0

# time stamp when the file was created.
TSess = 1020438482

# database type

Type = 1

# this file is in verbose form

Verbose = 1

# atomic symbol and atomic number

Fe Z = 26.0

# number of data blocks in this file
NBlocks = 1

# the index and the absolute energy of the ground state
EO = 0, -3.12494784E+04

# data block begins
# number of electron for the states in this block

NELE = 10

# number of levels in this block

NLEV = 37

ILEV IBASE ENERGY P VNL 27J

0 -1 0.00000000E+00 O 201 0 1%2 2x8 2p6 2p+4(0)0
1 -1 7.23810448E+02 1 300 4 12 2%7 31 2p5 3s1 2p+3(3)3 3s+1(1)4
2 -1 7.25859655E+02 1 300 2 12 2*7 31 2p5 3s1 2p+3(3)3 3s+1(1)2
3 -1 7.36414516E+02 1 300 0 1*2 2*7 31 2p5 3s1 2p-1(1)1 3s+1(1)0
4 -1 7.37736604E+02 1 300 2 1*2 2*7 31 2p5 3s1 2p-1(1)1 3s+1(1)2
5 -1 7.54149163E+02 O 301 2 1%2 2*7 31 2p5 3pl 2p+3(3)3 3p-1(1)2
6 -1 7.57788593E+02 0 301 4 12 2%7 31 2p5 3pl 2p+3(3)3 3p-1(1)4
7 -1 7.59341459E+02 0 301 6 1%2 2%7 3x1 2p5 3pl 2p+3(3)3 3p+1(3)6
8 -1 7.60552577E+02 0O 301 2 12 2%7 31 2p5 3pl 2p+3(3)3 3p+1(3)2
9 -1 7.62361512E+02 0O 301 4 12 2*7 31 2p5 3pl 2p+3(3)3 3p+1(3)4
10 -1 7.67999430E+02 O 301 0 1*2 2*7 31 2p5 3pl 2p+3(3)3 3p+1(3)0

The column labels by VNL is 100 x n 4 [, where n and [ are the principle and orbital angular quantum
numbers of the valence electron.

2.2.2 DB.TR

FAC 1.0.7
Endian = 0O
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TSess =
Type = 2
Verbose = 1
Fe Z =
NBlocks = 1

# the data block begins

NELE = 10

26.0

1021577025

# number of transitions in this block

NTRANS = 7

# multipole type of the transition

Multip = -1

# gauge used in the calculation

Gauge = 2

# mode used in the radial integral

Mode = 1

#upper 2J lower 2J

2 2
4
16
22
26
30
32

NN NNNDDN

0

O O O O O O

O O O O O O o

Delta E

0 0 0 0 0 N N

.2687E+02
.37T4E+02
.0114E+02
.1133E+02
.2627E+02
.9415E+02
.9844E+02

N WN DO O ~R

+h

.130597E-01
.944485E-02
.438239E-03
.221187E-01
.493449E+00
.203146E-02
.652003E-01

TR rate(1/s)

W wN oo N

.616084E+11
.828559E+11
.7T61793E+10
.923155E+12
.456309E+13
.7T04097E+11
.096259E+12

multipole

.127617E-01
.048997E-01
.101188E-02
.501928E-01
.966355E-01
.407792E-02
.552313E-01

After version 1.0.8, if the UTA mode is used, the output contains an additional column after the transition
energy, which is the Gaussian standard deviation of the UTA transition. The 2.J values in this case are also
redefined to be the statistical weight of the configuraiton minus 1.

2.2.3 DB.CE

FAC 0.7.9

Endian = 0

TSess = 1021577097
Type = 3

Verbose = 1

Fe Z = 26.0
NBlocks = 1

# data blocks begin

NELE = 10

NTRANS = 36

# mode used in the radial integral

QKMODE = O

# number of parameters in the fitting formula (only if QKMODE = 2)
NPARAMS = O

# 0 for total collision strength. 1 for magnetic sublevel.

MSUB = 0

# partial wave summation mode. always O.

PWTYPE = 0

# number of points in the transition energy grid, followed by the grid
NTEGRID = 2
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7.24352072E+02
9.45773957E+02
# characteristic transition energy used in grid construction.
TEO = 9.44829120E+02
# energy grid type.
ETYPE = 1
# energy grid
NEGRID = 6
4.72414560E+01
5.79761386E+02
1.39812537E+03
2.65576771E+03
4.58848260E+03
7 .55863296E+03
# user energy grid type and the user grid.
UTYPE = 1
NUSR = 6
4.72414560E+01
.79761386E+02
.39812537E+03
.65576771E+03
.58848260E+03
7.55863296E+03
#lower 2J upper 2J Delta E nsub
0 0 1 4 7.2435E+02 1
#The Bethe coefficient and 2 Born coefficients in the Born approximation.
-1.0000E+00 0.0000E+00 0.0000E+00
# if QKMODE = 2, the parameter line is present here.
#user egrid coll. str. cross sec.

SN = o

4.7241E+01 1.5347E-03 2.3789E-01
5.7976E+02 9.5137E-04 8.7207E-02
1.3981E+03 5.1906E-04 2.9211E-02
2.6558E+03 2.5016E-04 8.8294E-03
4.5885E+03 1.1322E-04 2.5376E-03
7.5586E+03 5.1291E-05 7.3523E-04
0 O 2 2 T.2639E+02 1
9.1750E-03 -7.0392E-03 7.2655E-03
4.7241E+01 1.8857E-03 2.9153E-01
5.7976E+02 3.7280E-03 3.4119E-01
1.3981E+03 6.3378E-03 3.5633E-01
2.6558E+03 9.4893E-03 3.3472E-01
4 .5885E+03 1.2996E-02 2.9116E-01
7.5586E+03 1.6729E-02 2.3974E-01

If MSUB = 1, then the data for each transition contains nsub blocks, representing several m; — m transitions.
Before each block, the ratio of the magnetic sublevel collision strengths to the total collision strength at high
energy limit is given. Due to the time reversal symmetry, the cross section for —m; — —my is the same as
that for m; — m;, only the cross sections with m; < 0 are tabulated in the order —J; — —J¢, —J; = —J¢+1,
=i = Jpy, =S+l = —Jp, =S+ 1= —Jp+ 1 =S+ L= Ty, e
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2.2.4 DBRR

FAC
End
TSe

Typ

0.7.3
ian = O

ss = 1021577047

e =4

Verbose = 1
Fe Z = 26.0

NB1

ocks =1

# the data blocks begin
NELE = 3
NTRANS = 3

QKM

ODE = 2

# multipole type
MULTIP = -1

# number of parameters in the fitting formula
NPARAMS = 4
NTEGRID = 1

2

.01377924E+03

ETYPE = 1
NEGRID = 6

1

©O© 0N =

1
UTY

.00688962E+02
.23568529E+03
.97992069E+03
.66042025E+03
.T7974833E+03
.61102339E+04
PE =1

NUSR = 6

1

© 0N =

1

#bound 2J free 2J Delta E

# the parameters in the fitting formula
8124E-02 4.9724E+00

3.
#us
1

= O 01N =

N~ - W

40

.00688962E+02
.23568529E+03
.97992069E+03
.66042025E+03
.T7974833E+03
.61102339E+04

L

7 1 0 O 2.0465E+03 O

1.2195E+00 2.

N O Ol = W

er egrid RR cross sec. PI cross sec.
.0069E+02 1.7567E-01 1.9604E+00
.2357E+03 1.4375E-02 8.4255E-01
.9799E+03 5.5123E-03 3.3223E-01
.6604E+03 2.4847E-03 1.2100E-01
.TT9TE+03 1.1476E-03 4.1004E-02
.6110E+04 5.2175E-04 1.3029E-02
8 1 0 1.9975E+03 1
.4223E-02 5.3145E+00 1.2206E+00
.0069E+02 1.5214E-01 1.7781E+00
.2357E+03 8.4472E-03 5.1024E-01
.9799E+03 2.1814E-03 1.3407E-01

N NN N

1768E+03
gf

.0637E-02
.3124E-02
.1751E-03
.8848E-03
.3872E-04
.0295E-04

.1537E+03
.T697E-02
.9480E-03
.0885E-03



5.6604E+03 6.5910E-04 3.2509E-02 5.0639E-04
9.7797E+03 2.0448E-04 7.3672E-03 1.1476E-04
1.6110E+04 6.2231E-05 1.5624E-03 2.4338E-05
9 3 0 O 1.9810E+03 1

6.9754E-02 5.1620E+00 1.2206E+00 2.1350E+03
1.0069E+02 2.9691E-01 1.7625E+00 5.4910E-02
1.2357E+03 1.6320E-02 4.9796E-01 1.5513E-02
2.9799E+03 4.1721E-03 1.2907E-01 4.0209E-03
5.6604E+03 1.2475E-03 3.0899E-02 9.6262E-04
9.7797E+03 3.8274E-04 6.9143E-03 2.1541E-04
1.6110E+04 1.1506E-04 1.4471E-03 4.5081E-05

2.2.5 DB.AI

FAC 0.7.3

Endian = 0

TSess = 1021577153

Type = 5

Verbose = 1

Se Z = 34.0

NBlocks = 1

# data blocks begin
NELE = 10

# number of transitions
NTRANS = 92

# channel number (no physical meaning)

CHANNE = O

# free electron energy grid

NEGRID = 2
3.43213508E+02
5.58605513E+02

#bound 2J free 2J Delta E AT rate DC strength
2 4 0 3 3.8679E+02 1.3705E+13 1.0962E+01
2 4 1 1 3.4322E+02 1.6996E+11 3.0642E-01
3 0 0 3 4.0594E+02 1.2973E+13 1.9775E+00
3 0 1 1 3.6236E+02 7.9903E+11 2.7289E-01
4 4 0 3 4.1845E+02 2.3652E+11 1.7487E-01
4 4 1 1 3.7487E+02 2.2905E+09 3.7807E-03

2.2.6 DB.CI

FAC 0.7.3

Endian = 0

TSess = 1021577194

Type = 6

Verbose = 1

Fe Z = 26.0

NBlocks = 1

# data blocks begin



NELE =
NTRANS = 3
5

10

QKMODE =
NPARAMS = 4
PWTYPE = 0
NTEGRID = 2
1.26072567E+03
1.39546596E+03
ETYPE = 1
NEGRID = 6
.64047908E+01
8.14939607E+02
.96527014E+03
3.73307079E+03
.44978485E+03
.06247665E+04
UTYPE = 1
NUSR = 8
.00000000E+02
.00000000E+02
.30000000E+03
.70000000E+03
.10000000E+03
.20000000E+03
.00000000E+03

# parameters

6

1

6

1

5

o PN - - ©

8.

0 0

1.2549E-01
#user egrid
.0000E+02
.0000E+02
.3000E+03
.7T000E+03
.1000E+03
.2000E+03
.0000E+03
.0000E+03

5

0 OO NE = O

W OO PdPNFE - O OO

)]

42

0 0

.3179E-02
.0000E+02
.0000E+02
.3000E+03
.7TO00E+03
.1000E+03
.2000E+03
.0000E+03
.0000E+03

0 0

.7T526E-02
.0000E+02

00000000E+03
#bound 2J free 2J Delta E

L

1 3 1.2607E+03 1
in the fitting formula

6.7308E-01 -5.

4651E-01

coll. str. cross sec.

.0688E-02
.5721E-01
.1672E-01
.6991E-01
.1773E-01
.0773E-01
.1976E-01
.1292E-01 2

W WwwwN -

.4336E-02 9
.7T083E-02
.0639E-01
.3263E-01
.5624E-01
.5023E-01
.0577E-01
.5203E-01 1

WNWWWNRFR,RFRPREFENPDPONDNYNYOOOOOTOWNDDNDER O
R R R e e

.9535E+00
.7T605E+00
.2084E+00
.4532E+00
.5785E+00
.5050E+00
.2065E+00
.8808E+00
1 1.2737E+03 1
.3088E-01 -2.
.4904E-01
.3454E+00
.5671E+00
.6894E+00
. 7T529E+00
. 7T233E+00
.5791E+00
.4205E+00
1 1.3955E+03 O
.8628E-01 -2.
.4409E-02 6.

6847E-01

4531E-01
8908E-01

7.2856E-01

3.5591E-01

3.1267E-01



9.0000E+02 6.0280E-02 9.9604E-01
1.3000E+03 8.4082E-02 1.1823E+00
1.7000E+03 1.0585E-01 1.2950E+00
2.1000E+03 1.2576E-01 1.3615E+00
4.2000E+03 2.0705E-01 1.3946E+00
6.0000E+03 2.5609E-01 1.3005E+00
8.0000E+03 2.9733E-01 1.1840E+00

2.2.7 DB.SP

FAC 0.7.3

Endian = 0O

TSess = 1021484432

Type = 7

Verbose = 1

Fe Z = 26.0

NBlocks = 2952

# data blocks begin

NELE = 10

NTRANS = 1

# type O is for level population

TYPE = 000000

# block number

IBLK = 5

# block complex

ICOMP = 1*2 2%8

FBLK = 0

FCOMP =

#block level abs. energy population
0 0 -3.12496016E+04 9.99987960E-01

NELE = 10
NTRANS = 1
TYPE = 000000
IBLK = 6
ICOMP = 1%x2 2x%7 3x*1
FBLK = 0
FCOMP =

1 0 -3.05250918E+04 5.11909866E-06

NELE = 10
NTRANS = 1
TYPE = 000000
IBLK = 7
ICOMP = 1%2 2x%7 3x*1
FBLK = 0O
FCOMP =
2 0 -3.05230508E+04 6.65310797E-13

NELE = 10
NTRANS = 1



TYPE = 000000

IBLK = 8

ICOMP = 1%2 2x%7 3x*1
FBLK = 0

FCOMP =

3 0 -3.05122168E+04 6.89876970E-06

# this block is for line emissivity

NELE = 10
NTRANS = 113

# transition type 16->4 transition

TYPE = 001604
# initial block
IBLK = 54

# initial block complex

ICOMP = 1%2 2%7 16x%1
# final block

FBLK = 42

# final block complex

FCOMP = 1%2 2%7 4x1

#upper lower Delta E
1831 158 2.55395828E+02
1831 163 2.48938431E+02
1831 164 2.54269775E+02
1831 165 2.53695114E+02
1832 157 2.56149841E+02
1832 158 2.55389191E+02
1832 165 2.53688477E+02
1832 166 2.54721527E+02
1833 160 2.55734634E+02
1833 167 2.54585327E+02
1834 159 2.52442841E+02
1834 160 2.55741287E+02
1834 167 2.54591980E+02

2.2.8 DBRT

FAC 1.1.0

Endian = 0

TSess = 1021484432

Type = 8

Verbose = 1

Fe Z = 26.0

NBlocks = 87

# data blocks begin
NELE = 9

NTRANS = 49

# block index

44
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emissivity

.58072258E-06
.54685597E-06
.99868485E-06
.73144177E-06
.01010974E-05
.33697595E-06
.52791436E-06
.41980142E-05
.87857039E-06
.21048633E-05
.88687328E-06
.01619125E-05
.23122890E-06



IBLK = 0
# level index within the ion
ILEV = 0
ICOMP = 1%2 27
# electron density
EDEN = 1.00000000E+00
# electron energy distribution, 0 for Maxwellian.
EDIST = 0
# parameters for electron energy distribution
NPEDIS = 3
# temperature
1.00000000E+00
# Emin
1.00000000E-20
# Emax
1.00000000E+02
# photon energy density
PDEN = 0.00000000E+00
# photon energy distribution
PDIST = 0
NPPDIS = 3
2.00000000E+00
1.00000000E+01
1.00000000E+05
# population of this block
DENS = 1.00000000E+00
# statistical weight of this block

AT

.0000E+00
.8866E-04
.6693E-18
.0329E-27
.2230E-34
.3995E-38
.1495E-41

0000E+00

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.3172E+00
.9623E+00

CI

.0000E+00
.0000E+00
.0000E+00
.0448E-37
.9952E-31
.8637E-27
.8210E-24

2326E-22

.8721E-20
.8804E-18
.2070E-16
.T049E-15
.5642E-14
.0338E-13
.2262E-13

STWT = 4.00000000E+00
# each line is contribution to this level or block by other blocks
NB TR CE RR
1 2.9983E-10 6.1831E-06 0.0000E+00 0.0000E+00
44 6.0874E-12 0.0000E+00 0.0000E+00 0.0000E+00
45 1.0708E-11 0.0000E+00 0.0000E+00 0.0000E+00
46 1.7088E-11 0.0000E+00 0.0000E+00 0.0000E+00
47 2.5457E-11 0.0000E+00 0.0000E+00 0.0000E+00
48 3.1069E-11 0.0000E+00 0.0000E+00 0.0000E+00
49 1.2877E-10 0.0000E+00 0.0000E+00 0.0000E+00
50 5.2642E-11 0.0000E+00 0.0000E+00 0.0000E+00
51 5.5315E-11 0.0000E+00 0.0000E+00 0.0000E+00
52 6.3140E-11 0.0000E+00 0.0000E+00 0.0000E+00
53 7.3613E-11 0.0000E+00 0.0000E+00 0.0000E+00
54 8.4200E-11 0.0000E+00 0.0000E+00 0.0000E+00
55 9.3432E-11 0.0000E+00 0.0000E+00 0.0000E+00
56 1.5446E-10 0.0000E+00 0.0000E+00 0.0000E+00
57 1.2547E-10 0.0000E+00 0.0000E+00 0.0000E+00
58 1.2279E-10 0.0000E+00 0.0O0OOE+00 0.0000E+00

-1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
-2 1.0000E+00 6.1831E-06 0.000OE+00 0.0000E+00
-3 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

(@]

0
8
1
1
7
3
4
0.
0
0
0
0
0
8
1
5

.6143E-01

.0000E+00
.1178E+01
.0000E+00

o

0
0
0
2
1
3
2
8.
9
4
1
1
1
1
5
2

.1193E-12

.0000E+00
.0000E+00
.2304E-04

1x2
1%2
1%2
1x2
1%2
1x2
1%2
1%2
1%2
1x2
1x2
1x2
1%2
1%2
1%2
1x2

10

27
27
2%7
2%7
27
27
27
2%7
2%7
2%7
27
27
2%7
2%7
2%7
27

6*1

7*1

8x*1

9x*1

10*1
11x1
12x1
13x%1
14%1
16%1
16x1
17%1
18x*1
19x*1
20*1
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2.2.9 DB.DR

FAC 0.8.6

Endian = 0

TSess = 1036783874
Type = 9

Verbose = 1

Fe Z = 26.0
NBlocks = 45

# number of electrons of the recombining ion.
NELE = 9

# number of transitions in this block.

NTRANS = 22

# level index of the recombining state.

ILEV = 37

# energy of the recombining state.

E = -2.99679153E+04

# 2J value of the recombing state.

JLEV = 3

# principle quantum number of the captured electron.

NREC = 6

#AI 2J Rec 2J ibase flev fbase NREC L ERes ETrans AT Rate Total Rate Branching
275 0 37 3 39 -1 -1 6 0 1.2462E+01 0.0000E+00 1.1031E+13 1.1348E+13 2.7940E-02

2.2.10 DB_AIM

FAC 1.0.0

Endian = 0

TSess = 1059655031
Type = 10

Verbose = 1

Fe Z = 26.0
NBlocks = 1

# data blocks begin
NELE = 4
# number of transitions
NTRANS = 87
# channel number (no physical meaning)
CHANNE = 0
# free electron energy grid
NEGRID = 1
4.70510700E+03
#bound 2J free 2J Delta E nsub
13 0 10 1 4.6448E+03 4
#AI rates DC strength
3.5842E+13 1.9099E+00
3.5842E+13 1.9099E+00
13 0 11 1 4.5958E+03 4
5.7277E+13 3.0847E+00
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5.7277E+13 3.0847E+00

2.2.11 DB.CIM

FAC 1.0.5

Endian = 1

TSess = 1077996307
Type = 11

Verbose = 1

Se Z = 34.0
NBlocks = 1

NELE = 11
NTRANS = 1
ETYPE = 1
NEGRID = 2
6.80000000E+01
8.84000000E+02
UTYPE = 1
NUSR = 2
6.80000000E+01
8.84000000E+02
#bound 2J free 2J Delta E nsub
0 1 8 2 2.5178E+03 3
#-1/2 -> -1
6.8000E+01 1.7855E-03 .6242E-02
8.8400E+02 1.8495E-02 .0646E-01
# -1/2 -> 0
6.8000E+01 8.9710E-04 1.3185E-02
8.8400E+02 9.3091E-03 1.0392E-01
#-1/2 > 1
6.8000E+01 2.8326E-06 4.1632E-05
8.8400E+02 3.1205E-05 3.4833E-04

NN



3 FAC Function Reference

This chapter describes the functions available in the PFAC interface which are organized in the package
named pfac. Each python module is documented in a separate section, where the global variables, functions,
classes are listed in alphabetic order. All functions in the extension modules fac, crm, and pol are also
available in SFAC interface with identical calling syntax using the 3 executables sfac, scrm, and spol,
unless otherwise indicated explicitly. Their usage in SFAC interface is therefore not documented separately.
Functions and classes of other python modules are generally not implemented in SFAC interface. In the
documentation of each function, the arguments in brackets are optional, arguments separated by “|” are
alternative forms of calling syntax, “...” in the argument list denotes variable number of arguments, and
keyword arguments are indicated by key=arg pair.

3.1 fac—Core FAC Module
3.1.1 Variables

There are several global variables one may make use of.

ATOMICMASS:
This is a list of atomic masses of all elements in the periodic table. ATMICMASS[:] is the mass for atom with
nuclear charge equal to i.

ATOMICSYMBOL:
This is a list of strings representing the atomic symbols of all elements in the periodic table. The first
element of this list is empty. Therefore ATOMICSYMBOL[:] is for atom with nuclear charge equal to i.

QKMODE:
A dictionary mapping the name of radial integral computational modes to its integer values.
QKMODE = {

’default’: -1,

’exact’:

’interpolate’:

fit’:

’cb’:

dw’ : ,

*bed’: 5}
The corresponding upper case names can also be used in accessing these numbers.
The modes ’exact’, ’interpolate’, and ’fit’ are used for collisional excitation and radiative recom-
bination. ’exact’ requires the radial integrals are calculated on the specified collision energy grid as is.
’interpolate’ requires the calculation on the egrid energy grid, and interpolated to usr_egrid user energy
grid. >fit’ requires the radial integrals to be fitted by an analytic formula. The modes >cb’, ’dw’, and
’bed’ are used for collisional ionization. ’cb’ inidcates the Coulomb-Born values to be used for the radial
integrals. >dw’ requires the radial integrals to be calculated using the distorted-wave approximation. ’bed’
requres the binary-encounter-dipole theory to be used. The mode ’default’ is one of the mode discussed
above depending on the atomic process. For collisional excitation, >default’ is ’exact’, for radiative
recombination, *default’ is >fit’, for collisional ionization, *default’ is ’bed’.

-

> W N~k O

VERSION:
This is a string representing the version of FAC. It is in the form of major.minor.release, where magor, minor,
and release are numbers.
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3.1.2 Functions

The module contains the following functions.

AIBranch(fn, b, f):

Looking up the autoionization rate from b to f and the total autoionization rate from b in the binary file fn.
It returns a Tuple consisting of the resonance energy, partial autoionization rate, and total autoionization
rate.

AITable(fn, b, f [, c]):

Calculate the autoionization rates between the bound configuration group b and the free configuration group
f. The results are saved in file fn. The optional channel number ¢ can be supplied as an identification of the
transition array.

AITableMSub(fn, b, f [, ¢]):

Calculate the magnetic sublevel autoionization rates and dielectronic capture strength between the bound
configuration group b and the free configuration group f. The results are saved in file fn. The optional
channel number ¢ can be supplied as an identification of the transition array.

AppendTable(fn):

By default, when a new script is executed, existing binary files are overwritten. If instead the new data
should be appended to the file, use this function to set the append flag.

Asymmetry(fn, s [, m]):

Calculate the photoionization asymmetry parameters for given relativistic subshells. s is a string which gives
the subshells. It should be in spectroscopic notation, e.g., '1s’ for 1s1,3, '2p’ for 2p; /5 3/ shells, "3p-’ for
3p1/2 and "3p+’ for 3p3/s, etc. The optional m specifies the maximum multipole expansion, counting in the
order E1, M1, E2, M2, ..., therefore, m = 1 includes only E1, m = 2 includes E1 and M1, etc. Default is
m = 1. The results are stored in file fn. For each subshell, the output starts with one line indicating which
subshell it is, its nlj values, the ionization energy, the number of energy points, and the value of m used. It is
followed by a block, which contains one line for each energy point and tabulates the electron energy, photon
energy, total photoionization cross section (10720 cm?), cross section for electron direction perpendicular to
that of photon, the total radiative recombination cross section, the cross section at 90°, and the ratio of
o1 /o), where o is the 90° radiative cross section for photons polarized in the direction perpendicular to
the electron direction, and oy is the 90° cross section for photons polarized in the direction parallel to the

electron direction. The last piece of data for each subshell are the By and Bf parameters defined as

d
d% - % S BaPa(cos) — S° AL = 1) BY P (cos 0) cos(20) | | (3.1)
A>0 A>2

where o is the total cross section, 6 is the angle between the electron and photon directions, ¢ is the azimuth
angle of polarization direction of the photon relative to the electron direction.

AvgConfig(c):

Setup a mean configuration for the optimization of central potential as specified by a string ¢. The format of
the string is the same as in the function Config, except that the occupation can be a non-integer number in
this routine. The mean configuration setup by this function is effective only if the function OptimizeRadial
is called with no arguments. Otherwise, the configurations given in that function are used to generate the
mean configuration automatically. It is important that this function be called before OptimizeRadial and
after ConfigEnergy (0), if the later is used.

BasisTable(fn [,m]):

Print out a table of basis wavefunctions and mixing coefficients in the file fn. If m is 0, then the basis table
for the ordinary atom is given, otherwise, the basis table for atom in magnetic and electric fields are given.
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CECross(ifn, ofn, low, up, e [, m]):

Calculate the collision strength and cross sections at energies given in list e between levels low and up by
interpolating the data from CE binary data file ifn. The results are written in ofn in simple ASCII format.
Before this routine is called, MemENTable must be called to establish the energy table that is consistent with
ifn. The energy given in e is that of the scattering energy if m = 1, which is the default, or that of the
incident energy if m = 0.

CERate(ifn, ofn, low, up, t):

Calculate the effective collision strength and rate coefficients at temperatures given in list ¢ between levels
low and up by interpolating the data from CE binary data file ifn. If either low or up is negative, then the
level index is looped over to give rate coefficients for all transitions. The results are written in ofn in simple
ASCII format. Before this routine is called, MemENTable must be called to establish the energy table that is
consistent with ifn

CETable(fn, low, up):
Calculate the collision strength for the excitation of states in the configuration group list low to those in the
group listup. The results are saved in the file fn.

CETableEB(fn, low, up [, m]):

Calculate the collision strength for the excitation of states in the configuration group list low to those in
the group listup, but for atoms in magnetic and electric fields. The results are saved in the file fn. If m is
0, then incident electron is assumed to be isotropic, otherwise, cross sections at different incident directions
are calculated.

CETableMSub(fn, low, up):

Calculate the magnetic sublevel collision strength for the excitation of states in the configuration groups low
to those in the groups up. The results are saved in the file fn.

CITable(fn, b, f):

Calculate the collision strength for the ionization of states in the bound configuration groups b to those in
the free configuration groups f. The results are saved in the file fn.

CITableMSub(fn, b, f):

Calculate the magnetic sublevel collision strength for the ionization of states in the bound configuration
groups b to those in the free configuration groups f. The results are saved in the file fn.

CheckEndian( [fn]):

Check the byte order of database file fn. It returns O for little endian and 1 for big endian. If the optional
file name fn is omitted, the endian for the current platform is returned.

ClearLevelTable():

Clear the energy level table in the memory.

ClearOrbitalTable( [m]):

Clear the radial orbital table in the memory. If the optional argument m = 0, the entire table is cleared. If
m>0, only the continuum orbitals are cleared.

CloseSFAC():

Close the file containing the SFAC input file converted from the current Python script. This function must
be called after ConvertToSFAC. Only the statements between the call to ConvertToSFAC and CloseSFAC are
converted to SFAC input file. This routine is only available in PFAC interface.

Closed(s, ...):

Specify the closed shells in the electronic configurations. It takes variable number of arguments, each of
them is a non-relativistic or relativistic shell in the spectroscopic notation. e.g., 2s for 2s shell, 2p- for 2p, /5
shell, and 2p+ for 2p3 /5 shell.
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Config(c, ..., group=g | g, ¢, ...):

Add one or more configurations to the configuration group g¢. In the first form, the group name g is given
as a keyword, while in the second form, the first argument must be a group name instead of a configuration.
It takes one or more strings for the configuration specification. A configuration c is a string comprised of
one or more non-relativistic or relativistic shells in spectroscopic notation separated by white spaces. e.g.,
2[p+13 is a 2p3/o shell with 3 electrons. If a * is given instead of the orbital angular momentum symbol,
configurations with all legitimate values are generated. It is also possible to use [s,p,d] to indicate that
the orbital angular momentum may take s, p, or d values. For [ > 20, no spectroscopic symbol is available,
it is specified as [I] such as [21,22] for [ = 21 and 22 shells. This numerical notation also works for [ < 20
shells, for which spectroscopic symbols s, p, 4, £, g, h, i, k, 1, m, n, o, q, r, t, u, v, w, X,
y, z are available. The bracket for the orbital angular momentum can be omitted if it comprises of a single
character. Otherwise, the bracket must be present. For example, 2p — 2 is illegal, but 2[p—]2 is. Each shell
may be followed by multiple conditions on the occupation number, separated by ;”, e.g., 3x10;3s > 0;3p > 5
generate configuarations that have at least 1 electron in the 3s and 6 electrons in the 3p shells. The logical
relations allowed in conditions include =, >, and <.

ConfigEnergy(m [, n [, g, -..]]):

This function should be called twice just before (with m = 0) and after (with m = 1) OptimizeRadial
if used. If AvgConfig is called, then ConfigEnergy with m=0 must be called before that. The call with
m = 0 performs a radial optimization for the configuration groups given by the list g, and calculate the
average energy of each configuration under such potentials. Multiple optimizations are performed if more
than one list are given. If none is given, the optimization are carried out for each configuration group. If
m = 0, one may also specify an integer n to indicate that RefineRadial(n) should be called after the
optimization. The call with m = 1 does not accept additional arguments. It recalculates the average energy
of each configuration under the potential obtained by OptimizeRadial issured by the user, The diagonal
elements of the Hamiltonian calculated in the Structure call is then adjusted by the difference of the two
average energies for each configuration. The purpose of this routine is to remove some of the errors in the
level energies introduced by using a single central potential for all configurations.

ConvertToSFAC(fn):

Converts the statements between this call and the CloseSFAC call to SFAC input file fn. The resulting file
can then be run using the sfac executable. This routine is only available in PFAC interface.

CorrectEnergy(fn, nmin | ilev, e, nmin):

Correct the energies of certain levels by given amount. This is used if the exact energy of some levels is
critical. In the first form, the indexes and the energy corrections are listed as two columns in the file fn. In
the second form, the indexes are given in the Python list ilev, and the energy corrections are given in the
list e. Only levels with valence electron in n > nmin are corrected, if these levels are not constructed with
RecStates. The corrections are given in units of eV. For the first level in the correction list, the amount is
added to the energies calculated by FAC, and that level is taken as the reference level for all other entries
in the list. The correction energies in the list e for these other entries with ilev> 0 are the desired energies
relative to the reference level, i.e., they replace the energies calculated by FAC. However, if ilev< 0, then
these corrections are also interpreted as shifts to be added to the energyies calculated by FAC.

CutMixing(g0, g1 [, c]):
For each levels in the group list g0, eliminate all mixing components that are not in the group list g1 or the
mixing coefficients less than c.

DROpen(g):

Calculate the principle quantum numbers at which the dielectronic recombnation starts to open for the core
excitations from the ground state to the states in the configuration group list g. It returns a list of integers.
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FinalizeMPI():

If FAC is compiled with MPI support, this invokes MPI finalize method before exiting. This function should
be called as the last line of the script.

GetCFP01d(j, ¢, dj, dw, pj, pw):

Return the coefficient of fractional parentage (5971, pj, pw|}j9, dj, dw), where j is the angular momentum of
the shell. ¢ is the occupation of the daughter state. pj and dj are the total angular momenta of the parent
and daughter states. pw and dw are the seneority of parent and daughter states. All angular momenta
appearing here are twice of their actual values.

GetCG(j1, j2, j3, m1, m2, m3):
Return the Clebsch-Gordan coefficient <jlml, j2m2|j3m3>. All angular momenta appearing here are twice
of their actual values.

GetConfigNR(c, ...):

This functions returns a list of non-relativisitc configurations corresponding to the supplied configuration
strings, which may contain wild casts as in the function Config. It is useful, e.g., when one wants to know
the non-relativistic configurations of 1*2 2*2 3%1.

GetPotential(fn):

Print the radial potential obtained by OptimizeRadial to the file fn. The file starts with the parameters
for the analytic fit the to potential, A and a, in the formula

vy = —Z 4 N1 (1—*”1’(””). (32)

r r 1+ar

After that, the mean configuration used to generate the potential is printed in 3 columns representing the
principle quantum number, the relativistic angular quantum number x, and the fractional occupation number
respectively. Finally, the file gives 8 columns which are ¢, r, Z(r), V(r), Va(r), Ve(r), VI(r), and U(r), where
i is the index for the radial grid, r is the radial grid, Z(r) is the nuclear charge at radius r taking into
account the nuclear charge distribution, V(r) is the optimal potential, V;(r) is the direct interaction part
of the potential, V.(r) is the exchange interaction part of the potential, V/(r) is the Slater approximation
of the exchange interaction, and U(r) is the Uehling potential which approximates the vacuum polarization
effects.

GetW3j(j1, j2, 73, m1, m2, m3):
Return the Wigner 35 symbol (
values.

Jjl j2 53
ml m2 m3

). All angular momenta appearing here are twice of their actual
GetW6j(j1, 72, 73, i1, i2, i3):
Return the Wigner 65 symbol {
values.

Jjl1j233

it } All angular momenta appearing here are twice of their actual

GetW9j(j1, j2, j3, i1, 2, i3, ki, k2, k3):
Return the Wigner 95 symbol. All angular momenta appearing here are twice of their actual values.

Info():
Print out the version information of FAC and contact information of the author.

InitializeMPI( [opt]):
If FAC is compiled with MPI support, this function initializes the MPI system. opt specifies the command
line options processed by the MPI init function. This function should be invoked as the first line.
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InterpCross(ifn, ofn, low, up, e, m):

Interpolate cross sections in the binary file ifn, and save outputs in ofn. low and up are lower and upper
indices of the transitions. If either one is —1, then loop over all indices for that level. e is a list of energies
where the cross sections are needed. If m is 0, then e is interpreted as the incident energy, if m is 1, then e
is interpreted as the incident energy minus transition energy.

JoinTable(fnl, fn2, fn):

Join two binary files fn! and fn2 to produce a single file fn. fnl and fn2 must have been produced on the
same platform, have the same type and for the same element.

LevelInfor(fn, ilev):

If ilev> 0, look up in the energy database file fn for the level indexed ilev. It returns a tuple of length 6. The
first element is the energy in atomic units, the second is the parity and the valence nl values, the third is the
2J value, the fourth is the complex name, the fifth is the non-relativsitic configuration, and the sixth is the
relativistic configuration and the coupling. The parity and the nl values are encoded as +n * 100 + [, where
+ sign is for even parity and — sign is for odd parity. If ilev< 0, and its absolute value is less than 1000, it
returns the index of the first level with number of electrons equal to —ilev. If ilev= —1000, it returns the
index of the first level of the bare ion. If ilev= —1001, it returns the total number of levels in the file. If
ilev= —1002, it returns the total number of level blocks in the file. If ilev< —2000, it returns the index of
the first level of the block —ilev — 2000.

ListConfig( [fn, g]):

Print the configurations in the list g to file fn. If fn is not given or if it is “-”, the results are written to the
stdout. If ¢ is not given, then all configurations currently defined are printed.

MaxwellRate(ifn, ofn, low, up, t):

Calculate the Maxwellian rate coefficients for collision processes with cross section data given by the binary
file ifn, the results are saved in ofn. low and up are lower and upper indices of the transitions. If either
one is —1, then loop over all indices for that level. ¢ is a list of temperatures where the rate coefficients are
needed.

MemENTable(fn):

Build an energy level table in the memory for the DB_EN type file fn. This function must be called before
any calls to PrintTable in verbose mode.

ModifyPotential(fn):

Modify the model central potential such that it matches the potential given in the file. The file must specify
the potential in two columns corresponding to the radii and potential value in atomic units. This can be
useful to import a central potential produced by a different atomic structure code.

OptimizeRadial( [g [, w]]):

Obtain the optimal radial potential based on the mean configuration generated by the configuration group
list ¢ and the weight w, or if they are absent in the call, by the mean configuration specified by AvgConfig.
g and w must be equal length Python lists if both present. g is a list of configuration groups, and w is a list
of weights for each group when generating the mean configuration. If only g is present, each configuration
group is given an equal weight.

PICrossH(Z, E, n, | [, m]):

Calculate the photionization cross section of H-like ion with nuclear charge Z at photon energy E, for the
non-relativisitc subshell nl. The result is in unit of 1072° cm?. If the optional parameter m is not 0, then
the differential oscillator strength is returned instead of the cross sections.
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PrepAngular(p [, ¢]):

Precalculate the angular coefficients between states in p and ¢. p and q are lists of configuration groups. If
q is not present, the angular coefficients are calculated between states in the p list. Only Z¥(a, 8) and dy
coefficients are calculated. If the Bra and Ket states have the same number of electrons, Z% is calculated,
otherwise ay, is calculated. This routine should primarily be used when atomic states are construced with
RecStates, where the angular coefficients between the base states are used many times. It is therefore more
efficient to precalculate these coefficients.

Print(args):
Print out the string representation of args. This function exists to asist the conversion to SFAC interface,
since Python’s print statement is not converted.

PrintTable(fnb, fna [, v]):

Convert the binary database file fnb to the ASCII file fna. The optional argument v = 1 requires the
conversion be done in verbose mode, otherwise it is done in simple mode. Note that before conversion in
verbose mode is carried out, one must call MemENTable first.

PrintQED():
Print the QED correction options currently being used.

PropogateDirection(m):

m specifies the direction in which the R-matrix solution in the outer region is propogated. m > 0 indicates
that the R-matrix in the first zone is propogated outward to the final matching radius. m < 0 indicates
that the wavefunction at the final matching radius is propogated inward to the first zone and matched to
the R-matrix there. Default is m = 0.

RecStates(fn, b, n):
Construct recombined states by adding a spectator electron with the principle quantum number n onto the

basis states in the configuration groups b. The orbital angular momentum of the spectator electron is set
by two functions SetRecPWLimits and SetRecSpectator. The resulting energy levels are saved in file fn.

RefineRadial( [n [, m]]):

This function may be called after OptimizeRadial, which performs a minimization of the total energy of the
mean configuration by adjusting the parameters in the analytic central potential. n is the number of energy
evaluations allowed in the minimization, and m controls the print out during the calculation. Default: n =
100, m = 0 (no print out).
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Reinit(**mkey | m):

Reinitialize some or all subsystems of FAC package. In the first form, it accepts variable number of keyword
arguments, each represents one subsystem. The following keyword identifiers may be used:

config

recouple

structure

radial

excitation

recombination

ionization

dbase

Electronic configuration and coupling informations. If config>0, exsisting configurations
and coupling are cleared.

Angular recoupling package. If recouple>0, all recoupling interaction array is cleared.

Atomic structure calculatoin. If structure>0, the energy level table and all angular coeffi-
cients are cleared.

Radial wavefunction and integrals. If radial=0, the radial orbital table, the potential table,
all radial integral tables are cleared. If radial=1, only continuum orbitals are cleared.

Collisional excitation. If excitation>0, the collision energy grid and radial integrals are
cleared.

Photoionization, recombination and autoionization. If recombination=0, the energy grid,
radial integrals, and recombined complex table are cleared. If recombination=1, only the
energy grid and radial integrals are cleared.

Collisional ionization. If ionization>0, the energy grid and radial integrals are cleared.

Database handling. If dbase=0, the energy table in memory is cleared and all database
headers are reinitialized. If dbase=t with ¢>0, only the header for the database type t is
reinitialized.

In the second form, the integer m requires a certain combination of subsystems to be reinitialized. It may
be —1, 0, or 1. If m=0, then all keywords are set to 0, i.e., a full reinitialization. If m=1, keywords radial,
excitation, recombination, ionization, structure, and dbase are set to 0, config and recouple are not
reinitialized. This is useful to clear all information related to radial wavefunctions, but keep the configuration
data intact. If m=—1, all keywords are set to 1.

ReinitConfig(m):

Reinitialize electronic configuration module. m the same as correponding keywords in Reinit.

ReinitDBase(m):

Reinitialize database module. m the same as correponding keywords in Reinit.

ReinitExcitation(m):

Reinitialize collisional excitation module. m the same as correponding keywords in Reinit.

ReinitIonization(m):

Reinitialize collisional ionization module. m the same as correponding keywords in Reinit.

ReinitRadial(m):
Reinitialize radial module. m the same as correponding keywords in Reinit.

ReinitRecombination(m):

Reinitialize recombination module. m the same as correponding keywords in Reinit.

ReinitRecouple(m):

Reinitialize recouple module. m the same as correponding keywords in Reinit.

ReinitStructure(m):

Reinitialize atomic structure module. m the same as correponding keywords in Reinit.

RestorePotential(fn):

Restore the model central potential from a file generated by the SavePotential function. This can be useful
when one job needs to use the exact same potential as a previous one.
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RMatrixBasis(fn, k, nb):
Calculate the R-matrix basis functions, and buttle corrections, and save in file fn. %k is the maximum orbital
angular momentum of the continuum electron. nb is the number of basis functions per-x orbital.

RMatrixBoundary(r0, 71, b):

Set the R-matrix boundary conditions. When r0 = 0, it sets the normal boundary condition via a call to
SetBoundary(n, 1, b), where n is the maximum principle quantum numbers of the existing states, i.e., the
R-matrix target states. When r0 # 0, it sets the boundary condition in the propagation zone via a call to
SetBoundary(-100, r1, r0). In addition, the boundary condition is reset to b.

RMatrixCE(fn, bfn, rfn, emin, emaz, de [, m]):

Solve the outer region wavefunction, calculate the collision strength. fn is the file for saving results. bfn is a
list a R-matrix basis files for each R-matrix zone. rfn is a list of R-matrix surface files for each R-matrix zone.
By default, the R-matrix in the first zone is propogated outward to the last zone, and matched with the outer
region solution to obtain S-matrix. If the propogation direction has been set inward in PropogateDirection,
then the outer region solution is propagated inward to the first zone, and matched with the R-matrix there.
emin, emaz, and de specifies the energy grid. The entire energy grid is divided into batches to be processed
in once pass of all symmetris. The number of energy points in one batch does not exceed 100 by default, or
the value set by RMatrixNBatch. m specfies the output content. If m = 0, only the total collision strengths
are output. If m = 1, the partial collision strengths are output in addition. If m = 2, the R-matrix and
T-matrix elements are output. If m = 3, both partial collision strengths and R-matrix, T-matrix elements
are output.

R-matrix, T-matrix output format: each line tabulate, isym, its0, ka0, it1, kal, et, Real(T), Imag(T), Omega,
R, where isym is the symmetry ID. itsO is the target state index for the initial channel, ka0 is the x value
of the continuum electron in the initial channel. itsl and kal are corresponding values for the final channel.
et is the energy if the system relative to the initial target energy. Real(T) and Imag(T) are the real and
imaginary part of the T-matrix, Omega is the partial collision strength of the symmetry. R is the R-matrix.
These data are repeated for every energy and every symmetry.

Total and partial collision strength output format: for each transition, first line lists, initial target state
index, 2J of initial state, final state index, 2J of final state, transition energy, number of energy points in
this block, and the number of partial-waves. It is followed by the block for total collision strengths in two
columns: energy, collision strengths. If partial collision strength output is requested, it is followed by three
columns: energy, orbital angular momentum of the partial wave, and partial collision strength. The above
data are repeated for each block of the energy points processed in the individual batches.

For details of using the R-matrix functions, see the example in demo/rmatrix/ directory.

RMatrixConvert(ifn, ofn, m):

Convert R-matrix basis and surface files between binary and ascii format. If m = 0, convert binary basis file
ifn to ascii file ofn, if m = 1, convert ascii basis file ifn to binary file ofn, if m = 2, convert binary surface
file ifn to ascii file ofn, if m = 3, convert ascii surface file ifn to binary file ofn.

RMatrixExpansion(m [, r]):

Set how the channel wavefunctions at the outmost radius should be calculated. m is the number of terms in
the Gailitis asymptotic expansion. m = 0 indicates use the Dirac-Coulomb functions, which is the default. r
is the outmost radius where the wavefunctions should be calculated. If outer boundary of the last R-matrix
zone, a is smaller than r, the the wavefunctions at r is integrated inward until a, and matched with the
R-matrix there. If r < a, then a is used as the outmost radius.

RMatrixFMode(m):

If m = 0, use binary format for the R-matrix output files, if m = 1, use ascii format for the R-matrix output
files.

RMatrixNBatch(n):
n is the number of energy points to process at one pass of all symmetries in RMatrixCE. Default is n = 100.
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RMatrixNMultipoles(m):

The maximum multipoles included in the outer region potential. If m is larger than the number of multipoles
saved in the R-matrix surface file, that smaller value is used. The default is m = 2.

RMatrixSurface(fn):
Calculate the R-matrix surface amplititudes and save in file fn.

RMatrixTargets(t [, c]):

Set the target and correlation states. ¢ and c are lists of configuration groups, for target and correlation
configurations respectively. The atomic structure for both ¢ and ¢ must have been solved with Structure.

RRCrossH(Z, E, n, 1):
Calculate the radiative recombination cross section of bare ion with nuclear charge Z at electron energy E,
onto the non-relativisitc subshell nl. The result is in unit of 10720 c¢m?.

RRMultipole(fn, b, f [, m]):

Calculate the bound-free multipole matrix elements. Because RRTable does not calculate the matrix elements
directly, this function exisits to provide such data. The output are written to the file fn in ASCII format.
The format is described in the header of the file itself. The remaining arguments are identical to those in
RRTable

RRTable(fn, b, f [, m]):

Calculate the bound-free differetial oscillator strengths between the bound configuration groups b and free
groups f, which are related to radiative recombination and photoionization cross sections. The optional
multipole type m is set to -1 (E1) by default. In almost all cases, no other multipole types should be
important. The results are saved in file fn.

SavePotential(fn):

Save the model central potential in a binary file, which can then be restored using the RestorePotential
function in a later job

SetAICut(c):

Set the autoionization rate cutoff threshold in the output. Only autoionization rates greater than c a.u. are
output. The default is 1071¢ a.u. or ~ 4.13 s~1, if this routine is not called.

SetAngZCut(c):

Set the cutoff threshold for the mixing basis in the calculation of recoupling coefficients. Only the basis
functions with mixing coefficients >c¢ are included. The default is 107 if this routine is not called.

SetAtom(asym [, z [, m [,r]]]):

This function set the atomic element to asym, where asym is the standard elemental symbol. The nuclear
charge z, atomic mass m, and the nucleus radius of the element can be set optionally. The radius should be
given in fm. If they are not set, the standard values are used.

SetAtom(z [, m [,r]]):

This function set the nuclear charge z. The atomic symbol is looked up in the internal table. if z falls outside
the valid range of 1 to 120, the atomic symbol is set to Xx. The tomic mass m, and the nucleus radius of
the element can be set optionally. The radius should be given in fm. If they are not set, the standard values
are used.
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SetBoundary(n [, p, b]):

Set the boundary condition for high-n orbitals, so that they can represent the continuum. In the normal
mode when n > 0, n is the maximum principle quantum number represents the bound states. Above n, the
orbitals have the boundary conditions imposed, which is in the form Q/P = (b+ k)/2ac, where Q) and P are
the small and large components of the wave function, x is the angular quantum number of the orbital, b is
given by the input, c is the speed of light, and a is the boundary radius, which is determined by the criterion
that the bound states have densities < p beyond the boundary. The default value of p is 0.001. When n < 0
and n # —100, p is interpreted as the actual radius of the boundary, and —n is interpreted as the maximum
principle quantum number of the bound states. When n == —100, it sets two boundaries. The radius of
the outer boundary is given by p, and that of the inner boundary is given by b, if b > 0. Otherwise, the
inner boundary takes the value of a previous call to SetBoundary. This mode is used to set the R-matrix
boundary conditions in the propagation zones.

SetBreit(n [,m]):

Set the calculaiton mode and maximum principle quantum number of the orbitals for which the Breit
interaction should be included in the Hamiltonian. If n < 0, then the Breit interaction involving all bound
and continuum states is included. Default is 5. m is the calculation mode. m=0 uses a simplified zero-energy
approximaiton for the Breit term. m=1 uses the full frequency dependent Breit interaction. m=2 uses the
same m=1 logic, but set the energy of the exchanged photon to 0.

SetCEBorn(e [,z [, z1]]):

e specifies the asysmtotic energy where the plane-wave Born approximation is expected to be valid, and is
used to deduce the constant component of the collision strength at high energies. If e > 0, it is in unit
of the characteristic transition energy of the array. If e < 0, then its absolute value is the energy in unit
of eV. x and z1 set the energy boundary between the distroted-wave Born approximation and plane-wave
Born approximation for the collisional excitation. If x > 0 and the scattered electron energy is less than
xFy, DW method is chosen, where Fj is the binding energy of the electron being excited. If x is negative,
the switch between DW and PW occurs when the estimated high partial-wave contributions becomes larger
than —z times the low partial-waves calculated explicitly. If z = 0, then PW is always used. default for z is
—0.5, i.e., use DW when the estimated high partial-wave contributions represents no more than 50% of the
explicitly calculated low partial-wave sum. The contributions of high partial waves for monopole and dipole
transitions are calculated with coulomb-bethe approximation, their cutoff values are treated differently with
the switch z1, whose default is —1.0.

SetCEGrid(g | n [, €0, el]):

Set the collsion energy grid for collsional excitation. In the first form, the grid is given by a Python list g.
In the second form, the grid is constructed with n points, from e0 to el. The energies are specified for the
scattered electron energy, and in units of eV. This routine does not need to be called. A default is constructed
for a given transition array with 6 points, minimum and maximum energies specified by SetCEGridLimits.
Calling this routine with n=0, reset the grid to system default.

SetCEGridLimits(el, el):

Set the minimum and maximum collision energy for collisional excitation for the automatic construction of
the grid. They are in units of average threshold energy of the transition array being considered. The default
is 0.05 and 8.0 if this routine is not called.

SetCELCB(m):

Set the orbital angular momentum for Coulomb-Bethe approximation.

SetCELMax(m):
Set the maximum of orbital angular momentum for the partial-wave expansion in collisional excitation.
SetCELQR(m):

Set the maxmum orbital angular momentum for quasi-relativistic approximation in collisional excitation.
The default is 0, i.e., always use quasi-relativistic approximation.
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SetCEQkMode(mode):

Set the computation mode for the excitation radial integrals. mode may be a string or an integer specifying
the mode. These values are listed in the variable QKMODE.

SetCIEGrid(g | n [, €0, el ]):

Set the collsion energy grid for collsional ionization. In the first form, the grid is given by a Python list
g. In the second form, the grid is constructed with n points, from e0 to el. The energies are specified
for the total energy of the final electrons, and in units of eV. This routine does not need to be called. A
default is constructed for a given transition array with 6 points, minimum and maximum energies specified
by SetCIEGridLimits. Calling this routine with n=0, reset the grid to system default.

SetCIEGridLimits(e0, el):

Set the minimum and maximum collision energy for collisional ionization for the automatic construction of
the grid. They are in units of average threshold energy of the transition array being considered. The default
is 0.05 and 8.0 if this routine is not called.

SetCILCB(m):

Set the orbital angular momentum for the Coulomb-Bethe approximation in DW collisional ionization.

SetCILevel(m):

Set the level of configuration interaction space. By default, m = 0, the configuration space is determined by
the configuration groups passed to the Structure function. CI can be further refined by the value of m. If
m = —1, then no CI is included, the Hamiltonian is assumed to be diagonal. If m = 1, only CI within the
same relativistic configuration is included. If m = 2, only CI within the same non-relativisitc configuration
is included. If m = 3, only CI within the same configuration group is included.

SetCILMax(m):
Set the maximum orbital angular momentum for the partial-wave expansion in DW collisional ionization.

SetCILMaxEject(m):
Set the maximum orbital angular momentum for the ejected electron in DW collisional ionization.

SetCILQR(m):
Set the orbital angular momentum for quasi-relativistic approximation in DW collisional ionization.

SetCITol(m):
Set the tolerance factor in the partial-wave expansion of DW collisional ionization.

SetCIQkMode(mode):

Set the computation mode for the ionization radial integrals. mode may be a string or an integer specifying
the mode. These values are listed in the variable QKMODE.

SetDisableConfigEnergy(m):

if m is 1, the ConfigEnergy function calls are disabled even if they are invoked explicitly in the script. If 2,
the energy shift only includes that of the self energy correction.

SetFields(b, e, a [, m]):

Set the magnetic and electric fiedls. b is the magnetic fields in Gauss, e is the electrific fields in Volts/cm.
a is the angle between the magnetic and electric fields. If the optional m is 1, then the diamagnetic effects
is ignored in the Hamiltonian.

SetHydrogenicNL( [n, [I]]):

Set the principle quantum number n and the orbital angular momentum [, beyond which, the hydrogenic
approximation for the E1 multipole integrals should be used. If this routine is not called or the argument is
not given, the default is n=8, and [=T7.
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SetIEGrid(g | n [, €0, el]):

Set the ionization threshold energy grid for the collisional ionization. In the first form, the grid is given by
a Python list g. In the second form, the grid is constructed with n points from e0 to el. This routine does
not need to be called. A 3 point grid is constructed according to the transition array being considered by
default. Calling this routine with n=0, reset the grid to system default.

SetMaxRank(k):
Set the maximum rank in the expansion of Slater integrals. The default is 6, if this routine is not called.

SetMixCut(c):
Set cutoff threshold of the mixing basis in the wavefunction. Only the basis with mixing coefficients greater
than ¢ are included in the wavefunction expansion. Default is 1075,

SetMS(nms, sms):

Set flags for normal mass shift and specific mass shift contributions to the Hamiltonian. 0—disable, 1—
enable. Defaults: 1.

SetNStatesPartition( [n]):

Set the number of states in one partition. A partition is used to organize angular integrals. Angular
coeflicients between partitions are calculated and tabulated in batches. The more states in partitions, the
more efficient the lookup of these coeflients, and the more memory it takes. The default value of 512 is
normally appropriate.

SetOptimizeControl(t, s, m [, p]):

Set the options for radial potential optimization. t is the tolerance for the self-consistent field iteration. s
is the stablizer for the iteration, a number from 0 to 1. m is the maximum number of iterations allowed. p
specifies whether diagnostic information should be printed out during the optimization. This routine does
not need to be called. The default for ¢ is 107, s is determined dynamically according to the type of ion,
m is 100, and p is O for no printing out of information.

SetOptimizeMaxIter(m):
Set the maximum itneration in OptimizeRadial.

SetOptimizePrint(m):
Set the printing option in OptimizeRadial.

SetOptimizeStabilizer(m):
Set the stablilizer factor in OptimizeRadial.

SetOptimizeTolerance(m):
Set the tolerance factor in OptimizeRadial.

SetPEGrid(g | n [, €0, el]):

Set the free electron energy grid for photoionization, radiative recombination and autoionization. In the
first form, the grid is given by a Python list g. In the second form, the grid is constructed with n points
from e0 to el. The energies are in units of eV. This function does not need to be called. A 6 point grid is
constructed according to the transition array being considered by default. Calling this function with n=0
reset the grid to system default.

SetPEGridLimits(el, el):

Set the minimum and maximum collision energy for photoionization and radiative recombination for the
automatic construction of the grid. They are in units of average threshold energy of the transition array
being considered. The default is 0.05 and 8.0 if this routine is not called.
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SetRadialGrid(n [, 0 [,r1] [,rmin]]):

Set the radial grid properties. n is the number of radial grid points. It must be an even number and less
than the macro MAXRP. 70 specifies the ratio of successive radial points near origin, which is approximately
logarithmic. 71 specifies the number of mesh-points per oscillation wavelength for very high-n orbitals at
large radii. rmin divided by the nuclear charge is the starting point of the radial mesh.

SetRRTEGrid(g | n [, e0, el]):

Set the transition energy grid for photoionization and radiative recombination. In the first form, the grid is
given by a Python list g. In the second form, the grid is constructed with n points from e0 to el. This routine
does not need to be called. For E1 type transitions, the transition energy does not enter the calculation, a
1-point grid is constructed by default. for other types of multipoles, a 3-point grid is constructed. Calling
this function with n=0 reset the grid to system default.

SetRecPWLimits(10, I1):

Set the orbital angular momentum range for the spectator electron in the recombined states to [10, 11]
inclusive. The default is [0, 12].

SetRecPWOptions(lmaz):

Set maximum orbital angular momentum of the spectator electron in the recombined states to Imaz. The
allowed values are also limited by the setting of SetRecPWLimits. The default is 12.

SetRecQkMode(mode):

Set the computation mode for the photoionization and radiative recombination radial integrals. mode may
be a string or an integer specifying the mode. These values are listed in the variable QKMODE.

SetRecSpectator(nmin [, nfrozen]):

Set the minimum principle quantum numbers nmin and nfrozen for the spectator electron. States with
n > nmin are constructed with RecStates function, and those with n > nfrozen are treated with frozen
core approximation. Default for both nmin and nfrozen are 8.

SetScreening(ns [,¢ [,k]]):

Set the orbital parameters of screening electrons. ms is a list of integers which are the principle quantum
numbers of the screening orbitals. The optional ¢ is the total charge to be screened, whose default is 1.0.
k is the either 1, —1, or 0. If k=—1, then the I=0 orbitals are used. If k=0, then the the I=ns/2 orbitals
are used. If k=1, then the I[=ns-1 nodeless orbital is used. The default is k=1. This function is usually
used when additional screening charge is desired for the mean configuration generating the optimal central
potential. It is quite experimental, and therefore not recommended for general use.

SetSE(n [,m]):

Set the mode of calculatin and maximum principle quantum number of the orbitals for which the self-energy
correction should be included in the Hamiltonian. Default is 5. n is the maximum quantum number, m is
the mode. m=0 use the hydrogenic screening based on the expectation value of the Uheling potential. m=1
use the screening based on the fermi nuclear charge distribution (Welton concept). m=2 use the uniform
nuclear charge distribution. m may contain a 2nd digit, with k=m/10. k=1 use the GRASP self energy
table for hydrogenic values. k=8 excludes two loop correction. k=4 use the model ged potential of Shabaev
et al. (CPC 189, pl75). k=5 same as 4 but excluding the two loop corrections. k=6 includes the off diagonal
matrix element of the self energy operator in the CI calculation. k=7 same as 6 by excluding the two loop
corrections. If ks4 and m also has a 3rd digit, then the local part of the self energy potential is included in
the radial Dirac equation, and only the non-local part is evaluated and added in the Hamiltonian.

SetSlaterCut(kl, k2):

Set the calulation modes of Slater integrals. k1 and k2 are orbital angular momentum values. When one of
the orbitals has [ > k1, then exchange integrals are not calculated. When one has | > k2, the direct integrals
are evaluated with the multipole moments.
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SetTEGrid(g | n [, €0, el]):

Set the transition energy grid for collisional excitation. In the first form, the grid is given by a Python list
g. In the second form, the grid is constructed with n points from e0 to el. This routine does not need to
be called. A 3-point grid is constructed by default. Calling this function with n=0 reset the grid to system
default.

SetTransitionCut(c):

Set the cutoff threshold for the radiative transition rates output. Only rates greater than c¢ times the total
decay rate of the upper level is written to the output file. The default is 1072 if this routine is not called.

SetTransitionGauge(m):
Set the gauge for radiative transition.

SetTransitionMaxE(m):

Set the maximum rank of electric multipole transitions.

SetTransitionMaxM(m):
Set the maximum rank of magnetic multipole transitions.

SetTransitionMode(m):
Set the mode for the radiative transition.

SetTransitionOptions(g, m):

Set the options for the radiative transition calculation. ¢ is the gauge to be used, 1 for Coulomb gauge
(velocity form) and 2 for Babushkin gauge (length form, which is the default). m is the mode for the
multipole integral, 0 for fully relativistic and 1 for non-relativistic approximation (the default is 1).

SetUsrCEGrid(g | n [, e0, el]):
Set the user collision energy grid for collisional excitation. The collsion strengths on this grid are output. It
is forced to be same as that set by SetCEGrid if the QKMODE is ’exact’.

SetUsrCIEGrid(g | n [, €0, el ]):
Set the user collision energy grid for collisional ionization. The collsion strengths on this grid are output.

SetUsrPEGrid(g | n [, €0, el]):

Set the user electron energy grid for photoionization and radiative recombination. The bound-free differential
oscillator strengths on this grid are output. It is forced to be same as that set by SetPEGrid if the QKMODE
is ’exact’.

SetUTA(m [, ci]):

Set the flag for configuration average models. If m = 1, all calculations are carried out in the configuration
average approximation. The radiative transition rates output contains three additional fields, the transition
energy including the UTA shift, the Gausian standard deviation, and the correction to the line strengths due
to the configuration interaction within the same non-relativisitc configurations. If m = 0, which is the default,
the usual detailed term accounting method is used. This function should be called in the beginning of the
script, before Config function, since it disables the angular momentum coupling performed by Config. The
optional argument ci indicates whether the configuration interaction correction factors should be included
when reading the DB_TR files. These correction factors are always calculated in TransitionTable irrespective
of the value of ci.

SetVP(vp):

Set the flag for vacuum polarization correction to the Hamiltonian. 0—disable, 1—only include 2nd order
term, 2—include the 4th order term as well. 3—also include WK term. Default is 3. If the 2nd digit is 1,
then the finite nucleus size is not taken into account in the vacuum polarizaiton potential. If the 3rd digit is
not 0, then the vacuum polarizaiton potential is included in the radial Dirac equation, instead of evaluating
its expectation values.

62



SlaterCoeff(fn, g, a, b):

Calculate the expansion coefficients of the exchange radial integral in the Coulomb energy of each state in
the configuration list g. The Coulomb energy betwee electrons of a state can be expanded as

E = ngGk(aa', BB') + direct terms, (3.3)

where a and o/ are the interacting orbitals in the bra and ket states, which have the same [ values. Because
we work in the jj-coupling basis, a and o’ may have different j values. The results are stored in the
text file fn. These coefficents are useful in determining the radiative transition rates from level to average
configurations. a and b are the orbital lists contain a and 3, respectively. They are specified as configuration
strings. The format of the file is as follows. For each state, a line starts with “#” gives the level index,
parity, 2J-value, and the configuration label. It is followed by a block of lines. In this block, the first column
is the level index. The 2rd, 3th, and 4th columns are the n, kappa, | values of the « orbital. The 5th
column is either 0 or 1, indicating whether a and o’ have the same j values. The 6-9th columns are the
corresponding values for the 8 orbital. The 10th column is the expansion coefficients g;. The 11th column
is go. The 12th column is the the number to be added to g; to form the relative intensities of level to
configuraiton transitions for dipole transitions. The 13th column is the number to be added to go to form
relative intensities for quadrupole tranisions.

Structure(fn, g [, p [, ip]]):

Diagonalize the Hamiltonian for configurations in the groups g. The configurations in the optional groups
p are allowed to interact with g but only states within g are added to the energy level table. If ip=0, the
interaction between ¢ and p are treated exactly, if ip=1, this interaction is treated approximately in a way
that the non-diagonal elements within p are neglected. The energy levels are output to the file fn.

Structure(p, j):

This is the second form of the Structure function. It distinguishes itself from the first form because the first
argument is an integer. It sets which 7J symmetry and/or which level to include in the structure calculation.
By default, all symmetries are processed. But if this function is called with p =0, or 1; 7 > 0 or j is a list
of integers, then only the specified symmetry is processed. j or integers in the list if j is a list, is twice the
actual value of the total angular momentum. The symmetry restrictions specified here also applies to the
StructureMBPT function.

StructureEB(fn, ¢):

Calculate the atomic structure for atom in magnetic and electric fields. The levels belong to the configuration
group ¢ are allowed to mix in the external fields.

StructureMBPT(efn, hfn, g, kmaxz, n1, n2, n0):

There are six different forms of this function with different argument list. This is the primary form, and
the rest are documented below. This function calculates the level energies of the states belonging to the
configuration groups in the g list. The energy values are stored in the binary file efn the same way as
Structure function. The effective Hamiltonian of the second order MBPT is stored in the file hfn. kmax is
the maximum orbital angular quantum number of the virtual states. n1 and n2 are two lists for the grid
of principle qunatum numbers of the virtual states. The nl grid is used for one electron excitations, and
the first electron of the double excitations. The n2 grid is for the second electron of the double excitation.
n0 is an integer specifying the number of configuration groups in the g list to be included in the MBPT
calculation, and the remaining are included for all-order perturbation treatment.
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StructureMBPT(fn, de, eps, g, kmax, nl, n2, n3, n4, gn):

This is the second form of the StructureMBPT function. This function is depricated. It examines the
configurations by exciting the electrons in the g list to orbitals with principle quantum numbers in the ni
and n2 lists from those in the n8 and n4 lists. If its estimated CI mixing to the states in ¢ is larger than
eps, and the excitation energy is less than de, these configurations are put in to the group named gn. The
final list of configurations are written to the file fn. kmax is the maximum orbital angular momentum of the
excited electrons.

StructureMBPT(efn, hfnl, hfns, g, n0):

This is the third form of the StructureMBPT function. It reads the effective Hamiltonians in a list of files hfns,
that are produced in previous StructureMBPT calls in the first form, and combines the contributions from
different n1 and n2 values for the virtual state and sum them up to form the total effective Hamiltonian,
which is saved to the text file hfni. It then diagonalizes the effective Hamiltonian to obtain the energy
values, which are stored in efn the same way as in Structure. The configuration list g and n0 must be the
same as those used in generating the hfns files.

StructureMBPT(m):

This is the fourth form of the StructureMBPT function. If m is an integer, it sets an option to indicate
whether extrapolation beyond the maximum n-values in the n! and n2 grid is carried out in forming the
effective Hamiltonian. If m = 0, no extrapolation, which is the default; if m > 0, with extrapolation. m
may also be a list of integers, which means that only levels in this list for each symmetry is to be corrected
with MBPT.

StructureMBPT(i, m, c):

This is the fifth form of the StructureMBPT function. It sets three options. ¢ indicates inclusion of some part
of 3rd order corrections. m indicates whether only single excitation or double excitation should be included.
If m = 0, both single and double excitations are included; if m = 1, only single excitations are included,
and if m = 2, only double excitations are included. c¢ is the cutof of the mixing coeffients. The effective
Hamiltonian matrix element h;; is not calculated, if maxz(|bg;by;|) < c. The default is ¢ = 1074

StructureMBPT(o,n):

This is the sixth form of the StructureMBPT function. o is a string specifying the orbitals from which
single or double excitations to be limited in the MBPT calculation. It can be given in either relativistic or
non-relativistic notation. n is either an integer or a 2 element integer list. It specifies the maximum principle
quantum number of the single or double excitations. If it is an integer, both single and double excitations
impose the same limit. If it is a 2 element list, the first number is for double excitation, and 2nd number is
for single excitation.

TotalCICross(ifn, ofn, ilev, energy [, imin, imaz]):

Calculate the total collisional ionization cross sections of level ilev by reading the data from the DB_CI
database file ifn. The results are written to the ASCII file ofn in a two column format. The output cross
sections are in units of 1072° cm?. ofn may be “-”, which means stdout. energy is a list or tuple giving the
incident electron energies in eV where CI cross sections are needed. The optional imin and imazx specifies
the index range of the ionized states. Only ionization to states with imin < i < imax are included. If
1min<0, it is assumed to be 0, and if imaz<0, it is assumed to be the largest index in the level file. Both
imin and imazx default to -1, i.e., include all ionized states. Before calling this function, MemENTable () must
be called.
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TotalPICross(ifn, ofn, ilev, energy |, imin, imaz)):

Calculate the total photoionzation cross sections of level ilev by reading the data from the DB_RR database
file ifn. The results are written to the ASCII file ofn in a two column format. The output cross sections are
in units of 1072° cm?. ofn may be “”, which means stdout. energy is a list or tuple giving the incident
photon energies in eV where PI cross sections are needed. The optional imin and imaz specifies the index
range of the ionized states. Only ionization to states with imin < i < imax are included. If imin<0, it is
assumed to be 0, and if imax<0, it is assumed to be the largest index in the level file. Both imin and imax
default to -1, i.e., include all ionized states. Before calling this function, MemENTable () must be called.

TotalRRCross(ifn, ofn, ilev, energy [, n0, nl, nmaz, imin, imaz)):

Calculate the total radiative recombination cross sections onto level ilev by reading the data from the DB_RR
database file ifn. The results are written to the ASCII file ofn in a two column format. The output cross
sections are in units of 1072° cm?. ofn may be “-”, which means stdout. energy is a list or tuple giving the
electron energies in eV where the RR cross sections are needed. The data for recombination onto n0 < n < nl
and n > nl are not present in the data file ifn, and the hydrogenic approximation for n0 < n < nl and
nl < n < nmax are added to the calculated cross sections. The optional imin and imaz specifies the
index range of the recombined states. Only recombination to states with imin < i < imax are included. If
imin<0, it is assumed to be 0, and if imazx <0, it is assumed to be the largest index in the level file. Both
imin and imaz default to -1, i.e., include all recombined states. Before calling this function, MemENTable ()
must be called.

TransitionMBPT(m, n):

m specifies the maximum multipole for radiative transitions calculated with MBPT. n specifies the number
transition energy points used in the relativistic radial multipole integrals.

TransitionMBPT(fn, low, up):

This function specify the transitions between low and wup configuration groups to be calcualted with MBPT,
with transition rates saved in the file fn. This function must be issued before the 3rd form of StructureMBPT,
as the actual calculations are carried out in that function.

TransitionTable(fn, low, up [, m]):

Calculate the weighted oscillator strength and radiative transition rates from states in up groups to states
in low groups with multipole type m. The default for m is -1, i.e., E1 transitions. The results are saved to
file fn.

TRBranch(fn, upper, lower):

Looking up the radiative decay rate from upper to lower and the total decay rate of upper in the binary file
fn. It returns a Tuple consisting of the transition energy, partial decay rate, and total decay rate.

TRTable(fn, low, up [, m]):

Same as TransitionTable

TRTableEB(fn, lo, up [, m]):

Calculate radiative transition rates between levels in external magnetic and electric fields.

TRRateH(z, n0, 10, ni, I1 [, m]):

Calculate the radiative transition rate or weighted oscillator strength of the transition from state (ni1, 1)
to state (n0,l0) in the non-relativistic hydrogenic approximation for the ion with charge 2. If m=0, the
transition rate is returned, which is the default, if m=1, the weighted oscillator strength is returned, and if
m=2, the dipole radial integral is returned.

WaveFuncTable(fn, n, k [, e]):

Print the radial wavefunction of the orbital with the principle quantum number n, relativistic angular
quantum number k=Fk to the file fn. If n=0, the orbital is a continuum state. In this case, the optiontal e
must be a positive number for the energy of the continuum orbital in unit of eV.
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Y5N(n, I, r):

Calculate the Seaton’s y5 (normalized to give the Coulomb wavefunction) function for negative energies. This
is basically the Coulomb wavefunction with principle quantum number n and orbital angular momentum [
at radius 7. It returns a tuple (y5, y5p, err), where y5 is the value, y5p is the derivative. err is an error code
returned by coulce, which is called internally to do the calculation.

3.2 crm—Collisional Radiative Model

The module crm implements a collisional radiative spectral model for optically thin plasmas. It uses an
iterative linear equation solver to invert the level population equations. This method is capable of including
a very large number of atomic states in the model.

3.2.1 Functions

AddIon(n, den, pref):

Add an ion to the spectral model. n is the number of electrons for the ion to be added. den is the density
of the ion, and pref is the base file name for the binary data files associated with this ion. The standard file
extensions are assumed. i.e., .en for DB_EN, .tr for DB_TR, .ce for DB_CE, .rr for DB_RR, .ai for DB_AI, .ci
for DB_CI, .sp for DB_SP, and .rt for DB_RT. This function is called multiple times to add more than one ion
to the model. However, the order must be such that the number of electrons are in consecutive increasing
order.

Cascade():

Carry out the cascade iteration. Some of the levels in the spectral model may be treated approximately
using the cascade matrix.

CBeli(Z, n, E):

Calculate the ionization cross sections using the Aladdin database. data were compiled by Bell et al. (J.
Phys. Chem. Ref. Data., 12, 891, 1983). Z is the nuclear charge of the ion. n is the number f electrons,
and F is the electron energy in eV. It returns a tuple of length 4. First element is the total ionization cross
section, 2nd the excitation autoionization contribution, 3rd the direct ionization contribution, and the 4th
is a relative error estimate in pencentages.

CFit(Z, n, Te):

Calculate the ionization rates using the Fortran subroutine cfit of D. A. Verner for direct ionization, and
colfit for exciation autoionization. Z is the nuclear charge of the ion, n is the number of electrons, and Te
is the electron temperature in eV. It returns a tuple of length 3. First element is the total ionization rate
coefficients in 1071° ¢cm?® s™1., 2nd is the excitation autoionization contribution, and the 3rd is the direct

ionization contribution.

CheckEndian( [fn]):

Check the byte order of database file fn. It returns 0 for little endian and 1 for big endian. If the optional
file name fn is omitted, the endian for the current platform is returned. This function exists in module fac
as well.

CloseSCRM():

Close the file containing the SFAC input file converted from the current Python script. This function must
be called after ConvertToSCRM. Only the statements between the call to ConvertToSCRM and CloseSCRM are
converted to SFAC input file. This routine is only available in PFAC interface.
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ColFit(Z, n, Te [, s]):

Calculate the direct ionization rates and excitation autoionization rates using the Fortran subroutine colfit
of D. A. Verner. Z is the nuclear charge of the ion, n is the number of electrons, and Te is the electron
temperature in eV. The optional argument s specifies the subshell for which the rates are to be calculated.
0 for total. 1 for 1s, 2 for 2s, 3 for 2p, 4 for 3s, 5 for 3p, 6 for 3d and 7 for 4s. The function returns a tuple

of length 3. The first element is the total rate, the second is the excitation autoionization rate, and the third

is the direct ionization rate. The result is in unit of 10710 ¢cm?3 s—!.

ConvertToSCRM():

Converts the statements between this call and the CloseSCRM call to SFAC input file fn. The resulting file
can then be run using the scrm executable. This routine is only available in PFAC interface.

DRBranch():
Calculate the radiative branching ratios of all autoionizing states. It is calculated iteratively using:

_ o 2AB;
DoAY+ A
where Afj is the radiative decay rate from state ¢ to state j, A, is the autoionization rate from state ¢

to state k. The branching ratios of non-autoionizing states is 1.0. This function must be called before
DRStrength() with mode=0.

B; (3.4)

DRFit(Z, n, Te):
Calculate the dielectronic recombination rates using the fitting formula and data table of P. Mazzotta. Z is
the nuclear charge of the ion, n is the number of electrons, and Te is the electron temperature in eV. The

result is in unit of 1071% ¢m? s~ 1.

DRStrength(fn, n [, m, i]):

Tabulate the dielectronic recombination resonance strengths onto state i of the ion with n electrons. fn
specifies the file name of the database file. The optional m indicates the mode of calculation. If mode=0,
then the total DR strengths are calculated; if m=1, then individual DR satellite lines are caclulated, and
if m=2, then resonance excitation is calculated. ¢ is optional, whose default is 0. When >0, then it is
the index of the recombining state relative to the ground state of the recombining ion; when i<0, then its
negative value is the true index of the recombining state.
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DumpRates(fn, nele, m [, imax [, al]):

Dump rate coefficients to a file. fn is the output file name. nele is the number of electrons of the ion whose

rates are needed. m specifies which rate is output.

m=0: Dump the level indexes, 2J values, energies, etc. The record for each level contains 11 fields of
the type: short, int, int, int, short, short, short, double double, double, double. They are number of
electrons of the ion, level index, block index of the level, level index within the block, 2J value of the
level, base level of the level, valence nl of the level, energy, population, total decay rate, and branching
ratio computed in DRBranch (if that has been called) respectively.

m =1: Dump the radiative transition rates. Each record contains 4 fields of type: int, int, double, double.
They are upper level index, lower level index, decay rate, and photo-excitation rate, respectively.

m =2 : Dump the 2-photon transition rates. Each record contains 4 fields of type: int, int, double, double.
They are upper level index, lower level index, decay rate, and inverse rate, respectively.

m =3 : Dump the collisional excitation rates. Each record contains 4 fields of type: int, int, double, double.
They are lower level index, upper level index, excitation rate, and deexcitation rate, respectively.
m=4: Dump the radiative recombination rates. Each record contains 4 fields of type: int, int, double,
double. They are continuum level index, recombined level index, recombination rate, and photoion-

ization rate, respectively.

m =>5: Dump the autoionization rates. Each record contains 4 fields of type: int, int, double, double.
They are bound level index, continuum level index, autoionization rate, and dielectronic capture rate,
respectively.

m =6 : Dump the collisional ionization rates. Each record contains 4 fields of type: int, int, double, double.
They are bound level index, continuum level index, ionization rate, and three-body recombination rate
(not implemented), respectively.

The units of the transition rates are s~!, and those of the rate coefficients are 107!° cm? s~!. The optional

augument imaz indicates the maximum levels to be included in the dump. a negative number means all

levels, which is the default. @ specifies whether the file should be in a binary format (0) or ascii format (1).

Default is binary format.

EBeli(Z, n):
Calculate the ionization threshold of ion with nuclear charge Z and number of electrons n. It returns a
double in eV. Data are from aladdin data base.

EColFit(Z, n, s):
Calculate the ionization threshold of ion with nuclear charge Z and number of electrons n for shell s. s has
the same meaning as in ColFit. It returns a double in eV. Data are from subroutine ColFit.

EleDist(fn, n):
Calculate the electron energy distribution function, and print it to file fn, using n energy points. The
distribution must be already set.

EPhFit(Z, n, s):
Calculate the ionization threshold of ion with nuclear charge Z and number of electrons n for shell s. s has
the same meaning as in PhFit. It returns a double in eV. Data are from subroutine PhFit.

FracAbund(Z, Te [im, rm]):

Calculate the fractional abundance of the charge states for element with nuclear charge Z at temperature
Te for collisionally ionized plasmas. The optional arguments im and rm specifies the functions used for
ionization rates and recombination rates respectively. im is passed to the function Ionis, and rm is passed
to the function Recomb. The default for both parameters are 1. It returns a list of length Z+1 indexed by
the number of electrons the ion have.

InitBlocks():
Initialize the superlevel blocks of the spectral model.
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IonDensity(fn, k):
Read the DB_SP file fn and return the total density of the ion with number of electrons k.

Ionis(Z, n, Te [, m]):

Caculate the ionization rate coefficients for the ion with nuclear charge Z and number of electrons n, at the
temperature Te. It returns a list of length 3. The first element is the total ionization rate, the second is the
excitation-autoionization rate, and the third is the direct ionization rate. The data used are from (author?)
[2, 0] if the optional argument m is 0. The function ColFit is used if m is 1. The function CFit is used for
the direct ionization rate and ColFit for the autoionization rate, if m is 2. The data from Aladdin database
is used if m is 3. The default is 1. The results are in unit of 1071% cm3 s=1.
LevelPopulation():

Solve the level population using the superlevel block method.

MaxAbund(Z, n [,im, rm, a]):

Calculate the temperature where the fractional abundance of the ion with nuclear charge Z and number of
electrons n reaches maximum. The optional arguments m and rm specifies the functions used for ionization
rates and recombination rates respectively. ¢m is passed to the function Ionis, and rm is passed to the
function Recomb. The default for both parameters are 1. The parameter a specifies the relative accuracy for
the solution, which has the default of 10~#. This functions returns a tuple of length 2. The first element is
the temperature found, the second is a list for the fractional abundances of all ions with nuclear charge Z
at the found temperature.

NormalizeMode(m):

Set the mode for normalizing the ion densities. If m is 0, the density of the ground state of each ion is fixed
at the value given by SetAbund. If m is 1, the total density of the ion is fixed at that value.

NDRFit(Z, n, Te):

Calculate the dielectronic recombination rates using the data calculated with FAC for H-like through Ne-like
ions of Mg, Si, S, Ar, Ca, Fe, and Ni. Z is the nuclear charge of the ion, n is the number of electrons, and
Te is the electron temperature in eV. The result is in unit of 10710 ¢cm3 s~1.

NRRFit(Z, n, Te):

Calculate the radiative recombination cross sections using the Fortran subroutine nrrfit using the data
calculated with FAC for Bare through F-like ions of Mg, Si, S, Ar, Ca, Fe. Z is the nuclear charge of the ion,
n is the number of electrons of the recombining ion, and Te is the electron temperature in eV. The result is
in unit of 1071% cm? s~

PhFit(Z, n, E, s):

Calculate the photoionization cross section at energy F of subshell s for the ion with nuclear charge Z, and
number of electrons n. The meaning of s are: 1 for 1s, 2 for 2s, 3 for 2p, 4 for 3s, 5 for 3p, 6 for 3d and 7
for 4s. The Fortran subroutine phfit2 of D. A. Verner is used. The result is in unit of 10720 cm?

PhoDist(fn, n):
Calculate the photon energy distribution function, and print it to file fn, using n energy points. The
distribution must be already set.

PlotSpec(ifn, ofn, n, t, €0, el, de [, s]):

Print the spectrum of lines in the DB_SP file ifn of a given type t to the file ofn. See SelectLines for the
meaning of this parameter except when ¢t = 0, in which case all lines are included in the output. The lines
are convolved with a Gausian with FWMH of de in unit of eV. e0 and el are the spectral range to be
considered. The optional s gives a cutoff threshold for the lines. Lines weaker than s times the strongest
line are not included.
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Print(args):
Print out the string representation of args. This function exists to asist the conversion to SFAC interface,
since Python’s print statement is not converted.

PrintTable(fnb, fna [, v]):

Convert the binary database file fnb to the ASCII file fna. The optional argument v = 1 requires the
conversion be done in verbose mode, otherwise it is done in simple mode. Note that before conversion in
verbose mode is carried out, one must call MemENTable first. This function also exists in the module fac.

RateTable(fn [, cfg [, m]]):

Output rates for all processes included in the spectral model to the DB_RT database file fn. It may contain an
additional argument, which is a list of complex names. m controls the amount of information to be output.

RBeli(Z, n, T):

Calculate the ionization rate coefficients using the Aladdin data base. data were compiled by Bell et al. (J.
Phys. Chem. Ref. Data., 12, 891, 1983). Z is the nuclear charge of the ion. n is the number f electrons, and
T is the electron temperature in eV. It returns a tuple of length 3. First element is the total ionization rate
coefficients in 1071° ¢cm?® s7!., 2nd is the excitation autoionization contribution, and the 3rd is the direct

ionization contribution.

Recomb(Z, n, Te [, m]):

Caclulate the recombination rate coefficients for the ion with nuclear charge Z and number of electrons n at
temperature Te. It returns a tuple of length 3. The first element is the total recombination rate, the second
is the radiative recombination rate, and the third is the dielectronic recombination rate. The data used are
from (author?) [2] ] if the optional argument m is 0. The functions RRFit and DRFit are used if m is 1.
If m is 2, then the New RR and DR rate coefficients are used for Bare through Ne-like ions of Mg, Si, S, Ar,
Ca, Fe, and Ni calculated with NRRFit and NDRFit, for other ions, RRFit and DRFit are used. The default

is 1. The results are in unit of 10719 ¢cm3 s~1.

ReinitCRM( [m]):

Reinitialize the module crm. m=0 by default, which requests a full reinitialization. If m=1, only the database
headers are reinitialized and the rates are cleared. If m=2, only the database headers are reinitialized and
the rates that depend on electron energy distribution are cleared. If m=3, only the database headers are
reinitialized.

RRFit(Z, n, Te):

Calculate the radiative recombination cross sections using the Fortran subroutine rrfit of D. A. Verner. Z
is the nuclear charge of the ion, n is the number of electrons, and Te is the electron temperature in eV. Note
that in this routine, n is the number of electrons of the recombining ion, while in the original subroutine of

Verner, it is for the recombined ion. The result is in unit of 107'° ¢cm? s—!.

RRRateH(Z, n, Te):
Caculate the radiative recombination rates of H-like ions with nuclear charge Z at temperature Te. n is the
principle quantum number of the recombined electron. This function returns a tuple of length 2. The first

element is the RR rate on to all states with principle quantum number n. The second is the RR rate on to
all states with principle quantum numbers >n.
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SelectLines(ifn, ofn, n, t, €0, el [, s]):

Print the selected lines from the DB_SP database file ifn to the file ofn. n is the number of electrons of the
ion. e0 and el are the energy range in units of eV. s is the cutoff threshold for the lines. If s>=1, then
e0 and el are interpreted as the lower and upper level indexes for the line selected. In this case a single
line will be output, and ¢ is ignored. Otherwise, t is the type of the lines to be selected. If ¢ is 0, then all
transition types are allowed. Otherwise, the value of ¢ is decomposed into 4 fields, say, t0, t1, t2, and t3,
where t0 is the lowest 2 decimal digits of ¢, ¢1 is the next 2 digits, and so on. e.g., if t=1000201, then t0=1,
t1=2, t2=0, and t3=1. If t3=0, then the lines have type equal to 10000¢2+100t1 +t0 are selected. If t3=1,
then lines of type 10000¢g+100t1+t0 with ¢>t2 are selected. If t3<0, then lines of type ¢ with ¢>t0 are
selected. The physical meaning of line types are discussed in

SetAIRates(inv):

Set autoionization rates in the spectral model. If inv=1, the rates for the inverse process, dielectronic
capture, are also set.

SetAIRatesInner(fn):

Read the Al file fn to obtain the inner Auger transition rates. This file must only contain the the rates of
such transitions. and the energy level indexes of the bound states must be continuous, and have exactly the
same order as the corresponding levels in the level table already setup.

SetAbund(n, den):
Set the abundance of the ion with number of electrons n to den. This overrides the settings given by AddIon.

SetBlocks( [den, pref]):

Read the energy levels and setup the superlevel blocks for the spectral model. The optional den is the
abundance of the ion with one less electron than the lowest charge state included in the model, and pref is
the base file name for that ion. If den is < 0, only processes connects the levels within the same ion are
included. If pref is not specified, the transitions in that ion are not included in the model, which may cause
convergence problems in some cases.

SetCERates(inv):
Set the collisional excitation rates. If inv=1, the inverse process, collisional deexcitation rates are also set.

SetCIRates(inv):

Set the collisional ionization rates. If inv=1, the inverse process, three-body recombination rates are also
set (not implemented yet).

SetCascade(c [, a]):

If ¢=1, some levels should be treated in cascade approximation. The optional a specifies the accuracy in
the cascade iteration. The default is 1074.

SetEleDensity(den):
Set the electron density in unit of 10'® cm™3.

SetEleDist(i, ...):

Set the electron energy distribution. The first argument i specifies the type of distributions, and the
remaining give the parameters of the distribution. The avaliable distributions and their parameters are
listed in In addition of these distributions, one can use a text file to define a distribution. It is
specified with 4 = —1 and a file name as the parameters. The text file must contain three integers in the
first line, specifying the number of energy points, n, the scale of energy and distribution (1 for log scale, 0
for linear scale). It is then followed by n lines giving energy in €V, and distribution function values.
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SetExtrapolate(i):

Set if the extrapolation of the high-n levels should be carried out. If 7 is negative, then no extrapolate is
carried out, if 7 is non-negative, then only the DR channels <=4 will be included in the extrapolation. The
DR channels are defined in the order KLn, KMn, ... for K-shell ions, and LLn, KLn, LMn, MMn, ... for
L-shell ions. If unsure how to extrapolate, set it to -1 to disable it.

SetInnerAuger(i):

Set if the inner-shell Auger transitions should be extrapolated to those levels that are not explicitly calculated.
There are several different ways such extrapolation can be done. =0 indicates no extrapolation. i=1 is to
extrapolate by averaging the Auger rates of the last calculated complex. i=2 is to extrapolate by reading
an extra file that contains the Auger rates in the core, which must be supplied by calling SetAIRatesInner.
i=3 is to extrapolate by reading the same Al file that contains the normal AI rates. In this case, the Al
file must contain those rates between the core. i=4 is to read the rates from the Al file of the next higher
charge state.

SetIteration(a [, s, m]):
Set the options for population iteration. a is the accuracy, which defaults to 107%. s is a stablizer defaults
to 0.75, and m is the maximum number of iterations allowed, which defaults to 256.

SetNumSingleBlocks(n):
Set the number of states in the beginning of the energy table that should not be grouped into a super block.

SetPhoDensity(den):
Set the photon energy density in unit of erg cm™3.

SetPhoDist(%, ...):

Set the photon energy distribution. The first argument ¢ specifies the type of distributions, and the remaining
give the parameters of the distribution. The avaliable distributions and their parameters are listed in
A text file as described in SetEleDist can also be used to specify the distribution.

SetRRRates(inv):
Set the radiative recombination rates. If inv=1, the inverse process, photoionization rates are also set.

SetRateAccuracy(r [, a]):

Set the accuracy for the numerical integration in the calculation of rate coefficients. r is the relative accuracy,

a is the absolute accuracy. The default for r is 0.01, that for a is 10~® in unit of 1071% cm? s=!.

SetTRRates(inv):
Set the radiative transition rates. If inv=1, the inverse process, photo-excitation rates are also set.

SetUTA(m [, ci]):

Set the flag for configuration average models. If m = 1, all calculations are carried out in the configuration
average approximation. The radiative transition rates output contains three additional fields, the transition
energy including the UTA shift, the Gausian standard deviation, and the correction to the line strengths due
to the configuration interaction within the same non-relativisitc configurations. If m = 0, which is the default,
the usual detailed term accounting method is used. This function should be called in the beginning of the
script, before Config function, since it disables the angular momentum coupling performed by Config. The
optional argument ci indicates whether the configuration interaction correction factors should be included
when reading the DB_TR files. These correction factors are always calculated in TransitionTable irrespective
of the value of ci.

SpecTable(fn [, rrc]):

Output the level populations and line emissivities to the DB_SP database file fn. If rrc=1, the radiative
recombination continuum strength should also be included. If rre=—1, only level populations are output.
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TwoPhoton(z, t):

Calculate the two-photon decay rate of H-like and He-like transitions 2s;,5 — 151/ and 15255y — 1525,
for nuclear charge z. t = 0 is for H-like, and 1 is for He-like.

3.3 pol-Line Polarizations

This module is used to calculate line polarizations due to directional electrons. It takes into account the
radiative cascades effects if the atomic data provided include the necessary transitions.

3.3.1 Functions

CloseSPOL():

Close the file containing the SFAC input file converted from the current Python script. This function must
be called after ConvertToSPOL. Only the statements between the call to ConvertToSPOL and CloseSPOL are
converted to SFAC input file. This routine is only available in PFAC interface.

ConvertToSPOL():

Converts the statements between this call and the CloseSPOL call to SFAC input file fn. The resulting file
can then be run using the spol executable. This routine is only available in PFAC interface.

Orientation( [etrans [,fn]]):

Calculate the orientation parameters with optional transverse energy component etrans. This routine must
be called after PopulationTable and before PolarizationTable. The orientation parameters are output
in file fn if it is given.

PolarizationTable(fn [, ifn]):

Calcuates the line polarizations, and output the results to file fn in a simple ASCII format. It contains 8
columns, which are number of electrons in the ion, upper level index, lower level index, multipole type (as in
the output of TransitionTable), transition energy in eV, total line emissivity, emission anisotropy factor at
90°, and linear polarization, respectively. ifn is an optional file name which specifies the transitions whose
polarizations are to be calculated. It should contain 4 columns, number of electrons, upper level, lower
level, and multipole type, respectively. Each of the columns may be in the form “*”, which matches any
transitions. The first 3 columns may also specify a range in the form, e.g., “0-5”, which matches any number
between 0 and 5 inclusive. Either limit of the range may also be “*” so that that limit is not enforced. The
second argument may also be given as a list of strings instead of a file name, which correspond to rows of
the equivelent file.

PopulationTable(fn):

Calculate the magnetic sublevel populations, and output the results to file fn in a simple ASCII format. For
each level, it tabulates the total population, the orientation parameters By, and magnetic sublevel fractions.

Print(args):
Print out the string representation of args. This function exists to asist the conversion to SFAC interface,
since Python’s print statement is not converted.

SetDensity(d):
Set the electron density in 10'° ecm™2 for collsional radiative model.

SetEnergy(e [, s]):

Set the electron energy e in eV. If the optional s is positive, the energy distribution is a Gaussian with
standard deviation ¢ = s in €V, and mean e.
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SetIDR(idr [, p)):

Set if the DR satellites polarization to be calculated for a specific target level idr. The routine must be
called after SetMLevels. If idr is set to be a valid level, then only DR onto this target will be allowed. The
optional p specifies the sublevel population of idr. p must be a List or Tuple with number of elements equal
to the number of sublevels of level idr. In counting number of sublevels, =M are treated as a single sublevel.
When p is not given, sublevels are assumed to be equally populated.

SetMIteration(a [, m]):
Set the accuracy a and maximum iteration m for iterative solution of the level population.

SetMaxLevels(m):

Set the maximum number of levels to be retained in the rate matrix. Levels higher than that are treated
iteratively. 0 means retain all levels.

SetMAIRates(fn):

Set the magnetic sublevel autoionization rates and dielectronic capture rates by reading data from binary
file fn

SetMCERates(fn):

Setup the magnetic sublevel excitation rates. Excitation cross sections are interpolated from the binary data
file fn.

SetMLevels(efn, tfn):
Setup the magnetic sublevel table and the radiative transitions rates between them. efn is the binary data
file for energy levels, and #fn is that of transition rates.

3.4 util-Utility Functions

This module contains some unitity functions which may be useful in various situations.

3.4.1 Functions

Spline(z, y [, dyl, dy2]):

Prepare cubic spline table. z and y are the independent and dependent variables to be interpolated. dy! and
dy2 specifies the optional boundry conditions at the two ends in the form of first derivatives. The default is
to use natural cubic spline. It returns a list of second derivatives to be used in Splint.

Splint(z, y, y2, z0):
Calculate the interpolated value at a single point z0. y2 is a list of second derivatives returned by Spline
using the same z and y. This routine and Spline are adapted from Numerical Recipe.

UVIP3P(z, y, 20 [,n]):

Local piece-wise 3rd polynomial interpolation from z, y to a list of independent values in the list z0. If n is
present, an n-th order polynomial interpolation function will be used instead of 3rd order. It returns a list
of the results. The Akima interpolation method is used.

3.5 config—Electronic Configuration Specification
This module is written in pure Python. It is deprecated now. It includes three main functions. closed,

config, and avgconfig. They have the same calling syntax as Closed, Config, and AvgConfig in the
module fac. One should always use these later ones instead of the counterparts in the config module.
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3.6 const—Physical Constants

This module defines some useful physical constants. They are listed below:

+*

Hartree_eV = 27.2113962 Hartree in eV
Rate_AU = 4.13413733E16
Rate_AU10 4.13413733E06
Rate_AU12 4.13413733E04
Area_AU20 = 2.80028560859E3
Alpha = 7.29735308E-3
Ryd_eV = 13.6056981

RBohr = 0.529177249

FWHM = 2.35482005

hc = 1.239842E4

hbc = 1.97327053E3

Me_eV = 5.1099906E5
Me_keV 5.1099906E2
Mp_MeV = 9.38271998E2
Mp_keV 9.38271998E5

c = 2.99792458E10

cl0 = 2.99792458

e = 1.60217733E-19

el9 = 1.60217733

erg_eV = 6.241506363E-13
re = 2.81794092

sig_t = 6.6524616

kb = 8.617385E-5

Atomic Rate Unit in s-1
Atomic Rate Unit in 10710 s-1
Atomic Rate Unit in 10712 s-1
Atomic Area Unit in 10°{-20} cm2
Fine Structure Constant
Rydberg in eV

Bohr radius in A

conversion from sigma to FWHM
hc in eV*A

h_bar*c in eVx*A

electron mass in eV

electron mass in keV

proton mass in MeV

proton mass in keV

speed of light in cm/s

speed of light in 10710 cm/s
electron charge in Coulomb
electron charge in 107-19 Coulomb
erg in eV

electron classical radius in fm
Thompson cross section in 10°{-25} cm2
Boltzman constant in ev/K

H oH HF HH HH O HHHHHEHHEHHHH R H

3.7 table—Text Tabulation
3.7.1 Format of Text Table

The TABLE class implemented in this module creates and manipulates text tables in a format similar to those
of machine-readable tables in AAS journals. It is independent of FAC, and may be used elsewhere. A table
contains a header providing the byte-by-byte description of the columns and other explanatory materials.
The body of the table are arranged in the conventional multi-column format. The following list shows an
example created by TABLE:

Title: Total Ionization and Recombination Rate Coefficients
Authors: M. F. Gu

byte-by-byte description of file: trates.tbl

Bytes Format Units Label Explanation

1- 2 I2 None NELE Num. of Electrons

4- 7 F4.2 ] Temp Temperature

9- 16 E8.2 10°-10"cm~3" /s DR Total DR rate coefficients
18- 25 E8.2 10°-10"cm"~3"/s DR_AR Total DR Arnaud & Raymond
27- 34 E8.2 107-10"cm~3" /s RR Total RR rate coefficients
36- 43 E8.2 10°-10"cm~3" /s RR_AR Total RR Arnaud & Raymond
45- B2 E8.2 10°-10"cm~3" /s CI Total DCI rate coefficients
b4- 61 E8.2 10°-10"cm~3" /s DCI_AR Total DCI Arnaud & Raymond
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63- 70 E8.2 10°-10"cm”~3" /s EA Total EA rate coefficients

72- 79 E8.2 10°-10"cm~3" /s EA_AR Total EA Arnaud & Raymond
2 6.80 3.77E-05 3.77E-05 5.94E-02 5.55E-02 0.00E+00 1.44E-09 0.00E+00 0.00E+00
2 6.95 3.10E-04 3.05E-04 4.45E-02 4.14E-02 0.00E+00 1.93E-07 0.00E+00 0.00E+00
2 7.10 1.25E-03 1.21E-03 3.31E-02 3.06E-02 0.00E+00 6.32E-06 0.00E+00 0.00E+00
2 7.25 3.00E-03 2.88E-03 2.44E-02 2.26E-02 0.00E+00 7.80E-05 0.00E+00 0.00E+00
2 7.40 4.89E-03 4.66E-03 1.78E-02 1.65E-02 0.00E+00 4.79E-04 0.00E+00 0.00E+00
2 7.55 6.03E-03 5.69E-03 1.28E-02 1.20E-02 0.00E+00 1.78E-03 0.00E+00 0.00E+00
2 7.70 6.05E-03 5.66E-03 9.11E-03 8.71E-03 0.00E+00 4.62E-03 0.00E+00 0.00E+00
2 7.85 5.23E-03 4.86E-03 6.42E-03 6.27E-03 0.00E+00 9.01E-03 0.00E+00 0.00E+00
2 8.00 4.07E-03 3.75E-03 4.47E-03 4.49E-03 0.00E+00 1.49E-02 0.00E+00 0.00E+00
3 6.80 1.08E-01 1.25E-01 5.49E-02 4.98E-02 2.11E-03 3.21E-03 1.84E-07 2.42E-07
3 6.95 8.63E-02 1.01E-01 4.10E-02 3.70E-02 7.32E-03 1.06E-02 5.61E-06 7.08E-06
3 7.10 6.61E-02 7.70E-02 3.03E-02 2.73E-02 1.82E-02 2.50E-02 6.07E-05 7.43E-05
3 7.25 4.91E-02 5.51E-02 2.21E-02 2.00E-02 3.57E-02 4.57E-02 3.14E-04 3.79E-04
3 7.40 3.58E-02 3.76E-02 1.59E-02 1.46E-02 5.89E-02 7.14E-02 9.65E-04 1.16E-03
3 7.55 2.58E-02 2.47E-02 1.14E-02 1.06E-02 8.55E-02 9.81E-02 2.05E-03 2.52E-03
3 7.70 1.83E-02 1.58E-02 8.00E-03 7.62E-03 1.13E-01 1.23E-01 3.37E-03 4.27E-03
3 7.85 1.26E-02 9.91E-03 5.56E-03 5.46E-03 1.39E-01 1.45E-01 4.63E-03 6.12E-03
3 8.00 8.44E-03 6.12E-03 3.82E-03 3.88E-03 1.61E-01 1.62E-01 5.64E-03 7.81E-03
4 6.80 1.86E-01 1.79E-01 4.71E-02 4.42E-02 5.44E-03 8.22E-03 3.89E-07 0.00E+00
4 6.95 1.46E-01 1.40E-01 3.51E-02 3.27E-02 1.79E-02 2.58E-02 1.17E-05 0.00E+00
4 7.10 1.09E-01 1.03E-01 2.58E-02 2.40E-02 4.31E-02 5.87E-02 1.25E-04 0.00E+00
4 7.25 7.89E-02 7.20E-02 1.88E-02 1.75E-02 8.24E-02 1.04E-01 6.36E-04 0.00E+00
4 7.40 5.52E-02 4.84E-02 1.35E-02 1.27E-02 1.33E-01 1.59E-01 1.92E-03 0.00E+00
4 7.55 3.79E-02 3.15E-02 9.54E-03 9.13E-03 1.90E-01 2.15E-01 4.02E-03 0.00E+00
4 7.70 2.55E-02 2.00E-02 6.67E-03 6.53E-03 2.46E-01 2.64E-01 6.50E-03 0.00E+00
4 7.85 1.68E-02 1.24E-02 4.59E-03 4.65E-03 2.97E-01 3.03E-01 8.82E-03 0.00E+00
4 8.00 1.09E-02 7.65E-03 3.12E-03 3.28E-03 3.38E-01 3.31E-01 1.07E-02 0.00E+00

3.7.2 Class Attributes and Methods

The TABLE class has a number of attributes, which may be set during or after the initialization, and a few
method functions for the creation and manipulation of the table:

fname:
The file name of the text table. It may be set through the keyword argument fname when the TABLE instance
is created.

title:
The title of the table. Set through the keyword title.

authors:
A list of string for the authors of the table. Set through the keyword authors.

date:
A string for the date when the table is created. During creation, the date returned by the Python function
time.localtime() is used. It may be set to other values though the keyword date.

separatorO:
The string separates the title and authors information from the byte-by-byte description. May be set through
the keyword separator(. The default is ’=’%72.

separator:
The string separates the header and the body. Set through the keyword separator. The default is >-’*72.
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add_column(**¢):

Add a column to the table. The variable length keyword arguments specify the column attributes. It must
contain label and format. A label is a short identifier of the column. The format is a string starts with A, I,
F, or E for characters, integers, decimal floating points, and exponential floating points, and followed by a
width and possible precision specfication. e.g. >A10’, ’F10.3”, and *E11.4°. Other possible keywords are
unit, description and note. unit specifies the unit of the column (use the string ’None’ for dimensionless
quantities). description is a short description of the column. note are some lengthy explanation for the
column which cannot be fit in the byte-by-byte description section. The notes are arranged in the end of
the table header.

open(mode [, fname]):

Open the file associated with the table. mode is either ’r’ for read or ’w’ for write. The optional fname
changes the file name of the table.

close():
Closes the file associated with the table.

write header():
Write the table header to the file.

write_row(...):

Write a row of data to the file. It must contain as many arguments as the columns, and the arguments are
arranged in the same order as the columns were added.

read_header|():
Read the header of the table.

read_columns(index [, filter, start, stop]):

Read columns from the table. index is a list of integers for columns to be read counting from 0. filter is a
Python logical expression to be evaluated for each row. Only rows that pass this expression are read. The
k-th column is referred to as c[k] in the expression. e.g., filter="c[0]>0’ only reads the rows that have
the first column greater than 0. start is the row number where the read should begin, and stop is the row
number where the read should stop, all counting from 0. If stop=—1, read through the end of the table.
This function returns a list with each element being the column read.

convert2tex(fn, index [, filter, start, stop]):

Convert the table to LaTeX format and save the results to file fn. The remaining arguments have the same
meaning as those in read_columns. Note that this function only adds the LaTex column delimiter and the
line break for the table contents. The results are meant to be cut and pasted to LaTex documents.

rewind():
Reset the file position to the start of table body.

3.7.3 Example

The example table in §3.7.1]is generated with the following script:

from pfac.table import *

####
# create an instance of the class.
#i##
tbl = TABLE(fname=dfile,
title=’Total Ionization and Recombination Rate Coefficients’,
authors=[’M. F. Gu’])
#iH#
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# add each column to the table.

##H#

d = ’Num. of Electrons’

tbl.add_column(label="NELE’, unit=’None’,
description=d, format=’I2’)

d = ’Temperature’

tbl.add_column(label=’Temp’, unit=’[K]’,
description=d, format=’F4.2’)

d = ’Total DR rate coefficients’

tbl.add_column(label=’DR’, unit=’10"-10"cm~3"/s’,
description=d, format=’E8.27)

d = ’Total DR Arnaud & Raymond’

tbl.add_column(label="DR_AR’, unit=’10"-10"cm"3"/s’,
description=d, format=’E8.2’)

d = ’Total RR rate coefficients’

tbl.add_column(label=’RR’, unit=’10"-10"cm~3"/s’,
description=d, format=’E8.2’)

d = ’Total RR Arnaud & Raymond’

tbl.add_column(label="RR_AR’, unit=’10"-10"cm~3"/s’,
description=d, format=’E8.2’)

d = ’Total DCI rate coefficients’

tbl.add_column(label="CI’, unit=’10"-10"cm~3"/s’,
description=d, format=’E8.2’)

d = ’Total DCI Arnaud & Raymond’

tbl.add_column(label="DCI_AR’, unit=’10"-10"cm~3"/s’,
description=d, format=’E8.27)

d = ’Total EA rate coefficients’

tbl.add_column(label="EA’, unit=’10"-10"cm"3"/s’,
description=d, format=’E8.2°)

d = ’Total EA Arnaud & Raymond’

tbl.add_column(label="EA_AR’, unit=’10"-10"cm"3"/s’,
description=d, format=’E8.27)

##H#

# open the file to write.

##H#

tbl.open(’w’)

##t#H#

# write the table header
##H#

tbl.write_header ()

H#Hit
# write each row of data here

tbl.close()
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3.8 atom—Application of fac Module

This is a quite extensive application of fac module to the calculation of atomic processes for K-shell and
L-shell ions. It implements a class ATOM that may be customized through its attributes. The details of this
class is not to be documented, since this a highly specialized case. The users are encouraged to write their
own scripts to deal with specific problems. Hower, one function from this module is described here which
may come to be handy to obtain atomic data for K-shell and L-shell ions.

atomic_data(nele, asym [, iprint, dir, **kw]):

This function calculates all collsional and radiative atomic data for K-shell and L-shell ions. The atomic
processes includes radiative transition, collisional excitation, photoionization, radiative recombination, au-
toionization, and collisional ionization. nele is a list of integers specify the number of electrons for each ion to
be calculated. asym is the elemental symbol of the atom to be calculated. iprint specifies if the binary data
files need to be converted to ASCII format. If it is —1, no conversion is carried out, if it is 0, the conversion is
in simple format, if it is 1, the conversion is in verbose format. The default is 1. dir is an existing directory
where the data files to be stored. Each ion will have a directory named asym## under this directory, where
## is a 2-digit number equal to the number of electrons the ion has. The remaining keywords are used to
specify the processes to be excluded in the calculation and other parameters customizing the ATOM class.
Here we only mention 5 of them, no_ce, no_tr, no_rr, no_ci, and no_ai. If any of these keywords is set to 1,
the corresponding processes will be ignored in the calculation. By default, none of them are set. Note that
in typical situations, the computation of collsional excitation and autoionization takes most of the time. If
these data are not needed, no_ce and no_ai should be set to 1.

3.9 spm—Application of crm Module

This is an application of crm module for the spectral modeling. Most of the functions in this module
are highly specialized, therefore not documented here. One of them, spectrum, is relatively more general,
and with minor modifications may be used in various situations to construct simple spectral models for
single temperature, optically thin plasmas. The inclusion of this module in the distribution is mainly for
demonstration purpose. Anyone interested has to read the source code directly.
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4 Frequently Asked Questions (FAQ) To FAC

4.1 General

Q1: Where can I obtain FAC?

FAC is free software. It can be used, modified and redistributed without restriction. Currently,
it can be obtained from anonymous ftp://space.mit.edu/pub/mfgu/fac/, or one may request to
mfgu@space.mit.edu for a copy through email.

Q2: What operating systems does FAC run on?

FAC is written in a mixture of ANSI C, Fortran 77, and Python, all of them are in principle platform
independent. However, the mixed language programming and the dynamically loadable Python modules
makes it more easyly installed in modern UNIX-like systems than others. So far, it has been tested to work
under solaris, linux, Mac OS X, and windows with the UNIX API emulation provided by Cygwin.

Q3: How does FAC differ from other atomic codes?

The theoretical methods used in FAC are similar to some other distorted-wave atomic codes, such as HUL-
LAC and differ from more elaborate programs based on close-coupling approximations, such as the Belfast
R-Matrix code. The biggest advatage of FAC is its ease of use and its scriptability.

Q4: How does FAC differ from plasma synthetic codes?

There are various plasma codes widely used in X-ray astronomy, such as APEC, MEKAL, SPEX, XSTAR
and Cloudy. These codes use the existing atomic data to construct spectral models under different physical
conditions. FAC is an atomic code, whose primarily purpose is to generate atomic data, which can be used
in these plasma codes. However, FAC includes a collisional radiative model that is able to compute spectral
models for optically thin plasmas at a given electron temperature and density. Non-Maxwellian distribution
of electron energy may be easily implemented as well. A power law ionizing continuum radiation may also
be included.

Q5: Can FAC be incorporated into XSPEC or other spectral analysis programs?
In principle, the collisional radiative model comes with FAC can be used in XSPEC or similar spectral
analysis programs. However, this is not practicle, as the model inlcudes a large number of atomic states,
especially, the doubly excited states to treat the resonant processes, and is therefore very time consumming.
The best strategy of incorporating the FAC results to external spectral models is to extract basic atomic or
plasma parameters and use them to build table models or implement dedicated subroutines.

Q6: Which atomic processes can or cannot be calculated with FAC?

FAC can calculate energy levels, radiative transition rates of arbitrary multipole type, collisional excitation
and ionization cross sections by electron impact, photionization and radiative recombination cross sections
and autoionization rates. In the currect form, FAC does not treat two-photon decay, although such decay
rates of 2557, state of H-like ions and 15255y state of He-like ions are included in the collisional radiative
model using interpolation formulae taken from literature. The three-body recombination are not imple-
mented as well.

Q7: What are the typical accuracies of the atomic parameters caculated with FAC?

The ions other than H-like, the accuracy of energy levels are usually a few eV, which translates to 10-30 mA
for the wavelength at ~10A. For radiative transition rates and cross sections, the accuracies are ~10-20%.
Data for near-neutral ions or atoms may have even larger errors.

Q8: Can FAC be used to calculate atomic parameters for non-X-ray (UV, optical, etc.) lines?
For multiply-charged ions, non-X-ray lines usually result from the transitions within the same complex, which
usually have large relative uncertainties in the calculated wavelengths and transition rates. The accuracy
for UV and optical lines from near-neutral ions is also very limited.
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Q9: Are there standard references to FAC?

Currently, no papers have been published describing the code, though drafts have been written, which are
included in the FAC distribution. I have been trying to find a suitable journal willing to publish them. I
originally submitted them to Computer Physics Communications (CPC). However, the referee and editor
complained about the lack of documentation and code comments. The documentation has improved since
then, the code commenting still needs extensive work, which may not be done soon. The first paper that
used results of FAC is Gu, M.F., 2003, ApJ, 582, 1241, which can be used as the reference.

Q10: How do I report bugs, make suggestions and get updated about new versions?

Please contact the author at mfgu@space.mit.edu for bugs and suggestions. I maintain a small email
address list of people who expressed interest in FAC and send release anouncements to them. Let me know
if you want to be added to this list. If the list ever grows to the point when I can no longer put it under my
personal address book, we may have to create a dedicated mailing list.

4.2 Atomic Structure

Q1: How do I specify a bare ion?
The bare ion is indicated by a call to fac.Config(’’, group=’b’), i.e., the first argument of Config is an
empty string.

Q2: Which configurations should be used as basis for the mean cofiguration which optimizes
the radial potential?

The function fac.OptimizeRadial accepts a list of configurations, which form the basis for the con-
struction of the mean configuration. Usually, only the lowest lying configurations should be used in
fac.OptimizeRadial for the construction of mean configuration. I have found that using configurations
corresponding to the ground complex is always a good idea. Sometimes, it maybe worthwile to inlcude the
first excited configurations. However, it is always a bad practice to inlcude very highly excited configurations,
especially those inner shell excited ones.

Q3: Can I use a specific mean configuration to be used in potential optimization?
The function fac.AvgConfig may be used to set the mean configuration for the potential optimization. In
this case, the function fac.0OptimizeRadial must be called with no arguments.

Q4: How do I know what mean configuration is used in the potential optimization, If one is
not given specificly by AvgConfig?
The function fac.GetPotential may be called after OptimizeRadial to obtain the mean configuration
used, and the resulting radial potential.

Q5: When calculating ionization or recombination processes, should I use the mean configu-
ration for recombined (ionizing) or recombining (ionized) ion?

Usually, it does not matter for highly charged ions, and I usually use the recombined ion. The difference
of one more or less electron screening the nuclear charge may be substaintial for low-Z elements, in which
case, one may have to make a decision by comparing the results to experimental values or other theoretical
works.

Q6: How do I determine which configurations should be interacting?

This depends on the computer resource available, and the desired accuracy. The dimension of the Hamilto-
nian matrix increases very rapidly as the number of interacting configurations grows. The convergence with
respect to the configuration interaction is usually slow. For applications which FAC is primirily designed for,
one typically inlcudes only configurations within the same complex, except for some low-lying configurations.

Q7: What relativistic effects are included?

The standard Dirac-Coulomb Hamiltonian is used in FAC, which means that the spin-orbit interaction,
mass-effect and other leading relativistic effects are fully treated. However, higher-order QED effects, such
as retardation and recoil are only included in the Breit interaction with zero energy limit for the exchanged
photon. Vacuum polarization and self-energy corrections are treated in the screened hydrogenic approxima-
tion.
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Q8: Why the transition rate between two specific states is not in the output file, although it
should have been calculated?

Not every calculated transition rate are output. Some weak transitions are discarded to avoid very large
files. A small number, which may be set by the function fac.SetTransitionCut, controlls this behavior. If
the transition rate of 2 — 1 devided by the total decay rate of state 2 is less than this number, this rate is
not output. The default for this number is 1074,

4.3 Collisional Excitation

Q1: Why is there multiple data blocks in the output corresponding to a single call of CETable
sometimes?

Sometimes, the transition array corresponding to a given call to CETable include transitions with a wide
range of excitation energies. This typically happens for transitions within a single complex or transitions
between more than 2 complexes are mixed together in one call of CETable (which should generally be
avoided). Since the excitation radial integrals are only calculated on a few-point transition energy grid, it
is undesirable to have a very wide range in the actual transition energies. CETable avoid this by subdivide
the transitions in groups. Within each group, the transition energies does not vary by more than a factor
of 5. A different transition energy grid and collision energy grid are used for different groups, and therefore,
corresponding to different data blocks in the output.

Q2: Why is the default QKMODE for excitation is EXACT, not FIT?

It used to be in FIT mode. However, the fitting formulae sometimes fail to reproduce the calculated collision
strengths. After playing with different fitting formulae for a while, I decided that the user should do the
fitting (if one is desired) on the case by case basis. The function SetCEQkMode may be used to specify a
different QKMODE.

Q3: Can I use a different collision energy grid?
A collision energy grid in terms of the energy of the scattered electron is automatically constructed if one is
not specified prior to calling CETable. One may use the function SetCEGrid to specify a different grid. Or
one may use SetUsrCEGrid to have a user grid different from the grid on which the collision strengths are
calculated, and use INTERPOLATE mode for the QKMODE.

Q4: The collision strengths at very high energies are incorrect?

Due to the limited radial grid size, the collision strengths at energies much higher than the excitation energy
(more than a few hundred times higher) are unlikely to be reliabe. However, the high energy collision
strengths should not be calculated directly. The Bethe and Born limit parameters in the output should be
used to obtain them.

4.4 Photoionization and Radiative Recombination

Q1: When can I use the function RecStates to construct the recombined states instead of
specifying their configurations by Config?
The function RecStates can only be used if the free electron is captured to an empty orbital.

Q2: Why is the bound-free oscillator strength differ from some other theoretical calculation
by a constant factor?

The bound-free differential oscillator strengths calculated by FAC have units of Hartree™!. Also the values
depend on the normalization of continuum orbitals. It is therefore possible that they differ from other
theorectial calculations by a constant factor. One should always use the formula in this manual or the
accompanying papers to convert them to photoionization or radiative recombination cross sections.
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Q3: Can I use only the fitting formula and ignore the tabulated ¢gf values?

The fitting formula and the parameters given for the bound-free oscillator strengths is only valid at high
energies (beyond the largest energy of the photo-electron energy grid). This means that the gf values at
energies within the photo-electron energy grid should be calculated by interpolation instead of the fitting
formula. However, this is often only necessary for the ionization of valence shells of near neutral ions and
atoms, since only in these cases, the near threashold behavior of the gf values differ from the fitting formula
significantly.

4.5 Autoionization and Dielectronic Recombination

Q1: What does the channel number in the call to AITable mean?

It does not mean anything. It is simply an identifier which may be useful sometimes to tag a certain
autoionization channel.

Q2: How do I improve the resonance energies of low-lying An = 0 resonances?

The energyies of low-lying An = 0 resonances can not the calculated accurately. This greatly reduces
the reliability of the resulting dielectronic recombination rates. In FAC, there is a method to improve the
accuracy of these energies by adjusting the core transition energies according to the experimental values.
The function CorrectEnergy is used to modify the calculated energy levels by specified amount.

Q3: Why is it advised to make seperate calls to AITable for different bound or free state
complexes?

The autoionization radial integrals are only calculated for a few free electron energies. The actual values are
interpolated from them. This only works well if the the free electron energy after autoionization does not
vary widely. Therefore, one should avoid calling AITable with bound or free states in different complexes.
e.g., KLL and KLM resonances should be calculated with two seperate calls to AITable.

4.6 Collisional Ionization

Q1: Why are FAC ionization cross sections calculated with BED mode usually much smaller at
near threshold energies as compared with distorted-wave calculations?

When using BED mode to calculate the ionization radial integrals, the total ionization cross sections are scaled
by a factor E/(E + I), where E is the energy of incident electron, and I is the ionization threshold energy.
The result of this scalling is usually desirable as distorted-wave method overestimates the near threshold
cross sections.

Q2: Why is the DW mode so slow as compared with BED and CB modes?

In the DW mode, the ionization radial integrals are calculated by summing up partial wave contributions.
This is a time consuming process as now there are two continuum electrons involved. In the CB mode, the
radial integrals are simply looked up in a table, is therefore the fastest method. In the BED mode, the radial
integrals are calculated using the bound-free differential oscillator strengths, which can be computed much
faster than the DW ionization radial integrals.

4.7 Collisional Radiative Model

Q1: What kinds of electron energy distributions are built in the crm module?
Currently, the Maxwellian and Gaussian energy distributions are supported for electrons. The Gaussian
distribution is meant to simulate a monoenergetic electron beam with finite energy width.

Q2: Are photoionization and photo-excitation supported?
A power law ionization continuum can be used for the photoionization and photo-excitation sources. How-
ever, the radiative transfer effects are not implemented.

Q3: How can I add more electron energy and/or photon energy distributions?

Take a look at the C header and source files faclib/rates.h and faclib/rates.c, and follow the implemen-
tation of built-in distributions. The FAC package must be recompiled and relinked for added distributions
to work.
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