
The Pencil Code:

A High-Order MPI code for MHD Turbulence

User’s and Reference Manual

May 10, 2018
http://www.nordita.org/software/pencil-code/

https://github.com/pencil-code/pencil-code

http://www.nordita.org/software/pencil-code/
https://github.com/pencil-code/pencil-code

The PENCIL CODE: multi-purpose and multi-user maintained

http://www.nordita.org/~brandenb/talks/misc/PencilCode04.htm

Figure 1: Check-in patterns as a function of time for different subroutines. The different users are marked
by different symbols and different colors.

ii

http://www.nordita.org/~brandenb/talks/misc/PencilCode04.htm

Contributors to the code

(in inverse alphabetical order according to their user name)

An up to date list of Pencil Code contributors can be found at GitHub.

wladimir.lyra Wladimir Lyra California State University/JPL
weezy S. Louise Wilkin University of Newcastle
wdobler Wolfgang Dobler Potsdam
vpariev Vladimir Pariev University of Rochester
torkel Ulf Torkelsson Chalmers University
tavo.buk Gustavo Guerrero Stanford University
thomas.gastine Thomas Gastine MPI for Solar System Research
theine Tobias (Tobi) Heinemann IAS Princeton
tarek Tarek A. Yousef University of Trondheim
sven.bingert Sven Bingert MPI for Solar System Research
steveb Steve Berukoff UCLA
snod Andrew Snodin University of Newcastle
pkapyla Petri Käpylä University of Helsinki
nils.e.haugen Nils Erland L. Haugen SINTEF
ngrs Graeme R. Sarson University of Newcastle
NBabkovskaia Natalia Babkovskaia University of Helsinki
mreinhardt Matthias Rheinhardt University of Helsinki
mkorpi Maarit J. Käpylä (née Korpi, Mantere) University of Helsinki
miikkavaisala Miikka Väisälä University of Helsinki
mee Antony (tOnY) Mee University of Newcastle
mcmillan David McMillan York University, Toronto
mattias Mattias Christensson formerly at Nordita
koenkemel Koen Kemel Nordita, Stockholm
karlsson Torgny Karlsson Nordita
joishi Jeff S. Oishi Kavli Institute for Particle Astrophysics
joern.warnecke Jörn Warnecke MPI for Solar System Research, Lindau
Iomsn1 Simon Candelaresi University of Dundee, Dundee
fadiesis Fabio Del Sordo Nordita, Stockholm
dorch Bertil Dorch University of Copenhagen
boris.dintrans Boris Dintrans Observatoire Midi-Pyrénées, Toulouse
dhruba.mitra Dhrubaditya Mitra Nordita, Stockholm
ccyang Chao-Chin Yang Lund Observatory
christer Christer Sandin University of Uppsala
Bourdin.KIS Philippe Bourdin MPI for Solar System Research
AxelBrandenburg Axel Brandenburg Nordita
apichat Apichat Neamvonk University of Newcastle
amjed Amjed Mohammed University of Oldenburg
alex.i.hubbard Alex Hubbard Am. Museum Nat. History
michiel.lambrechts Michiel Lambrechts Lund Observatory, Lund University
anders Anders Johansen Lund Observatory, Lund University
mppiyali Piyali Chatterjee University of Oslo

Copyright c© 2001–2017 Wolfgang Dobler & Axel Brandenburg

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

iii

https://github.com/pencil-code/pencil-code/graphs/contributors
http://www.wladimirlyra.com
http://www.mas.ncl.ac.uk/~n9405169/
http://www.kis.uni-freiburg.de/~dobler/
http://www.pas.rochester.edu/~vpariev/
http://fy.chalmers.se/~torkel/
http://www.mps.mpg.de/homes/gastine/
http://www.damtp.cam.ac.uk/user/theine/
http://www.pvv.org/~tarek/
http://www.svenbingert.de
http://www.physics.ucla.edu/~steveb/
http://www.ncl.ac.uk/math/postgrad/postgrads.htm
http://www.helsinki.fi/~kapyla/
http://www.sintef.no/Kontakt-oss/Alle-ansatte/?EmpId=1199
http://www.mas.ncl.ac.uk/~ngrs/home.html
http://www.nordita.org/~nbabkovs/
http://www.helsinki.fi/~rei/
http://www.helsinki.fi/~mkorpi/
https://tuhat.halvi.helsinki.fi/portal/en/persons/miikka-vaisala(90245497-b541-4d55-8409-03ea3e563d82).html
http://www.mas.ncl.ac.uk/~n7026413/pencil-code/movies/
http://brunhes.eas.yorku.ca/dave/CV/
http://www.nordita.org/~mattias/
http://www.nordita.org/~koen/
http://www.nordita.org/people/people.php?variant=single&cn=Torgny+Karlsson
http://cms.jsoishi.org/
http://www.nordita.org/~warnecke/
http://www.maths.dundee.ac.uk/scandelaresi/
http://www.nordita.org/~fabio/
http://www.astro.ku.dk/~dorch/
http://www.ast.obs-mip.fr/dintrans
http://www.nordita.org/~dhruba
http://www.astro.lu.se/~ccyang/
http://www.astro.uu.se/~christer/CS_index.html
http://www.mps.mpg.de/en/projekte/coronal-dynamics/
http://www.nordita.org/~brandenb/
file:Apichat.Neamvonk@ncl.ac.uk
http://ehf.uni-oldenburg.de/member.php?nav=staff&sprache=english&show=43
http://www.linkedin.com/pub/alexander-hubbard/47/906/379
http://pc500.astro.lu.se/~michiel/
http://pc366.astro.lu.se/anders/index_en.php
http://www.mn.uio.no/astro/english/people/aca/piyali/index.html

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

iv

License agreement and giving credit

The content of all files under :pserver:$USER@svn.nordita.org:/var/cvs/brandenb are
under the GNU General Public License (http://www.gnu.org/licenses/gpl.html).

We, the PENCIL CODE community, ask that in publications and presenta-
tions the use of the code (or parts of it) be acknowledged with reference to
the web site http://www.nordita.org/software/pencil-code/ or (equivalently) to.
https://github.com/pencil-code/pencil-code. As a courtesy to the people involved in
developing particularly important parts of the program (use svn annotate src/*.f90 to
find out who did what!) we suggest to give appropriate reference to one or several of the
following (or other appropriate) papers (listed here in temporal order):

Dobler, W., Haugen, N. E. L., Yousef, T. A., & Brandenburg, A.: 2003, “Bottleneck ef-
fect in three-dimensional turbulence simulations,” Phys. Rev. E 68, 026304, 1-8
(astro-ph/0303324)

Haugen, N. E. L., Brandenburg, A., & Dobler, W.: 2003, “Is nonhelical hydromag-
netic turbulence peaked at small scales?” Astrophys. J. Lett. 597, L141-L144
(astro-ph/0303372)

Brandenburg, A., Käpylä, P., & Mohammed, A.: 2004, “Non-Fickian diffusion and
tau-approximation from numerical turbulence,” Phys. Fluids 16, 1020-1027
(astro-ph/0306521)

Johansen, A., Andersen, A. C., & Brandenburg, A.: 2004, “Simulations of dust-
trapping vortices in protoplanetary discs,” Astron. Astrophys. 417, 361-371
(astro-ph/0310059)

Haugen, N. E. L., Brandenburg, A., & Mee, A. J.: 2004, “Mach number dependence
of the onset of dynamo action,” Monthly Notices Roy. Astron. Soc. 353, 947-952
(astro-ph/0405453)

Brandenburg, A., & Multamäki, T.: 2004, “How long can left and right handed life forms
coexist?” Int. J. Astrobiol. 3, 209-219 (q-bio/0407008)

McMillan, D. G., & Sarson, G. R.: 2005, “Dynamo simulations in a spherical shell of
ideal gas using a high-order Cartesian magnetohydrodynamics code,” Phys. Earth
Planet. Int.153, 124-135

Heinemann, T., Dobler, W., Nordlund, Å., & Brandenburg, A.: 2006, “Radiative transfer
in decomposed domains,” Astron. Astrophys. 448, 731-737 (astro-ph/0503510)

Dobler, W., Stix, M., & Brandenburg, A.: 2006, “Convection and magnetic field genera-
tion in fully convective spheres,” Astrophys. J. 638, 336-347 (astro-ph/0410645)

Snodin, A. P., Brandenburg, A., Mee, A. J., & Shukurov, A.: 2006, “Simulating field-
aligned diffusion of a cosmic ray gas,” Monthly Notices Roy. Astron. Soc. 373, 643-
652 (astro-ph/0507176)

Johansen, A., Klahr, H., & Henning, T.: 2006, “Dust sedimentation and self-sustained
Kelvin-Helmholtz turbulence in protoplanetary disc mid-planes,” Astrophys. J.

636, 1121-1134 (astro-ph/0512272)
de Val-Borro, M. and 22 coauthors (incl. Lyra, W.): 2006, “A comparative study

of disc-planet interaction,” Monthly Notices Roy. Astron. Soc. 370, 529-558
(astro-ph/0605237)

Johansen, A., Oishi, J. S., Mac Low, M. M., Klahr, H., Henning, T., & Youdin, A.: 2007,
“Rapid planetesimal formation in turbulent circumstellar disks,” Nature 448,
1022–1025 (arXiv/0708.3890)

Lyra, W., Johansen, A., Klahr, H., & Piskunov, N.: 2008, “Global magnetohydrody-
namical models of turbulence in protoplanetary disks I. A cylindrical potential

v

http://www.gnu.org/licenses/gpl.html
http://www.nordita.org/software/pencil-code/
https://github.com/pencil-code/pencil-code
http://arXiv.org/abs/astro-ph/0303324
http://arXiv.org/abs/astro-ph/0303372
http://arXiv.org/abs/astro-ph/0306521
http://arXiv.org/abs/astro-ph/0310059
http://arXiv.org/abs/astro-ph/0405453
http://arXiv.org/abs/abs/q-bio/0407008
http://arXiv.org/abs/astro-ph/0503510
http://arXiv.org/abs/astro-ph/0410645
http://arXiv.org/abs/astro-ph/0507176
http://arXiv.org/abs/astro-ph/0512272
http://arXiv.org/abs/astro-ph/0605237
http://arXiv.org/abs/0708.3890

on a Cartesian grid and transport of solids,” Astron. Astrophys. 479, 883-901
(arXiv/0705.4090)

Brandenburg, A., Rädler, K.-H., Rheinhardt, M., & Käpylä, P. J.: 2008, “Magnetic diffu-
sivity tensor and dynamo effects in rotating and shearing turbulence,” Astrophys.
J. 676, 740-751 (arXiv/0710.4059)

Lyra, W., Johansen, A., Klahr, H., & Piskunov, N.: 2008, “Embryos grown in the dead
zone. Assembling the first protoplanetary cores in low-mass selfgravitating cir-
cumstellar disks of gas and solids,” Astron. Astrophys. 491, L41-L44

Lyra, W., Johansen, A., Klahr, H., & Piskunov, N.: 2009, “Standing on the shoulders of
giants. Trojan Earths and vortex trapping in low-mass selfgravitating protoplan-
etary disks of gas and solids,” Astron. Astrophys. 493, 1125-1139

Lyra, W., Johansen, A., Zsom, A., Klahr, H., & Piskunov, N.: 2009, “Planet formation
bursts at the borders of the dead zone in 2D numerical simulations of circumstel-
lar disks,” Astron. Astrophys. 497, 869-888 (arXiv/0901.1638)

Mitra, D., Tavakol, R., Brandenburg, A., &Moss, D.: 2009, “Turbulent dynamos in spher-
ical shell segments of varying geometrical extent,” Astrophys. J. 697, 923-933
(arXiv/0812.3106)

Haugen, N. E. L., & Kragset, S.: 2010, “Particle impaction on a cylinder in a crossflow
as function of Stokes and Reynolds numbers,” J. Fluid Mech. 661, 239-261

Rheinhardt, M., & Brandenburg, A.: 2010, “Test-field method for mean-field coefficients
with MHD background,” Astron. Astrophys. 520, A28 (arXiv/1004.0689)

Babkovskaia, N., Haugen, N. E. L., Brandenburg, A.: 2011, “A high-order public domain
code for direct numerical simulations of turbulent combustion,” J. Comp. Phys.

230, 1-12 (arXiv/1005.5301)
Johansen, A., Klahr, H., & Henning, Th.: 2011, “High-resolution simulations of planetes-

imal formation in turbulent protoplanetary discs,” Astron. Astrophys. 529, A62

Johansen, A., Youdin, A. N., & Lithwick, Y.: 2012, “Adding particle collisions to the for-
mation of asteroids and Kuiper belt objects via streaming instabilities,” Astron.
Astrophys. 537, A125

Lyra, W. & Kuchner, W. : 2013, “Formation of sharp eccentric rings in debris disks with
gas but without planets,” Nature 499, 184–187

Yang, C.-C., & Johansen, A.: 2016, “Integration of Particle-Gas Systems with Stiff Mu-
tual Drag Interaction,” Astrophys. J. Suppl. Series 224, 39

This list is not always up-to-date. We therefore ask the developers to check in new rele-
vant papers, avoiding however redundancies.

vi

http://arXiv.org/abs/0705.4090
http://arXiv.org/abs/0710.4059
http://arXiv.org/abs/0901.1638
http://arXiv.org/abs/0812.3106
http://arXiv.org/abs/1004.0689
http://arXiv.org/abs/1005.5301

Foreword

This code was originally developed at the Turbulence Summer School of the Helmholtz
Institute in Potsdam (2001). While some SPH and PPM codes for hydrodynamics and
magnetohydrodynamics are publicly available, this does not generally seem to be the
case for higher order finite-difference or spectral codes. Having been approached by peo-
ple interested in using our code, we decided to make it as flexible as possible and as
user-friendly as seems reasonable, and to put it onto a public CVS repository. Since
21 September 2008 it is distributed via https://github.com/pencil-code/pencil-code.
The code can certainly not be treated as a black box (no code can), and in order to solve
a new problem in an optimal way, users will need to find their own optimal set of pa-
rameters. In particular, you need to be careful in choosing the right values of viscosity,
magnetic diffusivity, and radiative conductivity.

The PENCIL CODE is primarily designed to deal with weakly compressible turbulent
flows, which is why we use high-order first and second derivatives. To achieve good par-
allelization, we use explicit (as opposed to compact) finite differences. Typical scientific
targets include driven MHD turbulence in a periodic box, convection in a slab with non-
periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic
box, accretion disc turbulence in the shearing sheet approximation, etc. Furthermore,
nonlocal radiation transport, inertial particles, dust coagulation, self-gravity, chemical
reaction networks, and several other physical components are installed, but this num-
ber increases steadily. In addition to Cartesian coordinates, the code can also deal with
spherical and cylindrical polar coordinates.

Magnetic fields are implemented in terms of the magnetic vector potential to ensure
that the field remains solenoidal (divergence-free). At the same time, having the mag-
netic vector potential readily available is a big advantage if one wants to monitor the
magnetic helicity, for example. The code is therefore particularly well suited for all kinds
of dynamo problems.

The code is normally non-conservative; thus, conserved quantities should only be con-
served up to the discretization error of the scheme (not to machine accuracy). There is
no guarantee that a conservative code is more accurate with respect to quantities that
are not explicitly conserved, such as entropy. Another important quantity that is (to
our knowledge) not strictly conserved by ordinary flux conserving schemes is magnetic
helicity.

There are currently no plans to implement adaptive mesh refinement into the code,
which would cause major technical complications. Given that turbulence is generically
space-filling, local refinement to smaller scales would often not be very useful anyway.
On the other hand, in some geometries turbulence may well be confined to certain re-
gions in space, so one could indeed gain by solving the outer regions with fewer points.

In order to be cache-efficient, we solve the equations along pencils in the x direction.
One very convenient side-effect is that auxiliary and derived variables use very little
memory, as they are only ever defined on one pencil. The domain can be tiled in the y
and z directions. On multiprocessor computers, the code can use MPI (Message Pass-
ing Interface) calls to communicate between processors. An easy switching mechanism
allows the user to run the code on a machine without MPI libraries (e.g. a notebook
computer). Ghost zones are used to implement boundary conditions on physical and
processor boundaries.

vii

https://github.com/pencil-code/pencil-code

A high level of flexibility is achieved by encapsulating individual physical processes
and variables in individual modules, which can be switched on or off in the file
‘Makefile.local’ in the local ‘src’ directory. This approach avoids the use of difficult-
to-read preprocessor directives, at the price of requiring one dummy module for each
physics module. For nonmagnetic hydrodynamics, for example, one will use the module
‘nomagnetic.f90’ and specifies

MAGNETIC = nomagnetic

in ‘Makefile.local’, while for MHD simulations, ‘magnetic.f90’ will be used:

MAGNETIC = magnetic

Note that the term module as used here is only loosely related to Fortran modules: both
‘magnetic.f90’ and ‘nomagnetic.f90’ define an F90 module namedMagnetic— this is the
basis of the switching mechanism we are using.

Input parameters (which are set in the files ‘start.in’, ‘run.in’) can be changed without
recompilation. Furthermore, one can change the list of variables for monitoring (diag-
nostic) output on the fly, and there are mechanisms for making the code reload new
parameters or exit gracefully at runtime. You may want to check for correctness of these
files with the command pc_configtest.

The requirements for using the Pencil-MPI code are modest: you can use it on any Linux
or Unix system with a F95 and C compiler suite, like GNU gcc and gfortran, together
with the shell CSH , and the Perl interpreter are mandatory requirements.

Although the PENCIL CODE is mainly designed to run on supercomputers, more than
50% of the users run their code also on Macs, and the other half uses either directly
Linux on their laptops or they use VirtualBox on their Windows machine on which they
install Ubuntu Linux. If you have IDL as well, you will be able to visualize the re-
sults (a number of sample procedures are provided), but other tools such as Python, DX
(OpenDX, data explorer) can also be used and some relevant tools and routines come
with the PENCIL CODE.

If you want to make creative use of the code, this manual will contain far too little in-
formation. Its major aim is to give you an idea of the way the code is organized, so you
can more efficiently read the source code, which contains a reasonable amount of com-
ments. You might want to read through the various sample directories that are checked
in. Choose one that is closest to your application and start modifying. For further en-
hancements that you may want to add to the code, you can take as an example the lines
in the code that deal with related variables, functions, diagnostics, equations etc., which
have already been implemented. Just remember: grep is one of your best friends when
you want to understand how certain variables or functions are used in the code.

We will be happy to include user-supplied changes and updates to the code in future
releases and welcome any feedback.

wdobler@gmail.com Potsdam
AxelBrandenburg@gmail.com Stockholm

viii

Acknowledgments

Many people have contributed in different ways to the development of this code. We
thank first of all Åke Nordlund (Copenhagen Observatory) and Bob Stein (University of
Michigan) who introduced us to the idea of using high-order schemes in compressible
flows and who taught us a lot about simulations in general.

The calculation of the power spectra, structure functions, the remeshing procedures,
routines for changing the number of processors, as well as the shearing sheet approxi-
mation and the flux-limited diffusion approximation for radiative transfer were imple-
mented by Nils Erland L. Haugen (University of Trondheim). Tobi Heinemann added
the long characteristics method for radiative transfer as well as hydrogen ionization.
He also added and/or improved shock diffusion for other variables and improved the
resulting timestep control. Anders Johansen, Wladimir (Wlad) Lyra, and Jeff Oishi con-
tributed to the implementation of the dust equations (which now comprises an array of
different components). Antony (Tony) Mee (University of Newcastle) implemented shock
viscosity and added the interstellar module together with Graeme R. Sarson (also Uni-
versity of Newcastle), who also implemented the geodynamo set-up together with David
McMillan (currently also at the University of Newcastle). Tony also included a method
for outputting auxiliary variables and enhanced the overall functionality of the code
and related idl and dx procedures. He also added, together with Andrew Snodin, the
evolution equations for the cosmic ray energy density. Vladimir Pariev (University of
Rochester) contributed to the development and testing of the potential field boundary
condition at an early stage. The implementation of spherical and cylindrical coordinates
is due to Dhrubaditya (Dhruba) Mitra and Wladimir Lyra. Wlad also implemented the
global set-up for protoplanetary disks (as opposed to the local shearing sheet formalism).
He also added a N -body code (based on the particle module coded by Anders Johansen
and Tony), and implemented the coupled evolution equations of neutrals and ions for
two-fluid models of ambipolar diffusion. Boris Dintrans is in charge of implementing the
anelastic and Boussinesq modules. Philippe-A. Bourdin implemented HDF5 support and
wrote the optional IO-modules for high-performance computing featuring various com-
munication strategies. He also contributed to the solar-corona module and worked on
the IDL GUI, including the IDL routines for reading and working with large amounts of
data. Again, this list contains other recent items that are not yet fully documented and
acknowledged.

Use of the PPARC supported supercomputers in St Andrews (Mhd) and Leicester (Ukaff)
is acknowledged. We also acknowledge the Danish Center for Scientific Computing for
granting time on Horseshoe, which is a 512+140 processor Beowulf cluster in Odense
(Horseshoe).

ix

Contents

I Using the PENCIL CODE 1

1 System requirements 1

2 Obtaining the code 2

2.1 Obtaining the code via git or svn . 2
2.2 Updating via svn or git . 2
2.3 Getting the last validated version . 3
2.4 Getting older versions . 4

3 Getting started 5

3.1 Setup . 5
3.1.1 Environment settings . 5
3.1.2 Linking scripts and source files . 6
3.1.3 Adapting ‘Makefile.src’ . 6
3.1.4 Running make . 6
3.1.5 Choosing a data directory . 7
3.1.6 Running the code . 7

3.2 Further tests . 9

4 Code structure 11

4.1 Directory tree . 11
4.2 Basic concepts . 12

4.2.1 Data access in pencils . 12
4.2.2 Modularity . 13

4.3 Files in the run directories . 14
4.3.1 ‘start.in’, ‘run.in’, ‘print.in’ . 14
4.3.2 ‘datadir.in’ . 14
4.3.3 ‘reference.out’ . 14
4.3.4 ‘start.csh’, ‘run.csh’, ‘getconf.csh’ [obsolete; see Sect. 5.1] 14
4.3.5 ‘src/ ’ . 14
4.3.6 ‘data/ ’ . 15

5 Using the code 17

5.1 Configuring the code to compile and run on your computer 17
5.1.1 Locating the configuration file . 17
5.1.2 Structure of configuration files . 18
5.1.3 Compiling the code . 20
5.1.4 Running the code . 20
5.1.5 Testing the code . 20

5.2 Adapting ‘Makefile.src’ [obsolete; see Sect. 5.1] 21
5.3 Changing the resolution . 22
5.4 Using a non-equidistant grid . 23
5.5 Diagnostic output . 25
5.6 Data files . 25

5.6.1 Snapshot files . 25
5.7 Video files and slices . 26

x

5.8 Averages . 29
5.8.1 One-dimensional output averaged in two dimensions 29
5.8.2 Two-dimensional output averaged in one dimension 29
5.8.3 Azimuthal averages . 29
5.8.4 Time averages . 30

5.9 Helper scripts . 31
5.10 RELOAD and STOP files . 33
5.11 RERUN and NEWDIR files . 34
5.12 Start and run parameters . 34
5.13 Physical units . 36
5.14 Minimum amount of viscosity . 37
5.15 The time step . 38

5.15.1 The usual RK-2N time step . 38
5.15.2 The Runge-Kutta-Fehlberg time step 38

5.16 Boundary conditions . 39
5.16.1 Where to specify boundary conditions 39
5.16.2 How to specify boundary conditions 39

5.17 Restarting a simulation . 40
5.18 One- and two-dimensional runs . 41
5.19 Visualization . 41

5.19.1 Gnuplot . 41
5.19.2 Data explorer . 41
5.19.3 GDL . 42
5.19.4 IDL . 43
5.19.5 Python . 46

5.20 Running on multi-processor computers . 49
5.20.1 How to run a sample problem in parallel 49
5.20.2 Hierarchical networks (e.g. on Beowulf clusters) 50
5.20.3 Extra workload caused by the ghost zones 50

5.21 Running in double-precision . 51
5.22 Power spectrum . 52
5.23 Structure functions . 54
5.24 Particles . 55

5.24.1 Particles in parallel . 56
5.24.2 Large number of particles . 58
5.24.3 Random number generator . 58

5.25 Non-cartesian coordinate systems . 59

6 The equations 60

6.1 Continuity equation . 60
6.2 Equation of motion . 60
6.3 Induction equation . 61
6.4 Entropy equation . 61

6.4.1 Viscous heating . 62
6.4.2 Alternative description . 62

6.5 Transport equation for a passive scalar . 63
6.6 Bulk viscosity . 63

6.6.1 Shock viscosity . 63
6.7 Equation of state . 63
6.8 Ionization . 64

xi

6.8.1 Ambipolar diffusion . 65
6.9 Radiative transfer . 66
6.10 Self-gravity . 67
6.11 Incompressible and anelastic equations . 67
6.12 Dust equations . 67
6.13 Cosmic ray pressure in diffusion approximation 68
6.14 Particles . 69

6.14.1 Tracer particles . 69
6.14.2 Dust particles . 69

6.15 N -body solver . 70
6.16 Test-field equations . 71
6.17 Gravitational wave equations . 71

7 Troubleshooting / Frequently Asked Questions 75

7.1 Download and setup . 75
7.1.1 Download forbidden . 75
7.1.2 Shell gives error message when sourcing ‘sourceme.X’ 75

7.2 Compilation . 76
7.2.1 Problems compiling syscalls . 76
7.2.2 Unable to open include file: chemistry.h 76
7.2.3 Compiling with ifc under Linux . 76
7.2.4 Segmentation fault with ifort 8.0 under Linux 77
7.2.5 The underscore problem: linking with MPI 77
7.2.6 Compilation stops with the cryptic error message: 77
7.2.7 The code doesn’t compile, . 78
7.2.8 Some samples don’t even compile, 78
7.2.9 Internal compiler error with Compaq/Dec F90 79
7.2.10 Assertion failure under SunOS . 79
7.2.11 After some dirty tricks I got pencil code to compile with MPI, 80
7.2.12 Error: Symbol ’mpi comm world’ at (1) has no IMPLICIT type . . . 80
7.2.13 Error: Can’t open included file ’mpif.h’ 81

7.3 Pencil check . 81
7.3.1 The pencil check complains for no reason. 81
7.3.2 The pencil check reports MISSING PENCILS and quits 81
7.3.3 The pencil check reports unnecessary pencils 81
7.3.4 The pencil check reports that most or all pencils are missing 81
7.3.5 Running the pencil check triggers mathematical errors in the code 82
7.3.6 The pencil check still complains . 82
7.3.7 The pencil check is annoying so I turned it off 82

7.4 Running . 82
7.4.1 Periodic boundary conditions in ‘start.x’ 82
7.4.2 csh problem? . 82
7.4.3 ‘run.csh’ doesn’t work: . 83
7.4.4 Code crashes after restarting . 83
7.4.5 auto-test gone mad...? . 83
7.4.6 Can I restart with a different number of cpus? 84
7.4.7 Can I restart with a different number of cpus? 84
7.4.8 fft xyz parallel 3D: nygrid needs to be an integer multiple... 84
7.4.9 Unit-agnostic calculations? . 85

7.5 Visualization . 86

xii

7.5.1 ‘start.pro’ doesn’t work: . 86
7.5.2 ‘start.pro’ doesn’t work: . 86
7.5.3 Something about tag name undefined: 86
7.5.4 Something INC in start.pro . 86
7.5.5 nl2idl problem when reading param2.nml 87
7.5.6 Spurious dots in the time series file 87
7.5.7 Problems with pc_varcontent.pro 87

7.6 General questions . 88
7.6.1 “Installation” procedure . 88
7.6.2 Small numbers in the code . 88
7.6.3 Why do we need a /lphysics/ namelist in the first place? 89
7.6.4 Can I run the code on a Mac? . 90
7.6.5 Pencil Code discussion forum . 90
7.6.6 The manual . 90

II Programming the PENCIL CODE 91

8 Understanding the code 95

8.1 Example: how is the continuity equation being solved? 95

9 Adapting the code 97

9.1 The PENCIL CODE coding standard . 97
9.2 Adding new output diagnostics . 98
9.3 The f-array . 100
9.4 The df-array . 100
9.5 The fp-array . 101
9.6 The pencil case . 101

9.6.1 Pencil check . 102
9.6.2 Adding new pencils . 103

9.7 Adding new physics: the Special module . 103
9.8 Adding switchable modules . 104
9.9 Adding your initial conditions: the InitialCondition module 104

10 Testing the code 106

10.1 How to set up periodic tests . 106

11 Useful internals 108

11.1 Global variables . 108
11.2 Subroutines and functions . 108

III Appendix 111

A Timings 111

A.1 Test case . 118
A.2 Running the code . 119
A.3 Triolith . 119
A.4 Lindgren . 119

B Coding standard 122

xiii

B.1 File naming conventions . 122
B.2 Fortran Code . 122

B.2.1 Indenting and whitespace . 122
B.2.2 Comments . 123
B.2.3 Module names . 124
B.2.4 Variable names . 124
B.2.5 Emacs settings . 125

B.3 Other best practices . 126
B.4 General changes to the code . 126

C Some specific initial conditions 127

C.1 Random velocity or magnetic fields . 127
C.2 Turbulent initial with given spectrum . 127
C.3 Beltrami fields . 128
C.4 Magnetic flux rings: initaa=’fluxrings’ 128
C.5 Vertical stratification . 129

C.5.1 Isothermal atmosphere . 129
C.5.2 Polytropic atmosphere . 130
C.5.3 Changing the stratification . 131
C.5.4 The Rayleigh number . 131
C.5.5 Entropy boundary condition . 132
C.5.6 Temperature boundary condition at the top 132

C.6 Potential-field boundary condition . 132
C.7 Planet solution in the shearing box . 134

D Some specific boundary conditions 135

D.1 Perfect-conductor boundary condition . 135
D.2 Stress-free boundary condition . 135
D.3 Normal-field-radial boundary condition . 136

E High-frequency filters 137

E.1 Conservative hyperdissipation . 137
E.2 Hyperviscosity . 139

E.2.1 Conservative case . 139
E.2.2 Non-conservative cases . 140
E.2.3 Choosing the coefficient . 141
E.2.4 Turbulence with hyperviscosity . 141

E.3 Anisotropic hyperdissipation . 142
E.4 Hyperviscosity in Burgers shock . 142

F Special techniques 144

F.1 After changing REAL PRECISION . 144
F.2 Remeshing (regridding) . 144
F.3 Restarting from a run with less physics . 145

G Runs and reference data 147

G.1 Shock tests . 147
G.1.1 Sod shock tube problem . 147
G.1.2 Temperature jump . 147

G.2 Random forcing function . 147
G.3 Three-layered convection model . 148

xiv

G.4 Magnetic helicity in the shearing sheet . 149

H Numerical methods 153

H.1 Sixth-order spatial derivatives . 153
H.2 Upwind derivatives to avoid ‘wiggles’ . 154
H.3 The bidiagonal scheme for cross-derivatives 155
H.4 The 2N-scheme for time-stepping . 156
H.5 Diffusive error from the time-stepping . 157
H.6 Ionization . 158
H.7 Radiative transfer . 159

H.7.1 Solving the radiative transfer equation 159
H.7.2 Angular integration . 160

I Switchable modules 163

J Startup and run-time parameters 163

J.1 Startup parameters for ‘start.in’ . 163
J.2 Runtime parameters for ‘run.in’ . 171
J.3 Parameters for ‘print.in’ . 178
J.4 Parameters for ‘video.in’ . 214
J.5 Parameters for ‘phiaver.in’ . 216
J.6 Parameters for ‘xyaver.in’ . 217
J.7 Parameters for ‘xzaver.in’ . 223
J.8 Parameters for ‘yzaver.in’ . 224
J.9 Parameters for ‘yaver.in’ . 227
J.10 Parameters for ‘zaver.in’ . 229
J.11 Boundary conditions . 232

J.11.1 Boundary condition bcx . 232
J.11.2 Boundary condition bcy . 235
J.11.3 Boundary condition bcz . 237

J.12 Initial condition parameter dependence . 241

IV Indexes 245

xv

xvi

1

Part I

Using the PENCIL CODE

1 System requirements

To use the code, you will need the following:

1. Absolutely needed:

• F95 compiler

• C compiler

2. Used heavily (if you don’t have one of these, you will need to adjust many things
manually):

• a Unix/Linux-type system with make and csh

• Perl (remember: if it doesn’t run Perl, it’s not a computer)

3. The following are dispensable, but enhance functionality in one way or the other:

• an MPI implementation (for parallelization on multiprocessor systems)

• DX alias OpenDX or data explorer (for 3-D visualization of results)

• IDL (for visualization of results; the 7-minute demo license will do for many
applications)

2 THE PENCIL CODE

2 Obtaining the code

The code is now distributed via https://github.com/pencil-code/pencil-code, where
you can either download a tarball, or, preferably, download it via svn or git . In Iran and
some other countries, GitHub is not currently available. To alleviate this problem, we
have made a recent copy available on http://www.nordita.org/software/pencil-code/.
If you want us to update this tarball, please contact us.

To ensure at least some level of stability of the svn/git versions, a set of test problems
(listed in ‘$PENCIL_HOME/bin/auto-test’) are routinely tested. This includes all problems
in ‘$PENCIL_HOME/samples’. See Sect. 10 for details.

2.1 Obtaining the code via git or svn

1. Many machines have svn installed (try svn -v or which svn). On Ubuntu, for ex-
ample, svn comes under the package name subversion.

2. The code is now saved under Github, git can be obtained in Linux by typing sudo

apt-get install git

3. Unless you are a privileged users with write access, you can download the code
with the command

git clone https://github.com/pencil-code/pencil-code.git

or

svn checkout https://github.com/pencil-code/pencil-code/trunk/ ...\\

pencil-code --username MY_GITHUB_USERNAME

In order to push your changes to the repository, you have to ask the maintainer of
pencil code for push access (to become a contributor), or put a pull request to the
maintainer of the code.

Be sure to run auto-test before you check anything back in again. It can be very
annoying for someone else to figure out what’s wrong, especially if you are just up
to something else. At the very least, you should do

pc_auto-test --level=0 --no-pencil-check -C

This allows you to run just 2 of the most essential tests starting with all the no-
modules and then most-modules.

2.2 Updating via svn or git

Independent of how you installed the code in the first place (from tarball or via svn/git),
you can update your version using svn/git . If you have done nontrivial alterations to
your version of the code, you ought to be careful about upgrading: although svn/git is an
excellent tool for distributed programming, conflicts are quite possible, since many of us
are going to touch many parts of the code while we develop it further. Thus, despite the

https://github.com/pencil-code/pencil-code
http://www.nordita.org/software/pencil-code/

2.3 Getting the last validated version 3

fact that the code is under svn/git , you should probably back up your important changes
before upgrading.

Here is the upgrading procedure for git :

1. Perform a git update of the tree:

unix> git pull

2. Fix any conflicts you encounter and make sure the examples in the directory
‘samples/’ are still working.

Here is the upgrading procedure for svn:

1. Perform a svn update of the tree:

unix> pc_svnup

2. Fix any conflicts you encounter and make sure the examples in the directory
‘samples/’ are still working.

If you have made useful changes, please contact one of the (currently) 10 “Contributors”
(listed under https://github.com/pencil-code/pencil-code) who can give you push or
check-in permission. Be sure to have sufficient comments in the code and please follow
our standard coding conventions explained in Section 9.1. There is also a script to check
and fix the most common stylebreaks, pc codingstyle.

2.3 Getting the last validated version

The script pc_svnup accepts arguments -val or -validated, which means that the current
changes on a user’s machine will be merged into the last working version. This way
every user can be sure that any problems with the code must be due to the current
changes done by this user since the last check-in.

Examples:

unix> pc_svnup -src -s -validated

brings all files in ‘$PENCIL_HOME/src’ to the last validated status, and merges all your
changes into this version. This allows you to work with this, but in order to check in
your changes you have to update everything to the most recent status first, i.e.

unix> pc_svnup -src

Your own changes will be merged into this latest version as before.

NOTE: The functionality of the head of the trunk should be preserved at all times. How-
ever, accidents do happen. For the benefit of all other developers, any errors should
be corrected within 1-2 hours. This is the reason why the code comes with a file
‘pencil-code/license/developers.txt’, which should contain contact details of all de-
velopers. The pc_svnup -val option allows all other people to stay away from any trou-
ble.

https://github.com/pencil-code/pencil-code

4 THE PENCIL CODE

2.4 Getting older versions

You may find that the latest svn version of the code produces errors. If you have reasons
to believe that this is due to changes introduced on 27 November 2008 (to give an ex-
ample), you can check out the version prior to this by specifying a revision number with
svn update -r #####. One reason why one cannot always reproduce exactly the same
situation too far back in time is connected with the fact that processor architecture and
the compiler were different, resulting e.g. in different rounding errors.

3. Getting started 5

3 Getting started

To get yourself started, you should run one or several examples which are provided in
one of the ‘samples/’ subdirectories. Note that you will only be able to fully assess the
numerical solutions if you visualize them with IDL , DX or other tools (see Sect. 5.19).

3.1 Setup

3.1.1 Environment settings

The functionality of helper scripts and IDL routines relies on a few environment vari-
ables being set correctly. The simplest way to achieve this is to go to the top directory of
the code and source one of the two scripts ‘sourceme.csh’ or ‘sourceme.sh’ (depending on
the type of shell you are using):

csh> cd pencil-code

csh> source ./sourceme.csh

for tcsh or csh users; or

sh> cd pencil-code

sh> . ./sourceme.sh

for users of bash , Bourne shell , or similar shells. You should get output similar to

PENCIL_HOME = </home/dobler/f90/pencil-code>

Adding /home/dobler/f90/pencil-code/bin to PATH

Apart from the PATH variable, the environment variable IDL_PATH is set to something
like ./idl:../idl:+$PENCIL_HOME/idl:./data:<IDL_DEFAULT> .

Note 1 The <IDL_DEFAULT> mechanism does not work for IDL versions 5.2 or older. In
this case, you will have to edit the path manually, or adapt the ‘sourceme’ scripts.

Note 2 If you don’t want to rely on the ‘sourceme’ scripts’ (quite heuristic) ability to cor-
rectly identify the code’s main directory, you can set the environment variable PENCIL_-

HOME explicitly before you run the source command.

Note 3 Do not just source the ‘sourceme’ script from your shell startup file (‘~/.cshrc’
or ‘~/.bashrc’, because it outputs a few lines of diagnostics for each sub-shell, which will
break many applications. To suppress all output, follow the instructions given in the
header documentation of ‘sourceme.csh’ and ‘sourceme.sh’. Likewise, output from other
files invoked by source should also be suppressed.

Note 4 The second time you source ‘sourceme’, it will not add anything to your PATH

variable. This is on purpose to avoid cluttering of your environment: you can source the
file as often as you like (in your shell startup script, then manually and in addition in
some script you have written), without thinking twice. If, however, at the first sourcing,
the setting of PENCIL_HOME was wrong, this mechanism would keep you from ever adding

6 THE PENCIL CODE

the right directory to your PATH. In this case, you need to first undefine the environment
variable PENCIL_HOME:

csh> unsetenv PENCIL_HOME

csh> source ./sourceme.csh

or
sh> unset PENCIL_HOME

sh> . ./sourceme.sh

3.1.2 Linking scripts and source files

With your environment set up correctly, you can now go to the directory you want to
work in and set up subdirectories and links. This is accomplished by the script ‘pc_-
setupsrc’, which is located in ‘$PENCIL_HOME/bin’ and is thus now in your executable
path.

For concreteness, let us assume you want to use ‘samples/conv-slab’ as your run direc-
tory, i.e. you want to run a three-layer slab model of solar convection. You then do the
following:

unix> cd samples/conv-slab

unix> pc_setupsrc

src already exists

2 files already exist in src

The script has linked a number of scripts from ‘$PENCIL_HOME/bin’, generated a directory
‘src’ for the source code and linked the Fortran source files (plus a few more files) from
‘$PENCIL_HOME/src’ to that directory:

unix> ls -F

reference.out src/

start.csh@ run.csh@ getconf.csh@

start.in run.in print.in

3.1.3 Adapting ‘Makefile.src’

This step requires some input from you, but you only have to do this once for each
machine you want to run the code on. See Sect. 5.2 for a description of the steps you
need to take here.

Note: If you are lucky and use compilers similar to the ones we have, you may be able
to skip this step; but blame yourself if things don’t compile, then. If not, you can run
make with explicit flags, see Sect. 5.2 and in particular Table 1.

3.1.4 Running make

Next, you run make in the ‘src’ subdirectory of your run directory. Since you are
using one of the predefined test problems, the settings in ‘src/Makefile.local’ and
‘src/cparam.local’ are all reasonable, and you just do

3.1 Setup 7

unix> make

If you have set up the compiler flags correctly, compilation should complete successfully.

3.1.5 Choosing a data directory

The code will by default write data like snapshot files to the subdirectory ‘data’ of the
run directory. Since this will involve a large volume of IO-operations (at least for large
grid sizes), one will normally try to avoid writing the data via NFS. The recommended
way to set up a ‘data’ data directory is to generate a corresponding directory on the local
disc of the computer you are running on and (soft-)link it to ‘./data’. Even if the link is
part of an NFS directory, all the IO operations will be local. For example, if you have a
local disc ‘/scratch’, you can do the following:

unix> mkdir -p /scratch/$USER/pencil-data/samples/conv-slab

unix> ln -s /scratch/$USER/pencil-data/samples/conv-slab ./data

This is done automatically by the pc_mkdatadir command which, in turn, is invoked
when making a new run directory with the pc_newrun command, for example.

Even if you don’t have an NFS-mounted directory (say, on your notebook computer), it
is probably still a good idea to have code and data well separated by a scheme like the
one described above.

An alternative to symbolic links, is to provide a file called ‘datadir.in’ in the root of
the run directory. This file should contain one line of text specifying the absolute or
relative data directory path to use. This facility is useful if one wishes to switch one run
directory between different data directories. It is suggested that in such cases symbolic
links are again made in the run directory to the various locations, then the ‘datadir.in’
need contain only a short relative path.

3.1.6 Running the code

You are now ready to start the code:

unix> start.csh
Linux cincinnatus 2.4.18-4GB #1 Wed Mar 27 13:57:05 UTC 2002 i686 unknown

Non-MPI version

datadir = data

Fri Aug 8 21:36:43 CEST 2003

src/start.x

CVS: io_dist.f90 v. 1.61 (brandenb) 2003/08/03 09:26:55

[. . .]
CVS: start.in v. 1.4 (dobler) 2002/10/02 20:11:14

nxgrid,nygrid,nzgrid= 32 32 32

thermodynamics: assume cp=1

uu: up-down

piecewise polytropic vertical stratification (lnrho)

init_lnrho: cs2bot,cs2top= 1.450000 0.3333330

e.g. for ionization runs: cs2bot,cs2top not yet set

piecewise polytropic vertical stratification (ss)

8 THE PENCIL CODE

start.x has completed successfully

0.070u 0.020s 0:00.14 64.2% 0+0k 0+0io 180pf+0w

Fri Aug 8 21:36:43 CEST 2003

This runs ‘src/start.x’ to construct an initial condition based on the parameters
set in ‘start.in’. This initial condition is stored in ‘data/proc0/var.dat’ (and in
‘data/proc1/var.dat’, etc. if you run the multiprocessor version). It is fair to say that
this is now a rather primitive routine; see ‘pencil-code/idl/read’ for various reading
routines. You can then visualize the data using standard idl language.

If you visualize the profiles using IDL (see below), the result should bear some resem-
blance to Fig. 2, but with different values in the ghost zones (the correct values are set
at run-time only) and a simpler velocity profile.

Now we run the code:

unix> run.csh

This executes ‘src/run.x’ and carries out nt time steps, where nt and other run-time
parameters are specified in ‘run.in’. On a decent PC (1.7GHz), 50 time steps take about
10 seconds.

The relevant part of the code’s output looks like

--it----t-------dt-------urms----umax----rhom------ssm-----dtc----dtu---dtnu---dtchi-

0 0.34 6.792E-03 0.0060 0.0452 14.4708 -0.4478 0.978 0.013 0.207 0.346

10 0.41 6.787E-03 0.0062 0.0440 14.4707 -0.4480 0.978 0.013 0.207 0.345

20 0.48 6.781E-03 0.0064 0.0429 14.4705 -0.4481 0.977 0.012 0.207 0.345

30 0.54 6.777E-03 0.0067 0.0408 14.4703 -0.4482 0.977 0.012 0.207 0.345

40 0.61 6.776E-03 0.0069 0.0381 14.4702 -0.4482 0.977 0.011 0.207 0.346

and lists

1. the number it of the current time step;

2. the time, t ;

3. the time step, dt ;

4. the rms velocity, urms =
√

〈u2〉;
5. the maximum velocity, umax = max |u|;
6. the mean density, rhom = 〈ρ〉;
7. the mean entropy, ssm = 〈s〉 /cp;
8. the time step in units of the acoustic Courant step, dtc = δt/(cs0 δxmin);

9. the time step in units of the advective time step, dtu = δt/(cδt δx/max |u|);
10. the time step in units of viscous time step, dtnu = δt/(cδt,v δx

2/νmax);

11. the time step in units of the conductive time step, dtchi = δt/(cδt,v δx
2/χmax).

The entries in this list can be added, removed or reformatted in the file ‘print.in’, see
Sects 5.5 and J.3. The output is also saved in ‘data/time_series.dat’ and should be
identical to the content of ‘reference.out’.

3.2 Further tests 9

ln ρ

0 1 2 3

−0.5

0.0

0.5

1.0

1.5

z
uz

−0.02 0.00 0.02 0.04

−0.5

0.0

0.5

1.0

1.5

z

Entropy s

−0.6−0.4−0.20.0 0.2

−0.5

0.0

0.5

1.0

1.5

z

Temperature T

0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

1.5

z

Figure 2: Stratification of the three-layer convection model in ‘samples/conv-slab’ after 50 timesteps
(t = 0.428). Shown are (from left to right) density ρ, vertical velocity uz, entropy s/cp and temperature
T as functions of the vertical coordinate z for about ten different vertical lines in the computational box.
The dashed lines denote domain boundaries: z < −0.68 is the lower ghost zone (points have no physical
significance); −0.68 < z < 0 is a stably stratified layer (ds/dz > 0); 0 < z < 1 is the unstable layer
(ds/dz < 0); 1 < z < 1.32 is the isothermal top layer; z > 1.32 is the upper ghost zone (points have no
physical significance).

If you have IDL , you can visualize the stratification with (see Sect. 5.19.4 for details)

unix > idl

IDL > pc_read_var,obj=var,/trimall

IDL > tvscl,var,uu(*,*,0,0)

which shows ux in the xy plane through the first meshpoint in the z direction. There
have been some now outdates specific routines that produce results like that shown in
Fig. 2.

Note: If you want to run the code with MPI , you will probably need to adapt
‘getconf.csh’, which defines the commands and flags used to run MPI jobs (and which
is sourced by the scripts ‘start.csh’ and ‘run.csh’). Try

csh -v getconf.csh

or
csh -x getconf.csh

to see how ‘getconf.csh’ makes its decisions. You would add a section for the host name
of your machine with the particular settings. Since ‘getconf.csh’ is linked from the cen-
tral directory ‘pencil-code/bin’, your changes will be useful for all your other runs too.

3.2 Further tests

There is a number of other tests in the ‘samples/’ directory. You can use the script
‘bin/auto-test’ to automatically run these tests and have the output compared to refer-

10 THE PENCIL CODE

ence results.

4. Code structure 11

4 Code structure

4.1 Directory tree

pencil-code

src idl | dx doc bin samples

Makefile conv-slab interlocked-fluxrings ...

srcstart, run

timestep, deriv

equ

hydro | nohydro
density | nodensity
entropy | noentropy

grav_z | grav_r | nograv
magnetic | nomagnetic

Makefile.local
cparam.local

Figure 3: The basic structure of the code

The overall directory structure of the code is shown in Fig. 3. Under ‘pencil-code’, there
are currently the following files and directories:

bin/ config/ doc/ idl/ license/ perl/ samples/ sourceme.sh utils/

bugs/ dx/ lib/ misc/ README sourceme.csh src/ www/

Almost all of the source code is contained in the directory ‘src/’, but in order to encap-
sulate individual applications, the code is compiled separately for each run in a local
directory ‘src’ below the individual run directory, like e. g. ‘samples/conv-slab/src’.

It may be a good idea to keep your own runs also under svn or cvs (which is older than
but similar to svn), but this would normally be a different repository. On the machine
where you are running the code, you may want to check them out into a subdirectory of

12 THE PENCIL CODE

‘pencil-code/’. For example, we have our own runs in a repository called ‘pencil-runs’,
so we do

unix> cd $PENCIL_HOME

unix> svn co runs pencil-runs

In this case, ‘runs’ contains individual run directories, grouped in classes (like ‘spher’ for
spherical calculations, or ‘kinematic’ for kinematic dynamo simulations). The current
list of classes in our own ‘pencil-runs’ repository is

1d-tests/ disc/ kinematic/ rings/

2d-tests/ discont/ Misc/ slab_conv/

3d-tests/ discussion/ OLD/ test/

buoy_tube/ forced/ pass_only/

convstar/ interstellar/ radiation/

The directory ‘forced/’ contains some forced turbulence runs (both magnetic and non-
magnetic); ‘gravz/’ contains runs with vertical gravity; ‘rings/’ contains decaying MHD
problems (interlocked flux rings as initial condition, for example); and ‘kinematic/’ con-
tains kinematic dynamo problems where the hydrodynamics is turned off entirely. The
file ‘samples/README’ should contain an up-to-date list and short description of the indi-
vidual classes.1

The subdirectory ‘src’ of each run directory contains a few local configuration files (cur-
rently these are ‘Makefile.local’ and ‘cparam.local’) and possibly ‘ctimeavg.local’. To
compile the samples, links the files ‘.f90’, ‘.c’ and ‘Makefile.src’ need to be linked from
the top file[src/]src directory to the local directory ‘./src’. These links are set up by the
script pc_setupsrc) when used in the root of a run directory.

General-purpose visualization routines for IDL orDX are in the directories ‘idl’ and ‘dx’,
respectively. There are additional and more specialized IDL directories in the different
branches under ‘pencil-runs’.

The directory ‘doc’ contains this manual; ‘bin’ contains a number of utility scripts
(mostly written in csh and Perl), and in particular the ‘start.csh’, ‘run.csh’, and
‘getconf.csh’ scripts. The ‘.svn’ directory is used (you guessed it) by .svn, and is not
normally directly accessed by the user; ‘bugs’, finally is used by us for internal purposes.

The files ‘sourceme.csh’ and ‘sourceme.sh’ will set up some environment variables — in
particular PATH — and aliases/shell functions for your convenience. If you do not want
to source one of these files, you need to make sure your IDL path is set appropriately
(provided you want to use IDL) and you will need to address the scripts from ‘bin’ with
their explicit path name, or adjust your PATH manually.

4.2 Basic concepts

4.2.1 Data access in pencils

Unlike the CRAY computers that dominated supercomputing in the 80s and early 90s,
all modern computers have a cache that constitutes a significant bottleneck for many

1Our ‘pencil-runs’ directory also contains runs that were done some time ago. Occasionally, we try to
update these, especially if we have changed names or other input conventions.

4.2 Basic concepts 13

codes. This is the case if large three-dimensional arrays are constantly used within each
time step, which has the obvious advantage of working on long arrays and allows vector-
ization of elementary machine operations. This approach also implies conceptual sim-
plicity of the code and allows extensive use of the intuitive F90 array syntax. However,
a more cache-efficient way of coding is to calculate an entire time step (or substep of a
multi-stage time-stepping scheme) only along a one-dimensional pencil of data within
the numerical grid. This technique is more efficient for modern RISC processors: on
Linux PCs and SGI workstations, for example, we have found a speed-up by about 60%
in some cases. An additional advantage is a drastic reduction in temporary storage for
auxiliary variables within each time step.

4.2.2 Modularity

Each run directory has a file ‘src/Makefile.local’ in which you choose certainmodules2,
which tell the code whether or not entropy, magnetic fields, hydrodynamics, forcing, etc.
should be invoked. For example, the settings for forced turbulent MHD simulations are

HYDRO = hydro

DENSITY = density

ENTROPY = noentropy

MAGNETIC = magnetic

GRAVITY = nogravity

FORCING = forcing

MPICOMM = nompicomm

GLOBAL = noglobal

IO = io_dist

FOURIER = nofourier

This file will be processed by make and the settings are thus assignments of make
variables. Apart from the physics modules (equation of motion: yes, density [pressure]:
yes, entropy equation: no, magnetic fields: yes, gravity: no, forcing: yes), a few technical
modules can also be used or deactivated; in the example above, these are MPI (switched
off), additional global variables (none), input/output (distributed), and FFT (not used).
The table in Sect. I in the Appendix lists all currently available modules.

Note that most of these make variables must be set, but they will normally obtain rea-
sonable default values in ‘Makefile’ (so you only need to set the non-standard ones in
‘Makefile.local’). It is by using this switching mechanism through make that we achieve
high flexibility without resorting to excessive amounts of cryptic preprocessor directives
or other switches within the code.

Many possible combinations of modules have already been tested and examples are part
of the distribution, but you may be interested in a combination which was never tried
before and which may not work yet, since the modules are not fully orthogonal. In such
cases, we depend on user feedback for fixing problems and documenting the changes for
others.

2We stress once more that we are not talking about F90 modules here, although there is some connec-
tion, as most of our modules define F90 modules: For example each of the modules gravity simple, grav r
and nogravity defines a Fortran module Gravity.

14 THE PENCIL CODE

4.3 Files in the run directories

4.3.1 ‘start.in’, ‘run.in’, ‘print.in’

These files specify the startup and runtime parameters (see Sects. 5.12 and J.2), and the
list of diagnostic variables to print (see 5.5). They specify the setup of a given simulation
and are kept under svn in the individual ‘samples’ directories.

You may want to check for the correctness of these configuration files by issuing the
command pc_configtest.

4.3.2 ‘datadir.in’

If this file exists, it must contain the name of an existing directory, which will be used as
data directory, i. e. the directory where all results are written. If ‘datadir.in’ does not
exist, the data directory is ‘data/’.

4.3.3 ‘reference.out’

If present, ‘reference.out’ contains the output you should obtain in the given run direc-
tory, provided you have not changed any parameters. To see whether the results of your
run are OK, compare ‘time_series.dat’ to ‘reference.out’:

unix> diff data/time_series.dat reference.out

4.3.4 ‘start.csh’, ‘run.csh’, ‘getconf.csh’ [obsolete; see Sect. 5.1]

These are links to ‘$PENCIL_HOME/bin’. You will be constantly using the scripts
‘start.csh’ and ‘run.csh’ to initialize the code. Things that are needed by both (like the
name of the mpirun executable, MPI options, or the number of processors) are located in
‘getconf.csh’, which is never directly invoked.

4.3.5 ‘src/ ’

The ‘src’ directory contains two local files, ‘src/Makefile.local’ and ‘src/cparam.local’,
which allow the user to choose individual modules (see 4.2.2) and to set parameters like
the grid size and the number of processors for each direction. These two files are part
of the setup of a given simulation and are kept under svn in the individual ‘samples’
directories.

The file ‘src/cparam.inc’ is automatically generated by the script ‘mkcparam’ and contains
the number of fundamental variables for a given setup.

All other files in ‘src/’ are either links to source files (and ‘Makefile.src’) in the
‘$PENCIL_HOME/src’ directory, or object and module files generated by the compiler.

4.3 Files in the run directories 15

4.3.6 ‘data/ ’

This directory (the name of which will actually be overwritten by the first line of
‘datadir.in’, if that file is present; see §4.3.2) contains the output from the code:

‘data/dim.dat’ The global array dimensions.

‘data/legend.dat’ The header line specifying the names of the diagnostic variables in
‘time_series.dat’.

‘data/time_series.dat’ Time series of diagnostic variables (also printed to stdout). You
can use this file directly for plotting with Gnuplot , IDL , Xmgrace or similar tools (see
also §5.19).

‘data/tsnap.dat’, ‘data/tvid.dat’ Time when the next snapshot ‘VARN ’ or animation
slice should be taken.

‘data/params.log’ Keeps a log of all your parameters: ‘start.x’ writes the startup pa-
rameters to this file, ‘run.x’ appends the runtime parameters and appends them anew,
each time you use the ‘RELOAD’ mechanism (see §5.10).

‘data/param.nml’ Complete set of startup parameters, printed as Fortran namelist.
This file is read in by ‘run.x’ (this is how values of startup parameters are propagated
to ‘run.x’) and by IDL (if you use it).

‘data/param2.nml’ Complete set of runtime parameters, printed as Fortran namelist.
This file is read by IDL (if you use it).

‘data/index.pro’ Can be used as include file in IDL and contains the column in which
certain variables appear in the diagnostics file (‘time_series.dat’). It also contains the
positions of variables in the ‘VARN ’ files. These positions depend on whether entropy or
noentropy, etc, are invoked. This is a temporary solution and the file may disappear in
future releases.

‘data/interstellar.dat’ Unformatted file containing the time at which the next su-
pernova event will occur, under certain supernova schemes. (Only needed by the inter-
stellar module.)

‘data/proc0’, ‘data/proc1’, . . . These are the directories containing data from the in-
dividual processors. So after running an MPI job on two processors, you will have the
two directories ‘data/proc0’ and ‘data/proc1’. Each of the directories can contain the
following files:

‘var.dat’ binary file containing the latest snapshot;

16 THE PENCIL CODE

‘VARN ’ binary file containing individual snapshot number N ;

‘dim.dat’ ASCII file containing the array dimensions as seen by the given processor;

‘time.dat’ ASCII file containing the time corresponding to ‘var.dat’ (not actually used

by the code, unless you use the io mpiodist.f90 module);

‘grid.dat’ binary file containing the part of the grid seen by the given processor;

‘seed.dat’ the random seed for the next time step (saved for reasons of reproducibility).
For multi-processor runs with velocity forcing, the files ‘procN/seed.dat’ must all
contain the same numbers, because globally coherent waves of given wavenumber
are used;

‘X.xy’, ‘X.xz’, ‘X.yz’ two-dimensional sections of variable X, where X stands for the
corresponding variable. The current list includes

bx.xy bx.xz by.xy by.xz bz.xy bz.xz divu.xy lnrho.xz

ss.xz ux.xy ux.xz uz.xy uz.xz

Each processor writes its own slice, so these need to be reassembled if one wants
to plot a full slice.

5. Using the code 17

5 Using the code

5.1 Configuring the code to compile and run on your computer

Note: We recommend to use the procedure described here, rather than the old method
described in Sects. 5.2 and 4.3.4.

Quick instructions: You may compile with a default compiler-specific configuration:

1. Single-processor using the GNU compiler collection:

unix> pc_build -f GNU-GCC

2. Multi-processor using GNU with MPI support:

unix> pc_build -f GNU-GCC_MPI

Many compilers are supported already, please refer to the available config files in
‘$PENCIL_HOME/config/compilers/*.conf’, e.g. ‘Intel.conf’ and ‘Intel_MPI.conf’.

If you have to set up some compiler options specific to a certain host system you work on,
or if you like to create a host-specific configuration file so that you can simply execute
pc_buildwithout any options, you can clone an existing host-file, just include an existing
compiler configuration, and simply only add the options you need. A good example of
a host-file is ‘$PENCIL_HOME/config/hosts/IWF/host-andromeda-GNU_Linux-Linux.conf’.
You may save a clone under ‘$PENCIL_HOME/config/hosts/<ID>.conf’, where ‘<ID>’ is to
be replaced by the output of pc_build -i. This will be the new default for pc_build.

If you don’t know what this was all about, read on.

In essence, configuration, compiling and running the code work like this:

1. Create a configuration file for your computer’s host ID.

2. Compile the code using pc_build.

3. Run the code using pc_run

In the following, we will discuss the essentials of this scheme. Exhaustive documen-
tation is available with the commands perldoc Pencil::ConfigFinder and perldoc

PENCIL::ConfigParser.

5.1.1 Locating the configuration file

Commands like pc_build and pc_run use the Perl module ‘Pencil::ConfigFinder’ to lo-
cate an appropriate configuration file and ‘Pencil::ConfigParser’ to read and interpret
it. When you use ‘ConfigFinder’ on a given computer, it constructs a host ID for the sys-
tem it is running on, and looks for a file ‘host_ID.conf’ in any subdirectory of ‘$PENCIL_-
HOME/config/hosts’.

E.g., if the host ID is “workhorse.pencil.org”, ‘ConfigFinder’ would consider the file
‘$PENCIL_HOME/config/hosts/pencil.org/workhorse.pencil.org.conf’.

18 THE PENCIL CODE

Note 1: The location in the tree under ‘hosts/’ is irrelevant, which allows you to group
related hosts by institution, owner, hardware, etc.

Note 2: ‘ConfigFinder’ actually uses the following search path:

1. ‘./config’

2. ‘$PENCIL_HOME/config-local’

3. ‘$HOME/.pencil/config-local’

4. ‘$PENCIL_HOME/config’

This allows you to override part of the ‘config/’ tree globally on the given file system,
or locally for a particular run directory, or for one given copy of the PENCIL CODE. This
search path is used both, for locating the configuration file for your host ID, and for
locating included files (see below).

The host ID is constructed based on information that is easily available for your system.
The algorithm is as follows:

1. Most commands using ‘ConfigFinder’ have a ‘--host-id’ (sometimes abbreviated
as ‘-H’) option to explicitly set the host ID.

2. If the environment variable PENCIL HOST ID is set, its value is used.

3. If any of the files ‘./host-ID’, ‘$PENCIL_HOME/host-ID’, ‘$HOME/.pencil/host-ID’, ex-
ists, its first line is used.

4. If ‘ConfigFinder’ can get hold of a fully qualified host name, that is used as host
ID.

5. Else, a combination of host name, operating system name and possibly some other
information characterizing the system is used.

6. If no config file for the host ID is found, the current operating system name is tried
as fallback host ID.

To see which host IDs are tried (up to the first one for which a configuration file is found),
run

unix> pc_build --debug-config

This command will tell you the host-ID of the system that you are using:

unix> pc_build -i

5.1.2 Structure of configuration files

It is strongly recommended to include in a users configuration file one of the preset
compiler suite configuration files. Then, only minor options need to be set by a user, e.g.
the optimization flags. One of those user configuration files looks rather simple:

Simple config file. Most files don’t need more.

%include compilers/GNU-GCC

or if you prefer a different compiler:

5.1 Configuring the code to compile and run on your computer 19

Simple Intel compiler suite config file.

%include compilers/Intel

A more complex file (using MPI with additional options) would look like this:

More complex config file.

%include compilers/GNU-GCC_MPI

%section Makefile

MAKE_VAR1 = -j4 # joined compilation with four threads

FFLAGS += -O3 -Wall -fbacktrace # don’t redefine, but append with ’+=’

%endsection Makefile

%section runtime

mpiexec = mpirun # some MPI backends need a redefinition of mpiexec

%endsection runtime

%section environment

SCRATCH_DIR=/var/tmp/$USER

%endsection environment

Adding ” MPI” to a compiler suite’s name is usually sufficient to use MPI.

Note 3: We strongly advise not to mix Fortran- and C-compilers from different manu-
facturers or versions by manually including multiple separate compiler configurations.

Note 4: We strongly advise to use at maximum the optimization levels ’-O2’ for the
Intel compiler and ’-O3’ for all other compilers. Higher optimization levels implicate an
inadequate loss of precision.

The ‘.conf’ files consist of the following elements:

Comments: A # sign and any text following it on the same line are ignored.

Sections: There are three sections:

Makefile for setting make parameters

runtime for adding compiler flags used by pc_run

environment shell environment variables for compilation and running

Include statements: An %include ... statement is recursively replaced by the con-
tents of the files it points to.3

The included path gets a .conf suffix appended. Included paths are typically “ab-
solute”, e.g.

%include os/Unix

will include the file ‘os/Unix.conf’ in the search path listed above (typically from
‘$PENCIL_HOME/config’). However, if the included path starts with a dot, it is a rel-
ative path, so

3However, if the include statement is inside a section, only the file’s contents inside that section are
inserted.

20 THE PENCIL CODE

%include ./Unix

will only search in the directory where the including file is located.

Assignments: Statements like FFLAGS += -O3 or mpiexec=mpirun are assignments and
will set parameters that are used by pc_build/make or pc_run.

Lines ending with a backslash ‘\’ are continuation lines.

If possible, one should always use incremental assignments, indicated by using a
+= sign instead of =, instead of redefining certain flags.

Thus,

CFLAGS += -O3

CFLAGS += -I../include -Wall

is the same as

CFLAGS = $(CFLAGS) -O3 -I../include -Wall

5.1.3 Compiling the code

Use the pc_build command to compile the code:

unix> pc_build # use default compiler suite

unix> pc_build -f Intel_MPI # specify a compiler suite

unix> pc_build -f os/GNU_Linux,mpi/open-mpi # explicitly specify config files

unix> pc_build VAR=something # set variables for the makefile

unix> pc_build --cleanall # remove generated files

The third example circumvents the whole host ID mechanism by explicitly instructing
pc_build which configuration files to use. The fourth example shows how to define extra
variables (VAR=something) for the execution of the Makefile.

See pc_build --help for a complete list of options.

5.1.4 Running the code

Use the pc_run command to run the code:

unix> pc_run # start if necessary, then run

unix> pc_run start

unix> pc_run run

unix> pc_run start run^3 # start, then run 3 times

unix> pc_run start run run run # start, then run 3 times

unix> pc_run ^3 # start if necessary, then run 3 times

See pc_run --help for a complete list of options.

5.1.5 Testing the code

The pc_auto-test command uses pc_build for compiling and pc_run for running the
tests. Here are a few useful options:

5.2 Adapting ‘Makefile.src’file]Makefile.src@Makefile.src [obsolete; see Sect. 5.1]21

unix> pc_auto-test

unix> pc_auto-test --no-pencil-check # suppress pencil consistency check

unix> pc_auto-test --max-level=1 # run only tests in level 0 and 1

unix> pc_auto-test --time-limit=2m # kill each test after 2 minutes

See pc_auto-test --help for a complete list of options.

The pencil-test script will use pc_auto-test if given the ‘--use-pc_auto-test’ or ‘-b’
option:

unix> pencil-test --use-pc_auto-test

unix> pencil-test -b # ditto

unix> pencil-test -b -Wa,--max-level=1,--no-pencil-check # quick pencil

See pencil-test --help for a complete list of options.

5.2 Adapting ‘ Makefile.src’ [obsolete; see Sect. 5.1]

By default, one should use the above described configuration mechanism for compila-
tion. If for whatever reason one needs to work with a modified ‘Makefile’, there is a
mechanism for picking the right set of compiler flags based on the hostname.

To give you an idea of how to add your own machines, let us assume you have several
Linux boxes running a compiler f95 that needs the options ‘-O2 -u’, while one of them,
Janus, runs a compiler f90 which needs the flags ‘-O3’ and requires the additional op-
tions ‘-lmpi -llam’ for MPI .

The ‘Makefile.src’ you need will have the following section:

Begin machine dependent

IRIX64:

[. . .] (leave as it is in the original Makefile)
OSF1:

[. . .] (leave as it is in the original Makefile)

Linux:

[. . .] (leave everything from original Makefile and add:)
#FC=f95

#FFLAGS=-O2 -u

#FC=f90 #(Janus)

#FFLAGS=-O3 #(Janus)

#LDMPI=-lmpi -llam #(Janus)

SunOS:

[. . .] (leave as it is in the original Makefile)
UNICOS/mk:

[. . .] (leave as it is in the original Makefile)
HI-UX/MPP:

[. . .] (leave as it is in the original Makefile)
AIX:

[. . .] (leave as it is in the original Makefile)

22 THE PENCIL CODE

Table 1: Compiler flags for common compilers. Note that some combinations of OS and compiler require
much more elaborate settings; also, if you use MPI, you will have to set LDMPI.

Compiler FC FFLAGS CC CFLAGS

Unix/POSIX:

GNU gfortran -O3 gcc -O3 -DFUNDERSC=1

Intel ifort -O2 icc -O3 -DFUNDERSC=1

PGI pgf95 -O3 pgcc -O3 -DFUNDERSC=1

G95 g95 -O3 -fno-second-underscore gcc -O3 -DFUNDERSC=1

Absoft f95 -O3 -N15 gcc -O3 -DFUNDERSC=1

IBM XL xlf95 -qsuffix=f=f90 -O3 xlc -O3 -DFUNDERSC=1

outdated:

IRIX Mips f90 -64 -O3 -mips4 cc -O3 -64 -DFUNDERSC=1

Compaq f90 -fast -O3 cc -O3 -DFUNDERSC=1

End machine dependent

Note 1 There is a script for adapting the Makefile: ‘adapt-mkfile’. In the example
above, #(Janus) is not a comment, but marks this line to be activated (uncommented) by
adapt-mkfile if your hostname (‘uname -n‘) matches ‘Janus’ or ‘janus’ (capitalization
is irrelevant). You can combine machine names with a vertical bar: a line containing
#(onsager|Janus) will be activated on both, Janus and Onsager.

Note 2 If you want to experiment with compiler flags, or if you want to get things
running without setting up the machine-dependent section of the ‘Makefile’, you can set
make variables at the command line in the usual manner:

src> make FC=f90 FFLAGS=’-fast -u’

will use the compiler f90 and the flags ‘-fast -u’ for both compilation and linking. Ta-
ble 1 summarizes flags we use for common compilers.

5.3 Changing the resolution

It is advisable to produce a new run directory each time you run a new case. (This does
not include restarts from an old run, of course.) If you have a 323 run in some directory
‘runA_32a’, then go to its parent directory, i.e.

runA_32a> cd ..

forced> pc_newrun runA_32a runA_64a

forced> cd runA_64a/src

forced> vi cparam.local

and edit the ‘cparam.local’ for the new resolution.

If you have ever wondered why we don’t do dynamic allocation of the main variable (f)
array, the main reason it that with static allocation the compiler can check whether we
are out of bounds.

5.4 Using a non-equidistant grid 23

5.4 Using a non-equidistant grid

We introduce a non-equidistant grid zi (by now, this is also implemented for the other
directions) as a function z(ζ) of an equidistant grid ζi with grid spacing ∆ζ = 1.

The way the parameters are handled, the box size and position are not changed when
you switch to a non-equidistant grid, i.e. they are still determined by xyz0 and Lxyz.

The first and second derivatives can be calculated by

df

dz
=
df

dζ

dζ

dz
=

1

z′
f ′(ζ) ,

d2f

dz2
=

1

z′2
f ′′(ζ)− z′′

z′3
f ′(ζ) , (1)

which can be written somewhat more compactly using the inverse function ζ(z):

df

dz
= ζ ′(z) f ′(ζ) ,

d2f

dz2
= ζ ′2(z) f ′′(ζ) + ζ ′′(z)ζ ′(z)f ′(ζ) . (2)

Internally, the code uses the quantities dz 1 ≡ 1/z′ = ζ ′(z) and dz tilde ≡ −z′′/z′2 =
ζ ′′/ζ ′, and stores them in ‘data/procN/grid.dat’.

The parameters lequidist (a 3-element logical array), grid func, coeff grid (a
≥ 2-element real array) are used to choose a non-equidistant grid and define
the function z(ζ). So far, one can choose between grid_function=’sinh’, grid_-

function=’linear’ (which produces an equidistant grid for testing purposes), and
grid_function=’step-linear’.

The sinh profile: For grid_function=’sinh’, the function z(ζ) is given by

z(ζ) = z0 + Lz
sinh a(ζ−ζ∗) + sinh a(ζ∗−ζ1)
sinh a(ζ2−ζ∗) + sinh a(ζ∗−ζ1)

, (3)

where z0 and z0+Lz are the lowest and uppermost levels, ζ1, ζ2 are the ζ values represent-
ing those levels (normally ζ1 = 0, ζ2 = Nz − 1 for a grid of Nz vertical layers [excluding
ghost layers]), and ζ∗ is the ζ value of the inflection point of the sinh function. The z
coordinate and ζ value of the inflection point are related via

z∗ = z0 + Lz
sinh a(ζ∗−ζ1)

sinh a(ζ2−ζ∗) + sinh a(ζ∗−ζ1)
, (4)

which can be inverted (“after some algebra”) to

ζ∗ =
ζ1+ζ2
2

+
1

a
artanh

[(

2
z∗−z0
Lz

− 1

)

tanh a
ζ2−ζ1
2

]

. (5)

General profile: For a general monotonic function ψ() instead of sinh we get,

z(ζ) = z0 + Lz
ψ[a(ζ−ζ∗)] + ψ[a(ζ∗−ζ1)]
ψ[a(ζ2−ζ∗)] + ψ[a(ζ∗−ζ1)]

, (6)

and the reference point ζ∗ is found by inverting

z∗ = z0 + Lz
ψ[a(ζ∗−ζ1)]

ψ[a(ζ2−ζ∗)] + ψ[a(ζ∗−ζ1)]
, (7)

numerically.

24 THE PENCIL CODE

Duct flow: The profile function grid_function=’duct’ generates a grid profile for tur-
bulent flow in ducts. For a duct flow, most gradients are steepest close to the walls, and
hence very fine resolution is required near the walls. Here we follow the method of [21]
and use a Chebyshev-type grid with a cosine distribution of the grid points such that in
the y direction they are located at

yj = h cos θj , (8)

where

θj =
(Ny−j) π
Ny−1

, j = 1, 2, . . . , Ny (9)

and h = Ly/2 is the duct half-width.

Currently this method is only adapted for ducts where x is the stream-wise direction, z
is in the span-wise direction and the walls are at y = y0 and y = y0 + Ly.

In order to have fine enough resolution, the first grid point should be a distance δ =
0.05 lw from the wall, where

lw =
ν

uτ
, uτ =

√

τw
ρ
, (10)

and τw is the shear wall stress. This is accomplished by using at least

Ny ≥ N∗
y =

π

arccos
(

1− δ

h

)

+ 1 (11)

= π

√

h

2 δ
+ 1− π

24

√

2 δ

h
+O

[

(

δ

h

)3/2
]

(12)

grid points in the y-direction. After rounding up to the next integer value, we find that
the truncated condition

Ny ≥
⌈

π

√

h

2 δ

⌉

+ 1 (13)

(where ⌈x⌉ denotes the ceiling function, i.e. the smallest integer equal to, or larger than,
x) gives practically identical results.

Example: To apply the sinh profile, you can set the following in ‘start.in’ (this exam-
ple is from ‘samples/sound-spherical-noequi’):

&init_pars

[...]

xyz0 = -2., -2., -2. ! first corner of box

Lxyz = 4., 4., 4. ! box size

lperi = F , F , F ! periodic direction?

lequidist = F, F, T ! non-equidistant grid in z

xyz_star = , , -2. ! position of inflection point

grid_func = , , ’sinh’ ! sinh function: linear for small, but

! exponential for large z

coeff_grid = , , 0.5

/

5.5 Diagnostic output 25

The parameter array coeff grid represents z∗ and a; the bottom height z0 and the total
box height Lz are taken from xyz0 and Lxyz as in the equidistant case. The inflection
point of the sinh profile (the part where it is linear) is not in the middle of the box,
because we have set xyz star(3) (i. e. z∗) to −2.

5.5 Diagnostic output

Every it1 time steps (it1 is a runtime parameter, see Sect. J.2), the code writes monitor-
ing output to stdout and, parallel to this, to the file ‘data/time_series.dat’. The vari-
ables that appear in this listing and the output format are defined in the file ‘print.in’
and can be changed without touching the code (even while the code is running). A simple
example of ‘print.in’ may look like this:

t(F10.3)

urms(E13.4)

rhom(F10.5)

oum

which means that the output table will contain time t in the first column formatted as

(F10.3), followed by the mean squared velocity, urms (i.e. 〈u2〉1/2) in the second column
with format (E13.4), the average density rhom (〈ρ〉, which allows to monitor mass con-
servation) formatted (F10.5) and the kinetic helicity oum (that is 〈ω · u〉) in the last
column with the default format (E10.2).4 The corresponding diagnostic output will look
like

----t---------urms--------rhom------oum----

0.000 4.9643E-03 14.42457 -8.62E-06

0.032 3.9423E-03 14.42446 -5.25E-06

0.063 6.8399E-03 14.42449 -3.50E-06

0.095 1.1437E-02 14.42455 -2.58E-06

0.126 1.6980E-02 14.42457 -1.93E-06

5.6 Data files

5.6.1 Snapshot files

Snapshot files contain the values of all evolving variables and are sufficient to restart a
run. In the case of an MHD simulation with entropy equation, for example, the snapshot
files will contain the values of velocity, logarithmic density, entropy and the magnetic
vector potential.

There are two kinds of snapshot files: the current snapshot and permanent snapshots,
both of which reside in the directory ‘data/procN/’. The parameter isav determines the
frequency at which the current snapshot ‘data/procN/var.dat’ is written. If you keep
this frequency too high, the code will spend a lot of time on I/O, in particular for large
jobs; too low a frequency makes it difficult to follow the evolution interactively during
test runs. There is also the ialive parameter. Setting this to 1 or 10 gives an updated

4 The format specifiers are like in Fortran, apart from the fact that the E format will use standard
scientific format, corresponding to the Fortran 1pE syntax. Seasoned Fortran IV programmers may use
formats like (0pE13.4) to enjoy nostalgic feelings, or (1pF10.5) if they depend on getting wrong numbers.

26 THE PENCIL CODE

timestep in the files ‘data/proc*/alive.info’. You can put ialive=0 to turn this off to
limit the I/O on your machine.

The permanent snapshots ‘data/proc*/VARN ’ are written every dsnap time units. These
files are numbered consecutively from N = 1 upward and for long runs they can occupy
quite some disk space. On the other hand, if after a run you realize that some addi-
tional quantity q would have been important to print out, these files are the only way to
reconstruct the time evolution of q without re-running the code.

File structure Snapshot files consist of the following Fortran records5:

1. variable vector f [mx×my×mz×nvar]

2. time t [1], coordinate vectors x [mx], y [my], z [mz], grid spacings δx [1], δy [1], δz
[1], shearing-box shift ∆y [1]

All numbers (apart from the record markers) are single precision (4-byte) floating point
numbers, unless you use double precision (see §5.21, in which case all numbers are 8-
byte floating point numbers, while the record markers remain 4-byte integers.

The script pc_tsnap allows you to determine the time t of a snapshot file:

unix> pc_tsnap data/proc0/var.dat

data/proc0/var.dat: t = 8.32456

unix> pc_tsnap data/proc0/VAR2

data/proc0/VAR2: t = 2.00603

5.7 Video files and slices

We use the terms video files and slice files interchangeably. These files contain a time
series of values of one variable in a given plane. The output frequency of these video
snapshots is set by the parameter dvid (in code time units).

When output to video files is activated by some settings in ‘run.in’ (see example below)
and the existence of ‘video.in’, slices are written for four planes:

1. x-z plane (y index iy; file suffix .xz)

2. y-z plane (y index ix; suffix .yz)

3. x-y plane (y index iz; suffix .xy)

4. another slice parallel to the x-y plane (y index iz2 ; suffix .xy2)

You can specify the position of the slice planes by setting the parameters ix, iy, iz and
iz2 in the namelist run pars in ‘run.in’. Alternatively, you can set the input parameter
slice position to one of ’p’ (periphery of box) or ’m’ (middle of box). Or you can also
specify the z−position in terms of z using the tags zbot slice and ztop slice. In this case,
the zbot slice slice will have the suffix .xy and the ztop slice the suffix .xy2

In the file ‘video.in’ of your run directory, you can choose for which variables you want
to get video files; valid choices are listed in § J.4.

5 A Fortran record is marked by the 4-byte integer byte count of the data in the record at the beginning
and the end, i.e. has the form 〈Nbytes, raw data, Nbytes〉

5.7 Video files and slices 27

The slice files are written in each processor directory ‘data/proc*/’ and have a file name
indicating the individual variable (e. g. ‘slice_uu1.yz’ for a slice of ux in the y-z plane).
Before visualizing slices one normally wants to combine the sub-slices written by each
processor into one global slice (for each plane and variable). This is done by running
‘src/read_videofiles.x’, which will prompt for the variable name, read the individual
sub-slices and write global slices to ‘data/’ Once all global slices have been assembled
you may want to remove the local slices ‘data/proc*/slice*’.

To read all sub-slices demanded in ‘video.in’ at once use ‘src/read_all_videofiles.x’.
This program doesn’t expect any user input and can thus be submitted in computing
queues.

For visualization of slices, you can use the IDL routines ‘rvid_box.pro’, ‘rvid_-
plane.pro’, or ‘rvid_line.pro’ which allows the flag ‘/png’ for writing PNG images that
can then be combined into an MPEG movie using mpeg encode. Based on ‘rvid_box’,
you can write your own video routines in IDL .

An example Suppose you have set up a run using entropy.f90 and magnetic.f90 (most
probably together with hydro.f90 and other modules). In order to animate slices of en-
tropy s and the z-component Bz of the magnetic field, in planes passing through the
center of the box, do the following:

1. Write the following lines to ‘video.in’ in your run directory:

ss

bb

divu

2. Edit the namelist run pars in the file ‘run.in’. Request slices by settingwrite slices
and set dvid and slice position to reasonable values, say

!lwrite_slices=T !(no longer works; write requested slices into video.in)

dvid=0.05

slice_position=’m’

3. Run the PENCIL CODE:

unix> start.csh

unix> run.csh

4. Run ‘src/read_videofiles.x’ to assemble global slice files from those scattered
across ‘data/proc*/’:

unix> src/read_videofiles.x

enter name of variable (lnrho, uu1, ..., bb3): ss

unix> src/read_videofiles.x

enter name of variable (lnrho, uu1, ..., bb3): bb3

5. Start IDL and run ‘rvid_box’:

unix> idl

IDL> rvid_box,’bb3’

IDL> rvid_box,’ss’,min=-0.3,max=2.

etc.

28 THE PENCIL CODE

Another example Suppose you have set up a run using magnetic.f90 and some other
modules. This run studies some process in a “surface” layer inside the box. This “surface”
can represent a sharp change in density or turbulence. So you defined your box setting
the z = 0 point at the surface. Therefore, your ‘start.in’ file will look something similar
to:

&init_pars

lperi=T,T,F

bcz = ’s’,’s’,’a’,’hs’,’s’,’s’,’a’

xyz0 = -3.14159, -3.14159, -3.14159

Lxyz = 6.28319, 6.28319, 9.42478

Now you can analyze quickly the surface of interest and some other xy−slice setting
zbot slice and ztop slice in the ‘run.in’ file:

&run_pars

slice_position=’c’

zbot_slice=0.

ztop_slice=0.2

In this case, the slices with the suffix .xy will be at the “surface” and the ones with the
suffix .xy2 will be at the position z = 0.2 above the surface. And you can visualize this
slices by:

1. Write the following lines to ‘video.in’ in your run directory:

bb

2. Edit the namelist run pars in the file ‘run.in’ to include zbot slice and ztop slice.

3. Run the PENCIL CODE:

unix> start.csh

unix> run.csh

4. Run ‘src/read_videofiles.x’ to assemble global slice files from those scattered
across ‘data/proc*/’:

unix> src/read_videofiles.x

enter name of variable (lnrho, uu1, ..., bb3): bb3

5. Start IDL , load the slices with ‘pc_read_video’ and plot them at some time:

unix> idl

IDL> pc_read_video, field=’bb3’,ob=bb3,nt=ntv

IDL> tvscl,bb3.xy(*,*,100)

IDL> tvscl,bb3.xy2(*,*,100)

etc.

File structure Slice files consist of one Fortran record (see footnote on page 26) for
each slice, which contains the data of the variable (without ghost zones), the time t of
the snapshot and the position of the sliced variable (e. g. the x position for a y-z slice):

1. data1 [nx×ny×nz], time t1 [1], position1 [1]

5.8 Averages 29

2. data2 [nx×ny×nz], time t2 [1], position2 [1]

3. data3 [nx×ny×nz], time t3 [1], position3 [1]

etc.

5.8 Averages

5.8.1 One-dimensional output averaged in two dimensions

In the file ‘xyaver.in’, z-dependent (horizontal) averages are listed. They are written to
the file ‘data/xyaverages.dat’. A new line of averages is written every it1 th time steps.

There is the possibility to output two-dimensional averages. The result then de-
pends on the remaining dimension. The averages are listed in the files ‘xyaver.in’,
‘xzaver.in’, and ‘yzaver.in’ where the first letters indicate the averaging directions.
The output is then stored to the files ‘data/xyaverages.dat’, ‘data/xzaverages.dat’, and
‘data/yzaverages.dat’. The output is written every it1d th time steps.

The rms values of the so defined mean magnetic fields are referred to as bmz, bmy and
bmx, respectively, and the rms values of the so defined mean velocity fields are referred
to as umz, umy, and umx. (The last letter indicates the direction on which the averaged
quantity still depends.)

See Sect. 9.2 on how to add new averages.

In idl such xy-averages can be read using the procedure ‘pc_read_xyaver’.

5.8.2 Two-dimensional output averaged in one dimension

There is the possibility to output one-dimensional averages. The result then depends
on the remaining two dimensions. The averages are listed in the files ‘yaver.in’,
‘zaver.in’, and ‘phiaver.in’ where the first letter indicates the averaging direction.
The output is then stored to the files ‘data/yaverages.dat’, ‘data/zaverages.dat’, and
‘data/phiaverages.dat’.

See Sect. 9.2 on how to add new averages.

Disadvantage: The output files, e.g. ‘data/zaverages.dat’, can be rather big because each
average is just appended to the file.

5.8.3 Azimuthal averages

Azimuthal averages are controlled by the file ‘phiaver.in’, which currently supports the
quantities listed in Sect. J.5. In addition, one needs to set lwrite phiaverages, lwrite -
yaverages, or lwrite zaverages to .true.. For example, if ‘phiaver.in’ contains the single
line

b2mphi

then you will get azimuthal averages of the squared magnetic field B2.

30 THE PENCIL CODE

Azimuthal averages are written every d2davg time units to the files
‘data/averages/PHIAVGN ’. The file format of azimuthal-average files consists of the
following Fortran records:

1. number of radial points Nr,φ−avg [1], number of vertical points Nz,φ−avg [1], number
of variables Nvar,φ−avg[1], number of processors in z direction [1]

2. time t [1], positions of cylindrical radius rcyl [Nr,φ−avg] and z [Nz,φ−avg] for the grid,
radial spacing δrcyl [1], vertical spacing δz [1]

3. averaged data [Nr,φ−avg×Nz,φ−avg]

4. label length [1], labels of averaged variables [Nvar,φ−avg]

All numbers are 4-byte numbers (floating-point numbers or integers), unless you use
double precision (see §5.21).

To read and visualize azimuthal averages in IDL , use ‘$PENCIL_HOME/idl/files/pc_-
read_phiavg.pro’

IDL> avg = pc_read_phiavg(’data/averages/PHIAVG1’)

IDL> contour, avg.b2mphi, avg.rcyl, avg.z, TITLE=’!17B!U2!N!X’

or have a look at ‘$PENCIL_HOME/idl/phiavg.pro’ for a more sophisticated example.

5.8.4 Time averages

Time averages need to be prepared in the file ‘src/ctimeavg.local’, since they use extra
memory. They are controlled by the averaging time τavg (set by the parameter tavg in
‘run.in’), and by the indices idx tavg of variables to average.

Currently, averaging is implemented as exponential (memory-less) average,6

〈f〉t+δt = 〈f〉t +
δt

τavg
[f(t+δt)− 〈f〉t] , (16)

which is equivalent to

〈f〉t =
t
∫

t0

e−(t−t′)/τavg f(t′) dt′ . (17)

Here t0 is the time of the snapshot the calculation started with, i.e. the snapshot read by
the last run.x command. Note that the implementation (16) will approximate Eq. (17)
only to first-order accuracy in δt. In practice, however, δt is small enough to make this
accuracy suffice.

6 At some point we may also implement the more straight-forward average

〈f〉t+δt = 〈f〉t +
δt

t−t0+δt
[f(t+δt)− 〈f〉t] , (14)

which is equivalent to

〈f〉t =
1

t− t0

t
∫

t0

f(t′) dt′ , (15)

but we do not expect large differences.

5.9 Helper scripts 31

In ‘src/ctimeavg.local’, you need to set the number of slots used for time averages.
Each of these slots uses mx × my × mz floating-point numbers, i.e. half as much memory
as each fundamental variable.

For example, if you want to get time averages of all variables, set

integer, parameter :: mtavg=mvar

in ‘src/ctimeavg.local’, and don’t set idx tavg in ‘run.in’.

If you are only interested in averages of variables 1–3 and 6–8 (say, the velocity vector
and the magnetic vector potential in a run with ‘hydro.f90’, ‘density.f90’, ‘entropy.f90’
and ‘magnetic.f90’), then set

integer, parameter :: mtavg=6

in ‘src/ctimeavg.local’, and set

idx_tavg = 1,2,3,6,7,8 ! time-average velocity and vector potential

in ‘run.in’.

Permanent snapshots of time averages are written every tavg time units to
the files ‘data/proc*/TAVN ’. The current time averages are saved periodically in
‘data/proc*/timeavg.dat’ whenever ‘data/proc*/var.dat’ is written. The file format for
time averages is equivalent to that of the snapshots; see § 5.6.1 above.

5.9 Helper scripts

The ‘bin’ directory contains a collection of utility scripts, some of which are discussed
elsewhere, Here is a list of the more important ones.

adapt-mkfile Activate the settings in a ‘Makefile’ that apply to the given computer,
see §5.2.

auto-test Verify that the code compiles and runs in a set of run directories and compare
the results to the reference output. These tests are carried out routinely to ensure
that the svn version of the code is in a usable state.

cleanf95 Can be use to clean up the output from the Intel x86 Fortran 95 compiler
(ifc).

copy-proc-to-proc Used for restarting in a different directory. Example
copy-proc-to-proc seed.dat ../hydro256e.

copy-snapshots Copy snapshots from a processor-local directory to the global direc-
tory. To be started in the background before ‘run.x’ is invoked. Used by ‘start.csh’
and ‘run.csh’ on network connected processors.

pc copyvar var1 var2 source dest Copies snapshot files from one directory (source)
to another (dest). See documentation in file.

pc copyvar v v dir Copies all ‘var.dat’ files from current directory to ‘var.dat’ in ’dir’
run directory. Used for restarting in a different directory.

32 THE PENCIL CODE

pc copyvar N v Used to restart a run from a particular snapshot ‘VARN ’. Copies a
specified snapshot ‘VARN ’ to ‘var.dat’ where N and (optionally) the target run di-
rectory are given on the command line.

cvs-add-rundir Add the current run directory to the svn repository.

cvsci run Similar to cvs-add-rundir, but it also checks in the ‘*.in’ and ‘src/*.local’
files. It also checks in the files ‘data/time_series.dat’, ‘data/dim.dat’ and
‘data/index.pro’ for subsequent processing in IDL on another machine. This is
particularly useful if collaborators want to check each others’ runs.

dx * These script perform several data collection or reformatting exercises required to
read particular files into DX . They are called internally by some of the DX macros
in the ‘dx/macros/’ directory.

getconf.csh See § 4.3.4

gpgrowth Plot simple time evolution with Gnuplot’s ASCII graphics for fast orienta-
tion via a slow modem line.

local Materialize a symbolic link

mkcparam Based on ‘Makefile’ and ‘Makefile.local’, generate ‘src/cparam.inc’,
which specifies the number mvar of fundamental variables, and maux of auxiliary
variables. Called by the ‘Makefile’.

pc mkdatadir Creates a link to a data directory in a suitable workspace. By default
this is on ‘/var/tmp/’, but different locations are specified for different machines.

mkdotin Generate minimal ‘start.in’, ‘run.in’ files based on ‘Makefile’ and
‘Makefile.local’.

mkinpars Wrapper around ‘mkdotin’ — needs proper documentation.

mkproc-tree Generates a multi-processor(‘procN ’/), directory structure. Useful when
copying data files in a processor tree, such as slice files.

mkwww Generates a template HTML file for describing a run of the code, showing
input parameters and results.

move-slice Moves all the slice files from a processor tree structure, ‘procN/’, to a new
target tree creating directories where necessary.

nl2idl Transform a Fortran namelist (normally the files ‘param.nml’, ‘param2.nml’ writ-
ten by the code) into an IDL structure. Generates an IDL file that can be sourced
from ‘start.pro’ or ‘run.pro’.

pacx-adapt-makefile Version of adapt-makefile for highly distributed runs using
PACX MPI.

pc newrun Generates a new run directory from an old one. The new one contains a
copy of the old ‘*.local’ files, runs pc_setupsrc, and makes also a copy of the old
‘*.in’ and ‘k.dat’ files.

pc newscan Generates a new scan directory from an old one. The new one contains
a copy of the old, e.g. the one given under ‘samples/parameter_scan’. Look in the
‘README’ file for details.

5.10 RELOAD and STOP files 33

pc inspectrun Check the execution of the current run: prints legend and the last few
lines of the ‘time_series.dat’ file. It also appends this result to a file called ‘SPEED’,
which contains also the current wall clock time, so you can work out the speed of
the code (without being affected by i/o time).

read videofiles.csh The script for running read videofiles.x.

remote-top Create a file ‘top.log’ in the relevant ‘procN/’ directory containing the
output of top for the appropriate processor. Used in batch scripts for multi-
processor runs.

run.csh The script for producing restart files with the initial condition; see § 4.3.4

scpdatadir Make a tarball of data directory, ‘data/’ and use scp to secure copy to copy
it to the specified destination.

pc setupsrc Link ‘start.csh’, ‘run.csh’ and ‘getconf.csh’ from ‘$PENCIL_HOME/bin’.
Generate ‘src/’ if necessary and link the source code files from ‘$PENCIL_HOME/src’
to that directory.

start.csh The script for initializing the code; see § 4.3.4

summarize-history Evaluate ‘params.log’ and print a history of changes.

timestr Generate a unique time string that can be appended to file names from shell
scripts through the backtick mechanism.

pc tsnap Extract time information from a snapshot file, ‘VARN ’.

There are several additional scripts on ‘pencil-code/utils’. Some are located in sepa-
rate folders according to users. There could be redundancies, but it is often just as easy
to write your own new script than figuring out how something else works.

5.10 RELOAD and STOP files

The code periodically (every it time steps) checks for the existence of two files, ‘RELOAD’
and ‘STOP’, which can be used to trigger certain behavior.

Reloading run parameters In the directory where you started the code, create the file
‘RELOAD’ with

unix> touch RELOAD

34 THE PENCIL CODE

to force the code to re-read the runtime parameters from ‘run.in’. This will happen the
next time the code is writing monitoring output (the frequency of this happening is
controlled by the input parameter it , see Sect. 5.12).

Each time the parameters are reloaded, the new set of parameters is appended (in the
form of namelists) to the file ‘data/params.log’ together with the time t, so you have a
full record of your changes. If ‘RELOAD’ contains any text, its first line will be written to
‘data/params.log’ as well, which allows you to annotate changes:

unix> echo "Reduced eta to get fields growing" > RELOAD

Use the command summarize-history to print a history of changes.

Stopping the code In the directory where you started the code, create the file ‘STOP’
with

unix> touch STOP

to stop the code in a controlled manner (it will write the latest snapshot). Again, the
action will happen the next time the code is writing monitoring output.

5.11 RERUN and NEWDIR files

After the code finishes (e.g., when the final timestep number is reached or when a ‘STOP’
file is found), the ‘run.csh’ script checks whether there is a ‘RERUN’ file. If so, the code will
simply run again, perhaps even after you have recompiled the code. This is useful in the
development phase when you changed something in the code, so you don’t need to wait
for a new slot in the queue!

Even more naughty, as Tony says, is the ‘NEWDIR’ file, where you can enter a new direc-
tory path (relative path is ok, e.g. ../conv-slab). If nothing is written in this file (e.g.
via touch NEWDIR) it stays in the same directory. On distributed machines, the ‘NEWDIR’
method will copy all the ‘VAR#’ and ‘var.dat’ files back to and from the sever. This can be
useful if you want to run with new data files, but you better do it in a separate directory,
because with ‘NEWDIR’ the latest data from the code are written back to the server before
running again.

Oh, by the way, if you want to be sure that you haven’t messed up the content of the pair
of ‘NEWDIR’ files, you may want to try out the pc_jobtransfer command. It writes the
decisive ‘STOP’ file only after the script has checked that the content of the two ‘NEWDIR’
files points to existing run directory paths, so if the new run crashes, the code returns
safely to the old run directory. I’m not sure what Tony would say now, but this is now
obviously extremely naughty.

5.12 Start and run parameters

All input parameters in ‘start.in’ and ‘run.in’ are grouped in Fortran namelists. This
allows arbitrary order of the parameters (within the given namelist; the namelists need
no longer be in the correct order), as well as enhanced readability through inserted For-
tran comments and whitespace. One namelist (init pars / run pars) contains general
parameters for initialization/running and is always read in. All other namelists are spe-
cific to individual modules and will only be read if the corresponding module is used.

5.12 Start and run parameters 35

The syntax of a namelist (in an input file like ‘start.in’) is

&init_pars

ip=5, Lxyz=2,4,2

/

— in this example, the name of the namelist is init pars, and we read just two variables
(all other variables in the namelist retain their previous value): ip, which is set to 5, and
Lxyz, which is a vector of length three and is set to (2, 4, 2).

While all parameters from the namelists can be set, in most cases reasonable default
values are preset. Thus, the typical file ‘start.in’ will only contain a minimum set of
variables or (if you are very minimalistic) none at all. If you want to run a particular
problem, it is best to start by modifying an existing example that is close to your appli-
cation.

Before starting a simulation run, you may want to execute the command pc_configtest

in order to test the correctness of your changes to these configuration files.

As an example, we give here the start parameters for ‘samples/helical-MHDturb’

&init_pars

cvsid=’$Id:$’, ! identify version of start.in

xyz0 = -3.1416, -3.1416, -3.1416, ! first corner of box

Lxyz = 6.2832, 6.2832, 6.2832, ! box size

lperi = T , T , T , ! periodic in x, y, z

random_gen=’nr_f90’

/

&hydro_init_pars

/

&density_init_pars

gamma=1.

/

&magnetic_init_pars

initaa=’gaussian-noise’, amplaa=1e-4

/

The three entries specifying the location, size and periodicity of the box are just given
for demonstration purposes here — in fact a periodic box from −π to −π in all three
directions is the default. In this run, for reproducibility, we use a random number gen-
erator from the Numerical Recipes [27], rather than the compiler’s built-in generator.
The adiabatic index γ is set explicitly to 1 (the default would have been 5/3) to achieve
an isothermal equation of state. The magnetic vector potential is initialized with uncor-
related, normally distributed random noise of amplitude 10−4.

The run parameters for ‘samples/helical-MHDturb’ are

&run_pars

cvsid=’$Id:$’, ! identify version of start.in

nt=10, it1=2, cdt=0.4, cdtv=0.80, isave=10, itorder=3

dsnap=50, dvid=0.5

random_gen=’nr_f90’

/

&hydro_run_pars

/

36 THE PENCIL CODE

&density_run_pars

/

&forcing_run_pars

iforce=’helical’, force=0.07, relhel=1.

/

&magnetic_run_pars

eta=5e-3

/

&viscosity_run_pars

nu=5e-3

/

Here we run for nt= 10 timesteps, every second step, we write a line of diagnostic output;
we require the time step to keep the advective Courant number ≤ 0.4 and the diffusive
Courant number ≤ 0.8, save ‘var.dat’ every 20 time steps, and use the 3-step time-
stepping scheme described in Appendix H.4 (the Euler scheme itorder= 1 is only useful
for tests). We write permanent snapshot file ‘VARN ’ every dsnap= 50 time units and 2d
slices for animation every dvid= 0.5 time units. Again, we use a deterministic random
number generator. Viscosity ν and magnetic diffusivity η are set to 5× 10−3 (so the mesh
Reynolds number is about urmsδx/ν = 0.3×(2π/32)/5×10−3 ≈ 12, which is in fact rather a
bit to high). The parameters in forcing run pars specify fully helical forcing of a certain
amplitude.

A full list of input parameters is given in Appendix J.

5.13 Physical units

Many calculations are unit-agnostic, in the sense that all results remain the same in-
dependent of the unit system in which you interpret the numbers. E. g. if you simulate
a simple hydrodynamical flow in a box of length L = 1. and get a maximum velocity of
umax = 0.5 after t = 3 time units, then you may interpret this as L = 1m, umax = 0.5m/s,
t = 3 s, or as L = 1pc, umax = 0.5 pc/Myr, t = 3Myr, depending on the physical system you
have in mind. The units you are using must of course be consistent, thus in the second
example above, the units for diffusivities would be pc2/Myr, etc.

The units of magnetic field and temperature are determined by the values µ0 = 1 and
cp = 1 used internally by the code7. This means that if your units for density and velocity
are [ρ] and [v], then magnetic fields will be in

[B] =
√

µ0 [ρ] [v]2 , (18)

and temperatures are in

[T] =
[v]2

cp
=
γ−1

γ

[v]2

R/µ . (19)

For some choices of density and velocity units, Table 2 shows the resulting units of
magnetic field and temperature.

7 Note that cp = 1 is only assumed if you use the module noionization.f90 . If you work with ioniza-
tion.f90 , temperature units are specified by unit temperature as described below.

5.14 Minimum amount of viscosity 37

Table 2: Units of magnetic field and temperature for some choices of [ρ] and [v] according to Eqs. (18) and
(19). Values are for a monatomic gas (γ = 5/3) of mean atomic weight µ̄g = µ̄/1 g in grams.

[ρ] [v] [B] [T]

1 kg/m3 1m/s 1.12mT = 11.2G
(µ̄g

0.6

)

× 2.89× 10−5 K

1g/cm3 1 cm/s 3.54× 10−4 T = 3.54G
(µ̄g

0.6

)

× 2.89 nK

1 g/cm3 1 km/s 35.4T = 354 kG
(µ̄g

0.6

)

× 28.9K

1 g/cm3 10 km/s 354T = 3.54MG
(µ̄g

0.6

)

× 2 890K

On the other hand, as soon as material equations are used (e.g. one of the popular pa-
rameterizations for radiative losses, Kramers opacity, Spitzer conductivities or ioniza-
tion, which implies well-defined ionization energies), the corresponding routines in the
code need to know the units you are using. This information is specified in ‘start.in’ or
‘run.in’ through the parameters unit system, unit length , unit velocity, unit density
and unit temperature8 like e. g.

unit_system=’SI’,

unit_length=3.09e16, unit_velocity=978. ! [l]=1pc, [v]=1pc/Myr

Note: The default unit system is unit_system=’cgs’ which is a synonym for unit_-

system=’Babylonian cubits’.

5.14 Minimum amount of viscosity

We emphasize that, by default, the code works with constant diffusion coefficients (vis-
cosity ν, thermal diffusivity χ, magnetic diffusivity η, or passive scalar diffusivity D).
If any of these numbers is too small, you would need to have more meshpoints to get
consistent numerical solutions; otherwise the code develops wiggles (‘ringing’) and will
eventually crash. A useful criterion is given by the mesh Reynolds number based on the
maximum velocity,

Remesh = max(|u|)max(δx, δy, δz)/ν, (20)

which should not exceed a certain value which can be problem-dependent. Often the
largest possible value of Remesh is around 5. Similarly there exist mesh Péclet and mesh
magnetic Reynolds numbers that should not be too large.

Note that in some cases, ‘wiggles’ in ln ρ will develop despite sufficiently large diffusion
coefficients, essentially because the continuity equation contains no dissipative term.
For convection runs (but not only for these), we have found that this can often be pre-
vented by upwinding, see Sect. H.2.

If the Mach number of the code approaches unity, i.e. if the rms velocity becomes com-
parable with the speed of sound, shocks may form. In such a case the mesh Reynolds
number should be smaller. In order to avoid excessive viscosity in the unshocked regions,

8 Note: the parameter unit temperature is currently only used in connection with ionization.f90 . If you
are working with noionization.f90 , the temperature unit is completely determined by Eq. (19) above.

38 THE PENCIL CODE

one can use the so-called shock viscosity (Sect. 6.6.1) to concentrate the effects of a low
mesh Reynolds number to only those areas where it is necessary.

5.15 The time step

5.15.1 The usual RK-2N time step

RK-2N refers to the third order Runge-Kutta scheme by Williamson (1980) with a mem-
ory consumption of two chunks. Therefore the 2N in the name.

The time step is normally specified as Courant time step through the coefficients cdt
(cδt), cdtv (cδt,v) and cdts (cδt,s). The resulting Courant step is given by

δt = min

(

cδt
δxmin

Umax

, cδt,v
δx2min

Dmax

, cδt,s
1

Hmax

)

, (21)

where

δxmin ≡ min(δx, δy, δz) ; (22)

Umax ≡ max

(

|u|+
√

c2s+v
2
A

)

, (23)

cs and vA denoting sound speed and Alfvén speed, respectively;

Dmax = max(ν, γχ, η,D), (24)

where ν denotes kinematic viscosity, χ = K/(cpρ) thermal diffusivity and η the magnetic
diffusivity; and

Hmax = max

(

2νS2 + ζshock(∇ · u)2 + ...

cvT

)

, (25)

where dots indicate the presence of other terms on the rhs of the entropy equation.

To fix the time step δt to a value independent of velocities and diffusivities, explicitly set
the run parameter dt , rather than cdt or cdtv (see p. 172).

If the time step exceeds the viscous time step the simulation may actually run ok for
quite some time. Inspection of images usually helps to recognize the problem. An exam-
ple is shown in Fig. 4.

Timestepping is accomplished using the Runge-Kutta 2N scheme. Regarding details of
this scheme see Sect. H.4.

5.15.2 The Runge-Kutta-Fehlberg time step

A fifth order Runge-Kutta-Fehlberg time stepping procedure is available. It is used
mostly for chemistry application, often together with the double precision option. In
order to make this work, you need to compile with

TIMESTEP = timestep_rkf

in ‘src/Makefile.local’. In addition, you must put itorder=5 in ‘run.in’. An example
application is ‘samples/1d-tests/H2_flamespeed’. This procedure is still experimental.

5.16 Boundary conditions 39

Figure 4: Example of a velocity slice from a run where the time step is too long. Note the spurious
checkerboard modulation in places, for example near x = −0.5 and −2.5 < y < −1.5. This is an example
of a hyperviscous turbulence simulations with 5123 meshpoints and a third order hyperviscosity of ν3 =
5× 10−12. Hyperviscosity is explained in the Appendix E.

5.16 Boundary conditions

5.16.1 Where to specify boundary conditions

In most tests that come with the PENCIL CODE, boundary conditions are set in ‘run.in’,
which is a natural choice. However, this may lead to unexpected initial data written by
‘start.x’, since when you start the code (via ‘start.csh’), the boundary conditions are
unknown and ‘start.x’ will then fill the ghost zones assuming periodicity (the default
boundary condition) in all three directions. These ghost data will never be used in a
calculation, as ‘run.x’ will apply the boundary conditions before using any ghost-zone
values.

To avoid these periodic conditions in the initial snapshot, you can set the boundary
conditions in ‘start.in’ already. In this case, they will be inherited by ‘run.x’, unless you
also explicitly set boundary conditions in ‘run.in’.

5.16.2 How to specify boundary conditions

Boundary conditions are implemented through three layers of ghost points on either
boundary, which is quite a natural choice for an MPI code that uses ghost zones for
representing values located on the neighboring processors anyway. The desired type of
boundary condition is set through the parameters bc{x,y,z} in ‘run.in’; the nomenclature
used is as follows. Set bc{x,y,z} to a sequence of letters like

bcx = ’p’,’p’,’p’, ’p’, ’p’

for periodic boundaries, or

bcz = ’s’,’s’,’a’,’a2’,’c1:c2’

for non-periodic ones. Each element corresponds to one of the variables, which are those
of the variables ux, uy, uz, ln ρ, s/cp, Ax, Ay, Az, ln c that are actually used in this order.
The following conditions are available:

‘p’ periodic boundary condition

‘a’ antisymmetric condition w. r. t. the boundary, i. e. vanishing value

40 THE PENCIL CODE

‘s’ symmetric condition w. r. t. the boundary, i. e. vanishing first derivative

‘a2’ antisymmetry w. r. t. the arbitrary value on the boundary, i. e. vanishing second
derivative

‘c1’ special boundary condition for ln ρ and s: constant heat flux through the boundary

‘c2’ special boundary condition for s: constant temperature at the boundary — requires
boundary condition a2 for ln ρ

‘cT’ special boundary condition for s or ln T : constant temperature at the boundary (for
arbitrarily set ln ρ)

‘ce’ special boundary condition for s: set temperature in ghost points to value on bound-
ary (for arbitrarily set ln ρ)

‘db’ low-order one-sided derivatives (“no boundary condition”) for density

‘she’ shearing-sheet boundary condition (default when the module Shear is used)

‘g’ force the value of the corresponding field on vertical boundaries (should be used
in combination with the force lower bound and force upper bound flags set in the
namelist init pars)

‘hs’ special boundary condition for ln ρ and s which enforces hydrostatic equilibrium on
vertical boundaries

The extended syntax a:b (e. g. ‘c1:c2’) means: use boundary condition a at the left/lower
boundary, but b at the right/upper one.

If you build a new ‘run.in’ file from another one with a different number of variables
(noentropy vs. entropy, for example), you need to remember to adjust the length of the
arrays bcx to bcz. The advantage of the present approach is that it is very easy to ex-
change all boundary conditions by a new set of conditions in a particular direction (for
example, make everything periodic, or switch off shearing sheet boundary conditions
and have stress-free instead).

5.17 Restarting a simulation

When a run stops at the end of a simulation, you can just resubmit the job again, and
it will start from the latest snapshot saved in ‘data/proc*/var.dat’. The value of the
latest time is saved in a separate file, ‘data/proc*/time.dat’. On parallel machines it is
possible that some (or just one) of the ‘var.dat’ are corrupt; for example after a system
crash. Check for file size and date, and restart from a good ‘VAR’N file instead.

If you want to run on a different machine, you just need to copy the ‘data/proc*/var.dat’
(and, just to be sure) ‘data/proc*/time.dat’) files into a new directory tree. You may also
need the ‘data/proc*/seed.dat’ files for the random number generator. The easiest way
to get all these other files is to run start.csh again on the new machine (or in a new
directory) and then to overwrite the ‘data/proc*/var.dat’ files with the correct ones.

For restarting from runs that didn’t have magnetic fields, passive scalar fields, or test
fields, see Sect. F.3.

5.18 One- and two-dimensional runs 41

5.18 One- and two-dimensional runs

If you want to run two-dimensional problems, set the number of mesh points in one
direction to unity, e.g. nygrid=1 or nzgrid=1 in ‘cparam.local’. Remember that the num-
ber of mesh points is still divisible by the number of processors. For 2D-runs, it is also
possible to write only 2D-snapshots (i.e. VAR files written only in the considered (x, y)
or (x, z) plane, with a size seven times smaller as we do not write the third unused di-
rection). To do that, please add the logical flag ‘lwrite 2d=T’ in the namelist init pars in
‘start.in’.

Similarly, for one-dimensional problems, set, for example, nygrid=1 and nzgrid=1 in
‘cparam.local’. You can even do a zero-dimensional run, but then you better set dt
(rather than cdt), because there is no Courant condition for the time step.

See 0d, 1d, 2d, and 3d tests with examples.

5.19 Visualization

5.19.1 Gnuplot

Simple visualization can easily be done using Gnuplot (http://www.gnuplot.info), an
open-source plotting program suitable for two-dimensional plots.

For example, suppose you have the variables

---it-----t-------dt-------urms-----umax-----rhom-----ssm------dtc---

in ‘time_series.dat’ and want to plot urms(t). Just start gnuplot and type

gnuplot> plot "data/time_series.dat" using 2:4 with lines

If you work over a slow line and want to see both urms(t) and umax(t), use ASCII graphics:

gnuplot> set term dump

gnuplot> set logscale y

gnuplot> plot "data/time_series.dat" using 2:4 title "urms", \

gnuplot> "data/time_series.dat" using 2:5 title "umax"

5.19.2 Data explorer

DX (data explorer; http://www.opendx.org) is an open-source tool for visualization of
three-dimensional data.

The PENCIL CODE provides a few networks for DX . It is quite easy to read in a snapshot
file from DX (the only tricky thing is the four extra bytes at the beginning of the file,
representing a Fortran record marker), and whenever you run ‘start.x’, the code writes
a file ‘var.general’ that tells DX all it needs to know about the data structure.

As a starting point for developing your own DX programs or networks, you can use a
few generic DX scripts provided in the directory ‘dx/basic/’. From the run directory,
start DX with

unix> dx -edit $PENCIL_HOME/dx/basic/lnrho

http://www.gnuplot.info
http://www.opendx.org

42 THE PENCIL CODE

to load the file ‘dx/basic/lnrho.net’, and execute it with
✄

✂

�

✁Ctl-o or Execute → Execute
Once. You will see a set of iso-surfaces of logarithmic density. If the viewport does not
fit to your data, you can reset it with

✄

✂

�

✁Ctl-f . To rotate the object, drag the mouse over
the Image window with the left or right mouse button pressed. Similar networks are
provided for entropy (‘ss.net’), velocity (‘uu.net’) and magnetic field (‘bb.net’).

When you expand these simple networks to much more elaborate ones, it is probably
a good idea to separate the different tasks (like Importing and Selecting, visualizing
velocity, visualizing entropy, and Rendering) onto separate pages through Edit → Page.

Note Currently, DX can only read in data files written by one single processor, so from
a multi-processor run, you can only visualize one subregion at a time.

5.19.3 GDL

GDL , also known as Gnu Data Language is a free visualization package that can be
found at http://gnudatalanguage.sourceforge.net/. It aims at replacing the very ex-
pensive IDL package (see S. 5.19.4). For the way we use IDL for the Pencil Code, com-
patibility is currently not completely sufficient, but you can use GDL for many of the
visualization tasks. If you get spurious “Error opening file” messages, you can normally
simply ignore them.

This section tells you how to get started with using GDL for visualization.

Setup As of GDL 0.9 – at least the version packed with Ubuntu Jaunty (9.10) – you
will need to add GDL’s ‘examples/pro/’ directory to your !PATH variable. So the first call
after starting GDL should be

GDL> .run setup_gdl

Starting visualization There are mainly two possibilities for visualization: using a sim-
ple GUI or loading the data with pc_read and work with it interactively. Please note that
the GUI was written and tested only with IDL, see §5.19.4.
Here, the pc_read family of IDL routines to read the data is described. Try

GDL> pc_read

to get an overview.

To plot a time series, use

GDL> pc_read_ts, OBJECT=ts

GDL> help, ts, /STRUCT ;; (to see which slots are available)

GDL> plot, ts.t, ts.umax

GDL> oplot, ts.t, ts.urms

Alternatively, you could simply use the ‘ts.pro’ script:

GDL> .run ts

To work with data from ‘var.dat’ and similar snapshot files, you can e.g. use the follow-
ing routines:

http://gnudatalanguage.sourceforge.net/

5.19 Visualization 43

GDL> pc_read_dim, OBJECT=dim

GDL> $$PENCIL_HOME/bin/nl2idl -d ./data/param.nml> ./param.pro

GDL> pc_read_param, OBJECT=par

GDL> pc_read_grid, OBJECT=grid

GDL> pc_read_var, OBJECT=var

Having thus read the data structures, we can have a look at them to see what informa-
tion is available:

GDL> help, dim, /STRUCT

GDL> help, par, /STRUCT

GDL> help, grid, /STRUCT

GDL> help, var, /STRUCT

To visualize data, we can e.g. do9

GDL> plot, grid.x, var.ss[*, dim.ny/2, dim.nz/2]

GDL> contourfill, var.ss[*, *, dim.nz/2], grid.x, grid.y

GDL> ux_slice = var.uu[*, *, dim.nz/2, 0]

GDL> uy_slice = var.uu[*, *, dim.nz/2, 1]

GDL> wdvelovect, ux_slice, uy_slice, grid.x, grid.y

GDL> surface, var.lnrho[*, *, dim.nz/2, 0]

See also Sect. 5.19.4.

5.19.4 IDL

IDL is a commercial visualization program for two-dimensional and simple three-
dimensional graphics. It allows to access and manipulate numerical data in a fashion
quite similar to how Fortran handles them.

In ‘$PENCIL_HOME/idl’, we provide a number of general-purpose IDL scripts that we are
using all the time in connection with the PENCIL CODE. While IDL is quite an expensive
software package, it is quite useful for visualizing results from numerical simulations.
In fact, for many applications, the 7-minute demo version of IDL is sufficient.

Visualization in IDL The Pencil Code GUI is a data post-processing tool for the usage
on a day-to-day basis. It allows fast inspection of many physical quantities, as well as ad-
vanced features like horizontal averages, streamline tracing, freely orientable 2D-slices,
and extraction of cut images and movies. To use the Pencil Code GUI, it is sufficient to
run:

unix> idl

IDL> .r pc_gui

If you like to load only some subvolume of the data, like any 2D-slices from the given
data snapshots, or 3D-subvolumes, it is possible to choose the corresponding options in
the file selector dialog. The Pencil Code GUI offers also some options to be set on the
command-line, please refer to their description in the source code.

9 If contourfill produces just contour lines instead of a color-coded plot, your version of GDL is too
old. E.g. the version shipped with Ubuntu 9.10 is based on GDL 0.9rc1 and has this problem.

44 THE PENCIL CODE

There are also other small GUIs available, e.g. the file ‘time-series.dat’ can easily be
analyzed with the command:

unix> idl

IDL> pc_show_ts

The easiest way to derive physical quantities at the command-line is to use one of the
many pc_read_var-variants (pc_read_var_raw is recommended for large datasets be-
cause of its high efficiency regarding computation and memory usage) for reading the
data. With that, one can make use of pc_get_quantity to derive any implemented physi-
cal quantity. Packed in a script, this is the recommended way to get reproducible results,
without any chance for accidental errors on the interactive IDL command-line.

Alternatively, by using the command-line to see the time evolution of e.g. velocity and
magnetic field (if they are present in you run), start IDL 10 and run ‘ts.pro’:

unix> idl

IDL> .run ts

The IDL script ‘ts.pro’ reads the time series data from ‘data/time_series.dat’ and sorts
the column into the structure ts, with the slot names corresponding to the name of the
variables (taken from the header line of ‘data/time_series.dat’). Thus, you can refer to
time as ts.t, to the rms velocity as ts.urms, and in order to plot the mean density as a
function of time, you would simply type

IDL> plot, ts.t, ts.rhom

The basic command sequence for working with a snapshot is:

unix> idl

IDL> .run start

IDL> .run r

IDL> [specific commands]

You run ‘start.pro’ once to initialize (or reinitialize, if the mesh size has changed, for
example) the fields and read in the startup parameters from the code. To read in a new
snapshot, run ‘r.pro’ (or ‘rall.pro’, see below).

If you are running in parallel on several processors, the data are scattered over different
directories. To reassemble everything in IDL , use

10 If you run IDL from the command line, you will highly appreciate the following tip: IDL’s command
line editing is broken beyond hope. But you can fix it, by running IDL under rlwrap, a wrapper for the
excellent GNU readline library.

Download and install rlwrap from http://utopia.knoware.nl/~hlub/uck/rlwrap/ (on some systems
you just need to run ‘emerge rlwrap’, or ‘apt-get install rlwrap’), and alias your idl command:

csh> alias idl ’rlwrap -a -c idl’

bash> alias idl=’rlwrap -a -c idl’

From now on, you can

• use long command lines that correctly wrap around;

• type the first letters of a command and then
✄

✂

�

✁
PageUp to recall commands starting with these letters;

• capitalize, uppercase or lowercase a word with
✄

✂

�

✁Esc -C,
✄

✂

�

✁Esc -U,
✄

✂

�

✁Esc -L;
• use command line history across IDL sessions (you might need to create ‘~/.idl_history’ for this);

• complete file names with
✄

✂

�

✁Tab (works to some extent);

• . . . use all the other readline features that you are using in bash, octave, bc, gnuplot, ftp, etc.

5.19 Visualization 45

IDL> .r rall

instead of .r r (here, .r is a shorthand for .run). The procedure ‘rall.pro’ reads (and
assembles) the data from all processors and correspondingly requires large amounts of
memory for very large runs. If you want to look at just the data from one processor, use
‘r.pro’ instead.

If you need the magnetic field or the current density, you can calculate them in IDL by
11

IDL> bb=curl(aa)

IDL> jj=curl2(aa)

By default one is reading always the current snapshot ‘data/procN/var.dat’; if you want
to read one of the permanent snapshots, use (for example)

IDL> varfile=’VAR2’

IDL> .r r (or .r rall)

See Sect. 5.6.1 for details on permanent snapshots.

With ‘r.pro’, you can switch the part of the domain by changing the variable datadir:

IDL> datadir=’data/proc3’

IDL> .r r

will read the data written by processor 3.

Reading data into IDL arrays or structures As an alternative to the method described
above, there is also the possibility to read the data into structures. This makes some
more operations possible, e.g. reading data from an IDL program where the command
.r is not allowed.

An efficient and still scriptable way would look like the following:

IDL> pc_read_var_raw, obj=var, tags=tags

IDL> bb = pc_get_quantity (’B’, var, tags)

IDL> jj = pc_get_quantity (’j’, var, tags)

This reads the data into an array ‘var’, as well as the array indices of the contained phys-
ical variables into a separate structure ‘tags’. To use a caching mechanism within pc_-

get_quantity, please refer to the documentation and the examples contained in ‘pencil-
code/idl/pc get quantity.pro’, where you can also start adding not yet implemented phys-
ical quantities.

To read a snapshot ’VAR10’ into the IDL structure ff, type the following command

IDL> pc_read_var, obj=ff, varfile=’VAR10’, /trimall

The option /trimall removes ghost zones from the data. A number of other options are
documented in the source code of pc_read_var. You can see what data the structure
contains by using the command tag_names

IDL> print, tag_names(ff)

T X Y Z DX DY DZ UU LNRHO AA

11 Keep in mind that jj=curl(bb) would use iterated first derivatives instead of the second derivatives
and thus be numerically less accurate than jj=curl2(aa), particularly at small scales.

46 THE PENCIL CODE

One can access the individual variables by typing ff.varname, e.g.

IDL> help, ff.aa

<Expression> FLOAT = Array[32, 32, 32, 3]

There are a number of files that read different data into structures. They are placed in
the directory $PENCIL_HOME/idl/files. Here is a list of files (including suggested options
to call them with)

• pc_read_var_raw, obj=var, tags=tags

Efficiently read a snapshot into an array.

• pc_read_var, obj=ff, /trimall

Read a snapshot into a structure.

• pc_read_ts, obj=ts

Read the time series into a structure.

• pc_read_xyaver, obj=xya

pc_read_xzaver, obj=xza

pc_read_yzaver, obj=yza

Read 1-D time series into a structure.

• pc_read_const, obj=cst

Read code constants into a structure.

• pc_read_pvar, obj=fp

Read particle data into a structure.

• pc_read_param, obj=par

Read startup parameters into a structure.

• pc_read_param, obj=par2, /param2

Read runtime parameters into a structure.

Other options are documented in the source code of the files.

For some examples on how to use these routines, see Sect. 5.19.3.

5.19.5 Python

Pencil supports reading, processing and the visualization of data using python. A num-
ber of scripts are placed in the subfolder ‘$PENCIL_HOME/python’. A README file placed
under that subfolder contains the information needed to read Pencil output data into
python.

Installation For modern operating systems, Python is generally installed together with
the system. If not, it can be installed via your preferred package manager or downloaded
from the website https://www.python.org/. For convenience, it is strongly recommend
to also install IPython, which is a more convenient console for Python. You will also need
the NumPy, matplotlib and Tk library.

Perhaps the easiest way to obtain all the required software mentioned above is to install
either Continuum’s Anaconda or Enthought’s Canopy. These Python distributions also
provide (or indeed are) integrated graphical development environments.

https://www.python.org/

5.19 Visualization 47

In order for Python to find the Pencil Code commands you will have to add to your
.bashrc:

export PYTHONPATH=$PENCIL_HOME/python

ipythonrc If you use IPython, for convenience, you should modify your
.ipython/ipythonrc (create it if it doesn’t exist) and add:

import_all pencil

Additional, add to your .ipython/profile_default/startup/init.py the following lines:

import numpy as np

import pylab as plt

import pencil as pc

import matplotlib

from matplotlib import rc

plt.ion()

matplotlib.rcParams[’savefig.directory’] = ’’

.pythonrc In case you are on a cluster and don’t have access to IPython you can edit
your .pythonrc:

#!/usr/bin/python

import numpy as np

import pylab as plt

import pencil as pc

import atexit

#import readline

import rlcompleter

enables search with CTR+r in the history

try:

import readline

except ImportError:

print "Module readline not available."

else:

import rlcompleter

readline.parse_and_bind("tab: complete")

enables command history

historyPath = os.path.expanduser("~/.pyhistory")

def save_history(historyPath=historyPath):

import readline

readline.write_history_file(historyPath)

if os.path.exists(historyPath):

readline.read_history_file(historyPath)

atexit.register(save_history)

del os, atexit, readline, rlcompleter, save_history, historyPath

plt.ion()

48 THE PENCIL CODE

create the file .pythonhistory and add to your .bashrc:

export PYTHONSTARTUP=~/.pythonrc

Pencil Code Commands in General For a list of all Pencil Code commands start
IPython and type pc. <TAB> (as with auto completion). To access the help of any com-
mand just type the command followed by a ’?’ (no spaces), e.g.:

In [1]: pc.dot?

Type: function

String Form:<function dot at 0x7f9d96cb0cf8>

File: ~/pencil-code/python/pencil/math/vector_multiplication.py

Definition: pc.dot(a, b)

Docstring:

take dot product of two pencil-code vectors a & b with shape

a.shape = (3,mz,my,mx)

You can also use help(pc.dot) for a more complete documentation of the command.

There are various reading routines for the Pencil Code data. All of them return an object
with the data. To store the data into a user defined variable type e.g.

In [1]: ts = pc.read_ts()

Most commands take some arguments. For most of them there is a default value, e.g.

In [1]: pc.read_ts(filename=’time_series.dat’, datadir=’data’, plot_data=True)

You can change the values by simply typing e.g.

In [1]: pc.read_ts(plot_data = False)

Reading and Plotting Time Series Reading the time series file is very easy. Simply
type

In [1]: ts = pc.read_ts()

and Python stores the data in the variable ts. The physical quantities are members of
the object ts and can be accessed accordingly, e.g. ts.t, ts.emag. To check which other
variables are stored simply do the tab auto completion ts. <TAB>.

Plot the data with the matplotlib commands:

In [1]: plt.plot(ts.t, ts.emag)

The standard plots are not perfect and need a little polishing. See
the online wiki for a few examples on how to make pretty plots
(https://github.com/pencil-code/pencil-code/wiki/PythonForPencil). You can
save the plot into a file using the GUI or with

In [1]: plt.savefig(’plot.eps’)

Reading and Plotting VAR files and slice files Read var files:

In [1]: var = pc.read_var()

https://github.com/pencil-code/pencil-code/wiki/PythonForPencil

5.20 Running on multi-processor computers 49

Read slice files:

In [1]: slices, t = pc.read_slices(field=’bb1’, extension=’xy’)

This returns the array slices with indices slices[nTimes, my, mx] and the time array
t.

If you want to plot e.g. the x-component of the magnetic field at the central plane simply
type:

In [1]: plt.imshow(zip(*var.bb[0, 128, :, :]), origin=’lower’, extent=[-4, 4, -4, 4])

For a complete list of arguments of plt.imshow refer to its documentation.

For a more interactive plot use:

In [1]: pc.animate_interactive(slices, t)

Be aware: arrays from the reading routines are ordered f[nvar, mz, my, mx], i.e. re-
versed to IDL. This affects reading var files and slice files.

5.20 Running on multi-processor computers

The code is parallelized using MPI (message passing interface) for a simple domain
decomposition (data-parallelism), which is a straight-forward and very efficient way of
parallelizing finite-difference codes. The current version has a few restrictions, which
need to be kept in mind when using the MPI features.

The global number of grid points (but excluding the ghost zones) in a given direction
must be an exact multiple of the number of processors you use in that direction. For
example if you have nprocy=8 processors for the y direction, you can run a job with
nygrid=64 points in that direction, but if you try to run a problem with nygrid=65 or
nygrid=94, the code will complain about an inconsistency and stop. (So far, this has not
been a serious restriction for us.)

5.20.1 How to run a sample problem in parallel

To run the sample problem in the directory ‘samples/conv-slab’ on 16 CPUs, you need
to do the following (in that directory):

1. Edit ‘src/Makefile.local’ and replace

MPICOMM = nompicomm

by

MPICOMM = mpicomm

2. Edit ‘src/cparam.local’ and replace

integer, parameter :: ncpus=1, nprocy=1, nprocz=ncpus/nprocy, nprocx=1

integer, parameter :: nxgrid=32, nygrid=nxgrid, nzgrid=nxgrid

by

integer, parameter :: ncpus=16, nprocy=4, nprocz=ncpus/nprocy, nprocx=1

integer, parameter :: nxgrid=128, nygrid=nxgrid, nzgrid=nxgrid

50 THE PENCIL CODE

The first line specifies a 4×4 layout of the data in the y and z direction. The second
line increases the resolution of the run because running a problem as small as 323

on 16 CPUs would be wasteful. Even 1283 may still be quite small in that respect.
For performance timings, one should try and keep the size of the problem per CPU
the same, so for example 2563 on 16 CPUs should be compared with 1283 on 2 CPUs.

3. Recompile the code

unix> (cd src; make)

4. Run it

unix> start.csh

unix> run.csh

Make sure that all CPUs see the same ‘data/’ directory; otherwise things will go wrong.

Remember that in order to visualize the full domain with IDL (rather than just the
domain processed and written by one processor), you need to use ‘rall.pro’ instead of
‘r.pro’.

5.20.2 Hierarchical networks (e.g. on Beowulf clusters)

On big Beowulf clusters, a group of nodes is often connected with a switch of modest
speed, and all these groups are connected via a n times faster uplink switch. When
bandwidth-limited, it is important to make sure that consecutive processors are mapped
onto the mesh such that the load on the uplink is . n times larger than the load on the
slower switch within each group. On a 512 node cluster, where groups of 24 processors
are linked via fast ethernet switches, which in turn are connected via a Gigabit uplink
(∼ 10 times faster), we found that nprocy=4 is optimal. For 128 processors, for example
we find that nprocy×nprocz = 4×32 is the optimal layout, while. For comparison, 8×16
is 3 times slower, and 16× 8 is 17 (!) times slower. These results can be understood from
the structure of the network, but the basic message is to watch out for such effects and
to try varying nprocy and nprocz.

In cases where nygrid>nzgrid it may be advantageous to swap the ordering of processor
numbers. This can be done by setting lprocz slowest=F.

5.20.3 Extra workload caused by the ghost zones

Normally, the workload caused by the ghost zones is negligible. However, if one increases
the number of processors, a significant fraction of work is done in the ghost zones. In
other words, the effective mesh size becomes much larger than the actual mesh size.

Consider a mesh of size Nw = Nx ×Ny ×Nz, and distribute the task over Pw = Px × Py ×
Pz processors. If no communication were required, the number of points per processor
would be

Nw

Pw

=
Nx ×Ny ×Nz

Px × Py × Pz

. (26)

However, for finite difference codes some communication is required, and the amount of
communication depends on spatial order of the scheme, Q. The PENCIL CODE works by

5.21 Running in double-precision 51

default with sixth order finite differences, so Q = 6, i.e. one needs 6 ghost zones, 3 on
each end of the mesh. With Q 6= 0 the number of points per processor is

N
(eff)
w

Pw

=

(

Nx

Px

+Q

)

×
(

Ny

Py

+Q

)

×
(

Nz

Pz

+Q

)

. (27)

There is efficient scaling only when

min

(

Nx

Px

,
Ny

Py

,
Nz

Pz

)

≫ Q. (28)

In the special case were Nx = Ny = Nz ≡ N = N
1/3
w , with Px = 1 and Py = Pz ≡ P = P

1/2
w ,

we have
N

(eff)
w

Pw

= (N +Q)×
(

N

P
+Q

)2

. (29)

For N = 128 and Q = 6 the effective mesh size exceeds the actual mesh size by a factor

N
(eff)
w

Nw

= (N +Q)×
(

N

P
+Q

)2

× Pw

Nw

. (30)

These factors are listed in Table 3.

Table 3: N
(eff)
w /Nw versus N and P .

P\N 128 256 512 1024 2048
1 1.15 1.07 1.04 1.02 1.01
2 1.19 1.09 1.05 1.02 1.01
4 1.25 1.12 1.06 1.03 1.01
8 1.34 1.16 1.08 1.04 1.02

16 1.48 1.22 1.11 1.05 1.03
32 1.68 1.31 1.15 1.07 1.04
64 1.98 1.44 1.21 1.10 1.05

128 2.45 1.64 1.30 1.14 1.07
256 3.21 1.93 1.43 1.20 1.10
512 4.45 2.40 1.62 1.29 1.14

Ideally, one wants to keep the work in the ghost zones at a minimum. If one accepts
that 20–25% of work are done in the ghost zones, one should use 4 processors for 1283

mesh points, 16 processors for 2563 mesh points, 64 processors for 5123 mesh points, 256
processors for 10243 mesh points, and 512 processors for 15363 mesh points.

5.21 Running in double-precision

With many compilers, you can easily switch to double precision (8-byte floating point
numbers) as follows.

Add the lines

Use double precision

REAL_PRECISION = double

52 THE PENCIL CODE

to ‘src/Makefile.local’ and (re-)run pc_setupsrc.

If REAL PRECISION is set to ‘double’, the flag FFLAGS DOUBLE is appended to
the Fortran compile flags. The default for FFLAGS DOUBLE is -r8, which works for
g95 or ifort; for gfortran, you need to make sure that FFLAGS DOUBLE is set to
-fdefault-real-8.

You can see the flags in ‘src/Makefile.inc’, which is the first place to check if you have
problems compiling for double precision.

Using double precision might be important in turbulence runs where the resolution
is 2563 meshpoints and above (although such runs often seem to work fine at single
precision). To continue working in double precision, you just say lread_from_other_-

prec=T in run_pars; see Section F.1.

5.22 Power spectrum

Given a real variable u, its Fourier transform ũ is given by

ũ(kx, ky, kz) = F(u(x, y, z)) =
1

NxNyNz

Nx−1
∑

p=0

Ny−1
∑

q=0

Nz−1
∑

r=0

u(xp, yq, zr)

× exp(−ikxxp) exp(−ikyyq) exp(−ikzzr), (31)

where

|kx| <
πNx

Lx

, |ky| <
πNy

Ly

, |kz| <
πNz

Lz

,

when L is the size of the simulation box. The three-dimensional power spectrum P (k) is
defined as

P (k) =
1

2
ũũ∗, (32)

where

k =
√

k2x + k2y + k2z . (33)

Note that we can only reasonably calculate P (k) for k < πNx/Lx.

To get power spectra from the code, edit ‘run.in’ and add for example the following lines

dspec=5., ou_spec=T, ab_spec=T !(for energy spectra)

oned=T

under run_pars. The kinetic (vel_spec) and magnetic (mag_spec) power spectra will
now be calculated every 5.0 (dspec) time units. The Fourier spectra is calculated using
fftpack . In addition to calculating the three-dimensional power spectra also the one-
dimensional power spectra will be calculated (oned).

In addition one must edit ‘src/Makefile.local’ and add the lines

FOURIER = fourier_fftpack

POWER = power_spectrum

Running the code will now create the files ‘powerhel_mag.dat’ and ‘power_kin.dat’
containing the three-dimensional magnetic and kinetic power spectra respectively. In
addition to these three-dimensional files we will also find the one-dimensional files
‘powerbx_x.dat’, ‘powerby_x.dat’, ‘powerbz_x.dat’, ‘powerux_x.dat’, ‘poweruy_x.dat’ and

5.22 Power spectrum 53

‘poweruz_x.dat’. In these files the data are stored such that the first line contains the
time of the snapshot, the following nxgrid/2 numbers represent the power at each
wavenumber, from the smallest to the largest. If several snapshots have been saved,
they are being stored immediately following the preceding snapshot.

You can read the results with the idl procure ‘power’, like this:

power,’_kin’,’_mag’,k=k,spec1=spec1,spec2=spec2,i=n,tt=t,/noplot

power,’hel_kin’,’hel_mag’,k=k,spec1=spec1h,spec2=spec2h,i=n,tt=t,/noplot

If powerhel is invoked, krms is written during the first computation. The relevant out-
put file is ‘power_krms.dat’. This is needed for a correct calculation of k used in the
realizability conditions.

A caveat of the implementation of Fourier transforms in the PENCIL CODE is that, due
to the parallelization, the permitted resolution is limited to the case when one direction
is an integer multiple of the other. So, it can be done for

Nx = n*Ny

Unfortunately, for some applications one wants Nx < Ny. Wlad experimented with ar-
bitrary resolution by interpolating x to the same resolution of y prior to transposing,
then transform the interpolated array and then interpolating it back (check ‘fourier_-
transform_y’ in ‘fourier_fftpack.f90’).

A feature of our current implementation with x parallelization is that fft_xyz_-

parallel_3D requires nygrid to be an integer multiple of nprocy*nprocz. Examples of
good mesh layouts are listed in Table 4.

Table 4: Examples of mesh layouts for which Fourier transforms with x parallelization is possible.

ny nprocyx nprocy nprocz ncpus
256 1 16 16 256
256 2 16 16 512
256 4 16 16 1024
256 8 16 16 2048
288 2 16 18 576
512 2 16 32 1024
512 4 16 16 1024
512 4 16 32 2048
576 4 18 32 2304
576 8 18 32 4608
576 16 18 32 9216

1024 4 32 32 4096
1024 4 16 64 4096
1024 8 16 32 4096
1152 4 36 32 4608
1152 4 32 36 4608
2304 2 32 72 4608
2304 4 36 64 9216
2304 4 32 72 9216

To visualize with IDL just type power and you get the last snapshot of the three-

54 THE PENCIL CODE

dimensional power spectrum. See head of ‘$PENCIL_HOME/idl/power.pro’ for options to
power.

5.23 Structure functions

We define the p-th order longitudinal structure function of u as

Sp
long(l) = 〈|ux(x+l, y, z)− ux(x, y, z)|p〉 , (34)

while the transverse is

Sp
trans(l) = 〈|uy(x+l, y, z)− uy(x, y, z)|p〉+ 〈|uz(x+l, y, z)− uz(x, y, z)|p〉 . (35)

Edit ‘run.in’ and add for example the following lines

dspec=2.3,

lsfu=T, lsfb=T, lsfz1=T, lsfz2=T

under run_pars. The velocity (lsfu), magnetic (lsfb) and Elsasser (lsfz1 and lsfz2)
structure functions will now be calculated every 2.3 (dspec) time unit.

In addition one must edit ‘src/Makefile.local’ and add the line

STRUCT_FUNC = struct_func

In ‘src/cparam.local’, define lb nxgrid and make sure that

nxgrid = nygrid = nzgrid = 2**lb_nxgrid

E.g.

integer, parameter :: lb_nxgrid=5

integer, parameter :: nxgrid=2**lb_nxgrid,nygrid=nxgrid,nzgrid=nxgrid

Running the code will now create the files:
‘sfu-1.dat’, ‘sfu-2.dat’, ‘sfu-3.dat’ (velocity),
‘sfb-1.dat’, ‘sfb-2.dat’, ‘sfb-3.dat’ (magnetic field),
‘sfz1-1.dat’, ‘sfz1-2.dat’, ‘sfz1-3.dat’ (first Elsasser variable),
‘sfz2-1.dat’, ‘sfz2-2.dat’, ‘sfz2-3.dat’ (second Elsasser variable),
which contains the data of interest. The first line in each file contains the time t and
the number qmax, such that the largest moment calculated is qmax − 1. The next imax
numbers represent the first moment structure function for the first snapshot, here

imax = 2
ln(nxgrid)

ln 2
− 2. (36)

The next imax numbers contain the second moment structure function, and so on until
qmax − 1. The following imax numbers then contain the data of the signed third order
structure function i.e. S3

long(l) = 〈[ux(x+l, y, z)− ux(x, y, z)]
3〉.

The following imax×qmax×2 numbers are zero if nr directions = 1 (default), otherwise
they are the same data as above but for the structure functions calculated in the y and
z directions.

5.24 Particles 55

If the code has been run long enough as to calculate several snapshots, these snapshots
will now follow, being stored in the same way as the first snapshot.

To visualize with IDL just type structure and you get the time-average of the first order
longitudinal structure function (be sure that ‘pencil-runs/forced/idl/’ is in IDL_PATH).
See head of ‘pencil-runs/forced/idl/structure.pro’ for options to structure.

5.24 Particles

The PENCIL CODE has modules for tracer particles and for dust particles (see Sect. 6.14).
The particle modules are chosen by setting the value of the variable PARTICLES in
Makefile.local to either particles_dust or particles_tracers. For the former case
each particle has six degrees of freedom, three positions and three velocities. For the
latter it suffices to have only three position variables as the velocity of the particles are
equal to the instantaneous fluid velocity at that point. In addition one can choose to have
several additional internal degrees of freedoms for the particles. For example one can
temporally evolve the particles radius by setting PARTICLES_RADIUS to particles_radius
in Makefile.local.

All particle infrastructure is controlled and organized by the Particles_main module.
This module is automatically selected by Makefile.src if PARTICLES is different from
noparticles. Particle modules are compiled as a separate library. This way the main
part of the Pencil Code only needs to know about the particles_main.a library, but not
of the individual particle modules.

For a simulation with particles one must in addition define a few parameters in
cparam.local. Here is a sample of cparam.local for a parallel run with 2,000,000 parti-
cles:

integer, parameter :: ncpus=16, nprocy=4, nprocz=4, nprocx=1

integer, parameter :: nxgrid=128, nygrid=256, nzgrid=128

integer, parameter :: npar=2000000, mpar_loc=400000, npar_mig=1000

integer, parameter :: npar_species=2

The parameter npar is the number of particles in the simulation, mpar_loc is the number
of particles that is allowed on each processor and npar_mig is the number of particles
that are allowed to migrate from one processor to another in any time-step. For a non-
parallel run it is enough to specify npar. The number of particle species is set through
npar_species (assumed to be one if not set). The particle input parameters are given in
start.in and run.in. Here is a sample of the particle part of start.in for dust particles:

/

&particles_init_pars

initxxp=’gaussian-z’, initvvp=’random’

zp0=0.02, delta_vp0=0.01, eps_dtog=0.01, tausp=0.1

lparticlemesh_tsc=T

/

The initial positions and velocities of the dust particles are set in initxxp and initvvp.
The next four input parameters are further specifications of the initial condition. Inter-
action between the particles and the mesh, e.g. through drag force or self-gravity, require
a mapping of the particles on the mesh. The PENCIL CODE currently supports NGP
(Nearest Grid Point, default), CIC (Cloud in Cell, set lparticlemesh_cic=T) and TSC

56 THE PENCIL CODE

(Triangular Shaped Cloud, set lparticlemesh_tsc=T). See Youdin & Johansen (2007) for
details.

Here is a sample of the particle part of run.in (also for dust particles):

/

&particles_run_pars

ldragforce_gas_par=T

cdtp=0.2

/

The logical ldragforce_gas_par determines whether the dust particles influence the gas
with a drag force. cdtp tells the code how many friction times should be resolved in a
minimum time-step.

The sample run ‘samples/sedimentation/’ contains the latest setup for dust particles.

5.24.1 Particles in parallel

The particle variables (e.g. xi and vi) are kept in the arrays fp and dfp. For parallel
runs, particles must be able to move from processor to processor as they pass out of the
(x, y, z)-interval of the local processor. Since not all particles are present at the same
processor at the same time (hopefully), there is some memory optimization in making
fp not big enough to contain all the particles at once. This is achieved by setting the code
variable mpar_loc less than npar in cparam.local for parallel runs. When running with
millions of particles, this trick is necessary to keep the memory need of the code down.

The communication of migrating particles between the processors happens as follows
(see the subroutine redist_particles_procs in particles_sub.f90):

1. In the beginning of each time-step all processors check if any of their particles have
crossed the local (x, y, z)-interval. These particles are called migrating particles. A
run can have a maximum of npar_mig migrating particles in each time-step. The
value of npar_mig must be set in cparam.local. The number should (of course) be
slightly larger than the maximum number of migrating particles at any time-step
during the run. The diagnostic variable nmigmax can be used to output the maxi-
mum number of migrating particles at a given time-step. One can set lmigration_-
redo=T in &particles_run_pars to force the code to redo the migration step if more
than npar_mig want to migrate. This does slow the code down somewhat, but has
the benefit that the code does not stop when more than npar_mig particles want to
migrate.

2. The index number of the receiving processor is then calculated. This requires some
assumption about the grid on other processors and will currently not work for
nonequidistant grids. Particles do not always pass to neighboring processors as the
global boundary conditions may send them to the other side of the global domains
(periodic or shear periodic boundary conditions).

3. The migrating particle information is copied to the end of fp, and the empty spot
left behind is filled up with the particle of the highest index number currently
present at the processor.

4. Once the number of migrating particles is known, this information is shared with
neighboring processors (including neighbors over periodic boundaries) so that they

5.24 Particles 57

all know how many particles they have to receive and from which processors.

5. The communication happens as directed MPI communication. That means that
processors 0 and 1 can share migrating particles at the same time as processors 2
and 3 do it. The communication happens from a chunk at the end of fp (migrating
particles) to a chunk that is present just after the particle of the highest index
number that is currently at the receiving processor. Thus the particles are put
directly at their final destination, and the migrating particle information at the
source processor is simply overwritten by other migrating particles at the next
time-step.

6. Each processor keeps track of the number of particles that it is responsible for. This
number is stored in the variable npar_loc. It must never be larger than mpar_loc

(see above). When a particle leaves a processor, npar_loc is reduced by one, and
then increased by one at the processor that receives that particle. The maximum
number of particles at any processor is stored in the diagnostic variable nparmax. If
this value is not close to npar/ncpus, the particles have piled up in such a way that
computations are not evenly shared between the processors. One can then try to
change the parallelization architecture (nprocy and nprocz) to avoid this problem.

In simulations with many particles (comparable to or more than the number of grid
cells), it is crucial that particles are shared relatively evenly among the processors. One
can as a first approach attempt to not parallelize directions with strong particle density
variations. However, this is often not enough, especially if particles clump locally.

Alternatively one can use Particle Block Domain Decomposition (PBDD, see Johansen
et al. 2011). The steps in Particle Block Domain Decomposition scheme are as follows:

1. The fixed mesh points are domain-decomposed in the usual way (with
ncpus=nprocx×nprocy×nprocz).

2. Particles on each processor are counted in bricks of size nbx×nby×nbz (typically
nbx= nby=nbz=4).

3. Bricks are distributed among the processors so that each processor has approxi-
mately the same number of particles

4. Adopted bricks are referred to as blocks.

5. The Pencil Code uses a third order Runge-Kutta time-stepping scheme. In the be-
ginning of each sub-time-step particles are counted in blocks and the block counts
communicated to the bricks on the parent processors. The particle density assigned
to ghost cells is folded across the grid, and the final particle density (defined on the
bricks) is communicated back to the adopted blocks. This step is necessary because
the drag force time-step depends on the particle density, and each particle assigns
density not just to the nearest grid point, but also to the neighboring grid points.

6. In the beginning of each sub-time-step the gas density and gas velocity field is
communicated from the main grid to the adopted particle blocks.

7. Drag forces are added to particles and back to the gas grid points in the adopted
blocks. This partition aims at load balancing the calculation of drag forces.

8. At the end of each sub-time-step the drag force contribution to the gas velocity field
is communicated from the adopted blocks back to the main grid.

58 THE PENCIL CODE

Particle Block Domain Decomposition is activated by setting PARTICLES = particles_-

dust_blocks and PARTICLES_MAP = particles_map_blocks in Makefile.local. A sam-
ple of cparam.local for Particle Block Domain Decomposition can be found in
samples/sedimentation/blocks:

integer, parameter :: ncpus=4, nprocx=2, nprocy=2, nprocz=1

integer, parameter :: nxgrid=32, nygrid=32, nzgrid=32

integer, parameter :: npar=10000, mpar_loc=5000, npar_mig=100

integer, parameter :: npar_species=4

integer, parameter :: nbrickx=4, nbricky=4, nbrickz=4, nblockmax=32

The last line defines the number of bricks in the total domain – here we divide the grid
into 4× 4× 4 bricks each of size 8× 8× 8 grid points. The parameter nblockmax tells the
code the maximum number of blocks any processor may adopt. This should not be so low
that there is not room for all the bricks with particles, nor so high that the code runs out
of memory.

5.24.2 Large number of particles

When dealing with large number of particles, one needs to make sure that the number
of particles npar is less than the maximum integer that the compiler can handle with.
The maximum integer can be checked by the Fortran intrinsic function huge,

program huge_integers

print *, huge(0_4) ! for default Fortran integer (32 Bit)

print *, huge(0_8) ! for 64 Bit integer in Fortran

end program huge_integers

If the number of particles npar is larger than default maximum integer, one can promote
the maximum integer to 64 Bit by setting

integer(kind=8), parameter :: npar=4294967296

in the cparam.local file. This works because the data type of npar is only set here. It is
worth noting that one should not use the flag

FFLAGS += -integer-size 64

to promote all the integers to 64 Bit. This will break the Fortran-C interface. One
should also make sure that npar_mig<=npar/ncpus. It is also beneficial to set mpar_-

loc=2*npar/ncpus.

5.24.3 Random number generator

There are several methods to generate random number in the code. It is worth noting
that when simulating coagulation with the super-particle approach, one should use the
intrinsic random number generator of FORTRAN instead of the one implemented in the
code. When invoking random_number_wrapper, there will be back-reaction to the gas flow.
This unexpected back-reaction can be tracked by inspecting the power spectra, which
exhibits the oscillation at the tail. To avoid this, one should set luser_random_number_-
wrapper=F under the module particles_coag_run_pars in run.in.

5.25 Non-cartesian coordinate systems 59

5.25 Non-cartesian coordinate systems

Since the spring of 2007 spherical and cylindrical polar coordinates have been imple-
mented, although this development is not yet completed. Spherical coordinates are in-
voked by adding the following line in the file ‘start.in’

&init_pars

coord_system=’spherical_coords’

Another possibility is to put cylindrical_coords instead. In practice, the names (x, y, z)
are still used, but they refer then to (r, θ, φ) or (r, φ, z) instead.

Bug reports, corrections, and improvements on these are appreciated.

60 THE PENCIL CODE

6 The equations

The equations solved by the PENCIL CODE are basically the standard compressible
MHD equations. However, the modular structure allows some variations of the MHD
equations, as well as switching off some of the equations or individual terms of the
equation (nomagnetic, noentropy, etc.).

In this section the equations are presented in their most complete form. It may be ex-
pected that the code can evolve most subsets or simplifications of these equations.

6.1 Continuity equation

In the code the continuity equation, ∂ρ/∂t+∇ · ρu = 0, is written in terms of ln ρ,

D ln ρ

Dt
= −∇ · u . (37)

Here ρ denotes density, u the fluid velocity, t is time and D/Dt ≡ ∂/∂t + u · ∇ is the
convective derivative.

6.2 Equation of motion

In the equation of motion, using a perfect gas, the pressure term, can be expressed as
−ρ−1∇p = −c2s (∇s/cp +∇ ln ρ), where the squared sound speed is given by

c2s = γ
p

ρ
= c2s0 exp

[

γs/cp + (γ−1) ln
ρ

ρ0

]

, (38)

and γ = cp/cv is the ratio of specific heats, or adiabatic index. Note that c2s is proportional
to the temperature with c2s = (γ − 1)cpT .

The equation of motion is accordingly

Du

Dt
= −c2s∇

(

s

cp
+ ln ρ

)

−∇Φgrav +
j ×B

ρ

+ν

(

∇2u+
1

3
∇∇ · u+ 2S ·∇ ln ρ

)

+ ζ (∇∇ · u) ; (39)

Here Φgrav is the gravity potential, j the electric current density, B the magnetic flux
density, ν is kinematic viscosity, ζ describes a bulk viscosity, and, in Cartesian coordi-
nates

Sij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij∇ · u

)

(40)

is the rate-of-shear tensor that is traceless, because it can be written as the generic rate-
of-strain tensor minus its trace. In curvilinear coordinates, we have to replace partial
differentiation by covariant differentiation (indicated by semicolons), so we write Sij =
1
2
(ui;j + uj;i)− 1

3
δij∇ · u.

The interpretation of the two viscosity terms varies greatly depending upon the Viscos-
ity module used, and indeed on the parameters given to the module. See §6.6.
For isothermal hydrodynamics, see §6.4 below.

6.3 Induction equation 61

6.3 Induction equation

∂A

∂t
= u×B − ηµ0j . (41)

Here A is the magnetic vector potential, B = ∇ × A the magnetic flux density, η =
1/(µ0σ) is the magnetic diffusivity (σ denoting the electrical conductivity), and µ0 the
magnetic vacuum permeability. This form of the induction equation corresponds to the
Weyl gauge Φ = 0, where Φ denotes the scalar potential.

6.4 Entropy equation

The current thermodynamics module entropy formulates the thermal part of the physics
in terms of entropy s, rather than thermal energy e, which you may be more famil-
iar with. Thus the two fundamental thermodynamical variables are ln ρ and s. The
reason for this choice of variables is that entropy is the natural physical variable for
(at least) convection processes: the sign of the entropy gradient determines convective
(in)stability, the Rayleigh number is proportional to the entropy gradient of the associ-
ated hydrostatic reference solution, etc. The equation solved is

ρT
Ds

Dt
= H− C +∇ · (K∇T) + ηµ0j

2 + 2ρνS⊗ S+ ζρ (∇ · u)2 . (42)

Here, T is temperature, cp the specific heat at constant pressure, H and C are explicit
heating and cooling terms, K is the radiative (thermal) conductivity, ζ describes a bulk
viscosity, and S is the rate-of-shear tensor that is traceless.

In the entropy module we solve for the specific entropy, s. The heat conduction term on
the right hand side can be written in the form

∇ · (K∇T)

ρT
(43)

= cpχ
[

∇2 lnT +∇ lnT ·∇(lnT+ lnχ+ ln ρ)
]

(44)

= cpχ
[

γ∇2s/cp + (γ−1)∇2 ln ρ
]

+cpχ [γ∇s/cp + (γ−1)∇ ln ρ] · [γ (∇s/cp +∇ ln ρ) +∇ lnχ] , (45)

where χ = K/(ρcp) is the thermal diffusivity. The latter equation shows that the diffu-
sivity for s is γχ, which is what we have used in Eq. (24).

In an alternative formulation for a constant K, the heat conduction term on the right
hand side can also be written in the form

∇ · (K∇T)

ρT
=
K

ρ

[

∇2 lnT + (∇ lnT)2
]

(46)

which is the form used when constant K is chosen.

Note that by setting γ = 1 and initially s = 0, one obtains an isothermal equation of
state (albeit at some unnecessary expense of memory). Similarly, by switching off the
evolution terms of entropy, one immediately gets polytropic behavior (if s was initially
constant) or generalized polytropic behavior (where s is not uniform, but ∂s/∂t = 0).

A better way to achieve isothermality is to use the noentropy module.

62 THE PENCIL CODE

6.4.1 Viscous heating

We can write the viscosity as the divergence of a tensor τij,j,

ρ
∂ui
∂t

= ...+ τij,j , (47)

where τij = 2νρSij is the stress tensor. The viscous power density P is

P = uiτij,j (48)

=
∂

∂xj
(uiτij)− ui,jτij (49)

The term under the divergence is the viscous energy flux and the other term is the
kinetic energy loss due to heating. The heating term +ui,jτij is positive definite, because
τij is a symmetric tensor and the term only gives a contribution from the symmetric part
of ui,j, which is 1

2
(ui,j + uj,i), so

ui,jτij =
1

2
νρ(ui,j + uj,i)(2Sij) . (50)

But, because Sij is traceless, we can add anything proportional to δij and, in particular,
we can write

ui,jτij =
1

2
(ui,j + uj,i)(2νρSij) (51)

=
1

2
(ui,j + uj,i −

1

3
δij∇ · u)(2νρSij) (52)

= 2νρS2, (53)

which is positive definite.

6.4.2 Alternative description

By setting pretend_lnTT=T in init_pars or run_pars (i.e. the general part of the name
list) the logarithmic temperature is used instead of the entropy. This has computational
advantages when heat conduction (proportional toK∇T) is important. Another alterna-
tive is to use another module, i.e. set ENTROPY=temperature_idealgas in ‘Makefile.local’.

When pretend_lnTT=T is set, the entropy equation

∂s

∂t
= −u ·∇s+

1

ρT
RHS (54)

is replaced by

∂ lnT

∂t
= −u ·∇ lnT +

1

ρcvT
RHS− (γ − 1)∇ · u, (55)

where RHS is the right hand side of equation (42).

6.5 Transport equation for a passive scalar 63

6.5 Transport equation for a passive scalar

In conservative form, the equation for a passive scalar is

∂

∂t
(ρc) +∇ · [ρcu− ρD∇c] = 0. (56)

Here c denotes the concentration (per unit mass) of the passive scalar and D its diffusion
constant (assumed constant). In the code this equation is solved in terms of ln c,

D ln c

Dt
= D

[

∇2 ln c+ (∇ ln ρ+∇ ln c) ·∇ ln c
]

. (57)

Using ln c instead of c has the advantage that it enforces c > 0 for all times. However,
the disadvantage is that one cannot have c = 0. For this reason we ended up using the
non-logarithmic version by invoking PSCALAR=pscalar_nolog.

6.6 Bulk viscosity

For a monatomic gas it can be shown that the bulk viscosity vanishes. We therefore don’t
use it in most of our runs. However, for supersonic flows, or even otherwise, one might
want to add a shock viscosity which, in its simplest formulation, take the form of a bulk
viscosity.

6.6.1 Shock viscosity

Shock viscosity, as it is used here and also in the Stagger Code of Åke Nordlund, is
proportional to positive flow convergence, maximum over five zones, and smoothed to
second order,

ζshock = cshock

〈

max
5

[(−∇ · u)+]
〉

(min(δx, δy, δz))2, (58)

where cshock is a constant defining the strength of the shock viscosity. In the code this
dimensionless coefficient is called nu_shock, and it is usually chosen to be around unity.
Assume that the shock viscosity only enters as a bulk viscosity, so the whole stress
tensor is then

τ ij = 2ρνSij + ρζshockδij∇ · u. (59)

Assume ν = const, but ζ 6= const, so

ρ−1F visc = ν

(

∇2u+
1

3
∇∇ · u+ 2S ·∇ ln ρ

)

+ ζshock [∇∇ · u+ (∇ ln ρ+∇ ln ζshock)∇ · u] .
(60)

and
ρ−1Γvisc = 2νS2 + ζshock(∇ · u)2. (61)

In the special case with periodic boundary conditions, we have 2〈S2〉 = 〈ω2〉+ 4
3
〈(∇ ·u)2〉.

6.7 Equation of state

In its present configuration only hydrogen ionization is explicitly included. Other con-
stituents (currently He and H2) can have fixed values. The pressure is proportional to
the total number of particles, i.e.

p = (nHI + nHII + nH2
+ ne + nHe + ...)kBT. (62)

64 THE PENCIL CODE

It is convenient to normalize to the total number of H both in atomic and in molecular
hydrogen, nHtot ≡ nH + 2nH2

, where nHI + nHII = nH, and define xe ≡ ne/nHtot, xHe ≡
nHe/nHtot, and xH2

≡ nH2
/nHtot. Substituting nH = nHtot − 2nH2

, we have

p = (1− xH2
+ xe + xHe + ...)nHtotkBT. (63)

This can be written in the more familiar form

p =
R
µ
ρT, (64)

where R = kB/mu andmu is the atomic mass unit (which is for all practical purposes the
same as mHtot) and

µ =
nH + 2nH2

+ ne + 4nHe

nH + nH2
+ ne + nHe

=
1 + 4xHe

1− xH2
+ xe + xHe

(65)

is the mean molecular weight (which is here dimensionless; see Kippenhahn & Weigert
1990, p. 102). The factor 4 is really to be substituted for 3.97153. Some of the familiar
relations take still the usual form, in particular e = cvT and h = cpT with cv =

3
2
R/µ and

cp =
5
2
R/µ.

The number ratio, xHe, is more commonly expressed as the mass ratio, Y =
mHenHe/(mHnHtot + mHenHe), or Y = 4xHe/(1 + 4xHe), or 4xHe = (1/Y − 1)−1. For exam-
ple, Y = 0.27 corresponds to xHe = 0.092 and Y = 0.25 to xHe = 0.083. Note also that for
100% H2 abundance, xH2

= 1/2.

In the following, the ionization fraction is given as y = ne/nH, which can be different
from xe if there is H2. Substituting for nH in terms of nHtot yields y = xe/(1− 2xH2

).

6.8 Ionization

This part of the code can be invoked by setting EOS=eos_ionization (or EOS=eos_-

temperature_ionization) in the ‘Makefile.local’ file. The equation of state described
below works for variable ionization, and the entropy offset is different from that used in
Eq. (38), which is now no longer valid. As a replacement, one can use EOS=eos_fixed_-

ionization, where the degree of ionization can be given by hand. Here the normalization
of the entropy is the same as for EOS=eos_ionization. This case is described in more de-
tail below.12

We treat the gas as being composed of partially ionized hydrogen and neutral helium.
These are four different particle species, each of which regarded as a perfect gas.

The ionization fraction y, which gives the ratio of ionized hydrogen to the total amount
of hydrogen nH, is obtained from the Saha equation which, in this case, may be written
as

y2

1− y
=

1

nH

(

mekBT

2π~2

)3/2

exp

(

− χH

kBT

)

. (66)

The temperature T cannot be obtained directly from the PENCIL CODE’s independent
variables ln ρ and s, but is itself dependent on y. Hence, the calculation of y essentially
becomes a root finding problem.

12We omit here the contribution of H2.

6.8 Ionization 65

The entropy of a perfect gas consisting of particles of type i is known from the Sackur-
Tetrode equation

Si = kBNi

(

ln

[

1

ntot

(

mikBT

2π~2

)3/2
]

+
5

2

)

. (67)

Here Ni is the number of particles of a single species and ntot is the total number density
of all particle species.

In addition to the individual entropies we also have to take the entropy of mixing,
Smix = −NtotkB

∑

i pi ln pi, into account. Summing up everything, we can get a closed ex-
pression for the specific entropy s in terms of y, ln ρ and T , which may be solved for
T .

Figure 5: Dependence of temperature on entropy for different values of the density.

For given ln ρ and s we are then able to calculate the ionization fraction y by finding the
root of

f(y) = ln

[

1− y

y2
1

nH

(

mekBT (y)

2π~2

)3/2
]

− χH

kBT (y)
. (68)

In the ionized case, several thermodynamic quantities of the gas become dependent on
the ionization fraction y such as its pressure, P = (1+ y + xHe)nHkBT , and its internal
energy, E = 3

2
(1+ y+xHe)nHkBT + yχH, where xHe gives the ratio of neutral helium to the

total amount of hydrogen. The dependence of temperature on entropy is shown in Fig. 5
for different values of the density.

For further details regarding the procedure of solving for the entropy see Sect. H.6 in
the appendix.

6.8.1 Ambipolar diffusion

Another way of dealing with ionization in the PENCIL CODE is through use of the neu-

trals module. That module solves the coupled equations of neutral and ionized gas, in a
two-fluid model

66 THE PENCIL CODE

∂ρi
∂t

= −∇ · (ρiui) + G (69)

∂ρn
∂t

= −∇ · (ρnun)− G (70)

∂(ρiui)

∂t
= −∇ · (ρiui : ui)−∇

(

pi + pe +
B2

2µ0

)

+ F (71)

∂(ρnun)

∂t
= −∇ · (ρnun : un)−∇pn −F (72)

∂A

∂t
= ui ×B (73)

where the subscripts n and i are for neutral and ionized, respectively. The terms G and
F , through which the two fluids exchange mass and momentum, are given by

G = ζρn − αρ2i (74)

F = ζρnun − αρ2iui + γρiρn(un − ui) . (75)

In the above equations, ζ is the ionization coefficient, α is the recombination coefficient,
and γ the collisional drag strength. By the time of writing (spring 2009), these three
quantities are supposed constant. The electron pressure pe is also assumed equal to the
ion pressure. Only isothermal neutrals are supported so far.

In the code, Eq. (69) and Eq. (71) are solved in ‘density.f90’ and ‘hydro.f90’ respectively.
Equation 70 is solved in ‘neutraldensity.f90’ and Eq. (72) in ‘neutralvelocity.f90’. The
sample ‘1d-test/ambipolar-diffusion’ has the current setup for a two-fluid simulation
with ions and neutrals.

6.9 Radiative transfer

Here we only state the basic equations. A full description about the implementation is
given in Sect. H.7 and in the original paper by Heinemann et al. (2006).

The basic equation for radiative transfer is

dI

dτ
= −I + S , (76)

where

τ ≡
s
∫

0

χ(s′) ds′ (77)

is the optical depth (s is the geometrical coordinate along the ray).

Note that radiative transfer is called also in ‘start.csh’, and again each time a snapshot
is being written, provided the output of auxiliary variables is being requested lwrite_-

aux=T. (Also, of course, the pencil check runs radiative transfer 7 times, unless you put
pencil_check_small=F.)

6.10 Self-gravity 67

6.10 Self-gravity

The PENCIL CODE can consider the self-gravity of the fluid in the simulation box by
adding the term

∂u

∂t
= . . .−∇φself (78)

to the equation of motion. The self-potential φself (or just φ for simplicity) satisfies Pois-
son’s equation

∇2φ = 4πGρ . (79)

The solution for a single Fourier component at scale k is

φk = −4πGρk
k2

. (80)

Here we have assumed periodic boundary conditions. The potential is obtained by
Fourier-transforming the density, then finding the corresponding potential at that scale,
and finally Fourier-transforming back to real space.

The x-direction in the shearing sheet is not strictly periodic, but is rather shear periodic
with two connected points at the inner and outer boundary separated by the distance
∆y(t) = mod[(3/2)Ω0Lxt, Ly] in the y-direction. We follow here the method from [16]
to allow for shear-periodic boundaries in the Fourier method for self-gravity. First we
take the Fourier transform along the periodic y-direction. We then shift the entire y-
direction by the amount δy(x) = ∆y(t)x/Lx to make the x-direction periodic. Then we
proceed with Fourier transforms along x and then z. After solving the Poisson equation
in Fourier space, we transform back to real space in the opposite order. We differ here
from the method by [16] in that we shift in Fourier space rather than in real space13.
The Fourier interpolation formula has the advantage over polynomial interpolation in
that it is continuous and smooth in all its derivatives.

6.11 Incompressible and anelastic equations

This part has not yet been documented and is still under development.

6.12 Dust equations

The code treats gas and dust as two separate fluids14. The dust and the gas interact
through a drag force. This force can most generally be written as an additional term to
the equation of motion as

Dud

Dt
= . . .− 1

τs
(ud − u) . (81)

Here τs is the so-called stopping time of the considered dust species. This measures the
coupling strength between dust and gas. In the Epstein drag regime

τs =
adρs
csρ

, (82)

13We were kindly made aware of the possibility of interpolating in Fourier space by C. McNally on his
website.

14See master’s thesis of A. Johansen (can be downloaded from
http://www.mpia.de/homes/johansen/research_en.php)

http://www.mpia.de/homes/johansen/research_en.php

68 THE PENCIL CODE

where ad is the radius of the dust grain and ρs is the solid density of the dust grain.

Two other important effects work on the dust. The first is coagulation controlled
by the discrete coagulation equation

dnk

dt
=

1

2

∑

i+j=k

Aijninj − nk

∞
∑

i=1

Aikni . (83)

In the code N discrete dust species are considered. Also the bins are logarithmically
spaced in order to give better mass resolution. It is also possible to keep track of both
number density and mass density of each bin, corresponding to having a variable grain
mass in each bin.

Dust condensation is controlled by the equation

dN

dt
=

1

τcond
N

d−1
d . (84)

Here N is the number of monomers in the dust grain (such as water molecules) and d is
the physical dimension of the dust grain. The condensation time τcond is calculated from

1

τcond
= A1vthαnmon

{

1− 1

Smon

}

, (85)

where A1 is the surface area of a monomer, α is the condensation efficiency, nmon is the
number density of monomers in the gas and Smon is the saturation level of the monomer
given by

Smon =
Pmon

Psat

. (86)

Here Psat is the saturated vapor pressure of the monomer. Currently only water ice has
been implemented in the code.

All dust species fulfill the continuity equation

∂ρd
∂t

+∇ · (ρdud) = 0. (87)

6.13 Cosmic ray pressure in diffusion approximation

Cosmic rays are treated in the diffusion approximation. The equation of state is pc =
(γc)ec where the value of γc is usually somewhere between 14/9 and 4/3. In the momen-
tum equation (39) the cosmic ray pressure force, −ρ−1∇pc is added on the right hand
side, and ec satisfies the evolution equation

∂ec
∂t

+∇ · (ecu) + pc∇ · u = ∂i(Kij∂jec) +Qc, (88)

where Qc is a source term and

Kij = K⊥δij + (K‖ −K⊥)B̂iB̂j (89)

is an anisotropic diffusivity tensor.

6.14 Particles 69

In the non-conservative formulation of this code it is advantageous to expand the diffu-
sion term using the product rule, i.e.

∂i(Kij∂jec) = −U c ·∇ec +Kij∂i∂jec. (90)

where Uc i = −∂Kij/∂xj acts like an extra velocity trying to straighten magnetic field

lines. We can write this term also as U c = −(K‖ − K⊥)∇ · (B̂B̂), where the last term
is a divergence of the dyadic product of unit vectors.15 However, near magnetic nulls,
this term can becomes infinite. In order to avoid this problem we are forced to limit
∇ · (B̂B̂), and hence |U c|, to the maximum possible value that can be resolved at a given
resolution.

A physically appealing way of limiting the maximum propagation speed is to restore
an explicit time dependence in the equation for the cosmic ray flux, and to replace the
diffusion term in Eq. (88) by a divergence of a flux that in turn obeys the equation

∂Fci

∂t
= −K̃ij∇jec −

Fci

τ
(non-Fickian diffusion), (91)

whereKij = τK̃ij would be the original diffusion tensor of Eq. (89), if the time derivative
were negligible. Further details are described in Snodin et al. (2006).

6.14 Particles

Particles are entities that each have a space coordinate and a velocity vector, where
a fluid only has a velocity vector field (the continuity equation of a fluid in some way
corresponds to the space coordinate of particles). In the code particles are present either
as tracer particles or as dust particles

6.14.1 Tracer particles

Tracer particles always have the local velocity of the gas. The dynamical equations are
thus

∂xi

∂t
= u , (92)

where the index i runs over all particles. Here u is the gas velocity at the position of
the particle. One can choose between a first order (default) and a second order spline
interpolation scheme (set lquadratic_interpolation=T in &particles_init_pars) to cal-
culate the gas velocity at the position of a tracer particle.

The sample run ‘samples/dust-vortex’ contains the latest setup for tracer particles.

6.14.2 Dust particles

Dust particles are allowed to have a velocity that is not similar to the gas,

dxi

dt
= vi . (93)

15In practice, we calculate ∂j(B̂iB̂j) = (δij −2B̂iB̂k)B̂jBk,j/|B|, where derivatives of B are calculated as
Bi,j = ǫiklAl,jk.

70 THE PENCIL CODE

The particle velocity follows an equation of motion similar to a fluid, only there is no
advection term. Dust particles also experience a drag force from the gas (proportional to
the velocity difference between a particle and the gas).

dvi

dt
= . . .− 1

τs
(vi − u) . (94)

Here τs is the stopping time of the dust particle. The interpolation of the gas velocity to
the position of a particle is done using one of three possible particle-mesh schemes,

• NGP (Nearest Grid Point, default)
The gas velocity at the nearest grid point is used.

• CIC (Cloud in Cell, set lparticlemesh_cic=T)
A first order interpolation is used to obtain the gas velocity field at the position of
a particle. Affects 8 grid points.

• TSC (Triangular Shaped Cloud, set lparticlemesh_tsc=T)
A second order spline interpolation is used to obtain the gas velocity field at the
position of a particle. Affects 27 grid points.

The particle description is the proper description of dust grains, since they do not feel
any pressure forces (too low number density). Thus there is no guarantee that the grains
present within a given volume will be equilibrated with each other, although drag force
may work for small grains to achieve that. Larger grains (meter-sized in protoplanetary
discs) must be treated as individual particles.

To conserve momentum the dust particles must affect the gas with a friction force as
well. The strength of this force depends on the dust-to-gas ratio ǫd, and it can be safely
ignored when there is much more gas than there is dust, e.g. when ǫd = 0.01. The friction
force on the gas appears in the equation of motion as

∂u

∂t
= . . .− ρ

(i)
p

ρ

(

∂v(i)

∂t

)

drag

(95)

Here ρ
(i)
p is the dust density that particle i represents. This can be set through the pa-

rameter eps_todt in &particle_init_pars. The drag force is assigned from the particles
onto the mesh using either NGP, CIC or TSC assignment. The same scheme is used both
for interpolation and for assignment to avoid any risk of a particle accelerating itself (see
Hockney & Eastwood 1981).

6.15 N -body solver

TheN -body code takes advantage of the existing Particles module, which was coded with
the initial intent of treating solid particles whose radius a• is comparable to the mean
free path λ of the gas, for which a fluid description is not valid. AN -body implementation
based on that module only needed to include mass as extra state for the particles, solve
for the N2 gravitational pair interactions and distinguish between the N -body and the
small bodies that are mapped into the grid as a ρp density field.

The particles of the N -body ensemble evolve due to their mutual gravity and by inter-
acting with the gas and the swarm of small bodies. The equation of motion for particle i
is

6.16 Test-field equations 71

dvpi

dt
= F gi −

N
∑

j 6=i

GMj

R2
ij

R̂ij (96)

whereRij = |rpi−rpj | is the distance between particles i and j, and R̂ij is the unit vector
pointing from particle j to particle i. The first term of the R.H.S. is the combined gravity
of the gas and of the dust particles onto the particle i, solved via

F gi = −G
∫

V

[ρg(r) + ρp(r)]Ri

(R2
i + b2i)

3/2
dV, (97)

where the integration is carried out over the whole disk. The smoothing distance bi is
taken to be as small as possible (a few grid cells). For few particles (<10), calculating the
integral for every particle is practical. For larger ensembles one would prefer to solve
the Poisson equation to calculate their combined gravitational potential.

The evolution of the particles is done with the same third-order Runge-Kutta time-
stepping routine used for the gas. The particles define the timestep also by the Courant
condition that they should not move more than one cell at a time. For pure particle runs,
where the grid is absent, one can adopt a fixed time-step tp ≪ 2πΩ−1

fp where Ωfp is the
angular frequency of the fastest particle.

By now (spring 2009), no inertial accelerations are included in the N -body module, so
only the inertial frame - with origin at the barycenter of the N -body ensemble - is avail-
able. For a simulation of the circular restricted three-body problem with mass ratio
q=10−3, the Jacobi constant of a test particle initially placed at position (x, y)=(2,0) was
found to be conserved up to one part in 105 within the time span of 100 orbits.

We stress that the level of conservation is poor when compared to integrators designed
to specifically deal with long-term N -body problems. These integrators are usually sym-
plectic, unlike the Runge-Kutta scheme of the PENCIL CODE. As such, PENCIL should
not be used to deal with evolution over millions of years. But for the time-span typical
of astrophysical hydrodynamical simulations, this degree of conservation of the Jacobi
constant can be deemed acceptable.

As an extension of the particle’s module, the N -body is fully compatible with the par-
allel optimization of PENCIL, which further speeds up the calculations. Parallelization,
however, is not yet possible for pure particle runs, since it relies on splitting the grid
between the processors. At the time of writing (spring 2009), the N -body code does not
allow the particles to have a time-evolving mass.

6.16 Test-field equations

The test-field method is used to calculate turbulent transport coefficients for magneto-
hydrodynamics. This is a rapidly evolving field and we refer the interested reader to
recent papers in this field, e.g. by Sur et al. (2008) or Brandenburg et al. (2008). For
technical details, see also Sect. F.3.

6.17 Gravitational wave equations

The expansion of the universe with time is described by the scale factor a(τ), where
τ is the physical time. Using conformal time, t(τ) =

∫ τ

0
dτ ′/a(τ ′), and dependent vari-

72 THE PENCIL CODE

Table 5: Scale factor and conformal Hubble parameter for different values of n.

n a H H
0 1 0 0
1/2 η/2 1/η 1/η
2/3 η2/3 2/η 6/η2

ables that are appropriately scaled with powers of a, the hydromagnetic equations can
be expressed completely without scale factor [8, 15]. This is not true, however, for the
gravitational wave (GW) equations, where a dependence on a remains [15]. The time
dependence of a can be modeled as a power law, a ∝ τn, where n = 1/2 applies to the
radiation-dominated era; see Table 5 the general relationship. To compare with cases
where the expansion is ignored, we put n = 0.

In the transverse traceless (TT) gauge, the six components of the spatial part of the
symmetric tensor characterizing the linearized evolution of the metric perturbations
hij, reduce to two components which, in the linear polarization basis, are the + and
× polarizations. However, the projection onto that basis is computationally intensive,
because it requires nonlocal operations involving Fourier transformations. It is therefore
advantageous to evolve instead the perturbation of the metric tensor, hij, in an arbitrary
gauge, compute then hTT

ij in the TT gauge, and perform then the decomposition into the
linear polarization basis whenever we compute diagnostic quantities such as averages
or spectra. Thus, we solve the linearized GW equation in the form [15]

∂2hij
∂t2

= −2H∂hij
∂t

+ c2∇2hij +
16πG

a2c2
Tij (98)

for the six components 1 ≤ i ≤ j ≤ 3, where t is comoving time, a is the scale factor,
H = ȧ/a is the comoving Hubble parameter, Tij is the source term, c is the speed of light,
and G is Newton’s constant. For n = 0, when the cosmic expansion is ignored, we have
a = 1 and H = 0. We use the PENCIL CODE; for the numerical treatment of Eq. (98) and
equations (100)–(102). For most of the simulations, we use 11523 meshpoints on 1152
cores of a Cray XC40 system with 2.3 GHz processors.

The source term is chosen to be the traceless part of the stress tensor,

Tij(x, t) = ρuiuj − BiBj − 1
3
δij(ρu

2 −B2). (99)

The removal of the trace is in principle not necessary, but it helps preventing a contin-
uous build-up of a large trace, which would be numerically disadvantageous. We have
ignored here the viscous stress, which is usually small.

We compute Tij by solving the energy, momentum, and induction equations for an ultra-
relativistic gas in the form [8, 10]

∂ ln ρ

∂t
= −4

3
(∇ · u+ u ·∇ ln ρ) +

1

ρ

[

u · (J ×B) + ηJ2
]

, (100)

Du

Dt
=

u

3
(∇ · u+ u ·∇ ln ρ)− u

ρ

[

u · (J ×B) + ηJ2
]

−1

4
∇ ln ρ+

3

4ρ
J ×B +

2

ρ
∇ · (ρνS) + f , (101)

6.17 Gravitational wave equations 73

∂B

∂t
= ∇× (u×B − ηJ), (102)

where B = ∇×A is the magnetic field expressed in terms of the magnetic vector poten-
tial to ensure that ∇ ·B = 0, J = ∇ ×B is the current density, D/Dt = ∂/∂t + u ·∇ is
the advective derivative, Sij =

1
2
(ui,j +uj,i)− 1

3
δijuk,k is the trace-free rate of strain tensor,

and p = ρc2s is the pressure, where cs = c/
√
3 is the sound speed for an ultra-relativistic

gas. Lorentz-Heaviside units for the magnetic field are used.

We are interested in the rms value of the metric tensor perturbations and the GW energy
density in the linear polarization basis. To compute hTT

ij from hij, we Fourier transform

the six components of hij and ḣij,

h̃ij(k, t) =

∫

hij(x, t) e
−ik·vd3x for 1 ≤ i ≤ j ≤ 3 (103)

and compute the components in the TT gauge as

h̃TT
ij (k, t) = (PilPjm − 1

2
PijPlm) h̃lm(k, t), (104)

where Pij = δij − k̂ik̂j is the projection operator, and k̂ = k/k is the unit vector of k, with
k = |k| being the modulus. Next, we compute the linear polarization bases

e+ij = e1i e
1
j − e2i e

2
j , e×ij = e1i e

2
j + e2i e

1
j , (105)

where e1 and e2 are unit vectors perpendicular to k. Thus

h̃+(k, t) = 1
2
e+ij(k) h̃ij(k, t), (106)

h̃×(k, t) = 1
2
e×ij(k) h̃ij(k, t). (107)

We then return into real space and compute

h+/×(x, t) =

∫

h̃+/×(k, t) e
ik·x d3k/(2π)3. (108)

Analogous calculations are performed for ḣ+/×(x, t), which are used to compute the GW
energy via

EGW(t) =
c2

32πG

(

〈ḣ2+〉+ 〈ḣ2×〉
)

, (109)

where angle brackets denote volume averages.

Analogously to kinetic and magnetic energy and helicity spectra, it is convenient to
compute the GW energy and polarization spectra integrated over concentric shells of
surface

∫

4π
k2dΩk in k space, defined by

Sḣ(k) =

∫

4π

(

| ˙̃h+|2 + | ˙̃h×|2
)

k2dΩk, (110)

Aḣ(k) =

∫

4π

2 Im
(

˙̃h+
˙̃h×

∗)

k2dΩk, (111)

and normalized such that
∫∞

0
Sḣ(k) dk = 〈ḣ2+〉+ 〈ḣ2×〉 is proportional to the energy density

and
∫∞

0
Aḣ(k) dk is proportional to the polarized energy density. The Aḣ(k) spectra are

not to be confused with the magnetic vector potential A(x, t). The corresponding GW
energy spectra are noted by

EGW(k) = (c2/32πG)Sḣ(k), (112)

HGW(k) = (c2/32πG)Aḣ(k). (113)

74 THE PENCIL CODE

We also define spectra for the metric tensor perturbation,

Sh(k) =

∫

4π

(

|h̃+|2 + |h̃×|2
)

k2dΩk, (114)

Ah(k) =

∫

4π

2 Im
(

h̃+h̃×
∗
)

k2dΩk, (115)

which are normalized such that
∫∞

0
Sh(k) dk = h2rms is the mean squared metric tensor

perturbation.

7. Troubleshooting / Frequently Asked Questions 75

7 Troubleshooting / Frequently Asked Questions

7.1 Download and setup

7.1.1 Download forbidden

A: Both GitHub and SourceForge are banned from countries on the United
States Office of Foreign Assets Control sanction list, including Cuba, Iran, Libya,
North Korea, Sudan and Syria; see http://de.wikipedia.org/wiki/GitHub and
http://en.wikipedia.org/wiki/SourceForge. As a remedy, you might download a tar-
ball from http://pencil-code.nordita.org/; see also Section 2.

7.1.2 When sourcing the ‘sourceme.sh’/‘sourceme.csh’ file or running pc_setupsrc, I get

error messages from the shell, like ‘if: Expression Syntax.’ or ‘set: Variable name

must begin with a letter.’

A: This sounds like a buggy shell setup, either by yourself or your system administrator
— or a shell that is even more idiosyncratic than the ones we have been working with.

To better diagnose the problem, collect the following information before filing a bug
report to us:

1. uname -a

2. /bin/csh -v

3. echo $version

4. echo $SHELL

5. ps -p $$

6. If you have problems while sourcing the ‘sourceme’ script,

(a) unset the PENCIL_HOME variable:

for csh and similar: unsetenv PENCIL_HOME

for bash and similar: unexport PENCIL_HOME; unset PENCIL_HOME

(b) switch your shell in verbose mode,

for csh and similar: set verbose; set echo

for bash and similar: set -v; set -x

then source again.

7. If you have problems with pc_setupsrc, run it with csh in verbose mode:

/bin/csh -v -x $PENCIL_HOME/bin/pc_setupsrc

http://de.wikipedia.org/wiki/GitHub
http://en.wikipedia.org/wiki/SourceForge
http://pencil-code.nordita.org/

76 THE PENCIL CODE

7.2 Compilation

7.2.1 Linker can’t find the syscalls functions:

ld: 0711-317 ERROR: Undefined symbol: .is_nan_c

ld: 0711-317 ERROR: Undefined symbol: .sizeof_real_c

ld: 0711-317 ERROR: Undefined symbol: .system_c

ld: 0711-317 ERROR: Undefined symbol: .get_env_var_c

ld: 0711-317 ERROR: Undefined symbol: .get_pid_c

ld: 0711-317 ERROR: Undefined symbol: .file_size_c

A: The Pencil Code needs a working combination of a Fortran- and a C-compiler. If this
is not correctly set up, usually the linker won’t find the functions inside the syscalls
module. If that happens, either the combination of C- and Fortran-compiler is inappro-
priate (e.g. ifort needs icc), or the compiler needs additional flags, like g95 might need
the option ‘-fno-second-underscore’ and xlf might need the option ‘-qextname’. Please
refer to Sect. 5.2, Table 1.

7.2.2 Make gives the following error now:

PGF90-S-0017-Unable to open include file: chemistry.h (nochemistry.f90: 43)

0 inform, 0 warnings, 1 severes, 0 fatal for chemistry

Line 43 of the nochemistry routine, only has ’contains’.

A: This is because somebody added a newmodule (together with a corresponding nomod-
ule.f90 and amodule.h file (chemistry in this case). These files didn’t exist before, so you
need to say:

pc_setupsrc

If this does not help, say first make clean and then pc_setupsrc.

7.2.3 How do I compile the PENCIL CODE with the Intel (ifc) compiler under Linux?

A: The PENCIL CODE should compile successfully with ifc 6.x, ifc 7.0, sufficiently recent
versions of ifc 7.1 (you should get the latest version; if yours is too old, you will typically
get an ‘internal compiler error’ during compilation of ‘src/hydro.f90’), as well as with
recent versions of ifort 8.1 (8.0 may also work).

You can find the ifort compiler at ftp://download.intel.com/software/products/compilers/downloads

On many current (as of November 2003) Linux systems, there is a mismatch between
the glibc versions used by the compiler and the linker. To work around this, use the
following flag for compiling

FC=ifc -i_dynamic

and set the environment variable

LD_ASSUME_KERNEL=2.4.1; export LD_ASSUME_KERNEL

or

ftp://download.intel.com/software/products/compilers/downloads

7.2 Compilation 77

setenv LD_ASSUME_KERNEL 2.4.1

This has solved the problems e.g. on a system with glibc-2.3.2 and kernel 2.4.22.

Thanks to Leonardo J. Milano (http://udel.edu/~lmilano/) for part of this info.

7.2.4 I keep getting segmentation faults with ‘start.x’ when compiling with ifort 8.0

A: There was/is a number of issues with ifort 8.0. Make sure you have the latest patches
applied to the compiler. A number of things to consider or try are:

1. Compile with the the ‘-static -nothreads’ flags.

2. Set your stacksize to a large value (but a far too large value may be problematic,
too), e. g.

limit stacksize 256m

ulimit -s 256000

3. Set the environment variable KMP STACKSIZE to a large value (like 100M)

See also http://softwareforums.intel.com/ids/board/message?board.id=11&message.id=1375

7.2.5 When compiling with MPI on a Linux system, the linker complains:

mpicomm.o: In function ‘mpicomm_mpicomm_init_’:

mpicomm.o(.text+0x36): undefined reference to ‘mpi_init_’

mpicomm.o(.text+0x55): undefined reference to ‘mpi_comm_size_’

mpicomm.o(.text+0x6f): undefined reference to ‘mpi_comm_rank_’

[...]

A: This is the infamous underscore problem. Your MPI libraries have been compiled
with G77 without the option ‘-fno-second-underscore’, which makes the MPI symbol
names incompatible with other Fortran compilers.

As a workaround, use

MPICOMM = mpicomm_

in ‘Makefile.local’. Or, even better, you can set this globally (for the given computer)
by inserting that line into the file ‘~/.adapt-mkfile.inc’ (see perldoc adapt-mkfile for
more details).

7.2.6 Compilation stops with the cryptic error message:

f95 -O3 -u -c .f90.f90

Error : Could not open sourcefile .f90.f90

compilation aborted for .f90.f90 (code 1)

make[1]: *** [.f90.o] Error 1

What is the problem?

A: There are two possibilities:

http://udel.edu/~lmilano/
http://softwareforums.intel.com/ids/board/message?board.id=11&message.id=1375

78 THE PENCIL CODE

1. One of the variables for make has not been set, so make expands it to the empty
string. Most probably you forgot to specify a module in ‘src/Makefile.local’. One
possibility is that you have upgraded from an older version of the code that did not
have some of the modules the new version has.

Compare your ‘src/Makefile.local’ to one of the examples that work.

2. One of the variables for make has a space appended to it, e.g. if you use the line

MPICOMM = mpicomm_

(see § 7.2.5) with a trailing blank, you will encounter this error message. Remove
the blank. This problem can also occur if you added a new module (and have an
empty space after the module name in ‘src/Makefile.src’, i.e. CHIRAL=nochiral),
in which case the compiler will talk about “circular dependence” for the file
‘nochiral’.

7.2.7 The code doesn’t compile,

. . . there is a problem with mvar:

make start.x run.x

f95 -O3 -u -c cdata.f90

Error: cdata.f90, line 71: Implicit type for MVAR

detected at MVAR@)

[f95 terminated - errors found by pass 1]

make[1]: *** [cdata.o] Error 2

A: Check and make sure that ‘mkcparam’ (directory ‘$PENCIL_HOME/bin’) is in your path. If
this doesn’t help, there may be an empty ‘cparam.inc’ file in your ‘src’ directory. Remove
‘cparam.inc’ and try again (Note that ‘cparam.inc’ is automatically generated from the
‘Makefile’).

7.2.8 Some samples don’t even compile,

as you can see on the web, http://www.nordita.org/software/pencil-code/tests.html.

samples/helical-MHDturb:

Compiling.. not ok:

make start.x run.x read_videofiles.x

make[1]: Entering directory ‘/home/dobler/f90/pencil-code/samples/helical-MHDturb/src’

/usr/lib/lam/bin/mpif95 -O3 -c initcond.f90

/usr/lib/lam/bin/mpif95 -O3 -c density.f90

use Gravity, only: gravz, nu_epicycle

^

Error 208 at (467:density.f90) : No such entity in the module

Error 355 : In procedure INIT_LNRHO variable NU_EPICYCLE has not been given a type

Error 355 : In procedure POLYTROPIC_LNRHO_DISC variable NU_EPICYCLE has not been given a

3 Errors

compilation aborted for density.f90 (code 1)

make[1]: *** [density.o] Error 1

http://www.nordita.org/software/pencil-code/tests.html

7.2 Compilation 79

make[1]: Leaving directory ‘/home/dobler/f90/pencil-code/samples/helical-MHDturb/src’

make: *** [code] Error 2

A: Somebody may have checked in something without having run auto-test beforehand.
The problem here is that something has been added in one module, but not in the corre-
sponding no-module. You can of course check with svn who it was. . .

7.2.9 Internal compiler error with Compaq/Dec F90

The Dec Fortran optimizer has occasional problems with ‘nompicomm.f90’:

make start.x run.x read_videofiles.x

f90 -fast -O3 -tune ev6 -arch ev6 -c cparam.f90

[...]

f90 -fast -O3 -tune ev6 -arch ev6 -c nompicomm.f90

otal vm 2755568 otal vm 2765296 otal vm 2775024

otal vm 2784752 otal...

Assertion failure: Compiler internal error - please submit problem r...

GEM ASSERTION, Compiler internal error - please submit problem report

Fatal error in: /usr/lib/cmplrs/fort90_540/decfort90 Terminated

*** Exit 3

Stop.

*** Exit 1

Stop.

A: The occurrence of this problem depends upon the grid size; and the problem never
seems to occur with ‘mpicomm.f90’, except when ncpus=1. The problem can be avoided by
switching off the loop transformation optimization (part of the ‘-O3’ optimization), via:

#OPTFLAGS=-fast -O3 -notransform_loops

This is currently the default compiler setting in ‘Makefile’, although it has a measurable
performance impact (some 8% slowdown).

7.2.10 Assertion failure under SunOS

Under SunOS, I get an error message like

user@sun> f90 -c param_io.f90

Assertion failed: at_handle_table[at_idx].tag == VAR_TAG,

file ../srcfw/FWcvrt.c, line 4018

f90: Fatal error in f90comp: Abort

A: This is a compiler bug that we find at least with Sun’s WorkShop Compiler version ‘5.0
00/05/17 FORTRAN 90 2.0 Patch 107356-05’. Upgrade the compiler version (and possi-
bly also the operating system): we find that the code compiles and works with version
‘Sun WorkShop 6 update 2 Fortran 95 6.2 Patch 111690-05 2002/01/17’ under SunOS
version ‘5.8 Generic 108528-11’.

80 THE PENCIL CODE

7.2.11 After some dirty tricks I got pencil code to compile with MPI, ...

> Before that i installed lam-7.1.4 from source.

Goodness gracious me, you shouldn’t have to compile your own MPI library.

A: Then don’t use the old LAM-MPI. It is long superseded by open-mpi now. Open-mpi
doesn’t need a daemon to be running. I am using the version that ships with Ubuntu
(e.g. 9.04):

frenesi:~> aptitude -w 210 search openmpi | grep ’^i’

i libopenmpi-dev - high performance message passing library -- header files

i A libopenmpi1 - high performance message passing library -- shared library

i openmpi-bin - high performance message passing library -- binaries

i A openmpi-common - high performance message passing library -- common files

i openmpi-doc - high performance message passing library -- man pages

Install that and keep your configuration (Makefile.src and getconf.csh) close to that for
‘frenesi’ or ‘norlx50’. That should work.

7.2.12 Error: Symbol ’mpi comm world’ at (1) has no IMPLICIT type

I installed the pencil code on Ubuntu system and tested "run.csh"

in ...\samples\conv-slab. Here the code worked pretty well.

Nevertheless, running (auto-test), I found there are some errors.

The messages are,

Error: Symbol ’mpi_comm_world’ at (1) has no IMPLICIT type

Fatal Error: Error count reached limit of 25.

make[2]: *** [mpicomm_double.o] Error 1

make[2]: Leaving directory

‘/home/pkiwan/Desktop/pencil-code/samples/2d-tests/selfgravitating-shearwave/src’

make[1]: *** [code] Error 2

make[1]: Leaving directory

‘/home/pkiwan/Desktop/pencil-code/samples/2d-tests/selfgravitating-shearwave/src’

make: *** [default] Error 2

Finally, ### auto-test failed ###

Will it be OK? Or, how can I fix this?

A: Thanks for letting me know about the status, and congratulations on your progress!
Those tests that fail are those that use MPI. If your machine is a dual or multi core
machine, you could run faster by running under MPI. But this is probably not crucial
for you at this point. (I just noticed that there is a ToDo listed in the auto-test command
to implement the option not to run the MPI tests, but this hasn’t been done yet. So I
guess you can start with the science next.

7.3 Pencil check 81

7.2.13 Error: Can’t open included file ’mpif.h’

It always worked, but now, after some systems upgrade, I get

gfortran -O3 -o mpicomm.o -c mpicomm.f90

Error: Can’t open included file ’mpif.h’

When I say locate mpif.h I only get things like

/scratch/ntest/1.2.7p1-intel/include/mpif.h

But since I use FC=mpif90 I thought I don’t need to worry.

A: Since you use FC=mpif90 there must definitely be something wrong with their setup.
Try mpif90 -showme or mpif90 -show; the ‘-I’ option should say where it looks for ’mpif.h’.
If those directories don’t exist, it’s no wonder that it doesn’t work, and it is time to
complain.

7.3 Pencil check

7.3.1 The pencil check complains for no reason.

A: The pencil check only complains for a reason.

7.3.2 The pencil check reports MISSING PENCILS and quits

A: This could point to a serious problem in the code. Check where the missing pencil
is used in the code. Request the right pencils, likely based on input parameters, by
adapting one or more of the pencil_criteria_MODULE subroutines.

7.3.3 The pencil check reports unnecessary pencils

The pencil check reports possible overcalculation... pencil rho (43) is

requested, but does not appear to be required!

A: Such warnings show that your simulation is possibly running too slowly because it is
calculating pencils that are not actually needed. Check in the code where the unneces-
sary pencils are used and adapt one or more of the pencil_criteria_MODULE subroutines
to request pencils only when they are actually needed.

7.3.4 The pencil check reports that most or all pencils are missing

A: This is typically a thing that can happen when testing new code development for the
first time. It is usually an indication that the reference df changes every time you call
pde. Check whether any newly implemented subroutines or functionality has a “mem-
ory”, i.e. if calling the subroutine twice with the same f gives different output df.

82 THE PENCIL CODE

7.3.5 Running the pencil check triggers mathematical errors in the code

A: The pencil check puts random numbers in f before checking the dependence of df on
the chosen set of pencils. Sometimes these random numbers are inconsistent with the
physics and cause errors. In that case you can set lrandom_f_pencil_check=F in &run_-

pars in ‘run.in’. The initial condition may contain many idealized states (zeros or ones)
which then do not trigger pencil check errors when lrandom_f_pencil_check=F, even if
pencils are missing. But it does prevent mathematical inconsistencies.

7.3.6 The pencil check still complains

A: Then you need to look into the how the code and the pencil check operate. Reduce the
problem in size and dimensions to find the smallest problem that makes the pencil check
fail (e.g. 1x1x8 grid points). At the line of ‘pencil_check.f90’ when a difference is found
between df_ref and df, add some debug lines telling you which variable is inconsistent
and in what place. Often you will be surprised that the pencil check has correctly found
a problem in the simulation.

7.3.7 The pencil check is annoying so I turned it off

A: Then you are taking a major risk. If one or more pencils are not calculated properly,
then the results will be wrong.

7.4 Running

7.4.1 Why does ‘start.x’ / ‘start.csh’ write data with periodic boundary conditions?

A: Because you are setting the boundary conditions in ‘run.in’, not in ‘start.in’; see
Sect. 5.16.1. There is nothing wrong with the initial data — the ghost-zone values will
be re-calculated during the very first time step.

7.4.2 csh problem?

Q: On some rare occasions we have problems with csh not being supported on other
machines. (We hope to fix this by contacting the responsible person, but may not be that
trivial today!) Oliver says this is a well known bug of some years ago, etc. But maybe in
the long run it would be good to avoid csh.

A: These occasions will become increasingly frequent, and eventually for some architec-
tures, there may not even be a csh variant that can be installed.

We never pushed people to use pc_run and friends (and to report corresponding bugs
and get them fixed), but if we don’t spend a bit of effort (or annoy users) now, we create
a future emergency, where someone needs to run on some machine, but there is no csh
and he or she just gets stuck.

We don’t have that many csh files, and for years now it should be possible to compile
run without csh (using bin/pc_run) — except that people still fall back on the old way of

7.4 Running 83

doing things. This is both cause and consequence of the ‘new’ way not being tested that
much, at least for the corner cases like ‘RERUN’, ‘NEWDIR’, ‘SCRATCH_DIR’.

7.4.3 ‘run.csh’ doesn’t work:

Invalid character ’’’ in NAMELIST input

Program terminated by fatal I/O error

Abort

A: The string array for the boundary condition, e.g. bcx or bcz is too long. Make sure it
has exactly as many elements as nvar is big.

7.4.4 Code crashes after restarting

> > removing mu_r from the namelist just ‘like that’ makes the code

> > backwards incompatible.

>

> That means that we can never get rid of a parameter in start.in once we

> have introduced it, right?

A: In the current implementation, without a corresponding cleaning procedure, unfor-
tunately yes.

Of course, this does not affect users’ private changes outside the central svn tree.

7.4.5 auto-test gone mad...?

Q: Have you ever seen this before:

giga01:/home/pg/n7026413/cvs-src/pencil-code/samples/conv-slab> auto-test

.

/home/pg/n7026413/cvs-src/pencil-code/samples/conv-slab:

Compiling.. ok

No data directory; generating data -> /var/tmp/pencil-tmp-25318

Starting.. ok

Running.. ok

Validating results..Malformed UTF-8 character (unexpected continuation

byte 0x80, with no preceding start byte) in split at

/home/pg/n7026413/cvs-src/pencil-code/bin/auto-test line 263.

Malformed UTF-8 character (unexpected continuation byte 0x80, with no

preceding start byte) in split at

/home/pg/n7026413/cvs-src/pencil-code/bin/auto-test line 263.

A: You are running on a RedHat 8 or 9 system, right?

Set LANG=POSIX in your shell’s startup script and life will be much better.

84 THE PENCIL CODE

7.4.6 Can I restart with a different number of cpus?

Q: I am running a simulation of nonhelical turbulence on the cluster usingMPI. Suppose
if I am running a 1283 simulation on 32 cpus/cores i.e.

integer, parameter :: ncpus=32,nprocy=2,nprocz=ncpus/nprocy,nprocx=1

integer, parameter :: nxgrid=128,nygrid=nxgrid,nzgrid=nxgrid

And I stop the run after a bit. Is there a way to resume this run with different number
of cpus like this :

integer, parameter :: ncpus=16,nprocy=2,nprocz=ncpus/nprocy,nprocx=1

integer, parameter :: nxgrid=128,nygrid=nxgrid,nzgrid=nxgrid

I understand it has to be so in a new directory but making sure that the run starts from
where I left it off in the previous directory.

A: The answer is no, if you use the standard distributed io. There is also parallel io, but
I never used it. That would write the data in a single file, and then you could use the
data for restart in another processor layout.

7.4.7 Can I restart with a different number of cpus?

Q: Is it right that once the simulation is resumed, pencil-code takes the last data from
var.dat (which is the current snapshot of the fields)? If that is true, then, is it not possible
to give that as the initial condition for the run in the second directory (with changed
”ncpus”)? Is there a mechanism already in place for that?

A: Yes, the code restarts from the last var.dat. It is written after a successful completion
of the run, but it crashes or you hit a time-out, there will be a var.dat that is overwritten
every isave timesteps. If the system stops during writing, some var.dat files may be
corrupt or have the wrong time. In that case you could restart from a good VAR file, if
you have one, using, e.g.,

restart-new-dir-VAR . 46

where 46 is the number of your VAR file, i.e., VAR46 im this case. To restart in another
directory, you say, from the old run directory,

restart-new-dir ../another_directory

Hope this helps. Look into pencil-code/bin/restart-new-dir to see what it is doing.

7.4.8 fft xyz parallel 3D: nygrid needs to be an integer multiple...

Q: I just got an:

fft_xyz_parallel_3D: nygrid needs to be an integer multiple of nprocy*nprocz

In my case, nygrid=2048, nprocy=32, and nprocz=128, so nprocy*nprocz=4096. In other
words, 2048 needs to be a multiple of 4096. But isn’t this the case then?

A: No, because 2048 = 0.5 * 4096 and 0.5 is not an integer. Maybe try either setting
nprocz=64 or nprocy=64. You could compensate the change of ncpus with the x-direction.

7.4 Running 85

For 20483 simulations, nprocy=32 and nprocz=64 would be good. A list of good meshes is
given in Table 4.

7.4.9 Unit-agnostic calculations?

Q: The manual speaks about unit-agnostic calculations, stating that one may choose to
interpret the results in any (consistent) units, depending on the problem that is solved
at hand. So, for example, if I chose to run the ‘2d-tests/battery_term’ simulation for an
arbitrary number of time-steps and then choose to examine the diagnostics, am I correct
in assuming the following:

1) [Brms] = Gauss (as output by unit_magnetic, before the run begins)

2) [t] = s (since the default unit system is left as CGS)

3) [urms] = cm/s (again, as output by unit_velocity, before the run begins)

4) and etc. for the units of the other diagnostics

A: Detailed correspondence on this item can be found on:
https://groups.google.com/forum/?fromgroups#!topic/pencil-code-discuss/zek-uYNbgXI

There is also working material on unit systems under
http://www.nordita.org/~brandenb/teach/PencilCode/MixedTopics.htmlwith a link to
http://www.nordita.org/~brandenb/teach/PencilCode/material/AlfvenWave_SIunits/

Below is a pedagogical response from Wlad Lyra:

In the sample battery-term, the sound speed cs0=1 sets the unit of

velocity. Together with the unit of length, that sets your unit of

time. The unit of magnetic field follows from the unit of velocity,

density, and your choice of magnetic permittivity, according to the

definition of the Alfven velocity.

If you are assuming cgs, you are saying that your sound speed cs0=1

actually means [U]=1 cm/s. Your unit of length is equivalently 1 cm,

and therefore the unit of time is [t] = [L]/[U]=1 s. The unit of

density is [rho] = 1 g/cm^3. Since in cgs vA=B/sqrt(4*pi * rho), your

unit of magnetic field is [B] = [U] * sqrt([rho] * 4*pi) ~= 3.5

sqrt(g/cm) / s = 3.5 Gauss.

If instead you are assuming SI, you have cs0=1 assuming that means

[U]=1 m/s and rho0=1 assuming that to mean [rho]=1 kg/m^3. Using [L]=1

m, you have still [t]=1 s, but now what appears as B=1 in your output

is actually [B] = [U] * sqrt (mu * [rho]) = 1 m/s * sqrt(4*pi * 1e-7

N*A-2 1 kg/m^3) ~= 0.0011210 kg/(s^2*A) ~ 11 Gauss.

You can make it more interesting and use units relevant to the

problem. Say you are at the photosphere of the Sun. You may want to

use dimensionless cs0=1 meaning a sound speed of 10 km/s. Your

appropriate length can be a megameter. Now your time unit is

[t]=[L]/[U] = 1e3 km/ 10 km/s = 10^2 s, i.e., roughly 1.5 minute. For

density, assume rho=2x10-4 kg/m^3, typical of the solar photosphere.

Your unit of magnetic field is therefore [B] = [U] * sqrt([rho] *

4*pi) = 1e6 cm/s * sqrt(4*pi * 2e-7 g/cm^3) ~ 1585.33 Gauss.

Notice that for mu0=1 and rho0=1 you simply have vA=B. Then you can

conveniently set the field strength by your choice of plasma beta (=

https://groups.google.com/forum/?fromgroups#!topic/pencil-code-discuss/zek-uYNbgXI
http://www.nordita.org/~brandenb/teach/PencilCode/MixedTopics.html
http://www.nordita.org/~brandenb/teach/PencilCode/material/AlfvenWave_SIunits/

86 THE PENCIL CODE

2*cs^2/vA^2). There’s a reason why we like dimensionless quantities!

7.5 Visualization

7.5.1 ‘start.pro’ doesn’t work:

Reading grid.dat..

Reading param.nml..

\% Expression must be a structure in this context: PAR.

\% Execution halted at: \$MAIN\$ 104

/home/brandenb/pencil-code/runs/forced/hel1/../../../idl/start.pro

A: You don’t have the subdirectory ‘data’ in your IDL variable !path . Make sure you
source ‘sourceme.csh’/‘sourceme.sh’ or set a sufficient IDL path otherwise.

7.5.2 ‘start.pro’ doesn’t work:

Isn’t there some clever (or even trivial) way that one can avoid the annoying error mes-
sages that one gets, when running e.g. ”.r rall” after a new variable has been introduced
in ”idl/varcontent.pro”? Ever so often there’s a new variable that can’t be found in my
param2.nml – this time it was IECR, IGG, and ILNTT that I had to circumvent. . .

A: The simplest solution is to invoke ‘NOERASE’, i.e. say

touch NOERASE

start.csh

or, alternatively, start_run.csh. What it does is that it reruns src/start.x with a new
version of the code; this then produces all the necessary auxiliary files, but it doesn’t
overwrite or erase the ‘var.dat’ and other ‘VAR’ and ‘slice’ files.

7.5.3 Something about tag name undefined:

Q: In one of my older run directories I can’t read the data with idl anymore. What should
I do? Is says something like

Reading param.nml..

% Tag name LEQUIDIST is undefined for structure <Anonymous>.

% Execution halted at: $MAIN$ 182

/people/disk2/brandenb/pencil-code/idl/start.pro

A: Go into ‘data/param.nml’ and add , LEQUIDIST=T anywhere in the file (but before the
last slash).

7.5.4 Something INC in start.pro

Q: start doesn’t even work:

7.5 Visualization 87

% Compiled module: $MAIN$.

nname= 11

Reading grid.dat..

Reading param.nml..

Can’t locate Namelist.pm in INC (INC contains: /etc/perl /usr/local/lib/perl/5.8.4 /usr/local/share/perl/5.8.4

BEGIN failed--compilation aborted at /home/brandenb/pencil-code/bin/nl2idl line 49.

A: Go into ‘$PENCIL_HOME’ and say svn up sourceme.csh and/or svn up sourceme.sh.
(They were just out of date.)

7.5.5 nl2idl problem when reading param2.nml

Q: Does anybody encounter a backward problem with nl2idl? The file param*.nml files
are checked in under ‘pencil-code/axel/couette/SStrat128a_mu0.20_g2’ and the prob-
lem is below.

at /people/disk2/brandenb/pencil-code/bin/nl2idl line 120

HCOND0= 0.0,HCOND1= 1.000000,HCOND2= 1.000000,WIDTHSS= 1.192093E-06,MPOLY0=

^------ HERE

at /people/disk2/brandenb/pencil-code/bin/nl2idl line 120

A: The problem is the stupid ifc compiler writing the following into the namelist file:

COOLING_PROFILE=’gaussian ’,COOLTYPE=’Temp

’COOL= 0.0,CS2COOL= 0.0,RCOOL= 1.000000,WCOOL= 0.1000000,FBOT= 0.0,CHI_T= 0.0

If you add a comma after the closing quote:

COOLING_PROFILE=’gaussian ’,COOLTYPE=’Temp

’,COOL= 0.0,CS2COOL= 0.0,RCOOL= 1.000000,WCOOL= 0.1000000,FBOT= 0.0,CHI_T= 0.0

things will work.

Note that ifc cannot even itself read what it is writing here, so if this happened to occur
in param.nml, the code would require manual intervention after each start.csh.

7.5.6 Spurious dots in the time series file

Q: Wolfgang, you explained it to me once, but I forget. How can one remove spurious
dots after the timestep number if the time format overflows?

A: I don’t know whether it exists anywhere, but it’s easy. In Perl you’d say

perl -pe ’s/^(\s*[-0-9]+)\.([-0-9eEdD])/$1 $2/g’

and in sed (but that’s harder to read)

sed ’s/^\(*[-0-9]\+\)\.\([-0-9eEdD]\)/\1 \2/g’

7.5.7 Problems with pc_varcontent.pro

Q:

88 THE PENCIL CODE

% Subscript range values of the form low:high must be >= 0, < size, with low

<= high: VARCONTENT.

% Error occurred at: PC_VARCONTENT 391

/home/brandenb/pencil-code/idl/read/pc_varcontent.pro

% PC_READ_VAR 318

/home/brandenb/pencil-code/idl/read/pc_read_var.pro

% $MAIN$

A: Make sure you don’t have any unused items in your src/cparam.local such as

! MAUX CONTRIBUTION 3

! COMMUNICATED AUXILIARIES 3

They would leave gaps in the counting of entries in your data/index.pro file.

7.6 General questions

7.6.1 “Installation” procedure

Why don’t you use GNU autoconf/automake for installation of the PENCIL CODE?

A: What do you mean by “installation”? Unlike the applications that normally use auto-
conf , the Pencil Code is neither a binary executable, nor a library that you compile once
and then dump somewhere in the system tree. Autoconf is the right tool for these appli-
cations, but not for numerical codes, where the typical compilation and usage pattern is
very different:

You have different directories with different ‘Makefile.local’ settings, recompile after
introducing that shiny new term in your equations, etc. Moreover, you want to some-
times switch to a different compiler (but just for that run directory) or another MPI
implementation. Our adapt-mkfile approach gives you this flexibility in a reasonably
convenient way, while doing the same thing with autoconf would be using that system
against most of its design principles.

Besides, it would really get on my (WD’s) nerves if I had to wait two minutes for autoconf
to finish before I can start compiling (or maybe 5–10 minutes if I worked on a NEC
machine. . .).

Finally, if you have ever tried to figure out what a ‘configure’ script does, you will ap-
preciate a comprehensible configuration system.

7.6.2 Small numbers in the code

What is actually the difference between epsi, tini and tiny?

A:

F90 has two functions epsilon() and tiny(), with

epsilon(x) = 1.1920929e-07

tiny(x) = 1.1754944e-38

(and then there is huge(x) = 3.4028235e+38)

7.6 General questions 89

for a single-precision number x.

epsilon(x) is the smallest number that satisfies

1+epsilon(1.) /= 1 ,

while tiny(x) is the smallest number that can be represented without

precision loss.

In the code we have variants hereof,

epsi=5*epsilon(1.0)

tini=5*tiny(1.0)

huge1=0.2*huge(1.0)

that have added safety margins, so we don’t have to think about doing

things like 1/tini.

So in sub.f90,

- evr = evr / spread(r_mn+epsi,2,3)

did (minimally) affect the result for r_mn=O(1), while the correct version

+ evr = evr / spread(r_mn+tini,2,3)

only avoids overflow.

7.6.3 Why do we need a /lphysics/ namelist in the first place?

Wolfgang answered on 29 July 2010: “‘cdata.f90’ has the explanation”

! Constant ’parameters’ cannot occur in namelists, so in order to get the

! now constant module logicals into the lphysics name list...

! We have some proxies that are used to initialize private local variables

! called lhydro etc, in the lphysics namelist!

So the situation is this: we want to write parameters like ldensity to param.nml so
IDL (and potentially octave, python, etc.) can know whether density was on or not. To
avoid confusion, we want them to have exactly their original names. But we cannot
assemble the original ldensity etc. constants in a namelist, so we have to define a local
ldensity variable. And to provide it with the value of the original cdata.ldensity, we need
to transfer the value via ldensity var. That’s pretty scary, although it seems to work
fine. I can track the code back to the big eos merger commit, so it may originate from
that branch. One obvious problem is that you have to add code in a number of places
(the ldensity → ldensity var assignment and the local definition of ldensity) to really
get what you need. And when adding a new boolean of that sort to ‘cdata.f90’, you may
not even have a clue that you need all the other voodoo.

There may be a cleaner solution involving generated code. Maybe something like

logical :: ldensity ! INCLUDE_IN_LPHYSICS

could later generate code (in some param io extra.inc file) that looks like this:

write(unit, *) ’ldensity = ’, ldensity

i.e. we can manually write in namelist format. But maybe there are even simpler solu-
tions?

90 THE PENCIL CODE

7.6.4 Can I run the code on a Mac?

A: Macs work well for Linux stuff, except that the file structure is slightly different.
Problems when following Linux installs can usually be traced to the PATH. For general
reference, if you need to set an environment variable for an entire OS-X login session,
google environment.plist. That won’t be needed here.

For a Mac install, the following should work:

a) Install Dev Tools (an optional install on the MacOS install disks). Unfortunately,
last time I checked the svn version that comes with DevTools is obsolete. So:

b) Install MacPorts (download from web). Note that MacPorts installs to a non-
standard location, and will need to be sourced. The installation normally drops
an appropriate line in .profile. If it does so, make sure that that line gets sourced.
Otherwise

export PATH=/opt/local/bin:/opt/local/sbin:$PATH

export MANPATH=/opt/local/share/man:$MANPATH

c) Install g95 (download from web). Make sure it is linked in /bin.

d) execute macports svn install

e) download the pencil-code and enjoy.

Note: the above way to get svn works. It takes a while however, so there are certainly
faster ways out there. If you already have a non-obsolete svn version, use that instead.

7.6.5 Pencil Code discussion forum

Do I just need to send an email somewhere to subscribe or what?

A” The answer is yes; just go to:

http://groups.google.com/group/pencil-code-discuss

7.6.6 The manual

It would be a good idea to add this useful information in the manual, no?

A: When you have added new stuff to the code, don’t forget to mention this in the
‘pencil-code/doc/manual.tex’ file.

Again, the answer is yes; just go to:

cd pencil-code/doc/

vi manual.tex

svn ci -m "explanations about a new module in the code"

91

Part II

Programming the PENCIL CODE

All developers are supposed to have an up-to-date entry in the file
‘pencil-code/license/developers.txt’ so that they can be contacted in case a code
change breaks an auto-test or other code functionality.

Several PENCIL CODE committers have done several hundred check-ins, but many of
the currently 68 registered people on the repository have hardly done anything. To put
a number to this, one can define an h index, which gives the number of users, who have
done at least as many as that number of check-ins. This h index is currently 32, i.e., 32
users have done at least 32 check-ins; see Figure 6.

Figure 6: The h index of PENCIL CODE check-ins.

The PENCIL CODE has expanded approximately linearly in the number of lines of code
and the number of subroutines (Fig. 7). The increase in the functionality of the code is
documented by the rise in the number of sample problems (Fig. 8). It is important to
monitor the performance of the code as well. Figure 9 shows that for most of the runs
the run time has not changed much.

Before making changes to the code, it is important that you verify that you can run
the pc_auto-test successfully. Don’t do this when you have already modified the code,
because then you cannot be sure that any problems are caused by your changes, or
because it wouldn’t have worked anyway. Also, keep in mind that the code is public,
so your changes should make sense from a broader perspective and should not only
be intended for yourself. Regarding more general aspects about coding standards see
Sect. B.2.

In order to keep the development of the code going, it is important that the users are
able to understand and modify (program!) the code. In this section we explain first how

92 THE PENCIL CODE

Figure 7: Number of lines of code and the number of subroutines since the end of 2001. The jump in the
Summer of 2005 was the moment when the developments on the side branch (eos branch) were merged
with the main trunk of the code. Note the approximately linear scaling with time.

to orient yourself in the code and to understand what is in it, and then to modify it
according to your needs.

The Pencil Code check-ins occur regularly all the time. By the Pencil Code User Meeting
2010 we have arrived at a revision number of 15,000. In February 2017, the number of
check-ins has risen to 26,804; see https://github.com/pencil-code/pencil-code. Ma-
jor code changes are nowadays being discussed by the Pencil Code Steering Committee
(https://www.nordita.org/~brandenb/pencil-code/PCSC/). The increase of the revision
number with time is depicted in Figure 10. The number of Pencil Code developers in-
creases too (Figure 11), but the really active ones are getting rare. This may indicate
that new users can produce new science with the code as it is, but it may also indicate
that it is getting harder to understand the code. How to understand the code will be
discussed in the next section.

Figure 8: Number of tests in the sample directory that are used in the nightly auto tests. Note again the
approximately linear scaling with time.

https://github.com/pencil-code/pencil-code
https://www.nordita.org/~brandenb/pencil-code/PCSC/

93

Figure 9: Run time of the daily auto-tests since August 17, 2008. For most of the runs the run time has
not changed much. The occasional spikes are the results of additional load on the machine.

94 THE PENCIL CODE

Figure 10: Number of check-ins since 2002. Note again the linear increase with time, although in the last
part of the time series there is a notable speed-up.

Figure 11: Check-ins since 2002 per user. Users with more than 100 check-ins are color coded.

8. Understanding the code 95

8 Understanding the code

Understanding the code means looking through the code. This is not normally done by
just printing out the entire code, but by searching your way through the code in order to
address your questions. The general concept will be illustrated here with an example.

8.1 Example: how is the continuity equation being solved?

All the physics modules are solved in the routine pde, which is located in the file and
module ‘Equ’. Somewhere in the pde subroutine you find the line

call dlnrho_dt(f,df,p)

This means that here the part belonging to ∂ ln ρ/∂t is being assembled. Using the grep

command you will find that this routine is located in the module density, so look in
there and try to understand the pieces in this routine. We quickly arrive at the following
crucial part of code,

!

! Continuity equation.

!

if (lcontinuity_gas) then

if (ldensity_nolog) then

df(l1:l2,m,n,irho) = df(l1:l2,m,n,irho) - p%ugrho - p%rho*p%divu

else

df(l1:l2,m,n,ilnrho) = df(l1:l2,m,n,ilnrho) - p%uglnrho - p%divu

endif

endif

where, depending on some logicals that tell you whether the continuity equation should
indeed be solved and whether we do want to solve for the logarithmic density and not
the actual density, the correct right hand side is being assembled. Note that all these
routines always only add to the existing df(l1:l2,m,n,ilnrho) array and never reset
it. Resetting df is only done by the timestepping routine. Next, the pieces p%uglnrho

and p%divu are being subtracted. These are pencils that are organized in the structure

with the name p. The meaning of their names is obvious: uglnrho refers to u · ∇ ln ρ
and divu refers to ∇ · u. In the subroutine pencil_criteria_density you find under
which conditions these pencils are requested. Using grep, you also find where they are
calculated. For example p%uglnrho is calculated in ‘density.f90’; see

call u_dot_grad(f,ilnrho,p%glnrho,p%uu,p%uglnrho,UPWIND=lupw_lnrho)

So this is a call to a subroutine that calculates the u·∇ operator, where there is the possi-
bility of upwinding, but this is not the default. The piece divu is calculated in ‘hydro.f90’
in the line

!

! Calculate uij and divu, if requested.

!

if (lpencil(i_uij)) call gij(f,iuu,p%uij,1)

if (lpencil(i_divu)) call div_mn(p%uij,p%divu,p%uu)

96 THE PENCIL CODE

Note that the divergence calculation uses the velocity gradient matrix as input, so no
new derivatives are recalculated. Again, using grep, you will find that this calculation
and many other ones happen in the module and file ‘sub.f90’. The various derivatives
that enter here have been calculated using the gij routine, which calls the der routine,
e.g., like so

k1=k-1

do i=1,3

do j=1,3

if (nder==1) then

call der(f,k1+i,tmp,j)

For all further details you just have to follow the trail. So if you want to know how the
derivatives are calculated, you have to look in deriv.f90, and only here is it where the
indices of the f array are being addressed.

If you are interested in magnetic fields, you have to look in the file ‘magnetic.f90’. The
right hand side of the equation is assembled in the routine

!***

subroutine daa_dt(f,df,p)

!

! Magnetic field evolution.

!

! Calculate dA/dt=uxB+3/2 Omega_0 A_y x_dir -eta mu_0 J.

! For mean field calculations one can also add dA/dt=...+alpha*bb+delta*WXJ.

! Add jxb/rho to momentum equation.

! Add eta mu_0 j2/rho to entropy equation.

!

where the header tells you already a little bit of what comes below. It is also here where
ohmic heating effects and other possible effects on other equations are included, e.g.

!

! Add Ohmic heat to entropy or temperature equation.

!

if (lentropy .and. lohmic_heat) then

df(l1:l2,m,n,iss) = df(l1:l2,m,n,iss) &

+ etatotal*mu0*p%j2*p%rho1*p%TT1

endif

We leave it at this and encourage the user to do similar inspection work on
a number of other examples. If you think you find an error, file a ticket at
http://code.google.com/p/pencil-code/issues/list. You can of course also repair it!

http://code.google.com/p/pencil-code/issues/list

9. Adapting the code 97

9 Adapting the code

9.1 The PENCIL CODE coding standard

As with any code longer than a few lines the appearance and layout of the source code
is of the utmost importance. Well laid out code is more easy to read and understand and
as such is less prone to errors.

A consistent coding style has evolved in the PENCIL CODE and we ask that those con-
tributing try to be consistent for everybody’s benefit. In particular, it would be appreci-
ated if those committing changes of existing code via svn follow the given coding style.

There are not terribly many rules and using existing code as a template is usually the
easiest way to proceed. In short the most important rules are:

• tab characters do not occur anywhere in the code (in fact the use of tab character
is an extension to the Fortran standard).

• Code in any delimited block, e.g. if statements, do loops, subroutines etc., is in-
dented be precisely 2 spaces. E.g.

if (lcylindrical) then

call fatal_error(’del2fjv’,’del2fjv not implemented’)

endif

• continuation lines (i.e. the continuation part of a logical line that is split using
the & sign) are indented by 4 spaces. E.g. (note the difference from the previous
example)

if (lcylindrical) &

call fatal_error(’del2fjv’,’del2fjv not implemented’)

[...]

• There is always one space separation between ’if ’ and the criterion following in
parenthesis:

if (ldensity_nolog) then

rho=f(l1:l2,m,n,irho)

endif

This is wrong:

if(ldensity_nolog) then ! WRONG

rho=f(l1:l2,m,n,irho)

endif

• In general, try to follow common practice used elsewhere in the code. For example,
in the code fragment above there are no empty spaces within the mathematical
expressions programmed in the code. A unique convention helps in finding certain
expressions and patterns in the code. However, empty spaces are often used after
commas and semicolons, for examples in name lists.

• Relational operators are written with symbols (==, / =, <, <=, >, >=), not with
characters (.eq., .ne., .lt., .le., .gt., .ge.).

• In general all comments are placed on their own lines with the ’!’ appearing in the
first column.

98 THE PENCIL CODE

• All subroutine/functions begin with a standard comment block describing what
they do, when and by whom they were created and when and by whom any non-
trivial modifications were made.

• Lines longer that 78 characters should be explicitly wrapped using the & character,
unless there is a block of longer lines that can only be read easily when they are
not wrapped. Always add one whitespace before the & character.

These and other issues are discussed in more depth and with examples in Appendix B,
and in particular in Sect. B.2.

9.2 Adding new output diagnostics

With the implementation of new physics and the development of new procedures it will
become necessary to monitor new diagnostic quantities that have not yet been imple-
mented in the code. In the following, we describe the steps necessary to set up a new
diagnostic variable.

This is nontrivial as, in order to keep latency effects low on multi-processor machines,
the code minimizes the number of global reduction operations by assembling all quan-
tities that need the maximum taken in fmax, and those that need to be summed up
over all processors (mostly for calculating mean quantities) in fsum (see subroutine
diagnostic in file ‘src/equ.f90’).

As a sample variable, let us consider jbm (the volume average
〈

j · B
〉

). Only the mod-
ule magnetic will be affected, as you can see (the diagnostic quantity jbm is already
implemented) with

unix> grep -i jbm src/*.f90

If we pretend for the sake of the exercise that no trace of jbm was in the code, and we
were only now adding it, we would need to do the following

1. add the variable idiag jbm to the module variables of Magnetic in both
‘magnetic.f90’ and ‘nomagnetic.f90’:

integer :: idiag_jbm=0

The variable idiag jbm is needed for matching the position of jbm with the list of
diagnostic variables specified in ‘print.in’.

2. in the subroutine daa_dt in ‘magnetic.f90’, declare and calculate the quantity jb
(the average of which will be jbm), and call sum_mn_name

real, dimension (nx) :: jb ! jj ·BB
[. . .]
if (ldiagnos) then ! only calculate if diagnostics is required

if (idiag_jbm/=0) then ! anybody asked for jbm?
call dot_mn(jj,bb,jb) ! assuming jj and bb are known
call sum_mn_name(jb,i_jbm)

endif

endif

9.2 Adding new output diagnostics 99

3. in the subroutine rprint_magnetic in both ‘magnetic.f90’, add the following:

!

! reset everything in case of RELOAD

! (this needs to be consistent with what is defined above!)

!

if (lreset) then ! need to reset list of diagnostic variables?
[. . .]
idiag_jbm=0

[. . .]
endif

!

! check for those quantities that we want to evaluate online

!

do iname=1,nname

[. . .]
call parse_name(iname,cname(iname),cform(iname),’jbm’,idiag_jbm)

[. . .]
enddo

[. . .]
!

! write column, i_XYZ, where our variable XYZ is stored

!

[. . .]
write(3,*) ’i_jbm=’,idiag_jbm

[. . .]

4. in the subroutine rprint_magnetic in ‘nomagnetic.f90’, add the following (newer
versions of the code may not require this any more):

!

! write column, i_jbm, where our variable jbm is stored

! idl needs this even if everything is zero

!

[. . .]
write(3,*) ’i_jbm=’,idiag_jbm

[. . .]

5. and don’t forget to add your new variable to ‘print.in’:

jbm(f10.5)

If, instead of a mean value, you want a new maximum quantity, you need to replace
sum_mn_name() by max_mn_name().

Sect. 5.8.1 describes how to output horizontal averages of the magnetic and velocity
fields. New such averages can be added to the code by using the existing averaging
procedures calc_bmz() or calc_jmz() as examples.

100 THE PENCIL CODE

9.3 The f-array

The ‘f ’ array is the largest array in the PENCIL CODE and its primary role is to store
the current state of the timestepped PDE variables. The f-array and its slightly smaller
counter part (the df-array; see below) are the only full size 3D arrays in the code. The
f-array is of type real but PDEs for a complex variable may be solved by using two
slots in the f-array. The actual size of the f-array is mx × my × mz × mfarray. Here,
mfarray = mvar+maux+mglobal+mscratch where mvar refers to the number of real PDE
variables.

As an example, we describe here how to put the time-integrated velocity, uut , into the
f-array (see ‘hydro.f90’). If this is to be invoked, there must be the following call some-
where in the code:

call farray_register_auxiliary(’uut’,iuut,vector=3)

Here, iuut is the index of the variable uut in the f-array. Of course, this requires that
maux is increased by 3, but in order to do this for a particular run only one must write
a corresponding entry in the ‘cparam.local’ file,

! -*-f90-*- (for Emacs)

! cparam.local

!

!** AUTOMATIC CPARAM.INC GENERATION **

! Declare (for generation of cparam.inc) the number of f array

! variables and auxiliary variables added by this module

!

! MAUX CONTRIBUTION 3

!

!***

! Local settings concerning grid size and number of CPUs.

! This file is included by cparam.f90

!

integer, parameter :: ncpus=1,nprocy=1,nprocz=ncpus/nprocy,nprocx=1

integer, parameter :: nxgrid=16,nygrid=nxgrid,nzgrid=nxgrid

This way such a change does not affect the memory usage for other applications where
this addition to ‘cparam.local’ is not made. In order to output this part of the f-array,
one must write lwrite_aux=T in the init_pars of ‘start.in’. (Technically, lwrite_aux=T
can also be invoked in run_pars of ‘run.in’, but this does not work at the moment.)

9.4 The df-array

The ‘df ’ array is the second largest chunk of data in the PENCIL CODE. By using a 2N
storage scheme (see H.4) after Williamson [29] the code only needs one more storage
area for each timestepped variable on top of the current state stored in the f-array. As
such, and in contrast to the f-array, the df-array is of size mx×my×mz×mvar. Like the
df-array it is of type real. In fact the ghost zones of df are not required or calculated but
having f- and df-arrays of the same size make the coding more transparent. For mx, my
and mz large the wasted storage becomes negligible.

9.5 The fp-array 101

9.5 The fp-array

Similar to the ‘f ’ array the code also has a ’fp’ array which contains current states of
all the particles. Like the f-array the fp-array also has a time derivative part, the dfp-
array. The dimension of the fp-array ismparlocal×mpvar wheremparlocal is the number
of particles in the local processor (for serial runs this is the total number of particles)
and mpvar depends on the problem at hand. For example if we are solving for only
tracer particles then mpvar = 3, for dust particles mpvar = 6 The sequence in which the
slots in the fp-array are filled up depends on the sequence in which different particle
modules are called from the particles_main.f90. The following are the relevant lines
from particles_main.f90.

!***

subroutine particles_register_modules()

!

! Register particle modules.

!

! 07-jan-05/anders: coded

!

call register_particles ()

call register_particles_radius ()

call register_particles_spin ()

call register_particles_number ()

call register_particles_mass ()

call register_particles_selfgrav ()

call register_particles_nbody ()

call register_particles_viscosity ()

call register_pars_diagnos_state ()

!

endsubroutine particles_register_modules

!***

The subroutine resister_particles can mean either the tracer particles or dust parti-
cles. For the former the first three slots of the fp-array are the three spatial coordinates.
For the latter the first six slots of the fp-array are the three spatial coordinates followed
by the three velocity components. The seventh slot (or the fourth if we are use tracer
particles) is the radius of the particle which can also change as a function of time as
particles collide and fuse together to form bigger particles.

9.6 The pencil case

Variables that are derived from the basic physical variables of the code are stored in
one-dimensional pencils of length nx. All the pencils that are defined for a given set
of physics modules are in turn bundled up in a Fortran structure called p (or, more
illustrative, the pencil case). Access to individual pencils happens through the variable
p%name, where name is the name of a pencil, e.g. rho that is a derived variable of the
logarithmic density lnrho.

The pencils provided by a given physics module are declared in the header of the file,
e.g. in the Density module:

102 THE PENCIL CODE

! PENCILS PROVIDED lnrho; rho; rho1; glnrho(3); grho(3); uglnrho; ugrho

Notice that the pencil names are separated with a semi-colon and that vector pencils
are declared with “(3)” after the name. Before compiling the code, the script ‘mkcparam’
collects the names of all pencils that are provided by the chosen physics modules. It
then defines the structure p with slots for every single of these pencils. The defini-
tion of the pencil case p is written in the include file ‘cparam_pencils.inc’. When the
code is run, the actual pencils that are needed for the run are chosen based on the in-
put parameters. This is done in the subroutines pencil_criteria_modulename that are
present in each physics module. They are all called once before entering the time loop.
In the pencil_criteria subroutines the logical arrays lpenc_requested, lpenc_diagnos,
lpenc_diagnos2d, and lpenc_video are set according to the pencils that are needed for
the given run. Some pencils depend on each other, e.g. uglnrho depends on uu and glnrho.
Such interdependencies are sorted out in the subroutines pencil_interdep_modulename

that are called after pencil_criteria_modulename.

In each time-step the values of the pencil logicals lpenc_requested, lpenc_diagnos,
lpenc_diagnos2d, and lpenc_video are combined to one single pencil array lpencil

which is different from time-step to time-step depending on e.g. whether diagnostics
or video output are done in that time-step. The pencils are then calculated in the sub-
routines calc_pencils_modulename. This is done before calculating the time evolution of
the physical variables, as this depends very often on derived variables in pencils.

The centralized pencil calculation scheme is a guarantee that

• All pencils are only calculated once

• Pencils are always calculated by the proper physics module

Since the PENCIL CODE is a multipurpose code that has many different physics mod-
ules, it can lead to big problems if a module tries to calculate a derived variable that
actually belongs to another module, because different input parameters can influence
how the derived variables are calculated. One example is that the Density module can
consider both logarithmic and non-logarithmic density, so if the Magnetic module calcu-
lates

rho = exp(f(l1:l2,m,n,ilnrho)

it is wrong if the Density module works with non-logarithmic density! The proper way
for the Magnetic module to get to know the density is to request the pencil rho in
pencil_criteria_magnetic.

9.6.1 Pencil check

To check that the correct pencils have been requested for a given run, one can run a
pencil consistency check in the beginning of a run by setting the logical lpencil_check
in &run_pars. The check is meant to see if

• All needed pencils have been requested

• All requested pencils are needed

The consistency check first calculates the value of dfwith all the requested pencils. Then
the pencil requests are flipped one at a time – requested to not requested, not requested
to requested. The following combination of events can occur:

9.7 Adding new physics: the Special module 103

• not requested → requested, df not changed
The pencil is not requested and is not needed.

• not requested → requested, df changed
The pencil is not requested, but is needed. The code stops.

• requested → not requested, df not changed
The pencil is requested, but is not needed. The code gives a warning.

• requested → not requested, df changed
The pencil is requested and is needed.

9.6.2 Adding new pencils

Adding a new pencil to the pencil case is trivial but requires a few steps.

• Declare the name of the pencil in the header of the proper physics module. Pencils
names must appear come in a ”;” separated list, with dimensions in parenthesis
after the name [(3) for vector, (3,3) for matrix, etc.].

• Set interdependency of the new pencil (i.e. what other pencils does it depend on) in
the subroutine pencil_interdep_modulename

• Make rule for calculating the pencil in calc_pencils_modulename

• Request the new pencil based on the input parameters in any relevant physics
module

Remember that the centralized pencilation scheme is partially there to force the users
of the code to think in general terms when implementing new physics. Any derived
variable can be useful for a number of different physics problems, and it is important
that a pencil is accessible in a transparent way to all modules.

9.7 Adding new physics: the Special module

If you want to add new physics to the code, you will in many cases want to add a new
Special module. Doing so is relatively straight forward and there is even a special direc-
tory for such additions.

To create your own special module, copy ‘nospecial.f90’ from the src/ directory to a
new name in the src/special/ directory. It is currently only possible to have one special
modules at a time and so several new bits of physics are often put in to one special
module. For this reasons a name should be chosen that relates to the problem to be
solved rather than the specific physics being implemented.

The first thing to do in your new module is to change the lspecial=.false. header to say
lspecial=.true.

The file is heavily commented though all such comments can be removed as you go. You
may implement any of the subroutines/function that exist in nospecial.f90 and those
routines must have the names and parameters as in nospecial.f90 . You do not how-
ever need to implement all routines, and you may either leave the dummy routines

104 THE PENCIL CODE

copied from nospecial.f90 or delete them all together (provided the ”include ’special -
dummy.inc’” is kept intact at the end of the file. Beyond that, and data and subroutines
can be added to a special module as required, though only for use within that module.

There are routines in the special interface to allow you to add new equations, modify the
existing equation, add diagnostics, add slices, and many more things. If you feel there is
something missing extra hooks can easily be added - please contact the PENCIL CODE

team for assistance.

You are encouraged to submit/commit your special modules to the Pencil Code source.
When you have added new stuff to the code, don’t forget to mention this in the
‘pencil-code/doc/manual.tex’ file.

9.8 Adding switchable modules

In some cases where a piece of physics is thought to be more fundamental, useful in
many situations or simply more flexibility is required it may be necessary to add a new
module newphysics together with the corresponding nonewphysics module. The special
modules follow the same structure as the rest of the switchable modules and so using a
special module to prototype new ideas can make writing a new switchable module much
easier.

For an example of module involving a new variable (and PDE), the pscalar module is a
good prototype. The grep command

unix> grep -i pscalar src/*

gives you a good overview of which files you need to edit or add.

9.9 Adding your initial conditions: the InitialCondition m odule

Although the code has many initial conditions implemented, we now discourage such
practice. We aim to eventually removed most of them. The recommended course of action
is to make use of the InitialCondition module.

InitialCondition works pretty much like the Special module. To implement your own
custom initial conditions, copy the file ‘noinitial_condition.f90’ from the src/ to src/

initial_condition, with a new, descriptive, name.

The first thing to do in your new module is to change the linitialcondition=.false. header
to say linitialcondition=.true. Also, don’t forget to add ../ in front of the file names in
include statements.

This file has hooks to implement a custom initial condition to most vari-
ables. After implementing your initial condition, add the line INITIAL_-

CONDITION=initial_condition/myinitialcondition to your ‘src/Makefile.local’
file. Here, myinitialcondition is the name you gave to your initial condition file. Add
also initial_condition_pars to the ‘start.in’ file, just below init_pars. This is a
namelist, which you can use to add whichever quantity your initial condition needs
defined, or passed. You must also un-comment the relevant lines in the subroutines
for reading and writing the namelists. For compiling reasons, these subroutines in
‘noinitial_condition.f90’ are dummies. The lines are easily identifiable in the code.

9.9 Adding your initial conditions: the InitialCondition module 105

Check e.g. the samples ‘2d-tests/baroclinic’, ‘2d-tests/spherical_viscous_ring’, or
‘interlocked-fluxrings’, for examples of how the module is used.

106 THE PENCIL CODE

10 Testing the code

To maintain reproducibility despite sometimes quite rapid development, the PENCIL

CODE is tested nightly on various architectures. The front end for testing are the scripts
pc_auto-test and (possibly) pencil-test.

To see which samples would be tested, run

unix> pc_auto-test -l

, to actually run the tests, use

unix> pc_auto-test

or

unix> pc_auto-test --clean

. The latter compiles every test sample from scratch and currently (September 2009)
takes about 2 hours on a mid-end Linux PC.

The pencil-test script is useful for cron jobs and allows the actual test to run on a
remote computer. See Sect. 10.1 below.

For a complete list of options, run pc_auto-test --help and/or pencil-test --help.

10.1 How to set up periodic tests

To set up a nightly test of the PENCIL CODE, carry out the following steps.

1. Identify a host for running the actual tests (the work host) and one to initiate
the tests and collect the results (the scheduling host). On the scheduling host, you
should be able to

(a) run cron jobs,

(b) ssh to the work host without password,

(c) publish HTML files (optional, but recommended),

(d) send e-mail (optional, but recommended).

Work host and scheduling host can be the same (in this case, use pencil-test’s ‘-l’
option, see below), but often they will be two different computers.

2. [Recommended, but optional:] On the work host, check out a separate copy of the
PENCIL CODE to reduce the risk that you start coding in the auto-test tree. In the
following, we will assume that you checked out the code as ‘~/pencil-auto-test’.

3. On the work host, make sure that the code finds the correct configuration file for
the tests you want to carry out. [Elaborate on that: PENCIL_HOME/local_config and
‘-f’ option; give explicit example]

Remember that you can set up a custom host ID file for your auto-test tree under
‘${PENCIL_HOME}/config-local/hosts/’.

4. On the scheduling host, use crontab -e to set up a cron job similar to the following:

10.1 How to set up periodic tests 107

30 02 * * * $HOME/pencil-auto-test/bin/pencil-test \

-D $HOME/pencil-auto-test \

--use-pc_auto-test \

-N15 -Uc -rs \

-T $HOME/public_html/pencil-code/tests/timings.txt \

-t 15m

-m <email1@inter.net,email2@inter.net,...> \

<work-host.inter.net> \

-H > $HOME/public_html/pencil-code/tests/nightly-tests.html

Note 1: This has to be one long line. The backslash characters are written only
for formatting purposes for this manual you cannot use them in a crontab file.

Note 2: You will have to adapt some parameters listed here and may want to
modify a few more:

‘-D <dir>’: Sets the directory (on the work host) to run in.

‘-T <file>’: If this option is given, append a timing statistics line for each test to
the given file.

‘--use-pc’: You want this option (and at some point, it will be the default).

‘-t 15m’: Limit the time for ‘start.x’ and ‘run.x’ to 15 minutes.

‘-N 15’: Run the tests at nice level 15 (may not have an effect for MPI tests).

‘-Uc’: Do svn update and pc_build --cleanall before compiling.

‘-m <email-list>’: If this option is given, send e-mails to everybody in the
(comma-separated) list of e-mail addresses if any test fails. As soon as this
option is set, the maintainers (as specified in the ‘README’ file) of failed tests
will also receive an e-mail.

‘work-host.inter.net|-l’: Replace this with the remote host that is to run the
tests. If you want to run locally, write -l instead.

‘-H’: Output HTML.

‘> $HOME/public_html/pencil-code/tests/nightly-tests.html’: Write output to
the given file.

If you want to run fewer or more tests, you can use the ‘-Wa,--max-level’ option:

-Wa,--max-level=3

will run all tests up to (and including) level 3. The default corresponds to
‘-Wa,--max-level=2’.

For a complete listing of pencil-test options, run

unix> pencil-test --help

108 THE PENCIL CODE

11 Useful internals

11.1 Global variables

The following variables are defined in ‘cdata.f90’ and are available in any routine that
uses the module Cdata.

Variable Meaning

real

t simulated time t.

integer

n[xyz]grid global number of grid points (excluding ghost cells)
in x, y and z direction.

nx, ny, nz number of grid points (excluding ghost cells) as seen
by the current processor, i. e. ny=nygrid/nprocy, etc.

mx, my, mz number of grid points seen by the current processor,
but including ghost cells. Thus, the total box for the
ivarth variable (on the given processor) is given by
f(1:mx,1:my,1:mz,ivar).

l1 , l2 smallest and largest x-index for the physical domain
(i. e. excluding ghost cells) on the given processor.

m1 , m2 smallest and largest y-index for physical domain.
n1 , n2 smallest and largest z-index for physical domain,

i. e. the physical part of the ivarth variable is given
by f(l1:l2,m1:m2,n1:n2,ivar)

m, n pencil indexing variables: During each time-substep
the box is traversed in x-pencils of length mx such
that the current pencil of the ivarth variable is
f(l1:l2,m,n,ivar).

logical

lroot true only for MPI root processor.
lfirst true only during first time-substep of each time step.
headt true only for very first full time step (comprising 3

substeps for the 3rd-order Runge–Kutta scheme) on
root processor.

headtt = (lfirst .and. lroot): true only during very first
time-substep on root processor.

lfirstpoint true only when the very first pencil for a given time-
substep is processed, i. e. for the first set of (m,n),
which is probably (3, 3) .

lout true when diagnostic output is about to be written.

11.2 Subroutines and functions

output(file,a,nv) (module IO): Write (in each ‘procN ’ directory) the content of the
global array a to a file called file, where a has dimensions mx×my×mz×nv, or

11.2 Subroutines and functions 109

mx×my×mz if nv=1.

output_pencil(file,a,nv) (module IO): Same as output(), but for a pencil variable,
i. e. an auxiliary variable that only ever exists on a pencil (e. g. the magnetic field
strength bb in ‘magnetic.f90’, or the squared sound speed cs2 in ‘entropy.f90’).
The file has the same structure as those written by output(), because the values
of a on the different pencils are accumulated in the file. This involves a quite non-
trivial access pattern to the file and has thus been coded in C (‘src/debug_c.c’).

cross(a,b,c) (module Sub): Calculate the cross product of two vectors a and b and
store in c. The vectors must either all be of size mx×my×mz×3 (global arrays), or
of size nx×3 (pencil arrays).

dot(a,b,c) (module Sub): Calculate the dot product of two vectors a and b and store
in c. The vectors must either be of size mx×my×mz×3 (a and b) and mx×my×mz
(c), or of size nx×3 (a and b) and nx (c).

dot2(a,c) (module Sub): Same as dot(a,a,c).

110 THE PENCIL CODE

111

Part III

Appendix

APPENDIX Date, Revision

A Timings

In the following table we list the results of timings of the code on different machines.
Shown is (among other quantities) the wall clock time per mesh point (excluding the
ghost zones) and per full 3-stage time step, a quantity that is printed by the code at the
end of a run.16

As these results were assembled during the development phase of the code (that hasn’t
really finished yet,. . .), you may not get the same numbers, but they should give some
orientation of what to expect for your specific application on your specific hardware.

The code will output the timing (in microseconds per grid point per time-step) at the
end of a run. You can also specify walltime in print.in to have the code continuously
output the physical time it took to reach the time-steps where diagnostics is done. The
time-dependent code speed can then be calculated by differentiating, e.g. in IDL with
IDL> pc_read_ts, obj=ts

IDL> plot, ts.it, 1/nw*deriv(ts.it,ts.walltime/1.0e-6), psym=2

where nw=nx*ny*nz.

proc machine
µs

pt step
resol. what mem/proc when who

1 Nl3 19 643 kinematic 10 MB 20-may-02 AB
1 Nl3 30 643 magn/noentro 20 MB 20-may-02 AB
1 Nq1 10 643 magn/noentro 30-may-02 AB
1 Ukaff 9.2 643 magn/noentro 20-may-02 AB
1 Nl6 6.8 643 magn/noentro 10-mar-03 AB
1 Nl6 36.3 64×128×64 nomag/entro/dust 19-sep-03 AB
1 Nl6 42.7 162×256 nomag/entro/rad6/ion 22-oct-03 AB
1 Nl6 37.6 162×256 nomag/entro/rad2/ion 22-oct-03 AB
1 Nl6 19.6 162×256 nomag/entro/ion 22-oct-03 AB
1 Nl6 8.7 162×256 nomag/entro 22-oct-03 AB
1 Nl6n 9.8 323 magn/noentro/pscalar 17-mar-06 AB
1 Mhd 7.8 643 magn/noentro 20-may-02 AB
1 Nq4 14.4 1283 magn/noentro 8-oct-02 AB
1 Nq5 6.7 1283 magn/noentro 8-oct-02 AB
1 fe1 5.1 1283 magn/noentro 9-oct-02 AB
1 Kabul 4.4 1283 magn/noentro 130 MB 20-jun-02 WD
1 Hwwsx5 3.4 2563 convstar 7.8 GB 29-jan-03 WD
1 Mac/g95 7.7 323 magn/noentro 14-jan-07 BD
1 Mac/ifc 4.5 323 magn/noentro 14-jan-07 BD
2 Kabul 2.5 1283 magn/noentro 80 MB 20-jun-02 WD
2 Nq3+4 7.4 1283 magn/noentro 8-oct-02 AB
2 Nq4+4 8.9 1283 magn/noentro 8-oct-02 AB
2 Nq4+5 7.3 1283 magn/noentro 8-oct-02 AB
2 Nq5+5 3.7 1283 magn/noentro 8-oct-02 AB

16 Note that when using ‘nompicomm.f90’, the timer currently used will overflow on some machines, so
you should not blindly trust the timings given by the code.

112 THE PENCIL CODE

2 fe1 3.45 1283 magn/noentro 9-oct-02 AB
2 Nq2 9.3 643 magn/noentro 11-sep-02 AB
2 Nq1+2 8.3 643 magn/noentro 11-sep-02 AB
2 Hwwsx5 1.8 2563 convstar 7.9 GB 29-jan-03 WD
4 Nq1+2 5.4 643 magn/noentro 11-sep-02 AB
4 Nq1235 4.1 1283 magn/noentro 11-sep-02 AB
4 Nq0-3 6.8 2563 magn/noentro 294 MB 10-jun-02 AB
4 Mhd 2.76 643 magn/noentro 30-may-02 AB
4 fe1 3.39 323 magn/noentro 16-aug-02 AB
4 Rasm. 2.02 643 magn/noentro 2x2 8-sep-02 AB
4 Mhd 8.2 642×16 nomag/entro 23-jul-02 AB
4 fe1 6.35 64×128×64 nomag/entro/dust 19-sep-03 AB
4 fe1 2.09 1283 magn/noentro 9-oct-02 AB
4 fe1 1.45 1283 magn/noentro giga 9-oct-02 AB
4 fe1 7.55 162×512 nomag/entro/rad2/ion 4x1 1-nov-03 AB
4 fe1 5.48 162×512 nomag/entro/rad2/ion 1x4 1-nov-03 AB
4 Luci 1.77 643 magn/noentro 27-feb-07 AB
4 Lenn 0.65 643 nomag/noentro 13-jan-07 AB
4 Lenn 1.21 643 magn/noentro 7-nov-06 AB
4 Kabul 1.5 1283 magn/noentro 47 MB 20-jun-02 WD
4 Hwwsx5 1.8 2563 convstar 8.2 GB 29-jan-03 WD
8 Nqall 3.0 1283 magn/noentro 8-oct-02 AB
8 fe1 3.15 643 magn/noentro 1x8 8-sep-02 AB
8 fe1 2.36 643 magn/noentro 2x4 8-sep-02 AB
8 Ukaff 1.24 643 magn/noentro 20-may-02 AB
8 Kabul 1.25 642×128 nomag/entro 11-jul-02 WD
8 fe1 1.68 1283 magn/noentro 1x8 8-sep-02 AB
8 fe1 1.50 1283 magn/noentro 2x4 8-sep-02 AB
8 fe1 1.44 1283 magn/noentro 4x2 8-sep-02 AB
8 Kabul 0.83 1283 magn/noentro 28 MB 20-jun-02 WD
8 Gridur 1.46 1283 magn/noentro 19-aug-02 NE
8 Kabul 0.87 2563 magn/noentro 160 MB 20-jun-02 WD
8 fe1 0.99 2563 magn/noentro 2x4 8-sep-02 AB
8 fe1 0.98 2563 magn/noentro 4x2 8-sep-02 AB
8 cetus 0.58 643 magn/noentro 4x2 19-aug-07 SS
8 cetus 0.73 2563 magn/noentro 4x2,156M 19-aug-07 SS
8 Neolith 0.82 643 magn/noentro 4x2 5-dec-07 AB
8 Mhd 1.46 1602×40 nomag/entro 46 MB 7-oct-02 AB
8 Hwwsx5 0.50 2563 convstar 8.6 GB 29-jan-03 WD
8 Neolith 0.444 1283 magn/noentro 6-dec-07 AB
8 Ferlin 0.450 643 1test/noentro 21-jun-09 AB
8 Ferlin 0.269 643 magn/noentro 2-apr-10 AB
8 Ferlin 0.245 1283 magn/noentro 2-feb-11 AB
8 nor52 2.00 323 magn/noentro 2-dec-09 AB
9 hydra(2) 0.317 723 magn/noentro 1x3x3 8-may-16 AB
9 charybdis 0.169 723 magn/noentro 1x3x3 8-may-16 AB
9 scylla 0.150 723 magn/noentro 1x3x3 8-may-16 AB

12 scylla 0.151 723 magn/noentro 1x4x3 8-may-16 AB
12 janus 6.02 722 × 22 coag/noentro 17-dec-15 AB
16 fe1 1.77 643 convstar 9-feb-03 AB
16 copson 0.596 1283 geodynamo/ks95 21-nov-03 DM
16 fe1 0.94 1283 magn/noentro 4x4 8-sep-02 AB
16 fe1 0.75 1283 magn/noentro 4x4/ifc6 9-may-03 AB
16 workq 0.88 1283 magn/noentro 4x4/ifc6 21-aug-04 AB
16 giga 0.76 1283 magn/noentro 4x4/ifc6 21-aug-04 AB
16 giga2 0.39 1283 magn/noentro 4x4/ifc6 20-aug-04 AB
16 giga 0.47 1283 chiral 4x4/ifc6 29-may-04 AB
16 giga 0.43 1283 nomag/noentro 4x4/ifc6 28-apr-03 AB
16 Mhd 2.03 1283 magn/noentro 26-nov-02 AB
16 Mhd 0.64 2563 magn/noentro 60 MB 22-may-02 AB

A. Timings 113

16 fe1 0.56 2563 magn/noentro 4x4 16-aug-02 AB
16 fe1 6.30 128×256×128 nomag/entro/dust 19-sep-03 AB
16 fe1 1.31 1282×512 nomag/entro/rad2/ion 4x4 1-nov-03 AB
16 Ukaff 0.61 1283 magn/noentro 22-may-02 AB
16 Ukaff 0.64 2563 magn/noentro 20-may-02 AB
16 Kabul 0.80 1283 magn/noentro 16 MB 20-jun-02 WD
16 Kabul 0.51 2563 magn/noentro 9 MB 20-jun-02 WD
16 Gridur 0.81 1283 magn/noentro 19-aug-02 NE
16 Gridur 0.66 2563 magn/noentro 19-aug-02 NE
16 Sander 0.53 2563 magn/noentro 8-sep-02 AB
16 Luci 0.375 1283 magn/noentro 28-oct-06 AB
16 Lenn 0.284 1283 magn/noentro 8-nov-06 AB
16 Neolith 0.180 2563 magn/noentro 6-dec-07 AB
16 Triolith 0.075 1283 magn/noentro 2x2x4 1-mar-14 AB
16 Triolith 0.065 1283 magn/noentro 1x4x4 1-mar-14 AB
16 Triolith 0.054 2563 magn/noentro 1x4x4 1-mar-14 AB
16 Coma 0.603 1283 GW/magn/noentro 1x4x4 27-jul-17 SM
24 Gardar 0.44 1282 × 48 magn/noentro 6-nov-13 AB
24 Summit 0.041 1443 magn/noentro 28-jul-17 AB
32 giga? 0.32 2563 magn/noentro 13-sep-03 AB
32 Ukaff 0.34 2563 magn/noentro 20-may-02 AB
32 Ukaff 0.32 5123 magn/noentro 20-may-02 AB
32 Hermit 0.200 256×512×256 spherical conv/magn 1x8x4 22-aug-13 PJK
32 fe1 0.168 5123 nomag/noentro 9-oct-02 AB
32 fe1 1.26 642×256 nomag/entro/rad/ion 7-sep-03 AB
32 Luci 0.182 2563 magn/noentro 26-feb-07 AB
32 Lenn 0.147 2563 nomag/entro/cool/fo 4x8 8-nov-06 AB
32 Steno 0.076 2563 nomag/entro/cool/fo 4x8 20-jun-06 AB
32 Steno 0.081 2563 nomag/entro/cool 4x8 20-jun-06 AB
32 Steno 0.085 2563 nomag/entro/cool/sh 4x8 20-jun-06 AB
32 Steno 0.235 5122×256 mag/entro 4x8 9-jul-06 AB
32 Sanss 0.273 128×2562 nomag 4x8 3-jul-07 AB
32 Neolith 0.275 1283 testfield4 24-oct-08 AB
32 Ferlin 0.556 1283 testscalar 7-jan-09 AB
36 Kraken 0.177 192×384×64 magn/noentro 3x6x2 12-jan-12 WL
36 scylla 0.096 723 magn/noentro 1x6x6 8-may-16 AB
48 janus 0.028 722 ∗ 216 magn/noentro 4x12 28-mar-16 AB
64 Coma 0.573 1283 GW/magn/noentro 1x8x8 7-aug-17 SM
64 fe1 0.24 2563 magn/noentro 8x8 2-sep-02 AB
64 giga 0.11 2563 nomag/noentro 4x16 29-apr-03 AB
64 giga 0.23 2563 nomag/noentro/hyp 4x16 8-dec-03 AB
64 fe1 0.164 5123 nomag/noentro/hyp 4x16 17-dec-03 AB
64 giga 0.091 5123 nomag/noentro/hyp 4x16 17-dec-03 AB
64 giga 0.150 2563 magn/noentro 4x16 1-jul-03 AB
64 giga 0.166 5123 magn/noentro 64*173MB 10-jul-03 AB
64 Gridur 0.25 2563 magn/noentro 19-aug-02 NE
64 Ukaff 0.17 5123 magn/noentro 21-may-02 AB
64 Steno 0.075 5123 magn/noentro 8x16 19-oct-06 AB
64 Neolith 0.0695 2563 magn/noentro 6-dec-07 AB
64 Ferlin 8.51 150×1282 Li mechanism 8x8 21-jun-09 AB
64 Ferlin 0.156 2563 magn/noentro 8x8 14-jun-09 AB
64 Akka 0.038 2562×512 magn/noentro 8x8 27-dec-12 AB
64 Triolith 0.0146 2563 magn/noentro 1x8x8 1-mar-14 AB
64 Triolith 0.0164 2563 magn/noentro 2x4x8 1-mar-14 AB
64 Hermit 0.101 256×512×256 spherical conv/magn 1x8x8 22-aug-13 PJK
64 Sisu 0.00205 256×512×256 spherical conv/magn 1x8x8 22-aug-13 PJK
72 Kraken 0.093 192×384×64 magn/noentro 3x12x2 12-jan-12 WL
72 Kraken 0.151 96×192×16 magn/noentro 6x12 17-jan-12 WL
72 Kraken 0.091 192×384×32 magn/noentro 6x12 17-jan-12 WL
72 Kraken 0.071 384×768×64 magn/noentro 6x12 17-jan-12 WL

114 THE PENCIL CODE

72 Summit 0.0128 5763 magn/noentro 7-aug-17 AB
128 fe1 0.44 2563 nomag/entro/rad8/ion 4x32 10-mar-04 TH
128 fe1 2.8 5123 magn/noentro 16x8 5-sep-02 AB
128 fe1 0.51 5123 magn/noentro 8x16 5-sep-02 AB
128 fe1 0.27 5123 magn/noentro 4x32 5-sep-02 AB
128 fe1 0.108 5123 magn/noentro 4x32/ifc6 5-jan-02 AB

64+64 giga2 0.0600 5123 magn/noentro 4x32/ifc6 21-aug-04 AB
128l giga2 0.0605 5123 magn/noentro 4x32/ifc6 21-aug-04 AB
128 fe1 0.35 5123 magn/noentro 2x64 9-sep-02 AB
128 fe1 0.094 7863 magn/noentro 4x32/ifc6 9-sep-02 AB
128 Hermit 0.0532 256×512×256 spherical conv/magn 1x16x8 22-aug-13 PJK
128 Hermit 0.0493 256×512×256 spherical conv/magn 2x8x8 22-aug-13 PJK
128 Sisu 0.00108 256×512×256 spherical conv/magn 1x16x8 22-aug-13 PJK
144 Kraken 0.080 96×192×32 magn/noentro 6x12x2 13-jan-12 WL
144 Kraken 0.058 192×384×64 magn/noentro 6x12x2 17-jan-12 WL
144 Kraken 0.044 384×768×128 magn/noentro 6x12x2 18-jan-12 WL
144 Gardar 2.19 288×1×288 coag43 8x1x18 13-sep-15 AB
144 Summit 0.0064 5763 magn/noentro 7-aug-17 AB
192 Janus 0.0123 144×288×72 magn/noentro/sph 1x24x32 24-jul-16 AB
256 Hermit 0.0328 512×1024×512 spherical conv/magn 1x16x16 22-aug-13 PJK
256 Hermit 0.0285 256×512×256 spherical conv/magn 1x16x16 22-aug-13 PJK
256 giga2 0.028 10243 magn/noentro 4x64/ifc6 20-aug-04 AB
256 Hermit 0.0262 256×512×256 spherical conv/magn 2x16x8 22-aug-13 PJK
256 Hermit 0.0254 512×1024×512 spherical conv/magn 2x16x8 22-aug-13 PJK
256 Hermit 0.0226 512×1024×512 spherical conv/magn 4x8x8 22-aug-13 PJK
256 Akka 0.0113 5123 magn/noentro 16x16 12-jun-11 AB
256 Sisu 0.00618 256×512×256 spherical conv/magn 1x16x16 22-aug-13 PJK
256 Sisu 0.00500 512×1024×512 spherical conv/magn 1x16x16 22-aug-13 PJK
256 Triolith 0.030 2562 × 512 magn/rad 1x16x16 17-mar-14 AB
256 Triolith 0.0049 2563 magn/noentro 1x16x16 1-mar-14 AB
256 Beskow 3.36 1×1×1024 coag43 1x1x256 3-mar-15 AB
288 Gardar 0.042 5762×288 magn/rad 1x18x16 17-mar-14 AB
288 Kraken 0.0432 192×384×64 magn/noentro 6x12x4 12-jan-12 WL
288 Kraken 0.0447 96×192×64 magn/noentro 6x12x4 13-jan-12 WL
288 Kraken 0.0201 384×768×256 magn/noentro 6x12x4 18-jan-12 WL
288 Janus 0.0360 2883 magn/entro/rad 1x16x18 22-feb-16 AB
288 Summit 0.0033 5763 magn/noentro 1x16x18 7-aug-17 AB
512 Hermit 0.01717 512×1024×512 spherical conv/magn 1x32x16 22-aug-13 PJK
512 Hermit 0.0166 256×512×256 spherical conv/magn 1x32x16 22-aug-13 PJK
512 Hermit 0.0142 256×512×256 spherical conv/magn 2x16x16 22-aug-13 PJK
512 Hermit 0.01340 512×1024×512 spherical conv/magn 2x16x16 22-aug-13 PJK
512 Hermit 0.01189 512×1024×512 spherical conv/magn 8x8x8 22-aug-13 PJK
512 Hermit 0.01165 512×1024×512 spherical conv/magn 4x16x8 22-aug-13 PJK
512 Akka 0.0081 5123 magn/noentro 16x32 10-sep-11 AB
512 Neolith 0.0073 2563 magn/noentro 20-nov-09 AB
512 Gardar 0.0035 5123 magn/noentro 14-jan-13 AB
512 Lindgren 0.0040 5122×1024 magn/noentro 16x32 8-jul-12 AB
512 Sisu 0.00446 256×512×256 spherical conv/magn 4x16x8 22-aug-13 PJK
512 Sisu 0.00435 1024×2048×1024 spherical conv/magn 22-aug-13 PJK
512 Sisu 0.00268 512×1024×512 spherical conv/magn 1x32x16 22-aug-13 PJK
576 Kraken 0.0257 192×384×64 magn/noentro 6x24x4 12-jan-12 WL
576 Kraken 0.0317 1922×64 magn/noentro 122x4 13-jan-12 WL
576 Kraken 0.0116 7682×256 magn/noentro 122x4 18-jan-12 WL
576 Summit 0.00183 5763 magn/noentro 1x24x48 29-jul-17 AB
576 Beskow 0.00174 5763 magn/noentro 1x24x48 23-may-16 AB
768 Lindgren 0.0049 256×11522 magn/noentro/sph 1x24x32 17-oct-14 SJ

1024 Hermit 0.00943 512×1024×512 spherical conv/magn 1x32x32 22-aug-13 PJK
1024 Hermit 0.00707 512×1024×512 spherical conv/magn 2x32x16 22-aug-13 PJK
1024 Hermit 0.00698 1024×2048×1024 spherical conv/magn 4x16x16 22-aug-13 PJK
1024 Hermit 0.00630 512×1024×512 spherical conv/magn 4x16x16 22-aug-13 PJK

A. Timings 115

1024 Triolith 0.00236 2563 magn/noentro 4x16x16 1-mar-14 AB
1024 Triolith 0.00126 5123 magn/noentro 2x16x32 1-mar-14 AB
1024 Triolith 0.00129 5123 magn/noentro 4x16x16 1-mar-14 AB
1024 Sisu 0.00225 1024×2048×1024 spherical conv/magn 22-aug-13 PJK
1024 Sisu 0.00148 512×1024×512 spherical conv/magn 2x32x16 22-aug-13 PJK
1152 Kraken 0.0212 192×384×64 magn/noentro 12x24x4 13-jan-12 WL
1152 Kraken 0.00856 384×768×128 magn/noentro 12x24x4 17-jan-12 WL
1152 Kraken 0.00549 768×1536×256 magn/noentro 12x24x4 17-jan-12 WL
1152 Lindgren 0.016 5122×512 magn/rad 1x36x32 17-mar-14 AB
1152 Lindgren 0.0066 11523 magn/noentro 1x32x36 25-nov-14 AB
1152 Beskow 0.0055 11523 magn/noentro/GW 1x32x36 27-aug-17 AB
1152 Beskow 0.0024 11523 magn/noentro 1x32x36 20-jan-15 AB
1152 Beskow 0.00098 11523 magn/noentro 1x32x36 18-jan-16 AB-gnu
1152 Beskow 0.00090 11523 magn/noentro 1x32x36 30-mar-17 AB
1152 Beskow 0.0060 11523 magn/noentro/GW 1x32x36 31-mar-18 AB
1152 Beskow 0.0063 5763 magn/entro/rad 1x32x36 17-feb-18 AB
1536 Lindgren 0.00171 5122×384 magn/noentro 2x32x24 15-jul-13 AB
2048 Hermit 0.00451 1024×2048×1024 spherical conv/magn 2x32x32 22-aug-13 PJK
2048 Hermit 0.00380 512×1024×512 spherical conv/magn 8x16x16 22-aug-13 PJK
2048 Hermit 0.00355 512×1024×512 spherical conv/magn 4x32x16 22-aug-13 PJK
2048 Hermit 0.00350 1024×2048×1024 spherical conv/magn 4x32x16 22-aug-13 PJK
2048 Lindgren 0.00129 5122×1024 magn/noentro 32x64 20-apr-13 AB
2048 Lindgren 0.00129 10242×2048 magn/noentro 32x64 31-jul-12 AB
2048 Triolith 9.3×10−4 5123 magn/noentro 4x16x32 1-mar-14 AB
2048 Sisu 0.00120 1024×2048×1024 spherical conv/magn 22-aug-13 PJK
2048 Sisu 9.2×10−4 512×1024×512 spherical conv/magn 4x32x16 22-aug-13 PJK
2304 Triolith 1.07×10−3 5763 magn/noentro 4x18x32 1-mar-14 AB
2304 Kraken 0.02267 192×384×64 magn/noentro 12x24x8 13-jan-12 WL
2304 Kraken 0.01233 192×768×64 magn/noentro 12x48x4 13-jan-12 WL
2304 Kraken 0.00300 768×3072×256 magn/noentro 12x48x4 18-jan-12 WL
4096 Hermit 0.00193 1024×2048×1024 spherical conv/magn 4x32x32 22-aug-13 PJK
4096 Triolith 3.6×10−4 10243 magn/noentro 4x32x32 1-mar-14 AB
4096 Triolith 3.8×10−4 10243 magn/noentro 8x16x32 1-mar-14 AB
4096 Triolith 4.2×10−4 10243 magn/noentro 4x16x64 1-mar-14 AB
4096 Lindgren 4.6×10−4 20483 magn/noentro 4x16x64 26-mar-13 AB
4096 Sisu 6.7×10−4 1024×2048×1024 spherical conv/magn 22-aug-13 PJK
4608 Triolith 7.4×10−4 5763 magn/noentro 8x18x32 1-mar-14 AB
4608 Triolith 2.7×10−4 11523 magn/noentro 4x32x36 1-mar-14 AB
4608 Triolith 3.0×10−4 11523 magn/noentro 4x36x32 1-mar-14 AB
4608 Triolith 3.7×10−4 11523 magn/noentro 4x18x64 1-mar-14 AB
4608 Triolith 2.36×10−4 23043 magn/noentro 2x32x72 1-mar-14 AB
4608 Kraken 0.00764 192×768×128 magn/noentro 12x48x8 13-jan-12 WL
4608 Kraken 0.00144 768×3072×512 magn/noentro 12x48x8 18-jan-12 WL
6144 Lindgren 4.2×10−4 10243 × 1536 magn/noentro 4x16x64 21-oct-13 AB
6144 Lindgren 8.9×10−4 2562 magn/noentro/sph 2x48x64 6-jan-15 SJ
8192 Hermit 0.00101 1024×2048×1024 spherical conv/magn 8x32x32 22-aug-13 PJK
8192 Sisu 4.1×10−4 1024×2048×1024 spherical conv/magn 22-aug-13 PJK
8192 Triolith 1.48×10−4 20483 magn/noentro 4x32x64 1-mar-14 AB
9216 Kraken 0.00485 192×768×256 magn/noentro 24x48x8 13-jan-12 WL
9216 Kraken 0.00158 768×1536×256 magn/noentro 24x48x8 17-jan-12 WL
9216 Kraken 8.0×10−4 1536×3072×512 magn/noentro 24x48x8 18-jan-12 WL
9216 Lindgren 2.36×10−4 23043 magn/noentro 4x48x48 15-feb-14 AB
9216 Triolith 1.04×10−3 5763 magn/noentro 16x18x32 1-mar-14 AB
9216 Triolith 1.28×10−4 23043 magn/noentro 4x36x64 1-mar-14 AB
9216 Triolith 1.30×10−4 23043 magn/noentro 4x32x72 1-mar-14 AB

16384 Hermit 6.4×10−4 1024×2048×1024 spherical conv/magn 16x32x32 22-aug-13 PJK
18432 Kraken 0.00316 384×768×256 magn/noentro 24x48x16 13-jan-12 WL
18432 Kraken 8.8×10−4 768×1536×512 magn/noentro 24x48x16 17-jan-12 WL
18432 Kraken 4.0×10−4 1536×3072×1024 magn/noentro 24x48x16 18-jan-12 WL
36864 Kraken 0.0020 384×768×512 magn/noentro 482x16 14-jan-12 WL

116 THE PENCIL CODE

36864 Kraken 4.9×10−4 15362×512 magn/noentro 482x16 17-jan-12 WL
36864 Kraken 2.2×10−4 1536×3072×2048 magn/noentro 24x48x32 18-jan-12 WL
73728 Kraken 0.00121 7682×512 magn/noentro 482x32 19-jan-12 WL
73728 Kraken 2.9×10−4 15362×1024 magn/noentro 482x32 26-jan-12 WL
73728 Kraken 1.2×10−4 30722×2048 magn/noentro 482x32 26-jan-12 WL

The machines we have used can be characterized as follows:

Nl3: 500MHz Pentium III single CPU; RedHat Linux 6.2; 256MB memory

Nq0: 931MHz Pentium III single CPU; RedHat Linux 7.3; 0.5GB memory

Nq[1-4]: 869MHz Pentium III dual-CPU cluster; RedHat Linux 7.3; 0.77GB memory
per (dual) node

Nq[5-6]: 1.2GHz Athlon dual-CPU cluster; RedHat Linux 7.3; 1GB memory per (dual)
node

Kabul: 1.9GHz Athlon dual-CPU cluster; 1GB memory per (dual) node; 256kB cache
per CPU; Gigabit ethernet; SuSE Linux 8.0; LAM-MPI

Cincinnatus: 1.7GHz Pentium 4 single CPU; 1GB memory; 256kB cache per CPU;
SuSE Linux 7.3

Horseshoe (fe1, giga, and giga2): consists of different subclusters. The old one
(queue name: workq, referred to as fe1) 2.0GHz Pentium 512 single CPU; 25x 24-
port fast ethernet switches with gigabit ethernet uplink; 1 30-port gigabit ethernet
switch; 1GB memory. The next generation has gigabit switches directly between
nodes, and 2.6 GHz processors. The third generation (giga2) has 3.2 GHz proces-
sors (most of which have 1 GB, some 2 GB), is organized in 2 blocks interconnected
with 2 Gb links, with 10 Gb uplinks within each block.

Ukaff: SGI Origin 3000; 400MHz IP35 CPUs; IRIX 6.5; native MPI

Mhd: EV6 Compaq cluster with 4 CPUs per node; 4GB memory per node (i. e. 1GB per
CPU) OSF1 4.0; native MPI

Sander and Rasmussen: Origin 3000

Steno 118 node IBM cluster with dual node AMD Opteron processors with 10 Gb in-
finiband network, compiled with pgf90 -fastsse -tp k8-64e (Copenhagen).

Gridur: Origin 3000

Luci: (full name Lucidor) is an HP Itanium cluster, each of the 90 nodes has two 900
MHz Itanium 2 ”McKinley” processors and 6 GB of main memory. The interconnect
is myrinet.

Lenn: (full name Lenngren) is a Dell Xeon cluster with 442 nodes. Each node has two
3.4GHz “Nocona” Xeon processors and 8GB of main memory. A high performance
Infiniband network from Mellanox is used for MPI traffic.

Kraken: Cray Linux Environment (CLE) 3.1, with a peak performance of 1.17
PetaFLOP; the cluster has 112,896 cores, 147 TB of memory, in 9,408 nodes. Each
node has two 2.6 GHz six-core AMD Opteron processors (Istanbul), 12 cores, and
16 GB of memory. Connection via Cray SeaStar2+ router.

A. Timings 117

Hermit: Cray XE6 with 7104 2.3 GHz AMD Interlagos 16 core processors (113,664
cores in total), nodes with either 1 or 2 GB of memory per core.

Sisu: Cray XC30 with 1472 2.6 GHz Intel (Xeon) Sandy Bridge 8 core (E5-2670) pro-
cessors (11,776 cores in total), 2 GB of memory per core.

Beskow: Cray XC40 with 2.3 GHz Intel (Xeon) Haswell 16 core (E5-2698v3) processors
(67,456 cores in total), 2 GB of memory per core. Theoretical peak performance 2.43
pflops.

Table 8 shows a similar list, but for a few well-defined sample problems. The svn check-
in patterns are displayed graphically in Fig 1.

Figure 12: Scaling results on three different machines. The thin straight line denotes perfectly linear
scaling.

5123 gas + 64×106 particles

100 1000 10000
No. of cores

0.001

0.010

0.100

T
im

e
pe

r
st

ep
 p

er
 p

oi
nt

 [
µs

]

NGP+FFT
TSC
NGP

Figure 13: Scaling results of particle-mesh problem on Blue Gene/P on up to 4096 cores. The different
lines denote different particle-mesh schemes (NGP=Nearest Grid Point, TSC=Triangular Shaped Cloud)
and whether self-gravity is included (FFT).

118 THE PENCIL CODE

Strong scaling − Problem size 192 x 384 x 64

100 1000
proc #

0.01

0.10

µs
/ti

m
es

te
p/

po
in

t
323

163

Figure 14: Scaling results on Kraken at fixed problem size, for a magnetized disk model in cylindrical
coordinates. The black line shows ideal scaling from 32 cores. The blue line is the best second-order fit to
the data points. A load of 163 mesh points per processor marks the best strong scaling.

A.1 Test case

In the following test samples, we run isothermal magnetohydrodynamics in a periodic
domain17. Power spectra are computed during the run, but our current parallelization
of the Fourier transform requires that the meshpoint number is an integer multiple of
the product of processor numbers in the y and z directions and the product of processor
numbers in the x and y directions. In addition, the number of processors in one direction

17Run directories are available on http://norlx51.nordita.org/~brandenb/pencil-code/timings/bforced/

102 103 104 105

proc #

0.01

0.10

W
al

l t
im

e
(h

ou
rs

)

102 103 104 105

proc #

0.0001

0.0010

0.0100

0.1000

µs
/ti

m
es

te
p/

po
in

t

163 p=0.70
323 p=0.85
643 p=0.93

Weak Scaling

Figure 15: Scaling results on Kraken at fixed load per processor, for a magnetized disk model in cylindrical
coordinates. The figure shows, after determining that 163 is the best load per processor for strong scaling,
how far one can push with weak scaling. The scaling index is found to be 0.7 for 163 and 0.93 for 643, up
to 73 728 processors.

http://norlx51.nordita.org/~brandenb/pencil-code/timings/bforced/

A.2 Running the code 119

Table 8: Like previous table, but for the versions from the ‘samples’ directory.

proc(s) machine
µs

pt step
resol. mem./proc when who

conv-slab

1 Mhd 6.45 323 4 MB 23-jul-02 wd
1 Cincinnatus 4.82 323 3 MB 23-jul-02 wd
1 Cincinnatus 11.6 643 14 MB 23-jul-02 wd
1 Cincinnatus 20.8 1283 93 MB 23-jul-02 wd
1 Kabul 3.91 323 23-jul-02 wd
1 Kabul 3.88 643 23-jul-02 wd
1 Kabul 4.16 1283 93 MB 23-jul-02 wd

conv-slab-flat

1 Kabul 3.02 1282×32 29 MB 23-jul-02 wd
2 Kabul 1.81 1282×32 18 MB 23-jul-02 wd
4 Kabul 1.03 1282×32 11 MB 23-jul-02 wd
8 Kabul 0.87 1282×32 9 MB 23-jul-02 wd

should not be so large that the number of mesh points per processor becomes comparable
to or less than the number of ghost zones (which is 6).

A.2 Running the code

To run the code, get one of the sample run directories, e.g.,
http://norlx51.nordita.org/~brandenb/pencil-code/timings/bforced/512_4x16x32.
The relevant file to be changed is src/cparam.local

ncpus=2048,nprocx=4,nprocy=16,nprocz=ncpus/(nprocx*nprocy)

nxgrid=512,nygrid=nxgrid,nzgrid=nxgrid

in particular the values of ncpus, nprocx, nprocy, and nxgrid. Once they are chosen, say
make, and submit start run.csh.

A.3 Triolith

On Triolith, strong scaling tests have been performed for three mesh sizes. The time per
time step and mesh point is given for different processor numbers and layouts. Gener-
ally, it is advantageous to keep the number of processors in the x direction small.

Comments. Although on Triolith the number of processors per node is 16, resolutions
with one or two powers of 3 (such as 576) still work well. Furthermore, the number
of processors above which the scaling becomes poor increases quadratically with the
number of mesh points. This implies that the RAM per processor increases linearly with
the problem size per direction. However, this will not be a limitation, because even for
23043 meshes, the required RAM is still below 100 MB.

A.4 Lindgren

On Lindgren, we have performed weak scaling tests and compare with weak scaling
results for Triolith. Triolith is about twice as fast as Lindgren.

http://norlx51.nordita.org/~brandenb/pencil-code/timings/bforced/512_4x16x32
src/cparam.local

120 THE PENCIL CODE

Figure 16: Strong scaling on Triolith (2014).

Figure 17: Comparison Triolith (black, plus signs) and Lindgren (red, triangles). Weak scaling (2014).

A.4 Lindgren 121

Table 9: Triolith timings

proc
µs

pt step
resol. layout

16 0.075 1283 2x2x4
16 0.065 1283 1x4x4
16 0.0544 2563 1x4x4
64 0.0146 2563 1x8x8
64 0.0164 2563 2x4x8

256 0.0049 2563 1x16x16
512 0.0035 2563 2x16x16

1024 0.00236 2563 2x16x32
1024 0.00127 5123 2x16x32
1024 0.00129 5123 4x16x16
2048 9.34×10−4 5123 4x16x32
2304 0.00107 5763 4x18x32
4096 3.6×10−4 10243 4x32x32
4096 3.8×10−4 10243 8x16x32
4096 4.2×10−4 10243 4x16x64
4608 7.38×10−4 5763 8x18x32
4608 2.66×10−4 11523 4x32x36
4608 3.03×10−4 11523 4x36x32
4608 3.12×10−4 11523 4x18x64
4608 2.36×10−4 23043 2x32x72
8192 1.475×10−4 20483 4x32x64
9216 0.00104 5763 16x18x32
9216 1.276×10−4 23043 4x36x64
9216 1.30×10−4 23043 4x32x72

Table 10: Lindgren timings

proc
µs

pt step
resol. layout

1536 0.00171 5122×384 2x32x24
2048 0.00129 5122×1024 1x32x64
2048 0.00129 10242×2048 1x32x64
4096 4.6×10−4 20483 4x16x64
9216 2.36×10−4 23043 4x48x48

122 THE PENCIL CODE

B Coding standard

The numerous elements that make up the PENCIL CODE are written in a consistent
style that has evolved since it was first created. Many people have contributed their
knowledge and experience with in this and the result is what we believe is and extremely
readable and manageable code.

As well as improving the readability of the code, by having some naming conventions for
example aids greatly in understanding what the code does.

There is a standard for all aspects of the code, be it Fortran source, shell scripts, Perl
scripts, LaTeX source, Makefiles, or otherwise. Where nothing has been explicitly stated
it is recommended that similar existing examples found in the code are used as a tem-
plate.

B.1 File naming conventions

All files with the exception of the ‘Makefile’s are given lowercase filenames.

Fortran source files all have the ‘.f90’ extension. Files that contain ‘non-executable code’
i.e. declarations that are included into other files are given the extension ‘.h’ and those
that are generated dynamically at compile time have an ‘.inc’ extension.

Fortran source code defining a module is placed in files whose names begin with the
Fortran module name in all lowercase. Where there exist multiple implementations of
a specific module the filenames are extended using and with an underscore ad a brief
name relating to what they do.

Text files containing parameters to be read by the code at run time are placed in files
with the extension ‘.in’

B.2 Fortran Code

The code should remain fully compatible with the Fortran90 standard. This ensures that
the code will run on all platforms. Indeed, an important aspect of PENCIL CODE philos-
ophy is to be maximally flexible. This also means that useful non-standard extensions
to the code should be hidden in and be made accessible through suitable non-default
modules.

Fortran is not case-sensitive but in almost all instances we prescribe some form of capi-
talization for readability.

In general all Fortran code including keywords, variable names etc. are written in low-
ercase. Some of the coding standard has already been discussed in Sect. 9.1. Here we
discuss and amplify some remaining matters.

B.2.1 Indenting and whitespace

Whitespace should be removed from the end of lines.

Blank lines are kept to a minimum, and when occurring in subroutines or functions are
replaced by a single ‘!’ in the first column.

B.2 Fortran Code 123

Tab characters are not used anywhere in the code. Tab characters are not in fact allowed
by the Fortran standard and compilers that accept them do so as an extension.

All lines are kept to be not more than 80 characters long. Where lines are longer they
must be explicitly wrapped using the Fortran continuation character ‘&’. Longer lines
(up to 132 characters) and additional spaces are allowed in cases where the readability
of the code is enhanced, e.g. when one line is followed by a similar one with minor
differences in some places.

Code in syntactic blocks such as if–endif, do–enddo, subroutine–endsubroutine etc. is
always indented by precisely two spaces. The exception to this is that nested loops where
only the innermost loop contains executable code should be written with the do–enddo
pairs at the same level of indentation,

do n=n1,n2

do m=m1,m2

[...]

enddo

enddo

Alternatively nested loops may be written on a single line, i.e.

do n=n1,n2; do m=m1,m2

[...]

enddo; enddo

B.2.2 Comments

Descriptive comments are written on their own lines unless there is a strong reason to do
otherwise. Comments are never indented and the ‘!’ should appear in the first column
followed by two spaces and then the text of the comment. Extremely short comments
may follow at the end of a line of code, provided there is space.

Comments also must not exceed the 78 character line length and should be wrapped
onto more lines as needed.

Typically comments should appear with a blank commented line above and below the
wrapped text of the comment.

All subroutine/functions begin with a standard comment block describing what they do,
when and by whom they were created and when and by whom any non-trivial modifica-
tions were made.

Comments should be written in sentences using the usual capitalization and punctua-
tion of English, similar to how text is formatted in an e-mail or a journal article.

For example:

some fortran code

some more fortran code

!

! A descriptive comment explaining what the following few lines

! of code do.

!

the fortran code being described

124 THE PENCIL CODE

the fortran code being described

...

!

! A final detail described here.

!

the final fortran code

the final fortran code

...

Subroutines and functions are started with a comment block describing what they do,
when and by whom they were created and when and by whom any non-trivial modifica-
tions were made. The layout of this comment block is a standard, for example:

!***

subroutine initialize_density(f,lstarting)

!

! Perform any post-parameter-read initialization i.e. calculate derived

! parameters.

!

! For compatibility with other applications, we keep the possibility

! of giving diffrho units of dxmin*cs0, but cs0 is not well defined general.

!

! 24-nov-02/tony: coded

! 1-aug-03/axel: normally, diffrho should be given in absolute units

!

where dates are written in dd-mmm-yy format as shown and names appearing after the
‘/’ are either the users cvs login name or, where such exists amongst the PENCIL CODE

community, the accepted short form (≈ 4 characters) of the authors name.

B.2.3 Module names

The names of modules are written with initial letter capitalization of each word and the
multiple words written consecutively without any separator.

B.2.4 Variable names

Variable are given short but meaningful names and written in all lowercase. Single
character names are avoided except for commonly used loop indices and the two code
data structures of the PENCIL CODE: ‘f ’ the main state array (see 9.3) and ‘p’ the pencil
case structure (see 9.6).

Quantities commonly represented by a particular single character in mathematics are
typically given names formed by repeating the character (usually in lowercase), e.g. the
velocity u becomes ‘uu’, specific entropy s becomes ‘ss’ etc.

Temperature in variable names is denoted with a capital T so as not to be confused
with time as represented by a lowercase t. Note however the since Fortran is not case
sensitive the variables for example ‘TT’ and ‘tt’ are the same so distinct names must
be used. For this reason time is usually represented by a single t contrary to the above
guideline.

B.2 Fortran Code 125

The natural log of a quantity is represented by using adding ‘ln’ to its name, for example
log of temperature would be ‘lnTT’.

There are some standard prefixes used to help identify the type and nature of variables
they are as follows:

• i – Denotes integer variables typically used as array indices.

• i – Denotes pencil case array indices.

• idiag – Denotes diagnostic indices.

• l – Denotes logical/boolean flags

• cdt – Denotes timestep constraint parameters.

• unit – Denotes conversion code/physics unit conversion parameters.

B.2.5 Emacs settings

Here are some settings from wd’s ‘~/.emacs’ file:

;;; ~/.f90.emacs

;;; Set up indentation and similar things for coding the {\sc Pencil Code}.

;;; Most of this can probably be set through Emacs’ Customize interface

;;; as well.

;;; To automatically load this file, put the lines

;;; (if (file-readable-p "~/.f90.emacs")

;;; (load-file "~/.f90.emacs"))

;;; into your ~/.emacs file.

;; F90-mode indentation widths

(setq f90-beginning-ampersand nil) ; no 2nd ampersand at continuation line

(setq f90-do-indent 2)

(setq f90-if-indent 2)

(setq f90-type-indent 2)

(setq f90-continuation-indent 4)

;; Don’t use any tabs for indentation (with TAB key).

;; This is actually already set for F90-mode.

(setq-default indent-tabs-mode nil)

;; Ensure Emacs uses F90-mode (and not Fortran-mode) for F90 files:

(setq auto-mode-alist

(append

’(

("\\.[fF]90$" . f90-mode)

("\\.inc$" . f90-mode)

)

auto-mode-alist))

;; Make M-Backspace behave in Xemacs as it does in GNU Emacs. The default

;; behavior is apparently a long-known bug the fix for which wasn’t

126 THE PENCIL CODE

;; propagated from fortran.el to f90.el.

;; (http://list-archive.xemacs.org/xemacs-patches/200109/msg00026.html):

(add-hook ’f90-mode-hook

(function (lambda ()

(define-key f90-mode-map [(meta backspace)] ’backward-kill-word)

)))

B.3 Other best practices

When implementing IF or SELECT blocks always write code for all cases – including
the default or else case. This should be done even when that code is only a call to raise
an error that the case should not have been reached. If you see a missing case anywhere
then do add it. These failsafes are essential in a large multi-purpose multi-user code
like the PENCIL CODE.

If a case is supposed to do nothing and it may be unclear that the coder has recognized
this fact then make it explicit by adding the default case with a comment like
! Do Nothing. The compiler will clean away any such empty blocks.

B.4 General changes to the code

It is sometimes necessary to do major changes to the code. Since this may af-
fect many people and may even be controversial among the developers, such
changes are restricted to the time of the next Pencil Code User Meeting. Such
meetings are advertised on http://www.nordita.org/software/pencil-code/ under
the news section. Notes about previous such meetings can be found under
http://www.nordita.org/software/pencil-code/UserMeetings/.

Major changes can affect those developers who have not checked in their latest changes
for some time. Before doing such changes it is therefore useful to contact the people who
have contributed to the latest developments on that module. If it is not functional or oth-
erwise in bad shape, it should be moved to ‘experimental’, i.e. one says svn mv file.f90

experimental/file.f90. However, any such directory change constitutes a major change
in itself and should be performed in agreement with those involved in the development.
Otherwise any file that has been changed in the mean time will end up being outside
revision control, which is to be avoided at all cost.

http://www.nordita.org/software/pencil-code/
http://www.nordita.org/software/pencil-code/UserMeetings/

C. Some specific initial conditions 127

C Some specific initial conditions

C.1 Random velocity or magnetic fields

Obtained with inituu=’gaussian-noise’ (or initaa=’gaussian-noise’). The vector u (or
A) is set to normally distributed, uncorrelated random numbers in all meshpoints for
all three components. The power spectrum of u (A) increases then quadratically with
wavenumber k (without cutoff) and the power spectrum of ω (or B) increases like k4.

Note that a random initial condition contains significant power at the Nyquist frequency
(kNy = π/N , where N is the number of mesh points). In a decay calculation, because of
the discretization error, such power decays slower than it ought to; see Fig. 18, where
we show the evolution for a random initial velocity field for 643 meshpoints, ν = 5× 10−2

(fairly large!), and nfilter=30.

It is clearly a good idea to filter the initial condition to prevent excess power at kNy. On
the other hand, such excess power is weak by comparison with the power at the energy
carrying scale, so one does not see it in visualizations in real space. Furthermore, as seen
from Fig. 18, for k < kNy/2 the power spectra for filtered and unfiltered initial conditions
is almost the same.

Figure 18: Velocity power spectra at three different times with and without filtering of the initial condi-
tion.

C.2 Turbulent initial with given spectrum

The most general procedure for producing an initial condition with a turbulent spec-
trum is inituu=’power_randomphase_hel’, which allows one to set two different slopes,
together with an exponential cutoff as well as a Gaussian peak within the spectrum. By
default, the field is solenoidal unless one puts lskip_projection=.true. and can have
fractional helicity by setting relhel_uu to a value between −1 and 1. By default it is 0,
which means it is nonhelical.

128 THE PENCIL CODE

The spectral indices initpower and initpower2 refer to energy spectral indices. By de-
fault, initpower2=-5/3 , corresponding to a Kolmogorov spectrum. For a delta-correlated
spectrum, we have to put initpower=2 , corresponding to a k2 energy spectrum for ki-
netic energy. This would be suitable for the subinertial range from k = 1 to k = kp
(corresponding to the variable kpeak).

If cutoff=0 , no cutoff will be imposed. Otherwise, the spectrum will be multiplied by an
exponential function with exp(−k2n), where n = ’ncutoff=1’ by default.

Example, for ampluu=1e-1 , initpower=4., and kpeak=3., we get urms=3.981E-01 when
relhel uu=1 and urms=3.981E-01 when relhel uu=0 and urms=5.560E-01 when relhel -
uu=1 . The urms values scale linearly with ampluu and for initpower=2 also approxi-
mately linearly with kpeak . For the magnetic field, we initialize the magnetic vector
potential, so to get a k4 spectrum, we have to put initpower aa=2. Everything else is
analogous; see, e.g.,

&hydro_init_pars

inituu=’power_randomphase_hel’, ampluu=1e-1, initpower=4., kpeak=3.

relhel_uu=0., cutoff=30.

/

&magnetic_init_pars

initaa=’power_randomphase_hel’, amplaa=1e-1, initpower_aa=2., kpeak_aa=3.

relhel_aa=0., cutoff_aa=30.

/

for which we get urms=3.981E-01 and brms=3.871E-01 .

C.3 Beltrami fields

Obtained with inituu=’Beltrami-z’ or initaa=’Beltrami-z’.

A = (cos z, sin z, 0), or u = (cos z, sin z, 0) (116)

C.4 Magnetic flux rings: initaa=’fluxrings’

This initial condition sets up two interlocked thin magnetic tori (i. e. thin, torus-shaped
magnetic flux tubes). One torus of radius R lying in the plane z = 0 can be described in
cylindrical coordinates, (r, ϕ, z), by the vector potential

A = Φm





0
0

−θ(r−R)δ(z)



 , (117)

resulting in a magnetic field

B = Φm





0
δ(r−R)δ(z)

0



 . (118)

Here Φm is the magnetic flux through the tube, θ(x) denotes the Heaviside function, and

δ(x) = θ′(x) (119)

C.5 Vertical stratification 129

is Dirac’s delta function.

Any smoothed versions of θ(x) and δ(x) will do, as long as the consistency condition (119)
is satisfied. E. g. the pairs

δε(x) =
1√
2πε2

e−
x2

2ε2 , θε(x) =
1

2

(

1 + erf
x√
2ε

)

(120)

or

δε(x) =
1

2ε

1

cosh2 x
ε

, θε(x) =
1

2

(

1 + tanh
x

ε

)

(121)

are quite popular. Another possibility is a constant or box-like profile with

δε(x) =
1

2ε
θ(|x| − ε) , θε(x) =

1

2
{1 + max[−1,min(x/ε), 1]} (122)

Note, however, that the Gaussian profile (120) is the only one that yields a radially
symmetric (with respect to the distance from the central line of the torus) magnetic field
profile Bϕ = Bφ(

√

(r−R)2+z2) if ε is sufficiently small.

In Cartesian coordinates, the vector potential (117) takes the form

A = Φm







0
0

−θ
(

√

x2+y2−R
)

δ(z)






. (123)

C.5 Vertical stratification

Gravity, g = −∇Φ, is specified in terms of a potential Φ. In slab geometry, Φ = Φ(z), we
have g = (0, 0, gz) and gz = −dΦ/dz.

Use grav profile=’const’ together with gravz= −1 to get

Φ = (z − z∞)(−gz), (−gz) > 0. (124)

Use grav profile=’linear’ to get

Φ = 1
2
(z2 − z2∞)ν2g , gz = −ν2gz (125)

where νg is the vertical epicyclic frequency. For a Keplerian accretion disc, νg = Ω. For
galactic discs, νg = 0.5Ω is representative of the solar neighborhood.

The value of z∞ is determined such that ρ = ρ0 and c
2
s = c2s0 at z = zref . This depends on

the values of γ and the polytropic index m (see below).

C.5.1 Isothermal atmosphere

Here we want cs = cs0 = const. Using initlnrho=’isothermal’ means

ln
ρ

ρ0
= −γ Φ

c2s0
. (126)

The entropy is then initialized to

s

cp
= (γ−1)

Φ

c2s0
. (127)

In order that ρ = ρ0 and c
2
s = c2s0 at z = zref , we have to choose z∞ = zref .

130 THE PENCIL CODE

C.5.2 Polytropic atmosphere

For a polytropic equation of state, p = KρΓ, where generally Γ 6= γ, we can write

−∇h+ T∇s = −1

ρ
∇p = −∇

(

ΓK

Γ−1
ρΓ−1

)

≡ −∇h̃, (128)

where we have introduced a pseudo enthalpy h̃ as

h̃ =
ΓK

Γ−1
ρΓ−1 =

[(

1− 1

γ

)/(

1− 1

Γ

)]

h . (129)

Obviously, for Γ = γ, the pseudo enthalpy h̃ is identical to h itself. Instead of specifying
Γ, one usually defines the polytropic index m = 1/(Γ−1). Thus, Γ = 1 + 1/m, and

h̃ = (m+1)

(

1− 1

γ

)

h (130)

This is consistent with a fixed entropy dependence, where s only depends on ρ like

s

cp
=

(

Γ

γ
− 1

)

ln
ρ

ρ0
, (131)

and implies that

ln
c2s
c2s0

= (Γ−1) ln
ρ

ρ0
. (132)

For hydrostatic equilibrium we require h̃ + Φ = h̃0 = const. For gravity potentials that
vanish at infinity, we can have h̃0 6= 0, i.e. a finite pseudo enthalpy at infinity. For gz = −1
or gz = −z, this is not the case, so we put h̃0 = 0, and therefore h̃ = −Φ. Using c2s = (γ−1)h
together with (130) we find

c2s = − γ

m+1
Φ. (133)

In order that ρ = ρ0 and c2s = c2s0 at z = zref , we have to choose (remember that gz is
normally negative!)

z∞ = zref + (m+1)
c2s0

γ(−gz)
for grav profile=’const’, (134)

and

z2∞ = z2ref + (m+1)
c2s0

1
2
γν2g

for grav profile=’linear’. (135)

Thus, when using initlnrho=’polytropic_simple’ we calculate

ln
c2s
c2s0

= ln

[

− γΦ

(m+1)c2s0

]

(136)

and so the stratification is given by

ln
ρ

ρ0
= m ln

c2s
c2s0

,
s

cp
=

(

Γ

γ
− 1

)

m ln
c2s
c2s0

. (137)

C.5 Vertical stratification 131

C.5.3 Changing the stratification

Natural: measure length in units of c2s0/gz. Can increase stratification by moving ztop
close to z∞ or, better still, keeping ztop = 0 and moving zbot → −∞. Disadvantage: in the
limit of weak stratification, the box size will be very small (in nondimensional units).

Box units: measure length in units of d. Can increase stratification by increasing gz to
gmax, which can be obtained by putting ztop = z∞ in (134), so

gmax =
m+1

γ

c2s0
ztop − zref

. (138)

For m = 1, γ = 5/3, ztop = 1, and zref = 0, for example, we have gmax = 6/5 = 1.2.

Gravitational box units: measure speed in units of
√
gzd. The limit of vanishing stratifi-

cation corresponds to cs0 → ∞. This seems optimal if we want to approach the Boussi-
nesq case.

In Hurlburt et al. (1984), z increased downward and the atmosphere always terminated
at z = 0. In order to reproduce their case most directly, we put z∞ = 0 and consider only
negative values of z. To reproduce their case with a density stratification of 1:1.5, we
place the top of the model at z = −2 and the bottom at z = −3. In addition, the reference
height, zref , is chosen to be at the top of the box, i.e. zref = −2. From Eq. (134) we have
c2s0 = γ(−gz)(−zref)/(m + 1). Using (−gz) = 1 and m = 1 we find c2s0 = γ, so cs0 = 1.291 (for
γ = 5/3). Values for other combinations are listed in Table 11.

Table 11: Correspondence between density contrast, top and bottom values of z, and cs0 for (−gz) = 1,
m = 1, and γ = 5/3.

ρbot/ρtop zbot ztop cs0

1.5 3 2 1.291
3 1.5 0.5 0.645
6 1.2 0.2 0.408
11 1.1 0.1 0.289
21 1.05 0.05 0.204

C.5.4 The Rayleigh number

In Ref. [9] the Rayleigh number is defined as

Ra =
gd4

ν χ

(

−ds/cp
dz

)

hydrostat

, (139)

where the (negative) entropy gradient was evaluated in the middle of the box for the
associated hydrostatic reference solution, and χ = K/(ρcp) and either ν = ν (if ν was
assumed constant) or ν = µ/ρ (if µ was assumed constant). Note that ρ is the average
mass in the box per volume, which is conserved. For a polytrope we have

(

−ds/cp
dz

)

hydrostat

=

[

1− (m+ 1)

(

1− 1

γ

)]

1

z∞ − zm
, (140)

where zm = (z1 + z2)/2. This factor was also present in the definition of Hurlburt et al.
[20], but their definition differs slightly from Eq. (139), because they normalized the

132 THE PENCIL CODE

density not with respect to the average value (which is constant for all times), but with
respect to the value at the top of the initial hydrostatic solution. Since the Rayleigh
number is proportional to ρ2, their definition included the extra factor [(z∞ − zm)/d]

2.
Therefore

RaHTM =

(

z∞ − zm
d

)2m(
ρtop
ρ

)2

Ra (141)

In the first model of Hurlburt et al. (1984), the Rayleigh number, RaHTM, was chosen to
be 310 times supercritical, and the critical Rayleigh number was around 400, soRaHTM =
1.25 × 105. In their model the density contrast was 1:1.5 and m = 1. This turns out to
correspond to Ra = 4.9× 104, Fbot = 0.0025, and K = 0.002.

Another model that was considered by Hurlburt & Toomre (1988) had RaHTM = 105,
a density contrast of 11, and had a vertical imposed magnetic field (Chandrasekhar
number Q = 72). This corresponds to Ra = 3.6× 108, K = 0.0011, Fbot = 0.0014.

C.5.5 Entropy boundary condition

This discussion only applies to the case of convection in a slab. A commonly used lower
boundary condition is to prescribe the radiative flux at the bottom, i.e. Fbot = −KdT/dz.
Assuming that the density in the ghost zones has already been updated, we can calculate
the entropy gradient from

Fbot = −K
cp

c2s
γ − 1

(

(γ − 1)
d ln ρ

dz
+ γ

ds/cp
dz

)

, (142)

which gives
ds/cp
dz

= −γ − 1

γ

(

cp
Fbot

Kc2s
+

d ln ρ

dz

)

(143)

for the derivative of the entropy at the bottom. This is implemented as the ‘c1’ boundary
condition at the bottom.

C.5.6 Temperature boundary condition at the top

In earlier papers the temperature at the top was set in terms of the quantity ξ0, which
is the ratio of the pressure scale height relative to the depth of the unstable layer. Ex-
pressed in terms of the sound speed at the top we have

c2s,top = γξ0gd. (144)

c2s,bot =

(

ξ0 +
1

m+ 1

)

γgd. (145)

C.6 Potential-field boundary condition

The ‘pot’ [or currently rather the ‘pwd’] boundary condition for the magnetic vector poten-
tial implements a potential-field boundary condition in z for the case of an x-y-periodic
box. In this section, we discuss the relevant formulas and their implementation in the
PENCIL CODE.

C.6 Potential-field boundary condition 133

Table 12: Correspondence between ξ0 and c2s,bot in single layer polytropes.

ξ0 c2s,bot

10.00 17.500
0.20 1.167
0.10 1.000
0.05 0.917
0.02 0.867

If the top boundary is at z = 0, the relevant potential field for z > 0 is given by

Ãx(kx, ky, z) = Cx(kxy) e
−κz , (146)

Ãy(kx, ky, z) = Cy(kxy) e
−κz , (147)

Ãx(kx, ky, z) = Cz(kxy) e
−κz , (148)

where

Ãi(kx, ky, z) ≡
∫

e−ikxy ·xAi(x, y, z) dx dy (149)

is the horizontal Fourier transform with kxy ≡ (kx, ky, 0), and k ≡ |kxy|. Note that this im-
plies a certain gauge and generally speaking the z dependence in Eq. (148) is completely
arbitrary, but the form used here works well in terms of numerical stability.

At the very boundary, the potential field (146)–(148) implies

∂Ã

∂z
+ κÃ = 0 , (150)

and, due to natural continuity requirements on the vector potential, these conditions
also hold for the interior field at the boundary.

Robin boundary conditions and ghost points To implement a homogeneous Robin
boundary condition, i. e. a condition of the form

df

dz
+ κf = 0 (151)

using ghost points, we first write it as

d

dz
(f eκz) = 0 (152)

and implement this as symmetry condition for the variable φ(z) ≡ f(z) eκz:

φN−j = φN+j , j = 1, 2, 3 (153)

(where zN is the position of the top boundary and zN+1, . . . are the boundary points). In
terms of f , this becomes

fN+j = fN−j e
−κ(zN+j−zN−j) . (154)

Note that although the exponential term in Eq. (154) looks very much like the exterior
potential field (146)–(148), our ghost-zone values do not represent the exterior field –
they are rather made-up values that allow us to implement a local boundary condition
at z = 0.

134 THE PENCIL CODE

C.7 Planet solution in the shearing box

In order to test the setup for accretion discs and the sliding periodic shearing sheet
boundary condition, a useful initial condition is the so-called planet solution of Good-
man, Narayan, & Goldreich [17].

Assume s = 0 (isentropy), so the equations in 2-D are

uxux,x + (u(0)y + uy)ux,y = 2Ωuy − h,x (155)

uxuy,x + (u(0)y + uy)uy,y = −(2− q)Ωux − h,y (156)

where u
(0)
y = −qΩx. Express u in terms of a stream function, so u = ∇× (ψẑ), or

ux = ψ,y, uy = −ψ,x. (157)

Ansatz for enthalpy
h = 1

2
δ2Ω2(R2 − x2 − ǫ2y2 − z2/δ2) (158)

ψ = −1
2
σΩ(R2 − x2 − ǫ2y2)− 1

2
qΩx2 (159)

This implies
ux = σΩǫ2y, uy = (q − σ)Ωx (160)

and ux,x = uy,y = 0. Inserting into Eqs (155) and (156) yields

(−q + q − σ)σǫ2 = 2(q − σ) + δ2 (161)

σ(q − σ) = −(2− q)σ + δ2 (162)

where we have already canceled common Ω2 factors in both equations and common ǫ2

factors in the last equation. Simplifying both equations yields

− σ2ǫ2 = 2(q − σ) + δ2 (163)

− σ2 = −2σ + δ2 (164)

The second equation yields
δ2 = (2− σ)σ (165)

and subtracting the two yields
σ2 = 2q/(1− ǫ2) (166)

Table 13: Dependence of ǫ and δ on ǫ.

ǫ σ δ

0.1 1.74 0.67
0.2 1.77 0.64
0.3 1.82 0.58
0.4 1.89 0.46
0.48 1.97 0.22
0.5 2 0

D. Some specific boundary conditions 135

D Some specific boundary conditions

In this section, we formulate and discuss the implementation of some common boundary
conditions in spherical and cylindrical coordinates.

D.1 Perfect-conductor boundary condition

This is a popular boundary condition for the magnetic field; it implies that

Bn = 0 (167)

and
Et = 0 (168)

on the boundary, where the subscript n denotes the normal component, and Et denotes
the tangential components of the electric field.

In Cartesian geometry, these conditions can be implemented by setting the two tangen-
tial components of the vector potential A to zero on the boundary. It is easy to see that
this also works in arbitrary curvilinear coordinates.

In particular, for spherical coordinates on a radial boundary we must have

r sin θ Br = ∂θ(sin θ Aφ)− ∂φAθ = 0 . (169)

This can be achieved by setting
Aφ = Aθ = 0 (170)

everywhere on the boundary. Note that this does not impose any condition on the radial
component of the vector potential.

Next, in spherical coordinates on a boundary with constant θ, we must have

Bθ =
1

r sin θ
∂φAr −

1

r
∂r(rAφ) = 0 . (171)

Again this can be achieved by Ar = Aφ = 0.

D.2 Stress-free boundary condition

On an impenetrable, stress-free boundary, we have

un = 0 , (172)

and the shear stress components Snt must vanish for any tangential direction t. At the
radial boundary, the relevant components of the strain tensor (required to vanish at the
boundary) are:

Srθ =
1

r
∂θur + r∂r

(uθ
r

)

, (173)

Srφ =
1

r sin θ
∂φur + r∂r

(uφ
r

)

. (174)

Both of them vanish if we require

ur = 0 , ∂r(uθ/r) = 0 , ∂r(uφ/r) = 0 . (175)

136 THE PENCIL CODE

We implement this by requiring ur to be antisymmetric and uθ/r and uφ/r to be symmet-
ric with respect to the boundary.

The more general condition

rα∂r(uθ/r
α) = ∂ruθ −

α

r
uθ = 0 (176)

(where α is a constant) can be implemented by requiring uθ/r
α to be symmetric.

At a boundary θ = const, the stress-free boundary condition will take the form

Srθ =
1

r
∂θur + r∂r

(uθ
r

)

= 0 , (177)

Sθφ =
1

r sin θ
∂φuθ + sin θ ∂θ

(uφ
r sin θ

)

= 0 . (178)

With uθ = 0, the first condition gives ∂θur = 0, i.e. we require ur to be symmetric with
respect to the boundary. The second condition requires

sin θ

r
∂θ

(uφ
sin θ

)

= 0 (179)

and is implemented by requiring uφ/ sin θ to be symmetric.

D.3 Normal-field-radial boundary condition

While unphysical, this boundary condition is often used as a cheap replacement for a
potential-field condition for the magnetic field. It implies that the two tangential com-
ponents of the magnetic field are zero at the boundary, while the normal component is
left unconstrained.

At a radial boundary, this gives:

Bθ =
1

r sin θ
∂φAr −

1

r
∂r(rAφ) = 0 , (180)

Bφ =
1

r
∂r(rAθ)−

1

r
∂θAr = 0 . (181)

Which are satisfied by setting

Ar = 0 , ∂r(rAθ) = 0 , ∂r(rAφ) = 0 , (182)

and these are implemented by requiring Ar to be antisymmetric, and rAθ and rAφ to be
symmetric.

On a boundary θ = const, we have

r sin θ Br = ∂θ(sin θ Aφ)− ∂φAθ = 0 , (183)

rBφ = ∂r(rAθ)− ∂θAr = 0 (184)

which can be achieved by setting

∂θAr = 0 , Aθ = 0 , ∂θ(sin θ Aφ) = 0 . (185)

We thus require Ar and sin θ Aφ to be symmetric, and Aθ to be antisymmetric.

E. High-frequency filters 137

E High-frequency filters

Being high order, PENCIL CODE has much reduced numerical dissipation. In order to
perform inviscid simulations, high-frequency filters can be used to provide extra dissi-
pation for modes approaching the Nyquist frequency. Usual Laplacian viscosity ν∇2u is
equivalent to a multiplication by k2 in Fourier space, where k is the wavenumber. An-
other tool is hyperviscosity, which replaces the k2 dependency by a higher power-law, kn,
n>2. The idea behind it is to provide large dissipation only where it is needed, at the grid
scale (high k), while minimizing it at the largest scales of the box (small k). In principle,
one can use as high n as desired, but in practice we are limited by the order of the code.
A multiplication by kn is equivalent to an operator ∇n in real space. As PENCIL CODE

is of sixth order, three ghost cells are available in each direction, thus the sixth-order
derivative is the highest we can compute. The hyperdissipation we use is therefore ∇6,
or k6 is Fourier space. Figure 19 illustrates how such tool maximizes the inertial range
of a simulation.

Simplified hyperdiffusivity has been implemented for many dynamical variables and
can be found in the respective modules. A strict generalization of viscosity and resistivity
to higher order is implemented in the modules ‘hypervisc_strict_2nd’ and ‘hyperresi_-
strict_2nd’.

Hyperdiffusivity is meant purely as a numerical tool to dissipate energy at small scales
and comes with no guarantee that results are convergent with regular second order
dissipation. See Haugen & Brandenburg (2004) for a discussion. In fact, large-scale dy-
namo action is known to be seriously altered in simulations of closed systems where
magnetic helicity is conserved: this results in prolonged saturation times and enhanced
saturation amplitudes (Brandenburg & Sarson 2002).

E.1 Conservative hyperdissipation

It is desirable to have this high-frequency filter obeying the conservation laws. So, for
density we want a mass conserving term, for velocities we want a momentum conserving
term, for magnetic fields we want a term conserving magnetic flux, and for entropy we
want an energy conserving term. These enter as hyperdiffusion, hyperviscosity, hyper-
resistivity, and hyper heat conductivity terms in the evolution equations. To ensure con-
servation under transport, they must take the form of the divergence of the flux J of the
quantity ψ, so that Gauss theorem applies and we have

∂ψ

∂t
+∇ ·J = 0 (186)

For density, the flow due to mass diffusion is usually taken as the phenomenological
Fick’s Law

J = −D∇ρ (187)

i.e., proportional to the density gradient, in the opposite direction. This leads to the
usual Laplacian diffusion

∂ρ

∂t
= D∇2ρ (188)

138 THE PENCIL CODE

Laplacian vs hyper dissipation

0.5 1.0 1.5 2.0
r

0.0

0.5

1.0

1.5

2.0
ψ

0.5 1.0 1.5 2.0
r

−4

−2

0

2

4

D
n∇

2n
ψ

n=1

n=3

1 10 100
k

10−12
10−10
10−8
10−6
10−4
10−2
100

k2n
 D

n|ψ
|~

Figure 19: Dissipation acting on a scalar field ψ, for n=1 (Laplacian dissipation) and n=3 (third-order
hyperdissipation). The field is initially seeded with noise (upper panel). For n=3 the large scale is not
affected as much as in the n=1 case, which is seen by the larger wiggling of the latter in the middle panel.
In Fourier space (lower panel) we see that near the grid scale both formulations give strong dissipation.
It also illustrates that at the large scales (k≃1), the effect of n=3 is indeed negligible.

under the assumption that the diffusion coefficient D is isotropic. Higher order hyper-
diffusion of order 2n involves a generalization of Eq. (187), to

J
(n) = (−1)nD(n)

∇
2n−1ρ . (189)

In our case, we are interested in the case n = 3, so that the hyperdiffusion term is

∂ρ

∂t
= D(3)∇6ρ. (190)

The hyperdiffusion coefficient D(3) can be calculated from D assuming that at the
Nyquist frequency the two formulations (188) and (190) yield the same quenching. Con-
sidering a wave as a Fourier series in one dimension (x), one element of the series is
expressed as

ψk = Aei(kx+ωt) (191)

E.2 Hyperviscosity 139

Plugging it into the second order diffusion equation (188) we have the dispersion con-
dition iω = −Dk2. The sixth order version (190) yields iω = −D(3)k6. Equating both
we have D(3) = Dk−4. This condition should hold at the grid scale, where k = π/∆x,
therefore

D(3) = D

(

∆x

π

)4

(192)

For the magnetic potential, resistivity has the same formulation as mass diffusion

∂A

∂t
= −η∇×B = η∇2A, (193)

where we used the Coulomb gauge ∇ · A = 0. The algebra is the same as above, also
yielding η(3) = η(∆x/π)4. For entropy, the heat conduction term is

∂S

∂t
=

1

ρT
∇ · (K∇T) , (194)

and requiring that K be constant, we substitute it by

∂S

∂t
=
K(3)

ρT
∇6T. (195)

also with K(3) = K(∆x/π)4.

E.2 Hyperviscosity

Viscosity has some caveats where subtleties apply. The difference is that the momentum
flux due to viscosity is not proportional to the velocity gradient, but to the rate-of-strain
tensor

Sij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij∇ · u

)

, (196)

which only allows the viscous acceleration to be reduced to the simple formulation ν∇2u

under the condition of incompressibility and constant dynamical viscosity µ = νρ. Due
to this, the general expression for conservative hyperviscosity involves more terms. In
some cases, it is no great overhead, but for others, simpler formulations can be applied.

E.2.1 Conservative case

In the general case, the viscous acceleration is

fvisc = ρ−1
∇ · (2ρνS) (197)

So, for the hyperviscous force, we must replace the rate-of-strain tensor by a high order
version

f
(hyper)
visc = ρ−1

∇ ·
(

2ρνnS
(n)
)

(198)

where the nth-order rate of strain tensor is

S
(n) = (−∇2)n−1

S. (199)

140 THE PENCIL CODE

For the n = 3 case it is

S
(3)
ij =

1

2

(

∂5uj

∂xi
5 +

∂4

∂xi
4

(

∂ui
∂xj

)

− 1

3

∂4

∂xi
4 (∇ · u)

)

. (200)

Plugging it into Eq. (198), and assuming µ3 = ρν3 = const

f
(hyper)
visc = ν3

(

∇6u+
1

3
∇4(∇(∇ · u))

)

. (201)

For ν3 = const, we have to take derivatives of density as well

f
(hyper)
visc = ν3

(

∇6u+
1

3
∇4(∇(∇ · u)) + 2S(3) ·∇ln ρ

)

(202)

E.2.2 Non-conservative cases

Equations (201) and (202) explicitly conserve linear and angular momentum. Although
desirable properties, such expressions are cumbersome and numerically expensive, due
to the fourth order derivatives of ∇(∇ · u).

This term, however, is only important when high compressibility is present (since it
depends on the divergence of u). In practice we drop this term and use a simple hyper-
viscosity

fvisc =

{

ν3∇6u if µ = const

ν3

(

∇6u+ 2S(3) ·∇ln ρ
)

if ν = const
(203)

Notice that this can indeed be expressed as the divergence of a simple rate-of-strain
tensor

S
(3)
ij =

∂5ui

∂xj
5 , (204)

so it does conserve linear momentum. It does not, however, conserve angular momen-
tum, since the symmetry of the rate-of-strain tensor was dropped. Thus, vorticity sinks
and sources may be spuriously generated at the grid scale.

A symmetric tensor can be computed, that conserves angular momentum and can be
easily implemented

Sij =
1

2

(

∂5ui

∂xj
5 +

∂5uj

∂xi
5

)

(205)

This tensor, however, is not traceless, and therefore accurate only for weak compressibil-
ity. It should work well if the turbulence is subsonic. Major differences are not expected,
since the spectral range in which hyperviscosity operates is very limited: as a numerical
tool, only its performance as a high-frequency filter is needed. This also supports the
usage of the highest order terms only, since these are the ones that provide quenching
at high k. Momentum conservation is a cheap bonus. Angular momentum conservation
is perhaps playing it too safe, at great computational expense.

E.2 Hyperviscosity 141

E.2.3 Choosing the coefficient

When changing the resolution, one wants to keep the grid Reynolds number, here de-
fined as

Regrid = urms

/(

νnk
2n−1
Ny

)

(206)

approximately constant. Here, kNy = π/δx is the Nyquist wavenumber and δx is the
mesh spacing. Thus, when doubling the number of meshpoints, we can decrease the
viscosity by a factor of about 25 = 32 (Haugen & Brandenburg 2004). This shows that
hyperviscosity can allow a dramatic increase of the Reynolds number based on the scale
of the box.

By choosing idiff=’hyper3_mesh’ in density_run_pars the hyperdiffusion for density is
being set automatically in a mesh-independent way. A hyper-mesh Reynolds number of
30 corresponds to a coefficient diffrho_hyper3_mesh=2 if maxadvec is about 1, but in
practice we need a bit more (5 is currently the default).

E.2.4 Turbulence with hyperviscosity

When comparing hyperviscous simulations with non-hyperviscous ones, it turns out that
the Reynolds number at half the Nyquist frequency is usually in the range 5–7, i.e.

Rehalf−grid = urms

/[

νn (kNy/2)
2n−1] ≈ 5–7 (207)

The following table gives some typical values used in simulations with forcing wavenum-
ber kf = 1.5 and a forcing amplitude of f0 = 0.02. If hyperdiffusion D3 is used in the
continuity equation, the corresponding values are about 30 times smaller than those of
ν3; see Table 14.

Table 14: Empirical values of viscosity and hyperviscosity, as well as hyperdiffusion for density, at differ-
ent numerical resolution, for simulations with forcing wavenumber kf = 1.5 and a forcing amplitude of
f0 = 0.02 in a 2π periodic domain. In all cases the half-mesh Reynolds number is about 5–7. For compar-
ison, estimates of the numerical 4th order hyperdiffusion resulting from a third order time step are give
for two values of the CFL parameter.

N ν1 ν2 ν3 D3 κCFL=0.4
2 κCFL=0.9

2

16 1× 10−2 3× 10−4 2× 10−5 6× 10−7 7× 10−4 1× 10−4

32 5× 10−3 4× 10−5 6× 10−7 2× 10−8 1× 10−6 2× 10−5

64 2× 10−3 5× 10−6 2× 10−8 6× 10−10 2× 10−7 3× 10−6

128 1× 10−3 6× 10−7 6× 10−10 2× 10−11 3× 10−8 4× 10−7

256 5× 10−4 8× 10−8 2× 10−11 6× 10−13 4× 10−9 5× 10−8

512 2× 10−4 1× 10−8 6× 10−13 2× 10−14 5× 10−10 6× 10−9

1024 1× 10−4 1× 10−9 2× 10−14 6× 10−16 6× 10−11 8× 10−10

For comparison, we give in Table 14 estimates of the numerical 4th order hyperdiffusion
resulting from a third order time step, for which we have

κCFL
2 =

1

24
urms (CCFLδx)

3 (208)

where CCFL is the CFL parameter which is either 0.4 in the conservative case or 0.9 in
the more progressive case.

142 THE PENCIL CODE

E.3 Anisotropic hyperdissipation

As we want quenching primarily at the Nyquist frequency, hyperdissipation depends
intrinsically on the resolution, according to Eq. (192). Because of this, isotropic hyper-
dissipation only gives equal quenching in all spatial directions if ∆x=∆y=∆z, i.e., if the
cells are cubic. For non-cubic cells, anisotropic dissipation is required as different direc-
tions may be better/worse sampled, thus needing less/more numerical smoothing. Such
generalization is straightforward. For that, we replace Eq. (189) by

J =

(

Dx
∂5ρ

∂x5
, Dy

∂5ρ

∂y5
, Dz

∂5ρ

∂z5

)

, (209)

so that different diffusion operates in different directions. Since Dx, Dy and Dz are con-
stants, the divergence of this vector is

∇ ·J = Dx
∂6ρ

∂x6
+Dy

∂6ρ

∂y6
+Dz

∂6ρ

∂z6
. (210)

The formulation for resistivity and heat conductivity are strictly the same. For viscosity
it also assumes the same form if we consider the simple non-conservative rate-of-strain
tensor (204).

Mathematically, these operations can be written compactly by noticing that the coeffi-

cients in Eq. (210) transform like diagonal tensors χ
(3)
ij = χ

(3)
k δijk, where δijk is the unit

diagonal third order tensor, χ(3) is the vector containing the dissipative coefficients (dif-
fusion, viscosity, resistivity, or heat conductivity) in x, y, and z, and summation over
repeated indices applies.

Therefore, for a scalar quantity ψ (density, any of the three components of the velocity
or magnetic potential), we can write

∂ψ

∂t
= −χ(3)

ij ∂i∂
5
jψ = −

∑

q

χ(3)
q

∂6

∂x6q
ψ. (211)

E.4 Hyperviscosity in Burgers shock

Figure 20: Left: Burgers shock from teach/PencilCode/material/BurgersShock (in the teaching material)
with −20 ≤ x ≤ 20, nx = 64 mesh points, ux = ∓1 on the two ends, ν = 0.4 and either ν3 = 0 (solid line)
or ν3 = 0.05 (dashed line). Right: similar to the left hand side, but with ν = 0 and ν3 = 0.05 (dashed line),
compared with the case ν = 0.4 and ν3 = 0 (solid line).

E.4 Hyperviscosity in Burgers shock 143

Hyperviscosity has the unfortunate property of introducing (numerically stable) wiggles,
even if one just adds a little bit of hyperviscosity to a run with normal viscosity; see left
hand side of Fig. 20. Running with just hyperviscosity give strong wiggles.

144 THE PENCIL CODE

F Special techniques

F.1 After changing REAL PRECISION

To continue working in double precision (REAL_PRECISION=double), you just say lread_-

from_other_prec=T in run_pars. Afterwards, remember to put lread_from_other_prec=F.
If continuation is done in a new run directory, first execute start.csh there and then copy
the files var.dat (and if present global.dat) from the old to the new directory, using pc -
copyvar.

F.2 Remeshing (regridding)

[This should be written up in a better way and put somewhere else. But currently,
remeshing is only available for the Pencil developers anyway.]

Suppose you have a directory run 64 with a 643 run (running onN0 =ny×nz=2×1 CPUs)
that you want to continue from ‘VAR1’ at 1283 (on ny×nz=4× 4 CPUs).

1. Get the remeshing stuff from repository:

unix> cd $PENCIL_HOME; cvs co -d remesh pencil-remesh

unix> setenv PATH ${PATH}:$PENCIL_HOME/remesh/bin

2. Create another run directory with current ‘VAR1’ as ‘var.dat’ (remesh.csh so far
only works with ‘var.dat’):

unix> cd run_64

run_64> pc_newrun ../tmp_64 or new tmp_64

run_64> mkdir -p ../tmp_64/data or (cd ../tmp_64/; crtmp)

run_64> (cd ../tmp_64/data ; mkproc-tree N0)

run_64> restart-new-dir-VAR ../tmp_64 1

3. Create the new run directory (linking the executables with -s):

run_64> cd ../tmp_64

tmp_64> pc_newrun -s ../run_128 or new run_128

tmp_64> vi ../run_128/src/cparam.local

set nxgrid=128, ncpus=16, nprocy=4
tmp_64> (cd ../run_128; crtmp; pc_setupsrc; make)

4. Setup and do remeshing

tmp_64> setup-remesh

tmp_64> vi remesh/common.local

set muly=2, mulz=4, remesh par=2
tmp_64> (cd remesh; make)

tmp_64> vi remesh.in

Replace line by ../run 128
tmp_64> remesh.csh

Answer ‘yes’

F.3 Restarting from a run with less physics 145

F.3 Restarting from a run with less physics

First, prepare a new run directory with the new physics included. By new physics, we
mean that the new run wants to read in more fields (e.g. magnetic fields, if the old run
didn’t have magnetic fields).

Example for test fields:

1. Prepare ‘src/cparam.local’

Add the following 2 fragments into the ‘cparam.local’ file. The first piece comes in
the beginning and the second in the end of the file.

!** AUTOMATIC CPARAM.INC GENERATION **

! Declare (for generation of cparam.inc) the number of f array

! variables and auxiliary variables added by this module

! Use MVAR to reserve the appropriate workspace for testfield_z.f90

! The MAUX number must be equally big and is used for uxb in the f-array.

! At the end of this file, njtest must be set such that 3*njtest=MVAR.

!

! MVAR CONTRIBUTION 12

! MAUX CONTRIBUTION 12

!

!***

!

! note that MVAR=MAUX=3*njtest must be obeyed

!

integer, parameter :: njtest=4

!

2. Prepare ‘src/Makefile.local’

Add the line TESTFIELD=testfield_z to the file. Finally, compile the code.

3. Prepare restart data

Go into data directory of the new run and prepare the directory tree using, e.g., the
command pc_mkproctree 16. [In principle this could be automatized, but it isn’t
yet.]

Next, go into old run directory and say restart-new-dir ../32c, if ‘../32c’ is the
name of the new run directory. This procedure copies all the files from the processor
tree, plus files like ‘param.nml’, but this file may need some manual modification (or
you could just us one from another runs with the new physics included, which is
definitely the simplest!).

4. Prepare ‘run.in’

Set lread_oldsnap_notestfield=T in run pars. This means (as the name says) that
one reads an old snapshot that did not have test fields in it.

Reset boundary conditions and add stuff for the newly added fields, e.g.,
bcz=’a:s’,’a’,’a:s’,’a2’,’a’,’a’,’s’,’a’,’a’,’s’,’a’,’a’,’s’,’a’,’a’,’s’

in run pars. If you don’t do this, you would effectively use periodic boundary
conditions for the response to the test field, which is hardly correct once you set
non-periodic boundary conditions for the other variables.

146 THE PENCIL CODE

Add something like the following text fragments in the right position (after grav -
run pars and magnetic run pars, but before shear run pars and viscosity run -
pars.

&testfield_run_pars

!linit_aatest=T, daainit=100.

itestfield=’B11-B22’

etatest=1e-4

lsoca=F

/

Make sure that the data above are correct. You may want to change the values of
daainit or etatest .

If you now run, and if you didn’t fix the file ‘data/param.nml’ you might get some-
thing like the following error:

forrtl: severe (24): end-of-file during read, unit 1, file /wkspace/brandenb/pencil-code/axel/Poiseuille/2d/32c/data/pa

The reason for this is that it reads the old boundary data, but the correspond-
ing array is too short. This includes stuff like FBCX1 to FBCX2 2 , but it is still
not enough. Therefore it is easiest to use the ‘data/param.nml’ file from another
run. You may well just use one from a single processor run with a different mesh.
But remember to fix the ‘start.in’ file by correcting the boundary conditions and
adding things like

&testfield_init_pars

luxb_as_aux=T

/

5. Prepare ‘print.in’, ‘xyaver.in’, and other obvious files such as ‘video.in’.

6. Once it works and is running, you must say explicitly

&run_pars

...

lread_oldsnap_notestfield=F

/

because otherwise you won’t read in your precious test field data next time you
restart the code! (If you instead just remove this line, it will remember lread_-

oldsnap_notestfield=T from the previous run, which is of course wrong!)

Comments: For large magnetic Reynolds numbers the solutions to the test-field equa-
tions can show a linear instability, which can introduce large fluctuations. In that case
it is best to reset the dependent test-field variable to zero in regular intervals. This is
done by setting linit aatest=T. Note that daainit=100 sets the reset interval to 100.

G. Runs and reference data 147

G Runs and reference data

For reference purposes we document here some results obtained with various samples
of the code.

G.1 Shock tests

G.1.1 Sod shock tube problem

Table 15: Combinations of ρ, p, and s/cp that are relevant for the Sod shock tube problem with constant
temperature and different pressure ratios on the left and right hand sides of the shock.

ρ p s

1.0 1.0 0.3065
0.1 0.1 1.2275
0.01 0.01 2.1486

G.1.2 Temperature jump

Table 16: Combinations of c2s , p, and s/cp that are relevant for the temperature shock problem with
constant density, ρ = 1, and different temperature ratios on the left and right hand sides of the shock.

c2s s

1.0 0.0
0.1 −2.3
0.01 −4.6
10−4 −9.2

G.2 Random forcing function

A solenoidal random forcing function f can be invoked by putting iforce=’helical’ in
the forcing run pars namelist. This produces the forcing function f of the form

f(x, t) = Re{Nfk(t)
exp[ik(t) · x+ iφ(t)]}, (212)

where k(t) = (kx, ky, kz) is a time dependent wave vector, x = (x, y, z) is position, and
φ(t) with |φ| < π is a random phase. On dimensional grounds the normalization factor
is chosen to be N = f0cs(kcs/δt)

1/2, where f0 is a nondimensional factor, k = |k|, and δt
is the length of the timestep. The δt−1/2 dependence ensures that the forcing, which is
delta-correlated in time, is properly normalized such that the correlator of the forcing
function is independent of the length of the time step, δt. We focus on the case where
|k| is around 5, and select at each timestep randomly one of the 350 possible vectors in
4.5 < |k| < 5.5. We force the system with eigenfunctions of the curl operator,

fk =
ik × (k × e)− σ|k|(k × e)
√
1 + σ2 k2

√

1− (k · e)2/k2
, (213)

148 THE PENCIL CODE

where e is an arbitrary unit vector needed in order to generate a vector k × e that is
perpendicular to k. Note that |fk|2 = 1 and, for σ = 1, ik × fk = |k|fk, so the helicity
density of this forcing function satisfies

f ·∇× f = |k|f 2 > 0 (for σ = 1) (214)

at each point in space. We note that since the forcing function is like a delta-function in
k-space, this means that all points of f are correlated at any instant in time, but are dif-
ferent at the next timestep. Thus, the forcing function is delta-correlated in time (but the
velocity is not). This is the forcing function used in Brandenburg (2001), Brandenburg
& Dobler (2001), and other papers in that series.

For σ = 0, the forcing function is completely nonhelical and reduces to the simpler form

fk = (k × e) /

√

k2 − (k · e)2. (215)

For 0 < |σ| < 1, the forcing function has fractional helicity, where σ ≈ 〈ω · u〉 /(kf 〈u2〉);
see Sect. 4.5 of Ref. [7]. In the code and the forcing run pars namelist, σ is called relhel .

In the code, the possible wavevectors are pre-calculated and stored in ‘k.dat’, which
is being read in the beginning the code runs. To change the wavevectors (e.g.
the typical value of kf , you need to change the file. In the directory ‘$PENCIL_-
HOME/samples/helical-MHDturb/K_VECTORS/’ there are several such files prepared:

k10.dat k1.dat k2.dat k3.dat k5.dat

k15.dat k27.dat k30.dat k4.dat k8.dat

and more can be prepared in IDL with the procedure ‘$PENCIL_-
HOME/samples/helical-MHDturb/idl/generate_kvectors.pro’ There is also more help in
the ‘README’ file in ‘helical-MHDturb’.

G.3 Three-layered convection model

ln ρ

−1 0 1 2 3

−0.5

0.0

0.5

1.0

1.5

z

uz

−0.15−0.10−0.050.000.05

−0.5

0.0

0.5

1.0

1.5

z

Entropy s

−0.6−0.4−0.20.0 0.2 0.4

−0.5

0.0

0.5

1.0

1.5

z

Temperature T

0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

1.5

z

Figure 21: Like in Fig. 2, but at time t = 50.

In Sect. 3 we have shown the early stages of the convection model located in
‘samples/conv-slab’. To arrive at fully developed convection, you will need to run the

G.4 Magnetic helicity in the shearing sheet 149

0 10 20 30 40 50
t

0.001

0.010

0.100

1.000

u

umax
urms

Figure 22: Time evolution of rms and maximum velocity for the model ‘samples/conv-slab’. Similar plots
can be produced by running the IDL script ‘ts.pro’.

code for many more time steps. Figure 21 shows the vertical profiles of four basic quan-
tities at time t = 50. Figure 22 shows the time evolution of rms and maximum velocity
for the model for 0 < t < 50.

Figures 23 and 24 show vertical and horizontal sections for time t = 50.

u at z=−0.292903

−0.4−0.2 0.0 0.2 0.4
x

−0.4

−0.2

0.0

0.2

0.4

y

u at z=−0.292903

−0.4−0.2 0.0 0.2 0.4
x

−0.4

−0.2

0.0

0.2

0.4

y

u at z=0.352258

−0.4−0.2 0.0 0.2 0.4
x

−0.4

−0.2

0.0

0.2

0.4

y

u at z=0.352258

−0.4−0.2 0.0 0.2 0.4
x

−0.4

−0.2

0.0

0.2

0.4

y

u at z=0.932903

−0.4−0.2 0.0 0.2 0.4
x

−0.4

−0.2

0.0

0.2

0.4

y

u at z=0.932903

−0.4−0.2 0.0 0.2 0.4
x

−0.4

−0.2

0.0

0.2

0.4

y

s and ρ at z=−0.292903

−0.4−0.2 0.0 0.2 0.4
x

−0.4

−0.2

0.0

0.2

0.4

y

s and ρ at z=0.352258

−0.4−0.2 0.0 0.2 0.4
x

−0.4

−0.2

0.0

0.2

0.4

y

s and ρ at z=0.932903

−0.4−0.2 0.0 0.2 0.4
x

−0.4

−0.2

0.0

0.2

0.4

y

Figure 23: Horizontal sections for t = 50. Top: velocity field. Bottom: entropy (color coded) and density
(isocontours). Plots of this type can be produced by running the IDL script ‘hsections.pro’)

G.4 Magnetic helicity in the shearing sheet

To test magnetic helicity evolution in the shearing shear, we can choose as initial
condition initaa=’Beltrami-y’ with amplaa=1. in magnetic_init_pars together with
Sshear=-1. in shear_run_pars.

150 THE PENCIL CODE

u at y=−0.296875

−0.4 −0.2 0.0 0.2 0.4
x

−0.5

0.0

0.5

1.0
z

u at y=−0.296875

−0.4 −0.2 0.0 0.2 0.4
x

−0.5

0.0

0.5

1.0
z

u at y=0.0156250

−0.4 −0.2 0.0 0.2 0.4
x

−0.5

0.0

0.5

1.0

z

u at y=0.0156250

−0.4 −0.2 0.0 0.2 0.4
x

−0.5

0.0

0.5

1.0

z

u at y=0.296875

−0.4 −0.2 0.0 0.2 0.4
x

−0.5

0.0

0.5

1.0

z

u at y=0.296875

−0.4 −0.2 0.0 0.2 0.4
x

−0.5

0.0

0.5

1.0

z

s and ρ at y=−0.296875

−0.4 −0.2 0.0 0.2 0.4
x

−0.5

0.0

0.5

1.0

z

s and ρ at y=0.0156250

−0.4 −0.2 0.0 0.2 0.4
x

−0.5

0.0

0.5

1.0

z

s and ρ at y=0.296875

−0.4 −0.2 0.0 0.2 0.4
x

−0.5

0.0

0.5

1.0

z

Figure 24: Vertical section y = 0.516 at t = 50. Top: velocity field. Bottom: entropy (color coded) and
density (isocontours). Plots of this type can be produced by running the IDL scripts ‘vsections.pro’) or
‘vsections2.pro’).

Thus, in ‘src/Makefile.local’ we just use

MAGNETIC=magnetic

HYDRO=nohydro

EOS=noeos

DENSITY=nodensity

SHEAR=shear

VISCOSITY=noviscosity

and put

&init_pars

cvsid=’Id’,

/

&magnetic_init_pars

initaa=’Beltrami-y’, amplaa=1.

/

&shear_init_pars

G.4 Magnetic helicity in the shearing sheet 151

Figure 25: Wind-up of the magnetic field leads to a linear increase in the rms magnetic field strength
until Ohmic diffusion begins to become important (top panel). During this time the magnetic helicity is
conserved. With Ohmic diffusion, the decay of 〈A·B〉 is well described by integrating −2η〈J ·B〉 (indicated
by “from rhs” in the second panel).

/

in ‘start.in’ and, for example,

&run_pars

cvsid=’Id’

nt=150000, it1=10, cdt=0.9, isave=50, itorder=3

dsnap=100. dvid=5., ialive=1

/

&magnetic_run_pars

eta=0.

/

&shear_run_pars

Sshear=-1.

/

in ‘run.in’. The output includes, among other things

arms(f10.7)

152 THE PENCIL CODE

brms(f12.7)

jrms(f14.7)

abm(f14.11)

jbm(f14.7)

The result is shown in Figure 25, where we show the wind-up of the magnetic field,
which leads to a linear increase in the rms magnetic field strength until Ohmic diffu-
sion begins to become important (top panel). During this time the magnetic helicity is
conserved. With Ohmic diffusion, the decay of 〈A · B〉 is well described by integrating
−2η〈J ·B〉 (indicated by “from rhs” in the second panel).

H. Numerical methods 153

H Numerical methods

H.1 Sixth-order spatial derivatives

Spectral methods are commonly used in almost all studies of ordinary (usually incom-
pressible) turbulence. The use of this method is justified mainly by the high numerical
accuracy of spectral schemes. Alternatively, one may use high order finite differences
that are faster to compute and that can possess almost spectral accuracy. Nordlund &
Stein [26] and Brandenburg et al. [12] use high order finite difference methods, for ex-
ample fourth and sixth order compact schemes [24].18

The sixth order first and second derivative schemes are given by

f ′
i = (−fi−3 + 9fi−2 − 45fi−1 + 45fi+1 − 9fi+2 + fi+3)/(60δx), (216)

f ′′
i = (2fi−3 − 27fi−2 + 270fi−1 − 490fi + 270fi+1 − 27fi+2 + 2fi+3)/(180δx

2), (217)

In Fig. 26 we plot effective wavenumbers for different schemes. Apart from the different
explicit finite difference schemes given above, we also consider a compact scheme of 6th
order, which can be written in the form

1
3
f ′
i−1 + f ′

i +
1
3
f ′
i+1 = (fi−2 − 28fi−1 + 28fi+1 − fi+2)/(36δx), (218)

for the first derivative, and

2
11
f ′′
i−1 + f ′′

i + 2
11
f ′′
i+1 = (3fi−2 + 48fi−1 − 102fi + 48fi+1 + 3fi+2)/(44δx

2). (219)

for the second derivative. As we have already mentioned in the introduction, this scheme
involves obviously solving tridiagonal matrix equations and is therefore effectively non-
local.

In the second panel of Fig. 26 we have plotted effective wavenumbers for second deriva-
tives, which were calculated as

(cos kx)′′num = −k2eff cos kx. (220)

Of particular interest is the behavior of the second derivative at the Nyquist frequency,
because that is relevant for damping zig-zag modes. For a second-order finite difference
scheme k2eff is only 4, which is less than half the theoretical value of π2 = 9.87. For
fourth, sixth, and tenth order schemes this value is respectively 5.33, 6.04, 6.83. The
last value is almost the same as for the 6th order compact scheme, which is 6.86. Signif-
icantly stronger damping at the Nyquist frequency can be obtained by using hypervis-
cosity, which Nordlund & Galsgaard (1995) treat as a quenching factor that diminishes
the value of the second derivative for wavenumbers that are small compared with the
Nyquist frequency. Accurate high order second derivatives (with no quenching factors)
are important when calculating the current J in the Lorentz force J ×B from a vector
potentialA using−µ0J = ∇2A−∇∇·A. This will be important in the MHD calculations
presented below.

18The fourth order compact scheme is really identical to calculating derivatives from a cubic spline,
as was done in Ref. [26]. In the book by Collatz [13] the compact methods are also referred to as Her-

mitian methods or as Mehrstellen-Verfahren, because the derivative in one point is calculated using the
derivatives in neighboring points.

154 THE PENCIL CODE

Figure 26: Effective wave numbers for first and second derivatives using different schemes. Note that
for the second derivatives the sixth order compact scheme is almost equivalent to the tenth order explicit
scheme. For the first derivative the sixth order compact scheme is still superior to the tenth order explicit
scheme.

H.2 Upwind derivatives to avoid ‘wiggles’

High-order centered-difference convection simulations often show “wiggles” (Nyquist
zigzag pattern) in ln ρ, which are apparently caused by a velocity profile where the veloc-
ity approaches zero on the boundary or inside the box.19 This causes the density profile
to be squeezed into a boundary layer where eventually numerical resolution is insuffi-
cient and, for centered differences, a spurious Nyquist signal is generated that almost
instantaneously propagates into much of the whole box.

Even if the stagnation point is on the boundary (and enforced by the boundary con-
ditions), this behavior is hardly influenced by the boundary conditions on ln ρ at all.
A solution, however, is to apply upwinded derivative operators. The simplest upwind
derivative is a finite-difference derivative operator where the point furthest downwind
is excluded from the stencil. For u > 0, that means that instead of

f ′
0 =

−f−3 + 9f−2 − 45f−1 + 45f1 − 9f2 + f3
60 δx

− δx6 f (7)

140
= D(cent,6) +O

(

δx6
)

, (221)

one takes

f ′
0 =

−2f−3 + 15f−2 − 60f−1 + 20f0 + 30f1 − 3f2
60 δx

+
δx5 f (6)

60
= D(up,5) +O

(

δx5
)

. (222)

A fourth-order upwind scheme (excluding two downwind points) would be

f ′
0 =

−f−3 + 6f−2 − 18f−1 + 10f0 + 3f1
12 δx

− δx4 f (5)

20
= D(up,4) +O

(

δx4
)

. (223)

19A simple one-dimensional test profile would be u(x) = 1 − x2 on x ∈ [−1, 1], which will accumulate
more and more mass near the right boundary x = 1.
In two- or three-dimensional settings, the presence of stagnation points of X-type leads to the same

configuration, this time with the possibility of a steady state (i.e. without accumulation of mass). Such
stagnation points occur e.g. at the top of an upwelling, or at the bottom of a downdraft in convection
simulations, where locally uz ∝ zX − z.

H.3 The bidiagonal scheme for cross-derivatives 155

The effect of upwinding is mostly to stop the Nyquist perturbations from spreading away
from the boundary or stagnation point. With the fourth-order formula they actually
hardly ever develop.

The difference between central and fifth-order upwind derivative is

[D(up,5) −D(cent,6)]f0 =
−f−3 + 6f−2 − 15f−1 + 20f0 − 15f1 + 6f2 − f3

60 δx
= −δx

5

60
f
(6)
0 . (224)

In other words, 5th-order upwinding can be represented for any sign of u as hyperdiffu-
sion (Dobler et al. 2006):

− uf ′
(up,5th) = −uf ′

(centr,6th) +
|u| δx5
60

f (6) . (225)

The advantage over adopting constant hyperdiffusion is that in the upwinding scheme
hyperdiffusion is only applied where it is needed (i.e. where advection is happening,
hence the factor |u|).
The form (225) also suggests an easy way to get ‘stronger’ upwinding: Rather than ex-
cluding more points in the downwind direction, we can simply treat the weight of the
hyperdiffusion term as a free parameter α:

− uf ′
(up,5th,α) = −uf ′

(centr,6th) + α |u| δx5f (6) . (226)

If α is large, this may affect the time step, but for α = 1/60, the stability requirement for
the hyperdiffusive term should always be weaker than the advective Courant criterion.

H.3 The bidiagonal scheme for cross-derivatives

The old default scheme used for cross-derivatives of type ∂2/(∂x∂y) used to read as fol-
lows:

df=fac*(&

270.*(f(l1+1:l2+1,m+1,n,k)-f(l1-1:l2-1,m+1,n,k) &

+f(l1-1:l2-1,m-1,n,k)-f(l1+1:l2+1,m-1,n,k)) &

- 27.*(f(l1+2:l2+2,m+2,n,k)-f(l1-2:l2-2,m+2,n,k) &

+f(l1-2:l2-2,m-2,n,k)-f(l1+2:l2+2,m-2,n,k)) &

+ 2.*(f(l1+3:l2+3,m+3,n,k)-f(l1-3:l2-3,m+3,n,k) &

+f(l1-3:l2-3,m-3,n,k)-f(l1+3:l2+3,m-3,n,k)) &

)

and is “visualized” in the left part of Fig. 27. It is way more efficient than the straight-
forward approach of first taking the x and the y derivative consecutively. (shown in the
right part of Fig. 27).

Off-diagonal terms enter not only the diffusion terms through∇∇ ·u and∇∇ ·A terms,
but also through the J = ∇ ×∇ ×A operator. The general formula is Ji = Aj,ij − Ai,jj,
so in 2-D in the xy-plane we have

Jx = Ax,xx + Ay,xy − Ax,xx − Ax,yy = Ay,xy − Ax,yy , (227)

Jy = Ax,yx + Ay,yy − Ay,xx − Ay,yy = Ax,yx − Ay,xx (228)

Figure 28 shows how the two schemes perform for the propagation of Alfvén waves,

156 THE PENCIL CODE

-2 0 0 0 0 0 +2
0 +27 0 0 0 -27 0
0 0 -270 0 +270 0 0
0 0 0 0 0 0 0
0 0 +270 0 -270 0 0
0 -27 0 0 0 +27 0
+2 0 0 0 0 0 -2

9 -27 135 0 -135 27 -9
-27 81 -405 0 405 -81 27
135 -405 2025 0 -2025 405 -135
0 0 0 0 0 0 0

-135 405 -2025 0 2025 -405 135
27 -81 405 0 -405 81 -27
-9 27 -135 0 135 -27 9

Figure 27: Weights of bidiagonal scheme (left) and consecutive scheme (right) for mixed derivatives
∂2/∂x∂y. The numbers shown need to be divided by 720 δx δy for the bidiagonal and by 3600 δx δy for
the consecutive scheme.

Figure 28: Alfvén wave for B0 = (1, 2, 0) and k = (1, 2, 0) after t = 2π. The wave travels in the direction of
k. Red symbols are for the bidiagonal scheme, black symbols show results obtained using the consecutive
scheme. Already for 162 mesh points there are no clear differences. For 82 mesh points both schemes are
equally imprecise regarding the phase error, but the amplitude error is still quite small (but this is mainly
a property of the time stepping scheme).

u̇z = JxB0y − JyB0x , (229)

Ȧx = −uzB0y , (230)

Ȧy = +uzB0x . (231)

The initial condition (as implemented in subroutine alfven_xy) is

uz ∼ cos(kxx+ kyy − ωt) , (232)

Ax ∼ +B0y sin(kxx+ kyy − ωt)/ω , (233)

Ay ∼ −B0x sin(kxx+ kyy − ωt)/ω , (234)

where ω = k ·B0. The figure shows that there is no clear advantage of either scheme, so
the code uses the more efficient bidiagonal one.

H.4 The 2N-scheme for time-stepping

For time stepping, higher-order schemes are necessary in order to reduce the amplitude
and phase errors of the scheme and, to some extent, to allow longer time steps. Usually

H.5 Diffusive error from the time-stepping 157

such schemes require large amounts of memory. However, we here use the memory-
effective 2N -schemes that require only two sets of variables to be held in memory. Such
schemes work for arbitrarily high order, although not all Runge-Kutta schemes can be
written as 2N -schemes [29, 28]. Consider the ordinary differential equation (ODE)

u̇ = F (u, t) , (235)

which can also be used as a prototype for a system of ODEs to be solved, like the ones
obtained by spatial discretization of PDEs. The 2N -schemes construct an approximation
to the solution

u(n) ≡ u(tn) (236)

according to the iterative procedure

wi = αiwi−1 + δt F (ui−1, ti−1) , (237)

ui = ui−1 + βiwi . (238)

For a three-step (RK3-2N) scheme we have i = 1, ..., 3. In order to advance the variable
u from u(n) at time t(n) to u(n+1) at time t(n+1) = t(n) + δt we set in Eq. (238)

u0 = u(n) and, after the last step, u(n+1) = u3, (239)

with u1 and u2 being intermediate steps. In order to be able to calculate the first step,
i = 1, for which no wi−1 ≡ w0 exists, we have to require α1 = 0. Thus, we are left with 5
unknowns, α2, α3, β1, β2, and β3. Three conditions follow from the fact that the scheme be
third order for linear equations, so we have to have two more conditions. One possibility
is to choose the fractional times at which the right hand side is evaluated, for example
(0, 1/3, 2/3) or even (0, 1/2, 1). Yet another possibility is to require that inhomogeneous
equations of the form u̇ = tn with n = 1 and 2 are solved exactly. The corresponding
coefficients are listed in Table 17 and compared with those given by Williamson [29]. In
practice all of them are about equally good when it comes to real applications, although
we found the first one in Table 17 (‘symmetric’) marginally better in some simple test
problems where an analytic solution was known. In Ref. [3] the accuracy of some non-
linear equations is tested.

Table 17: Coefficients for different 2N -type third-order Runge-Kutta schemes. The coefficients ci (which
are determined by the αi, βi) give the time for each substep, ti = t0 + ciδt

scheme c1 c2 c3 α2 α3 β1 β2 β3

symmetric 0 1/3 2/3 −2/3 −1 1/3 1 1/2
[predictor/corrector] 0 1/2 1 −1/4 −4/3 1/2 2/3 1/2
inhomogeneous 0 15/32 4/9 −17/32 −32/27 1/4 8/9 3/4
Williamson (1980) 0 4/9 15/32 −5/9 −153/128 1/3 15/16 8/15

H.5 Diffusive error from the time-stepping

In many cases we use centered first derivatives for the advection operator, so the result-
ing discretization errors are only of dispersive nature (proportional to odd derivatives). A
diffusive error can be obtained from the discretization error of the time-stepping scheme.
For the RK3-2N scheme we have

(

df

dt

)

nth order

=

(

df

dt

)

exact

+ anδt
n

(

dn+1f

dtn+1

)

+ ..., (240)

158 THE PENCIL CODE

where an = 1/(n + 1)! = 0.5. In particular, for n = 1 we have a1 = 1/2 = 0.2 and for
n = 3 we have a3 = 1/24 ≈ 0.04. The advection operator leads to a diffusive error equal
to a1δt(u · ∇)2 for n = 1 and a hyperdiffusive error equal to a3δt3(u · ∇)4 for n = 3.
Substituting δt = cCFLδx/|u|, where cCFL is Courant-Friedrich-Lewy constant, we have a
diffusive error ν∇2 with negative ν = −a1cCFL|u|δx for n = 1, and a hyperdiffusive error
−νhyp∇4 with positive νhyp = a3c

3
CFL|u|δx3 for n = 3. The fact that the hyperdiffusive

error has a positive effective hyperdiffusivity is an important factor in the choice of this
scheme.

To decide whether the effective hyperdiffusivity from the diffusive error is significant,
we can compare with the error that would occur had we used a third-order upwinding
scheme (Sect. H.2). In that case we would have an effective hyperdiffusive coefficient
|u|δx/12 that is 1/(12a3c3CFL) ≈ 5.8 times larger than that from the time stepping scheme.
In this sense, the hyperdiffusive error can be regarded as small.

Since the hyperdiffusive error is proportional to −∇4, we cannot directly compare with
the physical diffusion which is proportional to ∇2. Therefore we define an effective vis-
cosity as νeff = νhypk

2
Ny with kNy = π/δx being the Nyquist wavenumber of the mesh

of the domain covered by N mesh points. We define Reynolds number based on the
Nyquist wavenumber as ReNy = |u|/νeffkNy, and find Re = −24/(πcCFL)

3 ≈ 2.3 for our
favorite choice cCFL = 0.7. Thus, at the scale of the mesh, the effective Reynolds number
is comparable to the value often obtained in simulations. However, in turbulence sim-
ulations the viscous cutoff wavenumber is usually 5–10 times smaller than kNy, so the
relevant Reynolds number at the viscous scale is then another 2–3 orders of magnitude
larger and does therefore not impose a constraint in view of the physical viscosity that
is applied in such calculations.

H.6 Ionization

The specific entropy of each particle species (neutral hydrogen, electrons, protons and
neutral helium) may be written as

si
s0

= xi

(

ln

[

1

xtot

ρi
ρ

(

T

T0

)3/2
]

+
5

2

)

, (241)

where

xH = 1− y , xe = xp = y , xtot = 1 + y + xHe (242)

s0 =
kB
µmH

, T0 =
χH

kB
, (243)

and

ρi = µmH

(miχH

2π~2

)3/2

. (244)

The specific entropy of mixing is

smix

s0
= −

∑

i

xi ln
xi
xtot

. (245)

H.7 Radiative transfer 159

Summing up everything, we get the total specific entropy

s

s0
=
∑

i

si
s0

+
smix

s0
=
∑

i

xi

(

ln

[

1

xi

ρi
ρ

(

T

T0

)3/2
]

+
5

2

)

(246)

=
∑

i

xi ln
ρi
xi

+ xtot

(

ln

[

1

ρ

(

T

T0

)3/2
]

+
5

2

)

. (247)

Solving for T gives
3

2
ln
T

T0
=
s/s0 +

∑

i xi ln xi/ρi
xtot

+ ln ρ− 5

2
. (248)

Using this expression and the constants defined above, we may obtain the ionization
fraction y for given ln ρ and s by finding the root of

F = ln

[

ρe
ρ

(

T

T0

)3/2
1− y

y2

]

− T0
T
. (249)

The derivative with respect to y for Newton-Raphson is

∂F

∂y
=

(

3

2
+
T0
T

)

∂ lnT/T0
∂y

− 1

1− y
− 2

y
, (250)

where
∂ lnT/T0

∂y
=

2
3
(ln ρH/ρp − F − T0/T)− 1

1 + y + xHe

. (251)

In order to compute the pressure gradient in the momentum equation, the derivative of
y with respect to ln ρ and s needs to be known:

∂ lnP

∂ ln ρ
=

1

1 + y + xHe

∂y

∂ ln ρ
+
∂ lnT

∂ ln ρ
+
∂ lnT

∂y

∂y

∂ ln ρ
+ 1, (252)

∂ lnP

∂s
=

1

1 + y + xHe

∂y

∂s
+
∂ lnT

∂s
+
∂ lnT

∂y

∂y

∂s
. (253)

Since F = 0 for all desired solutions (y, ln ρ, s) we also have

dF =
∂F

∂ ln ρ
d ln ρ+

∂F

∂s
ds+

∂F

∂y
dy = 0 , (254)

and thus
∂y

∂ ln ρ
=

(

dy

d ln ρ

)

ds=0

= −∂F/∂ ln ρ
∂F/∂y

(255)

and
∂y

∂s
=

(

dy

ds

)

d ln ρ=0

= −∂F/∂s
∂F/∂y

. (256)

H.7 Radiative transfer

H.7.1 Solving the radiative transfer equation

A formal solution of Eq. (76) is given by

I(τ) = I(τ0)e
−(τ−τ0) +

τ
∫

τ0

e−(τ−τ ′)S(τ ′) dτ ′ . (257)

160 THE PENCIL CODE

Using a generalization of the trapezoidal rule,

τ
∫

τ0

e−(τ−τ ′)f(τ ′) dτ ′ ≈
τ
∫

τ0

e−(τ−τ ′)

[

f(τ0) +
f(τ)−f(τ0)
τ − τ0

(τ ′ − τ0)

]

dτ ′ (258)

=
[

1−e−(τ−τ0)
]

f(τ)− 1− e−(τ−τ0)(1 + τ−τ0)
τ − τ0

[f(τ)− f(τ0)] , (259)

which is exact for linear functions S(τ), we discretize this as

Ik+1 = Ike
−δτ + (1−e−δτ)Sk+1 −

1− e−δτ (1 + δτ)

δτ
(Sk+1 − Sk) , (260)

= Ike
−δτ + (1−e−δτ)Sk +

e−δτ − 1 + δτ

δτ
(Sk+1 − Sk) . (261)

Here the simplest way to calculate δτ is

δτ =
χk+χk+1

2
δx ; (262)

more accurate alternatives are
δτ =

√
χkχk+1 δx (263)

or

δτ =
χk+1 − χk

ln χk+1

lnχk

δx (264)

H.7.2 Angular integration

Table 18: Sums
√
4πY m

l (θi, φi) for special sets of directions. For all degrees and orders up to l = 8 not
mentioned in this table, the sums are 0. The label ‘Non-h. f-d.’ stands for ‘non-horizontal face-diagonals’,
i.e. the eight face diagonals that are not in the horizontal plane.

Directions Y 0
0 Y 0

2 Y 0
4 Y ±4

4 Y 0
6 Y ±4

6 Y 0
8 Y ±4

8 Y ±8
8

Coord. 6 0
21

2

3

4

√
70

3

4

√
13 −3

8

√
182

99

32

√
17

3

32

√
2618

3

64

√
24310

Face diag. 12 0 −21

4
−3

8

√
70 −39

16

√
13

39

32

√
182

891

256

√
17

27

256

√
2618

27

512

√
24310

Space diag. 8 0 −28

3
−2

3

√
70

16

9

√
13 −8

9

√
182

11

9

√
17

1

27

√
2618

1

54

√
24310

Non-h. f-d. 8 2
√
5 −39

4

3

8

√
70 −19

16

√
13

27

32

√
182

611

256

√
17

51

256

√
2618

3

512

√
24310

Coord. x, y 4 −2
√
5

9

2

4

3

√
70 −5

4

√
13 −3

8

√
182

35

32

√
17

3

32

√
2618

3

64

√
24310

Coord. z 2 2
√
5 6 0 2

√
13 0 2

√
17 0 0

For angular integration over the full solid angle, we make the ansatz

∫

4π

f(θ, φ)
dω

4π
=

N
∑

i=1

wif(θi, φi) +RN . (265)

H.7 Radiative transfer 161

Table 18 shows the sums
√
4πY m

l (θi, φi) over special sets of directions (θi, φi). Using these
numbers and requiring that angular integration is exact for l ≤ lmax, we find the follow-
ing weights wi for different sets of directions (see also [1], §25.4.65):

1. Axes

Coordinate axes: 1/6

lmax = 3

2. Face diagonals

Face diagonals: 1/12

lmax = 3

3. Space diagonals

Space diagonals: 1/8

lmax = 3

4. Axes + face diagonals

Coordinate axes: 1/30
Face diagonals: 1/15

lmax = 5

5. Axes + space diagonals

Coordinate axes: 1/15
Space diagonals: 3/40

lmax = 5

6. Face + space diagonals

Face diagonals: 2/15
Space diagonals: -3/40

lmax = 5

7. Axes, face + space diagonals

Coordinate axes: 1/21
Face diagonals: 4/105
Space diagonals: 9/280

lmax = 7

8. Axes, non-horizontal face diagonals

Coordinate axes x, y: 1/10
Coordinate axes z: 1/30
Non-hor. face diagonals: 1/15

lmax = 3

9. Axes, non-horizontal face diagonals, space diagonals

162 THE PENCIL CODE

Coordinate axes x, y: 12/215
Coordinate axes z: 10/129
Non-hor. face diagonals: -14/645
Space diagonals: 171/1720

lmax = 5

J. Startup and run-time parameters 163

I Switchable modules

Module Description

hydro.f90 This module takes care of most of the things related to velocity.
Pressure, for example, is added in the energy (entropy) module.

gpu astaroth.f90 This module contains GPU related types and functions to be used with
ASTAROTH nucleus.

noentropy.f90 Calculates pressure gradient term for
polytropic equation of state p = constρΓ.

nogpu.f90 This module contains GPU related dummy types and functions.

nohydro.f90 no variable u: useful for kinematic dynamo runs.

nopower spectrum.f90 reads in full snapshot and calculates power spetrum of u

noyinyang.f90 This module contains Yin-Yang related dummy types and functions.

noyinyang mpi.f90 This module contains Yin-Yang related dummy types and functions.

power spectrum.f90 reads in full snapshot and calculates power spetrum of u

timestep.f90 Runge-Kutta time advance, accurate to order itorder.
At the moment, itorder can be 1, 2, or 3.

timestep strang.f90 Runge-Kutta time advance, accurate to order itorder.
At the moment, itorder can be 1, 2, or 3.

timestep subcycle.f90 This is a highly specified timestep module currently only working
together with the special module coronae.f90.

yinyang.f90 This module contains Yin-Yang related types and functions
which are incompatible with FORTRAN 95.

yinyang mpi.f90 This module contains Yin-Yang related types and functions
which are incompatible with FORTRAN 95.

J Startup and run-time parameters

J.1 List of startup parameters for ‘ start.in’

The following table lists all (at the time of writing, September 2002) namelists used
in ‘start.in’, with the corresponding parameters and their default values (in square
brackets). Any variable referred to as a flag can be set to any nonzero value to switch
the corresponding feature on. Not all parameters are used for a given scenario. This
list is not necessarily up to date; also, in many cases it can only give an idea of the
corresponding initial state; to get more insight and the latest set of parameters, you
need to look at the code.

The value ε corresponds to 5 times the smallest number larger than zero. For single
precision, this is typically about ε ≈ 5 × 1.2×10−7 = 6×10−7; for double precision, ε ≈
10−15.

Variable [default value] Meaning

164 THE PENCIL CODE

Namelist init pars

cvsid [’’] the svn identification string, which allows you to
keep track of the version of ‘start.in’.

ip [14] (anti-)verbosity level: ip=1 produces lots of diagnos-
tic output, ip=14 virtually none.

xyz0 [(−π,−π,−π)],
Lxyz [(2π, 2π, 2π)],
lperi [(T,T,T)] determine the geometry of the box. All three are vec-

tors of the form (x-comp., y-comp., z-comp.); xyz0 de-
scribes the left (lower) corner of the box, Lxyz the box
size. lperi specifies whether a direction is considered
periodic (in which case the last point is omitted) or
not. In all cases, three ghost zones will be added.

lprocz slowest [T] if set to F, the ordering of processor numbers is
changed, so the z processors are now in the inner
loop. Since nprocy=4 is optimal (see Sect. 5.20.2),
you may want to put lprocz slowest=T when
nygrid>nzgrid.

lwrite ic [F] if set T, the initial data are written into the file ‘VAR0’.
This is generally useful, but doing this all the time
uses up plenty of disk space.

lnowrite [F] if set T, all initialization files are written, including
the param.nml file, except ‘var.dat’. This option al-
lows you to use old filevar.dat files, but updates all
other initialization files. This could be useful after
having changed the code and, in particular, when the
‘var.dat’ files will be overwritten by ‘remesh.csh’.

lwrite aux [F] if set T, auxiliary variables (those calculated at each
step, but not evolved mathematically) to ‘var.dat’ af-
ter the evolved quantities.

lwrite 2d [F] if set T, only 2D-snapshots are written into VAR files
in the case of 2D-runs with nygrid = 1 or nzgrid = 1.

lread oldsnap [F] if set T, the old snapshot will be read in before pro-
ducing (overwriting) initial conditions. For example,
if you just want to add a perturbation to the mag-
netic field, you’d give no initial condition for density
and velocity (so you keep the data from a hopefully
relaxed run), and just add whatever you need for the
magnetic field. In this connection you may want to
touch NOERASE, so as not to erase the previous data.

J.1 Startup parameters for ‘start.in’ 165

lread oldsnap nomag [F] if set T, the old snapshot from a non-magnetic run
will be read in before producing (overwriting) ini-
tial conditions. This allows one to let a hydrody-
namic run relax before adding a magnetic field.
However, for this to work one has to modify manu-

ally ‘data/param.nml’ by adding an entry for MAG-
NETIC INIT PARS or PSCALAR INIT PARS . In
addition, for idl to read correctly after the first
restarted run, you must adjust the value of mvar in
‘data/dim.dat’

lread oldsnap nopscalar [F] if set T, the old snapshot from a run without passive
scalar will be read in before producing (overwriting)
initial conditions. This allows one to let a hydrody-
namic run relax before adding a passive scalar.

lshift origin [F,F,F] if set T for any or some of the three directions, the
mesh is shifted by 1/2 meshpoint in that or those di-
rections so that the mesh goes through the origin.

unit system [’cgs’] you can set this character string to ’SI’, which
means that you can give physical dimensions in SI
units. The default is cgs units.

unit length [1] allows you to set the unit length. Suppose you want
the unit length to be 1 kpc, then you would say unit_-
length=’3e21’. (Of course, politically correct would
be to say unit_system=’SI’ in which case you say
unit_length=’3e19’.)

unit velocity [1] Example: if you want km/s you say unit_-

length=’1e5’.
unit density [1] Example: if you want your unit density to be

10−24 g/cm3 you say unit_density=’1e-24’.
unit temperature [1] Example: unit_temperature=’1e6’ if you want mega-

Kelvin.
random gen [system] choose random number generator; currently valid

choices are
’system’ (your compiler’s generator),
’min_std’ (the ‘minimal standard’ generator ran0()

from ‘Numerical Recipes’),
’nr_f90’ (the Parker-Miller-Marsaglia generator

ran() from ‘Numerical Recipes for F90’).

bcx [(’p’, ’p’, . . .)],
bcy [(’p’, ’p’, . . .)],
bcz [(’p’, ’p’, . . .)] boundary conditions. See Sect. 5.16 for a discussion

of where and how to set these.
pretend lnTT [F] selects lnT as fundamental thermodynamic variable

in the entropy module

Namelist hydro init pars

166 THE PENCIL CODE

inituu [’zero’] initialization of velocity. Currently valid choices are
‘zero’ (u = 0),
‘gaussian-noise’ (random, normally-distributed

ux,uz),
‘gaussian-noise-x’ (random, normally-distributed

ux),
‘sound-wave’ (sound wave in x direction),
‘shock-tube’ (polytropic standing shock),
‘bullets’ (blob-like velocity perturbations),
‘Alfven-circ-x’ (circularly polarized Alfven wave

in x direction),
‘const-ux’ (constant x-velocity),
‘const-uy’ (constant y-velocity),
‘tang-discont-z’ (tangential discontinuity: veloc-

ity is directed along x, jump is at z = 0),
‘Fourier-trunc’ (truncated Fourier series),
‘up-down’ (flow upward in one spot, downward in

another; not solenoidal).

ampluu [0.] amplitude for some types of initial velocities.
widthuu [0.1] width for some types of initial velocities.
urand [0.] additional random perturbation of u. If urand>0, the

perturbation is additive, ui 7→ ui + urandU[0.5,0.5]; if
urand<0, it is multiplicative, ui 7→ ui × urandU[0.5,0.5]; in
both cases, U[0.5,0.5] is a uniformly distributed random
variable on the interval [−0.5, 0.5].

uu left [0.],
uu right [0.] needed for inituu=’shock-tube’.

Namelist density init pars

J.1 Startup parameters for ‘start.in’ 167

initlnrho [’zero’] initialization of density. Currently valid choices are
‘zero’ (ln ρ = 0),
‘isothermal’ (isothermal stratification),
‘polytropic_simple’ (polytropic stratification),
‘hydrostatic-z-2’ (hydrostatic vertical stratifica-

tion for isentropic atmosphere),
‘xjump’ (density jump in x of width widthlnrho),
‘rho-jump-z’ (density jump in z of width

widthlnrho),
‘piecew-poly’ (piecewise polytropic vertical strati-

fication for solar convection),
‘polytropic’ (polytropic vertical stratification),
‘sound-wave’ (sound wave),
‘shock-tube’ (polytropic standing shock),
‘gaussian-noise’ (Gaussian-distributed, uncorre-

lated noise),
‘gaussian-noise’ (Gaussian-distributed, uncorre-

lated noise in x, but uniform in y and z),
‘hydrostatic-r’ (hydrostatic radial density strati-

fication for isentropic or isothermal sphere),
‘sin-xy’ (sine profile in x and y),
‘sin-xy-rho’ (sine profile in x and y, but in ρ, not

ln ρ),
‘linear’ (linear profile in k · x),
‘planet’ (planet solution; see §C.7).

gamma [5./3] adiabatic index γ = cp/cv.
cs0 [1.] can be used to set the dimension of velocity; larger

values can be used to decrease stratification
rho0 [1.] reference values of sound speed and density, i. e. val-

ues at height zref .
ampllnrho [0.],
widthlnrho [0.1] amplitude and width for some types of initial densi-

ties.
rho left [1.],
rho right [1.] needed for initlnrho=’shock-tube’.
cs2bot [1.],
cs2top [1.] sound speed at bottom and top. Needed for some

types of stratification.

Namelist grav init pars

zref [0.] reference height where in the initial stratification
c2s = c2s0 and ln ρ = ln ρ0.

gravz [−1.] vertical gravity component gz.
grav profile
[’const’] constant gravity gz = gravz (grav_profile=’const’)

gravity or linear profile gz = gravz · z (grav_-
profile=’linear’, for accretion discs and similar).

z1 [0.],

168 THE PENCIL CODE

z2 [1.] specific to the solar convection case
initlnrho=’piecew-poly’. The stable layer is
z0 < z < z1, the unstable layer z1 < z < z2, and the
top (isothermal) layer is z2 < z < ztop.

nu epicycle [1.] vertical epicyclic frequency; for accretion discs it
should be equal to Omega, but not for galactic discs;
see Eq. (125) in Sect. C.5.

grav amp [0.], grav tilt [0.] specific to the tilted gravity case (amplitude and an-
gle wrt the vertical direction).

Namelist entropy init pars

initss [’nothing’] initialization of entropy. Currently valid choices are
‘nothing’ (leaves the initialization done in the den-

sity module unchanged),
‘zero’ (put s = 0 explicitly; this may overwrite the

initialization done in the density module),
‘isothermal’ (isothermal stratification, T = const),
‘isobaric’ (isobaric, p = const),
‘isentropic’ (isentropic with superimposed hot [or

cool] bubble),
‘linprof’ (linear entropy profile in z),
‘piecew-poly’ (piecewise polytropic stratification

for convection),
‘polytropic’ (polytropic stratification, polytropic

exponent is mpoly0),
‘blob’ (puts a gaussian blob in entropy for buoy-

ancy experiments; see Ref. [5] for details)
‘xjump’ (jump in x direction),
‘hor-tube’ (horizontal flux tube in entropy, ori-

ented in the y-direction).

pertss [’zero’] additional perturbation to entropy. Currently valid
choices are
’zero’ (no perturbation)
’hexagonal’ (hexagonal perturbation for convec-

tion).

ampl ss [0.],
widthss [2ε] amplitude and width for some types of initial en-

tropy.
grads0 [0.] initial entropy gradient for initss=linprof.
radius ss [0.1] radius of bubble for initss=isentropic.
mpoly0 [1.5],
mpoly1 [1.5],

J.1 Startup parameters for ‘start.in’ 169

mpoly2 [1.5] specific to the solar convection case
initss=piecew-poly: polytropic indices of unstable
(mpoly0), stable (mpoly1) and top layer (mpoly2). If
the flag isothtop is set, the top layer is initialized to
be isothermal, otherwise thermal (plus hydrostatic)
equilibrium is assumed for all three layers, which
results in a piecewise polytropic stratification.

isothtop [0] flag for isothermal top layer for initss=piecew-poly.
khor ss [1.] horizontal wave number for pertss=hexagonal

Namelist magnetic init pars

initaa [’zero’] initialization of magnetic field (vector potential).
Currently valid choices are
‘Alfven-x’ (Alfvén wave traveling in the x-

direction; this also sets the velocity),
‘Alfven-z’ (Alfvén wave traveling in the z-

direction; this also sets the velocity),
‘Alfvenz-rot’ (same as ‘Alfven-z’, but with rota-

tion),
‘Alfven-circ-x’ (circularly polarized Alfven wave

in x direction),
‘Beltrami-x’ (x-dependent Beltrami wave),
‘Beltrami-y’ (y-dependent Beltrami wave),
‘Beltrami-z’ (z-dependent Beltrami wave),
‘Bz(x)’ (Bz ∝ cos(kx)),
‘crazy’ (for testing purposes).
‘diffrot’ ([needs to be documented]),
‘fluxrings’ (two interlocked magnetic fluxrings;

see § C.4),
‘gaussian-noise’ (white noise),
‘halfcos-Bx’ ([needs to be documented]),
‘hor-tube’ (horizontal flux tube in B, oriented in

the y-direction).
‘hor-fluxlayer’ (horizontal flux layer),
‘mag-support’ ([needs to be documented]),
‘mode’ ([needs to be documented]),
‘modeb’ ([needs to be documented]),
‘propto-ux’ ([needs to be documented]),
‘propto-uy’ ([needs to be documented]),
‘propto-uz’ ([needs to be documented]),
‘sinxsinz’ (sin x sin z),
‘uniform-Bx’ (uniform field in x direction),
‘uniform-By’ (uniform field in y direction),
‘uniform-Bz’ (uniform field in z direction),
‘zero’ (zero field),

170 THE PENCIL CODE

initaa2 [’zero’] additional perturbation of magnetic field. Currently
valid choices are
‘zero’ (zero perturbation),
‘Beltrami-x’ (x-dependent Beltrami wave),
‘Beltrami-y’ (y-dependent Beltrami wave),
‘Beltrami-z’ (z-dependent Beltrami wave).

amplaa [0.] amplitude for some types of initial magnetic fields.
amplaa2 [0.] amplitude for some types of magnetic field perturba-

tion.
fring{1,2} [0.],
Iring{1,2} [0.],
Rring{1,2} [1.],
wr{1,2} [0.3] flux, current, outer and inner radius of flux ring 1/2;

see Sect. C.4.
radius [0.1] used by some initial fields.
epsilonaa [10−2] used by some initial fields.
widthaa [0.5] used by some initial fields.
z0aa [0.] used by some initial fields.
kx aa [1.],
ky aa [1.],
kz aa [1.] wavenumbers used by some initial fields.
lpress equil [F] flag for pressure equilibrium (can be used in connec-

tion with all initial fields)

Namelist pscalar init pars

initlncc [’zero’] initialization of passive scalar (concentration per
unit mass, c). Currently valid choices (for ln c) are
‘zero’ (ln c = 0.),
‘gaussian-noise’ (white noise),
‘wave-x’ (wave in x direction),
‘wave-y’ (wave in y direction),
‘wave-z’ (wave in z direction),
‘tang-discont-z’ (Kelvin-Helmholtz instability),
‘hor-tube’ (horizontal tube in concentration; used

as a marker for magnetic flux tubes).

initlncc2 [’zero’] additional perturbation of passive scalar concentra-
tion c. Currently valid choices are
‘zero’ (δ ln c = 0.),
‘wave-x’ (add x-directed wave to ln c).

ampllncc [0.1] amplitude for some types of initial concentration.
ampllncc2 [0.] amplitude for some types of concentration perturba-

tion.
kx lncc [1.],
ky lncc [1.],
kz lncc [1.] wave numbers for some types of initial concentra-

tion.

Namelist shear init pars

J.2 Runtime parameters for ‘run.in’ 171

qshear [0.] degree of shear for shearing-box simulations (the
shearing-periodic boundaries are the x-boundaries
and are sheared in the y-direction). The shear veloc-
ity is U = −qΩx ŷ.

Namelist particles ads init pars

init ads mol frac [0.] initial adsorbed mole fraction

Namelist particles surf init pars

init surf mol frac [0.] initial surface mole fraction

Namelist particles chem init pars

total carbon sites [1.08e− 8] carbon sites per surface area [mol/cm]2

Namelist particles stalker init pars

dstalk [0.1] times between printout of stalker data
lstalk xx [F] particles position
lstalk vv [F] particles velocity
lstalk uu [F] gas velocity at particles position
lstalk guu [F] gas velocity gradient at particles position
lstalk rho [F] gas density at particles position
lstalk grho [F] gas density gradient at particles position
lstalk ap [F] particles diameter
lstalk bb [T] magnetic field at particles position
lstalk relvel [F] particles relative velocity to gas

J.2 List of runtime parameters for ‘ run.in’

The following table lists all (at the time of writing, September 2002) namelists used
in file ‘run.in’, with the corresponding parameters and their default values (in square
brackets). Default values marked as [start] are taken from ‘start.in’. Any variable re-
ferred to as a flag can be set to any nonzero value to switch the corresponding feature
on. Not all parameters are used for a given scenario. This list is not necessarily up to
date; also, in many cases it can only give an idea of the corresponding setup; to get more
insight and the latest set of parameters, you need to look at the code.

Once you have changed any of the ‘*.in’ files, you may want to first execute the command
pc_configtest in order to test the correctness of these configuration files, before you
apply them in an active simulation run.

Variable [default value] Meaning

Namelist run pars

cvsid [’’] svn identification string, which allows you to keep
track of the version of ‘run.in’.

ip [14] (anti-)verbosity level: ip=1 produces lots of addi-
tional diagnostic output, ip=14 virtually none.

nt [0] number of time steps to run. This number can be
increased or decreased during the run by touch

RELOAD.

172 THE PENCIL CODE

it1 [10] write diagnostic output every it1 time steps (see
Sect. 5.5).

it1d [it1] write averages every it1d time steps (see Sect. 5.8.1).
it1d has to be greater than or equal to it1 .

cdt [0.4] Courant coefficient for advective time step; see §5.15.
cdtv [0.08] Courant coefficient for diffusive time step; see §5.15.
dt [0.] time step; if 6= 0., this overwrites the Courant time

step. See §5.15 for a discussion of the latter.
dtmin [10−6] abort if time step δt < δtmin.
tmax [1033] don’t run time steps beyond this time. Useful if you

want to run for a given amount of time, but don’t
know the necessary number of time steps.

isave [100] update current snapshot ‘var.dat’ every isave time
steps.

itorder [3] order of time step (1 for Euler; 2 for 3nd-order, 3 for
3rd-order Runge–Kutta).

dsnap [100.] save permanent snapshot every dsnap time units
to files ‘VARN ’, where N counts from N = 1
upward. (This information is stored in the file
‘data/tsnap.dat’; see the module wsnaps.f90 , which
in turn uses the subroutines out1 and out2).

dvid [100.] write two-dimensional sections for generation of
videos every dvid time units (not timesteps; see the
subroutines out1 and out2 in the code).

iwig [0] if 6= 0, apply a Nyquist filter (a filter eliminating any
signal at the Nyquist frequency, but affecting large
scales as little as possible) every iwig time steps to
logarithmic density (sometimes necessary with con-
vection simulations).

ix [−1], iy [−1], iz [−1], iz2 [−1] position of slice planes for video files. Any negative
value of some of these variables will be overwritten
according to the value of slice position. See § 5.7) for
details.

slice position [’p’] symbolic specification of slice position. Currently
valid choices are
’p’ (periphery of the box)
’m’ (middle of the box)
’e’ (equator for half-sphere calculations, i. e. x, y

centered, z bottom)
These settings are overridden by explicitly setting ix,
iy, iz or iz2 . See § 5.7) for details.

zbot slice [value] z position of slice xy-plane. The value can be any float
number inside the z domain. These settings are over-
ridden by explicitly setting ix, iy, iz or iz2 . Saved as
slice with the suffix xy. See § 5.7) for details.

ztop slice [value] z position of slice xy-plane. The value can be any float
number inside the z domain. These settings are over-
ridden by explicitly setting ix, iy, iz or iz2 . Saved as
slice with the suffix xy2 . See § 5.7) for details.

J.2 Runtime parameters for ‘run.in’ 173

tavg [0] averaging time τavg for time averages (if 6= 0); at the
same time, time interval for writing time averages.
See § 5.8.4 for details.

idx tavg [(0, 0, . . . , 0)] indices of variables to time-average. See § 5.8.4 for
details.

d2davg [100.] time interval for azimuthal and z-averages, i.e. the
averages that produce 2d data. See § 5.8.3 for details.

ialive [0] if 6= 0, each processor writes the current time step
to ‘alive.info’ every ialive time steps. This provides
the best test that the job is still alive. (This can be
used to find out which node has crashed if there is a
problem and the run is hanging.)

bcx [(’p’, ’p’, . . .)],
bcy [(’p’, ’p’, . . .)],
bcz [(’p’, ’p’, . . .)] boundary conditions. See Sect. 5.16 for a discussion

of where and how to set these.
random gen [start] see start parameters, p. 165
lwrite aux [start] if set T, auxiliary variables (those calculated at each

step, but not evolved mathematically) to ‘var.dat’
and ‘VAR’ files after the evolved quantities.

Namelist hydro run pars

Omega [0.] magnitude of angular velocity for Coriolis force
(note: the centrifugal force is turned off by default,
unless lcentrifugal_force=T is set).

theta [0.] direction of angular velocity in degrees (θ = 0 for z-
direction, θ = 90 for the negative x-direction, corre-
sponding to a box located at the equator of a rotating
sphere. Thus, e.g., θ = 60 corresponds to 30◦ latitude.
(Note: prior to April 29, 2007, there was a minus sign
in the definition of θ.)

ttransient [0.] initial time span for which to do something special
(transient). Currently just used to smoothly switch
on heating [Should be in run pars, rather than here].

dampu [0.],
tdamp [0.],
ldamp fade [F] dampmotions during the initial time interval 0 < t <

tdamp with a damping term −dampu(u). If ldamp -
fade is set, smoothly reduce damping to zero over
the second half of the time interval tdamp. Initial ve-
locity damping is useful for situations where initial
conditions are far from equilibrium.

dampuint [0.], weighting of damping external to spherical region
(see wdamp, dampu below).

dampuext [0.], weighting of damping in internal spherical region
(see wdamp, dampu below).

rdampint [0.], radius of internal damping region
rdampext [impossible], radius of external damping region, used in place of

former variable rdamp

174 THE PENCIL CODE

wdamp [0.2], permanently damp motions in |x| < rdampint

with damping term −dampuintuχ(r−rdampint)
or |x| > rdampext with damping term
−dampuextuχ(r−rdampext), where χ(·) is a smooth
profile of width wdamp.

ampl forc [0.], amplitude of the ux-forcing or uy-forcing on the verti-
cal boundaries that is of the form u x(t) = ampl forc∗
sin(k forc ∗ x) ∗ cos(w forc ∗ t) [must be used in
connection with bcx=’g’ or bcz=‘g’ and force lower -
bound=‘vel time’ or force upper bound=‘vel time’]

k forc [0.], corresponding horizontal wavenumber
w forc [0.] corresponding frequency

Namelist density run pars

cs0 [start],
rho0 [start],
gamma [start] see start parameters, p. 167
cdiffrho [0.] Coefficient for mass diffusion (diffusion term will be

cdiffrho δx cs0 .
cs2bot [start],
cs2top [start] squared sound speed at bottom and top for boundary

condition ‘c2’.
lupw lnrho [.false.] use 5th-order upwind derivative operator for the ad-

vection term u ·∇ ln ρ to avoid spurious Nyquist sig-
nal (‘wiggles’); see §H.2.

Namelist entropy run pars

hcond0 [0.],
hcond1 [start],
hcond2 [start] specific to the solar convection case

initss=piecew-poly: heat conductivities K in
the individual layers. hcond0 is the value Kunst in
the unstable layer, hcond1 is the ratio Kstab/Kunst for
the stable layer, and hcond2 is the ratio Ktop/Kunst

for the top layer. The function K(z) is not discontin-
uous, as the transition between the different values
is smoothed over the width widthss. If hcond1 or
hcond2 are not set, they are calculated according to
the polytropic indices of the initial profile, K ∝ m+1.

iheatcond [’K-const’] select type of heat conduction. Currently valid
choices are
‘K-const’ (constant heat conductivity),
‘K-profile’ (vertical or radial profile),
‘chi-const’ (constant thermal diffusivity),
‘magnetic’ (heat conduction by electrons in mag-

netic field – currently still experimental).

lcalc heatcond constchi [F] flag for assuming thermal diffusivity χ = K/(cpρ) =
const, rather than K = const (which is the
default). This is currently only correct with

‘noionization.f90’. Superseded by iheatcond .

J.2 Runtime parameters for ‘run.in’ 175

chi [0.] value of χ when lcalc_heatcond_constchi=T.
widthss [start] width of transition region between layers. See start

parameters, p. 169.
isothtop [start] flag for isothermal top layer for solar convection case.

See start parameters, p. 169.
luminosity [0.],
wheat [0.1] strength and width of heating region.
cooltype [’Temp’] type of cooling; currently only implemented for spher-

ical geometry. Currently valid choices are
‘Temp’,‘cs2’ (cool temperature toward c2s =

cs2cool) with a cooling term

−C = −ccool
c2s − c2s cool
c2s cool

)
‘Temp-rho’,cs2-rho (cool temperature toward c2s =

cs2cool) with a cooling term

−C = −ccool ρ
c2s − c2s cool
c2s cool

— this avoids numerical instabilities in low-
density regions [currently, the cooling coeffi-
cient ccool ≡cool is not taken into account when
the time step is calculated])

‘entropy’ (cool entropy toward 0.).

cool [0.],
wcool [0.1] strength ccool and smoothing width of cooling region.
rcool [1.] radius of cooling region: cool for |x| ≥ rcool .
Fbot [start] heat flux for bottom boundary condition ‘c1’. For

polytropic atmospheres, if Fbot is not set, it will be
calculated from the value of hcond0 in ‘start.x’, pro-
vided the entropy boundary condition is set to ‘c1’.

chi t [0.] entropy diffusion coefficient for diffusive term
∂s/∂t = . . .+ χt∇2s in the entropy equation, that can
represent some kind of turbulent (sub-grid) mixing.
It is probably a bad idea to combine this with heat
conduction hcond0 6= 0.

lupw ss [.false.] use 5th-order upwind derivative operator for the ad-
vection term u ·∇s to avoid spurious Nyquist signal
(‘wiggles’); see §H.2.

tauheat buffer [0.] time scale for heating to target temperature
(=TTheat buffer); zero disables the buffer zone.

zheat buffer [0.] z coordinate of the thermal buffer zone. Buffering is
active in |z| >TTheat buffer.

dheat buffer1 [0.] Inverse thickness of transition to buffered layer.
TTheat buffer [0.] target temperature in thermal buffer zone (z direc-

tion only).

176 THE PENCIL CODE

lhcond global [F] flag for calculating the heat conductivity K (and
also ∇ logK) globally using the global arrays facility.
Only valid when iheatcond=‘K-profile’.

Namelist magnetic run pars

B ext [(0., 0., 0.)] uniform background magnetic field (for fully periodic
boundary conditions, uniform fields need to be explic-
itly added, since otherwise the vector potentialA has
a linear x-dependence which is incompatible with pe-
riodicity).

lignore Bext in b2 [F] add uniform background magnetic field when
or luse Bext in b2 [T] computing b2 pencils
eta [0.] magnetic diffusivity η = 1/(µ0σ), where σ is the elec-

tric conductivity.
height eta [0.],
eta out [0.] used to add extra diffusivity in a halo region.
eta int [0.] used to add extra diffusivity inside sphere of radius

r int .
eta ext [0.] used to add extra diffusivity outside sphere of radius

r ext .
kinflow [’’] set type of flow fixed with ‘nohydro’. Currently the

only recognized value is ’ABC’ for an ABC flow; all
other values lead to u = 0.

kx [1.],
ky [1.],
kz [1.] wave numbers for ABC flow.
ABC A [1.],
ABC B [1.],
ABC C [1.] amplitudes A, B and C for ABC flow.

Namelist pscalar run pars

pscalar diff [0.] diffusion for passive scalar concentration c.
tensor pscalar diff [0.] coefficient for non-isotropic diffusion of passive

scalar.
reinitialize lncc [F] reinitialize the passive scalar to the value of cc const

in start.in at next run

Namelist forcing run pars

iforce [2] select form of forcing in the equation of motion; cur-
rently valid choices are
’zero’ (no forcing),
’irrotational’ (irrotational forcing),
’helical’ (helical forcing),
’fountain’ (forcing of “fountain flow”; see Ref. [11]),
’horizontal-shear’ (forcing localized horizontal si-

nusoidal shear).
’variable_gravz’ (time-dependent vertical gravity

for forcing internal waves),

iforce2 [0] select form of additional forcing in the equation of
motion; valid choices are as for iforce.

J.2 Runtime parameters for ‘run.in’ 177

force [0.] amplitude of forcing.
relhel [1.] helicity of forcing. The parameter relhel corresponds

to σ introduced in Sect. G.2. (σ = ±1 corresponds to
maximum helicity of either sign).

height ff [0.] multiply forcing by z-dependent profile of width
height ff (if 6= 0) .

r ff [0.] if 6= 0, multiply forcing by spherical cutoff profile (of
radius r ff) and flip signs of helicity at equatorial
plane.

width ff [0.5] width of vertical and radial profiles for modifying
forcing.

kfountain [5] horizontal wavenumber of the fountain flow.
fountain [1.] amplitude of the fountain flow.
omega ff [1.] frequency of the cos or sin forcing [e.g. cos(omega -

ff*t)].
ampl ff [1.] amplitude of forcing in front of cos or sin [e.g. ampl -

ff*cos(omega ff*t)].

Namelist grav run pars

zref [start],
gravz [start],
grav profile [start] see p. 167.
nu epicycle [start] see Eq. (125) in Sect. C.5.

Namelist viscosity run pars

nu [0.] kinematic viscosity.
nu hyper2 [0.] kinematic hyperviscosity (with ∇4u).
nu hyper3 [0.] kinematic hyperviscosity (with ∇6u).
zeta [0.] bulk viscosity.
ivisc [’nu-const’] select form of viscous term (see §6.2); currently valid

choices are
’nu-const’ – viscous force for ν = const, F visc =

ν(∇2u+ 1
3
∇∇ · u+ 2S ·∇ ln ρ)

’rho_nu-const’ – viscous force for µ ≡ ρν = const,
F visc = (µ/ρ)(∇2u + 1

3
∇∇ · u). With this op-

tion, the input parameter nu actually sets the
value of µ/ρ0 (rho0=ρ0 is another input param-
eter, see pp. 167 and 174)

’simplified’ – simplified viscous force F visc =
ν∇2u

Namelist shear run pars

qshear [start] See p. 171.

Namelist particles run pars

ldragforce dust par [F] dragforce on particles
ldragforce gas par [F] particle-gas friction force
ldraglaw steadystate [F] particle forces only with 1

τ
∆v

lpscalar sink [F] particles consume passive scalar
pscalar sink rate [0] volumetric pscalar consumption rate

178 THE PENCIL CODE

lbubble [F] addition of the virtual mass term

Namelist particles ads run pars

placeholder [start] placeholder

Namelist particles surf run pars

lspecies transfer [T] Species transfer from solid to fluid phase

Namelist particles chem run pars

lthiele [T] Modeling of particle porosity by application of Thiele
modulus

J.3 List of parameters for ‘ print.in’

The following table lists all possible inputs to the file ‘print.in’ that are documented.

Variable Meaning

Module ‘cdata.f90’

it number of time step (since beginning of job only)
t time t (since start.csh)
dt time step δt
walltime wall clock time since start of run.x, in seconds
Rmesh Rmesh

Rmesh3 R
(3)
mesh

maxadvec maxadvec

Module ‘hydro.f90’

u2tm
〈

u(t) ·
∫ t

0
u(t′)dt′

〉

uotm
〈

u(t) ·
∫ t

0
ω(t′)dt′

〉

outm
〈

ω(t) ·
∫ t

0
u(t′)dt′

〉

fkinzm
〈

1
2
̺u2uz

〉

u2m 〈u2〉
uxpt ux(x1, y1, z1, t)
uypt uy(x1, y1, z1, t)
uzpt uz(x1, y1, z1, t)
uxp2 ux(x2, y2, z2, t)
uyp2 uy(x2, y2, z2, t)
uzp2 uz(x2, y2, z2, t)

urms 〈u2〉1/2

urmsx 〈u2〉1/2 for the hydro xaver range

urmsz 〈u2〉1/2 for the hydro zaver range

durms 〈δu2〉1/2
umax max(|u|)
umin min(|u|)
uxrms 〈u2x〉

1/2

uyrms
〈

u2y
〉1/2

J.3 Parameters for ‘print.in’ 179

uzrms 〈u2z〉
1/2

uxmin min(|ux|)
uymin min(|uy|)
uzmin min(|uz|)
uxmax max(|ux|)
uymax max(|uy|)
uzmax max(|uz|)
uxm 〈ux〉
uym 〈uy〉
uzm 〈uz〉
ux2m 〈u2x〉
uy2m

〈

u2y
〉

uz2m 〈u2z〉
ux2ccm 〈u2x cos2 kz〉
ux2ssm

〈

u2x sin
2 kz

〉

uy2ccm
〈

u2y cos
2 kz

〉

uy2ssm
〈

u2y sin
2 kz

〉

uxuycsm 〈uxuy cos kz sin kz〉
uxuym 〈uxuy〉
uxuzm 〈uxuz〉
uyuzm 〈uyuz〉
umx 〈ux〉
umy 〈uy〉
umz 〈uz〉
omumz

〈

〈W 〉xy · 〈U〉xy
〉

(xy-averaged mean cross helicity produc-

tion)

umamz
〈

〈u〉xy · 〈A〉xy
〉

umbmz
〈

〈U〉xy · 〈B〉xy
〉

(xy-averaged mean cross helicity produc-

tion)

umxbmz
〈

〈U〉xy × 〈B〉xy
〉

z
(xy-averaged mean emf)

rux2m 〈ρu2x〉
ruy2m

〈

ρu2y
〉

ruz2m 〈ρu2z〉
divum 〈divu)〉
rdivum 〈̺divu)〉
divu2m 〈(divu)2〉
gdivu2m 〈(grad divu)2〉
u3u21m 〈u3u2,1〉
u1u32m 〈u1u3,2〉
u2u13m 〈u2u1,3〉
u2u31m 〈u2u3,1〉
u3u12m 〈u3u1,2〉
u1u23m 〈u1u2,3〉
ruxm 〈̺ux〉 (mean x-momentum density)
ruym 〈̺uy〉 (mean y-momentum density)
ruzm 〈̺uz〉 (mean z-momentum density)
ruxtot 〈ρ|u|〉 (mean absolute x-momentum density)
rumax max(̺|u|) (maximum modulus of momentum)

180 THE PENCIL CODE

ruxuym 〈̺uxuy〉 (mean Reynolds stress)
ruxuzm 〈̺uxuz〉 (mean Reynolds stress)
ruyuzm 〈̺uyuz〉 (mean Reynolds stress)
divrhourms |∇ · (̺u)|rms

divrhoumax |∇ · (̺u)|max

rlxm 〈ρyuz − zuy〉
rlym 〈ρzux − xuz〉
rlzm 〈ρxuy − yux〉
rlx2m 〈(ρyuz − zuy)

2〉
rly2m 〈(ρzux − xuz)

2〉
rlz2m 〈(ρxuy − yux)

2〉
tot ang mom Total angular momentum in spherical coordinates about the

axis.
dtu δt/[cδt δx/max |u|] (time step relative to advective time step;

see § 5.15)
oum 〈ω · u〉
ou int

∫

V
ω · u dV

fum 〈f · u〉
odel2um 〈ω∇2u〉
o2m 〈ω2〉 ≡ 〈(∇× u)2〉
orms 〈ω2〉1/2
omax max(|ω|)
ox2m 〈ω2

x〉
oy2m

〈

ω2
y

〉

oz2m 〈ω2
z〉

oxuzxm 〈ωxuz,x〉
oyuzym 〈ωyuz,y〉
oxoym 〈ωxωy〉
oxozm 〈ωxωz〉
oyozm 〈ωyωz〉
qfm 〈q · f〉
q2m 〈q2〉
qrms 〈q2〉1/2
qmax max(|q|)
qom 〈q · ω〉
quxom 〈q · (u× ω)〉
pvzm 〈ωz + 2Ω/̺〉 (z component of potential vorticity)
oumphi 〈ω · u〉ϕ
ugurmsx

〈

(u∇u)2
〉1/2

for the hydro xaver range

ugu2m 〈u∇u〉2
dudx

〈

δu
δx

〉

Marms 〈u2/c2s 〉 (rms Mach number)
Mamax max |u|/cs (maximum Mach number)
ekin

〈

1
2
̺u2

〉

ekintot
∫

V
1
2
̺u2 dV

uxglnrym 〈ux∂y ln ̺〉
uyglnrxm 〈uy∂x ln ̺〉
uzdivum 〈uz∇ · u〉
uxuydivum 〈uxuy∇ · u〉

J.3 Parameters for ‘print.in’ 181

divuHrms (∇H · uH)
rms

uxxrms urms
x,x

uyyrms urms
y,y

uxzrms urms
x,z

uyzrms urms
y,z

uzyrms urms
z,y

dtF δt/[cδt δx/max |F|] (time step relative to max force time step;
see § 5.15)

∫

ur(θ, φ)Y
m
ℓ (θ, φ) sin(θ)dθdφ

udpxxm components of symmetric tensor 〈ui∂jp+ uj∂ip〉
Module ‘density.f90’

rhom 〈̺〉 (mean density)
rhomxmask 〈̺〉 for the density xaver range
rhomzmask 〈̺〉 for the density zaver range
drho2m < (̺− ̺0)

2 >
drhom < ̺− ̺0 >
rhomin min(ρ)
rhomax max(ρ)
ugrhom 〈u · ∇̺〉
uglnrhom 〈u · ∇ ln ̺〉
totmass

∫

̺ dV
mass

∫

̺ dV
vol

∫

dV (volume)
grhomax max(|∇̺|)

Module ‘entropy.f90’

dtc δt/[cδt δx/max cs] (time step relative to acoustic time step;
see § 5.15)

ethm 〈̺e〉 (mean thermal [=internal] energy)
ssruzm 〈s̺uz/cp〉
ssuzm 〈suz/cp〉
ssm 〈s/cp〉 (mean entropy)
ss2m 〈(s/cp)2〉 (mean squared entropy)
eem 〈e〉
ppm 〈p〉
csm 〈cs〉
pdivum 〈p∇ · u〉
fradbot

∫

Fbot · dS
fradtop

∫

Ftop · dS
TTtop

∫

TtopdS
ethtot

∫

V
̺e dV (total thermal [=internal] energy)

dtchi δt/[cδt,v δx
2/χmax] (time step relative to time step based on

heat conductivity; see § 5.15)
Hmax Hmax (net heat sources summed see § 5.15)
tauhmin Hmax (net heat sources summed see § 5.15)
dtH δt/[cδt,s cvT/Hmax] (time step relative to time step based on

heat sources; see § 5.15)
yHm mean hydrogen ionization
yHmax max of hydrogen ionization
TTm 〈T 〉

182 THE PENCIL CODE

TTmax Tmax

TTmin Tmin

gTmax max(|∇T |)
ssmax smax

ssmin smin

gTrms (∇T)rms

gsrms (∇s)rms

gTxgsrms (∇T ×∇s)rms

fconvm 〈cp̺uzT 〉
ufpresm 〈−u/ρ∇p〉
Kkramersm 〈Kkramers〉

Module ‘magnetic.f90’

eta tdep t-dependent η
ab int

∫

A ·B dV
jb int

∫

j ·B dV

b2tm
〈

b(t) ·
∫ t

0
b(t′)dt′

〉

bjtm
〈

b(t) ·
∫ t

0
j(t′)dt′

〉

jbtm
〈

j(t) ·
∫ t

0
b(t′)dt′

〉

b2ruzm
〈

B2ρuz
〉

b2uzm
〈

B2uz
〉

ubbzm 〈(u ·B)Bz〉
b1m 〈|B|〉
b2m

〈

B2
〉

b4m
〈

B4
〉

bm2 max(B2)
j2m

〈

j2
〉

jm2 max(j2)
abm 〈A ·B〉
abumx 〈uxA ·B〉
abumy 〈uyA ·B〉
abumz 〈uzA ·B〉
abmh 〈A ·B〉 (temp)
abmn 〈A ·B〉 (north)
abms 〈A ·B〉 (south)
abrms 〈(A ·B)2〉1/2

jbrms 〈(j ·B)2〉1/2
ajm 〈j ·A〉
jbm 〈j ·B〉
jbmh 〈J ·B〉 (temp)
jbmn 〈J ·B〉 (north)
jbms 〈J ·B〉 (south)
ubm 〈u ·B〉
dubrms 〈(u−B)2〉1/2

dobrms 〈(ω −B)2〉1/2
uxbxm 〈uxBx〉
uybxm 〈uyBx〉
uzbxm 〈uzBx〉

J.3 Parameters for ‘print.in’ 183

uxbym 〈uxBy〉
uybym 〈uyBy〉
uzbym 〈uzBy〉
uxbzm 〈uxBz〉
uybzm 〈uyBz〉
uzbzm 〈uzBz〉
cosubm 〈U ·B/(|U | |B|)〉
jxbxm 〈jxBx〉
jybxm 〈jyBx〉
jzbxm 〈jzBx〉
jxbym 〈jxBy〉
jybym 〈jyBy〉
jzbym 〈jzBy〉
jxbzm 〈jxBz〉
jybzm 〈jyBz〉
jzbzm 〈jzBz〉
uam 〈u ·A〉
ujm 〈u · J〉
fbm 〈f ·B〉
fxbxm 〈fxBx〉
epsM

〈

ηµ0j
2
〉

epsAD 〈ρ−1tAD(J ×B)2〉 (heating by ion-neutrals friction)
bxpt Bx(x1, y1, z1, t)
bypt By(x1, y1, z1, t)
bzpt Bz(x1, y1, z1, t)
jxpt Jx(x1, y1, z1, t)
jypt Jy(x1, y1, z1, t)
jzpt Jz(x1, y1, z1, t)
Expt Ex(x1, y1, z1, t)
Eypt Ey(x1, y1, z1, t)
Ezpt Ez(x1, y1, z1, t)
axpt Ax(x1, y1, z1, t)
aypt Ay(x1, y1, z1, t)
azpt Az(x1, y1, z1, t)
bxp2 Bx(x2, y2, z2, t)
byp2 By(x2, y2, z2, t)
bzp2 Bz(x2, y2, z2, t)
jxp2 Jx(x2, y2, z2, t)
jyp2 Jy(x2, y2, z2, t)
jzp2 Jz(x2, y2, z2, t)
Exp2 Ex(x2, y2, z2, t)
Eyp2 Ey(x2, y2, z2, t)
Ezp2 Ez(x2, y2, z2, t)
axp2 Ax(x2, y2, z2, t)
ayp2 Ay(x2, y2, z2, t)
azp2 Az(x2, y2, z2, t)
exabot

∫

E ×A dS|bot
exatop

∫

E ×A dS|top
emag

∫

V
1

2µ0
B2 dV

brms
〈

B2
〉1/2

184 THE PENCIL CODE

bfrms
〈

B′2
〉1/2

bf2m
〈

B′2
〉

bf4m
〈

B′4
〉

bmax max(|B|)
bxmin min(|Bx|)
bymin min(|By|)
bzmin min(|Bz|)
bxmax max(|Bx|)
bymax max(|By|)
bzmax max(|Bz|)
bbxmax max(|Bx|)excludingBvext
bbymax max(|By|)excludingBvext
bbzmax max(|Bz|)excludingBvext
jxmax max(|jvx|)
jymax max(|jvy|)
jzmax max(|jvz|)
jrms

〈

j2
〉1/2

hjrms
〈

j2
〉1/2

jmax max(|j|)
vArms

〈

B2/̺
〉1/2

vAmax max(B2/̺)1/2

dtb δt/[cδt δx/vA,max] (time step relative to Alfvén time step; see
§ 5.15)

dteta δt/[cδt,v δx
2/ηmax] (time step relative to resistive time step;

see § 5.15)
a2m

〈

A2
〉

arms
〈

A2
〉1/2

amax max(|A|)
divarms 〈(∇ ·A)2〉1/2
beta1m

〈

B2/(2µ0p)
〉

(mean inverse plasma beta)
beta1max max[B2/(2µ0p)] (maximum inverse plasma beta)
betam 〈β〉
betamax max β
betamin min β
bxm 〈Bx〉
bym 〈By〉
bzm 〈Bz〉
bxbym 〈BxBy〉
bmx

〈

〈B〉2yz
〉1/2

(energy of yz-averaged mean field)

bmy
〈

〈B〉2xz
〉1/2

(energy of xz-averaged mean field)

bmz
〈

〈B〉2xy
〉1/2

(energy of xy-averaged mean field)

bmzS2
〈

〈BS〉2xy
〉

bmzA2
〈

〈BA〉2xy
〉

jmx
〈

〈J〉2yz
〉1/2

(energy of yz-averaged mean current density)

J.3 Parameters for ‘print.in’ 185

jmy
〈

〈J〉2xz
〉1/2

(energy of xz-averaged mean current density)

jmz
〈

〈J〉2xy
〉1/2

(energy of xy-averaged mean current density)

bmzph Phase of a Beltrami field
bmzphe Error of phase of a Beltrami field
bsinphz sine of phase of a Beltrami field
bcosphz cosine of phase of a Beltrami field

emxamz3
〈

〈E〉xy × 〈A〉xy
〉

(xy-averaged mean field helicity flux)

embmz
〈

〈E〉xy · 〈B〉xy
〉

(xy-averaged mean field helicity production

)

ambmz
〈

〈A〉xy · 〈B〉xy
〉

(magnetic helicity of xy-averaged mean

field)

ambmzh
〈

〈A〉xy · 〈B〉xy
〉

(magnetic helicity of xy-averaged mean

field, temp)

ambmzn
〈

〈A〉xy · 〈B〉xy
〉

(magnetic helicity of xy-averaged mean

field, north)

ambmzs
〈

〈A〉xy · 〈B〉xy
〉

(magnetic helicity of xy-averaged mean

field, south)

jmbmz
〈

〈J〉xy · 〈B〉xy
〉

(current helicity of xy-averaged mean field)

Rmmz
〈

|u×B|

|ηJ |

〉

xy

kx aa kx

kmz
〈

〈J〉xy · 〈B〉xy
〉

/
〈

〈B〉2xy
〉

bx2m 〈B2
x〉

by2m
〈

B2
y

〉

bz2m 〈B2
z 〉

uxbm 〈u×B〉 ·B0/B
2
0

jxbm 〈j ×B〉 ·B0/B
2
0

magfricmax 〈j ×B〉 ·B2

b3b21m 〈B3B2,1〉
b3b12m 〈B3B1,2〉
b1b32m 〈B1B3,2〉
b1b23m 〈B1B2,3〉
b2b13m 〈B2B1,3〉
b2b31m 〈B2B3,1〉
uxbmx 〈(u×B)x〉
uxbmy 〈(u×B)y〉
uxbmz 〈(u×B)z〉
jxbmx 〈(j ×B)x〉
jxbmy 〈(j ×B)y〉
jxbmz 〈(j ×B)z〉
examx 〈E ×A〉 |x
examy 〈E ×A〉 |y
examz 〈E ×A〉 |z
exjmx 〈E × J〉 |x
exjmy 〈E × J〉 |y
exjmz 〈E × J〉 |z

186 THE PENCIL CODE

dexbmx 〈∇ ×E ×B〉 |x
dexbmy 〈∇ ×E ×B〉 |y
dexbmz 〈∇ ×E ×B〉 |z
phibmx 〈φB〉 |x
phibmy 〈φB〉 |y
phibmz 〈φB〉 |z
b2divum

〈

B2∇ · u
〉

jdel2am 〈J · ∇2A)〉
ujxbm 〈u · (J ×B)〉
jxbrmax max(|J ×B/ρ|)
jxbr2m 〈(J ×B/ρ)2〉
bmxy rms

√

[〈bx〉z (x, y)]2 + [〈by〉z (x, y)]2 + [〈bz〉z (x, y)]2
etasmagm Mean of Smagorinsky resistivity
etasmagmin Min of Smagorinsky resistivity
etasmagmax Max of Smagorinsky resistivity
etavamax Max of artificial resistivity η ∼ vA
etajmax Max of artificial resistivity η ∼ J/

√
ρ

etaj2max Max of artificial resistivity η ∼ J2/ρ
etajrhomax Max of artificial resistivity η ∼ J/ρ
cosjbm 〈J ·B/(|J | |B|)〉
jparallelm Mean value of the component of J parallel to B
jperpm Mean value of the component of J perpendicular to B
hjparallelm Mean value of the component of Jhyper parallel to B
hjperpm Mean value of the component of Jhyper perpendicular to B

brmsx
〈

B2
〉1/2

for the magnetic xaver range

brmsz
〈

B2
〉1/2

for the magnetic zaver range
Exmxy 〈Ex〉z
Eymxy 〈Ey〉z
Ezmxy 〈Ez〉z

Module ‘pscalar.f90’

rhoccm 〈̺c〉
ccmax max(c)
ccglnrm 〈c∇z̺〉

Module ‘1D_loop.f90’

dtchi2 heatconduction
dtrad radiative loss from RTV
dtspitzer Spitzer heat conduction time step
qmax max of heat flux vector
qrms rms of heat flux vector

Module ‘advective_gauge.f90’

Lamm 〈Λ〉
Lampt Λ(x1, y1, z1)
Lamp2 Λ(x2, y2, z2)

Lamrms 〈Λ2〉1/2
Lambzm 〈ΛBz〉
Lambzmz 〈ΛBz〉xy
gLambm 〈ΛB〉

J.3 Parameters for ‘print.in’ 187

apbrms 〈(A′B)2〉1/2

jxarms 〈(J ×A)2〉1/2

jxaprms 〈(J ×A′)2〉1/2

jxgLamrms 〈(J ×∇Λ)2〉1/2

gLamrms 〈(∇Λ)2〉1/2

divabrms 〈[(∇ ·A)B]2〉1/2

divapbrms 〈[(∇ ·A′)B]2〉1/2

d2Lambrms 〈[(∇2Λ)B]2〉1/2

d2Lamrms 〈[∇2Λ]2〉1/2

Module ‘anelastic.f90’

rhom 〈̺〉 (mean density)
ugrhom 〈u · ∇̺〉
mass

∫

̺ dV
divrhoum 〈∇ · (̺u)〉
divrhourms |∇ · (̺u)|rms

divrhoumax |∇ · (̺u)|max

Module ‘bfield.f90’

bmax maxB
bmin minB
brms 〈B2〉1/2
bm 〈B〉
b2m 〈B2〉
bxmax max |Bx|
bymax max |By|
bzmax max |Bz|
bxm 〈Bx〉
bym 〈By〉
bzm 〈Bz〉
bx2m 〈B2

x〉
by2m 〈B2

y〉
bz2m 〈B2

z〉
bxbym 〈BxBy〉
bxbzm 〈BxBz〉
bybzm 〈ByBz〉
dbxmax max |Bx −Bext,x|
dbymax max |By − Bext,y|
dbzmax max |Bz −Bext,z|
dbxm 〈Bx −Bext,x〉
dbym 〈By −Bext,y〉
dbzm 〈Bz −Bext,z〉
dbx2m 〈(Bx − Bext,x)

2〉
dby2m 〈(By −Bext,y)

2〉
dbz2m 〈(Bz −Bext,z)

2〉
jmax max J
jmin min J
jrms 〈J2〉1/2
jm 〈J〉

188 THE PENCIL CODE

j2m 〈J2〉
jxmax max |Jx|
jymax max |Jy|
jzmax max |Jz|
jxm 〈Jx〉
jym 〈Jy〉
jzm 〈Jz〉
jx2m 〈J2

x〉
jy2m 〈J2

y 〉
jz2m 〈J2

z 〉
divbmax max |∇ ·B|
divbrms 〈(∇ ·B)2〉1/2
betamax max β
betamin min β
betam 〈β〉
vAmax max vA
vAmin min vA
vAm 〈vA〉

Module ‘chemistry.f90’

dtchem dtchem

Module ‘chemistry_simple.f90’

dtchem dtchem

Module ‘chiral_fluids.f90’

mu5m 〈µ5〉
mu5rms 〈µ2

5〉
1/2

bgmu5rms 〈(B · ∇µ5)
2〉1/2

bgtheta5rms 〈(B · ∇θ5)2〉1/2
theta5m 〈θ5〉
theta5rms 〈θ25〉

1/2

Module ‘chiral_fluids_gradtheta.f90’

mu5m 〈µ5〉
mu5rms 〈µ2

5〉
1/2

bgmu5rms 〈(B · ∇µ5)
2〉1/2

bgtheta5rms 〈(B · ∇θ5)2〉1/2

gtheta5rms 〈(∇θ5)2〉1/2

gmu5rms 〈(∇µ5)
2〉1/2

gtheta5mx 〈∇θ5x〉
gtheta5my 〈∇θ5y〉
gtheta5mz 〈∇θ5z〉

Module ‘chiral_mhd.f90’

mu5m 〈µ5〉
mu5rms 〈µ2

5〉
1/2

gmu5rms 〈(∇µ5)
2〉1/2

gmu5mx 〈∇µ5〉x

J.3 Parameters for ‘print.in’ 189

gmu5my 〈∇µ5〉y
gmu5mz 〈∇µ5〉z
bgmu5rms 〈(B · ∇µ5)

2〉1/2
dt mu5 1 min(µ5/B

2)δx/(λη)
dt mu5 2 (ληmin(B2))−1

dt mu5 3 δx2/D5

dt bb 1 δx/(ηmax(µ5))
dt chiral total time-step contribution from chiral MHD

Module ‘coronae.f90’

dtchi2 δt/[cδt,v δx
2/χmax] (time step relative to time step based on

heat conductivity; see § 5.15)
dtspitzer Spitzer heat conduction time step
dtrad radiative loss from RTV

Module ‘cosmicray_current.f90’

ekincr
〈

1
2
̺u2

cr

〉

ethmcr 〈̺crecr〉
Module ‘density_stratified.f90’

mass
∫

ρ d3x
rhomin min |ρ|
rhomax max |ρ|
drhom 〈∆ρ/ρ0〉
drho2m 〈(∆ρ/ρ0)2〉
drhorms 〈∆ρ/ρ0〉rms

drhomax max |∆ρ/ρ0|
Module ‘detonate.f90’

detn Number of detonated sites (summed over time steps between
adjacent outputs)

dettot Total energy input (summed over time steps between adjacent
outputs)

Module ‘dustdensity.f90’

KKm
∑

T coag
k

KK2m
∑ T coag

k

MMxm
∑Mx

k,coag

MMym
∑My

k,coag

MMzm
∑Mz

k,coag

Module ‘entropy_anelastic.f90’

dtc δt/[cδt δx/max cs] (time step relative to acoustic time step;
see § 5.15)

ethm 〈̺e〉 (mean thermal [=internal] energy)
ssm 〈s/cp〉 (mean entropy)
ss2m 〈(s/cp)2〉 (mean squared entropy)
eem 〈e〉
ppm 〈p〉
csm 〈cs〉
pdivum 〈p∇u〉

190 THE PENCIL CODE

fradbot
∫

Fbot · dS
fradtop

∫

Ftop · dS
TTtop

∫

TtopdS
ethtot

∫

V
̺e dV (total thermal [=internal] energy)

dtchi δt/[cδt,v δx
2/χmax] (time step relative to time step based on

heat conductivity; see § 5.15)
ssmxy 〈s〉z
ssmxz 〈s〉y

Module ‘gravitational_waves.f90’

hhT2m 〈h2T〉
hhX2m 〈h2X〉
hhThhXm 〈hThX〉
ggTpt gT(x1, y1, z1, t)
strTpt ST(x1, y1, z1, t)
strXpt SX(x1, y1, z1, t)

Module ‘gravitational_waves_hij6.f90’

h22rms hrms
22

h33rms hrms
33

h23rms hrms
23

g11pt g11(x1, y1, z1, t)
g22pt g22(x1, y1, z1, t)
g33pt g33(x1, y1, z1, t)
g12pt g12(x1, y1, z1, t)
g23pt g23(x1, y1, z1, t)
g31pt g31(x1, y1, z1, t)
hhTpt hT (x1, y1, z1, t)
hhXpt hX(x1, y1, z1, t)

ggTpt ḣT (x1, y1, z1, t)

ggXpt ḣX(x1, y1, z1, t)
hhTp2 hT (x1, y1, z1, t)
hhXp2 hX(x1, y1, z1, t)

ggTp2 ḣT (x1, y1, z1, t)

ggXp2 ḣX(x1, y1, z1, t)
hrms 〈h2T + h2X〉1/2
gg2m 〈g2T + g2X〉
hhT2m 〈h2T 〉
hhX2m 〈h2X〉
hhTXm 〈hThX〉
ggT2m 〈g2T 〉
ggX2m 〈g2X〉
ggTXm 〈gTgX〉
ggTm 〈gT 〉
ggXm 〈gX〉

Module ‘gravity_simple.f90’

epot 〈̺Φgrav〉 (mean potential energy)
epottot

∫

V
̺ΦgravdV (total potential energy)

ugm 〈u · g〉

J.3 Parameters for ‘print.in’ 191

Module ‘heatflux.f90’

dtspitzer Spitzer heat conduction time step
dtq heatflux time step
dtq2 heatflux time step due to tau
qmax max(|q|)
qxmin min(|qx|)
qymin min(|qy|)
qzmin min(|qz|)
qxmax max(|qx|)
qymax max(|qy|)
qzmax max(|qz|)
qrms rms of heat flux vector
qsatmin minimum of qsat/qabs
qsatrms rms of qsat/abs

Module ‘lorenz_gauge.f90’

phim 〈φ〉
phipt φ(x1, y1, z1)
phip2 φ(x2, y2, z2)
phibzm 〈φBz〉
phibzmz 〈φBz〉xy

Module ‘magnetic_shearboxJ.f90’

ab int
∫

A ·B dV
jb int

∫

j ·B dV

b2tm
〈

b(t) ·
∫ t

0
b(t′)dt′

〉

bjtm
〈

b(t) ·
∫ t

0
j(t′)dt′

〉

jbtm
〈

j(t) ·
∫ t

0
b(t′)dt′

〉

b2ruzm
〈

B2ρuz
〉

b2uzm
〈

B2uz
〉

ubbzm 〈(u ·B)Bz〉
b1m 〈|B|〉
b2m

〈

B2
〉

bm2 max(B2)
j2m

〈

j2
〉

jm2 max(j2)
abm 〈A ·B〉
abumx 〈uxA ·B〉
abumy 〈uyA ·B〉
abumz 〈uzA ·B〉
abmh 〈A ·B〉 (temp)
abmn 〈A ·B〉 (north)
abms 〈A ·B〉 (south)
abrms 〈(A ·B)2〉1/2

jbrms 〈(j ·B)2〉1/2
ajm 〈j ·A〉
jbm 〈j ·B〉
jbmh 〈J ·B〉 (temp)

192 THE PENCIL CODE

jbmn 〈J ·B〉 (north)
jbms 〈J ·B〉 (south)
ubm 〈u ·B〉
dubrms 〈(u−B)2〉1/2

dobrms 〈(ω −B)2〉1/2
uxbxm 〈uxBx〉
uybxm 〈uyBx〉
uzbxm 〈uzBx〉
uxbym 〈uxBy〉
uybym 〈uyBy〉
uzbym 〈uzBy〉
uxbzm 〈uxBz〉
uybzm 〈uyBz〉
uzbzm 〈uzBz〉
cosubm 〈U ·B/(|U | |B|)〉
jxbxm 〈jxBx〉
jybxm 〈jyBx〉
jzbxm 〈jzBx〉
jxbym 〈jxBy〉
jybym 〈jyBy〉
jzbym 〈jzBy〉
jxbzm 〈jxBz〉
jybzm 〈jyBz〉
jzbzm 〈jzBz〉
uam 〈u ·A〉
ujm 〈u · J〉
fbm 〈f ·B〉
fxbxm 〈fxBx〉
epsM

〈

ηµ0j
2
〉

epsAD 〈ρ−1tAD(J ×B)2〉 (heating by ion-neutrals friction)
bxpt Bx(x1, y1, z1, t)
bypt By(x1, y1, z1, t)
bzpt Bz(x1, y1, z1, t)
jxpt Jx(x1, y1, z1, t)
jypt Jy(x1, y1, z1, t)
jzpt Jz(x1, y1, z1, t)
Expt Ex(x1, y1, z1, t)
Eypt Ey(x1, y1, z1, t)
Ezpt Ez(x1, y1, z1, t)
axpt Ax(x1, y1, z1, t)
aypt Ay(x1, y1, z1, t)
azpt Az(x1, y1, z1, t)
bxp2 Bx(x2, y2, z2, t)
byp2 By(x2, y2, z2, t)
bzp2 Bz(x2, y2, z2, t)
jxp2 Jx(x2, y2, z2, t)
jyp2 Jy(x2, y2, z2, t)
jzp2 Jz(x2, y2, z2, t)
Exp2 Ex(x2, y2, z2, t)
Eyp2 Ey(x2, y2, z2, t)

J.3 Parameters for ‘print.in’ 193

Ezp2 Ez(x2, y2, z2, t)
axp2 Ax(x2, y2, z2, t)
ayp2 Ay(x2, y2, z2, t)
azp2 Az(x2, y2, z2, t)
exabot

∫

E ×A dS|bot
exatop

∫

E ×A dS|top
emag

∫

V
1

2µ0
B2 dV

brms
〈

B2
〉1/2

bfrms
〈

B′2
〉1/2

bmax max(|B|)
bxmin min(|Bx|)
bymin min(|By|)
bzmin min(|Bz|)
bxmax max(|Bx|)
bymax max(|By|)
bzmax max(|Bz|)
bbxmax max(|Bx|)excludingBvext
bbymax max(|By|)excludingBvext
bbzmax max(|Bz|)excludingBvext
jxmax max(|jvx|)
jymax max(|jvy|)
jzmax max(|jvz|)
jrms

〈

j2
〉1/2

hjrms
〈

j2
〉1/2

jmax max(|j|)
vArms

〈

B2/̺
〉1/2

vAmax max(B2/̺)1/2

dtb δt/[cδt δx/vA,max] (time step relative to Alfvén time step; see
§ 5.15)

dteta δt/[cδt,v δx
2/ηmax] (time step relative to resistive time step;

see § 5.15)
a2m

〈

A2
〉

arms
〈

A2
〉1/2

amax max(|A|)
divarms 〈(∇ ·A)2〉1/2
beta1m

〈

B2/(2µ0p)
〉

(mean inverse plasma beta)
beta1max max[B2/(2µ0p)] (maximum inverse plasma beta)
betam 〈β〉
betamax max β
betamin min β
bxm 〈Bx〉
bym 〈By〉
bzm 〈Bz〉
bxbym 〈BxBy〉
bmx

〈

〈B〉2yz
〉1/2

(energy of yz-averaged mean field)

bmy
〈

〈B〉2xz
〉1/2

(energy of xz-averaged mean field)

bmz
〈

〈B〉2xy
〉1/2

(energy of xy-averaged mean field)

194 THE PENCIL CODE

bmzS2
〈

〈BS〉2xy
〉

bmzA2
〈

〈BA〉2xy
〉

jmx
〈

〈J〉2yz
〉1/2

(energy of yz-averaged mean current density)

jmy
〈

〈J〉2xz
〉1/2

(energy of xz-averaged mean current density)

jmz
〈

〈J〉2xy
〉1/2

(energy of xy-averaged mean current density)

bmzph Phase of a Beltrami field
bmzphe Error of phase of a Beltrami field
bsinphz sine of phase of a Beltrami field
bcosphz cosine of phase of a Beltrami field

emxamz3
〈

〈E〉xy × 〈A〉xy
〉

(xy-averaged mean field helicity flux)

embmz
〈

〈E〉xy · 〈B〉xy
〉

(xy-averaged mean field helicity production

)

ambmz
〈

〈A〉xy · 〈B〉xy
〉

(magnetic helicity of xy-averaged mean

field)

ambmzh
〈

〈A〉xy · 〈B〉xy
〉

(magnetic helicity of xy-averaged mean

field, temp)

ambmzn
〈

〈A〉xy · 〈B〉xy
〉

(magnetic helicity of xy-averaged mean

field, north)

ambmzs
〈

〈A〉xy · 〈B〉xy
〉

(magnetic helicity of xy-averaged mean

field, south)

jmbmz
〈

〈J〉xy · 〈B〉xy
〉

(current helicity of xy-averaged mean field)

kx aa kx

kmz
〈

〈J〉xy · 〈B〉xy
〉

/
〈

〈B〉2xy
〉

bx2m 〈B2
x〉

by2m
〈

B2
y

〉

bz2m 〈B2
z 〉

uxbm 〈u×B〉 ·B0/B
2
0

jxbm 〈j ×B〉 ·B0/B
2
0

magfricmax Magneto-Frictional velocity 〈j ×B〉 ·B2

b3b21m 〈B3B2,1〉
b3b12m 〈B3B1,2〉
b1b32m 〈B1B3,2〉
b1b23m 〈B1B2,3〉
b2b13m 〈B2B1,3〉
b2b31m 〈B2B3,1〉
uxbmx 〈(u×B)x〉
uxbmy 〈(u×B)y〉
uxbmz 〈(u×B)z〉
jxbmx 〈(j ×B)x〉
jxbmy 〈(j ×B)y〉
jxbmz 〈(j ×B)z〉
examx 〈E ×A〉 |x
examy 〈E ×A〉 |y
examz 〈E ×A〉 |z

J.3 Parameters for ‘print.in’ 195

exjmx 〈E × J〉 |x
exjmy 〈E × J〉 |y
exjmz 〈E × J〉 |z
dexbmx 〈∇ ×E ×B〉 |x
dexbmy 〈∇ ×E ×B〉 |y
dexbmz 〈∇ ×E ×B〉 |z
phibmx 〈φB〉 |x
phibmy 〈φB〉 |y
phibmz 〈φB〉 |z
b2divum

〈

B2∇ · u
〉

ujxbm 〈u · (J ×B)〉
jxbrmax max(|J ×B/ρ|)
jxbr2m 〈(J ×B/ρ)2〉
bmxy rms

√

[〈bx〉z (x, y)]2 + [〈by〉z (x, y)]2 + [〈bz〉z (x, y)]2
etasmagm Mean of Smagorinsky resistivity
etasmagmin Min of Smagorinsky resistivity
etasmagmax Max of Smagorinsky resistivity
etavamax Max of artificial resistivity η ∼ vA
etajmax Max of artificial resistivity η ∼ J/

√
ρ

etaj2max Max of artificial resistivity η ∼ J2/ρ
etajrhomax Max of artificial resistivity η ∼ J/ρ
cosjbm 〈J ·B/(|J | |B|)〉
jparallelm Mean value of the component of J parallel to B
jperpm Mean value of the component of J perpendicular to B
hjparallelm Mean value of the component of Jhyper parallel to B
hjperpm Mean value of the component of Jhyper perpendicular to B

brmsx
〈

B2
〉1/2

for the magnetic xaver range

brmsz
〈

B2
〉1/2

for the magnetic zaver range
Exmxy 〈Ex〉z
Eymxy 〈Ey〉z
Ezmxy 〈Ez〉z

Module ‘meanfield.f90’

qsm
〈

qp(B)
〉

qpm
〈

qp(B)
〉

qem
〈

qe(B)
〉

, in the paper referred to as
〈

qg(B)
〉

qam
〈

qa(B)
〉

alpm 〈α〉
etatm 〈ηt〉
EMFmz1 〈E〉xy |x
EMFmz2 〈E〉xy |y
EMFmz3 〈E〉xy |z
EMFdotBm 〈E ·B〉
EMFdotB int

∫

E ·BdV
Module ‘meanfield_demfdt.f90’

EMFrms (〈E〉)rms

EMFmax max(〈E〉)
EMFmin min(〈E〉)

196 THE PENCIL CODE

Module ‘noentropy.f90’

dtc δt/[cδt δx/max cs] (time step relative to acoustic time step;
see § 5.15)

ethm 〈̺e〉 (mean thermal [=internal] energy)
pdivum 〈p∇u〉

Module ‘particles_chemistry.f90’

Shchm meanparticleSherwoodnumber

Module ‘particles_dust.f90’

xpm xpart
xpmin xpart
xpmax xpart
xp2m x2part
vrelpabsm Absolutevalueofmeanrelativevelocity
vpxm upart
vpx2m u2part
ekinp Ekin,part

vpxmax MAX(upart)
vpxmin MIN(upart)
npm meanparticlenumberdensity

Module ‘particles_dust_brdeplete.f90’

xpm xpart
xp2m x2part
vrelpabsm Absolutevalueofmeanrelativevelocity
vpxm upart
vpx2m u2part
ekinp Ekin,part

vpxmax MAX(upart)
vpxmin MIN(upart)
npm meanparticlenumberdensity

Module ‘particles_lagrangian.f90’

xpm xpart
xp2m x2part
vrelpabsm Absolutevalueofmeanrelativevelocity
vpxm upart
vpx2m u2part
ekinp Ekin,part

vpxmax MAX(upart)
vpxmin MIN(upart)
npm meanparticlenumberdensity

Module ‘particles_mass_swarm.f90’

mpm mp

mpmin minj mp,j

mpmax maxj mp,j

Module ‘particles_surfspec.f90’

dtpchem dtparticle,chemistry

J.3 Parameters for ‘print.in’ 197

Module ‘polymer.f90’

polytrm 〈Tr[Cij]〉
frmax max(f(r))

Module ‘shear.f90’

dtshear advec shear/cdt
deltay deltay

Module ‘shock.f90’

shockmax Max shock number

Module ‘shock_highorder.f90’

gshockmax max |∇νshock|
Module ‘solar_corona.f90’

dtvel Velocity driver time step
dtnewt Radiative cooling time step
dtradloss Radiative losses time step
dtchi2 δt/[cδt,v δx

2/χmax] (time step relative to time step based on
heat conductivity; see § 5.15)

dtspitzer Spitzer heat conduction time step
mag flux Total vertical magnetic flux at

Module ‘solid_cells_CGEO.f90’

Module ‘solid_cells_reactive.f90’

Module ‘temperature_idealgas.f90’

TTmax max(T)
gTmax max(|∇T |)
TTmin min(T)
TTm 〈T 〉
TTzmask 〈T 〉 for the temp zaver range
TT2m 〈T 2〉
TugTm 〈Tu · ∇T 〉
Trms

√

〈T 2〉
uxTm 〈uxT 〉
uyTm 〈uyT 〉
uzTm 〈uzT 〉
gT2m 〈(∇T)2〉
guxgTm 〈∇ux · ∇T 〉
guygTm 〈∇uy · ∇T 〉
guzgTm 〈∇uz · ∇T 〉
Tugux uxugTm 〈Tu · ∇ux + uxu · ∇T 〉 = 〈u · ∇(uxT)〉
Tuguy uyugTm 〈Tu · ∇uy + uyu · ∇T 〉 = 〈u · ∇(uyT)〉
Tuguz uzugTm 〈Tu · ∇uz + uzu · ∇T 〉 = 〈u · ∇(uzT)〉
Tdxpm 〈Tdp/dx〉
Tdypm 〈Tdp/dy〉
Tdzpm 〈Tdp/dz〉
fradtop < −K dT

dz
>top (top radiative flux)

198 THE PENCIL CODE

fradbot < −K dT
dz
>bot (bottom radiative flux)

yHmax DOCUMENT ME
yHmin DOCUMENT ME
yHm DOCUMENT ME
ethm 〈eth〉 = 〈cvρT 〉 (mean thermal energy)
eem 〈e〉 = 〈cvT 〉 (mean internal energy)
ethtot

∫

V
̺e dV (total thermal energy)

ssm S
thcool τcool
ppm P
csm cs
dtc δt/[cδt δx/max cs] (time step relative to acoustic time step;

see § 5.15)
dtchi δt/[cδt,v δx

2/χmax] (time step relative to time step based on
heat conductivity; see § 5.15)

Emzmask 〈n2 exp−(log T − log T0)
2/(δ log T)2〉 the emiss zaver range

Module ‘temperature_ionization.f90’

TTmax max(T)
TTmin min(T)
TTm 〈T 〉
ethm 〈eth〉 = 〈cvρT 〉 (mean thermal energy)
eem 〈e〉 (mean internal energy)
ppm 〈p〉

Module ‘testfield_axisym.f90’

alpPERP α⊥

alpPARA α⊥

gam γ
betPERP β⊥
betPARA β⊥
del δ
kapPERP κ⊥
kapPARA κ⊥
mu µ
alpPERPz α⊥(z)
alpPARAz α⊥(z)
gamz γ(z)
betPERPz β⊥(z)
betPARAz β⊥(z)
delz δ(z)
kapPERPz κ⊥(z)
kapPARAz κ⊥(z)
muz µ(z)
bx1pt b1x
bx2pt b2x
bx3pt b3x
b1rms 〈b21〉

1/2

b2rms 〈b22〉
1/2

b3rms 〈b23〉
1/2

J.3 Parameters for ‘print.in’ 199

Module ‘testfield_axisym2.f90’

alpPERP α⊥

alpPARA α⊥

gam γ
betPERP β⊥
betPARA β⊥
del δ
kapPERP κ⊥
kapPARA κ⊥
mu µ
bx1pt b1x
bx2pt b2x
bx3pt b3x
b1rms 〈b21〉

1/2

b2rms 〈b22〉
1/2

b3rms 〈b23〉
1/2

Module ‘testfield_axisym4.f90’

alpPERP α⊥

alpPARA α⊥

gam γ
betPERP β⊥
betPERP2 β

(2)
⊥

betPARA β⊥
del δ
del2 δ(2)

kapPERP κ⊥
kapPERP2 κ

(2)
⊥

kapPARA κ⊥
mu µ
mu2 µ(2)

alpPERPz α⊥(z)
alpPARAz α⊥(z)
gamz γ(z)
betPERPz β⊥(z)
betPARAz β⊥(z)
delz δ(z)
kapPERPz κ⊥(z)
kapPARAz κ⊥(z)
muz µ(z)
bx1pt b1x
bx2pt b2x
bx3pt b3x
b1rms 〈b21〉

1/2

b2rms 〈b22〉
1/2

b3rms 〈b23〉
1/2

Module ‘testfield_compress_z.f90’

200 THE PENCIL CODE

alp11 α11

alp21 α21

alp31 α31

alp12 α12

alp22 α22

alp32 α32

eta11 η11k
eta21 η21k
eta12 η12k
eta22 η22k
alpK αK

alpM αM

alpMK αMK

phi11 φ11

phi21 φ21

phi12 φ12

phi22 φ22

phi32 φ32

psi11 ψ11k
psi21 ψ21k
psi12 ψ12k
psi22 ψ22k
phiK φK

phiM φM

phiMK φMK

alp11cc α11 cos
2 kz

alp21sc α21 sin kz cos kz
alp12cs α12 cos kz sin kz
alp22ss α22 sin

2 kz
eta11cc η11 cos

2 kz
eta21sc η21 sin kz cos kz
eta12cs η12 cos kz sin kz
eta22ss η22 sin

2 kz
s2kzDFm 〈sin 2kz∇ · F 〉
M11 M11

M22 M22

M33 M33

M11cc M11 cos
2 kz

M11ss M11 sin
2 kz

M22cc M22 cos
2 kz

M22ss M22 sin
2 kz

M12cs M12 cos kz sin kz
bx11pt b11x
bx21pt b21x
bx12pt b12x
bx22pt b22x
bx0pt b0x
by11pt b11y
by21pt b21y
by12pt b12y

J.3 Parameters for ‘print.in’ 201

by22pt b22y
by0pt b0y
u11rms 〈u211〉

1/2

u21rms 〈u221〉
1/2

u12rms 〈u212〉
1/2

u22rms 〈u222〉
1/2

j11rms 〈j211〉
1/2

b11rms 〈b211〉
1/2

b21rms 〈b221〉
1/2

b12rms 〈b212〉
1/2

b22rms 〈b222〉
1/2

ux0m 〈u0x〉
uy0m

〈

u0y
〉

ux11m 〈u11x〉
uy11m

〈

u11y
〉

u0rms 〈u20〉
1/2

b0rms 〈b20〉
1/2

jb0m 〈jb0〉
E11rms 〈E2

11〉
1/2

E21rms 〈E2
21〉

1/2

E12rms 〈E2
12〉

1/2

E22rms 〈E2
22〉

1/2

E0rms 〈E2
0 〉

1/2

Ex11pt E11
x

Ex21pt E21
x

Ex12pt E12
x

Ex22pt E22
x

Ex0pt E0
x

Ey11pt E11
y

Ey21pt E21
y

Ey12pt E12
y

Ey22pt E22
y

Ey0pt E0
y

bamp bamp
E111z E11

1

E211z E11
2

E311z E11
3

E121z E21
1

E221z E21
2

E321z E21
3

E112z E12
1

E212z E12
2

E312z E12
3

E122z E22
1

E222z E22
2

E322z E22
3

E10z E0
1

E20z E0
2

202 THE PENCIL CODE

E30z E0
3

EBpq E ·Bpq

E0Um E0 ·U
E0Wm E0 ·W
bx0mz 〈bx〉xy
by0mz 〈by〉xy
bz0mz 〈bz〉xy
M11z 〈M11〉xy
M22z 〈M22〉xy
M33z 〈M33〉xy

Module ‘testfield_meri.f90’

E11xy E11xy

E12xy E12xy

E13xy E13xy

E21xy E21xy

E22xy E22xy

E23xy E23xy

E31xy E31xy

E32xy E32xy

E33xy E33xy

E41xy E41xy

E42xy E42xy

E43xy E43xy

E51xy E51xy

E52xy E52xy

E53xy E53xy

E61xy E61xy

E62xy E62xy

E63xy E63xy

E71xy E71xy

E72xy E72xy

E73xy E73xy

E81xy E81

E82xy E82

E83xy E83

E91xy E91

E92xy E92

E93xy E93

a11xy α11

a12xy α12

a13xy α13

a21xy α21

a22xy α22

a23xy α23

a31xy α31

a32xy α32

a33xy α33

b111xy
¯
111

b121xy
¯
121

J.3 Parameters for ‘print.in’ 203

b131xy
¯
131

b211xy
¯
211

b221xy
¯
221

b231xy
¯
231

b311xy
¯
311

b321xy
¯
321

b331xy
¯
331

b112xy
¯
112

b122xy
¯
122

b132xy
¯
132

b212xy
¯
212

b222xy
¯
222

b232xy
¯
232

b312xy
¯
312

b322xy
¯
322

b332xy
¯
332

Module ‘testfield_nonlin_z.f90’

alp11 α11

alp21 α21

alp31 α31

alp12 α12

alp22 α22

alp32 α32

eta11 η11k
eta21 η21k
eta12 η12k
eta22 η22k
alpK αK

alpM αM

alpMK αMK

phi11 φ11

phi21 φ21

phi12 φ12

phi22 φ22

phi32 φ32

psi11 ψ11k
psi21 ψ21k
psi12 ψ12k
psi22 ψ22k
phiK φK

phiM φM

phiMK φMK

alp11cc α11 cos
2 kz

alp21sc α21 sin kz cos kz
alp12cs α12 cos kz sin kz
alp22ss α22 sin

2 kz
eta11cc η11 cos

2 kz
eta21sc η21 sin kz cos kz
eta12cs η12 cos kz sin kz

204 THE PENCIL CODE

eta22ss η22 sin
2 kz

s2kzDFm 〈sin 2kz∇ · F 〉
M11 M11

M22 M22

M33 M33

M11cc M11 cos
2 kz

M11ss M11 sin
2 kz

M22cc M22 cos
2 kz

M22ss M22 sin
2 kz

M12cs M12 cos kz sin kz
bx11pt b11x
bx21pt b21x
bx12pt b12x
bx22pt b22x
bx0pt b0x
by11pt b11y
by21pt b21y
by12pt b12y
by22pt b22y
by0pt b0y
u11rms 〈u211〉

1/2

u21rms 〈u221〉
1/2

u12rms 〈u212〉
1/2

u22rms 〈u222〉
1/2

j11rms 〈j211〉
1/2

b11rms 〈b211〉
1/2

b21rms 〈b221〉
1/2

b12rms 〈b212〉
1/2

b22rms 〈b222〉
1/2

ux0m 〈u0x〉
uy0m

〈

u0y
〉

ux11m 〈u11x〉
uy11m

〈

u11y
〉

u0rms 〈u20〉
1/2

b0rms 〈b20〉
1/2

jb0m 〈jb0〉
E11rms 〈E2

11〉
1/2

E21rms 〈E2
21〉

1/2

E12rms 〈E2
12〉

1/2

E22rms 〈E2
22〉

1/2

E0rms 〈E2
0 〉

1/2

Ex11pt E11
x

Ex21pt E21
x

Ex12pt E12
x

Ex22pt E22
x

Ex0pt E0
x

Ey11pt E11
y

Ey21pt E21
y

J.3 Parameters for ‘print.in’ 205

Ey12pt E12
y

Ey22pt E22
y

Ey0pt E0
y

bamp bamp
E111z E11

1

E211z E11
2

E311z E11
3

E121z E21
1

E221z E21
2

E321z E21
3

E112z E12
1

E212z E12
2

E312z E12
3

E122z E22
1

E222z E22
2

E322z E22
3

E10z E0
1

E20z E0
2

E30z E0
3

EBpq E ·Bpq

E0Um E0 ·U
E0Wm E0 ·W
bx0mz 〈bx〉xy
by0mz 〈by〉xy
bz0mz 〈bz〉xy
M11z 〈M11〉xy
M22z 〈M22〉xy
M33z 〈M33〉xy

Module ‘testfield_x.f90’

alp11 α11

alp21 α21

alp31 α31

alp12 α12

alp22 α22

alp32 α32

eta11 η11k
eta21 η21k
eta12 η12k
eta22 η22k
alp11cc α11 cos

2 kx
alp21sc α21 sin kx cos kx
alp12cs α12 cos kx sin kx
alp22ss α22 sin

2 kx
eta11cc η11 cos

2 kx
eta21sc η21 sin kx cos kx
eta12cs η12 cos kx sin kx
eta22ss η22 sin

2 kx
alp11 x α11x
alp21 x α21x

206 THE PENCIL CODE

alp12 x α12x
alp22 x α22x
eta11 x η11kx
eta21 x η21kx
eta12 x η12kx
eta22 x η22kx
alp11 x2 α11x

2

alp21 x2 α21x
2

alp12 x2 α12x
2

alp22 x2 α22x
2

eta11 x2 η11kx
2

eta21 x2 η21kx
2

eta12 x2 η12kx
2

eta22 x2 η22kx
2

b11rms 〈b211〉
1/2

b21rms 〈b221〉
1/2

b12rms 〈b212〉
1/2

b22rms 〈b222〉
1/2

b0rms 〈b20〉
1/2

E11rms 〈E2
11〉

1/2

E21rms 〈E2
21〉

1/2

E12rms 〈E2
12〉

1/2

E22rms 〈E2
22〉

1/2

E0rms 〈E2
0 〉

1/2

E111z E11
1

E211z E11
2

E311z E11
3

E121z E21
1

E221z E21
2

E321z E21
3

E112z E12
1

E212z E12
2

E312z E12
3

E122z E22
1

E222z E22
2

E322z E22
3

E10z E0
1

E20z E0
2

E30z E0
3

EBpq E ·Bpq

bx0mz 〈bx〉xy
by0mz 〈by〉xy
bz0mz 〈bz〉xy
alp11x α11(x, t)
alp21x α21(x, t)
alp12x α12(x, t)
alp22x α22(x, t)
eta11x η11(x, t)

J.3 Parameters for ‘print.in’ 207

eta21x η21(x, t)
eta12x η12(x, t)
eta22x η22(x, t)

Module ‘testfield_xz.f90’

E111z E11
1

E211z E11
2

E311z E11
3

E121z E21
1

E221z E21
2

E321z E21
3

alp11 α11

alp21 α21

eta11 η113k
eta21 η213k
b11rms 〈b211〉
b21rms 〈b221〉

Module ‘testfield_z.f90’

alp11 α11

alp21 α21

alp31 α31

alp12 α12

alp22 α22

alp32 α32

alp13 α13

alp23 α23

eta11 η113k or η11k if leta rank2=T
eta21 η213k or η21k if leta rank2=T
eta31 η313k
eta12 η123k or η12k if leta rank2=T
eta22 η223k or η22k if leta rank2=T
eta32 η323k
alp11cc α11 cos

2 kz
alp21sc α21 sin kz cos kz
alp12cs α12 cos kz sin kz
alp22ss α22 sin

2 kz
eta11cc η11 cos

2 kz
eta21sc η21 sin kz cos kz
eta12cs η12 cos kz sin kz
eta22ss η22 sin

2 kz
s2kzDFm 〈sin 2kz∇ · F 〉
M11 M11

M22 M22

M33 M33

M11cc M11 cos
2 kz

M11ss M11 sin
2 kz

M22cc M22 cos
2 kz

M22ss M22 sin
2 kz

M12cs M12 cos kz sin kz

208 THE PENCIL CODE

bx11pt b11x
bx21pt b21x
bx12pt b12x
bx22pt b22x
bx0pt b0x
by11pt b11y
by21pt b21y
by12pt b12y
by22pt b22y
by0pt b0y
b11rms 〈b211〉

1/2

b21rms 〈b221〉
1/2

b12rms 〈b212〉
1/2

b22rms 〈b222〉
1/2

b0rms 〈b20〉
1/2

jb0m 〈jb0〉
E11rms 〈E2

11〉
1/2

E21rms 〈E2
21〉

1/2

E12rms 〈E2
12〉

1/2

E22rms 〈E2
22〉

1/2

E0rms 〈E2
0 〉

1/2

Ex11pt E11
x

Ex21pt E21
x

Ex12pt E12
x

Ex22pt E22
x

Ex0pt E0
x

Ey11pt E11
y

Ey21pt E21
y

Ey12pt E12
y

Ey22pt E22
y

Ey0pt E0
y

bamp bamp
alp11z α11(z, t)
alp21z α21(z, t)
alp12z α12(z, t)
alp22z α22(z, t)
alp13z α13(z, t)
alp23z α23(z, t)
eta11z η11(z, t)
eta21z η21(z, t)
eta12z η12(z, t)
eta22z η22(z, t)
E111z E11

1

E211z E11
2

E311z E11
3

E121z E21
1

E221z E21
2

E321z E21
3

J.3 Parameters for ‘print.in’ 209

E112z E12
1

E212z E12
2

E312z E12
3

E122z E22
1

E222z E22
2

E322z E22
3

E10z E0
1

E20z E0
2

E30z E0
3

EBpq E ·Bpq

E0Um E0 ·U
E0Wm E0 ·W
bx0mz 〈bx〉xy
by0mz 〈by〉xy
bz0mz 〈bz〉xy
M11z 〈M11〉xy
M22z 〈M22〉xy
M33z 〈M33〉xy

Module ‘testflow_z.f90’

gal GAL-coefficients, couple F and U
aklam AKA-λ-tensor, couples F and W = ∇× U
gamma γ-vector, couples F and ∇ · U
nu ν-tensor, couples F and ∂2U/∂z2

zeta ζ-vector, couples F and Gz = ∇zH
xi ξ-vector, couples F and ∂2H/∂z2

aklamQ aklamQ-vector, couples Q and W
gammaQ γQ-scalar, couples Q and ∇ · U = dUz/dz
nuQ νQ-vector, couples Q and ∂2U/∂z2

zetaQ ζQ-scalar, couples Q and Gz

xiQ ξQ-scalar, couples Q and ∂2H/∂z2

αK,ij γi νij ζi ξi ν
Q
i aklamQ

i Fpq
i Qpq

〈

upq2
〉 〈

hpq2
〉

ux0mz 〈ux〉xy
uy0mz 〈uy〉xy
uz0mz 〈uz〉xy

Module ‘testperturb.f90’

alp11 α11

alp21 α21

alp31 α31

alp12 α12

alp22 α22

alp32 α32

eta11 η113k
eta21 η213k
eta31 η313k
eta12 η123k
eta22 η223k
eta32 η323k

210 THE PENCIL CODE

Module ‘testscalar.f90’

gam11 γ
(1)
1

gam12 γ
(1)
2

gam13 γ
(1)
3

gam21 γ
(2)
1

gam22 γ
(2)
2

gam23 γ
(2)
3

gam31 γ
(3)
1

gam32 γ
(3)
2

gam33 γ
(3)
3

kap11 κ11
kap21 κ21
kap31 κ31
kap12 κ12
kap22 κ22
kap32 κ32
kap13 κ13
kap23 κ23
kap33 κ33
gam11z γ

(1)
1 (z, t)

gam12z γ
(1)
2 (z, t)

gam13z γ
(1)
3 (z, t)

gam21z γ
(2)
1 (z, t)

gam22z γ
(2)
2 (z, t)

gam23z γ
(2)
3 (z, t)

gam31z γ
(3)
1 (z, t)

gam32z γ
(3)
2 (z, t)

gam33z γ
(3)
3 (z, t)

kap11z κ11(z, t)
kap21z κ21(z, t)
kap31z κ31(z, t)
kap12z κ12(z, t)
kap22z κ22(z, t)
kap32z κ32(z, t)
kap13z κ13(z, t)
kap23z κ23(z, t)
kap33z κ33(z, t)
mgam33 γ̃33
mkap33 κ̃33
ngam33 γ̂33
nkap33 κ̂33
c1rms 〈c21〉

1/2

c2rms 〈c22〉
1/2

c3rms 〈c23〉
1/2

c4rms 〈c24〉
1/2

c5rms 〈c25〉
1/2

J.3 Parameters for ‘print.in’ 211

c6rms 〈c26〉
1/2

c1pt c1

c2pt c2

c3pt c3

c4pt c4

c5pt c5

c6pt c6

F11z F1
1

F21z F1
2

F31z F1
3

F12z F2
1

F22z F2
2

F32z F2
3

Module ‘testscalar_axisym.f90’

muc1 µ(c1)

muc2 µ(c2)

gamc γ(c)

kapcPERP1 κ
(1)
⊥

kapcPERP2 κ
(2)
⊥

kapcPARA κ‖
mucz µ(c)(z, t)
gamcz γ(c)(z, t)
kapcPERPz κ⊥(z, t)
kapcPARAz κ‖(z, t)

gam11 γ
(1)
1

gam12 γ
(1)
2

gam13 γ
(1)
3

gam21 γ
(2)
1

gam22 γ
(2)
2

gam23 γ
(2)
3

gam31 γ
(3)
1

gam32 γ
(3)
2

gam33 γ
(3)
3

kap11 κ11
kap21 κ21
kap31 κ31
kap12 κ12
kap22 κ22
kap32 κ32
kap13 κ13
kap23 κ23
kap33 κ33
gam11z γ

(1)
1 (z, t)

gam12z γ
(1)
2 (z, t)

gam13z γ
(1)
3 (z, t)

gam21z γ
(2)
1 (z, t)

gam22z γ
(2)
2 (z, t)

212 THE PENCIL CODE

gam23z γ
(2)
3 (z, t)

gam31z γ
(3)
1 (z, t)

gam32z γ
(3)
2 (z, t)

gam33z γ
(3)
3 (z, t)

gam3z γ(c)(z, t)
kap11z κ11(z, t)
kap21z κ21(z, t)
kap31z κ31(z, t)
kap12z κ12(z, t)
kap22z κ22(z, t)
kap32z κ32(z, t)
kap13z κ13(z, t)
kap23z κ23(z, t)
kap33z κ33(z, t)
mgam33 γ̃33
mkap33 κ̃33
ngam33 γ̂33
nkap33 κ̂33
c1rms 〈c21〉

1/2

c2rms 〈c22〉
1/2

c3rms 〈c23〉
1/2

c4rms 〈c24〉
1/2

c5rms 〈c25〉
1/2

c6rms 〈c26〉
1/2

c1pt c1

c2pt c2

c3pt c3

c4pt c4

c5pt c5

c6pt c6

F11z F1
1

F21z F1
2

F31z F1
3

F12z F2
1

F22z F2
2

F32z F2
3

Module ‘testscalar_simple.f90’

gam11 γ
(1)
1

gam12 γ
(1)
2

gam13 γ
(1)
3

gam21 γ
(2)
1

gam22 γ
(2)
2

gam23 γ
(2)
3

gam31 γ
(3)
1

gam32 γ
(3)
2

gam33 γ
(3)
3

kap11 κ11

J.3 Parameters for ‘print.in’ 213

kap21 κ21
kap31 κ31
kap12 κ12
kap22 κ22
kap32 κ32
kap13 κ13
kap23 κ23
kap33 κ33
gam11z γ

(1)
1 (z, t)

gam12z γ
(1)
2 (z, t)

gam13z γ
(1)
3 (z, t)

gam21z γ
(2)
1 (z, t)

gam22z γ
(2)
2 (z, t)

gam23z γ
(2)
3 (z, t)

gam31z γ
(3)
1 (z, t)

gam32z γ
(3)
2 (z, t)

gam33z γ
(3)
3 (z, t)

kap11z κ11(z, t)
kap21z κ21(z, t)
kap31z κ31(z, t)
kap12z κ12(z, t)
kap22z κ22(z, t)
kap32z κ32(z, t)
kap13z κ13(z, t)
kap23z κ23(z, t)
kap33z κ33(z, t)
mgam33 γ̃33
mkap33 κ̃33
ngam33 γ̂33
nkap33 κ̂33
c1rms 〈c21〉

1/2

c2rms 〈c22〉
1/2

c3rms 〈c23〉
1/2

c4rms 〈c24〉
1/2

c5rms 〈c25〉
1/2

c6rms 〈c26〉
1/2

c1pt c1

c2pt c2

c3pt c3

c4pt c4

c5pt c5

c6pt c6

F11z F1
1

F21z F1
2

F31z F1
3

F12z F2
1

F22z F2
2

F32z F2
3

214 THE PENCIL CODE

Module ‘thermal_energy.f90’

TTmax max(T)
TTmin min(T)
ppm 〈p〉
TTm 〈T 〉
ethm 〈eth〉 = 〈cvρT 〉 (mean thermal energy)
ethtot

∫

V
eth dV (total thermal energy)

ethmin mineth
ethmax maxeth
eem 〈e〉 = 〈cvT 〉 (mean internal energy)
etot 〈eth + ρu2/2〉

Module ‘visc_smagorinsky.f90’

nu LES Mean value of Smagorinsky viscosity

Module ‘viscosity.f90’

nu tdep time-dependent viscosity
fviscm Mean value of viscous acceleration
fviscmin Min value of viscous acceleration
fviscmax Max value of viscous acceleration
fviscrmsx Rms value of viscous acceleration for the vis xaver range
num Mean value of viscosity
nusmagm Mean value of Smagorinsky viscosity
nusmagmin Min value of Smagorinsky viscosity
nusmagmax Max value of Smagorinsky viscosity
nu LES Mean value of Smagorinsky viscosity
visc heatm Mean value of viscous heating
qfviscm 〈q · fvisc〉
ufviscm 〈u · fvisc〉
Sij2m

〈

S
2
〉

epsK
〈

2ν̺S2
〉

dtnu δt/[cδt,v δx
2/νmax] (time step relative to viscous time step; see

§ 5.15)
meshRemax Max mesh Reynolds number
Reshock Mesh Reynolds number at shock

J.4 List of parameters for ‘ video.in’

The following table lists all (at the time of writing, May 10, 2018) possible inputs to the
file ‘video.in’.

Variable Meaning

Module ‘hydro.f90’

uu velocity vector u; writes all three components separately to
files ‘u[xyz].{xz,yz,xy,xy2}’

u2 kinetic energy density u2; writes ‘u2.{xz,yz,xy,xy2}’

J.4 Parameters for ‘video.in’ 215

oo vorticity vector ω = ∇× u; writes all three components sepa-
rately to files ‘oo[xyz].{xz,yz,xy,xy2}’

o2 enstrophy ω2 = |∇ × u|2; writes ‘o2.{xz,yz,xy,xy2}’
divu ∇ · u; writes ‘divu.{xz,yz,xy,xy2}’
mach Mach number squared Ma2; writes ‘mach.{xz,yz,xy,xy2}’

Module ‘density.f90’

lnrho logarithmic density ln ρ; writes ‘lnrho.{xz,yz,xy,xy2}’
rho density ρ; writes ‘rho.{xz,yz,xy,xy2}’

Module ‘entropy.f90’

ss entropy s; writes ‘ss.{xz,yz,xy,xy2}’
pp pressure p; writes ‘pp.{xz,yz,xy,xy2}’

Module ‘temperature_idealgas.f90’

lnTT logarithmic temperature lnT ; writes ‘lnTT.{xz,yz,xy,xy2}’
TT temperature T ; writes ‘TT.{xz,yz,xy,xy2}’

Module ‘shock.f90’

shock shock viscosity νshock; writes ‘shock.{xz,yz,xy,xy2}’
Module ‘eos_ionization.f90’

yH ionization fraction yH; writes ‘yH.{xz,yz,xy,xy2}’
Module ‘radiation_ray.f90’

Qrad radiative heating rate Qrad; writes ‘Qrad.{xz,yz,xy,xy2}’
Isurf surface intensity Isurf (?); writes ‘Isurf.xz’

Module ‘magnetic.f90’

aa magnetic vector potential A; writes ‘aa[xyz].{xz,yz,xy,xy2}’
bb magnetic flux density B; writes ‘bb[xyz].{xz,yz,xy,xy2}’
b2 magnetic energy density B2; writes ‘b2.{xz,yz,xy,xy2}’
jj current density j; writes ‘jj[xyz].{xz,yz,xy,xy2}’
j2 current density squared j2; writes ‘j2.{xz,yz,xy,xy2}’
jb jB; writes ‘jb.{xz,yz,xy,xy2}’
beta1 inverse plasma betaB2/(2µ0p); writes ‘beta1.{xz,yz,xy,xy2}’
Poynting Poynting vector ηj × B − (u × B) × B/µ0; writes

‘Poynting[xyz].{xz,yz,xy,xy2}’
ab magnetic helicity density A · B; writes

‘ab[xyz].{xz,yz,xy,xy2}’
Module ‘pscalar.f90’

lncc logarithmic density of passive scalar ln c; writes
‘lncc.{xz,yz,xy,xy2}’

Module ‘cosmicray.f90’

ecr energy ecr of cosmic rays (?); writes ‘ec.{xz,yz,xy,xy2}’

216 THE PENCIL CODE

J.5 List of parameters for ‘ phiaver.in’

The following table lists all (at the time of writing, November 2003) possible inputs to
the file ‘phiaver.in’.

Variable Meaning

Module ‘cdata.f90’

rcylmphi cylindrical radius ̟ =
√

x2 + y2 (useful for debugging az-
imuthal averages)

phimphi azimuthal angle ϕ = arctan y
x
(useful for debugging)

zmphi z-coordinate (useful for debugging)

rmphi spherical radius r =
√
̟2 + z2 (useful for debugging)

Module ‘hydro.f90’

urmphi 〈u̟〉ϕ [cyl. polar coords (̟,ϕ, z)]

upmphi 〈uϕ〉ϕ
uzmphi 〈uz〉ϕ
ursphmphi 〈ur〉ϕ
uthmphi 〈uϑ〉ϕ
uumphi shorthand for urmphi , upmphi and uzmphi together
uusphmphi shorthand for ursphmphi , uthmphi and upmphi together
u2mphi 〈u2〉ϕ

Module ‘density.f90’

lnrhomphi 〈ln ̺〉ϕ
rhomphi 〈̺〉ϕ

Module ‘entropy.f90’

ssmphi 〈s〉ϕ
cs2mphi 〈c2s〉ϕ

Module ‘magnetic.f90’

jbmphi 〈J ·B〉ϕ
brmphi 〈B̟〉ϕ [cyl. polar coords (̟,ϕ, z)]

bpmphi 〈Bϕ〉ϕ
bzmphi 〈Bz〉ϕ
bbmphi shorthand for brmphi , bpmphi and bzmphi together
bbsphmphi shorthand for brsphmphi , bthmphi and bpmphi together
b2mphi

〈

B2
〉

ϕ

brsphmphi 〈Br〉ϕ
bthmphi 〈Bϑ〉ϕ

Module ‘anelastic.f90’

lnrhomphi 〈ln ̺〉ϕ
rhomphi 〈̺〉ϕ

Module ‘entropy_anelastic.f90’

ssmphi 〈s〉ϕ

J.6 Parameters for ‘xyaver.in’ 217

cs2mphi 〈c2s〉ϕ
Module ‘magnetic_shearboxJ.f90’

jbmphi 〈J ·B〉ϕ
brmphi 〈B̟〉ϕ [cyl. polar coords (̟,ϕ, z)]

bpmphi 〈Bϕ〉ϕ
bzmphi 〈Bz〉ϕ
bbmphi shorthand for brmphi , bpmphi and bzmphi together
bbsphmphi shorthand for brsphmphi , bthmphi and bpmphi together
b2mphi

〈

B2
〉

ϕ

brsphmphi 〈Br〉ϕ
bthmphi 〈Bϑ〉ϕ

J.6 List of parameters for ‘ xyaver.in’

The following table lists possible inputs to the file ‘xyaver.in’. This list is not complete
and maybe outdated.

Variable Meaning

Module ‘hydro.f90’

u2mz 〈u2〉xy
o2mz

〈

W 2
〉

xy

divu2mz 〈(∇ · u)2〉xy
curlru2mz 〈(∇× ̺U)2〉xy
divru2mz 〈(∇ · ̺u)2〉xy
fmasszmz 〈̺uz〉xy
fkinzmz

〈

1
2
̺u2uz

〉

xy

uxmz 〈ux〉xy (horiz. averaged x velocity)

uymz 〈uy〉xy
uzmz 〈uz〉xy
uzupmz 〈uz↑〉xy
uzdownmz 〈uz↓〉xy
ruzupmz 〈̺uz↑〉xy
ruzdownmz 〈̺uz↓〉xy
divumz 〈divu〉xy
uzdivumz 〈uzdivu〉xy
oxmz 〈ωx〉xy
oymz 〈ωy〉xy
ozmz 〈ωz〉xy
ux2mz 〈u2x〉xy
uy2mz

〈

u2y
〉

xy

uz2mz 〈u2z〉xy
ox2mz 〈ω2

x〉xy
oy2mz

〈

ω2
y

〉

xy

oz2mz 〈ω2
z〉xy

218 THE PENCIL CODE

ruxmz 〈̺ux〉xy
ruymz 〈̺uy〉xy
ruzmz 〈̺uz〉xy
rux2mz 〈̺u2x〉xy
ruy2mz

〈

̺u2y
〉

xy

ruz2mz 〈̺u2z〉xy
uxuymz 〈uxuy〉xy
uxuzmz 〈uxuz〉xy
uyuzmz 〈uyuz〉xy
ruxuymz 〈ρuxuy〉xy
ruxuzmz 〈ρuxuz〉xy
ruyuzmz 〈ρuyuz〉xy
ruxuy2mz 〈ρuxuy〉xy
ruxuz2mz 〈ρuxuz〉xy
ruyuz2mz 〈ρuyuz〉xy
oxuxxmz 〈ωxux,x〉xy
oyuxymz 〈ωyux,y〉xy
oxuyxmz 〈ωxuy,x〉xy
oyuyymz 〈ωyuy,y〉xy
oxuzxmz 〈ωxuz,x〉xy
oyuzymz 〈ωyuz,y〉xy
uyxuzxmz 〈uy,xuz,x〉xy
uyyuzymz 〈uy,yuz,y〉xy
uyzuzzmz 〈uy,zuz,z〉xy
ekinmz

〈

1
2
̺u2
〉

xy

oumz 〈ω · u〉xy
Remz 〈 |u·u|

∣

∣

∣

∣

∂
∂xj

(νSij)

∣

∣

∣

∣

〉xy

oguxmz 〈(ω · ∇u)x〉xy
oguymz 〈(ω · ∇u)y〉xy
oguzmz 〈(ω · ∇u)z〉xy
ogux2mz 〈(ω · ∇u)2x〉xy
oguy2mz

〈

(ω · ∇u)2y
〉

xy

oguz2mz 〈(ω · ∇u)2z〉xy
oxdivumz 〈ωx∇ · u〉xy
oydivumz 〈ωy∇ · u〉xy
ozdivumz 〈ωz∇ · u〉xy
oxdivu2mz 〈(ωxnabla · u)2〉xy
oydivu2mz 〈(ωy∇ · u)2〉xy
ozdivu2mz 〈(ωz∇ · u)2〉xy
accpowzmz 〈(uzDuz/Dt)2〉xy
accpowzupmz 〈(uzDuz/Dt)2〉xy+
accpowzdownmz 〈(uzDuz/Dt)2〉xy−
fkinxmx

〈

1
2
̺u2ux

〉

yz

Module ‘density.f90’

rhomz 〈̺〉xy
rho2mz 〈̺2〉xy

J.6 Parameters for ‘xyaver.in’ 219

gzlnrhomz 〈∇z ln ̺〉xy
uglnrhomz 〈u · ∇ ln ̺〉xy
ugrhomz 〈u · ∇̺〉xy
uygzlnrhomz 〈uy∇z ln ̺〉xy
uzgylnrhomz 〈uz∇y ln ̺〉xy
rho2mx 〈̺2〉yz

Module ‘entropy.f90’

fradz 〈Frad〉xy
fconvz 〈cp̺uzT 〉xy
ssmz 〈s〉xy
ss2mz 〈s2〉xy
ppmz 〈p〉xy
TTmz 〈T 〉xy
TT2mz 〈T 2〉xy
uxTTmz 〈uxT 〉xy
uyTTmz 〈uyT 〉xy
uzTTmz 〈uzT 〉xy
gTxgsxmz 〈(∇T ×∇s)x〉xy
gTxgsymz 〈(∇T ×∇s)y〉xy
gTxgszmz 〈(∇T ×∇s)z〉xy
gTxgsx2mz 〈(∇T ×∇s)2x〉xy
gTxgsy2mz

〈

(∇T ×∇s)2y
〉

xy

gTxgsz2mz 〈(∇T ×∇s)2z〉xy
fradz kramers Frad (from Kramers’ opacity)
fradz Kprof Frad (from Kprof)
fradz constchi Frad (from chi const)
fturbz 〈̺Tχt∇zs〉xy (turbulent heat flux)

fturbtz 〈̺Tχt0∇zs〉xy (turbulent heat flux)

fturbmz 〈̺Tχt0∇zs〉xy (turbulent heat flux)

fturbfz 〈̺Tχt0∇zs
′〉xy (turbulent heat flux)

dcoolz surface cooling flux
heatmz heating
Kkramersmz

〈

K0T
(3− b)/rho(a+ 1)

〉

xy

ethmz 〈̺e〉xy
Module ‘magnetic.f90’

axmz 〈Ax〉xy
aymz 〈Ay〉xy
azmz 〈Az〉xy
abuxmz 〈(A ·B)ux〉xy
abuymz 〈(A ·B)uy〉xy
abuzmz 〈(A ·B)uz〉xy
uabxmz 〈(u ·A)Bx〉xy
uabymz 〈(u ·A)By〉xy
uabzmz 〈(u ·A)Bz〉xy
bbxmz 〈B′

x〉xy
bbymz

〈

B′
y

〉

xy

220 THE PENCIL CODE

bbzmz 〈B′
z〉xy

bxmz 〈Bx〉xy
bymz 〈By〉xy
bzmz 〈Bz〉xy
jxmz 〈Jx〉xy
jymz 〈Jy〉xy
jzmz 〈Jz〉xy
Exmz 〈Ex〉xy
Eymz 〈Ey〉xy
Ezmz 〈Ez〉xy
bx2mz 〈B2

x〉xy
by2mz

〈

B2
y

〉

xy

bz2mz 〈B2
z 〉xy

bx2rmz 〈B2
x/̺〉xy

by2rmz
〈

B2
y/̺
〉

xy

bz2rmz 〈B2
z/̺〉xy

beta1mz 〈(B2/2µ0)/p〉xy
betamz 〈β〉xy
beta2mz 〈β2〉xy
jbmz 〈J ·B〉 |xy
d6abmz 〈∇6A ·B〉 |xy
d6amz1 〈∇6A〉xy |x
d6amz2 〈∇6A〉xy |y
d6amz3 〈∇6A〉xy |z
abmz 〈A ·B〉 |xy
ubmz 〈u ·B〉 |xy
uamz 〈u ·A〉 |xy
uxbxmz 〈uxbx〉 |xy
uybxmz 〈uybx〉 |xy
uzbxmz 〈uzbx〉 |xy
uxbymz 〈uxby〉 |xy
uybymz 〈uyby〉 |xy
uzbymz 〈uzby〉 |xy
uxbzmz 〈uxbz〉 |xy
uybzmz 〈uybz〉 |xy
uzbzmz 〈uzbz〉 |xy
examz1 〈E ×A〉xy |x
examz2 〈E ×A〉xy |y
examz3 〈E ×A〉xy |z
e3xamz1 〈Ehyper3 ×A〉xy |x
e3xamz2 〈Ehyper3 ×A〉xy |y
e3xamz3 〈Ehyper3 ×A〉xy |z
etatotalmz 〈η〉xy
bxbymz 〈BxBy〉xy
bxbzmz 〈BxBz〉xy
bybzmz 〈ByBz〉xy
b2mz

〈

B2
〉

xy

bf2mz
〈

B′2
〉

xy

J.6 Parameters for ‘xyaver.in’ 221

j2mz
〈

j2
〉

xy

poynzmz Averaged poynting flux in z direction
epsMmz

〈

ηµ0j
2
〉

xy

Module ‘bfield.f90’

bmz 〈B〉xy
b2mz 〈B2〉xy
bxmz 〈Bx〉xy
bymz 〈By〉xy
bzmz 〈Bz〉xy
bx2mz 〈B2

x〉xy
by2mz 〈B2

y〉xy
bz2mz 〈B2

z 〉xy
bxbymz 〈BxBy〉xy
bxbzmz 〈BxBz〉xy
bybzmz 〈ByBz〉xy
betamz 〈β〉xy
beta2mz 〈β2〉xy

Module ‘density_stratified.f90’

drhomz 〈∆ρ/ρ0〉xy
drho2mz 〈(∆ρ/ρ0)2〉xy

Module ‘gravity_simple.f90’

epotmz 〈̺Φgrav〉xy
epotuzmz 〈̺Φgravuz〉xy (potential energy flux)

Module ‘magnetic_shearboxJ.f90’

axmz 〈Ax〉xy
aymz 〈Ay〉xy
azmz 〈Az〉xy
abuxmz 〈(A ·B)ux〉xy
abuymz 〈(A ·B)uy〉xy
abuzmz 〈(A ·B)uz〉xy
uabxmz 〈(u ·A)Bx〉xy
uabymz 〈(u ·A)By〉xy
uabzmz 〈(u ·A)Bz〉xy
bbxmz 〈B′

x〉xy
bbymz

〈

B′
y

〉

xy

bbzmz 〈B′
z〉xy

bxmz 〈Bx〉xy
bymz 〈By〉xy
bzmz 〈Bz〉xy
jxmz 〈Jx〉xy
jymz 〈Jy〉xy
jzmz 〈Jz〉xy
Exmz 〈Ex〉xy
Eymz 〈Ey〉xy
Ezmz 〈Ez〉xy

222 THE PENCIL CODE

bx2mz 〈B2
x〉xy

by2mz
〈

B2
y

〉

xy

bz2mz 〈B2
z 〉xy

bx2rmz 〈B2
x/̺〉xy

by2rmz
〈

B2
y/̺
〉

xy

bz2rmz 〈B2
z/̺〉xy

beta1mz 〈(B2/2µ0)/p〉xy
betamz 〈β〉xy
beta2mz 〈β2〉xy
jbmz 〈J ·B〉 |xy
d6abmz 〈∇6A ·B〉 |xy
d6amz1 〈∇6A〉xy |x
d6amz2 〈∇6A〉xy |y
d6amz3 〈∇6A〉xy |z
abmz 〈A ·B〉 |xy
ubmz 〈u ·B〉 |xy
uamz 〈u ·A〉 |xy
uxbxmz 〈uxbx〉 |xy
uybxmz 〈uybx〉 |xy
uzbxmz 〈uzbx〉 |xy
uxbymz 〈uxby〉 |xy
uybymz 〈uyby〉 |xy
uzbymz 〈uzby〉 |xy
uxbzmz 〈uxbz〉 |xy
uybzmz 〈uybz〉 |xy
uzbzmz 〈uzbz〉 |xy
examz1 〈E ×A〉xy |x
examz2 〈E ×A〉xy |y
examz3 〈E ×A〉xy |z
e3xamz1 〈Ehyper3 ×A〉xy |x
e3xamz2 〈Ehyper3 ×A〉xy |y
e3xamz3 〈Ehyper3 ×A〉xy |z
etatotalmz 〈η〉xy
bxbymz 〈BxBy〉xy
bxbzmz 〈BxBz〉xy
bybzmz 〈ByBz〉xy
b2mz

〈

B2
〉

xy

bf2mz
〈

B′2
〉

xy

j2mz
〈

j2
〉

xy

poynzmz Averaged poynting flux in z direction
epsMmz

〈

ηµ0j
2
〉

xy

Module ‘meanfield.f90’

qpmz 〈qp〉xy
Module ‘shock_highorder.f90’

Module ‘temperature_idealgas.f90’

ppmz 〈p〉xy

J.7 Parameters for ‘xzaver.in’ 223

TTmz 〈T 〉xy
ethmz 〈eth〉xy
fpresxmz 〈(∇p)x〉xy
fpresymz 〈(∇p)y〉xy
fpreszmz 〈(∇p)z〉xy
TT2mz 〈T 2〉xy
uxTmz 〈uxT 〉xy
uyTmz 〈uyT 〉xy
uzTmz 〈uzT 〉xy
fradmz 〈Frad〉xy
fconvmz 〈cp̺uzT 〉xy

Module ‘temperature_ionization.f90’

puzmz 〈puz〉xy
pr1mz 〈p/̺〉xy
eruzmz 〈e̺uz〉xy
ffakez 〈̺uzcpT 〉xy
mumz 〈µ〉xy
TTmz 〈T 〉xy
ssmz 〈s〉xy
eemz 〈e〉xy
ppmz 〈p〉xy

Module ‘thermal_energy.f90’

ppmz 〈p〉xy
TTmz 〈T 〉xy

Module ‘viscosity.f90’

fviscmz 〈2ν̺uiSiz〉xy (z-component of viscous flux)

fviscsmmz 〈2νSmag̺uiSiz〉xy (z-component of viscous flux)

epsKmz
〈

2ν̺S2
〉

xy

J.7 List of parameters for ‘ xzaver.in’

The following table lists possible inputs to the file ‘xzaver.in’. This list is not complete
and maybe outdated.

Variable Meaning

Module ‘hydro.f90’

uxmy 〈ux〉xz
uymy 〈uy〉xz
uzmy 〈uz〉xz
oumy 〈ω · u〉xz

Module ‘density.f90’

rhomy 〈̺〉xz

224 THE PENCIL CODE

Module ‘entropy.f90’

ssmy 〈s〉xz
ppmy 〈p〉xz
TTmy 〈T 〉xz

Module ‘magnetic.f90’

bxmy 〈Bx〉xz
bymy 〈By〉xz
bzmy 〈Bz〉xz
bx2my 〈B2

x〉xz
by2my

〈

B2
y

〉

xz

bz2my 〈B2
z 〉xz

bxbymy 〈BxBy〉xz
bxbzmy 〈BxBz〉xz
bybzmy 〈ByBz〉xz

Module ‘density_stratified.f90’

drhomy 〈∆ρ/ρ0〉xz
drho2my 〈(∆ρ/ρ0)2〉xz

Module ‘gravity_simple.f90’

epotmy 〈̺Φgrav〉xz
Module ‘magnetic_shearboxJ.f90’

bxmy 〈Bx〉xz
bymy 〈By〉xz
bzmy 〈Bz〉xz
bx2my 〈B2

x〉xz
by2my

〈

B2
y

〉

xz

bz2my 〈B2
z 〉xz

bxbymy 〈BxBy〉xz
bxbzmy 〈BxBz〉xz
bybzmy 〈ByBz〉xz

Module ‘shock_highorder.f90’

Module ‘temperature_idealgas.f90’

ppmy 〈p〉xz
TTmy 〈T 〉xz

Module ‘thermal_energy.f90’

ppmy 〈p〉xz
TTmy 〈T 〉xz

J.8 List of parameters for ‘ yzaver.in’

The following table lists possible inputs to the file ‘yzaver.in’. This list is not complete
and maybe outdated.

J.8 Parameters for ‘yzaver.in’ 225

Variable Meaning

Module ‘hydro.f90’

uxmx 〈ux〉yz
uymx 〈uy〉yz
uzmx 〈uz〉yz
ruxmx 〈̺ux〉yz
ruymx 〈̺uy〉yz
ruzmx 〈̺uz〉yz
rux2mx 〈ρu2x〉yz
ruy2mx 〈ρu2y〉yz
ruz2mx 〈ρu2z〉yz
ruxuymx 〈ρuxuy〉yz
ruxuzmx 〈ρuxuz〉yz
ruyuzmx 〈ρuyuz〉yz
ux2mx 〈u2x〉yz
uy2mx

〈

u2y
〉

yz

uz2mx 〈u2z〉yz
ox2mx 〈ω2

x〉yz
oy2mx

〈

ω2
y

〉

yz

oz2mx 〈ω2
z〉yz

uxuymx 〈uxuy〉yz
uxuzmx 〈uxuz〉yz
uyuzmx 〈uyuz〉yz
oumx 〈ω · u〉yz
ekinmx 〈1

2
ρu2〉xy

Module ‘density.f90’

rhomx 〈̺〉yz
Module ‘entropy.f90’

ssmx 〈s〉yz
ss2mx 〈s2〉yz
ppmx 〈p〉yz
TTmx 〈T 〉yz
TT2mx 〈T 2〉yz
uxTTmx 〈uxT 〉yz
uyTTmx 〈uyT 〉yz
uzTTmx 〈uzT 〉yz
fconvxmx 〈cp̺uxT 〉yz
fradmx 〈Frad〉yz
fturbmx 〈̺Tχt∇xs〉yz (turbulent heat flux)

Kkramersmx
〈

K0T
(3− b)/rho(a+ 1)

〉

yz

dcoolx surface cooling flux
fradx kramers Frad (from Kramers’ opacity)

Module ‘magnetic.f90’

b2mx 〈B2〉yz

226 THE PENCIL CODE

bxmx 〈Bx〉yz
bymx 〈By〉yz
bzmx 〈Bz〉yz
bx2mx 〈B2

x〉yz
by2mx

〈

B2
y

〉

yz

bz2mx 〈B2
z 〉yz

bxbymx 〈BxBy〉yz
bxbzmx 〈BxBz〉yz
bybzmx 〈ByBz〉yz
betamx 〈β〉yz
beta2mx 〈β2〉yz
etatotalmx 〈η〉yz

Module ‘bfield.f90’

bmx 〈B〉yz
b2mx 〈B2〉yz
bxmx 〈Bx〉yz
bymx 〈By〉yz
bzmx 〈Bz〉yz
bx2mx 〈B2

x〉yz
by2mx 〈B2

y〉yz
bz2mx 〈B2

z〉yz
bxbymx 〈BxBy〉yz
bxbzmx 〈BxBz〉yz
bybzmx 〈ByBz〉yz
betamx 〈β〉yz
beta2mx 〈β2〉yz

Module ‘density_stratified.f90’

drhomx 〈∆ρ/ρ0〉yz
drho2mx 〈(∆ρ/ρ0)2〉yz

Module ‘gravity_simple.f90’

epotmx 〈̺Φgrav〉yz
epotuxmx 〈̺Φgravux〉yz (potential energy flux)

Module ‘magnetic_shearboxJ.f90’

b2mx 〈B2〉yz
bxmx 〈Bx〉yz
bymx 〈By〉yz
bzmx 〈Bz〉yz
bx2mx 〈B2

x〉yz
by2mx

〈

B2
y

〉

yz

bz2mx 〈B2
z 〉yz

bxbymx 〈BxBy〉yz
bxbzmx 〈BxBz〉yz
bybzmx 〈ByBz〉yz
betamx 〈β〉yz
beta2mx 〈β2〉yz
etatotalmx 〈η〉yz

J.9 Parameters for ‘yaver.in’ 227

Module ‘shock_highorder.f90’

Module ‘temperature_idealgas.f90’

ppmx 〈p〉yz
TTmx 〈T 〉yz

Module ‘thermal_energy.f90’

ppmx 〈p〉yz
TTmx 〈T 〉yz

Module ‘viscosity.f90’

fviscmx 〈2ν̺uiSix〉yz (x-component of viscous flux)

numx 〈ν〉yz (yz-averaged viscosity)

J.9 List of parameters for ‘ yaver.in’

The following table lists possible inputs to the file ‘yaver.in’. This list is not complete
and maybe outdated.

Variable Meaning

Module ‘hydro.f90’

uxmxz 〈ux〉y
uymxz 〈uy〉y
uzmxz 〈uz〉y
ux2mxz 〈u2x〉y
uy2mxz

〈

u2y
〉

y

uz2mxz 〈u2z〉y
uxuymxz 〈uxuy〉y
uxuzmxz 〈uxuz〉y
uyuzmxz 〈uyuz〉y
oumxz 〈ω · u〉y

Module ‘density.f90’

rhomxz 〈̺〉y
Module ‘entropy.f90’

TTmxz 〈T 〉y
ssmxz 〈s〉y

Module ‘magnetic.f90’

b2mxz
〈

B2
〉

y

axmxz 〈Ax〉y
aymxz 〈Ay〉y
azmxz 〈Az〉y
bx1mxz 〈|Bx|〉y

228 THE PENCIL CODE

by1mxz 〈|By|〉y
bz1mxz 〈|Bz|〉y
bxmxz 〈Bx〉y
bymxz 〈By〉y
bzmxz 〈Bz〉y
jxmxz 〈Jx〉y
jymxz 〈Jy〉y
jzmxz 〈Jz〉y
bx2mxz 〈B2

x〉y
by2mxz

〈

B2
y

〉

y

bz2mxz 〈B2
z 〉y

bxbymxz 〈BxBy〉y
bxbzmxz 〈BxBz〉y
bybzmxz 〈ByBz〉y
uybxmxz 〈UyBx〉y
uybzmxz 〈UyBz〉y
Exmxz 〈Ex〉y
Eymxz 〈Ey〉y
Ezmxz 〈Ez〉y
vAmxz 〈v2A〉y

Module ‘density_stratified.f90’

drhomxz 〈∆ρ/ρ0〉y
drho2mxz 〈(∆ρ/ρ0)2〉y

Module ‘magnetic_shearboxJ.f90’

b2mxz
〈

B2
〉

y

axmxz 〈Ax〉y
aymxz 〈Ay〉y
azmxz 〈Az〉y
bx1mxz 〈|Bx|〉y
by1mxz 〈|By|〉y
bz1mxz 〈|Bz|〉y
bxmxz 〈Bx〉y
bymxz 〈By〉y
bzmxz 〈Bz〉y
jxmxz 〈Jx〉y
jymxz 〈Jy〉y
jzmxz 〈Jz〉y
bx2mxz 〈B2

x〉y
by2mxz

〈

B2
y

〉

y

bz2mxz 〈B2
z 〉y

bxbymxz 〈BxBy〉y
bxbzmxz 〈BxBz〉y
bybzmxz 〈ByBz〉y
uybxmxz 〈UyBx〉y
uybzmxz 〈UyBz〉y
Exmxz 〈Ex〉y

J.10 Parameters for ‘zaver.in’ 229

Eymxz 〈Ey〉y
Ezmxz 〈Ez〉y
vAmxz 〈v2A〉y

Module ‘meanfield.f90’

peffmxz 〈Peff〉y
alpmxz 〈α〉y

Module ‘temperature_idealgas.f90’

TTmxz 〈T 〉y
Emymxz 〈Emy〉y Emission in y-direction

Module ‘thermal_energy.f90’

TTmxz 〈T 〉y

J.10 List of parameters for ‘ zaver.in’

The following table lists possible inputs to the file ‘zaver.in’. This list is not complete
and maybe outdated.

Variable Meaning

Module ‘hydro.f90’

uxmxy 〈ux〉z
uymxy 〈uy〉z
uzmxy 〈uz〉z
uxuymxy 〈uxuy〉z
uxuzmxy 〈uxuz〉z
uyuzmxy 〈uyuz〉z
oxmxy 〈ωx〉z
oymxy 〈ωy〉z
ozmxy 〈ωz〉z
oumxy 〈ω · u〉z
pvzmxy 〈(ωz + 2Ω)/̺〉z (z component of potential vorticity)
uguxmxy 〈(u ·∇u)x〉z
uguymxy 〈(u ·∇u)y〉z
uguzmxy 〈(u ·∇u)z〉z
ruxmxy 〈ρux〉z
ruymxy 〈ρuy〉z
ruzmxy 〈ρuz〉z
ux2mxy 〈u2x〉z
uy2mxy

〈

u2y
〉

z

uz2mxy 〈u2z〉z
rux2mxy 〈ρu2x〉z
ruy2mxy

〈

ρu2y
〉

z

ruz2mxy 〈ρu2z〉z
ruxuymxy 〈ρuxuy〉z
ruxuzmxy 〈ρuxuz〉z

230 THE PENCIL CODE

ruyuzmxy 〈ρuyuz〉z
fkinxmxy

〈

1
2
̺u2ux

〉

z

fkinymxy
〈

1
2
̺u2uy

〉

z

Module ‘density.f90’

rhomxy 〈̺〉z
Module ‘entropy.f90’

TTmxy 〈T 〉z
ssmxy 〈s〉z
uxTTmxy 〈uxT 〉z
uyTTmxy 〈uyT 〉z
uzTTmxy 〈uzT 〉z
gTxmxy 〈∇xT 〉z
gTymxy 〈∇yT 〉z
gTzmxy 〈∇zT 〉z
gsxmxy 〈∇xs〉z
gsymxy 〈∇ys〉z
gszmxy 〈∇zs〉z
gTxgsxmxy 〈(∇T ×∇s)x〉z
gTxgsymxy

〈

(∇T ×∇s)y
〉

z

gTxgszmxy 〈(∇T ×∇s)z〉z
gTxgsx2mxy

〈

(∇T ×∇s)2x
〉

z

gTxgsy2mxy
〈

(∇T ×∇s)2y
〉

z

gTxgsz2mxy
〈

(∇T ×∇s)2z
〉

z

fconvxy 〈cp̺uxT 〉z
fconvyxy 〈cp̺uyT 〉z
fconvzxy 〈cp̺uzT 〉z
fradxy Kprof F rad

x (x-component of radiative flux, z-averaged, from Kprof)
fradymxy Kprof F rad

y (y-component of radiative flux, z-averaged, from Kprof)
fradxy kramers Frad (z-averaged, from Kramers’ opacity)
fturbxy 〈̺Tχt∇xs〉z
fturbymxy 〈̺Tχt∇ys〉z
fturbrxy 〈̺Tχri∇is〉z (radial part of anisotropic turbulent heat flux)
fturbthxy 〈̺Tχθi∇is〉z (latitudinal part of anisotropic turbulent heat

flux)
dcoolxy surface cooling flux

Module ‘magnetic.f90’

bxmxy 〈Bx〉z
bymxy 〈By〉z
bzmxy 〈Bz〉z
jxmxy 〈Jx〉z
jymxy 〈Jy〉z
jzmxy 〈Jz〉z
axmxy 〈Ax〉z
aymxy 〈Ay〉z
azmxy 〈Az〉z
bx2mxy 〈B2

x〉z

J.10 Parameters for ‘zaver.in’ 231

by2mxy
〈

B2
y

〉

z

bz2mxy 〈B2
z 〉z

bxbymxy 〈BxBy〉z
bxbzmxy 〈BxBz〉z
bybzmxy 〈ByBz〉z
poynxmxy 〈E ×B〉x
poynymxy 〈E ×B〉y
poynzmxy 〈E ×B〉z
jbmxy 〈J ·B〉z
abmxy 〈A ·B〉z
examxy1 〈E ×A〉z |x
examxy2 〈E ×A〉z |y
examxy3 〈E ×A〉z |z
StokesImxy 〈ǫB⊥〉z |z
StokesQmxy −〈ǫB⊥ cos 2χ〉z |z
StokesUmxy −〈ǫB⊥ sin 2χ〉z |z
StokesQ1mxy + 〈FǫB⊥ sin 2χ〉z |z
StokesU1mxy −〈FǫB⊥ cos 2χ〉z |z
beta1mxy

〈

B2/(2µ0p)
〉

z
|z

Module ‘density_stratified.f90’

drhomxy 〈∆ρ/ρ0〉z
drho2mxy 〈(∆ρ/ρ0)2〉z

Module ‘gravity_simple.f90’

epotmxy 〈̺Φgrav〉z
epotuxmxy 〈̺Φgravux〉z (potential energy flux)

Module ‘magnetic_shearboxJ.f90’

bxmxy 〈Bx〉z
bymxy 〈By〉z
bzmxy 〈Bz〉z
jxmxy 〈Jx〉z
jymxy 〈Jy〉z
jzmxy 〈Jz〉z
axmxy 〈Ax〉z
aymxy 〈Ay〉z
azmxy 〈Az〉z
bx2mxy 〈B2

x〉z
by2mxy

〈

B2
y

〉

z

bz2mxy 〈B2
z 〉z

bxbymxy 〈BxBy〉z
bxbzmxy 〈BxBz〉z
bybzmxy 〈ByBz〉z
poynxmxy 〈E ×B〉x
poynymxy 〈E ×B〉y
poynzmxy 〈E ×B〉z
jbmxy 〈J ·B〉z
abmxy 〈A ·B〉z
examxy1 〈E ×A〉z |x

232 THE PENCIL CODE

examxy2 〈E ×A〉z |y
examxy3 〈E ×A〉z |z
StokesImxy 〈ǫB⊥〉z |z
StokesQmxy −〈ǫB⊥ cos 2χ〉z |z
StokesUmxy −〈ǫB⊥ sin 2χ〉z |z
StokesQ1mxy + 〈FǫB⊥ sin 2χ〉z |z
StokesU1mxy −〈FǫB⊥ cos 2χ〉z |z
beta1mxy

〈

B2/(2µ0p)
〉

z
|z

Module ‘temperature_idealgas.f90’

TTmxy 〈T 〉z
Emzmxy 〈Emz〉z Emission in z-direction

Module ‘thermal_energy.f90’

TTmxy 〈T 〉z
Module ‘viscosity.f90’

fviscmxy 〈2ν̺uiSix〉z (x-xomponent of viscous flux)
fviscsmmxy 〈2νSmag̺uiSix〉z (x-xomponent of viscous flux)
fviscymxy 〈2ν̺uiSiy〉z (y-xomponent of viscous flux)

J.11 Boundary conditions

The following tables list all possible boundary condition labels that are documented.

J.11.1 Boundary condition bcx

Variable Meaning

Module ‘boundcond.f90’

0 zero value in ghost zones, free value on boundary
p periodic
s symmetry, fN+i = fN−i; implies f ′(xN) = f ′′′(x0) = 0
sf symmetry with respect to interface
ss symmetry, plus function value given
s0d symmetry, function value such that df/dx=0
a antisymmetry, fN+i = −fN−i; implies f(xN) = f ′′(x0) = 0
af antisymmetry with respect to interface
a2 antisymmetry relative to boundary value, fN+i = 2fN − fN−i; implies

f ′′(x0) = 0
a2v set boundary value and antisymmetry relative to it fN+i = 2fN − fN−i;

implies f ′′(x0) = 0
a2r sets d2f/dr2+2df/dr−2f/r2 = 0 This is the replacement of zero second

derivative in spherical coordinates, in radial direction.
cpc cylindrical perfect conductor implies f ′′ + f ′/R = 0
cpp cylindrical perfect conductor implies f ′′ + f ′/R = 0
cpz cylindrical perfect conductor implies f ′′ + f ′/R = 0
spr spherical perfect conductor implies f ′′ + 2f ′/R = 0 and f(xN) = 0
v vanishing third derivative

J.11 Boundary conditions 233

cop copy value of last physical point to all ghost cells
1s onesided
d1s onesided for 1st/2nd derivative in two first inner points, Dirichlet in

boundary point
n1s onesided for 1st/2nd derivative in two first inner points, Neumann in

boundary point
1so onesided
cT constant temperature (implemented as condition for entropy s or tem-

perature T)
c1 constant temperature (or maybe rather constant conductive flux??)
Fgs Fconv = - chi t*rho*T*grad(s)
Fct Fbot = - K*grad(T) - chi t*rho*T*grad(s)
Fcm Fbot = −K ∗ grad(T) −chit ∗ rho ∗ T ∗ grad(s)
sT symmetric temperature, TN−i = TN+i; implies T ′(xN) = T ′′′(x0) = 0
asT select entropy for uniform ghost temperature matching fluctuating

boundary value, TN−i = TN =; implies T ′(xN) = T ′(x0) = 0
f “freeze” value, i.e. maintain initial
fg “freeze” value, i.e. maintain initial
1 f = 1 (for debugging)
set set boundary value to fbcx
der set derivative on boundary to fbcx
slo set slope at the boundary = fbcx
slp set slope at the boundary and in ghost cells = fbcx
shx set shearing boundary proportional to x with slope=fbcx and ab-

scissa=fbcx2
shy set shearing boundary proportional to y with slope=fbcx and ab-

scissa=fbcx2
shz set shearing boundary proportional to z with slope=fbcx and ab-

scissa=fbcx2
dr0 set boundary value [really??]
ovr overshoot boundary condition ie (d/dx− 1/dist)f = 0.
out allow outflow, but no inflow forces ghost cells and boundary to not point

inwards
e1o allow outflow, but no inflow uses the e1 extrapolation scheme
ant stops and prompts for adding documentation
e1 extrapolation [describe]
e2 extrapolation [describe]
e3 extrapolation in log [maintain a power law]
hat top hat jet profile in spherical coordinate.
jet top hat jet profile in cartezian coordinate.
spd sets d(rAα)/dr = fbcx(j)
sfr stress-free boundary condition for spherical coordinate system.
sr1 Stress-free bc for spherical coordinate system. Implementation with

one-sided derivative.
nfr Normal-field bc for spherical coordinate system. Some people call this

the “(angry) hedgehog bc”.
nr1 Normal-field bc for spherical coordinate system. Some people call this

the “(angry) hedgehog bc”. Implementation with one-sided derivative.
sa2 (d/dr)(rBφ) = 0 imposes boundary condition on 2nd derivative of rAφ.

Same applies to θ component.

234 THE PENCIL CODE

pfc perfect-conductor in spherical coordinate: d/dr(Ar) + 2/r = 0.
fix set boundary value [really??]
fil set boundary value from a file
cfb radial centrifugal balance
g set to given value(s) or function
nil do nothing; assume that everything is set
ioc inlet/outlet on western/eastern hemisphere in cylindrical coordinates

do nothing; assume that everything is set
s implies f ′(yN) = f ′′′(y0) = 0

Module ‘boundcond_alt.f90’

0 zero value in ghost zones, free value on boundary
p periodic
s symmetry, fN+i = fN−i; implies f ′(xN) = f ′′′(x0) = 0
ss symmetry, plus function value given
s0d symmetry, function value such that df/dx=0
a antisymmetry, fN+i = −fN−i; implies f(xN) = f ′′(x0) = 0
a2 antisymmetry relative to boundary value, fN+i = 2fN − fN−i; implies

f ′′(x0) = 0
a2r sets d2f/dr2+2df/dr−2f/r2 = 0 This is the replacement of zero second

derivative in spherical coordinates, in radial direction.
cpc cylindrical perfect conductor implies f ′′ + f ′/R = 0
cpp cylindrical perfect conductor implies f ′′ + f ′/R = 0
cpz cylindrical perfect conductor implies f ′′ + f ′/R = 0
spr spherical perfect conductor implies f ′′ + 2f ′/R = 0 and f(xN) = 0
v vanishing third derivative
cop copy value of last physical point to all ghost cells
1s onesided
1so onesided
cT constant temperature (implemented as condition for entropy s or tem-

perature T)
c1 constant temperature (or maybe rather constant conductive flux??)
Fgs Fconv = - chi t*rho*T*grad(s)
Fct Fbot = - K*grad(T) - chi t*rho*T*grad(s)
Fcm Fbot = −K ∗ grad(T) −chit ∗ rho ∗ T ∗ grad(s)
sT symmetric temperature, TN−i = TN+i; implies T ′(xN) = T ′′′(x0) = 0
asT select entropy for uniform ghost temperature matching fluctuating

boundary value, TN−i = TN =; implies T ′(xN) = T ′(x0) = 0
f “freeze” value, i.e. maintain initial
fg “freeze” value, i.e. maintain initial
1 f = 1 (for debugging)
set set boundary value to fbcx12
der set derivative on boundary to fbcx12
slo set slope at the boundary = fbcx12
dr0 set boundary value [really??]
ovr overshoot boundary condition ie (d/dx− 1/dist)f = 0.
out allow outflow, but no inflow forces ghost cells and boundary to not point

inwards
e1o allow outflow, but no inflow uses the e1 extrapolation scheme
ant stops and prompts for adding documentation

J.11 Boundary conditions 235

e1 extrapolation [describe]
e2 extrapolation [describe]
e3 extrapolation in log [maintain a power law]
hat top hat jet profile in spherical coordinate.
jet top hat jet profile in cartezian coordinate.
spd sets d(rAα)/dr = fbcx12(j)
sfr stress-free boundary condition for spherical coordinate system.
nfr Normal-field bc for spherical coordinate system. Some people call this

the “(angry) hedgehog bc”.
sa2 (d/dr)(rBφ) = 0 imposes boundary condition on 2nd derivative of rAφ.

Same applies to θ component.
pfc perfect-conductor in spherical coordinate: d/dr(Ar) + 2/r = 0.
fix set boundary value [really??]
fil set boundary value from a file
g set to given value(s) or function
nil do nothing; assume that everything is set
ioc inlet/outlet on western/eastern hemisphere in cylindrical coordinates

do nothing; assume that everything is set
s implies f ′(yN) = f ′′′(y0) = 0

J.11.2 Boundary condition bcy

Variable Meaning

Module ‘boundcond.f90’

sds symmetric-derivative-set
0 zero value in ghost zones, free value on boundary
p periodic
pp periodic across the pole
yy Yin-Yang grid
ap anti-periodic across the pole
s symmetry symmetry, fN+i = fN−i;
ss symmetry, plus function value given
sds symmetric-derivative-set
cds complex symmetric-derivative-set
s0d symmetry, function value such that df/dy=0
a antisymmetry
a2 antisymmetry relative to boundary value
v vanishing third derivative
v3 vanishing third derivative
out allow outflow, but no inflow forces ghost cells and boundary to not point

inwards
1s onesided
d1s onesided for 1st and 2nd derivative in two first inner points, Dirichlet

in boundary point
n1s onesided for 1st and 2nd derivative in two first inner points, Neumann

in boundary point
cT constant temp.
sT symmetric temp.

236 THE PENCIL CODE

asT select entropy for uniform ghost temperature matching fluctuating
boundary value, TN−i = TN =; implies T ′(xN) = T ′(x0) = 0

f freeze value
s+f freeze value
fg “freeze” value, i.e. maintain initial
fBs frozen-in B-field (s)
fB frozen-in B-field (a2)
1 f=1 (for debugging)
set set boundary value
sse symmetry, set boundary value
sep set boundary value
e1 extrapolation
e2 extrapolation
e3 extrapolation in log [maintain a power law]
der set derivative on the boundary
cop outflow: copy value of last physical point to all ghost cells
c+k no-inflow: copy value of last physical point to all ghost cells, but sup-

pressing any inflow
sfr stress-free boundary condition for spherical coordinate system.
nfr Normal-field bc for spherical coordinate system. Some people call this

the “(angry) hedgehog bc”.
spt spherical perfect conducting boundary condition along θ boundary f ′′+

cot θf ′ = 0 and f(xN) = 0
pfc perfect conducting boundary condition along θ boundary
nil’,’ do nothing; assume that everything is set
sep set boundary value
crk no-inflow: copy value of last physical point to all ghost cells, but sup-

pressing any inflow

Module ‘boundcond_alt.f90’

sds symmetric-derivative-set
0 zero value in ghost zones, free value on boundary
p periodic
pp periodic across the pole
ap anti-periodic across the pole
s symmetry symmetry, fN+i = fN−i;
ss symmetry, plus function value given
sds symmetric-derivative-set
cds complex symmetric-derivative-set
s0d symmetry, function value such that df/dy=0
a antisymmetry
a2 antisymmetry relative to boundary value
v vanishing third derivative
v3 vanishing third derivative
out allow outflow, but no inflow forces ghost cells and boundary to not point

inwards
1s onesided
cT constant temp.
sT symmetric temp.

J.11 Boundary conditions 237

asT select entropy for uniform ghost temperature matching fluctuating
boundary value, TN−i = TN =; implies T ′(xN) = T ′(x0) = 0

f freeze value
s+f freeze value
fg “freeze” value, i.e. maintain initial
1 f=1 (for debugging)
set set boundary value
sse symmetry, set boundary value
sep set boundary value
e1 extrapolation
e2 extrapolation
e3 extrapolation in log [maintain a power law]
der set derivative on the boundary
cop outflow: copy value of last physical point to all ghost cells
c+k no-inflow: copy value of last physical point to all ghost cells, but sup-

pressing any inflow
sfr stress-free boundary condition for spherical coordinate system.
nfr Normal-field bc for spherical coordinate system. Some people call this

the “(angry) hedgehog bc”.
spt spherical perfect conducting boundary condition along θ boundary f ′′+

cot θf ′ = 0 and f(xN) = 0
pfc perfect conducting boundary condition along θ boundary
nil’,’ do nothing; assume that everything is set
sep set boundary value

J.11.3 Boundary condition bcz

Variable Meaning

Module ‘boundcond.f90’

0 zero value in ghost zones, free value on boundary
p periodic
yy Yin-Yang grid
s symmetry
sf symmetry with respect to interface
s0d symmetry, function value such that df/dz=0
0ds symmetry, function value such that df/dz=0
a antisymmetry
a2 antisymmetry relative to boundary value
a2v set boundary value and antisymmetry relative to it
af antisymmetry with respect to interface
a0d antisymmetry with zero derivative
v vanishing third derivative
v3 vanishing third derivative
1s one-sided
d1s onesided for 1st and 2nd derivative in two first inner points, Dirichlet

in boundary point
n1s onesided for 1st and 2nd derivative in two first inner points, Neumann

in boundary point

238 THE PENCIL CODE

a1s special for perfect conductor with const alpha and etaT when A con-
sidered as B; one-sided for 1st and 2nd derivative in two first inner
points

fg “freeze” value, i.e. maintain initial
c1 complex
c1s complex
Fgs Fconv = - chi t*rho*T*grad(s)
Fct Fbot = - K*grad(T) - chi t*rho*T*grad(s)
c3 constant flux at the bottom with a variable hcond
pfe potential field extrapolation
p1D potential field extrapolation in 1D
pot potential magnetic field
pwd a variant of ’pot’ for nprocx=1
hds hydrostatic equilibrium with a high-frequency filter
cT constant temp.
cT1 constant temp.
cT2 constant temp. (keep lnrho)
cT3 constant temp. (keep lnrho)
hs hydrostatic equilibrium
hse hydrostatic extrapolation rho or lnrho is extrapolated linearily and the

temperature is calculated in hydrostatic equilibrium.
cp constant pressure
sT symmetric temp.
ctz for interstellar runs copy T
cdz for interstellar runs limit rho
ism for interstellar runs limit rho
asT select entropy for uniform ghost temperature matching fluctuating

boundary value, TN−i = TN =; implies T ′(xN) = T ′(x0) = 0
c2 complex
db complex
ce complex
e1 extrapolation
e2 extrapolation
ex simple linear extrapolation in first order
exf simple linear extrapolation in first order
exd simple linear extrapolation in first order
exm simple linear extrapolation in first order
b1 extrapolation with zero value (improved ’a’)
b2 extrapolation with zero value (improved ’a’)
b3 extrapolation with zero value (improved ’a’)
f ’,’fa freeze value + antisymmetry
fs freeze value + symmetry
fBs frozen-in B-field (s)
fB frozen-in B-field (a2)
g set to given value(s) or function
1 f=1 (for debugging)
StS solar surface boundary conditions
set set boundary value
der set derivative on the boundary
div set the divergence of u to a given value use bc = ’div’ for iuz

J.11 Boundary conditions 239

ovr set boundary value
inf allow inflow, but no outflow
ouf allow outflow, but no inflow
in allow inflow, but no outflow forces ghost cells and boundary to not point

outwards
out allow outflow, but no inflow forces ghost cells and boundary to not point

inwards
in0 allow inflow, but no outflow forces ghost cells and boundary to not point

outwards relaxes to vanishing 1st derivative at boundary
ou0 allow outflow, but no inflow forces ghost cells and boundary to not point

inwards relaxes to vanishing 1st derivative at boundary
ind allow inflow, but no outflow forces ghost cells and boundary to not point

outwards creates inwards pointing or zero 1st derivative at boundary
oud allow outflow, but no inflow forces ghost cells and boundary to not point

inwards creates outwards pointing or zero 1st derivative at boundary
ubs copy boundary outflow,
win forces massflux given as Σρi(ui + u0) = fbcz1/2(ρ)
cop copy value of last physical point to all ghost cells
nil do nothing; assume that everything is set

Module ‘boundcond_alt.f90’

cfb radial centrifugal balance
fBs frozen-in B-field (s)
fB frozen-in B-field (a2)
0 zero value in ghost zones, free value on boundary
p periodic
s symmetry
sf symmetry with respect to interface
s0d symmetry, function value such that df/dz=0
0ds symmetry, function value such that df/dz=0
a antisymmetry
a2 antisymmetry relative to boundary value
af antisymmetry with respect to interface
a0d antisymmetry with zero derivative
v vanishing third derivative
v3 vanishing third derivative
1s one-sided
fg “freeze” value, i.e. maintain initial
c1 complex
Fgs Fconv = - chi t*rho*T*grad(s)
Fct Fbot = - K*grad(T) - chi t*rho*T*grad(s)
c3 constant flux at the bottom with a variable hcond
pfe potential field extrapolation
p1D potential field extrapolation in 1D
pot potential magnetic field
pwd a variant of ’pot’ for nprocx=1
hds hydrostatic equilibrium with a high-frequency filter
cT constant temp.
cT2 constant temp. (keep lnrho)
cT3 constant temp. (keep lnrho)

240 THE PENCIL CODE

hs hydrostatic equilibrium
hse hydrostatic extrapolation rho or lnrho is extrapolated linearily and the

temperature is calculated in hydrostatic equilibrium.
cp constant pressure
sT symmetric temp.
ctz for interstellar runs copy T
cdz for interstellar runs limit rho
asT select entropy for uniform ghost temperature matching fluctuating

boundary value, TN−i = TN =; implies T ′(xN) = T ′(x0) = 0
c2 complex
db complex
ce complex
e1 extrapolation
e2 extrapolation
ex simple linear extrapolation in first order
exf simple linear extrapolation in first order
exd simple linear extrapolation in first order
exm simple linear extrapolation in first order
b1 extrapolation with zero value (improved ’a’)
b2 extrapolation with zero value (improved ’a’)
b3 extrapolation with zero value (improved ’a’)
f ’,’fa freeze value + antisymmetry
fs freeze value + symmetry
fBs frozen-in B-field (s)
fB frozen-in B-field (a2)
g set to given value(s) or function
1 f=1 (for debugging)
StS solar surface boundary conditions
set set boundary value
der set derivative on the boundary
div set the divergence of u to a given value use bc = ’div’ for iuz
ovr set boundary value
inf allow inflow, but no outflow
ouf allow outflow, but no inflow
in allow inflow, but no outflow forces ghost cells and boundary to not point

outwards
out allow outflow, but no inflow forces ghost cells and boundary to not point

inwards
in0 allow inflow, but no outflow forces ghost cells and boundary to not point

outwards relaxes to vanishing 1st derivative at boundary
ou0 allow outflow, but no inflow forces ghost cells and boundary to not point

inwards relaxes to vanishing 1st derivative at boundary
ind allow inflow, but no outflow forces ghost cells and boundary to not point

outwards creates inwards pointing or zero 1st derivative at boundary
oud allow outflow, but no inflow forces ghost cells and boundary to not point

inwards creates outwards pointing or zero 1st derivative at boundary
ubs copy boundary outflow,
win forces massflux given as Σρi(ui + u0) = fbcz1/2(ρ)
cop copy value of last physical point to all ghost cells
nil do nothing; assume that everything is set

J.12 Initial condition parameter dependence 241

J.12 Initial condition parameter dependence

The following tables list which parameters from each Namelist are required (•), optional
(⋄) or irrelevant (blank). The distinction is made between required and optional where by
a parameter requires a setting if the default value would give an invalid or degenerate
case for the initial condition.

inituu a
m
p
lu
u

w
id
th

u
u

u
ra

n
d

u
u
le
ft

u
u
ri
g
h
t

u
u
u
p
p
er

u
u
lo
w
er

u
y
le
ft

u
y
ri
g
h
t

k
x
u
u

k
y
u
u

k
z
u
u

zero

gaussian-noise •
gaussian-noise-x •
xjump ⋄ • • • •
Beltrami-x •
Beltrami-y •
Beltrami-z •
trilinear-x •
trilinear-y •
trilinear-z •
cos-cos-sin-uz •
tor pert •
trilinear-x •
sound-wave • •
shock-tube ⋄ • •
bullets • ⋄
Alfven-circ-x • ⋄
const-ux •
const-uy •
tang-discont-z ⋄ • • •
Fourier-trunc • ⋄ • •
up-down • ⋄

2
4
2

T
H
E
P
E
N
C
IL

C
O
D
E

in
itss

ampl ss

radius ss

widthss

epsilon ss

grads0

pertss

ss left

ss right

ss const

mpoly0

mpoly1

mpoly2

isothtop

khor ss

center1 x

center1 y

center1 z

center2 x

center2 y

center2 z

thermal background

thermal peak

zero

con
st

ss
•

b
lob

•
•

isoth
erm

a
l

F
errière

x
ju
m
p

•
•

•
h
or-fl

u
x
tu

b
e

•
•

•
h
or-tu

b
e

•
•

•
sed

ov
•

•
•

•
•

sed
ov

-d
u
a
l

•
•

•
•

•
•

•
•

isob
a
ric

isen
trop

ic

lin
p
rof

p
iecew

-p
oly

p
oly

trop
ic

REFERENCES 243

References

[1] Abramowitz, A., Stegun, I. A., Pocketbook of Mathematical Functions, Harri
Deutsch, Frankfurt (1984)

[2] Brandenburg, A., Astrophys. J. 550, 824–840 (2001) “The inverse cascade and non-
linear alpha-effect in simulations of isotropic helical hydromagnetic turbulence”

[3] Brandenburg, A., in Advances in non-linear dynamos, ed. A. Ferriz-Mas &
M. Núñez Jiménez, (The Fluid Mechanics of Astrophysics and Geophysics,
Vol. 9) Taylor & Francis, London and New York, pp. 269–344 (2003);
http://arXiv.org/abs/astro-ph/0109497

[4] Brandenburg, A., Dobler, W., Astron. Astrophys. 369, 329–338 (2001) “Large scale
dynamos with helicity loss through boundaries”

[5] Brandenburg, A., & Hazlehurst, J., Astron. Astrophys. 370, 1092–1102 (2001) “Evo-
lution of highly buoyant thermals in a stratified layer”

[6] Brandenburg, A., & Sarson, G. R., Phys. Rev. Lett. 88, 055003 (2002) “The effect of
hyperdiffusivity on turbulent dynamos with helicity”

[7] Brandenburg, A., Dobler, W., & Subramanian, K., Astron. Nachr. 323, 99–122
(2002) “Magnetic helicity in stellar dynamos: new numerical experiments”

[8] Brandenburg, A., Enqvist, K., & Olesen, P., Phys. Rev. D 54, 1291–1300 (1996)
“Large-scale magnetic fields from hydromagnetic turbulence in the very early uni-
verse”

[9] Brandenburg, A., Jennings, R. L., Nordlund, Å., Rieutord, M., Stein, R. F., & Tuomi-
nen, I., J. Fluid Mech. 306, 325–352 (1996) “Magnetic structures in a dynamo sim-
ulation”

[10] A. Brandenburg, T. Kahniashvili, S. Mandal, A. Roper Pol, A. G. Tevzadze, and T.
Vachaspati, Phys. Rev. D 96, 123528 (2017) “Evolution of hydromagnetic turbulence
from the electroweak phase transition”

[11] Brandenburg, A., Moss, D., & Shukurov, A., MNRAS 276, 651–662 (1995) “Galactic
fountains as magnetic pumps”

[12] Brandenburg, A., Nordlund, Å., Stein, R. F., & Torkelsson, U., Astrophys. J. 446,
741–754 (1995) “Dynamo-generated turbulence and large scale magnetic fields in a
Keplerian shear flow”

[13] Collatz, L., The numerical treatment of differential equations, Springer-Verlag, New
York, p. 164 (1966)

[14] Dobler, W., Stix, M., & Brandenburg, A.: 2006, “Convection and magnetic field gen-
eration in fully convective spheres,” Astrophys. J. 638, 336-347

[15] Durrer, R., “The Cosmic Microwave Background,” Cambridge University Press
(2008)

[16] Gammie, C. F., Astrophys. J. 553, 174–183 (2001) “Nonlinear outcome of gravita-
tional instability in cooling, gaseous disks”

[17] Goodman, J., Narayan, R. & Goldreich, P., Month. Not. Roy. Soc. 225, 695–711
(1987) “The stability of accretion tori – II. Nonlinear evolution to discrete planets”

http://arXiv.org/abs/astro-ph/0109497

244 THE PENCIL CODE

[18] Haugen, N. E. L., & Brandenburg, A. Phys. Rev. E 70, 026405 (2004) “Inertial range
scaling in numerical turbulence with hyperviscosity”

[19] Hockney, R. W., & Eastwood, J. W., Computer Simulation Using Particles, McGraw-
Hill, New York (1981)

[20] Hurlburt, N. E., Toomre, J., & Massaguer, J. M., Astrophys. J. 282, 557–573 (1984)
“Two-dimensional compressible convection extending over multiple scale heights”

[21] Kim, J., Moin, P. &Moser, R J. of Fluid Mech. 177, 133 (1987) “Turbulence statistics
in fully developed channel flow at low Reynolds number”

[22] Kippenhahn, R. & Weigert, A. Stellar structure and evolution, Springer: Berlin
(1990)

[23] Krause, F., Rädler, K.-H.,Mean-Field Magnetohydrodynamics and Dynamo Theory,
Akademie-Verlag, Berlin; also Pergamon Press, Oxford (1980)

[24] Lele, S. K., J. Comp. Phys. 103, 16–42 (1992) “Compact finite difference schemes
with spectral-like resolution”

[25] Nordlund, Å., & Galsgaard, K., A 3D MHD code for Parallel Computers,
http://www.astro.ku.dk/~aake/NumericalAstro/papers/kg/mhd.ps.gz (1995)

[26] Nordlund, Å., Stein, R. F., Comput. Phys. Commun. 59, 119 (1990) “3-D simulations
of solar and stellar convection and magnetoconvection”

[27] Press, W., Teukolsky, S., Vetterling, W., & Flannery, B., Numerical Recipes in For-

tran 90, 2nd ed., Cambridge (1996)

[28] Stanescu, D., Habashi, W. G., J. Comp. Phys. 143, 674 (1988) “2N -storage low dissi-
pation and dispersion Runge–Kutta schemes for computational acoustics”

[29] Williamson, J. H., J. Comp. Phys. 35, 48 (1980) “Low-storage Runge–Kutta
schemes”

http://www.astro.ku.dk/~aake/NumericalAstro/papers/kg/mhd.ps.gz

245

Part IV

Indexes

File Index

*.c 12
*.f90 12
*.in 32, 171
*.local 32
../32c 145
./config 18
./host-ID 18
.adapt-mkfile.inc . . 77
.bashrc 5
.conf 19
.cshrc 5
.emacs 125
.svn/ 12
/scratch/ 7
<ID> 17
$HOME/.pencil/config-local

18
$HOME/.pencil/host-ID

18
$PENCIL_HOME 87
$PENCIL_HOME/config 18,

19
$PENCIL_HOME/config-local

18
$PENCIL_HOME/config/compilers/*.conf

17
$PENCIL_HOME/config/hosts

17
$PENCIL_HOME/config/hosts/<ID>.conf

17
$PENCIL_HOME/config/hosts/IWF/host-andromeda-GNU_-

Linux-Linux.conf

17
$PENCIL_HOME/config/hosts/pencil.org/workhorse.pencil.org.conf

17
$PENCIL_HOME/host-ID18
$PENCIL_HOME/python 46
${PENCIL_HOME}/config-local/hosts/

106
~/.idl_history 44
~/pencil-auto-test 106
1D_loop.f90 186
1d-test/ambipolar-diffusion

66
2d-tests/baroclinic105
2d-tests/battery_term

85

2d-tests/spherical_-

viscous_ring 105

aa[xyz].{xz,yz,xy,xy2}
215

ab[xyz].{xz,yz,xy,xy2}
215

adapt-mkfile 22
advective_gauge.f90186
alive.info 173
anelastic.f90 187, 216
auto-test 2, 9

b2.{xz,yz,xy,xy2} . 215
bb.net 42
bb[xyz].{xz,yz,xy,xy2}

215
beta1.{xz,yz,xy,xy2}

215
bfield.f90 187, 221, 226
bin/ 6, 9, 12, 14, 31, 33,

78
boundcond.f90 232, 235,

237
boundcond_alt.f90 234,

236, 239
bugs/ 12

cdata.f90 . 89, 108, 178,
216

chemistry.f90 188
chemistry_simple.f90

188
chiral_fluids.f90 . 188
chiral_fluids_-

gradtheta.f90

188
chiral_mhd.f90 . . . 188
config/ 18
ConfigFinder . . . 17, 18
configure 88
conv-slab/ 6, 9, 49, 148,

149
conv-slab/src/ 11
coronae.f90 189
cosmicray.f90 215
cosmicray_current.f90

189

cparam.inc . . 14, 32, 78
cparam.local . . . 6, 12,

14, 22, 41, 49, 54,
100, 145

cparam_pencils.inc 102
ctimeavg.local . 12, 30,

31

data/7, 14, 27, 33, 50, 86
data/ 15
data/dim.dat 165
data/param.nml 86, 146,

165
data/procN/ 25
data/proc*/ 27, 28
data/proc*/alive.info

26
data/proc*/slice* . . 27
data/proc*/var.dat . 40
datadir.in . . . 7, 14, 15
debug_c.c 109
density.f90 31, 66,

95, 181, 215, 216,
218, 223, 225,
227, 230

density_stratified.f90

189, 221, 224,
226, 228, 231

detonate.f90 189
dim.dat 15, 16, 32
divu.{xz,yz,xy,xy2}215
doc/ 12
dustdensity.f90 . . . 189
dx/ 12
dx/basic 41
dx/macros/ 32

ec.{xz,yz,xy,xy2} . 215
entropy.f9031, 109, 181,

215, 216, 219,
224, 225, 227, 230

entropy_anelastic.f90

189, 216
eos_ionization.f90 215
Equ 95
equ.f90 98
examples/pro/ 42

246

FILE INDEX 247

experimental 126

forced/ 12
forced/idl/ 55
fourier_fftpack.f90 53
fourier_transform_y 53

generate_kvectors.pro

148
getconf.csh 9, 12, 14, 33
gravitational_-

waves.f90 . . 190
gravitational_waves_-

hij6.f90 . . . 190
gravity_simple.f90 190,

221, 224, 226, 231
gravz/ 12
grid.dat 16, 23

heatflux.f90 191
helical-MHDturb 35, 148
host_ID.conf 17
hosts/ 18
hsections.pro 149
hydro.f90 . . . 31, 66, 76,

95, 100, 178, 214,
216, 217, 223,
225, 227, 229

hyperresi_strict_2nd

137
hypervisc_strict_2nd

137

idl/ 12, 43
index.pro 15, 32
Intel.conf 17
Intel_MPI.conf 17
interlocked-fluxrings

105
interstellar.dat . . . 15
Isurf.xz 215

j2.{xz,yz,xy,xy2} . 215
jb.{xz,yz,xy,xy2} . 215
jj[xyz].{xz,yz,xy,xy2}

215

k.dat 32, 148
K_VECTORS/ 148
kinematic/ 12

legend.dat 15
lncc.{xz,yz,xy,xy2}215

lnrho.{xz,yz,xy,xy2}
215

lnrho.net 42
lnTT.{xz,yz,xy,xy2}215
lorenz_gauge.f90 . . 191

mach.{xz,yz,xy,xy2}215
magnetic.f90 viii, 31, 96,

98, 99, 109, 182,
215, 216, 219,
224, 225, 227, 230

magnetic_shearboxJ.f90

191, 217, 221,
224, 226, 228, 231

Makefile . 13, 21, 22, 31,
32, 78, 79, 122

Makefile.local . viii, 6,
12–14, 32, 49, 52,
54, 62, 64, 77, 78,
88

Makefile.src . 6, 12, 14,
21, 78

meanfield.f90 195, 222,
229

meanfield_demfdt.f90

195
mkcparam . . . 14, 78, 102
mpicomm.f90 79

neutraldensity.f90 . 66
neutralvelocity.f90 66
NEWDIR 34, 83
nochiral 78
noentropy.f90 196
NOERASE 86
noinitial_condition.f90

104
noionization.f90 . . 174
nomagnetic.f90 viii, 98,

99
nompicomm.f90 . 79, 111
nospecial.f90 103

o2.{xz,yz,xy,xy2} . 215
oo[xyz].{xz,yz,xy,xy2}

215
os/Unix.conf 19

param.nml . . 15, 32, 145
param2.nml 15, 32
params.log . . 15, 33, 34

particles_chemistry.f90

196
particles_dust.f90 196
particles_dust_-

brdeplete.f90

196
particles_lagrangian.f90

196
particles_mass_-

swarm.f90 . . 196
particles_surfspec.f90

196
pc_read_phiavg.pro . 30
pc_read_video 28
pc_read_xyaver 29
pc_setupsrc 6
pencil-code/ 11, 12, 87
pencil-code/doc/manual.tex

90, 104
pencil-code/idl/read 8
pencil-code/license/developers.txt

3, 91
pencil-code/utils . . 33
pencil-runs/ 12
Pencil::ConfigFinder17
Pencil::ConfigParser17
pencil_check.f90 . . . 82
phiaver.in 29, 216
phiaverages.dat 29
PHIAVGN 30
phiavg.pro 30
polymer.f90 197
power 53
power.pro 54
power_kin.dat 52
power_krms.dat 53
powerbx_x.dat 52
powerhel_mag.dat . . . 52
powerux_x.dat . . 52, 53
Poynting[xyz].{xz,yz,xy,xy2}

215
pp.{xz,yz,xy,xy2} . 215
print.in . . 8, 14, 25, 98,

99, 146, 178
procN 15, 32, 33
proc0 15
proc1 15
procN/ 108
pscalar.f90 . . 186, 215

Qrad.{xz,yz,xy,xy2}215

248 THE PENCIL CODE

r.pro 44, 45, 50
radiation_ray.f90 . 215
rall.pro 44, 45, 50
README . . . 32, 107, 148
reference.out . . . 8, 14
RELOAD 15, 33, 34
remesh.csh 164
RERUN 34, 83
rho.{xz,yz,xy,xy2} 215
rings/ 12
run.csh 9, 12, 14, 31, 33,

34, 83
run.in viii, 8,

14, 26–28, 30–32,
34, 37–40, 52, 54,
82, 100, 145, 151,
171

run.pro 32
run.x . 8, 15, 31, 39, 107
runA_32a 22
runs/ 12
rvid_box 27
rvid_box.pro 27
rvid_line.pro 27
rvid_plane.pro 27

samples/ . . 2, 3, 5, 9, 14,
119

samples/1d-tests/H2_-

flamespeed . . 38
samples/dust-vortex 69
samples/parameter_scan

32
samples/README 12
samples/sedimentation/

56
SCRATCH_DIR 83
seed.dat 16, 40
sfb-1.dat 54
sfu-1.dat 54
sfz1-1.dat 54
shear.f90 197
shock.{xz,yz,xy,xy2}

215
shock.f90 197, 215
shock_highorder.f90

197, 222, 224, 227
slice 86
slice_uu1.yz 27
solar_corona.f90 . . 197

solid_cells_CGEO.f90

197
solid_cells_reactive.f90

197
sound-spherical-noequi

24
sourceme 5, 75
sourceme.csh . 5, 12, 75,

86
sourceme.sh 5, 12, 75, 86
SPEED 33
spher/ 12
src/ viii, 3, 6, 11, 12, 14,

33, 78
src/ 14
src/*.local 32
src/cparam.local . . 145
src/Makefile.inc . . . 52
src/Makefile.local 38,

104, 145, 150
src/read_all_-

videofiles.x 27
src/read_videofiles.x

27, 28
ss.{xz,yz,xy,xy2} . 215
ss.net 42
start.csh . 9, 12, 14, 31,

33, 39, 66, 82
start.in viii, 8,

14, 24, 28, 32, 34,
35, 37, 39, 41, 59,
82, 100, 104, 146,
151, 163, 164, 171

start.pro . . . 32, 44, 86
start.x 8, 15, 39, 41, 77,

82, 107, 175
STOP 33, 34
structure.pro 55
sub.f90 96

TAVGN 31
temperature_idealgas.f90

197, 215, 222,
224, 227, 229, 232

temperature_ionization.f90

198, 223
testfield_axisym.f90

198
testfield_axisym2.f90

199

testfield_axisym4.f90

199
testfield_compress_-

z.f90 199
testfield_meri.f90 202
testfield_nonlin_z.f90

203
testfield_x.f90 . . . 205
testfield_xz.f90 . . 207
testfield_z.f90 . . . 207
testflow_z.f90 . . . 209
testperturb.f90 . . . 209
testscalar.f90 . . . 210
testscalar_axisym.f90

211
testscalar_simple.f90

212
thermal_energy.f90 214,

223, 224, 227,
229, 232

time.dat 16, 40
time_series.dat . 8, 14,

15, 25, 32, 33, 41,
44

timeavg.dat 31
top.log 33
ts.pro 42, 44, 149
tsnap.dat 15, 172
TT.{xz,yz,xy,xy2} . 215
tvid.dat 15

u2.{xz,yz,xy,xy2} . 214
u[xyz].{xz,yz,xy,xy2}

214
uu.net 42

VAR 40, 86, 173
VARN 15, 16, 26, 32, 33,

36, 172
var.dat 8,

15, 16, 25, 31, 32,
34, 36, 40, 42, 45,
86, 144, 164, 172,
173

var.general 41
VAR0 164
VAR1 144
VAR# 34
video.in26–28, 146, 214
visc_smagorinsky.f90

214

FILE INDEX 249

viscosity.f90 214, 223,
227, 232

vsections.pro 150
vsections2.pro . . . 150

X.xy 16
X.xz 16

X.yz 16
xyaver.in . 29, 146, 217
xyaverages.dat 29
xzaver.in 29, 223
xzaverages.dat 29

yaver.in 29, 227

yaverages.dat 29
yH.{xz,yz,xy,xy2} . 215
yzaver.in 29, 224
yzaverages.dat 29

zaver.in 29, 229
zaverages.dat 29

Variable Index

.true. 29
0ds 237, 239
1s 233–237, 239
1so 233, 234

0 232, 234–237, 239
1 233, 234, 236–238, 240

a 232, 234–237, 239
a0d 237, 239
a11xy 202
a12xy 202
a13xy 202
a1s 238
a2 . . . 232, 234–237, 239
a21xy 202
a22xy 202
a23xy 202
a2m 184, 193
a2r 232, 234
a2v 232, 237
a31xy 202
a32xy 202
a33xy 202
aa 215
ab 215
ab int 182, 191
ABC A 176
ABC B 176
ABC C 176
abm 182, 191
abmh 182, 191
abmn 182, 191
abms 182, 191
abmxy 231
abmz 220, 222
abrms 182, 191
abumx 182, 191
abumy 182, 191
abumz 182, 191
abuxmz 219, 221
abuymz 219, 221
abuzmz 219, 221
accpowzdownmz . . . 218
accpowzmz 218
accpowzupmz 218
af 232, 237, 239

ajm 182, 191
aklam 209
aklamQ 209
alp11 200, 203, 205, 207,

209
alp11 x 205
alp11 x2 206
alp11cc . . 200, 203, 205,

207
alp11x 206
alp11z 208
alp12 200, 203, 205, 207,

209
alp12 x 206
alp12 x2 206
alp12cs . . 200, 203, 205,

207
alp12x 206
alp12z 208
alp13 207
alp13z 208
alp21 200, 203, 205, 207,

209
alp21 x 205
alp21 x2 206
alp21sc . . 200, 203, 205,

207
alp21x 206
alp21z 208
alp22 200, 203, 205, 207,

209
alp22 x 206
alp22 x2 206
alp22ss . . 200, 203, 205,

207
alp22x 206
alp22z 208
alp23 207
alp23z 208
alp31 200, 203, 205, 207,

209
alp32 200, 203, 205, 207,

209
alpK 200, 203
alpM 200, 203
alpm 195
alpMK 200, 203

alpmxz 229
alpPARA 198, 199
alpPARAz 198, 199
alpPERP 198, 199
alpPERPz 198, 199
amax 184, 193
ambmz 185, 194
ambmzh 185, 194
ambmzn 185, 194
ambmzs 185, 194
ampl ff 177
ampl forc 174
ampl ss 168
amplaa 170
amplaa2 170
ampllncc 170
ampllncc2 170
ampllnrho 167
ampluu 128, 166
ampluu=1e-1 128
ant 233, 234
ap 235, 236
apbrms 187
arms 184, 193
asT . 233, 234, 236–238,

240
axmxy 230, 231
axmxz 227, 228
axmz 219, 221
axp2 183, 193
axpt 183, 192
aymxy 230, 231
aymxz 227, 228
aymz 219, 221
ayp2 183, 193
aypt 183, 192
azmxy 230, 231
azmxz 227, 228
azmz 219, 221
azp2 183, 193
azpt 183, 192

b0rms 201, 204, 206, 208
b1 238, 240
b111xy 202
b112xy 203

250

VARIABLE INDEX 251

b11rms 201, 204,
206–208

b121xy 202
b122xy 203
b12rms . . 201, 204, 206,

208
b131xy 203
b132xy 203
b1b23m 185, 194
b1b32m 185, 194
b1m 182, 191
b1rms 198, 199
b2 215, 238, 240
b211xy 203
b212xy 203
b21rms 201, 204,

206–208
b221xy 203
b222xy 203
b22rms . . 201, 204, 206,

208
b231xy 203
b232xy 203
b2b13m 185, 194
b2b31m 185, 194
b2divum 186, 195
b2m 182, 187, 191
b2mphi 216, 217
b2mx 225, 226
b2mxz 227, 228
b2mz 220–222
b2rms 198, 199
b2ruzm 182, 191
b2tm 182, 191
b2uzm 182, 191
b3 238, 240
b311xy 203
b312xy 203
b321xy 203
b322xy 203
b331xy 203
b332xy 203
b3b12m 185, 194
b3b21m 185, 194
b3rms 198, 199
b4m 182
B ext 176
bamp . . . 201, 205, 208
bb 109, 215
bbmphi 216, 217

bbsphmphi . . . 216, 217
bbxmax 184, 193
bbxmz 219, 221
bbymax 184, 193
bbymz 219, 221
bbzmax 184, 193
bbzmz 220, 221
bc{x,y,z} 39
bcosphz 185, 194
bcx 39, 40, 83, 165, 173,

232
bcy . . . 39, 165, 173, 235
bcz 39, 40, 83, 165, 173,

237
beta1 215
beta1m 184, 193
beta1max 184, 193
beta1mxy 231, 232
beta1mz 220, 222
beta2mx 226
beta2mz 220–222
betam . . . 184, 188, 193
betamax . 184, 188, 193
betamin . 184, 188, 193
betamx 226
betamz 220–222
betPARA 198, 199
betPARAz 198, 199
betPERP 198, 199
betPERP2 199
betPERPz 198, 199
bf2m 184
bf2mz 220, 222
bf4m 184
bfrms 184, 193
bgmu5rms . . . 188, 189
bgtheta5rms 188
bjtm 182, 191
bm 187
bm2 182, 191
bmax . . . 184, 187, 193
bmin 187
bmx . . 29, 184, 193, 226
bmxy rms 186, 195
bmy 29, 184, 193
bmz . . 29, 184, 193, 221
bmzA2 184, 194
bmzph 185, 194
bmzphe 185, 194
bmzS2 184, 194

bpmphi 216, 217
brmphi 216, 217
brms 183, 187, 193
brms=3.871E-01 . . . 128
brmsx 186, 195
brmsz 186, 195
brsphmphi . . . 216, 217
bsinphz 185, 194
bthmphi 216, 217
bx0mz 202, 205, 206, 209
bx0pt . . . 200, 204, 208
bx11pt . . 200, 204, 208
bx12pt . . 200, 204, 208
bx1mxz 227, 228
bx1pt 198, 199
bx21pt . . 200, 204, 208
bx22pt . . 200, 204, 208
bx2m . . . 185, 187, 194
bx2mx 226
bx2mxy 230, 231
bx2mxz 228
bx2my 224
bx2mz 220–222
bx2pt 198, 199
bx2rmz 220, 222
bx3pt 198, 199
bxbym . . 184, 187, 193
bxbymx 226
bxbymxy 231
bxbymxz 228
bxbymy 224
bxbymz 220–222
bxbzm 187
bxbzmx 226
bxbzmxy 231
bxbzmxz 228
bxbzmy 224
bxbzmz 220–222
bxm 184, 187, 193
bxmax . . 184, 187, 193
bxmin 184, 193
bxmx 226
bxmxy 230, 231
bxmxz 228
bxmy 224
bxmz 220, 221
bxp2 183, 192
bxpt 183, 192
by0mz 202, 205, 206, 209
by0pt . . . 201, 204, 208

252 THE PENCIL CODE

by11pt . . 200, 204, 208
by12pt . . 200, 204, 208
by1mxz 228
by21pt . . 200, 204, 208
by22pt . . 201, 204, 208
by2m . . . 185, 187, 194
by2mx 226
by2mxy 231
by2mxz 228
by2my 224
by2mz 220–222
by2rmz 220, 222
bybzm 187
bybzmx 226
bybzmxy 231
bybzmxz 228
bybzmy 224
bybzmz 220–222
bym 184, 187, 193
bymax . . 184, 187, 193
bymin 184, 193
bymx 226
bymxy 230, 231
bymxz 228
bymy 224
bymz 220, 221
byp2 183, 192
bypt 183, 192
bz0mz 202, 205, 206, 209
bz1mxz 228
bz2m . . . 185, 187, 194
bz2mx 226
bz2mxy 231
bz2mxz 228
bz2my 224
bz2mz 220–222
bz2rmz 220, 222
bzm 184, 187, 193
bzmax . . . 184, 187, 193
bzmin 184, 193
bzmphi 216, 217
bzmx 226
bzmxy 230, 231
bzmxz 228
bzmy 224
bzmz 220, 221
bzp2 183, 192
bzpt 183, 192

c+k 236, 237
c1 . . . 233, 234, 238, 239

c1pt 211–213
c1rms . . . 210, 212, 213
c1s 238
c2 238, 240
c2pt 211–213
c2rms . . . 210, 212, 213
c3 238, 239
c3pt 211–213
c3rms . . . 210, 212, 213
c4pt 211–213
c4rms . . . 210, 212, 213
c5pt 211–213
c5rms . . . 210, 212, 213
c6pt 211–213
c6rms 211–213
ccglnrm 186
ccmax 186
cdiffrho 174
cds 235, 236
cdt 38, 41, 172
cdts 38
cdtv 38, 172
cdz 238, 240
ce 238, 240
cfb 234, 239
chi 175
chi t 175
coeff grid 23, 25
cool 175
cooltype 175
cop . 233, 234, 236, 237,

239, 240
cosjbm 186, 195
cosubm 183, 192
cp 238, 240
cpc 232, 234
cpp 232, 234
cpz 232, 234
crk 236
cs0 167, 174
cs2 109
cs2bot 167, 174
cs2cool 175
cs2mphi 216, 217
cs2top 167, 174
csm 181, 189, 198
cT . . . 233–236, 238, 239
cT1 238
cT2 238, 239
cT3 238, 239

ctz 238, 240
curlru2mz 217
cutoff=0 128
cvsid 164, 171

d1s 233, 235, 237
d2davg 30, 173
d2Lambrms 187
d2Lamrms 187
d6abmz 220, 222
d6amz1 220, 222
d6amz2 220, 222
d6amz3 220, 222
damp 173, 174
dampu 173
dampuext 173
dampuint 173
datadir 45
db 238, 240
dbx2m 187
dbxm 187
dbxmax 187
dby2m 187
dbym 187
dbymax 187
dbz2m 187
dbzm 187
dbzmax 187
dcoolx 225
dcoolxy 230
dcoolz 219
del 198, 199
del2 199
deltay 197
delz 198, 199
der . 233, 234, 236–238,

240
detn 189
dettot 189
dexbmx 186, 195
dexbmy 186, 195
dexbmz 186, 195
dheat buffer1 175
div 238, 240
divabrms 187
divapbrms 187
divarms 184, 193
divbmax 188
divbrms 188
divrhoum 187
divrhoumax . . 180, 187

VARIABLE INDEX 253

divrhourms . . 180, 187
divru2mz 217
divu 215
divu2m 179
divu2mz 217
divuHrms 181
divum 179
divumz 217
dobrms 182, 192
dr0 233, 234
drho2m 181, 189
drho2mx 226
drho2mxy 231
drho2mxz 228
drho2my 224
drho2mz 221
drhom 181, 189
drhomax 189
drhomx 226
drhomxy 231
drhomxz 228
drhomy 224
drhomz 221
drhorms 189
dsnap 26, 36, 172
dstalk 171
dt . . . 8, 38, 41, 172, 178
dt bb 1 189
dt chiral 189
dt mu5 1 189
dt mu5 2 189
dt mu5 3 189
dtb 184, 193
dtc 8, 181, 189, 196, 198
dtchem 188
dtchi . . . 8, 181, 190, 198
dtchi2 . . . 186, 189, 197
dteta 184, 193
dtF 181
dtH 181
dtmin 172
dtnewt 197
dtnu 8, 214
dtpchem 196
dtq 191
dtq2 191
dtrad 186, 189
dtradloss 197
dtshear 197
dtspitzer . 186, 189, 191,

197
dtu 8, 180
dtvel 197
dubrms 182, 192
dudx 180
durms 178
dvid 26, 27, 36, 172
dz 1 23
dz tilde 23

E0rms201, 204, 206, 208
E0Um . . . 202, 205, 209
E0Wm . . 202, 205, 209
e1 . . . 233, 235–238, 240
E10z . 201, 205, 206, 209
E111z . . . 201, 205–208
E112z 201, 205, 206, 209
E11rms . 201, 204, 206,

208
E11xy 202
E121z . . . 201, 205–208
E122z 201, 205, 206, 209
E12rms . 201, 204, 206,

208
E12xy 202
E13xy 202
e1o 233, 234
e2 . . . 233, 235–238, 240
E20z . 201, 205, 206, 209
E211z . . . 201, 205–208
E212z 201, 205, 206, 209
E21rms . 201, 204, 206,

208
E21xy 202
E221z . . . 201, 205–208
E222z 201, 205, 206, 209
E22rms . 201, 204, 206,

208
E22xy 202
E23xy 202
e3 233, 235–237
E30z . 202, 205, 206, 209
E311z . . . 201, 205–208
E312z 201, 205, 206, 209
E31xy 202
E321z . . . 201, 205–208
E322z 201, 205, 206, 209
E32xy 202
E33xy 202
e3xamz1 220, 222
e3xamz2 220, 222

e3xamz3 220, 222
E41xy 202
E42xy 202
E43xy 202
E51xy 202
E52xy 202
E53xy 202
E61xy 202
E62xy 202
E63xy 202
E71xy 202
E72xy 202
E73xy 202
E81xy 202
E82xy 202
E83xy 202
E91xy 202
E92xy 202
E93xy 202
EBpq 202, 205, 206, 209
ecr 215
eem . . 181, 189, 198, 214
eemz 223
ekin 180
ekincr 189
ekinmx 225
ekinmz 218
ekinp 196
ekintot 180
emag 183, 193
embmz 185, 194
EMFdotB int 195
EMFdotBm 195
EMFmax 195
EMFmin 195
EMFmz1 195
EMFmz2 195
EMFmz3 195
EMFrms 195
emxamz3 185, 194
Emymxz 229
Emzmask 198
Emzmxy 232
eos merger 89
epot 190
epotmx 226
epotmxy 231
epotmy 224
epotmz 221
epottot 190

254 THE PENCIL CODE

epotuxmx 226
epotuxmxy 231
epotuzmz 221
epsAD 183, 192
epsilonaa 170
epsK 214
epsKmz 223
epsM 183, 192
epsMmz 221, 222
eruzmz 223
eta 176
eta11 200, 203, 205, 207,

209
eta11 x 206
eta11 x2 206
eta11cc . . 200, 203, 205,

207
eta11x 206
eta11z 208
eta12 200, 203, 205, 207,

209
eta12 x 206
eta12 x2 206
eta12cs . . 200, 203, 205,

207
eta12x 207
eta12z 208
eta21 200, 203, 205, 207,

209
eta21 x 206
eta21 x2 206
eta21sc . . 200, 203, 205,

207
eta21x 207
eta21z 208
eta22 200, 203, 205, 207,

209
eta22 x 206
eta22 x2 206
eta22ss . . 200, 204, 205,

207
eta22x 207
eta22z 208
eta31 207, 209
eta32 207, 209
eta ext 176
eta int 176
eta out 176
eta tdep 182
etaj2max 186, 195

etajmax 186, 195
etajrhomax . . . 186, 195
etasmagm 186, 195
etasmagmax . . 186, 195
etasmagmin . . 186, 195
etatm 195
etatotalmx 226
etatotalmz . . . 220, 222
etavamax 186, 195
ethm 181, 189, 196, 198,

214
ethmax 214
ethmcr 189
ethmin 214
ethmz 219, 223
ethtot 181, 190, 198, 214
etot 214
ex 238, 240
Ex0pt . . . 201, 204, 208
Ex11pt . . 201, 204, 208
Ex12pt . . 201, 204, 208
Ex21pt . . 201, 204, 208
Ex22pt . . 201, 204, 208
exabot 183, 193
examx 185, 194
examxy1 231
examxy2 231, 232
examxy3 231, 232
examy 185, 194
examz 185, 194
examz1 220, 222
examz2 220, 222
examz3 220, 222
exatop 183, 193
exd 238, 240
exf 238, 240
exjmx 185, 195
exjmy 185, 195
exjmz 185, 195
exm 238, 240
Exmxy 186, 195
Exmxz 228
Exmz 220, 221
Exp2 183, 192
Expt 183, 192
Ey0pt . . . 201, 205, 208
Ey11pt . . 201, 204, 208
Ey12pt . . 201, 205, 208
Ey21pt . . 201, 204, 208
Ey22pt . . 201, 205, 208

Eymxy 186, 195
Eymxz 228, 229
Eymz 220, 221
Eyp2 183, 192
Eypt 183, 192
Ezmxy 186, 195
Ezmxz 228, 229
Ezmz 220, 221
Ezp2 183, 193
Ezpt 183, 192

f 233, 234, 236, 237
f’,’fa 238, 240
F11z 211–213
F12z 211–213
F21z 211–213
F22z 211–213
F31z 211–213
F32z 211–213
fB 236, 238–240
fbcx 233
fbcx12 234
fbcx2 233
fbm 183, 192
Fbot 175
fBs 236, 238–240
Fcm 233, 234
fconvm 182
fconvmz 223
fconvxmx 225
fconvxy 230
fconvyxy 230
fconvz 219
fconvzxy 230
Fct . . 233, 234, 238, 239
ffakez 223
FFLAGS DOUBLE . . 52
fg . . . 233, 234, 236–239
Fgs . . 233, 234, 238, 239
fil 234, 235
fix 234, 235
fkinxmx 218
fkinxmxy 230
fkinymxy 230
fkinzm 178
fkinzmz 217
fmasszmz 217
fmax 98
force 177
fountain 177
fpresxmz 223

VARIABLE INDEX 255

fpresymz 223
fpreszmz 223
fradbot . . 181, 190, 198
fradmx 225
fradmz 223
fradtop . . 181, 190, 197
fradx kramers 225
fradxy Kprof 230
fradxy kramers 230
fradymxy Kprof . . . 230
fradz 219
fradz constchi 219
fradz Kprof 219
fradz kramers 219
fring1,fring2 170
frmax 197
fs 238, 240
fsum 98
fturbfz 219
fturbmx 225
fturbmz 219
fturbrxy 230
fturbthxy 230
fturbtz 219
fturbxy 230
fturbymxy 230
fturbz 219
fum 180
fviscm 214
fviscmax 214
fviscmin 214
fviscmx 227
fviscmxy 232
fviscmz 223
fviscrmsx 214
fviscsmmxy 232
fviscsmmz 223
fviscymxy 232
fxbxm 183, 192

g 234, 235, 238, 240
g11pt 190
g12pt 190
g22pt 190
g23pt 190
g31pt 190
g33pt 190
gal 209
gam 198, 199
gam11 210–212
gam11z . . 210, 211, 213

gam12 210–212
gam12z . . 210, 211, 213
gam13 210–212
gam13z . . 210, 211, 213
gam21 210–212
gam21z . . 210, 211, 213
gam22 210–212
gam22z . . 210, 211, 213
gam23 210–212
gam23z . . 210, 212, 213
gam31 210–212
gam31z . . 210, 212, 213
gam32 210–212
gam32z . . 210, 212, 213
gam33 210–212
gam33z . . 210, 212, 213
gam3z 212
gamc 211
gamcz 211
gamma . . 167, 174, 209
gammaQ 209
gamz 198, 199
gdivu2m 179
gg2m 190
ggT2m 190
ggTm 190
ggTp2 190
ggTpt 190
ggTXm 190
ggX2m 190
ggXm 190
ggXp2 190
ggXpt 190
gLambm 186
gLamrms 187
gmu5mx 188
gmu5my 189
gmu5mz 189
gmu5rms 188
gpu astaroth.f90 . . . 163
grads0 168
grav amp 168
grav profile . . . 129, 130,

167, 177
grav tilt 168
gravz . . . 129, 167, 177
grhomax 181
grid func 23
gshockmax 197
gsrms 182

gsxmxy 230
gsymxy 230
gszmxy 230
gT2m 197
gtheta5mx 188
gtheta5my 188
gtheta5mz 188
gtheta5rms 188
gTmax 182, 197
gTrms 182
gTxgsrms 182
gTxgsx2mxy 230
gTxgsx2mz 219
gTxgsxmxy 230
gTxgsxmz 219
gTxgsy2mxy 230
gTxgsy2mz 219
gTxgsymxy 230
gTxgsymz 219
gTxgsz2mxy 230
gTxgsz2mz 219
gTxgszmxy 230
gTxgszmz 219
gTxmxy 230
gTymxy 230
gTzmxy 230
guxgTm 197
guygTm 197
guzgTm 197
gzlnrhomz 219

h22rms 190
h23rms 190
h33rms 190
hat 233, 235
hcond0 174, 175
hcond1 174
hcond2 174
hds 238, 239
headt 108
headtt 108
heatmz 219
height eta 176
height ff 177
hhT2m 190
hhThhXm 190
hhTp2 190
hhTpt 190
hhTXm 190
hhX2m 190
hhXp2 190

256 THE PENCIL CODE

hhXpt 190
hjparallelm . . 186, 195
hjperpm 186, 195
hjrms 184, 193
Hmax 181
hrms 190
hs 238, 240
hse 238, 240
hydro.f90 163

ialive 25, 173
ialive=0 26
idiag jbm 98
IDL PATH 5, 55
idx tavg . . . 30, 31, 173
iforce 176
iforce2 176
iheatcond 174, 176
imax 54
in 239, 240
in0 239, 240
ind 239, 240
inf 239, 240
init ads mol frac . . 171
init surf mol frac . . 171
initaa 169
initaa2 170
initlncc 170
initlncc2 170
initlnrho 167
initpower 128
initpower2 128
initpower2=-5/3 . . . 128
initpower=2 128
initpower=4. 128
initpower aa=2. . . . 128
initss 168
inituu 166
ioc 234, 235
ip 35, 164, 171
Iring1,Iring2 170
isav 25
isave 172
ism 238
isothtop 169, 175
Isurf 215
it 8, 33, 34, 178
it1 25, 29, 172
it1d 29, 172
itorder 36, 172
iuut 100

ivar 108
ivisc 177
iwig 172
ix 26, 172
iy 26, 172
iz 26, 172
iz2 26, 172

j11rms 201, 204
j2 215
j2m 182, 188, 191
j2mz 221, 222
jb 98, 215
jb0m 201, 204, 208
jb int 182, 191
jbm 98, 182, 191
jbmh 182, 191
jbmn 182, 192
jbmphi 216, 217
jbms 182, 192
jbmxy 231
jbmz 220, 222
jbrms 182, 191
jbtm 182, 191
jdel2am 186
jet 233, 235
jj 215
jm 187
jm2 182, 191
jmax 184, 187, 193
jmbmz 185, 194
jmin 187
jmx 184, 194
jmy 185, 194
jmz 185, 194
jparallelm . . . 186, 195
jperpm 186, 195
jrms 184, 187, 193
jx2m 188
jxaprms 187
jxarms 187
jxbm 185, 194
jxbmx 185, 194
jxbmy 185, 194
jxbmz 185, 194
jxbr2m 186, 195
jxbrmax 186, 195
jxbxm 183, 192
jxbym 183, 192
jxbzm 183, 192
jxgLamrms 187

jxm 188
jxmax . . . 184, 188, 193
jxmxy 230, 231
jxmxz 228
jxmz 220, 221
jxp2 183, 192
jxpt 183, 192
jy2m 188
jybxm 183, 192
jybym 183, 192
jybzm 183, 192
jym 188
jymax . . . 184, 188, 193
jymxy 230, 231
jymxz 228
jymz 220, 221
jyp2 183, 192
jypt 183, 192
jz2m 188
jzbxm 183, 192
jzbym 183, 192
jzbzm 183, 192
jzm 188
jzmax . . . 184, 188, 193
jzmxy 230, 231
jzmxz 228
jzmz 220, 221
jzp2 183, 192
jzpt 183, 192

k forc 174
kap11 210–212
kap11z . . 210, 212, 213
kap12 . . . 210, 211, 213
kap12z . . 210, 212, 213
kap13 . . . 210, 211, 213
kap13z . . 210, 212, 213
kap21 . . . 210, 211, 213
kap21z . . 210, 212, 213
kap22 . . . 210, 211, 213
kap22z . . 210, 212, 213
kap23 . . . 210, 211, 213
kap23z . . 210, 212, 213
kap31 . . . 210, 211, 213
kap31z . . 210, 212, 213
kap32 . . . 210, 211, 213
kap32z . . 210, 212, 213
kap33 . . . 210, 211, 213
kap33z . . 210, 212, 213
kapcPARA 211
kapcPARAz 211

VARIABLE INDEX 257

kapcPERP1 211
kapcPERP2 211
kapcPERPz 211
kapPARA 198, 199
kapPARAz . . . 198, 199
kapPERP 198, 199
kapPERP2 199
kapPERPz . . . 198, 199
kfountain 177
khor ss 169
kinflow 176
KK2m 189
KKm 189
Kkramersm 182
Kkramersmx 225
Kkramersmz 219
kmz 185, 194
kpeak 128
kpeak=3. 128
kx 176
kx aa . . . 170, 185, 194
kx lncc 170
ky 176
ky aa 170
ky lncc 170
kz 176
kz aa 170
kz lncc 170

l1 108
l2 108
Lambzm 186
Lambzmz 186
Lamm 186
Lamp2 186
Lampt 186
Lamrms 186
lb nxgrid 54
lbubble 178
lcalc heatcond constchi

174
ldamp fade 173
ldensity var 89
ldragforce dust par . 177
ldragforce gas par . 177
ldraglaw steadystate 177
lequidist 23
lfirst 108
lfirstpoint 108
lhcond global 176
lignore Bext in b2 . . 176

lncc 215
lnowrite 164
lnrho 215
lnrhomphi 216
lnTT 215
lout 108
lperi 164
lpress equil 170
lprocz slowest . . 50, 164
lpscalar sink 177
lread oldsnap 164
lread oldsnap nomag

165
lread oldsnap nopscalar

165
lroot 108
lshift origin 165
lspecies transfer [T] 178
lstalk ap 171
lstalk bb 171
lstalk grho 171
lstalk guu 171
lstalk relvel 171
lstalk rho 171
lstalk uu 171
lstalk vv 171
lstalk xx 171
lthiele [T] 178
luminosity 175
lupw lnrho 174
lupw ss 175
luse Bext in b2 176
lwrite 2d 164
lwrite aux 164, 173
lwrite ic 164
lwrite phiaverages . . 29
lwrite yaverages 29
lwrite zaverages 29
Lxyz 23, 25, 35, 164

m 108
m1 108
M11 200, 204, 207
M11cc . . . 200, 204, 207
M11ss . . . 200, 204, 207
M11z . . . 202, 205, 209
M12cs . . . 200, 204, 207
m2 108
M22 200, 204, 207
M22cc . . . 200, 204, 207
M22ss . . . 200, 204, 207

M22z . . . 202, 205, 209
M33 200, 204, 207
M33z . . . 202, 205, 209
mach 215
mag flux 197
magfricmax . . 185, 194
MAGNETIC INIT -

PARS 165
Mamax 180
Marms 180
mass 181, 187, 189
maux 32, 100
maxadvec 141, 178
meshRemax 214
mgam33 . 210, 212, 213
mkap33 . 210, 212, 213
MMxm 189
MMym 189
MMzm 189
mpm 196
mpmax 196
mpmin 196
mpoly0 168, 169
mpoly1 168, 169
mpoly2 169
mu 198, 199
mu2 199
mu5m 188
mu5rms 188
muc1 211
muc2 211
mucz 211
mumz 223
muz 198, 199
mvar 32, 78, 165
mx 26, 108, 109
my 26, 108, 109
mz 26, 108, 109

n 108
n1 108
n1s 233, 235, 237
n2 108
nfr 233, 235–237
ngam33 . 210, 212, 213
nil . . 234, 235, 239, 240
nil’,’ 236, 237
nkap33 . . 210, 212, 213
noentropy.f90 163
nogpu.f90 163
nohydro.f90 163

258 THE PENCIL CODE

nopower spectrum.f90

163
noyinyang.f90 163
noyinyang mpi.f90 . 163
npm 196
nprocy 50, 164
nprocz 50
nr1 233
nr directions 54
nt 8, 36, 171
nu 177, 209
nu epicycle . . . 168, 177
nu hyper2 177
nu hyper3 177
nu LES 214
nu tdep 214
num 214
numx 227
nuQ 209
nusmagm 214
nusmagmax 214
nusmagmin 214
nv 108
nvar 26, 83
nx . 28, 29, 101, 108, 109
nxgrid 53, 54, 108
ny 28, 29, 108, 144
nygrid 41
nz 28, 29, 108, 144
nzgrid 41

o2 215
o2m 180
o2mz 217
odel2um 180
ogux2mz 218
oguxmz 218
oguy2mz 218
oguymz 218
oguz2mz 218
oguzmz 218
omax 180
Omega 173
omega ff 177
omumz 179
oo 215
orms 180
ou0 239, 240
ou int 180
oud 239, 240
ouf 239, 240

oum 25, 180
oumphi 180
oumx 225
oumxy 229
oumxz 227
oumy 223
oumz 218
out . . 233–236, 239, 240
out1 172
out2 172
outm 178
ovr . . 233, 234, 239, 240
ox2m 180
ox2mx 225
ox2mz 217
oxdivu2mz 218
oxdivumz 218
oxmxy 229
oxmz 217
oxoym 180
oxozm 180
oxuxxmz 218
oxuyxmz 218
oxuzxm 180
oxuzxmz 218
oy2m 180
oy2mx 225
oy2mz 217
oydivu2mz 218
oydivumz 218
oymxy 229
oymz 217
oyozm 180
oyuxymz 218
oyuyymz 218
oyuzym 180
oyuzymz 218
oz2m 180
oz2mx 225
oz2mz 217
ozdivu2mz 218
ozdivumz 218
ozmxy 229
ozmz 217

p 232, 234–237, 239
p1D 238, 239
PATH 5, 6, 12
pdivum . . 181, 189, 196
peffmxz 229
PENCIL HOME 5, 6, 75

PENCIL HOST ID . . 18
pertss 168
pfc 234–237
pfe 238, 239
phi11 200, 203
phi12 200, 203
phi21 200, 203
phi22 200, 203
phi32 200, 203
phibmx 186, 195
phibmy 186, 195
phibmz 186, 195
phibzm 191
phibzmz 191
phiK 200, 203
phiM 200, 203
phim 191
phiMK 200, 203
phimphi 216
phip2 191
phipt 191
placeholder 178
polytrm 197
pot 238, 239
power spectrum.f90 163
Poynting 215
poynxmxy 231
poynymxy 231
poynzmxy 231
poynzmz 221, 222
pp 215, 235, 236
ppm . 181, 189, 198, 214
ppmx 225, 227
ppmy 224
ppmz . . . 219, 222, 223
pr1mz 223
pretend lnTT 165
pscalar diff 176
PSCALAR INIT PARS

165
pscalar sink rate . . 177
psi11 200, 203
psi12 200, 203
psi21 200, 203
psi22 200, 203
puzmz 223
pvzm 180
pvzmxy 229
pwd 238, 239

q2m 180

VARIABLE INDEX 259

qam 195
qem 195
qfm 180
qfviscm 214
qmax . 54, 180, 186, 191
qom 180
qpm 195
qpmz 222
Qrad 215
qrms 180, 186, 191
qsatmin 191
qsatrms 191
qshear 171, 177
qsm 195
quxom 180
qxmax 191
qxmin 191
qymax 191
qymin 191
qzmax 191
qzmin 191

r ext 176
r ff 177
r int 176
radius 170
radius ss 168
random gen . . 165, 173
rcool 175
rcylmphi 216
rdamp 173
rdampext 173
rdampint 173
rdivum 179
REAL PRECISION 52,

144
reinitialize lncc 176
relhel 148, 177
relhel uu=0 128
relhel uu=1 128
Remz 218
Reshock 214
rho 215
rho0 167, 174, 177
rho2mx 219
rho2mz 218
rho left 167
rho right 167
rhoccm 186
rhom . . . 8, 25, 181, 187
rhomax 181, 189

rhomin 181, 189
rhomphi 216
rhomx 225
rhomxmask 181
rhomxy 230
rhomxz 227
rhomy 223
rhomz 218
rhomzmask 181
rlx2m 180
rlxm 180
rly2m 180
rlym 180
rlz2m 180
rlzm 180
Rmesh 178
Rmesh3 178
Rmmz 185
rmphi 216
Rring1,Rring2 170
rumax 179
rux2m 179
rux2mx 225
rux2mxy 229
rux2mz 218
ruxm 179
ruxmx 225
ruxmxy 229
ruxmz 218
ruxtot 179
ruxuy2mz 218
ruxuym 180
ruxuymx 225
ruxuymxy 229
ruxuymz 218
ruxuz2mz 218
ruxuzm 180
ruxuzmx 225
ruxuzmxy 229
ruxuzmz 218
ruy2m 179
ruy2mx 225
ruy2mxy 229
ruy2mz 218
ruym 179
ruymx 225
ruymxy 229
ruymz 218
ruyuz2mz 218
ruyuzm 180

ruyuzmx 225
ruyuzmxy 230
ruyuzmz 218
ruz2m 179
ruz2mx 225
ruz2mxy 229
ruz2mz 218
ruzdownmz 217
ruzm 179
ruzmx 225
ruzmxy 229
ruzmz 218
ruzupmz 217

s 232, 234–237, 239
s+f 236, 237
s0d . . 232, 234–237, 239
s2kzDFm 200, 204, 207
sa2 233, 235
sds 235, 236
sep 236, 237
set . 233, 234, 236–238,

240
sf 232, 237, 239
sfr 233, 235–237
Shchm 196
shock 215
shockmax 197
shx 233
shy 233
shz 233
Sij2m 214
slice position 26, 27, 172
slo 233, 234
slp 233
spd 233, 235
spr 232, 234
spt 236, 237
sr1 233
ss . . . 215, 232, 234–236
ss2m 181, 189
ss2mx 225
ss2mz 219
sse 236, 237
ssm 8, 181, 189, 198
ssmax 182
ssmin 182
ssmphi 216
ssmx 225
ssmxy 190, 230
ssmxz 190, 227

260 THE PENCIL CODE

ssmy 224
ssmz 219, 223
ssruzm 181
ssuzm 181
sT . . . 233–236, 238, 240
StokesImxy . . . 231, 232
StokesQ1mxy . 231, 232
StokesQmxy . . 231, 232
StokesU1mxy . 231, 232
StokesUmxy . . 231, 232
strTpt 190
strXpt 190
StS 238, 240

t 8, 25, 108, 178
tauheat buffer 175
tauhmin 181
tavg 30, 31, 173
tdamp 173
Tdxpm 197
Tdypm 197
Tdzpm 197
tensor pscalar diff . 176
thcool 198
theta 173
theta5m 188
theta5rms 188
timestep.f90 163
timestep strang.f90 . 163
timestep subcycle.f90 163
tmax 172
tot ang mom 180
total carbon sites . . 171
totmass 181
Trms 197
ts 44
TT 215
TT2m 197
TT2mx 225
TT2mz 219, 223
TTheat buffer 175
TTm . 181, 197, 198, 214
TTmax . . 182, 197, 198,

214
TTmin182, 197, 198, 214
TTmx 225, 227
TTmxy 230, 232
TTmxz 227, 229
TTmy 224
TTmz 219, 223
ttransient 173

TTtop 181, 190
TTzmask 197
TugTm 197
Tugux uxugTm 197
Tuguy uyugTm 197
Tuguz uzugTm 197

u0rms 201, 204
u11rms 201, 204
u12rms 201, 204
u1u23m 179
u1u32m 179
u2 214
u21rms 201, 204
u22rms 201, 204
u2m 178
u2mphi 216
u2mz 217
u2tm 178
u2u13m 179
u2u31m 179
u3u12m 179
u3u21m 179
uabxmz 219, 221
uabymz 219, 221
uabzmz 219, 221
uam 183, 192
uamz 220, 222
ubbzm 182, 191
ubm 182, 192
ubmz 220, 222
ubs 239, 240
udpxxm 181
ufpresm 182
ufviscm 214
uglnrhom 181
uglnrhomz 219
ugm 190
ugrhom 181, 187
ugrhomz 219
ugu2m 180
ugurmsx 180
uguxmxy 229
uguymxy 229
uguzmxy 229
ujm 183, 192
ujxbm 186, 195
umamz 179
umax 8, 178
umbmz 179
umin 178

umx 29, 179
umxbmz 179
umy 29, 179
umz 29, 179
unit density . . . 37, 165
unit length 37, 165
unit system 37, 165
unit temperature 36, 37,

165
unit velocity . . . 37, 165
uotm 178
upmphi 216
urand 166
urmphi 216
urms 8, 25, 128, 178
urms=3.981E-01 . . . 128
urms=5.560E-01 . . . 128
urmsx 178
urmsz 178
ursphmphi 216
uthmphi 216
uu 214
uu left 166
uu right 166
uumphi 216
uusphmphi 216
uut 100
ux0m 201, 204
ux0mz 209
ux11m 201, 204
ux2ccm 179
ux2m 179
ux2mx 225
ux2mxy 229
ux2mxz 227
ux2mz 217
ux2ssm 179
uxbm 185, 194
uxbmx 185, 194
uxbmy 185, 194
uxbmz 185, 194
uxbxm 182, 192
uxbxmz 220, 222
uxbym 183, 192
uxbymz 220, 222
uxbzm 183, 192
uxbzmz 220, 222
uxglnrym 180
uxm 179
uxmax 179

VARIABLE INDEX 261

uxmin 179
uxmx 225
uxmxy 229
uxmxz 227
uxmy 223
uxmz 217
uxp2 178
uxpt 178
uxrms 178
uxTm 197
uxTmz 223
uxTTmx 225
uxTTmxy 230
uxTTmz 219
uxuycsm 179
uxuydivum 180
uxuym 179
uxuymx 225
uxuymxy 229
uxuymxz 227
uxuymz 218
uxuzm 179
uxuzmx 225
uxuzmxy 229
uxuzmxz 227
uxuzmz 218
uxxrms 181
uxzrms 181
uy0m 201, 204
uy0mz 209
uy11m 201, 204
uy2ccm 179
uy2m 179
uy2mx 225
uy2mxy 229
uy2mxz 227
uy2mz 217
uy2ssm 179
uybxm 182, 192
uybxmxz 228
uybxmz 220, 222
uybym 183, 192
uybymz 220, 222
uybzm 183, 192
uybzmxz 228
uybzmz 220, 222
uyglnrxm 180
uygzlnrhomz 219
uym 179
uymax 179

uymin 179
uymx 225
uymxy 229
uymxz 227
uymy 223
uymz 217
uyp2 178
uypt 178
uyrms 178
uyTm 197
uyTmz 223
uyTTmx 225
uyTTmxy 230
uyTTmz 219
uyuzm 179
uyuzmx 225
uyuzmxy 229
uyuzmxz 227
uyuzmz 218
uyxuzxmz 218
uyyrms 181
uyyuzymz 218
uyzrms 181
uyzuzzmz 218
uz0mz 209
uz2m 179
uz2mx 225
uz2mxy 229
uz2mxz 227
uz2mz 217
uzbxm 182, 192
uzbxmz 220, 222
uzbym 183, 192
uzbymz 220, 222
uzbzm 183, 192
uzbzmz 220, 222
uzdivum 180
uzdivumz 217
uzdownmz 217
uzgylnrhomz 219
uzm 179
uzmax 179
uzmin 179
uzmphi 216
uzmx 225
uzmxy 229
uzmxz 227
uzmy 223
uzmz 217
uzp2 178

uzpt 178
uzrms 179
uzTm 197
uzTmz 223
uzTTmx 225
uzTTmxy 230
uzTTmz 219
uzupmz 217
uzyrms 181

v 232, 234–237, 239
v3 235–237, 239
vAm 188
vAmax . . 184, 188, 193
vAmin 188
vAmxz 228, 229
vArms 184, 193
visc heatm 214
vol 181
vpx2m 196
vpxm 196
vpxmax 196
vpxmin 196
vrelpabsm 196

w forc 174
walltime 178
wcool 175
wdamp 173, 174
wheat 175
width ff 177
widthaa 170
widthlnrho 167
widthss . . 168, 174, 175
widthuu 166
win 239, 240
wr1,wr2 170
write slices 27
wsnaps.f90 172

xi 209
xiQ 209
xp2m 196
xpm 196
xpmax 196
xpmin 196
xy 172
xy2 172
xyz0 23, 25, 164
xyz star 25

yH 215

262 THE PENCIL CODE

yHm 181, 198
yHmax 181, 198
yHmin 198
yinyang.f90 163
yinyang mpi.f90 . . . 163
yy 235, 237

z0aa 170
z1 167
z2 168
zbot slice . . 26, 28, 172
zeta 177, 209
zetaQ 209

zheat buffer 175
zmphi 216
zref 167, 177
ztop slice . . 26, 28, 172

Index

This index contains options, names, definitions and commands. Files and variables have
their own indexes.

’VAR10’ 45
.r 45
.run 45
.svn 12
/trimall 45
$PENCIL HOME/idl/files

46
2N-scheme 156
6th-order derivatives153

pc mkproctree 16 . . 145

adapt-mkfile 77
adapt-mkfile 22, 88
anelastic 67
autoconf 88
Autoconf 88
Autoconf/automake . . 88
Averages 29, 30
Azimuthal averages . 29

bandwidth 50
Bash 5, 75
bash 44
bc 44
Beowulf clusters 50
Bidiagonal scheme . 155
bin/pc run 82
Boundary conditions . 39
Bourne shell 5

C viii, 1, 109
Cdata 108
cgs units 36, 165
Changes 126
Check-in details 91
CHIRAL=nochiral . . 78
Coding standards97, 122
Comments 123
copy-proc-to-proc

seed.dat ../hy-

dro256e 31
Coriolis force 173
Cosmic rays 68
Courant number 36
Cron 106

crontab -e 106
CSH viii
Csh 1, 5, 12, 75
csh 75
CVS 2
CVS vii
Cvs 11
cvs-add-rundir 32

Daainit 146
Data directory 14
Data explorer 1, 41
datafiles 25
Density init pars . . 166
Density run pars . . 174
diffrho hyper3 mesh=2

141
double precision 51, 144
Download 2, 44, 75
Download forbidden . 75
DX . viii, 1, 5, 12, 32, 41,

42

Emacs settings 125
Entropy 61
Entropy 15, 40, 61
Entropy.f90 27
Entropy init pars . . 168
Entropy run pars . . 174
Equation of state . . . 63
Error, diffusive 157
Etatest 146

f-array 100
f90 21, 22
F95 viii, 1
f95 21
FAQ 75
FBCX1 146
FBCX2 2 146
FC=mpif90 81
ff 45
ff.varname 46
FFT 13
Fftpack 52

Filters 137
Flag 163, 171
Flux rings 128
Forcing run pars . . 36,

147, 148, 176
Fortran record . . 26, 30
Fortran record 26
fp-array 101
Frequently Asked Ques-

tions 75
ftp 44
Fully qualified host

name 18

G77 77
G95 52, 76
GDL 42
Gfortran viii, 52
Ghost points 39
Ghost zones 39, 50
Git 2
Git 2, 3
git 3
Glibc 76
Gnu Data Language . 42
GNU gcc viii
Gnuplot 15, 41
gnuplot 44
Grav init pars 167
Grav r 13
Grav run pars 146, 177
Gravitational Waves . 71
Gravity 13
Gravity simple 13
grep viii, 95, 96
grid, nonuniform . . . 23

h-index 91
Hydro.f90 27
Hydro init pars . . . 165
Hydro run pars . . . 173
hyperdiffusivity . . . 137
Hyperviscosity 137, 139–

141, 153, 155

Icc 76

263

264 THE PENCIL CODE

idiff=’hyper3 mesh’ . 141
IDL . . viii, 1, 5, 8, 9, 12,

15, 27, 28, 30, 32,
42–44, 53, 55

IDL 148
idl 44
Ifc 76
Ifort 76, 77
ifort 52
incompressible 67
Init pars . . . 34, 35, 164
Initial conditions . . 127
InitialCondition module

104
Interlocked flux rings128
Interstellar 15
IO 108, 109
Io mpiodist.f90 16
Ionization 64, 158
Ionization.f90 . . . 36, 37
itorder=5 38

Janus 21, 22

LANG=POSIX 83
ldensity 89
Linux 1, 76
locate mpif.h 81
lwrite aux=T 66

Magnetic 98
Magnetic 98
Magnetic helicity . . . vii
Magnetic.f90 . . . 27, 28
Magnetic init pars . 169
Magnetic run pars 146,

176
Make 1, 13, 22, 78
make 6, 13, 19, 20
make clean 76
Makefile . . 6, 14, 21, 80
Makefile 20
Manual iv, 90, 104
mesh, nonuniform . . 23
Message passing inter-

face 49
Module viii
Module.h 76
Modules 13
Modules viii, 13
MPEG 27

Mpeg encode 27
MPI vii, 1, 9, 13–15, 21,

49, 77, 88
mpif90 -show 81
mpif90 -showme 81
mpirun 14

Namelist 32
Namelists 34
Networks 41
NEWDIR file 34
Newphysics 104
Noentropy . . 15, 40, 61
NOERASE file 86
Nogravity 13
Noionization.f90 . 36, 37
Nomodule.f90 76
Nonewphysics 104
nonuniform grid 23
Nospecial.f90 . 103, 104

octave 44
Onsager 22
OpenDX 1
Option ‘–host-id’ 18
Option ‘–use-pc’ . . . 107
Option ‘–use-pc auto-test’

21
Option ‘-b’ 21
Option ‘-D ¡dir¿’ . . . 107
Option ‘-f’ 106
Option ‘-fast’ 22
Option ‘-fno-second-

underscore’ . . 76,
77

Option ‘-H’ 18, 107
Option ‘-l’ 106
Option ‘-lmpi’ 21
Option ‘-m ¡email-list¿’

107
Option ‘-N 15’ 107
Option ‘-nothreads’ . . 77
Option ‘-O2 -u’ 21
Option ‘-O3’ 21, 79
Option ‘-qextname’ . . 76
Option ‘-t 15m’ 107
Option ‘-T ¡file¿’ . . . 107
Option ‘-Uc’ 107
Option ‘-Wa,–max-level’

107

Option ‘-Wa,–max-

level=2’ 107
Option ‘/png’ 27
Option ‘¿ $HOME/public -

html/pencil-

code/tests/nightly-

tests.html’ . . 107
Option ‘a’ 39
Option ‘a2’ 40
Option ‘c1’ 40, 132, 175
Option ‘c2’ 40, 174
Option ‘ce’ 40
Option ‘cT’ 40
Option ‘db’ 40
Option ‘g’ 40
Option ‘hs’ 40
Option ‘nohydro’ . . . 176
Option ‘p’ 39
Option ‘pot’ 132
Option ‘pwd’ 132
Option ‘s’ 40
Option ‘she’ 40

Particles 69
Particles ads init pars

171
Particles ads run pars

178
Particles chem init pars

171
Particles chem run pars

178
Particles run pars . 177
Particles stalker init -

pars 171
Particles surf init pars

171
Particles surf run pars

178
pc jobtransfer 34
pc auto-test . . 20, 21, 91,

106
pc auto-test –help21, 106
pc build 17, 20
pc build –cleanall . . 107
pc build –help 20
pc get quantity . . 44, 45
pc jobtransfer 34
pc mkdatadir 7
pc newrun 7
pc read const, obj=cst 46

INDEX 265

pc read param, obj=par

46
pc read param, obj=par2,

/param2 . . . 46
pc read pvar, obj=fp . 46
pc read ts, obj=ts . . . 46
pc read var 44, 45
pc read var, obj=ff, /tri-

mall 46
pc read var raw 44
pc read var raw,

obj=var, tags=tags

46
pc read xyaver, obj=xya

46
pc read xzaver, obj=xza

46
pc read yzaver, obj=yza

46
pc run . . 17, 19, 20, 82
pc run –help 20
pc setupsrc . . 12, 32, 52,

75, 76
pc svnup 3
pc svnup -val 3
pc tsnap 26
Pencil case 101
Pencil check 102
Pencil Code 88
Pencil consistency check

102
Pencil design 12
pencil-test . 21, 106, 107
pencil-test –help 21, 106
pencil check small=F 66
Pencils vii, 101
Perl viii, 1, 12
perldoc Pencil::ConfigFinder

17
perldoc PENCIL::ConfigParser

17
Planet solution 134
PNG 27
Polytropic atmosphere

130
Potential-field boundary

condition . . 132

power 53, 54
pretend lnTT . . 62, 165
Programming style . 97,

122
Pscalar 104
Pscalar init pars . . 170
Pscalar run pars . . 176
Python viii
Python 46

Radiative transfer . 66,
159

Readline 44
Regridding 144
Remeshing 144
RERUN file 34
restart-new-dir ../32c

145
Restarting 40, 145
rlwrap 44
Run directory 6
run.x 30
Run pars 26–28, 34, 145,

171, 173
Runge-Kutta 156
Runge-Kutta time step

38
Runge-Kutta-Fehlberg

time step . . . 38

Scripts 31
Setup 5, 42, 75
Shear 40
Shear init pars 170
Shear run pars 146, 177
Shock viscosity . . 37, 63
SI units 36, 165
Sixth-order derivatives

153
slice files 28
Slice files 26, 27
Special module 103
start.csh 40
Stdout 25
Stratification 129
structure 55
Style 3, 97, 122
Sub 109

summarize-history . . 34
svn 2–4, 14, 117
Svn . 2–4, 11, 14, 31, 32,

79, 117, 164, 171
svn 3
svn annotate src/*.f90 v
svn mv file.f90 exper-

imental/file.f90

126
svn up sourceme.csh . 87
svn up sourceme.sh . . 87
svn update 107
svn update -r ##### . . 4
Svn/git 2, 3
Syscalls 76

tab 97
Tab characters 122
tag names 45
Tcsh 5
teach/PencilCode/material/Burger

142
Testfield method 71, 145
Time averages 30
Time step 38, 156
Toroidal averages . . . 29
touch NEWDIR 34
touch NOERASE . . 164
touch RELOAD 171

uname 22
Underscore problem . 77
Units 36, 165
Unix 1
Upwinding . 37, 95, 154
use 108

Vector potential 61
Video files 26
Viscosity 37, 63
Viscosity run pars 146,

177

Weyl gauge 61
Whitespace 122

Xlf 76
Xmgrace 15

266 THE PENCIL CODE

Id

	I Using the Pencil Code
	System requirements
	Obtaining the code
	Obtaining the code via git or svn
	Updating via svn or git
	Getting the last validated version
	Getting older versions

	Getting started
	Setup
	Environment settings
	Linking scripts and source files
	Adapting Makefile.src
	Running make
	Choosing a data directory
	Running the code

	Further tests

	Code structure
	Directory tree
	Basic concepts
	Data access in pencils
	Modularity

	Files in the run directories
	start.in, run.in, print.in
	datadir.in
	reference.out
	start.csh, run.csh, getconf.csh [obsolete; see Sect. 5.1]
	src/
	data/

	Using the code
	Configuring the code to compile and run on your computer
	Locating the configuration file
	Structure of configuration files
	Compiling the code
	Running the code
	Testing the code

	Adapting Makefile.src [obsolete; see Sect. 5.1]
	Changing the resolution
	Using a non-equidistant grid
	Diagnostic output
	Data files
	Snapshot files

	Video files and slices
	Averages
	One-dimensional output averaged in two dimensions
	Two-dimensional output averaged in one dimension
	Azimuthal averages
	Time averages

	Helper scripts
	RELOAD and STOP files
	RERUN and NEWDIR files
	Start and run parameters
	Physical units
	Minimum amount of viscosity
	The time step
	The usual RK-2N time step
	The Runge-Kutta-Fehlberg time step

	Boundary conditions
	Where to specify boundary conditions
	How to specify boundary conditions

	Restarting a simulation
	One- and two-dimensional runs
	Visualization
	Gnuplot
	Data explorer
	GDL
	IDL
	Python

	Running on multi-processor computers
	How to run a sample problem in parallel
	Hierarchical networks (e.g. on Beowulf clusters)
	Extra workload caused by the ghost zones

	Running in double-precision
	Power spectrum
	Structure functions
	Particles
	Particles in parallel
	Large number of particles
	Random number generator

	Non-cartesian coordinate systems

	The equations
	Continuity equation
	Equation of motion
	Induction equation
	Entropy equation
	Viscous heating
	Alternative description

	Transport equation for a passive scalar
	Bulk viscosity
	Shock viscosity

	Equation of state
	Ionization
	Ambipolar diffusion

	Radiative transfer
	Self-gravity
	Incompressible and anelastic equations
	Dust equations
	Cosmic ray pressure in diffusion approximation
	Particles
	Tracer particles
	Dust particles

	N-body solver
	Test-field equations
	Gravitational wave equations

	Troubleshooting / Frequently Asked Questions
	Download and setup
	Download forbidden
	Shell gives error message when sourcing [sourceme]sourceme.X

	Compilation
	Problems compiling syscalls
	Unable to open include file: chemistry.h
	Compiling with ifc under Linux
	Segmentation fault with ifort 8.0 under Linux
	The underscore problem: linking with MPI
	Compilation stops with the cryptic error message:
	The code doesn't compile,
	Some samples don't even compile,
	Internal compiler error with Compaq/Dec F90
	Assertion failure under SunOS
	After some dirty tricks I got pencil code to compile with MPI, ...
	Error: Symbol 'mpi_comm_world' at (1) has no IMPLICIT type
	Error: Can't open included file 'mpif.h'

	Pencil check
	The pencil check complains for no reason.
	The pencil check reports MISSING PENCILS and quits
	The pencil check reports unnecessary pencils
	The pencil check reports that most or all pencils are missing
	Running the pencil check triggers mathematical errors in the code
	The pencil check still complains
	The pencil check is annoying so I turned it off

	Running
	Periodic boundary conditions in start.x
	csh problem?
	run.csh doesn't work:
	Code crashes after restarting
	auto-test gone mad...?
	Can I restart with a different number of cpus?
	Can I restart with a different number of cpus?
	fft_xyz_parallel_3D: nygrid needs to be an integer multiple...
	Unit-agnostic calculations?

	Visualization
	start.pro doesn't work:
	start.pro doesn't work:
	Something about tag name undefined:
	Something INC in start.pro
	nl2idl problem when reading param2.nml
	Spurious dots in the time series file
	Problems with pc_varcontent.pro

	General questions
	``Installation'' procedure
	Small numbers in the code
	Why do we need a /lphysics/ namelist in the first place?
	Can I run the code on a Mac?
	Pencil Code discussion forum
	The manual

	II Programming the Pencil Code
	Understanding the code
	Example: how is the continuity equation being solved?

	Adapting the code
	The Pencil Code coding standard
	Adding new output diagnostics
	The f-array
	The df-array
	The fp-array
	The pencil case
	Pencil check
	Adding new pencils

	Adding new physics: the Special module
	Adding switchable modules
	Adding your initial conditions: the InitialCondition module

	Testing the code
	How to set up periodic tests

	Useful internals
	Global variables
	Subroutines and functions

	III Appendix
	Timings
	Test case
	Running the code
	Triolith
	Lindgren

	Coding standard
	File naming conventions
	Fortran Code
	Indenting and whitespace
	Comments
	Module names
	Variable names
	Emacs settings

	Other best practices
	General changes to the code

	Some specific initial conditions
	Random velocity or magnetic fields
	Turbulent initial with given spectrum
	Beltrami fields
	Magnetic flux rings: initaa='fluxrings'
	Vertical stratification
	Isothermal atmosphere
	Polytropic atmosphere
	Changing the stratification
	The Rayleigh number
	Entropy boundary condition
	Temperature boundary condition at the top

	Potential-field boundary condition
	Planet solution in the shearing box

	Some specific boundary conditions
	Perfect-conductor boundary condition
	Stress-free boundary condition
	Normal-field-radial boundary condition

	High-frequency filters
	Conservative hyperdissipation
	Hyperviscosity
	Conservative case
	Non-conservative cases
	Choosing the coefficient
	Turbulence with hyperviscosity

	Anisotropic hyperdissipation
	Hyperviscosity in Burgers shock

	Special techniques
	After changing REAL_PRECISION
	Remeshing (regridding)
	Restarting from a run with less physics

	Runs and reference data
	Shock tests
	Sod shock tube problem
	Temperature jump

	Random forcing function
	Three-layered convection model
	Magnetic helicity in the shearing sheet

	Numerical methods
	Sixth-order spatial derivatives
	Upwind derivatives to avoid `wiggles'
	The bidiagonal scheme for cross-derivatives
	The 2N-scheme for time-stepping
	Diffusive error from the time-stepping
	Ionization
	Radiative transfer
	Solving the radiative transfer equation
	Angular integration

	Switchable modules
	Startup and run-time parameters
	Startup parameters for start.in
	Runtime parameters for run.in
	Parameters for print.in
	Parameters for video.in
	Parameters for phiaver.in
	Parameters for xyaver.in
	Parameters for xzaver.in
	Parameters for yzaver.in
	Parameters for yaver.in
	Parameters for zaver.in
	Boundary conditions
	Boundary condition bcx
	Boundary condition bcy
	Boundary condition bcz

	Initial condition parameter dependence

	IV Indexes

